1 //===--- CodeGenFunction.cpp - Emit LLVM Code from ASTs for a Function ----===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This coordinates the per-function state used while generating code. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "CodeGenFunction.h" 14 #include "CGBlocks.h" 15 #include "CGCUDARuntime.h" 16 #include "CGCXXABI.h" 17 #include "CGCleanup.h" 18 #include "CGDebugInfo.h" 19 #include "CGOpenMPRuntime.h" 20 #include "CodeGenModule.h" 21 #include "CodeGenPGO.h" 22 #include "TargetInfo.h" 23 #include "clang/AST/ASTContext.h" 24 #include "clang/AST/ASTLambda.h" 25 #include "clang/AST/Attr.h" 26 #include "clang/AST/Decl.h" 27 #include "clang/AST/DeclCXX.h" 28 #include "clang/AST/Expr.h" 29 #include "clang/AST/StmtCXX.h" 30 #include "clang/AST/StmtObjC.h" 31 #include "clang/Basic/Builtins.h" 32 #include "clang/Basic/CodeGenOptions.h" 33 #include "clang/Basic/TargetInfo.h" 34 #include "clang/CodeGen/CGFunctionInfo.h" 35 #include "clang/Frontend/FrontendDiagnostic.h" 36 #include "llvm/ADT/ArrayRef.h" 37 #include "llvm/Frontend/OpenMP/OMPIRBuilder.h" 38 #include "llvm/IR/DataLayout.h" 39 #include "llvm/IR/Dominators.h" 40 #include "llvm/IR/FPEnv.h" 41 #include "llvm/IR/IntrinsicInst.h" 42 #include "llvm/IR/Intrinsics.h" 43 #include "llvm/IR/MDBuilder.h" 44 #include "llvm/IR/Operator.h" 45 #include "llvm/Support/CRC.h" 46 #include "llvm/Transforms/Scalar/LowerExpectIntrinsic.h" 47 #include "llvm/Transforms/Utils/PromoteMemToReg.h" 48 using namespace clang; 49 using namespace CodeGen; 50 51 /// shouldEmitLifetimeMarkers - Decide whether we need emit the life-time 52 /// markers. 53 static bool shouldEmitLifetimeMarkers(const CodeGenOptions &CGOpts, 54 const LangOptions &LangOpts) { 55 if (CGOpts.DisableLifetimeMarkers) 56 return false; 57 58 // Sanitizers may use markers. 59 if (CGOpts.SanitizeAddressUseAfterScope || 60 LangOpts.Sanitize.has(SanitizerKind::HWAddress) || 61 LangOpts.Sanitize.has(SanitizerKind::Memory)) 62 return true; 63 64 // For now, only in optimized builds. 65 return CGOpts.OptimizationLevel != 0; 66 } 67 68 CodeGenFunction::CodeGenFunction(CodeGenModule &cgm, bool suppressNewContext) 69 : CodeGenTypeCache(cgm), CGM(cgm), Target(cgm.getTarget()), 70 Builder(cgm, cgm.getModule().getContext(), llvm::ConstantFolder(), 71 CGBuilderInserterTy(this)), 72 SanOpts(CGM.getLangOpts().Sanitize), CurFPFeatures(CGM.getLangOpts()), 73 DebugInfo(CGM.getModuleDebugInfo()), PGO(cgm), 74 ShouldEmitLifetimeMarkers( 75 shouldEmitLifetimeMarkers(CGM.getCodeGenOpts(), CGM.getLangOpts())) { 76 if (!suppressNewContext) 77 CGM.getCXXABI().getMangleContext().startNewFunction(); 78 EHStack.setCGF(this); 79 80 SetFastMathFlags(CurFPFeatures); 81 SetFPModel(); 82 } 83 84 CodeGenFunction::~CodeGenFunction() { 85 assert(LifetimeExtendedCleanupStack.empty() && "failed to emit a cleanup"); 86 87 if (getLangOpts().OpenMP && CurFn) 88 CGM.getOpenMPRuntime().functionFinished(*this); 89 90 // If we have an OpenMPIRBuilder we want to finalize functions (incl. 91 // outlining etc) at some point. Doing it once the function codegen is done 92 // seems to be a reasonable spot. We do it here, as opposed to the deletion 93 // time of the CodeGenModule, because we have to ensure the IR has not yet 94 // been "emitted" to the outside, thus, modifications are still sensible. 95 if (CGM.getLangOpts().OpenMPIRBuilder && CurFn) 96 CGM.getOpenMPRuntime().getOMPBuilder().finalize(CurFn); 97 } 98 99 // Map the LangOption for exception behavior into 100 // the corresponding enum in the IR. 101 llvm::fp::ExceptionBehavior 102 clang::ToConstrainedExceptMD(LangOptions::FPExceptionModeKind Kind) { 103 104 switch (Kind) { 105 case LangOptions::FPE_Ignore: return llvm::fp::ebIgnore; 106 case LangOptions::FPE_MayTrap: return llvm::fp::ebMayTrap; 107 case LangOptions::FPE_Strict: return llvm::fp::ebStrict; 108 } 109 llvm_unreachable("Unsupported FP Exception Behavior"); 110 } 111 112 void CodeGenFunction::SetFPModel() { 113 llvm::RoundingMode RM = getLangOpts().getFPRoundingMode(); 114 auto fpExceptionBehavior = ToConstrainedExceptMD( 115 getLangOpts().getFPExceptionMode()); 116 117 Builder.setDefaultConstrainedRounding(RM); 118 Builder.setDefaultConstrainedExcept(fpExceptionBehavior); 119 Builder.setIsFPConstrained(fpExceptionBehavior != llvm::fp::ebIgnore || 120 RM != llvm::RoundingMode::NearestTiesToEven); 121 } 122 123 void CodeGenFunction::SetFastMathFlags(FPOptions FPFeatures) { 124 llvm::FastMathFlags FMF; 125 FMF.setAllowReassoc(FPFeatures.getAllowFPReassociate()); 126 FMF.setNoNaNs(FPFeatures.getNoHonorNaNs()); 127 FMF.setNoInfs(FPFeatures.getNoHonorInfs()); 128 FMF.setNoSignedZeros(FPFeatures.getNoSignedZero()); 129 FMF.setAllowReciprocal(FPFeatures.getAllowReciprocal()); 130 FMF.setApproxFunc(FPFeatures.getAllowApproxFunc()); 131 FMF.setAllowContract(FPFeatures.allowFPContractAcrossStatement()); 132 Builder.setFastMathFlags(FMF); 133 } 134 135 CodeGenFunction::CGFPOptionsRAII::CGFPOptionsRAII(CodeGenFunction &CGF, 136 const Expr *E) 137 : CGF(CGF) { 138 ConstructorHelper(E->getFPFeaturesInEffect(CGF.getLangOpts())); 139 } 140 141 CodeGenFunction::CGFPOptionsRAII::CGFPOptionsRAII(CodeGenFunction &CGF, 142 FPOptions FPFeatures) 143 : CGF(CGF) { 144 ConstructorHelper(FPFeatures); 145 } 146 147 void CodeGenFunction::CGFPOptionsRAII::ConstructorHelper(FPOptions FPFeatures) { 148 OldFPFeatures = CGF.CurFPFeatures; 149 CGF.CurFPFeatures = FPFeatures; 150 151 OldExcept = CGF.Builder.getDefaultConstrainedExcept(); 152 OldRounding = CGF.Builder.getDefaultConstrainedRounding(); 153 154 if (OldFPFeatures == FPFeatures) 155 return; 156 157 FMFGuard.emplace(CGF.Builder); 158 159 llvm::RoundingMode NewRoundingBehavior = 160 static_cast<llvm::RoundingMode>(FPFeatures.getRoundingMode()); 161 CGF.Builder.setDefaultConstrainedRounding(NewRoundingBehavior); 162 auto NewExceptionBehavior = 163 ToConstrainedExceptMD(static_cast<LangOptions::FPExceptionModeKind>( 164 FPFeatures.getFPExceptionMode())); 165 CGF.Builder.setDefaultConstrainedExcept(NewExceptionBehavior); 166 167 CGF.SetFastMathFlags(FPFeatures); 168 169 assert((CGF.CurFuncDecl == nullptr || CGF.Builder.getIsFPConstrained() || 170 isa<CXXConstructorDecl>(CGF.CurFuncDecl) || 171 isa<CXXDestructorDecl>(CGF.CurFuncDecl) || 172 (NewExceptionBehavior == llvm::fp::ebIgnore && 173 NewRoundingBehavior == llvm::RoundingMode::NearestTiesToEven)) && 174 "FPConstrained should be enabled on entire function"); 175 176 auto mergeFnAttrValue = [&](StringRef Name, bool Value) { 177 auto OldValue = 178 CGF.CurFn->getFnAttribute(Name).getValueAsBool(); 179 auto NewValue = OldValue & Value; 180 if (OldValue != NewValue) 181 CGF.CurFn->addFnAttr(Name, llvm::toStringRef(NewValue)); 182 }; 183 mergeFnAttrValue("no-infs-fp-math", FPFeatures.getNoHonorInfs()); 184 mergeFnAttrValue("no-nans-fp-math", FPFeatures.getNoHonorNaNs()); 185 mergeFnAttrValue("no-signed-zeros-fp-math", FPFeatures.getNoSignedZero()); 186 mergeFnAttrValue("unsafe-fp-math", FPFeatures.getAllowFPReassociate() && 187 FPFeatures.getAllowReciprocal() && 188 FPFeatures.getAllowApproxFunc() && 189 FPFeatures.getNoSignedZero()); 190 } 191 192 CodeGenFunction::CGFPOptionsRAII::~CGFPOptionsRAII() { 193 CGF.CurFPFeatures = OldFPFeatures; 194 CGF.Builder.setDefaultConstrainedExcept(OldExcept); 195 CGF.Builder.setDefaultConstrainedRounding(OldRounding); 196 } 197 198 LValue CodeGenFunction::MakeNaturalAlignAddrLValue(llvm::Value *V, QualType T) { 199 LValueBaseInfo BaseInfo; 200 TBAAAccessInfo TBAAInfo; 201 CharUnits Alignment = CGM.getNaturalTypeAlignment(T, &BaseInfo, &TBAAInfo); 202 return LValue::MakeAddr(Address(V, Alignment), T, getContext(), BaseInfo, 203 TBAAInfo); 204 } 205 206 /// Given a value of type T* that may not be to a complete object, 207 /// construct an l-value with the natural pointee alignment of T. 208 LValue 209 CodeGenFunction::MakeNaturalAlignPointeeAddrLValue(llvm::Value *V, QualType T) { 210 LValueBaseInfo BaseInfo; 211 TBAAAccessInfo TBAAInfo; 212 CharUnits Align = CGM.getNaturalTypeAlignment(T, &BaseInfo, &TBAAInfo, 213 /* forPointeeType= */ true); 214 return MakeAddrLValue(Address(V, Align), T, BaseInfo, TBAAInfo); 215 } 216 217 218 llvm::Type *CodeGenFunction::ConvertTypeForMem(QualType T) { 219 return CGM.getTypes().ConvertTypeForMem(T); 220 } 221 222 llvm::Type *CodeGenFunction::ConvertType(QualType T) { 223 return CGM.getTypes().ConvertType(T); 224 } 225 226 TypeEvaluationKind CodeGenFunction::getEvaluationKind(QualType type) { 227 type = type.getCanonicalType(); 228 while (true) { 229 switch (type->getTypeClass()) { 230 #define TYPE(name, parent) 231 #define ABSTRACT_TYPE(name, parent) 232 #define NON_CANONICAL_TYPE(name, parent) case Type::name: 233 #define DEPENDENT_TYPE(name, parent) case Type::name: 234 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(name, parent) case Type::name: 235 #include "clang/AST/TypeNodes.inc" 236 llvm_unreachable("non-canonical or dependent type in IR-generation"); 237 238 case Type::Auto: 239 case Type::DeducedTemplateSpecialization: 240 llvm_unreachable("undeduced type in IR-generation"); 241 242 // Various scalar types. 243 case Type::Builtin: 244 case Type::Pointer: 245 case Type::BlockPointer: 246 case Type::LValueReference: 247 case Type::RValueReference: 248 case Type::MemberPointer: 249 case Type::Vector: 250 case Type::ExtVector: 251 case Type::ConstantMatrix: 252 case Type::FunctionProto: 253 case Type::FunctionNoProto: 254 case Type::Enum: 255 case Type::ObjCObjectPointer: 256 case Type::Pipe: 257 case Type::ExtInt: 258 return TEK_Scalar; 259 260 // Complexes. 261 case Type::Complex: 262 return TEK_Complex; 263 264 // Arrays, records, and Objective-C objects. 265 case Type::ConstantArray: 266 case Type::IncompleteArray: 267 case Type::VariableArray: 268 case Type::Record: 269 case Type::ObjCObject: 270 case Type::ObjCInterface: 271 return TEK_Aggregate; 272 273 // We operate on atomic values according to their underlying type. 274 case Type::Atomic: 275 type = cast<AtomicType>(type)->getValueType(); 276 continue; 277 } 278 llvm_unreachable("unknown type kind!"); 279 } 280 } 281 282 llvm::DebugLoc CodeGenFunction::EmitReturnBlock() { 283 // For cleanliness, we try to avoid emitting the return block for 284 // simple cases. 285 llvm::BasicBlock *CurBB = Builder.GetInsertBlock(); 286 287 if (CurBB) { 288 assert(!CurBB->getTerminator() && "Unexpected terminated block."); 289 290 // We have a valid insert point, reuse it if it is empty or there are no 291 // explicit jumps to the return block. 292 if (CurBB->empty() || ReturnBlock.getBlock()->use_empty()) { 293 ReturnBlock.getBlock()->replaceAllUsesWith(CurBB); 294 delete ReturnBlock.getBlock(); 295 ReturnBlock = JumpDest(); 296 } else 297 EmitBlock(ReturnBlock.getBlock()); 298 return llvm::DebugLoc(); 299 } 300 301 // Otherwise, if the return block is the target of a single direct 302 // branch then we can just put the code in that block instead. This 303 // cleans up functions which started with a unified return block. 304 if (ReturnBlock.getBlock()->hasOneUse()) { 305 llvm::BranchInst *BI = 306 dyn_cast<llvm::BranchInst>(*ReturnBlock.getBlock()->user_begin()); 307 if (BI && BI->isUnconditional() && 308 BI->getSuccessor(0) == ReturnBlock.getBlock()) { 309 // Record/return the DebugLoc of the simple 'return' expression to be used 310 // later by the actual 'ret' instruction. 311 llvm::DebugLoc Loc = BI->getDebugLoc(); 312 Builder.SetInsertPoint(BI->getParent()); 313 BI->eraseFromParent(); 314 delete ReturnBlock.getBlock(); 315 ReturnBlock = JumpDest(); 316 return Loc; 317 } 318 } 319 320 // FIXME: We are at an unreachable point, there is no reason to emit the block 321 // unless it has uses. However, we still need a place to put the debug 322 // region.end for now. 323 324 EmitBlock(ReturnBlock.getBlock()); 325 return llvm::DebugLoc(); 326 } 327 328 static void EmitIfUsed(CodeGenFunction &CGF, llvm::BasicBlock *BB) { 329 if (!BB) return; 330 if (!BB->use_empty()) 331 return CGF.CurFn->getBasicBlockList().push_back(BB); 332 delete BB; 333 } 334 335 void CodeGenFunction::FinishFunction(SourceLocation EndLoc) { 336 assert(BreakContinueStack.empty() && 337 "mismatched push/pop in break/continue stack!"); 338 339 bool OnlySimpleReturnStmts = NumSimpleReturnExprs > 0 340 && NumSimpleReturnExprs == NumReturnExprs 341 && ReturnBlock.getBlock()->use_empty(); 342 // Usually the return expression is evaluated before the cleanup 343 // code. If the function contains only a simple return statement, 344 // such as a constant, the location before the cleanup code becomes 345 // the last useful breakpoint in the function, because the simple 346 // return expression will be evaluated after the cleanup code. To be 347 // safe, set the debug location for cleanup code to the location of 348 // the return statement. Otherwise the cleanup code should be at the 349 // end of the function's lexical scope. 350 // 351 // If there are multiple branches to the return block, the branch 352 // instructions will get the location of the return statements and 353 // all will be fine. 354 if (CGDebugInfo *DI = getDebugInfo()) { 355 if (OnlySimpleReturnStmts) 356 DI->EmitLocation(Builder, LastStopPoint); 357 else 358 DI->EmitLocation(Builder, EndLoc); 359 } 360 361 // Pop any cleanups that might have been associated with the 362 // parameters. Do this in whatever block we're currently in; it's 363 // important to do this before we enter the return block or return 364 // edges will be *really* confused. 365 bool HasCleanups = EHStack.stable_begin() != PrologueCleanupDepth; 366 bool HasOnlyLifetimeMarkers = 367 HasCleanups && EHStack.containsOnlyLifetimeMarkers(PrologueCleanupDepth); 368 bool EmitRetDbgLoc = !HasCleanups || HasOnlyLifetimeMarkers; 369 if (HasCleanups) { 370 // Make sure the line table doesn't jump back into the body for 371 // the ret after it's been at EndLoc. 372 Optional<ApplyDebugLocation> AL; 373 if (CGDebugInfo *DI = getDebugInfo()) { 374 if (OnlySimpleReturnStmts) 375 DI->EmitLocation(Builder, EndLoc); 376 else 377 // We may not have a valid end location. Try to apply it anyway, and 378 // fall back to an artificial location if needed. 379 AL = ApplyDebugLocation::CreateDefaultArtificial(*this, EndLoc); 380 } 381 382 PopCleanupBlocks(PrologueCleanupDepth); 383 } 384 385 // Emit function epilog (to return). 386 llvm::DebugLoc Loc = EmitReturnBlock(); 387 388 if (ShouldInstrumentFunction()) { 389 if (CGM.getCodeGenOpts().InstrumentFunctions) 390 CurFn->addFnAttr("instrument-function-exit", "__cyg_profile_func_exit"); 391 if (CGM.getCodeGenOpts().InstrumentFunctionsAfterInlining) 392 CurFn->addFnAttr("instrument-function-exit-inlined", 393 "__cyg_profile_func_exit"); 394 } 395 396 // Emit debug descriptor for function end. 397 if (CGDebugInfo *DI = getDebugInfo()) 398 DI->EmitFunctionEnd(Builder, CurFn); 399 400 // Reset the debug location to that of the simple 'return' expression, if any 401 // rather than that of the end of the function's scope '}'. 402 ApplyDebugLocation AL(*this, Loc); 403 EmitFunctionEpilog(*CurFnInfo, EmitRetDbgLoc, EndLoc); 404 EmitEndEHSpec(CurCodeDecl); 405 406 assert(EHStack.empty() && 407 "did not remove all scopes from cleanup stack!"); 408 409 // If someone did an indirect goto, emit the indirect goto block at the end of 410 // the function. 411 if (IndirectBranch) { 412 EmitBlock(IndirectBranch->getParent()); 413 Builder.ClearInsertionPoint(); 414 } 415 416 // If some of our locals escaped, insert a call to llvm.localescape in the 417 // entry block. 418 if (!EscapedLocals.empty()) { 419 // Invert the map from local to index into a simple vector. There should be 420 // no holes. 421 SmallVector<llvm::Value *, 4> EscapeArgs; 422 EscapeArgs.resize(EscapedLocals.size()); 423 for (auto &Pair : EscapedLocals) 424 EscapeArgs[Pair.second] = Pair.first; 425 llvm::Function *FrameEscapeFn = llvm::Intrinsic::getDeclaration( 426 &CGM.getModule(), llvm::Intrinsic::localescape); 427 CGBuilderTy(*this, AllocaInsertPt).CreateCall(FrameEscapeFn, EscapeArgs); 428 } 429 430 // Remove the AllocaInsertPt instruction, which is just a convenience for us. 431 llvm::Instruction *Ptr = AllocaInsertPt; 432 AllocaInsertPt = nullptr; 433 Ptr->eraseFromParent(); 434 435 // If someone took the address of a label but never did an indirect goto, we 436 // made a zero entry PHI node, which is illegal, zap it now. 437 if (IndirectBranch) { 438 llvm::PHINode *PN = cast<llvm::PHINode>(IndirectBranch->getAddress()); 439 if (PN->getNumIncomingValues() == 0) { 440 PN->replaceAllUsesWith(llvm::UndefValue::get(PN->getType())); 441 PN->eraseFromParent(); 442 } 443 } 444 445 EmitIfUsed(*this, EHResumeBlock); 446 EmitIfUsed(*this, TerminateLandingPad); 447 EmitIfUsed(*this, TerminateHandler); 448 EmitIfUsed(*this, UnreachableBlock); 449 450 for (const auto &FuncletAndParent : TerminateFunclets) 451 EmitIfUsed(*this, FuncletAndParent.second); 452 453 if (CGM.getCodeGenOpts().EmitDeclMetadata) 454 EmitDeclMetadata(); 455 456 for (const auto &R : DeferredReplacements) { 457 if (llvm::Value *Old = R.first) { 458 Old->replaceAllUsesWith(R.second); 459 cast<llvm::Instruction>(Old)->eraseFromParent(); 460 } 461 } 462 DeferredReplacements.clear(); 463 464 // Eliminate CleanupDestSlot alloca by replacing it with SSA values and 465 // PHIs if the current function is a coroutine. We don't do it for all 466 // functions as it may result in slight increase in numbers of instructions 467 // if compiled with no optimizations. We do it for coroutine as the lifetime 468 // of CleanupDestSlot alloca make correct coroutine frame building very 469 // difficult. 470 if (NormalCleanupDest.isValid() && isCoroutine()) { 471 llvm::DominatorTree DT(*CurFn); 472 llvm::PromoteMemToReg( 473 cast<llvm::AllocaInst>(NormalCleanupDest.getPointer()), DT); 474 NormalCleanupDest = Address::invalid(); 475 } 476 477 // Scan function arguments for vector width. 478 for (llvm::Argument &A : CurFn->args()) 479 if (auto *VT = dyn_cast<llvm::VectorType>(A.getType())) 480 LargestVectorWidth = 481 std::max((uint64_t)LargestVectorWidth, 482 VT->getPrimitiveSizeInBits().getKnownMinSize()); 483 484 // Update vector width based on return type. 485 if (auto *VT = dyn_cast<llvm::VectorType>(CurFn->getReturnType())) 486 LargestVectorWidth = 487 std::max((uint64_t)LargestVectorWidth, 488 VT->getPrimitiveSizeInBits().getKnownMinSize()); 489 490 // Add the required-vector-width attribute. This contains the max width from: 491 // 1. min-vector-width attribute used in the source program. 492 // 2. Any builtins used that have a vector width specified. 493 // 3. Values passed in and out of inline assembly. 494 // 4. Width of vector arguments and return types for this function. 495 // 5. Width of vector aguments and return types for functions called by this 496 // function. 497 CurFn->addFnAttr("min-legal-vector-width", llvm::utostr(LargestVectorWidth)); 498 499 // Add vscale attribute if appropriate. 500 if (getLangOpts().ArmSveVectorBits) { 501 unsigned VScale = getLangOpts().ArmSveVectorBits / 128; 502 CurFn->addFnAttr(llvm::Attribute::getWithVScaleRangeArgs(getLLVMContext(), 503 VScale, VScale)); 504 } 505 506 // If we generated an unreachable return block, delete it now. 507 if (ReturnBlock.isValid() && ReturnBlock.getBlock()->use_empty()) { 508 Builder.ClearInsertionPoint(); 509 ReturnBlock.getBlock()->eraseFromParent(); 510 } 511 if (ReturnValue.isValid()) { 512 auto *RetAlloca = dyn_cast<llvm::AllocaInst>(ReturnValue.getPointer()); 513 if (RetAlloca && RetAlloca->use_empty()) { 514 RetAlloca->eraseFromParent(); 515 ReturnValue = Address::invalid(); 516 } 517 } 518 } 519 520 /// ShouldInstrumentFunction - Return true if the current function should be 521 /// instrumented with __cyg_profile_func_* calls 522 bool CodeGenFunction::ShouldInstrumentFunction() { 523 if (!CGM.getCodeGenOpts().InstrumentFunctions && 524 !CGM.getCodeGenOpts().InstrumentFunctionsAfterInlining && 525 !CGM.getCodeGenOpts().InstrumentFunctionEntryBare) 526 return false; 527 if (!CurFuncDecl || CurFuncDecl->hasAttr<NoInstrumentFunctionAttr>()) 528 return false; 529 return true; 530 } 531 532 /// ShouldXRayInstrument - Return true if the current function should be 533 /// instrumented with XRay nop sleds. 534 bool CodeGenFunction::ShouldXRayInstrumentFunction() const { 535 return CGM.getCodeGenOpts().XRayInstrumentFunctions; 536 } 537 538 /// AlwaysEmitXRayCustomEvents - Return true if we should emit IR for calls to 539 /// the __xray_customevent(...) builtin calls, when doing XRay instrumentation. 540 bool CodeGenFunction::AlwaysEmitXRayCustomEvents() const { 541 return CGM.getCodeGenOpts().XRayInstrumentFunctions && 542 (CGM.getCodeGenOpts().XRayAlwaysEmitCustomEvents || 543 CGM.getCodeGenOpts().XRayInstrumentationBundle.Mask == 544 XRayInstrKind::Custom); 545 } 546 547 bool CodeGenFunction::AlwaysEmitXRayTypedEvents() const { 548 return CGM.getCodeGenOpts().XRayInstrumentFunctions && 549 (CGM.getCodeGenOpts().XRayAlwaysEmitTypedEvents || 550 CGM.getCodeGenOpts().XRayInstrumentationBundle.Mask == 551 XRayInstrKind::Typed); 552 } 553 554 llvm::Constant * 555 CodeGenFunction::EncodeAddrForUseInPrologue(llvm::Function *F, 556 llvm::Constant *Addr) { 557 // Addresses stored in prologue data can't require run-time fixups and must 558 // be PC-relative. Run-time fixups are undesirable because they necessitate 559 // writable text segments, which are unsafe. And absolute addresses are 560 // undesirable because they break PIE mode. 561 562 // Add a layer of indirection through a private global. Taking its address 563 // won't result in a run-time fixup, even if Addr has linkonce_odr linkage. 564 auto *GV = new llvm::GlobalVariable(CGM.getModule(), Addr->getType(), 565 /*isConstant=*/true, 566 llvm::GlobalValue::PrivateLinkage, Addr); 567 568 // Create a PC-relative address. 569 auto *GOTAsInt = llvm::ConstantExpr::getPtrToInt(GV, IntPtrTy); 570 auto *FuncAsInt = llvm::ConstantExpr::getPtrToInt(F, IntPtrTy); 571 auto *PCRelAsInt = llvm::ConstantExpr::getSub(GOTAsInt, FuncAsInt); 572 return (IntPtrTy == Int32Ty) 573 ? PCRelAsInt 574 : llvm::ConstantExpr::getTrunc(PCRelAsInt, Int32Ty); 575 } 576 577 llvm::Value * 578 CodeGenFunction::DecodeAddrUsedInPrologue(llvm::Value *F, 579 llvm::Value *EncodedAddr) { 580 // Reconstruct the address of the global. 581 auto *PCRelAsInt = Builder.CreateSExt(EncodedAddr, IntPtrTy); 582 auto *FuncAsInt = Builder.CreatePtrToInt(F, IntPtrTy, "func_addr.int"); 583 auto *GOTAsInt = Builder.CreateAdd(PCRelAsInt, FuncAsInt, "global_addr.int"); 584 auto *GOTAddr = Builder.CreateIntToPtr(GOTAsInt, Int8PtrPtrTy, "global_addr"); 585 586 // Load the original pointer through the global. 587 return Builder.CreateLoad(Address(GOTAddr, getPointerAlign()), 588 "decoded_addr"); 589 } 590 591 void CodeGenFunction::EmitOpenCLKernelMetadata(const FunctionDecl *FD, 592 llvm::Function *Fn) 593 { 594 if (!FD->hasAttr<OpenCLKernelAttr>()) 595 return; 596 597 llvm::LLVMContext &Context = getLLVMContext(); 598 599 CGM.GenOpenCLArgMetadata(Fn, FD, this); 600 601 if (const VecTypeHintAttr *A = FD->getAttr<VecTypeHintAttr>()) { 602 QualType HintQTy = A->getTypeHint(); 603 const ExtVectorType *HintEltQTy = HintQTy->getAs<ExtVectorType>(); 604 bool IsSignedInteger = 605 HintQTy->isSignedIntegerType() || 606 (HintEltQTy && HintEltQTy->getElementType()->isSignedIntegerType()); 607 llvm::Metadata *AttrMDArgs[] = { 608 llvm::ConstantAsMetadata::get(llvm::UndefValue::get( 609 CGM.getTypes().ConvertType(A->getTypeHint()))), 610 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 611 llvm::IntegerType::get(Context, 32), 612 llvm::APInt(32, (uint64_t)(IsSignedInteger ? 1 : 0))))}; 613 Fn->setMetadata("vec_type_hint", llvm::MDNode::get(Context, AttrMDArgs)); 614 } 615 616 if (const WorkGroupSizeHintAttr *A = FD->getAttr<WorkGroupSizeHintAttr>()) { 617 llvm::Metadata *AttrMDArgs[] = { 618 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getXDim())), 619 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getYDim())), 620 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getZDim()))}; 621 Fn->setMetadata("work_group_size_hint", llvm::MDNode::get(Context, AttrMDArgs)); 622 } 623 624 if (const ReqdWorkGroupSizeAttr *A = FD->getAttr<ReqdWorkGroupSizeAttr>()) { 625 llvm::Metadata *AttrMDArgs[] = { 626 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getXDim())), 627 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getYDim())), 628 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getZDim()))}; 629 Fn->setMetadata("reqd_work_group_size", llvm::MDNode::get(Context, AttrMDArgs)); 630 } 631 632 if (const OpenCLIntelReqdSubGroupSizeAttr *A = 633 FD->getAttr<OpenCLIntelReqdSubGroupSizeAttr>()) { 634 llvm::Metadata *AttrMDArgs[] = { 635 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getSubGroupSize()))}; 636 Fn->setMetadata("intel_reqd_sub_group_size", 637 llvm::MDNode::get(Context, AttrMDArgs)); 638 } 639 } 640 641 /// Determine whether the function F ends with a return stmt. 642 static bool endsWithReturn(const Decl* F) { 643 const Stmt *Body = nullptr; 644 if (auto *FD = dyn_cast_or_null<FunctionDecl>(F)) 645 Body = FD->getBody(); 646 else if (auto *OMD = dyn_cast_or_null<ObjCMethodDecl>(F)) 647 Body = OMD->getBody(); 648 649 if (auto *CS = dyn_cast_or_null<CompoundStmt>(Body)) { 650 auto LastStmt = CS->body_rbegin(); 651 if (LastStmt != CS->body_rend()) 652 return isa<ReturnStmt>(*LastStmt); 653 } 654 return false; 655 } 656 657 void CodeGenFunction::markAsIgnoreThreadCheckingAtRuntime(llvm::Function *Fn) { 658 if (SanOpts.has(SanitizerKind::Thread)) { 659 Fn->addFnAttr("sanitize_thread_no_checking_at_run_time"); 660 Fn->removeFnAttr(llvm::Attribute::SanitizeThread); 661 } 662 } 663 664 /// Check if the return value of this function requires sanitization. 665 bool CodeGenFunction::requiresReturnValueCheck() const { 666 return requiresReturnValueNullabilityCheck() || 667 (SanOpts.has(SanitizerKind::ReturnsNonnullAttribute) && CurCodeDecl && 668 CurCodeDecl->getAttr<ReturnsNonNullAttr>()); 669 } 670 671 static bool matchesStlAllocatorFn(const Decl *D, const ASTContext &Ctx) { 672 auto *MD = dyn_cast_or_null<CXXMethodDecl>(D); 673 if (!MD || !MD->getDeclName().getAsIdentifierInfo() || 674 !MD->getDeclName().getAsIdentifierInfo()->isStr("allocate") || 675 (MD->getNumParams() != 1 && MD->getNumParams() != 2)) 676 return false; 677 678 if (MD->parameters()[0]->getType().getCanonicalType() != Ctx.getSizeType()) 679 return false; 680 681 if (MD->getNumParams() == 2) { 682 auto *PT = MD->parameters()[1]->getType()->getAs<PointerType>(); 683 if (!PT || !PT->isVoidPointerType() || 684 !PT->getPointeeType().isConstQualified()) 685 return false; 686 } 687 688 return true; 689 } 690 691 /// Return the UBSan prologue signature for \p FD if one is available. 692 static llvm::Constant *getPrologueSignature(CodeGenModule &CGM, 693 const FunctionDecl *FD) { 694 if (const auto *MD = dyn_cast<CXXMethodDecl>(FD)) 695 if (!MD->isStatic()) 696 return nullptr; 697 return CGM.getTargetCodeGenInfo().getUBSanFunctionSignature(CGM); 698 } 699 700 void CodeGenFunction::StartFunction(GlobalDecl GD, QualType RetTy, 701 llvm::Function *Fn, 702 const CGFunctionInfo &FnInfo, 703 const FunctionArgList &Args, 704 SourceLocation Loc, 705 SourceLocation StartLoc) { 706 assert(!CurFn && 707 "Do not use a CodeGenFunction object for more than one function"); 708 709 const Decl *D = GD.getDecl(); 710 711 DidCallStackSave = false; 712 CurCodeDecl = D; 713 if (const auto *FD = dyn_cast_or_null<FunctionDecl>(D)) 714 if (FD->usesSEHTry()) 715 CurSEHParent = FD; 716 CurFuncDecl = (D ? D->getNonClosureContext() : nullptr); 717 FnRetTy = RetTy; 718 CurFn = Fn; 719 CurFnInfo = &FnInfo; 720 assert(CurFn->isDeclaration() && "Function already has body?"); 721 722 // If this function is ignored for any of the enabled sanitizers, 723 // disable the sanitizer for the function. 724 do { 725 #define SANITIZER(NAME, ID) \ 726 if (SanOpts.empty()) \ 727 break; \ 728 if (SanOpts.has(SanitizerKind::ID)) \ 729 if (CGM.isInNoSanitizeList(SanitizerKind::ID, Fn, Loc)) \ 730 SanOpts.set(SanitizerKind::ID, false); 731 732 #include "clang/Basic/Sanitizers.def" 733 #undef SANITIZER 734 } while (0); 735 736 if (D) { 737 bool NoSanitizeCoverage = false; 738 739 for (auto Attr : D->specific_attrs<NoSanitizeAttr>()) { 740 // Apply the no_sanitize* attributes to SanOpts. 741 SanitizerMask mask = Attr->getMask(); 742 SanOpts.Mask &= ~mask; 743 if (mask & SanitizerKind::Address) 744 SanOpts.set(SanitizerKind::KernelAddress, false); 745 if (mask & SanitizerKind::KernelAddress) 746 SanOpts.set(SanitizerKind::Address, false); 747 if (mask & SanitizerKind::HWAddress) 748 SanOpts.set(SanitizerKind::KernelHWAddress, false); 749 if (mask & SanitizerKind::KernelHWAddress) 750 SanOpts.set(SanitizerKind::HWAddress, false); 751 752 // SanitizeCoverage is not handled by SanOpts. 753 if (Attr->hasCoverage()) 754 NoSanitizeCoverage = true; 755 } 756 757 if (NoSanitizeCoverage && CGM.getCodeGenOpts().hasSanitizeCoverage()) 758 Fn->addFnAttr(llvm::Attribute::NoSanitizeCoverage); 759 } 760 761 // Apply sanitizer attributes to the function. 762 if (SanOpts.hasOneOf(SanitizerKind::Address | SanitizerKind::KernelAddress)) 763 Fn->addFnAttr(llvm::Attribute::SanitizeAddress); 764 if (SanOpts.hasOneOf(SanitizerKind::HWAddress | SanitizerKind::KernelHWAddress)) 765 Fn->addFnAttr(llvm::Attribute::SanitizeHWAddress); 766 if (SanOpts.has(SanitizerKind::MemTag)) 767 Fn->addFnAttr(llvm::Attribute::SanitizeMemTag); 768 if (SanOpts.has(SanitizerKind::Thread)) 769 Fn->addFnAttr(llvm::Attribute::SanitizeThread); 770 if (SanOpts.hasOneOf(SanitizerKind::Memory | SanitizerKind::KernelMemory)) 771 Fn->addFnAttr(llvm::Attribute::SanitizeMemory); 772 if (SanOpts.has(SanitizerKind::SafeStack)) 773 Fn->addFnAttr(llvm::Attribute::SafeStack); 774 if (SanOpts.has(SanitizerKind::ShadowCallStack)) 775 Fn->addFnAttr(llvm::Attribute::ShadowCallStack); 776 777 // Apply fuzzing attribute to the function. 778 if (SanOpts.hasOneOf(SanitizerKind::Fuzzer | SanitizerKind::FuzzerNoLink)) 779 Fn->addFnAttr(llvm::Attribute::OptForFuzzing); 780 781 // Ignore TSan memory acesses from within ObjC/ObjC++ dealloc, initialize, 782 // .cxx_destruct, __destroy_helper_block_ and all of their calees at run time. 783 if (SanOpts.has(SanitizerKind::Thread)) { 784 if (const auto *OMD = dyn_cast_or_null<ObjCMethodDecl>(D)) { 785 IdentifierInfo *II = OMD->getSelector().getIdentifierInfoForSlot(0); 786 if (OMD->getMethodFamily() == OMF_dealloc || 787 OMD->getMethodFamily() == OMF_initialize || 788 (OMD->getSelector().isUnarySelector() && II->isStr(".cxx_destruct"))) { 789 markAsIgnoreThreadCheckingAtRuntime(Fn); 790 } 791 } 792 } 793 794 // Ignore unrelated casts in STL allocate() since the allocator must cast 795 // from void* to T* before object initialization completes. Don't match on the 796 // namespace because not all allocators are in std:: 797 if (D && SanOpts.has(SanitizerKind::CFIUnrelatedCast)) { 798 if (matchesStlAllocatorFn(D, getContext())) 799 SanOpts.Mask &= ~SanitizerKind::CFIUnrelatedCast; 800 } 801 802 // Ignore null checks in coroutine functions since the coroutines passes 803 // are not aware of how to move the extra UBSan instructions across the split 804 // coroutine boundaries. 805 if (D && SanOpts.has(SanitizerKind::Null)) 806 if (const auto *FD = dyn_cast<FunctionDecl>(D)) 807 if (FD->getBody() && 808 FD->getBody()->getStmtClass() == Stmt::CoroutineBodyStmtClass) 809 SanOpts.Mask &= ~SanitizerKind::Null; 810 811 // Apply xray attributes to the function (as a string, for now) 812 bool AlwaysXRayAttr = false; 813 if (const auto *XRayAttr = D ? D->getAttr<XRayInstrumentAttr>() : nullptr) { 814 if (CGM.getCodeGenOpts().XRayInstrumentationBundle.has( 815 XRayInstrKind::FunctionEntry) || 816 CGM.getCodeGenOpts().XRayInstrumentationBundle.has( 817 XRayInstrKind::FunctionExit)) { 818 if (XRayAttr->alwaysXRayInstrument() && ShouldXRayInstrumentFunction()) { 819 Fn->addFnAttr("function-instrument", "xray-always"); 820 AlwaysXRayAttr = true; 821 } 822 if (XRayAttr->neverXRayInstrument()) 823 Fn->addFnAttr("function-instrument", "xray-never"); 824 if (const auto *LogArgs = D->getAttr<XRayLogArgsAttr>()) 825 if (ShouldXRayInstrumentFunction()) 826 Fn->addFnAttr("xray-log-args", 827 llvm::utostr(LogArgs->getArgumentCount())); 828 } 829 } else { 830 if (ShouldXRayInstrumentFunction() && !CGM.imbueXRayAttrs(Fn, Loc)) 831 Fn->addFnAttr( 832 "xray-instruction-threshold", 833 llvm::itostr(CGM.getCodeGenOpts().XRayInstructionThreshold)); 834 } 835 836 if (ShouldXRayInstrumentFunction()) { 837 if (CGM.getCodeGenOpts().XRayIgnoreLoops) 838 Fn->addFnAttr("xray-ignore-loops"); 839 840 if (!CGM.getCodeGenOpts().XRayInstrumentationBundle.has( 841 XRayInstrKind::FunctionExit)) 842 Fn->addFnAttr("xray-skip-exit"); 843 844 if (!CGM.getCodeGenOpts().XRayInstrumentationBundle.has( 845 XRayInstrKind::FunctionEntry)) 846 Fn->addFnAttr("xray-skip-entry"); 847 848 auto FuncGroups = CGM.getCodeGenOpts().XRayTotalFunctionGroups; 849 if (FuncGroups > 1) { 850 auto FuncName = llvm::makeArrayRef<uint8_t>( 851 CurFn->getName().bytes_begin(), CurFn->getName().bytes_end()); 852 auto Group = crc32(FuncName) % FuncGroups; 853 if (Group != CGM.getCodeGenOpts().XRaySelectedFunctionGroup && 854 !AlwaysXRayAttr) 855 Fn->addFnAttr("function-instrument", "xray-never"); 856 } 857 } 858 859 if (CGM.getCodeGenOpts().getProfileInstr() != CodeGenOptions::ProfileNone) 860 if (CGM.isProfileInstrExcluded(Fn, Loc)) 861 Fn->addFnAttr(llvm::Attribute::NoProfile); 862 863 unsigned Count, Offset; 864 if (const auto *Attr = 865 D ? D->getAttr<PatchableFunctionEntryAttr>() : nullptr) { 866 Count = Attr->getCount(); 867 Offset = Attr->getOffset(); 868 } else { 869 Count = CGM.getCodeGenOpts().PatchableFunctionEntryCount; 870 Offset = CGM.getCodeGenOpts().PatchableFunctionEntryOffset; 871 } 872 if (Count && Offset <= Count) { 873 Fn->addFnAttr("patchable-function-entry", std::to_string(Count - Offset)); 874 if (Offset) 875 Fn->addFnAttr("patchable-function-prefix", std::to_string(Offset)); 876 } 877 878 // Add no-jump-tables value. 879 if (CGM.getCodeGenOpts().NoUseJumpTables) 880 Fn->addFnAttr("no-jump-tables", "true"); 881 882 // Add no-inline-line-tables value. 883 if (CGM.getCodeGenOpts().NoInlineLineTables) 884 Fn->addFnAttr("no-inline-line-tables"); 885 886 // Add profile-sample-accurate value. 887 if (CGM.getCodeGenOpts().ProfileSampleAccurate) 888 Fn->addFnAttr("profile-sample-accurate"); 889 890 if (!CGM.getCodeGenOpts().SampleProfileFile.empty()) 891 Fn->addFnAttr("use-sample-profile"); 892 893 if (D && D->hasAttr<CFICanonicalJumpTableAttr>()) 894 Fn->addFnAttr("cfi-canonical-jump-table"); 895 896 if (D && D->hasAttr<NoProfileFunctionAttr>()) 897 Fn->addFnAttr(llvm::Attribute::NoProfile); 898 899 if (getLangOpts().OpenCL) { 900 // Add metadata for a kernel function. 901 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) 902 EmitOpenCLKernelMetadata(FD, Fn); 903 } 904 905 // If we are checking function types, emit a function type signature as 906 // prologue data. 907 if (getLangOpts().CPlusPlus && SanOpts.has(SanitizerKind::Function)) { 908 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) { 909 if (llvm::Constant *PrologueSig = getPrologueSignature(CGM, FD)) { 910 // Remove any (C++17) exception specifications, to allow calling e.g. a 911 // noexcept function through a non-noexcept pointer. 912 auto ProtoTy = 913 getContext().getFunctionTypeWithExceptionSpec(FD->getType(), 914 EST_None); 915 llvm::Constant *FTRTTIConst = 916 CGM.GetAddrOfRTTIDescriptor(ProtoTy, /*ForEH=*/true); 917 llvm::Constant *FTRTTIConstEncoded = 918 EncodeAddrForUseInPrologue(Fn, FTRTTIConst); 919 llvm::Constant *PrologueStructElems[] = {PrologueSig, 920 FTRTTIConstEncoded}; 921 llvm::Constant *PrologueStructConst = 922 llvm::ConstantStruct::getAnon(PrologueStructElems, /*Packed=*/true); 923 Fn->setPrologueData(PrologueStructConst); 924 } 925 } 926 } 927 928 // If we're checking nullability, we need to know whether we can check the 929 // return value. Initialize the flag to 'true' and refine it in EmitParmDecl. 930 if (SanOpts.has(SanitizerKind::NullabilityReturn)) { 931 auto Nullability = FnRetTy->getNullability(getContext()); 932 if (Nullability && *Nullability == NullabilityKind::NonNull) { 933 if (!(SanOpts.has(SanitizerKind::ReturnsNonnullAttribute) && 934 CurCodeDecl && CurCodeDecl->getAttr<ReturnsNonNullAttr>())) 935 RetValNullabilityPrecondition = 936 llvm::ConstantInt::getTrue(getLLVMContext()); 937 } 938 } 939 940 // If we're in C++ mode and the function name is "main", it is guaranteed 941 // to be norecurse by the standard (3.6.1.3 "The function main shall not be 942 // used within a program"). 943 // 944 // OpenCL C 2.0 v2.2-11 s6.9.i: 945 // Recursion is not supported. 946 // 947 // SYCL v1.2.1 s3.10: 948 // kernels cannot include RTTI information, exception classes, 949 // recursive code, virtual functions or make use of C++ libraries that 950 // are not compiled for the device. 951 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) { 952 if ((getLangOpts().CPlusPlus && FD->isMain()) || getLangOpts().OpenCL || 953 getLangOpts().SYCLIsDevice || 954 (getLangOpts().CUDA && FD->hasAttr<CUDAGlobalAttr>())) 955 Fn->addFnAttr(llvm::Attribute::NoRecurse); 956 } 957 958 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) { 959 Builder.setIsFPConstrained(FD->hasAttr<StrictFPAttr>()); 960 if (FD->hasAttr<StrictFPAttr>()) 961 Fn->addFnAttr(llvm::Attribute::StrictFP); 962 } 963 964 // If a custom alignment is used, force realigning to this alignment on 965 // any main function which certainly will need it. 966 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) 967 if ((FD->isMain() || FD->isMSVCRTEntryPoint()) && 968 CGM.getCodeGenOpts().StackAlignment) 969 Fn->addFnAttr("stackrealign"); 970 971 llvm::BasicBlock *EntryBB = createBasicBlock("entry", CurFn); 972 973 // Create a marker to make it easy to insert allocas into the entryblock 974 // later. Don't create this with the builder, because we don't want it 975 // folded. 976 llvm::Value *Undef = llvm::UndefValue::get(Int32Ty); 977 AllocaInsertPt = new llvm::BitCastInst(Undef, Int32Ty, "allocapt", EntryBB); 978 979 ReturnBlock = getJumpDestInCurrentScope("return"); 980 981 Builder.SetInsertPoint(EntryBB); 982 983 // If we're checking the return value, allocate space for a pointer to a 984 // precise source location of the checked return statement. 985 if (requiresReturnValueCheck()) { 986 ReturnLocation = CreateDefaultAlignTempAlloca(Int8PtrTy, "return.sloc.ptr"); 987 InitTempAlloca(ReturnLocation, llvm::ConstantPointerNull::get(Int8PtrTy)); 988 } 989 990 // Emit subprogram debug descriptor. 991 if (CGDebugInfo *DI = getDebugInfo()) { 992 // Reconstruct the type from the argument list so that implicit parameters, 993 // such as 'this' and 'vtt', show up in the debug info. Preserve the calling 994 // convention. 995 CallingConv CC = CallingConv::CC_C; 996 if (auto *FD = dyn_cast_or_null<FunctionDecl>(D)) 997 if (const auto *SrcFnTy = FD->getType()->getAs<FunctionType>()) 998 CC = SrcFnTy->getCallConv(); 999 SmallVector<QualType, 16> ArgTypes; 1000 for (const VarDecl *VD : Args) 1001 ArgTypes.push_back(VD->getType()); 1002 QualType FnType = getContext().getFunctionType( 1003 RetTy, ArgTypes, FunctionProtoType::ExtProtoInfo(CC)); 1004 DI->emitFunctionStart(GD, Loc, StartLoc, FnType, CurFn, CurFuncIsThunk); 1005 } 1006 1007 if (ShouldInstrumentFunction()) { 1008 if (CGM.getCodeGenOpts().InstrumentFunctions) 1009 CurFn->addFnAttr("instrument-function-entry", "__cyg_profile_func_enter"); 1010 if (CGM.getCodeGenOpts().InstrumentFunctionsAfterInlining) 1011 CurFn->addFnAttr("instrument-function-entry-inlined", 1012 "__cyg_profile_func_enter"); 1013 if (CGM.getCodeGenOpts().InstrumentFunctionEntryBare) 1014 CurFn->addFnAttr("instrument-function-entry-inlined", 1015 "__cyg_profile_func_enter_bare"); 1016 } 1017 1018 // Since emitting the mcount call here impacts optimizations such as function 1019 // inlining, we just add an attribute to insert a mcount call in backend. 1020 // The attribute "counting-function" is set to mcount function name which is 1021 // architecture dependent. 1022 if (CGM.getCodeGenOpts().InstrumentForProfiling) { 1023 // Calls to fentry/mcount should not be generated if function has 1024 // the no_instrument_function attribute. 1025 if (!CurFuncDecl || !CurFuncDecl->hasAttr<NoInstrumentFunctionAttr>()) { 1026 if (CGM.getCodeGenOpts().CallFEntry) 1027 Fn->addFnAttr("fentry-call", "true"); 1028 else { 1029 Fn->addFnAttr("instrument-function-entry-inlined", 1030 getTarget().getMCountName()); 1031 } 1032 if (CGM.getCodeGenOpts().MNopMCount) { 1033 if (!CGM.getCodeGenOpts().CallFEntry) 1034 CGM.getDiags().Report(diag::err_opt_not_valid_without_opt) 1035 << "-mnop-mcount" << "-mfentry"; 1036 Fn->addFnAttr("mnop-mcount"); 1037 } 1038 1039 if (CGM.getCodeGenOpts().RecordMCount) { 1040 if (!CGM.getCodeGenOpts().CallFEntry) 1041 CGM.getDiags().Report(diag::err_opt_not_valid_without_opt) 1042 << "-mrecord-mcount" << "-mfentry"; 1043 Fn->addFnAttr("mrecord-mcount"); 1044 } 1045 } 1046 } 1047 1048 if (CGM.getCodeGenOpts().PackedStack) { 1049 if (getContext().getTargetInfo().getTriple().getArch() != 1050 llvm::Triple::systemz) 1051 CGM.getDiags().Report(diag::err_opt_not_valid_on_target) 1052 << "-mpacked-stack"; 1053 Fn->addFnAttr("packed-stack"); 1054 } 1055 1056 if (CGM.getCodeGenOpts().WarnStackSize != UINT_MAX) 1057 Fn->addFnAttr("warn-stack-size", 1058 std::to_string(CGM.getCodeGenOpts().WarnStackSize)); 1059 1060 if (RetTy->isVoidType()) { 1061 // Void type; nothing to return. 1062 ReturnValue = Address::invalid(); 1063 1064 // Count the implicit return. 1065 if (!endsWithReturn(D)) 1066 ++NumReturnExprs; 1067 } else if (CurFnInfo->getReturnInfo().getKind() == ABIArgInfo::Indirect) { 1068 // Indirect return; emit returned value directly into sret slot. 1069 // This reduces code size, and affects correctness in C++. 1070 auto AI = CurFn->arg_begin(); 1071 if (CurFnInfo->getReturnInfo().isSRetAfterThis()) 1072 ++AI; 1073 ReturnValue = Address(&*AI, CurFnInfo->getReturnInfo().getIndirectAlign()); 1074 if (!CurFnInfo->getReturnInfo().getIndirectByVal()) { 1075 ReturnValuePointer = 1076 CreateDefaultAlignTempAlloca(Int8PtrTy, "result.ptr"); 1077 Builder.CreateStore(Builder.CreatePointerBitCastOrAddrSpaceCast( 1078 ReturnValue.getPointer(), Int8PtrTy), 1079 ReturnValuePointer); 1080 } 1081 } else if (CurFnInfo->getReturnInfo().getKind() == ABIArgInfo::InAlloca && 1082 !hasScalarEvaluationKind(CurFnInfo->getReturnType())) { 1083 // Load the sret pointer from the argument struct and return into that. 1084 unsigned Idx = CurFnInfo->getReturnInfo().getInAllocaFieldIndex(); 1085 llvm::Function::arg_iterator EI = CurFn->arg_end(); 1086 --EI; 1087 llvm::Value *Addr = Builder.CreateStructGEP(nullptr, &*EI, Idx); 1088 llvm::Type *Ty = 1089 cast<llvm::GetElementPtrInst>(Addr)->getResultElementType(); 1090 ReturnValuePointer = Address(Addr, getPointerAlign()); 1091 Addr = Builder.CreateAlignedLoad(Ty, Addr, getPointerAlign(), "agg.result"); 1092 ReturnValue = Address(Addr, CGM.getNaturalTypeAlignment(RetTy)); 1093 } else { 1094 ReturnValue = CreateIRTemp(RetTy, "retval"); 1095 1096 // Tell the epilog emitter to autorelease the result. We do this 1097 // now so that various specialized functions can suppress it 1098 // during their IR-generation. 1099 if (getLangOpts().ObjCAutoRefCount && 1100 !CurFnInfo->isReturnsRetained() && 1101 RetTy->isObjCRetainableType()) 1102 AutoreleaseResult = true; 1103 } 1104 1105 EmitStartEHSpec(CurCodeDecl); 1106 1107 PrologueCleanupDepth = EHStack.stable_begin(); 1108 1109 // Emit OpenMP specific initialization of the device functions. 1110 if (getLangOpts().OpenMP && CurCodeDecl) 1111 CGM.getOpenMPRuntime().emitFunctionProlog(*this, CurCodeDecl); 1112 1113 EmitFunctionProlog(*CurFnInfo, CurFn, Args); 1114 1115 if (D && isa<CXXMethodDecl>(D) && cast<CXXMethodDecl>(D)->isInstance()) { 1116 CGM.getCXXABI().EmitInstanceFunctionProlog(*this); 1117 const CXXMethodDecl *MD = cast<CXXMethodDecl>(D); 1118 if (MD->getParent()->isLambda() && 1119 MD->getOverloadedOperator() == OO_Call) { 1120 // We're in a lambda; figure out the captures. 1121 MD->getParent()->getCaptureFields(LambdaCaptureFields, 1122 LambdaThisCaptureField); 1123 if (LambdaThisCaptureField) { 1124 // If the lambda captures the object referred to by '*this' - either by 1125 // value or by reference, make sure CXXThisValue points to the correct 1126 // object. 1127 1128 // Get the lvalue for the field (which is a copy of the enclosing object 1129 // or contains the address of the enclosing object). 1130 LValue ThisFieldLValue = EmitLValueForLambdaField(LambdaThisCaptureField); 1131 if (!LambdaThisCaptureField->getType()->isPointerType()) { 1132 // If the enclosing object was captured by value, just use its address. 1133 CXXThisValue = ThisFieldLValue.getAddress(*this).getPointer(); 1134 } else { 1135 // Load the lvalue pointed to by the field, since '*this' was captured 1136 // by reference. 1137 CXXThisValue = 1138 EmitLoadOfLValue(ThisFieldLValue, SourceLocation()).getScalarVal(); 1139 } 1140 } 1141 for (auto *FD : MD->getParent()->fields()) { 1142 if (FD->hasCapturedVLAType()) { 1143 auto *ExprArg = EmitLoadOfLValue(EmitLValueForLambdaField(FD), 1144 SourceLocation()).getScalarVal(); 1145 auto VAT = FD->getCapturedVLAType(); 1146 VLASizeMap[VAT->getSizeExpr()] = ExprArg; 1147 } 1148 } 1149 } else { 1150 // Not in a lambda; just use 'this' from the method. 1151 // FIXME: Should we generate a new load for each use of 'this'? The 1152 // fast register allocator would be happier... 1153 CXXThisValue = CXXABIThisValue; 1154 } 1155 1156 // Check the 'this' pointer once per function, if it's available. 1157 if (CXXABIThisValue) { 1158 SanitizerSet SkippedChecks; 1159 SkippedChecks.set(SanitizerKind::ObjectSize, true); 1160 QualType ThisTy = MD->getThisType(); 1161 1162 // If this is the call operator of a lambda with no capture-default, it 1163 // may have a static invoker function, which may call this operator with 1164 // a null 'this' pointer. 1165 if (isLambdaCallOperator(MD) && 1166 MD->getParent()->getLambdaCaptureDefault() == LCD_None) 1167 SkippedChecks.set(SanitizerKind::Null, true); 1168 1169 EmitTypeCheck( 1170 isa<CXXConstructorDecl>(MD) ? TCK_ConstructorCall : TCK_MemberCall, 1171 Loc, CXXABIThisValue, ThisTy, CXXABIThisAlignment, SkippedChecks); 1172 } 1173 } 1174 1175 // If any of the arguments have a variably modified type, make sure to 1176 // emit the type size. 1177 for (FunctionArgList::const_iterator i = Args.begin(), e = Args.end(); 1178 i != e; ++i) { 1179 const VarDecl *VD = *i; 1180 1181 // Dig out the type as written from ParmVarDecls; it's unclear whether 1182 // the standard (C99 6.9.1p10) requires this, but we're following the 1183 // precedent set by gcc. 1184 QualType Ty; 1185 if (const ParmVarDecl *PVD = dyn_cast<ParmVarDecl>(VD)) 1186 Ty = PVD->getOriginalType(); 1187 else 1188 Ty = VD->getType(); 1189 1190 if (Ty->isVariablyModifiedType()) 1191 EmitVariablyModifiedType(Ty); 1192 } 1193 // Emit a location at the end of the prologue. 1194 if (CGDebugInfo *DI = getDebugInfo()) 1195 DI->EmitLocation(Builder, StartLoc); 1196 1197 // TODO: Do we need to handle this in two places like we do with 1198 // target-features/target-cpu? 1199 if (CurFuncDecl) 1200 if (const auto *VecWidth = CurFuncDecl->getAttr<MinVectorWidthAttr>()) 1201 LargestVectorWidth = VecWidth->getVectorWidth(); 1202 } 1203 1204 void CodeGenFunction::EmitFunctionBody(const Stmt *Body) { 1205 incrementProfileCounter(Body); 1206 if (const CompoundStmt *S = dyn_cast<CompoundStmt>(Body)) 1207 EmitCompoundStmtWithoutScope(*S); 1208 else 1209 EmitStmt(Body); 1210 1211 // This is checked after emitting the function body so we know if there 1212 // are any permitted infinite loops. 1213 if (checkIfFunctionMustProgress()) 1214 CurFn->addFnAttr(llvm::Attribute::MustProgress); 1215 } 1216 1217 /// When instrumenting to collect profile data, the counts for some blocks 1218 /// such as switch cases need to not include the fall-through counts, so 1219 /// emit a branch around the instrumentation code. When not instrumenting, 1220 /// this just calls EmitBlock(). 1221 void CodeGenFunction::EmitBlockWithFallThrough(llvm::BasicBlock *BB, 1222 const Stmt *S) { 1223 llvm::BasicBlock *SkipCountBB = nullptr; 1224 if (HaveInsertPoint() && CGM.getCodeGenOpts().hasProfileClangInstr()) { 1225 // When instrumenting for profiling, the fallthrough to certain 1226 // statements needs to skip over the instrumentation code so that we 1227 // get an accurate count. 1228 SkipCountBB = createBasicBlock("skipcount"); 1229 EmitBranch(SkipCountBB); 1230 } 1231 EmitBlock(BB); 1232 uint64_t CurrentCount = getCurrentProfileCount(); 1233 incrementProfileCounter(S); 1234 setCurrentProfileCount(getCurrentProfileCount() + CurrentCount); 1235 if (SkipCountBB) 1236 EmitBlock(SkipCountBB); 1237 } 1238 1239 /// Tries to mark the given function nounwind based on the 1240 /// non-existence of any throwing calls within it. We believe this is 1241 /// lightweight enough to do at -O0. 1242 static void TryMarkNoThrow(llvm::Function *F) { 1243 // LLVM treats 'nounwind' on a function as part of the type, so we 1244 // can't do this on functions that can be overwritten. 1245 if (F->isInterposable()) return; 1246 1247 for (llvm::BasicBlock &BB : *F) 1248 for (llvm::Instruction &I : BB) 1249 if (I.mayThrow()) 1250 return; 1251 1252 F->setDoesNotThrow(); 1253 } 1254 1255 QualType CodeGenFunction::BuildFunctionArgList(GlobalDecl GD, 1256 FunctionArgList &Args) { 1257 const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl()); 1258 QualType ResTy = FD->getReturnType(); 1259 1260 const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD); 1261 if (MD && MD->isInstance()) { 1262 if (CGM.getCXXABI().HasThisReturn(GD)) 1263 ResTy = MD->getThisType(); 1264 else if (CGM.getCXXABI().hasMostDerivedReturn(GD)) 1265 ResTy = CGM.getContext().VoidPtrTy; 1266 CGM.getCXXABI().buildThisParam(*this, Args); 1267 } 1268 1269 // The base version of an inheriting constructor whose constructed base is a 1270 // virtual base is not passed any arguments (because it doesn't actually call 1271 // the inherited constructor). 1272 bool PassedParams = true; 1273 if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(FD)) 1274 if (auto Inherited = CD->getInheritedConstructor()) 1275 PassedParams = 1276 getTypes().inheritingCtorHasParams(Inherited, GD.getCtorType()); 1277 1278 if (PassedParams) { 1279 for (auto *Param : FD->parameters()) { 1280 Args.push_back(Param); 1281 if (!Param->hasAttr<PassObjectSizeAttr>()) 1282 continue; 1283 1284 auto *Implicit = ImplicitParamDecl::Create( 1285 getContext(), Param->getDeclContext(), Param->getLocation(), 1286 /*Id=*/nullptr, getContext().getSizeType(), ImplicitParamDecl::Other); 1287 SizeArguments[Param] = Implicit; 1288 Args.push_back(Implicit); 1289 } 1290 } 1291 1292 if (MD && (isa<CXXConstructorDecl>(MD) || isa<CXXDestructorDecl>(MD))) 1293 CGM.getCXXABI().addImplicitStructorParams(*this, ResTy, Args); 1294 1295 return ResTy; 1296 } 1297 1298 void CodeGenFunction::GenerateCode(GlobalDecl GD, llvm::Function *Fn, 1299 const CGFunctionInfo &FnInfo) { 1300 const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl()); 1301 CurGD = GD; 1302 1303 FunctionArgList Args; 1304 QualType ResTy = BuildFunctionArgList(GD, Args); 1305 1306 // Check if we should generate debug info for this function. 1307 if (FD->hasAttr<NoDebugAttr>()) { 1308 // Clear non-distinct debug info that was possibly attached to the function 1309 // due to an earlier declaration without the nodebug attribute 1310 if (Fn) 1311 Fn->setSubprogram(nullptr); 1312 // Disable debug info indefinitely for this function 1313 DebugInfo = nullptr; 1314 } 1315 1316 // The function might not have a body if we're generating thunks for a 1317 // function declaration. 1318 SourceRange BodyRange; 1319 if (Stmt *Body = FD->getBody()) 1320 BodyRange = Body->getSourceRange(); 1321 else 1322 BodyRange = FD->getLocation(); 1323 CurEHLocation = BodyRange.getEnd(); 1324 1325 // Use the location of the start of the function to determine where 1326 // the function definition is located. By default use the location 1327 // of the declaration as the location for the subprogram. A function 1328 // may lack a declaration in the source code if it is created by code 1329 // gen. (examples: _GLOBAL__I_a, __cxx_global_array_dtor, thunk). 1330 SourceLocation Loc = FD->getLocation(); 1331 1332 // If this is a function specialization then use the pattern body 1333 // as the location for the function. 1334 if (const FunctionDecl *SpecDecl = FD->getTemplateInstantiationPattern()) 1335 if (SpecDecl->hasBody(SpecDecl)) 1336 Loc = SpecDecl->getLocation(); 1337 1338 Stmt *Body = FD->getBody(); 1339 1340 if (Body) { 1341 // Coroutines always emit lifetime markers. 1342 if (isa<CoroutineBodyStmt>(Body)) 1343 ShouldEmitLifetimeMarkers = true; 1344 1345 // Initialize helper which will detect jumps which can cause invalid 1346 // lifetime markers. 1347 if (ShouldEmitLifetimeMarkers) 1348 Bypasses.Init(Body); 1349 } 1350 1351 // Emit the standard function prologue. 1352 StartFunction(GD, ResTy, Fn, FnInfo, Args, Loc, BodyRange.getBegin()); 1353 1354 // Save parameters for coroutine function. 1355 if (Body && isa_and_nonnull<CoroutineBodyStmt>(Body)) 1356 for (const auto *ParamDecl : FD->parameters()) 1357 FnArgs.push_back(ParamDecl); 1358 1359 // Generate the body of the function. 1360 PGO.assignRegionCounters(GD, CurFn); 1361 if (isa<CXXDestructorDecl>(FD)) 1362 EmitDestructorBody(Args); 1363 else if (isa<CXXConstructorDecl>(FD)) 1364 EmitConstructorBody(Args); 1365 else if (getLangOpts().CUDA && 1366 !getLangOpts().CUDAIsDevice && 1367 FD->hasAttr<CUDAGlobalAttr>()) 1368 CGM.getCUDARuntime().emitDeviceStub(*this, Args); 1369 else if (isa<CXXMethodDecl>(FD) && 1370 cast<CXXMethodDecl>(FD)->isLambdaStaticInvoker()) { 1371 // The lambda static invoker function is special, because it forwards or 1372 // clones the body of the function call operator (but is actually static). 1373 EmitLambdaStaticInvokeBody(cast<CXXMethodDecl>(FD)); 1374 } else if (FD->isDefaulted() && isa<CXXMethodDecl>(FD) && 1375 (cast<CXXMethodDecl>(FD)->isCopyAssignmentOperator() || 1376 cast<CXXMethodDecl>(FD)->isMoveAssignmentOperator())) { 1377 // Implicit copy-assignment gets the same special treatment as implicit 1378 // copy-constructors. 1379 emitImplicitAssignmentOperatorBody(Args); 1380 } else if (Body) { 1381 EmitFunctionBody(Body); 1382 } else 1383 llvm_unreachable("no definition for emitted function"); 1384 1385 // C++11 [stmt.return]p2: 1386 // Flowing off the end of a function [...] results in undefined behavior in 1387 // a value-returning function. 1388 // C11 6.9.1p12: 1389 // If the '}' that terminates a function is reached, and the value of the 1390 // function call is used by the caller, the behavior is undefined. 1391 if (getLangOpts().CPlusPlus && !FD->hasImplicitReturnZero() && !SawAsmBlock && 1392 !FD->getReturnType()->isVoidType() && Builder.GetInsertBlock()) { 1393 bool ShouldEmitUnreachable = 1394 CGM.getCodeGenOpts().StrictReturn || 1395 !CGM.MayDropFunctionReturn(FD->getASTContext(), FD->getReturnType()); 1396 if (SanOpts.has(SanitizerKind::Return)) { 1397 SanitizerScope SanScope(this); 1398 llvm::Value *IsFalse = Builder.getFalse(); 1399 EmitCheck(std::make_pair(IsFalse, SanitizerKind::Return), 1400 SanitizerHandler::MissingReturn, 1401 EmitCheckSourceLocation(FD->getLocation()), None); 1402 } else if (ShouldEmitUnreachable) { 1403 if (CGM.getCodeGenOpts().OptimizationLevel == 0) 1404 EmitTrapCall(llvm::Intrinsic::trap); 1405 } 1406 if (SanOpts.has(SanitizerKind::Return) || ShouldEmitUnreachable) { 1407 Builder.CreateUnreachable(); 1408 Builder.ClearInsertionPoint(); 1409 } 1410 } 1411 1412 // Emit the standard function epilogue. 1413 FinishFunction(BodyRange.getEnd()); 1414 1415 // If we haven't marked the function nothrow through other means, do 1416 // a quick pass now to see if we can. 1417 if (!CurFn->doesNotThrow()) 1418 TryMarkNoThrow(CurFn); 1419 } 1420 1421 /// ContainsLabel - Return true if the statement contains a label in it. If 1422 /// this statement is not executed normally, it not containing a label means 1423 /// that we can just remove the code. 1424 bool CodeGenFunction::ContainsLabel(const Stmt *S, bool IgnoreCaseStmts) { 1425 // Null statement, not a label! 1426 if (!S) return false; 1427 1428 // If this is a label, we have to emit the code, consider something like: 1429 // if (0) { ... foo: bar(); } goto foo; 1430 // 1431 // TODO: If anyone cared, we could track __label__'s, since we know that you 1432 // can't jump to one from outside their declared region. 1433 if (isa<LabelStmt>(S)) 1434 return true; 1435 1436 // If this is a case/default statement, and we haven't seen a switch, we have 1437 // to emit the code. 1438 if (isa<SwitchCase>(S) && !IgnoreCaseStmts) 1439 return true; 1440 1441 // If this is a switch statement, we want to ignore cases below it. 1442 if (isa<SwitchStmt>(S)) 1443 IgnoreCaseStmts = true; 1444 1445 // Scan subexpressions for verboten labels. 1446 for (const Stmt *SubStmt : S->children()) 1447 if (ContainsLabel(SubStmt, IgnoreCaseStmts)) 1448 return true; 1449 1450 return false; 1451 } 1452 1453 /// containsBreak - Return true if the statement contains a break out of it. 1454 /// If the statement (recursively) contains a switch or loop with a break 1455 /// inside of it, this is fine. 1456 bool CodeGenFunction::containsBreak(const Stmt *S) { 1457 // Null statement, not a label! 1458 if (!S) return false; 1459 1460 // If this is a switch or loop that defines its own break scope, then we can 1461 // include it and anything inside of it. 1462 if (isa<SwitchStmt>(S) || isa<WhileStmt>(S) || isa<DoStmt>(S) || 1463 isa<ForStmt>(S)) 1464 return false; 1465 1466 if (isa<BreakStmt>(S)) 1467 return true; 1468 1469 // Scan subexpressions for verboten breaks. 1470 for (const Stmt *SubStmt : S->children()) 1471 if (containsBreak(SubStmt)) 1472 return true; 1473 1474 return false; 1475 } 1476 1477 bool CodeGenFunction::mightAddDeclToScope(const Stmt *S) { 1478 if (!S) return false; 1479 1480 // Some statement kinds add a scope and thus never add a decl to the current 1481 // scope. Note, this list is longer than the list of statements that might 1482 // have an unscoped decl nested within them, but this way is conservatively 1483 // correct even if more statement kinds are added. 1484 if (isa<IfStmt>(S) || isa<SwitchStmt>(S) || isa<WhileStmt>(S) || 1485 isa<DoStmt>(S) || isa<ForStmt>(S) || isa<CompoundStmt>(S) || 1486 isa<CXXForRangeStmt>(S) || isa<CXXTryStmt>(S) || 1487 isa<ObjCForCollectionStmt>(S) || isa<ObjCAtTryStmt>(S)) 1488 return false; 1489 1490 if (isa<DeclStmt>(S)) 1491 return true; 1492 1493 for (const Stmt *SubStmt : S->children()) 1494 if (mightAddDeclToScope(SubStmt)) 1495 return true; 1496 1497 return false; 1498 } 1499 1500 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold 1501 /// to a constant, or if it does but contains a label, return false. If it 1502 /// constant folds return true and set the boolean result in Result. 1503 bool CodeGenFunction::ConstantFoldsToSimpleInteger(const Expr *Cond, 1504 bool &ResultBool, 1505 bool AllowLabels) { 1506 llvm::APSInt ResultInt; 1507 if (!ConstantFoldsToSimpleInteger(Cond, ResultInt, AllowLabels)) 1508 return false; 1509 1510 ResultBool = ResultInt.getBoolValue(); 1511 return true; 1512 } 1513 1514 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold 1515 /// to a constant, or if it does but contains a label, return false. If it 1516 /// constant folds return true and set the folded value. 1517 bool CodeGenFunction::ConstantFoldsToSimpleInteger(const Expr *Cond, 1518 llvm::APSInt &ResultInt, 1519 bool AllowLabels) { 1520 // FIXME: Rename and handle conversion of other evaluatable things 1521 // to bool. 1522 Expr::EvalResult Result; 1523 if (!Cond->EvaluateAsInt(Result, getContext())) 1524 return false; // Not foldable, not integer or not fully evaluatable. 1525 1526 llvm::APSInt Int = Result.Val.getInt(); 1527 if (!AllowLabels && CodeGenFunction::ContainsLabel(Cond)) 1528 return false; // Contains a label. 1529 1530 ResultInt = Int; 1531 return true; 1532 } 1533 1534 /// Determine whether the given condition is an instrumentable condition 1535 /// (i.e. no "&&" or "||"). 1536 bool CodeGenFunction::isInstrumentedCondition(const Expr *C) { 1537 // Bypass simplistic logical-NOT operator before determining whether the 1538 // condition contains any other logical operator. 1539 if (const UnaryOperator *UnOp = dyn_cast<UnaryOperator>(C->IgnoreParens())) 1540 if (UnOp->getOpcode() == UO_LNot) 1541 C = UnOp->getSubExpr(); 1542 1543 const BinaryOperator *BOp = dyn_cast<BinaryOperator>(C->IgnoreParens()); 1544 return (!BOp || !BOp->isLogicalOp()); 1545 } 1546 1547 /// EmitBranchToCounterBlock - Emit a conditional branch to a new block that 1548 /// increments a profile counter based on the semantics of the given logical 1549 /// operator opcode. This is used to instrument branch condition coverage for 1550 /// logical operators. 1551 void CodeGenFunction::EmitBranchToCounterBlock( 1552 const Expr *Cond, BinaryOperator::Opcode LOp, llvm::BasicBlock *TrueBlock, 1553 llvm::BasicBlock *FalseBlock, uint64_t TrueCount /* = 0 */, 1554 Stmt::Likelihood LH /* =None */, const Expr *CntrIdx /* = nullptr */) { 1555 // If not instrumenting, just emit a branch. 1556 bool InstrumentRegions = CGM.getCodeGenOpts().hasProfileClangInstr(); 1557 if (!InstrumentRegions || !isInstrumentedCondition(Cond)) 1558 return EmitBranchOnBoolExpr(Cond, TrueBlock, FalseBlock, TrueCount, LH); 1559 1560 llvm::BasicBlock *ThenBlock = NULL; 1561 llvm::BasicBlock *ElseBlock = NULL; 1562 llvm::BasicBlock *NextBlock = NULL; 1563 1564 // Create the block we'll use to increment the appropriate counter. 1565 llvm::BasicBlock *CounterIncrBlock = createBasicBlock("lop.rhscnt"); 1566 1567 // Set block pointers according to Logical-AND (BO_LAnd) semantics. This 1568 // means we need to evaluate the condition and increment the counter on TRUE: 1569 // 1570 // if (Cond) 1571 // goto CounterIncrBlock; 1572 // else 1573 // goto FalseBlock; 1574 // 1575 // CounterIncrBlock: 1576 // Counter++; 1577 // goto TrueBlock; 1578 1579 if (LOp == BO_LAnd) { 1580 ThenBlock = CounterIncrBlock; 1581 ElseBlock = FalseBlock; 1582 NextBlock = TrueBlock; 1583 } 1584 1585 // Set block pointers according to Logical-OR (BO_LOr) semantics. This means 1586 // we need to evaluate the condition and increment the counter on FALSE: 1587 // 1588 // if (Cond) 1589 // goto TrueBlock; 1590 // else 1591 // goto CounterIncrBlock; 1592 // 1593 // CounterIncrBlock: 1594 // Counter++; 1595 // goto FalseBlock; 1596 1597 else if (LOp == BO_LOr) { 1598 ThenBlock = TrueBlock; 1599 ElseBlock = CounterIncrBlock; 1600 NextBlock = FalseBlock; 1601 } else { 1602 llvm_unreachable("Expected Opcode must be that of a Logical Operator"); 1603 } 1604 1605 // Emit Branch based on condition. 1606 EmitBranchOnBoolExpr(Cond, ThenBlock, ElseBlock, TrueCount, LH); 1607 1608 // Emit the block containing the counter increment(s). 1609 EmitBlock(CounterIncrBlock); 1610 1611 // Increment corresponding counter; if index not provided, use Cond as index. 1612 incrementProfileCounter(CntrIdx ? CntrIdx : Cond); 1613 1614 // Go to the next block. 1615 EmitBranch(NextBlock); 1616 } 1617 1618 /// EmitBranchOnBoolExpr - Emit a branch on a boolean condition (e.g. for an if 1619 /// statement) to the specified blocks. Based on the condition, this might try 1620 /// to simplify the codegen of the conditional based on the branch. 1621 /// \param LH The value of the likelihood attribute on the True branch. 1622 void CodeGenFunction::EmitBranchOnBoolExpr(const Expr *Cond, 1623 llvm::BasicBlock *TrueBlock, 1624 llvm::BasicBlock *FalseBlock, 1625 uint64_t TrueCount, 1626 Stmt::Likelihood LH) { 1627 Cond = Cond->IgnoreParens(); 1628 1629 if (const BinaryOperator *CondBOp = dyn_cast<BinaryOperator>(Cond)) { 1630 1631 // Handle X && Y in a condition. 1632 if (CondBOp->getOpcode() == BO_LAnd) { 1633 // If we have "1 && X", simplify the code. "0 && X" would have constant 1634 // folded if the case was simple enough. 1635 bool ConstantBool = false; 1636 if (ConstantFoldsToSimpleInteger(CondBOp->getLHS(), ConstantBool) && 1637 ConstantBool) { 1638 // br(1 && X) -> br(X). 1639 incrementProfileCounter(CondBOp); 1640 return EmitBranchToCounterBlock(CondBOp->getRHS(), BO_LAnd, TrueBlock, 1641 FalseBlock, TrueCount, LH); 1642 } 1643 1644 // If we have "X && 1", simplify the code to use an uncond branch. 1645 // "X && 0" would have been constant folded to 0. 1646 if (ConstantFoldsToSimpleInteger(CondBOp->getRHS(), ConstantBool) && 1647 ConstantBool) { 1648 // br(X && 1) -> br(X). 1649 return EmitBranchToCounterBlock(CondBOp->getLHS(), BO_LAnd, TrueBlock, 1650 FalseBlock, TrueCount, LH, CondBOp); 1651 } 1652 1653 // Emit the LHS as a conditional. If the LHS conditional is false, we 1654 // want to jump to the FalseBlock. 1655 llvm::BasicBlock *LHSTrue = createBasicBlock("land.lhs.true"); 1656 // The counter tells us how often we evaluate RHS, and all of TrueCount 1657 // can be propagated to that branch. 1658 uint64_t RHSCount = getProfileCount(CondBOp->getRHS()); 1659 1660 ConditionalEvaluation eval(*this); 1661 { 1662 ApplyDebugLocation DL(*this, Cond); 1663 // Propagate the likelihood attribute like __builtin_expect 1664 // __builtin_expect(X && Y, 1) -> X and Y are likely 1665 // __builtin_expect(X && Y, 0) -> only Y is unlikely 1666 EmitBranchOnBoolExpr(CondBOp->getLHS(), LHSTrue, FalseBlock, RHSCount, 1667 LH == Stmt::LH_Unlikely ? Stmt::LH_None : LH); 1668 EmitBlock(LHSTrue); 1669 } 1670 1671 incrementProfileCounter(CondBOp); 1672 setCurrentProfileCount(getProfileCount(CondBOp->getRHS())); 1673 1674 // Any temporaries created here are conditional. 1675 eval.begin(*this); 1676 EmitBranchToCounterBlock(CondBOp->getRHS(), BO_LAnd, TrueBlock, 1677 FalseBlock, TrueCount, LH); 1678 eval.end(*this); 1679 1680 return; 1681 } 1682 1683 if (CondBOp->getOpcode() == BO_LOr) { 1684 // If we have "0 || X", simplify the code. "1 || X" would have constant 1685 // folded if the case was simple enough. 1686 bool ConstantBool = false; 1687 if (ConstantFoldsToSimpleInteger(CondBOp->getLHS(), ConstantBool) && 1688 !ConstantBool) { 1689 // br(0 || X) -> br(X). 1690 incrementProfileCounter(CondBOp); 1691 return EmitBranchToCounterBlock(CondBOp->getRHS(), BO_LOr, TrueBlock, 1692 FalseBlock, TrueCount, LH); 1693 } 1694 1695 // If we have "X || 0", simplify the code to use an uncond branch. 1696 // "X || 1" would have been constant folded to 1. 1697 if (ConstantFoldsToSimpleInteger(CondBOp->getRHS(), ConstantBool) && 1698 !ConstantBool) { 1699 // br(X || 0) -> br(X). 1700 return EmitBranchToCounterBlock(CondBOp->getLHS(), BO_LOr, TrueBlock, 1701 FalseBlock, TrueCount, LH, CondBOp); 1702 } 1703 1704 // Emit the LHS as a conditional. If the LHS conditional is true, we 1705 // want to jump to the TrueBlock. 1706 llvm::BasicBlock *LHSFalse = createBasicBlock("lor.lhs.false"); 1707 // We have the count for entry to the RHS and for the whole expression 1708 // being true, so we can divy up True count between the short circuit and 1709 // the RHS. 1710 uint64_t LHSCount = 1711 getCurrentProfileCount() - getProfileCount(CondBOp->getRHS()); 1712 uint64_t RHSCount = TrueCount - LHSCount; 1713 1714 ConditionalEvaluation eval(*this); 1715 { 1716 // Propagate the likelihood attribute like __builtin_expect 1717 // __builtin_expect(X || Y, 1) -> only Y is likely 1718 // __builtin_expect(X || Y, 0) -> both X and Y are unlikely 1719 ApplyDebugLocation DL(*this, Cond); 1720 EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, LHSFalse, LHSCount, 1721 LH == Stmt::LH_Likely ? Stmt::LH_None : LH); 1722 EmitBlock(LHSFalse); 1723 } 1724 1725 incrementProfileCounter(CondBOp); 1726 setCurrentProfileCount(getProfileCount(CondBOp->getRHS())); 1727 1728 // Any temporaries created here are conditional. 1729 eval.begin(*this); 1730 EmitBranchToCounterBlock(CondBOp->getRHS(), BO_LOr, TrueBlock, FalseBlock, 1731 RHSCount, LH); 1732 1733 eval.end(*this); 1734 1735 return; 1736 } 1737 } 1738 1739 if (const UnaryOperator *CondUOp = dyn_cast<UnaryOperator>(Cond)) { 1740 // br(!x, t, f) -> br(x, f, t) 1741 if (CondUOp->getOpcode() == UO_LNot) { 1742 // Negate the count. 1743 uint64_t FalseCount = getCurrentProfileCount() - TrueCount; 1744 // The values of the enum are chosen to make this negation possible. 1745 LH = static_cast<Stmt::Likelihood>(-LH); 1746 // Negate the condition and swap the destination blocks. 1747 return EmitBranchOnBoolExpr(CondUOp->getSubExpr(), FalseBlock, TrueBlock, 1748 FalseCount, LH); 1749 } 1750 } 1751 1752 if (const ConditionalOperator *CondOp = dyn_cast<ConditionalOperator>(Cond)) { 1753 // br(c ? x : y, t, f) -> br(c, br(x, t, f), br(y, t, f)) 1754 llvm::BasicBlock *LHSBlock = createBasicBlock("cond.true"); 1755 llvm::BasicBlock *RHSBlock = createBasicBlock("cond.false"); 1756 1757 // The ConditionalOperator itself has no likelihood information for its 1758 // true and false branches. This matches the behavior of __builtin_expect. 1759 ConditionalEvaluation cond(*this); 1760 EmitBranchOnBoolExpr(CondOp->getCond(), LHSBlock, RHSBlock, 1761 getProfileCount(CondOp), Stmt::LH_None); 1762 1763 // When computing PGO branch weights, we only know the overall count for 1764 // the true block. This code is essentially doing tail duplication of the 1765 // naive code-gen, introducing new edges for which counts are not 1766 // available. Divide the counts proportionally between the LHS and RHS of 1767 // the conditional operator. 1768 uint64_t LHSScaledTrueCount = 0; 1769 if (TrueCount) { 1770 double LHSRatio = 1771 getProfileCount(CondOp) / (double)getCurrentProfileCount(); 1772 LHSScaledTrueCount = TrueCount * LHSRatio; 1773 } 1774 1775 cond.begin(*this); 1776 EmitBlock(LHSBlock); 1777 incrementProfileCounter(CondOp); 1778 { 1779 ApplyDebugLocation DL(*this, Cond); 1780 EmitBranchOnBoolExpr(CondOp->getLHS(), TrueBlock, FalseBlock, 1781 LHSScaledTrueCount, LH); 1782 } 1783 cond.end(*this); 1784 1785 cond.begin(*this); 1786 EmitBlock(RHSBlock); 1787 EmitBranchOnBoolExpr(CondOp->getRHS(), TrueBlock, FalseBlock, 1788 TrueCount - LHSScaledTrueCount, LH); 1789 cond.end(*this); 1790 1791 return; 1792 } 1793 1794 if (const CXXThrowExpr *Throw = dyn_cast<CXXThrowExpr>(Cond)) { 1795 // Conditional operator handling can give us a throw expression as a 1796 // condition for a case like: 1797 // br(c ? throw x : y, t, f) -> br(c, br(throw x, t, f), br(y, t, f) 1798 // Fold this to: 1799 // br(c, throw x, br(y, t, f)) 1800 EmitCXXThrowExpr(Throw, /*KeepInsertionPoint*/false); 1801 return; 1802 } 1803 1804 // Emit the code with the fully general case. 1805 llvm::Value *CondV; 1806 { 1807 ApplyDebugLocation DL(*this, Cond); 1808 CondV = EvaluateExprAsBool(Cond); 1809 } 1810 1811 llvm::MDNode *Weights = nullptr; 1812 llvm::MDNode *Unpredictable = nullptr; 1813 1814 // If the branch has a condition wrapped by __builtin_unpredictable, 1815 // create metadata that specifies that the branch is unpredictable. 1816 // Don't bother if not optimizing because that metadata would not be used. 1817 auto *Call = dyn_cast<CallExpr>(Cond->IgnoreImpCasts()); 1818 if (Call && CGM.getCodeGenOpts().OptimizationLevel != 0) { 1819 auto *FD = dyn_cast_or_null<FunctionDecl>(Call->getCalleeDecl()); 1820 if (FD && FD->getBuiltinID() == Builtin::BI__builtin_unpredictable) { 1821 llvm::MDBuilder MDHelper(getLLVMContext()); 1822 Unpredictable = MDHelper.createUnpredictable(); 1823 } 1824 } 1825 1826 // If there is a Likelihood knowledge for the cond, lower it. 1827 // Note that if not optimizing this won't emit anything. 1828 llvm::Value *NewCondV = emitCondLikelihoodViaExpectIntrinsic(CondV, LH); 1829 if (CondV != NewCondV) 1830 CondV = NewCondV; 1831 else { 1832 // Otherwise, lower profile counts. Note that we do this even at -O0. 1833 uint64_t CurrentCount = std::max(getCurrentProfileCount(), TrueCount); 1834 Weights = createProfileWeights(TrueCount, CurrentCount - TrueCount); 1835 } 1836 1837 Builder.CreateCondBr(CondV, TrueBlock, FalseBlock, Weights, Unpredictable); 1838 } 1839 1840 /// ErrorUnsupported - Print out an error that codegen doesn't support the 1841 /// specified stmt yet. 1842 void CodeGenFunction::ErrorUnsupported(const Stmt *S, const char *Type) { 1843 CGM.ErrorUnsupported(S, Type); 1844 } 1845 1846 /// emitNonZeroVLAInit - Emit the "zero" initialization of a 1847 /// variable-length array whose elements have a non-zero bit-pattern. 1848 /// 1849 /// \param baseType the inner-most element type of the array 1850 /// \param src - a char* pointing to the bit-pattern for a single 1851 /// base element of the array 1852 /// \param sizeInChars - the total size of the VLA, in chars 1853 static void emitNonZeroVLAInit(CodeGenFunction &CGF, QualType baseType, 1854 Address dest, Address src, 1855 llvm::Value *sizeInChars) { 1856 CGBuilderTy &Builder = CGF.Builder; 1857 1858 CharUnits baseSize = CGF.getContext().getTypeSizeInChars(baseType); 1859 llvm::Value *baseSizeInChars 1860 = llvm::ConstantInt::get(CGF.IntPtrTy, baseSize.getQuantity()); 1861 1862 Address begin = 1863 Builder.CreateElementBitCast(dest, CGF.Int8Ty, "vla.begin"); 1864 llvm::Value *end = Builder.CreateInBoundsGEP( 1865 begin.getElementType(), begin.getPointer(), sizeInChars, "vla.end"); 1866 1867 llvm::BasicBlock *originBB = CGF.Builder.GetInsertBlock(); 1868 llvm::BasicBlock *loopBB = CGF.createBasicBlock("vla-init.loop"); 1869 llvm::BasicBlock *contBB = CGF.createBasicBlock("vla-init.cont"); 1870 1871 // Make a loop over the VLA. C99 guarantees that the VLA element 1872 // count must be nonzero. 1873 CGF.EmitBlock(loopBB); 1874 1875 llvm::PHINode *cur = Builder.CreatePHI(begin.getType(), 2, "vla.cur"); 1876 cur->addIncoming(begin.getPointer(), originBB); 1877 1878 CharUnits curAlign = 1879 dest.getAlignment().alignmentOfArrayElement(baseSize); 1880 1881 // memcpy the individual element bit-pattern. 1882 Builder.CreateMemCpy(Address(cur, curAlign), src, baseSizeInChars, 1883 /*volatile*/ false); 1884 1885 // Go to the next element. 1886 llvm::Value *next = 1887 Builder.CreateInBoundsGEP(CGF.Int8Ty, cur, baseSizeInChars, "vla.next"); 1888 1889 // Leave if that's the end of the VLA. 1890 llvm::Value *done = Builder.CreateICmpEQ(next, end, "vla-init.isdone"); 1891 Builder.CreateCondBr(done, contBB, loopBB); 1892 cur->addIncoming(next, loopBB); 1893 1894 CGF.EmitBlock(contBB); 1895 } 1896 1897 void 1898 CodeGenFunction::EmitNullInitialization(Address DestPtr, QualType Ty) { 1899 // Ignore empty classes in C++. 1900 if (getLangOpts().CPlusPlus) { 1901 if (const RecordType *RT = Ty->getAs<RecordType>()) { 1902 if (cast<CXXRecordDecl>(RT->getDecl())->isEmpty()) 1903 return; 1904 } 1905 } 1906 1907 // Cast the dest ptr to the appropriate i8 pointer type. 1908 if (DestPtr.getElementType() != Int8Ty) 1909 DestPtr = Builder.CreateElementBitCast(DestPtr, Int8Ty); 1910 1911 // Get size and alignment info for this aggregate. 1912 CharUnits size = getContext().getTypeSizeInChars(Ty); 1913 1914 llvm::Value *SizeVal; 1915 const VariableArrayType *vla; 1916 1917 // Don't bother emitting a zero-byte memset. 1918 if (size.isZero()) { 1919 // But note that getTypeInfo returns 0 for a VLA. 1920 if (const VariableArrayType *vlaType = 1921 dyn_cast_or_null<VariableArrayType>( 1922 getContext().getAsArrayType(Ty))) { 1923 auto VlaSize = getVLASize(vlaType); 1924 SizeVal = VlaSize.NumElts; 1925 CharUnits eltSize = getContext().getTypeSizeInChars(VlaSize.Type); 1926 if (!eltSize.isOne()) 1927 SizeVal = Builder.CreateNUWMul(SizeVal, CGM.getSize(eltSize)); 1928 vla = vlaType; 1929 } else { 1930 return; 1931 } 1932 } else { 1933 SizeVal = CGM.getSize(size); 1934 vla = nullptr; 1935 } 1936 1937 // If the type contains a pointer to data member we can't memset it to zero. 1938 // Instead, create a null constant and copy it to the destination. 1939 // TODO: there are other patterns besides zero that we can usefully memset, 1940 // like -1, which happens to be the pattern used by member-pointers. 1941 if (!CGM.getTypes().isZeroInitializable(Ty)) { 1942 // For a VLA, emit a single element, then splat that over the VLA. 1943 if (vla) Ty = getContext().getBaseElementType(vla); 1944 1945 llvm::Constant *NullConstant = CGM.EmitNullConstant(Ty); 1946 1947 llvm::GlobalVariable *NullVariable = 1948 new llvm::GlobalVariable(CGM.getModule(), NullConstant->getType(), 1949 /*isConstant=*/true, 1950 llvm::GlobalVariable::PrivateLinkage, 1951 NullConstant, Twine()); 1952 CharUnits NullAlign = DestPtr.getAlignment(); 1953 NullVariable->setAlignment(NullAlign.getAsAlign()); 1954 Address SrcPtr(Builder.CreateBitCast(NullVariable, Builder.getInt8PtrTy()), 1955 NullAlign); 1956 1957 if (vla) return emitNonZeroVLAInit(*this, Ty, DestPtr, SrcPtr, SizeVal); 1958 1959 // Get and call the appropriate llvm.memcpy overload. 1960 Builder.CreateMemCpy(DestPtr, SrcPtr, SizeVal, false); 1961 return; 1962 } 1963 1964 // Otherwise, just memset the whole thing to zero. This is legal 1965 // because in LLVM, all default initializers (other than the ones we just 1966 // handled above) are guaranteed to have a bit pattern of all zeros. 1967 Builder.CreateMemSet(DestPtr, Builder.getInt8(0), SizeVal, false); 1968 } 1969 1970 llvm::BlockAddress *CodeGenFunction::GetAddrOfLabel(const LabelDecl *L) { 1971 // Make sure that there is a block for the indirect goto. 1972 if (!IndirectBranch) 1973 GetIndirectGotoBlock(); 1974 1975 llvm::BasicBlock *BB = getJumpDestForLabel(L).getBlock(); 1976 1977 // Make sure the indirect branch includes all of the address-taken blocks. 1978 IndirectBranch->addDestination(BB); 1979 return llvm::BlockAddress::get(CurFn, BB); 1980 } 1981 1982 llvm::BasicBlock *CodeGenFunction::GetIndirectGotoBlock() { 1983 // If we already made the indirect branch for indirect goto, return its block. 1984 if (IndirectBranch) return IndirectBranch->getParent(); 1985 1986 CGBuilderTy TmpBuilder(*this, createBasicBlock("indirectgoto")); 1987 1988 // Create the PHI node that indirect gotos will add entries to. 1989 llvm::Value *DestVal = TmpBuilder.CreatePHI(Int8PtrTy, 0, 1990 "indirect.goto.dest"); 1991 1992 // Create the indirect branch instruction. 1993 IndirectBranch = TmpBuilder.CreateIndirectBr(DestVal); 1994 return IndirectBranch->getParent(); 1995 } 1996 1997 /// Computes the length of an array in elements, as well as the base 1998 /// element type and a properly-typed first element pointer. 1999 llvm::Value *CodeGenFunction::emitArrayLength(const ArrayType *origArrayType, 2000 QualType &baseType, 2001 Address &addr) { 2002 const ArrayType *arrayType = origArrayType; 2003 2004 // If it's a VLA, we have to load the stored size. Note that 2005 // this is the size of the VLA in bytes, not its size in elements. 2006 llvm::Value *numVLAElements = nullptr; 2007 if (isa<VariableArrayType>(arrayType)) { 2008 numVLAElements = getVLASize(cast<VariableArrayType>(arrayType)).NumElts; 2009 2010 // Walk into all VLAs. This doesn't require changes to addr, 2011 // which has type T* where T is the first non-VLA element type. 2012 do { 2013 QualType elementType = arrayType->getElementType(); 2014 arrayType = getContext().getAsArrayType(elementType); 2015 2016 // If we only have VLA components, 'addr' requires no adjustment. 2017 if (!arrayType) { 2018 baseType = elementType; 2019 return numVLAElements; 2020 } 2021 } while (isa<VariableArrayType>(arrayType)); 2022 2023 // We get out here only if we find a constant array type 2024 // inside the VLA. 2025 } 2026 2027 // We have some number of constant-length arrays, so addr should 2028 // have LLVM type [M x [N x [...]]]*. Build a GEP that walks 2029 // down to the first element of addr. 2030 SmallVector<llvm::Value*, 8> gepIndices; 2031 2032 // GEP down to the array type. 2033 llvm::ConstantInt *zero = Builder.getInt32(0); 2034 gepIndices.push_back(zero); 2035 2036 uint64_t countFromCLAs = 1; 2037 QualType eltType; 2038 2039 llvm::ArrayType *llvmArrayType = 2040 dyn_cast<llvm::ArrayType>(addr.getElementType()); 2041 while (llvmArrayType) { 2042 assert(isa<ConstantArrayType>(arrayType)); 2043 assert(cast<ConstantArrayType>(arrayType)->getSize().getZExtValue() 2044 == llvmArrayType->getNumElements()); 2045 2046 gepIndices.push_back(zero); 2047 countFromCLAs *= llvmArrayType->getNumElements(); 2048 eltType = arrayType->getElementType(); 2049 2050 llvmArrayType = 2051 dyn_cast<llvm::ArrayType>(llvmArrayType->getElementType()); 2052 arrayType = getContext().getAsArrayType(arrayType->getElementType()); 2053 assert((!llvmArrayType || arrayType) && 2054 "LLVM and Clang types are out-of-synch"); 2055 } 2056 2057 if (arrayType) { 2058 // From this point onwards, the Clang array type has been emitted 2059 // as some other type (probably a packed struct). Compute the array 2060 // size, and just emit the 'begin' expression as a bitcast. 2061 while (arrayType) { 2062 countFromCLAs *= 2063 cast<ConstantArrayType>(arrayType)->getSize().getZExtValue(); 2064 eltType = arrayType->getElementType(); 2065 arrayType = getContext().getAsArrayType(eltType); 2066 } 2067 2068 llvm::Type *baseType = ConvertType(eltType); 2069 addr = Builder.CreateElementBitCast(addr, baseType, "array.begin"); 2070 } else { 2071 // Create the actual GEP. 2072 addr = Address(Builder.CreateInBoundsGEP( 2073 addr.getElementType(), addr.getPointer(), gepIndices, "array.begin"), 2074 addr.getAlignment()); 2075 } 2076 2077 baseType = eltType; 2078 2079 llvm::Value *numElements 2080 = llvm::ConstantInt::get(SizeTy, countFromCLAs); 2081 2082 // If we had any VLA dimensions, factor them in. 2083 if (numVLAElements) 2084 numElements = Builder.CreateNUWMul(numVLAElements, numElements); 2085 2086 return numElements; 2087 } 2088 2089 CodeGenFunction::VlaSizePair CodeGenFunction::getVLASize(QualType type) { 2090 const VariableArrayType *vla = getContext().getAsVariableArrayType(type); 2091 assert(vla && "type was not a variable array type!"); 2092 return getVLASize(vla); 2093 } 2094 2095 CodeGenFunction::VlaSizePair 2096 CodeGenFunction::getVLASize(const VariableArrayType *type) { 2097 // The number of elements so far; always size_t. 2098 llvm::Value *numElements = nullptr; 2099 2100 QualType elementType; 2101 do { 2102 elementType = type->getElementType(); 2103 llvm::Value *vlaSize = VLASizeMap[type->getSizeExpr()]; 2104 assert(vlaSize && "no size for VLA!"); 2105 assert(vlaSize->getType() == SizeTy); 2106 2107 if (!numElements) { 2108 numElements = vlaSize; 2109 } else { 2110 // It's undefined behavior if this wraps around, so mark it that way. 2111 // FIXME: Teach -fsanitize=undefined to trap this. 2112 numElements = Builder.CreateNUWMul(numElements, vlaSize); 2113 } 2114 } while ((type = getContext().getAsVariableArrayType(elementType))); 2115 2116 return { numElements, elementType }; 2117 } 2118 2119 CodeGenFunction::VlaSizePair 2120 CodeGenFunction::getVLAElements1D(QualType type) { 2121 const VariableArrayType *vla = getContext().getAsVariableArrayType(type); 2122 assert(vla && "type was not a variable array type!"); 2123 return getVLAElements1D(vla); 2124 } 2125 2126 CodeGenFunction::VlaSizePair 2127 CodeGenFunction::getVLAElements1D(const VariableArrayType *Vla) { 2128 llvm::Value *VlaSize = VLASizeMap[Vla->getSizeExpr()]; 2129 assert(VlaSize && "no size for VLA!"); 2130 assert(VlaSize->getType() == SizeTy); 2131 return { VlaSize, Vla->getElementType() }; 2132 } 2133 2134 void CodeGenFunction::EmitVariablyModifiedType(QualType type) { 2135 assert(type->isVariablyModifiedType() && 2136 "Must pass variably modified type to EmitVLASizes!"); 2137 2138 EnsureInsertPoint(); 2139 2140 // We're going to walk down into the type and look for VLA 2141 // expressions. 2142 do { 2143 assert(type->isVariablyModifiedType()); 2144 2145 const Type *ty = type.getTypePtr(); 2146 switch (ty->getTypeClass()) { 2147 2148 #define TYPE(Class, Base) 2149 #define ABSTRACT_TYPE(Class, Base) 2150 #define NON_CANONICAL_TYPE(Class, Base) 2151 #define DEPENDENT_TYPE(Class, Base) case Type::Class: 2152 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base) 2153 #include "clang/AST/TypeNodes.inc" 2154 llvm_unreachable("unexpected dependent type!"); 2155 2156 // These types are never variably-modified. 2157 case Type::Builtin: 2158 case Type::Complex: 2159 case Type::Vector: 2160 case Type::ExtVector: 2161 case Type::ConstantMatrix: 2162 case Type::Record: 2163 case Type::Enum: 2164 case Type::Elaborated: 2165 case Type::TemplateSpecialization: 2166 case Type::ObjCTypeParam: 2167 case Type::ObjCObject: 2168 case Type::ObjCInterface: 2169 case Type::ObjCObjectPointer: 2170 case Type::ExtInt: 2171 llvm_unreachable("type class is never variably-modified!"); 2172 2173 case Type::Adjusted: 2174 type = cast<AdjustedType>(ty)->getAdjustedType(); 2175 break; 2176 2177 case Type::Decayed: 2178 type = cast<DecayedType>(ty)->getPointeeType(); 2179 break; 2180 2181 case Type::Pointer: 2182 type = cast<PointerType>(ty)->getPointeeType(); 2183 break; 2184 2185 case Type::BlockPointer: 2186 type = cast<BlockPointerType>(ty)->getPointeeType(); 2187 break; 2188 2189 case Type::LValueReference: 2190 case Type::RValueReference: 2191 type = cast<ReferenceType>(ty)->getPointeeType(); 2192 break; 2193 2194 case Type::MemberPointer: 2195 type = cast<MemberPointerType>(ty)->getPointeeType(); 2196 break; 2197 2198 case Type::ConstantArray: 2199 case Type::IncompleteArray: 2200 // Losing element qualification here is fine. 2201 type = cast<ArrayType>(ty)->getElementType(); 2202 break; 2203 2204 case Type::VariableArray: { 2205 // Losing element qualification here is fine. 2206 const VariableArrayType *vat = cast<VariableArrayType>(ty); 2207 2208 // Unknown size indication requires no size computation. 2209 // Otherwise, evaluate and record it. 2210 if (const Expr *size = vat->getSizeExpr()) { 2211 // It's possible that we might have emitted this already, 2212 // e.g. with a typedef and a pointer to it. 2213 llvm::Value *&entry = VLASizeMap[size]; 2214 if (!entry) { 2215 llvm::Value *Size = EmitScalarExpr(size); 2216 2217 // C11 6.7.6.2p5: 2218 // If the size is an expression that is not an integer constant 2219 // expression [...] each time it is evaluated it shall have a value 2220 // greater than zero. 2221 if (SanOpts.has(SanitizerKind::VLABound) && 2222 size->getType()->isSignedIntegerType()) { 2223 SanitizerScope SanScope(this); 2224 llvm::Value *Zero = llvm::Constant::getNullValue(Size->getType()); 2225 llvm::Constant *StaticArgs[] = { 2226 EmitCheckSourceLocation(size->getBeginLoc()), 2227 EmitCheckTypeDescriptor(size->getType())}; 2228 EmitCheck(std::make_pair(Builder.CreateICmpSGT(Size, Zero), 2229 SanitizerKind::VLABound), 2230 SanitizerHandler::VLABoundNotPositive, StaticArgs, Size); 2231 } 2232 2233 // Always zexting here would be wrong if it weren't 2234 // undefined behavior to have a negative bound. 2235 entry = Builder.CreateIntCast(Size, SizeTy, /*signed*/ false); 2236 } 2237 } 2238 type = vat->getElementType(); 2239 break; 2240 } 2241 2242 case Type::FunctionProto: 2243 case Type::FunctionNoProto: 2244 type = cast<FunctionType>(ty)->getReturnType(); 2245 break; 2246 2247 case Type::Paren: 2248 case Type::TypeOf: 2249 case Type::UnaryTransform: 2250 case Type::Attributed: 2251 case Type::SubstTemplateTypeParm: 2252 case Type::MacroQualified: 2253 // Keep walking after single level desugaring. 2254 type = type.getSingleStepDesugaredType(getContext()); 2255 break; 2256 2257 case Type::Typedef: 2258 case Type::Decltype: 2259 case Type::Auto: 2260 case Type::DeducedTemplateSpecialization: 2261 // Stop walking: nothing to do. 2262 return; 2263 2264 case Type::TypeOfExpr: 2265 // Stop walking: emit typeof expression. 2266 EmitIgnoredExpr(cast<TypeOfExprType>(ty)->getUnderlyingExpr()); 2267 return; 2268 2269 case Type::Atomic: 2270 type = cast<AtomicType>(ty)->getValueType(); 2271 break; 2272 2273 case Type::Pipe: 2274 type = cast<PipeType>(ty)->getElementType(); 2275 break; 2276 } 2277 } while (type->isVariablyModifiedType()); 2278 } 2279 2280 Address CodeGenFunction::EmitVAListRef(const Expr* E) { 2281 if (getContext().getBuiltinVaListType()->isArrayType()) 2282 return EmitPointerWithAlignment(E); 2283 return EmitLValue(E).getAddress(*this); 2284 } 2285 2286 Address CodeGenFunction::EmitMSVAListRef(const Expr *E) { 2287 return EmitLValue(E).getAddress(*this); 2288 } 2289 2290 void CodeGenFunction::EmitDeclRefExprDbgValue(const DeclRefExpr *E, 2291 const APValue &Init) { 2292 assert(Init.hasValue() && "Invalid DeclRefExpr initializer!"); 2293 if (CGDebugInfo *Dbg = getDebugInfo()) 2294 if (CGM.getCodeGenOpts().hasReducedDebugInfo()) 2295 Dbg->EmitGlobalVariable(E->getDecl(), Init); 2296 } 2297 2298 CodeGenFunction::PeepholeProtection 2299 CodeGenFunction::protectFromPeepholes(RValue rvalue) { 2300 // At the moment, the only aggressive peephole we do in IR gen 2301 // is trunc(zext) folding, but if we add more, we can easily 2302 // extend this protection. 2303 2304 if (!rvalue.isScalar()) return PeepholeProtection(); 2305 llvm::Value *value = rvalue.getScalarVal(); 2306 if (!isa<llvm::ZExtInst>(value)) return PeepholeProtection(); 2307 2308 // Just make an extra bitcast. 2309 assert(HaveInsertPoint()); 2310 llvm::Instruction *inst = new llvm::BitCastInst(value, value->getType(), "", 2311 Builder.GetInsertBlock()); 2312 2313 PeepholeProtection protection; 2314 protection.Inst = inst; 2315 return protection; 2316 } 2317 2318 void CodeGenFunction::unprotectFromPeepholes(PeepholeProtection protection) { 2319 if (!protection.Inst) return; 2320 2321 // In theory, we could try to duplicate the peepholes now, but whatever. 2322 protection.Inst->eraseFromParent(); 2323 } 2324 2325 void CodeGenFunction::emitAlignmentAssumption(llvm::Value *PtrValue, 2326 QualType Ty, SourceLocation Loc, 2327 SourceLocation AssumptionLoc, 2328 llvm::Value *Alignment, 2329 llvm::Value *OffsetValue) { 2330 if (Alignment->getType() != IntPtrTy) 2331 Alignment = 2332 Builder.CreateIntCast(Alignment, IntPtrTy, false, "casted.align"); 2333 if (OffsetValue && OffsetValue->getType() != IntPtrTy) 2334 OffsetValue = 2335 Builder.CreateIntCast(OffsetValue, IntPtrTy, true, "casted.offset"); 2336 llvm::Value *TheCheck = nullptr; 2337 if (SanOpts.has(SanitizerKind::Alignment)) { 2338 llvm::Value *PtrIntValue = 2339 Builder.CreatePtrToInt(PtrValue, IntPtrTy, "ptrint"); 2340 2341 if (OffsetValue) { 2342 bool IsOffsetZero = false; 2343 if (const auto *CI = dyn_cast<llvm::ConstantInt>(OffsetValue)) 2344 IsOffsetZero = CI->isZero(); 2345 2346 if (!IsOffsetZero) 2347 PtrIntValue = Builder.CreateSub(PtrIntValue, OffsetValue, "offsetptr"); 2348 } 2349 2350 llvm::Value *Zero = llvm::ConstantInt::get(IntPtrTy, 0); 2351 llvm::Value *Mask = 2352 Builder.CreateSub(Alignment, llvm::ConstantInt::get(IntPtrTy, 1)); 2353 llvm::Value *MaskedPtr = Builder.CreateAnd(PtrIntValue, Mask, "maskedptr"); 2354 TheCheck = Builder.CreateICmpEQ(MaskedPtr, Zero, "maskcond"); 2355 } 2356 llvm::Instruction *Assumption = Builder.CreateAlignmentAssumption( 2357 CGM.getDataLayout(), PtrValue, Alignment, OffsetValue); 2358 2359 if (!SanOpts.has(SanitizerKind::Alignment)) 2360 return; 2361 emitAlignmentAssumptionCheck(PtrValue, Ty, Loc, AssumptionLoc, Alignment, 2362 OffsetValue, TheCheck, Assumption); 2363 } 2364 2365 void CodeGenFunction::emitAlignmentAssumption(llvm::Value *PtrValue, 2366 const Expr *E, 2367 SourceLocation AssumptionLoc, 2368 llvm::Value *Alignment, 2369 llvm::Value *OffsetValue) { 2370 if (auto *CE = dyn_cast<CastExpr>(E)) 2371 E = CE->getSubExprAsWritten(); 2372 QualType Ty = E->getType(); 2373 SourceLocation Loc = E->getExprLoc(); 2374 2375 emitAlignmentAssumption(PtrValue, Ty, Loc, AssumptionLoc, Alignment, 2376 OffsetValue); 2377 } 2378 2379 llvm::Value *CodeGenFunction::EmitAnnotationCall(llvm::Function *AnnotationFn, 2380 llvm::Value *AnnotatedVal, 2381 StringRef AnnotationStr, 2382 SourceLocation Location, 2383 const AnnotateAttr *Attr) { 2384 SmallVector<llvm::Value *, 5> Args = { 2385 AnnotatedVal, 2386 Builder.CreateBitCast(CGM.EmitAnnotationString(AnnotationStr), Int8PtrTy), 2387 Builder.CreateBitCast(CGM.EmitAnnotationUnit(Location), Int8PtrTy), 2388 CGM.EmitAnnotationLineNo(Location), 2389 }; 2390 if (Attr) 2391 Args.push_back(CGM.EmitAnnotationArgs(Attr)); 2392 return Builder.CreateCall(AnnotationFn, Args); 2393 } 2394 2395 void CodeGenFunction::EmitVarAnnotations(const VarDecl *D, llvm::Value *V) { 2396 assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute"); 2397 // FIXME We create a new bitcast for every annotation because that's what 2398 // llvm-gcc was doing. 2399 for (const auto *I : D->specific_attrs<AnnotateAttr>()) 2400 EmitAnnotationCall(CGM.getIntrinsic(llvm::Intrinsic::var_annotation), 2401 Builder.CreateBitCast(V, CGM.Int8PtrTy, V->getName()), 2402 I->getAnnotation(), D->getLocation(), I); 2403 } 2404 2405 Address CodeGenFunction::EmitFieldAnnotations(const FieldDecl *D, 2406 Address Addr) { 2407 assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute"); 2408 llvm::Value *V = Addr.getPointer(); 2409 llvm::Type *VTy = V->getType(); 2410 llvm::Function *F = CGM.getIntrinsic(llvm::Intrinsic::ptr_annotation, 2411 CGM.Int8PtrTy); 2412 2413 for (const auto *I : D->specific_attrs<AnnotateAttr>()) { 2414 // FIXME Always emit the cast inst so we can differentiate between 2415 // annotation on the first field of a struct and annotation on the struct 2416 // itself. 2417 if (VTy != CGM.Int8PtrTy) 2418 V = Builder.CreateBitCast(V, CGM.Int8PtrTy); 2419 V = EmitAnnotationCall(F, V, I->getAnnotation(), D->getLocation(), I); 2420 V = Builder.CreateBitCast(V, VTy); 2421 } 2422 2423 return Address(V, Addr.getAlignment()); 2424 } 2425 2426 CodeGenFunction::CGCapturedStmtInfo::~CGCapturedStmtInfo() { } 2427 2428 CodeGenFunction::SanitizerScope::SanitizerScope(CodeGenFunction *CGF) 2429 : CGF(CGF) { 2430 assert(!CGF->IsSanitizerScope); 2431 CGF->IsSanitizerScope = true; 2432 } 2433 2434 CodeGenFunction::SanitizerScope::~SanitizerScope() { 2435 CGF->IsSanitizerScope = false; 2436 } 2437 2438 void CodeGenFunction::InsertHelper(llvm::Instruction *I, 2439 const llvm::Twine &Name, 2440 llvm::BasicBlock *BB, 2441 llvm::BasicBlock::iterator InsertPt) const { 2442 LoopStack.InsertHelper(I); 2443 if (IsSanitizerScope) 2444 CGM.getSanitizerMetadata()->disableSanitizerForInstruction(I); 2445 } 2446 2447 void CGBuilderInserter::InsertHelper( 2448 llvm::Instruction *I, const llvm::Twine &Name, llvm::BasicBlock *BB, 2449 llvm::BasicBlock::iterator InsertPt) const { 2450 llvm::IRBuilderDefaultInserter::InsertHelper(I, Name, BB, InsertPt); 2451 if (CGF) 2452 CGF->InsertHelper(I, Name, BB, InsertPt); 2453 } 2454 2455 // Emits an error if we don't have a valid set of target features for the 2456 // called function. 2457 void CodeGenFunction::checkTargetFeatures(const CallExpr *E, 2458 const FunctionDecl *TargetDecl) { 2459 return checkTargetFeatures(E->getBeginLoc(), TargetDecl); 2460 } 2461 2462 // Emits an error if we don't have a valid set of target features for the 2463 // called function. 2464 void CodeGenFunction::checkTargetFeatures(SourceLocation Loc, 2465 const FunctionDecl *TargetDecl) { 2466 // Early exit if this is an indirect call. 2467 if (!TargetDecl) 2468 return; 2469 2470 // Get the current enclosing function if it exists. If it doesn't 2471 // we can't check the target features anyhow. 2472 const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(CurCodeDecl); 2473 if (!FD) 2474 return; 2475 2476 // Grab the required features for the call. For a builtin this is listed in 2477 // the td file with the default cpu, for an always_inline function this is any 2478 // listed cpu and any listed features. 2479 unsigned BuiltinID = TargetDecl->getBuiltinID(); 2480 std::string MissingFeature; 2481 llvm::StringMap<bool> CallerFeatureMap; 2482 CGM.getContext().getFunctionFeatureMap(CallerFeatureMap, FD); 2483 if (BuiltinID) { 2484 StringRef FeatureList( 2485 CGM.getContext().BuiltinInfo.getRequiredFeatures(BuiltinID)); 2486 // Return if the builtin doesn't have any required features. 2487 if (FeatureList.empty()) 2488 return; 2489 assert(FeatureList.find(' ') == StringRef::npos && 2490 "Space in feature list"); 2491 TargetFeatures TF(CallerFeatureMap); 2492 if (!TF.hasRequiredFeatures(FeatureList)) 2493 CGM.getDiags().Report(Loc, diag::err_builtin_needs_feature) 2494 << TargetDecl->getDeclName() << FeatureList; 2495 } else if (!TargetDecl->isMultiVersion() && 2496 TargetDecl->hasAttr<TargetAttr>()) { 2497 // Get the required features for the callee. 2498 2499 const TargetAttr *TD = TargetDecl->getAttr<TargetAttr>(); 2500 ParsedTargetAttr ParsedAttr = 2501 CGM.getContext().filterFunctionTargetAttrs(TD); 2502 2503 SmallVector<StringRef, 1> ReqFeatures; 2504 llvm::StringMap<bool> CalleeFeatureMap; 2505 CGM.getContext().getFunctionFeatureMap(CalleeFeatureMap, TargetDecl); 2506 2507 for (const auto &F : ParsedAttr.Features) { 2508 if (F[0] == '+' && CalleeFeatureMap.lookup(F.substr(1))) 2509 ReqFeatures.push_back(StringRef(F).substr(1)); 2510 } 2511 2512 for (const auto &F : CalleeFeatureMap) { 2513 // Only positive features are "required". 2514 if (F.getValue()) 2515 ReqFeatures.push_back(F.getKey()); 2516 } 2517 if (!llvm::all_of(ReqFeatures, [&](StringRef Feature) { 2518 if (!CallerFeatureMap.lookup(Feature)) { 2519 MissingFeature = Feature.str(); 2520 return false; 2521 } 2522 return true; 2523 })) 2524 CGM.getDiags().Report(Loc, diag::err_function_needs_feature) 2525 << FD->getDeclName() << TargetDecl->getDeclName() << MissingFeature; 2526 } 2527 } 2528 2529 void CodeGenFunction::EmitSanitizerStatReport(llvm::SanitizerStatKind SSK) { 2530 if (!CGM.getCodeGenOpts().SanitizeStats) 2531 return; 2532 2533 llvm::IRBuilder<> IRB(Builder.GetInsertBlock(), Builder.GetInsertPoint()); 2534 IRB.SetCurrentDebugLocation(Builder.getCurrentDebugLocation()); 2535 CGM.getSanStats().create(IRB, SSK); 2536 } 2537 2538 llvm::Value * 2539 CodeGenFunction::FormResolverCondition(const MultiVersionResolverOption &RO) { 2540 llvm::Value *Condition = nullptr; 2541 2542 if (!RO.Conditions.Architecture.empty()) 2543 Condition = EmitX86CpuIs(RO.Conditions.Architecture); 2544 2545 if (!RO.Conditions.Features.empty()) { 2546 llvm::Value *FeatureCond = EmitX86CpuSupports(RO.Conditions.Features); 2547 Condition = 2548 Condition ? Builder.CreateAnd(Condition, FeatureCond) : FeatureCond; 2549 } 2550 return Condition; 2551 } 2552 2553 static void CreateMultiVersionResolverReturn(CodeGenModule &CGM, 2554 llvm::Function *Resolver, 2555 CGBuilderTy &Builder, 2556 llvm::Function *FuncToReturn, 2557 bool SupportsIFunc) { 2558 if (SupportsIFunc) { 2559 Builder.CreateRet(FuncToReturn); 2560 return; 2561 } 2562 2563 llvm::SmallVector<llvm::Value *, 10> Args; 2564 llvm::for_each(Resolver->args(), 2565 [&](llvm::Argument &Arg) { Args.push_back(&Arg); }); 2566 2567 llvm::CallInst *Result = Builder.CreateCall(FuncToReturn, Args); 2568 Result->setTailCallKind(llvm::CallInst::TCK_MustTail); 2569 2570 if (Resolver->getReturnType()->isVoidTy()) 2571 Builder.CreateRetVoid(); 2572 else 2573 Builder.CreateRet(Result); 2574 } 2575 2576 void CodeGenFunction::EmitMultiVersionResolver( 2577 llvm::Function *Resolver, ArrayRef<MultiVersionResolverOption> Options) { 2578 assert(getContext().getTargetInfo().getTriple().isX86() && 2579 "Only implemented for x86 targets"); 2580 2581 bool SupportsIFunc = getContext().getTargetInfo().supportsIFunc(); 2582 2583 // Main function's basic block. 2584 llvm::BasicBlock *CurBlock = createBasicBlock("resolver_entry", Resolver); 2585 Builder.SetInsertPoint(CurBlock); 2586 EmitX86CpuInit(); 2587 2588 for (const MultiVersionResolverOption &RO : Options) { 2589 Builder.SetInsertPoint(CurBlock); 2590 llvm::Value *Condition = FormResolverCondition(RO); 2591 2592 // The 'default' or 'generic' case. 2593 if (!Condition) { 2594 assert(&RO == Options.end() - 1 && 2595 "Default or Generic case must be last"); 2596 CreateMultiVersionResolverReturn(CGM, Resolver, Builder, RO.Function, 2597 SupportsIFunc); 2598 return; 2599 } 2600 2601 llvm::BasicBlock *RetBlock = createBasicBlock("resolver_return", Resolver); 2602 CGBuilderTy RetBuilder(*this, RetBlock); 2603 CreateMultiVersionResolverReturn(CGM, Resolver, RetBuilder, RO.Function, 2604 SupportsIFunc); 2605 CurBlock = createBasicBlock("resolver_else", Resolver); 2606 Builder.CreateCondBr(Condition, RetBlock, CurBlock); 2607 } 2608 2609 // If no generic/default, emit an unreachable. 2610 Builder.SetInsertPoint(CurBlock); 2611 llvm::CallInst *TrapCall = EmitTrapCall(llvm::Intrinsic::trap); 2612 TrapCall->setDoesNotReturn(); 2613 TrapCall->setDoesNotThrow(); 2614 Builder.CreateUnreachable(); 2615 Builder.ClearInsertionPoint(); 2616 } 2617 2618 // Loc - where the diagnostic will point, where in the source code this 2619 // alignment has failed. 2620 // SecondaryLoc - if present (will be present if sufficiently different from 2621 // Loc), the diagnostic will additionally point a "Note:" to this location. 2622 // It should be the location where the __attribute__((assume_aligned)) 2623 // was written e.g. 2624 void CodeGenFunction::emitAlignmentAssumptionCheck( 2625 llvm::Value *Ptr, QualType Ty, SourceLocation Loc, 2626 SourceLocation SecondaryLoc, llvm::Value *Alignment, 2627 llvm::Value *OffsetValue, llvm::Value *TheCheck, 2628 llvm::Instruction *Assumption) { 2629 assert(Assumption && isa<llvm::CallInst>(Assumption) && 2630 cast<llvm::CallInst>(Assumption)->getCalledOperand() == 2631 llvm::Intrinsic::getDeclaration( 2632 Builder.GetInsertBlock()->getParent()->getParent(), 2633 llvm::Intrinsic::assume) && 2634 "Assumption should be a call to llvm.assume()."); 2635 assert(&(Builder.GetInsertBlock()->back()) == Assumption && 2636 "Assumption should be the last instruction of the basic block, " 2637 "since the basic block is still being generated."); 2638 2639 if (!SanOpts.has(SanitizerKind::Alignment)) 2640 return; 2641 2642 // Don't check pointers to volatile data. The behavior here is implementation- 2643 // defined. 2644 if (Ty->getPointeeType().isVolatileQualified()) 2645 return; 2646 2647 // We need to temorairly remove the assumption so we can insert the 2648 // sanitizer check before it, else the check will be dropped by optimizations. 2649 Assumption->removeFromParent(); 2650 2651 { 2652 SanitizerScope SanScope(this); 2653 2654 if (!OffsetValue) 2655 OffsetValue = Builder.getInt1(0); // no offset. 2656 2657 llvm::Constant *StaticData[] = {EmitCheckSourceLocation(Loc), 2658 EmitCheckSourceLocation(SecondaryLoc), 2659 EmitCheckTypeDescriptor(Ty)}; 2660 llvm::Value *DynamicData[] = {EmitCheckValue(Ptr), 2661 EmitCheckValue(Alignment), 2662 EmitCheckValue(OffsetValue)}; 2663 EmitCheck({std::make_pair(TheCheck, SanitizerKind::Alignment)}, 2664 SanitizerHandler::AlignmentAssumption, StaticData, DynamicData); 2665 } 2666 2667 // We are now in the (new, empty) "cont" basic block. 2668 // Reintroduce the assumption. 2669 Builder.Insert(Assumption); 2670 // FIXME: Assumption still has it's original basic block as it's Parent. 2671 } 2672 2673 llvm::DebugLoc CodeGenFunction::SourceLocToDebugLoc(SourceLocation Location) { 2674 if (CGDebugInfo *DI = getDebugInfo()) 2675 return DI->SourceLocToDebugLoc(Location); 2676 2677 return llvm::DebugLoc(); 2678 } 2679 2680 llvm::Value * 2681 CodeGenFunction::emitCondLikelihoodViaExpectIntrinsic(llvm::Value *Cond, 2682 Stmt::Likelihood LH) { 2683 switch (LH) { 2684 case Stmt::LH_None: 2685 return Cond; 2686 case Stmt::LH_Likely: 2687 case Stmt::LH_Unlikely: 2688 // Don't generate llvm.expect on -O0 as the backend won't use it for 2689 // anything. 2690 if (CGM.getCodeGenOpts().OptimizationLevel == 0) 2691 return Cond; 2692 llvm::Type *CondTy = Cond->getType(); 2693 assert(CondTy->isIntegerTy(1) && "expecting condition to be a boolean"); 2694 llvm::Function *FnExpect = 2695 CGM.getIntrinsic(llvm::Intrinsic::expect, CondTy); 2696 llvm::Value *ExpectedValueOfCond = 2697 llvm::ConstantInt::getBool(CondTy, LH == Stmt::LH_Likely); 2698 return Builder.CreateCall(FnExpect, {Cond, ExpectedValueOfCond}, 2699 Cond->getName() + ".expval"); 2700 } 2701 llvm_unreachable("Unknown Likelihood"); 2702 } 2703