xref: /llvm-project/clang/lib/CodeGen/CodeGenFunction.cpp (revision 48f5a392cb73d99a58f01448926f6964ab5b0d0a)
1 //===--- CodeGenFunction.cpp - Emit LLVM Code from ASTs for a Function ----===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This coordinates the per-function state used while generating code.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "CodeGenFunction.h"
14 #include "CGBlocks.h"
15 #include "CGCUDARuntime.h"
16 #include "CGCXXABI.h"
17 #include "CGCleanup.h"
18 #include "CGDebugInfo.h"
19 #include "CGOpenMPRuntime.h"
20 #include "CodeGenModule.h"
21 #include "CodeGenPGO.h"
22 #include "TargetInfo.h"
23 #include "clang/AST/ASTContext.h"
24 #include "clang/AST/ASTLambda.h"
25 #include "clang/AST/Attr.h"
26 #include "clang/AST/Decl.h"
27 #include "clang/AST/DeclCXX.h"
28 #include "clang/AST/Expr.h"
29 #include "clang/AST/StmtCXX.h"
30 #include "clang/AST/StmtObjC.h"
31 #include "clang/Basic/Builtins.h"
32 #include "clang/Basic/CodeGenOptions.h"
33 #include "clang/Basic/TargetInfo.h"
34 #include "clang/CodeGen/CGFunctionInfo.h"
35 #include "clang/Frontend/FrontendDiagnostic.h"
36 #include "llvm/ADT/ArrayRef.h"
37 #include "llvm/Frontend/OpenMP/OMPIRBuilder.h"
38 #include "llvm/IR/DataLayout.h"
39 #include "llvm/IR/Dominators.h"
40 #include "llvm/IR/FPEnv.h"
41 #include "llvm/IR/IntrinsicInst.h"
42 #include "llvm/IR/Intrinsics.h"
43 #include "llvm/IR/MDBuilder.h"
44 #include "llvm/IR/Operator.h"
45 #include "llvm/Support/CRC.h"
46 #include "llvm/Transforms/Scalar/LowerExpectIntrinsic.h"
47 #include "llvm/Transforms/Utils/PromoteMemToReg.h"
48 using namespace clang;
49 using namespace CodeGen;
50 
51 /// shouldEmitLifetimeMarkers - Decide whether we need emit the life-time
52 /// markers.
53 static bool shouldEmitLifetimeMarkers(const CodeGenOptions &CGOpts,
54                                       const LangOptions &LangOpts) {
55   if (CGOpts.DisableLifetimeMarkers)
56     return false;
57 
58   // Sanitizers may use markers.
59   if (CGOpts.SanitizeAddressUseAfterScope ||
60       LangOpts.Sanitize.has(SanitizerKind::HWAddress) ||
61       LangOpts.Sanitize.has(SanitizerKind::Memory))
62     return true;
63 
64   // For now, only in optimized builds.
65   return CGOpts.OptimizationLevel != 0;
66 }
67 
68 CodeGenFunction::CodeGenFunction(CodeGenModule &cgm, bool suppressNewContext)
69     : CodeGenTypeCache(cgm), CGM(cgm), Target(cgm.getTarget()),
70       Builder(cgm, cgm.getModule().getContext(), llvm::ConstantFolder(),
71               CGBuilderInserterTy(this)),
72       SanOpts(CGM.getLangOpts().Sanitize), CurFPFeatures(CGM.getLangOpts()),
73       DebugInfo(CGM.getModuleDebugInfo()), PGO(cgm),
74       ShouldEmitLifetimeMarkers(
75           shouldEmitLifetimeMarkers(CGM.getCodeGenOpts(), CGM.getLangOpts())) {
76   if (!suppressNewContext)
77     CGM.getCXXABI().getMangleContext().startNewFunction();
78 
79   SetFastMathFlags(CurFPFeatures);
80   SetFPModel();
81 }
82 
83 CodeGenFunction::~CodeGenFunction() {
84   assert(LifetimeExtendedCleanupStack.empty() && "failed to emit a cleanup");
85 
86   if (getLangOpts().OpenMP && CurFn)
87     CGM.getOpenMPRuntime().functionFinished(*this);
88 
89   // If we have an OpenMPIRBuilder we want to finalize functions (incl.
90   // outlining etc) at some point. Doing it once the function codegen is done
91   // seems to be a reasonable spot. We do it here, as opposed to the deletion
92   // time of the CodeGenModule, because we have to ensure the IR has not yet
93   // been "emitted" to the outside, thus, modifications are still sensible.
94   if (CGM.getLangOpts().OpenMPIRBuilder && CurFn)
95     CGM.getOpenMPRuntime().getOMPBuilder().finalize(CurFn);
96 }
97 
98 // Map the LangOption for exception behavior into
99 // the corresponding enum in the IR.
100 llvm::fp::ExceptionBehavior
101 clang::ToConstrainedExceptMD(LangOptions::FPExceptionModeKind Kind) {
102 
103   switch (Kind) {
104   case LangOptions::FPE_Ignore:  return llvm::fp::ebIgnore;
105   case LangOptions::FPE_MayTrap: return llvm::fp::ebMayTrap;
106   case LangOptions::FPE_Strict:  return llvm::fp::ebStrict;
107   }
108   llvm_unreachable("Unsupported FP Exception Behavior");
109 }
110 
111 void CodeGenFunction::SetFPModel() {
112   llvm::RoundingMode RM = getLangOpts().getFPRoundingMode();
113   auto fpExceptionBehavior = ToConstrainedExceptMD(
114                                getLangOpts().getFPExceptionMode());
115 
116   Builder.setDefaultConstrainedRounding(RM);
117   Builder.setDefaultConstrainedExcept(fpExceptionBehavior);
118   Builder.setIsFPConstrained(fpExceptionBehavior != llvm::fp::ebIgnore ||
119                              RM != llvm::RoundingMode::NearestTiesToEven);
120 }
121 
122 void CodeGenFunction::SetFastMathFlags(FPOptions FPFeatures) {
123   llvm::FastMathFlags FMF;
124   FMF.setAllowReassoc(FPFeatures.getAllowFPReassociate());
125   FMF.setNoNaNs(FPFeatures.getNoHonorNaNs());
126   FMF.setNoInfs(FPFeatures.getNoHonorInfs());
127   FMF.setNoSignedZeros(FPFeatures.getNoSignedZero());
128   FMF.setAllowReciprocal(FPFeatures.getAllowReciprocal());
129   FMF.setApproxFunc(FPFeatures.getAllowApproxFunc());
130   FMF.setAllowContract(FPFeatures.allowFPContractAcrossStatement());
131   Builder.setFastMathFlags(FMF);
132 }
133 
134 CodeGenFunction::CGFPOptionsRAII::CGFPOptionsRAII(CodeGenFunction &CGF,
135                                                   const Expr *E)
136     : CGF(CGF) {
137   ConstructorHelper(E->getFPFeaturesInEffect(CGF.getLangOpts()));
138 }
139 
140 CodeGenFunction::CGFPOptionsRAII::CGFPOptionsRAII(CodeGenFunction &CGF,
141                                                   FPOptions FPFeatures)
142     : CGF(CGF) {
143   ConstructorHelper(FPFeatures);
144 }
145 
146 void CodeGenFunction::CGFPOptionsRAII::ConstructorHelper(FPOptions FPFeatures) {
147   OldFPFeatures = CGF.CurFPFeatures;
148   CGF.CurFPFeatures = FPFeatures;
149 
150   OldExcept = CGF.Builder.getDefaultConstrainedExcept();
151   OldRounding = CGF.Builder.getDefaultConstrainedRounding();
152 
153   if (OldFPFeatures == FPFeatures)
154     return;
155 
156   FMFGuard.emplace(CGF.Builder);
157 
158   llvm::RoundingMode NewRoundingBehavior =
159       static_cast<llvm::RoundingMode>(FPFeatures.getRoundingMode());
160   CGF.Builder.setDefaultConstrainedRounding(NewRoundingBehavior);
161   auto NewExceptionBehavior =
162       ToConstrainedExceptMD(static_cast<LangOptions::FPExceptionModeKind>(
163           FPFeatures.getFPExceptionMode()));
164   CGF.Builder.setDefaultConstrainedExcept(NewExceptionBehavior);
165 
166   CGF.SetFastMathFlags(FPFeatures);
167 
168   assert((CGF.CurFuncDecl == nullptr || CGF.Builder.getIsFPConstrained() ||
169           isa<CXXConstructorDecl>(CGF.CurFuncDecl) ||
170           isa<CXXDestructorDecl>(CGF.CurFuncDecl) ||
171           (NewExceptionBehavior == llvm::fp::ebIgnore &&
172            NewRoundingBehavior == llvm::RoundingMode::NearestTiesToEven)) &&
173          "FPConstrained should be enabled on entire function");
174 
175   auto mergeFnAttrValue = [&](StringRef Name, bool Value) {
176     auto OldValue =
177         CGF.CurFn->getFnAttribute(Name).getValueAsString() == "true";
178     auto NewValue = OldValue & Value;
179     if (OldValue != NewValue)
180       CGF.CurFn->addFnAttr(Name, llvm::toStringRef(NewValue));
181   };
182   mergeFnAttrValue("no-infs-fp-math", FPFeatures.getNoHonorInfs());
183   mergeFnAttrValue("no-nans-fp-math", FPFeatures.getNoHonorNaNs());
184   mergeFnAttrValue("no-signed-zeros-fp-math", FPFeatures.getNoSignedZero());
185   mergeFnAttrValue("unsafe-fp-math", FPFeatures.getAllowFPReassociate() &&
186                                          FPFeatures.getAllowReciprocal() &&
187                                          FPFeatures.getAllowApproxFunc() &&
188                                          FPFeatures.getNoSignedZero());
189 }
190 
191 CodeGenFunction::CGFPOptionsRAII::~CGFPOptionsRAII() {
192   CGF.CurFPFeatures = OldFPFeatures;
193   CGF.Builder.setDefaultConstrainedExcept(OldExcept);
194   CGF.Builder.setDefaultConstrainedRounding(OldRounding);
195 }
196 
197 LValue CodeGenFunction::MakeNaturalAlignAddrLValue(llvm::Value *V, QualType T) {
198   LValueBaseInfo BaseInfo;
199   TBAAAccessInfo TBAAInfo;
200   CharUnits Alignment = CGM.getNaturalTypeAlignment(T, &BaseInfo, &TBAAInfo);
201   return LValue::MakeAddr(Address(V, Alignment), T, getContext(), BaseInfo,
202                           TBAAInfo);
203 }
204 
205 /// Given a value of type T* that may not be to a complete object,
206 /// construct an l-value with the natural pointee alignment of T.
207 LValue
208 CodeGenFunction::MakeNaturalAlignPointeeAddrLValue(llvm::Value *V, QualType T) {
209   LValueBaseInfo BaseInfo;
210   TBAAAccessInfo TBAAInfo;
211   CharUnits Align = CGM.getNaturalTypeAlignment(T, &BaseInfo, &TBAAInfo,
212                                                 /* forPointeeType= */ true);
213   return MakeAddrLValue(Address(V, Align), T, BaseInfo, TBAAInfo);
214 }
215 
216 
217 llvm::Type *CodeGenFunction::ConvertTypeForMem(QualType T) {
218   return CGM.getTypes().ConvertTypeForMem(T);
219 }
220 
221 llvm::Type *CodeGenFunction::ConvertType(QualType T) {
222   return CGM.getTypes().ConvertType(T);
223 }
224 
225 TypeEvaluationKind CodeGenFunction::getEvaluationKind(QualType type) {
226   type = type.getCanonicalType();
227   while (true) {
228     switch (type->getTypeClass()) {
229 #define TYPE(name, parent)
230 #define ABSTRACT_TYPE(name, parent)
231 #define NON_CANONICAL_TYPE(name, parent) case Type::name:
232 #define DEPENDENT_TYPE(name, parent) case Type::name:
233 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(name, parent) case Type::name:
234 #include "clang/AST/TypeNodes.inc"
235       llvm_unreachable("non-canonical or dependent type in IR-generation");
236 
237     case Type::Auto:
238     case Type::DeducedTemplateSpecialization:
239       llvm_unreachable("undeduced type in IR-generation");
240 
241     // Various scalar types.
242     case Type::Builtin:
243     case Type::Pointer:
244     case Type::BlockPointer:
245     case Type::LValueReference:
246     case Type::RValueReference:
247     case Type::MemberPointer:
248     case Type::Vector:
249     case Type::ExtVector:
250     case Type::ConstantMatrix:
251     case Type::FunctionProto:
252     case Type::FunctionNoProto:
253     case Type::Enum:
254     case Type::ObjCObjectPointer:
255     case Type::Pipe:
256     case Type::ExtInt:
257       return TEK_Scalar;
258 
259     // Complexes.
260     case Type::Complex:
261       return TEK_Complex;
262 
263     // Arrays, records, and Objective-C objects.
264     case Type::ConstantArray:
265     case Type::IncompleteArray:
266     case Type::VariableArray:
267     case Type::Record:
268     case Type::ObjCObject:
269     case Type::ObjCInterface:
270       return TEK_Aggregate;
271 
272     // We operate on atomic values according to their underlying type.
273     case Type::Atomic:
274       type = cast<AtomicType>(type)->getValueType();
275       continue;
276     }
277     llvm_unreachable("unknown type kind!");
278   }
279 }
280 
281 llvm::DebugLoc CodeGenFunction::EmitReturnBlock() {
282   // For cleanliness, we try to avoid emitting the return block for
283   // simple cases.
284   llvm::BasicBlock *CurBB = Builder.GetInsertBlock();
285 
286   if (CurBB) {
287     assert(!CurBB->getTerminator() && "Unexpected terminated block.");
288 
289     // We have a valid insert point, reuse it if it is empty or there are no
290     // explicit jumps to the return block.
291     if (CurBB->empty() || ReturnBlock.getBlock()->use_empty()) {
292       ReturnBlock.getBlock()->replaceAllUsesWith(CurBB);
293       delete ReturnBlock.getBlock();
294       ReturnBlock = JumpDest();
295     } else
296       EmitBlock(ReturnBlock.getBlock());
297     return llvm::DebugLoc();
298   }
299 
300   // Otherwise, if the return block is the target of a single direct
301   // branch then we can just put the code in that block instead. This
302   // cleans up functions which started with a unified return block.
303   if (ReturnBlock.getBlock()->hasOneUse()) {
304     llvm::BranchInst *BI =
305       dyn_cast<llvm::BranchInst>(*ReturnBlock.getBlock()->user_begin());
306     if (BI && BI->isUnconditional() &&
307         BI->getSuccessor(0) == ReturnBlock.getBlock()) {
308       // Record/return the DebugLoc of the simple 'return' expression to be used
309       // later by the actual 'ret' instruction.
310       llvm::DebugLoc Loc = BI->getDebugLoc();
311       Builder.SetInsertPoint(BI->getParent());
312       BI->eraseFromParent();
313       delete ReturnBlock.getBlock();
314       ReturnBlock = JumpDest();
315       return Loc;
316     }
317   }
318 
319   // FIXME: We are at an unreachable point, there is no reason to emit the block
320   // unless it has uses. However, we still need a place to put the debug
321   // region.end for now.
322 
323   EmitBlock(ReturnBlock.getBlock());
324   return llvm::DebugLoc();
325 }
326 
327 static void EmitIfUsed(CodeGenFunction &CGF, llvm::BasicBlock *BB) {
328   if (!BB) return;
329   if (!BB->use_empty())
330     return CGF.CurFn->getBasicBlockList().push_back(BB);
331   delete BB;
332 }
333 
334 void CodeGenFunction::FinishFunction(SourceLocation EndLoc) {
335   assert(BreakContinueStack.empty() &&
336          "mismatched push/pop in break/continue stack!");
337 
338   bool OnlySimpleReturnStmts = NumSimpleReturnExprs > 0
339     && NumSimpleReturnExprs == NumReturnExprs
340     && ReturnBlock.getBlock()->use_empty();
341   // Usually the return expression is evaluated before the cleanup
342   // code.  If the function contains only a simple return statement,
343   // such as a constant, the location before the cleanup code becomes
344   // the last useful breakpoint in the function, because the simple
345   // return expression will be evaluated after the cleanup code. To be
346   // safe, set the debug location for cleanup code to the location of
347   // the return statement.  Otherwise the cleanup code should be at the
348   // end of the function's lexical scope.
349   //
350   // If there are multiple branches to the return block, the branch
351   // instructions will get the location of the return statements and
352   // all will be fine.
353   if (CGDebugInfo *DI = getDebugInfo()) {
354     if (OnlySimpleReturnStmts)
355       DI->EmitLocation(Builder, LastStopPoint);
356     else
357       DI->EmitLocation(Builder, EndLoc);
358   }
359 
360   // Pop any cleanups that might have been associated with the
361   // parameters.  Do this in whatever block we're currently in; it's
362   // important to do this before we enter the return block or return
363   // edges will be *really* confused.
364   bool HasCleanups = EHStack.stable_begin() != PrologueCleanupDepth;
365   bool HasOnlyLifetimeMarkers =
366       HasCleanups && EHStack.containsOnlyLifetimeMarkers(PrologueCleanupDepth);
367   bool EmitRetDbgLoc = !HasCleanups || HasOnlyLifetimeMarkers;
368   if (HasCleanups) {
369     // Make sure the line table doesn't jump back into the body for
370     // the ret after it's been at EndLoc.
371     Optional<ApplyDebugLocation> AL;
372     if (CGDebugInfo *DI = getDebugInfo()) {
373       if (OnlySimpleReturnStmts)
374         DI->EmitLocation(Builder, EndLoc);
375       else
376         // We may not have a valid end location. Try to apply it anyway, and
377         // fall back to an artificial location if needed.
378         AL = ApplyDebugLocation::CreateDefaultArtificial(*this, EndLoc);
379     }
380 
381     PopCleanupBlocks(PrologueCleanupDepth);
382   }
383 
384   // Emit function epilog (to return).
385   llvm::DebugLoc Loc = EmitReturnBlock();
386 
387   if (ShouldInstrumentFunction()) {
388     if (CGM.getCodeGenOpts().InstrumentFunctions)
389       CurFn->addFnAttr("instrument-function-exit", "__cyg_profile_func_exit");
390     if (CGM.getCodeGenOpts().InstrumentFunctionsAfterInlining)
391       CurFn->addFnAttr("instrument-function-exit-inlined",
392                        "__cyg_profile_func_exit");
393   }
394 
395   // Emit debug descriptor for function end.
396   if (CGDebugInfo *DI = getDebugInfo())
397     DI->EmitFunctionEnd(Builder, CurFn);
398 
399   // Reset the debug location to that of the simple 'return' expression, if any
400   // rather than that of the end of the function's scope '}'.
401   ApplyDebugLocation AL(*this, Loc);
402   EmitFunctionEpilog(*CurFnInfo, EmitRetDbgLoc, EndLoc);
403   EmitEndEHSpec(CurCodeDecl);
404 
405   assert(EHStack.empty() &&
406          "did not remove all scopes from cleanup stack!");
407 
408   // If someone did an indirect goto, emit the indirect goto block at the end of
409   // the function.
410   if (IndirectBranch) {
411     EmitBlock(IndirectBranch->getParent());
412     Builder.ClearInsertionPoint();
413   }
414 
415   // If some of our locals escaped, insert a call to llvm.localescape in the
416   // entry block.
417   if (!EscapedLocals.empty()) {
418     // Invert the map from local to index into a simple vector. There should be
419     // no holes.
420     SmallVector<llvm::Value *, 4> EscapeArgs;
421     EscapeArgs.resize(EscapedLocals.size());
422     for (auto &Pair : EscapedLocals)
423       EscapeArgs[Pair.second] = Pair.first;
424     llvm::Function *FrameEscapeFn = llvm::Intrinsic::getDeclaration(
425         &CGM.getModule(), llvm::Intrinsic::localescape);
426     CGBuilderTy(*this, AllocaInsertPt).CreateCall(FrameEscapeFn, EscapeArgs);
427   }
428 
429   // Remove the AllocaInsertPt instruction, which is just a convenience for us.
430   llvm::Instruction *Ptr = AllocaInsertPt;
431   AllocaInsertPt = nullptr;
432   Ptr->eraseFromParent();
433 
434   // If someone took the address of a label but never did an indirect goto, we
435   // made a zero entry PHI node, which is illegal, zap it now.
436   if (IndirectBranch) {
437     llvm::PHINode *PN = cast<llvm::PHINode>(IndirectBranch->getAddress());
438     if (PN->getNumIncomingValues() == 0) {
439       PN->replaceAllUsesWith(llvm::UndefValue::get(PN->getType()));
440       PN->eraseFromParent();
441     }
442   }
443 
444   EmitIfUsed(*this, EHResumeBlock);
445   EmitIfUsed(*this, TerminateLandingPad);
446   EmitIfUsed(*this, TerminateHandler);
447   EmitIfUsed(*this, UnreachableBlock);
448 
449   for (const auto &FuncletAndParent : TerminateFunclets)
450     EmitIfUsed(*this, FuncletAndParent.second);
451 
452   if (CGM.getCodeGenOpts().EmitDeclMetadata)
453     EmitDeclMetadata();
454 
455   for (const auto &R : DeferredReplacements) {
456     if (llvm::Value *Old = R.first) {
457       Old->replaceAllUsesWith(R.second);
458       cast<llvm::Instruction>(Old)->eraseFromParent();
459     }
460   }
461   DeferredReplacements.clear();
462 
463   // Eliminate CleanupDestSlot alloca by replacing it with SSA values and
464   // PHIs if the current function is a coroutine. We don't do it for all
465   // functions as it may result in slight increase in numbers of instructions
466   // if compiled with no optimizations. We do it for coroutine as the lifetime
467   // of CleanupDestSlot alloca make correct coroutine frame building very
468   // difficult.
469   if (NormalCleanupDest.isValid() && isCoroutine()) {
470     llvm::DominatorTree DT(*CurFn);
471     llvm::PromoteMemToReg(
472         cast<llvm::AllocaInst>(NormalCleanupDest.getPointer()), DT);
473     NormalCleanupDest = Address::invalid();
474   }
475 
476   // Scan function arguments for vector width.
477   for (llvm::Argument &A : CurFn->args())
478     if (auto *VT = dyn_cast<llvm::VectorType>(A.getType()))
479       LargestVectorWidth =
480           std::max((uint64_t)LargestVectorWidth,
481                    VT->getPrimitiveSizeInBits().getKnownMinSize());
482 
483   // Update vector width based on return type.
484   if (auto *VT = dyn_cast<llvm::VectorType>(CurFn->getReturnType()))
485     LargestVectorWidth =
486         std::max((uint64_t)LargestVectorWidth,
487                  VT->getPrimitiveSizeInBits().getKnownMinSize());
488 
489   // Add the required-vector-width attribute. This contains the max width from:
490   // 1. min-vector-width attribute used in the source program.
491   // 2. Any builtins used that have a vector width specified.
492   // 3. Values passed in and out of inline assembly.
493   // 4. Width of vector arguments and return types for this function.
494   // 5. Width of vector aguments and return types for functions called by this
495   //    function.
496   if (LargestVectorWidth)
497     CurFn->addFnAttr("min-legal-vector-width", llvm::utostr(LargestVectorWidth));
498 
499   // Add vscale attribute if appropriate.
500   if (getLangOpts().ArmSveVectorBits) {
501     unsigned VScale = getLangOpts().ArmSveVectorBits / 128;
502     CurFn->addFnAttr(llvm::Attribute::getWithVScaleRangeArgs(getLLVMContext(),
503                                                              VScale, VScale));
504   }
505 
506   // If we generated an unreachable return block, delete it now.
507   if (ReturnBlock.isValid() && ReturnBlock.getBlock()->use_empty()) {
508     Builder.ClearInsertionPoint();
509     ReturnBlock.getBlock()->eraseFromParent();
510   }
511   if (ReturnValue.isValid()) {
512     auto *RetAlloca = dyn_cast<llvm::AllocaInst>(ReturnValue.getPointer());
513     if (RetAlloca && RetAlloca->use_empty()) {
514       RetAlloca->eraseFromParent();
515       ReturnValue = Address::invalid();
516     }
517   }
518 }
519 
520 /// ShouldInstrumentFunction - Return true if the current function should be
521 /// instrumented with __cyg_profile_func_* calls
522 bool CodeGenFunction::ShouldInstrumentFunction() {
523   if (!CGM.getCodeGenOpts().InstrumentFunctions &&
524       !CGM.getCodeGenOpts().InstrumentFunctionsAfterInlining &&
525       !CGM.getCodeGenOpts().InstrumentFunctionEntryBare)
526     return false;
527   if (!CurFuncDecl || CurFuncDecl->hasAttr<NoInstrumentFunctionAttr>())
528     return false;
529   return true;
530 }
531 
532 /// ShouldXRayInstrument - Return true if the current function should be
533 /// instrumented with XRay nop sleds.
534 bool CodeGenFunction::ShouldXRayInstrumentFunction() const {
535   return CGM.getCodeGenOpts().XRayInstrumentFunctions;
536 }
537 
538 /// AlwaysEmitXRayCustomEvents - Return true if we should emit IR for calls to
539 /// the __xray_customevent(...) builtin calls, when doing XRay instrumentation.
540 bool CodeGenFunction::AlwaysEmitXRayCustomEvents() const {
541   return CGM.getCodeGenOpts().XRayInstrumentFunctions &&
542          (CGM.getCodeGenOpts().XRayAlwaysEmitCustomEvents ||
543           CGM.getCodeGenOpts().XRayInstrumentationBundle.Mask ==
544               XRayInstrKind::Custom);
545 }
546 
547 bool CodeGenFunction::AlwaysEmitXRayTypedEvents() const {
548   return CGM.getCodeGenOpts().XRayInstrumentFunctions &&
549          (CGM.getCodeGenOpts().XRayAlwaysEmitTypedEvents ||
550           CGM.getCodeGenOpts().XRayInstrumentationBundle.Mask ==
551               XRayInstrKind::Typed);
552 }
553 
554 llvm::Constant *
555 CodeGenFunction::EncodeAddrForUseInPrologue(llvm::Function *F,
556                                             llvm::Constant *Addr) {
557   // Addresses stored in prologue data can't require run-time fixups and must
558   // be PC-relative. Run-time fixups are undesirable because they necessitate
559   // writable text segments, which are unsafe. And absolute addresses are
560   // undesirable because they break PIE mode.
561 
562   // Add a layer of indirection through a private global. Taking its address
563   // won't result in a run-time fixup, even if Addr has linkonce_odr linkage.
564   auto *GV = new llvm::GlobalVariable(CGM.getModule(), Addr->getType(),
565                                       /*isConstant=*/true,
566                                       llvm::GlobalValue::PrivateLinkage, Addr);
567 
568   // Create a PC-relative address.
569   auto *GOTAsInt = llvm::ConstantExpr::getPtrToInt(GV, IntPtrTy);
570   auto *FuncAsInt = llvm::ConstantExpr::getPtrToInt(F, IntPtrTy);
571   auto *PCRelAsInt = llvm::ConstantExpr::getSub(GOTAsInt, FuncAsInt);
572   return (IntPtrTy == Int32Ty)
573              ? PCRelAsInt
574              : llvm::ConstantExpr::getTrunc(PCRelAsInt, Int32Ty);
575 }
576 
577 llvm::Value *
578 CodeGenFunction::DecodeAddrUsedInPrologue(llvm::Value *F,
579                                           llvm::Value *EncodedAddr) {
580   // Reconstruct the address of the global.
581   auto *PCRelAsInt = Builder.CreateSExt(EncodedAddr, IntPtrTy);
582   auto *FuncAsInt = Builder.CreatePtrToInt(F, IntPtrTy, "func_addr.int");
583   auto *GOTAsInt = Builder.CreateAdd(PCRelAsInt, FuncAsInt, "global_addr.int");
584   auto *GOTAddr = Builder.CreateIntToPtr(GOTAsInt, Int8PtrPtrTy, "global_addr");
585 
586   // Load the original pointer through the global.
587   return Builder.CreateLoad(Address(GOTAddr, getPointerAlign()),
588                             "decoded_addr");
589 }
590 
591 void CodeGenFunction::EmitOpenCLKernelMetadata(const FunctionDecl *FD,
592                                                llvm::Function *Fn)
593 {
594   if (!FD->hasAttr<OpenCLKernelAttr>())
595     return;
596 
597   llvm::LLVMContext &Context = getLLVMContext();
598 
599   CGM.GenOpenCLArgMetadata(Fn, FD, this);
600 
601   if (const VecTypeHintAttr *A = FD->getAttr<VecTypeHintAttr>()) {
602     QualType HintQTy = A->getTypeHint();
603     const ExtVectorType *HintEltQTy = HintQTy->getAs<ExtVectorType>();
604     bool IsSignedInteger =
605         HintQTy->isSignedIntegerType() ||
606         (HintEltQTy && HintEltQTy->getElementType()->isSignedIntegerType());
607     llvm::Metadata *AttrMDArgs[] = {
608         llvm::ConstantAsMetadata::get(llvm::UndefValue::get(
609             CGM.getTypes().ConvertType(A->getTypeHint()))),
610         llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
611             llvm::IntegerType::get(Context, 32),
612             llvm::APInt(32, (uint64_t)(IsSignedInteger ? 1 : 0))))};
613     Fn->setMetadata("vec_type_hint", llvm::MDNode::get(Context, AttrMDArgs));
614   }
615 
616   if (const WorkGroupSizeHintAttr *A = FD->getAttr<WorkGroupSizeHintAttr>()) {
617     llvm::Metadata *AttrMDArgs[] = {
618         llvm::ConstantAsMetadata::get(Builder.getInt32(A->getXDim())),
619         llvm::ConstantAsMetadata::get(Builder.getInt32(A->getYDim())),
620         llvm::ConstantAsMetadata::get(Builder.getInt32(A->getZDim()))};
621     Fn->setMetadata("work_group_size_hint", llvm::MDNode::get(Context, AttrMDArgs));
622   }
623 
624   if (const ReqdWorkGroupSizeAttr *A = FD->getAttr<ReqdWorkGroupSizeAttr>()) {
625     llvm::Metadata *AttrMDArgs[] = {
626         llvm::ConstantAsMetadata::get(Builder.getInt32(A->getXDim())),
627         llvm::ConstantAsMetadata::get(Builder.getInt32(A->getYDim())),
628         llvm::ConstantAsMetadata::get(Builder.getInt32(A->getZDim()))};
629     Fn->setMetadata("reqd_work_group_size", llvm::MDNode::get(Context, AttrMDArgs));
630   }
631 
632   if (const OpenCLIntelReqdSubGroupSizeAttr *A =
633           FD->getAttr<OpenCLIntelReqdSubGroupSizeAttr>()) {
634     llvm::Metadata *AttrMDArgs[] = {
635         llvm::ConstantAsMetadata::get(Builder.getInt32(A->getSubGroupSize()))};
636     Fn->setMetadata("intel_reqd_sub_group_size",
637                     llvm::MDNode::get(Context, AttrMDArgs));
638   }
639 }
640 
641 /// Determine whether the function F ends with a return stmt.
642 static bool endsWithReturn(const Decl* F) {
643   const Stmt *Body = nullptr;
644   if (auto *FD = dyn_cast_or_null<FunctionDecl>(F))
645     Body = FD->getBody();
646   else if (auto *OMD = dyn_cast_or_null<ObjCMethodDecl>(F))
647     Body = OMD->getBody();
648 
649   if (auto *CS = dyn_cast_or_null<CompoundStmt>(Body)) {
650     auto LastStmt = CS->body_rbegin();
651     if (LastStmt != CS->body_rend())
652       return isa<ReturnStmt>(*LastStmt);
653   }
654   return false;
655 }
656 
657 void CodeGenFunction::markAsIgnoreThreadCheckingAtRuntime(llvm::Function *Fn) {
658   if (SanOpts.has(SanitizerKind::Thread)) {
659     Fn->addFnAttr("sanitize_thread_no_checking_at_run_time");
660     Fn->removeFnAttr(llvm::Attribute::SanitizeThread);
661   }
662 }
663 
664 /// Check if the return value of this function requires sanitization.
665 bool CodeGenFunction::requiresReturnValueCheck() const {
666   return requiresReturnValueNullabilityCheck() ||
667          (SanOpts.has(SanitizerKind::ReturnsNonnullAttribute) && CurCodeDecl &&
668           CurCodeDecl->getAttr<ReturnsNonNullAttr>());
669 }
670 
671 static bool matchesStlAllocatorFn(const Decl *D, const ASTContext &Ctx) {
672   auto *MD = dyn_cast_or_null<CXXMethodDecl>(D);
673   if (!MD || !MD->getDeclName().getAsIdentifierInfo() ||
674       !MD->getDeclName().getAsIdentifierInfo()->isStr("allocate") ||
675       (MD->getNumParams() != 1 && MD->getNumParams() != 2))
676     return false;
677 
678   if (MD->parameters()[0]->getType().getCanonicalType() != Ctx.getSizeType())
679     return false;
680 
681   if (MD->getNumParams() == 2) {
682     auto *PT = MD->parameters()[1]->getType()->getAs<PointerType>();
683     if (!PT || !PT->isVoidPointerType() ||
684         !PT->getPointeeType().isConstQualified())
685       return false;
686   }
687 
688   return true;
689 }
690 
691 /// Return the UBSan prologue signature for \p FD if one is available.
692 static llvm::Constant *getPrologueSignature(CodeGenModule &CGM,
693                                             const FunctionDecl *FD) {
694   if (const auto *MD = dyn_cast<CXXMethodDecl>(FD))
695     if (!MD->isStatic())
696       return nullptr;
697   return CGM.getTargetCodeGenInfo().getUBSanFunctionSignature(CGM);
698 }
699 
700 void CodeGenFunction::StartFunction(GlobalDecl GD, QualType RetTy,
701                                     llvm::Function *Fn,
702                                     const CGFunctionInfo &FnInfo,
703                                     const FunctionArgList &Args,
704                                     SourceLocation Loc,
705                                     SourceLocation StartLoc) {
706   assert(!CurFn &&
707          "Do not use a CodeGenFunction object for more than one function");
708 
709   const Decl *D = GD.getDecl();
710 
711   DidCallStackSave = false;
712   CurCodeDecl = D;
713   if (const auto *FD = dyn_cast_or_null<FunctionDecl>(D))
714     if (FD->usesSEHTry())
715       CurSEHParent = FD;
716   CurFuncDecl = (D ? D->getNonClosureContext() : nullptr);
717   FnRetTy = RetTy;
718   CurFn = Fn;
719   CurFnInfo = &FnInfo;
720   assert(CurFn->isDeclaration() && "Function already has body?");
721 
722   // If this function is ignored for any of the enabled sanitizers,
723   // disable the sanitizer for the function.
724   do {
725 #define SANITIZER(NAME, ID)                                                    \
726   if (SanOpts.empty())                                                         \
727     break;                                                                     \
728   if (SanOpts.has(SanitizerKind::ID))                                          \
729     if (CGM.isInNoSanitizeList(SanitizerKind::ID, Fn, Loc))                    \
730       SanOpts.set(SanitizerKind::ID, false);
731 
732 #include "clang/Basic/Sanitizers.def"
733 #undef SANITIZER
734   } while (0);
735 
736   if (D) {
737     // Apply the no_sanitize* attributes to SanOpts.
738     for (auto Attr : D->specific_attrs<NoSanitizeAttr>()) {
739       SanitizerMask mask = Attr->getMask();
740       SanOpts.Mask &= ~mask;
741       if (mask & SanitizerKind::Address)
742         SanOpts.set(SanitizerKind::KernelAddress, false);
743       if (mask & SanitizerKind::KernelAddress)
744         SanOpts.set(SanitizerKind::Address, false);
745       if (mask & SanitizerKind::HWAddress)
746         SanOpts.set(SanitizerKind::KernelHWAddress, false);
747       if (mask & SanitizerKind::KernelHWAddress)
748         SanOpts.set(SanitizerKind::HWAddress, false);
749     }
750   }
751 
752   // Apply sanitizer attributes to the function.
753   if (SanOpts.hasOneOf(SanitizerKind::Address | SanitizerKind::KernelAddress))
754     Fn->addFnAttr(llvm::Attribute::SanitizeAddress);
755   if (SanOpts.hasOneOf(SanitizerKind::HWAddress | SanitizerKind::KernelHWAddress))
756     Fn->addFnAttr(llvm::Attribute::SanitizeHWAddress);
757   if (SanOpts.has(SanitizerKind::MemTag))
758     Fn->addFnAttr(llvm::Attribute::SanitizeMemTag);
759   if (SanOpts.has(SanitizerKind::Thread))
760     Fn->addFnAttr(llvm::Attribute::SanitizeThread);
761   if (SanOpts.hasOneOf(SanitizerKind::Memory | SanitizerKind::KernelMemory))
762     Fn->addFnAttr(llvm::Attribute::SanitizeMemory);
763   if (SanOpts.has(SanitizerKind::SafeStack))
764     Fn->addFnAttr(llvm::Attribute::SafeStack);
765   if (SanOpts.has(SanitizerKind::ShadowCallStack))
766     Fn->addFnAttr(llvm::Attribute::ShadowCallStack);
767 
768   // Apply fuzzing attribute to the function.
769   if (SanOpts.hasOneOf(SanitizerKind::Fuzzer | SanitizerKind::FuzzerNoLink))
770     Fn->addFnAttr(llvm::Attribute::OptForFuzzing);
771 
772   // Ignore TSan memory acesses from within ObjC/ObjC++ dealloc, initialize,
773   // .cxx_destruct, __destroy_helper_block_ and all of their calees at run time.
774   if (SanOpts.has(SanitizerKind::Thread)) {
775     if (const auto *OMD = dyn_cast_or_null<ObjCMethodDecl>(D)) {
776       IdentifierInfo *II = OMD->getSelector().getIdentifierInfoForSlot(0);
777       if (OMD->getMethodFamily() == OMF_dealloc ||
778           OMD->getMethodFamily() == OMF_initialize ||
779           (OMD->getSelector().isUnarySelector() && II->isStr(".cxx_destruct"))) {
780         markAsIgnoreThreadCheckingAtRuntime(Fn);
781       }
782     }
783   }
784 
785   // Ignore unrelated casts in STL allocate() since the allocator must cast
786   // from void* to T* before object initialization completes. Don't match on the
787   // namespace because not all allocators are in std::
788   if (D && SanOpts.has(SanitizerKind::CFIUnrelatedCast)) {
789     if (matchesStlAllocatorFn(D, getContext()))
790       SanOpts.Mask &= ~SanitizerKind::CFIUnrelatedCast;
791   }
792 
793   // Ignore null checks in coroutine functions since the coroutines passes
794   // are not aware of how to move the extra UBSan instructions across the split
795   // coroutine boundaries.
796   if (D && SanOpts.has(SanitizerKind::Null))
797     if (const auto *FD = dyn_cast<FunctionDecl>(D))
798       if (FD->getBody() &&
799           FD->getBody()->getStmtClass() == Stmt::CoroutineBodyStmtClass)
800         SanOpts.Mask &= ~SanitizerKind::Null;
801 
802   // Apply xray attributes to the function (as a string, for now)
803   bool AlwaysXRayAttr = false;
804   if (const auto *XRayAttr = D ? D->getAttr<XRayInstrumentAttr>() : nullptr) {
805     if (CGM.getCodeGenOpts().XRayInstrumentationBundle.has(
806             XRayInstrKind::FunctionEntry) ||
807         CGM.getCodeGenOpts().XRayInstrumentationBundle.has(
808             XRayInstrKind::FunctionExit)) {
809       if (XRayAttr->alwaysXRayInstrument() && ShouldXRayInstrumentFunction()) {
810         Fn->addFnAttr("function-instrument", "xray-always");
811         AlwaysXRayAttr = true;
812       }
813       if (XRayAttr->neverXRayInstrument())
814         Fn->addFnAttr("function-instrument", "xray-never");
815       if (const auto *LogArgs = D->getAttr<XRayLogArgsAttr>())
816         if (ShouldXRayInstrumentFunction())
817           Fn->addFnAttr("xray-log-args",
818                         llvm::utostr(LogArgs->getArgumentCount()));
819     }
820   } else {
821     if (ShouldXRayInstrumentFunction() && !CGM.imbueXRayAttrs(Fn, Loc))
822       Fn->addFnAttr(
823           "xray-instruction-threshold",
824           llvm::itostr(CGM.getCodeGenOpts().XRayInstructionThreshold));
825   }
826 
827   if (ShouldXRayInstrumentFunction()) {
828     if (CGM.getCodeGenOpts().XRayIgnoreLoops)
829       Fn->addFnAttr("xray-ignore-loops");
830 
831     if (!CGM.getCodeGenOpts().XRayInstrumentationBundle.has(
832             XRayInstrKind::FunctionExit))
833       Fn->addFnAttr("xray-skip-exit");
834 
835     if (!CGM.getCodeGenOpts().XRayInstrumentationBundle.has(
836             XRayInstrKind::FunctionEntry))
837       Fn->addFnAttr("xray-skip-entry");
838 
839     auto FuncGroups = CGM.getCodeGenOpts().XRayTotalFunctionGroups;
840     if (FuncGroups > 1) {
841       auto FuncName = llvm::makeArrayRef<uint8_t>(
842           CurFn->getName().bytes_begin(), CurFn->getName().bytes_end());
843       auto Group = crc32(FuncName) % FuncGroups;
844       if (Group != CGM.getCodeGenOpts().XRaySelectedFunctionGroup &&
845           !AlwaysXRayAttr)
846         Fn->addFnAttr("function-instrument", "xray-never");
847     }
848   }
849 
850   if (CGM.getCodeGenOpts().getProfileInstr() != CodeGenOptions::ProfileNone)
851     if (CGM.isProfileInstrExcluded(Fn, Loc))
852       Fn->addFnAttr(llvm::Attribute::NoProfile);
853 
854   unsigned Count, Offset;
855   if (const auto *Attr =
856           D ? D->getAttr<PatchableFunctionEntryAttr>() : nullptr) {
857     Count = Attr->getCount();
858     Offset = Attr->getOffset();
859   } else {
860     Count = CGM.getCodeGenOpts().PatchableFunctionEntryCount;
861     Offset = CGM.getCodeGenOpts().PatchableFunctionEntryOffset;
862   }
863   if (Count && Offset <= Count) {
864     Fn->addFnAttr("patchable-function-entry", std::to_string(Count - Offset));
865     if (Offset)
866       Fn->addFnAttr("patchable-function-prefix", std::to_string(Offset));
867   }
868 
869   // Add no-jump-tables value.
870   if (CGM.getCodeGenOpts().NoUseJumpTables)
871     Fn->addFnAttr("no-jump-tables", "true");
872 
873   // Add no-inline-line-tables value.
874   if (CGM.getCodeGenOpts().NoInlineLineTables)
875     Fn->addFnAttr("no-inline-line-tables");
876 
877   // Add profile-sample-accurate value.
878   if (CGM.getCodeGenOpts().ProfileSampleAccurate)
879     Fn->addFnAttr("profile-sample-accurate");
880 
881   if (!CGM.getCodeGenOpts().SampleProfileFile.empty())
882     Fn->addFnAttr("use-sample-profile");
883 
884   if (D && D->hasAttr<CFICanonicalJumpTableAttr>())
885     Fn->addFnAttr("cfi-canonical-jump-table");
886 
887   if (getLangOpts().OpenCL) {
888     // Add metadata for a kernel function.
889     if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D))
890       EmitOpenCLKernelMetadata(FD, Fn);
891   }
892 
893   // If we are checking function types, emit a function type signature as
894   // prologue data.
895   if (getLangOpts().CPlusPlus && SanOpts.has(SanitizerKind::Function)) {
896     if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) {
897       if (llvm::Constant *PrologueSig = getPrologueSignature(CGM, FD)) {
898         // Remove any (C++17) exception specifications, to allow calling e.g. a
899         // noexcept function through a non-noexcept pointer.
900         auto ProtoTy =
901           getContext().getFunctionTypeWithExceptionSpec(FD->getType(),
902                                                         EST_None);
903         llvm::Constant *FTRTTIConst =
904             CGM.GetAddrOfRTTIDescriptor(ProtoTy, /*ForEH=*/true);
905         llvm::Constant *FTRTTIConstEncoded =
906             EncodeAddrForUseInPrologue(Fn, FTRTTIConst);
907         llvm::Constant *PrologueStructElems[] = {PrologueSig,
908                                                  FTRTTIConstEncoded};
909         llvm::Constant *PrologueStructConst =
910             llvm::ConstantStruct::getAnon(PrologueStructElems, /*Packed=*/true);
911         Fn->setPrologueData(PrologueStructConst);
912       }
913     }
914   }
915 
916   // If we're checking nullability, we need to know whether we can check the
917   // return value. Initialize the flag to 'true' and refine it in EmitParmDecl.
918   if (SanOpts.has(SanitizerKind::NullabilityReturn)) {
919     auto Nullability = FnRetTy->getNullability(getContext());
920     if (Nullability && *Nullability == NullabilityKind::NonNull) {
921       if (!(SanOpts.has(SanitizerKind::ReturnsNonnullAttribute) &&
922             CurCodeDecl && CurCodeDecl->getAttr<ReturnsNonNullAttr>()))
923         RetValNullabilityPrecondition =
924             llvm::ConstantInt::getTrue(getLLVMContext());
925     }
926   }
927 
928   // If we're in C++ mode and the function name is "main", it is guaranteed
929   // to be norecurse by the standard (3.6.1.3 "The function main shall not be
930   // used within a program").
931   //
932   // OpenCL C 2.0 v2.2-11 s6.9.i:
933   //     Recursion is not supported.
934   //
935   // SYCL v1.2.1 s3.10:
936   //     kernels cannot include RTTI information, exception classes,
937   //     recursive code, virtual functions or make use of C++ libraries that
938   //     are not compiled for the device.
939   if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) {
940     if ((getLangOpts().CPlusPlus && FD->isMain()) || getLangOpts().OpenCL ||
941         getLangOpts().SYCLIsDevice ||
942         (getLangOpts().CUDA && FD->hasAttr<CUDAGlobalAttr>()))
943       Fn->addFnAttr(llvm::Attribute::NoRecurse);
944   }
945 
946   if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) {
947     Builder.setIsFPConstrained(FD->hasAttr<StrictFPAttr>());
948     if (FD->hasAttr<StrictFPAttr>())
949       Fn->addFnAttr(llvm::Attribute::StrictFP);
950   }
951 
952   // If a custom alignment is used, force realigning to this alignment on
953   // any main function which certainly will need it.
954   if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D))
955     if ((FD->isMain() || FD->isMSVCRTEntryPoint()) &&
956         CGM.getCodeGenOpts().StackAlignment)
957       Fn->addFnAttr("stackrealign");
958 
959   llvm::BasicBlock *EntryBB = createBasicBlock("entry", CurFn);
960 
961   // Create a marker to make it easy to insert allocas into the entryblock
962   // later.  Don't create this with the builder, because we don't want it
963   // folded.
964   llvm::Value *Undef = llvm::UndefValue::get(Int32Ty);
965   AllocaInsertPt = new llvm::BitCastInst(Undef, Int32Ty, "allocapt", EntryBB);
966 
967   ReturnBlock = getJumpDestInCurrentScope("return");
968 
969   Builder.SetInsertPoint(EntryBB);
970 
971   // If we're checking the return value, allocate space for a pointer to a
972   // precise source location of the checked return statement.
973   if (requiresReturnValueCheck()) {
974     ReturnLocation = CreateDefaultAlignTempAlloca(Int8PtrTy, "return.sloc.ptr");
975     InitTempAlloca(ReturnLocation, llvm::ConstantPointerNull::get(Int8PtrTy));
976   }
977 
978   // Emit subprogram debug descriptor.
979   if (CGDebugInfo *DI = getDebugInfo()) {
980     // Reconstruct the type from the argument list so that implicit parameters,
981     // such as 'this' and 'vtt', show up in the debug info. Preserve the calling
982     // convention.
983     CallingConv CC = CallingConv::CC_C;
984     if (auto *FD = dyn_cast_or_null<FunctionDecl>(D))
985       if (const auto *SrcFnTy = FD->getType()->getAs<FunctionType>())
986         CC = SrcFnTy->getCallConv();
987     SmallVector<QualType, 16> ArgTypes;
988     for (const VarDecl *VD : Args)
989       ArgTypes.push_back(VD->getType());
990     QualType FnType = getContext().getFunctionType(
991         RetTy, ArgTypes, FunctionProtoType::ExtProtoInfo(CC));
992     DI->emitFunctionStart(GD, Loc, StartLoc, FnType, CurFn, CurFuncIsThunk);
993   }
994 
995   if (ShouldInstrumentFunction()) {
996     if (CGM.getCodeGenOpts().InstrumentFunctions)
997       CurFn->addFnAttr("instrument-function-entry", "__cyg_profile_func_enter");
998     if (CGM.getCodeGenOpts().InstrumentFunctionsAfterInlining)
999       CurFn->addFnAttr("instrument-function-entry-inlined",
1000                        "__cyg_profile_func_enter");
1001     if (CGM.getCodeGenOpts().InstrumentFunctionEntryBare)
1002       CurFn->addFnAttr("instrument-function-entry-inlined",
1003                        "__cyg_profile_func_enter_bare");
1004   }
1005 
1006   // Since emitting the mcount call here impacts optimizations such as function
1007   // inlining, we just add an attribute to insert a mcount call in backend.
1008   // The attribute "counting-function" is set to mcount function name which is
1009   // architecture dependent.
1010   if (CGM.getCodeGenOpts().InstrumentForProfiling) {
1011     // Calls to fentry/mcount should not be generated if function has
1012     // the no_instrument_function attribute.
1013     if (!CurFuncDecl || !CurFuncDecl->hasAttr<NoInstrumentFunctionAttr>()) {
1014       if (CGM.getCodeGenOpts().CallFEntry)
1015         Fn->addFnAttr("fentry-call", "true");
1016       else {
1017         Fn->addFnAttr("instrument-function-entry-inlined",
1018                       getTarget().getMCountName());
1019       }
1020       if (CGM.getCodeGenOpts().MNopMCount) {
1021         if (!CGM.getCodeGenOpts().CallFEntry)
1022           CGM.getDiags().Report(diag::err_opt_not_valid_without_opt)
1023             << "-mnop-mcount" << "-mfentry";
1024         Fn->addFnAttr("mnop-mcount");
1025       }
1026 
1027       if (CGM.getCodeGenOpts().RecordMCount) {
1028         if (!CGM.getCodeGenOpts().CallFEntry)
1029           CGM.getDiags().Report(diag::err_opt_not_valid_without_opt)
1030             << "-mrecord-mcount" << "-mfentry";
1031         Fn->addFnAttr("mrecord-mcount");
1032       }
1033     }
1034   }
1035 
1036   if (CGM.getCodeGenOpts().PackedStack) {
1037     if (getContext().getTargetInfo().getTriple().getArch() !=
1038         llvm::Triple::systemz)
1039       CGM.getDiags().Report(diag::err_opt_not_valid_on_target)
1040         << "-mpacked-stack";
1041     Fn->addFnAttr("packed-stack");
1042   }
1043 
1044   if (RetTy->isVoidType()) {
1045     // Void type; nothing to return.
1046     ReturnValue = Address::invalid();
1047 
1048     // Count the implicit return.
1049     if (!endsWithReturn(D))
1050       ++NumReturnExprs;
1051   } else if (CurFnInfo->getReturnInfo().getKind() == ABIArgInfo::Indirect) {
1052     // Indirect return; emit returned value directly into sret slot.
1053     // This reduces code size, and affects correctness in C++.
1054     auto AI = CurFn->arg_begin();
1055     if (CurFnInfo->getReturnInfo().isSRetAfterThis())
1056       ++AI;
1057     ReturnValue = Address(&*AI, CurFnInfo->getReturnInfo().getIndirectAlign());
1058     if (!CurFnInfo->getReturnInfo().getIndirectByVal()) {
1059       ReturnValuePointer =
1060           CreateDefaultAlignTempAlloca(Int8PtrTy, "result.ptr");
1061       Builder.CreateStore(Builder.CreatePointerBitCastOrAddrSpaceCast(
1062                               ReturnValue.getPointer(), Int8PtrTy),
1063                           ReturnValuePointer);
1064     }
1065   } else if (CurFnInfo->getReturnInfo().getKind() == ABIArgInfo::InAlloca &&
1066              !hasScalarEvaluationKind(CurFnInfo->getReturnType())) {
1067     // Load the sret pointer from the argument struct and return into that.
1068     unsigned Idx = CurFnInfo->getReturnInfo().getInAllocaFieldIndex();
1069     llvm::Function::arg_iterator EI = CurFn->arg_end();
1070     --EI;
1071     llvm::Value *Addr = Builder.CreateStructGEP(nullptr, &*EI, Idx);
1072     llvm::Type *Ty =
1073         cast<llvm::GetElementPtrInst>(Addr)->getResultElementType();
1074     ReturnValuePointer = Address(Addr, getPointerAlign());
1075     Addr = Builder.CreateAlignedLoad(Ty, Addr, getPointerAlign(), "agg.result");
1076     ReturnValue = Address(Addr, CGM.getNaturalTypeAlignment(RetTy));
1077   } else {
1078     ReturnValue = CreateIRTemp(RetTy, "retval");
1079 
1080     // Tell the epilog emitter to autorelease the result.  We do this
1081     // now so that various specialized functions can suppress it
1082     // during their IR-generation.
1083     if (getLangOpts().ObjCAutoRefCount &&
1084         !CurFnInfo->isReturnsRetained() &&
1085         RetTy->isObjCRetainableType())
1086       AutoreleaseResult = true;
1087   }
1088 
1089   EmitStartEHSpec(CurCodeDecl);
1090 
1091   PrologueCleanupDepth = EHStack.stable_begin();
1092 
1093   // Emit OpenMP specific initialization of the device functions.
1094   if (getLangOpts().OpenMP && CurCodeDecl)
1095     CGM.getOpenMPRuntime().emitFunctionProlog(*this, CurCodeDecl);
1096 
1097   EmitFunctionProlog(*CurFnInfo, CurFn, Args);
1098 
1099   if (D && isa<CXXMethodDecl>(D) && cast<CXXMethodDecl>(D)->isInstance()) {
1100     CGM.getCXXABI().EmitInstanceFunctionProlog(*this);
1101     const CXXMethodDecl *MD = cast<CXXMethodDecl>(D);
1102     if (MD->getParent()->isLambda() &&
1103         MD->getOverloadedOperator() == OO_Call) {
1104       // We're in a lambda; figure out the captures.
1105       MD->getParent()->getCaptureFields(LambdaCaptureFields,
1106                                         LambdaThisCaptureField);
1107       if (LambdaThisCaptureField) {
1108         // If the lambda captures the object referred to by '*this' - either by
1109         // value or by reference, make sure CXXThisValue points to the correct
1110         // object.
1111 
1112         // Get the lvalue for the field (which is a copy of the enclosing object
1113         // or contains the address of the enclosing object).
1114         LValue ThisFieldLValue = EmitLValueForLambdaField(LambdaThisCaptureField);
1115         if (!LambdaThisCaptureField->getType()->isPointerType()) {
1116           // If the enclosing object was captured by value, just use its address.
1117           CXXThisValue = ThisFieldLValue.getAddress(*this).getPointer();
1118         } else {
1119           // Load the lvalue pointed to by the field, since '*this' was captured
1120           // by reference.
1121           CXXThisValue =
1122               EmitLoadOfLValue(ThisFieldLValue, SourceLocation()).getScalarVal();
1123         }
1124       }
1125       for (auto *FD : MD->getParent()->fields()) {
1126         if (FD->hasCapturedVLAType()) {
1127           auto *ExprArg = EmitLoadOfLValue(EmitLValueForLambdaField(FD),
1128                                            SourceLocation()).getScalarVal();
1129           auto VAT = FD->getCapturedVLAType();
1130           VLASizeMap[VAT->getSizeExpr()] = ExprArg;
1131         }
1132       }
1133     } else {
1134       // Not in a lambda; just use 'this' from the method.
1135       // FIXME: Should we generate a new load for each use of 'this'?  The
1136       // fast register allocator would be happier...
1137       CXXThisValue = CXXABIThisValue;
1138     }
1139 
1140     // Check the 'this' pointer once per function, if it's available.
1141     if (CXXABIThisValue) {
1142       SanitizerSet SkippedChecks;
1143       SkippedChecks.set(SanitizerKind::ObjectSize, true);
1144       QualType ThisTy = MD->getThisType();
1145 
1146       // If this is the call operator of a lambda with no capture-default, it
1147       // may have a static invoker function, which may call this operator with
1148       // a null 'this' pointer.
1149       if (isLambdaCallOperator(MD) &&
1150           MD->getParent()->getLambdaCaptureDefault() == LCD_None)
1151         SkippedChecks.set(SanitizerKind::Null, true);
1152 
1153       EmitTypeCheck(
1154           isa<CXXConstructorDecl>(MD) ? TCK_ConstructorCall : TCK_MemberCall,
1155           Loc, CXXABIThisValue, ThisTy, CXXABIThisAlignment, SkippedChecks);
1156     }
1157   }
1158 
1159   // If any of the arguments have a variably modified type, make sure to
1160   // emit the type size.
1161   for (FunctionArgList::const_iterator i = Args.begin(), e = Args.end();
1162        i != e; ++i) {
1163     const VarDecl *VD = *i;
1164 
1165     // Dig out the type as written from ParmVarDecls; it's unclear whether
1166     // the standard (C99 6.9.1p10) requires this, but we're following the
1167     // precedent set by gcc.
1168     QualType Ty;
1169     if (const ParmVarDecl *PVD = dyn_cast<ParmVarDecl>(VD))
1170       Ty = PVD->getOriginalType();
1171     else
1172       Ty = VD->getType();
1173 
1174     if (Ty->isVariablyModifiedType())
1175       EmitVariablyModifiedType(Ty);
1176   }
1177   // Emit a location at the end of the prologue.
1178   if (CGDebugInfo *DI = getDebugInfo())
1179     DI->EmitLocation(Builder, StartLoc);
1180 
1181   // TODO: Do we need to handle this in two places like we do with
1182   // target-features/target-cpu?
1183   if (CurFuncDecl)
1184     if (const auto *VecWidth = CurFuncDecl->getAttr<MinVectorWidthAttr>())
1185       LargestVectorWidth = VecWidth->getVectorWidth();
1186 }
1187 
1188 void CodeGenFunction::EmitFunctionBody(const Stmt *Body) {
1189   incrementProfileCounter(Body);
1190   if (CPlusPlusWithProgress())
1191     FnIsMustProgress = true;
1192 
1193   if (const CompoundStmt *S = dyn_cast<CompoundStmt>(Body))
1194     EmitCompoundStmtWithoutScope(*S);
1195   else
1196     EmitStmt(Body);
1197 
1198   // This is checked after emitting the function body so we know if there
1199   // are any permitted infinite loops.
1200   if (FnIsMustProgress)
1201     CurFn->addFnAttr(llvm::Attribute::MustProgress);
1202 }
1203 
1204 /// When instrumenting to collect profile data, the counts for some blocks
1205 /// such as switch cases need to not include the fall-through counts, so
1206 /// emit a branch around the instrumentation code. When not instrumenting,
1207 /// this just calls EmitBlock().
1208 void CodeGenFunction::EmitBlockWithFallThrough(llvm::BasicBlock *BB,
1209                                                const Stmt *S) {
1210   llvm::BasicBlock *SkipCountBB = nullptr;
1211   if (HaveInsertPoint() && CGM.getCodeGenOpts().hasProfileClangInstr()) {
1212     // When instrumenting for profiling, the fallthrough to certain
1213     // statements needs to skip over the instrumentation code so that we
1214     // get an accurate count.
1215     SkipCountBB = createBasicBlock("skipcount");
1216     EmitBranch(SkipCountBB);
1217   }
1218   EmitBlock(BB);
1219   uint64_t CurrentCount = getCurrentProfileCount();
1220   incrementProfileCounter(S);
1221   setCurrentProfileCount(getCurrentProfileCount() + CurrentCount);
1222   if (SkipCountBB)
1223     EmitBlock(SkipCountBB);
1224 }
1225 
1226 /// Tries to mark the given function nounwind based on the
1227 /// non-existence of any throwing calls within it.  We believe this is
1228 /// lightweight enough to do at -O0.
1229 static void TryMarkNoThrow(llvm::Function *F) {
1230   // LLVM treats 'nounwind' on a function as part of the type, so we
1231   // can't do this on functions that can be overwritten.
1232   if (F->isInterposable()) return;
1233 
1234   for (llvm::BasicBlock &BB : *F)
1235     for (llvm::Instruction &I : BB)
1236       if (I.mayThrow())
1237         return;
1238 
1239   F->setDoesNotThrow();
1240 }
1241 
1242 QualType CodeGenFunction::BuildFunctionArgList(GlobalDecl GD,
1243                                                FunctionArgList &Args) {
1244   const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
1245   QualType ResTy = FD->getReturnType();
1246 
1247   const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD);
1248   if (MD && MD->isInstance()) {
1249     if (CGM.getCXXABI().HasThisReturn(GD))
1250       ResTy = MD->getThisType();
1251     else if (CGM.getCXXABI().hasMostDerivedReturn(GD))
1252       ResTy = CGM.getContext().VoidPtrTy;
1253     CGM.getCXXABI().buildThisParam(*this, Args);
1254   }
1255 
1256   // The base version of an inheriting constructor whose constructed base is a
1257   // virtual base is not passed any arguments (because it doesn't actually call
1258   // the inherited constructor).
1259   bool PassedParams = true;
1260   if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(FD))
1261     if (auto Inherited = CD->getInheritedConstructor())
1262       PassedParams =
1263           getTypes().inheritingCtorHasParams(Inherited, GD.getCtorType());
1264 
1265   if (PassedParams) {
1266     for (auto *Param : FD->parameters()) {
1267       Args.push_back(Param);
1268       if (!Param->hasAttr<PassObjectSizeAttr>())
1269         continue;
1270 
1271       auto *Implicit = ImplicitParamDecl::Create(
1272           getContext(), Param->getDeclContext(), Param->getLocation(),
1273           /*Id=*/nullptr, getContext().getSizeType(), ImplicitParamDecl::Other);
1274       SizeArguments[Param] = Implicit;
1275       Args.push_back(Implicit);
1276     }
1277   }
1278 
1279   if (MD && (isa<CXXConstructorDecl>(MD) || isa<CXXDestructorDecl>(MD)))
1280     CGM.getCXXABI().addImplicitStructorParams(*this, ResTy, Args);
1281 
1282   return ResTy;
1283 }
1284 
1285 void CodeGenFunction::GenerateCode(GlobalDecl GD, llvm::Function *Fn,
1286                                    const CGFunctionInfo &FnInfo) {
1287   const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
1288   CurGD = GD;
1289 
1290   FunctionArgList Args;
1291   QualType ResTy = BuildFunctionArgList(GD, Args);
1292 
1293   // Check if we should generate debug info for this function.
1294   if (FD->hasAttr<NoDebugAttr>())
1295     DebugInfo = nullptr; // disable debug info indefinitely for this function
1296 
1297   // The function might not have a body if we're generating thunks for a
1298   // function declaration.
1299   SourceRange BodyRange;
1300   if (Stmt *Body = FD->getBody())
1301     BodyRange = Body->getSourceRange();
1302   else
1303     BodyRange = FD->getLocation();
1304   CurEHLocation = BodyRange.getEnd();
1305 
1306   // Use the location of the start of the function to determine where
1307   // the function definition is located. By default use the location
1308   // of the declaration as the location for the subprogram. A function
1309   // may lack a declaration in the source code if it is created by code
1310   // gen. (examples: _GLOBAL__I_a, __cxx_global_array_dtor, thunk).
1311   SourceLocation Loc = FD->getLocation();
1312 
1313   // If this is a function specialization then use the pattern body
1314   // as the location for the function.
1315   if (const FunctionDecl *SpecDecl = FD->getTemplateInstantiationPattern())
1316     if (SpecDecl->hasBody(SpecDecl))
1317       Loc = SpecDecl->getLocation();
1318 
1319   Stmt *Body = FD->getBody();
1320 
1321   // Initialize helper which will detect jumps which can cause invalid lifetime
1322   // markers.
1323   if (Body && ShouldEmitLifetimeMarkers)
1324     Bypasses.Init(Body);
1325 
1326   // Emit the standard function prologue.
1327   StartFunction(GD, ResTy, Fn, FnInfo, Args, Loc, BodyRange.getBegin());
1328 
1329   // Generate the body of the function.
1330   PGO.assignRegionCounters(GD, CurFn);
1331   if (isa<CXXDestructorDecl>(FD))
1332     EmitDestructorBody(Args);
1333   else if (isa<CXXConstructorDecl>(FD))
1334     EmitConstructorBody(Args);
1335   else if (getLangOpts().CUDA &&
1336            !getLangOpts().CUDAIsDevice &&
1337            FD->hasAttr<CUDAGlobalAttr>())
1338     CGM.getCUDARuntime().emitDeviceStub(*this, Args);
1339   else if (isa<CXXMethodDecl>(FD) &&
1340            cast<CXXMethodDecl>(FD)->isLambdaStaticInvoker()) {
1341     // The lambda static invoker function is special, because it forwards or
1342     // clones the body of the function call operator (but is actually static).
1343     EmitLambdaStaticInvokeBody(cast<CXXMethodDecl>(FD));
1344   } else if (FD->isDefaulted() && isa<CXXMethodDecl>(FD) &&
1345              (cast<CXXMethodDecl>(FD)->isCopyAssignmentOperator() ||
1346               cast<CXXMethodDecl>(FD)->isMoveAssignmentOperator())) {
1347     // Implicit copy-assignment gets the same special treatment as implicit
1348     // copy-constructors.
1349     emitImplicitAssignmentOperatorBody(Args);
1350   } else if (Body) {
1351     EmitFunctionBody(Body);
1352   } else
1353     llvm_unreachable("no definition for emitted function");
1354 
1355   // C++11 [stmt.return]p2:
1356   //   Flowing off the end of a function [...] results in undefined behavior in
1357   //   a value-returning function.
1358   // C11 6.9.1p12:
1359   //   If the '}' that terminates a function is reached, and the value of the
1360   //   function call is used by the caller, the behavior is undefined.
1361   if (getLangOpts().CPlusPlus && !FD->hasImplicitReturnZero() && !SawAsmBlock &&
1362       !FD->getReturnType()->isVoidType() && Builder.GetInsertBlock()) {
1363     bool ShouldEmitUnreachable =
1364         CGM.getCodeGenOpts().StrictReturn ||
1365         !CGM.MayDropFunctionReturn(FD->getASTContext(), FD->getReturnType());
1366     if (SanOpts.has(SanitizerKind::Return)) {
1367       SanitizerScope SanScope(this);
1368       llvm::Value *IsFalse = Builder.getFalse();
1369       EmitCheck(std::make_pair(IsFalse, SanitizerKind::Return),
1370                 SanitizerHandler::MissingReturn,
1371                 EmitCheckSourceLocation(FD->getLocation()), None);
1372     } else if (ShouldEmitUnreachable) {
1373       if (CGM.getCodeGenOpts().OptimizationLevel == 0)
1374         EmitTrapCall(llvm::Intrinsic::trap);
1375     }
1376     if (SanOpts.has(SanitizerKind::Return) || ShouldEmitUnreachable) {
1377       Builder.CreateUnreachable();
1378       Builder.ClearInsertionPoint();
1379     }
1380   }
1381 
1382   // Emit the standard function epilogue.
1383   FinishFunction(BodyRange.getEnd());
1384 
1385   // If we haven't marked the function nothrow through other means, do
1386   // a quick pass now to see if we can.
1387   if (!CurFn->doesNotThrow())
1388     TryMarkNoThrow(CurFn);
1389 }
1390 
1391 /// ContainsLabel - Return true if the statement contains a label in it.  If
1392 /// this statement is not executed normally, it not containing a label means
1393 /// that we can just remove the code.
1394 bool CodeGenFunction::ContainsLabel(const Stmt *S, bool IgnoreCaseStmts) {
1395   // Null statement, not a label!
1396   if (!S) return false;
1397 
1398   // If this is a label, we have to emit the code, consider something like:
1399   // if (0) {  ...  foo:  bar(); }  goto foo;
1400   //
1401   // TODO: If anyone cared, we could track __label__'s, since we know that you
1402   // can't jump to one from outside their declared region.
1403   if (isa<LabelStmt>(S))
1404     return true;
1405 
1406   // If this is a case/default statement, and we haven't seen a switch, we have
1407   // to emit the code.
1408   if (isa<SwitchCase>(S) && !IgnoreCaseStmts)
1409     return true;
1410 
1411   // If this is a switch statement, we want to ignore cases below it.
1412   if (isa<SwitchStmt>(S))
1413     IgnoreCaseStmts = true;
1414 
1415   // Scan subexpressions for verboten labels.
1416   for (const Stmt *SubStmt : S->children())
1417     if (ContainsLabel(SubStmt, IgnoreCaseStmts))
1418       return true;
1419 
1420   return false;
1421 }
1422 
1423 /// containsBreak - Return true if the statement contains a break out of it.
1424 /// If the statement (recursively) contains a switch or loop with a break
1425 /// inside of it, this is fine.
1426 bool CodeGenFunction::containsBreak(const Stmt *S) {
1427   // Null statement, not a label!
1428   if (!S) return false;
1429 
1430   // If this is a switch or loop that defines its own break scope, then we can
1431   // include it and anything inside of it.
1432   if (isa<SwitchStmt>(S) || isa<WhileStmt>(S) || isa<DoStmt>(S) ||
1433       isa<ForStmt>(S))
1434     return false;
1435 
1436   if (isa<BreakStmt>(S))
1437     return true;
1438 
1439   // Scan subexpressions for verboten breaks.
1440   for (const Stmt *SubStmt : S->children())
1441     if (containsBreak(SubStmt))
1442       return true;
1443 
1444   return false;
1445 }
1446 
1447 bool CodeGenFunction::mightAddDeclToScope(const Stmt *S) {
1448   if (!S) return false;
1449 
1450   // Some statement kinds add a scope and thus never add a decl to the current
1451   // scope. Note, this list is longer than the list of statements that might
1452   // have an unscoped decl nested within them, but this way is conservatively
1453   // correct even if more statement kinds are added.
1454   if (isa<IfStmt>(S) || isa<SwitchStmt>(S) || isa<WhileStmt>(S) ||
1455       isa<DoStmt>(S) || isa<ForStmt>(S) || isa<CompoundStmt>(S) ||
1456       isa<CXXForRangeStmt>(S) || isa<CXXTryStmt>(S) ||
1457       isa<ObjCForCollectionStmt>(S) || isa<ObjCAtTryStmt>(S))
1458     return false;
1459 
1460   if (isa<DeclStmt>(S))
1461     return true;
1462 
1463   for (const Stmt *SubStmt : S->children())
1464     if (mightAddDeclToScope(SubStmt))
1465       return true;
1466 
1467   return false;
1468 }
1469 
1470 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold
1471 /// to a constant, or if it does but contains a label, return false.  If it
1472 /// constant folds return true and set the boolean result in Result.
1473 bool CodeGenFunction::ConstantFoldsToSimpleInteger(const Expr *Cond,
1474                                                    bool &ResultBool,
1475                                                    bool AllowLabels) {
1476   llvm::APSInt ResultInt;
1477   if (!ConstantFoldsToSimpleInteger(Cond, ResultInt, AllowLabels))
1478     return false;
1479 
1480   ResultBool = ResultInt.getBoolValue();
1481   return true;
1482 }
1483 
1484 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold
1485 /// to a constant, or if it does but contains a label, return false.  If it
1486 /// constant folds return true and set the folded value.
1487 bool CodeGenFunction::ConstantFoldsToSimpleInteger(const Expr *Cond,
1488                                                    llvm::APSInt &ResultInt,
1489                                                    bool AllowLabels) {
1490   // FIXME: Rename and handle conversion of other evaluatable things
1491   // to bool.
1492   Expr::EvalResult Result;
1493   if (!Cond->EvaluateAsInt(Result, getContext()))
1494     return false;  // Not foldable, not integer or not fully evaluatable.
1495 
1496   llvm::APSInt Int = Result.Val.getInt();
1497   if (!AllowLabels && CodeGenFunction::ContainsLabel(Cond))
1498     return false;  // Contains a label.
1499 
1500   ResultInt = Int;
1501   return true;
1502 }
1503 
1504 /// Determine whether the given condition is an instrumentable condition
1505 /// (i.e. no "&&" or "||").
1506 bool CodeGenFunction::isInstrumentedCondition(const Expr *C) {
1507   // Bypass simplistic logical-NOT operator before determining whether the
1508   // condition contains any other logical operator.
1509   if (const UnaryOperator *UnOp = dyn_cast<UnaryOperator>(C->IgnoreParens()))
1510     if (UnOp->getOpcode() == UO_LNot)
1511       C = UnOp->getSubExpr();
1512 
1513   const BinaryOperator *BOp = dyn_cast<BinaryOperator>(C->IgnoreParens());
1514   return (!BOp || !BOp->isLogicalOp());
1515 }
1516 
1517 /// EmitBranchToCounterBlock - Emit a conditional branch to a new block that
1518 /// increments a profile counter based on the semantics of the given logical
1519 /// operator opcode.  This is used to instrument branch condition coverage for
1520 /// logical operators.
1521 void CodeGenFunction::EmitBranchToCounterBlock(
1522     const Expr *Cond, BinaryOperator::Opcode LOp, llvm::BasicBlock *TrueBlock,
1523     llvm::BasicBlock *FalseBlock, uint64_t TrueCount /* = 0 */,
1524     Stmt::Likelihood LH /* =None */, const Expr *CntrIdx /* = nullptr */) {
1525   // If not instrumenting, just emit a branch.
1526   bool InstrumentRegions = CGM.getCodeGenOpts().hasProfileClangInstr();
1527   if (!InstrumentRegions || !isInstrumentedCondition(Cond))
1528     return EmitBranchOnBoolExpr(Cond, TrueBlock, FalseBlock, TrueCount, LH);
1529 
1530   llvm::BasicBlock *ThenBlock = NULL;
1531   llvm::BasicBlock *ElseBlock = NULL;
1532   llvm::BasicBlock *NextBlock = NULL;
1533 
1534   // Create the block we'll use to increment the appropriate counter.
1535   llvm::BasicBlock *CounterIncrBlock = createBasicBlock("lop.rhscnt");
1536 
1537   // Set block pointers according to Logical-AND (BO_LAnd) semantics. This
1538   // means we need to evaluate the condition and increment the counter on TRUE:
1539   //
1540   // if (Cond)
1541   //   goto CounterIncrBlock;
1542   // else
1543   //   goto FalseBlock;
1544   //
1545   // CounterIncrBlock:
1546   //   Counter++;
1547   //   goto TrueBlock;
1548 
1549   if (LOp == BO_LAnd) {
1550     ThenBlock = CounterIncrBlock;
1551     ElseBlock = FalseBlock;
1552     NextBlock = TrueBlock;
1553   }
1554 
1555   // Set block pointers according to Logical-OR (BO_LOr) semantics. This means
1556   // we need to evaluate the condition and increment the counter on FALSE:
1557   //
1558   // if (Cond)
1559   //   goto TrueBlock;
1560   // else
1561   //   goto CounterIncrBlock;
1562   //
1563   // CounterIncrBlock:
1564   //   Counter++;
1565   //   goto FalseBlock;
1566 
1567   else if (LOp == BO_LOr) {
1568     ThenBlock = TrueBlock;
1569     ElseBlock = CounterIncrBlock;
1570     NextBlock = FalseBlock;
1571   } else {
1572     llvm_unreachable("Expected Opcode must be that of a Logical Operator");
1573   }
1574 
1575   // Emit Branch based on condition.
1576   EmitBranchOnBoolExpr(Cond, ThenBlock, ElseBlock, TrueCount, LH);
1577 
1578   // Emit the block containing the counter increment(s).
1579   EmitBlock(CounterIncrBlock);
1580 
1581   // Increment corresponding counter; if index not provided, use Cond as index.
1582   incrementProfileCounter(CntrIdx ? CntrIdx : Cond);
1583 
1584   // Go to the next block.
1585   EmitBranch(NextBlock);
1586 }
1587 
1588 /// EmitBranchOnBoolExpr - Emit a branch on a boolean condition (e.g. for an if
1589 /// statement) to the specified blocks.  Based on the condition, this might try
1590 /// to simplify the codegen of the conditional based on the branch.
1591 /// \param LH The value of the likelihood attribute on the True branch.
1592 void CodeGenFunction::EmitBranchOnBoolExpr(const Expr *Cond,
1593                                            llvm::BasicBlock *TrueBlock,
1594                                            llvm::BasicBlock *FalseBlock,
1595                                            uint64_t TrueCount,
1596                                            Stmt::Likelihood LH) {
1597   Cond = Cond->IgnoreParens();
1598 
1599   if (const BinaryOperator *CondBOp = dyn_cast<BinaryOperator>(Cond)) {
1600 
1601     // Handle X && Y in a condition.
1602     if (CondBOp->getOpcode() == BO_LAnd) {
1603       // If we have "1 && X", simplify the code.  "0 && X" would have constant
1604       // folded if the case was simple enough.
1605       bool ConstantBool = false;
1606       if (ConstantFoldsToSimpleInteger(CondBOp->getLHS(), ConstantBool) &&
1607           ConstantBool) {
1608         // br(1 && X) -> br(X).
1609         incrementProfileCounter(CondBOp);
1610         return EmitBranchToCounterBlock(CondBOp->getRHS(), BO_LAnd, TrueBlock,
1611                                         FalseBlock, TrueCount, LH);
1612       }
1613 
1614       // If we have "X && 1", simplify the code to use an uncond branch.
1615       // "X && 0" would have been constant folded to 0.
1616       if (ConstantFoldsToSimpleInteger(CondBOp->getRHS(), ConstantBool) &&
1617           ConstantBool) {
1618         // br(X && 1) -> br(X).
1619         return EmitBranchToCounterBlock(CondBOp->getLHS(), BO_LAnd, TrueBlock,
1620                                         FalseBlock, TrueCount, LH, CondBOp);
1621       }
1622 
1623       // Emit the LHS as a conditional.  If the LHS conditional is false, we
1624       // want to jump to the FalseBlock.
1625       llvm::BasicBlock *LHSTrue = createBasicBlock("land.lhs.true");
1626       // The counter tells us how often we evaluate RHS, and all of TrueCount
1627       // can be propagated to that branch.
1628       uint64_t RHSCount = getProfileCount(CondBOp->getRHS());
1629 
1630       ConditionalEvaluation eval(*this);
1631       {
1632         ApplyDebugLocation DL(*this, Cond);
1633         // Propagate the likelihood attribute like __builtin_expect
1634         // __builtin_expect(X && Y, 1) -> X and Y are likely
1635         // __builtin_expect(X && Y, 0) -> only Y is unlikely
1636         EmitBranchOnBoolExpr(CondBOp->getLHS(), LHSTrue, FalseBlock, RHSCount,
1637                              LH == Stmt::LH_Unlikely ? Stmt::LH_None : LH);
1638         EmitBlock(LHSTrue);
1639       }
1640 
1641       incrementProfileCounter(CondBOp);
1642       setCurrentProfileCount(getProfileCount(CondBOp->getRHS()));
1643 
1644       // Any temporaries created here are conditional.
1645       eval.begin(*this);
1646       EmitBranchToCounterBlock(CondBOp->getRHS(), BO_LAnd, TrueBlock,
1647                                FalseBlock, TrueCount, LH);
1648       eval.end(*this);
1649 
1650       return;
1651     }
1652 
1653     if (CondBOp->getOpcode() == BO_LOr) {
1654       // If we have "0 || X", simplify the code.  "1 || X" would have constant
1655       // folded if the case was simple enough.
1656       bool ConstantBool = false;
1657       if (ConstantFoldsToSimpleInteger(CondBOp->getLHS(), ConstantBool) &&
1658           !ConstantBool) {
1659         // br(0 || X) -> br(X).
1660         incrementProfileCounter(CondBOp);
1661         return EmitBranchToCounterBlock(CondBOp->getRHS(), BO_LOr, TrueBlock,
1662                                         FalseBlock, TrueCount, LH);
1663       }
1664 
1665       // If we have "X || 0", simplify the code to use an uncond branch.
1666       // "X || 1" would have been constant folded to 1.
1667       if (ConstantFoldsToSimpleInteger(CondBOp->getRHS(), ConstantBool) &&
1668           !ConstantBool) {
1669         // br(X || 0) -> br(X).
1670         return EmitBranchToCounterBlock(CondBOp->getLHS(), BO_LOr, TrueBlock,
1671                                         FalseBlock, TrueCount, LH, CondBOp);
1672       }
1673 
1674       // Emit the LHS as a conditional.  If the LHS conditional is true, we
1675       // want to jump to the TrueBlock.
1676       llvm::BasicBlock *LHSFalse = createBasicBlock("lor.lhs.false");
1677       // We have the count for entry to the RHS and for the whole expression
1678       // being true, so we can divy up True count between the short circuit and
1679       // the RHS.
1680       uint64_t LHSCount =
1681           getCurrentProfileCount() - getProfileCount(CondBOp->getRHS());
1682       uint64_t RHSCount = TrueCount - LHSCount;
1683 
1684       ConditionalEvaluation eval(*this);
1685       {
1686         // Propagate the likelihood attribute like __builtin_expect
1687         // __builtin_expect(X || Y, 1) -> only Y is likely
1688         // __builtin_expect(X || Y, 0) -> both X and Y are unlikely
1689         ApplyDebugLocation DL(*this, Cond);
1690         EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, LHSFalse, LHSCount,
1691                              LH == Stmt::LH_Likely ? Stmt::LH_None : LH);
1692         EmitBlock(LHSFalse);
1693       }
1694 
1695       incrementProfileCounter(CondBOp);
1696       setCurrentProfileCount(getProfileCount(CondBOp->getRHS()));
1697 
1698       // Any temporaries created here are conditional.
1699       eval.begin(*this);
1700       EmitBranchToCounterBlock(CondBOp->getRHS(), BO_LOr, TrueBlock, FalseBlock,
1701                                RHSCount, LH);
1702 
1703       eval.end(*this);
1704 
1705       return;
1706     }
1707   }
1708 
1709   if (const UnaryOperator *CondUOp = dyn_cast<UnaryOperator>(Cond)) {
1710     // br(!x, t, f) -> br(x, f, t)
1711     if (CondUOp->getOpcode() == UO_LNot) {
1712       // Negate the count.
1713       uint64_t FalseCount = getCurrentProfileCount() - TrueCount;
1714       // The values of the enum are chosen to make this negation possible.
1715       LH = static_cast<Stmt::Likelihood>(-LH);
1716       // Negate the condition and swap the destination blocks.
1717       return EmitBranchOnBoolExpr(CondUOp->getSubExpr(), FalseBlock, TrueBlock,
1718                                   FalseCount, LH);
1719     }
1720   }
1721 
1722   if (const ConditionalOperator *CondOp = dyn_cast<ConditionalOperator>(Cond)) {
1723     // br(c ? x : y, t, f) -> br(c, br(x, t, f), br(y, t, f))
1724     llvm::BasicBlock *LHSBlock = createBasicBlock("cond.true");
1725     llvm::BasicBlock *RHSBlock = createBasicBlock("cond.false");
1726 
1727     // The ConditionalOperator itself has no likelihood information for its
1728     // true and false branches. This matches the behavior of __builtin_expect.
1729     ConditionalEvaluation cond(*this);
1730     EmitBranchOnBoolExpr(CondOp->getCond(), LHSBlock, RHSBlock,
1731                          getProfileCount(CondOp), Stmt::LH_None);
1732 
1733     // When computing PGO branch weights, we only know the overall count for
1734     // the true block. This code is essentially doing tail duplication of the
1735     // naive code-gen, introducing new edges for which counts are not
1736     // available. Divide the counts proportionally between the LHS and RHS of
1737     // the conditional operator.
1738     uint64_t LHSScaledTrueCount = 0;
1739     if (TrueCount) {
1740       double LHSRatio =
1741           getProfileCount(CondOp) / (double)getCurrentProfileCount();
1742       LHSScaledTrueCount = TrueCount * LHSRatio;
1743     }
1744 
1745     cond.begin(*this);
1746     EmitBlock(LHSBlock);
1747     incrementProfileCounter(CondOp);
1748     {
1749       ApplyDebugLocation DL(*this, Cond);
1750       EmitBranchOnBoolExpr(CondOp->getLHS(), TrueBlock, FalseBlock,
1751                            LHSScaledTrueCount, LH);
1752     }
1753     cond.end(*this);
1754 
1755     cond.begin(*this);
1756     EmitBlock(RHSBlock);
1757     EmitBranchOnBoolExpr(CondOp->getRHS(), TrueBlock, FalseBlock,
1758                          TrueCount - LHSScaledTrueCount, LH);
1759     cond.end(*this);
1760 
1761     return;
1762   }
1763 
1764   if (const CXXThrowExpr *Throw = dyn_cast<CXXThrowExpr>(Cond)) {
1765     // Conditional operator handling can give us a throw expression as a
1766     // condition for a case like:
1767     //   br(c ? throw x : y, t, f) -> br(c, br(throw x, t, f), br(y, t, f)
1768     // Fold this to:
1769     //   br(c, throw x, br(y, t, f))
1770     EmitCXXThrowExpr(Throw, /*KeepInsertionPoint*/false);
1771     return;
1772   }
1773 
1774   // Emit the code with the fully general case.
1775   llvm::Value *CondV;
1776   {
1777     ApplyDebugLocation DL(*this, Cond);
1778     CondV = EvaluateExprAsBool(Cond);
1779   }
1780 
1781   llvm::MDNode *Weights = nullptr;
1782   llvm::MDNode *Unpredictable = nullptr;
1783 
1784   // If the branch has a condition wrapped by __builtin_unpredictable,
1785   // create metadata that specifies that the branch is unpredictable.
1786   // Don't bother if not optimizing because that metadata would not be used.
1787   auto *Call = dyn_cast<CallExpr>(Cond->IgnoreImpCasts());
1788   if (Call && CGM.getCodeGenOpts().OptimizationLevel != 0) {
1789     auto *FD = dyn_cast_or_null<FunctionDecl>(Call->getCalleeDecl());
1790     if (FD && FD->getBuiltinID() == Builtin::BI__builtin_unpredictable) {
1791       llvm::MDBuilder MDHelper(getLLVMContext());
1792       Unpredictable = MDHelper.createUnpredictable();
1793     }
1794   }
1795 
1796   // If there is a Likelihood knowledge for the cond, lower it.
1797   // Note that if not optimizing this won't emit anything.
1798   llvm::Value *NewCondV = emitCondLikelihoodViaExpectIntrinsic(CondV, LH);
1799   if (CondV != NewCondV)
1800     CondV = NewCondV;
1801   else {
1802     // Otherwise, lower profile counts. Note that we do this even at -O0.
1803     uint64_t CurrentCount = std::max(getCurrentProfileCount(), TrueCount);
1804     Weights = createProfileWeights(TrueCount, CurrentCount - TrueCount);
1805   }
1806 
1807   Builder.CreateCondBr(CondV, TrueBlock, FalseBlock, Weights, Unpredictable);
1808 }
1809 
1810 /// ErrorUnsupported - Print out an error that codegen doesn't support the
1811 /// specified stmt yet.
1812 void CodeGenFunction::ErrorUnsupported(const Stmt *S, const char *Type) {
1813   CGM.ErrorUnsupported(S, Type);
1814 }
1815 
1816 /// emitNonZeroVLAInit - Emit the "zero" initialization of a
1817 /// variable-length array whose elements have a non-zero bit-pattern.
1818 ///
1819 /// \param baseType the inner-most element type of the array
1820 /// \param src - a char* pointing to the bit-pattern for a single
1821 /// base element of the array
1822 /// \param sizeInChars - the total size of the VLA, in chars
1823 static void emitNonZeroVLAInit(CodeGenFunction &CGF, QualType baseType,
1824                                Address dest, Address src,
1825                                llvm::Value *sizeInChars) {
1826   CGBuilderTy &Builder = CGF.Builder;
1827 
1828   CharUnits baseSize = CGF.getContext().getTypeSizeInChars(baseType);
1829   llvm::Value *baseSizeInChars
1830     = llvm::ConstantInt::get(CGF.IntPtrTy, baseSize.getQuantity());
1831 
1832   Address begin =
1833     Builder.CreateElementBitCast(dest, CGF.Int8Ty, "vla.begin");
1834   llvm::Value *end = Builder.CreateInBoundsGEP(
1835       begin.getElementType(), begin.getPointer(), sizeInChars, "vla.end");
1836 
1837   llvm::BasicBlock *originBB = CGF.Builder.GetInsertBlock();
1838   llvm::BasicBlock *loopBB = CGF.createBasicBlock("vla-init.loop");
1839   llvm::BasicBlock *contBB = CGF.createBasicBlock("vla-init.cont");
1840 
1841   // Make a loop over the VLA.  C99 guarantees that the VLA element
1842   // count must be nonzero.
1843   CGF.EmitBlock(loopBB);
1844 
1845   llvm::PHINode *cur = Builder.CreatePHI(begin.getType(), 2, "vla.cur");
1846   cur->addIncoming(begin.getPointer(), originBB);
1847 
1848   CharUnits curAlign =
1849     dest.getAlignment().alignmentOfArrayElement(baseSize);
1850 
1851   // memcpy the individual element bit-pattern.
1852   Builder.CreateMemCpy(Address(cur, curAlign), src, baseSizeInChars,
1853                        /*volatile*/ false);
1854 
1855   // Go to the next element.
1856   llvm::Value *next =
1857     Builder.CreateInBoundsGEP(CGF.Int8Ty, cur, baseSizeInChars, "vla.next");
1858 
1859   // Leave if that's the end of the VLA.
1860   llvm::Value *done = Builder.CreateICmpEQ(next, end, "vla-init.isdone");
1861   Builder.CreateCondBr(done, contBB, loopBB);
1862   cur->addIncoming(next, loopBB);
1863 
1864   CGF.EmitBlock(contBB);
1865 }
1866 
1867 void
1868 CodeGenFunction::EmitNullInitialization(Address DestPtr, QualType Ty) {
1869   // Ignore empty classes in C++.
1870   if (getLangOpts().CPlusPlus) {
1871     if (const RecordType *RT = Ty->getAs<RecordType>()) {
1872       if (cast<CXXRecordDecl>(RT->getDecl())->isEmpty())
1873         return;
1874     }
1875   }
1876 
1877   // Cast the dest ptr to the appropriate i8 pointer type.
1878   if (DestPtr.getElementType() != Int8Ty)
1879     DestPtr = Builder.CreateElementBitCast(DestPtr, Int8Ty);
1880 
1881   // Get size and alignment info for this aggregate.
1882   CharUnits size = getContext().getTypeSizeInChars(Ty);
1883 
1884   llvm::Value *SizeVal;
1885   const VariableArrayType *vla;
1886 
1887   // Don't bother emitting a zero-byte memset.
1888   if (size.isZero()) {
1889     // But note that getTypeInfo returns 0 for a VLA.
1890     if (const VariableArrayType *vlaType =
1891           dyn_cast_or_null<VariableArrayType>(
1892                                           getContext().getAsArrayType(Ty))) {
1893       auto VlaSize = getVLASize(vlaType);
1894       SizeVal = VlaSize.NumElts;
1895       CharUnits eltSize = getContext().getTypeSizeInChars(VlaSize.Type);
1896       if (!eltSize.isOne())
1897         SizeVal = Builder.CreateNUWMul(SizeVal, CGM.getSize(eltSize));
1898       vla = vlaType;
1899     } else {
1900       return;
1901     }
1902   } else {
1903     SizeVal = CGM.getSize(size);
1904     vla = nullptr;
1905   }
1906 
1907   // If the type contains a pointer to data member we can't memset it to zero.
1908   // Instead, create a null constant and copy it to the destination.
1909   // TODO: there are other patterns besides zero that we can usefully memset,
1910   // like -1, which happens to be the pattern used by member-pointers.
1911   if (!CGM.getTypes().isZeroInitializable(Ty)) {
1912     // For a VLA, emit a single element, then splat that over the VLA.
1913     if (vla) Ty = getContext().getBaseElementType(vla);
1914 
1915     llvm::Constant *NullConstant = CGM.EmitNullConstant(Ty);
1916 
1917     llvm::GlobalVariable *NullVariable =
1918       new llvm::GlobalVariable(CGM.getModule(), NullConstant->getType(),
1919                                /*isConstant=*/true,
1920                                llvm::GlobalVariable::PrivateLinkage,
1921                                NullConstant, Twine());
1922     CharUnits NullAlign = DestPtr.getAlignment();
1923     NullVariable->setAlignment(NullAlign.getAsAlign());
1924     Address SrcPtr(Builder.CreateBitCast(NullVariable, Builder.getInt8PtrTy()),
1925                    NullAlign);
1926 
1927     if (vla) return emitNonZeroVLAInit(*this, Ty, DestPtr, SrcPtr, SizeVal);
1928 
1929     // Get and call the appropriate llvm.memcpy overload.
1930     Builder.CreateMemCpy(DestPtr, SrcPtr, SizeVal, false);
1931     return;
1932   }
1933 
1934   // Otherwise, just memset the whole thing to zero.  This is legal
1935   // because in LLVM, all default initializers (other than the ones we just
1936   // handled above) are guaranteed to have a bit pattern of all zeros.
1937   Builder.CreateMemSet(DestPtr, Builder.getInt8(0), SizeVal, false);
1938 }
1939 
1940 llvm::BlockAddress *CodeGenFunction::GetAddrOfLabel(const LabelDecl *L) {
1941   // Make sure that there is a block for the indirect goto.
1942   if (!IndirectBranch)
1943     GetIndirectGotoBlock();
1944 
1945   llvm::BasicBlock *BB = getJumpDestForLabel(L).getBlock();
1946 
1947   // Make sure the indirect branch includes all of the address-taken blocks.
1948   IndirectBranch->addDestination(BB);
1949   return llvm::BlockAddress::get(CurFn, BB);
1950 }
1951 
1952 llvm::BasicBlock *CodeGenFunction::GetIndirectGotoBlock() {
1953   // If we already made the indirect branch for indirect goto, return its block.
1954   if (IndirectBranch) return IndirectBranch->getParent();
1955 
1956   CGBuilderTy TmpBuilder(*this, createBasicBlock("indirectgoto"));
1957 
1958   // Create the PHI node that indirect gotos will add entries to.
1959   llvm::Value *DestVal = TmpBuilder.CreatePHI(Int8PtrTy, 0,
1960                                               "indirect.goto.dest");
1961 
1962   // Create the indirect branch instruction.
1963   IndirectBranch = TmpBuilder.CreateIndirectBr(DestVal);
1964   return IndirectBranch->getParent();
1965 }
1966 
1967 /// Computes the length of an array in elements, as well as the base
1968 /// element type and a properly-typed first element pointer.
1969 llvm::Value *CodeGenFunction::emitArrayLength(const ArrayType *origArrayType,
1970                                               QualType &baseType,
1971                                               Address &addr) {
1972   const ArrayType *arrayType = origArrayType;
1973 
1974   // If it's a VLA, we have to load the stored size.  Note that
1975   // this is the size of the VLA in bytes, not its size in elements.
1976   llvm::Value *numVLAElements = nullptr;
1977   if (isa<VariableArrayType>(arrayType)) {
1978     numVLAElements = getVLASize(cast<VariableArrayType>(arrayType)).NumElts;
1979 
1980     // Walk into all VLAs.  This doesn't require changes to addr,
1981     // which has type T* where T is the first non-VLA element type.
1982     do {
1983       QualType elementType = arrayType->getElementType();
1984       arrayType = getContext().getAsArrayType(elementType);
1985 
1986       // If we only have VLA components, 'addr' requires no adjustment.
1987       if (!arrayType) {
1988         baseType = elementType;
1989         return numVLAElements;
1990       }
1991     } while (isa<VariableArrayType>(arrayType));
1992 
1993     // We get out here only if we find a constant array type
1994     // inside the VLA.
1995   }
1996 
1997   // We have some number of constant-length arrays, so addr should
1998   // have LLVM type [M x [N x [...]]]*.  Build a GEP that walks
1999   // down to the first element of addr.
2000   SmallVector<llvm::Value*, 8> gepIndices;
2001 
2002   // GEP down to the array type.
2003   llvm::ConstantInt *zero = Builder.getInt32(0);
2004   gepIndices.push_back(zero);
2005 
2006   uint64_t countFromCLAs = 1;
2007   QualType eltType;
2008 
2009   llvm::ArrayType *llvmArrayType =
2010     dyn_cast<llvm::ArrayType>(addr.getElementType());
2011   while (llvmArrayType) {
2012     assert(isa<ConstantArrayType>(arrayType));
2013     assert(cast<ConstantArrayType>(arrayType)->getSize().getZExtValue()
2014              == llvmArrayType->getNumElements());
2015 
2016     gepIndices.push_back(zero);
2017     countFromCLAs *= llvmArrayType->getNumElements();
2018     eltType = arrayType->getElementType();
2019 
2020     llvmArrayType =
2021       dyn_cast<llvm::ArrayType>(llvmArrayType->getElementType());
2022     arrayType = getContext().getAsArrayType(arrayType->getElementType());
2023     assert((!llvmArrayType || arrayType) &&
2024            "LLVM and Clang types are out-of-synch");
2025   }
2026 
2027   if (arrayType) {
2028     // From this point onwards, the Clang array type has been emitted
2029     // as some other type (probably a packed struct). Compute the array
2030     // size, and just emit the 'begin' expression as a bitcast.
2031     while (arrayType) {
2032       countFromCLAs *=
2033           cast<ConstantArrayType>(arrayType)->getSize().getZExtValue();
2034       eltType = arrayType->getElementType();
2035       arrayType = getContext().getAsArrayType(eltType);
2036     }
2037 
2038     llvm::Type *baseType = ConvertType(eltType);
2039     addr = Builder.CreateElementBitCast(addr, baseType, "array.begin");
2040   } else {
2041     // Create the actual GEP.
2042     addr = Address(Builder.CreateInBoundsGEP(
2043         addr.getElementType(), addr.getPointer(), gepIndices, "array.begin"),
2044         addr.getAlignment());
2045   }
2046 
2047   baseType = eltType;
2048 
2049   llvm::Value *numElements
2050     = llvm::ConstantInt::get(SizeTy, countFromCLAs);
2051 
2052   // If we had any VLA dimensions, factor them in.
2053   if (numVLAElements)
2054     numElements = Builder.CreateNUWMul(numVLAElements, numElements);
2055 
2056   return numElements;
2057 }
2058 
2059 CodeGenFunction::VlaSizePair CodeGenFunction::getVLASize(QualType type) {
2060   const VariableArrayType *vla = getContext().getAsVariableArrayType(type);
2061   assert(vla && "type was not a variable array type!");
2062   return getVLASize(vla);
2063 }
2064 
2065 CodeGenFunction::VlaSizePair
2066 CodeGenFunction::getVLASize(const VariableArrayType *type) {
2067   // The number of elements so far; always size_t.
2068   llvm::Value *numElements = nullptr;
2069 
2070   QualType elementType;
2071   do {
2072     elementType = type->getElementType();
2073     llvm::Value *vlaSize = VLASizeMap[type->getSizeExpr()];
2074     assert(vlaSize && "no size for VLA!");
2075     assert(vlaSize->getType() == SizeTy);
2076 
2077     if (!numElements) {
2078       numElements = vlaSize;
2079     } else {
2080       // It's undefined behavior if this wraps around, so mark it that way.
2081       // FIXME: Teach -fsanitize=undefined to trap this.
2082       numElements = Builder.CreateNUWMul(numElements, vlaSize);
2083     }
2084   } while ((type = getContext().getAsVariableArrayType(elementType)));
2085 
2086   return { numElements, elementType };
2087 }
2088 
2089 CodeGenFunction::VlaSizePair
2090 CodeGenFunction::getVLAElements1D(QualType type) {
2091   const VariableArrayType *vla = getContext().getAsVariableArrayType(type);
2092   assert(vla && "type was not a variable array type!");
2093   return getVLAElements1D(vla);
2094 }
2095 
2096 CodeGenFunction::VlaSizePair
2097 CodeGenFunction::getVLAElements1D(const VariableArrayType *Vla) {
2098   llvm::Value *VlaSize = VLASizeMap[Vla->getSizeExpr()];
2099   assert(VlaSize && "no size for VLA!");
2100   assert(VlaSize->getType() == SizeTy);
2101   return { VlaSize, Vla->getElementType() };
2102 }
2103 
2104 void CodeGenFunction::EmitVariablyModifiedType(QualType type) {
2105   assert(type->isVariablyModifiedType() &&
2106          "Must pass variably modified type to EmitVLASizes!");
2107 
2108   EnsureInsertPoint();
2109 
2110   // We're going to walk down into the type and look for VLA
2111   // expressions.
2112   do {
2113     assert(type->isVariablyModifiedType());
2114 
2115     const Type *ty = type.getTypePtr();
2116     switch (ty->getTypeClass()) {
2117 
2118 #define TYPE(Class, Base)
2119 #define ABSTRACT_TYPE(Class, Base)
2120 #define NON_CANONICAL_TYPE(Class, Base)
2121 #define DEPENDENT_TYPE(Class, Base) case Type::Class:
2122 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base)
2123 #include "clang/AST/TypeNodes.inc"
2124       llvm_unreachable("unexpected dependent type!");
2125 
2126     // These types are never variably-modified.
2127     case Type::Builtin:
2128     case Type::Complex:
2129     case Type::Vector:
2130     case Type::ExtVector:
2131     case Type::ConstantMatrix:
2132     case Type::Record:
2133     case Type::Enum:
2134     case Type::Elaborated:
2135     case Type::TemplateSpecialization:
2136     case Type::ObjCTypeParam:
2137     case Type::ObjCObject:
2138     case Type::ObjCInterface:
2139     case Type::ObjCObjectPointer:
2140     case Type::ExtInt:
2141       llvm_unreachable("type class is never variably-modified!");
2142 
2143     case Type::Adjusted:
2144       type = cast<AdjustedType>(ty)->getAdjustedType();
2145       break;
2146 
2147     case Type::Decayed:
2148       type = cast<DecayedType>(ty)->getPointeeType();
2149       break;
2150 
2151     case Type::Pointer:
2152       type = cast<PointerType>(ty)->getPointeeType();
2153       break;
2154 
2155     case Type::BlockPointer:
2156       type = cast<BlockPointerType>(ty)->getPointeeType();
2157       break;
2158 
2159     case Type::LValueReference:
2160     case Type::RValueReference:
2161       type = cast<ReferenceType>(ty)->getPointeeType();
2162       break;
2163 
2164     case Type::MemberPointer:
2165       type = cast<MemberPointerType>(ty)->getPointeeType();
2166       break;
2167 
2168     case Type::ConstantArray:
2169     case Type::IncompleteArray:
2170       // Losing element qualification here is fine.
2171       type = cast<ArrayType>(ty)->getElementType();
2172       break;
2173 
2174     case Type::VariableArray: {
2175       // Losing element qualification here is fine.
2176       const VariableArrayType *vat = cast<VariableArrayType>(ty);
2177 
2178       // Unknown size indication requires no size computation.
2179       // Otherwise, evaluate and record it.
2180       if (const Expr *size = vat->getSizeExpr()) {
2181         // It's possible that we might have emitted this already,
2182         // e.g. with a typedef and a pointer to it.
2183         llvm::Value *&entry = VLASizeMap[size];
2184         if (!entry) {
2185           llvm::Value *Size = EmitScalarExpr(size);
2186 
2187           // C11 6.7.6.2p5:
2188           //   If the size is an expression that is not an integer constant
2189           //   expression [...] each time it is evaluated it shall have a value
2190           //   greater than zero.
2191           if (SanOpts.has(SanitizerKind::VLABound) &&
2192               size->getType()->isSignedIntegerType()) {
2193             SanitizerScope SanScope(this);
2194             llvm::Value *Zero = llvm::Constant::getNullValue(Size->getType());
2195             llvm::Constant *StaticArgs[] = {
2196                 EmitCheckSourceLocation(size->getBeginLoc()),
2197                 EmitCheckTypeDescriptor(size->getType())};
2198             EmitCheck(std::make_pair(Builder.CreateICmpSGT(Size, Zero),
2199                                      SanitizerKind::VLABound),
2200                       SanitizerHandler::VLABoundNotPositive, StaticArgs, Size);
2201           }
2202 
2203           // Always zexting here would be wrong if it weren't
2204           // undefined behavior to have a negative bound.
2205           entry = Builder.CreateIntCast(Size, SizeTy, /*signed*/ false);
2206         }
2207       }
2208       type = vat->getElementType();
2209       break;
2210     }
2211 
2212     case Type::FunctionProto:
2213     case Type::FunctionNoProto:
2214       type = cast<FunctionType>(ty)->getReturnType();
2215       break;
2216 
2217     case Type::Paren:
2218     case Type::TypeOf:
2219     case Type::UnaryTransform:
2220     case Type::Attributed:
2221     case Type::SubstTemplateTypeParm:
2222     case Type::MacroQualified:
2223       // Keep walking after single level desugaring.
2224       type = type.getSingleStepDesugaredType(getContext());
2225       break;
2226 
2227     case Type::Typedef:
2228     case Type::Decltype:
2229     case Type::Auto:
2230     case Type::DeducedTemplateSpecialization:
2231       // Stop walking: nothing to do.
2232       return;
2233 
2234     case Type::TypeOfExpr:
2235       // Stop walking: emit typeof expression.
2236       EmitIgnoredExpr(cast<TypeOfExprType>(ty)->getUnderlyingExpr());
2237       return;
2238 
2239     case Type::Atomic:
2240       type = cast<AtomicType>(ty)->getValueType();
2241       break;
2242 
2243     case Type::Pipe:
2244       type = cast<PipeType>(ty)->getElementType();
2245       break;
2246     }
2247   } while (type->isVariablyModifiedType());
2248 }
2249 
2250 Address CodeGenFunction::EmitVAListRef(const Expr* E) {
2251   if (getContext().getBuiltinVaListType()->isArrayType())
2252     return EmitPointerWithAlignment(E);
2253   return EmitLValue(E).getAddress(*this);
2254 }
2255 
2256 Address CodeGenFunction::EmitMSVAListRef(const Expr *E) {
2257   return EmitLValue(E).getAddress(*this);
2258 }
2259 
2260 void CodeGenFunction::EmitDeclRefExprDbgValue(const DeclRefExpr *E,
2261                                               const APValue &Init) {
2262   assert(Init.hasValue() && "Invalid DeclRefExpr initializer!");
2263   if (CGDebugInfo *Dbg = getDebugInfo())
2264     if (CGM.getCodeGenOpts().hasReducedDebugInfo())
2265       Dbg->EmitGlobalVariable(E->getDecl(), Init);
2266 }
2267 
2268 CodeGenFunction::PeepholeProtection
2269 CodeGenFunction::protectFromPeepholes(RValue rvalue) {
2270   // At the moment, the only aggressive peephole we do in IR gen
2271   // is trunc(zext) folding, but if we add more, we can easily
2272   // extend this protection.
2273 
2274   if (!rvalue.isScalar()) return PeepholeProtection();
2275   llvm::Value *value = rvalue.getScalarVal();
2276   if (!isa<llvm::ZExtInst>(value)) return PeepholeProtection();
2277 
2278   // Just make an extra bitcast.
2279   assert(HaveInsertPoint());
2280   llvm::Instruction *inst = new llvm::BitCastInst(value, value->getType(), "",
2281                                                   Builder.GetInsertBlock());
2282 
2283   PeepholeProtection protection;
2284   protection.Inst = inst;
2285   return protection;
2286 }
2287 
2288 void CodeGenFunction::unprotectFromPeepholes(PeepholeProtection protection) {
2289   if (!protection.Inst) return;
2290 
2291   // In theory, we could try to duplicate the peepholes now, but whatever.
2292   protection.Inst->eraseFromParent();
2293 }
2294 
2295 void CodeGenFunction::emitAlignmentAssumption(llvm::Value *PtrValue,
2296                                               QualType Ty, SourceLocation Loc,
2297                                               SourceLocation AssumptionLoc,
2298                                               llvm::Value *Alignment,
2299                                               llvm::Value *OffsetValue) {
2300   if (Alignment->getType() != IntPtrTy)
2301     Alignment =
2302         Builder.CreateIntCast(Alignment, IntPtrTy, false, "casted.align");
2303   if (OffsetValue && OffsetValue->getType() != IntPtrTy)
2304     OffsetValue =
2305         Builder.CreateIntCast(OffsetValue, IntPtrTy, true, "casted.offset");
2306   llvm::Value *TheCheck = nullptr;
2307   if (SanOpts.has(SanitizerKind::Alignment)) {
2308     llvm::Value *PtrIntValue =
2309         Builder.CreatePtrToInt(PtrValue, IntPtrTy, "ptrint");
2310 
2311     if (OffsetValue) {
2312       bool IsOffsetZero = false;
2313       if (const auto *CI = dyn_cast<llvm::ConstantInt>(OffsetValue))
2314         IsOffsetZero = CI->isZero();
2315 
2316       if (!IsOffsetZero)
2317         PtrIntValue = Builder.CreateSub(PtrIntValue, OffsetValue, "offsetptr");
2318     }
2319 
2320     llvm::Value *Zero = llvm::ConstantInt::get(IntPtrTy, 0);
2321     llvm::Value *Mask =
2322         Builder.CreateSub(Alignment, llvm::ConstantInt::get(IntPtrTy, 1));
2323     llvm::Value *MaskedPtr = Builder.CreateAnd(PtrIntValue, Mask, "maskedptr");
2324     TheCheck = Builder.CreateICmpEQ(MaskedPtr, Zero, "maskcond");
2325   }
2326   llvm::Instruction *Assumption = Builder.CreateAlignmentAssumption(
2327       CGM.getDataLayout(), PtrValue, Alignment, OffsetValue);
2328 
2329   if (!SanOpts.has(SanitizerKind::Alignment))
2330     return;
2331   emitAlignmentAssumptionCheck(PtrValue, Ty, Loc, AssumptionLoc, Alignment,
2332                                OffsetValue, TheCheck, Assumption);
2333 }
2334 
2335 void CodeGenFunction::emitAlignmentAssumption(llvm::Value *PtrValue,
2336                                               const Expr *E,
2337                                               SourceLocation AssumptionLoc,
2338                                               llvm::Value *Alignment,
2339                                               llvm::Value *OffsetValue) {
2340   if (auto *CE = dyn_cast<CastExpr>(E))
2341     E = CE->getSubExprAsWritten();
2342   QualType Ty = E->getType();
2343   SourceLocation Loc = E->getExprLoc();
2344 
2345   emitAlignmentAssumption(PtrValue, Ty, Loc, AssumptionLoc, Alignment,
2346                           OffsetValue);
2347 }
2348 
2349 llvm::Value *CodeGenFunction::EmitAnnotationCall(llvm::Function *AnnotationFn,
2350                                                  llvm::Value *AnnotatedVal,
2351                                                  StringRef AnnotationStr,
2352                                                  SourceLocation Location,
2353                                                  const AnnotateAttr *Attr) {
2354   SmallVector<llvm::Value *, 5> Args = {
2355       AnnotatedVal,
2356       Builder.CreateBitCast(CGM.EmitAnnotationString(AnnotationStr), Int8PtrTy),
2357       Builder.CreateBitCast(CGM.EmitAnnotationUnit(Location), Int8PtrTy),
2358       CGM.EmitAnnotationLineNo(Location),
2359   };
2360   if (Attr)
2361     Args.push_back(CGM.EmitAnnotationArgs(Attr));
2362   return Builder.CreateCall(AnnotationFn, Args);
2363 }
2364 
2365 void CodeGenFunction::EmitVarAnnotations(const VarDecl *D, llvm::Value *V) {
2366   assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute");
2367   // FIXME We create a new bitcast for every annotation because that's what
2368   // llvm-gcc was doing.
2369   for (const auto *I : D->specific_attrs<AnnotateAttr>())
2370     EmitAnnotationCall(CGM.getIntrinsic(llvm::Intrinsic::var_annotation),
2371                        Builder.CreateBitCast(V, CGM.Int8PtrTy, V->getName()),
2372                        I->getAnnotation(), D->getLocation(), I);
2373 }
2374 
2375 Address CodeGenFunction::EmitFieldAnnotations(const FieldDecl *D,
2376                                               Address Addr) {
2377   assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute");
2378   llvm::Value *V = Addr.getPointer();
2379   llvm::Type *VTy = V->getType();
2380   llvm::Function *F = CGM.getIntrinsic(llvm::Intrinsic::ptr_annotation,
2381                                     CGM.Int8PtrTy);
2382 
2383   for (const auto *I : D->specific_attrs<AnnotateAttr>()) {
2384     // FIXME Always emit the cast inst so we can differentiate between
2385     // annotation on the first field of a struct and annotation on the struct
2386     // itself.
2387     if (VTy != CGM.Int8PtrTy)
2388       V = Builder.CreateBitCast(V, CGM.Int8PtrTy);
2389     V = EmitAnnotationCall(F, V, I->getAnnotation(), D->getLocation(), I);
2390     V = Builder.CreateBitCast(V, VTy);
2391   }
2392 
2393   return Address(V, Addr.getAlignment());
2394 }
2395 
2396 CodeGenFunction::CGCapturedStmtInfo::~CGCapturedStmtInfo() { }
2397 
2398 CodeGenFunction::SanitizerScope::SanitizerScope(CodeGenFunction *CGF)
2399     : CGF(CGF) {
2400   assert(!CGF->IsSanitizerScope);
2401   CGF->IsSanitizerScope = true;
2402 }
2403 
2404 CodeGenFunction::SanitizerScope::~SanitizerScope() {
2405   CGF->IsSanitizerScope = false;
2406 }
2407 
2408 void CodeGenFunction::InsertHelper(llvm::Instruction *I,
2409                                    const llvm::Twine &Name,
2410                                    llvm::BasicBlock *BB,
2411                                    llvm::BasicBlock::iterator InsertPt) const {
2412   LoopStack.InsertHelper(I);
2413   if (IsSanitizerScope)
2414     CGM.getSanitizerMetadata()->disableSanitizerForInstruction(I);
2415 }
2416 
2417 void CGBuilderInserter::InsertHelper(
2418     llvm::Instruction *I, const llvm::Twine &Name, llvm::BasicBlock *BB,
2419     llvm::BasicBlock::iterator InsertPt) const {
2420   llvm::IRBuilderDefaultInserter::InsertHelper(I, Name, BB, InsertPt);
2421   if (CGF)
2422     CGF->InsertHelper(I, Name, BB, InsertPt);
2423 }
2424 
2425 // Emits an error if we don't have a valid set of target features for the
2426 // called function.
2427 void CodeGenFunction::checkTargetFeatures(const CallExpr *E,
2428                                           const FunctionDecl *TargetDecl) {
2429   return checkTargetFeatures(E->getBeginLoc(), TargetDecl);
2430 }
2431 
2432 // Emits an error if we don't have a valid set of target features for the
2433 // called function.
2434 void CodeGenFunction::checkTargetFeatures(SourceLocation Loc,
2435                                           const FunctionDecl *TargetDecl) {
2436   // Early exit if this is an indirect call.
2437   if (!TargetDecl)
2438     return;
2439 
2440   // Get the current enclosing function if it exists. If it doesn't
2441   // we can't check the target features anyhow.
2442   const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(CurCodeDecl);
2443   if (!FD)
2444     return;
2445 
2446   // Grab the required features for the call. For a builtin this is listed in
2447   // the td file with the default cpu, for an always_inline function this is any
2448   // listed cpu and any listed features.
2449   unsigned BuiltinID = TargetDecl->getBuiltinID();
2450   std::string MissingFeature;
2451   llvm::StringMap<bool> CallerFeatureMap;
2452   CGM.getContext().getFunctionFeatureMap(CallerFeatureMap, FD);
2453   if (BuiltinID) {
2454     StringRef FeatureList(
2455         CGM.getContext().BuiltinInfo.getRequiredFeatures(BuiltinID));
2456     // Return if the builtin doesn't have any required features.
2457     if (FeatureList.empty())
2458       return;
2459     assert(FeatureList.find(' ') == StringRef::npos &&
2460            "Space in feature list");
2461     TargetFeatures TF(CallerFeatureMap);
2462     if (!TF.hasRequiredFeatures(FeatureList))
2463       CGM.getDiags().Report(Loc, diag::err_builtin_needs_feature)
2464           << TargetDecl->getDeclName() << FeatureList;
2465   } else if (!TargetDecl->isMultiVersion() &&
2466              TargetDecl->hasAttr<TargetAttr>()) {
2467     // Get the required features for the callee.
2468 
2469     const TargetAttr *TD = TargetDecl->getAttr<TargetAttr>();
2470     ParsedTargetAttr ParsedAttr =
2471         CGM.getContext().filterFunctionTargetAttrs(TD);
2472 
2473     SmallVector<StringRef, 1> ReqFeatures;
2474     llvm::StringMap<bool> CalleeFeatureMap;
2475     CGM.getContext().getFunctionFeatureMap(CalleeFeatureMap, TargetDecl);
2476 
2477     for (const auto &F : ParsedAttr.Features) {
2478       if (F[0] == '+' && CalleeFeatureMap.lookup(F.substr(1)))
2479         ReqFeatures.push_back(StringRef(F).substr(1));
2480     }
2481 
2482     for (const auto &F : CalleeFeatureMap) {
2483       // Only positive features are "required".
2484       if (F.getValue())
2485         ReqFeatures.push_back(F.getKey());
2486     }
2487     if (!llvm::all_of(ReqFeatures, [&](StringRef Feature) {
2488       if (!CallerFeatureMap.lookup(Feature)) {
2489         MissingFeature = Feature.str();
2490         return false;
2491       }
2492       return true;
2493     }))
2494       CGM.getDiags().Report(Loc, diag::err_function_needs_feature)
2495           << FD->getDeclName() << TargetDecl->getDeclName() << MissingFeature;
2496   }
2497 }
2498 
2499 void CodeGenFunction::EmitSanitizerStatReport(llvm::SanitizerStatKind SSK) {
2500   if (!CGM.getCodeGenOpts().SanitizeStats)
2501     return;
2502 
2503   llvm::IRBuilder<> IRB(Builder.GetInsertBlock(), Builder.GetInsertPoint());
2504   IRB.SetCurrentDebugLocation(Builder.getCurrentDebugLocation());
2505   CGM.getSanStats().create(IRB, SSK);
2506 }
2507 
2508 llvm::Value *
2509 CodeGenFunction::FormResolverCondition(const MultiVersionResolverOption &RO) {
2510   llvm::Value *Condition = nullptr;
2511 
2512   if (!RO.Conditions.Architecture.empty())
2513     Condition = EmitX86CpuIs(RO.Conditions.Architecture);
2514 
2515   if (!RO.Conditions.Features.empty()) {
2516     llvm::Value *FeatureCond = EmitX86CpuSupports(RO.Conditions.Features);
2517     Condition =
2518         Condition ? Builder.CreateAnd(Condition, FeatureCond) : FeatureCond;
2519   }
2520   return Condition;
2521 }
2522 
2523 static void CreateMultiVersionResolverReturn(CodeGenModule &CGM,
2524                                              llvm::Function *Resolver,
2525                                              CGBuilderTy &Builder,
2526                                              llvm::Function *FuncToReturn,
2527                                              bool SupportsIFunc) {
2528   if (SupportsIFunc) {
2529     Builder.CreateRet(FuncToReturn);
2530     return;
2531   }
2532 
2533   llvm::SmallVector<llvm::Value *, 10> Args;
2534   llvm::for_each(Resolver->args(),
2535                  [&](llvm::Argument &Arg) { Args.push_back(&Arg); });
2536 
2537   llvm::CallInst *Result = Builder.CreateCall(FuncToReturn, Args);
2538   Result->setTailCallKind(llvm::CallInst::TCK_MustTail);
2539 
2540   if (Resolver->getReturnType()->isVoidTy())
2541     Builder.CreateRetVoid();
2542   else
2543     Builder.CreateRet(Result);
2544 }
2545 
2546 void CodeGenFunction::EmitMultiVersionResolver(
2547     llvm::Function *Resolver, ArrayRef<MultiVersionResolverOption> Options) {
2548   assert(getContext().getTargetInfo().getTriple().isX86() &&
2549          "Only implemented for x86 targets");
2550 
2551   bool SupportsIFunc = getContext().getTargetInfo().supportsIFunc();
2552 
2553   // Main function's basic block.
2554   llvm::BasicBlock *CurBlock = createBasicBlock("resolver_entry", Resolver);
2555   Builder.SetInsertPoint(CurBlock);
2556   EmitX86CpuInit();
2557 
2558   for (const MultiVersionResolverOption &RO : Options) {
2559     Builder.SetInsertPoint(CurBlock);
2560     llvm::Value *Condition = FormResolverCondition(RO);
2561 
2562     // The 'default' or 'generic' case.
2563     if (!Condition) {
2564       assert(&RO == Options.end() - 1 &&
2565              "Default or Generic case must be last");
2566       CreateMultiVersionResolverReturn(CGM, Resolver, Builder, RO.Function,
2567                                        SupportsIFunc);
2568       return;
2569     }
2570 
2571     llvm::BasicBlock *RetBlock = createBasicBlock("resolver_return", Resolver);
2572     CGBuilderTy RetBuilder(*this, RetBlock);
2573     CreateMultiVersionResolverReturn(CGM, Resolver, RetBuilder, RO.Function,
2574                                      SupportsIFunc);
2575     CurBlock = createBasicBlock("resolver_else", Resolver);
2576     Builder.CreateCondBr(Condition, RetBlock, CurBlock);
2577   }
2578 
2579   // If no generic/default, emit an unreachable.
2580   Builder.SetInsertPoint(CurBlock);
2581   llvm::CallInst *TrapCall = EmitTrapCall(llvm::Intrinsic::trap);
2582   TrapCall->setDoesNotReturn();
2583   TrapCall->setDoesNotThrow();
2584   Builder.CreateUnreachable();
2585   Builder.ClearInsertionPoint();
2586 }
2587 
2588 // Loc - where the diagnostic will point, where in the source code this
2589 //  alignment has failed.
2590 // SecondaryLoc - if present (will be present if sufficiently different from
2591 //  Loc), the diagnostic will additionally point a "Note:" to this location.
2592 //  It should be the location where the __attribute__((assume_aligned))
2593 //  was written e.g.
2594 void CodeGenFunction::emitAlignmentAssumptionCheck(
2595     llvm::Value *Ptr, QualType Ty, SourceLocation Loc,
2596     SourceLocation SecondaryLoc, llvm::Value *Alignment,
2597     llvm::Value *OffsetValue, llvm::Value *TheCheck,
2598     llvm::Instruction *Assumption) {
2599   assert(Assumption && isa<llvm::CallInst>(Assumption) &&
2600          cast<llvm::CallInst>(Assumption)->getCalledOperand() ==
2601              llvm::Intrinsic::getDeclaration(
2602                  Builder.GetInsertBlock()->getParent()->getParent(),
2603                  llvm::Intrinsic::assume) &&
2604          "Assumption should be a call to llvm.assume().");
2605   assert(&(Builder.GetInsertBlock()->back()) == Assumption &&
2606          "Assumption should be the last instruction of the basic block, "
2607          "since the basic block is still being generated.");
2608 
2609   if (!SanOpts.has(SanitizerKind::Alignment))
2610     return;
2611 
2612   // Don't check pointers to volatile data. The behavior here is implementation-
2613   // defined.
2614   if (Ty->getPointeeType().isVolatileQualified())
2615     return;
2616 
2617   // We need to temorairly remove the assumption so we can insert the
2618   // sanitizer check before it, else the check will be dropped by optimizations.
2619   Assumption->removeFromParent();
2620 
2621   {
2622     SanitizerScope SanScope(this);
2623 
2624     if (!OffsetValue)
2625       OffsetValue = Builder.getInt1(0); // no offset.
2626 
2627     llvm::Constant *StaticData[] = {EmitCheckSourceLocation(Loc),
2628                                     EmitCheckSourceLocation(SecondaryLoc),
2629                                     EmitCheckTypeDescriptor(Ty)};
2630     llvm::Value *DynamicData[] = {EmitCheckValue(Ptr),
2631                                   EmitCheckValue(Alignment),
2632                                   EmitCheckValue(OffsetValue)};
2633     EmitCheck({std::make_pair(TheCheck, SanitizerKind::Alignment)},
2634               SanitizerHandler::AlignmentAssumption, StaticData, DynamicData);
2635   }
2636 
2637   // We are now in the (new, empty) "cont" basic block.
2638   // Reintroduce the assumption.
2639   Builder.Insert(Assumption);
2640   // FIXME: Assumption still has it's original basic block as it's Parent.
2641 }
2642 
2643 llvm::DebugLoc CodeGenFunction::SourceLocToDebugLoc(SourceLocation Location) {
2644   if (CGDebugInfo *DI = getDebugInfo())
2645     return DI->SourceLocToDebugLoc(Location);
2646 
2647   return llvm::DebugLoc();
2648 }
2649 
2650 llvm::Value *
2651 CodeGenFunction::emitCondLikelihoodViaExpectIntrinsic(llvm::Value *Cond,
2652                                                       Stmt::Likelihood LH) {
2653   switch (LH) {
2654   case Stmt::LH_None:
2655     return Cond;
2656   case Stmt::LH_Likely:
2657   case Stmt::LH_Unlikely:
2658     // Don't generate llvm.expect on -O0 as the backend won't use it for
2659     // anything.
2660     if (CGM.getCodeGenOpts().OptimizationLevel == 0)
2661       return Cond;
2662     llvm::Type *CondTy = Cond->getType();
2663     assert(CondTy->isIntegerTy(1) && "expecting condition to be a boolean");
2664     llvm::Function *FnExpect =
2665         CGM.getIntrinsic(llvm::Intrinsic::expect, CondTy);
2666     llvm::Value *ExpectedValueOfCond =
2667         llvm::ConstantInt::getBool(CondTy, LH == Stmt::LH_Likely);
2668     return Builder.CreateCall(FnExpect, {Cond, ExpectedValueOfCond},
2669                               Cond->getName() + ".expval");
2670   }
2671   llvm_unreachable("Unknown Likelihood");
2672 }
2673