1 //===--- CodeGenFunction.cpp - Emit LLVM Code from ASTs for a Function ----===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This coordinates the per-function state used while generating code. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "CodeGenFunction.h" 14 #include "CGBlocks.h" 15 #include "CGCUDARuntime.h" 16 #include "CGCXXABI.h" 17 #include "CGCleanup.h" 18 #include "CGDebugInfo.h" 19 #include "CGOpenMPRuntime.h" 20 #include "CodeGenModule.h" 21 #include "CodeGenPGO.h" 22 #include "TargetInfo.h" 23 #include "clang/AST/ASTContext.h" 24 #include "clang/AST/ASTLambda.h" 25 #include "clang/AST/Attr.h" 26 #include "clang/AST/Decl.h" 27 #include "clang/AST/DeclCXX.h" 28 #include "clang/AST/Expr.h" 29 #include "clang/AST/StmtCXX.h" 30 #include "clang/AST/StmtObjC.h" 31 #include "clang/Basic/Builtins.h" 32 #include "clang/Basic/CodeGenOptions.h" 33 #include "clang/Basic/TargetInfo.h" 34 #include "clang/CodeGen/CGFunctionInfo.h" 35 #include "clang/Frontend/FrontendDiagnostic.h" 36 #include "llvm/ADT/ArrayRef.h" 37 #include "llvm/Frontend/OpenMP/OMPIRBuilder.h" 38 #include "llvm/IR/DataLayout.h" 39 #include "llvm/IR/Dominators.h" 40 #include "llvm/IR/FPEnv.h" 41 #include "llvm/IR/IntrinsicInst.h" 42 #include "llvm/IR/Intrinsics.h" 43 #include "llvm/IR/MDBuilder.h" 44 #include "llvm/IR/Operator.h" 45 #include "llvm/Support/CRC.h" 46 #include "llvm/Transforms/Scalar/LowerExpectIntrinsic.h" 47 #include "llvm/Transforms/Utils/PromoteMemToReg.h" 48 using namespace clang; 49 using namespace CodeGen; 50 51 /// shouldEmitLifetimeMarkers - Decide whether we need emit the life-time 52 /// markers. 53 static bool shouldEmitLifetimeMarkers(const CodeGenOptions &CGOpts, 54 const LangOptions &LangOpts) { 55 if (CGOpts.DisableLifetimeMarkers) 56 return false; 57 58 // Sanitizers may use markers. 59 if (CGOpts.SanitizeAddressUseAfterScope || 60 LangOpts.Sanitize.has(SanitizerKind::HWAddress) || 61 LangOpts.Sanitize.has(SanitizerKind::Memory)) 62 return true; 63 64 // For now, only in optimized builds. 65 return CGOpts.OptimizationLevel != 0; 66 } 67 68 CodeGenFunction::CodeGenFunction(CodeGenModule &cgm, bool suppressNewContext) 69 : CodeGenTypeCache(cgm), CGM(cgm), Target(cgm.getTarget()), 70 Builder(cgm, cgm.getModule().getContext(), llvm::ConstantFolder(), 71 CGBuilderInserterTy(this)), 72 SanOpts(CGM.getLangOpts().Sanitize), CurFPFeatures(CGM.getLangOpts()), 73 DebugInfo(CGM.getModuleDebugInfo()), PGO(cgm), 74 ShouldEmitLifetimeMarkers( 75 shouldEmitLifetimeMarkers(CGM.getCodeGenOpts(), CGM.getLangOpts())) { 76 if (!suppressNewContext) 77 CGM.getCXXABI().getMangleContext().startNewFunction(); 78 79 SetFastMathFlags(CurFPFeatures); 80 SetFPModel(); 81 } 82 83 CodeGenFunction::~CodeGenFunction() { 84 assert(LifetimeExtendedCleanupStack.empty() && "failed to emit a cleanup"); 85 86 if (getLangOpts().OpenMP && CurFn) 87 CGM.getOpenMPRuntime().functionFinished(*this); 88 89 // If we have an OpenMPIRBuilder we want to finalize functions (incl. 90 // outlining etc) at some point. Doing it once the function codegen is done 91 // seems to be a reasonable spot. We do it here, as opposed to the deletion 92 // time of the CodeGenModule, because we have to ensure the IR has not yet 93 // been "emitted" to the outside, thus, modifications are still sensible. 94 if (CGM.getLangOpts().OpenMPIRBuilder && CurFn) 95 CGM.getOpenMPRuntime().getOMPBuilder().finalize(CurFn); 96 } 97 98 // Map the LangOption for exception behavior into 99 // the corresponding enum in the IR. 100 llvm::fp::ExceptionBehavior 101 clang::ToConstrainedExceptMD(LangOptions::FPExceptionModeKind Kind) { 102 103 switch (Kind) { 104 case LangOptions::FPE_Ignore: return llvm::fp::ebIgnore; 105 case LangOptions::FPE_MayTrap: return llvm::fp::ebMayTrap; 106 case LangOptions::FPE_Strict: return llvm::fp::ebStrict; 107 } 108 llvm_unreachable("Unsupported FP Exception Behavior"); 109 } 110 111 void CodeGenFunction::SetFPModel() { 112 llvm::RoundingMode RM = getLangOpts().getFPRoundingMode(); 113 auto fpExceptionBehavior = ToConstrainedExceptMD( 114 getLangOpts().getFPExceptionMode()); 115 116 Builder.setDefaultConstrainedRounding(RM); 117 Builder.setDefaultConstrainedExcept(fpExceptionBehavior); 118 Builder.setIsFPConstrained(fpExceptionBehavior != llvm::fp::ebIgnore || 119 RM != llvm::RoundingMode::NearestTiesToEven); 120 } 121 122 void CodeGenFunction::SetFastMathFlags(FPOptions FPFeatures) { 123 llvm::FastMathFlags FMF; 124 FMF.setAllowReassoc(FPFeatures.getAllowFPReassociate()); 125 FMF.setNoNaNs(FPFeatures.getNoHonorNaNs()); 126 FMF.setNoInfs(FPFeatures.getNoHonorInfs()); 127 FMF.setNoSignedZeros(FPFeatures.getNoSignedZero()); 128 FMF.setAllowReciprocal(FPFeatures.getAllowReciprocal()); 129 FMF.setApproxFunc(FPFeatures.getAllowApproxFunc()); 130 FMF.setAllowContract(FPFeatures.allowFPContractAcrossStatement()); 131 Builder.setFastMathFlags(FMF); 132 } 133 134 CodeGenFunction::CGFPOptionsRAII::CGFPOptionsRAII(CodeGenFunction &CGF, 135 const Expr *E) 136 : CGF(CGF) { 137 ConstructorHelper(E->getFPFeaturesInEffect(CGF.getLangOpts())); 138 } 139 140 CodeGenFunction::CGFPOptionsRAII::CGFPOptionsRAII(CodeGenFunction &CGF, 141 FPOptions FPFeatures) 142 : CGF(CGF) { 143 ConstructorHelper(FPFeatures); 144 } 145 146 void CodeGenFunction::CGFPOptionsRAII::ConstructorHelper(FPOptions FPFeatures) { 147 OldFPFeatures = CGF.CurFPFeatures; 148 CGF.CurFPFeatures = FPFeatures; 149 150 OldExcept = CGF.Builder.getDefaultConstrainedExcept(); 151 OldRounding = CGF.Builder.getDefaultConstrainedRounding(); 152 153 if (OldFPFeatures == FPFeatures) 154 return; 155 156 FMFGuard.emplace(CGF.Builder); 157 158 llvm::RoundingMode NewRoundingBehavior = 159 static_cast<llvm::RoundingMode>(FPFeatures.getRoundingMode()); 160 CGF.Builder.setDefaultConstrainedRounding(NewRoundingBehavior); 161 auto NewExceptionBehavior = 162 ToConstrainedExceptMD(static_cast<LangOptions::FPExceptionModeKind>( 163 FPFeatures.getFPExceptionMode())); 164 CGF.Builder.setDefaultConstrainedExcept(NewExceptionBehavior); 165 166 CGF.SetFastMathFlags(FPFeatures); 167 168 assert((CGF.CurFuncDecl == nullptr || CGF.Builder.getIsFPConstrained() || 169 isa<CXXConstructorDecl>(CGF.CurFuncDecl) || 170 isa<CXXDestructorDecl>(CGF.CurFuncDecl) || 171 (NewExceptionBehavior == llvm::fp::ebIgnore && 172 NewRoundingBehavior == llvm::RoundingMode::NearestTiesToEven)) && 173 "FPConstrained should be enabled on entire function"); 174 175 auto mergeFnAttrValue = [&](StringRef Name, bool Value) { 176 auto OldValue = 177 CGF.CurFn->getFnAttribute(Name).getValueAsString() == "true"; 178 auto NewValue = OldValue & Value; 179 if (OldValue != NewValue) 180 CGF.CurFn->addFnAttr(Name, llvm::toStringRef(NewValue)); 181 }; 182 mergeFnAttrValue("no-infs-fp-math", FPFeatures.getNoHonorInfs()); 183 mergeFnAttrValue("no-nans-fp-math", FPFeatures.getNoHonorNaNs()); 184 mergeFnAttrValue("no-signed-zeros-fp-math", FPFeatures.getNoSignedZero()); 185 mergeFnAttrValue("unsafe-fp-math", FPFeatures.getAllowFPReassociate() && 186 FPFeatures.getAllowReciprocal() && 187 FPFeatures.getAllowApproxFunc() && 188 FPFeatures.getNoSignedZero()); 189 } 190 191 CodeGenFunction::CGFPOptionsRAII::~CGFPOptionsRAII() { 192 CGF.CurFPFeatures = OldFPFeatures; 193 CGF.Builder.setDefaultConstrainedExcept(OldExcept); 194 CGF.Builder.setDefaultConstrainedRounding(OldRounding); 195 } 196 197 LValue CodeGenFunction::MakeNaturalAlignAddrLValue(llvm::Value *V, QualType T) { 198 LValueBaseInfo BaseInfo; 199 TBAAAccessInfo TBAAInfo; 200 CharUnits Alignment = CGM.getNaturalTypeAlignment(T, &BaseInfo, &TBAAInfo); 201 return LValue::MakeAddr(Address(V, Alignment), T, getContext(), BaseInfo, 202 TBAAInfo); 203 } 204 205 /// Given a value of type T* that may not be to a complete object, 206 /// construct an l-value with the natural pointee alignment of T. 207 LValue 208 CodeGenFunction::MakeNaturalAlignPointeeAddrLValue(llvm::Value *V, QualType T) { 209 LValueBaseInfo BaseInfo; 210 TBAAAccessInfo TBAAInfo; 211 CharUnits Align = CGM.getNaturalTypeAlignment(T, &BaseInfo, &TBAAInfo, 212 /* forPointeeType= */ true); 213 return MakeAddrLValue(Address(V, Align), T, BaseInfo, TBAAInfo); 214 } 215 216 217 llvm::Type *CodeGenFunction::ConvertTypeForMem(QualType T) { 218 return CGM.getTypes().ConvertTypeForMem(T); 219 } 220 221 llvm::Type *CodeGenFunction::ConvertType(QualType T) { 222 return CGM.getTypes().ConvertType(T); 223 } 224 225 TypeEvaluationKind CodeGenFunction::getEvaluationKind(QualType type) { 226 type = type.getCanonicalType(); 227 while (true) { 228 switch (type->getTypeClass()) { 229 #define TYPE(name, parent) 230 #define ABSTRACT_TYPE(name, parent) 231 #define NON_CANONICAL_TYPE(name, parent) case Type::name: 232 #define DEPENDENT_TYPE(name, parent) case Type::name: 233 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(name, parent) case Type::name: 234 #include "clang/AST/TypeNodes.inc" 235 llvm_unreachable("non-canonical or dependent type in IR-generation"); 236 237 case Type::Auto: 238 case Type::DeducedTemplateSpecialization: 239 llvm_unreachable("undeduced type in IR-generation"); 240 241 // Various scalar types. 242 case Type::Builtin: 243 case Type::Pointer: 244 case Type::BlockPointer: 245 case Type::LValueReference: 246 case Type::RValueReference: 247 case Type::MemberPointer: 248 case Type::Vector: 249 case Type::ExtVector: 250 case Type::ConstantMatrix: 251 case Type::FunctionProto: 252 case Type::FunctionNoProto: 253 case Type::Enum: 254 case Type::ObjCObjectPointer: 255 case Type::Pipe: 256 case Type::ExtInt: 257 return TEK_Scalar; 258 259 // Complexes. 260 case Type::Complex: 261 return TEK_Complex; 262 263 // Arrays, records, and Objective-C objects. 264 case Type::ConstantArray: 265 case Type::IncompleteArray: 266 case Type::VariableArray: 267 case Type::Record: 268 case Type::ObjCObject: 269 case Type::ObjCInterface: 270 return TEK_Aggregate; 271 272 // We operate on atomic values according to their underlying type. 273 case Type::Atomic: 274 type = cast<AtomicType>(type)->getValueType(); 275 continue; 276 } 277 llvm_unreachable("unknown type kind!"); 278 } 279 } 280 281 llvm::DebugLoc CodeGenFunction::EmitReturnBlock() { 282 // For cleanliness, we try to avoid emitting the return block for 283 // simple cases. 284 llvm::BasicBlock *CurBB = Builder.GetInsertBlock(); 285 286 if (CurBB) { 287 assert(!CurBB->getTerminator() && "Unexpected terminated block."); 288 289 // We have a valid insert point, reuse it if it is empty or there are no 290 // explicit jumps to the return block. 291 if (CurBB->empty() || ReturnBlock.getBlock()->use_empty()) { 292 ReturnBlock.getBlock()->replaceAllUsesWith(CurBB); 293 delete ReturnBlock.getBlock(); 294 ReturnBlock = JumpDest(); 295 } else 296 EmitBlock(ReturnBlock.getBlock()); 297 return llvm::DebugLoc(); 298 } 299 300 // Otherwise, if the return block is the target of a single direct 301 // branch then we can just put the code in that block instead. This 302 // cleans up functions which started with a unified return block. 303 if (ReturnBlock.getBlock()->hasOneUse()) { 304 llvm::BranchInst *BI = 305 dyn_cast<llvm::BranchInst>(*ReturnBlock.getBlock()->user_begin()); 306 if (BI && BI->isUnconditional() && 307 BI->getSuccessor(0) == ReturnBlock.getBlock()) { 308 // Record/return the DebugLoc of the simple 'return' expression to be used 309 // later by the actual 'ret' instruction. 310 llvm::DebugLoc Loc = BI->getDebugLoc(); 311 Builder.SetInsertPoint(BI->getParent()); 312 BI->eraseFromParent(); 313 delete ReturnBlock.getBlock(); 314 ReturnBlock = JumpDest(); 315 return Loc; 316 } 317 } 318 319 // FIXME: We are at an unreachable point, there is no reason to emit the block 320 // unless it has uses. However, we still need a place to put the debug 321 // region.end for now. 322 323 EmitBlock(ReturnBlock.getBlock()); 324 return llvm::DebugLoc(); 325 } 326 327 static void EmitIfUsed(CodeGenFunction &CGF, llvm::BasicBlock *BB) { 328 if (!BB) return; 329 if (!BB->use_empty()) 330 return CGF.CurFn->getBasicBlockList().push_back(BB); 331 delete BB; 332 } 333 334 void CodeGenFunction::FinishFunction(SourceLocation EndLoc) { 335 assert(BreakContinueStack.empty() && 336 "mismatched push/pop in break/continue stack!"); 337 338 bool OnlySimpleReturnStmts = NumSimpleReturnExprs > 0 339 && NumSimpleReturnExprs == NumReturnExprs 340 && ReturnBlock.getBlock()->use_empty(); 341 // Usually the return expression is evaluated before the cleanup 342 // code. If the function contains only a simple return statement, 343 // such as a constant, the location before the cleanup code becomes 344 // the last useful breakpoint in the function, because the simple 345 // return expression will be evaluated after the cleanup code. To be 346 // safe, set the debug location for cleanup code to the location of 347 // the return statement. Otherwise the cleanup code should be at the 348 // end of the function's lexical scope. 349 // 350 // If there are multiple branches to the return block, the branch 351 // instructions will get the location of the return statements and 352 // all will be fine. 353 if (CGDebugInfo *DI = getDebugInfo()) { 354 if (OnlySimpleReturnStmts) 355 DI->EmitLocation(Builder, LastStopPoint); 356 else 357 DI->EmitLocation(Builder, EndLoc); 358 } 359 360 // Pop any cleanups that might have been associated with the 361 // parameters. Do this in whatever block we're currently in; it's 362 // important to do this before we enter the return block or return 363 // edges will be *really* confused. 364 bool HasCleanups = EHStack.stable_begin() != PrologueCleanupDepth; 365 bool HasOnlyLifetimeMarkers = 366 HasCleanups && EHStack.containsOnlyLifetimeMarkers(PrologueCleanupDepth); 367 bool EmitRetDbgLoc = !HasCleanups || HasOnlyLifetimeMarkers; 368 if (HasCleanups) { 369 // Make sure the line table doesn't jump back into the body for 370 // the ret after it's been at EndLoc. 371 Optional<ApplyDebugLocation> AL; 372 if (CGDebugInfo *DI = getDebugInfo()) { 373 if (OnlySimpleReturnStmts) 374 DI->EmitLocation(Builder, EndLoc); 375 else 376 // We may not have a valid end location. Try to apply it anyway, and 377 // fall back to an artificial location if needed. 378 AL = ApplyDebugLocation::CreateDefaultArtificial(*this, EndLoc); 379 } 380 381 PopCleanupBlocks(PrologueCleanupDepth); 382 } 383 384 // Emit function epilog (to return). 385 llvm::DebugLoc Loc = EmitReturnBlock(); 386 387 if (ShouldInstrumentFunction()) { 388 if (CGM.getCodeGenOpts().InstrumentFunctions) 389 CurFn->addFnAttr("instrument-function-exit", "__cyg_profile_func_exit"); 390 if (CGM.getCodeGenOpts().InstrumentFunctionsAfterInlining) 391 CurFn->addFnAttr("instrument-function-exit-inlined", 392 "__cyg_profile_func_exit"); 393 } 394 395 // Emit debug descriptor for function end. 396 if (CGDebugInfo *DI = getDebugInfo()) 397 DI->EmitFunctionEnd(Builder, CurFn); 398 399 // Reset the debug location to that of the simple 'return' expression, if any 400 // rather than that of the end of the function's scope '}'. 401 ApplyDebugLocation AL(*this, Loc); 402 EmitFunctionEpilog(*CurFnInfo, EmitRetDbgLoc, EndLoc); 403 EmitEndEHSpec(CurCodeDecl); 404 405 assert(EHStack.empty() && 406 "did not remove all scopes from cleanup stack!"); 407 408 // If someone did an indirect goto, emit the indirect goto block at the end of 409 // the function. 410 if (IndirectBranch) { 411 EmitBlock(IndirectBranch->getParent()); 412 Builder.ClearInsertionPoint(); 413 } 414 415 // If some of our locals escaped, insert a call to llvm.localescape in the 416 // entry block. 417 if (!EscapedLocals.empty()) { 418 // Invert the map from local to index into a simple vector. There should be 419 // no holes. 420 SmallVector<llvm::Value *, 4> EscapeArgs; 421 EscapeArgs.resize(EscapedLocals.size()); 422 for (auto &Pair : EscapedLocals) 423 EscapeArgs[Pair.second] = Pair.first; 424 llvm::Function *FrameEscapeFn = llvm::Intrinsic::getDeclaration( 425 &CGM.getModule(), llvm::Intrinsic::localescape); 426 CGBuilderTy(*this, AllocaInsertPt).CreateCall(FrameEscapeFn, EscapeArgs); 427 } 428 429 // Remove the AllocaInsertPt instruction, which is just a convenience for us. 430 llvm::Instruction *Ptr = AllocaInsertPt; 431 AllocaInsertPt = nullptr; 432 Ptr->eraseFromParent(); 433 434 // If someone took the address of a label but never did an indirect goto, we 435 // made a zero entry PHI node, which is illegal, zap it now. 436 if (IndirectBranch) { 437 llvm::PHINode *PN = cast<llvm::PHINode>(IndirectBranch->getAddress()); 438 if (PN->getNumIncomingValues() == 0) { 439 PN->replaceAllUsesWith(llvm::UndefValue::get(PN->getType())); 440 PN->eraseFromParent(); 441 } 442 } 443 444 EmitIfUsed(*this, EHResumeBlock); 445 EmitIfUsed(*this, TerminateLandingPad); 446 EmitIfUsed(*this, TerminateHandler); 447 EmitIfUsed(*this, UnreachableBlock); 448 449 for (const auto &FuncletAndParent : TerminateFunclets) 450 EmitIfUsed(*this, FuncletAndParent.second); 451 452 if (CGM.getCodeGenOpts().EmitDeclMetadata) 453 EmitDeclMetadata(); 454 455 for (const auto &R : DeferredReplacements) { 456 if (llvm::Value *Old = R.first) { 457 Old->replaceAllUsesWith(R.second); 458 cast<llvm::Instruction>(Old)->eraseFromParent(); 459 } 460 } 461 DeferredReplacements.clear(); 462 463 // Eliminate CleanupDestSlot alloca by replacing it with SSA values and 464 // PHIs if the current function is a coroutine. We don't do it for all 465 // functions as it may result in slight increase in numbers of instructions 466 // if compiled with no optimizations. We do it for coroutine as the lifetime 467 // of CleanupDestSlot alloca make correct coroutine frame building very 468 // difficult. 469 if (NormalCleanupDest.isValid() && isCoroutine()) { 470 llvm::DominatorTree DT(*CurFn); 471 llvm::PromoteMemToReg( 472 cast<llvm::AllocaInst>(NormalCleanupDest.getPointer()), DT); 473 NormalCleanupDest = Address::invalid(); 474 } 475 476 // Scan function arguments for vector width. 477 for (llvm::Argument &A : CurFn->args()) 478 if (auto *VT = dyn_cast<llvm::VectorType>(A.getType())) 479 LargestVectorWidth = 480 std::max((uint64_t)LargestVectorWidth, 481 VT->getPrimitiveSizeInBits().getKnownMinSize()); 482 483 // Update vector width based on return type. 484 if (auto *VT = dyn_cast<llvm::VectorType>(CurFn->getReturnType())) 485 LargestVectorWidth = 486 std::max((uint64_t)LargestVectorWidth, 487 VT->getPrimitiveSizeInBits().getKnownMinSize()); 488 489 // Add the required-vector-width attribute. This contains the max width from: 490 // 1. min-vector-width attribute used in the source program. 491 // 2. Any builtins used that have a vector width specified. 492 // 3. Values passed in and out of inline assembly. 493 // 4. Width of vector arguments and return types for this function. 494 // 5. Width of vector aguments and return types for functions called by this 495 // function. 496 if (LargestVectorWidth) 497 CurFn->addFnAttr("min-legal-vector-width", llvm::utostr(LargestVectorWidth)); 498 499 // Add vscale attribute if appropriate. 500 if (getLangOpts().ArmSveVectorBits) { 501 unsigned VScale = getLangOpts().ArmSveVectorBits / 128; 502 CurFn->addFnAttr(llvm::Attribute::getWithVScaleRangeArgs(getLLVMContext(), 503 VScale, VScale)); 504 } 505 506 // If we generated an unreachable return block, delete it now. 507 if (ReturnBlock.isValid() && ReturnBlock.getBlock()->use_empty()) { 508 Builder.ClearInsertionPoint(); 509 ReturnBlock.getBlock()->eraseFromParent(); 510 } 511 if (ReturnValue.isValid()) { 512 auto *RetAlloca = dyn_cast<llvm::AllocaInst>(ReturnValue.getPointer()); 513 if (RetAlloca && RetAlloca->use_empty()) { 514 RetAlloca->eraseFromParent(); 515 ReturnValue = Address::invalid(); 516 } 517 } 518 } 519 520 /// ShouldInstrumentFunction - Return true if the current function should be 521 /// instrumented with __cyg_profile_func_* calls 522 bool CodeGenFunction::ShouldInstrumentFunction() { 523 if (!CGM.getCodeGenOpts().InstrumentFunctions && 524 !CGM.getCodeGenOpts().InstrumentFunctionsAfterInlining && 525 !CGM.getCodeGenOpts().InstrumentFunctionEntryBare) 526 return false; 527 if (!CurFuncDecl || CurFuncDecl->hasAttr<NoInstrumentFunctionAttr>()) 528 return false; 529 return true; 530 } 531 532 /// ShouldXRayInstrument - Return true if the current function should be 533 /// instrumented with XRay nop sleds. 534 bool CodeGenFunction::ShouldXRayInstrumentFunction() const { 535 return CGM.getCodeGenOpts().XRayInstrumentFunctions; 536 } 537 538 /// AlwaysEmitXRayCustomEvents - Return true if we should emit IR for calls to 539 /// the __xray_customevent(...) builtin calls, when doing XRay instrumentation. 540 bool CodeGenFunction::AlwaysEmitXRayCustomEvents() const { 541 return CGM.getCodeGenOpts().XRayInstrumentFunctions && 542 (CGM.getCodeGenOpts().XRayAlwaysEmitCustomEvents || 543 CGM.getCodeGenOpts().XRayInstrumentationBundle.Mask == 544 XRayInstrKind::Custom); 545 } 546 547 bool CodeGenFunction::AlwaysEmitXRayTypedEvents() const { 548 return CGM.getCodeGenOpts().XRayInstrumentFunctions && 549 (CGM.getCodeGenOpts().XRayAlwaysEmitTypedEvents || 550 CGM.getCodeGenOpts().XRayInstrumentationBundle.Mask == 551 XRayInstrKind::Typed); 552 } 553 554 llvm::Constant * 555 CodeGenFunction::EncodeAddrForUseInPrologue(llvm::Function *F, 556 llvm::Constant *Addr) { 557 // Addresses stored in prologue data can't require run-time fixups and must 558 // be PC-relative. Run-time fixups are undesirable because they necessitate 559 // writable text segments, which are unsafe. And absolute addresses are 560 // undesirable because they break PIE mode. 561 562 // Add a layer of indirection through a private global. Taking its address 563 // won't result in a run-time fixup, even if Addr has linkonce_odr linkage. 564 auto *GV = new llvm::GlobalVariable(CGM.getModule(), Addr->getType(), 565 /*isConstant=*/true, 566 llvm::GlobalValue::PrivateLinkage, Addr); 567 568 // Create a PC-relative address. 569 auto *GOTAsInt = llvm::ConstantExpr::getPtrToInt(GV, IntPtrTy); 570 auto *FuncAsInt = llvm::ConstantExpr::getPtrToInt(F, IntPtrTy); 571 auto *PCRelAsInt = llvm::ConstantExpr::getSub(GOTAsInt, FuncAsInt); 572 return (IntPtrTy == Int32Ty) 573 ? PCRelAsInt 574 : llvm::ConstantExpr::getTrunc(PCRelAsInt, Int32Ty); 575 } 576 577 llvm::Value * 578 CodeGenFunction::DecodeAddrUsedInPrologue(llvm::Value *F, 579 llvm::Value *EncodedAddr) { 580 // Reconstruct the address of the global. 581 auto *PCRelAsInt = Builder.CreateSExt(EncodedAddr, IntPtrTy); 582 auto *FuncAsInt = Builder.CreatePtrToInt(F, IntPtrTy, "func_addr.int"); 583 auto *GOTAsInt = Builder.CreateAdd(PCRelAsInt, FuncAsInt, "global_addr.int"); 584 auto *GOTAddr = Builder.CreateIntToPtr(GOTAsInt, Int8PtrPtrTy, "global_addr"); 585 586 // Load the original pointer through the global. 587 return Builder.CreateLoad(Address(GOTAddr, getPointerAlign()), 588 "decoded_addr"); 589 } 590 591 void CodeGenFunction::EmitOpenCLKernelMetadata(const FunctionDecl *FD, 592 llvm::Function *Fn) 593 { 594 if (!FD->hasAttr<OpenCLKernelAttr>()) 595 return; 596 597 llvm::LLVMContext &Context = getLLVMContext(); 598 599 CGM.GenOpenCLArgMetadata(Fn, FD, this); 600 601 if (const VecTypeHintAttr *A = FD->getAttr<VecTypeHintAttr>()) { 602 QualType HintQTy = A->getTypeHint(); 603 const ExtVectorType *HintEltQTy = HintQTy->getAs<ExtVectorType>(); 604 bool IsSignedInteger = 605 HintQTy->isSignedIntegerType() || 606 (HintEltQTy && HintEltQTy->getElementType()->isSignedIntegerType()); 607 llvm::Metadata *AttrMDArgs[] = { 608 llvm::ConstantAsMetadata::get(llvm::UndefValue::get( 609 CGM.getTypes().ConvertType(A->getTypeHint()))), 610 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 611 llvm::IntegerType::get(Context, 32), 612 llvm::APInt(32, (uint64_t)(IsSignedInteger ? 1 : 0))))}; 613 Fn->setMetadata("vec_type_hint", llvm::MDNode::get(Context, AttrMDArgs)); 614 } 615 616 if (const WorkGroupSizeHintAttr *A = FD->getAttr<WorkGroupSizeHintAttr>()) { 617 llvm::Metadata *AttrMDArgs[] = { 618 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getXDim())), 619 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getYDim())), 620 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getZDim()))}; 621 Fn->setMetadata("work_group_size_hint", llvm::MDNode::get(Context, AttrMDArgs)); 622 } 623 624 if (const ReqdWorkGroupSizeAttr *A = FD->getAttr<ReqdWorkGroupSizeAttr>()) { 625 llvm::Metadata *AttrMDArgs[] = { 626 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getXDim())), 627 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getYDim())), 628 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getZDim()))}; 629 Fn->setMetadata("reqd_work_group_size", llvm::MDNode::get(Context, AttrMDArgs)); 630 } 631 632 if (const OpenCLIntelReqdSubGroupSizeAttr *A = 633 FD->getAttr<OpenCLIntelReqdSubGroupSizeAttr>()) { 634 llvm::Metadata *AttrMDArgs[] = { 635 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getSubGroupSize()))}; 636 Fn->setMetadata("intel_reqd_sub_group_size", 637 llvm::MDNode::get(Context, AttrMDArgs)); 638 } 639 } 640 641 /// Determine whether the function F ends with a return stmt. 642 static bool endsWithReturn(const Decl* F) { 643 const Stmt *Body = nullptr; 644 if (auto *FD = dyn_cast_or_null<FunctionDecl>(F)) 645 Body = FD->getBody(); 646 else if (auto *OMD = dyn_cast_or_null<ObjCMethodDecl>(F)) 647 Body = OMD->getBody(); 648 649 if (auto *CS = dyn_cast_or_null<CompoundStmt>(Body)) { 650 auto LastStmt = CS->body_rbegin(); 651 if (LastStmt != CS->body_rend()) 652 return isa<ReturnStmt>(*LastStmt); 653 } 654 return false; 655 } 656 657 void CodeGenFunction::markAsIgnoreThreadCheckingAtRuntime(llvm::Function *Fn) { 658 if (SanOpts.has(SanitizerKind::Thread)) { 659 Fn->addFnAttr("sanitize_thread_no_checking_at_run_time"); 660 Fn->removeFnAttr(llvm::Attribute::SanitizeThread); 661 } 662 } 663 664 /// Check if the return value of this function requires sanitization. 665 bool CodeGenFunction::requiresReturnValueCheck() const { 666 return requiresReturnValueNullabilityCheck() || 667 (SanOpts.has(SanitizerKind::ReturnsNonnullAttribute) && CurCodeDecl && 668 CurCodeDecl->getAttr<ReturnsNonNullAttr>()); 669 } 670 671 static bool matchesStlAllocatorFn(const Decl *D, const ASTContext &Ctx) { 672 auto *MD = dyn_cast_or_null<CXXMethodDecl>(D); 673 if (!MD || !MD->getDeclName().getAsIdentifierInfo() || 674 !MD->getDeclName().getAsIdentifierInfo()->isStr("allocate") || 675 (MD->getNumParams() != 1 && MD->getNumParams() != 2)) 676 return false; 677 678 if (MD->parameters()[0]->getType().getCanonicalType() != Ctx.getSizeType()) 679 return false; 680 681 if (MD->getNumParams() == 2) { 682 auto *PT = MD->parameters()[1]->getType()->getAs<PointerType>(); 683 if (!PT || !PT->isVoidPointerType() || 684 !PT->getPointeeType().isConstQualified()) 685 return false; 686 } 687 688 return true; 689 } 690 691 /// Return the UBSan prologue signature for \p FD if one is available. 692 static llvm::Constant *getPrologueSignature(CodeGenModule &CGM, 693 const FunctionDecl *FD) { 694 if (const auto *MD = dyn_cast<CXXMethodDecl>(FD)) 695 if (!MD->isStatic()) 696 return nullptr; 697 return CGM.getTargetCodeGenInfo().getUBSanFunctionSignature(CGM); 698 } 699 700 void CodeGenFunction::StartFunction(GlobalDecl GD, QualType RetTy, 701 llvm::Function *Fn, 702 const CGFunctionInfo &FnInfo, 703 const FunctionArgList &Args, 704 SourceLocation Loc, 705 SourceLocation StartLoc) { 706 assert(!CurFn && 707 "Do not use a CodeGenFunction object for more than one function"); 708 709 const Decl *D = GD.getDecl(); 710 711 DidCallStackSave = false; 712 CurCodeDecl = D; 713 if (const auto *FD = dyn_cast_or_null<FunctionDecl>(D)) 714 if (FD->usesSEHTry()) 715 CurSEHParent = FD; 716 CurFuncDecl = (D ? D->getNonClosureContext() : nullptr); 717 FnRetTy = RetTy; 718 CurFn = Fn; 719 CurFnInfo = &FnInfo; 720 assert(CurFn->isDeclaration() && "Function already has body?"); 721 722 // If this function is ignored for any of the enabled sanitizers, 723 // disable the sanitizer for the function. 724 do { 725 #define SANITIZER(NAME, ID) \ 726 if (SanOpts.empty()) \ 727 break; \ 728 if (SanOpts.has(SanitizerKind::ID)) \ 729 if (CGM.isInNoSanitizeList(SanitizerKind::ID, Fn, Loc)) \ 730 SanOpts.set(SanitizerKind::ID, false); 731 732 #include "clang/Basic/Sanitizers.def" 733 #undef SANITIZER 734 } while (0); 735 736 if (D) { 737 // Apply the no_sanitize* attributes to SanOpts. 738 for (auto Attr : D->specific_attrs<NoSanitizeAttr>()) { 739 SanitizerMask mask = Attr->getMask(); 740 SanOpts.Mask &= ~mask; 741 if (mask & SanitizerKind::Address) 742 SanOpts.set(SanitizerKind::KernelAddress, false); 743 if (mask & SanitizerKind::KernelAddress) 744 SanOpts.set(SanitizerKind::Address, false); 745 if (mask & SanitizerKind::HWAddress) 746 SanOpts.set(SanitizerKind::KernelHWAddress, false); 747 if (mask & SanitizerKind::KernelHWAddress) 748 SanOpts.set(SanitizerKind::HWAddress, false); 749 } 750 } 751 752 // Apply sanitizer attributes to the function. 753 if (SanOpts.hasOneOf(SanitizerKind::Address | SanitizerKind::KernelAddress)) 754 Fn->addFnAttr(llvm::Attribute::SanitizeAddress); 755 if (SanOpts.hasOneOf(SanitizerKind::HWAddress | SanitizerKind::KernelHWAddress)) 756 Fn->addFnAttr(llvm::Attribute::SanitizeHWAddress); 757 if (SanOpts.has(SanitizerKind::MemTag)) 758 Fn->addFnAttr(llvm::Attribute::SanitizeMemTag); 759 if (SanOpts.has(SanitizerKind::Thread)) 760 Fn->addFnAttr(llvm::Attribute::SanitizeThread); 761 if (SanOpts.hasOneOf(SanitizerKind::Memory | SanitizerKind::KernelMemory)) 762 Fn->addFnAttr(llvm::Attribute::SanitizeMemory); 763 if (SanOpts.has(SanitizerKind::SafeStack)) 764 Fn->addFnAttr(llvm::Attribute::SafeStack); 765 if (SanOpts.has(SanitizerKind::ShadowCallStack)) 766 Fn->addFnAttr(llvm::Attribute::ShadowCallStack); 767 768 // Apply fuzzing attribute to the function. 769 if (SanOpts.hasOneOf(SanitizerKind::Fuzzer | SanitizerKind::FuzzerNoLink)) 770 Fn->addFnAttr(llvm::Attribute::OptForFuzzing); 771 772 // Ignore TSan memory acesses from within ObjC/ObjC++ dealloc, initialize, 773 // .cxx_destruct, __destroy_helper_block_ and all of their calees at run time. 774 if (SanOpts.has(SanitizerKind::Thread)) { 775 if (const auto *OMD = dyn_cast_or_null<ObjCMethodDecl>(D)) { 776 IdentifierInfo *II = OMD->getSelector().getIdentifierInfoForSlot(0); 777 if (OMD->getMethodFamily() == OMF_dealloc || 778 OMD->getMethodFamily() == OMF_initialize || 779 (OMD->getSelector().isUnarySelector() && II->isStr(".cxx_destruct"))) { 780 markAsIgnoreThreadCheckingAtRuntime(Fn); 781 } 782 } 783 } 784 785 // Ignore unrelated casts in STL allocate() since the allocator must cast 786 // from void* to T* before object initialization completes. Don't match on the 787 // namespace because not all allocators are in std:: 788 if (D && SanOpts.has(SanitizerKind::CFIUnrelatedCast)) { 789 if (matchesStlAllocatorFn(D, getContext())) 790 SanOpts.Mask &= ~SanitizerKind::CFIUnrelatedCast; 791 } 792 793 // Ignore null checks in coroutine functions since the coroutines passes 794 // are not aware of how to move the extra UBSan instructions across the split 795 // coroutine boundaries. 796 if (D && SanOpts.has(SanitizerKind::Null)) 797 if (const auto *FD = dyn_cast<FunctionDecl>(D)) 798 if (FD->getBody() && 799 FD->getBody()->getStmtClass() == Stmt::CoroutineBodyStmtClass) 800 SanOpts.Mask &= ~SanitizerKind::Null; 801 802 // Apply xray attributes to the function (as a string, for now) 803 bool AlwaysXRayAttr = false; 804 if (const auto *XRayAttr = D ? D->getAttr<XRayInstrumentAttr>() : nullptr) { 805 if (CGM.getCodeGenOpts().XRayInstrumentationBundle.has( 806 XRayInstrKind::FunctionEntry) || 807 CGM.getCodeGenOpts().XRayInstrumentationBundle.has( 808 XRayInstrKind::FunctionExit)) { 809 if (XRayAttr->alwaysXRayInstrument() && ShouldXRayInstrumentFunction()) { 810 Fn->addFnAttr("function-instrument", "xray-always"); 811 AlwaysXRayAttr = true; 812 } 813 if (XRayAttr->neverXRayInstrument()) 814 Fn->addFnAttr("function-instrument", "xray-never"); 815 if (const auto *LogArgs = D->getAttr<XRayLogArgsAttr>()) 816 if (ShouldXRayInstrumentFunction()) 817 Fn->addFnAttr("xray-log-args", 818 llvm::utostr(LogArgs->getArgumentCount())); 819 } 820 } else { 821 if (ShouldXRayInstrumentFunction() && !CGM.imbueXRayAttrs(Fn, Loc)) 822 Fn->addFnAttr( 823 "xray-instruction-threshold", 824 llvm::itostr(CGM.getCodeGenOpts().XRayInstructionThreshold)); 825 } 826 827 if (ShouldXRayInstrumentFunction()) { 828 if (CGM.getCodeGenOpts().XRayIgnoreLoops) 829 Fn->addFnAttr("xray-ignore-loops"); 830 831 if (!CGM.getCodeGenOpts().XRayInstrumentationBundle.has( 832 XRayInstrKind::FunctionExit)) 833 Fn->addFnAttr("xray-skip-exit"); 834 835 if (!CGM.getCodeGenOpts().XRayInstrumentationBundle.has( 836 XRayInstrKind::FunctionEntry)) 837 Fn->addFnAttr("xray-skip-entry"); 838 839 auto FuncGroups = CGM.getCodeGenOpts().XRayTotalFunctionGroups; 840 if (FuncGroups > 1) { 841 auto FuncName = llvm::makeArrayRef<uint8_t>( 842 CurFn->getName().bytes_begin(), CurFn->getName().bytes_end()); 843 auto Group = crc32(FuncName) % FuncGroups; 844 if (Group != CGM.getCodeGenOpts().XRaySelectedFunctionGroup && 845 !AlwaysXRayAttr) 846 Fn->addFnAttr("function-instrument", "xray-never"); 847 } 848 } 849 850 if (CGM.getCodeGenOpts().getProfileInstr() != CodeGenOptions::ProfileNone) 851 if (CGM.isProfileInstrExcluded(Fn, Loc)) 852 Fn->addFnAttr(llvm::Attribute::NoProfile); 853 854 unsigned Count, Offset; 855 if (const auto *Attr = 856 D ? D->getAttr<PatchableFunctionEntryAttr>() : nullptr) { 857 Count = Attr->getCount(); 858 Offset = Attr->getOffset(); 859 } else { 860 Count = CGM.getCodeGenOpts().PatchableFunctionEntryCount; 861 Offset = CGM.getCodeGenOpts().PatchableFunctionEntryOffset; 862 } 863 if (Count && Offset <= Count) { 864 Fn->addFnAttr("patchable-function-entry", std::to_string(Count - Offset)); 865 if (Offset) 866 Fn->addFnAttr("patchable-function-prefix", std::to_string(Offset)); 867 } 868 869 // Add no-jump-tables value. 870 if (CGM.getCodeGenOpts().NoUseJumpTables) 871 Fn->addFnAttr("no-jump-tables", "true"); 872 873 // Add no-inline-line-tables value. 874 if (CGM.getCodeGenOpts().NoInlineLineTables) 875 Fn->addFnAttr("no-inline-line-tables"); 876 877 // Add profile-sample-accurate value. 878 if (CGM.getCodeGenOpts().ProfileSampleAccurate) 879 Fn->addFnAttr("profile-sample-accurate"); 880 881 if (!CGM.getCodeGenOpts().SampleProfileFile.empty()) 882 Fn->addFnAttr("use-sample-profile"); 883 884 if (D && D->hasAttr<CFICanonicalJumpTableAttr>()) 885 Fn->addFnAttr("cfi-canonical-jump-table"); 886 887 if (getLangOpts().OpenCL) { 888 // Add metadata for a kernel function. 889 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) 890 EmitOpenCLKernelMetadata(FD, Fn); 891 } 892 893 // If we are checking function types, emit a function type signature as 894 // prologue data. 895 if (getLangOpts().CPlusPlus && SanOpts.has(SanitizerKind::Function)) { 896 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) { 897 if (llvm::Constant *PrologueSig = getPrologueSignature(CGM, FD)) { 898 // Remove any (C++17) exception specifications, to allow calling e.g. a 899 // noexcept function through a non-noexcept pointer. 900 auto ProtoTy = 901 getContext().getFunctionTypeWithExceptionSpec(FD->getType(), 902 EST_None); 903 llvm::Constant *FTRTTIConst = 904 CGM.GetAddrOfRTTIDescriptor(ProtoTy, /*ForEH=*/true); 905 llvm::Constant *FTRTTIConstEncoded = 906 EncodeAddrForUseInPrologue(Fn, FTRTTIConst); 907 llvm::Constant *PrologueStructElems[] = {PrologueSig, 908 FTRTTIConstEncoded}; 909 llvm::Constant *PrologueStructConst = 910 llvm::ConstantStruct::getAnon(PrologueStructElems, /*Packed=*/true); 911 Fn->setPrologueData(PrologueStructConst); 912 } 913 } 914 } 915 916 // If we're checking nullability, we need to know whether we can check the 917 // return value. Initialize the flag to 'true' and refine it in EmitParmDecl. 918 if (SanOpts.has(SanitizerKind::NullabilityReturn)) { 919 auto Nullability = FnRetTy->getNullability(getContext()); 920 if (Nullability && *Nullability == NullabilityKind::NonNull) { 921 if (!(SanOpts.has(SanitizerKind::ReturnsNonnullAttribute) && 922 CurCodeDecl && CurCodeDecl->getAttr<ReturnsNonNullAttr>())) 923 RetValNullabilityPrecondition = 924 llvm::ConstantInt::getTrue(getLLVMContext()); 925 } 926 } 927 928 // If we're in C++ mode and the function name is "main", it is guaranteed 929 // to be norecurse by the standard (3.6.1.3 "The function main shall not be 930 // used within a program"). 931 // 932 // OpenCL C 2.0 v2.2-11 s6.9.i: 933 // Recursion is not supported. 934 // 935 // SYCL v1.2.1 s3.10: 936 // kernels cannot include RTTI information, exception classes, 937 // recursive code, virtual functions or make use of C++ libraries that 938 // are not compiled for the device. 939 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) { 940 if ((getLangOpts().CPlusPlus && FD->isMain()) || getLangOpts().OpenCL || 941 getLangOpts().SYCLIsDevice || 942 (getLangOpts().CUDA && FD->hasAttr<CUDAGlobalAttr>())) 943 Fn->addFnAttr(llvm::Attribute::NoRecurse); 944 } 945 946 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) { 947 Builder.setIsFPConstrained(FD->hasAttr<StrictFPAttr>()); 948 if (FD->hasAttr<StrictFPAttr>()) 949 Fn->addFnAttr(llvm::Attribute::StrictFP); 950 } 951 952 // If a custom alignment is used, force realigning to this alignment on 953 // any main function which certainly will need it. 954 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) 955 if ((FD->isMain() || FD->isMSVCRTEntryPoint()) && 956 CGM.getCodeGenOpts().StackAlignment) 957 Fn->addFnAttr("stackrealign"); 958 959 llvm::BasicBlock *EntryBB = createBasicBlock("entry", CurFn); 960 961 // Create a marker to make it easy to insert allocas into the entryblock 962 // later. Don't create this with the builder, because we don't want it 963 // folded. 964 llvm::Value *Undef = llvm::UndefValue::get(Int32Ty); 965 AllocaInsertPt = new llvm::BitCastInst(Undef, Int32Ty, "allocapt", EntryBB); 966 967 ReturnBlock = getJumpDestInCurrentScope("return"); 968 969 Builder.SetInsertPoint(EntryBB); 970 971 // If we're checking the return value, allocate space for a pointer to a 972 // precise source location of the checked return statement. 973 if (requiresReturnValueCheck()) { 974 ReturnLocation = CreateDefaultAlignTempAlloca(Int8PtrTy, "return.sloc.ptr"); 975 InitTempAlloca(ReturnLocation, llvm::ConstantPointerNull::get(Int8PtrTy)); 976 } 977 978 // Emit subprogram debug descriptor. 979 if (CGDebugInfo *DI = getDebugInfo()) { 980 // Reconstruct the type from the argument list so that implicit parameters, 981 // such as 'this' and 'vtt', show up in the debug info. Preserve the calling 982 // convention. 983 CallingConv CC = CallingConv::CC_C; 984 if (auto *FD = dyn_cast_or_null<FunctionDecl>(D)) 985 if (const auto *SrcFnTy = FD->getType()->getAs<FunctionType>()) 986 CC = SrcFnTy->getCallConv(); 987 SmallVector<QualType, 16> ArgTypes; 988 for (const VarDecl *VD : Args) 989 ArgTypes.push_back(VD->getType()); 990 QualType FnType = getContext().getFunctionType( 991 RetTy, ArgTypes, FunctionProtoType::ExtProtoInfo(CC)); 992 DI->emitFunctionStart(GD, Loc, StartLoc, FnType, CurFn, CurFuncIsThunk); 993 } 994 995 if (ShouldInstrumentFunction()) { 996 if (CGM.getCodeGenOpts().InstrumentFunctions) 997 CurFn->addFnAttr("instrument-function-entry", "__cyg_profile_func_enter"); 998 if (CGM.getCodeGenOpts().InstrumentFunctionsAfterInlining) 999 CurFn->addFnAttr("instrument-function-entry-inlined", 1000 "__cyg_profile_func_enter"); 1001 if (CGM.getCodeGenOpts().InstrumentFunctionEntryBare) 1002 CurFn->addFnAttr("instrument-function-entry-inlined", 1003 "__cyg_profile_func_enter_bare"); 1004 } 1005 1006 // Since emitting the mcount call here impacts optimizations such as function 1007 // inlining, we just add an attribute to insert a mcount call in backend. 1008 // The attribute "counting-function" is set to mcount function name which is 1009 // architecture dependent. 1010 if (CGM.getCodeGenOpts().InstrumentForProfiling) { 1011 // Calls to fentry/mcount should not be generated if function has 1012 // the no_instrument_function attribute. 1013 if (!CurFuncDecl || !CurFuncDecl->hasAttr<NoInstrumentFunctionAttr>()) { 1014 if (CGM.getCodeGenOpts().CallFEntry) 1015 Fn->addFnAttr("fentry-call", "true"); 1016 else { 1017 Fn->addFnAttr("instrument-function-entry-inlined", 1018 getTarget().getMCountName()); 1019 } 1020 if (CGM.getCodeGenOpts().MNopMCount) { 1021 if (!CGM.getCodeGenOpts().CallFEntry) 1022 CGM.getDiags().Report(diag::err_opt_not_valid_without_opt) 1023 << "-mnop-mcount" << "-mfentry"; 1024 Fn->addFnAttr("mnop-mcount"); 1025 } 1026 1027 if (CGM.getCodeGenOpts().RecordMCount) { 1028 if (!CGM.getCodeGenOpts().CallFEntry) 1029 CGM.getDiags().Report(diag::err_opt_not_valid_without_opt) 1030 << "-mrecord-mcount" << "-mfentry"; 1031 Fn->addFnAttr("mrecord-mcount"); 1032 } 1033 } 1034 } 1035 1036 if (CGM.getCodeGenOpts().PackedStack) { 1037 if (getContext().getTargetInfo().getTriple().getArch() != 1038 llvm::Triple::systemz) 1039 CGM.getDiags().Report(diag::err_opt_not_valid_on_target) 1040 << "-mpacked-stack"; 1041 Fn->addFnAttr("packed-stack"); 1042 } 1043 1044 if (RetTy->isVoidType()) { 1045 // Void type; nothing to return. 1046 ReturnValue = Address::invalid(); 1047 1048 // Count the implicit return. 1049 if (!endsWithReturn(D)) 1050 ++NumReturnExprs; 1051 } else if (CurFnInfo->getReturnInfo().getKind() == ABIArgInfo::Indirect) { 1052 // Indirect return; emit returned value directly into sret slot. 1053 // This reduces code size, and affects correctness in C++. 1054 auto AI = CurFn->arg_begin(); 1055 if (CurFnInfo->getReturnInfo().isSRetAfterThis()) 1056 ++AI; 1057 ReturnValue = Address(&*AI, CurFnInfo->getReturnInfo().getIndirectAlign()); 1058 if (!CurFnInfo->getReturnInfo().getIndirectByVal()) { 1059 ReturnValuePointer = 1060 CreateDefaultAlignTempAlloca(Int8PtrTy, "result.ptr"); 1061 Builder.CreateStore(Builder.CreatePointerBitCastOrAddrSpaceCast( 1062 ReturnValue.getPointer(), Int8PtrTy), 1063 ReturnValuePointer); 1064 } 1065 } else if (CurFnInfo->getReturnInfo().getKind() == ABIArgInfo::InAlloca && 1066 !hasScalarEvaluationKind(CurFnInfo->getReturnType())) { 1067 // Load the sret pointer from the argument struct and return into that. 1068 unsigned Idx = CurFnInfo->getReturnInfo().getInAllocaFieldIndex(); 1069 llvm::Function::arg_iterator EI = CurFn->arg_end(); 1070 --EI; 1071 llvm::Value *Addr = Builder.CreateStructGEP(nullptr, &*EI, Idx); 1072 llvm::Type *Ty = 1073 cast<llvm::GetElementPtrInst>(Addr)->getResultElementType(); 1074 ReturnValuePointer = Address(Addr, getPointerAlign()); 1075 Addr = Builder.CreateAlignedLoad(Ty, Addr, getPointerAlign(), "agg.result"); 1076 ReturnValue = Address(Addr, CGM.getNaturalTypeAlignment(RetTy)); 1077 } else { 1078 ReturnValue = CreateIRTemp(RetTy, "retval"); 1079 1080 // Tell the epilog emitter to autorelease the result. We do this 1081 // now so that various specialized functions can suppress it 1082 // during their IR-generation. 1083 if (getLangOpts().ObjCAutoRefCount && 1084 !CurFnInfo->isReturnsRetained() && 1085 RetTy->isObjCRetainableType()) 1086 AutoreleaseResult = true; 1087 } 1088 1089 EmitStartEHSpec(CurCodeDecl); 1090 1091 PrologueCleanupDepth = EHStack.stable_begin(); 1092 1093 // Emit OpenMP specific initialization of the device functions. 1094 if (getLangOpts().OpenMP && CurCodeDecl) 1095 CGM.getOpenMPRuntime().emitFunctionProlog(*this, CurCodeDecl); 1096 1097 EmitFunctionProlog(*CurFnInfo, CurFn, Args); 1098 1099 if (D && isa<CXXMethodDecl>(D) && cast<CXXMethodDecl>(D)->isInstance()) { 1100 CGM.getCXXABI().EmitInstanceFunctionProlog(*this); 1101 const CXXMethodDecl *MD = cast<CXXMethodDecl>(D); 1102 if (MD->getParent()->isLambda() && 1103 MD->getOverloadedOperator() == OO_Call) { 1104 // We're in a lambda; figure out the captures. 1105 MD->getParent()->getCaptureFields(LambdaCaptureFields, 1106 LambdaThisCaptureField); 1107 if (LambdaThisCaptureField) { 1108 // If the lambda captures the object referred to by '*this' - either by 1109 // value or by reference, make sure CXXThisValue points to the correct 1110 // object. 1111 1112 // Get the lvalue for the field (which is a copy of the enclosing object 1113 // or contains the address of the enclosing object). 1114 LValue ThisFieldLValue = EmitLValueForLambdaField(LambdaThisCaptureField); 1115 if (!LambdaThisCaptureField->getType()->isPointerType()) { 1116 // If the enclosing object was captured by value, just use its address. 1117 CXXThisValue = ThisFieldLValue.getAddress(*this).getPointer(); 1118 } else { 1119 // Load the lvalue pointed to by the field, since '*this' was captured 1120 // by reference. 1121 CXXThisValue = 1122 EmitLoadOfLValue(ThisFieldLValue, SourceLocation()).getScalarVal(); 1123 } 1124 } 1125 for (auto *FD : MD->getParent()->fields()) { 1126 if (FD->hasCapturedVLAType()) { 1127 auto *ExprArg = EmitLoadOfLValue(EmitLValueForLambdaField(FD), 1128 SourceLocation()).getScalarVal(); 1129 auto VAT = FD->getCapturedVLAType(); 1130 VLASizeMap[VAT->getSizeExpr()] = ExprArg; 1131 } 1132 } 1133 } else { 1134 // Not in a lambda; just use 'this' from the method. 1135 // FIXME: Should we generate a new load for each use of 'this'? The 1136 // fast register allocator would be happier... 1137 CXXThisValue = CXXABIThisValue; 1138 } 1139 1140 // Check the 'this' pointer once per function, if it's available. 1141 if (CXXABIThisValue) { 1142 SanitizerSet SkippedChecks; 1143 SkippedChecks.set(SanitizerKind::ObjectSize, true); 1144 QualType ThisTy = MD->getThisType(); 1145 1146 // If this is the call operator of a lambda with no capture-default, it 1147 // may have a static invoker function, which may call this operator with 1148 // a null 'this' pointer. 1149 if (isLambdaCallOperator(MD) && 1150 MD->getParent()->getLambdaCaptureDefault() == LCD_None) 1151 SkippedChecks.set(SanitizerKind::Null, true); 1152 1153 EmitTypeCheck( 1154 isa<CXXConstructorDecl>(MD) ? TCK_ConstructorCall : TCK_MemberCall, 1155 Loc, CXXABIThisValue, ThisTy, CXXABIThisAlignment, SkippedChecks); 1156 } 1157 } 1158 1159 // If any of the arguments have a variably modified type, make sure to 1160 // emit the type size. 1161 for (FunctionArgList::const_iterator i = Args.begin(), e = Args.end(); 1162 i != e; ++i) { 1163 const VarDecl *VD = *i; 1164 1165 // Dig out the type as written from ParmVarDecls; it's unclear whether 1166 // the standard (C99 6.9.1p10) requires this, but we're following the 1167 // precedent set by gcc. 1168 QualType Ty; 1169 if (const ParmVarDecl *PVD = dyn_cast<ParmVarDecl>(VD)) 1170 Ty = PVD->getOriginalType(); 1171 else 1172 Ty = VD->getType(); 1173 1174 if (Ty->isVariablyModifiedType()) 1175 EmitVariablyModifiedType(Ty); 1176 } 1177 // Emit a location at the end of the prologue. 1178 if (CGDebugInfo *DI = getDebugInfo()) 1179 DI->EmitLocation(Builder, StartLoc); 1180 1181 // TODO: Do we need to handle this in two places like we do with 1182 // target-features/target-cpu? 1183 if (CurFuncDecl) 1184 if (const auto *VecWidth = CurFuncDecl->getAttr<MinVectorWidthAttr>()) 1185 LargestVectorWidth = VecWidth->getVectorWidth(); 1186 } 1187 1188 void CodeGenFunction::EmitFunctionBody(const Stmt *Body) { 1189 incrementProfileCounter(Body); 1190 if (CPlusPlusWithProgress()) 1191 FnIsMustProgress = true; 1192 1193 if (const CompoundStmt *S = dyn_cast<CompoundStmt>(Body)) 1194 EmitCompoundStmtWithoutScope(*S); 1195 else 1196 EmitStmt(Body); 1197 1198 // This is checked after emitting the function body so we know if there 1199 // are any permitted infinite loops. 1200 if (FnIsMustProgress) 1201 CurFn->addFnAttr(llvm::Attribute::MustProgress); 1202 } 1203 1204 /// When instrumenting to collect profile data, the counts for some blocks 1205 /// such as switch cases need to not include the fall-through counts, so 1206 /// emit a branch around the instrumentation code. When not instrumenting, 1207 /// this just calls EmitBlock(). 1208 void CodeGenFunction::EmitBlockWithFallThrough(llvm::BasicBlock *BB, 1209 const Stmt *S) { 1210 llvm::BasicBlock *SkipCountBB = nullptr; 1211 if (HaveInsertPoint() && CGM.getCodeGenOpts().hasProfileClangInstr()) { 1212 // When instrumenting for profiling, the fallthrough to certain 1213 // statements needs to skip over the instrumentation code so that we 1214 // get an accurate count. 1215 SkipCountBB = createBasicBlock("skipcount"); 1216 EmitBranch(SkipCountBB); 1217 } 1218 EmitBlock(BB); 1219 uint64_t CurrentCount = getCurrentProfileCount(); 1220 incrementProfileCounter(S); 1221 setCurrentProfileCount(getCurrentProfileCount() + CurrentCount); 1222 if (SkipCountBB) 1223 EmitBlock(SkipCountBB); 1224 } 1225 1226 /// Tries to mark the given function nounwind based on the 1227 /// non-existence of any throwing calls within it. We believe this is 1228 /// lightweight enough to do at -O0. 1229 static void TryMarkNoThrow(llvm::Function *F) { 1230 // LLVM treats 'nounwind' on a function as part of the type, so we 1231 // can't do this on functions that can be overwritten. 1232 if (F->isInterposable()) return; 1233 1234 for (llvm::BasicBlock &BB : *F) 1235 for (llvm::Instruction &I : BB) 1236 if (I.mayThrow()) 1237 return; 1238 1239 F->setDoesNotThrow(); 1240 } 1241 1242 QualType CodeGenFunction::BuildFunctionArgList(GlobalDecl GD, 1243 FunctionArgList &Args) { 1244 const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl()); 1245 QualType ResTy = FD->getReturnType(); 1246 1247 const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD); 1248 if (MD && MD->isInstance()) { 1249 if (CGM.getCXXABI().HasThisReturn(GD)) 1250 ResTy = MD->getThisType(); 1251 else if (CGM.getCXXABI().hasMostDerivedReturn(GD)) 1252 ResTy = CGM.getContext().VoidPtrTy; 1253 CGM.getCXXABI().buildThisParam(*this, Args); 1254 } 1255 1256 // The base version of an inheriting constructor whose constructed base is a 1257 // virtual base is not passed any arguments (because it doesn't actually call 1258 // the inherited constructor). 1259 bool PassedParams = true; 1260 if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(FD)) 1261 if (auto Inherited = CD->getInheritedConstructor()) 1262 PassedParams = 1263 getTypes().inheritingCtorHasParams(Inherited, GD.getCtorType()); 1264 1265 if (PassedParams) { 1266 for (auto *Param : FD->parameters()) { 1267 Args.push_back(Param); 1268 if (!Param->hasAttr<PassObjectSizeAttr>()) 1269 continue; 1270 1271 auto *Implicit = ImplicitParamDecl::Create( 1272 getContext(), Param->getDeclContext(), Param->getLocation(), 1273 /*Id=*/nullptr, getContext().getSizeType(), ImplicitParamDecl::Other); 1274 SizeArguments[Param] = Implicit; 1275 Args.push_back(Implicit); 1276 } 1277 } 1278 1279 if (MD && (isa<CXXConstructorDecl>(MD) || isa<CXXDestructorDecl>(MD))) 1280 CGM.getCXXABI().addImplicitStructorParams(*this, ResTy, Args); 1281 1282 return ResTy; 1283 } 1284 1285 void CodeGenFunction::GenerateCode(GlobalDecl GD, llvm::Function *Fn, 1286 const CGFunctionInfo &FnInfo) { 1287 const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl()); 1288 CurGD = GD; 1289 1290 FunctionArgList Args; 1291 QualType ResTy = BuildFunctionArgList(GD, Args); 1292 1293 // Check if we should generate debug info for this function. 1294 if (FD->hasAttr<NoDebugAttr>()) 1295 DebugInfo = nullptr; // disable debug info indefinitely for this function 1296 1297 // The function might not have a body if we're generating thunks for a 1298 // function declaration. 1299 SourceRange BodyRange; 1300 if (Stmt *Body = FD->getBody()) 1301 BodyRange = Body->getSourceRange(); 1302 else 1303 BodyRange = FD->getLocation(); 1304 CurEHLocation = BodyRange.getEnd(); 1305 1306 // Use the location of the start of the function to determine where 1307 // the function definition is located. By default use the location 1308 // of the declaration as the location for the subprogram. A function 1309 // may lack a declaration in the source code if it is created by code 1310 // gen. (examples: _GLOBAL__I_a, __cxx_global_array_dtor, thunk). 1311 SourceLocation Loc = FD->getLocation(); 1312 1313 // If this is a function specialization then use the pattern body 1314 // as the location for the function. 1315 if (const FunctionDecl *SpecDecl = FD->getTemplateInstantiationPattern()) 1316 if (SpecDecl->hasBody(SpecDecl)) 1317 Loc = SpecDecl->getLocation(); 1318 1319 Stmt *Body = FD->getBody(); 1320 1321 // Initialize helper which will detect jumps which can cause invalid lifetime 1322 // markers. 1323 if (Body && ShouldEmitLifetimeMarkers) 1324 Bypasses.Init(Body); 1325 1326 // Emit the standard function prologue. 1327 StartFunction(GD, ResTy, Fn, FnInfo, Args, Loc, BodyRange.getBegin()); 1328 1329 // Generate the body of the function. 1330 PGO.assignRegionCounters(GD, CurFn); 1331 if (isa<CXXDestructorDecl>(FD)) 1332 EmitDestructorBody(Args); 1333 else if (isa<CXXConstructorDecl>(FD)) 1334 EmitConstructorBody(Args); 1335 else if (getLangOpts().CUDA && 1336 !getLangOpts().CUDAIsDevice && 1337 FD->hasAttr<CUDAGlobalAttr>()) 1338 CGM.getCUDARuntime().emitDeviceStub(*this, Args); 1339 else if (isa<CXXMethodDecl>(FD) && 1340 cast<CXXMethodDecl>(FD)->isLambdaStaticInvoker()) { 1341 // The lambda static invoker function is special, because it forwards or 1342 // clones the body of the function call operator (but is actually static). 1343 EmitLambdaStaticInvokeBody(cast<CXXMethodDecl>(FD)); 1344 } else if (FD->isDefaulted() && isa<CXXMethodDecl>(FD) && 1345 (cast<CXXMethodDecl>(FD)->isCopyAssignmentOperator() || 1346 cast<CXXMethodDecl>(FD)->isMoveAssignmentOperator())) { 1347 // Implicit copy-assignment gets the same special treatment as implicit 1348 // copy-constructors. 1349 emitImplicitAssignmentOperatorBody(Args); 1350 } else if (Body) { 1351 EmitFunctionBody(Body); 1352 } else 1353 llvm_unreachable("no definition for emitted function"); 1354 1355 // C++11 [stmt.return]p2: 1356 // Flowing off the end of a function [...] results in undefined behavior in 1357 // a value-returning function. 1358 // C11 6.9.1p12: 1359 // If the '}' that terminates a function is reached, and the value of the 1360 // function call is used by the caller, the behavior is undefined. 1361 if (getLangOpts().CPlusPlus && !FD->hasImplicitReturnZero() && !SawAsmBlock && 1362 !FD->getReturnType()->isVoidType() && Builder.GetInsertBlock()) { 1363 bool ShouldEmitUnreachable = 1364 CGM.getCodeGenOpts().StrictReturn || 1365 !CGM.MayDropFunctionReturn(FD->getASTContext(), FD->getReturnType()); 1366 if (SanOpts.has(SanitizerKind::Return)) { 1367 SanitizerScope SanScope(this); 1368 llvm::Value *IsFalse = Builder.getFalse(); 1369 EmitCheck(std::make_pair(IsFalse, SanitizerKind::Return), 1370 SanitizerHandler::MissingReturn, 1371 EmitCheckSourceLocation(FD->getLocation()), None); 1372 } else if (ShouldEmitUnreachable) { 1373 if (CGM.getCodeGenOpts().OptimizationLevel == 0) 1374 EmitTrapCall(llvm::Intrinsic::trap); 1375 } 1376 if (SanOpts.has(SanitizerKind::Return) || ShouldEmitUnreachable) { 1377 Builder.CreateUnreachable(); 1378 Builder.ClearInsertionPoint(); 1379 } 1380 } 1381 1382 // Emit the standard function epilogue. 1383 FinishFunction(BodyRange.getEnd()); 1384 1385 // If we haven't marked the function nothrow through other means, do 1386 // a quick pass now to see if we can. 1387 if (!CurFn->doesNotThrow()) 1388 TryMarkNoThrow(CurFn); 1389 } 1390 1391 /// ContainsLabel - Return true if the statement contains a label in it. If 1392 /// this statement is not executed normally, it not containing a label means 1393 /// that we can just remove the code. 1394 bool CodeGenFunction::ContainsLabel(const Stmt *S, bool IgnoreCaseStmts) { 1395 // Null statement, not a label! 1396 if (!S) return false; 1397 1398 // If this is a label, we have to emit the code, consider something like: 1399 // if (0) { ... foo: bar(); } goto foo; 1400 // 1401 // TODO: If anyone cared, we could track __label__'s, since we know that you 1402 // can't jump to one from outside their declared region. 1403 if (isa<LabelStmt>(S)) 1404 return true; 1405 1406 // If this is a case/default statement, and we haven't seen a switch, we have 1407 // to emit the code. 1408 if (isa<SwitchCase>(S) && !IgnoreCaseStmts) 1409 return true; 1410 1411 // If this is a switch statement, we want to ignore cases below it. 1412 if (isa<SwitchStmt>(S)) 1413 IgnoreCaseStmts = true; 1414 1415 // Scan subexpressions for verboten labels. 1416 for (const Stmt *SubStmt : S->children()) 1417 if (ContainsLabel(SubStmt, IgnoreCaseStmts)) 1418 return true; 1419 1420 return false; 1421 } 1422 1423 /// containsBreak - Return true if the statement contains a break out of it. 1424 /// If the statement (recursively) contains a switch or loop with a break 1425 /// inside of it, this is fine. 1426 bool CodeGenFunction::containsBreak(const Stmt *S) { 1427 // Null statement, not a label! 1428 if (!S) return false; 1429 1430 // If this is a switch or loop that defines its own break scope, then we can 1431 // include it and anything inside of it. 1432 if (isa<SwitchStmt>(S) || isa<WhileStmt>(S) || isa<DoStmt>(S) || 1433 isa<ForStmt>(S)) 1434 return false; 1435 1436 if (isa<BreakStmt>(S)) 1437 return true; 1438 1439 // Scan subexpressions for verboten breaks. 1440 for (const Stmt *SubStmt : S->children()) 1441 if (containsBreak(SubStmt)) 1442 return true; 1443 1444 return false; 1445 } 1446 1447 bool CodeGenFunction::mightAddDeclToScope(const Stmt *S) { 1448 if (!S) return false; 1449 1450 // Some statement kinds add a scope and thus never add a decl to the current 1451 // scope. Note, this list is longer than the list of statements that might 1452 // have an unscoped decl nested within them, but this way is conservatively 1453 // correct even if more statement kinds are added. 1454 if (isa<IfStmt>(S) || isa<SwitchStmt>(S) || isa<WhileStmt>(S) || 1455 isa<DoStmt>(S) || isa<ForStmt>(S) || isa<CompoundStmt>(S) || 1456 isa<CXXForRangeStmt>(S) || isa<CXXTryStmt>(S) || 1457 isa<ObjCForCollectionStmt>(S) || isa<ObjCAtTryStmt>(S)) 1458 return false; 1459 1460 if (isa<DeclStmt>(S)) 1461 return true; 1462 1463 for (const Stmt *SubStmt : S->children()) 1464 if (mightAddDeclToScope(SubStmt)) 1465 return true; 1466 1467 return false; 1468 } 1469 1470 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold 1471 /// to a constant, or if it does but contains a label, return false. If it 1472 /// constant folds return true and set the boolean result in Result. 1473 bool CodeGenFunction::ConstantFoldsToSimpleInteger(const Expr *Cond, 1474 bool &ResultBool, 1475 bool AllowLabels) { 1476 llvm::APSInt ResultInt; 1477 if (!ConstantFoldsToSimpleInteger(Cond, ResultInt, AllowLabels)) 1478 return false; 1479 1480 ResultBool = ResultInt.getBoolValue(); 1481 return true; 1482 } 1483 1484 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold 1485 /// to a constant, or if it does but contains a label, return false. If it 1486 /// constant folds return true and set the folded value. 1487 bool CodeGenFunction::ConstantFoldsToSimpleInteger(const Expr *Cond, 1488 llvm::APSInt &ResultInt, 1489 bool AllowLabels) { 1490 // FIXME: Rename and handle conversion of other evaluatable things 1491 // to bool. 1492 Expr::EvalResult Result; 1493 if (!Cond->EvaluateAsInt(Result, getContext())) 1494 return false; // Not foldable, not integer or not fully evaluatable. 1495 1496 llvm::APSInt Int = Result.Val.getInt(); 1497 if (!AllowLabels && CodeGenFunction::ContainsLabel(Cond)) 1498 return false; // Contains a label. 1499 1500 ResultInt = Int; 1501 return true; 1502 } 1503 1504 /// Determine whether the given condition is an instrumentable condition 1505 /// (i.e. no "&&" or "||"). 1506 bool CodeGenFunction::isInstrumentedCondition(const Expr *C) { 1507 // Bypass simplistic logical-NOT operator before determining whether the 1508 // condition contains any other logical operator. 1509 if (const UnaryOperator *UnOp = dyn_cast<UnaryOperator>(C->IgnoreParens())) 1510 if (UnOp->getOpcode() == UO_LNot) 1511 C = UnOp->getSubExpr(); 1512 1513 const BinaryOperator *BOp = dyn_cast<BinaryOperator>(C->IgnoreParens()); 1514 return (!BOp || !BOp->isLogicalOp()); 1515 } 1516 1517 /// EmitBranchToCounterBlock - Emit a conditional branch to a new block that 1518 /// increments a profile counter based on the semantics of the given logical 1519 /// operator opcode. This is used to instrument branch condition coverage for 1520 /// logical operators. 1521 void CodeGenFunction::EmitBranchToCounterBlock( 1522 const Expr *Cond, BinaryOperator::Opcode LOp, llvm::BasicBlock *TrueBlock, 1523 llvm::BasicBlock *FalseBlock, uint64_t TrueCount /* = 0 */, 1524 Stmt::Likelihood LH /* =None */, const Expr *CntrIdx /* = nullptr */) { 1525 // If not instrumenting, just emit a branch. 1526 bool InstrumentRegions = CGM.getCodeGenOpts().hasProfileClangInstr(); 1527 if (!InstrumentRegions || !isInstrumentedCondition(Cond)) 1528 return EmitBranchOnBoolExpr(Cond, TrueBlock, FalseBlock, TrueCount, LH); 1529 1530 llvm::BasicBlock *ThenBlock = NULL; 1531 llvm::BasicBlock *ElseBlock = NULL; 1532 llvm::BasicBlock *NextBlock = NULL; 1533 1534 // Create the block we'll use to increment the appropriate counter. 1535 llvm::BasicBlock *CounterIncrBlock = createBasicBlock("lop.rhscnt"); 1536 1537 // Set block pointers according to Logical-AND (BO_LAnd) semantics. This 1538 // means we need to evaluate the condition and increment the counter on TRUE: 1539 // 1540 // if (Cond) 1541 // goto CounterIncrBlock; 1542 // else 1543 // goto FalseBlock; 1544 // 1545 // CounterIncrBlock: 1546 // Counter++; 1547 // goto TrueBlock; 1548 1549 if (LOp == BO_LAnd) { 1550 ThenBlock = CounterIncrBlock; 1551 ElseBlock = FalseBlock; 1552 NextBlock = TrueBlock; 1553 } 1554 1555 // Set block pointers according to Logical-OR (BO_LOr) semantics. This means 1556 // we need to evaluate the condition and increment the counter on FALSE: 1557 // 1558 // if (Cond) 1559 // goto TrueBlock; 1560 // else 1561 // goto CounterIncrBlock; 1562 // 1563 // CounterIncrBlock: 1564 // Counter++; 1565 // goto FalseBlock; 1566 1567 else if (LOp == BO_LOr) { 1568 ThenBlock = TrueBlock; 1569 ElseBlock = CounterIncrBlock; 1570 NextBlock = FalseBlock; 1571 } else { 1572 llvm_unreachable("Expected Opcode must be that of a Logical Operator"); 1573 } 1574 1575 // Emit Branch based on condition. 1576 EmitBranchOnBoolExpr(Cond, ThenBlock, ElseBlock, TrueCount, LH); 1577 1578 // Emit the block containing the counter increment(s). 1579 EmitBlock(CounterIncrBlock); 1580 1581 // Increment corresponding counter; if index not provided, use Cond as index. 1582 incrementProfileCounter(CntrIdx ? CntrIdx : Cond); 1583 1584 // Go to the next block. 1585 EmitBranch(NextBlock); 1586 } 1587 1588 /// EmitBranchOnBoolExpr - Emit a branch on a boolean condition (e.g. for an if 1589 /// statement) to the specified blocks. Based on the condition, this might try 1590 /// to simplify the codegen of the conditional based on the branch. 1591 /// \param LH The value of the likelihood attribute on the True branch. 1592 void CodeGenFunction::EmitBranchOnBoolExpr(const Expr *Cond, 1593 llvm::BasicBlock *TrueBlock, 1594 llvm::BasicBlock *FalseBlock, 1595 uint64_t TrueCount, 1596 Stmt::Likelihood LH) { 1597 Cond = Cond->IgnoreParens(); 1598 1599 if (const BinaryOperator *CondBOp = dyn_cast<BinaryOperator>(Cond)) { 1600 1601 // Handle X && Y in a condition. 1602 if (CondBOp->getOpcode() == BO_LAnd) { 1603 // If we have "1 && X", simplify the code. "0 && X" would have constant 1604 // folded if the case was simple enough. 1605 bool ConstantBool = false; 1606 if (ConstantFoldsToSimpleInteger(CondBOp->getLHS(), ConstantBool) && 1607 ConstantBool) { 1608 // br(1 && X) -> br(X). 1609 incrementProfileCounter(CondBOp); 1610 return EmitBranchToCounterBlock(CondBOp->getRHS(), BO_LAnd, TrueBlock, 1611 FalseBlock, TrueCount, LH); 1612 } 1613 1614 // If we have "X && 1", simplify the code to use an uncond branch. 1615 // "X && 0" would have been constant folded to 0. 1616 if (ConstantFoldsToSimpleInteger(CondBOp->getRHS(), ConstantBool) && 1617 ConstantBool) { 1618 // br(X && 1) -> br(X). 1619 return EmitBranchToCounterBlock(CondBOp->getLHS(), BO_LAnd, TrueBlock, 1620 FalseBlock, TrueCount, LH, CondBOp); 1621 } 1622 1623 // Emit the LHS as a conditional. If the LHS conditional is false, we 1624 // want to jump to the FalseBlock. 1625 llvm::BasicBlock *LHSTrue = createBasicBlock("land.lhs.true"); 1626 // The counter tells us how often we evaluate RHS, and all of TrueCount 1627 // can be propagated to that branch. 1628 uint64_t RHSCount = getProfileCount(CondBOp->getRHS()); 1629 1630 ConditionalEvaluation eval(*this); 1631 { 1632 ApplyDebugLocation DL(*this, Cond); 1633 // Propagate the likelihood attribute like __builtin_expect 1634 // __builtin_expect(X && Y, 1) -> X and Y are likely 1635 // __builtin_expect(X && Y, 0) -> only Y is unlikely 1636 EmitBranchOnBoolExpr(CondBOp->getLHS(), LHSTrue, FalseBlock, RHSCount, 1637 LH == Stmt::LH_Unlikely ? Stmt::LH_None : LH); 1638 EmitBlock(LHSTrue); 1639 } 1640 1641 incrementProfileCounter(CondBOp); 1642 setCurrentProfileCount(getProfileCount(CondBOp->getRHS())); 1643 1644 // Any temporaries created here are conditional. 1645 eval.begin(*this); 1646 EmitBranchToCounterBlock(CondBOp->getRHS(), BO_LAnd, TrueBlock, 1647 FalseBlock, TrueCount, LH); 1648 eval.end(*this); 1649 1650 return; 1651 } 1652 1653 if (CondBOp->getOpcode() == BO_LOr) { 1654 // If we have "0 || X", simplify the code. "1 || X" would have constant 1655 // folded if the case was simple enough. 1656 bool ConstantBool = false; 1657 if (ConstantFoldsToSimpleInteger(CondBOp->getLHS(), ConstantBool) && 1658 !ConstantBool) { 1659 // br(0 || X) -> br(X). 1660 incrementProfileCounter(CondBOp); 1661 return EmitBranchToCounterBlock(CondBOp->getRHS(), BO_LOr, TrueBlock, 1662 FalseBlock, TrueCount, LH); 1663 } 1664 1665 // If we have "X || 0", simplify the code to use an uncond branch. 1666 // "X || 1" would have been constant folded to 1. 1667 if (ConstantFoldsToSimpleInteger(CondBOp->getRHS(), ConstantBool) && 1668 !ConstantBool) { 1669 // br(X || 0) -> br(X). 1670 return EmitBranchToCounterBlock(CondBOp->getLHS(), BO_LOr, TrueBlock, 1671 FalseBlock, TrueCount, LH, CondBOp); 1672 } 1673 1674 // Emit the LHS as a conditional. If the LHS conditional is true, we 1675 // want to jump to the TrueBlock. 1676 llvm::BasicBlock *LHSFalse = createBasicBlock("lor.lhs.false"); 1677 // We have the count for entry to the RHS and for the whole expression 1678 // being true, so we can divy up True count between the short circuit and 1679 // the RHS. 1680 uint64_t LHSCount = 1681 getCurrentProfileCount() - getProfileCount(CondBOp->getRHS()); 1682 uint64_t RHSCount = TrueCount - LHSCount; 1683 1684 ConditionalEvaluation eval(*this); 1685 { 1686 // Propagate the likelihood attribute like __builtin_expect 1687 // __builtin_expect(X || Y, 1) -> only Y is likely 1688 // __builtin_expect(X || Y, 0) -> both X and Y are unlikely 1689 ApplyDebugLocation DL(*this, Cond); 1690 EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, LHSFalse, LHSCount, 1691 LH == Stmt::LH_Likely ? Stmt::LH_None : LH); 1692 EmitBlock(LHSFalse); 1693 } 1694 1695 incrementProfileCounter(CondBOp); 1696 setCurrentProfileCount(getProfileCount(CondBOp->getRHS())); 1697 1698 // Any temporaries created here are conditional. 1699 eval.begin(*this); 1700 EmitBranchToCounterBlock(CondBOp->getRHS(), BO_LOr, TrueBlock, FalseBlock, 1701 RHSCount, LH); 1702 1703 eval.end(*this); 1704 1705 return; 1706 } 1707 } 1708 1709 if (const UnaryOperator *CondUOp = dyn_cast<UnaryOperator>(Cond)) { 1710 // br(!x, t, f) -> br(x, f, t) 1711 if (CondUOp->getOpcode() == UO_LNot) { 1712 // Negate the count. 1713 uint64_t FalseCount = getCurrentProfileCount() - TrueCount; 1714 // The values of the enum are chosen to make this negation possible. 1715 LH = static_cast<Stmt::Likelihood>(-LH); 1716 // Negate the condition and swap the destination blocks. 1717 return EmitBranchOnBoolExpr(CondUOp->getSubExpr(), FalseBlock, TrueBlock, 1718 FalseCount, LH); 1719 } 1720 } 1721 1722 if (const ConditionalOperator *CondOp = dyn_cast<ConditionalOperator>(Cond)) { 1723 // br(c ? x : y, t, f) -> br(c, br(x, t, f), br(y, t, f)) 1724 llvm::BasicBlock *LHSBlock = createBasicBlock("cond.true"); 1725 llvm::BasicBlock *RHSBlock = createBasicBlock("cond.false"); 1726 1727 // The ConditionalOperator itself has no likelihood information for its 1728 // true and false branches. This matches the behavior of __builtin_expect. 1729 ConditionalEvaluation cond(*this); 1730 EmitBranchOnBoolExpr(CondOp->getCond(), LHSBlock, RHSBlock, 1731 getProfileCount(CondOp), Stmt::LH_None); 1732 1733 // When computing PGO branch weights, we only know the overall count for 1734 // the true block. This code is essentially doing tail duplication of the 1735 // naive code-gen, introducing new edges for which counts are not 1736 // available. Divide the counts proportionally between the LHS and RHS of 1737 // the conditional operator. 1738 uint64_t LHSScaledTrueCount = 0; 1739 if (TrueCount) { 1740 double LHSRatio = 1741 getProfileCount(CondOp) / (double)getCurrentProfileCount(); 1742 LHSScaledTrueCount = TrueCount * LHSRatio; 1743 } 1744 1745 cond.begin(*this); 1746 EmitBlock(LHSBlock); 1747 incrementProfileCounter(CondOp); 1748 { 1749 ApplyDebugLocation DL(*this, Cond); 1750 EmitBranchOnBoolExpr(CondOp->getLHS(), TrueBlock, FalseBlock, 1751 LHSScaledTrueCount, LH); 1752 } 1753 cond.end(*this); 1754 1755 cond.begin(*this); 1756 EmitBlock(RHSBlock); 1757 EmitBranchOnBoolExpr(CondOp->getRHS(), TrueBlock, FalseBlock, 1758 TrueCount - LHSScaledTrueCount, LH); 1759 cond.end(*this); 1760 1761 return; 1762 } 1763 1764 if (const CXXThrowExpr *Throw = dyn_cast<CXXThrowExpr>(Cond)) { 1765 // Conditional operator handling can give us a throw expression as a 1766 // condition for a case like: 1767 // br(c ? throw x : y, t, f) -> br(c, br(throw x, t, f), br(y, t, f) 1768 // Fold this to: 1769 // br(c, throw x, br(y, t, f)) 1770 EmitCXXThrowExpr(Throw, /*KeepInsertionPoint*/false); 1771 return; 1772 } 1773 1774 // Emit the code with the fully general case. 1775 llvm::Value *CondV; 1776 { 1777 ApplyDebugLocation DL(*this, Cond); 1778 CondV = EvaluateExprAsBool(Cond); 1779 } 1780 1781 llvm::MDNode *Weights = nullptr; 1782 llvm::MDNode *Unpredictable = nullptr; 1783 1784 // If the branch has a condition wrapped by __builtin_unpredictable, 1785 // create metadata that specifies that the branch is unpredictable. 1786 // Don't bother if not optimizing because that metadata would not be used. 1787 auto *Call = dyn_cast<CallExpr>(Cond->IgnoreImpCasts()); 1788 if (Call && CGM.getCodeGenOpts().OptimizationLevel != 0) { 1789 auto *FD = dyn_cast_or_null<FunctionDecl>(Call->getCalleeDecl()); 1790 if (FD && FD->getBuiltinID() == Builtin::BI__builtin_unpredictable) { 1791 llvm::MDBuilder MDHelper(getLLVMContext()); 1792 Unpredictable = MDHelper.createUnpredictable(); 1793 } 1794 } 1795 1796 // If there is a Likelihood knowledge for the cond, lower it. 1797 // Note that if not optimizing this won't emit anything. 1798 llvm::Value *NewCondV = emitCondLikelihoodViaExpectIntrinsic(CondV, LH); 1799 if (CondV != NewCondV) 1800 CondV = NewCondV; 1801 else { 1802 // Otherwise, lower profile counts. Note that we do this even at -O0. 1803 uint64_t CurrentCount = std::max(getCurrentProfileCount(), TrueCount); 1804 Weights = createProfileWeights(TrueCount, CurrentCount - TrueCount); 1805 } 1806 1807 Builder.CreateCondBr(CondV, TrueBlock, FalseBlock, Weights, Unpredictable); 1808 } 1809 1810 /// ErrorUnsupported - Print out an error that codegen doesn't support the 1811 /// specified stmt yet. 1812 void CodeGenFunction::ErrorUnsupported(const Stmt *S, const char *Type) { 1813 CGM.ErrorUnsupported(S, Type); 1814 } 1815 1816 /// emitNonZeroVLAInit - Emit the "zero" initialization of a 1817 /// variable-length array whose elements have a non-zero bit-pattern. 1818 /// 1819 /// \param baseType the inner-most element type of the array 1820 /// \param src - a char* pointing to the bit-pattern for a single 1821 /// base element of the array 1822 /// \param sizeInChars - the total size of the VLA, in chars 1823 static void emitNonZeroVLAInit(CodeGenFunction &CGF, QualType baseType, 1824 Address dest, Address src, 1825 llvm::Value *sizeInChars) { 1826 CGBuilderTy &Builder = CGF.Builder; 1827 1828 CharUnits baseSize = CGF.getContext().getTypeSizeInChars(baseType); 1829 llvm::Value *baseSizeInChars 1830 = llvm::ConstantInt::get(CGF.IntPtrTy, baseSize.getQuantity()); 1831 1832 Address begin = 1833 Builder.CreateElementBitCast(dest, CGF.Int8Ty, "vla.begin"); 1834 llvm::Value *end = Builder.CreateInBoundsGEP( 1835 begin.getElementType(), begin.getPointer(), sizeInChars, "vla.end"); 1836 1837 llvm::BasicBlock *originBB = CGF.Builder.GetInsertBlock(); 1838 llvm::BasicBlock *loopBB = CGF.createBasicBlock("vla-init.loop"); 1839 llvm::BasicBlock *contBB = CGF.createBasicBlock("vla-init.cont"); 1840 1841 // Make a loop over the VLA. C99 guarantees that the VLA element 1842 // count must be nonzero. 1843 CGF.EmitBlock(loopBB); 1844 1845 llvm::PHINode *cur = Builder.CreatePHI(begin.getType(), 2, "vla.cur"); 1846 cur->addIncoming(begin.getPointer(), originBB); 1847 1848 CharUnits curAlign = 1849 dest.getAlignment().alignmentOfArrayElement(baseSize); 1850 1851 // memcpy the individual element bit-pattern. 1852 Builder.CreateMemCpy(Address(cur, curAlign), src, baseSizeInChars, 1853 /*volatile*/ false); 1854 1855 // Go to the next element. 1856 llvm::Value *next = 1857 Builder.CreateInBoundsGEP(CGF.Int8Ty, cur, baseSizeInChars, "vla.next"); 1858 1859 // Leave if that's the end of the VLA. 1860 llvm::Value *done = Builder.CreateICmpEQ(next, end, "vla-init.isdone"); 1861 Builder.CreateCondBr(done, contBB, loopBB); 1862 cur->addIncoming(next, loopBB); 1863 1864 CGF.EmitBlock(contBB); 1865 } 1866 1867 void 1868 CodeGenFunction::EmitNullInitialization(Address DestPtr, QualType Ty) { 1869 // Ignore empty classes in C++. 1870 if (getLangOpts().CPlusPlus) { 1871 if (const RecordType *RT = Ty->getAs<RecordType>()) { 1872 if (cast<CXXRecordDecl>(RT->getDecl())->isEmpty()) 1873 return; 1874 } 1875 } 1876 1877 // Cast the dest ptr to the appropriate i8 pointer type. 1878 if (DestPtr.getElementType() != Int8Ty) 1879 DestPtr = Builder.CreateElementBitCast(DestPtr, Int8Ty); 1880 1881 // Get size and alignment info for this aggregate. 1882 CharUnits size = getContext().getTypeSizeInChars(Ty); 1883 1884 llvm::Value *SizeVal; 1885 const VariableArrayType *vla; 1886 1887 // Don't bother emitting a zero-byte memset. 1888 if (size.isZero()) { 1889 // But note that getTypeInfo returns 0 for a VLA. 1890 if (const VariableArrayType *vlaType = 1891 dyn_cast_or_null<VariableArrayType>( 1892 getContext().getAsArrayType(Ty))) { 1893 auto VlaSize = getVLASize(vlaType); 1894 SizeVal = VlaSize.NumElts; 1895 CharUnits eltSize = getContext().getTypeSizeInChars(VlaSize.Type); 1896 if (!eltSize.isOne()) 1897 SizeVal = Builder.CreateNUWMul(SizeVal, CGM.getSize(eltSize)); 1898 vla = vlaType; 1899 } else { 1900 return; 1901 } 1902 } else { 1903 SizeVal = CGM.getSize(size); 1904 vla = nullptr; 1905 } 1906 1907 // If the type contains a pointer to data member we can't memset it to zero. 1908 // Instead, create a null constant and copy it to the destination. 1909 // TODO: there are other patterns besides zero that we can usefully memset, 1910 // like -1, which happens to be the pattern used by member-pointers. 1911 if (!CGM.getTypes().isZeroInitializable(Ty)) { 1912 // For a VLA, emit a single element, then splat that over the VLA. 1913 if (vla) Ty = getContext().getBaseElementType(vla); 1914 1915 llvm::Constant *NullConstant = CGM.EmitNullConstant(Ty); 1916 1917 llvm::GlobalVariable *NullVariable = 1918 new llvm::GlobalVariable(CGM.getModule(), NullConstant->getType(), 1919 /*isConstant=*/true, 1920 llvm::GlobalVariable::PrivateLinkage, 1921 NullConstant, Twine()); 1922 CharUnits NullAlign = DestPtr.getAlignment(); 1923 NullVariable->setAlignment(NullAlign.getAsAlign()); 1924 Address SrcPtr(Builder.CreateBitCast(NullVariable, Builder.getInt8PtrTy()), 1925 NullAlign); 1926 1927 if (vla) return emitNonZeroVLAInit(*this, Ty, DestPtr, SrcPtr, SizeVal); 1928 1929 // Get and call the appropriate llvm.memcpy overload. 1930 Builder.CreateMemCpy(DestPtr, SrcPtr, SizeVal, false); 1931 return; 1932 } 1933 1934 // Otherwise, just memset the whole thing to zero. This is legal 1935 // because in LLVM, all default initializers (other than the ones we just 1936 // handled above) are guaranteed to have a bit pattern of all zeros. 1937 Builder.CreateMemSet(DestPtr, Builder.getInt8(0), SizeVal, false); 1938 } 1939 1940 llvm::BlockAddress *CodeGenFunction::GetAddrOfLabel(const LabelDecl *L) { 1941 // Make sure that there is a block for the indirect goto. 1942 if (!IndirectBranch) 1943 GetIndirectGotoBlock(); 1944 1945 llvm::BasicBlock *BB = getJumpDestForLabel(L).getBlock(); 1946 1947 // Make sure the indirect branch includes all of the address-taken blocks. 1948 IndirectBranch->addDestination(BB); 1949 return llvm::BlockAddress::get(CurFn, BB); 1950 } 1951 1952 llvm::BasicBlock *CodeGenFunction::GetIndirectGotoBlock() { 1953 // If we already made the indirect branch for indirect goto, return its block. 1954 if (IndirectBranch) return IndirectBranch->getParent(); 1955 1956 CGBuilderTy TmpBuilder(*this, createBasicBlock("indirectgoto")); 1957 1958 // Create the PHI node that indirect gotos will add entries to. 1959 llvm::Value *DestVal = TmpBuilder.CreatePHI(Int8PtrTy, 0, 1960 "indirect.goto.dest"); 1961 1962 // Create the indirect branch instruction. 1963 IndirectBranch = TmpBuilder.CreateIndirectBr(DestVal); 1964 return IndirectBranch->getParent(); 1965 } 1966 1967 /// Computes the length of an array in elements, as well as the base 1968 /// element type and a properly-typed first element pointer. 1969 llvm::Value *CodeGenFunction::emitArrayLength(const ArrayType *origArrayType, 1970 QualType &baseType, 1971 Address &addr) { 1972 const ArrayType *arrayType = origArrayType; 1973 1974 // If it's a VLA, we have to load the stored size. Note that 1975 // this is the size of the VLA in bytes, not its size in elements. 1976 llvm::Value *numVLAElements = nullptr; 1977 if (isa<VariableArrayType>(arrayType)) { 1978 numVLAElements = getVLASize(cast<VariableArrayType>(arrayType)).NumElts; 1979 1980 // Walk into all VLAs. This doesn't require changes to addr, 1981 // which has type T* where T is the first non-VLA element type. 1982 do { 1983 QualType elementType = arrayType->getElementType(); 1984 arrayType = getContext().getAsArrayType(elementType); 1985 1986 // If we only have VLA components, 'addr' requires no adjustment. 1987 if (!arrayType) { 1988 baseType = elementType; 1989 return numVLAElements; 1990 } 1991 } while (isa<VariableArrayType>(arrayType)); 1992 1993 // We get out here only if we find a constant array type 1994 // inside the VLA. 1995 } 1996 1997 // We have some number of constant-length arrays, so addr should 1998 // have LLVM type [M x [N x [...]]]*. Build a GEP that walks 1999 // down to the first element of addr. 2000 SmallVector<llvm::Value*, 8> gepIndices; 2001 2002 // GEP down to the array type. 2003 llvm::ConstantInt *zero = Builder.getInt32(0); 2004 gepIndices.push_back(zero); 2005 2006 uint64_t countFromCLAs = 1; 2007 QualType eltType; 2008 2009 llvm::ArrayType *llvmArrayType = 2010 dyn_cast<llvm::ArrayType>(addr.getElementType()); 2011 while (llvmArrayType) { 2012 assert(isa<ConstantArrayType>(arrayType)); 2013 assert(cast<ConstantArrayType>(arrayType)->getSize().getZExtValue() 2014 == llvmArrayType->getNumElements()); 2015 2016 gepIndices.push_back(zero); 2017 countFromCLAs *= llvmArrayType->getNumElements(); 2018 eltType = arrayType->getElementType(); 2019 2020 llvmArrayType = 2021 dyn_cast<llvm::ArrayType>(llvmArrayType->getElementType()); 2022 arrayType = getContext().getAsArrayType(arrayType->getElementType()); 2023 assert((!llvmArrayType || arrayType) && 2024 "LLVM and Clang types are out-of-synch"); 2025 } 2026 2027 if (arrayType) { 2028 // From this point onwards, the Clang array type has been emitted 2029 // as some other type (probably a packed struct). Compute the array 2030 // size, and just emit the 'begin' expression as a bitcast. 2031 while (arrayType) { 2032 countFromCLAs *= 2033 cast<ConstantArrayType>(arrayType)->getSize().getZExtValue(); 2034 eltType = arrayType->getElementType(); 2035 arrayType = getContext().getAsArrayType(eltType); 2036 } 2037 2038 llvm::Type *baseType = ConvertType(eltType); 2039 addr = Builder.CreateElementBitCast(addr, baseType, "array.begin"); 2040 } else { 2041 // Create the actual GEP. 2042 addr = Address(Builder.CreateInBoundsGEP( 2043 addr.getElementType(), addr.getPointer(), gepIndices, "array.begin"), 2044 addr.getAlignment()); 2045 } 2046 2047 baseType = eltType; 2048 2049 llvm::Value *numElements 2050 = llvm::ConstantInt::get(SizeTy, countFromCLAs); 2051 2052 // If we had any VLA dimensions, factor them in. 2053 if (numVLAElements) 2054 numElements = Builder.CreateNUWMul(numVLAElements, numElements); 2055 2056 return numElements; 2057 } 2058 2059 CodeGenFunction::VlaSizePair CodeGenFunction::getVLASize(QualType type) { 2060 const VariableArrayType *vla = getContext().getAsVariableArrayType(type); 2061 assert(vla && "type was not a variable array type!"); 2062 return getVLASize(vla); 2063 } 2064 2065 CodeGenFunction::VlaSizePair 2066 CodeGenFunction::getVLASize(const VariableArrayType *type) { 2067 // The number of elements so far; always size_t. 2068 llvm::Value *numElements = nullptr; 2069 2070 QualType elementType; 2071 do { 2072 elementType = type->getElementType(); 2073 llvm::Value *vlaSize = VLASizeMap[type->getSizeExpr()]; 2074 assert(vlaSize && "no size for VLA!"); 2075 assert(vlaSize->getType() == SizeTy); 2076 2077 if (!numElements) { 2078 numElements = vlaSize; 2079 } else { 2080 // It's undefined behavior if this wraps around, so mark it that way. 2081 // FIXME: Teach -fsanitize=undefined to trap this. 2082 numElements = Builder.CreateNUWMul(numElements, vlaSize); 2083 } 2084 } while ((type = getContext().getAsVariableArrayType(elementType))); 2085 2086 return { numElements, elementType }; 2087 } 2088 2089 CodeGenFunction::VlaSizePair 2090 CodeGenFunction::getVLAElements1D(QualType type) { 2091 const VariableArrayType *vla = getContext().getAsVariableArrayType(type); 2092 assert(vla && "type was not a variable array type!"); 2093 return getVLAElements1D(vla); 2094 } 2095 2096 CodeGenFunction::VlaSizePair 2097 CodeGenFunction::getVLAElements1D(const VariableArrayType *Vla) { 2098 llvm::Value *VlaSize = VLASizeMap[Vla->getSizeExpr()]; 2099 assert(VlaSize && "no size for VLA!"); 2100 assert(VlaSize->getType() == SizeTy); 2101 return { VlaSize, Vla->getElementType() }; 2102 } 2103 2104 void CodeGenFunction::EmitVariablyModifiedType(QualType type) { 2105 assert(type->isVariablyModifiedType() && 2106 "Must pass variably modified type to EmitVLASizes!"); 2107 2108 EnsureInsertPoint(); 2109 2110 // We're going to walk down into the type and look for VLA 2111 // expressions. 2112 do { 2113 assert(type->isVariablyModifiedType()); 2114 2115 const Type *ty = type.getTypePtr(); 2116 switch (ty->getTypeClass()) { 2117 2118 #define TYPE(Class, Base) 2119 #define ABSTRACT_TYPE(Class, Base) 2120 #define NON_CANONICAL_TYPE(Class, Base) 2121 #define DEPENDENT_TYPE(Class, Base) case Type::Class: 2122 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base) 2123 #include "clang/AST/TypeNodes.inc" 2124 llvm_unreachable("unexpected dependent type!"); 2125 2126 // These types are never variably-modified. 2127 case Type::Builtin: 2128 case Type::Complex: 2129 case Type::Vector: 2130 case Type::ExtVector: 2131 case Type::ConstantMatrix: 2132 case Type::Record: 2133 case Type::Enum: 2134 case Type::Elaborated: 2135 case Type::TemplateSpecialization: 2136 case Type::ObjCTypeParam: 2137 case Type::ObjCObject: 2138 case Type::ObjCInterface: 2139 case Type::ObjCObjectPointer: 2140 case Type::ExtInt: 2141 llvm_unreachable("type class is never variably-modified!"); 2142 2143 case Type::Adjusted: 2144 type = cast<AdjustedType>(ty)->getAdjustedType(); 2145 break; 2146 2147 case Type::Decayed: 2148 type = cast<DecayedType>(ty)->getPointeeType(); 2149 break; 2150 2151 case Type::Pointer: 2152 type = cast<PointerType>(ty)->getPointeeType(); 2153 break; 2154 2155 case Type::BlockPointer: 2156 type = cast<BlockPointerType>(ty)->getPointeeType(); 2157 break; 2158 2159 case Type::LValueReference: 2160 case Type::RValueReference: 2161 type = cast<ReferenceType>(ty)->getPointeeType(); 2162 break; 2163 2164 case Type::MemberPointer: 2165 type = cast<MemberPointerType>(ty)->getPointeeType(); 2166 break; 2167 2168 case Type::ConstantArray: 2169 case Type::IncompleteArray: 2170 // Losing element qualification here is fine. 2171 type = cast<ArrayType>(ty)->getElementType(); 2172 break; 2173 2174 case Type::VariableArray: { 2175 // Losing element qualification here is fine. 2176 const VariableArrayType *vat = cast<VariableArrayType>(ty); 2177 2178 // Unknown size indication requires no size computation. 2179 // Otherwise, evaluate and record it. 2180 if (const Expr *size = vat->getSizeExpr()) { 2181 // It's possible that we might have emitted this already, 2182 // e.g. with a typedef and a pointer to it. 2183 llvm::Value *&entry = VLASizeMap[size]; 2184 if (!entry) { 2185 llvm::Value *Size = EmitScalarExpr(size); 2186 2187 // C11 6.7.6.2p5: 2188 // If the size is an expression that is not an integer constant 2189 // expression [...] each time it is evaluated it shall have a value 2190 // greater than zero. 2191 if (SanOpts.has(SanitizerKind::VLABound) && 2192 size->getType()->isSignedIntegerType()) { 2193 SanitizerScope SanScope(this); 2194 llvm::Value *Zero = llvm::Constant::getNullValue(Size->getType()); 2195 llvm::Constant *StaticArgs[] = { 2196 EmitCheckSourceLocation(size->getBeginLoc()), 2197 EmitCheckTypeDescriptor(size->getType())}; 2198 EmitCheck(std::make_pair(Builder.CreateICmpSGT(Size, Zero), 2199 SanitizerKind::VLABound), 2200 SanitizerHandler::VLABoundNotPositive, StaticArgs, Size); 2201 } 2202 2203 // Always zexting here would be wrong if it weren't 2204 // undefined behavior to have a negative bound. 2205 entry = Builder.CreateIntCast(Size, SizeTy, /*signed*/ false); 2206 } 2207 } 2208 type = vat->getElementType(); 2209 break; 2210 } 2211 2212 case Type::FunctionProto: 2213 case Type::FunctionNoProto: 2214 type = cast<FunctionType>(ty)->getReturnType(); 2215 break; 2216 2217 case Type::Paren: 2218 case Type::TypeOf: 2219 case Type::UnaryTransform: 2220 case Type::Attributed: 2221 case Type::SubstTemplateTypeParm: 2222 case Type::MacroQualified: 2223 // Keep walking after single level desugaring. 2224 type = type.getSingleStepDesugaredType(getContext()); 2225 break; 2226 2227 case Type::Typedef: 2228 case Type::Decltype: 2229 case Type::Auto: 2230 case Type::DeducedTemplateSpecialization: 2231 // Stop walking: nothing to do. 2232 return; 2233 2234 case Type::TypeOfExpr: 2235 // Stop walking: emit typeof expression. 2236 EmitIgnoredExpr(cast<TypeOfExprType>(ty)->getUnderlyingExpr()); 2237 return; 2238 2239 case Type::Atomic: 2240 type = cast<AtomicType>(ty)->getValueType(); 2241 break; 2242 2243 case Type::Pipe: 2244 type = cast<PipeType>(ty)->getElementType(); 2245 break; 2246 } 2247 } while (type->isVariablyModifiedType()); 2248 } 2249 2250 Address CodeGenFunction::EmitVAListRef(const Expr* E) { 2251 if (getContext().getBuiltinVaListType()->isArrayType()) 2252 return EmitPointerWithAlignment(E); 2253 return EmitLValue(E).getAddress(*this); 2254 } 2255 2256 Address CodeGenFunction::EmitMSVAListRef(const Expr *E) { 2257 return EmitLValue(E).getAddress(*this); 2258 } 2259 2260 void CodeGenFunction::EmitDeclRefExprDbgValue(const DeclRefExpr *E, 2261 const APValue &Init) { 2262 assert(Init.hasValue() && "Invalid DeclRefExpr initializer!"); 2263 if (CGDebugInfo *Dbg = getDebugInfo()) 2264 if (CGM.getCodeGenOpts().hasReducedDebugInfo()) 2265 Dbg->EmitGlobalVariable(E->getDecl(), Init); 2266 } 2267 2268 CodeGenFunction::PeepholeProtection 2269 CodeGenFunction::protectFromPeepholes(RValue rvalue) { 2270 // At the moment, the only aggressive peephole we do in IR gen 2271 // is trunc(zext) folding, but if we add more, we can easily 2272 // extend this protection. 2273 2274 if (!rvalue.isScalar()) return PeepholeProtection(); 2275 llvm::Value *value = rvalue.getScalarVal(); 2276 if (!isa<llvm::ZExtInst>(value)) return PeepholeProtection(); 2277 2278 // Just make an extra bitcast. 2279 assert(HaveInsertPoint()); 2280 llvm::Instruction *inst = new llvm::BitCastInst(value, value->getType(), "", 2281 Builder.GetInsertBlock()); 2282 2283 PeepholeProtection protection; 2284 protection.Inst = inst; 2285 return protection; 2286 } 2287 2288 void CodeGenFunction::unprotectFromPeepholes(PeepholeProtection protection) { 2289 if (!protection.Inst) return; 2290 2291 // In theory, we could try to duplicate the peepholes now, but whatever. 2292 protection.Inst->eraseFromParent(); 2293 } 2294 2295 void CodeGenFunction::emitAlignmentAssumption(llvm::Value *PtrValue, 2296 QualType Ty, SourceLocation Loc, 2297 SourceLocation AssumptionLoc, 2298 llvm::Value *Alignment, 2299 llvm::Value *OffsetValue) { 2300 if (Alignment->getType() != IntPtrTy) 2301 Alignment = 2302 Builder.CreateIntCast(Alignment, IntPtrTy, false, "casted.align"); 2303 if (OffsetValue && OffsetValue->getType() != IntPtrTy) 2304 OffsetValue = 2305 Builder.CreateIntCast(OffsetValue, IntPtrTy, true, "casted.offset"); 2306 llvm::Value *TheCheck = nullptr; 2307 if (SanOpts.has(SanitizerKind::Alignment)) { 2308 llvm::Value *PtrIntValue = 2309 Builder.CreatePtrToInt(PtrValue, IntPtrTy, "ptrint"); 2310 2311 if (OffsetValue) { 2312 bool IsOffsetZero = false; 2313 if (const auto *CI = dyn_cast<llvm::ConstantInt>(OffsetValue)) 2314 IsOffsetZero = CI->isZero(); 2315 2316 if (!IsOffsetZero) 2317 PtrIntValue = Builder.CreateSub(PtrIntValue, OffsetValue, "offsetptr"); 2318 } 2319 2320 llvm::Value *Zero = llvm::ConstantInt::get(IntPtrTy, 0); 2321 llvm::Value *Mask = 2322 Builder.CreateSub(Alignment, llvm::ConstantInt::get(IntPtrTy, 1)); 2323 llvm::Value *MaskedPtr = Builder.CreateAnd(PtrIntValue, Mask, "maskedptr"); 2324 TheCheck = Builder.CreateICmpEQ(MaskedPtr, Zero, "maskcond"); 2325 } 2326 llvm::Instruction *Assumption = Builder.CreateAlignmentAssumption( 2327 CGM.getDataLayout(), PtrValue, Alignment, OffsetValue); 2328 2329 if (!SanOpts.has(SanitizerKind::Alignment)) 2330 return; 2331 emitAlignmentAssumptionCheck(PtrValue, Ty, Loc, AssumptionLoc, Alignment, 2332 OffsetValue, TheCheck, Assumption); 2333 } 2334 2335 void CodeGenFunction::emitAlignmentAssumption(llvm::Value *PtrValue, 2336 const Expr *E, 2337 SourceLocation AssumptionLoc, 2338 llvm::Value *Alignment, 2339 llvm::Value *OffsetValue) { 2340 if (auto *CE = dyn_cast<CastExpr>(E)) 2341 E = CE->getSubExprAsWritten(); 2342 QualType Ty = E->getType(); 2343 SourceLocation Loc = E->getExprLoc(); 2344 2345 emitAlignmentAssumption(PtrValue, Ty, Loc, AssumptionLoc, Alignment, 2346 OffsetValue); 2347 } 2348 2349 llvm::Value *CodeGenFunction::EmitAnnotationCall(llvm::Function *AnnotationFn, 2350 llvm::Value *AnnotatedVal, 2351 StringRef AnnotationStr, 2352 SourceLocation Location, 2353 const AnnotateAttr *Attr) { 2354 SmallVector<llvm::Value *, 5> Args = { 2355 AnnotatedVal, 2356 Builder.CreateBitCast(CGM.EmitAnnotationString(AnnotationStr), Int8PtrTy), 2357 Builder.CreateBitCast(CGM.EmitAnnotationUnit(Location), Int8PtrTy), 2358 CGM.EmitAnnotationLineNo(Location), 2359 }; 2360 if (Attr) 2361 Args.push_back(CGM.EmitAnnotationArgs(Attr)); 2362 return Builder.CreateCall(AnnotationFn, Args); 2363 } 2364 2365 void CodeGenFunction::EmitVarAnnotations(const VarDecl *D, llvm::Value *V) { 2366 assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute"); 2367 // FIXME We create a new bitcast for every annotation because that's what 2368 // llvm-gcc was doing. 2369 for (const auto *I : D->specific_attrs<AnnotateAttr>()) 2370 EmitAnnotationCall(CGM.getIntrinsic(llvm::Intrinsic::var_annotation), 2371 Builder.CreateBitCast(V, CGM.Int8PtrTy, V->getName()), 2372 I->getAnnotation(), D->getLocation(), I); 2373 } 2374 2375 Address CodeGenFunction::EmitFieldAnnotations(const FieldDecl *D, 2376 Address Addr) { 2377 assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute"); 2378 llvm::Value *V = Addr.getPointer(); 2379 llvm::Type *VTy = V->getType(); 2380 llvm::Function *F = CGM.getIntrinsic(llvm::Intrinsic::ptr_annotation, 2381 CGM.Int8PtrTy); 2382 2383 for (const auto *I : D->specific_attrs<AnnotateAttr>()) { 2384 // FIXME Always emit the cast inst so we can differentiate between 2385 // annotation on the first field of a struct and annotation on the struct 2386 // itself. 2387 if (VTy != CGM.Int8PtrTy) 2388 V = Builder.CreateBitCast(V, CGM.Int8PtrTy); 2389 V = EmitAnnotationCall(F, V, I->getAnnotation(), D->getLocation(), I); 2390 V = Builder.CreateBitCast(V, VTy); 2391 } 2392 2393 return Address(V, Addr.getAlignment()); 2394 } 2395 2396 CodeGenFunction::CGCapturedStmtInfo::~CGCapturedStmtInfo() { } 2397 2398 CodeGenFunction::SanitizerScope::SanitizerScope(CodeGenFunction *CGF) 2399 : CGF(CGF) { 2400 assert(!CGF->IsSanitizerScope); 2401 CGF->IsSanitizerScope = true; 2402 } 2403 2404 CodeGenFunction::SanitizerScope::~SanitizerScope() { 2405 CGF->IsSanitizerScope = false; 2406 } 2407 2408 void CodeGenFunction::InsertHelper(llvm::Instruction *I, 2409 const llvm::Twine &Name, 2410 llvm::BasicBlock *BB, 2411 llvm::BasicBlock::iterator InsertPt) const { 2412 LoopStack.InsertHelper(I); 2413 if (IsSanitizerScope) 2414 CGM.getSanitizerMetadata()->disableSanitizerForInstruction(I); 2415 } 2416 2417 void CGBuilderInserter::InsertHelper( 2418 llvm::Instruction *I, const llvm::Twine &Name, llvm::BasicBlock *BB, 2419 llvm::BasicBlock::iterator InsertPt) const { 2420 llvm::IRBuilderDefaultInserter::InsertHelper(I, Name, BB, InsertPt); 2421 if (CGF) 2422 CGF->InsertHelper(I, Name, BB, InsertPt); 2423 } 2424 2425 // Emits an error if we don't have a valid set of target features for the 2426 // called function. 2427 void CodeGenFunction::checkTargetFeatures(const CallExpr *E, 2428 const FunctionDecl *TargetDecl) { 2429 return checkTargetFeatures(E->getBeginLoc(), TargetDecl); 2430 } 2431 2432 // Emits an error if we don't have a valid set of target features for the 2433 // called function. 2434 void CodeGenFunction::checkTargetFeatures(SourceLocation Loc, 2435 const FunctionDecl *TargetDecl) { 2436 // Early exit if this is an indirect call. 2437 if (!TargetDecl) 2438 return; 2439 2440 // Get the current enclosing function if it exists. If it doesn't 2441 // we can't check the target features anyhow. 2442 const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(CurCodeDecl); 2443 if (!FD) 2444 return; 2445 2446 // Grab the required features for the call. For a builtin this is listed in 2447 // the td file with the default cpu, for an always_inline function this is any 2448 // listed cpu and any listed features. 2449 unsigned BuiltinID = TargetDecl->getBuiltinID(); 2450 std::string MissingFeature; 2451 llvm::StringMap<bool> CallerFeatureMap; 2452 CGM.getContext().getFunctionFeatureMap(CallerFeatureMap, FD); 2453 if (BuiltinID) { 2454 StringRef FeatureList( 2455 CGM.getContext().BuiltinInfo.getRequiredFeatures(BuiltinID)); 2456 // Return if the builtin doesn't have any required features. 2457 if (FeatureList.empty()) 2458 return; 2459 assert(FeatureList.find(' ') == StringRef::npos && 2460 "Space in feature list"); 2461 TargetFeatures TF(CallerFeatureMap); 2462 if (!TF.hasRequiredFeatures(FeatureList)) 2463 CGM.getDiags().Report(Loc, diag::err_builtin_needs_feature) 2464 << TargetDecl->getDeclName() << FeatureList; 2465 } else if (!TargetDecl->isMultiVersion() && 2466 TargetDecl->hasAttr<TargetAttr>()) { 2467 // Get the required features for the callee. 2468 2469 const TargetAttr *TD = TargetDecl->getAttr<TargetAttr>(); 2470 ParsedTargetAttr ParsedAttr = 2471 CGM.getContext().filterFunctionTargetAttrs(TD); 2472 2473 SmallVector<StringRef, 1> ReqFeatures; 2474 llvm::StringMap<bool> CalleeFeatureMap; 2475 CGM.getContext().getFunctionFeatureMap(CalleeFeatureMap, TargetDecl); 2476 2477 for (const auto &F : ParsedAttr.Features) { 2478 if (F[0] == '+' && CalleeFeatureMap.lookup(F.substr(1))) 2479 ReqFeatures.push_back(StringRef(F).substr(1)); 2480 } 2481 2482 for (const auto &F : CalleeFeatureMap) { 2483 // Only positive features are "required". 2484 if (F.getValue()) 2485 ReqFeatures.push_back(F.getKey()); 2486 } 2487 if (!llvm::all_of(ReqFeatures, [&](StringRef Feature) { 2488 if (!CallerFeatureMap.lookup(Feature)) { 2489 MissingFeature = Feature.str(); 2490 return false; 2491 } 2492 return true; 2493 })) 2494 CGM.getDiags().Report(Loc, diag::err_function_needs_feature) 2495 << FD->getDeclName() << TargetDecl->getDeclName() << MissingFeature; 2496 } 2497 } 2498 2499 void CodeGenFunction::EmitSanitizerStatReport(llvm::SanitizerStatKind SSK) { 2500 if (!CGM.getCodeGenOpts().SanitizeStats) 2501 return; 2502 2503 llvm::IRBuilder<> IRB(Builder.GetInsertBlock(), Builder.GetInsertPoint()); 2504 IRB.SetCurrentDebugLocation(Builder.getCurrentDebugLocation()); 2505 CGM.getSanStats().create(IRB, SSK); 2506 } 2507 2508 llvm::Value * 2509 CodeGenFunction::FormResolverCondition(const MultiVersionResolverOption &RO) { 2510 llvm::Value *Condition = nullptr; 2511 2512 if (!RO.Conditions.Architecture.empty()) 2513 Condition = EmitX86CpuIs(RO.Conditions.Architecture); 2514 2515 if (!RO.Conditions.Features.empty()) { 2516 llvm::Value *FeatureCond = EmitX86CpuSupports(RO.Conditions.Features); 2517 Condition = 2518 Condition ? Builder.CreateAnd(Condition, FeatureCond) : FeatureCond; 2519 } 2520 return Condition; 2521 } 2522 2523 static void CreateMultiVersionResolverReturn(CodeGenModule &CGM, 2524 llvm::Function *Resolver, 2525 CGBuilderTy &Builder, 2526 llvm::Function *FuncToReturn, 2527 bool SupportsIFunc) { 2528 if (SupportsIFunc) { 2529 Builder.CreateRet(FuncToReturn); 2530 return; 2531 } 2532 2533 llvm::SmallVector<llvm::Value *, 10> Args; 2534 llvm::for_each(Resolver->args(), 2535 [&](llvm::Argument &Arg) { Args.push_back(&Arg); }); 2536 2537 llvm::CallInst *Result = Builder.CreateCall(FuncToReturn, Args); 2538 Result->setTailCallKind(llvm::CallInst::TCK_MustTail); 2539 2540 if (Resolver->getReturnType()->isVoidTy()) 2541 Builder.CreateRetVoid(); 2542 else 2543 Builder.CreateRet(Result); 2544 } 2545 2546 void CodeGenFunction::EmitMultiVersionResolver( 2547 llvm::Function *Resolver, ArrayRef<MultiVersionResolverOption> Options) { 2548 assert(getContext().getTargetInfo().getTriple().isX86() && 2549 "Only implemented for x86 targets"); 2550 2551 bool SupportsIFunc = getContext().getTargetInfo().supportsIFunc(); 2552 2553 // Main function's basic block. 2554 llvm::BasicBlock *CurBlock = createBasicBlock("resolver_entry", Resolver); 2555 Builder.SetInsertPoint(CurBlock); 2556 EmitX86CpuInit(); 2557 2558 for (const MultiVersionResolverOption &RO : Options) { 2559 Builder.SetInsertPoint(CurBlock); 2560 llvm::Value *Condition = FormResolverCondition(RO); 2561 2562 // The 'default' or 'generic' case. 2563 if (!Condition) { 2564 assert(&RO == Options.end() - 1 && 2565 "Default or Generic case must be last"); 2566 CreateMultiVersionResolverReturn(CGM, Resolver, Builder, RO.Function, 2567 SupportsIFunc); 2568 return; 2569 } 2570 2571 llvm::BasicBlock *RetBlock = createBasicBlock("resolver_return", Resolver); 2572 CGBuilderTy RetBuilder(*this, RetBlock); 2573 CreateMultiVersionResolverReturn(CGM, Resolver, RetBuilder, RO.Function, 2574 SupportsIFunc); 2575 CurBlock = createBasicBlock("resolver_else", Resolver); 2576 Builder.CreateCondBr(Condition, RetBlock, CurBlock); 2577 } 2578 2579 // If no generic/default, emit an unreachable. 2580 Builder.SetInsertPoint(CurBlock); 2581 llvm::CallInst *TrapCall = EmitTrapCall(llvm::Intrinsic::trap); 2582 TrapCall->setDoesNotReturn(); 2583 TrapCall->setDoesNotThrow(); 2584 Builder.CreateUnreachable(); 2585 Builder.ClearInsertionPoint(); 2586 } 2587 2588 // Loc - where the diagnostic will point, where in the source code this 2589 // alignment has failed. 2590 // SecondaryLoc - if present (will be present if sufficiently different from 2591 // Loc), the diagnostic will additionally point a "Note:" to this location. 2592 // It should be the location where the __attribute__((assume_aligned)) 2593 // was written e.g. 2594 void CodeGenFunction::emitAlignmentAssumptionCheck( 2595 llvm::Value *Ptr, QualType Ty, SourceLocation Loc, 2596 SourceLocation SecondaryLoc, llvm::Value *Alignment, 2597 llvm::Value *OffsetValue, llvm::Value *TheCheck, 2598 llvm::Instruction *Assumption) { 2599 assert(Assumption && isa<llvm::CallInst>(Assumption) && 2600 cast<llvm::CallInst>(Assumption)->getCalledOperand() == 2601 llvm::Intrinsic::getDeclaration( 2602 Builder.GetInsertBlock()->getParent()->getParent(), 2603 llvm::Intrinsic::assume) && 2604 "Assumption should be a call to llvm.assume()."); 2605 assert(&(Builder.GetInsertBlock()->back()) == Assumption && 2606 "Assumption should be the last instruction of the basic block, " 2607 "since the basic block is still being generated."); 2608 2609 if (!SanOpts.has(SanitizerKind::Alignment)) 2610 return; 2611 2612 // Don't check pointers to volatile data. The behavior here is implementation- 2613 // defined. 2614 if (Ty->getPointeeType().isVolatileQualified()) 2615 return; 2616 2617 // We need to temorairly remove the assumption so we can insert the 2618 // sanitizer check before it, else the check will be dropped by optimizations. 2619 Assumption->removeFromParent(); 2620 2621 { 2622 SanitizerScope SanScope(this); 2623 2624 if (!OffsetValue) 2625 OffsetValue = Builder.getInt1(0); // no offset. 2626 2627 llvm::Constant *StaticData[] = {EmitCheckSourceLocation(Loc), 2628 EmitCheckSourceLocation(SecondaryLoc), 2629 EmitCheckTypeDescriptor(Ty)}; 2630 llvm::Value *DynamicData[] = {EmitCheckValue(Ptr), 2631 EmitCheckValue(Alignment), 2632 EmitCheckValue(OffsetValue)}; 2633 EmitCheck({std::make_pair(TheCheck, SanitizerKind::Alignment)}, 2634 SanitizerHandler::AlignmentAssumption, StaticData, DynamicData); 2635 } 2636 2637 // We are now in the (new, empty) "cont" basic block. 2638 // Reintroduce the assumption. 2639 Builder.Insert(Assumption); 2640 // FIXME: Assumption still has it's original basic block as it's Parent. 2641 } 2642 2643 llvm::DebugLoc CodeGenFunction::SourceLocToDebugLoc(SourceLocation Location) { 2644 if (CGDebugInfo *DI = getDebugInfo()) 2645 return DI->SourceLocToDebugLoc(Location); 2646 2647 return llvm::DebugLoc(); 2648 } 2649 2650 llvm::Value * 2651 CodeGenFunction::emitCondLikelihoodViaExpectIntrinsic(llvm::Value *Cond, 2652 Stmt::Likelihood LH) { 2653 switch (LH) { 2654 case Stmt::LH_None: 2655 return Cond; 2656 case Stmt::LH_Likely: 2657 case Stmt::LH_Unlikely: 2658 // Don't generate llvm.expect on -O0 as the backend won't use it for 2659 // anything. 2660 if (CGM.getCodeGenOpts().OptimizationLevel == 0) 2661 return Cond; 2662 llvm::Type *CondTy = Cond->getType(); 2663 assert(CondTy->isIntegerTy(1) && "expecting condition to be a boolean"); 2664 llvm::Function *FnExpect = 2665 CGM.getIntrinsic(llvm::Intrinsic::expect, CondTy); 2666 llvm::Value *ExpectedValueOfCond = 2667 llvm::ConstantInt::getBool(CondTy, LH == Stmt::LH_Likely); 2668 return Builder.CreateCall(FnExpect, {Cond, ExpectedValueOfCond}, 2669 Cond->getName() + ".expval"); 2670 } 2671 llvm_unreachable("Unknown Likelihood"); 2672 } 2673