xref: /llvm-project/clang/lib/CodeGen/CodeGenFunction.cpp (revision 41cde465acfddb44d400b0a53bb57960762312a2)
1 //===--- CodeGenFunction.cpp - Emit LLVM Code from ASTs for a Function ----===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This coordinates the per-function state used while generating code.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "CodeGenFunction.h"
14 #include "CGBlocks.h"
15 #include "CGCUDARuntime.h"
16 #include "CGCXXABI.h"
17 #include "CGCleanup.h"
18 #include "CGDebugInfo.h"
19 #include "CGHLSLRuntime.h"
20 #include "CGOpenMPRuntime.h"
21 #include "CodeGenModule.h"
22 #include "CodeGenPGO.h"
23 #include "TargetInfo.h"
24 #include "clang/AST/ASTContext.h"
25 #include "clang/AST/ASTLambda.h"
26 #include "clang/AST/Attr.h"
27 #include "clang/AST/Decl.h"
28 #include "clang/AST/DeclCXX.h"
29 #include "clang/AST/Expr.h"
30 #include "clang/AST/StmtCXX.h"
31 #include "clang/AST/StmtObjC.h"
32 #include "clang/Basic/Builtins.h"
33 #include "clang/Basic/CodeGenOptions.h"
34 #include "clang/Basic/TargetBuiltins.h"
35 #include "clang/Basic/TargetInfo.h"
36 #include "clang/CodeGen/CGFunctionInfo.h"
37 #include "clang/Frontend/FrontendDiagnostic.h"
38 #include "llvm/ADT/ArrayRef.h"
39 #include "llvm/Frontend/OpenMP/OMPIRBuilder.h"
40 #include "llvm/IR/DataLayout.h"
41 #include "llvm/IR/Dominators.h"
42 #include "llvm/IR/FPEnv.h"
43 #include "llvm/IR/IntrinsicInst.h"
44 #include "llvm/IR/Intrinsics.h"
45 #include "llvm/IR/MDBuilder.h"
46 #include "llvm/Support/CRC.h"
47 #include "llvm/Support/xxhash.h"
48 #include "llvm/Transforms/Scalar/LowerExpectIntrinsic.h"
49 #include "llvm/Transforms/Utils/PromoteMemToReg.h"
50 #include <optional>
51 
52 using namespace clang;
53 using namespace CodeGen;
54 
55 namespace llvm {
56 extern cl::opt<bool> EnableSingleByteCoverage;
57 } // namespace llvm
58 
59 /// shouldEmitLifetimeMarkers - Decide whether we need emit the life-time
60 /// markers.
61 static bool shouldEmitLifetimeMarkers(const CodeGenOptions &CGOpts,
62                                       const LangOptions &LangOpts) {
63   if (CGOpts.DisableLifetimeMarkers)
64     return false;
65 
66   // Sanitizers may use markers.
67   if (CGOpts.SanitizeAddressUseAfterScope ||
68       LangOpts.Sanitize.has(SanitizerKind::HWAddress) ||
69       LangOpts.Sanitize.has(SanitizerKind::Memory))
70     return true;
71 
72   // For now, only in optimized builds.
73   return CGOpts.OptimizationLevel != 0;
74 }
75 
76 CodeGenFunction::CodeGenFunction(CodeGenModule &cgm, bool suppressNewContext)
77     : CodeGenTypeCache(cgm), CGM(cgm), Target(cgm.getTarget()),
78       Builder(cgm, cgm.getModule().getContext(), llvm::ConstantFolder(),
79               CGBuilderInserterTy(this)),
80       SanOpts(CGM.getLangOpts().Sanitize), CurFPFeatures(CGM.getLangOpts()),
81       DebugInfo(CGM.getModuleDebugInfo()), PGO(cgm),
82       ShouldEmitLifetimeMarkers(
83           shouldEmitLifetimeMarkers(CGM.getCodeGenOpts(), CGM.getLangOpts())) {
84   if (!suppressNewContext)
85     CGM.getCXXABI().getMangleContext().startNewFunction();
86   EHStack.setCGF(this);
87 
88   SetFastMathFlags(CurFPFeatures);
89 }
90 
91 CodeGenFunction::~CodeGenFunction() {
92   assert(LifetimeExtendedCleanupStack.empty() && "failed to emit a cleanup");
93   assert(DeferredDeactivationCleanupStack.empty() &&
94          "missed to deactivate a cleanup");
95 
96   if (getLangOpts().OpenMP && CurFn)
97     CGM.getOpenMPRuntime().functionFinished(*this);
98 
99   // If we have an OpenMPIRBuilder we want to finalize functions (incl.
100   // outlining etc) at some point. Doing it once the function codegen is done
101   // seems to be a reasonable spot. We do it here, as opposed to the deletion
102   // time of the CodeGenModule, because we have to ensure the IR has not yet
103   // been "emitted" to the outside, thus, modifications are still sensible.
104   if (CGM.getLangOpts().OpenMPIRBuilder && CurFn)
105     CGM.getOpenMPRuntime().getOMPBuilder().finalize(CurFn);
106 }
107 
108 // Map the LangOption for exception behavior into
109 // the corresponding enum in the IR.
110 llvm::fp::ExceptionBehavior
111 clang::ToConstrainedExceptMD(LangOptions::FPExceptionModeKind Kind) {
112 
113   switch (Kind) {
114   case LangOptions::FPE_Ignore:  return llvm::fp::ebIgnore;
115   case LangOptions::FPE_MayTrap: return llvm::fp::ebMayTrap;
116   case LangOptions::FPE_Strict:  return llvm::fp::ebStrict;
117   default:
118     llvm_unreachable("Unsupported FP Exception Behavior");
119   }
120 }
121 
122 void CodeGenFunction::SetFastMathFlags(FPOptions FPFeatures) {
123   llvm::FastMathFlags FMF;
124   FMF.setAllowReassoc(FPFeatures.getAllowFPReassociate());
125   FMF.setNoNaNs(FPFeatures.getNoHonorNaNs());
126   FMF.setNoInfs(FPFeatures.getNoHonorInfs());
127   FMF.setNoSignedZeros(FPFeatures.getNoSignedZero());
128   FMF.setAllowReciprocal(FPFeatures.getAllowReciprocal());
129   FMF.setApproxFunc(FPFeatures.getAllowApproxFunc());
130   FMF.setAllowContract(FPFeatures.allowFPContractAcrossStatement());
131   Builder.setFastMathFlags(FMF);
132 }
133 
134 CodeGenFunction::CGFPOptionsRAII::CGFPOptionsRAII(CodeGenFunction &CGF,
135                                                   const Expr *E)
136     : CGF(CGF) {
137   ConstructorHelper(E->getFPFeaturesInEffect(CGF.getLangOpts()));
138 }
139 
140 CodeGenFunction::CGFPOptionsRAII::CGFPOptionsRAII(CodeGenFunction &CGF,
141                                                   FPOptions FPFeatures)
142     : CGF(CGF) {
143   ConstructorHelper(FPFeatures);
144 }
145 
146 void CodeGenFunction::CGFPOptionsRAII::ConstructorHelper(FPOptions FPFeatures) {
147   OldFPFeatures = CGF.CurFPFeatures;
148   CGF.CurFPFeatures = FPFeatures;
149 
150   OldExcept = CGF.Builder.getDefaultConstrainedExcept();
151   OldRounding = CGF.Builder.getDefaultConstrainedRounding();
152 
153   if (OldFPFeatures == FPFeatures)
154     return;
155 
156   FMFGuard.emplace(CGF.Builder);
157 
158   llvm::RoundingMode NewRoundingBehavior = FPFeatures.getRoundingMode();
159   CGF.Builder.setDefaultConstrainedRounding(NewRoundingBehavior);
160   auto NewExceptionBehavior =
161       ToConstrainedExceptMD(static_cast<LangOptions::FPExceptionModeKind>(
162           FPFeatures.getExceptionMode()));
163   CGF.Builder.setDefaultConstrainedExcept(NewExceptionBehavior);
164 
165   CGF.SetFastMathFlags(FPFeatures);
166 
167   assert((CGF.CurFuncDecl == nullptr || CGF.Builder.getIsFPConstrained() ||
168           isa<CXXConstructorDecl>(CGF.CurFuncDecl) ||
169           isa<CXXDestructorDecl>(CGF.CurFuncDecl) ||
170           (NewExceptionBehavior == llvm::fp::ebIgnore &&
171            NewRoundingBehavior == llvm::RoundingMode::NearestTiesToEven)) &&
172          "FPConstrained should be enabled on entire function");
173 
174   auto mergeFnAttrValue = [&](StringRef Name, bool Value) {
175     auto OldValue =
176         CGF.CurFn->getFnAttribute(Name).getValueAsBool();
177     auto NewValue = OldValue & Value;
178     if (OldValue != NewValue)
179       CGF.CurFn->addFnAttr(Name, llvm::toStringRef(NewValue));
180   };
181   mergeFnAttrValue("no-infs-fp-math", FPFeatures.getNoHonorInfs());
182   mergeFnAttrValue("no-nans-fp-math", FPFeatures.getNoHonorNaNs());
183   mergeFnAttrValue("no-signed-zeros-fp-math", FPFeatures.getNoSignedZero());
184   mergeFnAttrValue(
185       "unsafe-fp-math",
186       FPFeatures.getAllowFPReassociate() && FPFeatures.getAllowReciprocal() &&
187           FPFeatures.getAllowApproxFunc() && FPFeatures.getNoSignedZero() &&
188           FPFeatures.allowFPContractAcrossStatement());
189 }
190 
191 CodeGenFunction::CGFPOptionsRAII::~CGFPOptionsRAII() {
192   CGF.CurFPFeatures = OldFPFeatures;
193   CGF.Builder.setDefaultConstrainedExcept(OldExcept);
194   CGF.Builder.setDefaultConstrainedRounding(OldRounding);
195 }
196 
197 static LValue
198 makeNaturalAlignAddrLValue(llvm::Value *V, QualType T, bool ForPointeeType,
199                            bool MightBeSigned, CodeGenFunction &CGF,
200                            KnownNonNull_t IsKnownNonNull = NotKnownNonNull) {
201   LValueBaseInfo BaseInfo;
202   TBAAAccessInfo TBAAInfo;
203   CharUnits Alignment =
204       CGF.CGM.getNaturalTypeAlignment(T, &BaseInfo, &TBAAInfo, ForPointeeType);
205   Address Addr =
206       MightBeSigned
207           ? CGF.makeNaturalAddressForPointer(V, T, Alignment, false, nullptr,
208                                              nullptr, IsKnownNonNull)
209           : Address(V, CGF.ConvertTypeForMem(T), Alignment, IsKnownNonNull);
210   return CGF.MakeAddrLValue(Addr, T, BaseInfo, TBAAInfo);
211 }
212 
213 LValue
214 CodeGenFunction::MakeNaturalAlignAddrLValue(llvm::Value *V, QualType T,
215                                             KnownNonNull_t IsKnownNonNull) {
216   return ::makeNaturalAlignAddrLValue(V, T, /*ForPointeeType*/ false,
217                                       /*MightBeSigned*/ true, *this,
218                                       IsKnownNonNull);
219 }
220 
221 LValue
222 CodeGenFunction::MakeNaturalAlignPointeeAddrLValue(llvm::Value *V, QualType T) {
223   return ::makeNaturalAlignAddrLValue(V, T, /*ForPointeeType*/ true,
224                                       /*MightBeSigned*/ true, *this);
225 }
226 
227 LValue CodeGenFunction::MakeNaturalAlignRawAddrLValue(llvm::Value *V,
228                                                       QualType T) {
229   return ::makeNaturalAlignAddrLValue(V, T, /*ForPointeeType*/ false,
230                                       /*MightBeSigned*/ false, *this);
231 }
232 
233 LValue CodeGenFunction::MakeNaturalAlignPointeeRawAddrLValue(llvm::Value *V,
234                                                              QualType T) {
235   return ::makeNaturalAlignAddrLValue(V, T, /*ForPointeeType*/ true,
236                                       /*MightBeSigned*/ false, *this);
237 }
238 
239 llvm::Type *CodeGenFunction::ConvertTypeForMem(QualType T) {
240   return CGM.getTypes().ConvertTypeForMem(T);
241 }
242 
243 llvm::Type *CodeGenFunction::ConvertType(QualType T) {
244   return CGM.getTypes().ConvertType(T);
245 }
246 
247 llvm::Type *CodeGenFunction::convertTypeForLoadStore(QualType ASTTy,
248                                                      llvm::Type *LLVMTy) {
249   return CGM.getTypes().convertTypeForLoadStore(ASTTy, LLVMTy);
250 }
251 
252 TypeEvaluationKind CodeGenFunction::getEvaluationKind(QualType type) {
253   type = type.getCanonicalType();
254   while (true) {
255     switch (type->getTypeClass()) {
256 #define TYPE(name, parent)
257 #define ABSTRACT_TYPE(name, parent)
258 #define NON_CANONICAL_TYPE(name, parent) case Type::name:
259 #define DEPENDENT_TYPE(name, parent) case Type::name:
260 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(name, parent) case Type::name:
261 #include "clang/AST/TypeNodes.inc"
262       llvm_unreachable("non-canonical or dependent type in IR-generation");
263 
264     case Type::Auto:
265     case Type::DeducedTemplateSpecialization:
266       llvm_unreachable("undeduced type in IR-generation");
267 
268     // Various scalar types.
269     case Type::Builtin:
270     case Type::Pointer:
271     case Type::BlockPointer:
272     case Type::LValueReference:
273     case Type::RValueReference:
274     case Type::MemberPointer:
275     case Type::Vector:
276     case Type::ExtVector:
277     case Type::ConstantMatrix:
278     case Type::FunctionProto:
279     case Type::FunctionNoProto:
280     case Type::Enum:
281     case Type::ObjCObjectPointer:
282     case Type::Pipe:
283     case Type::BitInt:
284     case Type::HLSLAttributedResource:
285       return TEK_Scalar;
286 
287     // Complexes.
288     case Type::Complex:
289       return TEK_Complex;
290 
291     // Arrays, records, and Objective-C objects.
292     case Type::ConstantArray:
293     case Type::IncompleteArray:
294     case Type::VariableArray:
295     case Type::Record:
296     case Type::ObjCObject:
297     case Type::ObjCInterface:
298     case Type::ArrayParameter:
299       return TEK_Aggregate;
300 
301     // We operate on atomic values according to their underlying type.
302     case Type::Atomic:
303       type = cast<AtomicType>(type)->getValueType();
304       continue;
305     }
306     llvm_unreachable("unknown type kind!");
307   }
308 }
309 
310 llvm::DebugLoc CodeGenFunction::EmitReturnBlock() {
311   // For cleanliness, we try to avoid emitting the return block for
312   // simple cases.
313   llvm::BasicBlock *CurBB = Builder.GetInsertBlock();
314 
315   if (CurBB) {
316     assert(!CurBB->getTerminator() && "Unexpected terminated block.");
317 
318     // We have a valid insert point, reuse it if it is empty or there are no
319     // explicit jumps to the return block.
320     if (CurBB->empty() || ReturnBlock.getBlock()->use_empty()) {
321       ReturnBlock.getBlock()->replaceAllUsesWith(CurBB);
322       delete ReturnBlock.getBlock();
323       ReturnBlock = JumpDest();
324     } else
325       EmitBlock(ReturnBlock.getBlock());
326     return llvm::DebugLoc();
327   }
328 
329   // Otherwise, if the return block is the target of a single direct
330   // branch then we can just put the code in that block instead. This
331   // cleans up functions which started with a unified return block.
332   if (ReturnBlock.getBlock()->hasOneUse()) {
333     llvm::BranchInst *BI =
334       dyn_cast<llvm::BranchInst>(*ReturnBlock.getBlock()->user_begin());
335     if (BI && BI->isUnconditional() &&
336         BI->getSuccessor(0) == ReturnBlock.getBlock()) {
337       // Record/return the DebugLoc of the simple 'return' expression to be used
338       // later by the actual 'ret' instruction.
339       llvm::DebugLoc Loc = BI->getDebugLoc();
340       Builder.SetInsertPoint(BI->getParent());
341       BI->eraseFromParent();
342       delete ReturnBlock.getBlock();
343       ReturnBlock = JumpDest();
344       return Loc;
345     }
346   }
347 
348   // FIXME: We are at an unreachable point, there is no reason to emit the block
349   // unless it has uses. However, we still need a place to put the debug
350   // region.end for now.
351 
352   EmitBlock(ReturnBlock.getBlock());
353   return llvm::DebugLoc();
354 }
355 
356 static void EmitIfUsed(CodeGenFunction &CGF, llvm::BasicBlock *BB) {
357   if (!BB) return;
358   if (!BB->use_empty()) {
359     CGF.CurFn->insert(CGF.CurFn->end(), BB);
360     return;
361   }
362   delete BB;
363 }
364 
365 void CodeGenFunction::FinishFunction(SourceLocation EndLoc) {
366   assert(BreakContinueStack.empty() &&
367          "mismatched push/pop in break/continue stack!");
368   assert(LifetimeExtendedCleanupStack.empty() &&
369          "mismatched push/pop of cleanups in EHStack!");
370   assert(DeferredDeactivationCleanupStack.empty() &&
371          "mismatched activate/deactivate of cleanups!");
372 
373   if (CGM.shouldEmitConvergenceTokens()) {
374     ConvergenceTokenStack.pop_back();
375     assert(ConvergenceTokenStack.empty() &&
376            "mismatched push/pop in convergence stack!");
377   }
378 
379   bool OnlySimpleReturnStmts = NumSimpleReturnExprs > 0
380     && NumSimpleReturnExprs == NumReturnExprs
381     && ReturnBlock.getBlock()->use_empty();
382   // Usually the return expression is evaluated before the cleanup
383   // code.  If the function contains only a simple return statement,
384   // such as a constant, the location before the cleanup code becomes
385   // the last useful breakpoint in the function, because the simple
386   // return expression will be evaluated after the cleanup code. To be
387   // safe, set the debug location for cleanup code to the location of
388   // the return statement.  Otherwise the cleanup code should be at the
389   // end of the function's lexical scope.
390   //
391   // If there are multiple branches to the return block, the branch
392   // instructions will get the location of the return statements and
393   // all will be fine.
394   if (CGDebugInfo *DI = getDebugInfo()) {
395     if (OnlySimpleReturnStmts)
396       DI->EmitLocation(Builder, LastStopPoint);
397     else
398       DI->EmitLocation(Builder, EndLoc);
399   }
400 
401   // Pop any cleanups that might have been associated with the
402   // parameters.  Do this in whatever block we're currently in; it's
403   // important to do this before we enter the return block or return
404   // edges will be *really* confused.
405   bool HasCleanups = EHStack.stable_begin() != PrologueCleanupDepth;
406   bool HasOnlyLifetimeMarkers =
407       HasCleanups && EHStack.containsOnlyLifetimeMarkers(PrologueCleanupDepth);
408   bool EmitRetDbgLoc = !HasCleanups || HasOnlyLifetimeMarkers;
409 
410   std::optional<ApplyDebugLocation> OAL;
411   if (HasCleanups) {
412     // Make sure the line table doesn't jump back into the body for
413     // the ret after it's been at EndLoc.
414     if (CGDebugInfo *DI = getDebugInfo()) {
415       if (OnlySimpleReturnStmts)
416         DI->EmitLocation(Builder, EndLoc);
417       else
418         // We may not have a valid end location. Try to apply it anyway, and
419         // fall back to an artificial location if needed.
420         OAL = ApplyDebugLocation::CreateDefaultArtificial(*this, EndLoc);
421     }
422 
423     PopCleanupBlocks(PrologueCleanupDepth);
424   }
425 
426   // Emit function epilog (to return).
427   llvm::DebugLoc Loc = EmitReturnBlock();
428 
429   if (ShouldInstrumentFunction()) {
430     if (CGM.getCodeGenOpts().InstrumentFunctions)
431       CurFn->addFnAttr("instrument-function-exit", "__cyg_profile_func_exit");
432     if (CGM.getCodeGenOpts().InstrumentFunctionsAfterInlining)
433       CurFn->addFnAttr("instrument-function-exit-inlined",
434                        "__cyg_profile_func_exit");
435   }
436 
437   // Emit debug descriptor for function end.
438   if (CGDebugInfo *DI = getDebugInfo())
439     DI->EmitFunctionEnd(Builder, CurFn);
440 
441   // Reset the debug location to that of the simple 'return' expression, if any
442   // rather than that of the end of the function's scope '}'.
443   ApplyDebugLocation AL(*this, Loc);
444   EmitFunctionEpilog(*CurFnInfo, EmitRetDbgLoc, EndLoc);
445   EmitEndEHSpec(CurCodeDecl);
446 
447   assert(EHStack.empty() &&
448          "did not remove all scopes from cleanup stack!");
449 
450   // If someone did an indirect goto, emit the indirect goto block at the end of
451   // the function.
452   if (IndirectBranch) {
453     EmitBlock(IndirectBranch->getParent());
454     Builder.ClearInsertionPoint();
455   }
456 
457   // If some of our locals escaped, insert a call to llvm.localescape in the
458   // entry block.
459   if (!EscapedLocals.empty()) {
460     // Invert the map from local to index into a simple vector. There should be
461     // no holes.
462     SmallVector<llvm::Value *, 4> EscapeArgs;
463     EscapeArgs.resize(EscapedLocals.size());
464     for (auto &Pair : EscapedLocals)
465       EscapeArgs[Pair.second] = Pair.first;
466     llvm::Function *FrameEscapeFn = llvm::Intrinsic::getOrInsertDeclaration(
467         &CGM.getModule(), llvm::Intrinsic::localescape);
468     CGBuilderTy(*this, AllocaInsertPt).CreateCall(FrameEscapeFn, EscapeArgs);
469   }
470 
471   // Remove the AllocaInsertPt instruction, which is just a convenience for us.
472   llvm::Instruction *Ptr = AllocaInsertPt;
473   AllocaInsertPt = nullptr;
474   Ptr->eraseFromParent();
475 
476   // PostAllocaInsertPt, if created, was lazily created when it was required,
477   // remove it now since it was just created for our own convenience.
478   if (PostAllocaInsertPt) {
479     llvm::Instruction *PostPtr = PostAllocaInsertPt;
480     PostAllocaInsertPt = nullptr;
481     PostPtr->eraseFromParent();
482   }
483 
484   // If someone took the address of a label but never did an indirect goto, we
485   // made a zero entry PHI node, which is illegal, zap it now.
486   if (IndirectBranch) {
487     llvm::PHINode *PN = cast<llvm::PHINode>(IndirectBranch->getAddress());
488     if (PN->getNumIncomingValues() == 0) {
489       PN->replaceAllUsesWith(llvm::PoisonValue::get(PN->getType()));
490       PN->eraseFromParent();
491     }
492   }
493 
494   EmitIfUsed(*this, EHResumeBlock);
495   EmitIfUsed(*this, TerminateLandingPad);
496   EmitIfUsed(*this, TerminateHandler);
497   EmitIfUsed(*this, UnreachableBlock);
498 
499   for (const auto &FuncletAndParent : TerminateFunclets)
500     EmitIfUsed(*this, FuncletAndParent.second);
501 
502   if (CGM.getCodeGenOpts().EmitDeclMetadata)
503     EmitDeclMetadata();
504 
505   for (const auto &R : DeferredReplacements) {
506     if (llvm::Value *Old = R.first) {
507       Old->replaceAllUsesWith(R.second);
508       cast<llvm::Instruction>(Old)->eraseFromParent();
509     }
510   }
511   DeferredReplacements.clear();
512 
513   // Eliminate CleanupDestSlot alloca by replacing it with SSA values and
514   // PHIs if the current function is a coroutine. We don't do it for all
515   // functions as it may result in slight increase in numbers of instructions
516   // if compiled with no optimizations. We do it for coroutine as the lifetime
517   // of CleanupDestSlot alloca make correct coroutine frame building very
518   // difficult.
519   if (NormalCleanupDest.isValid() && isCoroutine()) {
520     llvm::DominatorTree DT(*CurFn);
521     llvm::PromoteMemToReg(
522         cast<llvm::AllocaInst>(NormalCleanupDest.getPointer()), DT);
523     NormalCleanupDest = Address::invalid();
524   }
525 
526   // Scan function arguments for vector width.
527   for (llvm::Argument &A : CurFn->args())
528     if (auto *VT = dyn_cast<llvm::VectorType>(A.getType()))
529       LargestVectorWidth =
530           std::max((uint64_t)LargestVectorWidth,
531                    VT->getPrimitiveSizeInBits().getKnownMinValue());
532 
533   // Update vector width based on return type.
534   if (auto *VT = dyn_cast<llvm::VectorType>(CurFn->getReturnType()))
535     LargestVectorWidth =
536         std::max((uint64_t)LargestVectorWidth,
537                  VT->getPrimitiveSizeInBits().getKnownMinValue());
538 
539   if (CurFnInfo->getMaxVectorWidth() > LargestVectorWidth)
540     LargestVectorWidth = CurFnInfo->getMaxVectorWidth();
541 
542   // Add the min-legal-vector-width attribute. This contains the max width from:
543   // 1. min-vector-width attribute used in the source program.
544   // 2. Any builtins used that have a vector width specified.
545   // 3. Values passed in and out of inline assembly.
546   // 4. Width of vector arguments and return types for this function.
547   // 5. Width of vector arguments and return types for functions called by this
548   //    function.
549   if (getContext().getTargetInfo().getTriple().isX86())
550     CurFn->addFnAttr("min-legal-vector-width",
551                      llvm::utostr(LargestVectorWidth));
552 
553   // Add vscale_range attribute if appropriate.
554   std::optional<std::pair<unsigned, unsigned>> VScaleRange =
555       getContext().getTargetInfo().getVScaleRange(getLangOpts());
556   if (VScaleRange) {
557     CurFn->addFnAttr(llvm::Attribute::getWithVScaleRangeArgs(
558         getLLVMContext(), VScaleRange->first, VScaleRange->second));
559   }
560 
561   // If we generated an unreachable return block, delete it now.
562   if (ReturnBlock.isValid() && ReturnBlock.getBlock()->use_empty()) {
563     Builder.ClearInsertionPoint();
564     ReturnBlock.getBlock()->eraseFromParent();
565   }
566   if (ReturnValue.isValid()) {
567     auto *RetAlloca =
568         dyn_cast<llvm::AllocaInst>(ReturnValue.emitRawPointer(*this));
569     if (RetAlloca && RetAlloca->use_empty()) {
570       RetAlloca->eraseFromParent();
571       ReturnValue = Address::invalid();
572     }
573   }
574 }
575 
576 /// ShouldInstrumentFunction - Return true if the current function should be
577 /// instrumented with __cyg_profile_func_* calls
578 bool CodeGenFunction::ShouldInstrumentFunction() {
579   if (!CGM.getCodeGenOpts().InstrumentFunctions &&
580       !CGM.getCodeGenOpts().InstrumentFunctionsAfterInlining &&
581       !CGM.getCodeGenOpts().InstrumentFunctionEntryBare)
582     return false;
583   if (!CurFuncDecl || CurFuncDecl->hasAttr<NoInstrumentFunctionAttr>())
584     return false;
585   return true;
586 }
587 
588 bool CodeGenFunction::ShouldSkipSanitizerInstrumentation() {
589   if (!CurFuncDecl)
590     return false;
591   return CurFuncDecl->hasAttr<DisableSanitizerInstrumentationAttr>();
592 }
593 
594 /// ShouldXRayInstrument - Return true if the current function should be
595 /// instrumented with XRay nop sleds.
596 bool CodeGenFunction::ShouldXRayInstrumentFunction() const {
597   return CGM.getCodeGenOpts().XRayInstrumentFunctions;
598 }
599 
600 /// AlwaysEmitXRayCustomEvents - Return true if we should emit IR for calls to
601 /// the __xray_customevent(...) builtin calls, when doing XRay instrumentation.
602 bool CodeGenFunction::AlwaysEmitXRayCustomEvents() const {
603   return CGM.getCodeGenOpts().XRayInstrumentFunctions &&
604          (CGM.getCodeGenOpts().XRayAlwaysEmitCustomEvents ||
605           CGM.getCodeGenOpts().XRayInstrumentationBundle.Mask ==
606               XRayInstrKind::Custom);
607 }
608 
609 bool CodeGenFunction::AlwaysEmitXRayTypedEvents() const {
610   return CGM.getCodeGenOpts().XRayInstrumentFunctions &&
611          (CGM.getCodeGenOpts().XRayAlwaysEmitTypedEvents ||
612           CGM.getCodeGenOpts().XRayInstrumentationBundle.Mask ==
613               XRayInstrKind::Typed);
614 }
615 
616 llvm::ConstantInt *
617 CodeGenFunction::getUBSanFunctionTypeHash(QualType Ty) const {
618   // Remove any (C++17) exception specifications, to allow calling e.g. a
619   // noexcept function through a non-noexcept pointer.
620   if (!Ty->isFunctionNoProtoType())
621     Ty = getContext().getFunctionTypeWithExceptionSpec(Ty, EST_None);
622   std::string Mangled;
623   llvm::raw_string_ostream Out(Mangled);
624   CGM.getCXXABI().getMangleContext().mangleCanonicalTypeName(Ty, Out, false);
625   return llvm::ConstantInt::get(
626       CGM.Int32Ty, static_cast<uint32_t>(llvm::xxh3_64bits(Mangled)));
627 }
628 
629 void CodeGenFunction::EmitKernelMetadata(const FunctionDecl *FD,
630                                          llvm::Function *Fn) {
631   if (!FD->hasAttr<OpenCLKernelAttr>() && !FD->hasAttr<CUDAGlobalAttr>())
632     return;
633 
634   llvm::LLVMContext &Context = getLLVMContext();
635 
636   CGM.GenKernelArgMetadata(Fn, FD, this);
637 
638   if (!(getLangOpts().OpenCL ||
639         (getLangOpts().CUDA &&
640          getContext().getTargetInfo().getTriple().isSPIRV())))
641     return;
642 
643   if (const VecTypeHintAttr *A = FD->getAttr<VecTypeHintAttr>()) {
644     QualType HintQTy = A->getTypeHint();
645     const ExtVectorType *HintEltQTy = HintQTy->getAs<ExtVectorType>();
646     bool IsSignedInteger =
647         HintQTy->isSignedIntegerType() ||
648         (HintEltQTy && HintEltQTy->getElementType()->isSignedIntegerType());
649     llvm::Metadata *AttrMDArgs[] = {
650         llvm::ConstantAsMetadata::get(llvm::UndefValue::get(
651             CGM.getTypes().ConvertType(A->getTypeHint()))),
652         llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
653             llvm::IntegerType::get(Context, 32),
654             llvm::APInt(32, (uint64_t)(IsSignedInteger ? 1 : 0))))};
655     Fn->setMetadata("vec_type_hint", llvm::MDNode::get(Context, AttrMDArgs));
656   }
657 
658   if (const WorkGroupSizeHintAttr *A = FD->getAttr<WorkGroupSizeHintAttr>()) {
659     llvm::Metadata *AttrMDArgs[] = {
660         llvm::ConstantAsMetadata::get(Builder.getInt32(A->getXDim())),
661         llvm::ConstantAsMetadata::get(Builder.getInt32(A->getYDim())),
662         llvm::ConstantAsMetadata::get(Builder.getInt32(A->getZDim()))};
663     Fn->setMetadata("work_group_size_hint", llvm::MDNode::get(Context, AttrMDArgs));
664   }
665 
666   if (const ReqdWorkGroupSizeAttr *A = FD->getAttr<ReqdWorkGroupSizeAttr>()) {
667     llvm::Metadata *AttrMDArgs[] = {
668         llvm::ConstantAsMetadata::get(Builder.getInt32(A->getXDim())),
669         llvm::ConstantAsMetadata::get(Builder.getInt32(A->getYDim())),
670         llvm::ConstantAsMetadata::get(Builder.getInt32(A->getZDim()))};
671     Fn->setMetadata("reqd_work_group_size", llvm::MDNode::get(Context, AttrMDArgs));
672   }
673 
674   if (const OpenCLIntelReqdSubGroupSizeAttr *A =
675           FD->getAttr<OpenCLIntelReqdSubGroupSizeAttr>()) {
676     llvm::Metadata *AttrMDArgs[] = {
677         llvm::ConstantAsMetadata::get(Builder.getInt32(A->getSubGroupSize()))};
678     Fn->setMetadata("intel_reqd_sub_group_size",
679                     llvm::MDNode::get(Context, AttrMDArgs));
680   }
681 }
682 
683 /// Determine whether the function F ends with a return stmt.
684 static bool endsWithReturn(const Decl* F) {
685   const Stmt *Body = nullptr;
686   if (auto *FD = dyn_cast_or_null<FunctionDecl>(F))
687     Body = FD->getBody();
688   else if (auto *OMD = dyn_cast_or_null<ObjCMethodDecl>(F))
689     Body = OMD->getBody();
690 
691   if (auto *CS = dyn_cast_or_null<CompoundStmt>(Body)) {
692     auto LastStmt = CS->body_rbegin();
693     if (LastStmt != CS->body_rend())
694       return isa<ReturnStmt>(*LastStmt);
695   }
696   return false;
697 }
698 
699 void CodeGenFunction::markAsIgnoreThreadCheckingAtRuntime(llvm::Function *Fn) {
700   if (SanOpts.has(SanitizerKind::Thread)) {
701     Fn->addFnAttr("sanitize_thread_no_checking_at_run_time");
702     Fn->removeFnAttr(llvm::Attribute::SanitizeThread);
703   }
704 }
705 
706 /// Check if the return value of this function requires sanitization.
707 bool CodeGenFunction::requiresReturnValueCheck() const {
708   return requiresReturnValueNullabilityCheck() ||
709          (SanOpts.has(SanitizerKind::ReturnsNonnullAttribute) && CurCodeDecl &&
710           CurCodeDecl->getAttr<ReturnsNonNullAttr>());
711 }
712 
713 static bool matchesStlAllocatorFn(const Decl *D, const ASTContext &Ctx) {
714   auto *MD = dyn_cast_or_null<CXXMethodDecl>(D);
715   if (!MD || !MD->getDeclName().getAsIdentifierInfo() ||
716       !MD->getDeclName().getAsIdentifierInfo()->isStr("allocate") ||
717       (MD->getNumParams() != 1 && MD->getNumParams() != 2))
718     return false;
719 
720   if (MD->parameters()[0]->getType().getCanonicalType() != Ctx.getSizeType())
721     return false;
722 
723   if (MD->getNumParams() == 2) {
724     auto *PT = MD->parameters()[1]->getType()->getAs<PointerType>();
725     if (!PT || !PT->isVoidPointerType() ||
726         !PT->getPointeeType().isConstQualified())
727       return false;
728   }
729 
730   return true;
731 }
732 
733 bool CodeGenFunction::isInAllocaArgument(CGCXXABI &ABI, QualType Ty) {
734   const CXXRecordDecl *RD = Ty->getAsCXXRecordDecl();
735   return RD && ABI.getRecordArgABI(RD) == CGCXXABI::RAA_DirectInMemory;
736 }
737 
738 bool CodeGenFunction::hasInAllocaArg(const CXXMethodDecl *MD) {
739   return getTarget().getTriple().getArch() == llvm::Triple::x86 &&
740          getTarget().getCXXABI().isMicrosoft() &&
741          llvm::any_of(MD->parameters(), [&](ParmVarDecl *P) {
742            return isInAllocaArgument(CGM.getCXXABI(), P->getType());
743          });
744 }
745 
746 /// Return the UBSan prologue signature for \p FD if one is available.
747 static llvm::Constant *getPrologueSignature(CodeGenModule &CGM,
748                                             const FunctionDecl *FD) {
749   if (const auto *MD = dyn_cast<CXXMethodDecl>(FD))
750     if (!MD->isStatic())
751       return nullptr;
752   return CGM.getTargetCodeGenInfo().getUBSanFunctionSignature(CGM);
753 }
754 
755 void CodeGenFunction::StartFunction(GlobalDecl GD, QualType RetTy,
756                                     llvm::Function *Fn,
757                                     const CGFunctionInfo &FnInfo,
758                                     const FunctionArgList &Args,
759                                     SourceLocation Loc,
760                                     SourceLocation StartLoc) {
761   assert(!CurFn &&
762          "Do not use a CodeGenFunction object for more than one function");
763 
764   const Decl *D = GD.getDecl();
765 
766   DidCallStackSave = false;
767   CurCodeDecl = D;
768   const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D);
769   if (FD && FD->usesSEHTry())
770     CurSEHParent = GD;
771   CurFuncDecl = (D ? D->getNonClosureContext() : nullptr);
772   FnRetTy = RetTy;
773   CurFn = Fn;
774   CurFnInfo = &FnInfo;
775   assert(CurFn->isDeclaration() && "Function already has body?");
776 
777   // If this function is ignored for any of the enabled sanitizers,
778   // disable the sanitizer for the function.
779   do {
780 #define SANITIZER(NAME, ID)                                                    \
781   if (SanOpts.empty())                                                         \
782     break;                                                                     \
783   if (SanOpts.has(SanitizerKind::ID))                                          \
784     if (CGM.isInNoSanitizeList(SanitizerKind::ID, Fn, Loc))                    \
785       SanOpts.set(SanitizerKind::ID, false);
786 
787 #include "clang/Basic/Sanitizers.def"
788 #undef SANITIZER
789   } while (false);
790 
791   if (D) {
792     const bool SanitizeBounds = SanOpts.hasOneOf(SanitizerKind::Bounds);
793     SanitizerMask no_sanitize_mask;
794     bool NoSanitizeCoverage = false;
795 
796     for (auto *Attr : D->specific_attrs<NoSanitizeAttr>()) {
797       no_sanitize_mask |= Attr->getMask();
798       // SanitizeCoverage is not handled by SanOpts.
799       if (Attr->hasCoverage())
800         NoSanitizeCoverage = true;
801     }
802 
803     // Apply the no_sanitize* attributes to SanOpts.
804     SanOpts.Mask &= ~no_sanitize_mask;
805     if (no_sanitize_mask & SanitizerKind::Address)
806       SanOpts.set(SanitizerKind::KernelAddress, false);
807     if (no_sanitize_mask & SanitizerKind::KernelAddress)
808       SanOpts.set(SanitizerKind::Address, false);
809     if (no_sanitize_mask & SanitizerKind::HWAddress)
810       SanOpts.set(SanitizerKind::KernelHWAddress, false);
811     if (no_sanitize_mask & SanitizerKind::KernelHWAddress)
812       SanOpts.set(SanitizerKind::HWAddress, false);
813 
814     if (SanitizeBounds && !SanOpts.hasOneOf(SanitizerKind::Bounds))
815       Fn->addFnAttr(llvm::Attribute::NoSanitizeBounds);
816 
817     if (NoSanitizeCoverage && CGM.getCodeGenOpts().hasSanitizeCoverage())
818       Fn->addFnAttr(llvm::Attribute::NoSanitizeCoverage);
819 
820     // Some passes need the non-negated no_sanitize attribute. Pass them on.
821     if (CGM.getCodeGenOpts().hasSanitizeBinaryMetadata()) {
822       if (no_sanitize_mask & SanitizerKind::Thread)
823         Fn->addFnAttr("no_sanitize_thread");
824     }
825   }
826 
827   if (ShouldSkipSanitizerInstrumentation()) {
828     CurFn->addFnAttr(llvm::Attribute::DisableSanitizerInstrumentation);
829   } else {
830     // Apply sanitizer attributes to the function.
831     if (SanOpts.hasOneOf(SanitizerKind::Address | SanitizerKind::KernelAddress))
832       Fn->addFnAttr(llvm::Attribute::SanitizeAddress);
833     if (SanOpts.hasOneOf(SanitizerKind::HWAddress |
834                          SanitizerKind::KernelHWAddress))
835       Fn->addFnAttr(llvm::Attribute::SanitizeHWAddress);
836     if (SanOpts.has(SanitizerKind::MemtagStack))
837       Fn->addFnAttr(llvm::Attribute::SanitizeMemTag);
838     if (SanOpts.has(SanitizerKind::Thread))
839       Fn->addFnAttr(llvm::Attribute::SanitizeThread);
840     if (SanOpts.has(SanitizerKind::NumericalStability))
841       Fn->addFnAttr(llvm::Attribute::SanitizeNumericalStability);
842     if (SanOpts.hasOneOf(SanitizerKind::Memory | SanitizerKind::KernelMemory))
843       Fn->addFnAttr(llvm::Attribute::SanitizeMemory);
844   }
845   if (SanOpts.has(SanitizerKind::SafeStack))
846     Fn->addFnAttr(llvm::Attribute::SafeStack);
847   if (SanOpts.has(SanitizerKind::ShadowCallStack))
848     Fn->addFnAttr(llvm::Attribute::ShadowCallStack);
849 
850   if (SanOpts.has(SanitizerKind::Realtime))
851     if (FD && FD->getASTContext().hasAnyFunctionEffects())
852       for (const FunctionEffectWithCondition &Fe : FD->getFunctionEffects()) {
853         if (Fe.Effect.kind() == FunctionEffect::Kind::NonBlocking)
854           Fn->addFnAttr(llvm::Attribute::SanitizeRealtime);
855         else if (Fe.Effect.kind() == FunctionEffect::Kind::Blocking)
856           Fn->addFnAttr(llvm::Attribute::SanitizeRealtimeBlocking);
857       }
858 
859   // Apply fuzzing attribute to the function.
860   if (SanOpts.hasOneOf(SanitizerKind::Fuzzer | SanitizerKind::FuzzerNoLink))
861     Fn->addFnAttr(llvm::Attribute::OptForFuzzing);
862 
863   // Ignore TSan memory acesses from within ObjC/ObjC++ dealloc, initialize,
864   // .cxx_destruct, __destroy_helper_block_ and all of their calees at run time.
865   if (SanOpts.has(SanitizerKind::Thread)) {
866     if (const auto *OMD = dyn_cast_or_null<ObjCMethodDecl>(D)) {
867       const IdentifierInfo *II = OMD->getSelector().getIdentifierInfoForSlot(0);
868       if (OMD->getMethodFamily() == OMF_dealloc ||
869           OMD->getMethodFamily() == OMF_initialize ||
870           (OMD->getSelector().isUnarySelector() && II->isStr(".cxx_destruct"))) {
871         markAsIgnoreThreadCheckingAtRuntime(Fn);
872       }
873     }
874   }
875 
876   // Ignore unrelated casts in STL allocate() since the allocator must cast
877   // from void* to T* before object initialization completes. Don't match on the
878   // namespace because not all allocators are in std::
879   if (D && SanOpts.has(SanitizerKind::CFIUnrelatedCast)) {
880     if (matchesStlAllocatorFn(D, getContext()))
881       SanOpts.Mask &= ~SanitizerKind::CFIUnrelatedCast;
882   }
883 
884   // Ignore null checks in coroutine functions since the coroutines passes
885   // are not aware of how to move the extra UBSan instructions across the split
886   // coroutine boundaries.
887   if (D && SanOpts.has(SanitizerKind::Null))
888     if (FD && FD->getBody() &&
889         FD->getBody()->getStmtClass() == Stmt::CoroutineBodyStmtClass)
890       SanOpts.Mask &= ~SanitizerKind::Null;
891 
892   // Add pointer authentication attributes.
893   const CodeGenOptions &CodeGenOpts = CGM.getCodeGenOpts();
894   if (CodeGenOpts.PointerAuth.ReturnAddresses)
895     Fn->addFnAttr("ptrauth-returns");
896   if (CodeGenOpts.PointerAuth.FunctionPointers)
897     Fn->addFnAttr("ptrauth-calls");
898   if (CodeGenOpts.PointerAuth.AuthTraps)
899     Fn->addFnAttr("ptrauth-auth-traps");
900   if (CodeGenOpts.PointerAuth.IndirectGotos)
901     Fn->addFnAttr("ptrauth-indirect-gotos");
902   if (CodeGenOpts.PointerAuth.AArch64JumpTableHardening)
903     Fn->addFnAttr("aarch64-jump-table-hardening");
904 
905   // Apply xray attributes to the function (as a string, for now)
906   bool AlwaysXRayAttr = false;
907   if (const auto *XRayAttr = D ? D->getAttr<XRayInstrumentAttr>() : nullptr) {
908     if (CGM.getCodeGenOpts().XRayInstrumentationBundle.has(
909             XRayInstrKind::FunctionEntry) ||
910         CGM.getCodeGenOpts().XRayInstrumentationBundle.has(
911             XRayInstrKind::FunctionExit)) {
912       if (XRayAttr->alwaysXRayInstrument() && ShouldXRayInstrumentFunction()) {
913         Fn->addFnAttr("function-instrument", "xray-always");
914         AlwaysXRayAttr = true;
915       }
916       if (XRayAttr->neverXRayInstrument())
917         Fn->addFnAttr("function-instrument", "xray-never");
918       if (const auto *LogArgs = D->getAttr<XRayLogArgsAttr>())
919         if (ShouldXRayInstrumentFunction())
920           Fn->addFnAttr("xray-log-args",
921                         llvm::utostr(LogArgs->getArgumentCount()));
922     }
923   } else {
924     if (ShouldXRayInstrumentFunction() && !CGM.imbueXRayAttrs(Fn, Loc))
925       Fn->addFnAttr(
926           "xray-instruction-threshold",
927           llvm::itostr(CGM.getCodeGenOpts().XRayInstructionThreshold));
928   }
929 
930   if (ShouldXRayInstrumentFunction()) {
931     if (CGM.getCodeGenOpts().XRayIgnoreLoops)
932       Fn->addFnAttr("xray-ignore-loops");
933 
934     if (!CGM.getCodeGenOpts().XRayInstrumentationBundle.has(
935             XRayInstrKind::FunctionExit))
936       Fn->addFnAttr("xray-skip-exit");
937 
938     if (!CGM.getCodeGenOpts().XRayInstrumentationBundle.has(
939             XRayInstrKind::FunctionEntry))
940       Fn->addFnAttr("xray-skip-entry");
941 
942     auto FuncGroups = CGM.getCodeGenOpts().XRayTotalFunctionGroups;
943     if (FuncGroups > 1) {
944       auto FuncName = llvm::ArrayRef<uint8_t>(CurFn->getName().bytes_begin(),
945                                               CurFn->getName().bytes_end());
946       auto Group = crc32(FuncName) % FuncGroups;
947       if (Group != CGM.getCodeGenOpts().XRaySelectedFunctionGroup &&
948           !AlwaysXRayAttr)
949         Fn->addFnAttr("function-instrument", "xray-never");
950     }
951   }
952 
953   if (CGM.getCodeGenOpts().getProfileInstr() != CodeGenOptions::ProfileNone) {
954     switch (CGM.isFunctionBlockedFromProfileInstr(Fn, Loc)) {
955     case ProfileList::Skip:
956       Fn->addFnAttr(llvm::Attribute::SkipProfile);
957       break;
958     case ProfileList::Forbid:
959       Fn->addFnAttr(llvm::Attribute::NoProfile);
960       break;
961     case ProfileList::Allow:
962       break;
963     }
964   }
965 
966   unsigned Count, Offset;
967   if (const auto *Attr =
968           D ? D->getAttr<PatchableFunctionEntryAttr>() : nullptr) {
969     Count = Attr->getCount();
970     Offset = Attr->getOffset();
971   } else {
972     Count = CGM.getCodeGenOpts().PatchableFunctionEntryCount;
973     Offset = CGM.getCodeGenOpts().PatchableFunctionEntryOffset;
974   }
975   if (Count && Offset <= Count) {
976     Fn->addFnAttr("patchable-function-entry", std::to_string(Count - Offset));
977     if (Offset)
978       Fn->addFnAttr("patchable-function-prefix", std::to_string(Offset));
979   }
980   // Instruct that functions for COFF/CodeView targets should start with a
981   // patchable instruction, but only on x86/x64. Don't forward this to ARM/ARM64
982   // backends as they don't need it -- instructions on these architectures are
983   // always atomically patchable at runtime.
984   if (CGM.getCodeGenOpts().HotPatch &&
985       getContext().getTargetInfo().getTriple().isX86() &&
986       getContext().getTargetInfo().getTriple().getEnvironment() !=
987           llvm::Triple::CODE16)
988     Fn->addFnAttr("patchable-function", "prologue-short-redirect");
989 
990   // Add no-jump-tables value.
991   if (CGM.getCodeGenOpts().NoUseJumpTables)
992     Fn->addFnAttr("no-jump-tables", "true");
993 
994   // Add no-inline-line-tables value.
995   if (CGM.getCodeGenOpts().NoInlineLineTables)
996     Fn->addFnAttr("no-inline-line-tables");
997 
998   // Add profile-sample-accurate value.
999   if (CGM.getCodeGenOpts().ProfileSampleAccurate)
1000     Fn->addFnAttr("profile-sample-accurate");
1001 
1002   if (!CGM.getCodeGenOpts().SampleProfileFile.empty())
1003     Fn->addFnAttr("use-sample-profile");
1004 
1005   if (D && D->hasAttr<CFICanonicalJumpTableAttr>())
1006     Fn->addFnAttr("cfi-canonical-jump-table");
1007 
1008   if (D && D->hasAttr<NoProfileFunctionAttr>())
1009     Fn->addFnAttr(llvm::Attribute::NoProfile);
1010 
1011   if (D && D->hasAttr<HybridPatchableAttr>())
1012     Fn->addFnAttr(llvm::Attribute::HybridPatchable);
1013 
1014   if (D) {
1015     // Function attributes take precedence over command line flags.
1016     if (auto *A = D->getAttr<FunctionReturnThunksAttr>()) {
1017       switch (A->getThunkType()) {
1018       case FunctionReturnThunksAttr::Kind::Keep:
1019         break;
1020       case FunctionReturnThunksAttr::Kind::Extern:
1021         Fn->addFnAttr(llvm::Attribute::FnRetThunkExtern);
1022         break;
1023       }
1024     } else if (CGM.getCodeGenOpts().FunctionReturnThunks)
1025       Fn->addFnAttr(llvm::Attribute::FnRetThunkExtern);
1026   }
1027 
1028   if (FD && (getLangOpts().OpenCL ||
1029              (getLangOpts().CUDA &&
1030               getContext().getTargetInfo().getTriple().isSPIRV()) ||
1031              ((getLangOpts().HIP || getLangOpts().OffloadViaLLVM) &&
1032               getLangOpts().CUDAIsDevice))) {
1033     // Add metadata for a kernel function.
1034     EmitKernelMetadata(FD, Fn);
1035   }
1036 
1037   if (FD && FD->hasAttr<ClspvLibclcBuiltinAttr>()) {
1038     Fn->setMetadata("clspv_libclc_builtin",
1039                     llvm::MDNode::get(getLLVMContext(), {}));
1040   }
1041 
1042   // If we are checking function types, emit a function type signature as
1043   // prologue data.
1044   if (FD && SanOpts.has(SanitizerKind::Function)) {
1045     if (llvm::Constant *PrologueSig = getPrologueSignature(CGM, FD)) {
1046       llvm::LLVMContext &Ctx = Fn->getContext();
1047       llvm::MDBuilder MDB(Ctx);
1048       Fn->setMetadata(
1049           llvm::LLVMContext::MD_func_sanitize,
1050           MDB.createRTTIPointerPrologue(
1051               PrologueSig, getUBSanFunctionTypeHash(FD->getType())));
1052     }
1053   }
1054 
1055   // If we're checking nullability, we need to know whether we can check the
1056   // return value. Initialize the flag to 'true' and refine it in EmitParmDecl.
1057   if (SanOpts.has(SanitizerKind::NullabilityReturn)) {
1058     auto Nullability = FnRetTy->getNullability();
1059     if (Nullability && *Nullability == NullabilityKind::NonNull &&
1060         !FnRetTy->isRecordType()) {
1061       if (!(SanOpts.has(SanitizerKind::ReturnsNonnullAttribute) &&
1062             CurCodeDecl && CurCodeDecl->getAttr<ReturnsNonNullAttr>()))
1063         RetValNullabilityPrecondition =
1064             llvm::ConstantInt::getTrue(getLLVMContext());
1065     }
1066   }
1067 
1068   // If we're in C++ mode and the function name is "main", it is guaranteed
1069   // to be norecurse by the standard (3.6.1.3 "The function main shall not be
1070   // used within a program").
1071   //
1072   // OpenCL C 2.0 v2.2-11 s6.9.i:
1073   //     Recursion is not supported.
1074   //
1075   // HLSL
1076   //     Recursion is not supported.
1077   //
1078   // SYCL v1.2.1 s3.10:
1079   //     kernels cannot include RTTI information, exception classes,
1080   //     recursive code, virtual functions or make use of C++ libraries that
1081   //     are not compiled for the device.
1082   if (FD &&
1083       ((getLangOpts().CPlusPlus && FD->isMain()) || getLangOpts().OpenCL ||
1084        getLangOpts().HLSL || getLangOpts().SYCLIsDevice ||
1085        (getLangOpts().CUDA && FD->hasAttr<CUDAGlobalAttr>())))
1086     Fn->addFnAttr(llvm::Attribute::NoRecurse);
1087 
1088   llvm::RoundingMode RM = getLangOpts().getDefaultRoundingMode();
1089   llvm::fp::ExceptionBehavior FPExceptionBehavior =
1090       ToConstrainedExceptMD(getLangOpts().getDefaultExceptionMode());
1091   Builder.setDefaultConstrainedRounding(RM);
1092   Builder.setDefaultConstrainedExcept(FPExceptionBehavior);
1093   if ((FD && (FD->UsesFPIntrin() || FD->hasAttr<StrictFPAttr>())) ||
1094       (!FD && (FPExceptionBehavior != llvm::fp::ebIgnore ||
1095                RM != llvm::RoundingMode::NearestTiesToEven))) {
1096     Builder.setIsFPConstrained(true);
1097     Fn->addFnAttr(llvm::Attribute::StrictFP);
1098   }
1099 
1100   // If a custom alignment is used, force realigning to this alignment on
1101   // any main function which certainly will need it.
1102   if (FD && ((FD->isMain() || FD->isMSVCRTEntryPoint()) &&
1103              CGM.getCodeGenOpts().StackAlignment))
1104     Fn->addFnAttr("stackrealign");
1105 
1106   // "main" doesn't need to zero out call-used registers.
1107   if (FD && FD->isMain())
1108     Fn->removeFnAttr("zero-call-used-regs");
1109 
1110   llvm::BasicBlock *EntryBB = createBasicBlock("entry", CurFn);
1111 
1112   // Create a marker to make it easy to insert allocas into the entryblock
1113   // later.  Don't create this with the builder, because we don't want it
1114   // folded.
1115   llvm::Value *Poison = llvm::PoisonValue::get(Int32Ty);
1116   AllocaInsertPt = new llvm::BitCastInst(Poison, Int32Ty, "allocapt", EntryBB);
1117 
1118   ReturnBlock = getJumpDestInCurrentScope("return");
1119 
1120   Builder.SetInsertPoint(EntryBB);
1121 
1122   // If we're checking the return value, allocate space for a pointer to a
1123   // precise source location of the checked return statement.
1124   if (requiresReturnValueCheck()) {
1125     ReturnLocation = CreateDefaultAlignTempAlloca(Int8PtrTy, "return.sloc.ptr");
1126     Builder.CreateStore(llvm::ConstantPointerNull::get(Int8PtrTy),
1127                         ReturnLocation);
1128   }
1129 
1130   // Emit subprogram debug descriptor.
1131   if (CGDebugInfo *DI = getDebugInfo()) {
1132     // Reconstruct the type from the argument list so that implicit parameters,
1133     // such as 'this' and 'vtt', show up in the debug info. Preserve the calling
1134     // convention.
1135     DI->emitFunctionStart(GD, Loc, StartLoc,
1136                           DI->getFunctionType(FD, RetTy, Args), CurFn,
1137                           CurFuncIsThunk);
1138   }
1139 
1140   if (ShouldInstrumentFunction()) {
1141     if (CGM.getCodeGenOpts().InstrumentFunctions)
1142       CurFn->addFnAttr("instrument-function-entry", "__cyg_profile_func_enter");
1143     if (CGM.getCodeGenOpts().InstrumentFunctionsAfterInlining)
1144       CurFn->addFnAttr("instrument-function-entry-inlined",
1145                        "__cyg_profile_func_enter");
1146     if (CGM.getCodeGenOpts().InstrumentFunctionEntryBare)
1147       CurFn->addFnAttr("instrument-function-entry-inlined",
1148                        "__cyg_profile_func_enter_bare");
1149   }
1150 
1151   // Since emitting the mcount call here impacts optimizations such as function
1152   // inlining, we just add an attribute to insert a mcount call in backend.
1153   // The attribute "counting-function" is set to mcount function name which is
1154   // architecture dependent.
1155   if (CGM.getCodeGenOpts().InstrumentForProfiling) {
1156     // Calls to fentry/mcount should not be generated if function has
1157     // the no_instrument_function attribute.
1158     if (!CurFuncDecl || !CurFuncDecl->hasAttr<NoInstrumentFunctionAttr>()) {
1159       if (CGM.getCodeGenOpts().CallFEntry)
1160         Fn->addFnAttr("fentry-call", "true");
1161       else {
1162         Fn->addFnAttr("instrument-function-entry-inlined",
1163                       getTarget().getMCountName());
1164       }
1165       if (CGM.getCodeGenOpts().MNopMCount) {
1166         if (!CGM.getCodeGenOpts().CallFEntry)
1167           CGM.getDiags().Report(diag::err_opt_not_valid_without_opt)
1168             << "-mnop-mcount" << "-mfentry";
1169         Fn->addFnAttr("mnop-mcount");
1170       }
1171 
1172       if (CGM.getCodeGenOpts().RecordMCount) {
1173         if (!CGM.getCodeGenOpts().CallFEntry)
1174           CGM.getDiags().Report(diag::err_opt_not_valid_without_opt)
1175             << "-mrecord-mcount" << "-mfentry";
1176         Fn->addFnAttr("mrecord-mcount");
1177       }
1178     }
1179   }
1180 
1181   if (CGM.getCodeGenOpts().PackedStack) {
1182     if (getContext().getTargetInfo().getTriple().getArch() !=
1183         llvm::Triple::systemz)
1184       CGM.getDiags().Report(diag::err_opt_not_valid_on_target)
1185         << "-mpacked-stack";
1186     Fn->addFnAttr("packed-stack");
1187   }
1188 
1189   if (CGM.getCodeGenOpts().WarnStackSize != UINT_MAX &&
1190       !CGM.getDiags().isIgnored(diag::warn_fe_backend_frame_larger_than, Loc))
1191     Fn->addFnAttr("warn-stack-size",
1192                   std::to_string(CGM.getCodeGenOpts().WarnStackSize));
1193 
1194   if (RetTy->isVoidType()) {
1195     // Void type; nothing to return.
1196     ReturnValue = Address::invalid();
1197 
1198     // Count the implicit return.
1199     if (!endsWithReturn(D))
1200       ++NumReturnExprs;
1201   } else if (CurFnInfo->getReturnInfo().getKind() == ABIArgInfo::Indirect) {
1202     // Indirect return; emit returned value directly into sret slot.
1203     // This reduces code size, and affects correctness in C++.
1204     auto AI = CurFn->arg_begin();
1205     if (CurFnInfo->getReturnInfo().isSRetAfterThis())
1206       ++AI;
1207     ReturnValue = makeNaturalAddressForPointer(
1208         &*AI, RetTy, CurFnInfo->getReturnInfo().getIndirectAlign(), false,
1209         nullptr, nullptr, KnownNonNull);
1210     if (!CurFnInfo->getReturnInfo().getIndirectByVal()) {
1211       ReturnValuePointer =
1212           CreateDefaultAlignTempAlloca(ReturnValue.getType(), "result.ptr");
1213       Builder.CreateStore(ReturnValue.emitRawPointer(*this),
1214                           ReturnValuePointer);
1215     }
1216   } else if (CurFnInfo->getReturnInfo().getKind() == ABIArgInfo::InAlloca &&
1217              !hasScalarEvaluationKind(CurFnInfo->getReturnType())) {
1218     // Load the sret pointer from the argument struct and return into that.
1219     unsigned Idx = CurFnInfo->getReturnInfo().getInAllocaFieldIndex();
1220     llvm::Function::arg_iterator EI = CurFn->arg_end();
1221     --EI;
1222     llvm::Value *Addr = Builder.CreateStructGEP(
1223         CurFnInfo->getArgStruct(), &*EI, Idx);
1224     llvm::Type *Ty =
1225         cast<llvm::GetElementPtrInst>(Addr)->getResultElementType();
1226     ReturnValuePointer = Address(Addr, Ty, getPointerAlign());
1227     Addr = Builder.CreateAlignedLoad(Ty, Addr, getPointerAlign(), "agg.result");
1228     ReturnValue = Address(Addr, ConvertType(RetTy),
1229                           CGM.getNaturalTypeAlignment(RetTy), KnownNonNull);
1230   } else {
1231     ReturnValue = CreateIRTemp(RetTy, "retval");
1232 
1233     // Tell the epilog emitter to autorelease the result.  We do this
1234     // now so that various specialized functions can suppress it
1235     // during their IR-generation.
1236     if (getLangOpts().ObjCAutoRefCount &&
1237         !CurFnInfo->isReturnsRetained() &&
1238         RetTy->isObjCRetainableType())
1239       AutoreleaseResult = true;
1240   }
1241 
1242   EmitStartEHSpec(CurCodeDecl);
1243 
1244   PrologueCleanupDepth = EHStack.stable_begin();
1245 
1246   // Emit OpenMP specific initialization of the device functions.
1247   if (getLangOpts().OpenMP && CurCodeDecl)
1248     CGM.getOpenMPRuntime().emitFunctionProlog(*this, CurCodeDecl);
1249 
1250   if (FD && getLangOpts().HLSL) {
1251     // Handle emitting HLSL entry functions.
1252     if (FD->hasAttr<HLSLShaderAttr>()) {
1253       CGM.getHLSLRuntime().emitEntryFunction(FD, Fn);
1254     }
1255     CGM.getHLSLRuntime().setHLSLFunctionAttributes(FD, Fn);
1256   }
1257 
1258   EmitFunctionProlog(*CurFnInfo, CurFn, Args);
1259 
1260   if (const CXXMethodDecl *MD = dyn_cast_if_present<CXXMethodDecl>(D);
1261       MD && !MD->isStatic()) {
1262     bool IsInLambda =
1263         MD->getParent()->isLambda() && MD->getOverloadedOperator() == OO_Call;
1264     if (MD->isImplicitObjectMemberFunction())
1265       CGM.getCXXABI().EmitInstanceFunctionProlog(*this);
1266     if (IsInLambda) {
1267       // We're in a lambda; figure out the captures.
1268       MD->getParent()->getCaptureFields(LambdaCaptureFields,
1269                                         LambdaThisCaptureField);
1270       if (LambdaThisCaptureField) {
1271         // If the lambda captures the object referred to by '*this' - either by
1272         // value or by reference, make sure CXXThisValue points to the correct
1273         // object.
1274 
1275         // Get the lvalue for the field (which is a copy of the enclosing object
1276         // or contains the address of the enclosing object).
1277         LValue ThisFieldLValue = EmitLValueForLambdaField(LambdaThisCaptureField);
1278         if (!LambdaThisCaptureField->getType()->isPointerType()) {
1279           // If the enclosing object was captured by value, just use its
1280           // address. Sign this pointer.
1281           CXXThisValue = ThisFieldLValue.getPointer(*this);
1282         } else {
1283           // Load the lvalue pointed to by the field, since '*this' was captured
1284           // by reference.
1285           CXXThisValue =
1286               EmitLoadOfLValue(ThisFieldLValue, SourceLocation()).getScalarVal();
1287         }
1288       }
1289       for (auto *FD : MD->getParent()->fields()) {
1290         if (FD->hasCapturedVLAType()) {
1291           auto *ExprArg = EmitLoadOfLValue(EmitLValueForLambdaField(FD),
1292                                            SourceLocation()).getScalarVal();
1293           auto VAT = FD->getCapturedVLAType();
1294           VLASizeMap[VAT->getSizeExpr()] = ExprArg;
1295         }
1296       }
1297     } else if (MD->isImplicitObjectMemberFunction()) {
1298       // Not in a lambda; just use 'this' from the method.
1299       // FIXME: Should we generate a new load for each use of 'this'?  The
1300       // fast register allocator would be happier...
1301       CXXThisValue = CXXABIThisValue;
1302     }
1303 
1304     // Check the 'this' pointer once per function, if it's available.
1305     if (CXXABIThisValue) {
1306       SanitizerSet SkippedChecks;
1307       SkippedChecks.set(SanitizerKind::ObjectSize, true);
1308       QualType ThisTy = MD->getThisType();
1309 
1310       // If this is the call operator of a lambda with no captures, it
1311       // may have a static invoker function, which may call this operator with
1312       // a null 'this' pointer.
1313       if (isLambdaCallOperator(MD) && MD->getParent()->isCapturelessLambda())
1314         SkippedChecks.set(SanitizerKind::Null, true);
1315 
1316       EmitTypeCheck(
1317           isa<CXXConstructorDecl>(MD) ? TCK_ConstructorCall : TCK_MemberCall,
1318           Loc, CXXABIThisValue, ThisTy, CXXABIThisAlignment, SkippedChecks);
1319     }
1320   }
1321 
1322   // If any of the arguments have a variably modified type, make sure to
1323   // emit the type size, but only if the function is not naked. Naked functions
1324   // have no prolog to run this evaluation.
1325   if (!FD || !FD->hasAttr<NakedAttr>()) {
1326     for (const VarDecl *VD : Args) {
1327       // Dig out the type as written from ParmVarDecls; it's unclear whether
1328       // the standard (C99 6.9.1p10) requires this, but we're following the
1329       // precedent set by gcc.
1330       QualType Ty;
1331       if (const ParmVarDecl *PVD = dyn_cast<ParmVarDecl>(VD))
1332         Ty = PVD->getOriginalType();
1333       else
1334         Ty = VD->getType();
1335 
1336       if (Ty->isVariablyModifiedType())
1337         EmitVariablyModifiedType(Ty);
1338     }
1339   }
1340   // Emit a location at the end of the prologue.
1341   if (CGDebugInfo *DI = getDebugInfo())
1342     DI->EmitLocation(Builder, StartLoc);
1343   // TODO: Do we need to handle this in two places like we do with
1344   // target-features/target-cpu?
1345   if (CurFuncDecl)
1346     if (const auto *VecWidth = CurFuncDecl->getAttr<MinVectorWidthAttr>())
1347       LargestVectorWidth = VecWidth->getVectorWidth();
1348 
1349   if (CGM.shouldEmitConvergenceTokens())
1350     ConvergenceTokenStack.push_back(getOrEmitConvergenceEntryToken(CurFn));
1351 }
1352 
1353 void CodeGenFunction::EmitFunctionBody(const Stmt *Body) {
1354   incrementProfileCounter(Body);
1355   maybeCreateMCDCCondBitmap();
1356   if (const CompoundStmt *S = dyn_cast<CompoundStmt>(Body))
1357     EmitCompoundStmtWithoutScope(*S);
1358   else
1359     EmitStmt(Body);
1360 }
1361 
1362 /// When instrumenting to collect profile data, the counts for some blocks
1363 /// such as switch cases need to not include the fall-through counts, so
1364 /// emit a branch around the instrumentation code. When not instrumenting,
1365 /// this just calls EmitBlock().
1366 void CodeGenFunction::EmitBlockWithFallThrough(llvm::BasicBlock *BB,
1367                                                const Stmt *S) {
1368   llvm::BasicBlock *SkipCountBB = nullptr;
1369   // Do not skip over the instrumentation when single byte coverage mode is
1370   // enabled.
1371   if (HaveInsertPoint() && CGM.getCodeGenOpts().hasProfileClangInstr() &&
1372       !llvm::EnableSingleByteCoverage) {
1373     // When instrumenting for profiling, the fallthrough to certain
1374     // statements needs to skip over the instrumentation code so that we
1375     // get an accurate count.
1376     SkipCountBB = createBasicBlock("skipcount");
1377     EmitBranch(SkipCountBB);
1378   }
1379   EmitBlock(BB);
1380   uint64_t CurrentCount = getCurrentProfileCount();
1381   incrementProfileCounter(S);
1382   setCurrentProfileCount(getCurrentProfileCount() + CurrentCount);
1383   if (SkipCountBB)
1384     EmitBlock(SkipCountBB);
1385 }
1386 
1387 /// Tries to mark the given function nounwind based on the
1388 /// non-existence of any throwing calls within it.  We believe this is
1389 /// lightweight enough to do at -O0.
1390 static void TryMarkNoThrow(llvm::Function *F) {
1391   // LLVM treats 'nounwind' on a function as part of the type, so we
1392   // can't do this on functions that can be overwritten.
1393   if (F->isInterposable()) return;
1394 
1395   for (llvm::BasicBlock &BB : *F)
1396     for (llvm::Instruction &I : BB)
1397       if (I.mayThrow())
1398         return;
1399 
1400   F->setDoesNotThrow();
1401 }
1402 
1403 QualType CodeGenFunction::BuildFunctionArgList(GlobalDecl GD,
1404                                                FunctionArgList &Args) {
1405   const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
1406   QualType ResTy = FD->getReturnType();
1407 
1408   const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD);
1409   if (MD && MD->isImplicitObjectMemberFunction()) {
1410     if (CGM.getCXXABI().HasThisReturn(GD))
1411       ResTy = MD->getThisType();
1412     else if (CGM.getCXXABI().hasMostDerivedReturn(GD))
1413       ResTy = CGM.getContext().VoidPtrTy;
1414     CGM.getCXXABI().buildThisParam(*this, Args);
1415   }
1416 
1417   // The base version of an inheriting constructor whose constructed base is a
1418   // virtual base is not passed any arguments (because it doesn't actually call
1419   // the inherited constructor).
1420   bool PassedParams = true;
1421   if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(FD))
1422     if (auto Inherited = CD->getInheritedConstructor())
1423       PassedParams =
1424           getTypes().inheritingCtorHasParams(Inherited, GD.getCtorType());
1425 
1426   if (PassedParams) {
1427     for (auto *Param : FD->parameters()) {
1428       Args.push_back(Param);
1429       if (!Param->hasAttr<PassObjectSizeAttr>())
1430         continue;
1431 
1432       auto *Implicit = ImplicitParamDecl::Create(
1433           getContext(), Param->getDeclContext(), Param->getLocation(),
1434           /*Id=*/nullptr, getContext().getSizeType(), ImplicitParamKind::Other);
1435       SizeArguments[Param] = Implicit;
1436       Args.push_back(Implicit);
1437     }
1438   }
1439 
1440   if (MD && (isa<CXXConstructorDecl>(MD) || isa<CXXDestructorDecl>(MD)))
1441     CGM.getCXXABI().addImplicitStructorParams(*this, ResTy, Args);
1442 
1443   return ResTy;
1444 }
1445 
1446 void CodeGenFunction::GenerateCode(GlobalDecl GD, llvm::Function *Fn,
1447                                    const CGFunctionInfo &FnInfo) {
1448   assert(Fn && "generating code for null Function");
1449   const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
1450   CurGD = GD;
1451 
1452   FunctionArgList Args;
1453   QualType ResTy = BuildFunctionArgList(GD, Args);
1454 
1455   CGM.getTargetCodeGenInfo().checkFunctionABI(CGM, FD);
1456 
1457   if (FD->isInlineBuiltinDeclaration()) {
1458     // When generating code for a builtin with an inline declaration, use a
1459     // mangled name to hold the actual body, while keeping an external
1460     // definition in case the function pointer is referenced somewhere.
1461     std::string FDInlineName = (Fn->getName() + ".inline").str();
1462     llvm::Module *M = Fn->getParent();
1463     llvm::Function *Clone = M->getFunction(FDInlineName);
1464     if (!Clone) {
1465       Clone = llvm::Function::Create(Fn->getFunctionType(),
1466                                      llvm::GlobalValue::InternalLinkage,
1467                                      Fn->getAddressSpace(), FDInlineName, M);
1468       Clone->addFnAttr(llvm::Attribute::AlwaysInline);
1469     }
1470     Fn->setLinkage(llvm::GlobalValue::ExternalLinkage);
1471     Fn = Clone;
1472   } else {
1473     // Detect the unusual situation where an inline version is shadowed by a
1474     // non-inline version. In that case we should pick the external one
1475     // everywhere. That's GCC behavior too. Unfortunately, I cannot find a way
1476     // to detect that situation before we reach codegen, so do some late
1477     // replacement.
1478     for (const FunctionDecl *PD = FD->getPreviousDecl(); PD;
1479          PD = PD->getPreviousDecl()) {
1480       if (LLVM_UNLIKELY(PD->isInlineBuiltinDeclaration())) {
1481         std::string FDInlineName = (Fn->getName() + ".inline").str();
1482         llvm::Module *M = Fn->getParent();
1483         if (llvm::Function *Clone = M->getFunction(FDInlineName)) {
1484           Clone->replaceAllUsesWith(Fn);
1485           Clone->eraseFromParent();
1486         }
1487         break;
1488       }
1489     }
1490   }
1491 
1492   // Check if we should generate debug info for this function.
1493   if (FD->hasAttr<NoDebugAttr>()) {
1494     // Clear non-distinct debug info that was possibly attached to the function
1495     // due to an earlier declaration without the nodebug attribute
1496     Fn->setSubprogram(nullptr);
1497     // Disable debug info indefinitely for this function
1498     DebugInfo = nullptr;
1499   }
1500 
1501   // The function might not have a body if we're generating thunks for a
1502   // function declaration.
1503   SourceRange BodyRange;
1504   if (Stmt *Body = FD->getBody())
1505     BodyRange = Body->getSourceRange();
1506   else
1507     BodyRange = FD->getLocation();
1508   CurEHLocation = BodyRange.getEnd();
1509 
1510   // Use the location of the start of the function to determine where
1511   // the function definition is located. By default use the location
1512   // of the declaration as the location for the subprogram. A function
1513   // may lack a declaration in the source code if it is created by code
1514   // gen. (examples: _GLOBAL__I_a, __cxx_global_array_dtor, thunk).
1515   SourceLocation Loc = FD->getLocation();
1516 
1517   // If this is a function specialization then use the pattern body
1518   // as the location for the function.
1519   if (const FunctionDecl *SpecDecl = FD->getTemplateInstantiationPattern())
1520     if (SpecDecl->hasBody(SpecDecl))
1521       Loc = SpecDecl->getLocation();
1522 
1523   Stmt *Body = FD->getBody();
1524 
1525   if (Body) {
1526     // Coroutines always emit lifetime markers.
1527     if (isa<CoroutineBodyStmt>(Body))
1528       ShouldEmitLifetimeMarkers = true;
1529 
1530     // Initialize helper which will detect jumps which can cause invalid
1531     // lifetime markers.
1532     if (ShouldEmitLifetimeMarkers)
1533       Bypasses.Init(Body);
1534   }
1535 
1536   // Emit the standard function prologue.
1537   StartFunction(GD, ResTy, Fn, FnInfo, Args, Loc, BodyRange.getBegin());
1538 
1539   // Save parameters for coroutine function.
1540   if (Body && isa_and_nonnull<CoroutineBodyStmt>(Body))
1541     llvm::append_range(FnArgs, FD->parameters());
1542 
1543   // Ensure that the function adheres to the forward progress guarantee, which
1544   // is required by certain optimizations.
1545   // In C++11 and up, the attribute will be removed if the body contains a
1546   // trivial empty loop.
1547   if (checkIfFunctionMustProgress())
1548     CurFn->addFnAttr(llvm::Attribute::MustProgress);
1549 
1550   // Generate the body of the function.
1551   PGO.assignRegionCounters(GD, CurFn);
1552   if (isa<CXXDestructorDecl>(FD))
1553     EmitDestructorBody(Args);
1554   else if (isa<CXXConstructorDecl>(FD))
1555     EmitConstructorBody(Args);
1556   else if (getLangOpts().CUDA &&
1557            !getLangOpts().CUDAIsDevice &&
1558            FD->hasAttr<CUDAGlobalAttr>())
1559     CGM.getCUDARuntime().emitDeviceStub(*this, Args);
1560   else if (isa<CXXMethodDecl>(FD) &&
1561            cast<CXXMethodDecl>(FD)->isLambdaStaticInvoker()) {
1562     // The lambda static invoker function is special, because it forwards or
1563     // clones the body of the function call operator (but is actually static).
1564     EmitLambdaStaticInvokeBody(cast<CXXMethodDecl>(FD));
1565   } else if (isa<CXXMethodDecl>(FD) &&
1566              isLambdaCallOperator(cast<CXXMethodDecl>(FD)) &&
1567              !FnInfo.isDelegateCall() &&
1568              cast<CXXMethodDecl>(FD)->getParent()->getLambdaStaticInvoker() &&
1569              hasInAllocaArg(cast<CXXMethodDecl>(FD))) {
1570     // If emitting a lambda with static invoker on X86 Windows, change
1571     // the call operator body.
1572     // Make sure that this is a call operator with an inalloca arg and check
1573     // for delegate call to make sure this is the original call op and not the
1574     // new forwarding function for the static invoker.
1575     EmitLambdaInAllocaCallOpBody(cast<CXXMethodDecl>(FD));
1576   } else if (FD->isDefaulted() && isa<CXXMethodDecl>(FD) &&
1577              (cast<CXXMethodDecl>(FD)->isCopyAssignmentOperator() ||
1578               cast<CXXMethodDecl>(FD)->isMoveAssignmentOperator())) {
1579     // Implicit copy-assignment gets the same special treatment as implicit
1580     // copy-constructors.
1581     emitImplicitAssignmentOperatorBody(Args);
1582   } else if (Body) {
1583     EmitFunctionBody(Body);
1584   } else
1585     llvm_unreachable("no definition for emitted function");
1586 
1587   // C++11 [stmt.return]p2:
1588   //   Flowing off the end of a function [...] results in undefined behavior in
1589   //   a value-returning function.
1590   // C11 6.9.1p12:
1591   //   If the '}' that terminates a function is reached, and the value of the
1592   //   function call is used by the caller, the behavior is undefined.
1593   if (getLangOpts().CPlusPlus && !FD->hasImplicitReturnZero() && !SawAsmBlock &&
1594       !FD->getReturnType()->isVoidType() && Builder.GetInsertBlock()) {
1595     bool ShouldEmitUnreachable =
1596         CGM.getCodeGenOpts().StrictReturn ||
1597         !CGM.MayDropFunctionReturn(FD->getASTContext(), FD->getReturnType());
1598     if (SanOpts.has(SanitizerKind::Return)) {
1599       SanitizerScope SanScope(this);
1600       llvm::Value *IsFalse = Builder.getFalse();
1601       EmitCheck(std::make_pair(IsFalse, SanitizerKind::Return),
1602                 SanitizerHandler::MissingReturn,
1603                 EmitCheckSourceLocation(FD->getLocation()), {});
1604     } else if (ShouldEmitUnreachable) {
1605       if (CGM.getCodeGenOpts().OptimizationLevel == 0)
1606         EmitTrapCall(llvm::Intrinsic::trap);
1607     }
1608     if (SanOpts.has(SanitizerKind::Return) || ShouldEmitUnreachable) {
1609       Builder.CreateUnreachable();
1610       Builder.ClearInsertionPoint();
1611     }
1612   }
1613 
1614   // Emit the standard function epilogue.
1615   FinishFunction(BodyRange.getEnd());
1616 
1617   // If we haven't marked the function nothrow through other means, do
1618   // a quick pass now to see if we can.
1619   if (!CurFn->doesNotThrow())
1620     TryMarkNoThrow(CurFn);
1621 }
1622 
1623 /// ContainsLabel - Return true if the statement contains a label in it.  If
1624 /// this statement is not executed normally, it not containing a label means
1625 /// that we can just remove the code.
1626 bool CodeGenFunction::ContainsLabel(const Stmt *S, bool IgnoreCaseStmts) {
1627   // Null statement, not a label!
1628   if (!S) return false;
1629 
1630   // If this is a label, we have to emit the code, consider something like:
1631   // if (0) {  ...  foo:  bar(); }  goto foo;
1632   //
1633   // TODO: If anyone cared, we could track __label__'s, since we know that you
1634   // can't jump to one from outside their declared region.
1635   if (isa<LabelStmt>(S))
1636     return true;
1637 
1638   // If this is a case/default statement, and we haven't seen a switch, we have
1639   // to emit the code.
1640   if (isa<SwitchCase>(S) && !IgnoreCaseStmts)
1641     return true;
1642 
1643   // If this is a switch statement, we want to ignore cases below it.
1644   if (isa<SwitchStmt>(S))
1645     IgnoreCaseStmts = true;
1646 
1647   // Scan subexpressions for verboten labels.
1648   for (const Stmt *SubStmt : S->children())
1649     if (ContainsLabel(SubStmt, IgnoreCaseStmts))
1650       return true;
1651 
1652   return false;
1653 }
1654 
1655 /// containsBreak - Return true if the statement contains a break out of it.
1656 /// If the statement (recursively) contains a switch or loop with a break
1657 /// inside of it, this is fine.
1658 bool CodeGenFunction::containsBreak(const Stmt *S) {
1659   // Null statement, not a label!
1660   if (!S) return false;
1661 
1662   // If this is a switch or loop that defines its own break scope, then we can
1663   // include it and anything inside of it.
1664   if (isa<SwitchStmt>(S) || isa<WhileStmt>(S) || isa<DoStmt>(S) ||
1665       isa<ForStmt>(S))
1666     return false;
1667 
1668   if (isa<BreakStmt>(S))
1669     return true;
1670 
1671   // Scan subexpressions for verboten breaks.
1672   for (const Stmt *SubStmt : S->children())
1673     if (containsBreak(SubStmt))
1674       return true;
1675 
1676   return false;
1677 }
1678 
1679 bool CodeGenFunction::mightAddDeclToScope(const Stmt *S) {
1680   if (!S) return false;
1681 
1682   // Some statement kinds add a scope and thus never add a decl to the current
1683   // scope. Note, this list is longer than the list of statements that might
1684   // have an unscoped decl nested within them, but this way is conservatively
1685   // correct even if more statement kinds are added.
1686   if (isa<IfStmt>(S) || isa<SwitchStmt>(S) || isa<WhileStmt>(S) ||
1687       isa<DoStmt>(S) || isa<ForStmt>(S) || isa<CompoundStmt>(S) ||
1688       isa<CXXForRangeStmt>(S) || isa<CXXTryStmt>(S) ||
1689       isa<ObjCForCollectionStmt>(S) || isa<ObjCAtTryStmt>(S))
1690     return false;
1691 
1692   if (isa<DeclStmt>(S))
1693     return true;
1694 
1695   for (const Stmt *SubStmt : S->children())
1696     if (mightAddDeclToScope(SubStmt))
1697       return true;
1698 
1699   return false;
1700 }
1701 
1702 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold
1703 /// to a constant, or if it does but contains a label, return false.  If it
1704 /// constant folds return true and set the boolean result in Result.
1705 bool CodeGenFunction::ConstantFoldsToSimpleInteger(const Expr *Cond,
1706                                                    bool &ResultBool,
1707                                                    bool AllowLabels) {
1708   // If MC/DC is enabled, disable folding so that we can instrument all
1709   // conditions to yield complete test vectors. We still keep track of
1710   // folded conditions during region mapping and visualization.
1711   if (!AllowLabels && CGM.getCodeGenOpts().hasProfileClangInstr() &&
1712       CGM.getCodeGenOpts().MCDCCoverage)
1713     return false;
1714 
1715   llvm::APSInt ResultInt;
1716   if (!ConstantFoldsToSimpleInteger(Cond, ResultInt, AllowLabels))
1717     return false;
1718 
1719   ResultBool = ResultInt.getBoolValue();
1720   return true;
1721 }
1722 
1723 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold
1724 /// to a constant, or if it does but contains a label, return false.  If it
1725 /// constant folds return true and set the folded value.
1726 bool CodeGenFunction::ConstantFoldsToSimpleInteger(const Expr *Cond,
1727                                                    llvm::APSInt &ResultInt,
1728                                                    bool AllowLabels) {
1729   // FIXME: Rename and handle conversion of other evaluatable things
1730   // to bool.
1731   Expr::EvalResult Result;
1732   if (!Cond->EvaluateAsInt(Result, getContext()))
1733     return false;  // Not foldable, not integer or not fully evaluatable.
1734 
1735   llvm::APSInt Int = Result.Val.getInt();
1736   if (!AllowLabels && CodeGenFunction::ContainsLabel(Cond))
1737     return false;  // Contains a label.
1738 
1739   ResultInt = Int;
1740   return true;
1741 }
1742 
1743 /// Strip parentheses and simplistic logical-NOT operators.
1744 const Expr *CodeGenFunction::stripCond(const Expr *C) {
1745   while (const UnaryOperator *Op = dyn_cast<UnaryOperator>(C->IgnoreParens())) {
1746     if (Op->getOpcode() != UO_LNot)
1747       break;
1748     C = Op->getSubExpr();
1749   }
1750   return C->IgnoreParens();
1751 }
1752 
1753 /// Determine whether the given condition is an instrumentable condition
1754 /// (i.e. no "&&" or "||").
1755 bool CodeGenFunction::isInstrumentedCondition(const Expr *C) {
1756   const BinaryOperator *BOp = dyn_cast<BinaryOperator>(stripCond(C));
1757   return (!BOp || !BOp->isLogicalOp());
1758 }
1759 
1760 /// EmitBranchToCounterBlock - Emit a conditional branch to a new block that
1761 /// increments a profile counter based on the semantics of the given logical
1762 /// operator opcode.  This is used to instrument branch condition coverage for
1763 /// logical operators.
1764 void CodeGenFunction::EmitBranchToCounterBlock(
1765     const Expr *Cond, BinaryOperator::Opcode LOp, llvm::BasicBlock *TrueBlock,
1766     llvm::BasicBlock *FalseBlock, uint64_t TrueCount /* = 0 */,
1767     Stmt::Likelihood LH /* =None */, const Expr *CntrIdx /* = nullptr */) {
1768   // If not instrumenting, just emit a branch.
1769   bool InstrumentRegions = CGM.getCodeGenOpts().hasProfileClangInstr();
1770   if (!InstrumentRegions || !isInstrumentedCondition(Cond))
1771     return EmitBranchOnBoolExpr(Cond, TrueBlock, FalseBlock, TrueCount, LH);
1772 
1773   const Stmt *CntrStmt = (CntrIdx ? CntrIdx : Cond);
1774 
1775   llvm::BasicBlock *ThenBlock = nullptr;
1776   llvm::BasicBlock *ElseBlock = nullptr;
1777   llvm::BasicBlock *NextBlock = nullptr;
1778 
1779   // Create the block we'll use to increment the appropriate counter.
1780   llvm::BasicBlock *CounterIncrBlock = createBasicBlock("lop.rhscnt");
1781 
1782   // Set block pointers according to Logical-AND (BO_LAnd) semantics. This
1783   // means we need to evaluate the condition and increment the counter on TRUE:
1784   //
1785   // if (Cond)
1786   //   goto CounterIncrBlock;
1787   // else
1788   //   goto FalseBlock;
1789   //
1790   // CounterIncrBlock:
1791   //   Counter++;
1792   //   goto TrueBlock;
1793 
1794   if (LOp == BO_LAnd) {
1795     ThenBlock = CounterIncrBlock;
1796     ElseBlock = FalseBlock;
1797     NextBlock = TrueBlock;
1798   }
1799 
1800   // Set block pointers according to Logical-OR (BO_LOr) semantics. This means
1801   // we need to evaluate the condition and increment the counter on FALSE:
1802   //
1803   // if (Cond)
1804   //   goto TrueBlock;
1805   // else
1806   //   goto CounterIncrBlock;
1807   //
1808   // CounterIncrBlock:
1809   //   Counter++;
1810   //   goto FalseBlock;
1811 
1812   else if (LOp == BO_LOr) {
1813     ThenBlock = TrueBlock;
1814     ElseBlock = CounterIncrBlock;
1815     NextBlock = FalseBlock;
1816   } else {
1817     llvm_unreachable("Expected Opcode must be that of a Logical Operator");
1818   }
1819 
1820   // Emit Branch based on condition.
1821   EmitBranchOnBoolExpr(Cond, ThenBlock, ElseBlock, TrueCount, LH);
1822 
1823   // Emit the block containing the counter increment(s).
1824   EmitBlock(CounterIncrBlock);
1825 
1826   // Increment corresponding counter; if index not provided, use Cond as index.
1827   incrementProfileCounter(CntrStmt);
1828 
1829   // Go to the next block.
1830   EmitBranch(NextBlock);
1831 }
1832 
1833 /// EmitBranchOnBoolExpr - Emit a branch on a boolean condition (e.g. for an if
1834 /// statement) to the specified blocks.  Based on the condition, this might try
1835 /// to simplify the codegen of the conditional based on the branch.
1836 /// \param LH The value of the likelihood attribute on the True branch.
1837 /// \param ConditionalOp Used by MC/DC code coverage to track the result of the
1838 /// ConditionalOperator (ternary) through a recursive call for the operator's
1839 /// LHS and RHS nodes.
1840 void CodeGenFunction::EmitBranchOnBoolExpr(
1841     const Expr *Cond, llvm::BasicBlock *TrueBlock, llvm::BasicBlock *FalseBlock,
1842     uint64_t TrueCount, Stmt::Likelihood LH, const Expr *ConditionalOp) {
1843   Cond = Cond->IgnoreParens();
1844 
1845   if (const BinaryOperator *CondBOp = dyn_cast<BinaryOperator>(Cond)) {
1846     // Handle X && Y in a condition.
1847     if (CondBOp->getOpcode() == BO_LAnd) {
1848       MCDCLogOpStack.push_back(CondBOp);
1849 
1850       // If we have "1 && X", simplify the code.  "0 && X" would have constant
1851       // folded if the case was simple enough.
1852       bool ConstantBool = false;
1853       if (ConstantFoldsToSimpleInteger(CondBOp->getLHS(), ConstantBool) &&
1854           ConstantBool) {
1855         // br(1 && X) -> br(X).
1856         incrementProfileCounter(CondBOp);
1857         EmitBranchToCounterBlock(CondBOp->getRHS(), BO_LAnd, TrueBlock,
1858                                  FalseBlock, TrueCount, LH);
1859         MCDCLogOpStack.pop_back();
1860         return;
1861       }
1862 
1863       // If we have "X && 1", simplify the code to use an uncond branch.
1864       // "X && 0" would have been constant folded to 0.
1865       if (ConstantFoldsToSimpleInteger(CondBOp->getRHS(), ConstantBool) &&
1866           ConstantBool) {
1867         // br(X && 1) -> br(X).
1868         EmitBranchToCounterBlock(CondBOp->getLHS(), BO_LAnd, TrueBlock,
1869                                  FalseBlock, TrueCount, LH, CondBOp);
1870         MCDCLogOpStack.pop_back();
1871         return;
1872       }
1873 
1874       // Emit the LHS as a conditional.  If the LHS conditional is false, we
1875       // want to jump to the FalseBlock.
1876       llvm::BasicBlock *LHSTrue = createBasicBlock("land.lhs.true");
1877       // The counter tells us how often we evaluate RHS, and all of TrueCount
1878       // can be propagated to that branch.
1879       uint64_t RHSCount = getProfileCount(CondBOp->getRHS());
1880 
1881       ConditionalEvaluation eval(*this);
1882       {
1883         ApplyDebugLocation DL(*this, Cond);
1884         // Propagate the likelihood attribute like __builtin_expect
1885         // __builtin_expect(X && Y, 1) -> X and Y are likely
1886         // __builtin_expect(X && Y, 0) -> only Y is unlikely
1887         EmitBranchOnBoolExpr(CondBOp->getLHS(), LHSTrue, FalseBlock, RHSCount,
1888                              LH == Stmt::LH_Unlikely ? Stmt::LH_None : LH);
1889         EmitBlock(LHSTrue);
1890       }
1891 
1892       incrementProfileCounter(CondBOp);
1893       setCurrentProfileCount(getProfileCount(CondBOp->getRHS()));
1894 
1895       // Any temporaries created here are conditional.
1896       eval.begin(*this);
1897       EmitBranchToCounterBlock(CondBOp->getRHS(), BO_LAnd, TrueBlock,
1898                                FalseBlock, TrueCount, LH);
1899       eval.end(*this);
1900       MCDCLogOpStack.pop_back();
1901       return;
1902     }
1903 
1904     if (CondBOp->getOpcode() == BO_LOr) {
1905       MCDCLogOpStack.push_back(CondBOp);
1906 
1907       // If we have "0 || X", simplify the code.  "1 || X" would have constant
1908       // folded if the case was simple enough.
1909       bool ConstantBool = false;
1910       if (ConstantFoldsToSimpleInteger(CondBOp->getLHS(), ConstantBool) &&
1911           !ConstantBool) {
1912         // br(0 || X) -> br(X).
1913         incrementProfileCounter(CondBOp);
1914         EmitBranchToCounterBlock(CondBOp->getRHS(), BO_LOr, TrueBlock,
1915                                  FalseBlock, TrueCount, LH);
1916         MCDCLogOpStack.pop_back();
1917         return;
1918       }
1919 
1920       // If we have "X || 0", simplify the code to use an uncond branch.
1921       // "X || 1" would have been constant folded to 1.
1922       if (ConstantFoldsToSimpleInteger(CondBOp->getRHS(), ConstantBool) &&
1923           !ConstantBool) {
1924         // br(X || 0) -> br(X).
1925         EmitBranchToCounterBlock(CondBOp->getLHS(), BO_LOr, TrueBlock,
1926                                  FalseBlock, TrueCount, LH, CondBOp);
1927         MCDCLogOpStack.pop_back();
1928         return;
1929       }
1930       // Emit the LHS as a conditional.  If the LHS conditional is true, we
1931       // want to jump to the TrueBlock.
1932       llvm::BasicBlock *LHSFalse = createBasicBlock("lor.lhs.false");
1933       // We have the count for entry to the RHS and for the whole expression
1934       // being true, so we can divy up True count between the short circuit and
1935       // the RHS.
1936       uint64_t LHSCount =
1937           getCurrentProfileCount() - getProfileCount(CondBOp->getRHS());
1938       uint64_t RHSCount = TrueCount - LHSCount;
1939 
1940       ConditionalEvaluation eval(*this);
1941       {
1942         // Propagate the likelihood attribute like __builtin_expect
1943         // __builtin_expect(X || Y, 1) -> only Y is likely
1944         // __builtin_expect(X || Y, 0) -> both X and Y are unlikely
1945         ApplyDebugLocation DL(*this, Cond);
1946         EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, LHSFalse, LHSCount,
1947                              LH == Stmt::LH_Likely ? Stmt::LH_None : LH);
1948         EmitBlock(LHSFalse);
1949       }
1950 
1951       incrementProfileCounter(CondBOp);
1952       setCurrentProfileCount(getProfileCount(CondBOp->getRHS()));
1953 
1954       // Any temporaries created here are conditional.
1955       eval.begin(*this);
1956       EmitBranchToCounterBlock(CondBOp->getRHS(), BO_LOr, TrueBlock, FalseBlock,
1957                                RHSCount, LH);
1958 
1959       eval.end(*this);
1960       MCDCLogOpStack.pop_back();
1961       return;
1962     }
1963   }
1964 
1965   if (const UnaryOperator *CondUOp = dyn_cast<UnaryOperator>(Cond)) {
1966     // br(!x, t, f) -> br(x, f, t)
1967     // Avoid doing this optimization when instrumenting a condition for MC/DC.
1968     // LNot is taken as part of the condition for simplicity, and changing its
1969     // sense negatively impacts test vector tracking.
1970     bool MCDCCondition = CGM.getCodeGenOpts().hasProfileClangInstr() &&
1971                          CGM.getCodeGenOpts().MCDCCoverage &&
1972                          isInstrumentedCondition(Cond);
1973     if (CondUOp->getOpcode() == UO_LNot && !MCDCCondition) {
1974       // Negate the count.
1975       uint64_t FalseCount = getCurrentProfileCount() - TrueCount;
1976       // The values of the enum are chosen to make this negation possible.
1977       LH = static_cast<Stmt::Likelihood>(-LH);
1978       // Negate the condition and swap the destination blocks.
1979       return EmitBranchOnBoolExpr(CondUOp->getSubExpr(), FalseBlock, TrueBlock,
1980                                   FalseCount, LH);
1981     }
1982   }
1983 
1984   if (const ConditionalOperator *CondOp = dyn_cast<ConditionalOperator>(Cond)) {
1985     // br(c ? x : y, t, f) -> br(c, br(x, t, f), br(y, t, f))
1986     llvm::BasicBlock *LHSBlock = createBasicBlock("cond.true");
1987     llvm::BasicBlock *RHSBlock = createBasicBlock("cond.false");
1988 
1989     // The ConditionalOperator itself has no likelihood information for its
1990     // true and false branches. This matches the behavior of __builtin_expect.
1991     ConditionalEvaluation cond(*this);
1992     EmitBranchOnBoolExpr(CondOp->getCond(), LHSBlock, RHSBlock,
1993                          getProfileCount(CondOp), Stmt::LH_None);
1994 
1995     // When computing PGO branch weights, we only know the overall count for
1996     // the true block. This code is essentially doing tail duplication of the
1997     // naive code-gen, introducing new edges for which counts are not
1998     // available. Divide the counts proportionally between the LHS and RHS of
1999     // the conditional operator.
2000     uint64_t LHSScaledTrueCount = 0;
2001     if (TrueCount) {
2002       double LHSRatio =
2003           getProfileCount(CondOp) / (double)getCurrentProfileCount();
2004       LHSScaledTrueCount = TrueCount * LHSRatio;
2005     }
2006 
2007     cond.begin(*this);
2008     EmitBlock(LHSBlock);
2009     incrementProfileCounter(CondOp);
2010     {
2011       ApplyDebugLocation DL(*this, Cond);
2012       EmitBranchOnBoolExpr(CondOp->getLHS(), TrueBlock, FalseBlock,
2013                            LHSScaledTrueCount, LH, CondOp);
2014     }
2015     cond.end(*this);
2016 
2017     cond.begin(*this);
2018     EmitBlock(RHSBlock);
2019     EmitBranchOnBoolExpr(CondOp->getRHS(), TrueBlock, FalseBlock,
2020                          TrueCount - LHSScaledTrueCount, LH, CondOp);
2021     cond.end(*this);
2022 
2023     return;
2024   }
2025 
2026   if (const CXXThrowExpr *Throw = dyn_cast<CXXThrowExpr>(Cond)) {
2027     // Conditional operator handling can give us a throw expression as a
2028     // condition for a case like:
2029     //   br(c ? throw x : y, t, f) -> br(c, br(throw x, t, f), br(y, t, f)
2030     // Fold this to:
2031     //   br(c, throw x, br(y, t, f))
2032     EmitCXXThrowExpr(Throw, /*KeepInsertionPoint*/false);
2033     return;
2034   }
2035 
2036   // Emit the code with the fully general case.
2037   llvm::Value *CondV;
2038   {
2039     ApplyDebugLocation DL(*this, Cond);
2040     CondV = EvaluateExprAsBool(Cond);
2041   }
2042 
2043   // If not at the top of the logical operator nest, update MCDC temp with the
2044   // boolean result of the evaluated condition.
2045   if (!MCDCLogOpStack.empty()) {
2046     const Expr *MCDCBaseExpr = Cond;
2047     // When a nested ConditionalOperator (ternary) is encountered in a boolean
2048     // expression, MC/DC tracks the result of the ternary, and this is tied to
2049     // the ConditionalOperator expression and not the ternary's LHS or RHS. If
2050     // this is the case, the ConditionalOperator expression is passed through
2051     // the ConditionalOp parameter and then used as the MCDC base expression.
2052     if (ConditionalOp)
2053       MCDCBaseExpr = ConditionalOp;
2054 
2055     maybeUpdateMCDCCondBitmap(MCDCBaseExpr, CondV);
2056   }
2057 
2058   llvm::MDNode *Weights = nullptr;
2059   llvm::MDNode *Unpredictable = nullptr;
2060 
2061   // If the branch has a condition wrapped by __builtin_unpredictable,
2062   // create metadata that specifies that the branch is unpredictable.
2063   // Don't bother if not optimizing because that metadata would not be used.
2064   auto *Call = dyn_cast<CallExpr>(Cond->IgnoreImpCasts());
2065   if (Call && CGM.getCodeGenOpts().OptimizationLevel != 0) {
2066     auto *FD = dyn_cast_or_null<FunctionDecl>(Call->getCalleeDecl());
2067     if (FD && FD->getBuiltinID() == Builtin::BI__builtin_unpredictable) {
2068       llvm::MDBuilder MDHelper(getLLVMContext());
2069       Unpredictable = MDHelper.createUnpredictable();
2070     }
2071   }
2072 
2073   // If there is a Likelihood knowledge for the cond, lower it.
2074   // Note that if not optimizing this won't emit anything.
2075   llvm::Value *NewCondV = emitCondLikelihoodViaExpectIntrinsic(CondV, LH);
2076   if (CondV != NewCondV)
2077     CondV = NewCondV;
2078   else {
2079     // Otherwise, lower profile counts. Note that we do this even at -O0.
2080     uint64_t CurrentCount = std::max(getCurrentProfileCount(), TrueCount);
2081     Weights = createProfileWeights(TrueCount, CurrentCount - TrueCount);
2082   }
2083 
2084   Builder.CreateCondBr(CondV, TrueBlock, FalseBlock, Weights, Unpredictable);
2085 }
2086 
2087 /// ErrorUnsupported - Print out an error that codegen doesn't support the
2088 /// specified stmt yet.
2089 void CodeGenFunction::ErrorUnsupported(const Stmt *S, const char *Type) {
2090   CGM.ErrorUnsupported(S, Type);
2091 }
2092 
2093 /// emitNonZeroVLAInit - Emit the "zero" initialization of a
2094 /// variable-length array whose elements have a non-zero bit-pattern.
2095 ///
2096 /// \param baseType the inner-most element type of the array
2097 /// \param src - a char* pointing to the bit-pattern for a single
2098 /// base element of the array
2099 /// \param sizeInChars - the total size of the VLA, in chars
2100 static void emitNonZeroVLAInit(CodeGenFunction &CGF, QualType baseType,
2101                                Address dest, Address src,
2102                                llvm::Value *sizeInChars) {
2103   CGBuilderTy &Builder = CGF.Builder;
2104 
2105   CharUnits baseSize = CGF.getContext().getTypeSizeInChars(baseType);
2106   llvm::Value *baseSizeInChars
2107     = llvm::ConstantInt::get(CGF.IntPtrTy, baseSize.getQuantity());
2108 
2109   Address begin = dest.withElementType(CGF.Int8Ty);
2110   llvm::Value *end = Builder.CreateInBoundsGEP(begin.getElementType(),
2111                                                begin.emitRawPointer(CGF),
2112                                                sizeInChars, "vla.end");
2113 
2114   llvm::BasicBlock *originBB = CGF.Builder.GetInsertBlock();
2115   llvm::BasicBlock *loopBB = CGF.createBasicBlock("vla-init.loop");
2116   llvm::BasicBlock *contBB = CGF.createBasicBlock("vla-init.cont");
2117 
2118   // Make a loop over the VLA.  C99 guarantees that the VLA element
2119   // count must be nonzero.
2120   CGF.EmitBlock(loopBB);
2121 
2122   llvm::PHINode *cur = Builder.CreatePHI(begin.getType(), 2, "vla.cur");
2123   cur->addIncoming(begin.emitRawPointer(CGF), originBB);
2124 
2125   CharUnits curAlign =
2126     dest.getAlignment().alignmentOfArrayElement(baseSize);
2127 
2128   // memcpy the individual element bit-pattern.
2129   Builder.CreateMemCpy(Address(cur, CGF.Int8Ty, curAlign), src, baseSizeInChars,
2130                        /*volatile*/ false);
2131 
2132   // Go to the next element.
2133   llvm::Value *next =
2134     Builder.CreateInBoundsGEP(CGF.Int8Ty, cur, baseSizeInChars, "vla.next");
2135 
2136   // Leave if that's the end of the VLA.
2137   llvm::Value *done = Builder.CreateICmpEQ(next, end, "vla-init.isdone");
2138   Builder.CreateCondBr(done, contBB, loopBB);
2139   cur->addIncoming(next, loopBB);
2140 
2141   CGF.EmitBlock(contBB);
2142 }
2143 
2144 void
2145 CodeGenFunction::EmitNullInitialization(Address DestPtr, QualType Ty) {
2146   // Ignore empty classes in C++.
2147   if (getLangOpts().CPlusPlus) {
2148     if (const RecordType *RT = Ty->getAs<RecordType>()) {
2149       if (cast<CXXRecordDecl>(RT->getDecl())->isEmpty())
2150         return;
2151     }
2152   }
2153 
2154   if (DestPtr.getElementType() != Int8Ty)
2155     DestPtr = DestPtr.withElementType(Int8Ty);
2156 
2157   // Get size and alignment info for this aggregate.
2158   CharUnits size = getContext().getTypeSizeInChars(Ty);
2159 
2160   llvm::Value *SizeVal;
2161   const VariableArrayType *vla;
2162 
2163   // Don't bother emitting a zero-byte memset.
2164   if (size.isZero()) {
2165     // But note that getTypeInfo returns 0 for a VLA.
2166     if (const VariableArrayType *vlaType =
2167           dyn_cast_or_null<VariableArrayType>(
2168                                           getContext().getAsArrayType(Ty))) {
2169       auto VlaSize = getVLASize(vlaType);
2170       SizeVal = VlaSize.NumElts;
2171       CharUnits eltSize = getContext().getTypeSizeInChars(VlaSize.Type);
2172       if (!eltSize.isOne())
2173         SizeVal = Builder.CreateNUWMul(SizeVal, CGM.getSize(eltSize));
2174       vla = vlaType;
2175     } else {
2176       return;
2177     }
2178   } else {
2179     SizeVal = CGM.getSize(size);
2180     vla = nullptr;
2181   }
2182 
2183   // If the type contains a pointer to data member we can't memset it to zero.
2184   // Instead, create a null constant and copy it to the destination.
2185   // TODO: there are other patterns besides zero that we can usefully memset,
2186   // like -1, which happens to be the pattern used by member-pointers.
2187   if (!CGM.getTypes().isZeroInitializable(Ty)) {
2188     // For a VLA, emit a single element, then splat that over the VLA.
2189     if (vla) Ty = getContext().getBaseElementType(vla);
2190 
2191     llvm::Constant *NullConstant = CGM.EmitNullConstant(Ty);
2192 
2193     llvm::GlobalVariable *NullVariable =
2194       new llvm::GlobalVariable(CGM.getModule(), NullConstant->getType(),
2195                                /*isConstant=*/true,
2196                                llvm::GlobalVariable::PrivateLinkage,
2197                                NullConstant, Twine());
2198     CharUnits NullAlign = DestPtr.getAlignment();
2199     NullVariable->setAlignment(NullAlign.getAsAlign());
2200     Address SrcPtr(NullVariable, Builder.getInt8Ty(), NullAlign);
2201 
2202     if (vla) return emitNonZeroVLAInit(*this, Ty, DestPtr, SrcPtr, SizeVal);
2203 
2204     // Get and call the appropriate llvm.memcpy overload.
2205     Builder.CreateMemCpy(DestPtr, SrcPtr, SizeVal, false);
2206     return;
2207   }
2208 
2209   // Otherwise, just memset the whole thing to zero.  This is legal
2210   // because in LLVM, all default initializers (other than the ones we just
2211   // handled above) are guaranteed to have a bit pattern of all zeros.
2212   Builder.CreateMemSet(DestPtr, Builder.getInt8(0), SizeVal, false);
2213 }
2214 
2215 llvm::BlockAddress *CodeGenFunction::GetAddrOfLabel(const LabelDecl *L) {
2216   // Make sure that there is a block for the indirect goto.
2217   if (!IndirectBranch)
2218     GetIndirectGotoBlock();
2219 
2220   llvm::BasicBlock *BB = getJumpDestForLabel(L).getBlock();
2221 
2222   // Make sure the indirect branch includes all of the address-taken blocks.
2223   IndirectBranch->addDestination(BB);
2224   return llvm::BlockAddress::get(CurFn, BB);
2225 }
2226 
2227 llvm::BasicBlock *CodeGenFunction::GetIndirectGotoBlock() {
2228   // If we already made the indirect branch for indirect goto, return its block.
2229   if (IndirectBranch) return IndirectBranch->getParent();
2230 
2231   CGBuilderTy TmpBuilder(*this, createBasicBlock("indirectgoto"));
2232 
2233   // Create the PHI node that indirect gotos will add entries to.
2234   llvm::Value *DestVal = TmpBuilder.CreatePHI(Int8PtrTy, 0,
2235                                               "indirect.goto.dest");
2236 
2237   // Create the indirect branch instruction.
2238   IndirectBranch = TmpBuilder.CreateIndirectBr(DestVal);
2239   return IndirectBranch->getParent();
2240 }
2241 
2242 /// Computes the length of an array in elements, as well as the base
2243 /// element type and a properly-typed first element pointer.
2244 llvm::Value *CodeGenFunction::emitArrayLength(const ArrayType *origArrayType,
2245                                               QualType &baseType,
2246                                               Address &addr) {
2247   const ArrayType *arrayType = origArrayType;
2248 
2249   // If it's a VLA, we have to load the stored size.  Note that
2250   // this is the size of the VLA in bytes, not its size in elements.
2251   llvm::Value *numVLAElements = nullptr;
2252   if (isa<VariableArrayType>(arrayType)) {
2253     numVLAElements = getVLASize(cast<VariableArrayType>(arrayType)).NumElts;
2254 
2255     // Walk into all VLAs.  This doesn't require changes to addr,
2256     // which has type T* where T is the first non-VLA element type.
2257     do {
2258       QualType elementType = arrayType->getElementType();
2259       arrayType = getContext().getAsArrayType(elementType);
2260 
2261       // If we only have VLA components, 'addr' requires no adjustment.
2262       if (!arrayType) {
2263         baseType = elementType;
2264         return numVLAElements;
2265       }
2266     } while (isa<VariableArrayType>(arrayType));
2267 
2268     // We get out here only if we find a constant array type
2269     // inside the VLA.
2270   }
2271 
2272   // We have some number of constant-length arrays, so addr should
2273   // have LLVM type [M x [N x [...]]]*.  Build a GEP that walks
2274   // down to the first element of addr.
2275   SmallVector<llvm::Value*, 8> gepIndices;
2276 
2277   // GEP down to the array type.
2278   llvm::ConstantInt *zero = Builder.getInt32(0);
2279   gepIndices.push_back(zero);
2280 
2281   uint64_t countFromCLAs = 1;
2282   QualType eltType;
2283 
2284   llvm::ArrayType *llvmArrayType =
2285     dyn_cast<llvm::ArrayType>(addr.getElementType());
2286   while (llvmArrayType) {
2287     assert(isa<ConstantArrayType>(arrayType));
2288     assert(cast<ConstantArrayType>(arrayType)->getZExtSize() ==
2289            llvmArrayType->getNumElements());
2290 
2291     gepIndices.push_back(zero);
2292     countFromCLAs *= llvmArrayType->getNumElements();
2293     eltType = arrayType->getElementType();
2294 
2295     llvmArrayType =
2296       dyn_cast<llvm::ArrayType>(llvmArrayType->getElementType());
2297     arrayType = getContext().getAsArrayType(arrayType->getElementType());
2298     assert((!llvmArrayType || arrayType) &&
2299            "LLVM and Clang types are out-of-synch");
2300   }
2301 
2302   if (arrayType) {
2303     // From this point onwards, the Clang array type has been emitted
2304     // as some other type (probably a packed struct). Compute the array
2305     // size, and just emit the 'begin' expression as a bitcast.
2306     while (arrayType) {
2307       countFromCLAs *= cast<ConstantArrayType>(arrayType)->getZExtSize();
2308       eltType = arrayType->getElementType();
2309       arrayType = getContext().getAsArrayType(eltType);
2310     }
2311 
2312     llvm::Type *baseType = ConvertType(eltType);
2313     addr = addr.withElementType(baseType);
2314   } else {
2315     // Create the actual GEP.
2316     addr = Address(Builder.CreateInBoundsGEP(addr.getElementType(),
2317                                              addr.emitRawPointer(*this),
2318                                              gepIndices, "array.begin"),
2319                    ConvertTypeForMem(eltType), addr.getAlignment());
2320   }
2321 
2322   baseType = eltType;
2323 
2324   llvm::Value *numElements
2325     = llvm::ConstantInt::get(SizeTy, countFromCLAs);
2326 
2327   // If we had any VLA dimensions, factor them in.
2328   if (numVLAElements)
2329     numElements = Builder.CreateNUWMul(numVLAElements, numElements);
2330 
2331   return numElements;
2332 }
2333 
2334 CodeGenFunction::VlaSizePair CodeGenFunction::getVLASize(QualType type) {
2335   const VariableArrayType *vla = getContext().getAsVariableArrayType(type);
2336   assert(vla && "type was not a variable array type!");
2337   return getVLASize(vla);
2338 }
2339 
2340 CodeGenFunction::VlaSizePair
2341 CodeGenFunction::getVLASize(const VariableArrayType *type) {
2342   // The number of elements so far; always size_t.
2343   llvm::Value *numElements = nullptr;
2344 
2345   QualType elementType;
2346   do {
2347     elementType = type->getElementType();
2348     llvm::Value *vlaSize = VLASizeMap[type->getSizeExpr()];
2349     assert(vlaSize && "no size for VLA!");
2350     assert(vlaSize->getType() == SizeTy);
2351 
2352     if (!numElements) {
2353       numElements = vlaSize;
2354     } else {
2355       // It's undefined behavior if this wraps around, so mark it that way.
2356       // FIXME: Teach -fsanitize=undefined to trap this.
2357       numElements = Builder.CreateNUWMul(numElements, vlaSize);
2358     }
2359   } while ((type = getContext().getAsVariableArrayType(elementType)));
2360 
2361   return { numElements, elementType };
2362 }
2363 
2364 CodeGenFunction::VlaSizePair
2365 CodeGenFunction::getVLAElements1D(QualType type) {
2366   const VariableArrayType *vla = getContext().getAsVariableArrayType(type);
2367   assert(vla && "type was not a variable array type!");
2368   return getVLAElements1D(vla);
2369 }
2370 
2371 CodeGenFunction::VlaSizePair
2372 CodeGenFunction::getVLAElements1D(const VariableArrayType *Vla) {
2373   llvm::Value *VlaSize = VLASizeMap[Vla->getSizeExpr()];
2374   assert(VlaSize && "no size for VLA!");
2375   assert(VlaSize->getType() == SizeTy);
2376   return { VlaSize, Vla->getElementType() };
2377 }
2378 
2379 void CodeGenFunction::EmitVariablyModifiedType(QualType type) {
2380   assert(type->isVariablyModifiedType() &&
2381          "Must pass variably modified type to EmitVLASizes!");
2382 
2383   EnsureInsertPoint();
2384 
2385   // We're going to walk down into the type and look for VLA
2386   // expressions.
2387   do {
2388     assert(type->isVariablyModifiedType());
2389 
2390     const Type *ty = type.getTypePtr();
2391     switch (ty->getTypeClass()) {
2392 
2393 #define TYPE(Class, Base)
2394 #define ABSTRACT_TYPE(Class, Base)
2395 #define NON_CANONICAL_TYPE(Class, Base)
2396 #define DEPENDENT_TYPE(Class, Base) case Type::Class:
2397 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base)
2398 #include "clang/AST/TypeNodes.inc"
2399       llvm_unreachable("unexpected dependent type!");
2400 
2401     // These types are never variably-modified.
2402     case Type::Builtin:
2403     case Type::Complex:
2404     case Type::Vector:
2405     case Type::ExtVector:
2406     case Type::ConstantMatrix:
2407     case Type::Record:
2408     case Type::Enum:
2409     case Type::Using:
2410     case Type::TemplateSpecialization:
2411     case Type::ObjCTypeParam:
2412     case Type::ObjCObject:
2413     case Type::ObjCInterface:
2414     case Type::ObjCObjectPointer:
2415     case Type::BitInt:
2416       llvm_unreachable("type class is never variably-modified!");
2417 
2418     case Type::Elaborated:
2419       type = cast<ElaboratedType>(ty)->getNamedType();
2420       break;
2421 
2422     case Type::Adjusted:
2423       type = cast<AdjustedType>(ty)->getAdjustedType();
2424       break;
2425 
2426     case Type::Decayed:
2427       type = cast<DecayedType>(ty)->getPointeeType();
2428       break;
2429 
2430     case Type::Pointer:
2431       type = cast<PointerType>(ty)->getPointeeType();
2432       break;
2433 
2434     case Type::BlockPointer:
2435       type = cast<BlockPointerType>(ty)->getPointeeType();
2436       break;
2437 
2438     case Type::LValueReference:
2439     case Type::RValueReference:
2440       type = cast<ReferenceType>(ty)->getPointeeType();
2441       break;
2442 
2443     case Type::MemberPointer:
2444       type = cast<MemberPointerType>(ty)->getPointeeType();
2445       break;
2446 
2447     case Type::ArrayParameter:
2448     case Type::ConstantArray:
2449     case Type::IncompleteArray:
2450       // Losing element qualification here is fine.
2451       type = cast<ArrayType>(ty)->getElementType();
2452       break;
2453 
2454     case Type::VariableArray: {
2455       // Losing element qualification here is fine.
2456       const VariableArrayType *vat = cast<VariableArrayType>(ty);
2457 
2458       // Unknown size indication requires no size computation.
2459       // Otherwise, evaluate and record it.
2460       if (const Expr *sizeExpr = vat->getSizeExpr()) {
2461         // It's possible that we might have emitted this already,
2462         // e.g. with a typedef and a pointer to it.
2463         llvm::Value *&entry = VLASizeMap[sizeExpr];
2464         if (!entry) {
2465           llvm::Value *size = EmitScalarExpr(sizeExpr);
2466 
2467           // C11 6.7.6.2p5:
2468           //   If the size is an expression that is not an integer constant
2469           //   expression [...] each time it is evaluated it shall have a value
2470           //   greater than zero.
2471           if (SanOpts.has(SanitizerKind::VLABound)) {
2472             SanitizerScope SanScope(this);
2473             llvm::Value *Zero = llvm::Constant::getNullValue(size->getType());
2474             clang::QualType SEType = sizeExpr->getType();
2475             llvm::Value *CheckCondition =
2476                 SEType->isSignedIntegerType()
2477                     ? Builder.CreateICmpSGT(size, Zero)
2478                     : Builder.CreateICmpUGT(size, Zero);
2479             llvm::Constant *StaticArgs[] = {
2480                 EmitCheckSourceLocation(sizeExpr->getBeginLoc()),
2481                 EmitCheckTypeDescriptor(SEType)};
2482             EmitCheck(std::make_pair(CheckCondition, SanitizerKind::VLABound),
2483                       SanitizerHandler::VLABoundNotPositive, StaticArgs, size);
2484           }
2485 
2486           // Always zexting here would be wrong if it weren't
2487           // undefined behavior to have a negative bound.
2488           // FIXME: What about when size's type is larger than size_t?
2489           entry = Builder.CreateIntCast(size, SizeTy, /*signed*/ false);
2490         }
2491       }
2492       type = vat->getElementType();
2493       break;
2494     }
2495 
2496     case Type::FunctionProto:
2497     case Type::FunctionNoProto:
2498       type = cast<FunctionType>(ty)->getReturnType();
2499       break;
2500 
2501     case Type::Paren:
2502     case Type::TypeOf:
2503     case Type::UnaryTransform:
2504     case Type::Attributed:
2505     case Type::BTFTagAttributed:
2506     case Type::HLSLAttributedResource:
2507     case Type::SubstTemplateTypeParm:
2508     case Type::MacroQualified:
2509     case Type::CountAttributed:
2510       // Keep walking after single level desugaring.
2511       type = type.getSingleStepDesugaredType(getContext());
2512       break;
2513 
2514     case Type::Typedef:
2515     case Type::Decltype:
2516     case Type::Auto:
2517     case Type::DeducedTemplateSpecialization:
2518     case Type::PackIndexing:
2519       // Stop walking: nothing to do.
2520       return;
2521 
2522     case Type::TypeOfExpr:
2523       // Stop walking: emit typeof expression.
2524       EmitIgnoredExpr(cast<TypeOfExprType>(ty)->getUnderlyingExpr());
2525       return;
2526 
2527     case Type::Atomic:
2528       type = cast<AtomicType>(ty)->getValueType();
2529       break;
2530 
2531     case Type::Pipe:
2532       type = cast<PipeType>(ty)->getElementType();
2533       break;
2534     }
2535   } while (type->isVariablyModifiedType());
2536 }
2537 
2538 Address CodeGenFunction::EmitVAListRef(const Expr* E) {
2539   if (getContext().getBuiltinVaListType()->isArrayType())
2540     return EmitPointerWithAlignment(E);
2541   return EmitLValue(E).getAddress();
2542 }
2543 
2544 Address CodeGenFunction::EmitMSVAListRef(const Expr *E) {
2545   return EmitLValue(E).getAddress();
2546 }
2547 
2548 void CodeGenFunction::EmitDeclRefExprDbgValue(const DeclRefExpr *E,
2549                                               const APValue &Init) {
2550   assert(Init.hasValue() && "Invalid DeclRefExpr initializer!");
2551   if (CGDebugInfo *Dbg = getDebugInfo())
2552     if (CGM.getCodeGenOpts().hasReducedDebugInfo())
2553       Dbg->EmitGlobalVariable(E->getDecl(), Init);
2554 }
2555 
2556 CodeGenFunction::PeepholeProtection
2557 CodeGenFunction::protectFromPeepholes(RValue rvalue) {
2558   // At the moment, the only aggressive peephole we do in IR gen
2559   // is trunc(zext) folding, but if we add more, we can easily
2560   // extend this protection.
2561 
2562   if (!rvalue.isScalar()) return PeepholeProtection();
2563   llvm::Value *value = rvalue.getScalarVal();
2564   if (!isa<llvm::ZExtInst>(value)) return PeepholeProtection();
2565 
2566   // Just make an extra bitcast.
2567   assert(HaveInsertPoint());
2568   llvm::Instruction *inst = new llvm::BitCastInst(value, value->getType(), "",
2569                                                   Builder.GetInsertBlock());
2570 
2571   PeepholeProtection protection;
2572   protection.Inst = inst;
2573   return protection;
2574 }
2575 
2576 void CodeGenFunction::unprotectFromPeepholes(PeepholeProtection protection) {
2577   if (!protection.Inst) return;
2578 
2579   // In theory, we could try to duplicate the peepholes now, but whatever.
2580   protection.Inst->eraseFromParent();
2581 }
2582 
2583 void CodeGenFunction::emitAlignmentAssumption(llvm::Value *PtrValue,
2584                                               QualType Ty, SourceLocation Loc,
2585                                               SourceLocation AssumptionLoc,
2586                                               llvm::Value *Alignment,
2587                                               llvm::Value *OffsetValue) {
2588   if (Alignment->getType() != IntPtrTy)
2589     Alignment =
2590         Builder.CreateIntCast(Alignment, IntPtrTy, false, "casted.align");
2591   if (OffsetValue && OffsetValue->getType() != IntPtrTy)
2592     OffsetValue =
2593         Builder.CreateIntCast(OffsetValue, IntPtrTy, true, "casted.offset");
2594   llvm::Value *TheCheck = nullptr;
2595   if (SanOpts.has(SanitizerKind::Alignment)) {
2596     llvm::Value *PtrIntValue =
2597         Builder.CreatePtrToInt(PtrValue, IntPtrTy, "ptrint");
2598 
2599     if (OffsetValue) {
2600       bool IsOffsetZero = false;
2601       if (const auto *CI = dyn_cast<llvm::ConstantInt>(OffsetValue))
2602         IsOffsetZero = CI->isZero();
2603 
2604       if (!IsOffsetZero)
2605         PtrIntValue = Builder.CreateSub(PtrIntValue, OffsetValue, "offsetptr");
2606     }
2607 
2608     llvm::Value *Zero = llvm::ConstantInt::get(IntPtrTy, 0);
2609     llvm::Value *Mask =
2610         Builder.CreateSub(Alignment, llvm::ConstantInt::get(IntPtrTy, 1));
2611     llvm::Value *MaskedPtr = Builder.CreateAnd(PtrIntValue, Mask, "maskedptr");
2612     TheCheck = Builder.CreateICmpEQ(MaskedPtr, Zero, "maskcond");
2613   }
2614   llvm::Instruction *Assumption = Builder.CreateAlignmentAssumption(
2615       CGM.getDataLayout(), PtrValue, Alignment, OffsetValue);
2616 
2617   if (!SanOpts.has(SanitizerKind::Alignment))
2618     return;
2619   emitAlignmentAssumptionCheck(PtrValue, Ty, Loc, AssumptionLoc, Alignment,
2620                                OffsetValue, TheCheck, Assumption);
2621 }
2622 
2623 void CodeGenFunction::emitAlignmentAssumption(llvm::Value *PtrValue,
2624                                               const Expr *E,
2625                                               SourceLocation AssumptionLoc,
2626                                               llvm::Value *Alignment,
2627                                               llvm::Value *OffsetValue) {
2628   QualType Ty = E->getType();
2629   SourceLocation Loc = E->getExprLoc();
2630 
2631   emitAlignmentAssumption(PtrValue, Ty, Loc, AssumptionLoc, Alignment,
2632                           OffsetValue);
2633 }
2634 
2635 llvm::Value *CodeGenFunction::EmitAnnotationCall(llvm::Function *AnnotationFn,
2636                                                  llvm::Value *AnnotatedVal,
2637                                                  StringRef AnnotationStr,
2638                                                  SourceLocation Location,
2639                                                  const AnnotateAttr *Attr) {
2640   SmallVector<llvm::Value *, 5> Args = {
2641       AnnotatedVal,
2642       CGM.EmitAnnotationString(AnnotationStr),
2643       CGM.EmitAnnotationUnit(Location),
2644       CGM.EmitAnnotationLineNo(Location),
2645   };
2646   if (Attr)
2647     Args.push_back(CGM.EmitAnnotationArgs(Attr));
2648   return Builder.CreateCall(AnnotationFn, Args);
2649 }
2650 
2651 void CodeGenFunction::EmitVarAnnotations(const VarDecl *D, llvm::Value *V) {
2652   assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute");
2653   for (const auto *I : D->specific_attrs<AnnotateAttr>())
2654     EmitAnnotationCall(CGM.getIntrinsic(llvm::Intrinsic::var_annotation,
2655                                         {V->getType(), CGM.ConstGlobalsPtrTy}),
2656                        V, I->getAnnotation(), D->getLocation(), I);
2657 }
2658 
2659 Address CodeGenFunction::EmitFieldAnnotations(const FieldDecl *D,
2660                                               Address Addr) {
2661   assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute");
2662   llvm::Value *V = Addr.emitRawPointer(*this);
2663   llvm::Type *VTy = V->getType();
2664   auto *PTy = dyn_cast<llvm::PointerType>(VTy);
2665   unsigned AS = PTy ? PTy->getAddressSpace() : 0;
2666   llvm::PointerType *IntrinTy =
2667       llvm::PointerType::get(CGM.getLLVMContext(), AS);
2668   llvm::Function *F = CGM.getIntrinsic(llvm::Intrinsic::ptr_annotation,
2669                                        {IntrinTy, CGM.ConstGlobalsPtrTy});
2670 
2671   for (const auto *I : D->specific_attrs<AnnotateAttr>()) {
2672     // FIXME Always emit the cast inst so we can differentiate between
2673     // annotation on the first field of a struct and annotation on the struct
2674     // itself.
2675     if (VTy != IntrinTy)
2676       V = Builder.CreateBitCast(V, IntrinTy);
2677     V = EmitAnnotationCall(F, V, I->getAnnotation(), D->getLocation(), I);
2678     V = Builder.CreateBitCast(V, VTy);
2679   }
2680 
2681   return Address(V, Addr.getElementType(), Addr.getAlignment());
2682 }
2683 
2684 CodeGenFunction::CGCapturedStmtInfo::~CGCapturedStmtInfo() { }
2685 
2686 CodeGenFunction::SanitizerScope::SanitizerScope(CodeGenFunction *CGF)
2687     : CGF(CGF) {
2688   assert(!CGF->IsSanitizerScope);
2689   CGF->IsSanitizerScope = true;
2690 }
2691 
2692 CodeGenFunction::SanitizerScope::~SanitizerScope() {
2693   CGF->IsSanitizerScope = false;
2694 }
2695 
2696 void CodeGenFunction::InsertHelper(llvm::Instruction *I,
2697                                    const llvm::Twine &Name,
2698                                    llvm::BasicBlock::iterator InsertPt) const {
2699   LoopStack.InsertHelper(I);
2700   if (IsSanitizerScope)
2701     I->setNoSanitizeMetadata();
2702 }
2703 
2704 void CGBuilderInserter::InsertHelper(
2705     llvm::Instruction *I, const llvm::Twine &Name,
2706     llvm::BasicBlock::iterator InsertPt) const {
2707   llvm::IRBuilderDefaultInserter::InsertHelper(I, Name, InsertPt);
2708   if (CGF)
2709     CGF->InsertHelper(I, Name, InsertPt);
2710 }
2711 
2712 // Emits an error if we don't have a valid set of target features for the
2713 // called function.
2714 void CodeGenFunction::checkTargetFeatures(const CallExpr *E,
2715                                           const FunctionDecl *TargetDecl) {
2716   // SemaChecking cannot handle below x86 builtins because they have different
2717   // parameter ranges with different TargetAttribute of caller.
2718   if (CGM.getContext().getTargetInfo().getTriple().isX86()) {
2719     unsigned BuiltinID = TargetDecl->getBuiltinID();
2720     if (BuiltinID == X86::BI__builtin_ia32_cmpps ||
2721         BuiltinID == X86::BI__builtin_ia32_cmpss ||
2722         BuiltinID == X86::BI__builtin_ia32_cmppd ||
2723         BuiltinID == X86::BI__builtin_ia32_cmpsd) {
2724       const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(CurCodeDecl);
2725       llvm::StringMap<bool> TargetFetureMap;
2726       CGM.getContext().getFunctionFeatureMap(TargetFetureMap, FD);
2727       llvm::APSInt Result =
2728           *(E->getArg(2)->getIntegerConstantExpr(CGM.getContext()));
2729       if (Result.getSExtValue() > 7 && !TargetFetureMap.lookup("avx"))
2730         CGM.getDiags().Report(E->getBeginLoc(), diag::err_builtin_needs_feature)
2731             << TargetDecl->getDeclName() << "avx";
2732     }
2733   }
2734   return checkTargetFeatures(E->getBeginLoc(), TargetDecl);
2735 }
2736 
2737 // Emits an error if we don't have a valid set of target features for the
2738 // called function.
2739 void CodeGenFunction::checkTargetFeatures(SourceLocation Loc,
2740                                           const FunctionDecl *TargetDecl) {
2741   // Early exit if this is an indirect call.
2742   if (!TargetDecl)
2743     return;
2744 
2745   // Get the current enclosing function if it exists. If it doesn't
2746   // we can't check the target features anyhow.
2747   const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(CurCodeDecl);
2748   if (!FD)
2749     return;
2750 
2751   // Grab the required features for the call. For a builtin this is listed in
2752   // the td file with the default cpu, for an always_inline function this is any
2753   // listed cpu and any listed features.
2754   unsigned BuiltinID = TargetDecl->getBuiltinID();
2755   std::string MissingFeature;
2756   llvm::StringMap<bool> CallerFeatureMap;
2757   CGM.getContext().getFunctionFeatureMap(CallerFeatureMap, FD);
2758   // When compiling in HipStdPar mode we have to be conservative in rejecting
2759   // target specific features in the FE, and defer the possible error to the
2760   // AcceleratorCodeSelection pass, wherein iff an unsupported target builtin is
2761   // referenced by an accelerator executable function, we emit an error.
2762   bool IsHipStdPar = getLangOpts().HIPStdPar && getLangOpts().CUDAIsDevice;
2763   if (BuiltinID) {
2764     StringRef FeatureList(CGM.getContext().BuiltinInfo.getRequiredFeatures(BuiltinID));
2765     if (!Builtin::evaluateRequiredTargetFeatures(
2766         FeatureList, CallerFeatureMap) && !IsHipStdPar) {
2767       CGM.getDiags().Report(Loc, diag::err_builtin_needs_feature)
2768           << TargetDecl->getDeclName()
2769           << FeatureList;
2770     }
2771   } else if (!TargetDecl->isMultiVersion() &&
2772              TargetDecl->hasAttr<TargetAttr>()) {
2773     // Get the required features for the callee.
2774 
2775     const TargetAttr *TD = TargetDecl->getAttr<TargetAttr>();
2776     ParsedTargetAttr ParsedAttr =
2777         CGM.getContext().filterFunctionTargetAttrs(TD);
2778 
2779     SmallVector<StringRef, 1> ReqFeatures;
2780     llvm::StringMap<bool> CalleeFeatureMap;
2781     CGM.getContext().getFunctionFeatureMap(CalleeFeatureMap, TargetDecl);
2782 
2783     for (const auto &F : ParsedAttr.Features) {
2784       if (F[0] == '+' && CalleeFeatureMap.lookup(F.substr(1)))
2785         ReqFeatures.push_back(StringRef(F).substr(1));
2786     }
2787 
2788     for (const auto &F : CalleeFeatureMap) {
2789       // Only positive features are "required".
2790       if (F.getValue())
2791         ReqFeatures.push_back(F.getKey());
2792     }
2793     if (!llvm::all_of(ReqFeatures, [&](StringRef Feature) {
2794       if (!CallerFeatureMap.lookup(Feature)) {
2795         MissingFeature = Feature.str();
2796         return false;
2797       }
2798       return true;
2799     }) && !IsHipStdPar)
2800       CGM.getDiags().Report(Loc, diag::err_function_needs_feature)
2801           << FD->getDeclName() << TargetDecl->getDeclName() << MissingFeature;
2802   } else if (!FD->isMultiVersion() && FD->hasAttr<TargetAttr>()) {
2803     llvm::StringMap<bool> CalleeFeatureMap;
2804     CGM.getContext().getFunctionFeatureMap(CalleeFeatureMap, TargetDecl);
2805 
2806     for (const auto &F : CalleeFeatureMap) {
2807       if (F.getValue() && (!CallerFeatureMap.lookup(F.getKey()) ||
2808                            !CallerFeatureMap.find(F.getKey())->getValue()) &&
2809           !IsHipStdPar)
2810         CGM.getDiags().Report(Loc, diag::err_function_needs_feature)
2811             << FD->getDeclName() << TargetDecl->getDeclName() << F.getKey();
2812     }
2813   }
2814 }
2815 
2816 void CodeGenFunction::EmitSanitizerStatReport(llvm::SanitizerStatKind SSK) {
2817   if (!CGM.getCodeGenOpts().SanitizeStats)
2818     return;
2819 
2820   llvm::IRBuilder<> IRB(Builder.GetInsertBlock(), Builder.GetInsertPoint());
2821   IRB.SetCurrentDebugLocation(Builder.getCurrentDebugLocation());
2822   CGM.getSanStats().create(IRB, SSK);
2823 }
2824 
2825 void CodeGenFunction::EmitKCFIOperandBundle(
2826     const CGCallee &Callee, SmallVectorImpl<llvm::OperandBundleDef> &Bundles) {
2827   const FunctionProtoType *FP =
2828       Callee.getAbstractInfo().getCalleeFunctionProtoType();
2829   if (FP)
2830     Bundles.emplace_back("kcfi", CGM.CreateKCFITypeId(FP->desugar()));
2831 }
2832 
2833 llvm::Value *
2834 CodeGenFunction::FormAArch64ResolverCondition(const FMVResolverOption &RO) {
2835   return RO.Features.empty() ? nullptr : EmitAArch64CpuSupports(RO.Features);
2836 }
2837 
2838 llvm::Value *
2839 CodeGenFunction::FormX86ResolverCondition(const FMVResolverOption &RO) {
2840   llvm::Value *Condition = nullptr;
2841 
2842   if (RO.Architecture) {
2843     StringRef Arch = *RO.Architecture;
2844     // If arch= specifies an x86-64 micro-architecture level, test the feature
2845     // with __builtin_cpu_supports, otherwise use __builtin_cpu_is.
2846     if (Arch.starts_with("x86-64"))
2847       Condition = EmitX86CpuSupports({Arch});
2848     else
2849       Condition = EmitX86CpuIs(Arch);
2850   }
2851 
2852   if (!RO.Features.empty()) {
2853     llvm::Value *FeatureCond = EmitX86CpuSupports(RO.Features);
2854     Condition =
2855         Condition ? Builder.CreateAnd(Condition, FeatureCond) : FeatureCond;
2856   }
2857   return Condition;
2858 }
2859 
2860 static void CreateMultiVersionResolverReturn(CodeGenModule &CGM,
2861                                              llvm::Function *Resolver,
2862                                              CGBuilderTy &Builder,
2863                                              llvm::Function *FuncToReturn,
2864                                              bool SupportsIFunc) {
2865   if (SupportsIFunc) {
2866     Builder.CreateRet(FuncToReturn);
2867     return;
2868   }
2869 
2870   llvm::SmallVector<llvm::Value *, 10> Args(
2871       llvm::make_pointer_range(Resolver->args()));
2872 
2873   llvm::CallInst *Result = Builder.CreateCall(FuncToReturn, Args);
2874   Result->setTailCallKind(llvm::CallInst::TCK_MustTail);
2875 
2876   if (Resolver->getReturnType()->isVoidTy())
2877     Builder.CreateRetVoid();
2878   else
2879     Builder.CreateRet(Result);
2880 }
2881 
2882 void CodeGenFunction::EmitMultiVersionResolver(
2883     llvm::Function *Resolver, ArrayRef<FMVResolverOption> Options) {
2884 
2885   llvm::Triple::ArchType ArchType =
2886       getContext().getTargetInfo().getTriple().getArch();
2887 
2888   switch (ArchType) {
2889   case llvm::Triple::x86:
2890   case llvm::Triple::x86_64:
2891     EmitX86MultiVersionResolver(Resolver, Options);
2892     return;
2893   case llvm::Triple::aarch64:
2894     EmitAArch64MultiVersionResolver(Resolver, Options);
2895     return;
2896   case llvm::Triple::riscv32:
2897   case llvm::Triple::riscv64:
2898     EmitRISCVMultiVersionResolver(Resolver, Options);
2899     return;
2900 
2901   default:
2902     assert(false && "Only implemented for x86, AArch64 and RISC-V targets");
2903   }
2904 }
2905 
2906 void CodeGenFunction::EmitRISCVMultiVersionResolver(
2907     llvm::Function *Resolver, ArrayRef<FMVResolverOption> Options) {
2908 
2909   if (getContext().getTargetInfo().getTriple().getOS() !=
2910       llvm::Triple::OSType::Linux) {
2911     CGM.getDiags().Report(diag::err_os_unsupport_riscv_fmv);
2912     return;
2913   }
2914 
2915   llvm::BasicBlock *CurBlock = createBasicBlock("resolver_entry", Resolver);
2916   Builder.SetInsertPoint(CurBlock);
2917   EmitRISCVCpuInit();
2918 
2919   bool SupportsIFunc = getContext().getTargetInfo().supportsIFunc();
2920   bool HasDefault = false;
2921   unsigned DefaultIndex = 0;
2922 
2923   // Check the each candidate function.
2924   for (unsigned Index = 0; Index < Options.size(); Index++) {
2925 
2926     if (Options[Index].Features.empty()) {
2927       HasDefault = true;
2928       DefaultIndex = Index;
2929       continue;
2930     }
2931 
2932     Builder.SetInsertPoint(CurBlock);
2933 
2934     // FeaturesCondition: The bitmask of the required extension has been
2935     // enabled by the runtime object.
2936     // (__riscv_feature_bits.features[i] & REQUIRED_BITMASK) ==
2937     // REQUIRED_BITMASK
2938     //
2939     // When condition is met, return this version of the function.
2940     // Otherwise, try the next version.
2941     //
2942     // if (FeaturesConditionVersion1)
2943     //     return Version1;
2944     // else if (FeaturesConditionVersion2)
2945     //     return Version2;
2946     // else if (FeaturesConditionVersion3)
2947     //     return Version3;
2948     // ...
2949     // else
2950     //     return DefaultVersion;
2951 
2952     // TODO: Add a condition to check the length before accessing elements.
2953     // Without checking the length first, we may access an incorrect memory
2954     // address when using different versions.
2955     llvm::SmallVector<StringRef, 8> CurrTargetAttrFeats;
2956     llvm::SmallVector<std::string, 8> TargetAttrFeats;
2957 
2958     for (StringRef Feat : Options[Index].Features) {
2959       std::vector<std::string> FeatStr =
2960           getContext().getTargetInfo().parseTargetAttr(Feat).Features;
2961 
2962       assert(FeatStr.size() == 1 && "Feature string not delimited");
2963 
2964       std::string &CurrFeat = FeatStr.front();
2965       if (CurrFeat[0] == '+')
2966         TargetAttrFeats.push_back(CurrFeat.substr(1));
2967     }
2968 
2969     if (TargetAttrFeats.empty())
2970       continue;
2971 
2972     for (std::string &Feat : TargetAttrFeats)
2973       CurrTargetAttrFeats.push_back(Feat);
2974 
2975     Builder.SetInsertPoint(CurBlock);
2976     llvm::Value *FeatsCondition = EmitRISCVCpuSupports(CurrTargetAttrFeats);
2977 
2978     llvm::BasicBlock *RetBlock = createBasicBlock("resolver_return", Resolver);
2979     CGBuilderTy RetBuilder(*this, RetBlock);
2980     CreateMultiVersionResolverReturn(CGM, Resolver, RetBuilder,
2981                                      Options[Index].Function, SupportsIFunc);
2982     llvm::BasicBlock *ElseBlock = createBasicBlock("resolver_else", Resolver);
2983 
2984     Builder.SetInsertPoint(CurBlock);
2985     Builder.CreateCondBr(FeatsCondition, RetBlock, ElseBlock);
2986 
2987     CurBlock = ElseBlock;
2988   }
2989 
2990   // Finally, emit the default one.
2991   if (HasDefault) {
2992     Builder.SetInsertPoint(CurBlock);
2993     CreateMultiVersionResolverReturn(
2994         CGM, Resolver, Builder, Options[DefaultIndex].Function, SupportsIFunc);
2995     return;
2996   }
2997 
2998   // If no generic/default, emit an unreachable.
2999   Builder.SetInsertPoint(CurBlock);
3000   llvm::CallInst *TrapCall = EmitTrapCall(llvm::Intrinsic::trap);
3001   TrapCall->setDoesNotReturn();
3002   TrapCall->setDoesNotThrow();
3003   Builder.CreateUnreachable();
3004   Builder.ClearInsertionPoint();
3005 }
3006 
3007 void CodeGenFunction::EmitAArch64MultiVersionResolver(
3008     llvm::Function *Resolver, ArrayRef<FMVResolverOption> Options) {
3009   assert(!Options.empty() && "No multiversion resolver options found");
3010   assert(Options.back().Features.size() == 0 && "Default case must be last");
3011   bool SupportsIFunc = getContext().getTargetInfo().supportsIFunc();
3012   assert(SupportsIFunc &&
3013          "Multiversion resolver requires target IFUNC support");
3014   bool AArch64CpuInitialized = false;
3015   llvm::BasicBlock *CurBlock = createBasicBlock("resolver_entry", Resolver);
3016 
3017   for (const FMVResolverOption &RO : Options) {
3018     Builder.SetInsertPoint(CurBlock);
3019     llvm::Value *Condition = FormAArch64ResolverCondition(RO);
3020 
3021     // The 'default' or 'all features enabled' case.
3022     if (!Condition) {
3023       CreateMultiVersionResolverReturn(CGM, Resolver, Builder, RO.Function,
3024                                        SupportsIFunc);
3025       return;
3026     }
3027 
3028     if (!AArch64CpuInitialized) {
3029       Builder.SetInsertPoint(CurBlock, CurBlock->begin());
3030       EmitAArch64CpuInit();
3031       AArch64CpuInitialized = true;
3032       Builder.SetInsertPoint(CurBlock);
3033     }
3034 
3035     llvm::BasicBlock *RetBlock = createBasicBlock("resolver_return", Resolver);
3036     CGBuilderTy RetBuilder(*this, RetBlock);
3037     CreateMultiVersionResolverReturn(CGM, Resolver, RetBuilder, RO.Function,
3038                                      SupportsIFunc);
3039     CurBlock = createBasicBlock("resolver_else", Resolver);
3040     Builder.CreateCondBr(Condition, RetBlock, CurBlock);
3041   }
3042 
3043   // If no default, emit an unreachable.
3044   Builder.SetInsertPoint(CurBlock);
3045   llvm::CallInst *TrapCall = EmitTrapCall(llvm::Intrinsic::trap);
3046   TrapCall->setDoesNotReturn();
3047   TrapCall->setDoesNotThrow();
3048   Builder.CreateUnreachable();
3049   Builder.ClearInsertionPoint();
3050 }
3051 
3052 void CodeGenFunction::EmitX86MultiVersionResolver(
3053     llvm::Function *Resolver, ArrayRef<FMVResolverOption> Options) {
3054 
3055   bool SupportsIFunc = getContext().getTargetInfo().supportsIFunc();
3056 
3057   // Main function's basic block.
3058   llvm::BasicBlock *CurBlock = createBasicBlock("resolver_entry", Resolver);
3059   Builder.SetInsertPoint(CurBlock);
3060   EmitX86CpuInit();
3061 
3062   for (const FMVResolverOption &RO : Options) {
3063     Builder.SetInsertPoint(CurBlock);
3064     llvm::Value *Condition = FormX86ResolverCondition(RO);
3065 
3066     // The 'default' or 'generic' case.
3067     if (!Condition) {
3068       assert(&RO == Options.end() - 1 &&
3069              "Default or Generic case must be last");
3070       CreateMultiVersionResolverReturn(CGM, Resolver, Builder, RO.Function,
3071                                        SupportsIFunc);
3072       return;
3073     }
3074 
3075     llvm::BasicBlock *RetBlock = createBasicBlock("resolver_return", Resolver);
3076     CGBuilderTy RetBuilder(*this, RetBlock);
3077     CreateMultiVersionResolverReturn(CGM, Resolver, RetBuilder, RO.Function,
3078                                      SupportsIFunc);
3079     CurBlock = createBasicBlock("resolver_else", Resolver);
3080     Builder.CreateCondBr(Condition, RetBlock, CurBlock);
3081   }
3082 
3083   // If no generic/default, emit an unreachable.
3084   Builder.SetInsertPoint(CurBlock);
3085   llvm::CallInst *TrapCall = EmitTrapCall(llvm::Intrinsic::trap);
3086   TrapCall->setDoesNotReturn();
3087   TrapCall->setDoesNotThrow();
3088   Builder.CreateUnreachable();
3089   Builder.ClearInsertionPoint();
3090 }
3091 
3092 // Loc - where the diagnostic will point, where in the source code this
3093 //  alignment has failed.
3094 // SecondaryLoc - if present (will be present if sufficiently different from
3095 //  Loc), the diagnostic will additionally point a "Note:" to this location.
3096 //  It should be the location where the __attribute__((assume_aligned))
3097 //  was written e.g.
3098 void CodeGenFunction::emitAlignmentAssumptionCheck(
3099     llvm::Value *Ptr, QualType Ty, SourceLocation Loc,
3100     SourceLocation SecondaryLoc, llvm::Value *Alignment,
3101     llvm::Value *OffsetValue, llvm::Value *TheCheck,
3102     llvm::Instruction *Assumption) {
3103   assert(isa_and_nonnull<llvm::CallInst>(Assumption) &&
3104          cast<llvm::CallInst>(Assumption)->getCalledOperand() ==
3105              llvm::Intrinsic::getOrInsertDeclaration(
3106                  Builder.GetInsertBlock()->getParent()->getParent(),
3107                  llvm::Intrinsic::assume) &&
3108          "Assumption should be a call to llvm.assume().");
3109   assert(&(Builder.GetInsertBlock()->back()) == Assumption &&
3110          "Assumption should be the last instruction of the basic block, "
3111          "since the basic block is still being generated.");
3112 
3113   if (!SanOpts.has(SanitizerKind::Alignment))
3114     return;
3115 
3116   // Don't check pointers to volatile data. The behavior here is implementation-
3117   // defined.
3118   if (Ty->getPointeeType().isVolatileQualified())
3119     return;
3120 
3121   // We need to temorairly remove the assumption so we can insert the
3122   // sanitizer check before it, else the check will be dropped by optimizations.
3123   Assumption->removeFromParent();
3124 
3125   {
3126     SanitizerScope SanScope(this);
3127 
3128     if (!OffsetValue)
3129       OffsetValue = Builder.getInt1(false); // no offset.
3130 
3131     llvm::Constant *StaticData[] = {EmitCheckSourceLocation(Loc),
3132                                     EmitCheckSourceLocation(SecondaryLoc),
3133                                     EmitCheckTypeDescriptor(Ty)};
3134     llvm::Value *DynamicData[] = {EmitCheckValue(Ptr),
3135                                   EmitCheckValue(Alignment),
3136                                   EmitCheckValue(OffsetValue)};
3137     EmitCheck({std::make_pair(TheCheck, SanitizerKind::Alignment)},
3138               SanitizerHandler::AlignmentAssumption, StaticData, DynamicData);
3139   }
3140 
3141   // We are now in the (new, empty) "cont" basic block.
3142   // Reintroduce the assumption.
3143   Builder.Insert(Assumption);
3144   // FIXME: Assumption still has it's original basic block as it's Parent.
3145 }
3146 
3147 llvm::DebugLoc CodeGenFunction::SourceLocToDebugLoc(SourceLocation Location) {
3148   if (CGDebugInfo *DI = getDebugInfo())
3149     return DI->SourceLocToDebugLoc(Location);
3150 
3151   return llvm::DebugLoc();
3152 }
3153 
3154 llvm::Value *
3155 CodeGenFunction::emitCondLikelihoodViaExpectIntrinsic(llvm::Value *Cond,
3156                                                       Stmt::Likelihood LH) {
3157   switch (LH) {
3158   case Stmt::LH_None:
3159     return Cond;
3160   case Stmt::LH_Likely:
3161   case Stmt::LH_Unlikely:
3162     // Don't generate llvm.expect on -O0 as the backend won't use it for
3163     // anything.
3164     if (CGM.getCodeGenOpts().OptimizationLevel == 0)
3165       return Cond;
3166     llvm::Type *CondTy = Cond->getType();
3167     assert(CondTy->isIntegerTy(1) && "expecting condition to be a boolean");
3168     llvm::Function *FnExpect =
3169         CGM.getIntrinsic(llvm::Intrinsic::expect, CondTy);
3170     llvm::Value *ExpectedValueOfCond =
3171         llvm::ConstantInt::getBool(CondTy, LH == Stmt::LH_Likely);
3172     return Builder.CreateCall(FnExpect, {Cond, ExpectedValueOfCond},
3173                               Cond->getName() + ".expval");
3174   }
3175   llvm_unreachable("Unknown Likelihood");
3176 }
3177 
3178 llvm::Value *CodeGenFunction::emitBoolVecConversion(llvm::Value *SrcVec,
3179                                                     unsigned NumElementsDst,
3180                                                     const llvm::Twine &Name) {
3181   auto *SrcTy = cast<llvm::FixedVectorType>(SrcVec->getType());
3182   unsigned NumElementsSrc = SrcTy->getNumElements();
3183   if (NumElementsSrc == NumElementsDst)
3184     return SrcVec;
3185 
3186   std::vector<int> ShuffleMask(NumElementsDst, -1);
3187   for (unsigned MaskIdx = 0;
3188        MaskIdx < std::min<>(NumElementsDst, NumElementsSrc); ++MaskIdx)
3189     ShuffleMask[MaskIdx] = MaskIdx;
3190 
3191   return Builder.CreateShuffleVector(SrcVec, ShuffleMask, Name);
3192 }
3193 
3194 void CodeGenFunction::EmitPointerAuthOperandBundle(
3195     const CGPointerAuthInfo &PointerAuth,
3196     SmallVectorImpl<llvm::OperandBundleDef> &Bundles) {
3197   if (!PointerAuth.isSigned())
3198     return;
3199 
3200   auto *Key = Builder.getInt32(PointerAuth.getKey());
3201 
3202   llvm::Value *Discriminator = PointerAuth.getDiscriminator();
3203   if (!Discriminator)
3204     Discriminator = Builder.getSize(0);
3205 
3206   llvm::Value *Args[] = {Key, Discriminator};
3207   Bundles.emplace_back("ptrauth", Args);
3208 }
3209 
3210 static llvm::Value *EmitPointerAuthCommon(CodeGenFunction &CGF,
3211                                           const CGPointerAuthInfo &PointerAuth,
3212                                           llvm::Value *Pointer,
3213                                           unsigned IntrinsicID) {
3214   if (!PointerAuth)
3215     return Pointer;
3216 
3217   auto Key = CGF.Builder.getInt32(PointerAuth.getKey());
3218 
3219   llvm::Value *Discriminator = PointerAuth.getDiscriminator();
3220   if (!Discriminator) {
3221     Discriminator = CGF.Builder.getSize(0);
3222   }
3223 
3224   // Convert the pointer to intptr_t before signing it.
3225   auto OrigType = Pointer->getType();
3226   Pointer = CGF.Builder.CreatePtrToInt(Pointer, CGF.IntPtrTy);
3227 
3228   // call i64 @llvm.ptrauth.sign.i64(i64 %pointer, i32 %key, i64 %discriminator)
3229   auto Intrinsic = CGF.CGM.getIntrinsic(IntrinsicID);
3230   Pointer = CGF.EmitRuntimeCall(Intrinsic, {Pointer, Key, Discriminator});
3231 
3232   // Convert back to the original type.
3233   Pointer = CGF.Builder.CreateIntToPtr(Pointer, OrigType);
3234   return Pointer;
3235 }
3236 
3237 llvm::Value *
3238 CodeGenFunction::EmitPointerAuthSign(const CGPointerAuthInfo &PointerAuth,
3239                                      llvm::Value *Pointer) {
3240   if (!PointerAuth.shouldSign())
3241     return Pointer;
3242   return EmitPointerAuthCommon(*this, PointerAuth, Pointer,
3243                                llvm::Intrinsic::ptrauth_sign);
3244 }
3245 
3246 static llvm::Value *EmitStrip(CodeGenFunction &CGF,
3247                               const CGPointerAuthInfo &PointerAuth,
3248                               llvm::Value *Pointer) {
3249   auto StripIntrinsic = CGF.CGM.getIntrinsic(llvm::Intrinsic::ptrauth_strip);
3250 
3251   auto Key = CGF.Builder.getInt32(PointerAuth.getKey());
3252   // Convert the pointer to intptr_t before signing it.
3253   auto OrigType = Pointer->getType();
3254   Pointer = CGF.EmitRuntimeCall(
3255       StripIntrinsic, {CGF.Builder.CreatePtrToInt(Pointer, CGF.IntPtrTy), Key});
3256   return CGF.Builder.CreateIntToPtr(Pointer, OrigType);
3257 }
3258 
3259 llvm::Value *
3260 CodeGenFunction::EmitPointerAuthAuth(const CGPointerAuthInfo &PointerAuth,
3261                                      llvm::Value *Pointer) {
3262   if (PointerAuth.shouldStrip()) {
3263     return EmitStrip(*this, PointerAuth, Pointer);
3264   }
3265   if (!PointerAuth.shouldAuth()) {
3266     return Pointer;
3267   }
3268 
3269   return EmitPointerAuthCommon(*this, PointerAuth, Pointer,
3270                                llvm::Intrinsic::ptrauth_auth);
3271 }
3272