1 //===--- CodeGenFunction.cpp - Emit LLVM Code from ASTs for a Function ----===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This coordinates the per-function state used while generating code. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "CodeGenFunction.h" 14 #include "CGBlocks.h" 15 #include "CGCUDARuntime.h" 16 #include "CGCXXABI.h" 17 #include "CGCleanup.h" 18 #include "CGDebugInfo.h" 19 #include "CGHLSLRuntime.h" 20 #include "CGOpenMPRuntime.h" 21 #include "CodeGenModule.h" 22 #include "CodeGenPGO.h" 23 #include "TargetInfo.h" 24 #include "clang/AST/ASTContext.h" 25 #include "clang/AST/ASTLambda.h" 26 #include "clang/AST/Attr.h" 27 #include "clang/AST/Decl.h" 28 #include "clang/AST/DeclCXX.h" 29 #include "clang/AST/Expr.h" 30 #include "clang/AST/StmtCXX.h" 31 #include "clang/AST/StmtObjC.h" 32 #include "clang/Basic/Builtins.h" 33 #include "clang/Basic/CodeGenOptions.h" 34 #include "clang/Basic/TargetBuiltins.h" 35 #include "clang/Basic/TargetInfo.h" 36 #include "clang/CodeGen/CGFunctionInfo.h" 37 #include "clang/Frontend/FrontendDiagnostic.h" 38 #include "llvm/ADT/ArrayRef.h" 39 #include "llvm/Frontend/OpenMP/OMPIRBuilder.h" 40 #include "llvm/IR/DataLayout.h" 41 #include "llvm/IR/Dominators.h" 42 #include "llvm/IR/FPEnv.h" 43 #include "llvm/IR/IntrinsicInst.h" 44 #include "llvm/IR/Intrinsics.h" 45 #include "llvm/IR/MDBuilder.h" 46 #include "llvm/IR/Operator.h" 47 #include "llvm/Support/CRC.h" 48 #include "llvm/Support/xxhash.h" 49 #include "llvm/Transforms/Scalar/LowerExpectIntrinsic.h" 50 #include "llvm/Transforms/Utils/PromoteMemToReg.h" 51 #include <optional> 52 53 using namespace clang; 54 using namespace CodeGen; 55 56 namespace llvm { 57 extern cl::opt<bool> EnableSingleByteCoverage; 58 } // namespace llvm 59 60 /// shouldEmitLifetimeMarkers - Decide whether we need emit the life-time 61 /// markers. 62 static bool shouldEmitLifetimeMarkers(const CodeGenOptions &CGOpts, 63 const LangOptions &LangOpts) { 64 if (CGOpts.DisableLifetimeMarkers) 65 return false; 66 67 // Sanitizers may use markers. 68 if (CGOpts.SanitizeAddressUseAfterScope || 69 LangOpts.Sanitize.has(SanitizerKind::HWAddress) || 70 LangOpts.Sanitize.has(SanitizerKind::Memory)) 71 return true; 72 73 // For now, only in optimized builds. 74 return CGOpts.OptimizationLevel != 0; 75 } 76 77 CodeGenFunction::CodeGenFunction(CodeGenModule &cgm, bool suppressNewContext) 78 : CodeGenTypeCache(cgm), CGM(cgm), Target(cgm.getTarget()), 79 Builder(cgm, cgm.getModule().getContext(), llvm::ConstantFolder(), 80 CGBuilderInserterTy(this)), 81 SanOpts(CGM.getLangOpts().Sanitize), CurFPFeatures(CGM.getLangOpts()), 82 DebugInfo(CGM.getModuleDebugInfo()), PGO(cgm), 83 ShouldEmitLifetimeMarkers( 84 shouldEmitLifetimeMarkers(CGM.getCodeGenOpts(), CGM.getLangOpts())) { 85 if (!suppressNewContext) 86 CGM.getCXXABI().getMangleContext().startNewFunction(); 87 EHStack.setCGF(this); 88 89 SetFastMathFlags(CurFPFeatures); 90 } 91 92 CodeGenFunction::~CodeGenFunction() { 93 assert(LifetimeExtendedCleanupStack.empty() && "failed to emit a cleanup"); 94 assert(DeferredDeactivationCleanupStack.empty() && 95 "missed to deactivate a cleanup"); 96 97 if (getLangOpts().OpenMP && CurFn) 98 CGM.getOpenMPRuntime().functionFinished(*this); 99 100 // If we have an OpenMPIRBuilder we want to finalize functions (incl. 101 // outlining etc) at some point. Doing it once the function codegen is done 102 // seems to be a reasonable spot. We do it here, as opposed to the deletion 103 // time of the CodeGenModule, because we have to ensure the IR has not yet 104 // been "emitted" to the outside, thus, modifications are still sensible. 105 if (CGM.getLangOpts().OpenMPIRBuilder && CurFn) 106 CGM.getOpenMPRuntime().getOMPBuilder().finalize(CurFn); 107 } 108 109 // Map the LangOption for exception behavior into 110 // the corresponding enum in the IR. 111 llvm::fp::ExceptionBehavior 112 clang::ToConstrainedExceptMD(LangOptions::FPExceptionModeKind Kind) { 113 114 switch (Kind) { 115 case LangOptions::FPE_Ignore: return llvm::fp::ebIgnore; 116 case LangOptions::FPE_MayTrap: return llvm::fp::ebMayTrap; 117 case LangOptions::FPE_Strict: return llvm::fp::ebStrict; 118 default: 119 llvm_unreachable("Unsupported FP Exception Behavior"); 120 } 121 } 122 123 void CodeGenFunction::SetFastMathFlags(FPOptions FPFeatures) { 124 llvm::FastMathFlags FMF; 125 FMF.setAllowReassoc(FPFeatures.getAllowFPReassociate()); 126 FMF.setNoNaNs(FPFeatures.getNoHonorNaNs()); 127 FMF.setNoInfs(FPFeatures.getNoHonorInfs()); 128 FMF.setNoSignedZeros(FPFeatures.getNoSignedZero()); 129 FMF.setAllowReciprocal(FPFeatures.getAllowReciprocal()); 130 FMF.setApproxFunc(FPFeatures.getAllowApproxFunc()); 131 FMF.setAllowContract(FPFeatures.allowFPContractAcrossStatement()); 132 Builder.setFastMathFlags(FMF); 133 } 134 135 CodeGenFunction::CGFPOptionsRAII::CGFPOptionsRAII(CodeGenFunction &CGF, 136 const Expr *E) 137 : CGF(CGF) { 138 ConstructorHelper(E->getFPFeaturesInEffect(CGF.getLangOpts())); 139 } 140 141 CodeGenFunction::CGFPOptionsRAII::CGFPOptionsRAII(CodeGenFunction &CGF, 142 FPOptions FPFeatures) 143 : CGF(CGF) { 144 ConstructorHelper(FPFeatures); 145 } 146 147 void CodeGenFunction::CGFPOptionsRAII::ConstructorHelper(FPOptions FPFeatures) { 148 OldFPFeatures = CGF.CurFPFeatures; 149 CGF.CurFPFeatures = FPFeatures; 150 151 OldExcept = CGF.Builder.getDefaultConstrainedExcept(); 152 OldRounding = CGF.Builder.getDefaultConstrainedRounding(); 153 154 if (OldFPFeatures == FPFeatures) 155 return; 156 157 FMFGuard.emplace(CGF.Builder); 158 159 llvm::RoundingMode NewRoundingBehavior = FPFeatures.getRoundingMode(); 160 CGF.Builder.setDefaultConstrainedRounding(NewRoundingBehavior); 161 auto NewExceptionBehavior = 162 ToConstrainedExceptMD(static_cast<LangOptions::FPExceptionModeKind>( 163 FPFeatures.getExceptionMode())); 164 CGF.Builder.setDefaultConstrainedExcept(NewExceptionBehavior); 165 166 CGF.SetFastMathFlags(FPFeatures); 167 168 assert((CGF.CurFuncDecl == nullptr || CGF.Builder.getIsFPConstrained() || 169 isa<CXXConstructorDecl>(CGF.CurFuncDecl) || 170 isa<CXXDestructorDecl>(CGF.CurFuncDecl) || 171 (NewExceptionBehavior == llvm::fp::ebIgnore && 172 NewRoundingBehavior == llvm::RoundingMode::NearestTiesToEven)) && 173 "FPConstrained should be enabled on entire function"); 174 175 auto mergeFnAttrValue = [&](StringRef Name, bool Value) { 176 auto OldValue = 177 CGF.CurFn->getFnAttribute(Name).getValueAsBool(); 178 auto NewValue = OldValue & Value; 179 if (OldValue != NewValue) 180 CGF.CurFn->addFnAttr(Name, llvm::toStringRef(NewValue)); 181 }; 182 mergeFnAttrValue("no-infs-fp-math", FPFeatures.getNoHonorInfs()); 183 mergeFnAttrValue("no-nans-fp-math", FPFeatures.getNoHonorNaNs()); 184 mergeFnAttrValue("no-signed-zeros-fp-math", FPFeatures.getNoSignedZero()); 185 mergeFnAttrValue( 186 "unsafe-fp-math", 187 FPFeatures.getAllowFPReassociate() && FPFeatures.getAllowReciprocal() && 188 FPFeatures.getAllowApproxFunc() && FPFeatures.getNoSignedZero() && 189 FPFeatures.allowFPContractAcrossStatement()); 190 } 191 192 CodeGenFunction::CGFPOptionsRAII::~CGFPOptionsRAII() { 193 CGF.CurFPFeatures = OldFPFeatures; 194 CGF.Builder.setDefaultConstrainedExcept(OldExcept); 195 CGF.Builder.setDefaultConstrainedRounding(OldRounding); 196 } 197 198 static LValue 199 makeNaturalAlignAddrLValue(llvm::Value *V, QualType T, bool ForPointeeType, 200 bool MightBeSigned, CodeGenFunction &CGF, 201 KnownNonNull_t IsKnownNonNull = NotKnownNonNull) { 202 LValueBaseInfo BaseInfo; 203 TBAAAccessInfo TBAAInfo; 204 CharUnits Alignment = 205 CGF.CGM.getNaturalTypeAlignment(T, &BaseInfo, &TBAAInfo, ForPointeeType); 206 Address Addr = 207 MightBeSigned 208 ? CGF.makeNaturalAddressForPointer(V, T, Alignment, false, nullptr, 209 nullptr, IsKnownNonNull) 210 : Address(V, CGF.ConvertTypeForMem(T), Alignment, IsKnownNonNull); 211 return CGF.MakeAddrLValue(Addr, T, BaseInfo, TBAAInfo); 212 } 213 214 LValue 215 CodeGenFunction::MakeNaturalAlignAddrLValue(llvm::Value *V, QualType T, 216 KnownNonNull_t IsKnownNonNull) { 217 return ::makeNaturalAlignAddrLValue(V, T, /*ForPointeeType*/ false, 218 /*MightBeSigned*/ true, *this, 219 IsKnownNonNull); 220 } 221 222 LValue 223 CodeGenFunction::MakeNaturalAlignPointeeAddrLValue(llvm::Value *V, QualType T) { 224 return ::makeNaturalAlignAddrLValue(V, T, /*ForPointeeType*/ true, 225 /*MightBeSigned*/ true, *this); 226 } 227 228 LValue CodeGenFunction::MakeNaturalAlignRawAddrLValue(llvm::Value *V, 229 QualType T) { 230 return ::makeNaturalAlignAddrLValue(V, T, /*ForPointeeType*/ false, 231 /*MightBeSigned*/ false, *this); 232 } 233 234 LValue CodeGenFunction::MakeNaturalAlignPointeeRawAddrLValue(llvm::Value *V, 235 QualType T) { 236 return ::makeNaturalAlignAddrLValue(V, T, /*ForPointeeType*/ true, 237 /*MightBeSigned*/ false, *this); 238 } 239 240 llvm::Type *CodeGenFunction::ConvertTypeForMem(QualType T) { 241 return CGM.getTypes().ConvertTypeForMem(T); 242 } 243 244 llvm::Type *CodeGenFunction::ConvertType(QualType T) { 245 return CGM.getTypes().ConvertType(T); 246 } 247 248 llvm::Type *CodeGenFunction::convertTypeForLoadStore(QualType ASTTy, 249 llvm::Type *LLVMTy) { 250 return CGM.getTypes().convertTypeForLoadStore(ASTTy, LLVMTy); 251 } 252 253 TypeEvaluationKind CodeGenFunction::getEvaluationKind(QualType type) { 254 type = type.getCanonicalType(); 255 while (true) { 256 switch (type->getTypeClass()) { 257 #define TYPE(name, parent) 258 #define ABSTRACT_TYPE(name, parent) 259 #define NON_CANONICAL_TYPE(name, parent) case Type::name: 260 #define DEPENDENT_TYPE(name, parent) case Type::name: 261 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(name, parent) case Type::name: 262 #include "clang/AST/TypeNodes.inc" 263 llvm_unreachable("non-canonical or dependent type in IR-generation"); 264 265 case Type::Auto: 266 case Type::DeducedTemplateSpecialization: 267 llvm_unreachable("undeduced type in IR-generation"); 268 269 // Various scalar types. 270 case Type::Builtin: 271 case Type::Pointer: 272 case Type::BlockPointer: 273 case Type::LValueReference: 274 case Type::RValueReference: 275 case Type::MemberPointer: 276 case Type::Vector: 277 case Type::ExtVector: 278 case Type::ConstantMatrix: 279 case Type::FunctionProto: 280 case Type::FunctionNoProto: 281 case Type::Enum: 282 case Type::ObjCObjectPointer: 283 case Type::Pipe: 284 case Type::BitInt: 285 case Type::HLSLAttributedResource: 286 return TEK_Scalar; 287 288 // Complexes. 289 case Type::Complex: 290 return TEK_Complex; 291 292 // Arrays, records, and Objective-C objects. 293 case Type::ConstantArray: 294 case Type::IncompleteArray: 295 case Type::VariableArray: 296 case Type::Record: 297 case Type::ObjCObject: 298 case Type::ObjCInterface: 299 case Type::ArrayParameter: 300 return TEK_Aggregate; 301 302 // We operate on atomic values according to their underlying type. 303 case Type::Atomic: 304 type = cast<AtomicType>(type)->getValueType(); 305 continue; 306 } 307 llvm_unreachable("unknown type kind!"); 308 } 309 } 310 311 llvm::DebugLoc CodeGenFunction::EmitReturnBlock() { 312 // For cleanliness, we try to avoid emitting the return block for 313 // simple cases. 314 llvm::BasicBlock *CurBB = Builder.GetInsertBlock(); 315 316 if (CurBB) { 317 assert(!CurBB->getTerminator() && "Unexpected terminated block."); 318 319 // We have a valid insert point, reuse it if it is empty or there are no 320 // explicit jumps to the return block. 321 if (CurBB->empty() || ReturnBlock.getBlock()->use_empty()) { 322 ReturnBlock.getBlock()->replaceAllUsesWith(CurBB); 323 delete ReturnBlock.getBlock(); 324 ReturnBlock = JumpDest(); 325 } else 326 EmitBlock(ReturnBlock.getBlock()); 327 return llvm::DebugLoc(); 328 } 329 330 // Otherwise, if the return block is the target of a single direct 331 // branch then we can just put the code in that block instead. This 332 // cleans up functions which started with a unified return block. 333 if (ReturnBlock.getBlock()->hasOneUse()) { 334 llvm::BranchInst *BI = 335 dyn_cast<llvm::BranchInst>(*ReturnBlock.getBlock()->user_begin()); 336 if (BI && BI->isUnconditional() && 337 BI->getSuccessor(0) == ReturnBlock.getBlock()) { 338 // Record/return the DebugLoc of the simple 'return' expression to be used 339 // later by the actual 'ret' instruction. 340 llvm::DebugLoc Loc = BI->getDebugLoc(); 341 Builder.SetInsertPoint(BI->getParent()); 342 BI->eraseFromParent(); 343 delete ReturnBlock.getBlock(); 344 ReturnBlock = JumpDest(); 345 return Loc; 346 } 347 } 348 349 // FIXME: We are at an unreachable point, there is no reason to emit the block 350 // unless it has uses. However, we still need a place to put the debug 351 // region.end for now. 352 353 EmitBlock(ReturnBlock.getBlock()); 354 return llvm::DebugLoc(); 355 } 356 357 static void EmitIfUsed(CodeGenFunction &CGF, llvm::BasicBlock *BB) { 358 if (!BB) return; 359 if (!BB->use_empty()) { 360 CGF.CurFn->insert(CGF.CurFn->end(), BB); 361 return; 362 } 363 delete BB; 364 } 365 366 void CodeGenFunction::FinishFunction(SourceLocation EndLoc) { 367 assert(BreakContinueStack.empty() && 368 "mismatched push/pop in break/continue stack!"); 369 assert(LifetimeExtendedCleanupStack.empty() && 370 "mismatched push/pop of cleanups in EHStack!"); 371 assert(DeferredDeactivationCleanupStack.empty() && 372 "mismatched activate/deactivate of cleanups!"); 373 374 if (CGM.shouldEmitConvergenceTokens()) { 375 ConvergenceTokenStack.pop_back(); 376 assert(ConvergenceTokenStack.empty() && 377 "mismatched push/pop in convergence stack!"); 378 } 379 380 bool OnlySimpleReturnStmts = NumSimpleReturnExprs > 0 381 && NumSimpleReturnExprs == NumReturnExprs 382 && ReturnBlock.getBlock()->use_empty(); 383 // Usually the return expression is evaluated before the cleanup 384 // code. If the function contains only a simple return statement, 385 // such as a constant, the location before the cleanup code becomes 386 // the last useful breakpoint in the function, because the simple 387 // return expression will be evaluated after the cleanup code. To be 388 // safe, set the debug location for cleanup code to the location of 389 // the return statement. Otherwise the cleanup code should be at the 390 // end of the function's lexical scope. 391 // 392 // If there are multiple branches to the return block, the branch 393 // instructions will get the location of the return statements and 394 // all will be fine. 395 if (CGDebugInfo *DI = getDebugInfo()) { 396 if (OnlySimpleReturnStmts) 397 DI->EmitLocation(Builder, LastStopPoint); 398 else 399 DI->EmitLocation(Builder, EndLoc); 400 } 401 402 // Pop any cleanups that might have been associated with the 403 // parameters. Do this in whatever block we're currently in; it's 404 // important to do this before we enter the return block or return 405 // edges will be *really* confused. 406 bool HasCleanups = EHStack.stable_begin() != PrologueCleanupDepth; 407 bool HasOnlyLifetimeMarkers = 408 HasCleanups && EHStack.containsOnlyLifetimeMarkers(PrologueCleanupDepth); 409 bool EmitRetDbgLoc = !HasCleanups || HasOnlyLifetimeMarkers; 410 411 std::optional<ApplyDebugLocation> OAL; 412 if (HasCleanups) { 413 // Make sure the line table doesn't jump back into the body for 414 // the ret after it's been at EndLoc. 415 if (CGDebugInfo *DI = getDebugInfo()) { 416 if (OnlySimpleReturnStmts) 417 DI->EmitLocation(Builder, EndLoc); 418 else 419 // We may not have a valid end location. Try to apply it anyway, and 420 // fall back to an artificial location if needed. 421 OAL = ApplyDebugLocation::CreateDefaultArtificial(*this, EndLoc); 422 } 423 424 PopCleanupBlocks(PrologueCleanupDepth); 425 } 426 427 // Emit function epilog (to return). 428 llvm::DebugLoc Loc = EmitReturnBlock(); 429 430 if (ShouldInstrumentFunction()) { 431 if (CGM.getCodeGenOpts().InstrumentFunctions) 432 CurFn->addFnAttr("instrument-function-exit", "__cyg_profile_func_exit"); 433 if (CGM.getCodeGenOpts().InstrumentFunctionsAfterInlining) 434 CurFn->addFnAttr("instrument-function-exit-inlined", 435 "__cyg_profile_func_exit"); 436 } 437 438 // Emit debug descriptor for function end. 439 if (CGDebugInfo *DI = getDebugInfo()) 440 DI->EmitFunctionEnd(Builder, CurFn); 441 442 // Reset the debug location to that of the simple 'return' expression, if any 443 // rather than that of the end of the function's scope '}'. 444 ApplyDebugLocation AL(*this, Loc); 445 EmitFunctionEpilog(*CurFnInfo, EmitRetDbgLoc, EndLoc); 446 EmitEndEHSpec(CurCodeDecl); 447 448 assert(EHStack.empty() && 449 "did not remove all scopes from cleanup stack!"); 450 451 // If someone did an indirect goto, emit the indirect goto block at the end of 452 // the function. 453 if (IndirectBranch) { 454 EmitBlock(IndirectBranch->getParent()); 455 Builder.ClearInsertionPoint(); 456 } 457 458 // If some of our locals escaped, insert a call to llvm.localescape in the 459 // entry block. 460 if (!EscapedLocals.empty()) { 461 // Invert the map from local to index into a simple vector. There should be 462 // no holes. 463 SmallVector<llvm::Value *, 4> EscapeArgs; 464 EscapeArgs.resize(EscapedLocals.size()); 465 for (auto &Pair : EscapedLocals) 466 EscapeArgs[Pair.second] = Pair.first; 467 llvm::Function *FrameEscapeFn = llvm::Intrinsic::getOrInsertDeclaration( 468 &CGM.getModule(), llvm::Intrinsic::localescape); 469 CGBuilderTy(*this, AllocaInsertPt).CreateCall(FrameEscapeFn, EscapeArgs); 470 } 471 472 // Remove the AllocaInsertPt instruction, which is just a convenience for us. 473 llvm::Instruction *Ptr = AllocaInsertPt; 474 AllocaInsertPt = nullptr; 475 Ptr->eraseFromParent(); 476 477 // PostAllocaInsertPt, if created, was lazily created when it was required, 478 // remove it now since it was just created for our own convenience. 479 if (PostAllocaInsertPt) { 480 llvm::Instruction *PostPtr = PostAllocaInsertPt; 481 PostAllocaInsertPt = nullptr; 482 PostPtr->eraseFromParent(); 483 } 484 485 // If someone took the address of a label but never did an indirect goto, we 486 // made a zero entry PHI node, which is illegal, zap it now. 487 if (IndirectBranch) { 488 llvm::PHINode *PN = cast<llvm::PHINode>(IndirectBranch->getAddress()); 489 if (PN->getNumIncomingValues() == 0) { 490 PN->replaceAllUsesWith(llvm::UndefValue::get(PN->getType())); 491 PN->eraseFromParent(); 492 } 493 } 494 495 EmitIfUsed(*this, EHResumeBlock); 496 EmitIfUsed(*this, TerminateLandingPad); 497 EmitIfUsed(*this, TerminateHandler); 498 EmitIfUsed(*this, UnreachableBlock); 499 500 for (const auto &FuncletAndParent : TerminateFunclets) 501 EmitIfUsed(*this, FuncletAndParent.second); 502 503 if (CGM.getCodeGenOpts().EmitDeclMetadata) 504 EmitDeclMetadata(); 505 506 for (const auto &R : DeferredReplacements) { 507 if (llvm::Value *Old = R.first) { 508 Old->replaceAllUsesWith(R.second); 509 cast<llvm::Instruction>(Old)->eraseFromParent(); 510 } 511 } 512 DeferredReplacements.clear(); 513 514 // Eliminate CleanupDestSlot alloca by replacing it with SSA values and 515 // PHIs if the current function is a coroutine. We don't do it for all 516 // functions as it may result in slight increase in numbers of instructions 517 // if compiled with no optimizations. We do it for coroutine as the lifetime 518 // of CleanupDestSlot alloca make correct coroutine frame building very 519 // difficult. 520 if (NormalCleanupDest.isValid() && isCoroutine()) { 521 llvm::DominatorTree DT(*CurFn); 522 llvm::PromoteMemToReg( 523 cast<llvm::AllocaInst>(NormalCleanupDest.getPointer()), DT); 524 NormalCleanupDest = Address::invalid(); 525 } 526 527 // Scan function arguments for vector width. 528 for (llvm::Argument &A : CurFn->args()) 529 if (auto *VT = dyn_cast<llvm::VectorType>(A.getType())) 530 LargestVectorWidth = 531 std::max((uint64_t)LargestVectorWidth, 532 VT->getPrimitiveSizeInBits().getKnownMinValue()); 533 534 // Update vector width based on return type. 535 if (auto *VT = dyn_cast<llvm::VectorType>(CurFn->getReturnType())) 536 LargestVectorWidth = 537 std::max((uint64_t)LargestVectorWidth, 538 VT->getPrimitiveSizeInBits().getKnownMinValue()); 539 540 if (CurFnInfo->getMaxVectorWidth() > LargestVectorWidth) 541 LargestVectorWidth = CurFnInfo->getMaxVectorWidth(); 542 543 // Add the min-legal-vector-width attribute. This contains the max width from: 544 // 1. min-vector-width attribute used in the source program. 545 // 2. Any builtins used that have a vector width specified. 546 // 3. Values passed in and out of inline assembly. 547 // 4. Width of vector arguments and return types for this function. 548 // 5. Width of vector arguments and return types for functions called by this 549 // function. 550 if (getContext().getTargetInfo().getTriple().isX86()) 551 CurFn->addFnAttr("min-legal-vector-width", 552 llvm::utostr(LargestVectorWidth)); 553 554 // Add vscale_range attribute if appropriate. 555 std::optional<std::pair<unsigned, unsigned>> VScaleRange = 556 getContext().getTargetInfo().getVScaleRange(getLangOpts()); 557 if (VScaleRange) { 558 CurFn->addFnAttr(llvm::Attribute::getWithVScaleRangeArgs( 559 getLLVMContext(), VScaleRange->first, VScaleRange->second)); 560 } 561 562 // If we generated an unreachable return block, delete it now. 563 if (ReturnBlock.isValid() && ReturnBlock.getBlock()->use_empty()) { 564 Builder.ClearInsertionPoint(); 565 ReturnBlock.getBlock()->eraseFromParent(); 566 } 567 if (ReturnValue.isValid()) { 568 auto *RetAlloca = 569 dyn_cast<llvm::AllocaInst>(ReturnValue.emitRawPointer(*this)); 570 if (RetAlloca && RetAlloca->use_empty()) { 571 RetAlloca->eraseFromParent(); 572 ReturnValue = Address::invalid(); 573 } 574 } 575 } 576 577 /// ShouldInstrumentFunction - Return true if the current function should be 578 /// instrumented with __cyg_profile_func_* calls 579 bool CodeGenFunction::ShouldInstrumentFunction() { 580 if (!CGM.getCodeGenOpts().InstrumentFunctions && 581 !CGM.getCodeGenOpts().InstrumentFunctionsAfterInlining && 582 !CGM.getCodeGenOpts().InstrumentFunctionEntryBare) 583 return false; 584 if (!CurFuncDecl || CurFuncDecl->hasAttr<NoInstrumentFunctionAttr>()) 585 return false; 586 return true; 587 } 588 589 bool CodeGenFunction::ShouldSkipSanitizerInstrumentation() { 590 if (!CurFuncDecl) 591 return false; 592 return CurFuncDecl->hasAttr<DisableSanitizerInstrumentationAttr>(); 593 } 594 595 /// ShouldXRayInstrument - Return true if the current function should be 596 /// instrumented with XRay nop sleds. 597 bool CodeGenFunction::ShouldXRayInstrumentFunction() const { 598 return CGM.getCodeGenOpts().XRayInstrumentFunctions; 599 } 600 601 /// AlwaysEmitXRayCustomEvents - Return true if we should emit IR for calls to 602 /// the __xray_customevent(...) builtin calls, when doing XRay instrumentation. 603 bool CodeGenFunction::AlwaysEmitXRayCustomEvents() const { 604 return CGM.getCodeGenOpts().XRayInstrumentFunctions && 605 (CGM.getCodeGenOpts().XRayAlwaysEmitCustomEvents || 606 CGM.getCodeGenOpts().XRayInstrumentationBundle.Mask == 607 XRayInstrKind::Custom); 608 } 609 610 bool CodeGenFunction::AlwaysEmitXRayTypedEvents() const { 611 return CGM.getCodeGenOpts().XRayInstrumentFunctions && 612 (CGM.getCodeGenOpts().XRayAlwaysEmitTypedEvents || 613 CGM.getCodeGenOpts().XRayInstrumentationBundle.Mask == 614 XRayInstrKind::Typed); 615 } 616 617 llvm::ConstantInt * 618 CodeGenFunction::getUBSanFunctionTypeHash(QualType Ty) const { 619 // Remove any (C++17) exception specifications, to allow calling e.g. a 620 // noexcept function through a non-noexcept pointer. 621 if (!Ty->isFunctionNoProtoType()) 622 Ty = getContext().getFunctionTypeWithExceptionSpec(Ty, EST_None); 623 std::string Mangled; 624 llvm::raw_string_ostream Out(Mangled); 625 CGM.getCXXABI().getMangleContext().mangleCanonicalTypeName(Ty, Out, false); 626 return llvm::ConstantInt::get( 627 CGM.Int32Ty, static_cast<uint32_t>(llvm::xxh3_64bits(Mangled))); 628 } 629 630 void CodeGenFunction::EmitKernelMetadata(const FunctionDecl *FD, 631 llvm::Function *Fn) { 632 if (!FD->hasAttr<OpenCLKernelAttr>() && !FD->hasAttr<CUDAGlobalAttr>()) 633 return; 634 635 llvm::LLVMContext &Context = getLLVMContext(); 636 637 CGM.GenKernelArgMetadata(Fn, FD, this); 638 639 if (!getLangOpts().OpenCL) 640 return; 641 642 if (const VecTypeHintAttr *A = FD->getAttr<VecTypeHintAttr>()) { 643 QualType HintQTy = A->getTypeHint(); 644 const ExtVectorType *HintEltQTy = HintQTy->getAs<ExtVectorType>(); 645 bool IsSignedInteger = 646 HintQTy->isSignedIntegerType() || 647 (HintEltQTy && HintEltQTy->getElementType()->isSignedIntegerType()); 648 llvm::Metadata *AttrMDArgs[] = { 649 llvm::ConstantAsMetadata::get(llvm::UndefValue::get( 650 CGM.getTypes().ConvertType(A->getTypeHint()))), 651 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 652 llvm::IntegerType::get(Context, 32), 653 llvm::APInt(32, (uint64_t)(IsSignedInteger ? 1 : 0))))}; 654 Fn->setMetadata("vec_type_hint", llvm::MDNode::get(Context, AttrMDArgs)); 655 } 656 657 if (const WorkGroupSizeHintAttr *A = FD->getAttr<WorkGroupSizeHintAttr>()) { 658 llvm::Metadata *AttrMDArgs[] = { 659 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getXDim())), 660 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getYDim())), 661 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getZDim()))}; 662 Fn->setMetadata("work_group_size_hint", llvm::MDNode::get(Context, AttrMDArgs)); 663 } 664 665 if (const ReqdWorkGroupSizeAttr *A = FD->getAttr<ReqdWorkGroupSizeAttr>()) { 666 llvm::Metadata *AttrMDArgs[] = { 667 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getXDim())), 668 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getYDim())), 669 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getZDim()))}; 670 Fn->setMetadata("reqd_work_group_size", llvm::MDNode::get(Context, AttrMDArgs)); 671 } 672 673 if (const OpenCLIntelReqdSubGroupSizeAttr *A = 674 FD->getAttr<OpenCLIntelReqdSubGroupSizeAttr>()) { 675 llvm::Metadata *AttrMDArgs[] = { 676 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getSubGroupSize()))}; 677 Fn->setMetadata("intel_reqd_sub_group_size", 678 llvm::MDNode::get(Context, AttrMDArgs)); 679 } 680 } 681 682 /// Determine whether the function F ends with a return stmt. 683 static bool endsWithReturn(const Decl* F) { 684 const Stmt *Body = nullptr; 685 if (auto *FD = dyn_cast_or_null<FunctionDecl>(F)) 686 Body = FD->getBody(); 687 else if (auto *OMD = dyn_cast_or_null<ObjCMethodDecl>(F)) 688 Body = OMD->getBody(); 689 690 if (auto *CS = dyn_cast_or_null<CompoundStmt>(Body)) { 691 auto LastStmt = CS->body_rbegin(); 692 if (LastStmt != CS->body_rend()) 693 return isa<ReturnStmt>(*LastStmt); 694 } 695 return false; 696 } 697 698 void CodeGenFunction::markAsIgnoreThreadCheckingAtRuntime(llvm::Function *Fn) { 699 if (SanOpts.has(SanitizerKind::Thread)) { 700 Fn->addFnAttr("sanitize_thread_no_checking_at_run_time"); 701 Fn->removeFnAttr(llvm::Attribute::SanitizeThread); 702 } 703 } 704 705 /// Check if the return value of this function requires sanitization. 706 bool CodeGenFunction::requiresReturnValueCheck() const { 707 return requiresReturnValueNullabilityCheck() || 708 (SanOpts.has(SanitizerKind::ReturnsNonnullAttribute) && CurCodeDecl && 709 CurCodeDecl->getAttr<ReturnsNonNullAttr>()); 710 } 711 712 static bool matchesStlAllocatorFn(const Decl *D, const ASTContext &Ctx) { 713 auto *MD = dyn_cast_or_null<CXXMethodDecl>(D); 714 if (!MD || !MD->getDeclName().getAsIdentifierInfo() || 715 !MD->getDeclName().getAsIdentifierInfo()->isStr("allocate") || 716 (MD->getNumParams() != 1 && MD->getNumParams() != 2)) 717 return false; 718 719 if (MD->parameters()[0]->getType().getCanonicalType() != Ctx.getSizeType()) 720 return false; 721 722 if (MD->getNumParams() == 2) { 723 auto *PT = MD->parameters()[1]->getType()->getAs<PointerType>(); 724 if (!PT || !PT->isVoidPointerType() || 725 !PT->getPointeeType().isConstQualified()) 726 return false; 727 } 728 729 return true; 730 } 731 732 bool CodeGenFunction::isInAllocaArgument(CGCXXABI &ABI, QualType Ty) { 733 const CXXRecordDecl *RD = Ty->getAsCXXRecordDecl(); 734 return RD && ABI.getRecordArgABI(RD) == CGCXXABI::RAA_DirectInMemory; 735 } 736 737 bool CodeGenFunction::hasInAllocaArg(const CXXMethodDecl *MD) { 738 return getTarget().getTriple().getArch() == llvm::Triple::x86 && 739 getTarget().getCXXABI().isMicrosoft() && 740 llvm::any_of(MD->parameters(), [&](ParmVarDecl *P) { 741 return isInAllocaArgument(CGM.getCXXABI(), P->getType()); 742 }); 743 } 744 745 /// Return the UBSan prologue signature for \p FD if one is available. 746 static llvm::Constant *getPrologueSignature(CodeGenModule &CGM, 747 const FunctionDecl *FD) { 748 if (const auto *MD = dyn_cast<CXXMethodDecl>(FD)) 749 if (!MD->isStatic()) 750 return nullptr; 751 return CGM.getTargetCodeGenInfo().getUBSanFunctionSignature(CGM); 752 } 753 754 void CodeGenFunction::StartFunction(GlobalDecl GD, QualType RetTy, 755 llvm::Function *Fn, 756 const CGFunctionInfo &FnInfo, 757 const FunctionArgList &Args, 758 SourceLocation Loc, 759 SourceLocation StartLoc) { 760 assert(!CurFn && 761 "Do not use a CodeGenFunction object for more than one function"); 762 763 const Decl *D = GD.getDecl(); 764 765 DidCallStackSave = false; 766 CurCodeDecl = D; 767 const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D); 768 if (FD && FD->usesSEHTry()) 769 CurSEHParent = GD; 770 CurFuncDecl = (D ? D->getNonClosureContext() : nullptr); 771 FnRetTy = RetTy; 772 CurFn = Fn; 773 CurFnInfo = &FnInfo; 774 assert(CurFn->isDeclaration() && "Function already has body?"); 775 776 // If this function is ignored for any of the enabled sanitizers, 777 // disable the sanitizer for the function. 778 do { 779 #define SANITIZER(NAME, ID) \ 780 if (SanOpts.empty()) \ 781 break; \ 782 if (SanOpts.has(SanitizerKind::ID)) \ 783 if (CGM.isInNoSanitizeList(SanitizerKind::ID, Fn, Loc)) \ 784 SanOpts.set(SanitizerKind::ID, false); 785 786 #include "clang/Basic/Sanitizers.def" 787 #undef SANITIZER 788 } while (false); 789 790 if (D) { 791 const bool SanitizeBounds = SanOpts.hasOneOf(SanitizerKind::Bounds); 792 SanitizerMask no_sanitize_mask; 793 bool NoSanitizeCoverage = false; 794 795 for (auto *Attr : D->specific_attrs<NoSanitizeAttr>()) { 796 no_sanitize_mask |= Attr->getMask(); 797 // SanitizeCoverage is not handled by SanOpts. 798 if (Attr->hasCoverage()) 799 NoSanitizeCoverage = true; 800 } 801 802 // Apply the no_sanitize* attributes to SanOpts. 803 SanOpts.Mask &= ~no_sanitize_mask; 804 if (no_sanitize_mask & SanitizerKind::Address) 805 SanOpts.set(SanitizerKind::KernelAddress, false); 806 if (no_sanitize_mask & SanitizerKind::KernelAddress) 807 SanOpts.set(SanitizerKind::Address, false); 808 if (no_sanitize_mask & SanitizerKind::HWAddress) 809 SanOpts.set(SanitizerKind::KernelHWAddress, false); 810 if (no_sanitize_mask & SanitizerKind::KernelHWAddress) 811 SanOpts.set(SanitizerKind::HWAddress, false); 812 813 if (SanitizeBounds && !SanOpts.hasOneOf(SanitizerKind::Bounds)) 814 Fn->addFnAttr(llvm::Attribute::NoSanitizeBounds); 815 816 if (NoSanitizeCoverage && CGM.getCodeGenOpts().hasSanitizeCoverage()) 817 Fn->addFnAttr(llvm::Attribute::NoSanitizeCoverage); 818 819 // Some passes need the non-negated no_sanitize attribute. Pass them on. 820 if (CGM.getCodeGenOpts().hasSanitizeBinaryMetadata()) { 821 if (no_sanitize_mask & SanitizerKind::Thread) 822 Fn->addFnAttr("no_sanitize_thread"); 823 } 824 } 825 826 if (ShouldSkipSanitizerInstrumentation()) { 827 CurFn->addFnAttr(llvm::Attribute::DisableSanitizerInstrumentation); 828 } else { 829 // Apply sanitizer attributes to the function. 830 if (SanOpts.hasOneOf(SanitizerKind::Address | SanitizerKind::KernelAddress)) 831 Fn->addFnAttr(llvm::Attribute::SanitizeAddress); 832 if (SanOpts.hasOneOf(SanitizerKind::HWAddress | 833 SanitizerKind::KernelHWAddress)) 834 Fn->addFnAttr(llvm::Attribute::SanitizeHWAddress); 835 if (SanOpts.has(SanitizerKind::MemtagStack)) 836 Fn->addFnAttr(llvm::Attribute::SanitizeMemTag); 837 if (SanOpts.has(SanitizerKind::Thread)) 838 Fn->addFnAttr(llvm::Attribute::SanitizeThread); 839 if (SanOpts.has(SanitizerKind::NumericalStability)) 840 Fn->addFnAttr(llvm::Attribute::SanitizeNumericalStability); 841 if (SanOpts.hasOneOf(SanitizerKind::Memory | SanitizerKind::KernelMemory)) 842 Fn->addFnAttr(llvm::Attribute::SanitizeMemory); 843 } 844 if (SanOpts.has(SanitizerKind::SafeStack)) 845 Fn->addFnAttr(llvm::Attribute::SafeStack); 846 if (SanOpts.has(SanitizerKind::ShadowCallStack)) 847 Fn->addFnAttr(llvm::Attribute::ShadowCallStack); 848 849 if (SanOpts.has(SanitizerKind::Realtime)) 850 if (FD && FD->getASTContext().hasAnyFunctionEffects()) 851 for (const FunctionEffectWithCondition &Fe : FD->getFunctionEffects()) { 852 if (Fe.Effect.kind() == FunctionEffect::Kind::NonBlocking) 853 Fn->addFnAttr(llvm::Attribute::SanitizeRealtime); 854 else if (Fe.Effect.kind() == FunctionEffect::Kind::Blocking) 855 Fn->addFnAttr(llvm::Attribute::SanitizeRealtimeBlocking); 856 } 857 858 // Apply fuzzing attribute to the function. 859 if (SanOpts.hasOneOf(SanitizerKind::Fuzzer | SanitizerKind::FuzzerNoLink)) 860 Fn->addFnAttr(llvm::Attribute::OptForFuzzing); 861 862 // Ignore TSan memory acesses from within ObjC/ObjC++ dealloc, initialize, 863 // .cxx_destruct, __destroy_helper_block_ and all of their calees at run time. 864 if (SanOpts.has(SanitizerKind::Thread)) { 865 if (const auto *OMD = dyn_cast_or_null<ObjCMethodDecl>(D)) { 866 const IdentifierInfo *II = OMD->getSelector().getIdentifierInfoForSlot(0); 867 if (OMD->getMethodFamily() == OMF_dealloc || 868 OMD->getMethodFamily() == OMF_initialize || 869 (OMD->getSelector().isUnarySelector() && II->isStr(".cxx_destruct"))) { 870 markAsIgnoreThreadCheckingAtRuntime(Fn); 871 } 872 } 873 } 874 875 // Ignore unrelated casts in STL allocate() since the allocator must cast 876 // from void* to T* before object initialization completes. Don't match on the 877 // namespace because not all allocators are in std:: 878 if (D && SanOpts.has(SanitizerKind::CFIUnrelatedCast)) { 879 if (matchesStlAllocatorFn(D, getContext())) 880 SanOpts.Mask &= ~SanitizerKind::CFIUnrelatedCast; 881 } 882 883 // Ignore null checks in coroutine functions since the coroutines passes 884 // are not aware of how to move the extra UBSan instructions across the split 885 // coroutine boundaries. 886 if (D && SanOpts.has(SanitizerKind::Null)) 887 if (FD && FD->getBody() && 888 FD->getBody()->getStmtClass() == Stmt::CoroutineBodyStmtClass) 889 SanOpts.Mask &= ~SanitizerKind::Null; 890 891 // Add pointer authentication attributes. 892 const CodeGenOptions &CodeGenOpts = CGM.getCodeGenOpts(); 893 if (CodeGenOpts.PointerAuth.ReturnAddresses) 894 Fn->addFnAttr("ptrauth-returns"); 895 if (CodeGenOpts.PointerAuth.FunctionPointers) 896 Fn->addFnAttr("ptrauth-calls"); 897 if (CodeGenOpts.PointerAuth.AuthTraps) 898 Fn->addFnAttr("ptrauth-auth-traps"); 899 if (CodeGenOpts.PointerAuth.IndirectGotos) 900 Fn->addFnAttr("ptrauth-indirect-gotos"); 901 902 // Apply xray attributes to the function (as a string, for now) 903 bool AlwaysXRayAttr = false; 904 if (const auto *XRayAttr = D ? D->getAttr<XRayInstrumentAttr>() : nullptr) { 905 if (CGM.getCodeGenOpts().XRayInstrumentationBundle.has( 906 XRayInstrKind::FunctionEntry) || 907 CGM.getCodeGenOpts().XRayInstrumentationBundle.has( 908 XRayInstrKind::FunctionExit)) { 909 if (XRayAttr->alwaysXRayInstrument() && ShouldXRayInstrumentFunction()) { 910 Fn->addFnAttr("function-instrument", "xray-always"); 911 AlwaysXRayAttr = true; 912 } 913 if (XRayAttr->neverXRayInstrument()) 914 Fn->addFnAttr("function-instrument", "xray-never"); 915 if (const auto *LogArgs = D->getAttr<XRayLogArgsAttr>()) 916 if (ShouldXRayInstrumentFunction()) 917 Fn->addFnAttr("xray-log-args", 918 llvm::utostr(LogArgs->getArgumentCount())); 919 } 920 } else { 921 if (ShouldXRayInstrumentFunction() && !CGM.imbueXRayAttrs(Fn, Loc)) 922 Fn->addFnAttr( 923 "xray-instruction-threshold", 924 llvm::itostr(CGM.getCodeGenOpts().XRayInstructionThreshold)); 925 } 926 927 if (ShouldXRayInstrumentFunction()) { 928 if (CGM.getCodeGenOpts().XRayIgnoreLoops) 929 Fn->addFnAttr("xray-ignore-loops"); 930 931 if (!CGM.getCodeGenOpts().XRayInstrumentationBundle.has( 932 XRayInstrKind::FunctionExit)) 933 Fn->addFnAttr("xray-skip-exit"); 934 935 if (!CGM.getCodeGenOpts().XRayInstrumentationBundle.has( 936 XRayInstrKind::FunctionEntry)) 937 Fn->addFnAttr("xray-skip-entry"); 938 939 auto FuncGroups = CGM.getCodeGenOpts().XRayTotalFunctionGroups; 940 if (FuncGroups > 1) { 941 auto FuncName = llvm::ArrayRef<uint8_t>(CurFn->getName().bytes_begin(), 942 CurFn->getName().bytes_end()); 943 auto Group = crc32(FuncName) % FuncGroups; 944 if (Group != CGM.getCodeGenOpts().XRaySelectedFunctionGroup && 945 !AlwaysXRayAttr) 946 Fn->addFnAttr("function-instrument", "xray-never"); 947 } 948 } 949 950 if (CGM.getCodeGenOpts().getProfileInstr() != CodeGenOptions::ProfileNone) { 951 switch (CGM.isFunctionBlockedFromProfileInstr(Fn, Loc)) { 952 case ProfileList::Skip: 953 Fn->addFnAttr(llvm::Attribute::SkipProfile); 954 break; 955 case ProfileList::Forbid: 956 Fn->addFnAttr(llvm::Attribute::NoProfile); 957 break; 958 case ProfileList::Allow: 959 break; 960 } 961 } 962 963 unsigned Count, Offset; 964 if (const auto *Attr = 965 D ? D->getAttr<PatchableFunctionEntryAttr>() : nullptr) { 966 Count = Attr->getCount(); 967 Offset = Attr->getOffset(); 968 } else { 969 Count = CGM.getCodeGenOpts().PatchableFunctionEntryCount; 970 Offset = CGM.getCodeGenOpts().PatchableFunctionEntryOffset; 971 } 972 if (Count && Offset <= Count) { 973 Fn->addFnAttr("patchable-function-entry", std::to_string(Count - Offset)); 974 if (Offset) 975 Fn->addFnAttr("patchable-function-prefix", std::to_string(Offset)); 976 } 977 // Instruct that functions for COFF/CodeView targets should start with a 978 // patchable instruction, but only on x86/x64. Don't forward this to ARM/ARM64 979 // backends as they don't need it -- instructions on these architectures are 980 // always atomically patchable at runtime. 981 if (CGM.getCodeGenOpts().HotPatch && 982 getContext().getTargetInfo().getTriple().isX86() && 983 getContext().getTargetInfo().getTriple().getEnvironment() != 984 llvm::Triple::CODE16) 985 Fn->addFnAttr("patchable-function", "prologue-short-redirect"); 986 987 // Add no-jump-tables value. 988 if (CGM.getCodeGenOpts().NoUseJumpTables) 989 Fn->addFnAttr("no-jump-tables", "true"); 990 991 // Add no-inline-line-tables value. 992 if (CGM.getCodeGenOpts().NoInlineLineTables) 993 Fn->addFnAttr("no-inline-line-tables"); 994 995 // Add profile-sample-accurate value. 996 if (CGM.getCodeGenOpts().ProfileSampleAccurate) 997 Fn->addFnAttr("profile-sample-accurate"); 998 999 if (!CGM.getCodeGenOpts().SampleProfileFile.empty()) 1000 Fn->addFnAttr("use-sample-profile"); 1001 1002 if (D && D->hasAttr<CFICanonicalJumpTableAttr>()) 1003 Fn->addFnAttr("cfi-canonical-jump-table"); 1004 1005 if (D && D->hasAttr<NoProfileFunctionAttr>()) 1006 Fn->addFnAttr(llvm::Attribute::NoProfile); 1007 1008 if (D && D->hasAttr<HybridPatchableAttr>()) 1009 Fn->addFnAttr(llvm::Attribute::HybridPatchable); 1010 1011 if (D) { 1012 // Function attributes take precedence over command line flags. 1013 if (auto *A = D->getAttr<FunctionReturnThunksAttr>()) { 1014 switch (A->getThunkType()) { 1015 case FunctionReturnThunksAttr::Kind::Keep: 1016 break; 1017 case FunctionReturnThunksAttr::Kind::Extern: 1018 Fn->addFnAttr(llvm::Attribute::FnRetThunkExtern); 1019 break; 1020 } 1021 } else if (CGM.getCodeGenOpts().FunctionReturnThunks) 1022 Fn->addFnAttr(llvm::Attribute::FnRetThunkExtern); 1023 } 1024 1025 if (FD && (getLangOpts().OpenCL || 1026 ((getLangOpts().HIP || getLangOpts().OffloadViaLLVM) && 1027 getLangOpts().CUDAIsDevice))) { 1028 // Add metadata for a kernel function. 1029 EmitKernelMetadata(FD, Fn); 1030 } 1031 1032 if (FD && FD->hasAttr<ClspvLibclcBuiltinAttr>()) { 1033 Fn->setMetadata("clspv_libclc_builtin", 1034 llvm::MDNode::get(getLLVMContext(), {})); 1035 } 1036 1037 // If we are checking function types, emit a function type signature as 1038 // prologue data. 1039 if (FD && SanOpts.has(SanitizerKind::Function)) { 1040 if (llvm::Constant *PrologueSig = getPrologueSignature(CGM, FD)) { 1041 llvm::LLVMContext &Ctx = Fn->getContext(); 1042 llvm::MDBuilder MDB(Ctx); 1043 Fn->setMetadata( 1044 llvm::LLVMContext::MD_func_sanitize, 1045 MDB.createRTTIPointerPrologue( 1046 PrologueSig, getUBSanFunctionTypeHash(FD->getType()))); 1047 } 1048 } 1049 1050 // If we're checking nullability, we need to know whether we can check the 1051 // return value. Initialize the flag to 'true' and refine it in EmitParmDecl. 1052 if (SanOpts.has(SanitizerKind::NullabilityReturn)) { 1053 auto Nullability = FnRetTy->getNullability(); 1054 if (Nullability && *Nullability == NullabilityKind::NonNull && 1055 !FnRetTy->isRecordType()) { 1056 if (!(SanOpts.has(SanitizerKind::ReturnsNonnullAttribute) && 1057 CurCodeDecl && CurCodeDecl->getAttr<ReturnsNonNullAttr>())) 1058 RetValNullabilityPrecondition = 1059 llvm::ConstantInt::getTrue(getLLVMContext()); 1060 } 1061 } 1062 1063 // If we're in C++ mode and the function name is "main", it is guaranteed 1064 // to be norecurse by the standard (3.6.1.3 "The function main shall not be 1065 // used within a program"). 1066 // 1067 // OpenCL C 2.0 v2.2-11 s6.9.i: 1068 // Recursion is not supported. 1069 // 1070 // HLSL 1071 // Recursion is not supported. 1072 // 1073 // SYCL v1.2.1 s3.10: 1074 // kernels cannot include RTTI information, exception classes, 1075 // recursive code, virtual functions or make use of C++ libraries that 1076 // are not compiled for the device. 1077 if (FD && 1078 ((getLangOpts().CPlusPlus && FD->isMain()) || getLangOpts().OpenCL || 1079 getLangOpts().HLSL || getLangOpts().SYCLIsDevice || 1080 (getLangOpts().CUDA && FD->hasAttr<CUDAGlobalAttr>()))) 1081 Fn->addFnAttr(llvm::Attribute::NoRecurse); 1082 1083 llvm::RoundingMode RM = getLangOpts().getDefaultRoundingMode(); 1084 llvm::fp::ExceptionBehavior FPExceptionBehavior = 1085 ToConstrainedExceptMD(getLangOpts().getDefaultExceptionMode()); 1086 Builder.setDefaultConstrainedRounding(RM); 1087 Builder.setDefaultConstrainedExcept(FPExceptionBehavior); 1088 if ((FD && (FD->UsesFPIntrin() || FD->hasAttr<StrictFPAttr>())) || 1089 (!FD && (FPExceptionBehavior != llvm::fp::ebIgnore || 1090 RM != llvm::RoundingMode::NearestTiesToEven))) { 1091 Builder.setIsFPConstrained(true); 1092 Fn->addFnAttr(llvm::Attribute::StrictFP); 1093 } 1094 1095 // If a custom alignment is used, force realigning to this alignment on 1096 // any main function which certainly will need it. 1097 if (FD && ((FD->isMain() || FD->isMSVCRTEntryPoint()) && 1098 CGM.getCodeGenOpts().StackAlignment)) 1099 Fn->addFnAttr("stackrealign"); 1100 1101 // "main" doesn't need to zero out call-used registers. 1102 if (FD && FD->isMain()) 1103 Fn->removeFnAttr("zero-call-used-regs"); 1104 1105 llvm::BasicBlock *EntryBB = createBasicBlock("entry", CurFn); 1106 1107 // Create a marker to make it easy to insert allocas into the entryblock 1108 // later. Don't create this with the builder, because we don't want it 1109 // folded. 1110 llvm::Value *Undef = llvm::UndefValue::get(Int32Ty); 1111 AllocaInsertPt = new llvm::BitCastInst(Undef, Int32Ty, "allocapt", EntryBB); 1112 1113 ReturnBlock = getJumpDestInCurrentScope("return"); 1114 1115 Builder.SetInsertPoint(EntryBB); 1116 1117 // If we're checking the return value, allocate space for a pointer to a 1118 // precise source location of the checked return statement. 1119 if (requiresReturnValueCheck()) { 1120 ReturnLocation = CreateDefaultAlignTempAlloca(Int8PtrTy, "return.sloc.ptr"); 1121 Builder.CreateStore(llvm::ConstantPointerNull::get(Int8PtrTy), 1122 ReturnLocation); 1123 } 1124 1125 // Emit subprogram debug descriptor. 1126 if (CGDebugInfo *DI = getDebugInfo()) { 1127 // Reconstruct the type from the argument list so that implicit parameters, 1128 // such as 'this' and 'vtt', show up in the debug info. Preserve the calling 1129 // convention. 1130 DI->emitFunctionStart(GD, Loc, StartLoc, 1131 DI->getFunctionType(FD, RetTy, Args), CurFn, 1132 CurFuncIsThunk); 1133 } 1134 1135 if (ShouldInstrumentFunction()) { 1136 if (CGM.getCodeGenOpts().InstrumentFunctions) 1137 CurFn->addFnAttr("instrument-function-entry", "__cyg_profile_func_enter"); 1138 if (CGM.getCodeGenOpts().InstrumentFunctionsAfterInlining) 1139 CurFn->addFnAttr("instrument-function-entry-inlined", 1140 "__cyg_profile_func_enter"); 1141 if (CGM.getCodeGenOpts().InstrumentFunctionEntryBare) 1142 CurFn->addFnAttr("instrument-function-entry-inlined", 1143 "__cyg_profile_func_enter_bare"); 1144 } 1145 1146 // Since emitting the mcount call here impacts optimizations such as function 1147 // inlining, we just add an attribute to insert a mcount call in backend. 1148 // The attribute "counting-function" is set to mcount function name which is 1149 // architecture dependent. 1150 if (CGM.getCodeGenOpts().InstrumentForProfiling) { 1151 // Calls to fentry/mcount should not be generated if function has 1152 // the no_instrument_function attribute. 1153 if (!CurFuncDecl || !CurFuncDecl->hasAttr<NoInstrumentFunctionAttr>()) { 1154 if (CGM.getCodeGenOpts().CallFEntry) 1155 Fn->addFnAttr("fentry-call", "true"); 1156 else { 1157 Fn->addFnAttr("instrument-function-entry-inlined", 1158 getTarget().getMCountName()); 1159 } 1160 if (CGM.getCodeGenOpts().MNopMCount) { 1161 if (!CGM.getCodeGenOpts().CallFEntry) 1162 CGM.getDiags().Report(diag::err_opt_not_valid_without_opt) 1163 << "-mnop-mcount" << "-mfentry"; 1164 Fn->addFnAttr("mnop-mcount"); 1165 } 1166 1167 if (CGM.getCodeGenOpts().RecordMCount) { 1168 if (!CGM.getCodeGenOpts().CallFEntry) 1169 CGM.getDiags().Report(diag::err_opt_not_valid_without_opt) 1170 << "-mrecord-mcount" << "-mfentry"; 1171 Fn->addFnAttr("mrecord-mcount"); 1172 } 1173 } 1174 } 1175 1176 if (CGM.getCodeGenOpts().PackedStack) { 1177 if (getContext().getTargetInfo().getTriple().getArch() != 1178 llvm::Triple::systemz) 1179 CGM.getDiags().Report(diag::err_opt_not_valid_on_target) 1180 << "-mpacked-stack"; 1181 Fn->addFnAttr("packed-stack"); 1182 } 1183 1184 if (CGM.getCodeGenOpts().WarnStackSize != UINT_MAX && 1185 !CGM.getDiags().isIgnored(diag::warn_fe_backend_frame_larger_than, Loc)) 1186 Fn->addFnAttr("warn-stack-size", 1187 std::to_string(CGM.getCodeGenOpts().WarnStackSize)); 1188 1189 if (RetTy->isVoidType()) { 1190 // Void type; nothing to return. 1191 ReturnValue = Address::invalid(); 1192 1193 // Count the implicit return. 1194 if (!endsWithReturn(D)) 1195 ++NumReturnExprs; 1196 } else if (CurFnInfo->getReturnInfo().getKind() == ABIArgInfo::Indirect) { 1197 // Indirect return; emit returned value directly into sret slot. 1198 // This reduces code size, and affects correctness in C++. 1199 auto AI = CurFn->arg_begin(); 1200 if (CurFnInfo->getReturnInfo().isSRetAfterThis()) 1201 ++AI; 1202 ReturnValue = makeNaturalAddressForPointer( 1203 &*AI, RetTy, CurFnInfo->getReturnInfo().getIndirectAlign(), false, 1204 nullptr, nullptr, KnownNonNull); 1205 if (!CurFnInfo->getReturnInfo().getIndirectByVal()) { 1206 ReturnValuePointer = 1207 CreateDefaultAlignTempAlloca(ReturnValue.getType(), "result.ptr"); 1208 Builder.CreateStore(ReturnValue.emitRawPointer(*this), 1209 ReturnValuePointer); 1210 } 1211 } else if (CurFnInfo->getReturnInfo().getKind() == ABIArgInfo::InAlloca && 1212 !hasScalarEvaluationKind(CurFnInfo->getReturnType())) { 1213 // Load the sret pointer from the argument struct and return into that. 1214 unsigned Idx = CurFnInfo->getReturnInfo().getInAllocaFieldIndex(); 1215 llvm::Function::arg_iterator EI = CurFn->arg_end(); 1216 --EI; 1217 llvm::Value *Addr = Builder.CreateStructGEP( 1218 CurFnInfo->getArgStruct(), &*EI, Idx); 1219 llvm::Type *Ty = 1220 cast<llvm::GetElementPtrInst>(Addr)->getResultElementType(); 1221 ReturnValuePointer = Address(Addr, Ty, getPointerAlign()); 1222 Addr = Builder.CreateAlignedLoad(Ty, Addr, getPointerAlign(), "agg.result"); 1223 ReturnValue = Address(Addr, ConvertType(RetTy), 1224 CGM.getNaturalTypeAlignment(RetTy), KnownNonNull); 1225 } else { 1226 ReturnValue = CreateIRTemp(RetTy, "retval"); 1227 1228 // Tell the epilog emitter to autorelease the result. We do this 1229 // now so that various specialized functions can suppress it 1230 // during their IR-generation. 1231 if (getLangOpts().ObjCAutoRefCount && 1232 !CurFnInfo->isReturnsRetained() && 1233 RetTy->isObjCRetainableType()) 1234 AutoreleaseResult = true; 1235 } 1236 1237 EmitStartEHSpec(CurCodeDecl); 1238 1239 PrologueCleanupDepth = EHStack.stable_begin(); 1240 1241 // Emit OpenMP specific initialization of the device functions. 1242 if (getLangOpts().OpenMP && CurCodeDecl) 1243 CGM.getOpenMPRuntime().emitFunctionProlog(*this, CurCodeDecl); 1244 1245 if (FD && getLangOpts().HLSL) { 1246 // Handle emitting HLSL entry functions. 1247 if (FD->hasAttr<HLSLShaderAttr>()) { 1248 CGM.getHLSLRuntime().emitEntryFunction(FD, Fn); 1249 } 1250 CGM.getHLSLRuntime().setHLSLFunctionAttributes(FD, Fn); 1251 } 1252 1253 EmitFunctionProlog(*CurFnInfo, CurFn, Args); 1254 1255 if (const CXXMethodDecl *MD = dyn_cast_if_present<CXXMethodDecl>(D); 1256 MD && !MD->isStatic()) { 1257 bool IsInLambda = 1258 MD->getParent()->isLambda() && MD->getOverloadedOperator() == OO_Call; 1259 if (MD->isImplicitObjectMemberFunction()) 1260 CGM.getCXXABI().EmitInstanceFunctionProlog(*this); 1261 if (IsInLambda) { 1262 // We're in a lambda; figure out the captures. 1263 MD->getParent()->getCaptureFields(LambdaCaptureFields, 1264 LambdaThisCaptureField); 1265 if (LambdaThisCaptureField) { 1266 // If the lambda captures the object referred to by '*this' - either by 1267 // value or by reference, make sure CXXThisValue points to the correct 1268 // object. 1269 1270 // Get the lvalue for the field (which is a copy of the enclosing object 1271 // or contains the address of the enclosing object). 1272 LValue ThisFieldLValue = EmitLValueForLambdaField(LambdaThisCaptureField); 1273 if (!LambdaThisCaptureField->getType()->isPointerType()) { 1274 // If the enclosing object was captured by value, just use its 1275 // address. Sign this pointer. 1276 CXXThisValue = ThisFieldLValue.getPointer(*this); 1277 } else { 1278 // Load the lvalue pointed to by the field, since '*this' was captured 1279 // by reference. 1280 CXXThisValue = 1281 EmitLoadOfLValue(ThisFieldLValue, SourceLocation()).getScalarVal(); 1282 } 1283 } 1284 for (auto *FD : MD->getParent()->fields()) { 1285 if (FD->hasCapturedVLAType()) { 1286 auto *ExprArg = EmitLoadOfLValue(EmitLValueForLambdaField(FD), 1287 SourceLocation()).getScalarVal(); 1288 auto VAT = FD->getCapturedVLAType(); 1289 VLASizeMap[VAT->getSizeExpr()] = ExprArg; 1290 } 1291 } 1292 } else if (MD->isImplicitObjectMemberFunction()) { 1293 // Not in a lambda; just use 'this' from the method. 1294 // FIXME: Should we generate a new load for each use of 'this'? The 1295 // fast register allocator would be happier... 1296 CXXThisValue = CXXABIThisValue; 1297 } 1298 1299 // Check the 'this' pointer once per function, if it's available. 1300 if (CXXABIThisValue) { 1301 SanitizerSet SkippedChecks; 1302 SkippedChecks.set(SanitizerKind::ObjectSize, true); 1303 QualType ThisTy = MD->getThisType(); 1304 1305 // If this is the call operator of a lambda with no captures, it 1306 // may have a static invoker function, which may call this operator with 1307 // a null 'this' pointer. 1308 if (isLambdaCallOperator(MD) && MD->getParent()->isCapturelessLambda()) 1309 SkippedChecks.set(SanitizerKind::Null, true); 1310 1311 EmitTypeCheck( 1312 isa<CXXConstructorDecl>(MD) ? TCK_ConstructorCall : TCK_MemberCall, 1313 Loc, CXXABIThisValue, ThisTy, CXXABIThisAlignment, SkippedChecks); 1314 } 1315 } 1316 1317 // If any of the arguments have a variably modified type, make sure to 1318 // emit the type size, but only if the function is not naked. Naked functions 1319 // have no prolog to run this evaluation. 1320 if (!FD || !FD->hasAttr<NakedAttr>()) { 1321 for (const VarDecl *VD : Args) { 1322 // Dig out the type as written from ParmVarDecls; it's unclear whether 1323 // the standard (C99 6.9.1p10) requires this, but we're following the 1324 // precedent set by gcc. 1325 QualType Ty; 1326 if (const ParmVarDecl *PVD = dyn_cast<ParmVarDecl>(VD)) 1327 Ty = PVD->getOriginalType(); 1328 else 1329 Ty = VD->getType(); 1330 1331 if (Ty->isVariablyModifiedType()) 1332 EmitVariablyModifiedType(Ty); 1333 } 1334 } 1335 // Emit a location at the end of the prologue. 1336 if (CGDebugInfo *DI = getDebugInfo()) 1337 DI->EmitLocation(Builder, StartLoc); 1338 // TODO: Do we need to handle this in two places like we do with 1339 // target-features/target-cpu? 1340 if (CurFuncDecl) 1341 if (const auto *VecWidth = CurFuncDecl->getAttr<MinVectorWidthAttr>()) 1342 LargestVectorWidth = VecWidth->getVectorWidth(); 1343 1344 if (CGM.shouldEmitConvergenceTokens()) 1345 ConvergenceTokenStack.push_back(getOrEmitConvergenceEntryToken(CurFn)); 1346 } 1347 1348 void CodeGenFunction::EmitFunctionBody(const Stmt *Body) { 1349 incrementProfileCounter(Body); 1350 maybeCreateMCDCCondBitmap(); 1351 if (const CompoundStmt *S = dyn_cast<CompoundStmt>(Body)) 1352 EmitCompoundStmtWithoutScope(*S); 1353 else 1354 EmitStmt(Body); 1355 } 1356 1357 /// When instrumenting to collect profile data, the counts for some blocks 1358 /// such as switch cases need to not include the fall-through counts, so 1359 /// emit a branch around the instrumentation code. When not instrumenting, 1360 /// this just calls EmitBlock(). 1361 void CodeGenFunction::EmitBlockWithFallThrough(llvm::BasicBlock *BB, 1362 const Stmt *S) { 1363 llvm::BasicBlock *SkipCountBB = nullptr; 1364 // Do not skip over the instrumentation when single byte coverage mode is 1365 // enabled. 1366 if (HaveInsertPoint() && CGM.getCodeGenOpts().hasProfileClangInstr() && 1367 !llvm::EnableSingleByteCoverage) { 1368 // When instrumenting for profiling, the fallthrough to certain 1369 // statements needs to skip over the instrumentation code so that we 1370 // get an accurate count. 1371 SkipCountBB = createBasicBlock("skipcount"); 1372 EmitBranch(SkipCountBB); 1373 } 1374 EmitBlock(BB); 1375 uint64_t CurrentCount = getCurrentProfileCount(); 1376 incrementProfileCounter(S); 1377 setCurrentProfileCount(getCurrentProfileCount() + CurrentCount); 1378 if (SkipCountBB) 1379 EmitBlock(SkipCountBB); 1380 } 1381 1382 /// Tries to mark the given function nounwind based on the 1383 /// non-existence of any throwing calls within it. We believe this is 1384 /// lightweight enough to do at -O0. 1385 static void TryMarkNoThrow(llvm::Function *F) { 1386 // LLVM treats 'nounwind' on a function as part of the type, so we 1387 // can't do this on functions that can be overwritten. 1388 if (F->isInterposable()) return; 1389 1390 for (llvm::BasicBlock &BB : *F) 1391 for (llvm::Instruction &I : BB) 1392 if (I.mayThrow()) 1393 return; 1394 1395 F->setDoesNotThrow(); 1396 } 1397 1398 QualType CodeGenFunction::BuildFunctionArgList(GlobalDecl GD, 1399 FunctionArgList &Args) { 1400 const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl()); 1401 QualType ResTy = FD->getReturnType(); 1402 1403 const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD); 1404 if (MD && MD->isImplicitObjectMemberFunction()) { 1405 if (CGM.getCXXABI().HasThisReturn(GD)) 1406 ResTy = MD->getThisType(); 1407 else if (CGM.getCXXABI().hasMostDerivedReturn(GD)) 1408 ResTy = CGM.getContext().VoidPtrTy; 1409 CGM.getCXXABI().buildThisParam(*this, Args); 1410 } 1411 1412 // The base version of an inheriting constructor whose constructed base is a 1413 // virtual base is not passed any arguments (because it doesn't actually call 1414 // the inherited constructor). 1415 bool PassedParams = true; 1416 if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(FD)) 1417 if (auto Inherited = CD->getInheritedConstructor()) 1418 PassedParams = 1419 getTypes().inheritingCtorHasParams(Inherited, GD.getCtorType()); 1420 1421 if (PassedParams) { 1422 for (auto *Param : FD->parameters()) { 1423 Args.push_back(Param); 1424 if (!Param->hasAttr<PassObjectSizeAttr>()) 1425 continue; 1426 1427 auto *Implicit = ImplicitParamDecl::Create( 1428 getContext(), Param->getDeclContext(), Param->getLocation(), 1429 /*Id=*/nullptr, getContext().getSizeType(), ImplicitParamKind::Other); 1430 SizeArguments[Param] = Implicit; 1431 Args.push_back(Implicit); 1432 } 1433 } 1434 1435 if (MD && (isa<CXXConstructorDecl>(MD) || isa<CXXDestructorDecl>(MD))) 1436 CGM.getCXXABI().addImplicitStructorParams(*this, ResTy, Args); 1437 1438 return ResTy; 1439 } 1440 1441 void CodeGenFunction::GenerateCode(GlobalDecl GD, llvm::Function *Fn, 1442 const CGFunctionInfo &FnInfo) { 1443 assert(Fn && "generating code for null Function"); 1444 const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl()); 1445 CurGD = GD; 1446 1447 FunctionArgList Args; 1448 QualType ResTy = BuildFunctionArgList(GD, Args); 1449 1450 CGM.getTargetCodeGenInfo().checkFunctionABI(CGM, FD); 1451 1452 if (FD->isInlineBuiltinDeclaration()) { 1453 // When generating code for a builtin with an inline declaration, use a 1454 // mangled name to hold the actual body, while keeping an external 1455 // definition in case the function pointer is referenced somewhere. 1456 std::string FDInlineName = (Fn->getName() + ".inline").str(); 1457 llvm::Module *M = Fn->getParent(); 1458 llvm::Function *Clone = M->getFunction(FDInlineName); 1459 if (!Clone) { 1460 Clone = llvm::Function::Create(Fn->getFunctionType(), 1461 llvm::GlobalValue::InternalLinkage, 1462 Fn->getAddressSpace(), FDInlineName, M); 1463 Clone->addFnAttr(llvm::Attribute::AlwaysInline); 1464 } 1465 Fn->setLinkage(llvm::GlobalValue::ExternalLinkage); 1466 Fn = Clone; 1467 } else { 1468 // Detect the unusual situation where an inline version is shadowed by a 1469 // non-inline version. In that case we should pick the external one 1470 // everywhere. That's GCC behavior too. Unfortunately, I cannot find a way 1471 // to detect that situation before we reach codegen, so do some late 1472 // replacement. 1473 for (const FunctionDecl *PD = FD->getPreviousDecl(); PD; 1474 PD = PD->getPreviousDecl()) { 1475 if (LLVM_UNLIKELY(PD->isInlineBuiltinDeclaration())) { 1476 std::string FDInlineName = (Fn->getName() + ".inline").str(); 1477 llvm::Module *M = Fn->getParent(); 1478 if (llvm::Function *Clone = M->getFunction(FDInlineName)) { 1479 Clone->replaceAllUsesWith(Fn); 1480 Clone->eraseFromParent(); 1481 } 1482 break; 1483 } 1484 } 1485 } 1486 1487 // Check if we should generate debug info for this function. 1488 if (FD->hasAttr<NoDebugAttr>()) { 1489 // Clear non-distinct debug info that was possibly attached to the function 1490 // due to an earlier declaration without the nodebug attribute 1491 Fn->setSubprogram(nullptr); 1492 // Disable debug info indefinitely for this function 1493 DebugInfo = nullptr; 1494 } 1495 1496 // The function might not have a body if we're generating thunks for a 1497 // function declaration. 1498 SourceRange BodyRange; 1499 if (Stmt *Body = FD->getBody()) 1500 BodyRange = Body->getSourceRange(); 1501 else 1502 BodyRange = FD->getLocation(); 1503 CurEHLocation = BodyRange.getEnd(); 1504 1505 // Use the location of the start of the function to determine where 1506 // the function definition is located. By default use the location 1507 // of the declaration as the location for the subprogram. A function 1508 // may lack a declaration in the source code if it is created by code 1509 // gen. (examples: _GLOBAL__I_a, __cxx_global_array_dtor, thunk). 1510 SourceLocation Loc = FD->getLocation(); 1511 1512 // If this is a function specialization then use the pattern body 1513 // as the location for the function. 1514 if (const FunctionDecl *SpecDecl = FD->getTemplateInstantiationPattern()) 1515 if (SpecDecl->hasBody(SpecDecl)) 1516 Loc = SpecDecl->getLocation(); 1517 1518 Stmt *Body = FD->getBody(); 1519 1520 if (Body) { 1521 // Coroutines always emit lifetime markers. 1522 if (isa<CoroutineBodyStmt>(Body)) 1523 ShouldEmitLifetimeMarkers = true; 1524 1525 // Initialize helper which will detect jumps which can cause invalid 1526 // lifetime markers. 1527 if (ShouldEmitLifetimeMarkers) 1528 Bypasses.Init(Body); 1529 } 1530 1531 // Emit the standard function prologue. 1532 StartFunction(GD, ResTy, Fn, FnInfo, Args, Loc, BodyRange.getBegin()); 1533 1534 // Save parameters for coroutine function. 1535 if (Body && isa_and_nonnull<CoroutineBodyStmt>(Body)) 1536 llvm::append_range(FnArgs, FD->parameters()); 1537 1538 // Ensure that the function adheres to the forward progress guarantee, which 1539 // is required by certain optimizations. 1540 // In C++11 and up, the attribute will be removed if the body contains a 1541 // trivial empty loop. 1542 if (checkIfFunctionMustProgress()) 1543 CurFn->addFnAttr(llvm::Attribute::MustProgress); 1544 1545 // Generate the body of the function. 1546 PGO.assignRegionCounters(GD, CurFn); 1547 if (isa<CXXDestructorDecl>(FD)) 1548 EmitDestructorBody(Args); 1549 else if (isa<CXXConstructorDecl>(FD)) 1550 EmitConstructorBody(Args); 1551 else if (getLangOpts().CUDA && 1552 !getLangOpts().CUDAIsDevice && 1553 FD->hasAttr<CUDAGlobalAttr>()) 1554 CGM.getCUDARuntime().emitDeviceStub(*this, Args); 1555 else if (isa<CXXMethodDecl>(FD) && 1556 cast<CXXMethodDecl>(FD)->isLambdaStaticInvoker()) { 1557 // The lambda static invoker function is special, because it forwards or 1558 // clones the body of the function call operator (but is actually static). 1559 EmitLambdaStaticInvokeBody(cast<CXXMethodDecl>(FD)); 1560 } else if (isa<CXXMethodDecl>(FD) && 1561 isLambdaCallOperator(cast<CXXMethodDecl>(FD)) && 1562 !FnInfo.isDelegateCall() && 1563 cast<CXXMethodDecl>(FD)->getParent()->getLambdaStaticInvoker() && 1564 hasInAllocaArg(cast<CXXMethodDecl>(FD))) { 1565 // If emitting a lambda with static invoker on X86 Windows, change 1566 // the call operator body. 1567 // Make sure that this is a call operator with an inalloca arg and check 1568 // for delegate call to make sure this is the original call op and not the 1569 // new forwarding function for the static invoker. 1570 EmitLambdaInAllocaCallOpBody(cast<CXXMethodDecl>(FD)); 1571 } else if (FD->isDefaulted() && isa<CXXMethodDecl>(FD) && 1572 (cast<CXXMethodDecl>(FD)->isCopyAssignmentOperator() || 1573 cast<CXXMethodDecl>(FD)->isMoveAssignmentOperator())) { 1574 // Implicit copy-assignment gets the same special treatment as implicit 1575 // copy-constructors. 1576 emitImplicitAssignmentOperatorBody(Args); 1577 } else if (Body) { 1578 EmitFunctionBody(Body); 1579 } else 1580 llvm_unreachable("no definition for emitted function"); 1581 1582 // C++11 [stmt.return]p2: 1583 // Flowing off the end of a function [...] results in undefined behavior in 1584 // a value-returning function. 1585 // C11 6.9.1p12: 1586 // If the '}' that terminates a function is reached, and the value of the 1587 // function call is used by the caller, the behavior is undefined. 1588 if (getLangOpts().CPlusPlus && !FD->hasImplicitReturnZero() && !SawAsmBlock && 1589 !FD->getReturnType()->isVoidType() && Builder.GetInsertBlock()) { 1590 bool ShouldEmitUnreachable = 1591 CGM.getCodeGenOpts().StrictReturn || 1592 !CGM.MayDropFunctionReturn(FD->getASTContext(), FD->getReturnType()); 1593 if (SanOpts.has(SanitizerKind::Return)) { 1594 SanitizerScope SanScope(this); 1595 llvm::Value *IsFalse = Builder.getFalse(); 1596 EmitCheck(std::make_pair(IsFalse, SanitizerKind::Return), 1597 SanitizerHandler::MissingReturn, 1598 EmitCheckSourceLocation(FD->getLocation()), {}); 1599 } else if (ShouldEmitUnreachable) { 1600 if (CGM.getCodeGenOpts().OptimizationLevel == 0) 1601 EmitTrapCall(llvm::Intrinsic::trap); 1602 } 1603 if (SanOpts.has(SanitizerKind::Return) || ShouldEmitUnreachable) { 1604 Builder.CreateUnreachable(); 1605 Builder.ClearInsertionPoint(); 1606 } 1607 } 1608 1609 // Emit the standard function epilogue. 1610 FinishFunction(BodyRange.getEnd()); 1611 1612 // If we haven't marked the function nothrow through other means, do 1613 // a quick pass now to see if we can. 1614 if (!CurFn->doesNotThrow()) 1615 TryMarkNoThrow(CurFn); 1616 } 1617 1618 /// ContainsLabel - Return true if the statement contains a label in it. If 1619 /// this statement is not executed normally, it not containing a label means 1620 /// that we can just remove the code. 1621 bool CodeGenFunction::ContainsLabel(const Stmt *S, bool IgnoreCaseStmts) { 1622 // Null statement, not a label! 1623 if (!S) return false; 1624 1625 // If this is a label, we have to emit the code, consider something like: 1626 // if (0) { ... foo: bar(); } goto foo; 1627 // 1628 // TODO: If anyone cared, we could track __label__'s, since we know that you 1629 // can't jump to one from outside their declared region. 1630 if (isa<LabelStmt>(S)) 1631 return true; 1632 1633 // If this is a case/default statement, and we haven't seen a switch, we have 1634 // to emit the code. 1635 if (isa<SwitchCase>(S) && !IgnoreCaseStmts) 1636 return true; 1637 1638 // If this is a switch statement, we want to ignore cases below it. 1639 if (isa<SwitchStmt>(S)) 1640 IgnoreCaseStmts = true; 1641 1642 // Scan subexpressions for verboten labels. 1643 for (const Stmt *SubStmt : S->children()) 1644 if (ContainsLabel(SubStmt, IgnoreCaseStmts)) 1645 return true; 1646 1647 return false; 1648 } 1649 1650 /// containsBreak - Return true if the statement contains a break out of it. 1651 /// If the statement (recursively) contains a switch or loop with a break 1652 /// inside of it, this is fine. 1653 bool CodeGenFunction::containsBreak(const Stmt *S) { 1654 // Null statement, not a label! 1655 if (!S) return false; 1656 1657 // If this is a switch or loop that defines its own break scope, then we can 1658 // include it and anything inside of it. 1659 if (isa<SwitchStmt>(S) || isa<WhileStmt>(S) || isa<DoStmt>(S) || 1660 isa<ForStmt>(S)) 1661 return false; 1662 1663 if (isa<BreakStmt>(S)) 1664 return true; 1665 1666 // Scan subexpressions for verboten breaks. 1667 for (const Stmt *SubStmt : S->children()) 1668 if (containsBreak(SubStmt)) 1669 return true; 1670 1671 return false; 1672 } 1673 1674 bool CodeGenFunction::mightAddDeclToScope(const Stmt *S) { 1675 if (!S) return false; 1676 1677 // Some statement kinds add a scope and thus never add a decl to the current 1678 // scope. Note, this list is longer than the list of statements that might 1679 // have an unscoped decl nested within them, but this way is conservatively 1680 // correct even if more statement kinds are added. 1681 if (isa<IfStmt>(S) || isa<SwitchStmt>(S) || isa<WhileStmt>(S) || 1682 isa<DoStmt>(S) || isa<ForStmt>(S) || isa<CompoundStmt>(S) || 1683 isa<CXXForRangeStmt>(S) || isa<CXXTryStmt>(S) || 1684 isa<ObjCForCollectionStmt>(S) || isa<ObjCAtTryStmt>(S)) 1685 return false; 1686 1687 if (isa<DeclStmt>(S)) 1688 return true; 1689 1690 for (const Stmt *SubStmt : S->children()) 1691 if (mightAddDeclToScope(SubStmt)) 1692 return true; 1693 1694 return false; 1695 } 1696 1697 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold 1698 /// to a constant, or if it does but contains a label, return false. If it 1699 /// constant folds return true and set the boolean result in Result. 1700 bool CodeGenFunction::ConstantFoldsToSimpleInteger(const Expr *Cond, 1701 bool &ResultBool, 1702 bool AllowLabels) { 1703 // If MC/DC is enabled, disable folding so that we can instrument all 1704 // conditions to yield complete test vectors. We still keep track of 1705 // folded conditions during region mapping and visualization. 1706 if (!AllowLabels && CGM.getCodeGenOpts().hasProfileClangInstr() && 1707 CGM.getCodeGenOpts().MCDCCoverage) 1708 return false; 1709 1710 llvm::APSInt ResultInt; 1711 if (!ConstantFoldsToSimpleInteger(Cond, ResultInt, AllowLabels)) 1712 return false; 1713 1714 ResultBool = ResultInt.getBoolValue(); 1715 return true; 1716 } 1717 1718 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold 1719 /// to a constant, or if it does but contains a label, return false. If it 1720 /// constant folds return true and set the folded value. 1721 bool CodeGenFunction::ConstantFoldsToSimpleInteger(const Expr *Cond, 1722 llvm::APSInt &ResultInt, 1723 bool AllowLabels) { 1724 // FIXME: Rename and handle conversion of other evaluatable things 1725 // to bool. 1726 Expr::EvalResult Result; 1727 if (!Cond->EvaluateAsInt(Result, getContext())) 1728 return false; // Not foldable, not integer or not fully evaluatable. 1729 1730 llvm::APSInt Int = Result.Val.getInt(); 1731 if (!AllowLabels && CodeGenFunction::ContainsLabel(Cond)) 1732 return false; // Contains a label. 1733 1734 ResultInt = Int; 1735 return true; 1736 } 1737 1738 /// Strip parentheses and simplistic logical-NOT operators. 1739 const Expr *CodeGenFunction::stripCond(const Expr *C) { 1740 while (const UnaryOperator *Op = dyn_cast<UnaryOperator>(C->IgnoreParens())) { 1741 if (Op->getOpcode() != UO_LNot) 1742 break; 1743 C = Op->getSubExpr(); 1744 } 1745 return C->IgnoreParens(); 1746 } 1747 1748 /// Determine whether the given condition is an instrumentable condition 1749 /// (i.e. no "&&" or "||"). 1750 bool CodeGenFunction::isInstrumentedCondition(const Expr *C) { 1751 const BinaryOperator *BOp = dyn_cast<BinaryOperator>(stripCond(C)); 1752 return (!BOp || !BOp->isLogicalOp()); 1753 } 1754 1755 /// EmitBranchToCounterBlock - Emit a conditional branch to a new block that 1756 /// increments a profile counter based on the semantics of the given logical 1757 /// operator opcode. This is used to instrument branch condition coverage for 1758 /// logical operators. 1759 void CodeGenFunction::EmitBranchToCounterBlock( 1760 const Expr *Cond, BinaryOperator::Opcode LOp, llvm::BasicBlock *TrueBlock, 1761 llvm::BasicBlock *FalseBlock, uint64_t TrueCount /* = 0 */, 1762 Stmt::Likelihood LH /* =None */, const Expr *CntrIdx /* = nullptr */) { 1763 // If not instrumenting, just emit a branch. 1764 bool InstrumentRegions = CGM.getCodeGenOpts().hasProfileClangInstr(); 1765 if (!InstrumentRegions || !isInstrumentedCondition(Cond)) 1766 return EmitBranchOnBoolExpr(Cond, TrueBlock, FalseBlock, TrueCount, LH); 1767 1768 const Stmt *CntrStmt = (CntrIdx ? CntrIdx : Cond); 1769 1770 llvm::BasicBlock *ThenBlock = nullptr; 1771 llvm::BasicBlock *ElseBlock = nullptr; 1772 llvm::BasicBlock *NextBlock = nullptr; 1773 1774 // Create the block we'll use to increment the appropriate counter. 1775 llvm::BasicBlock *CounterIncrBlock = createBasicBlock("lop.rhscnt"); 1776 1777 // Set block pointers according to Logical-AND (BO_LAnd) semantics. This 1778 // means we need to evaluate the condition and increment the counter on TRUE: 1779 // 1780 // if (Cond) 1781 // goto CounterIncrBlock; 1782 // else 1783 // goto FalseBlock; 1784 // 1785 // CounterIncrBlock: 1786 // Counter++; 1787 // goto TrueBlock; 1788 1789 if (LOp == BO_LAnd) { 1790 ThenBlock = CounterIncrBlock; 1791 ElseBlock = FalseBlock; 1792 NextBlock = TrueBlock; 1793 } 1794 1795 // Set block pointers according to Logical-OR (BO_LOr) semantics. This means 1796 // we need to evaluate the condition and increment the counter on FALSE: 1797 // 1798 // if (Cond) 1799 // goto TrueBlock; 1800 // else 1801 // goto CounterIncrBlock; 1802 // 1803 // CounterIncrBlock: 1804 // Counter++; 1805 // goto FalseBlock; 1806 1807 else if (LOp == BO_LOr) { 1808 ThenBlock = TrueBlock; 1809 ElseBlock = CounterIncrBlock; 1810 NextBlock = FalseBlock; 1811 } else { 1812 llvm_unreachable("Expected Opcode must be that of a Logical Operator"); 1813 } 1814 1815 // Emit Branch based on condition. 1816 EmitBranchOnBoolExpr(Cond, ThenBlock, ElseBlock, TrueCount, LH); 1817 1818 // Emit the block containing the counter increment(s). 1819 EmitBlock(CounterIncrBlock); 1820 1821 // Increment corresponding counter; if index not provided, use Cond as index. 1822 incrementProfileCounter(CntrStmt); 1823 1824 // Go to the next block. 1825 EmitBranch(NextBlock); 1826 } 1827 1828 /// EmitBranchOnBoolExpr - Emit a branch on a boolean condition (e.g. for an if 1829 /// statement) to the specified blocks. Based on the condition, this might try 1830 /// to simplify the codegen of the conditional based on the branch. 1831 /// \param LH The value of the likelihood attribute on the True branch. 1832 /// \param ConditionalOp Used by MC/DC code coverage to track the result of the 1833 /// ConditionalOperator (ternary) through a recursive call for the operator's 1834 /// LHS and RHS nodes. 1835 void CodeGenFunction::EmitBranchOnBoolExpr( 1836 const Expr *Cond, llvm::BasicBlock *TrueBlock, llvm::BasicBlock *FalseBlock, 1837 uint64_t TrueCount, Stmt::Likelihood LH, const Expr *ConditionalOp) { 1838 Cond = Cond->IgnoreParens(); 1839 1840 if (const BinaryOperator *CondBOp = dyn_cast<BinaryOperator>(Cond)) { 1841 // Handle X && Y in a condition. 1842 if (CondBOp->getOpcode() == BO_LAnd) { 1843 MCDCLogOpStack.push_back(CondBOp); 1844 1845 // If we have "1 && X", simplify the code. "0 && X" would have constant 1846 // folded if the case was simple enough. 1847 bool ConstantBool = false; 1848 if (ConstantFoldsToSimpleInteger(CondBOp->getLHS(), ConstantBool) && 1849 ConstantBool) { 1850 // br(1 && X) -> br(X). 1851 incrementProfileCounter(CondBOp); 1852 EmitBranchToCounterBlock(CondBOp->getRHS(), BO_LAnd, TrueBlock, 1853 FalseBlock, TrueCount, LH); 1854 MCDCLogOpStack.pop_back(); 1855 return; 1856 } 1857 1858 // If we have "X && 1", simplify the code to use an uncond branch. 1859 // "X && 0" would have been constant folded to 0. 1860 if (ConstantFoldsToSimpleInteger(CondBOp->getRHS(), ConstantBool) && 1861 ConstantBool) { 1862 // br(X && 1) -> br(X). 1863 EmitBranchToCounterBlock(CondBOp->getLHS(), BO_LAnd, TrueBlock, 1864 FalseBlock, TrueCount, LH, CondBOp); 1865 MCDCLogOpStack.pop_back(); 1866 return; 1867 } 1868 1869 // Emit the LHS as a conditional. If the LHS conditional is false, we 1870 // want to jump to the FalseBlock. 1871 llvm::BasicBlock *LHSTrue = createBasicBlock("land.lhs.true"); 1872 // The counter tells us how often we evaluate RHS, and all of TrueCount 1873 // can be propagated to that branch. 1874 uint64_t RHSCount = getProfileCount(CondBOp->getRHS()); 1875 1876 ConditionalEvaluation eval(*this); 1877 { 1878 ApplyDebugLocation DL(*this, Cond); 1879 // Propagate the likelihood attribute like __builtin_expect 1880 // __builtin_expect(X && Y, 1) -> X and Y are likely 1881 // __builtin_expect(X && Y, 0) -> only Y is unlikely 1882 EmitBranchOnBoolExpr(CondBOp->getLHS(), LHSTrue, FalseBlock, RHSCount, 1883 LH == Stmt::LH_Unlikely ? Stmt::LH_None : LH); 1884 EmitBlock(LHSTrue); 1885 } 1886 1887 incrementProfileCounter(CondBOp); 1888 setCurrentProfileCount(getProfileCount(CondBOp->getRHS())); 1889 1890 // Any temporaries created here are conditional. 1891 eval.begin(*this); 1892 EmitBranchToCounterBlock(CondBOp->getRHS(), BO_LAnd, TrueBlock, 1893 FalseBlock, TrueCount, LH); 1894 eval.end(*this); 1895 MCDCLogOpStack.pop_back(); 1896 return; 1897 } 1898 1899 if (CondBOp->getOpcode() == BO_LOr) { 1900 MCDCLogOpStack.push_back(CondBOp); 1901 1902 // If we have "0 || X", simplify the code. "1 || X" would have constant 1903 // folded if the case was simple enough. 1904 bool ConstantBool = false; 1905 if (ConstantFoldsToSimpleInteger(CondBOp->getLHS(), ConstantBool) && 1906 !ConstantBool) { 1907 // br(0 || X) -> br(X). 1908 incrementProfileCounter(CondBOp); 1909 EmitBranchToCounterBlock(CondBOp->getRHS(), BO_LOr, TrueBlock, 1910 FalseBlock, TrueCount, LH); 1911 MCDCLogOpStack.pop_back(); 1912 return; 1913 } 1914 1915 // If we have "X || 0", simplify the code to use an uncond branch. 1916 // "X || 1" would have been constant folded to 1. 1917 if (ConstantFoldsToSimpleInteger(CondBOp->getRHS(), ConstantBool) && 1918 !ConstantBool) { 1919 // br(X || 0) -> br(X). 1920 EmitBranchToCounterBlock(CondBOp->getLHS(), BO_LOr, TrueBlock, 1921 FalseBlock, TrueCount, LH, CondBOp); 1922 MCDCLogOpStack.pop_back(); 1923 return; 1924 } 1925 // Emit the LHS as a conditional. If the LHS conditional is true, we 1926 // want to jump to the TrueBlock. 1927 llvm::BasicBlock *LHSFalse = createBasicBlock("lor.lhs.false"); 1928 // We have the count for entry to the RHS and for the whole expression 1929 // being true, so we can divy up True count between the short circuit and 1930 // the RHS. 1931 uint64_t LHSCount = 1932 getCurrentProfileCount() - getProfileCount(CondBOp->getRHS()); 1933 uint64_t RHSCount = TrueCount - LHSCount; 1934 1935 ConditionalEvaluation eval(*this); 1936 { 1937 // Propagate the likelihood attribute like __builtin_expect 1938 // __builtin_expect(X || Y, 1) -> only Y is likely 1939 // __builtin_expect(X || Y, 0) -> both X and Y are unlikely 1940 ApplyDebugLocation DL(*this, Cond); 1941 EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, LHSFalse, LHSCount, 1942 LH == Stmt::LH_Likely ? Stmt::LH_None : LH); 1943 EmitBlock(LHSFalse); 1944 } 1945 1946 incrementProfileCounter(CondBOp); 1947 setCurrentProfileCount(getProfileCount(CondBOp->getRHS())); 1948 1949 // Any temporaries created here are conditional. 1950 eval.begin(*this); 1951 EmitBranchToCounterBlock(CondBOp->getRHS(), BO_LOr, TrueBlock, FalseBlock, 1952 RHSCount, LH); 1953 1954 eval.end(*this); 1955 MCDCLogOpStack.pop_back(); 1956 return; 1957 } 1958 } 1959 1960 if (const UnaryOperator *CondUOp = dyn_cast<UnaryOperator>(Cond)) { 1961 // br(!x, t, f) -> br(x, f, t) 1962 // Avoid doing this optimization when instrumenting a condition for MC/DC. 1963 // LNot is taken as part of the condition for simplicity, and changing its 1964 // sense negatively impacts test vector tracking. 1965 bool MCDCCondition = CGM.getCodeGenOpts().hasProfileClangInstr() && 1966 CGM.getCodeGenOpts().MCDCCoverage && 1967 isInstrumentedCondition(Cond); 1968 if (CondUOp->getOpcode() == UO_LNot && !MCDCCondition) { 1969 // Negate the count. 1970 uint64_t FalseCount = getCurrentProfileCount() - TrueCount; 1971 // The values of the enum are chosen to make this negation possible. 1972 LH = static_cast<Stmt::Likelihood>(-LH); 1973 // Negate the condition and swap the destination blocks. 1974 return EmitBranchOnBoolExpr(CondUOp->getSubExpr(), FalseBlock, TrueBlock, 1975 FalseCount, LH); 1976 } 1977 } 1978 1979 if (const ConditionalOperator *CondOp = dyn_cast<ConditionalOperator>(Cond)) { 1980 // br(c ? x : y, t, f) -> br(c, br(x, t, f), br(y, t, f)) 1981 llvm::BasicBlock *LHSBlock = createBasicBlock("cond.true"); 1982 llvm::BasicBlock *RHSBlock = createBasicBlock("cond.false"); 1983 1984 // The ConditionalOperator itself has no likelihood information for its 1985 // true and false branches. This matches the behavior of __builtin_expect. 1986 ConditionalEvaluation cond(*this); 1987 EmitBranchOnBoolExpr(CondOp->getCond(), LHSBlock, RHSBlock, 1988 getProfileCount(CondOp), Stmt::LH_None); 1989 1990 // When computing PGO branch weights, we only know the overall count for 1991 // the true block. This code is essentially doing tail duplication of the 1992 // naive code-gen, introducing new edges for which counts are not 1993 // available. Divide the counts proportionally between the LHS and RHS of 1994 // the conditional operator. 1995 uint64_t LHSScaledTrueCount = 0; 1996 if (TrueCount) { 1997 double LHSRatio = 1998 getProfileCount(CondOp) / (double)getCurrentProfileCount(); 1999 LHSScaledTrueCount = TrueCount * LHSRatio; 2000 } 2001 2002 cond.begin(*this); 2003 EmitBlock(LHSBlock); 2004 incrementProfileCounter(CondOp); 2005 { 2006 ApplyDebugLocation DL(*this, Cond); 2007 EmitBranchOnBoolExpr(CondOp->getLHS(), TrueBlock, FalseBlock, 2008 LHSScaledTrueCount, LH, CondOp); 2009 } 2010 cond.end(*this); 2011 2012 cond.begin(*this); 2013 EmitBlock(RHSBlock); 2014 EmitBranchOnBoolExpr(CondOp->getRHS(), TrueBlock, FalseBlock, 2015 TrueCount - LHSScaledTrueCount, LH, CondOp); 2016 cond.end(*this); 2017 2018 return; 2019 } 2020 2021 if (const CXXThrowExpr *Throw = dyn_cast<CXXThrowExpr>(Cond)) { 2022 // Conditional operator handling can give us a throw expression as a 2023 // condition for a case like: 2024 // br(c ? throw x : y, t, f) -> br(c, br(throw x, t, f), br(y, t, f) 2025 // Fold this to: 2026 // br(c, throw x, br(y, t, f)) 2027 EmitCXXThrowExpr(Throw, /*KeepInsertionPoint*/false); 2028 return; 2029 } 2030 2031 // Emit the code with the fully general case. 2032 llvm::Value *CondV; 2033 { 2034 ApplyDebugLocation DL(*this, Cond); 2035 CondV = EvaluateExprAsBool(Cond); 2036 } 2037 2038 // If not at the top of the logical operator nest, update MCDC temp with the 2039 // boolean result of the evaluated condition. 2040 if (!MCDCLogOpStack.empty()) { 2041 const Expr *MCDCBaseExpr = Cond; 2042 // When a nested ConditionalOperator (ternary) is encountered in a boolean 2043 // expression, MC/DC tracks the result of the ternary, and this is tied to 2044 // the ConditionalOperator expression and not the ternary's LHS or RHS. If 2045 // this is the case, the ConditionalOperator expression is passed through 2046 // the ConditionalOp parameter and then used as the MCDC base expression. 2047 if (ConditionalOp) 2048 MCDCBaseExpr = ConditionalOp; 2049 2050 maybeUpdateMCDCCondBitmap(MCDCBaseExpr, CondV); 2051 } 2052 2053 llvm::MDNode *Weights = nullptr; 2054 llvm::MDNode *Unpredictable = nullptr; 2055 2056 // If the branch has a condition wrapped by __builtin_unpredictable, 2057 // create metadata that specifies that the branch is unpredictable. 2058 // Don't bother if not optimizing because that metadata would not be used. 2059 auto *Call = dyn_cast<CallExpr>(Cond->IgnoreImpCasts()); 2060 if (Call && CGM.getCodeGenOpts().OptimizationLevel != 0) { 2061 auto *FD = dyn_cast_or_null<FunctionDecl>(Call->getCalleeDecl()); 2062 if (FD && FD->getBuiltinID() == Builtin::BI__builtin_unpredictable) { 2063 llvm::MDBuilder MDHelper(getLLVMContext()); 2064 Unpredictable = MDHelper.createUnpredictable(); 2065 } 2066 } 2067 2068 // If there is a Likelihood knowledge for the cond, lower it. 2069 // Note that if not optimizing this won't emit anything. 2070 llvm::Value *NewCondV = emitCondLikelihoodViaExpectIntrinsic(CondV, LH); 2071 if (CondV != NewCondV) 2072 CondV = NewCondV; 2073 else { 2074 // Otherwise, lower profile counts. Note that we do this even at -O0. 2075 uint64_t CurrentCount = std::max(getCurrentProfileCount(), TrueCount); 2076 Weights = createProfileWeights(TrueCount, CurrentCount - TrueCount); 2077 } 2078 2079 Builder.CreateCondBr(CondV, TrueBlock, FalseBlock, Weights, Unpredictable); 2080 } 2081 2082 /// ErrorUnsupported - Print out an error that codegen doesn't support the 2083 /// specified stmt yet. 2084 void CodeGenFunction::ErrorUnsupported(const Stmt *S, const char *Type) { 2085 CGM.ErrorUnsupported(S, Type); 2086 } 2087 2088 /// emitNonZeroVLAInit - Emit the "zero" initialization of a 2089 /// variable-length array whose elements have a non-zero bit-pattern. 2090 /// 2091 /// \param baseType the inner-most element type of the array 2092 /// \param src - a char* pointing to the bit-pattern for a single 2093 /// base element of the array 2094 /// \param sizeInChars - the total size of the VLA, in chars 2095 static void emitNonZeroVLAInit(CodeGenFunction &CGF, QualType baseType, 2096 Address dest, Address src, 2097 llvm::Value *sizeInChars) { 2098 CGBuilderTy &Builder = CGF.Builder; 2099 2100 CharUnits baseSize = CGF.getContext().getTypeSizeInChars(baseType); 2101 llvm::Value *baseSizeInChars 2102 = llvm::ConstantInt::get(CGF.IntPtrTy, baseSize.getQuantity()); 2103 2104 Address begin = dest.withElementType(CGF.Int8Ty); 2105 llvm::Value *end = Builder.CreateInBoundsGEP(begin.getElementType(), 2106 begin.emitRawPointer(CGF), 2107 sizeInChars, "vla.end"); 2108 2109 llvm::BasicBlock *originBB = CGF.Builder.GetInsertBlock(); 2110 llvm::BasicBlock *loopBB = CGF.createBasicBlock("vla-init.loop"); 2111 llvm::BasicBlock *contBB = CGF.createBasicBlock("vla-init.cont"); 2112 2113 // Make a loop over the VLA. C99 guarantees that the VLA element 2114 // count must be nonzero. 2115 CGF.EmitBlock(loopBB); 2116 2117 llvm::PHINode *cur = Builder.CreatePHI(begin.getType(), 2, "vla.cur"); 2118 cur->addIncoming(begin.emitRawPointer(CGF), originBB); 2119 2120 CharUnits curAlign = 2121 dest.getAlignment().alignmentOfArrayElement(baseSize); 2122 2123 // memcpy the individual element bit-pattern. 2124 Builder.CreateMemCpy(Address(cur, CGF.Int8Ty, curAlign), src, baseSizeInChars, 2125 /*volatile*/ false); 2126 2127 // Go to the next element. 2128 llvm::Value *next = 2129 Builder.CreateInBoundsGEP(CGF.Int8Ty, cur, baseSizeInChars, "vla.next"); 2130 2131 // Leave if that's the end of the VLA. 2132 llvm::Value *done = Builder.CreateICmpEQ(next, end, "vla-init.isdone"); 2133 Builder.CreateCondBr(done, contBB, loopBB); 2134 cur->addIncoming(next, loopBB); 2135 2136 CGF.EmitBlock(contBB); 2137 } 2138 2139 void 2140 CodeGenFunction::EmitNullInitialization(Address DestPtr, QualType Ty) { 2141 // Ignore empty classes in C++. 2142 if (getLangOpts().CPlusPlus) { 2143 if (const RecordType *RT = Ty->getAs<RecordType>()) { 2144 if (cast<CXXRecordDecl>(RT->getDecl())->isEmpty()) 2145 return; 2146 } 2147 } 2148 2149 if (DestPtr.getElementType() != Int8Ty) 2150 DestPtr = DestPtr.withElementType(Int8Ty); 2151 2152 // Get size and alignment info for this aggregate. 2153 CharUnits size = getContext().getTypeSizeInChars(Ty); 2154 2155 llvm::Value *SizeVal; 2156 const VariableArrayType *vla; 2157 2158 // Don't bother emitting a zero-byte memset. 2159 if (size.isZero()) { 2160 // But note that getTypeInfo returns 0 for a VLA. 2161 if (const VariableArrayType *vlaType = 2162 dyn_cast_or_null<VariableArrayType>( 2163 getContext().getAsArrayType(Ty))) { 2164 auto VlaSize = getVLASize(vlaType); 2165 SizeVal = VlaSize.NumElts; 2166 CharUnits eltSize = getContext().getTypeSizeInChars(VlaSize.Type); 2167 if (!eltSize.isOne()) 2168 SizeVal = Builder.CreateNUWMul(SizeVal, CGM.getSize(eltSize)); 2169 vla = vlaType; 2170 } else { 2171 return; 2172 } 2173 } else { 2174 SizeVal = CGM.getSize(size); 2175 vla = nullptr; 2176 } 2177 2178 // If the type contains a pointer to data member we can't memset it to zero. 2179 // Instead, create a null constant and copy it to the destination. 2180 // TODO: there are other patterns besides zero that we can usefully memset, 2181 // like -1, which happens to be the pattern used by member-pointers. 2182 if (!CGM.getTypes().isZeroInitializable(Ty)) { 2183 // For a VLA, emit a single element, then splat that over the VLA. 2184 if (vla) Ty = getContext().getBaseElementType(vla); 2185 2186 llvm::Constant *NullConstant = CGM.EmitNullConstant(Ty); 2187 2188 llvm::GlobalVariable *NullVariable = 2189 new llvm::GlobalVariable(CGM.getModule(), NullConstant->getType(), 2190 /*isConstant=*/true, 2191 llvm::GlobalVariable::PrivateLinkage, 2192 NullConstant, Twine()); 2193 CharUnits NullAlign = DestPtr.getAlignment(); 2194 NullVariable->setAlignment(NullAlign.getAsAlign()); 2195 Address SrcPtr(NullVariable, Builder.getInt8Ty(), NullAlign); 2196 2197 if (vla) return emitNonZeroVLAInit(*this, Ty, DestPtr, SrcPtr, SizeVal); 2198 2199 // Get and call the appropriate llvm.memcpy overload. 2200 Builder.CreateMemCpy(DestPtr, SrcPtr, SizeVal, false); 2201 return; 2202 } 2203 2204 // Otherwise, just memset the whole thing to zero. This is legal 2205 // because in LLVM, all default initializers (other than the ones we just 2206 // handled above) are guaranteed to have a bit pattern of all zeros. 2207 Builder.CreateMemSet(DestPtr, Builder.getInt8(0), SizeVal, false); 2208 } 2209 2210 llvm::BlockAddress *CodeGenFunction::GetAddrOfLabel(const LabelDecl *L) { 2211 // Make sure that there is a block for the indirect goto. 2212 if (!IndirectBranch) 2213 GetIndirectGotoBlock(); 2214 2215 llvm::BasicBlock *BB = getJumpDestForLabel(L).getBlock(); 2216 2217 // Make sure the indirect branch includes all of the address-taken blocks. 2218 IndirectBranch->addDestination(BB); 2219 return llvm::BlockAddress::get(CurFn, BB); 2220 } 2221 2222 llvm::BasicBlock *CodeGenFunction::GetIndirectGotoBlock() { 2223 // If we already made the indirect branch for indirect goto, return its block. 2224 if (IndirectBranch) return IndirectBranch->getParent(); 2225 2226 CGBuilderTy TmpBuilder(*this, createBasicBlock("indirectgoto")); 2227 2228 // Create the PHI node that indirect gotos will add entries to. 2229 llvm::Value *DestVal = TmpBuilder.CreatePHI(Int8PtrTy, 0, 2230 "indirect.goto.dest"); 2231 2232 // Create the indirect branch instruction. 2233 IndirectBranch = TmpBuilder.CreateIndirectBr(DestVal); 2234 return IndirectBranch->getParent(); 2235 } 2236 2237 /// Computes the length of an array in elements, as well as the base 2238 /// element type and a properly-typed first element pointer. 2239 llvm::Value *CodeGenFunction::emitArrayLength(const ArrayType *origArrayType, 2240 QualType &baseType, 2241 Address &addr) { 2242 const ArrayType *arrayType = origArrayType; 2243 2244 // If it's a VLA, we have to load the stored size. Note that 2245 // this is the size of the VLA in bytes, not its size in elements. 2246 llvm::Value *numVLAElements = nullptr; 2247 if (isa<VariableArrayType>(arrayType)) { 2248 numVLAElements = getVLASize(cast<VariableArrayType>(arrayType)).NumElts; 2249 2250 // Walk into all VLAs. This doesn't require changes to addr, 2251 // which has type T* where T is the first non-VLA element type. 2252 do { 2253 QualType elementType = arrayType->getElementType(); 2254 arrayType = getContext().getAsArrayType(elementType); 2255 2256 // If we only have VLA components, 'addr' requires no adjustment. 2257 if (!arrayType) { 2258 baseType = elementType; 2259 return numVLAElements; 2260 } 2261 } while (isa<VariableArrayType>(arrayType)); 2262 2263 // We get out here only if we find a constant array type 2264 // inside the VLA. 2265 } 2266 2267 // We have some number of constant-length arrays, so addr should 2268 // have LLVM type [M x [N x [...]]]*. Build a GEP that walks 2269 // down to the first element of addr. 2270 SmallVector<llvm::Value*, 8> gepIndices; 2271 2272 // GEP down to the array type. 2273 llvm::ConstantInt *zero = Builder.getInt32(0); 2274 gepIndices.push_back(zero); 2275 2276 uint64_t countFromCLAs = 1; 2277 QualType eltType; 2278 2279 llvm::ArrayType *llvmArrayType = 2280 dyn_cast<llvm::ArrayType>(addr.getElementType()); 2281 while (llvmArrayType) { 2282 assert(isa<ConstantArrayType>(arrayType)); 2283 assert(cast<ConstantArrayType>(arrayType)->getZExtSize() == 2284 llvmArrayType->getNumElements()); 2285 2286 gepIndices.push_back(zero); 2287 countFromCLAs *= llvmArrayType->getNumElements(); 2288 eltType = arrayType->getElementType(); 2289 2290 llvmArrayType = 2291 dyn_cast<llvm::ArrayType>(llvmArrayType->getElementType()); 2292 arrayType = getContext().getAsArrayType(arrayType->getElementType()); 2293 assert((!llvmArrayType || arrayType) && 2294 "LLVM and Clang types are out-of-synch"); 2295 } 2296 2297 if (arrayType) { 2298 // From this point onwards, the Clang array type has been emitted 2299 // as some other type (probably a packed struct). Compute the array 2300 // size, and just emit the 'begin' expression as a bitcast. 2301 while (arrayType) { 2302 countFromCLAs *= cast<ConstantArrayType>(arrayType)->getZExtSize(); 2303 eltType = arrayType->getElementType(); 2304 arrayType = getContext().getAsArrayType(eltType); 2305 } 2306 2307 llvm::Type *baseType = ConvertType(eltType); 2308 addr = addr.withElementType(baseType); 2309 } else { 2310 // Create the actual GEP. 2311 addr = Address(Builder.CreateInBoundsGEP(addr.getElementType(), 2312 addr.emitRawPointer(*this), 2313 gepIndices, "array.begin"), 2314 ConvertTypeForMem(eltType), addr.getAlignment()); 2315 } 2316 2317 baseType = eltType; 2318 2319 llvm::Value *numElements 2320 = llvm::ConstantInt::get(SizeTy, countFromCLAs); 2321 2322 // If we had any VLA dimensions, factor them in. 2323 if (numVLAElements) 2324 numElements = Builder.CreateNUWMul(numVLAElements, numElements); 2325 2326 return numElements; 2327 } 2328 2329 CodeGenFunction::VlaSizePair CodeGenFunction::getVLASize(QualType type) { 2330 const VariableArrayType *vla = getContext().getAsVariableArrayType(type); 2331 assert(vla && "type was not a variable array type!"); 2332 return getVLASize(vla); 2333 } 2334 2335 CodeGenFunction::VlaSizePair 2336 CodeGenFunction::getVLASize(const VariableArrayType *type) { 2337 // The number of elements so far; always size_t. 2338 llvm::Value *numElements = nullptr; 2339 2340 QualType elementType; 2341 do { 2342 elementType = type->getElementType(); 2343 llvm::Value *vlaSize = VLASizeMap[type->getSizeExpr()]; 2344 assert(vlaSize && "no size for VLA!"); 2345 assert(vlaSize->getType() == SizeTy); 2346 2347 if (!numElements) { 2348 numElements = vlaSize; 2349 } else { 2350 // It's undefined behavior if this wraps around, so mark it that way. 2351 // FIXME: Teach -fsanitize=undefined to trap this. 2352 numElements = Builder.CreateNUWMul(numElements, vlaSize); 2353 } 2354 } while ((type = getContext().getAsVariableArrayType(elementType))); 2355 2356 return { numElements, elementType }; 2357 } 2358 2359 CodeGenFunction::VlaSizePair 2360 CodeGenFunction::getVLAElements1D(QualType type) { 2361 const VariableArrayType *vla = getContext().getAsVariableArrayType(type); 2362 assert(vla && "type was not a variable array type!"); 2363 return getVLAElements1D(vla); 2364 } 2365 2366 CodeGenFunction::VlaSizePair 2367 CodeGenFunction::getVLAElements1D(const VariableArrayType *Vla) { 2368 llvm::Value *VlaSize = VLASizeMap[Vla->getSizeExpr()]; 2369 assert(VlaSize && "no size for VLA!"); 2370 assert(VlaSize->getType() == SizeTy); 2371 return { VlaSize, Vla->getElementType() }; 2372 } 2373 2374 void CodeGenFunction::EmitVariablyModifiedType(QualType type) { 2375 assert(type->isVariablyModifiedType() && 2376 "Must pass variably modified type to EmitVLASizes!"); 2377 2378 EnsureInsertPoint(); 2379 2380 // We're going to walk down into the type and look for VLA 2381 // expressions. 2382 do { 2383 assert(type->isVariablyModifiedType()); 2384 2385 const Type *ty = type.getTypePtr(); 2386 switch (ty->getTypeClass()) { 2387 2388 #define TYPE(Class, Base) 2389 #define ABSTRACT_TYPE(Class, Base) 2390 #define NON_CANONICAL_TYPE(Class, Base) 2391 #define DEPENDENT_TYPE(Class, Base) case Type::Class: 2392 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base) 2393 #include "clang/AST/TypeNodes.inc" 2394 llvm_unreachable("unexpected dependent type!"); 2395 2396 // These types are never variably-modified. 2397 case Type::Builtin: 2398 case Type::Complex: 2399 case Type::Vector: 2400 case Type::ExtVector: 2401 case Type::ConstantMatrix: 2402 case Type::Record: 2403 case Type::Enum: 2404 case Type::Using: 2405 case Type::TemplateSpecialization: 2406 case Type::ObjCTypeParam: 2407 case Type::ObjCObject: 2408 case Type::ObjCInterface: 2409 case Type::ObjCObjectPointer: 2410 case Type::BitInt: 2411 llvm_unreachable("type class is never variably-modified!"); 2412 2413 case Type::Elaborated: 2414 type = cast<ElaboratedType>(ty)->getNamedType(); 2415 break; 2416 2417 case Type::Adjusted: 2418 type = cast<AdjustedType>(ty)->getAdjustedType(); 2419 break; 2420 2421 case Type::Decayed: 2422 type = cast<DecayedType>(ty)->getPointeeType(); 2423 break; 2424 2425 case Type::Pointer: 2426 type = cast<PointerType>(ty)->getPointeeType(); 2427 break; 2428 2429 case Type::BlockPointer: 2430 type = cast<BlockPointerType>(ty)->getPointeeType(); 2431 break; 2432 2433 case Type::LValueReference: 2434 case Type::RValueReference: 2435 type = cast<ReferenceType>(ty)->getPointeeType(); 2436 break; 2437 2438 case Type::MemberPointer: 2439 type = cast<MemberPointerType>(ty)->getPointeeType(); 2440 break; 2441 2442 case Type::ArrayParameter: 2443 case Type::ConstantArray: 2444 case Type::IncompleteArray: 2445 // Losing element qualification here is fine. 2446 type = cast<ArrayType>(ty)->getElementType(); 2447 break; 2448 2449 case Type::VariableArray: { 2450 // Losing element qualification here is fine. 2451 const VariableArrayType *vat = cast<VariableArrayType>(ty); 2452 2453 // Unknown size indication requires no size computation. 2454 // Otherwise, evaluate and record it. 2455 if (const Expr *sizeExpr = vat->getSizeExpr()) { 2456 // It's possible that we might have emitted this already, 2457 // e.g. with a typedef and a pointer to it. 2458 llvm::Value *&entry = VLASizeMap[sizeExpr]; 2459 if (!entry) { 2460 llvm::Value *size = EmitScalarExpr(sizeExpr); 2461 2462 // C11 6.7.6.2p5: 2463 // If the size is an expression that is not an integer constant 2464 // expression [...] each time it is evaluated it shall have a value 2465 // greater than zero. 2466 if (SanOpts.has(SanitizerKind::VLABound)) { 2467 SanitizerScope SanScope(this); 2468 llvm::Value *Zero = llvm::Constant::getNullValue(size->getType()); 2469 clang::QualType SEType = sizeExpr->getType(); 2470 llvm::Value *CheckCondition = 2471 SEType->isSignedIntegerType() 2472 ? Builder.CreateICmpSGT(size, Zero) 2473 : Builder.CreateICmpUGT(size, Zero); 2474 llvm::Constant *StaticArgs[] = { 2475 EmitCheckSourceLocation(sizeExpr->getBeginLoc()), 2476 EmitCheckTypeDescriptor(SEType)}; 2477 EmitCheck(std::make_pair(CheckCondition, SanitizerKind::VLABound), 2478 SanitizerHandler::VLABoundNotPositive, StaticArgs, size); 2479 } 2480 2481 // Always zexting here would be wrong if it weren't 2482 // undefined behavior to have a negative bound. 2483 // FIXME: What about when size's type is larger than size_t? 2484 entry = Builder.CreateIntCast(size, SizeTy, /*signed*/ false); 2485 } 2486 } 2487 type = vat->getElementType(); 2488 break; 2489 } 2490 2491 case Type::FunctionProto: 2492 case Type::FunctionNoProto: 2493 type = cast<FunctionType>(ty)->getReturnType(); 2494 break; 2495 2496 case Type::Paren: 2497 case Type::TypeOf: 2498 case Type::UnaryTransform: 2499 case Type::Attributed: 2500 case Type::BTFTagAttributed: 2501 case Type::HLSLAttributedResource: 2502 case Type::SubstTemplateTypeParm: 2503 case Type::MacroQualified: 2504 case Type::CountAttributed: 2505 // Keep walking after single level desugaring. 2506 type = type.getSingleStepDesugaredType(getContext()); 2507 break; 2508 2509 case Type::Typedef: 2510 case Type::Decltype: 2511 case Type::Auto: 2512 case Type::DeducedTemplateSpecialization: 2513 case Type::PackIndexing: 2514 // Stop walking: nothing to do. 2515 return; 2516 2517 case Type::TypeOfExpr: 2518 // Stop walking: emit typeof expression. 2519 EmitIgnoredExpr(cast<TypeOfExprType>(ty)->getUnderlyingExpr()); 2520 return; 2521 2522 case Type::Atomic: 2523 type = cast<AtomicType>(ty)->getValueType(); 2524 break; 2525 2526 case Type::Pipe: 2527 type = cast<PipeType>(ty)->getElementType(); 2528 break; 2529 } 2530 } while (type->isVariablyModifiedType()); 2531 } 2532 2533 Address CodeGenFunction::EmitVAListRef(const Expr* E) { 2534 if (getContext().getBuiltinVaListType()->isArrayType()) 2535 return EmitPointerWithAlignment(E); 2536 return EmitLValue(E).getAddress(); 2537 } 2538 2539 Address CodeGenFunction::EmitMSVAListRef(const Expr *E) { 2540 return EmitLValue(E).getAddress(); 2541 } 2542 2543 void CodeGenFunction::EmitDeclRefExprDbgValue(const DeclRefExpr *E, 2544 const APValue &Init) { 2545 assert(Init.hasValue() && "Invalid DeclRefExpr initializer!"); 2546 if (CGDebugInfo *Dbg = getDebugInfo()) 2547 if (CGM.getCodeGenOpts().hasReducedDebugInfo()) 2548 Dbg->EmitGlobalVariable(E->getDecl(), Init); 2549 } 2550 2551 CodeGenFunction::PeepholeProtection 2552 CodeGenFunction::protectFromPeepholes(RValue rvalue) { 2553 // At the moment, the only aggressive peephole we do in IR gen 2554 // is trunc(zext) folding, but if we add more, we can easily 2555 // extend this protection. 2556 2557 if (!rvalue.isScalar()) return PeepholeProtection(); 2558 llvm::Value *value = rvalue.getScalarVal(); 2559 if (!isa<llvm::ZExtInst>(value)) return PeepholeProtection(); 2560 2561 // Just make an extra bitcast. 2562 assert(HaveInsertPoint()); 2563 llvm::Instruction *inst = new llvm::BitCastInst(value, value->getType(), "", 2564 Builder.GetInsertBlock()); 2565 2566 PeepholeProtection protection; 2567 protection.Inst = inst; 2568 return protection; 2569 } 2570 2571 void CodeGenFunction::unprotectFromPeepholes(PeepholeProtection protection) { 2572 if (!protection.Inst) return; 2573 2574 // In theory, we could try to duplicate the peepholes now, but whatever. 2575 protection.Inst->eraseFromParent(); 2576 } 2577 2578 void CodeGenFunction::emitAlignmentAssumption(llvm::Value *PtrValue, 2579 QualType Ty, SourceLocation Loc, 2580 SourceLocation AssumptionLoc, 2581 llvm::Value *Alignment, 2582 llvm::Value *OffsetValue) { 2583 if (Alignment->getType() != IntPtrTy) 2584 Alignment = 2585 Builder.CreateIntCast(Alignment, IntPtrTy, false, "casted.align"); 2586 if (OffsetValue && OffsetValue->getType() != IntPtrTy) 2587 OffsetValue = 2588 Builder.CreateIntCast(OffsetValue, IntPtrTy, true, "casted.offset"); 2589 llvm::Value *TheCheck = nullptr; 2590 if (SanOpts.has(SanitizerKind::Alignment)) { 2591 llvm::Value *PtrIntValue = 2592 Builder.CreatePtrToInt(PtrValue, IntPtrTy, "ptrint"); 2593 2594 if (OffsetValue) { 2595 bool IsOffsetZero = false; 2596 if (const auto *CI = dyn_cast<llvm::ConstantInt>(OffsetValue)) 2597 IsOffsetZero = CI->isZero(); 2598 2599 if (!IsOffsetZero) 2600 PtrIntValue = Builder.CreateSub(PtrIntValue, OffsetValue, "offsetptr"); 2601 } 2602 2603 llvm::Value *Zero = llvm::ConstantInt::get(IntPtrTy, 0); 2604 llvm::Value *Mask = 2605 Builder.CreateSub(Alignment, llvm::ConstantInt::get(IntPtrTy, 1)); 2606 llvm::Value *MaskedPtr = Builder.CreateAnd(PtrIntValue, Mask, "maskedptr"); 2607 TheCheck = Builder.CreateICmpEQ(MaskedPtr, Zero, "maskcond"); 2608 } 2609 llvm::Instruction *Assumption = Builder.CreateAlignmentAssumption( 2610 CGM.getDataLayout(), PtrValue, Alignment, OffsetValue); 2611 2612 if (!SanOpts.has(SanitizerKind::Alignment)) 2613 return; 2614 emitAlignmentAssumptionCheck(PtrValue, Ty, Loc, AssumptionLoc, Alignment, 2615 OffsetValue, TheCheck, Assumption); 2616 } 2617 2618 void CodeGenFunction::emitAlignmentAssumption(llvm::Value *PtrValue, 2619 const Expr *E, 2620 SourceLocation AssumptionLoc, 2621 llvm::Value *Alignment, 2622 llvm::Value *OffsetValue) { 2623 QualType Ty = E->getType(); 2624 SourceLocation Loc = E->getExprLoc(); 2625 2626 emitAlignmentAssumption(PtrValue, Ty, Loc, AssumptionLoc, Alignment, 2627 OffsetValue); 2628 } 2629 2630 llvm::Value *CodeGenFunction::EmitAnnotationCall(llvm::Function *AnnotationFn, 2631 llvm::Value *AnnotatedVal, 2632 StringRef AnnotationStr, 2633 SourceLocation Location, 2634 const AnnotateAttr *Attr) { 2635 SmallVector<llvm::Value *, 5> Args = { 2636 AnnotatedVal, 2637 CGM.EmitAnnotationString(AnnotationStr), 2638 CGM.EmitAnnotationUnit(Location), 2639 CGM.EmitAnnotationLineNo(Location), 2640 }; 2641 if (Attr) 2642 Args.push_back(CGM.EmitAnnotationArgs(Attr)); 2643 return Builder.CreateCall(AnnotationFn, Args); 2644 } 2645 2646 void CodeGenFunction::EmitVarAnnotations(const VarDecl *D, llvm::Value *V) { 2647 assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute"); 2648 for (const auto *I : D->specific_attrs<AnnotateAttr>()) 2649 EmitAnnotationCall(CGM.getIntrinsic(llvm::Intrinsic::var_annotation, 2650 {V->getType(), CGM.ConstGlobalsPtrTy}), 2651 V, I->getAnnotation(), D->getLocation(), I); 2652 } 2653 2654 Address CodeGenFunction::EmitFieldAnnotations(const FieldDecl *D, 2655 Address Addr) { 2656 assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute"); 2657 llvm::Value *V = Addr.emitRawPointer(*this); 2658 llvm::Type *VTy = V->getType(); 2659 auto *PTy = dyn_cast<llvm::PointerType>(VTy); 2660 unsigned AS = PTy ? PTy->getAddressSpace() : 0; 2661 llvm::PointerType *IntrinTy = 2662 llvm::PointerType::get(CGM.getLLVMContext(), AS); 2663 llvm::Function *F = CGM.getIntrinsic(llvm::Intrinsic::ptr_annotation, 2664 {IntrinTy, CGM.ConstGlobalsPtrTy}); 2665 2666 for (const auto *I : D->specific_attrs<AnnotateAttr>()) { 2667 // FIXME Always emit the cast inst so we can differentiate between 2668 // annotation on the first field of a struct and annotation on the struct 2669 // itself. 2670 if (VTy != IntrinTy) 2671 V = Builder.CreateBitCast(V, IntrinTy); 2672 V = EmitAnnotationCall(F, V, I->getAnnotation(), D->getLocation(), I); 2673 V = Builder.CreateBitCast(V, VTy); 2674 } 2675 2676 return Address(V, Addr.getElementType(), Addr.getAlignment()); 2677 } 2678 2679 CodeGenFunction::CGCapturedStmtInfo::~CGCapturedStmtInfo() { } 2680 2681 CodeGenFunction::SanitizerScope::SanitizerScope(CodeGenFunction *CGF) 2682 : CGF(CGF) { 2683 assert(!CGF->IsSanitizerScope); 2684 CGF->IsSanitizerScope = true; 2685 } 2686 2687 CodeGenFunction::SanitizerScope::~SanitizerScope() { 2688 CGF->IsSanitizerScope = false; 2689 } 2690 2691 void CodeGenFunction::InsertHelper(llvm::Instruction *I, 2692 const llvm::Twine &Name, 2693 llvm::BasicBlock::iterator InsertPt) const { 2694 LoopStack.InsertHelper(I); 2695 if (IsSanitizerScope) 2696 I->setNoSanitizeMetadata(); 2697 } 2698 2699 void CGBuilderInserter::InsertHelper( 2700 llvm::Instruction *I, const llvm::Twine &Name, 2701 llvm::BasicBlock::iterator InsertPt) const { 2702 llvm::IRBuilderDefaultInserter::InsertHelper(I, Name, InsertPt); 2703 if (CGF) 2704 CGF->InsertHelper(I, Name, InsertPt); 2705 } 2706 2707 // Emits an error if we don't have a valid set of target features for the 2708 // called function. 2709 void CodeGenFunction::checkTargetFeatures(const CallExpr *E, 2710 const FunctionDecl *TargetDecl) { 2711 // SemaChecking cannot handle below x86 builtins because they have different 2712 // parameter ranges with different TargetAttribute of caller. 2713 if (CGM.getContext().getTargetInfo().getTriple().isX86()) { 2714 unsigned BuiltinID = TargetDecl->getBuiltinID(); 2715 if (BuiltinID == X86::BI__builtin_ia32_cmpps || 2716 BuiltinID == X86::BI__builtin_ia32_cmpss || 2717 BuiltinID == X86::BI__builtin_ia32_cmppd || 2718 BuiltinID == X86::BI__builtin_ia32_cmpsd) { 2719 const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(CurCodeDecl); 2720 llvm::StringMap<bool> TargetFetureMap; 2721 CGM.getContext().getFunctionFeatureMap(TargetFetureMap, FD); 2722 llvm::APSInt Result = 2723 *(E->getArg(2)->getIntegerConstantExpr(CGM.getContext())); 2724 if (Result.getSExtValue() > 7 && !TargetFetureMap.lookup("avx")) 2725 CGM.getDiags().Report(E->getBeginLoc(), diag::err_builtin_needs_feature) 2726 << TargetDecl->getDeclName() << "avx"; 2727 } 2728 } 2729 return checkTargetFeatures(E->getBeginLoc(), TargetDecl); 2730 } 2731 2732 // Emits an error if we don't have a valid set of target features for the 2733 // called function. 2734 void CodeGenFunction::checkTargetFeatures(SourceLocation Loc, 2735 const FunctionDecl *TargetDecl) { 2736 // Early exit if this is an indirect call. 2737 if (!TargetDecl) 2738 return; 2739 2740 // Get the current enclosing function if it exists. If it doesn't 2741 // we can't check the target features anyhow. 2742 const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(CurCodeDecl); 2743 if (!FD) 2744 return; 2745 2746 // Grab the required features for the call. For a builtin this is listed in 2747 // the td file with the default cpu, for an always_inline function this is any 2748 // listed cpu and any listed features. 2749 unsigned BuiltinID = TargetDecl->getBuiltinID(); 2750 std::string MissingFeature; 2751 llvm::StringMap<bool> CallerFeatureMap; 2752 CGM.getContext().getFunctionFeatureMap(CallerFeatureMap, FD); 2753 // When compiling in HipStdPar mode we have to be conservative in rejecting 2754 // target specific features in the FE, and defer the possible error to the 2755 // AcceleratorCodeSelection pass, wherein iff an unsupported target builtin is 2756 // referenced by an accelerator executable function, we emit an error. 2757 bool IsHipStdPar = getLangOpts().HIPStdPar && getLangOpts().CUDAIsDevice; 2758 if (BuiltinID) { 2759 StringRef FeatureList(CGM.getContext().BuiltinInfo.getRequiredFeatures(BuiltinID)); 2760 if (!Builtin::evaluateRequiredTargetFeatures( 2761 FeatureList, CallerFeatureMap) && !IsHipStdPar) { 2762 CGM.getDiags().Report(Loc, diag::err_builtin_needs_feature) 2763 << TargetDecl->getDeclName() 2764 << FeatureList; 2765 } 2766 } else if (!TargetDecl->isMultiVersion() && 2767 TargetDecl->hasAttr<TargetAttr>()) { 2768 // Get the required features for the callee. 2769 2770 const TargetAttr *TD = TargetDecl->getAttr<TargetAttr>(); 2771 ParsedTargetAttr ParsedAttr = 2772 CGM.getContext().filterFunctionTargetAttrs(TD); 2773 2774 SmallVector<StringRef, 1> ReqFeatures; 2775 llvm::StringMap<bool> CalleeFeatureMap; 2776 CGM.getContext().getFunctionFeatureMap(CalleeFeatureMap, TargetDecl); 2777 2778 for (const auto &F : ParsedAttr.Features) { 2779 if (F[0] == '+' && CalleeFeatureMap.lookup(F.substr(1))) 2780 ReqFeatures.push_back(StringRef(F).substr(1)); 2781 } 2782 2783 for (const auto &F : CalleeFeatureMap) { 2784 // Only positive features are "required". 2785 if (F.getValue()) 2786 ReqFeatures.push_back(F.getKey()); 2787 } 2788 if (!llvm::all_of(ReqFeatures, [&](StringRef Feature) { 2789 if (!CallerFeatureMap.lookup(Feature)) { 2790 MissingFeature = Feature.str(); 2791 return false; 2792 } 2793 return true; 2794 }) && !IsHipStdPar) 2795 CGM.getDiags().Report(Loc, diag::err_function_needs_feature) 2796 << FD->getDeclName() << TargetDecl->getDeclName() << MissingFeature; 2797 } else if (!FD->isMultiVersion() && FD->hasAttr<TargetAttr>()) { 2798 llvm::StringMap<bool> CalleeFeatureMap; 2799 CGM.getContext().getFunctionFeatureMap(CalleeFeatureMap, TargetDecl); 2800 2801 for (const auto &F : CalleeFeatureMap) { 2802 if (F.getValue() && (!CallerFeatureMap.lookup(F.getKey()) || 2803 !CallerFeatureMap.find(F.getKey())->getValue()) && 2804 !IsHipStdPar) 2805 CGM.getDiags().Report(Loc, diag::err_function_needs_feature) 2806 << FD->getDeclName() << TargetDecl->getDeclName() << F.getKey(); 2807 } 2808 } 2809 } 2810 2811 void CodeGenFunction::EmitSanitizerStatReport(llvm::SanitizerStatKind SSK) { 2812 if (!CGM.getCodeGenOpts().SanitizeStats) 2813 return; 2814 2815 llvm::IRBuilder<> IRB(Builder.GetInsertBlock(), Builder.GetInsertPoint()); 2816 IRB.SetCurrentDebugLocation(Builder.getCurrentDebugLocation()); 2817 CGM.getSanStats().create(IRB, SSK); 2818 } 2819 2820 void CodeGenFunction::EmitKCFIOperandBundle( 2821 const CGCallee &Callee, SmallVectorImpl<llvm::OperandBundleDef> &Bundles) { 2822 const FunctionProtoType *FP = 2823 Callee.getAbstractInfo().getCalleeFunctionProtoType(); 2824 if (FP) 2825 Bundles.emplace_back("kcfi", CGM.CreateKCFITypeId(FP->desugar())); 2826 } 2827 2828 llvm::Value *CodeGenFunction::FormAArch64ResolverCondition( 2829 const MultiVersionResolverOption &RO) { 2830 llvm::SmallVector<StringRef, 8> CondFeatures; 2831 for (const StringRef &Feature : RO.Conditions.Features) 2832 CondFeatures.push_back(Feature); 2833 if (!CondFeatures.empty()) { 2834 return EmitAArch64CpuSupports(CondFeatures); 2835 } 2836 return nullptr; 2837 } 2838 2839 llvm::Value *CodeGenFunction::FormX86ResolverCondition( 2840 const MultiVersionResolverOption &RO) { 2841 llvm::Value *Condition = nullptr; 2842 2843 if (!RO.Conditions.Architecture.empty()) { 2844 StringRef Arch = RO.Conditions.Architecture; 2845 // If arch= specifies an x86-64 micro-architecture level, test the feature 2846 // with __builtin_cpu_supports, otherwise use __builtin_cpu_is. 2847 if (Arch.starts_with("x86-64")) 2848 Condition = EmitX86CpuSupports({Arch}); 2849 else 2850 Condition = EmitX86CpuIs(Arch); 2851 } 2852 2853 if (!RO.Conditions.Features.empty()) { 2854 llvm::Value *FeatureCond = EmitX86CpuSupports(RO.Conditions.Features); 2855 Condition = 2856 Condition ? Builder.CreateAnd(Condition, FeatureCond) : FeatureCond; 2857 } 2858 return Condition; 2859 } 2860 2861 static void CreateMultiVersionResolverReturn(CodeGenModule &CGM, 2862 llvm::Function *Resolver, 2863 CGBuilderTy &Builder, 2864 llvm::Function *FuncToReturn, 2865 bool SupportsIFunc) { 2866 if (SupportsIFunc) { 2867 Builder.CreateRet(FuncToReturn); 2868 return; 2869 } 2870 2871 llvm::SmallVector<llvm::Value *, 10> Args( 2872 llvm::make_pointer_range(Resolver->args())); 2873 2874 llvm::CallInst *Result = Builder.CreateCall(FuncToReturn, Args); 2875 Result->setTailCallKind(llvm::CallInst::TCK_MustTail); 2876 2877 if (Resolver->getReturnType()->isVoidTy()) 2878 Builder.CreateRetVoid(); 2879 else 2880 Builder.CreateRet(Result); 2881 } 2882 2883 void CodeGenFunction::EmitMultiVersionResolver( 2884 llvm::Function *Resolver, ArrayRef<MultiVersionResolverOption> Options) { 2885 2886 llvm::Triple::ArchType ArchType = 2887 getContext().getTargetInfo().getTriple().getArch(); 2888 2889 switch (ArchType) { 2890 case llvm::Triple::x86: 2891 case llvm::Triple::x86_64: 2892 EmitX86MultiVersionResolver(Resolver, Options); 2893 return; 2894 case llvm::Triple::aarch64: 2895 EmitAArch64MultiVersionResolver(Resolver, Options); 2896 return; 2897 case llvm::Triple::riscv32: 2898 case llvm::Triple::riscv64: 2899 EmitRISCVMultiVersionResolver(Resolver, Options); 2900 return; 2901 2902 default: 2903 assert(false && "Only implemented for x86, AArch64 and RISC-V targets"); 2904 } 2905 } 2906 2907 static unsigned getPriorityFromAttrString(StringRef AttrStr) { 2908 SmallVector<StringRef, 8> Attrs; 2909 2910 AttrStr.split(Attrs, ';'); 2911 2912 // Default Priority is zero. 2913 unsigned Priority = 0; 2914 for (auto Attr : Attrs) { 2915 if (Attr.consume_front("priority=")) { 2916 unsigned Result; 2917 if (!Attr.getAsInteger(0, Result)) 2918 Priority = Result; 2919 } 2920 } 2921 2922 return Priority; 2923 } 2924 2925 void CodeGenFunction::EmitRISCVMultiVersionResolver( 2926 llvm::Function *Resolver, ArrayRef<MultiVersionResolverOption> Options) { 2927 2928 if (getContext().getTargetInfo().getTriple().getOS() != 2929 llvm::Triple::OSType::Linux) { 2930 CGM.getDiags().Report(diag::err_os_unsupport_riscv_fmv); 2931 return; 2932 } 2933 2934 llvm::BasicBlock *CurBlock = createBasicBlock("resolver_entry", Resolver); 2935 Builder.SetInsertPoint(CurBlock); 2936 EmitRISCVCpuInit(); 2937 2938 bool SupportsIFunc = getContext().getTargetInfo().supportsIFunc(); 2939 bool HasDefault = false; 2940 unsigned DefaultIndex = 0; 2941 2942 SmallVector<CodeGenFunction::MultiVersionResolverOption, 10> CurrOptions( 2943 Options); 2944 2945 llvm::stable_sort( 2946 CurrOptions, [](const CodeGenFunction::MultiVersionResolverOption &LHS, 2947 const CodeGenFunction::MultiVersionResolverOption &RHS) { 2948 return getPriorityFromAttrString(LHS.Conditions.Features[0]) > 2949 getPriorityFromAttrString(RHS.Conditions.Features[0]); 2950 }); 2951 2952 // Check the each candidate function. 2953 for (unsigned Index = 0; Index < CurrOptions.size(); Index++) { 2954 2955 if (CurrOptions[Index].Conditions.Features[0].starts_with("default")) { 2956 HasDefault = true; 2957 DefaultIndex = Index; 2958 continue; 2959 } 2960 2961 Builder.SetInsertPoint(CurBlock); 2962 2963 std::vector<std::string> TargetAttrFeats = 2964 getContext() 2965 .getTargetInfo() 2966 .parseTargetAttr(CurrOptions[Index].Conditions.Features[0]) 2967 .Features; 2968 2969 if (TargetAttrFeats.empty()) 2970 continue; 2971 2972 // FeaturesCondition: The bitmask of the required extension has been 2973 // enabled by the runtime object. 2974 // (__riscv_feature_bits.features[i] & REQUIRED_BITMASK) == 2975 // REQUIRED_BITMASK 2976 // 2977 // When condition is met, return this version of the function. 2978 // Otherwise, try the next version. 2979 // 2980 // if (FeaturesConditionVersion1) 2981 // return Version1; 2982 // else if (FeaturesConditionVersion2) 2983 // return Version2; 2984 // else if (FeaturesConditionVersion3) 2985 // return Version3; 2986 // ... 2987 // else 2988 // return DefaultVersion; 2989 2990 // TODO: Add a condition to check the length before accessing elements. 2991 // Without checking the length first, we may access an incorrect memory 2992 // address when using different versions. 2993 llvm::SmallVector<StringRef, 8> CurrTargetAttrFeats; 2994 2995 for (auto &Feat : TargetAttrFeats) { 2996 StringRef CurrFeat = Feat; 2997 if (CurrFeat.starts_with('+')) 2998 CurrTargetAttrFeats.push_back(CurrFeat.substr(1)); 2999 } 3000 3001 Builder.SetInsertPoint(CurBlock); 3002 llvm::Value *FeatsCondition = EmitRISCVCpuSupports(CurrTargetAttrFeats); 3003 3004 llvm::BasicBlock *RetBlock = createBasicBlock("resolver_return", Resolver); 3005 CGBuilderTy RetBuilder(*this, RetBlock); 3006 CreateMultiVersionResolverReturn( 3007 CGM, Resolver, RetBuilder, CurrOptions[Index].Function, SupportsIFunc); 3008 llvm::BasicBlock *ElseBlock = createBasicBlock("resolver_else", Resolver); 3009 3010 Builder.SetInsertPoint(CurBlock); 3011 Builder.CreateCondBr(FeatsCondition, RetBlock, ElseBlock); 3012 3013 CurBlock = ElseBlock; 3014 } 3015 3016 // Finally, emit the default one. 3017 if (HasDefault) { 3018 Builder.SetInsertPoint(CurBlock); 3019 CreateMultiVersionResolverReturn(CGM, Resolver, Builder, 3020 CurrOptions[DefaultIndex].Function, 3021 SupportsIFunc); 3022 return; 3023 } 3024 3025 // If no generic/default, emit an unreachable. 3026 Builder.SetInsertPoint(CurBlock); 3027 llvm::CallInst *TrapCall = EmitTrapCall(llvm::Intrinsic::trap); 3028 TrapCall->setDoesNotReturn(); 3029 TrapCall->setDoesNotThrow(); 3030 Builder.CreateUnreachable(); 3031 Builder.ClearInsertionPoint(); 3032 } 3033 3034 void CodeGenFunction::EmitAArch64MultiVersionResolver( 3035 llvm::Function *Resolver, ArrayRef<MultiVersionResolverOption> Options) { 3036 assert(!Options.empty() && "No multiversion resolver options found"); 3037 assert(Options.back().Conditions.Features.size() == 0 && 3038 "Default case must be last"); 3039 bool SupportsIFunc = getContext().getTargetInfo().supportsIFunc(); 3040 assert(SupportsIFunc && 3041 "Multiversion resolver requires target IFUNC support"); 3042 bool AArch64CpuInitialized = false; 3043 llvm::BasicBlock *CurBlock = createBasicBlock("resolver_entry", Resolver); 3044 3045 for (const MultiVersionResolverOption &RO : Options) { 3046 Builder.SetInsertPoint(CurBlock); 3047 llvm::Value *Condition = FormAArch64ResolverCondition(RO); 3048 3049 // The 'default' or 'all features enabled' case. 3050 if (!Condition) { 3051 CreateMultiVersionResolverReturn(CGM, Resolver, Builder, RO.Function, 3052 SupportsIFunc); 3053 return; 3054 } 3055 3056 if (!AArch64CpuInitialized) { 3057 Builder.SetInsertPoint(CurBlock, CurBlock->begin()); 3058 EmitAArch64CpuInit(); 3059 AArch64CpuInitialized = true; 3060 Builder.SetInsertPoint(CurBlock); 3061 } 3062 3063 llvm::BasicBlock *RetBlock = createBasicBlock("resolver_return", Resolver); 3064 CGBuilderTy RetBuilder(*this, RetBlock); 3065 CreateMultiVersionResolverReturn(CGM, Resolver, RetBuilder, RO.Function, 3066 SupportsIFunc); 3067 CurBlock = createBasicBlock("resolver_else", Resolver); 3068 Builder.CreateCondBr(Condition, RetBlock, CurBlock); 3069 } 3070 3071 // If no default, emit an unreachable. 3072 Builder.SetInsertPoint(CurBlock); 3073 llvm::CallInst *TrapCall = EmitTrapCall(llvm::Intrinsic::trap); 3074 TrapCall->setDoesNotReturn(); 3075 TrapCall->setDoesNotThrow(); 3076 Builder.CreateUnreachable(); 3077 Builder.ClearInsertionPoint(); 3078 } 3079 3080 void CodeGenFunction::EmitX86MultiVersionResolver( 3081 llvm::Function *Resolver, ArrayRef<MultiVersionResolverOption> Options) { 3082 3083 bool SupportsIFunc = getContext().getTargetInfo().supportsIFunc(); 3084 3085 // Main function's basic block. 3086 llvm::BasicBlock *CurBlock = createBasicBlock("resolver_entry", Resolver); 3087 Builder.SetInsertPoint(CurBlock); 3088 EmitX86CpuInit(); 3089 3090 for (const MultiVersionResolverOption &RO : Options) { 3091 Builder.SetInsertPoint(CurBlock); 3092 llvm::Value *Condition = FormX86ResolverCondition(RO); 3093 3094 // The 'default' or 'generic' case. 3095 if (!Condition) { 3096 assert(&RO == Options.end() - 1 && 3097 "Default or Generic case must be last"); 3098 CreateMultiVersionResolverReturn(CGM, Resolver, Builder, RO.Function, 3099 SupportsIFunc); 3100 return; 3101 } 3102 3103 llvm::BasicBlock *RetBlock = createBasicBlock("resolver_return", Resolver); 3104 CGBuilderTy RetBuilder(*this, RetBlock); 3105 CreateMultiVersionResolverReturn(CGM, Resolver, RetBuilder, RO.Function, 3106 SupportsIFunc); 3107 CurBlock = createBasicBlock("resolver_else", Resolver); 3108 Builder.CreateCondBr(Condition, RetBlock, CurBlock); 3109 } 3110 3111 // If no generic/default, emit an unreachable. 3112 Builder.SetInsertPoint(CurBlock); 3113 llvm::CallInst *TrapCall = EmitTrapCall(llvm::Intrinsic::trap); 3114 TrapCall->setDoesNotReturn(); 3115 TrapCall->setDoesNotThrow(); 3116 Builder.CreateUnreachable(); 3117 Builder.ClearInsertionPoint(); 3118 } 3119 3120 // Loc - where the diagnostic will point, where in the source code this 3121 // alignment has failed. 3122 // SecondaryLoc - if present (will be present if sufficiently different from 3123 // Loc), the diagnostic will additionally point a "Note:" to this location. 3124 // It should be the location where the __attribute__((assume_aligned)) 3125 // was written e.g. 3126 void CodeGenFunction::emitAlignmentAssumptionCheck( 3127 llvm::Value *Ptr, QualType Ty, SourceLocation Loc, 3128 SourceLocation SecondaryLoc, llvm::Value *Alignment, 3129 llvm::Value *OffsetValue, llvm::Value *TheCheck, 3130 llvm::Instruction *Assumption) { 3131 assert(isa_and_nonnull<llvm::CallInst>(Assumption) && 3132 cast<llvm::CallInst>(Assumption)->getCalledOperand() == 3133 llvm::Intrinsic::getOrInsertDeclaration( 3134 Builder.GetInsertBlock()->getParent()->getParent(), 3135 llvm::Intrinsic::assume) && 3136 "Assumption should be a call to llvm.assume()."); 3137 assert(&(Builder.GetInsertBlock()->back()) == Assumption && 3138 "Assumption should be the last instruction of the basic block, " 3139 "since the basic block is still being generated."); 3140 3141 if (!SanOpts.has(SanitizerKind::Alignment)) 3142 return; 3143 3144 // Don't check pointers to volatile data. The behavior here is implementation- 3145 // defined. 3146 if (Ty->getPointeeType().isVolatileQualified()) 3147 return; 3148 3149 // We need to temorairly remove the assumption so we can insert the 3150 // sanitizer check before it, else the check will be dropped by optimizations. 3151 Assumption->removeFromParent(); 3152 3153 { 3154 SanitizerScope SanScope(this); 3155 3156 if (!OffsetValue) 3157 OffsetValue = Builder.getInt1(false); // no offset. 3158 3159 llvm::Constant *StaticData[] = {EmitCheckSourceLocation(Loc), 3160 EmitCheckSourceLocation(SecondaryLoc), 3161 EmitCheckTypeDescriptor(Ty)}; 3162 llvm::Value *DynamicData[] = {EmitCheckValue(Ptr), 3163 EmitCheckValue(Alignment), 3164 EmitCheckValue(OffsetValue)}; 3165 EmitCheck({std::make_pair(TheCheck, SanitizerKind::Alignment)}, 3166 SanitizerHandler::AlignmentAssumption, StaticData, DynamicData); 3167 } 3168 3169 // We are now in the (new, empty) "cont" basic block. 3170 // Reintroduce the assumption. 3171 Builder.Insert(Assumption); 3172 // FIXME: Assumption still has it's original basic block as it's Parent. 3173 } 3174 3175 llvm::DebugLoc CodeGenFunction::SourceLocToDebugLoc(SourceLocation Location) { 3176 if (CGDebugInfo *DI = getDebugInfo()) 3177 return DI->SourceLocToDebugLoc(Location); 3178 3179 return llvm::DebugLoc(); 3180 } 3181 3182 llvm::Value * 3183 CodeGenFunction::emitCondLikelihoodViaExpectIntrinsic(llvm::Value *Cond, 3184 Stmt::Likelihood LH) { 3185 switch (LH) { 3186 case Stmt::LH_None: 3187 return Cond; 3188 case Stmt::LH_Likely: 3189 case Stmt::LH_Unlikely: 3190 // Don't generate llvm.expect on -O0 as the backend won't use it for 3191 // anything. 3192 if (CGM.getCodeGenOpts().OptimizationLevel == 0) 3193 return Cond; 3194 llvm::Type *CondTy = Cond->getType(); 3195 assert(CondTy->isIntegerTy(1) && "expecting condition to be a boolean"); 3196 llvm::Function *FnExpect = 3197 CGM.getIntrinsic(llvm::Intrinsic::expect, CondTy); 3198 llvm::Value *ExpectedValueOfCond = 3199 llvm::ConstantInt::getBool(CondTy, LH == Stmt::LH_Likely); 3200 return Builder.CreateCall(FnExpect, {Cond, ExpectedValueOfCond}, 3201 Cond->getName() + ".expval"); 3202 } 3203 llvm_unreachable("Unknown Likelihood"); 3204 } 3205 3206 llvm::Value *CodeGenFunction::emitBoolVecConversion(llvm::Value *SrcVec, 3207 unsigned NumElementsDst, 3208 const llvm::Twine &Name) { 3209 auto *SrcTy = cast<llvm::FixedVectorType>(SrcVec->getType()); 3210 unsigned NumElementsSrc = SrcTy->getNumElements(); 3211 if (NumElementsSrc == NumElementsDst) 3212 return SrcVec; 3213 3214 std::vector<int> ShuffleMask(NumElementsDst, -1); 3215 for (unsigned MaskIdx = 0; 3216 MaskIdx < std::min<>(NumElementsDst, NumElementsSrc); ++MaskIdx) 3217 ShuffleMask[MaskIdx] = MaskIdx; 3218 3219 return Builder.CreateShuffleVector(SrcVec, ShuffleMask, Name); 3220 } 3221 3222 void CodeGenFunction::EmitPointerAuthOperandBundle( 3223 const CGPointerAuthInfo &PointerAuth, 3224 SmallVectorImpl<llvm::OperandBundleDef> &Bundles) { 3225 if (!PointerAuth.isSigned()) 3226 return; 3227 3228 auto *Key = Builder.getInt32(PointerAuth.getKey()); 3229 3230 llvm::Value *Discriminator = PointerAuth.getDiscriminator(); 3231 if (!Discriminator) 3232 Discriminator = Builder.getSize(0); 3233 3234 llvm::Value *Args[] = {Key, Discriminator}; 3235 Bundles.emplace_back("ptrauth", Args); 3236 } 3237 3238 static llvm::Value *EmitPointerAuthCommon(CodeGenFunction &CGF, 3239 const CGPointerAuthInfo &PointerAuth, 3240 llvm::Value *Pointer, 3241 unsigned IntrinsicID) { 3242 if (!PointerAuth) 3243 return Pointer; 3244 3245 auto Key = CGF.Builder.getInt32(PointerAuth.getKey()); 3246 3247 llvm::Value *Discriminator = PointerAuth.getDiscriminator(); 3248 if (!Discriminator) { 3249 Discriminator = CGF.Builder.getSize(0); 3250 } 3251 3252 // Convert the pointer to intptr_t before signing it. 3253 auto OrigType = Pointer->getType(); 3254 Pointer = CGF.Builder.CreatePtrToInt(Pointer, CGF.IntPtrTy); 3255 3256 // call i64 @llvm.ptrauth.sign.i64(i64 %pointer, i32 %key, i64 %discriminator) 3257 auto Intrinsic = CGF.CGM.getIntrinsic(IntrinsicID); 3258 Pointer = CGF.EmitRuntimeCall(Intrinsic, {Pointer, Key, Discriminator}); 3259 3260 // Convert back to the original type. 3261 Pointer = CGF.Builder.CreateIntToPtr(Pointer, OrigType); 3262 return Pointer; 3263 } 3264 3265 llvm::Value * 3266 CodeGenFunction::EmitPointerAuthSign(const CGPointerAuthInfo &PointerAuth, 3267 llvm::Value *Pointer) { 3268 if (!PointerAuth.shouldSign()) 3269 return Pointer; 3270 return EmitPointerAuthCommon(*this, PointerAuth, Pointer, 3271 llvm::Intrinsic::ptrauth_sign); 3272 } 3273 3274 static llvm::Value *EmitStrip(CodeGenFunction &CGF, 3275 const CGPointerAuthInfo &PointerAuth, 3276 llvm::Value *Pointer) { 3277 auto StripIntrinsic = CGF.CGM.getIntrinsic(llvm::Intrinsic::ptrauth_strip); 3278 3279 auto Key = CGF.Builder.getInt32(PointerAuth.getKey()); 3280 // Convert the pointer to intptr_t before signing it. 3281 auto OrigType = Pointer->getType(); 3282 Pointer = CGF.EmitRuntimeCall( 3283 StripIntrinsic, {CGF.Builder.CreatePtrToInt(Pointer, CGF.IntPtrTy), Key}); 3284 return CGF.Builder.CreateIntToPtr(Pointer, OrigType); 3285 } 3286 3287 llvm::Value * 3288 CodeGenFunction::EmitPointerAuthAuth(const CGPointerAuthInfo &PointerAuth, 3289 llvm::Value *Pointer) { 3290 if (PointerAuth.shouldStrip()) { 3291 return EmitStrip(*this, PointerAuth, Pointer); 3292 } 3293 if (!PointerAuth.shouldAuth()) { 3294 return Pointer; 3295 } 3296 3297 return EmitPointerAuthCommon(*this, PointerAuth, Pointer, 3298 llvm::Intrinsic::ptrauth_auth); 3299 } 3300