xref: /llvm-project/clang/lib/CodeGen/CodeGenFunction.cpp (revision 3d6f49a56995b845c40be5827ded5d1e3f692cec)
1 //===--- CodeGenFunction.cpp - Emit LLVM Code from ASTs for a Function ----===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This coordinates the per-function state used while generating code.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "CodeGenFunction.h"
14 #include "CGBlocks.h"
15 #include "CGCUDARuntime.h"
16 #include "CGCXXABI.h"
17 #include "CGCleanup.h"
18 #include "CGDebugInfo.h"
19 #include "CGOpenMPRuntime.h"
20 #include "CodeGenModule.h"
21 #include "CodeGenPGO.h"
22 #include "TargetInfo.h"
23 #include "clang/AST/ASTContext.h"
24 #include "clang/AST/ASTLambda.h"
25 #include "clang/AST/Attr.h"
26 #include "clang/AST/Decl.h"
27 #include "clang/AST/DeclCXX.h"
28 #include "clang/AST/Expr.h"
29 #include "clang/AST/StmtCXX.h"
30 #include "clang/AST/StmtObjC.h"
31 #include "clang/Basic/Builtins.h"
32 #include "clang/Basic/CodeGenOptions.h"
33 #include "clang/Basic/TargetInfo.h"
34 #include "clang/CodeGen/CGFunctionInfo.h"
35 #include "clang/Frontend/FrontendDiagnostic.h"
36 #include "llvm/ADT/ArrayRef.h"
37 #include "llvm/Frontend/OpenMP/OMPIRBuilder.h"
38 #include "llvm/IR/DataLayout.h"
39 #include "llvm/IR/Dominators.h"
40 #include "llvm/IR/FPEnv.h"
41 #include "llvm/IR/IntrinsicInst.h"
42 #include "llvm/IR/Intrinsics.h"
43 #include "llvm/IR/MDBuilder.h"
44 #include "llvm/IR/Operator.h"
45 #include "llvm/Support/CRC.h"
46 #include "llvm/Transforms/Scalar/LowerExpectIntrinsic.h"
47 #include "llvm/Transforms/Utils/PromoteMemToReg.h"
48 using namespace clang;
49 using namespace CodeGen;
50 
51 /// shouldEmitLifetimeMarkers - Decide whether we need emit the life-time
52 /// markers.
53 static bool shouldEmitLifetimeMarkers(const CodeGenOptions &CGOpts,
54                                       const LangOptions &LangOpts) {
55   if (CGOpts.DisableLifetimeMarkers)
56     return false;
57 
58   // Sanitizers may use markers.
59   if (CGOpts.SanitizeAddressUseAfterScope ||
60       LangOpts.Sanitize.has(SanitizerKind::HWAddress) ||
61       LangOpts.Sanitize.has(SanitizerKind::Memory))
62     return true;
63 
64   // For now, only in optimized builds.
65   return CGOpts.OptimizationLevel != 0;
66 }
67 
68 CodeGenFunction::CodeGenFunction(CodeGenModule &cgm, bool suppressNewContext)
69     : CodeGenTypeCache(cgm), CGM(cgm), Target(cgm.getTarget()),
70       Builder(cgm, cgm.getModule().getContext(), llvm::ConstantFolder(),
71               CGBuilderInserterTy(this)),
72       SanOpts(CGM.getLangOpts().Sanitize), CurFPFeatures(CGM.getLangOpts()),
73       DebugInfo(CGM.getModuleDebugInfo()), PGO(cgm),
74       ShouldEmitLifetimeMarkers(
75           shouldEmitLifetimeMarkers(CGM.getCodeGenOpts(), CGM.getLangOpts())) {
76   if (!suppressNewContext)
77     CGM.getCXXABI().getMangleContext().startNewFunction();
78   EHStack.setCGF(this);
79 
80   SetFastMathFlags(CurFPFeatures);
81 }
82 
83 CodeGenFunction::~CodeGenFunction() {
84   assert(LifetimeExtendedCleanupStack.empty() && "failed to emit a cleanup");
85 
86   if (getLangOpts().OpenMP && CurFn)
87     CGM.getOpenMPRuntime().functionFinished(*this);
88 
89   // If we have an OpenMPIRBuilder we want to finalize functions (incl.
90   // outlining etc) at some point. Doing it once the function codegen is done
91   // seems to be a reasonable spot. We do it here, as opposed to the deletion
92   // time of the CodeGenModule, because we have to ensure the IR has not yet
93   // been "emitted" to the outside, thus, modifications are still sensible.
94   if (CGM.getLangOpts().OpenMPIRBuilder && CurFn)
95     CGM.getOpenMPRuntime().getOMPBuilder().finalize(CurFn);
96 }
97 
98 // Map the LangOption for exception behavior into
99 // the corresponding enum in the IR.
100 llvm::fp::ExceptionBehavior
101 clang::ToConstrainedExceptMD(LangOptions::FPExceptionModeKind Kind) {
102 
103   switch (Kind) {
104   case LangOptions::FPE_Ignore:  return llvm::fp::ebIgnore;
105   case LangOptions::FPE_MayTrap: return llvm::fp::ebMayTrap;
106   case LangOptions::FPE_Strict:  return llvm::fp::ebStrict;
107   }
108   llvm_unreachable("Unsupported FP Exception Behavior");
109 }
110 
111 void CodeGenFunction::SetFastMathFlags(FPOptions FPFeatures) {
112   llvm::FastMathFlags FMF;
113   FMF.setAllowReassoc(FPFeatures.getAllowFPReassociate());
114   FMF.setNoNaNs(FPFeatures.getNoHonorNaNs());
115   FMF.setNoInfs(FPFeatures.getNoHonorInfs());
116   FMF.setNoSignedZeros(FPFeatures.getNoSignedZero());
117   FMF.setAllowReciprocal(FPFeatures.getAllowReciprocal());
118   FMF.setApproxFunc(FPFeatures.getAllowApproxFunc());
119   FMF.setAllowContract(FPFeatures.allowFPContractAcrossStatement());
120   Builder.setFastMathFlags(FMF);
121 }
122 
123 CodeGenFunction::CGFPOptionsRAII::CGFPOptionsRAII(CodeGenFunction &CGF,
124                                                   const Expr *E)
125     : CGF(CGF) {
126   ConstructorHelper(E->getFPFeaturesInEffect(CGF.getLangOpts()));
127 }
128 
129 CodeGenFunction::CGFPOptionsRAII::CGFPOptionsRAII(CodeGenFunction &CGF,
130                                                   FPOptions FPFeatures)
131     : CGF(CGF) {
132   ConstructorHelper(FPFeatures);
133 }
134 
135 void CodeGenFunction::CGFPOptionsRAII::ConstructorHelper(FPOptions FPFeatures) {
136   OldFPFeatures = CGF.CurFPFeatures;
137   CGF.CurFPFeatures = FPFeatures;
138 
139   OldExcept = CGF.Builder.getDefaultConstrainedExcept();
140   OldRounding = CGF.Builder.getDefaultConstrainedRounding();
141 
142   if (OldFPFeatures == FPFeatures)
143     return;
144 
145   FMFGuard.emplace(CGF.Builder);
146 
147   llvm::RoundingMode NewRoundingBehavior =
148       static_cast<llvm::RoundingMode>(FPFeatures.getRoundingMode());
149   CGF.Builder.setDefaultConstrainedRounding(NewRoundingBehavior);
150   auto NewExceptionBehavior =
151       ToConstrainedExceptMD(static_cast<LangOptions::FPExceptionModeKind>(
152           FPFeatures.getFPExceptionMode()));
153   CGF.Builder.setDefaultConstrainedExcept(NewExceptionBehavior);
154 
155   CGF.SetFastMathFlags(FPFeatures);
156 
157   assert((CGF.CurFuncDecl == nullptr || CGF.Builder.getIsFPConstrained() ||
158           isa<CXXConstructorDecl>(CGF.CurFuncDecl) ||
159           isa<CXXDestructorDecl>(CGF.CurFuncDecl) ||
160           (NewExceptionBehavior == llvm::fp::ebIgnore &&
161            NewRoundingBehavior == llvm::RoundingMode::NearestTiesToEven)) &&
162          "FPConstrained should be enabled on entire function");
163 
164   auto mergeFnAttrValue = [&](StringRef Name, bool Value) {
165     auto OldValue =
166         CGF.CurFn->getFnAttribute(Name).getValueAsBool();
167     auto NewValue = OldValue & Value;
168     if (OldValue != NewValue)
169       CGF.CurFn->addFnAttr(Name, llvm::toStringRef(NewValue));
170   };
171   mergeFnAttrValue("no-infs-fp-math", FPFeatures.getNoHonorInfs());
172   mergeFnAttrValue("no-nans-fp-math", FPFeatures.getNoHonorNaNs());
173   mergeFnAttrValue("no-signed-zeros-fp-math", FPFeatures.getNoSignedZero());
174   mergeFnAttrValue("unsafe-fp-math", FPFeatures.getAllowFPReassociate() &&
175                                          FPFeatures.getAllowReciprocal() &&
176                                          FPFeatures.getAllowApproxFunc() &&
177                                          FPFeatures.getNoSignedZero());
178 }
179 
180 CodeGenFunction::CGFPOptionsRAII::~CGFPOptionsRAII() {
181   CGF.CurFPFeatures = OldFPFeatures;
182   CGF.Builder.setDefaultConstrainedExcept(OldExcept);
183   CGF.Builder.setDefaultConstrainedRounding(OldRounding);
184 }
185 
186 LValue CodeGenFunction::MakeNaturalAlignAddrLValue(llvm::Value *V, QualType T) {
187   LValueBaseInfo BaseInfo;
188   TBAAAccessInfo TBAAInfo;
189   CharUnits Alignment = CGM.getNaturalTypeAlignment(T, &BaseInfo, &TBAAInfo);
190   return LValue::MakeAddr(Address(V, Alignment), T, getContext(), BaseInfo,
191                           TBAAInfo);
192 }
193 
194 /// Given a value of type T* that may not be to a complete object,
195 /// construct an l-value with the natural pointee alignment of T.
196 LValue
197 CodeGenFunction::MakeNaturalAlignPointeeAddrLValue(llvm::Value *V, QualType T) {
198   LValueBaseInfo BaseInfo;
199   TBAAAccessInfo TBAAInfo;
200   CharUnits Align = CGM.getNaturalTypeAlignment(T, &BaseInfo, &TBAAInfo,
201                                                 /* forPointeeType= */ true);
202   return MakeAddrLValue(Address(V, Align), T, BaseInfo, TBAAInfo);
203 }
204 
205 
206 llvm::Type *CodeGenFunction::ConvertTypeForMem(QualType T) {
207   return CGM.getTypes().ConvertTypeForMem(T);
208 }
209 
210 llvm::Type *CodeGenFunction::ConvertType(QualType T) {
211   return CGM.getTypes().ConvertType(T);
212 }
213 
214 TypeEvaluationKind CodeGenFunction::getEvaluationKind(QualType type) {
215   type = type.getCanonicalType();
216   while (true) {
217     switch (type->getTypeClass()) {
218 #define TYPE(name, parent)
219 #define ABSTRACT_TYPE(name, parent)
220 #define NON_CANONICAL_TYPE(name, parent) case Type::name:
221 #define DEPENDENT_TYPE(name, parent) case Type::name:
222 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(name, parent) case Type::name:
223 #include "clang/AST/TypeNodes.inc"
224       llvm_unreachable("non-canonical or dependent type in IR-generation");
225 
226     case Type::Auto:
227     case Type::DeducedTemplateSpecialization:
228       llvm_unreachable("undeduced type in IR-generation");
229 
230     // Various scalar types.
231     case Type::Builtin:
232     case Type::Pointer:
233     case Type::BlockPointer:
234     case Type::LValueReference:
235     case Type::RValueReference:
236     case Type::MemberPointer:
237     case Type::Vector:
238     case Type::ExtVector:
239     case Type::ConstantMatrix:
240     case Type::FunctionProto:
241     case Type::FunctionNoProto:
242     case Type::Enum:
243     case Type::ObjCObjectPointer:
244     case Type::Pipe:
245     case Type::ExtInt:
246       return TEK_Scalar;
247 
248     // Complexes.
249     case Type::Complex:
250       return TEK_Complex;
251 
252     // Arrays, records, and Objective-C objects.
253     case Type::ConstantArray:
254     case Type::IncompleteArray:
255     case Type::VariableArray:
256     case Type::Record:
257     case Type::ObjCObject:
258     case Type::ObjCInterface:
259       return TEK_Aggregate;
260 
261     // We operate on atomic values according to their underlying type.
262     case Type::Atomic:
263       type = cast<AtomicType>(type)->getValueType();
264       continue;
265     }
266     llvm_unreachable("unknown type kind!");
267   }
268 }
269 
270 llvm::DebugLoc CodeGenFunction::EmitReturnBlock() {
271   // For cleanliness, we try to avoid emitting the return block for
272   // simple cases.
273   llvm::BasicBlock *CurBB = Builder.GetInsertBlock();
274 
275   if (CurBB) {
276     assert(!CurBB->getTerminator() && "Unexpected terminated block.");
277 
278     // We have a valid insert point, reuse it if it is empty or there are no
279     // explicit jumps to the return block.
280     if (CurBB->empty() || ReturnBlock.getBlock()->use_empty()) {
281       ReturnBlock.getBlock()->replaceAllUsesWith(CurBB);
282       delete ReturnBlock.getBlock();
283       ReturnBlock = JumpDest();
284     } else
285       EmitBlock(ReturnBlock.getBlock());
286     return llvm::DebugLoc();
287   }
288 
289   // Otherwise, if the return block is the target of a single direct
290   // branch then we can just put the code in that block instead. This
291   // cleans up functions which started with a unified return block.
292   if (ReturnBlock.getBlock()->hasOneUse()) {
293     llvm::BranchInst *BI =
294       dyn_cast<llvm::BranchInst>(*ReturnBlock.getBlock()->user_begin());
295     if (BI && BI->isUnconditional() &&
296         BI->getSuccessor(0) == ReturnBlock.getBlock()) {
297       // Record/return the DebugLoc of the simple 'return' expression to be used
298       // later by the actual 'ret' instruction.
299       llvm::DebugLoc Loc = BI->getDebugLoc();
300       Builder.SetInsertPoint(BI->getParent());
301       BI->eraseFromParent();
302       delete ReturnBlock.getBlock();
303       ReturnBlock = JumpDest();
304       return Loc;
305     }
306   }
307 
308   // FIXME: We are at an unreachable point, there is no reason to emit the block
309   // unless it has uses. However, we still need a place to put the debug
310   // region.end for now.
311 
312   EmitBlock(ReturnBlock.getBlock());
313   return llvm::DebugLoc();
314 }
315 
316 static void EmitIfUsed(CodeGenFunction &CGF, llvm::BasicBlock *BB) {
317   if (!BB) return;
318   if (!BB->use_empty())
319     return CGF.CurFn->getBasicBlockList().push_back(BB);
320   delete BB;
321 }
322 
323 void CodeGenFunction::FinishFunction(SourceLocation EndLoc) {
324   assert(BreakContinueStack.empty() &&
325          "mismatched push/pop in break/continue stack!");
326 
327   bool OnlySimpleReturnStmts = NumSimpleReturnExprs > 0
328     && NumSimpleReturnExprs == NumReturnExprs
329     && ReturnBlock.getBlock()->use_empty();
330   // Usually the return expression is evaluated before the cleanup
331   // code.  If the function contains only a simple return statement,
332   // such as a constant, the location before the cleanup code becomes
333   // the last useful breakpoint in the function, because the simple
334   // return expression will be evaluated after the cleanup code. To be
335   // safe, set the debug location for cleanup code to the location of
336   // the return statement.  Otherwise the cleanup code should be at the
337   // end of the function's lexical scope.
338   //
339   // If there are multiple branches to the return block, the branch
340   // instructions will get the location of the return statements and
341   // all will be fine.
342   if (CGDebugInfo *DI = getDebugInfo()) {
343     if (OnlySimpleReturnStmts)
344       DI->EmitLocation(Builder, LastStopPoint);
345     else
346       DI->EmitLocation(Builder, EndLoc);
347   }
348 
349   // Pop any cleanups that might have been associated with the
350   // parameters.  Do this in whatever block we're currently in; it's
351   // important to do this before we enter the return block or return
352   // edges will be *really* confused.
353   bool HasCleanups = EHStack.stable_begin() != PrologueCleanupDepth;
354   bool HasOnlyLifetimeMarkers =
355       HasCleanups && EHStack.containsOnlyLifetimeMarkers(PrologueCleanupDepth);
356   bool EmitRetDbgLoc = !HasCleanups || HasOnlyLifetimeMarkers;
357   if (HasCleanups) {
358     // Make sure the line table doesn't jump back into the body for
359     // the ret after it's been at EndLoc.
360     Optional<ApplyDebugLocation> AL;
361     if (CGDebugInfo *DI = getDebugInfo()) {
362       if (OnlySimpleReturnStmts)
363         DI->EmitLocation(Builder, EndLoc);
364       else
365         // We may not have a valid end location. Try to apply it anyway, and
366         // fall back to an artificial location if needed.
367         AL = ApplyDebugLocation::CreateDefaultArtificial(*this, EndLoc);
368     }
369 
370     PopCleanupBlocks(PrologueCleanupDepth);
371   }
372 
373   // Emit function epilog (to return).
374   llvm::DebugLoc Loc = EmitReturnBlock();
375 
376   if (ShouldInstrumentFunction()) {
377     if (CGM.getCodeGenOpts().InstrumentFunctions)
378       CurFn->addFnAttr("instrument-function-exit", "__cyg_profile_func_exit");
379     if (CGM.getCodeGenOpts().InstrumentFunctionsAfterInlining)
380       CurFn->addFnAttr("instrument-function-exit-inlined",
381                        "__cyg_profile_func_exit");
382   }
383 
384   if (ShouldSkipSanitizerInstrumentation())
385     CurFn->addFnAttr(llvm::Attribute::DisableSanitizerInstrumentation);
386 
387   // Emit debug descriptor for function end.
388   if (CGDebugInfo *DI = getDebugInfo())
389     DI->EmitFunctionEnd(Builder, CurFn);
390 
391   // Reset the debug location to that of the simple 'return' expression, if any
392   // rather than that of the end of the function's scope '}'.
393   ApplyDebugLocation AL(*this, Loc);
394   EmitFunctionEpilog(*CurFnInfo, EmitRetDbgLoc, EndLoc);
395   EmitEndEHSpec(CurCodeDecl);
396 
397   assert(EHStack.empty() &&
398          "did not remove all scopes from cleanup stack!");
399 
400   // If someone did an indirect goto, emit the indirect goto block at the end of
401   // the function.
402   if (IndirectBranch) {
403     EmitBlock(IndirectBranch->getParent());
404     Builder.ClearInsertionPoint();
405   }
406 
407   // If some of our locals escaped, insert a call to llvm.localescape in the
408   // entry block.
409   if (!EscapedLocals.empty()) {
410     // Invert the map from local to index into a simple vector. There should be
411     // no holes.
412     SmallVector<llvm::Value *, 4> EscapeArgs;
413     EscapeArgs.resize(EscapedLocals.size());
414     for (auto &Pair : EscapedLocals)
415       EscapeArgs[Pair.second] = Pair.first;
416     llvm::Function *FrameEscapeFn = llvm::Intrinsic::getDeclaration(
417         &CGM.getModule(), llvm::Intrinsic::localescape);
418     CGBuilderTy(*this, AllocaInsertPt).CreateCall(FrameEscapeFn, EscapeArgs);
419   }
420 
421   // Remove the AllocaInsertPt instruction, which is just a convenience for us.
422   llvm::Instruction *Ptr = AllocaInsertPt;
423   AllocaInsertPt = nullptr;
424   Ptr->eraseFromParent();
425 
426   // If someone took the address of a label but never did an indirect goto, we
427   // made a zero entry PHI node, which is illegal, zap it now.
428   if (IndirectBranch) {
429     llvm::PHINode *PN = cast<llvm::PHINode>(IndirectBranch->getAddress());
430     if (PN->getNumIncomingValues() == 0) {
431       PN->replaceAllUsesWith(llvm::UndefValue::get(PN->getType()));
432       PN->eraseFromParent();
433     }
434   }
435 
436   EmitIfUsed(*this, EHResumeBlock);
437   EmitIfUsed(*this, TerminateLandingPad);
438   EmitIfUsed(*this, TerminateHandler);
439   EmitIfUsed(*this, UnreachableBlock);
440 
441   for (const auto &FuncletAndParent : TerminateFunclets)
442     EmitIfUsed(*this, FuncletAndParent.second);
443 
444   if (CGM.getCodeGenOpts().EmitDeclMetadata)
445     EmitDeclMetadata();
446 
447   for (const auto &R : DeferredReplacements) {
448     if (llvm::Value *Old = R.first) {
449       Old->replaceAllUsesWith(R.second);
450       cast<llvm::Instruction>(Old)->eraseFromParent();
451     }
452   }
453   DeferredReplacements.clear();
454 
455   // Eliminate CleanupDestSlot alloca by replacing it with SSA values and
456   // PHIs if the current function is a coroutine. We don't do it for all
457   // functions as it may result in slight increase in numbers of instructions
458   // if compiled with no optimizations. We do it for coroutine as the lifetime
459   // of CleanupDestSlot alloca make correct coroutine frame building very
460   // difficult.
461   if (NormalCleanupDest.isValid() && isCoroutine()) {
462     llvm::DominatorTree DT(*CurFn);
463     llvm::PromoteMemToReg(
464         cast<llvm::AllocaInst>(NormalCleanupDest.getPointer()), DT);
465     NormalCleanupDest = Address::invalid();
466   }
467 
468   // Scan function arguments for vector width.
469   for (llvm::Argument &A : CurFn->args())
470     if (auto *VT = dyn_cast<llvm::VectorType>(A.getType()))
471       LargestVectorWidth =
472           std::max((uint64_t)LargestVectorWidth,
473                    VT->getPrimitiveSizeInBits().getKnownMinSize());
474 
475   // Update vector width based on return type.
476   if (auto *VT = dyn_cast<llvm::VectorType>(CurFn->getReturnType()))
477     LargestVectorWidth =
478         std::max((uint64_t)LargestVectorWidth,
479                  VT->getPrimitiveSizeInBits().getKnownMinSize());
480 
481   // Add the required-vector-width attribute. This contains the max width from:
482   // 1. min-vector-width attribute used in the source program.
483   // 2. Any builtins used that have a vector width specified.
484   // 3. Values passed in and out of inline assembly.
485   // 4. Width of vector arguments and return types for this function.
486   // 5. Width of vector aguments and return types for functions called by this
487   //    function.
488   CurFn->addFnAttr("min-legal-vector-width", llvm::utostr(LargestVectorWidth));
489 
490   // Add vscale_range attribute if appropriate.
491   Optional<std::pair<unsigned, unsigned>> VScaleRange =
492       getContext().getTargetInfo().getVScaleRange(getLangOpts());
493   if (VScaleRange) {
494     CurFn->addFnAttr(llvm::Attribute::getWithVScaleRangeArgs(
495         getLLVMContext(), VScaleRange.getValue().first,
496         VScaleRange.getValue().second));
497   }
498 
499   // If we generated an unreachable return block, delete it now.
500   if (ReturnBlock.isValid() && ReturnBlock.getBlock()->use_empty()) {
501     Builder.ClearInsertionPoint();
502     ReturnBlock.getBlock()->eraseFromParent();
503   }
504   if (ReturnValue.isValid()) {
505     auto *RetAlloca = dyn_cast<llvm::AllocaInst>(ReturnValue.getPointer());
506     if (RetAlloca && RetAlloca->use_empty()) {
507       RetAlloca->eraseFromParent();
508       ReturnValue = Address::invalid();
509     }
510   }
511 }
512 
513 /// ShouldInstrumentFunction - Return true if the current function should be
514 /// instrumented with __cyg_profile_func_* calls
515 bool CodeGenFunction::ShouldInstrumentFunction() {
516   if (!CGM.getCodeGenOpts().InstrumentFunctions &&
517       !CGM.getCodeGenOpts().InstrumentFunctionsAfterInlining &&
518       !CGM.getCodeGenOpts().InstrumentFunctionEntryBare)
519     return false;
520   if (!CurFuncDecl || CurFuncDecl->hasAttr<NoInstrumentFunctionAttr>())
521     return false;
522   return true;
523 }
524 
525 bool CodeGenFunction::ShouldSkipSanitizerInstrumentation() {
526   if (!CurFuncDecl)
527     return false;
528   return CurFuncDecl->hasAttr<DisableSanitizerInstrumentationAttr>();
529 }
530 
531 /// ShouldXRayInstrument - Return true if the current function should be
532 /// instrumented with XRay nop sleds.
533 bool CodeGenFunction::ShouldXRayInstrumentFunction() const {
534   return CGM.getCodeGenOpts().XRayInstrumentFunctions;
535 }
536 
537 /// AlwaysEmitXRayCustomEvents - Return true if we should emit IR for calls to
538 /// the __xray_customevent(...) builtin calls, when doing XRay instrumentation.
539 bool CodeGenFunction::AlwaysEmitXRayCustomEvents() const {
540   return CGM.getCodeGenOpts().XRayInstrumentFunctions &&
541          (CGM.getCodeGenOpts().XRayAlwaysEmitCustomEvents ||
542           CGM.getCodeGenOpts().XRayInstrumentationBundle.Mask ==
543               XRayInstrKind::Custom);
544 }
545 
546 bool CodeGenFunction::AlwaysEmitXRayTypedEvents() const {
547   return CGM.getCodeGenOpts().XRayInstrumentFunctions &&
548          (CGM.getCodeGenOpts().XRayAlwaysEmitTypedEvents ||
549           CGM.getCodeGenOpts().XRayInstrumentationBundle.Mask ==
550               XRayInstrKind::Typed);
551 }
552 
553 llvm::Constant *
554 CodeGenFunction::EncodeAddrForUseInPrologue(llvm::Function *F,
555                                             llvm::Constant *Addr) {
556   // Addresses stored in prologue data can't require run-time fixups and must
557   // be PC-relative. Run-time fixups are undesirable because they necessitate
558   // writable text segments, which are unsafe. And absolute addresses are
559   // undesirable because they break PIE mode.
560 
561   // Add a layer of indirection through a private global. Taking its address
562   // won't result in a run-time fixup, even if Addr has linkonce_odr linkage.
563   auto *GV = new llvm::GlobalVariable(CGM.getModule(), Addr->getType(),
564                                       /*isConstant=*/true,
565                                       llvm::GlobalValue::PrivateLinkage, Addr);
566 
567   // Create a PC-relative address.
568   auto *GOTAsInt = llvm::ConstantExpr::getPtrToInt(GV, IntPtrTy);
569   auto *FuncAsInt = llvm::ConstantExpr::getPtrToInt(F, IntPtrTy);
570   auto *PCRelAsInt = llvm::ConstantExpr::getSub(GOTAsInt, FuncAsInt);
571   return (IntPtrTy == Int32Ty)
572              ? PCRelAsInt
573              : llvm::ConstantExpr::getTrunc(PCRelAsInt, Int32Ty);
574 }
575 
576 llvm::Value *
577 CodeGenFunction::DecodeAddrUsedInPrologue(llvm::Value *F,
578                                           llvm::Value *EncodedAddr) {
579   // Reconstruct the address of the global.
580   auto *PCRelAsInt = Builder.CreateSExt(EncodedAddr, IntPtrTy);
581   auto *FuncAsInt = Builder.CreatePtrToInt(F, IntPtrTy, "func_addr.int");
582   auto *GOTAsInt = Builder.CreateAdd(PCRelAsInt, FuncAsInt, "global_addr.int");
583   auto *GOTAddr = Builder.CreateIntToPtr(GOTAsInt, Int8PtrPtrTy, "global_addr");
584 
585   // Load the original pointer through the global.
586   return Builder.CreateLoad(Address(GOTAddr, getPointerAlign()),
587                             "decoded_addr");
588 }
589 
590 void CodeGenFunction::EmitOpenCLKernelMetadata(const FunctionDecl *FD,
591                                                llvm::Function *Fn)
592 {
593   if (!FD->hasAttr<OpenCLKernelAttr>())
594     return;
595 
596   llvm::LLVMContext &Context = getLLVMContext();
597 
598   CGM.GenOpenCLArgMetadata(Fn, FD, this);
599 
600   if (const VecTypeHintAttr *A = FD->getAttr<VecTypeHintAttr>()) {
601     QualType HintQTy = A->getTypeHint();
602     const ExtVectorType *HintEltQTy = HintQTy->getAs<ExtVectorType>();
603     bool IsSignedInteger =
604         HintQTy->isSignedIntegerType() ||
605         (HintEltQTy && HintEltQTy->getElementType()->isSignedIntegerType());
606     llvm::Metadata *AttrMDArgs[] = {
607         llvm::ConstantAsMetadata::get(llvm::UndefValue::get(
608             CGM.getTypes().ConvertType(A->getTypeHint()))),
609         llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
610             llvm::IntegerType::get(Context, 32),
611             llvm::APInt(32, (uint64_t)(IsSignedInteger ? 1 : 0))))};
612     Fn->setMetadata("vec_type_hint", llvm::MDNode::get(Context, AttrMDArgs));
613   }
614 
615   if (const WorkGroupSizeHintAttr *A = FD->getAttr<WorkGroupSizeHintAttr>()) {
616     llvm::Metadata *AttrMDArgs[] = {
617         llvm::ConstantAsMetadata::get(Builder.getInt32(A->getXDim())),
618         llvm::ConstantAsMetadata::get(Builder.getInt32(A->getYDim())),
619         llvm::ConstantAsMetadata::get(Builder.getInt32(A->getZDim()))};
620     Fn->setMetadata("work_group_size_hint", llvm::MDNode::get(Context, AttrMDArgs));
621   }
622 
623   if (const ReqdWorkGroupSizeAttr *A = FD->getAttr<ReqdWorkGroupSizeAttr>()) {
624     llvm::Metadata *AttrMDArgs[] = {
625         llvm::ConstantAsMetadata::get(Builder.getInt32(A->getXDim())),
626         llvm::ConstantAsMetadata::get(Builder.getInt32(A->getYDim())),
627         llvm::ConstantAsMetadata::get(Builder.getInt32(A->getZDim()))};
628     Fn->setMetadata("reqd_work_group_size", llvm::MDNode::get(Context, AttrMDArgs));
629   }
630 
631   if (const OpenCLIntelReqdSubGroupSizeAttr *A =
632           FD->getAttr<OpenCLIntelReqdSubGroupSizeAttr>()) {
633     llvm::Metadata *AttrMDArgs[] = {
634         llvm::ConstantAsMetadata::get(Builder.getInt32(A->getSubGroupSize()))};
635     Fn->setMetadata("intel_reqd_sub_group_size",
636                     llvm::MDNode::get(Context, AttrMDArgs));
637   }
638 }
639 
640 /// Determine whether the function F ends with a return stmt.
641 static bool endsWithReturn(const Decl* F) {
642   const Stmt *Body = nullptr;
643   if (auto *FD = dyn_cast_or_null<FunctionDecl>(F))
644     Body = FD->getBody();
645   else if (auto *OMD = dyn_cast_or_null<ObjCMethodDecl>(F))
646     Body = OMD->getBody();
647 
648   if (auto *CS = dyn_cast_or_null<CompoundStmt>(Body)) {
649     auto LastStmt = CS->body_rbegin();
650     if (LastStmt != CS->body_rend())
651       return isa<ReturnStmt>(*LastStmt);
652   }
653   return false;
654 }
655 
656 void CodeGenFunction::markAsIgnoreThreadCheckingAtRuntime(llvm::Function *Fn) {
657   if (SanOpts.has(SanitizerKind::Thread)) {
658     Fn->addFnAttr("sanitize_thread_no_checking_at_run_time");
659     Fn->removeFnAttr(llvm::Attribute::SanitizeThread);
660   }
661 }
662 
663 /// Check if the return value of this function requires sanitization.
664 bool CodeGenFunction::requiresReturnValueCheck() const {
665   return requiresReturnValueNullabilityCheck() ||
666          (SanOpts.has(SanitizerKind::ReturnsNonnullAttribute) && CurCodeDecl &&
667           CurCodeDecl->getAttr<ReturnsNonNullAttr>());
668 }
669 
670 static bool matchesStlAllocatorFn(const Decl *D, const ASTContext &Ctx) {
671   auto *MD = dyn_cast_or_null<CXXMethodDecl>(D);
672   if (!MD || !MD->getDeclName().getAsIdentifierInfo() ||
673       !MD->getDeclName().getAsIdentifierInfo()->isStr("allocate") ||
674       (MD->getNumParams() != 1 && MD->getNumParams() != 2))
675     return false;
676 
677   if (MD->parameters()[0]->getType().getCanonicalType() != Ctx.getSizeType())
678     return false;
679 
680   if (MD->getNumParams() == 2) {
681     auto *PT = MD->parameters()[1]->getType()->getAs<PointerType>();
682     if (!PT || !PT->isVoidPointerType() ||
683         !PT->getPointeeType().isConstQualified())
684       return false;
685   }
686 
687   return true;
688 }
689 
690 /// Return the UBSan prologue signature for \p FD if one is available.
691 static llvm::Constant *getPrologueSignature(CodeGenModule &CGM,
692                                             const FunctionDecl *FD) {
693   if (const auto *MD = dyn_cast<CXXMethodDecl>(FD))
694     if (!MD->isStatic())
695       return nullptr;
696   return CGM.getTargetCodeGenInfo().getUBSanFunctionSignature(CGM);
697 }
698 
699 void CodeGenFunction::StartFunction(GlobalDecl GD, QualType RetTy,
700                                     llvm::Function *Fn,
701                                     const CGFunctionInfo &FnInfo,
702                                     const FunctionArgList &Args,
703                                     SourceLocation Loc,
704                                     SourceLocation StartLoc) {
705   assert(!CurFn &&
706          "Do not use a CodeGenFunction object for more than one function");
707 
708   const Decl *D = GD.getDecl();
709 
710   DidCallStackSave = false;
711   CurCodeDecl = D;
712   const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D);
713   if (FD && FD->usesSEHTry())
714     CurSEHParent = FD;
715   CurFuncDecl = (D ? D->getNonClosureContext() : nullptr);
716   FnRetTy = RetTy;
717   CurFn = Fn;
718   CurFnInfo = &FnInfo;
719   assert(CurFn->isDeclaration() && "Function already has body?");
720 
721   // If this function is ignored for any of the enabled sanitizers,
722   // disable the sanitizer for the function.
723   do {
724 #define SANITIZER(NAME, ID)                                                    \
725   if (SanOpts.empty())                                                         \
726     break;                                                                     \
727   if (SanOpts.has(SanitizerKind::ID))                                          \
728     if (CGM.isInNoSanitizeList(SanitizerKind::ID, Fn, Loc))                    \
729       SanOpts.set(SanitizerKind::ID, false);
730 
731 #include "clang/Basic/Sanitizers.def"
732 #undef SANITIZER
733   } while (0);
734 
735   if (D) {
736     bool NoSanitizeCoverage = false;
737 
738     for (auto Attr : D->specific_attrs<NoSanitizeAttr>()) {
739       // Apply the no_sanitize* attributes to SanOpts.
740       SanitizerMask mask = Attr->getMask();
741       SanOpts.Mask &= ~mask;
742       if (mask & SanitizerKind::Address)
743         SanOpts.set(SanitizerKind::KernelAddress, false);
744       if (mask & SanitizerKind::KernelAddress)
745         SanOpts.set(SanitizerKind::Address, false);
746       if (mask & SanitizerKind::HWAddress)
747         SanOpts.set(SanitizerKind::KernelHWAddress, false);
748       if (mask & SanitizerKind::KernelHWAddress)
749         SanOpts.set(SanitizerKind::HWAddress, false);
750 
751       // SanitizeCoverage is not handled by SanOpts.
752       if (Attr->hasCoverage())
753         NoSanitizeCoverage = true;
754     }
755 
756     if (NoSanitizeCoverage && CGM.getCodeGenOpts().hasSanitizeCoverage())
757       Fn->addFnAttr(llvm::Attribute::NoSanitizeCoverage);
758   }
759 
760   // Apply sanitizer attributes to the function.
761   if (SanOpts.hasOneOf(SanitizerKind::Address | SanitizerKind::KernelAddress))
762     Fn->addFnAttr(llvm::Attribute::SanitizeAddress);
763   if (SanOpts.hasOneOf(SanitizerKind::HWAddress | SanitizerKind::KernelHWAddress))
764     Fn->addFnAttr(llvm::Attribute::SanitizeHWAddress);
765   if (SanOpts.has(SanitizerKind::MemTag))
766     Fn->addFnAttr(llvm::Attribute::SanitizeMemTag);
767   if (SanOpts.has(SanitizerKind::Thread))
768     Fn->addFnAttr(llvm::Attribute::SanitizeThread);
769   if (SanOpts.hasOneOf(SanitizerKind::Memory | SanitizerKind::KernelMemory))
770     Fn->addFnAttr(llvm::Attribute::SanitizeMemory);
771   if (SanOpts.has(SanitizerKind::SafeStack))
772     Fn->addFnAttr(llvm::Attribute::SafeStack);
773   if (SanOpts.has(SanitizerKind::ShadowCallStack))
774     Fn->addFnAttr(llvm::Attribute::ShadowCallStack);
775 
776   // Apply fuzzing attribute to the function.
777   if (SanOpts.hasOneOf(SanitizerKind::Fuzzer | SanitizerKind::FuzzerNoLink))
778     Fn->addFnAttr(llvm::Attribute::OptForFuzzing);
779 
780   // Ignore TSan memory acesses from within ObjC/ObjC++ dealloc, initialize,
781   // .cxx_destruct, __destroy_helper_block_ and all of their calees at run time.
782   if (SanOpts.has(SanitizerKind::Thread)) {
783     if (const auto *OMD = dyn_cast_or_null<ObjCMethodDecl>(D)) {
784       IdentifierInfo *II = OMD->getSelector().getIdentifierInfoForSlot(0);
785       if (OMD->getMethodFamily() == OMF_dealloc ||
786           OMD->getMethodFamily() == OMF_initialize ||
787           (OMD->getSelector().isUnarySelector() && II->isStr(".cxx_destruct"))) {
788         markAsIgnoreThreadCheckingAtRuntime(Fn);
789       }
790     }
791   }
792 
793   // Ignore unrelated casts in STL allocate() since the allocator must cast
794   // from void* to T* before object initialization completes. Don't match on the
795   // namespace because not all allocators are in std::
796   if (D && SanOpts.has(SanitizerKind::CFIUnrelatedCast)) {
797     if (matchesStlAllocatorFn(D, getContext()))
798       SanOpts.Mask &= ~SanitizerKind::CFIUnrelatedCast;
799   }
800 
801   // Ignore null checks in coroutine functions since the coroutines passes
802   // are not aware of how to move the extra UBSan instructions across the split
803   // coroutine boundaries.
804   if (D && SanOpts.has(SanitizerKind::Null))
805     if (FD && FD->getBody() &&
806         FD->getBody()->getStmtClass() == Stmt::CoroutineBodyStmtClass)
807       SanOpts.Mask &= ~SanitizerKind::Null;
808 
809   // Apply xray attributes to the function (as a string, for now)
810   bool AlwaysXRayAttr = false;
811   if (const auto *XRayAttr = D ? D->getAttr<XRayInstrumentAttr>() : nullptr) {
812     if (CGM.getCodeGenOpts().XRayInstrumentationBundle.has(
813             XRayInstrKind::FunctionEntry) ||
814         CGM.getCodeGenOpts().XRayInstrumentationBundle.has(
815             XRayInstrKind::FunctionExit)) {
816       if (XRayAttr->alwaysXRayInstrument() && ShouldXRayInstrumentFunction()) {
817         Fn->addFnAttr("function-instrument", "xray-always");
818         AlwaysXRayAttr = true;
819       }
820       if (XRayAttr->neverXRayInstrument())
821         Fn->addFnAttr("function-instrument", "xray-never");
822       if (const auto *LogArgs = D->getAttr<XRayLogArgsAttr>())
823         if (ShouldXRayInstrumentFunction())
824           Fn->addFnAttr("xray-log-args",
825                         llvm::utostr(LogArgs->getArgumentCount()));
826     }
827   } else {
828     if (ShouldXRayInstrumentFunction() && !CGM.imbueXRayAttrs(Fn, Loc))
829       Fn->addFnAttr(
830           "xray-instruction-threshold",
831           llvm::itostr(CGM.getCodeGenOpts().XRayInstructionThreshold));
832   }
833 
834   if (ShouldXRayInstrumentFunction()) {
835     if (CGM.getCodeGenOpts().XRayIgnoreLoops)
836       Fn->addFnAttr("xray-ignore-loops");
837 
838     if (!CGM.getCodeGenOpts().XRayInstrumentationBundle.has(
839             XRayInstrKind::FunctionExit))
840       Fn->addFnAttr("xray-skip-exit");
841 
842     if (!CGM.getCodeGenOpts().XRayInstrumentationBundle.has(
843             XRayInstrKind::FunctionEntry))
844       Fn->addFnAttr("xray-skip-entry");
845 
846     auto FuncGroups = CGM.getCodeGenOpts().XRayTotalFunctionGroups;
847     if (FuncGroups > 1) {
848       auto FuncName = llvm::makeArrayRef<uint8_t>(
849           CurFn->getName().bytes_begin(), CurFn->getName().bytes_end());
850       auto Group = crc32(FuncName) % FuncGroups;
851       if (Group != CGM.getCodeGenOpts().XRaySelectedFunctionGroup &&
852           !AlwaysXRayAttr)
853         Fn->addFnAttr("function-instrument", "xray-never");
854     }
855   }
856 
857   if (CGM.getCodeGenOpts().getProfileInstr() != CodeGenOptions::ProfileNone)
858     if (CGM.isProfileInstrExcluded(Fn, Loc))
859       Fn->addFnAttr(llvm::Attribute::NoProfile);
860 
861   unsigned Count, Offset;
862   if (const auto *Attr =
863           D ? D->getAttr<PatchableFunctionEntryAttr>() : nullptr) {
864     Count = Attr->getCount();
865     Offset = Attr->getOffset();
866   } else {
867     Count = CGM.getCodeGenOpts().PatchableFunctionEntryCount;
868     Offset = CGM.getCodeGenOpts().PatchableFunctionEntryOffset;
869   }
870   if (Count && Offset <= Count) {
871     Fn->addFnAttr("patchable-function-entry", std::to_string(Count - Offset));
872     if (Offset)
873       Fn->addFnAttr("patchable-function-prefix", std::to_string(Offset));
874   }
875 
876   // Add no-jump-tables value.
877   if (CGM.getCodeGenOpts().NoUseJumpTables)
878     Fn->addFnAttr("no-jump-tables", "true");
879 
880   // Add no-inline-line-tables value.
881   if (CGM.getCodeGenOpts().NoInlineLineTables)
882     Fn->addFnAttr("no-inline-line-tables");
883 
884   // Add profile-sample-accurate value.
885   if (CGM.getCodeGenOpts().ProfileSampleAccurate)
886     Fn->addFnAttr("profile-sample-accurate");
887 
888   if (!CGM.getCodeGenOpts().SampleProfileFile.empty())
889     Fn->addFnAttr("use-sample-profile");
890 
891   if (D && D->hasAttr<CFICanonicalJumpTableAttr>())
892     Fn->addFnAttr("cfi-canonical-jump-table");
893 
894   if (D && D->hasAttr<NoProfileFunctionAttr>())
895     Fn->addFnAttr(llvm::Attribute::NoProfile);
896 
897   if (FD && getLangOpts().OpenCL) {
898     // Add metadata for a kernel function.
899     EmitOpenCLKernelMetadata(FD, Fn);
900   }
901 
902   // If we are checking function types, emit a function type signature as
903   // prologue data.
904   if (FD && getLangOpts().CPlusPlus && SanOpts.has(SanitizerKind::Function)) {
905     if (llvm::Constant *PrologueSig = getPrologueSignature(CGM, FD)) {
906       // Remove any (C++17) exception specifications, to allow calling e.g. a
907       // noexcept function through a non-noexcept pointer.
908       auto ProtoTy = getContext().getFunctionTypeWithExceptionSpec(
909           FD->getType(), EST_None);
910       llvm::Constant *FTRTTIConst =
911           CGM.GetAddrOfRTTIDescriptor(ProtoTy, /*ForEH=*/true);
912       llvm::Constant *FTRTTIConstEncoded =
913           EncodeAddrForUseInPrologue(Fn, FTRTTIConst);
914       llvm::Constant *PrologueStructElems[] = {PrologueSig, FTRTTIConstEncoded};
915       llvm::Constant *PrologueStructConst =
916           llvm::ConstantStruct::getAnon(PrologueStructElems, /*Packed=*/true);
917       Fn->setPrologueData(PrologueStructConst);
918     }
919   }
920 
921   // If we're checking nullability, we need to know whether we can check the
922   // return value. Initialize the flag to 'true' and refine it in EmitParmDecl.
923   if (SanOpts.has(SanitizerKind::NullabilityReturn)) {
924     auto Nullability = FnRetTy->getNullability(getContext());
925     if (Nullability && *Nullability == NullabilityKind::NonNull) {
926       if (!(SanOpts.has(SanitizerKind::ReturnsNonnullAttribute) &&
927             CurCodeDecl && CurCodeDecl->getAttr<ReturnsNonNullAttr>()))
928         RetValNullabilityPrecondition =
929             llvm::ConstantInt::getTrue(getLLVMContext());
930     }
931   }
932 
933   // If we're in C++ mode and the function name is "main", it is guaranteed
934   // to be norecurse by the standard (3.6.1.3 "The function main shall not be
935   // used within a program").
936   //
937   // OpenCL C 2.0 v2.2-11 s6.9.i:
938   //     Recursion is not supported.
939   //
940   // SYCL v1.2.1 s3.10:
941   //     kernels cannot include RTTI information, exception classes,
942   //     recursive code, virtual functions or make use of C++ libraries that
943   //     are not compiled for the device.
944   if (FD && ((getLangOpts().CPlusPlus && FD->isMain()) ||
945              getLangOpts().OpenCL || getLangOpts().SYCLIsDevice ||
946              (getLangOpts().CUDA && FD->hasAttr<CUDAGlobalAttr>())))
947     Fn->addFnAttr(llvm::Attribute::NoRecurse);
948 
949   llvm::RoundingMode RM = getLangOpts().getFPRoundingMode();
950   llvm::fp::ExceptionBehavior FPExceptionBehavior =
951       ToConstrainedExceptMD(getLangOpts().getFPExceptionMode());
952   Builder.setDefaultConstrainedRounding(RM);
953   Builder.setDefaultConstrainedExcept(FPExceptionBehavior);
954   if ((FD && (FD->UsesFPIntrin() || FD->hasAttr<StrictFPAttr>())) ||
955       (!FD && (FPExceptionBehavior != llvm::fp::ebIgnore ||
956                RM != llvm::RoundingMode::NearestTiesToEven))) {
957     Builder.setIsFPConstrained(true);
958     Fn->addFnAttr(llvm::Attribute::StrictFP);
959   }
960 
961   // If a custom alignment is used, force realigning to this alignment on
962   // any main function which certainly will need it.
963   if (FD && ((FD->isMain() || FD->isMSVCRTEntryPoint()) &&
964              CGM.getCodeGenOpts().StackAlignment))
965     Fn->addFnAttr("stackrealign");
966 
967   llvm::BasicBlock *EntryBB = createBasicBlock("entry", CurFn);
968 
969   // Create a marker to make it easy to insert allocas into the entryblock
970   // later.  Don't create this with the builder, because we don't want it
971   // folded.
972   llvm::Value *Undef = llvm::UndefValue::get(Int32Ty);
973   AllocaInsertPt = new llvm::BitCastInst(Undef, Int32Ty, "allocapt", EntryBB);
974 
975   ReturnBlock = getJumpDestInCurrentScope("return");
976 
977   Builder.SetInsertPoint(EntryBB);
978 
979   // If we're checking the return value, allocate space for a pointer to a
980   // precise source location of the checked return statement.
981   if (requiresReturnValueCheck()) {
982     ReturnLocation = CreateDefaultAlignTempAlloca(Int8PtrTy, "return.sloc.ptr");
983     InitTempAlloca(ReturnLocation, llvm::ConstantPointerNull::get(Int8PtrTy));
984   }
985 
986   // Emit subprogram debug descriptor.
987   if (CGDebugInfo *DI = getDebugInfo()) {
988     // Reconstruct the type from the argument list so that implicit parameters,
989     // such as 'this' and 'vtt', show up in the debug info. Preserve the calling
990     // convention.
991     CallingConv CC = CallingConv::CC_C;
992     if (FD)
993       if (const auto *SrcFnTy = FD->getType()->getAs<FunctionType>())
994         CC = SrcFnTy->getCallConv();
995     SmallVector<QualType, 16> ArgTypes;
996     for (const VarDecl *VD : Args)
997       ArgTypes.push_back(VD->getType());
998     QualType FnType = getContext().getFunctionType(
999         RetTy, ArgTypes, FunctionProtoType::ExtProtoInfo(CC));
1000     DI->emitFunctionStart(GD, Loc, StartLoc, FnType, CurFn, CurFuncIsThunk);
1001   }
1002 
1003   if (ShouldInstrumentFunction()) {
1004     if (CGM.getCodeGenOpts().InstrumentFunctions)
1005       CurFn->addFnAttr("instrument-function-entry", "__cyg_profile_func_enter");
1006     if (CGM.getCodeGenOpts().InstrumentFunctionsAfterInlining)
1007       CurFn->addFnAttr("instrument-function-entry-inlined",
1008                        "__cyg_profile_func_enter");
1009     if (CGM.getCodeGenOpts().InstrumentFunctionEntryBare)
1010       CurFn->addFnAttr("instrument-function-entry-inlined",
1011                        "__cyg_profile_func_enter_bare");
1012   }
1013 
1014   // Since emitting the mcount call here impacts optimizations such as function
1015   // inlining, we just add an attribute to insert a mcount call in backend.
1016   // The attribute "counting-function" is set to mcount function name which is
1017   // architecture dependent.
1018   if (CGM.getCodeGenOpts().InstrumentForProfiling) {
1019     // Calls to fentry/mcount should not be generated if function has
1020     // the no_instrument_function attribute.
1021     if (!CurFuncDecl || !CurFuncDecl->hasAttr<NoInstrumentFunctionAttr>()) {
1022       if (CGM.getCodeGenOpts().CallFEntry)
1023         Fn->addFnAttr("fentry-call", "true");
1024       else {
1025         Fn->addFnAttr("instrument-function-entry-inlined",
1026                       getTarget().getMCountName());
1027       }
1028       if (CGM.getCodeGenOpts().MNopMCount) {
1029         if (!CGM.getCodeGenOpts().CallFEntry)
1030           CGM.getDiags().Report(diag::err_opt_not_valid_without_opt)
1031             << "-mnop-mcount" << "-mfentry";
1032         Fn->addFnAttr("mnop-mcount");
1033       }
1034 
1035       if (CGM.getCodeGenOpts().RecordMCount) {
1036         if (!CGM.getCodeGenOpts().CallFEntry)
1037           CGM.getDiags().Report(diag::err_opt_not_valid_without_opt)
1038             << "-mrecord-mcount" << "-mfentry";
1039         Fn->addFnAttr("mrecord-mcount");
1040       }
1041     }
1042   }
1043 
1044   if (CGM.getCodeGenOpts().PackedStack) {
1045     if (getContext().getTargetInfo().getTriple().getArch() !=
1046         llvm::Triple::systemz)
1047       CGM.getDiags().Report(diag::err_opt_not_valid_on_target)
1048         << "-mpacked-stack";
1049     Fn->addFnAttr("packed-stack");
1050   }
1051 
1052   if (CGM.getCodeGenOpts().WarnStackSize != UINT_MAX &&
1053       !CGM.getDiags().isIgnored(diag::warn_fe_backend_frame_larger_than, Loc))
1054     Fn->addFnAttr("warn-stack-size",
1055                   std::to_string(CGM.getCodeGenOpts().WarnStackSize));
1056 
1057   if (RetTy->isVoidType()) {
1058     // Void type; nothing to return.
1059     ReturnValue = Address::invalid();
1060 
1061     // Count the implicit return.
1062     if (!endsWithReturn(D))
1063       ++NumReturnExprs;
1064   } else if (CurFnInfo->getReturnInfo().getKind() == ABIArgInfo::Indirect) {
1065     // Indirect return; emit returned value directly into sret slot.
1066     // This reduces code size, and affects correctness in C++.
1067     auto AI = CurFn->arg_begin();
1068     if (CurFnInfo->getReturnInfo().isSRetAfterThis())
1069       ++AI;
1070     ReturnValue = Address(&*AI, CurFnInfo->getReturnInfo().getIndirectAlign());
1071     if (!CurFnInfo->getReturnInfo().getIndirectByVal()) {
1072       ReturnValuePointer =
1073           CreateDefaultAlignTempAlloca(Int8PtrTy, "result.ptr");
1074       Builder.CreateStore(Builder.CreatePointerBitCastOrAddrSpaceCast(
1075                               ReturnValue.getPointer(), Int8PtrTy),
1076                           ReturnValuePointer);
1077     }
1078   } else if (CurFnInfo->getReturnInfo().getKind() == ABIArgInfo::InAlloca &&
1079              !hasScalarEvaluationKind(CurFnInfo->getReturnType())) {
1080     // Load the sret pointer from the argument struct and return into that.
1081     unsigned Idx = CurFnInfo->getReturnInfo().getInAllocaFieldIndex();
1082     llvm::Function::arg_iterator EI = CurFn->arg_end();
1083     --EI;
1084     llvm::Value *Addr = Builder.CreateStructGEP(
1085         EI->getType()->getPointerElementType(), &*EI, Idx);
1086     llvm::Type *Ty =
1087         cast<llvm::GetElementPtrInst>(Addr)->getResultElementType();
1088     ReturnValuePointer = Address(Addr, getPointerAlign());
1089     Addr = Builder.CreateAlignedLoad(Ty, Addr, getPointerAlign(), "agg.result");
1090     ReturnValue = Address(Addr, CGM.getNaturalTypeAlignment(RetTy));
1091   } else {
1092     ReturnValue = CreateIRTemp(RetTy, "retval");
1093 
1094     // Tell the epilog emitter to autorelease the result.  We do this
1095     // now so that various specialized functions can suppress it
1096     // during their IR-generation.
1097     if (getLangOpts().ObjCAutoRefCount &&
1098         !CurFnInfo->isReturnsRetained() &&
1099         RetTy->isObjCRetainableType())
1100       AutoreleaseResult = true;
1101   }
1102 
1103   EmitStartEHSpec(CurCodeDecl);
1104 
1105   PrologueCleanupDepth = EHStack.stable_begin();
1106 
1107   // Emit OpenMP specific initialization of the device functions.
1108   if (getLangOpts().OpenMP && CurCodeDecl)
1109     CGM.getOpenMPRuntime().emitFunctionProlog(*this, CurCodeDecl);
1110 
1111   EmitFunctionProlog(*CurFnInfo, CurFn, Args);
1112 
1113   if (D && isa<CXXMethodDecl>(D) && cast<CXXMethodDecl>(D)->isInstance()) {
1114     CGM.getCXXABI().EmitInstanceFunctionProlog(*this);
1115     const CXXMethodDecl *MD = cast<CXXMethodDecl>(D);
1116     if (MD->getParent()->isLambda() &&
1117         MD->getOverloadedOperator() == OO_Call) {
1118       // We're in a lambda; figure out the captures.
1119       MD->getParent()->getCaptureFields(LambdaCaptureFields,
1120                                         LambdaThisCaptureField);
1121       if (LambdaThisCaptureField) {
1122         // If the lambda captures the object referred to by '*this' - either by
1123         // value or by reference, make sure CXXThisValue points to the correct
1124         // object.
1125 
1126         // Get the lvalue for the field (which is a copy of the enclosing object
1127         // or contains the address of the enclosing object).
1128         LValue ThisFieldLValue = EmitLValueForLambdaField(LambdaThisCaptureField);
1129         if (!LambdaThisCaptureField->getType()->isPointerType()) {
1130           // If the enclosing object was captured by value, just use its address.
1131           CXXThisValue = ThisFieldLValue.getAddress(*this).getPointer();
1132         } else {
1133           // Load the lvalue pointed to by the field, since '*this' was captured
1134           // by reference.
1135           CXXThisValue =
1136               EmitLoadOfLValue(ThisFieldLValue, SourceLocation()).getScalarVal();
1137         }
1138       }
1139       for (auto *FD : MD->getParent()->fields()) {
1140         if (FD->hasCapturedVLAType()) {
1141           auto *ExprArg = EmitLoadOfLValue(EmitLValueForLambdaField(FD),
1142                                            SourceLocation()).getScalarVal();
1143           auto VAT = FD->getCapturedVLAType();
1144           VLASizeMap[VAT->getSizeExpr()] = ExprArg;
1145         }
1146       }
1147     } else {
1148       // Not in a lambda; just use 'this' from the method.
1149       // FIXME: Should we generate a new load for each use of 'this'?  The
1150       // fast register allocator would be happier...
1151       CXXThisValue = CXXABIThisValue;
1152     }
1153 
1154     // Check the 'this' pointer once per function, if it's available.
1155     if (CXXABIThisValue) {
1156       SanitizerSet SkippedChecks;
1157       SkippedChecks.set(SanitizerKind::ObjectSize, true);
1158       QualType ThisTy = MD->getThisType();
1159 
1160       // If this is the call operator of a lambda with no capture-default, it
1161       // may have a static invoker function, which may call this operator with
1162       // a null 'this' pointer.
1163       if (isLambdaCallOperator(MD) &&
1164           MD->getParent()->getLambdaCaptureDefault() == LCD_None)
1165         SkippedChecks.set(SanitizerKind::Null, true);
1166 
1167       EmitTypeCheck(
1168           isa<CXXConstructorDecl>(MD) ? TCK_ConstructorCall : TCK_MemberCall,
1169           Loc, CXXABIThisValue, ThisTy, CXXABIThisAlignment, SkippedChecks);
1170     }
1171   }
1172 
1173   // If any of the arguments have a variably modified type, make sure to
1174   // emit the type size.
1175   for (FunctionArgList::const_iterator i = Args.begin(), e = Args.end();
1176        i != e; ++i) {
1177     const VarDecl *VD = *i;
1178 
1179     // Dig out the type as written from ParmVarDecls; it's unclear whether
1180     // the standard (C99 6.9.1p10) requires this, but we're following the
1181     // precedent set by gcc.
1182     QualType Ty;
1183     if (const ParmVarDecl *PVD = dyn_cast<ParmVarDecl>(VD))
1184       Ty = PVD->getOriginalType();
1185     else
1186       Ty = VD->getType();
1187 
1188     if (Ty->isVariablyModifiedType())
1189       EmitVariablyModifiedType(Ty);
1190   }
1191   // Emit a location at the end of the prologue.
1192   if (CGDebugInfo *DI = getDebugInfo())
1193     DI->EmitLocation(Builder, StartLoc);
1194 
1195   // TODO: Do we need to handle this in two places like we do with
1196   // target-features/target-cpu?
1197   if (CurFuncDecl)
1198     if (const auto *VecWidth = CurFuncDecl->getAttr<MinVectorWidthAttr>())
1199       LargestVectorWidth = VecWidth->getVectorWidth();
1200 }
1201 
1202 void CodeGenFunction::EmitFunctionBody(const Stmt *Body) {
1203   incrementProfileCounter(Body);
1204   if (const CompoundStmt *S = dyn_cast<CompoundStmt>(Body))
1205     EmitCompoundStmtWithoutScope(*S);
1206   else
1207     EmitStmt(Body);
1208 
1209   // This is checked after emitting the function body so we know if there
1210   // are any permitted infinite loops.
1211   if (checkIfFunctionMustProgress())
1212     CurFn->addFnAttr(llvm::Attribute::MustProgress);
1213 }
1214 
1215 /// When instrumenting to collect profile data, the counts for some blocks
1216 /// such as switch cases need to not include the fall-through counts, so
1217 /// emit a branch around the instrumentation code. When not instrumenting,
1218 /// this just calls EmitBlock().
1219 void CodeGenFunction::EmitBlockWithFallThrough(llvm::BasicBlock *BB,
1220                                                const Stmt *S) {
1221   llvm::BasicBlock *SkipCountBB = nullptr;
1222   if (HaveInsertPoint() && CGM.getCodeGenOpts().hasProfileClangInstr()) {
1223     // When instrumenting for profiling, the fallthrough to certain
1224     // statements needs to skip over the instrumentation code so that we
1225     // get an accurate count.
1226     SkipCountBB = createBasicBlock("skipcount");
1227     EmitBranch(SkipCountBB);
1228   }
1229   EmitBlock(BB);
1230   uint64_t CurrentCount = getCurrentProfileCount();
1231   incrementProfileCounter(S);
1232   setCurrentProfileCount(getCurrentProfileCount() + CurrentCount);
1233   if (SkipCountBB)
1234     EmitBlock(SkipCountBB);
1235 }
1236 
1237 /// Tries to mark the given function nounwind based on the
1238 /// non-existence of any throwing calls within it.  We believe this is
1239 /// lightweight enough to do at -O0.
1240 static void TryMarkNoThrow(llvm::Function *F) {
1241   // LLVM treats 'nounwind' on a function as part of the type, so we
1242   // can't do this on functions that can be overwritten.
1243   if (F->isInterposable()) return;
1244 
1245   for (llvm::BasicBlock &BB : *F)
1246     for (llvm::Instruction &I : BB)
1247       if (I.mayThrow())
1248         return;
1249 
1250   F->setDoesNotThrow();
1251 }
1252 
1253 QualType CodeGenFunction::BuildFunctionArgList(GlobalDecl GD,
1254                                                FunctionArgList &Args) {
1255   const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
1256   QualType ResTy = FD->getReturnType();
1257 
1258   const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD);
1259   if (MD && MD->isInstance()) {
1260     if (CGM.getCXXABI().HasThisReturn(GD))
1261       ResTy = MD->getThisType();
1262     else if (CGM.getCXXABI().hasMostDerivedReturn(GD))
1263       ResTy = CGM.getContext().VoidPtrTy;
1264     CGM.getCXXABI().buildThisParam(*this, Args);
1265   }
1266 
1267   // The base version of an inheriting constructor whose constructed base is a
1268   // virtual base is not passed any arguments (because it doesn't actually call
1269   // the inherited constructor).
1270   bool PassedParams = true;
1271   if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(FD))
1272     if (auto Inherited = CD->getInheritedConstructor())
1273       PassedParams =
1274           getTypes().inheritingCtorHasParams(Inherited, GD.getCtorType());
1275 
1276   if (PassedParams) {
1277     for (auto *Param : FD->parameters()) {
1278       Args.push_back(Param);
1279       if (!Param->hasAttr<PassObjectSizeAttr>())
1280         continue;
1281 
1282       auto *Implicit = ImplicitParamDecl::Create(
1283           getContext(), Param->getDeclContext(), Param->getLocation(),
1284           /*Id=*/nullptr, getContext().getSizeType(), ImplicitParamDecl::Other);
1285       SizeArguments[Param] = Implicit;
1286       Args.push_back(Implicit);
1287     }
1288   }
1289 
1290   if (MD && (isa<CXXConstructorDecl>(MD) || isa<CXXDestructorDecl>(MD)))
1291     CGM.getCXXABI().addImplicitStructorParams(*this, ResTy, Args);
1292 
1293   return ResTy;
1294 }
1295 
1296 void CodeGenFunction::GenerateCode(GlobalDecl GD, llvm::Function *Fn,
1297                                    const CGFunctionInfo &FnInfo) {
1298   const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
1299   CurGD = GD;
1300 
1301   FunctionArgList Args;
1302   QualType ResTy = BuildFunctionArgList(GD, Args);
1303 
1304   // Give a different name to inline builtin to avoid conflict with actual
1305   // builtins.
1306   if (FD->isInlineBuiltinDeclaration() && Fn)
1307     Fn->setName(Fn->getName() + ".inline");
1308 
1309   // Check if we should generate debug info for this function.
1310   if (FD->hasAttr<NoDebugAttr>()) {
1311     // Clear non-distinct debug info that was possibly attached to the function
1312     // due to an earlier declaration without the nodebug attribute
1313     if (Fn)
1314       Fn->setSubprogram(nullptr);
1315     // Disable debug info indefinitely for this function
1316     DebugInfo = nullptr;
1317   }
1318 
1319   // The function might not have a body if we're generating thunks for a
1320   // function declaration.
1321   SourceRange BodyRange;
1322   if (Stmt *Body = FD->getBody())
1323     BodyRange = Body->getSourceRange();
1324   else
1325     BodyRange = FD->getLocation();
1326   CurEHLocation = BodyRange.getEnd();
1327 
1328   // Use the location of the start of the function to determine where
1329   // the function definition is located. By default use the location
1330   // of the declaration as the location for the subprogram. A function
1331   // may lack a declaration in the source code if it is created by code
1332   // gen. (examples: _GLOBAL__I_a, __cxx_global_array_dtor, thunk).
1333   SourceLocation Loc = FD->getLocation();
1334 
1335   // If this is a function specialization then use the pattern body
1336   // as the location for the function.
1337   if (const FunctionDecl *SpecDecl = FD->getTemplateInstantiationPattern())
1338     if (SpecDecl->hasBody(SpecDecl))
1339       Loc = SpecDecl->getLocation();
1340 
1341   Stmt *Body = FD->getBody();
1342 
1343   if (Body) {
1344     // Coroutines always emit lifetime markers.
1345     if (isa<CoroutineBodyStmt>(Body))
1346       ShouldEmitLifetimeMarkers = true;
1347 
1348     // Initialize helper which will detect jumps which can cause invalid
1349     // lifetime markers.
1350     if (ShouldEmitLifetimeMarkers)
1351       Bypasses.Init(Body);
1352   }
1353 
1354   // Emit the standard function prologue.
1355   StartFunction(GD, ResTy, Fn, FnInfo, Args, Loc, BodyRange.getBegin());
1356 
1357   // Save parameters for coroutine function.
1358   if (Body && isa_and_nonnull<CoroutineBodyStmt>(Body))
1359     for (const auto *ParamDecl : FD->parameters())
1360       FnArgs.push_back(ParamDecl);
1361 
1362   // Generate the body of the function.
1363   PGO.assignRegionCounters(GD, CurFn);
1364   if (isa<CXXDestructorDecl>(FD))
1365     EmitDestructorBody(Args);
1366   else if (isa<CXXConstructorDecl>(FD))
1367     EmitConstructorBody(Args);
1368   else if (getLangOpts().CUDA &&
1369            !getLangOpts().CUDAIsDevice &&
1370            FD->hasAttr<CUDAGlobalAttr>())
1371     CGM.getCUDARuntime().emitDeviceStub(*this, Args);
1372   else if (isa<CXXMethodDecl>(FD) &&
1373            cast<CXXMethodDecl>(FD)->isLambdaStaticInvoker()) {
1374     // The lambda static invoker function is special, because it forwards or
1375     // clones the body of the function call operator (but is actually static).
1376     EmitLambdaStaticInvokeBody(cast<CXXMethodDecl>(FD));
1377   } else if (FD->isDefaulted() && isa<CXXMethodDecl>(FD) &&
1378              (cast<CXXMethodDecl>(FD)->isCopyAssignmentOperator() ||
1379               cast<CXXMethodDecl>(FD)->isMoveAssignmentOperator())) {
1380     // Implicit copy-assignment gets the same special treatment as implicit
1381     // copy-constructors.
1382     emitImplicitAssignmentOperatorBody(Args);
1383   } else if (Body) {
1384     EmitFunctionBody(Body);
1385   } else
1386     llvm_unreachable("no definition for emitted function");
1387 
1388   // C++11 [stmt.return]p2:
1389   //   Flowing off the end of a function [...] results in undefined behavior in
1390   //   a value-returning function.
1391   // C11 6.9.1p12:
1392   //   If the '}' that terminates a function is reached, and the value of the
1393   //   function call is used by the caller, the behavior is undefined.
1394   if (getLangOpts().CPlusPlus && !FD->hasImplicitReturnZero() && !SawAsmBlock &&
1395       !FD->getReturnType()->isVoidType() && Builder.GetInsertBlock()) {
1396     bool ShouldEmitUnreachable =
1397         CGM.getCodeGenOpts().StrictReturn ||
1398         !CGM.MayDropFunctionReturn(FD->getASTContext(), FD->getReturnType());
1399     if (SanOpts.has(SanitizerKind::Return)) {
1400       SanitizerScope SanScope(this);
1401       llvm::Value *IsFalse = Builder.getFalse();
1402       EmitCheck(std::make_pair(IsFalse, SanitizerKind::Return),
1403                 SanitizerHandler::MissingReturn,
1404                 EmitCheckSourceLocation(FD->getLocation()), None);
1405     } else if (ShouldEmitUnreachable) {
1406       if (CGM.getCodeGenOpts().OptimizationLevel == 0)
1407         EmitTrapCall(llvm::Intrinsic::trap);
1408     }
1409     if (SanOpts.has(SanitizerKind::Return) || ShouldEmitUnreachable) {
1410       Builder.CreateUnreachable();
1411       Builder.ClearInsertionPoint();
1412     }
1413   }
1414 
1415   // Emit the standard function epilogue.
1416   FinishFunction(BodyRange.getEnd());
1417 
1418   // If we haven't marked the function nothrow through other means, do
1419   // a quick pass now to see if we can.
1420   if (!CurFn->doesNotThrow())
1421     TryMarkNoThrow(CurFn);
1422 }
1423 
1424 /// ContainsLabel - Return true if the statement contains a label in it.  If
1425 /// this statement is not executed normally, it not containing a label means
1426 /// that we can just remove the code.
1427 bool CodeGenFunction::ContainsLabel(const Stmt *S, bool IgnoreCaseStmts) {
1428   // Null statement, not a label!
1429   if (!S) return false;
1430 
1431   // If this is a label, we have to emit the code, consider something like:
1432   // if (0) {  ...  foo:  bar(); }  goto foo;
1433   //
1434   // TODO: If anyone cared, we could track __label__'s, since we know that you
1435   // can't jump to one from outside their declared region.
1436   if (isa<LabelStmt>(S))
1437     return true;
1438 
1439   // If this is a case/default statement, and we haven't seen a switch, we have
1440   // to emit the code.
1441   if (isa<SwitchCase>(S) && !IgnoreCaseStmts)
1442     return true;
1443 
1444   // If this is a switch statement, we want to ignore cases below it.
1445   if (isa<SwitchStmt>(S))
1446     IgnoreCaseStmts = true;
1447 
1448   // Scan subexpressions for verboten labels.
1449   for (const Stmt *SubStmt : S->children())
1450     if (ContainsLabel(SubStmt, IgnoreCaseStmts))
1451       return true;
1452 
1453   return false;
1454 }
1455 
1456 /// containsBreak - Return true if the statement contains a break out of it.
1457 /// If the statement (recursively) contains a switch or loop with a break
1458 /// inside of it, this is fine.
1459 bool CodeGenFunction::containsBreak(const Stmt *S) {
1460   // Null statement, not a label!
1461   if (!S) return false;
1462 
1463   // If this is a switch or loop that defines its own break scope, then we can
1464   // include it and anything inside of it.
1465   if (isa<SwitchStmt>(S) || isa<WhileStmt>(S) || isa<DoStmt>(S) ||
1466       isa<ForStmt>(S))
1467     return false;
1468 
1469   if (isa<BreakStmt>(S))
1470     return true;
1471 
1472   // Scan subexpressions for verboten breaks.
1473   for (const Stmt *SubStmt : S->children())
1474     if (containsBreak(SubStmt))
1475       return true;
1476 
1477   return false;
1478 }
1479 
1480 bool CodeGenFunction::mightAddDeclToScope(const Stmt *S) {
1481   if (!S) return false;
1482 
1483   // Some statement kinds add a scope and thus never add a decl to the current
1484   // scope. Note, this list is longer than the list of statements that might
1485   // have an unscoped decl nested within them, but this way is conservatively
1486   // correct even if more statement kinds are added.
1487   if (isa<IfStmt>(S) || isa<SwitchStmt>(S) || isa<WhileStmt>(S) ||
1488       isa<DoStmt>(S) || isa<ForStmt>(S) || isa<CompoundStmt>(S) ||
1489       isa<CXXForRangeStmt>(S) || isa<CXXTryStmt>(S) ||
1490       isa<ObjCForCollectionStmt>(S) || isa<ObjCAtTryStmt>(S))
1491     return false;
1492 
1493   if (isa<DeclStmt>(S))
1494     return true;
1495 
1496   for (const Stmt *SubStmt : S->children())
1497     if (mightAddDeclToScope(SubStmt))
1498       return true;
1499 
1500   return false;
1501 }
1502 
1503 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold
1504 /// to a constant, or if it does but contains a label, return false.  If it
1505 /// constant folds return true and set the boolean result in Result.
1506 bool CodeGenFunction::ConstantFoldsToSimpleInteger(const Expr *Cond,
1507                                                    bool &ResultBool,
1508                                                    bool AllowLabels) {
1509   llvm::APSInt ResultInt;
1510   if (!ConstantFoldsToSimpleInteger(Cond, ResultInt, AllowLabels))
1511     return false;
1512 
1513   ResultBool = ResultInt.getBoolValue();
1514   return true;
1515 }
1516 
1517 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold
1518 /// to a constant, or if it does but contains a label, return false.  If it
1519 /// constant folds return true and set the folded value.
1520 bool CodeGenFunction::ConstantFoldsToSimpleInteger(const Expr *Cond,
1521                                                    llvm::APSInt &ResultInt,
1522                                                    bool AllowLabels) {
1523   // FIXME: Rename and handle conversion of other evaluatable things
1524   // to bool.
1525   Expr::EvalResult Result;
1526   if (!Cond->EvaluateAsInt(Result, getContext()))
1527     return false;  // Not foldable, not integer or not fully evaluatable.
1528 
1529   llvm::APSInt Int = Result.Val.getInt();
1530   if (!AllowLabels && CodeGenFunction::ContainsLabel(Cond))
1531     return false;  // Contains a label.
1532 
1533   ResultInt = Int;
1534   return true;
1535 }
1536 
1537 /// Determine whether the given condition is an instrumentable condition
1538 /// (i.e. no "&&" or "||").
1539 bool CodeGenFunction::isInstrumentedCondition(const Expr *C) {
1540   // Bypass simplistic logical-NOT operator before determining whether the
1541   // condition contains any other logical operator.
1542   if (const UnaryOperator *UnOp = dyn_cast<UnaryOperator>(C->IgnoreParens()))
1543     if (UnOp->getOpcode() == UO_LNot)
1544       C = UnOp->getSubExpr();
1545 
1546   const BinaryOperator *BOp = dyn_cast<BinaryOperator>(C->IgnoreParens());
1547   return (!BOp || !BOp->isLogicalOp());
1548 }
1549 
1550 /// EmitBranchToCounterBlock - Emit a conditional branch to a new block that
1551 /// increments a profile counter based on the semantics of the given logical
1552 /// operator opcode.  This is used to instrument branch condition coverage for
1553 /// logical operators.
1554 void CodeGenFunction::EmitBranchToCounterBlock(
1555     const Expr *Cond, BinaryOperator::Opcode LOp, llvm::BasicBlock *TrueBlock,
1556     llvm::BasicBlock *FalseBlock, uint64_t TrueCount /* = 0 */,
1557     Stmt::Likelihood LH /* =None */, const Expr *CntrIdx /* = nullptr */) {
1558   // If not instrumenting, just emit a branch.
1559   bool InstrumentRegions = CGM.getCodeGenOpts().hasProfileClangInstr();
1560   if (!InstrumentRegions || !isInstrumentedCondition(Cond))
1561     return EmitBranchOnBoolExpr(Cond, TrueBlock, FalseBlock, TrueCount, LH);
1562 
1563   llvm::BasicBlock *ThenBlock = NULL;
1564   llvm::BasicBlock *ElseBlock = NULL;
1565   llvm::BasicBlock *NextBlock = NULL;
1566 
1567   // Create the block we'll use to increment the appropriate counter.
1568   llvm::BasicBlock *CounterIncrBlock = createBasicBlock("lop.rhscnt");
1569 
1570   // Set block pointers according to Logical-AND (BO_LAnd) semantics. This
1571   // means we need to evaluate the condition and increment the counter on TRUE:
1572   //
1573   // if (Cond)
1574   //   goto CounterIncrBlock;
1575   // else
1576   //   goto FalseBlock;
1577   //
1578   // CounterIncrBlock:
1579   //   Counter++;
1580   //   goto TrueBlock;
1581 
1582   if (LOp == BO_LAnd) {
1583     ThenBlock = CounterIncrBlock;
1584     ElseBlock = FalseBlock;
1585     NextBlock = TrueBlock;
1586   }
1587 
1588   // Set block pointers according to Logical-OR (BO_LOr) semantics. This means
1589   // we need to evaluate the condition and increment the counter on FALSE:
1590   //
1591   // if (Cond)
1592   //   goto TrueBlock;
1593   // else
1594   //   goto CounterIncrBlock;
1595   //
1596   // CounterIncrBlock:
1597   //   Counter++;
1598   //   goto FalseBlock;
1599 
1600   else if (LOp == BO_LOr) {
1601     ThenBlock = TrueBlock;
1602     ElseBlock = CounterIncrBlock;
1603     NextBlock = FalseBlock;
1604   } else {
1605     llvm_unreachable("Expected Opcode must be that of a Logical Operator");
1606   }
1607 
1608   // Emit Branch based on condition.
1609   EmitBranchOnBoolExpr(Cond, ThenBlock, ElseBlock, TrueCount, LH);
1610 
1611   // Emit the block containing the counter increment(s).
1612   EmitBlock(CounterIncrBlock);
1613 
1614   // Increment corresponding counter; if index not provided, use Cond as index.
1615   incrementProfileCounter(CntrIdx ? CntrIdx : Cond);
1616 
1617   // Go to the next block.
1618   EmitBranch(NextBlock);
1619 }
1620 
1621 /// EmitBranchOnBoolExpr - Emit a branch on a boolean condition (e.g. for an if
1622 /// statement) to the specified blocks.  Based on the condition, this might try
1623 /// to simplify the codegen of the conditional based on the branch.
1624 /// \param LH The value of the likelihood attribute on the True branch.
1625 void CodeGenFunction::EmitBranchOnBoolExpr(const Expr *Cond,
1626                                            llvm::BasicBlock *TrueBlock,
1627                                            llvm::BasicBlock *FalseBlock,
1628                                            uint64_t TrueCount,
1629                                            Stmt::Likelihood LH) {
1630   Cond = Cond->IgnoreParens();
1631 
1632   if (const BinaryOperator *CondBOp = dyn_cast<BinaryOperator>(Cond)) {
1633 
1634     // Handle X && Y in a condition.
1635     if (CondBOp->getOpcode() == BO_LAnd) {
1636       // If we have "1 && X", simplify the code.  "0 && X" would have constant
1637       // folded if the case was simple enough.
1638       bool ConstantBool = false;
1639       if (ConstantFoldsToSimpleInteger(CondBOp->getLHS(), ConstantBool) &&
1640           ConstantBool) {
1641         // br(1 && X) -> br(X).
1642         incrementProfileCounter(CondBOp);
1643         return EmitBranchToCounterBlock(CondBOp->getRHS(), BO_LAnd, TrueBlock,
1644                                         FalseBlock, TrueCount, LH);
1645       }
1646 
1647       // If we have "X && 1", simplify the code to use an uncond branch.
1648       // "X && 0" would have been constant folded to 0.
1649       if (ConstantFoldsToSimpleInteger(CondBOp->getRHS(), ConstantBool) &&
1650           ConstantBool) {
1651         // br(X && 1) -> br(X).
1652         return EmitBranchToCounterBlock(CondBOp->getLHS(), BO_LAnd, TrueBlock,
1653                                         FalseBlock, TrueCount, LH, CondBOp);
1654       }
1655 
1656       // Emit the LHS as a conditional.  If the LHS conditional is false, we
1657       // want to jump to the FalseBlock.
1658       llvm::BasicBlock *LHSTrue = createBasicBlock("land.lhs.true");
1659       // The counter tells us how often we evaluate RHS, and all of TrueCount
1660       // can be propagated to that branch.
1661       uint64_t RHSCount = getProfileCount(CondBOp->getRHS());
1662 
1663       ConditionalEvaluation eval(*this);
1664       {
1665         ApplyDebugLocation DL(*this, Cond);
1666         // Propagate the likelihood attribute like __builtin_expect
1667         // __builtin_expect(X && Y, 1) -> X and Y are likely
1668         // __builtin_expect(X && Y, 0) -> only Y is unlikely
1669         EmitBranchOnBoolExpr(CondBOp->getLHS(), LHSTrue, FalseBlock, RHSCount,
1670                              LH == Stmt::LH_Unlikely ? Stmt::LH_None : LH);
1671         EmitBlock(LHSTrue);
1672       }
1673 
1674       incrementProfileCounter(CondBOp);
1675       setCurrentProfileCount(getProfileCount(CondBOp->getRHS()));
1676 
1677       // Any temporaries created here are conditional.
1678       eval.begin(*this);
1679       EmitBranchToCounterBlock(CondBOp->getRHS(), BO_LAnd, TrueBlock,
1680                                FalseBlock, TrueCount, LH);
1681       eval.end(*this);
1682 
1683       return;
1684     }
1685 
1686     if (CondBOp->getOpcode() == BO_LOr) {
1687       // If we have "0 || X", simplify the code.  "1 || X" would have constant
1688       // folded if the case was simple enough.
1689       bool ConstantBool = false;
1690       if (ConstantFoldsToSimpleInteger(CondBOp->getLHS(), ConstantBool) &&
1691           !ConstantBool) {
1692         // br(0 || X) -> br(X).
1693         incrementProfileCounter(CondBOp);
1694         return EmitBranchToCounterBlock(CondBOp->getRHS(), BO_LOr, TrueBlock,
1695                                         FalseBlock, TrueCount, LH);
1696       }
1697 
1698       // If we have "X || 0", simplify the code to use an uncond branch.
1699       // "X || 1" would have been constant folded to 1.
1700       if (ConstantFoldsToSimpleInteger(CondBOp->getRHS(), ConstantBool) &&
1701           !ConstantBool) {
1702         // br(X || 0) -> br(X).
1703         return EmitBranchToCounterBlock(CondBOp->getLHS(), BO_LOr, TrueBlock,
1704                                         FalseBlock, TrueCount, LH, CondBOp);
1705       }
1706 
1707       // Emit the LHS as a conditional.  If the LHS conditional is true, we
1708       // want to jump to the TrueBlock.
1709       llvm::BasicBlock *LHSFalse = createBasicBlock("lor.lhs.false");
1710       // We have the count for entry to the RHS and for the whole expression
1711       // being true, so we can divy up True count between the short circuit and
1712       // the RHS.
1713       uint64_t LHSCount =
1714           getCurrentProfileCount() - getProfileCount(CondBOp->getRHS());
1715       uint64_t RHSCount = TrueCount - LHSCount;
1716 
1717       ConditionalEvaluation eval(*this);
1718       {
1719         // Propagate the likelihood attribute like __builtin_expect
1720         // __builtin_expect(X || Y, 1) -> only Y is likely
1721         // __builtin_expect(X || Y, 0) -> both X and Y are unlikely
1722         ApplyDebugLocation DL(*this, Cond);
1723         EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, LHSFalse, LHSCount,
1724                              LH == Stmt::LH_Likely ? Stmt::LH_None : LH);
1725         EmitBlock(LHSFalse);
1726       }
1727 
1728       incrementProfileCounter(CondBOp);
1729       setCurrentProfileCount(getProfileCount(CondBOp->getRHS()));
1730 
1731       // Any temporaries created here are conditional.
1732       eval.begin(*this);
1733       EmitBranchToCounterBlock(CondBOp->getRHS(), BO_LOr, TrueBlock, FalseBlock,
1734                                RHSCount, LH);
1735 
1736       eval.end(*this);
1737 
1738       return;
1739     }
1740   }
1741 
1742   if (const UnaryOperator *CondUOp = dyn_cast<UnaryOperator>(Cond)) {
1743     // br(!x, t, f) -> br(x, f, t)
1744     if (CondUOp->getOpcode() == UO_LNot) {
1745       // Negate the count.
1746       uint64_t FalseCount = getCurrentProfileCount() - TrueCount;
1747       // The values of the enum are chosen to make this negation possible.
1748       LH = static_cast<Stmt::Likelihood>(-LH);
1749       // Negate the condition and swap the destination blocks.
1750       return EmitBranchOnBoolExpr(CondUOp->getSubExpr(), FalseBlock, TrueBlock,
1751                                   FalseCount, LH);
1752     }
1753   }
1754 
1755   if (const ConditionalOperator *CondOp = dyn_cast<ConditionalOperator>(Cond)) {
1756     // br(c ? x : y, t, f) -> br(c, br(x, t, f), br(y, t, f))
1757     llvm::BasicBlock *LHSBlock = createBasicBlock("cond.true");
1758     llvm::BasicBlock *RHSBlock = createBasicBlock("cond.false");
1759 
1760     // The ConditionalOperator itself has no likelihood information for its
1761     // true and false branches. This matches the behavior of __builtin_expect.
1762     ConditionalEvaluation cond(*this);
1763     EmitBranchOnBoolExpr(CondOp->getCond(), LHSBlock, RHSBlock,
1764                          getProfileCount(CondOp), Stmt::LH_None);
1765 
1766     // When computing PGO branch weights, we only know the overall count for
1767     // the true block. This code is essentially doing tail duplication of the
1768     // naive code-gen, introducing new edges for which counts are not
1769     // available. Divide the counts proportionally between the LHS and RHS of
1770     // the conditional operator.
1771     uint64_t LHSScaledTrueCount = 0;
1772     if (TrueCount) {
1773       double LHSRatio =
1774           getProfileCount(CondOp) / (double)getCurrentProfileCount();
1775       LHSScaledTrueCount = TrueCount * LHSRatio;
1776     }
1777 
1778     cond.begin(*this);
1779     EmitBlock(LHSBlock);
1780     incrementProfileCounter(CondOp);
1781     {
1782       ApplyDebugLocation DL(*this, Cond);
1783       EmitBranchOnBoolExpr(CondOp->getLHS(), TrueBlock, FalseBlock,
1784                            LHSScaledTrueCount, LH);
1785     }
1786     cond.end(*this);
1787 
1788     cond.begin(*this);
1789     EmitBlock(RHSBlock);
1790     EmitBranchOnBoolExpr(CondOp->getRHS(), TrueBlock, FalseBlock,
1791                          TrueCount - LHSScaledTrueCount, LH);
1792     cond.end(*this);
1793 
1794     return;
1795   }
1796 
1797   if (const CXXThrowExpr *Throw = dyn_cast<CXXThrowExpr>(Cond)) {
1798     // Conditional operator handling can give us a throw expression as a
1799     // condition for a case like:
1800     //   br(c ? throw x : y, t, f) -> br(c, br(throw x, t, f), br(y, t, f)
1801     // Fold this to:
1802     //   br(c, throw x, br(y, t, f))
1803     EmitCXXThrowExpr(Throw, /*KeepInsertionPoint*/false);
1804     return;
1805   }
1806 
1807   // Emit the code with the fully general case.
1808   llvm::Value *CondV;
1809   {
1810     ApplyDebugLocation DL(*this, Cond);
1811     CondV = EvaluateExprAsBool(Cond);
1812   }
1813 
1814   llvm::MDNode *Weights = nullptr;
1815   llvm::MDNode *Unpredictable = nullptr;
1816 
1817   // If the branch has a condition wrapped by __builtin_unpredictable,
1818   // create metadata that specifies that the branch is unpredictable.
1819   // Don't bother if not optimizing because that metadata would not be used.
1820   auto *Call = dyn_cast<CallExpr>(Cond->IgnoreImpCasts());
1821   if (Call && CGM.getCodeGenOpts().OptimizationLevel != 0) {
1822     auto *FD = dyn_cast_or_null<FunctionDecl>(Call->getCalleeDecl());
1823     if (FD && FD->getBuiltinID() == Builtin::BI__builtin_unpredictable) {
1824       llvm::MDBuilder MDHelper(getLLVMContext());
1825       Unpredictable = MDHelper.createUnpredictable();
1826     }
1827   }
1828 
1829   // If there is a Likelihood knowledge for the cond, lower it.
1830   // Note that if not optimizing this won't emit anything.
1831   llvm::Value *NewCondV = emitCondLikelihoodViaExpectIntrinsic(CondV, LH);
1832   if (CondV != NewCondV)
1833     CondV = NewCondV;
1834   else {
1835     // Otherwise, lower profile counts. Note that we do this even at -O0.
1836     uint64_t CurrentCount = std::max(getCurrentProfileCount(), TrueCount);
1837     Weights = createProfileWeights(TrueCount, CurrentCount - TrueCount);
1838   }
1839 
1840   Builder.CreateCondBr(CondV, TrueBlock, FalseBlock, Weights, Unpredictable);
1841 }
1842 
1843 /// ErrorUnsupported - Print out an error that codegen doesn't support the
1844 /// specified stmt yet.
1845 void CodeGenFunction::ErrorUnsupported(const Stmt *S, const char *Type) {
1846   CGM.ErrorUnsupported(S, Type);
1847 }
1848 
1849 /// emitNonZeroVLAInit - Emit the "zero" initialization of a
1850 /// variable-length array whose elements have a non-zero bit-pattern.
1851 ///
1852 /// \param baseType the inner-most element type of the array
1853 /// \param src - a char* pointing to the bit-pattern for a single
1854 /// base element of the array
1855 /// \param sizeInChars - the total size of the VLA, in chars
1856 static void emitNonZeroVLAInit(CodeGenFunction &CGF, QualType baseType,
1857                                Address dest, Address src,
1858                                llvm::Value *sizeInChars) {
1859   CGBuilderTy &Builder = CGF.Builder;
1860 
1861   CharUnits baseSize = CGF.getContext().getTypeSizeInChars(baseType);
1862   llvm::Value *baseSizeInChars
1863     = llvm::ConstantInt::get(CGF.IntPtrTy, baseSize.getQuantity());
1864 
1865   Address begin =
1866     Builder.CreateElementBitCast(dest, CGF.Int8Ty, "vla.begin");
1867   llvm::Value *end = Builder.CreateInBoundsGEP(
1868       begin.getElementType(), begin.getPointer(), sizeInChars, "vla.end");
1869 
1870   llvm::BasicBlock *originBB = CGF.Builder.GetInsertBlock();
1871   llvm::BasicBlock *loopBB = CGF.createBasicBlock("vla-init.loop");
1872   llvm::BasicBlock *contBB = CGF.createBasicBlock("vla-init.cont");
1873 
1874   // Make a loop over the VLA.  C99 guarantees that the VLA element
1875   // count must be nonzero.
1876   CGF.EmitBlock(loopBB);
1877 
1878   llvm::PHINode *cur = Builder.CreatePHI(begin.getType(), 2, "vla.cur");
1879   cur->addIncoming(begin.getPointer(), originBB);
1880 
1881   CharUnits curAlign =
1882     dest.getAlignment().alignmentOfArrayElement(baseSize);
1883 
1884   // memcpy the individual element bit-pattern.
1885   Builder.CreateMemCpy(Address(cur, curAlign), src, baseSizeInChars,
1886                        /*volatile*/ false);
1887 
1888   // Go to the next element.
1889   llvm::Value *next =
1890     Builder.CreateInBoundsGEP(CGF.Int8Ty, cur, baseSizeInChars, "vla.next");
1891 
1892   // Leave if that's the end of the VLA.
1893   llvm::Value *done = Builder.CreateICmpEQ(next, end, "vla-init.isdone");
1894   Builder.CreateCondBr(done, contBB, loopBB);
1895   cur->addIncoming(next, loopBB);
1896 
1897   CGF.EmitBlock(contBB);
1898 }
1899 
1900 void
1901 CodeGenFunction::EmitNullInitialization(Address DestPtr, QualType Ty) {
1902   // Ignore empty classes in C++.
1903   if (getLangOpts().CPlusPlus) {
1904     if (const RecordType *RT = Ty->getAs<RecordType>()) {
1905       if (cast<CXXRecordDecl>(RT->getDecl())->isEmpty())
1906         return;
1907     }
1908   }
1909 
1910   // Cast the dest ptr to the appropriate i8 pointer type.
1911   if (DestPtr.getElementType() != Int8Ty)
1912     DestPtr = Builder.CreateElementBitCast(DestPtr, Int8Ty);
1913 
1914   // Get size and alignment info for this aggregate.
1915   CharUnits size = getContext().getTypeSizeInChars(Ty);
1916 
1917   llvm::Value *SizeVal;
1918   const VariableArrayType *vla;
1919 
1920   // Don't bother emitting a zero-byte memset.
1921   if (size.isZero()) {
1922     // But note that getTypeInfo returns 0 for a VLA.
1923     if (const VariableArrayType *vlaType =
1924           dyn_cast_or_null<VariableArrayType>(
1925                                           getContext().getAsArrayType(Ty))) {
1926       auto VlaSize = getVLASize(vlaType);
1927       SizeVal = VlaSize.NumElts;
1928       CharUnits eltSize = getContext().getTypeSizeInChars(VlaSize.Type);
1929       if (!eltSize.isOne())
1930         SizeVal = Builder.CreateNUWMul(SizeVal, CGM.getSize(eltSize));
1931       vla = vlaType;
1932     } else {
1933       return;
1934     }
1935   } else {
1936     SizeVal = CGM.getSize(size);
1937     vla = nullptr;
1938   }
1939 
1940   // If the type contains a pointer to data member we can't memset it to zero.
1941   // Instead, create a null constant and copy it to the destination.
1942   // TODO: there are other patterns besides zero that we can usefully memset,
1943   // like -1, which happens to be the pattern used by member-pointers.
1944   if (!CGM.getTypes().isZeroInitializable(Ty)) {
1945     // For a VLA, emit a single element, then splat that over the VLA.
1946     if (vla) Ty = getContext().getBaseElementType(vla);
1947 
1948     llvm::Constant *NullConstant = CGM.EmitNullConstant(Ty);
1949 
1950     llvm::GlobalVariable *NullVariable =
1951       new llvm::GlobalVariable(CGM.getModule(), NullConstant->getType(),
1952                                /*isConstant=*/true,
1953                                llvm::GlobalVariable::PrivateLinkage,
1954                                NullConstant, Twine());
1955     CharUnits NullAlign = DestPtr.getAlignment();
1956     NullVariable->setAlignment(NullAlign.getAsAlign());
1957     Address SrcPtr(Builder.CreateBitCast(NullVariable, Builder.getInt8PtrTy()),
1958                    NullAlign);
1959 
1960     if (vla) return emitNonZeroVLAInit(*this, Ty, DestPtr, SrcPtr, SizeVal);
1961 
1962     // Get and call the appropriate llvm.memcpy overload.
1963     Builder.CreateMemCpy(DestPtr, SrcPtr, SizeVal, false);
1964     return;
1965   }
1966 
1967   // Otherwise, just memset the whole thing to zero.  This is legal
1968   // because in LLVM, all default initializers (other than the ones we just
1969   // handled above) are guaranteed to have a bit pattern of all zeros.
1970   Builder.CreateMemSet(DestPtr, Builder.getInt8(0), SizeVal, false);
1971 }
1972 
1973 llvm::BlockAddress *CodeGenFunction::GetAddrOfLabel(const LabelDecl *L) {
1974   // Make sure that there is a block for the indirect goto.
1975   if (!IndirectBranch)
1976     GetIndirectGotoBlock();
1977 
1978   llvm::BasicBlock *BB = getJumpDestForLabel(L).getBlock();
1979 
1980   // Make sure the indirect branch includes all of the address-taken blocks.
1981   IndirectBranch->addDestination(BB);
1982   return llvm::BlockAddress::get(CurFn, BB);
1983 }
1984 
1985 llvm::BasicBlock *CodeGenFunction::GetIndirectGotoBlock() {
1986   // If we already made the indirect branch for indirect goto, return its block.
1987   if (IndirectBranch) return IndirectBranch->getParent();
1988 
1989   CGBuilderTy TmpBuilder(*this, createBasicBlock("indirectgoto"));
1990 
1991   // Create the PHI node that indirect gotos will add entries to.
1992   llvm::Value *DestVal = TmpBuilder.CreatePHI(Int8PtrTy, 0,
1993                                               "indirect.goto.dest");
1994 
1995   // Create the indirect branch instruction.
1996   IndirectBranch = TmpBuilder.CreateIndirectBr(DestVal);
1997   return IndirectBranch->getParent();
1998 }
1999 
2000 /// Computes the length of an array in elements, as well as the base
2001 /// element type and a properly-typed first element pointer.
2002 llvm::Value *CodeGenFunction::emitArrayLength(const ArrayType *origArrayType,
2003                                               QualType &baseType,
2004                                               Address &addr) {
2005   const ArrayType *arrayType = origArrayType;
2006 
2007   // If it's a VLA, we have to load the stored size.  Note that
2008   // this is the size of the VLA in bytes, not its size in elements.
2009   llvm::Value *numVLAElements = nullptr;
2010   if (isa<VariableArrayType>(arrayType)) {
2011     numVLAElements = getVLASize(cast<VariableArrayType>(arrayType)).NumElts;
2012 
2013     // Walk into all VLAs.  This doesn't require changes to addr,
2014     // which has type T* where T is the first non-VLA element type.
2015     do {
2016       QualType elementType = arrayType->getElementType();
2017       arrayType = getContext().getAsArrayType(elementType);
2018 
2019       // If we only have VLA components, 'addr' requires no adjustment.
2020       if (!arrayType) {
2021         baseType = elementType;
2022         return numVLAElements;
2023       }
2024     } while (isa<VariableArrayType>(arrayType));
2025 
2026     // We get out here only if we find a constant array type
2027     // inside the VLA.
2028   }
2029 
2030   // We have some number of constant-length arrays, so addr should
2031   // have LLVM type [M x [N x [...]]]*.  Build a GEP that walks
2032   // down to the first element of addr.
2033   SmallVector<llvm::Value*, 8> gepIndices;
2034 
2035   // GEP down to the array type.
2036   llvm::ConstantInt *zero = Builder.getInt32(0);
2037   gepIndices.push_back(zero);
2038 
2039   uint64_t countFromCLAs = 1;
2040   QualType eltType;
2041 
2042   llvm::ArrayType *llvmArrayType =
2043     dyn_cast<llvm::ArrayType>(addr.getElementType());
2044   while (llvmArrayType) {
2045     assert(isa<ConstantArrayType>(arrayType));
2046     assert(cast<ConstantArrayType>(arrayType)->getSize().getZExtValue()
2047              == llvmArrayType->getNumElements());
2048 
2049     gepIndices.push_back(zero);
2050     countFromCLAs *= llvmArrayType->getNumElements();
2051     eltType = arrayType->getElementType();
2052 
2053     llvmArrayType =
2054       dyn_cast<llvm::ArrayType>(llvmArrayType->getElementType());
2055     arrayType = getContext().getAsArrayType(arrayType->getElementType());
2056     assert((!llvmArrayType || arrayType) &&
2057            "LLVM and Clang types are out-of-synch");
2058   }
2059 
2060   if (arrayType) {
2061     // From this point onwards, the Clang array type has been emitted
2062     // as some other type (probably a packed struct). Compute the array
2063     // size, and just emit the 'begin' expression as a bitcast.
2064     while (arrayType) {
2065       countFromCLAs *=
2066           cast<ConstantArrayType>(arrayType)->getSize().getZExtValue();
2067       eltType = arrayType->getElementType();
2068       arrayType = getContext().getAsArrayType(eltType);
2069     }
2070 
2071     llvm::Type *baseType = ConvertType(eltType);
2072     addr = Builder.CreateElementBitCast(addr, baseType, "array.begin");
2073   } else {
2074     // Create the actual GEP.
2075     addr = Address(Builder.CreateInBoundsGEP(
2076         addr.getElementType(), addr.getPointer(), gepIndices, "array.begin"),
2077         addr.getAlignment());
2078   }
2079 
2080   baseType = eltType;
2081 
2082   llvm::Value *numElements
2083     = llvm::ConstantInt::get(SizeTy, countFromCLAs);
2084 
2085   // If we had any VLA dimensions, factor them in.
2086   if (numVLAElements)
2087     numElements = Builder.CreateNUWMul(numVLAElements, numElements);
2088 
2089   return numElements;
2090 }
2091 
2092 CodeGenFunction::VlaSizePair CodeGenFunction::getVLASize(QualType type) {
2093   const VariableArrayType *vla = getContext().getAsVariableArrayType(type);
2094   assert(vla && "type was not a variable array type!");
2095   return getVLASize(vla);
2096 }
2097 
2098 CodeGenFunction::VlaSizePair
2099 CodeGenFunction::getVLASize(const VariableArrayType *type) {
2100   // The number of elements so far; always size_t.
2101   llvm::Value *numElements = nullptr;
2102 
2103   QualType elementType;
2104   do {
2105     elementType = type->getElementType();
2106     llvm::Value *vlaSize = VLASizeMap[type->getSizeExpr()];
2107     assert(vlaSize && "no size for VLA!");
2108     assert(vlaSize->getType() == SizeTy);
2109 
2110     if (!numElements) {
2111       numElements = vlaSize;
2112     } else {
2113       // It's undefined behavior if this wraps around, so mark it that way.
2114       // FIXME: Teach -fsanitize=undefined to trap this.
2115       numElements = Builder.CreateNUWMul(numElements, vlaSize);
2116     }
2117   } while ((type = getContext().getAsVariableArrayType(elementType)));
2118 
2119   return { numElements, elementType };
2120 }
2121 
2122 CodeGenFunction::VlaSizePair
2123 CodeGenFunction::getVLAElements1D(QualType type) {
2124   const VariableArrayType *vla = getContext().getAsVariableArrayType(type);
2125   assert(vla && "type was not a variable array type!");
2126   return getVLAElements1D(vla);
2127 }
2128 
2129 CodeGenFunction::VlaSizePair
2130 CodeGenFunction::getVLAElements1D(const VariableArrayType *Vla) {
2131   llvm::Value *VlaSize = VLASizeMap[Vla->getSizeExpr()];
2132   assert(VlaSize && "no size for VLA!");
2133   assert(VlaSize->getType() == SizeTy);
2134   return { VlaSize, Vla->getElementType() };
2135 }
2136 
2137 void CodeGenFunction::EmitVariablyModifiedType(QualType type) {
2138   assert(type->isVariablyModifiedType() &&
2139          "Must pass variably modified type to EmitVLASizes!");
2140 
2141   EnsureInsertPoint();
2142 
2143   // We're going to walk down into the type and look for VLA
2144   // expressions.
2145   do {
2146     assert(type->isVariablyModifiedType());
2147 
2148     const Type *ty = type.getTypePtr();
2149     switch (ty->getTypeClass()) {
2150 
2151 #define TYPE(Class, Base)
2152 #define ABSTRACT_TYPE(Class, Base)
2153 #define NON_CANONICAL_TYPE(Class, Base)
2154 #define DEPENDENT_TYPE(Class, Base) case Type::Class:
2155 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base)
2156 #include "clang/AST/TypeNodes.inc"
2157       llvm_unreachable("unexpected dependent type!");
2158 
2159     // These types are never variably-modified.
2160     case Type::Builtin:
2161     case Type::Complex:
2162     case Type::Vector:
2163     case Type::ExtVector:
2164     case Type::ConstantMatrix:
2165     case Type::Record:
2166     case Type::Enum:
2167     case Type::Elaborated:
2168     case Type::TemplateSpecialization:
2169     case Type::ObjCTypeParam:
2170     case Type::ObjCObject:
2171     case Type::ObjCInterface:
2172     case Type::ObjCObjectPointer:
2173     case Type::ExtInt:
2174       llvm_unreachable("type class is never variably-modified!");
2175 
2176     case Type::Adjusted:
2177       type = cast<AdjustedType>(ty)->getAdjustedType();
2178       break;
2179 
2180     case Type::Decayed:
2181       type = cast<DecayedType>(ty)->getPointeeType();
2182       break;
2183 
2184     case Type::Pointer:
2185       type = cast<PointerType>(ty)->getPointeeType();
2186       break;
2187 
2188     case Type::BlockPointer:
2189       type = cast<BlockPointerType>(ty)->getPointeeType();
2190       break;
2191 
2192     case Type::LValueReference:
2193     case Type::RValueReference:
2194       type = cast<ReferenceType>(ty)->getPointeeType();
2195       break;
2196 
2197     case Type::MemberPointer:
2198       type = cast<MemberPointerType>(ty)->getPointeeType();
2199       break;
2200 
2201     case Type::ConstantArray:
2202     case Type::IncompleteArray:
2203       // Losing element qualification here is fine.
2204       type = cast<ArrayType>(ty)->getElementType();
2205       break;
2206 
2207     case Type::VariableArray: {
2208       // Losing element qualification here is fine.
2209       const VariableArrayType *vat = cast<VariableArrayType>(ty);
2210 
2211       // Unknown size indication requires no size computation.
2212       // Otherwise, evaluate and record it.
2213       if (const Expr *size = vat->getSizeExpr()) {
2214         // It's possible that we might have emitted this already,
2215         // e.g. with a typedef and a pointer to it.
2216         llvm::Value *&entry = VLASizeMap[size];
2217         if (!entry) {
2218           llvm::Value *Size = EmitScalarExpr(size);
2219 
2220           // C11 6.7.6.2p5:
2221           //   If the size is an expression that is not an integer constant
2222           //   expression [...] each time it is evaluated it shall have a value
2223           //   greater than zero.
2224           if (SanOpts.has(SanitizerKind::VLABound) &&
2225               size->getType()->isSignedIntegerType()) {
2226             SanitizerScope SanScope(this);
2227             llvm::Value *Zero = llvm::Constant::getNullValue(Size->getType());
2228             llvm::Constant *StaticArgs[] = {
2229                 EmitCheckSourceLocation(size->getBeginLoc()),
2230                 EmitCheckTypeDescriptor(size->getType())};
2231             EmitCheck(std::make_pair(Builder.CreateICmpSGT(Size, Zero),
2232                                      SanitizerKind::VLABound),
2233                       SanitizerHandler::VLABoundNotPositive, StaticArgs, Size);
2234           }
2235 
2236           // Always zexting here would be wrong if it weren't
2237           // undefined behavior to have a negative bound.
2238           entry = Builder.CreateIntCast(Size, SizeTy, /*signed*/ false);
2239         }
2240       }
2241       type = vat->getElementType();
2242       break;
2243     }
2244 
2245     case Type::FunctionProto:
2246     case Type::FunctionNoProto:
2247       type = cast<FunctionType>(ty)->getReturnType();
2248       break;
2249 
2250     case Type::Paren:
2251     case Type::TypeOf:
2252     case Type::UnaryTransform:
2253     case Type::Attributed:
2254     case Type::SubstTemplateTypeParm:
2255     case Type::MacroQualified:
2256       // Keep walking after single level desugaring.
2257       type = type.getSingleStepDesugaredType(getContext());
2258       break;
2259 
2260     case Type::Typedef:
2261     case Type::Decltype:
2262     case Type::Auto:
2263     case Type::DeducedTemplateSpecialization:
2264       // Stop walking: nothing to do.
2265       return;
2266 
2267     case Type::TypeOfExpr:
2268       // Stop walking: emit typeof expression.
2269       EmitIgnoredExpr(cast<TypeOfExprType>(ty)->getUnderlyingExpr());
2270       return;
2271 
2272     case Type::Atomic:
2273       type = cast<AtomicType>(ty)->getValueType();
2274       break;
2275 
2276     case Type::Pipe:
2277       type = cast<PipeType>(ty)->getElementType();
2278       break;
2279     }
2280   } while (type->isVariablyModifiedType());
2281 }
2282 
2283 Address CodeGenFunction::EmitVAListRef(const Expr* E) {
2284   if (getContext().getBuiltinVaListType()->isArrayType())
2285     return EmitPointerWithAlignment(E);
2286   return EmitLValue(E).getAddress(*this);
2287 }
2288 
2289 Address CodeGenFunction::EmitMSVAListRef(const Expr *E) {
2290   return EmitLValue(E).getAddress(*this);
2291 }
2292 
2293 void CodeGenFunction::EmitDeclRefExprDbgValue(const DeclRefExpr *E,
2294                                               const APValue &Init) {
2295   assert(Init.hasValue() && "Invalid DeclRefExpr initializer!");
2296   if (CGDebugInfo *Dbg = getDebugInfo())
2297     if (CGM.getCodeGenOpts().hasReducedDebugInfo())
2298       Dbg->EmitGlobalVariable(E->getDecl(), Init);
2299 }
2300 
2301 CodeGenFunction::PeepholeProtection
2302 CodeGenFunction::protectFromPeepholes(RValue rvalue) {
2303   // At the moment, the only aggressive peephole we do in IR gen
2304   // is trunc(zext) folding, but if we add more, we can easily
2305   // extend this protection.
2306 
2307   if (!rvalue.isScalar()) return PeepholeProtection();
2308   llvm::Value *value = rvalue.getScalarVal();
2309   if (!isa<llvm::ZExtInst>(value)) return PeepholeProtection();
2310 
2311   // Just make an extra bitcast.
2312   assert(HaveInsertPoint());
2313   llvm::Instruction *inst = new llvm::BitCastInst(value, value->getType(), "",
2314                                                   Builder.GetInsertBlock());
2315 
2316   PeepholeProtection protection;
2317   protection.Inst = inst;
2318   return protection;
2319 }
2320 
2321 void CodeGenFunction::unprotectFromPeepholes(PeepholeProtection protection) {
2322   if (!protection.Inst) return;
2323 
2324   // In theory, we could try to duplicate the peepholes now, but whatever.
2325   protection.Inst->eraseFromParent();
2326 }
2327 
2328 void CodeGenFunction::emitAlignmentAssumption(llvm::Value *PtrValue,
2329                                               QualType Ty, SourceLocation Loc,
2330                                               SourceLocation AssumptionLoc,
2331                                               llvm::Value *Alignment,
2332                                               llvm::Value *OffsetValue) {
2333   if (Alignment->getType() != IntPtrTy)
2334     Alignment =
2335         Builder.CreateIntCast(Alignment, IntPtrTy, false, "casted.align");
2336   if (OffsetValue && OffsetValue->getType() != IntPtrTy)
2337     OffsetValue =
2338         Builder.CreateIntCast(OffsetValue, IntPtrTy, true, "casted.offset");
2339   llvm::Value *TheCheck = nullptr;
2340   if (SanOpts.has(SanitizerKind::Alignment)) {
2341     llvm::Value *PtrIntValue =
2342         Builder.CreatePtrToInt(PtrValue, IntPtrTy, "ptrint");
2343 
2344     if (OffsetValue) {
2345       bool IsOffsetZero = false;
2346       if (const auto *CI = dyn_cast<llvm::ConstantInt>(OffsetValue))
2347         IsOffsetZero = CI->isZero();
2348 
2349       if (!IsOffsetZero)
2350         PtrIntValue = Builder.CreateSub(PtrIntValue, OffsetValue, "offsetptr");
2351     }
2352 
2353     llvm::Value *Zero = llvm::ConstantInt::get(IntPtrTy, 0);
2354     llvm::Value *Mask =
2355         Builder.CreateSub(Alignment, llvm::ConstantInt::get(IntPtrTy, 1));
2356     llvm::Value *MaskedPtr = Builder.CreateAnd(PtrIntValue, Mask, "maskedptr");
2357     TheCheck = Builder.CreateICmpEQ(MaskedPtr, Zero, "maskcond");
2358   }
2359   llvm::Instruction *Assumption = Builder.CreateAlignmentAssumption(
2360       CGM.getDataLayout(), PtrValue, Alignment, OffsetValue);
2361 
2362   if (!SanOpts.has(SanitizerKind::Alignment))
2363     return;
2364   emitAlignmentAssumptionCheck(PtrValue, Ty, Loc, AssumptionLoc, Alignment,
2365                                OffsetValue, TheCheck, Assumption);
2366 }
2367 
2368 void CodeGenFunction::emitAlignmentAssumption(llvm::Value *PtrValue,
2369                                               const Expr *E,
2370                                               SourceLocation AssumptionLoc,
2371                                               llvm::Value *Alignment,
2372                                               llvm::Value *OffsetValue) {
2373   if (auto *CE = dyn_cast<CastExpr>(E))
2374     E = CE->getSubExprAsWritten();
2375   QualType Ty = E->getType();
2376   SourceLocation Loc = E->getExprLoc();
2377 
2378   emitAlignmentAssumption(PtrValue, Ty, Loc, AssumptionLoc, Alignment,
2379                           OffsetValue);
2380 }
2381 
2382 llvm::Value *CodeGenFunction::EmitAnnotationCall(llvm::Function *AnnotationFn,
2383                                                  llvm::Value *AnnotatedVal,
2384                                                  StringRef AnnotationStr,
2385                                                  SourceLocation Location,
2386                                                  const AnnotateAttr *Attr) {
2387   SmallVector<llvm::Value *, 5> Args = {
2388       AnnotatedVal,
2389       Builder.CreateBitCast(CGM.EmitAnnotationString(AnnotationStr), Int8PtrTy),
2390       Builder.CreateBitCast(CGM.EmitAnnotationUnit(Location), Int8PtrTy),
2391       CGM.EmitAnnotationLineNo(Location),
2392   };
2393   if (Attr)
2394     Args.push_back(CGM.EmitAnnotationArgs(Attr));
2395   return Builder.CreateCall(AnnotationFn, Args);
2396 }
2397 
2398 void CodeGenFunction::EmitVarAnnotations(const VarDecl *D, llvm::Value *V) {
2399   assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute");
2400   // FIXME We create a new bitcast for every annotation because that's what
2401   // llvm-gcc was doing.
2402   for (const auto *I : D->specific_attrs<AnnotateAttr>())
2403     EmitAnnotationCall(CGM.getIntrinsic(llvm::Intrinsic::var_annotation),
2404                        Builder.CreateBitCast(V, CGM.Int8PtrTy, V->getName()),
2405                        I->getAnnotation(), D->getLocation(), I);
2406 }
2407 
2408 Address CodeGenFunction::EmitFieldAnnotations(const FieldDecl *D,
2409                                               Address Addr) {
2410   assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute");
2411   llvm::Value *V = Addr.getPointer();
2412   llvm::Type *VTy = V->getType();
2413   auto *PTy = dyn_cast<llvm::PointerType>(VTy);
2414   unsigned AS = PTy ? PTy->getAddressSpace() : 0;
2415   llvm::PointerType *IntrinTy =
2416       llvm::PointerType::getWithSamePointeeType(CGM.Int8PtrTy, AS);
2417   llvm::Function *F =
2418       CGM.getIntrinsic(llvm::Intrinsic::ptr_annotation, IntrinTy);
2419 
2420   for (const auto *I : D->specific_attrs<AnnotateAttr>()) {
2421     // FIXME Always emit the cast inst so we can differentiate between
2422     // annotation on the first field of a struct and annotation on the struct
2423     // itself.
2424     if (VTy != IntrinTy)
2425       V = Builder.CreateBitCast(V, IntrinTy);
2426     V = EmitAnnotationCall(F, V, I->getAnnotation(), D->getLocation(), I);
2427     V = Builder.CreateBitCast(V, VTy);
2428   }
2429 
2430   return Address(V, Addr.getAlignment());
2431 }
2432 
2433 CodeGenFunction::CGCapturedStmtInfo::~CGCapturedStmtInfo() { }
2434 
2435 CodeGenFunction::SanitizerScope::SanitizerScope(CodeGenFunction *CGF)
2436     : CGF(CGF) {
2437   assert(!CGF->IsSanitizerScope);
2438   CGF->IsSanitizerScope = true;
2439 }
2440 
2441 CodeGenFunction::SanitizerScope::~SanitizerScope() {
2442   CGF->IsSanitizerScope = false;
2443 }
2444 
2445 void CodeGenFunction::InsertHelper(llvm::Instruction *I,
2446                                    const llvm::Twine &Name,
2447                                    llvm::BasicBlock *BB,
2448                                    llvm::BasicBlock::iterator InsertPt) const {
2449   LoopStack.InsertHelper(I);
2450   if (IsSanitizerScope)
2451     CGM.getSanitizerMetadata()->disableSanitizerForInstruction(I);
2452 }
2453 
2454 void CGBuilderInserter::InsertHelper(
2455     llvm::Instruction *I, const llvm::Twine &Name, llvm::BasicBlock *BB,
2456     llvm::BasicBlock::iterator InsertPt) const {
2457   llvm::IRBuilderDefaultInserter::InsertHelper(I, Name, BB, InsertPt);
2458   if (CGF)
2459     CGF->InsertHelper(I, Name, BB, InsertPt);
2460 }
2461 
2462 // Emits an error if we don't have a valid set of target features for the
2463 // called function.
2464 void CodeGenFunction::checkTargetFeatures(const CallExpr *E,
2465                                           const FunctionDecl *TargetDecl) {
2466   return checkTargetFeatures(E->getBeginLoc(), TargetDecl);
2467 }
2468 
2469 // Emits an error if we don't have a valid set of target features for the
2470 // called function.
2471 void CodeGenFunction::checkTargetFeatures(SourceLocation Loc,
2472                                           const FunctionDecl *TargetDecl) {
2473   // Early exit if this is an indirect call.
2474   if (!TargetDecl)
2475     return;
2476 
2477   // Get the current enclosing function if it exists. If it doesn't
2478   // we can't check the target features anyhow.
2479   const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(CurCodeDecl);
2480   if (!FD)
2481     return;
2482 
2483   // Grab the required features for the call. For a builtin this is listed in
2484   // the td file with the default cpu, for an always_inline function this is any
2485   // listed cpu and any listed features.
2486   unsigned BuiltinID = TargetDecl->getBuiltinID();
2487   std::string MissingFeature;
2488   llvm::StringMap<bool> CallerFeatureMap;
2489   CGM.getContext().getFunctionFeatureMap(CallerFeatureMap, FD);
2490   if (BuiltinID) {
2491     StringRef FeatureList(
2492         CGM.getContext().BuiltinInfo.getRequiredFeatures(BuiltinID));
2493     // Return if the builtin doesn't have any required features.
2494     if (FeatureList.empty())
2495       return;
2496     assert(FeatureList.find(' ') == StringRef::npos &&
2497            "Space in feature list");
2498     TargetFeatures TF(CallerFeatureMap);
2499     if (!TF.hasRequiredFeatures(FeatureList))
2500       CGM.getDiags().Report(Loc, diag::err_builtin_needs_feature)
2501           << TargetDecl->getDeclName() << FeatureList;
2502   } else if (!TargetDecl->isMultiVersion() &&
2503              TargetDecl->hasAttr<TargetAttr>()) {
2504     // Get the required features for the callee.
2505 
2506     const TargetAttr *TD = TargetDecl->getAttr<TargetAttr>();
2507     ParsedTargetAttr ParsedAttr =
2508         CGM.getContext().filterFunctionTargetAttrs(TD);
2509 
2510     SmallVector<StringRef, 1> ReqFeatures;
2511     llvm::StringMap<bool> CalleeFeatureMap;
2512     CGM.getContext().getFunctionFeatureMap(CalleeFeatureMap, TargetDecl);
2513 
2514     for (const auto &F : ParsedAttr.Features) {
2515       if (F[0] == '+' && CalleeFeatureMap.lookup(F.substr(1)))
2516         ReqFeatures.push_back(StringRef(F).substr(1));
2517     }
2518 
2519     for (const auto &F : CalleeFeatureMap) {
2520       // Only positive features are "required".
2521       if (F.getValue())
2522         ReqFeatures.push_back(F.getKey());
2523     }
2524     if (!llvm::all_of(ReqFeatures, [&](StringRef Feature) {
2525       if (!CallerFeatureMap.lookup(Feature)) {
2526         MissingFeature = Feature.str();
2527         return false;
2528       }
2529       return true;
2530     }))
2531       CGM.getDiags().Report(Loc, diag::err_function_needs_feature)
2532           << FD->getDeclName() << TargetDecl->getDeclName() << MissingFeature;
2533   }
2534 }
2535 
2536 void CodeGenFunction::EmitSanitizerStatReport(llvm::SanitizerStatKind SSK) {
2537   if (!CGM.getCodeGenOpts().SanitizeStats)
2538     return;
2539 
2540   llvm::IRBuilder<> IRB(Builder.GetInsertBlock(), Builder.GetInsertPoint());
2541   IRB.SetCurrentDebugLocation(Builder.getCurrentDebugLocation());
2542   CGM.getSanStats().create(IRB, SSK);
2543 }
2544 
2545 llvm::Value *
2546 CodeGenFunction::FormResolverCondition(const MultiVersionResolverOption &RO) {
2547   llvm::Value *Condition = nullptr;
2548 
2549   if (!RO.Conditions.Architecture.empty())
2550     Condition = EmitX86CpuIs(RO.Conditions.Architecture);
2551 
2552   if (!RO.Conditions.Features.empty()) {
2553     llvm::Value *FeatureCond = EmitX86CpuSupports(RO.Conditions.Features);
2554     Condition =
2555         Condition ? Builder.CreateAnd(Condition, FeatureCond) : FeatureCond;
2556   }
2557   return Condition;
2558 }
2559 
2560 static void CreateMultiVersionResolverReturn(CodeGenModule &CGM,
2561                                              llvm::Function *Resolver,
2562                                              CGBuilderTy &Builder,
2563                                              llvm::Function *FuncToReturn,
2564                                              bool SupportsIFunc) {
2565   if (SupportsIFunc) {
2566     Builder.CreateRet(FuncToReturn);
2567     return;
2568   }
2569 
2570   llvm::SmallVector<llvm::Value *, 10> Args;
2571   llvm::for_each(Resolver->args(),
2572                  [&](llvm::Argument &Arg) { Args.push_back(&Arg); });
2573 
2574   llvm::CallInst *Result = Builder.CreateCall(FuncToReturn, Args);
2575   Result->setTailCallKind(llvm::CallInst::TCK_MustTail);
2576 
2577   if (Resolver->getReturnType()->isVoidTy())
2578     Builder.CreateRetVoid();
2579   else
2580     Builder.CreateRet(Result);
2581 }
2582 
2583 void CodeGenFunction::EmitMultiVersionResolver(
2584     llvm::Function *Resolver, ArrayRef<MultiVersionResolverOption> Options) {
2585   assert(getContext().getTargetInfo().getTriple().isX86() &&
2586          "Only implemented for x86 targets");
2587 
2588   bool SupportsIFunc = getContext().getTargetInfo().supportsIFunc();
2589 
2590   // Main function's basic block.
2591   llvm::BasicBlock *CurBlock = createBasicBlock("resolver_entry", Resolver);
2592   Builder.SetInsertPoint(CurBlock);
2593   EmitX86CpuInit();
2594 
2595   for (const MultiVersionResolverOption &RO : Options) {
2596     Builder.SetInsertPoint(CurBlock);
2597     llvm::Value *Condition = FormResolverCondition(RO);
2598 
2599     // The 'default' or 'generic' case.
2600     if (!Condition) {
2601       assert(&RO == Options.end() - 1 &&
2602              "Default or Generic case must be last");
2603       CreateMultiVersionResolverReturn(CGM, Resolver, Builder, RO.Function,
2604                                        SupportsIFunc);
2605       return;
2606     }
2607 
2608     llvm::BasicBlock *RetBlock = createBasicBlock("resolver_return", Resolver);
2609     CGBuilderTy RetBuilder(*this, RetBlock);
2610     CreateMultiVersionResolverReturn(CGM, Resolver, RetBuilder, RO.Function,
2611                                      SupportsIFunc);
2612     CurBlock = createBasicBlock("resolver_else", Resolver);
2613     Builder.CreateCondBr(Condition, RetBlock, CurBlock);
2614   }
2615 
2616   // If no generic/default, emit an unreachable.
2617   Builder.SetInsertPoint(CurBlock);
2618   llvm::CallInst *TrapCall = EmitTrapCall(llvm::Intrinsic::trap);
2619   TrapCall->setDoesNotReturn();
2620   TrapCall->setDoesNotThrow();
2621   Builder.CreateUnreachable();
2622   Builder.ClearInsertionPoint();
2623 }
2624 
2625 // Loc - where the diagnostic will point, where in the source code this
2626 //  alignment has failed.
2627 // SecondaryLoc - if present (will be present if sufficiently different from
2628 //  Loc), the diagnostic will additionally point a "Note:" to this location.
2629 //  It should be the location where the __attribute__((assume_aligned))
2630 //  was written e.g.
2631 void CodeGenFunction::emitAlignmentAssumptionCheck(
2632     llvm::Value *Ptr, QualType Ty, SourceLocation Loc,
2633     SourceLocation SecondaryLoc, llvm::Value *Alignment,
2634     llvm::Value *OffsetValue, llvm::Value *TheCheck,
2635     llvm::Instruction *Assumption) {
2636   assert(Assumption && isa<llvm::CallInst>(Assumption) &&
2637          cast<llvm::CallInst>(Assumption)->getCalledOperand() ==
2638              llvm::Intrinsic::getDeclaration(
2639                  Builder.GetInsertBlock()->getParent()->getParent(),
2640                  llvm::Intrinsic::assume) &&
2641          "Assumption should be a call to llvm.assume().");
2642   assert(&(Builder.GetInsertBlock()->back()) == Assumption &&
2643          "Assumption should be the last instruction of the basic block, "
2644          "since the basic block is still being generated.");
2645 
2646   if (!SanOpts.has(SanitizerKind::Alignment))
2647     return;
2648 
2649   // Don't check pointers to volatile data. The behavior here is implementation-
2650   // defined.
2651   if (Ty->getPointeeType().isVolatileQualified())
2652     return;
2653 
2654   // We need to temorairly remove the assumption so we can insert the
2655   // sanitizer check before it, else the check will be dropped by optimizations.
2656   Assumption->removeFromParent();
2657 
2658   {
2659     SanitizerScope SanScope(this);
2660 
2661     if (!OffsetValue)
2662       OffsetValue = Builder.getInt1(0); // no offset.
2663 
2664     llvm::Constant *StaticData[] = {EmitCheckSourceLocation(Loc),
2665                                     EmitCheckSourceLocation(SecondaryLoc),
2666                                     EmitCheckTypeDescriptor(Ty)};
2667     llvm::Value *DynamicData[] = {EmitCheckValue(Ptr),
2668                                   EmitCheckValue(Alignment),
2669                                   EmitCheckValue(OffsetValue)};
2670     EmitCheck({std::make_pair(TheCheck, SanitizerKind::Alignment)},
2671               SanitizerHandler::AlignmentAssumption, StaticData, DynamicData);
2672   }
2673 
2674   // We are now in the (new, empty) "cont" basic block.
2675   // Reintroduce the assumption.
2676   Builder.Insert(Assumption);
2677   // FIXME: Assumption still has it's original basic block as it's Parent.
2678 }
2679 
2680 llvm::DebugLoc CodeGenFunction::SourceLocToDebugLoc(SourceLocation Location) {
2681   if (CGDebugInfo *DI = getDebugInfo())
2682     return DI->SourceLocToDebugLoc(Location);
2683 
2684   return llvm::DebugLoc();
2685 }
2686 
2687 llvm::Value *
2688 CodeGenFunction::emitCondLikelihoodViaExpectIntrinsic(llvm::Value *Cond,
2689                                                       Stmt::Likelihood LH) {
2690   switch (LH) {
2691   case Stmt::LH_None:
2692     return Cond;
2693   case Stmt::LH_Likely:
2694   case Stmt::LH_Unlikely:
2695     // Don't generate llvm.expect on -O0 as the backend won't use it for
2696     // anything.
2697     if (CGM.getCodeGenOpts().OptimizationLevel == 0)
2698       return Cond;
2699     llvm::Type *CondTy = Cond->getType();
2700     assert(CondTy->isIntegerTy(1) && "expecting condition to be a boolean");
2701     llvm::Function *FnExpect =
2702         CGM.getIntrinsic(llvm::Intrinsic::expect, CondTy);
2703     llvm::Value *ExpectedValueOfCond =
2704         llvm::ConstantInt::getBool(CondTy, LH == Stmt::LH_Likely);
2705     return Builder.CreateCall(FnExpect, {Cond, ExpectedValueOfCond},
2706                               Cond->getName() + ".expval");
2707   }
2708   llvm_unreachable("Unknown Likelihood");
2709 }
2710