1 //===--- CodeGenFunction.cpp - Emit LLVM Code from ASTs for a Function ----===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This coordinates the per-function state used while generating code. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "CodeGenFunction.h" 14 #include "CGBlocks.h" 15 #include "CGCUDARuntime.h" 16 #include "CGCXXABI.h" 17 #include "CGCleanup.h" 18 #include "CGDebugInfo.h" 19 #include "CGOpenMPRuntime.h" 20 #include "CodeGenModule.h" 21 #include "CodeGenPGO.h" 22 #include "TargetInfo.h" 23 #include "clang/AST/ASTContext.h" 24 #include "clang/AST/ASTLambda.h" 25 #include "clang/AST/Attr.h" 26 #include "clang/AST/Decl.h" 27 #include "clang/AST/DeclCXX.h" 28 #include "clang/AST/Expr.h" 29 #include "clang/AST/StmtCXX.h" 30 #include "clang/AST/StmtObjC.h" 31 #include "clang/Basic/Builtins.h" 32 #include "clang/Basic/CodeGenOptions.h" 33 #include "clang/Basic/TargetInfo.h" 34 #include "clang/CodeGen/CGFunctionInfo.h" 35 #include "clang/Frontend/FrontendDiagnostic.h" 36 #include "llvm/ADT/ArrayRef.h" 37 #include "llvm/Frontend/OpenMP/OMPIRBuilder.h" 38 #include "llvm/IR/DataLayout.h" 39 #include "llvm/IR/Dominators.h" 40 #include "llvm/IR/FPEnv.h" 41 #include "llvm/IR/IntrinsicInst.h" 42 #include "llvm/IR/Intrinsics.h" 43 #include "llvm/IR/MDBuilder.h" 44 #include "llvm/IR/Operator.h" 45 #include "llvm/Support/CRC.h" 46 #include "llvm/Transforms/Scalar/LowerExpectIntrinsic.h" 47 #include "llvm/Transforms/Utils/PromoteMemToReg.h" 48 using namespace clang; 49 using namespace CodeGen; 50 51 /// shouldEmitLifetimeMarkers - Decide whether we need emit the life-time 52 /// markers. 53 static bool shouldEmitLifetimeMarkers(const CodeGenOptions &CGOpts, 54 const LangOptions &LangOpts) { 55 if (CGOpts.DisableLifetimeMarkers) 56 return false; 57 58 // Sanitizers may use markers. 59 if (CGOpts.SanitizeAddressUseAfterScope || 60 LangOpts.Sanitize.has(SanitizerKind::HWAddress) || 61 LangOpts.Sanitize.has(SanitizerKind::Memory)) 62 return true; 63 64 // For now, only in optimized builds. 65 return CGOpts.OptimizationLevel != 0; 66 } 67 68 CodeGenFunction::CodeGenFunction(CodeGenModule &cgm, bool suppressNewContext) 69 : CodeGenTypeCache(cgm), CGM(cgm), Target(cgm.getTarget()), 70 Builder(cgm, cgm.getModule().getContext(), llvm::ConstantFolder(), 71 CGBuilderInserterTy(this)), 72 SanOpts(CGM.getLangOpts().Sanitize), CurFPFeatures(CGM.getLangOpts()), 73 DebugInfo(CGM.getModuleDebugInfo()), PGO(cgm), 74 ShouldEmitLifetimeMarkers( 75 shouldEmitLifetimeMarkers(CGM.getCodeGenOpts(), CGM.getLangOpts())) { 76 if (!suppressNewContext) 77 CGM.getCXXABI().getMangleContext().startNewFunction(); 78 EHStack.setCGF(this); 79 80 SetFastMathFlags(CurFPFeatures); 81 } 82 83 CodeGenFunction::~CodeGenFunction() { 84 assert(LifetimeExtendedCleanupStack.empty() && "failed to emit a cleanup"); 85 86 if (getLangOpts().OpenMP && CurFn) 87 CGM.getOpenMPRuntime().functionFinished(*this); 88 89 // If we have an OpenMPIRBuilder we want to finalize functions (incl. 90 // outlining etc) at some point. Doing it once the function codegen is done 91 // seems to be a reasonable spot. We do it here, as opposed to the deletion 92 // time of the CodeGenModule, because we have to ensure the IR has not yet 93 // been "emitted" to the outside, thus, modifications are still sensible. 94 if (CGM.getLangOpts().OpenMPIRBuilder && CurFn) 95 CGM.getOpenMPRuntime().getOMPBuilder().finalize(CurFn); 96 } 97 98 // Map the LangOption for exception behavior into 99 // the corresponding enum in the IR. 100 llvm::fp::ExceptionBehavior 101 clang::ToConstrainedExceptMD(LangOptions::FPExceptionModeKind Kind) { 102 103 switch (Kind) { 104 case LangOptions::FPE_Ignore: return llvm::fp::ebIgnore; 105 case LangOptions::FPE_MayTrap: return llvm::fp::ebMayTrap; 106 case LangOptions::FPE_Strict: return llvm::fp::ebStrict; 107 } 108 llvm_unreachable("Unsupported FP Exception Behavior"); 109 } 110 111 void CodeGenFunction::SetFastMathFlags(FPOptions FPFeatures) { 112 llvm::FastMathFlags FMF; 113 FMF.setAllowReassoc(FPFeatures.getAllowFPReassociate()); 114 FMF.setNoNaNs(FPFeatures.getNoHonorNaNs()); 115 FMF.setNoInfs(FPFeatures.getNoHonorInfs()); 116 FMF.setNoSignedZeros(FPFeatures.getNoSignedZero()); 117 FMF.setAllowReciprocal(FPFeatures.getAllowReciprocal()); 118 FMF.setApproxFunc(FPFeatures.getAllowApproxFunc()); 119 FMF.setAllowContract(FPFeatures.allowFPContractAcrossStatement()); 120 Builder.setFastMathFlags(FMF); 121 } 122 123 CodeGenFunction::CGFPOptionsRAII::CGFPOptionsRAII(CodeGenFunction &CGF, 124 const Expr *E) 125 : CGF(CGF) { 126 ConstructorHelper(E->getFPFeaturesInEffect(CGF.getLangOpts())); 127 } 128 129 CodeGenFunction::CGFPOptionsRAII::CGFPOptionsRAII(CodeGenFunction &CGF, 130 FPOptions FPFeatures) 131 : CGF(CGF) { 132 ConstructorHelper(FPFeatures); 133 } 134 135 void CodeGenFunction::CGFPOptionsRAII::ConstructorHelper(FPOptions FPFeatures) { 136 OldFPFeatures = CGF.CurFPFeatures; 137 CGF.CurFPFeatures = FPFeatures; 138 139 OldExcept = CGF.Builder.getDefaultConstrainedExcept(); 140 OldRounding = CGF.Builder.getDefaultConstrainedRounding(); 141 142 if (OldFPFeatures == FPFeatures) 143 return; 144 145 FMFGuard.emplace(CGF.Builder); 146 147 llvm::RoundingMode NewRoundingBehavior = 148 static_cast<llvm::RoundingMode>(FPFeatures.getRoundingMode()); 149 CGF.Builder.setDefaultConstrainedRounding(NewRoundingBehavior); 150 auto NewExceptionBehavior = 151 ToConstrainedExceptMD(static_cast<LangOptions::FPExceptionModeKind>( 152 FPFeatures.getFPExceptionMode())); 153 CGF.Builder.setDefaultConstrainedExcept(NewExceptionBehavior); 154 155 CGF.SetFastMathFlags(FPFeatures); 156 157 assert((CGF.CurFuncDecl == nullptr || CGF.Builder.getIsFPConstrained() || 158 isa<CXXConstructorDecl>(CGF.CurFuncDecl) || 159 isa<CXXDestructorDecl>(CGF.CurFuncDecl) || 160 (NewExceptionBehavior == llvm::fp::ebIgnore && 161 NewRoundingBehavior == llvm::RoundingMode::NearestTiesToEven)) && 162 "FPConstrained should be enabled on entire function"); 163 164 auto mergeFnAttrValue = [&](StringRef Name, bool Value) { 165 auto OldValue = 166 CGF.CurFn->getFnAttribute(Name).getValueAsBool(); 167 auto NewValue = OldValue & Value; 168 if (OldValue != NewValue) 169 CGF.CurFn->addFnAttr(Name, llvm::toStringRef(NewValue)); 170 }; 171 mergeFnAttrValue("no-infs-fp-math", FPFeatures.getNoHonorInfs()); 172 mergeFnAttrValue("no-nans-fp-math", FPFeatures.getNoHonorNaNs()); 173 mergeFnAttrValue("no-signed-zeros-fp-math", FPFeatures.getNoSignedZero()); 174 mergeFnAttrValue("unsafe-fp-math", FPFeatures.getAllowFPReassociate() && 175 FPFeatures.getAllowReciprocal() && 176 FPFeatures.getAllowApproxFunc() && 177 FPFeatures.getNoSignedZero()); 178 } 179 180 CodeGenFunction::CGFPOptionsRAII::~CGFPOptionsRAII() { 181 CGF.CurFPFeatures = OldFPFeatures; 182 CGF.Builder.setDefaultConstrainedExcept(OldExcept); 183 CGF.Builder.setDefaultConstrainedRounding(OldRounding); 184 } 185 186 LValue CodeGenFunction::MakeNaturalAlignAddrLValue(llvm::Value *V, QualType T) { 187 LValueBaseInfo BaseInfo; 188 TBAAAccessInfo TBAAInfo; 189 CharUnits Alignment = CGM.getNaturalTypeAlignment(T, &BaseInfo, &TBAAInfo); 190 return LValue::MakeAddr(Address(V, Alignment), T, getContext(), BaseInfo, 191 TBAAInfo); 192 } 193 194 /// Given a value of type T* that may not be to a complete object, 195 /// construct an l-value with the natural pointee alignment of T. 196 LValue 197 CodeGenFunction::MakeNaturalAlignPointeeAddrLValue(llvm::Value *V, QualType T) { 198 LValueBaseInfo BaseInfo; 199 TBAAAccessInfo TBAAInfo; 200 CharUnits Align = CGM.getNaturalTypeAlignment(T, &BaseInfo, &TBAAInfo, 201 /* forPointeeType= */ true); 202 return MakeAddrLValue(Address(V, Align), T, BaseInfo, TBAAInfo); 203 } 204 205 206 llvm::Type *CodeGenFunction::ConvertTypeForMem(QualType T) { 207 return CGM.getTypes().ConvertTypeForMem(T); 208 } 209 210 llvm::Type *CodeGenFunction::ConvertType(QualType T) { 211 return CGM.getTypes().ConvertType(T); 212 } 213 214 TypeEvaluationKind CodeGenFunction::getEvaluationKind(QualType type) { 215 type = type.getCanonicalType(); 216 while (true) { 217 switch (type->getTypeClass()) { 218 #define TYPE(name, parent) 219 #define ABSTRACT_TYPE(name, parent) 220 #define NON_CANONICAL_TYPE(name, parent) case Type::name: 221 #define DEPENDENT_TYPE(name, parent) case Type::name: 222 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(name, parent) case Type::name: 223 #include "clang/AST/TypeNodes.inc" 224 llvm_unreachable("non-canonical or dependent type in IR-generation"); 225 226 case Type::Auto: 227 case Type::DeducedTemplateSpecialization: 228 llvm_unreachable("undeduced type in IR-generation"); 229 230 // Various scalar types. 231 case Type::Builtin: 232 case Type::Pointer: 233 case Type::BlockPointer: 234 case Type::LValueReference: 235 case Type::RValueReference: 236 case Type::MemberPointer: 237 case Type::Vector: 238 case Type::ExtVector: 239 case Type::ConstantMatrix: 240 case Type::FunctionProto: 241 case Type::FunctionNoProto: 242 case Type::Enum: 243 case Type::ObjCObjectPointer: 244 case Type::Pipe: 245 case Type::ExtInt: 246 return TEK_Scalar; 247 248 // Complexes. 249 case Type::Complex: 250 return TEK_Complex; 251 252 // Arrays, records, and Objective-C objects. 253 case Type::ConstantArray: 254 case Type::IncompleteArray: 255 case Type::VariableArray: 256 case Type::Record: 257 case Type::ObjCObject: 258 case Type::ObjCInterface: 259 return TEK_Aggregate; 260 261 // We operate on atomic values according to their underlying type. 262 case Type::Atomic: 263 type = cast<AtomicType>(type)->getValueType(); 264 continue; 265 } 266 llvm_unreachable("unknown type kind!"); 267 } 268 } 269 270 llvm::DebugLoc CodeGenFunction::EmitReturnBlock() { 271 // For cleanliness, we try to avoid emitting the return block for 272 // simple cases. 273 llvm::BasicBlock *CurBB = Builder.GetInsertBlock(); 274 275 if (CurBB) { 276 assert(!CurBB->getTerminator() && "Unexpected terminated block."); 277 278 // We have a valid insert point, reuse it if it is empty or there are no 279 // explicit jumps to the return block. 280 if (CurBB->empty() || ReturnBlock.getBlock()->use_empty()) { 281 ReturnBlock.getBlock()->replaceAllUsesWith(CurBB); 282 delete ReturnBlock.getBlock(); 283 ReturnBlock = JumpDest(); 284 } else 285 EmitBlock(ReturnBlock.getBlock()); 286 return llvm::DebugLoc(); 287 } 288 289 // Otherwise, if the return block is the target of a single direct 290 // branch then we can just put the code in that block instead. This 291 // cleans up functions which started with a unified return block. 292 if (ReturnBlock.getBlock()->hasOneUse()) { 293 llvm::BranchInst *BI = 294 dyn_cast<llvm::BranchInst>(*ReturnBlock.getBlock()->user_begin()); 295 if (BI && BI->isUnconditional() && 296 BI->getSuccessor(0) == ReturnBlock.getBlock()) { 297 // Record/return the DebugLoc of the simple 'return' expression to be used 298 // later by the actual 'ret' instruction. 299 llvm::DebugLoc Loc = BI->getDebugLoc(); 300 Builder.SetInsertPoint(BI->getParent()); 301 BI->eraseFromParent(); 302 delete ReturnBlock.getBlock(); 303 ReturnBlock = JumpDest(); 304 return Loc; 305 } 306 } 307 308 // FIXME: We are at an unreachable point, there is no reason to emit the block 309 // unless it has uses. However, we still need a place to put the debug 310 // region.end for now. 311 312 EmitBlock(ReturnBlock.getBlock()); 313 return llvm::DebugLoc(); 314 } 315 316 static void EmitIfUsed(CodeGenFunction &CGF, llvm::BasicBlock *BB) { 317 if (!BB) return; 318 if (!BB->use_empty()) 319 return CGF.CurFn->getBasicBlockList().push_back(BB); 320 delete BB; 321 } 322 323 void CodeGenFunction::FinishFunction(SourceLocation EndLoc) { 324 assert(BreakContinueStack.empty() && 325 "mismatched push/pop in break/continue stack!"); 326 327 bool OnlySimpleReturnStmts = NumSimpleReturnExprs > 0 328 && NumSimpleReturnExprs == NumReturnExprs 329 && ReturnBlock.getBlock()->use_empty(); 330 // Usually the return expression is evaluated before the cleanup 331 // code. If the function contains only a simple return statement, 332 // such as a constant, the location before the cleanup code becomes 333 // the last useful breakpoint in the function, because the simple 334 // return expression will be evaluated after the cleanup code. To be 335 // safe, set the debug location for cleanup code to the location of 336 // the return statement. Otherwise the cleanup code should be at the 337 // end of the function's lexical scope. 338 // 339 // If there are multiple branches to the return block, the branch 340 // instructions will get the location of the return statements and 341 // all will be fine. 342 if (CGDebugInfo *DI = getDebugInfo()) { 343 if (OnlySimpleReturnStmts) 344 DI->EmitLocation(Builder, LastStopPoint); 345 else 346 DI->EmitLocation(Builder, EndLoc); 347 } 348 349 // Pop any cleanups that might have been associated with the 350 // parameters. Do this in whatever block we're currently in; it's 351 // important to do this before we enter the return block or return 352 // edges will be *really* confused. 353 bool HasCleanups = EHStack.stable_begin() != PrologueCleanupDepth; 354 bool HasOnlyLifetimeMarkers = 355 HasCleanups && EHStack.containsOnlyLifetimeMarkers(PrologueCleanupDepth); 356 bool EmitRetDbgLoc = !HasCleanups || HasOnlyLifetimeMarkers; 357 if (HasCleanups) { 358 // Make sure the line table doesn't jump back into the body for 359 // the ret after it's been at EndLoc. 360 Optional<ApplyDebugLocation> AL; 361 if (CGDebugInfo *DI = getDebugInfo()) { 362 if (OnlySimpleReturnStmts) 363 DI->EmitLocation(Builder, EndLoc); 364 else 365 // We may not have a valid end location. Try to apply it anyway, and 366 // fall back to an artificial location if needed. 367 AL = ApplyDebugLocation::CreateDefaultArtificial(*this, EndLoc); 368 } 369 370 PopCleanupBlocks(PrologueCleanupDepth); 371 } 372 373 // Emit function epilog (to return). 374 llvm::DebugLoc Loc = EmitReturnBlock(); 375 376 if (ShouldInstrumentFunction()) { 377 if (CGM.getCodeGenOpts().InstrumentFunctions) 378 CurFn->addFnAttr("instrument-function-exit", "__cyg_profile_func_exit"); 379 if (CGM.getCodeGenOpts().InstrumentFunctionsAfterInlining) 380 CurFn->addFnAttr("instrument-function-exit-inlined", 381 "__cyg_profile_func_exit"); 382 } 383 384 if (ShouldSkipSanitizerInstrumentation()) 385 CurFn->addFnAttr(llvm::Attribute::DisableSanitizerInstrumentation); 386 387 // Emit debug descriptor for function end. 388 if (CGDebugInfo *DI = getDebugInfo()) 389 DI->EmitFunctionEnd(Builder, CurFn); 390 391 // Reset the debug location to that of the simple 'return' expression, if any 392 // rather than that of the end of the function's scope '}'. 393 ApplyDebugLocation AL(*this, Loc); 394 EmitFunctionEpilog(*CurFnInfo, EmitRetDbgLoc, EndLoc); 395 EmitEndEHSpec(CurCodeDecl); 396 397 assert(EHStack.empty() && 398 "did not remove all scopes from cleanup stack!"); 399 400 // If someone did an indirect goto, emit the indirect goto block at the end of 401 // the function. 402 if (IndirectBranch) { 403 EmitBlock(IndirectBranch->getParent()); 404 Builder.ClearInsertionPoint(); 405 } 406 407 // If some of our locals escaped, insert a call to llvm.localescape in the 408 // entry block. 409 if (!EscapedLocals.empty()) { 410 // Invert the map from local to index into a simple vector. There should be 411 // no holes. 412 SmallVector<llvm::Value *, 4> EscapeArgs; 413 EscapeArgs.resize(EscapedLocals.size()); 414 for (auto &Pair : EscapedLocals) 415 EscapeArgs[Pair.second] = Pair.first; 416 llvm::Function *FrameEscapeFn = llvm::Intrinsic::getDeclaration( 417 &CGM.getModule(), llvm::Intrinsic::localescape); 418 CGBuilderTy(*this, AllocaInsertPt).CreateCall(FrameEscapeFn, EscapeArgs); 419 } 420 421 // Remove the AllocaInsertPt instruction, which is just a convenience for us. 422 llvm::Instruction *Ptr = AllocaInsertPt; 423 AllocaInsertPt = nullptr; 424 Ptr->eraseFromParent(); 425 426 // If someone took the address of a label but never did an indirect goto, we 427 // made a zero entry PHI node, which is illegal, zap it now. 428 if (IndirectBranch) { 429 llvm::PHINode *PN = cast<llvm::PHINode>(IndirectBranch->getAddress()); 430 if (PN->getNumIncomingValues() == 0) { 431 PN->replaceAllUsesWith(llvm::UndefValue::get(PN->getType())); 432 PN->eraseFromParent(); 433 } 434 } 435 436 EmitIfUsed(*this, EHResumeBlock); 437 EmitIfUsed(*this, TerminateLandingPad); 438 EmitIfUsed(*this, TerminateHandler); 439 EmitIfUsed(*this, UnreachableBlock); 440 441 for (const auto &FuncletAndParent : TerminateFunclets) 442 EmitIfUsed(*this, FuncletAndParent.second); 443 444 if (CGM.getCodeGenOpts().EmitDeclMetadata) 445 EmitDeclMetadata(); 446 447 for (const auto &R : DeferredReplacements) { 448 if (llvm::Value *Old = R.first) { 449 Old->replaceAllUsesWith(R.second); 450 cast<llvm::Instruction>(Old)->eraseFromParent(); 451 } 452 } 453 DeferredReplacements.clear(); 454 455 // Eliminate CleanupDestSlot alloca by replacing it with SSA values and 456 // PHIs if the current function is a coroutine. We don't do it for all 457 // functions as it may result in slight increase in numbers of instructions 458 // if compiled with no optimizations. We do it for coroutine as the lifetime 459 // of CleanupDestSlot alloca make correct coroutine frame building very 460 // difficult. 461 if (NormalCleanupDest.isValid() && isCoroutine()) { 462 llvm::DominatorTree DT(*CurFn); 463 llvm::PromoteMemToReg( 464 cast<llvm::AllocaInst>(NormalCleanupDest.getPointer()), DT); 465 NormalCleanupDest = Address::invalid(); 466 } 467 468 // Scan function arguments for vector width. 469 for (llvm::Argument &A : CurFn->args()) 470 if (auto *VT = dyn_cast<llvm::VectorType>(A.getType())) 471 LargestVectorWidth = 472 std::max((uint64_t)LargestVectorWidth, 473 VT->getPrimitiveSizeInBits().getKnownMinSize()); 474 475 // Update vector width based on return type. 476 if (auto *VT = dyn_cast<llvm::VectorType>(CurFn->getReturnType())) 477 LargestVectorWidth = 478 std::max((uint64_t)LargestVectorWidth, 479 VT->getPrimitiveSizeInBits().getKnownMinSize()); 480 481 // Add the required-vector-width attribute. This contains the max width from: 482 // 1. min-vector-width attribute used in the source program. 483 // 2. Any builtins used that have a vector width specified. 484 // 3. Values passed in and out of inline assembly. 485 // 4. Width of vector arguments and return types for this function. 486 // 5. Width of vector aguments and return types for functions called by this 487 // function. 488 CurFn->addFnAttr("min-legal-vector-width", llvm::utostr(LargestVectorWidth)); 489 490 // Add vscale_range attribute if appropriate. 491 Optional<std::pair<unsigned, unsigned>> VScaleRange = 492 getContext().getTargetInfo().getVScaleRange(getLangOpts()); 493 if (VScaleRange) { 494 CurFn->addFnAttr(llvm::Attribute::getWithVScaleRangeArgs( 495 getLLVMContext(), VScaleRange.getValue().first, 496 VScaleRange.getValue().second)); 497 } 498 499 // If we generated an unreachable return block, delete it now. 500 if (ReturnBlock.isValid() && ReturnBlock.getBlock()->use_empty()) { 501 Builder.ClearInsertionPoint(); 502 ReturnBlock.getBlock()->eraseFromParent(); 503 } 504 if (ReturnValue.isValid()) { 505 auto *RetAlloca = dyn_cast<llvm::AllocaInst>(ReturnValue.getPointer()); 506 if (RetAlloca && RetAlloca->use_empty()) { 507 RetAlloca->eraseFromParent(); 508 ReturnValue = Address::invalid(); 509 } 510 } 511 } 512 513 /// ShouldInstrumentFunction - Return true if the current function should be 514 /// instrumented with __cyg_profile_func_* calls 515 bool CodeGenFunction::ShouldInstrumentFunction() { 516 if (!CGM.getCodeGenOpts().InstrumentFunctions && 517 !CGM.getCodeGenOpts().InstrumentFunctionsAfterInlining && 518 !CGM.getCodeGenOpts().InstrumentFunctionEntryBare) 519 return false; 520 if (!CurFuncDecl || CurFuncDecl->hasAttr<NoInstrumentFunctionAttr>()) 521 return false; 522 return true; 523 } 524 525 bool CodeGenFunction::ShouldSkipSanitizerInstrumentation() { 526 if (!CurFuncDecl) 527 return false; 528 return CurFuncDecl->hasAttr<DisableSanitizerInstrumentationAttr>(); 529 } 530 531 /// ShouldXRayInstrument - Return true if the current function should be 532 /// instrumented with XRay nop sleds. 533 bool CodeGenFunction::ShouldXRayInstrumentFunction() const { 534 return CGM.getCodeGenOpts().XRayInstrumentFunctions; 535 } 536 537 /// AlwaysEmitXRayCustomEvents - Return true if we should emit IR for calls to 538 /// the __xray_customevent(...) builtin calls, when doing XRay instrumentation. 539 bool CodeGenFunction::AlwaysEmitXRayCustomEvents() const { 540 return CGM.getCodeGenOpts().XRayInstrumentFunctions && 541 (CGM.getCodeGenOpts().XRayAlwaysEmitCustomEvents || 542 CGM.getCodeGenOpts().XRayInstrumentationBundle.Mask == 543 XRayInstrKind::Custom); 544 } 545 546 bool CodeGenFunction::AlwaysEmitXRayTypedEvents() const { 547 return CGM.getCodeGenOpts().XRayInstrumentFunctions && 548 (CGM.getCodeGenOpts().XRayAlwaysEmitTypedEvents || 549 CGM.getCodeGenOpts().XRayInstrumentationBundle.Mask == 550 XRayInstrKind::Typed); 551 } 552 553 llvm::Constant * 554 CodeGenFunction::EncodeAddrForUseInPrologue(llvm::Function *F, 555 llvm::Constant *Addr) { 556 // Addresses stored in prologue data can't require run-time fixups and must 557 // be PC-relative. Run-time fixups are undesirable because they necessitate 558 // writable text segments, which are unsafe. And absolute addresses are 559 // undesirable because they break PIE mode. 560 561 // Add a layer of indirection through a private global. Taking its address 562 // won't result in a run-time fixup, even if Addr has linkonce_odr linkage. 563 auto *GV = new llvm::GlobalVariable(CGM.getModule(), Addr->getType(), 564 /*isConstant=*/true, 565 llvm::GlobalValue::PrivateLinkage, Addr); 566 567 // Create a PC-relative address. 568 auto *GOTAsInt = llvm::ConstantExpr::getPtrToInt(GV, IntPtrTy); 569 auto *FuncAsInt = llvm::ConstantExpr::getPtrToInt(F, IntPtrTy); 570 auto *PCRelAsInt = llvm::ConstantExpr::getSub(GOTAsInt, FuncAsInt); 571 return (IntPtrTy == Int32Ty) 572 ? PCRelAsInt 573 : llvm::ConstantExpr::getTrunc(PCRelAsInt, Int32Ty); 574 } 575 576 llvm::Value * 577 CodeGenFunction::DecodeAddrUsedInPrologue(llvm::Value *F, 578 llvm::Value *EncodedAddr) { 579 // Reconstruct the address of the global. 580 auto *PCRelAsInt = Builder.CreateSExt(EncodedAddr, IntPtrTy); 581 auto *FuncAsInt = Builder.CreatePtrToInt(F, IntPtrTy, "func_addr.int"); 582 auto *GOTAsInt = Builder.CreateAdd(PCRelAsInt, FuncAsInt, "global_addr.int"); 583 auto *GOTAddr = Builder.CreateIntToPtr(GOTAsInt, Int8PtrPtrTy, "global_addr"); 584 585 // Load the original pointer through the global. 586 return Builder.CreateLoad(Address(GOTAddr, getPointerAlign()), 587 "decoded_addr"); 588 } 589 590 void CodeGenFunction::EmitOpenCLKernelMetadata(const FunctionDecl *FD, 591 llvm::Function *Fn) 592 { 593 if (!FD->hasAttr<OpenCLKernelAttr>()) 594 return; 595 596 llvm::LLVMContext &Context = getLLVMContext(); 597 598 CGM.GenOpenCLArgMetadata(Fn, FD, this); 599 600 if (const VecTypeHintAttr *A = FD->getAttr<VecTypeHintAttr>()) { 601 QualType HintQTy = A->getTypeHint(); 602 const ExtVectorType *HintEltQTy = HintQTy->getAs<ExtVectorType>(); 603 bool IsSignedInteger = 604 HintQTy->isSignedIntegerType() || 605 (HintEltQTy && HintEltQTy->getElementType()->isSignedIntegerType()); 606 llvm::Metadata *AttrMDArgs[] = { 607 llvm::ConstantAsMetadata::get(llvm::UndefValue::get( 608 CGM.getTypes().ConvertType(A->getTypeHint()))), 609 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 610 llvm::IntegerType::get(Context, 32), 611 llvm::APInt(32, (uint64_t)(IsSignedInteger ? 1 : 0))))}; 612 Fn->setMetadata("vec_type_hint", llvm::MDNode::get(Context, AttrMDArgs)); 613 } 614 615 if (const WorkGroupSizeHintAttr *A = FD->getAttr<WorkGroupSizeHintAttr>()) { 616 llvm::Metadata *AttrMDArgs[] = { 617 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getXDim())), 618 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getYDim())), 619 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getZDim()))}; 620 Fn->setMetadata("work_group_size_hint", llvm::MDNode::get(Context, AttrMDArgs)); 621 } 622 623 if (const ReqdWorkGroupSizeAttr *A = FD->getAttr<ReqdWorkGroupSizeAttr>()) { 624 llvm::Metadata *AttrMDArgs[] = { 625 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getXDim())), 626 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getYDim())), 627 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getZDim()))}; 628 Fn->setMetadata("reqd_work_group_size", llvm::MDNode::get(Context, AttrMDArgs)); 629 } 630 631 if (const OpenCLIntelReqdSubGroupSizeAttr *A = 632 FD->getAttr<OpenCLIntelReqdSubGroupSizeAttr>()) { 633 llvm::Metadata *AttrMDArgs[] = { 634 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getSubGroupSize()))}; 635 Fn->setMetadata("intel_reqd_sub_group_size", 636 llvm::MDNode::get(Context, AttrMDArgs)); 637 } 638 } 639 640 /// Determine whether the function F ends with a return stmt. 641 static bool endsWithReturn(const Decl* F) { 642 const Stmt *Body = nullptr; 643 if (auto *FD = dyn_cast_or_null<FunctionDecl>(F)) 644 Body = FD->getBody(); 645 else if (auto *OMD = dyn_cast_or_null<ObjCMethodDecl>(F)) 646 Body = OMD->getBody(); 647 648 if (auto *CS = dyn_cast_or_null<CompoundStmt>(Body)) { 649 auto LastStmt = CS->body_rbegin(); 650 if (LastStmt != CS->body_rend()) 651 return isa<ReturnStmt>(*LastStmt); 652 } 653 return false; 654 } 655 656 void CodeGenFunction::markAsIgnoreThreadCheckingAtRuntime(llvm::Function *Fn) { 657 if (SanOpts.has(SanitizerKind::Thread)) { 658 Fn->addFnAttr("sanitize_thread_no_checking_at_run_time"); 659 Fn->removeFnAttr(llvm::Attribute::SanitizeThread); 660 } 661 } 662 663 /// Check if the return value of this function requires sanitization. 664 bool CodeGenFunction::requiresReturnValueCheck() const { 665 return requiresReturnValueNullabilityCheck() || 666 (SanOpts.has(SanitizerKind::ReturnsNonnullAttribute) && CurCodeDecl && 667 CurCodeDecl->getAttr<ReturnsNonNullAttr>()); 668 } 669 670 static bool matchesStlAllocatorFn(const Decl *D, const ASTContext &Ctx) { 671 auto *MD = dyn_cast_or_null<CXXMethodDecl>(D); 672 if (!MD || !MD->getDeclName().getAsIdentifierInfo() || 673 !MD->getDeclName().getAsIdentifierInfo()->isStr("allocate") || 674 (MD->getNumParams() != 1 && MD->getNumParams() != 2)) 675 return false; 676 677 if (MD->parameters()[0]->getType().getCanonicalType() != Ctx.getSizeType()) 678 return false; 679 680 if (MD->getNumParams() == 2) { 681 auto *PT = MD->parameters()[1]->getType()->getAs<PointerType>(); 682 if (!PT || !PT->isVoidPointerType() || 683 !PT->getPointeeType().isConstQualified()) 684 return false; 685 } 686 687 return true; 688 } 689 690 /// Return the UBSan prologue signature for \p FD if one is available. 691 static llvm::Constant *getPrologueSignature(CodeGenModule &CGM, 692 const FunctionDecl *FD) { 693 if (const auto *MD = dyn_cast<CXXMethodDecl>(FD)) 694 if (!MD->isStatic()) 695 return nullptr; 696 return CGM.getTargetCodeGenInfo().getUBSanFunctionSignature(CGM); 697 } 698 699 void CodeGenFunction::StartFunction(GlobalDecl GD, QualType RetTy, 700 llvm::Function *Fn, 701 const CGFunctionInfo &FnInfo, 702 const FunctionArgList &Args, 703 SourceLocation Loc, 704 SourceLocation StartLoc) { 705 assert(!CurFn && 706 "Do not use a CodeGenFunction object for more than one function"); 707 708 const Decl *D = GD.getDecl(); 709 710 DidCallStackSave = false; 711 CurCodeDecl = D; 712 const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D); 713 if (FD && FD->usesSEHTry()) 714 CurSEHParent = FD; 715 CurFuncDecl = (D ? D->getNonClosureContext() : nullptr); 716 FnRetTy = RetTy; 717 CurFn = Fn; 718 CurFnInfo = &FnInfo; 719 assert(CurFn->isDeclaration() && "Function already has body?"); 720 721 // If this function is ignored for any of the enabled sanitizers, 722 // disable the sanitizer for the function. 723 do { 724 #define SANITIZER(NAME, ID) \ 725 if (SanOpts.empty()) \ 726 break; \ 727 if (SanOpts.has(SanitizerKind::ID)) \ 728 if (CGM.isInNoSanitizeList(SanitizerKind::ID, Fn, Loc)) \ 729 SanOpts.set(SanitizerKind::ID, false); 730 731 #include "clang/Basic/Sanitizers.def" 732 #undef SANITIZER 733 } while (0); 734 735 if (D) { 736 bool NoSanitizeCoverage = false; 737 738 for (auto Attr : D->specific_attrs<NoSanitizeAttr>()) { 739 // Apply the no_sanitize* attributes to SanOpts. 740 SanitizerMask mask = Attr->getMask(); 741 SanOpts.Mask &= ~mask; 742 if (mask & SanitizerKind::Address) 743 SanOpts.set(SanitizerKind::KernelAddress, false); 744 if (mask & SanitizerKind::KernelAddress) 745 SanOpts.set(SanitizerKind::Address, false); 746 if (mask & SanitizerKind::HWAddress) 747 SanOpts.set(SanitizerKind::KernelHWAddress, false); 748 if (mask & SanitizerKind::KernelHWAddress) 749 SanOpts.set(SanitizerKind::HWAddress, false); 750 751 // SanitizeCoverage is not handled by SanOpts. 752 if (Attr->hasCoverage()) 753 NoSanitizeCoverage = true; 754 } 755 756 if (NoSanitizeCoverage && CGM.getCodeGenOpts().hasSanitizeCoverage()) 757 Fn->addFnAttr(llvm::Attribute::NoSanitizeCoverage); 758 } 759 760 // Apply sanitizer attributes to the function. 761 if (SanOpts.hasOneOf(SanitizerKind::Address | SanitizerKind::KernelAddress)) 762 Fn->addFnAttr(llvm::Attribute::SanitizeAddress); 763 if (SanOpts.hasOneOf(SanitizerKind::HWAddress | SanitizerKind::KernelHWAddress)) 764 Fn->addFnAttr(llvm::Attribute::SanitizeHWAddress); 765 if (SanOpts.has(SanitizerKind::MemTag)) 766 Fn->addFnAttr(llvm::Attribute::SanitizeMemTag); 767 if (SanOpts.has(SanitizerKind::Thread)) 768 Fn->addFnAttr(llvm::Attribute::SanitizeThread); 769 if (SanOpts.hasOneOf(SanitizerKind::Memory | SanitizerKind::KernelMemory)) 770 Fn->addFnAttr(llvm::Attribute::SanitizeMemory); 771 if (SanOpts.has(SanitizerKind::SafeStack)) 772 Fn->addFnAttr(llvm::Attribute::SafeStack); 773 if (SanOpts.has(SanitizerKind::ShadowCallStack)) 774 Fn->addFnAttr(llvm::Attribute::ShadowCallStack); 775 776 // Apply fuzzing attribute to the function. 777 if (SanOpts.hasOneOf(SanitizerKind::Fuzzer | SanitizerKind::FuzzerNoLink)) 778 Fn->addFnAttr(llvm::Attribute::OptForFuzzing); 779 780 // Ignore TSan memory acesses from within ObjC/ObjC++ dealloc, initialize, 781 // .cxx_destruct, __destroy_helper_block_ and all of their calees at run time. 782 if (SanOpts.has(SanitizerKind::Thread)) { 783 if (const auto *OMD = dyn_cast_or_null<ObjCMethodDecl>(D)) { 784 IdentifierInfo *II = OMD->getSelector().getIdentifierInfoForSlot(0); 785 if (OMD->getMethodFamily() == OMF_dealloc || 786 OMD->getMethodFamily() == OMF_initialize || 787 (OMD->getSelector().isUnarySelector() && II->isStr(".cxx_destruct"))) { 788 markAsIgnoreThreadCheckingAtRuntime(Fn); 789 } 790 } 791 } 792 793 // Ignore unrelated casts in STL allocate() since the allocator must cast 794 // from void* to T* before object initialization completes. Don't match on the 795 // namespace because not all allocators are in std:: 796 if (D && SanOpts.has(SanitizerKind::CFIUnrelatedCast)) { 797 if (matchesStlAllocatorFn(D, getContext())) 798 SanOpts.Mask &= ~SanitizerKind::CFIUnrelatedCast; 799 } 800 801 // Ignore null checks in coroutine functions since the coroutines passes 802 // are not aware of how to move the extra UBSan instructions across the split 803 // coroutine boundaries. 804 if (D && SanOpts.has(SanitizerKind::Null)) 805 if (FD && FD->getBody() && 806 FD->getBody()->getStmtClass() == Stmt::CoroutineBodyStmtClass) 807 SanOpts.Mask &= ~SanitizerKind::Null; 808 809 // Apply xray attributes to the function (as a string, for now) 810 bool AlwaysXRayAttr = false; 811 if (const auto *XRayAttr = D ? D->getAttr<XRayInstrumentAttr>() : nullptr) { 812 if (CGM.getCodeGenOpts().XRayInstrumentationBundle.has( 813 XRayInstrKind::FunctionEntry) || 814 CGM.getCodeGenOpts().XRayInstrumentationBundle.has( 815 XRayInstrKind::FunctionExit)) { 816 if (XRayAttr->alwaysXRayInstrument() && ShouldXRayInstrumentFunction()) { 817 Fn->addFnAttr("function-instrument", "xray-always"); 818 AlwaysXRayAttr = true; 819 } 820 if (XRayAttr->neverXRayInstrument()) 821 Fn->addFnAttr("function-instrument", "xray-never"); 822 if (const auto *LogArgs = D->getAttr<XRayLogArgsAttr>()) 823 if (ShouldXRayInstrumentFunction()) 824 Fn->addFnAttr("xray-log-args", 825 llvm::utostr(LogArgs->getArgumentCount())); 826 } 827 } else { 828 if (ShouldXRayInstrumentFunction() && !CGM.imbueXRayAttrs(Fn, Loc)) 829 Fn->addFnAttr( 830 "xray-instruction-threshold", 831 llvm::itostr(CGM.getCodeGenOpts().XRayInstructionThreshold)); 832 } 833 834 if (ShouldXRayInstrumentFunction()) { 835 if (CGM.getCodeGenOpts().XRayIgnoreLoops) 836 Fn->addFnAttr("xray-ignore-loops"); 837 838 if (!CGM.getCodeGenOpts().XRayInstrumentationBundle.has( 839 XRayInstrKind::FunctionExit)) 840 Fn->addFnAttr("xray-skip-exit"); 841 842 if (!CGM.getCodeGenOpts().XRayInstrumentationBundle.has( 843 XRayInstrKind::FunctionEntry)) 844 Fn->addFnAttr("xray-skip-entry"); 845 846 auto FuncGroups = CGM.getCodeGenOpts().XRayTotalFunctionGroups; 847 if (FuncGroups > 1) { 848 auto FuncName = llvm::makeArrayRef<uint8_t>( 849 CurFn->getName().bytes_begin(), CurFn->getName().bytes_end()); 850 auto Group = crc32(FuncName) % FuncGroups; 851 if (Group != CGM.getCodeGenOpts().XRaySelectedFunctionGroup && 852 !AlwaysXRayAttr) 853 Fn->addFnAttr("function-instrument", "xray-never"); 854 } 855 } 856 857 if (CGM.getCodeGenOpts().getProfileInstr() != CodeGenOptions::ProfileNone) 858 if (CGM.isProfileInstrExcluded(Fn, Loc)) 859 Fn->addFnAttr(llvm::Attribute::NoProfile); 860 861 unsigned Count, Offset; 862 if (const auto *Attr = 863 D ? D->getAttr<PatchableFunctionEntryAttr>() : nullptr) { 864 Count = Attr->getCount(); 865 Offset = Attr->getOffset(); 866 } else { 867 Count = CGM.getCodeGenOpts().PatchableFunctionEntryCount; 868 Offset = CGM.getCodeGenOpts().PatchableFunctionEntryOffset; 869 } 870 if (Count && Offset <= Count) { 871 Fn->addFnAttr("patchable-function-entry", std::to_string(Count - Offset)); 872 if (Offset) 873 Fn->addFnAttr("patchable-function-prefix", std::to_string(Offset)); 874 } 875 876 // Add no-jump-tables value. 877 if (CGM.getCodeGenOpts().NoUseJumpTables) 878 Fn->addFnAttr("no-jump-tables", "true"); 879 880 // Add no-inline-line-tables value. 881 if (CGM.getCodeGenOpts().NoInlineLineTables) 882 Fn->addFnAttr("no-inline-line-tables"); 883 884 // Add profile-sample-accurate value. 885 if (CGM.getCodeGenOpts().ProfileSampleAccurate) 886 Fn->addFnAttr("profile-sample-accurate"); 887 888 if (!CGM.getCodeGenOpts().SampleProfileFile.empty()) 889 Fn->addFnAttr("use-sample-profile"); 890 891 if (D && D->hasAttr<CFICanonicalJumpTableAttr>()) 892 Fn->addFnAttr("cfi-canonical-jump-table"); 893 894 if (D && D->hasAttr<NoProfileFunctionAttr>()) 895 Fn->addFnAttr(llvm::Attribute::NoProfile); 896 897 if (FD && getLangOpts().OpenCL) { 898 // Add metadata for a kernel function. 899 EmitOpenCLKernelMetadata(FD, Fn); 900 } 901 902 // If we are checking function types, emit a function type signature as 903 // prologue data. 904 if (FD && getLangOpts().CPlusPlus && SanOpts.has(SanitizerKind::Function)) { 905 if (llvm::Constant *PrologueSig = getPrologueSignature(CGM, FD)) { 906 // Remove any (C++17) exception specifications, to allow calling e.g. a 907 // noexcept function through a non-noexcept pointer. 908 auto ProtoTy = getContext().getFunctionTypeWithExceptionSpec( 909 FD->getType(), EST_None); 910 llvm::Constant *FTRTTIConst = 911 CGM.GetAddrOfRTTIDescriptor(ProtoTy, /*ForEH=*/true); 912 llvm::Constant *FTRTTIConstEncoded = 913 EncodeAddrForUseInPrologue(Fn, FTRTTIConst); 914 llvm::Constant *PrologueStructElems[] = {PrologueSig, FTRTTIConstEncoded}; 915 llvm::Constant *PrologueStructConst = 916 llvm::ConstantStruct::getAnon(PrologueStructElems, /*Packed=*/true); 917 Fn->setPrologueData(PrologueStructConst); 918 } 919 } 920 921 // If we're checking nullability, we need to know whether we can check the 922 // return value. Initialize the flag to 'true' and refine it in EmitParmDecl. 923 if (SanOpts.has(SanitizerKind::NullabilityReturn)) { 924 auto Nullability = FnRetTy->getNullability(getContext()); 925 if (Nullability && *Nullability == NullabilityKind::NonNull) { 926 if (!(SanOpts.has(SanitizerKind::ReturnsNonnullAttribute) && 927 CurCodeDecl && CurCodeDecl->getAttr<ReturnsNonNullAttr>())) 928 RetValNullabilityPrecondition = 929 llvm::ConstantInt::getTrue(getLLVMContext()); 930 } 931 } 932 933 // If we're in C++ mode and the function name is "main", it is guaranteed 934 // to be norecurse by the standard (3.6.1.3 "The function main shall not be 935 // used within a program"). 936 // 937 // OpenCL C 2.0 v2.2-11 s6.9.i: 938 // Recursion is not supported. 939 // 940 // SYCL v1.2.1 s3.10: 941 // kernels cannot include RTTI information, exception classes, 942 // recursive code, virtual functions or make use of C++ libraries that 943 // are not compiled for the device. 944 if (FD && ((getLangOpts().CPlusPlus && FD->isMain()) || 945 getLangOpts().OpenCL || getLangOpts().SYCLIsDevice || 946 (getLangOpts().CUDA && FD->hasAttr<CUDAGlobalAttr>()))) 947 Fn->addFnAttr(llvm::Attribute::NoRecurse); 948 949 llvm::RoundingMode RM = getLangOpts().getFPRoundingMode(); 950 llvm::fp::ExceptionBehavior FPExceptionBehavior = 951 ToConstrainedExceptMD(getLangOpts().getFPExceptionMode()); 952 Builder.setDefaultConstrainedRounding(RM); 953 Builder.setDefaultConstrainedExcept(FPExceptionBehavior); 954 if ((FD && (FD->UsesFPIntrin() || FD->hasAttr<StrictFPAttr>())) || 955 (!FD && (FPExceptionBehavior != llvm::fp::ebIgnore || 956 RM != llvm::RoundingMode::NearestTiesToEven))) { 957 Builder.setIsFPConstrained(true); 958 Fn->addFnAttr(llvm::Attribute::StrictFP); 959 } 960 961 // If a custom alignment is used, force realigning to this alignment on 962 // any main function which certainly will need it. 963 if (FD && ((FD->isMain() || FD->isMSVCRTEntryPoint()) && 964 CGM.getCodeGenOpts().StackAlignment)) 965 Fn->addFnAttr("stackrealign"); 966 967 llvm::BasicBlock *EntryBB = createBasicBlock("entry", CurFn); 968 969 // Create a marker to make it easy to insert allocas into the entryblock 970 // later. Don't create this with the builder, because we don't want it 971 // folded. 972 llvm::Value *Undef = llvm::UndefValue::get(Int32Ty); 973 AllocaInsertPt = new llvm::BitCastInst(Undef, Int32Ty, "allocapt", EntryBB); 974 975 ReturnBlock = getJumpDestInCurrentScope("return"); 976 977 Builder.SetInsertPoint(EntryBB); 978 979 // If we're checking the return value, allocate space for a pointer to a 980 // precise source location of the checked return statement. 981 if (requiresReturnValueCheck()) { 982 ReturnLocation = CreateDefaultAlignTempAlloca(Int8PtrTy, "return.sloc.ptr"); 983 InitTempAlloca(ReturnLocation, llvm::ConstantPointerNull::get(Int8PtrTy)); 984 } 985 986 // Emit subprogram debug descriptor. 987 if (CGDebugInfo *DI = getDebugInfo()) { 988 // Reconstruct the type from the argument list so that implicit parameters, 989 // such as 'this' and 'vtt', show up in the debug info. Preserve the calling 990 // convention. 991 CallingConv CC = CallingConv::CC_C; 992 if (FD) 993 if (const auto *SrcFnTy = FD->getType()->getAs<FunctionType>()) 994 CC = SrcFnTy->getCallConv(); 995 SmallVector<QualType, 16> ArgTypes; 996 for (const VarDecl *VD : Args) 997 ArgTypes.push_back(VD->getType()); 998 QualType FnType = getContext().getFunctionType( 999 RetTy, ArgTypes, FunctionProtoType::ExtProtoInfo(CC)); 1000 DI->emitFunctionStart(GD, Loc, StartLoc, FnType, CurFn, CurFuncIsThunk); 1001 } 1002 1003 if (ShouldInstrumentFunction()) { 1004 if (CGM.getCodeGenOpts().InstrumentFunctions) 1005 CurFn->addFnAttr("instrument-function-entry", "__cyg_profile_func_enter"); 1006 if (CGM.getCodeGenOpts().InstrumentFunctionsAfterInlining) 1007 CurFn->addFnAttr("instrument-function-entry-inlined", 1008 "__cyg_profile_func_enter"); 1009 if (CGM.getCodeGenOpts().InstrumentFunctionEntryBare) 1010 CurFn->addFnAttr("instrument-function-entry-inlined", 1011 "__cyg_profile_func_enter_bare"); 1012 } 1013 1014 // Since emitting the mcount call here impacts optimizations such as function 1015 // inlining, we just add an attribute to insert a mcount call in backend. 1016 // The attribute "counting-function" is set to mcount function name which is 1017 // architecture dependent. 1018 if (CGM.getCodeGenOpts().InstrumentForProfiling) { 1019 // Calls to fentry/mcount should not be generated if function has 1020 // the no_instrument_function attribute. 1021 if (!CurFuncDecl || !CurFuncDecl->hasAttr<NoInstrumentFunctionAttr>()) { 1022 if (CGM.getCodeGenOpts().CallFEntry) 1023 Fn->addFnAttr("fentry-call", "true"); 1024 else { 1025 Fn->addFnAttr("instrument-function-entry-inlined", 1026 getTarget().getMCountName()); 1027 } 1028 if (CGM.getCodeGenOpts().MNopMCount) { 1029 if (!CGM.getCodeGenOpts().CallFEntry) 1030 CGM.getDiags().Report(diag::err_opt_not_valid_without_opt) 1031 << "-mnop-mcount" << "-mfentry"; 1032 Fn->addFnAttr("mnop-mcount"); 1033 } 1034 1035 if (CGM.getCodeGenOpts().RecordMCount) { 1036 if (!CGM.getCodeGenOpts().CallFEntry) 1037 CGM.getDiags().Report(diag::err_opt_not_valid_without_opt) 1038 << "-mrecord-mcount" << "-mfentry"; 1039 Fn->addFnAttr("mrecord-mcount"); 1040 } 1041 } 1042 } 1043 1044 if (CGM.getCodeGenOpts().PackedStack) { 1045 if (getContext().getTargetInfo().getTriple().getArch() != 1046 llvm::Triple::systemz) 1047 CGM.getDiags().Report(diag::err_opt_not_valid_on_target) 1048 << "-mpacked-stack"; 1049 Fn->addFnAttr("packed-stack"); 1050 } 1051 1052 if (CGM.getCodeGenOpts().WarnStackSize != UINT_MAX && 1053 !CGM.getDiags().isIgnored(diag::warn_fe_backend_frame_larger_than, Loc)) 1054 Fn->addFnAttr("warn-stack-size", 1055 std::to_string(CGM.getCodeGenOpts().WarnStackSize)); 1056 1057 if (RetTy->isVoidType()) { 1058 // Void type; nothing to return. 1059 ReturnValue = Address::invalid(); 1060 1061 // Count the implicit return. 1062 if (!endsWithReturn(D)) 1063 ++NumReturnExprs; 1064 } else if (CurFnInfo->getReturnInfo().getKind() == ABIArgInfo::Indirect) { 1065 // Indirect return; emit returned value directly into sret slot. 1066 // This reduces code size, and affects correctness in C++. 1067 auto AI = CurFn->arg_begin(); 1068 if (CurFnInfo->getReturnInfo().isSRetAfterThis()) 1069 ++AI; 1070 ReturnValue = Address(&*AI, CurFnInfo->getReturnInfo().getIndirectAlign()); 1071 if (!CurFnInfo->getReturnInfo().getIndirectByVal()) { 1072 ReturnValuePointer = 1073 CreateDefaultAlignTempAlloca(Int8PtrTy, "result.ptr"); 1074 Builder.CreateStore(Builder.CreatePointerBitCastOrAddrSpaceCast( 1075 ReturnValue.getPointer(), Int8PtrTy), 1076 ReturnValuePointer); 1077 } 1078 } else if (CurFnInfo->getReturnInfo().getKind() == ABIArgInfo::InAlloca && 1079 !hasScalarEvaluationKind(CurFnInfo->getReturnType())) { 1080 // Load the sret pointer from the argument struct and return into that. 1081 unsigned Idx = CurFnInfo->getReturnInfo().getInAllocaFieldIndex(); 1082 llvm::Function::arg_iterator EI = CurFn->arg_end(); 1083 --EI; 1084 llvm::Value *Addr = Builder.CreateStructGEP( 1085 EI->getType()->getPointerElementType(), &*EI, Idx); 1086 llvm::Type *Ty = 1087 cast<llvm::GetElementPtrInst>(Addr)->getResultElementType(); 1088 ReturnValuePointer = Address(Addr, getPointerAlign()); 1089 Addr = Builder.CreateAlignedLoad(Ty, Addr, getPointerAlign(), "agg.result"); 1090 ReturnValue = Address(Addr, CGM.getNaturalTypeAlignment(RetTy)); 1091 } else { 1092 ReturnValue = CreateIRTemp(RetTy, "retval"); 1093 1094 // Tell the epilog emitter to autorelease the result. We do this 1095 // now so that various specialized functions can suppress it 1096 // during their IR-generation. 1097 if (getLangOpts().ObjCAutoRefCount && 1098 !CurFnInfo->isReturnsRetained() && 1099 RetTy->isObjCRetainableType()) 1100 AutoreleaseResult = true; 1101 } 1102 1103 EmitStartEHSpec(CurCodeDecl); 1104 1105 PrologueCleanupDepth = EHStack.stable_begin(); 1106 1107 // Emit OpenMP specific initialization of the device functions. 1108 if (getLangOpts().OpenMP && CurCodeDecl) 1109 CGM.getOpenMPRuntime().emitFunctionProlog(*this, CurCodeDecl); 1110 1111 EmitFunctionProlog(*CurFnInfo, CurFn, Args); 1112 1113 if (D && isa<CXXMethodDecl>(D) && cast<CXXMethodDecl>(D)->isInstance()) { 1114 CGM.getCXXABI().EmitInstanceFunctionProlog(*this); 1115 const CXXMethodDecl *MD = cast<CXXMethodDecl>(D); 1116 if (MD->getParent()->isLambda() && 1117 MD->getOverloadedOperator() == OO_Call) { 1118 // We're in a lambda; figure out the captures. 1119 MD->getParent()->getCaptureFields(LambdaCaptureFields, 1120 LambdaThisCaptureField); 1121 if (LambdaThisCaptureField) { 1122 // If the lambda captures the object referred to by '*this' - either by 1123 // value or by reference, make sure CXXThisValue points to the correct 1124 // object. 1125 1126 // Get the lvalue for the field (which is a copy of the enclosing object 1127 // or contains the address of the enclosing object). 1128 LValue ThisFieldLValue = EmitLValueForLambdaField(LambdaThisCaptureField); 1129 if (!LambdaThisCaptureField->getType()->isPointerType()) { 1130 // If the enclosing object was captured by value, just use its address. 1131 CXXThisValue = ThisFieldLValue.getAddress(*this).getPointer(); 1132 } else { 1133 // Load the lvalue pointed to by the field, since '*this' was captured 1134 // by reference. 1135 CXXThisValue = 1136 EmitLoadOfLValue(ThisFieldLValue, SourceLocation()).getScalarVal(); 1137 } 1138 } 1139 for (auto *FD : MD->getParent()->fields()) { 1140 if (FD->hasCapturedVLAType()) { 1141 auto *ExprArg = EmitLoadOfLValue(EmitLValueForLambdaField(FD), 1142 SourceLocation()).getScalarVal(); 1143 auto VAT = FD->getCapturedVLAType(); 1144 VLASizeMap[VAT->getSizeExpr()] = ExprArg; 1145 } 1146 } 1147 } else { 1148 // Not in a lambda; just use 'this' from the method. 1149 // FIXME: Should we generate a new load for each use of 'this'? The 1150 // fast register allocator would be happier... 1151 CXXThisValue = CXXABIThisValue; 1152 } 1153 1154 // Check the 'this' pointer once per function, if it's available. 1155 if (CXXABIThisValue) { 1156 SanitizerSet SkippedChecks; 1157 SkippedChecks.set(SanitizerKind::ObjectSize, true); 1158 QualType ThisTy = MD->getThisType(); 1159 1160 // If this is the call operator of a lambda with no capture-default, it 1161 // may have a static invoker function, which may call this operator with 1162 // a null 'this' pointer. 1163 if (isLambdaCallOperator(MD) && 1164 MD->getParent()->getLambdaCaptureDefault() == LCD_None) 1165 SkippedChecks.set(SanitizerKind::Null, true); 1166 1167 EmitTypeCheck( 1168 isa<CXXConstructorDecl>(MD) ? TCK_ConstructorCall : TCK_MemberCall, 1169 Loc, CXXABIThisValue, ThisTy, CXXABIThisAlignment, SkippedChecks); 1170 } 1171 } 1172 1173 // If any of the arguments have a variably modified type, make sure to 1174 // emit the type size. 1175 for (FunctionArgList::const_iterator i = Args.begin(), e = Args.end(); 1176 i != e; ++i) { 1177 const VarDecl *VD = *i; 1178 1179 // Dig out the type as written from ParmVarDecls; it's unclear whether 1180 // the standard (C99 6.9.1p10) requires this, but we're following the 1181 // precedent set by gcc. 1182 QualType Ty; 1183 if (const ParmVarDecl *PVD = dyn_cast<ParmVarDecl>(VD)) 1184 Ty = PVD->getOriginalType(); 1185 else 1186 Ty = VD->getType(); 1187 1188 if (Ty->isVariablyModifiedType()) 1189 EmitVariablyModifiedType(Ty); 1190 } 1191 // Emit a location at the end of the prologue. 1192 if (CGDebugInfo *DI = getDebugInfo()) 1193 DI->EmitLocation(Builder, StartLoc); 1194 1195 // TODO: Do we need to handle this in two places like we do with 1196 // target-features/target-cpu? 1197 if (CurFuncDecl) 1198 if (const auto *VecWidth = CurFuncDecl->getAttr<MinVectorWidthAttr>()) 1199 LargestVectorWidth = VecWidth->getVectorWidth(); 1200 } 1201 1202 void CodeGenFunction::EmitFunctionBody(const Stmt *Body) { 1203 incrementProfileCounter(Body); 1204 if (const CompoundStmt *S = dyn_cast<CompoundStmt>(Body)) 1205 EmitCompoundStmtWithoutScope(*S); 1206 else 1207 EmitStmt(Body); 1208 1209 // This is checked after emitting the function body so we know if there 1210 // are any permitted infinite loops. 1211 if (checkIfFunctionMustProgress()) 1212 CurFn->addFnAttr(llvm::Attribute::MustProgress); 1213 } 1214 1215 /// When instrumenting to collect profile data, the counts for some blocks 1216 /// such as switch cases need to not include the fall-through counts, so 1217 /// emit a branch around the instrumentation code. When not instrumenting, 1218 /// this just calls EmitBlock(). 1219 void CodeGenFunction::EmitBlockWithFallThrough(llvm::BasicBlock *BB, 1220 const Stmt *S) { 1221 llvm::BasicBlock *SkipCountBB = nullptr; 1222 if (HaveInsertPoint() && CGM.getCodeGenOpts().hasProfileClangInstr()) { 1223 // When instrumenting for profiling, the fallthrough to certain 1224 // statements needs to skip over the instrumentation code so that we 1225 // get an accurate count. 1226 SkipCountBB = createBasicBlock("skipcount"); 1227 EmitBranch(SkipCountBB); 1228 } 1229 EmitBlock(BB); 1230 uint64_t CurrentCount = getCurrentProfileCount(); 1231 incrementProfileCounter(S); 1232 setCurrentProfileCount(getCurrentProfileCount() + CurrentCount); 1233 if (SkipCountBB) 1234 EmitBlock(SkipCountBB); 1235 } 1236 1237 /// Tries to mark the given function nounwind based on the 1238 /// non-existence of any throwing calls within it. We believe this is 1239 /// lightweight enough to do at -O0. 1240 static void TryMarkNoThrow(llvm::Function *F) { 1241 // LLVM treats 'nounwind' on a function as part of the type, so we 1242 // can't do this on functions that can be overwritten. 1243 if (F->isInterposable()) return; 1244 1245 for (llvm::BasicBlock &BB : *F) 1246 for (llvm::Instruction &I : BB) 1247 if (I.mayThrow()) 1248 return; 1249 1250 F->setDoesNotThrow(); 1251 } 1252 1253 QualType CodeGenFunction::BuildFunctionArgList(GlobalDecl GD, 1254 FunctionArgList &Args) { 1255 const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl()); 1256 QualType ResTy = FD->getReturnType(); 1257 1258 const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD); 1259 if (MD && MD->isInstance()) { 1260 if (CGM.getCXXABI().HasThisReturn(GD)) 1261 ResTy = MD->getThisType(); 1262 else if (CGM.getCXXABI().hasMostDerivedReturn(GD)) 1263 ResTy = CGM.getContext().VoidPtrTy; 1264 CGM.getCXXABI().buildThisParam(*this, Args); 1265 } 1266 1267 // The base version of an inheriting constructor whose constructed base is a 1268 // virtual base is not passed any arguments (because it doesn't actually call 1269 // the inherited constructor). 1270 bool PassedParams = true; 1271 if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(FD)) 1272 if (auto Inherited = CD->getInheritedConstructor()) 1273 PassedParams = 1274 getTypes().inheritingCtorHasParams(Inherited, GD.getCtorType()); 1275 1276 if (PassedParams) { 1277 for (auto *Param : FD->parameters()) { 1278 Args.push_back(Param); 1279 if (!Param->hasAttr<PassObjectSizeAttr>()) 1280 continue; 1281 1282 auto *Implicit = ImplicitParamDecl::Create( 1283 getContext(), Param->getDeclContext(), Param->getLocation(), 1284 /*Id=*/nullptr, getContext().getSizeType(), ImplicitParamDecl::Other); 1285 SizeArguments[Param] = Implicit; 1286 Args.push_back(Implicit); 1287 } 1288 } 1289 1290 if (MD && (isa<CXXConstructorDecl>(MD) || isa<CXXDestructorDecl>(MD))) 1291 CGM.getCXXABI().addImplicitStructorParams(*this, ResTy, Args); 1292 1293 return ResTy; 1294 } 1295 1296 void CodeGenFunction::GenerateCode(GlobalDecl GD, llvm::Function *Fn, 1297 const CGFunctionInfo &FnInfo) { 1298 const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl()); 1299 CurGD = GD; 1300 1301 FunctionArgList Args; 1302 QualType ResTy = BuildFunctionArgList(GD, Args); 1303 1304 // Give a different name to inline builtin to avoid conflict with actual 1305 // builtins. 1306 if (FD->isInlineBuiltinDeclaration() && Fn) 1307 Fn->setName(Fn->getName() + ".inline"); 1308 1309 // Check if we should generate debug info for this function. 1310 if (FD->hasAttr<NoDebugAttr>()) { 1311 // Clear non-distinct debug info that was possibly attached to the function 1312 // due to an earlier declaration without the nodebug attribute 1313 if (Fn) 1314 Fn->setSubprogram(nullptr); 1315 // Disable debug info indefinitely for this function 1316 DebugInfo = nullptr; 1317 } 1318 1319 // The function might not have a body if we're generating thunks for a 1320 // function declaration. 1321 SourceRange BodyRange; 1322 if (Stmt *Body = FD->getBody()) 1323 BodyRange = Body->getSourceRange(); 1324 else 1325 BodyRange = FD->getLocation(); 1326 CurEHLocation = BodyRange.getEnd(); 1327 1328 // Use the location of the start of the function to determine where 1329 // the function definition is located. By default use the location 1330 // of the declaration as the location for the subprogram. A function 1331 // may lack a declaration in the source code if it is created by code 1332 // gen. (examples: _GLOBAL__I_a, __cxx_global_array_dtor, thunk). 1333 SourceLocation Loc = FD->getLocation(); 1334 1335 // If this is a function specialization then use the pattern body 1336 // as the location for the function. 1337 if (const FunctionDecl *SpecDecl = FD->getTemplateInstantiationPattern()) 1338 if (SpecDecl->hasBody(SpecDecl)) 1339 Loc = SpecDecl->getLocation(); 1340 1341 Stmt *Body = FD->getBody(); 1342 1343 if (Body) { 1344 // Coroutines always emit lifetime markers. 1345 if (isa<CoroutineBodyStmt>(Body)) 1346 ShouldEmitLifetimeMarkers = true; 1347 1348 // Initialize helper which will detect jumps which can cause invalid 1349 // lifetime markers. 1350 if (ShouldEmitLifetimeMarkers) 1351 Bypasses.Init(Body); 1352 } 1353 1354 // Emit the standard function prologue. 1355 StartFunction(GD, ResTy, Fn, FnInfo, Args, Loc, BodyRange.getBegin()); 1356 1357 // Save parameters for coroutine function. 1358 if (Body && isa_and_nonnull<CoroutineBodyStmt>(Body)) 1359 for (const auto *ParamDecl : FD->parameters()) 1360 FnArgs.push_back(ParamDecl); 1361 1362 // Generate the body of the function. 1363 PGO.assignRegionCounters(GD, CurFn); 1364 if (isa<CXXDestructorDecl>(FD)) 1365 EmitDestructorBody(Args); 1366 else if (isa<CXXConstructorDecl>(FD)) 1367 EmitConstructorBody(Args); 1368 else if (getLangOpts().CUDA && 1369 !getLangOpts().CUDAIsDevice && 1370 FD->hasAttr<CUDAGlobalAttr>()) 1371 CGM.getCUDARuntime().emitDeviceStub(*this, Args); 1372 else if (isa<CXXMethodDecl>(FD) && 1373 cast<CXXMethodDecl>(FD)->isLambdaStaticInvoker()) { 1374 // The lambda static invoker function is special, because it forwards or 1375 // clones the body of the function call operator (but is actually static). 1376 EmitLambdaStaticInvokeBody(cast<CXXMethodDecl>(FD)); 1377 } else if (FD->isDefaulted() && isa<CXXMethodDecl>(FD) && 1378 (cast<CXXMethodDecl>(FD)->isCopyAssignmentOperator() || 1379 cast<CXXMethodDecl>(FD)->isMoveAssignmentOperator())) { 1380 // Implicit copy-assignment gets the same special treatment as implicit 1381 // copy-constructors. 1382 emitImplicitAssignmentOperatorBody(Args); 1383 } else if (Body) { 1384 EmitFunctionBody(Body); 1385 } else 1386 llvm_unreachable("no definition for emitted function"); 1387 1388 // C++11 [stmt.return]p2: 1389 // Flowing off the end of a function [...] results in undefined behavior in 1390 // a value-returning function. 1391 // C11 6.9.1p12: 1392 // If the '}' that terminates a function is reached, and the value of the 1393 // function call is used by the caller, the behavior is undefined. 1394 if (getLangOpts().CPlusPlus && !FD->hasImplicitReturnZero() && !SawAsmBlock && 1395 !FD->getReturnType()->isVoidType() && Builder.GetInsertBlock()) { 1396 bool ShouldEmitUnreachable = 1397 CGM.getCodeGenOpts().StrictReturn || 1398 !CGM.MayDropFunctionReturn(FD->getASTContext(), FD->getReturnType()); 1399 if (SanOpts.has(SanitizerKind::Return)) { 1400 SanitizerScope SanScope(this); 1401 llvm::Value *IsFalse = Builder.getFalse(); 1402 EmitCheck(std::make_pair(IsFalse, SanitizerKind::Return), 1403 SanitizerHandler::MissingReturn, 1404 EmitCheckSourceLocation(FD->getLocation()), None); 1405 } else if (ShouldEmitUnreachable) { 1406 if (CGM.getCodeGenOpts().OptimizationLevel == 0) 1407 EmitTrapCall(llvm::Intrinsic::trap); 1408 } 1409 if (SanOpts.has(SanitizerKind::Return) || ShouldEmitUnreachable) { 1410 Builder.CreateUnreachable(); 1411 Builder.ClearInsertionPoint(); 1412 } 1413 } 1414 1415 // Emit the standard function epilogue. 1416 FinishFunction(BodyRange.getEnd()); 1417 1418 // If we haven't marked the function nothrow through other means, do 1419 // a quick pass now to see if we can. 1420 if (!CurFn->doesNotThrow()) 1421 TryMarkNoThrow(CurFn); 1422 } 1423 1424 /// ContainsLabel - Return true if the statement contains a label in it. If 1425 /// this statement is not executed normally, it not containing a label means 1426 /// that we can just remove the code. 1427 bool CodeGenFunction::ContainsLabel(const Stmt *S, bool IgnoreCaseStmts) { 1428 // Null statement, not a label! 1429 if (!S) return false; 1430 1431 // If this is a label, we have to emit the code, consider something like: 1432 // if (0) { ... foo: bar(); } goto foo; 1433 // 1434 // TODO: If anyone cared, we could track __label__'s, since we know that you 1435 // can't jump to one from outside their declared region. 1436 if (isa<LabelStmt>(S)) 1437 return true; 1438 1439 // If this is a case/default statement, and we haven't seen a switch, we have 1440 // to emit the code. 1441 if (isa<SwitchCase>(S) && !IgnoreCaseStmts) 1442 return true; 1443 1444 // If this is a switch statement, we want to ignore cases below it. 1445 if (isa<SwitchStmt>(S)) 1446 IgnoreCaseStmts = true; 1447 1448 // Scan subexpressions for verboten labels. 1449 for (const Stmt *SubStmt : S->children()) 1450 if (ContainsLabel(SubStmt, IgnoreCaseStmts)) 1451 return true; 1452 1453 return false; 1454 } 1455 1456 /// containsBreak - Return true if the statement contains a break out of it. 1457 /// If the statement (recursively) contains a switch or loop with a break 1458 /// inside of it, this is fine. 1459 bool CodeGenFunction::containsBreak(const Stmt *S) { 1460 // Null statement, not a label! 1461 if (!S) return false; 1462 1463 // If this is a switch or loop that defines its own break scope, then we can 1464 // include it and anything inside of it. 1465 if (isa<SwitchStmt>(S) || isa<WhileStmt>(S) || isa<DoStmt>(S) || 1466 isa<ForStmt>(S)) 1467 return false; 1468 1469 if (isa<BreakStmt>(S)) 1470 return true; 1471 1472 // Scan subexpressions for verboten breaks. 1473 for (const Stmt *SubStmt : S->children()) 1474 if (containsBreak(SubStmt)) 1475 return true; 1476 1477 return false; 1478 } 1479 1480 bool CodeGenFunction::mightAddDeclToScope(const Stmt *S) { 1481 if (!S) return false; 1482 1483 // Some statement kinds add a scope and thus never add a decl to the current 1484 // scope. Note, this list is longer than the list of statements that might 1485 // have an unscoped decl nested within them, but this way is conservatively 1486 // correct even if more statement kinds are added. 1487 if (isa<IfStmt>(S) || isa<SwitchStmt>(S) || isa<WhileStmt>(S) || 1488 isa<DoStmt>(S) || isa<ForStmt>(S) || isa<CompoundStmt>(S) || 1489 isa<CXXForRangeStmt>(S) || isa<CXXTryStmt>(S) || 1490 isa<ObjCForCollectionStmt>(S) || isa<ObjCAtTryStmt>(S)) 1491 return false; 1492 1493 if (isa<DeclStmt>(S)) 1494 return true; 1495 1496 for (const Stmt *SubStmt : S->children()) 1497 if (mightAddDeclToScope(SubStmt)) 1498 return true; 1499 1500 return false; 1501 } 1502 1503 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold 1504 /// to a constant, or if it does but contains a label, return false. If it 1505 /// constant folds return true and set the boolean result in Result. 1506 bool CodeGenFunction::ConstantFoldsToSimpleInteger(const Expr *Cond, 1507 bool &ResultBool, 1508 bool AllowLabels) { 1509 llvm::APSInt ResultInt; 1510 if (!ConstantFoldsToSimpleInteger(Cond, ResultInt, AllowLabels)) 1511 return false; 1512 1513 ResultBool = ResultInt.getBoolValue(); 1514 return true; 1515 } 1516 1517 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold 1518 /// to a constant, or if it does but contains a label, return false. If it 1519 /// constant folds return true and set the folded value. 1520 bool CodeGenFunction::ConstantFoldsToSimpleInteger(const Expr *Cond, 1521 llvm::APSInt &ResultInt, 1522 bool AllowLabels) { 1523 // FIXME: Rename and handle conversion of other evaluatable things 1524 // to bool. 1525 Expr::EvalResult Result; 1526 if (!Cond->EvaluateAsInt(Result, getContext())) 1527 return false; // Not foldable, not integer or not fully evaluatable. 1528 1529 llvm::APSInt Int = Result.Val.getInt(); 1530 if (!AllowLabels && CodeGenFunction::ContainsLabel(Cond)) 1531 return false; // Contains a label. 1532 1533 ResultInt = Int; 1534 return true; 1535 } 1536 1537 /// Determine whether the given condition is an instrumentable condition 1538 /// (i.e. no "&&" or "||"). 1539 bool CodeGenFunction::isInstrumentedCondition(const Expr *C) { 1540 // Bypass simplistic logical-NOT operator before determining whether the 1541 // condition contains any other logical operator. 1542 if (const UnaryOperator *UnOp = dyn_cast<UnaryOperator>(C->IgnoreParens())) 1543 if (UnOp->getOpcode() == UO_LNot) 1544 C = UnOp->getSubExpr(); 1545 1546 const BinaryOperator *BOp = dyn_cast<BinaryOperator>(C->IgnoreParens()); 1547 return (!BOp || !BOp->isLogicalOp()); 1548 } 1549 1550 /// EmitBranchToCounterBlock - Emit a conditional branch to a new block that 1551 /// increments a profile counter based on the semantics of the given logical 1552 /// operator opcode. This is used to instrument branch condition coverage for 1553 /// logical operators. 1554 void CodeGenFunction::EmitBranchToCounterBlock( 1555 const Expr *Cond, BinaryOperator::Opcode LOp, llvm::BasicBlock *TrueBlock, 1556 llvm::BasicBlock *FalseBlock, uint64_t TrueCount /* = 0 */, 1557 Stmt::Likelihood LH /* =None */, const Expr *CntrIdx /* = nullptr */) { 1558 // If not instrumenting, just emit a branch. 1559 bool InstrumentRegions = CGM.getCodeGenOpts().hasProfileClangInstr(); 1560 if (!InstrumentRegions || !isInstrumentedCondition(Cond)) 1561 return EmitBranchOnBoolExpr(Cond, TrueBlock, FalseBlock, TrueCount, LH); 1562 1563 llvm::BasicBlock *ThenBlock = NULL; 1564 llvm::BasicBlock *ElseBlock = NULL; 1565 llvm::BasicBlock *NextBlock = NULL; 1566 1567 // Create the block we'll use to increment the appropriate counter. 1568 llvm::BasicBlock *CounterIncrBlock = createBasicBlock("lop.rhscnt"); 1569 1570 // Set block pointers according to Logical-AND (BO_LAnd) semantics. This 1571 // means we need to evaluate the condition and increment the counter on TRUE: 1572 // 1573 // if (Cond) 1574 // goto CounterIncrBlock; 1575 // else 1576 // goto FalseBlock; 1577 // 1578 // CounterIncrBlock: 1579 // Counter++; 1580 // goto TrueBlock; 1581 1582 if (LOp == BO_LAnd) { 1583 ThenBlock = CounterIncrBlock; 1584 ElseBlock = FalseBlock; 1585 NextBlock = TrueBlock; 1586 } 1587 1588 // Set block pointers according to Logical-OR (BO_LOr) semantics. This means 1589 // we need to evaluate the condition and increment the counter on FALSE: 1590 // 1591 // if (Cond) 1592 // goto TrueBlock; 1593 // else 1594 // goto CounterIncrBlock; 1595 // 1596 // CounterIncrBlock: 1597 // Counter++; 1598 // goto FalseBlock; 1599 1600 else if (LOp == BO_LOr) { 1601 ThenBlock = TrueBlock; 1602 ElseBlock = CounterIncrBlock; 1603 NextBlock = FalseBlock; 1604 } else { 1605 llvm_unreachable("Expected Opcode must be that of a Logical Operator"); 1606 } 1607 1608 // Emit Branch based on condition. 1609 EmitBranchOnBoolExpr(Cond, ThenBlock, ElseBlock, TrueCount, LH); 1610 1611 // Emit the block containing the counter increment(s). 1612 EmitBlock(CounterIncrBlock); 1613 1614 // Increment corresponding counter; if index not provided, use Cond as index. 1615 incrementProfileCounter(CntrIdx ? CntrIdx : Cond); 1616 1617 // Go to the next block. 1618 EmitBranch(NextBlock); 1619 } 1620 1621 /// EmitBranchOnBoolExpr - Emit a branch on a boolean condition (e.g. for an if 1622 /// statement) to the specified blocks. Based on the condition, this might try 1623 /// to simplify the codegen of the conditional based on the branch. 1624 /// \param LH The value of the likelihood attribute on the True branch. 1625 void CodeGenFunction::EmitBranchOnBoolExpr(const Expr *Cond, 1626 llvm::BasicBlock *TrueBlock, 1627 llvm::BasicBlock *FalseBlock, 1628 uint64_t TrueCount, 1629 Stmt::Likelihood LH) { 1630 Cond = Cond->IgnoreParens(); 1631 1632 if (const BinaryOperator *CondBOp = dyn_cast<BinaryOperator>(Cond)) { 1633 1634 // Handle X && Y in a condition. 1635 if (CondBOp->getOpcode() == BO_LAnd) { 1636 // If we have "1 && X", simplify the code. "0 && X" would have constant 1637 // folded if the case was simple enough. 1638 bool ConstantBool = false; 1639 if (ConstantFoldsToSimpleInteger(CondBOp->getLHS(), ConstantBool) && 1640 ConstantBool) { 1641 // br(1 && X) -> br(X). 1642 incrementProfileCounter(CondBOp); 1643 return EmitBranchToCounterBlock(CondBOp->getRHS(), BO_LAnd, TrueBlock, 1644 FalseBlock, TrueCount, LH); 1645 } 1646 1647 // If we have "X && 1", simplify the code to use an uncond branch. 1648 // "X && 0" would have been constant folded to 0. 1649 if (ConstantFoldsToSimpleInteger(CondBOp->getRHS(), ConstantBool) && 1650 ConstantBool) { 1651 // br(X && 1) -> br(X). 1652 return EmitBranchToCounterBlock(CondBOp->getLHS(), BO_LAnd, TrueBlock, 1653 FalseBlock, TrueCount, LH, CondBOp); 1654 } 1655 1656 // Emit the LHS as a conditional. If the LHS conditional is false, we 1657 // want to jump to the FalseBlock. 1658 llvm::BasicBlock *LHSTrue = createBasicBlock("land.lhs.true"); 1659 // The counter tells us how often we evaluate RHS, and all of TrueCount 1660 // can be propagated to that branch. 1661 uint64_t RHSCount = getProfileCount(CondBOp->getRHS()); 1662 1663 ConditionalEvaluation eval(*this); 1664 { 1665 ApplyDebugLocation DL(*this, Cond); 1666 // Propagate the likelihood attribute like __builtin_expect 1667 // __builtin_expect(X && Y, 1) -> X and Y are likely 1668 // __builtin_expect(X && Y, 0) -> only Y is unlikely 1669 EmitBranchOnBoolExpr(CondBOp->getLHS(), LHSTrue, FalseBlock, RHSCount, 1670 LH == Stmt::LH_Unlikely ? Stmt::LH_None : LH); 1671 EmitBlock(LHSTrue); 1672 } 1673 1674 incrementProfileCounter(CondBOp); 1675 setCurrentProfileCount(getProfileCount(CondBOp->getRHS())); 1676 1677 // Any temporaries created here are conditional. 1678 eval.begin(*this); 1679 EmitBranchToCounterBlock(CondBOp->getRHS(), BO_LAnd, TrueBlock, 1680 FalseBlock, TrueCount, LH); 1681 eval.end(*this); 1682 1683 return; 1684 } 1685 1686 if (CondBOp->getOpcode() == BO_LOr) { 1687 // If we have "0 || X", simplify the code. "1 || X" would have constant 1688 // folded if the case was simple enough. 1689 bool ConstantBool = false; 1690 if (ConstantFoldsToSimpleInteger(CondBOp->getLHS(), ConstantBool) && 1691 !ConstantBool) { 1692 // br(0 || X) -> br(X). 1693 incrementProfileCounter(CondBOp); 1694 return EmitBranchToCounterBlock(CondBOp->getRHS(), BO_LOr, TrueBlock, 1695 FalseBlock, TrueCount, LH); 1696 } 1697 1698 // If we have "X || 0", simplify the code to use an uncond branch. 1699 // "X || 1" would have been constant folded to 1. 1700 if (ConstantFoldsToSimpleInteger(CondBOp->getRHS(), ConstantBool) && 1701 !ConstantBool) { 1702 // br(X || 0) -> br(X). 1703 return EmitBranchToCounterBlock(CondBOp->getLHS(), BO_LOr, TrueBlock, 1704 FalseBlock, TrueCount, LH, CondBOp); 1705 } 1706 1707 // Emit the LHS as a conditional. If the LHS conditional is true, we 1708 // want to jump to the TrueBlock. 1709 llvm::BasicBlock *LHSFalse = createBasicBlock("lor.lhs.false"); 1710 // We have the count for entry to the RHS and for the whole expression 1711 // being true, so we can divy up True count between the short circuit and 1712 // the RHS. 1713 uint64_t LHSCount = 1714 getCurrentProfileCount() - getProfileCount(CondBOp->getRHS()); 1715 uint64_t RHSCount = TrueCount - LHSCount; 1716 1717 ConditionalEvaluation eval(*this); 1718 { 1719 // Propagate the likelihood attribute like __builtin_expect 1720 // __builtin_expect(X || Y, 1) -> only Y is likely 1721 // __builtin_expect(X || Y, 0) -> both X and Y are unlikely 1722 ApplyDebugLocation DL(*this, Cond); 1723 EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, LHSFalse, LHSCount, 1724 LH == Stmt::LH_Likely ? Stmt::LH_None : LH); 1725 EmitBlock(LHSFalse); 1726 } 1727 1728 incrementProfileCounter(CondBOp); 1729 setCurrentProfileCount(getProfileCount(CondBOp->getRHS())); 1730 1731 // Any temporaries created here are conditional. 1732 eval.begin(*this); 1733 EmitBranchToCounterBlock(CondBOp->getRHS(), BO_LOr, TrueBlock, FalseBlock, 1734 RHSCount, LH); 1735 1736 eval.end(*this); 1737 1738 return; 1739 } 1740 } 1741 1742 if (const UnaryOperator *CondUOp = dyn_cast<UnaryOperator>(Cond)) { 1743 // br(!x, t, f) -> br(x, f, t) 1744 if (CondUOp->getOpcode() == UO_LNot) { 1745 // Negate the count. 1746 uint64_t FalseCount = getCurrentProfileCount() - TrueCount; 1747 // The values of the enum are chosen to make this negation possible. 1748 LH = static_cast<Stmt::Likelihood>(-LH); 1749 // Negate the condition and swap the destination blocks. 1750 return EmitBranchOnBoolExpr(CondUOp->getSubExpr(), FalseBlock, TrueBlock, 1751 FalseCount, LH); 1752 } 1753 } 1754 1755 if (const ConditionalOperator *CondOp = dyn_cast<ConditionalOperator>(Cond)) { 1756 // br(c ? x : y, t, f) -> br(c, br(x, t, f), br(y, t, f)) 1757 llvm::BasicBlock *LHSBlock = createBasicBlock("cond.true"); 1758 llvm::BasicBlock *RHSBlock = createBasicBlock("cond.false"); 1759 1760 // The ConditionalOperator itself has no likelihood information for its 1761 // true and false branches. This matches the behavior of __builtin_expect. 1762 ConditionalEvaluation cond(*this); 1763 EmitBranchOnBoolExpr(CondOp->getCond(), LHSBlock, RHSBlock, 1764 getProfileCount(CondOp), Stmt::LH_None); 1765 1766 // When computing PGO branch weights, we only know the overall count for 1767 // the true block. This code is essentially doing tail duplication of the 1768 // naive code-gen, introducing new edges for which counts are not 1769 // available. Divide the counts proportionally between the LHS and RHS of 1770 // the conditional operator. 1771 uint64_t LHSScaledTrueCount = 0; 1772 if (TrueCount) { 1773 double LHSRatio = 1774 getProfileCount(CondOp) / (double)getCurrentProfileCount(); 1775 LHSScaledTrueCount = TrueCount * LHSRatio; 1776 } 1777 1778 cond.begin(*this); 1779 EmitBlock(LHSBlock); 1780 incrementProfileCounter(CondOp); 1781 { 1782 ApplyDebugLocation DL(*this, Cond); 1783 EmitBranchOnBoolExpr(CondOp->getLHS(), TrueBlock, FalseBlock, 1784 LHSScaledTrueCount, LH); 1785 } 1786 cond.end(*this); 1787 1788 cond.begin(*this); 1789 EmitBlock(RHSBlock); 1790 EmitBranchOnBoolExpr(CondOp->getRHS(), TrueBlock, FalseBlock, 1791 TrueCount - LHSScaledTrueCount, LH); 1792 cond.end(*this); 1793 1794 return; 1795 } 1796 1797 if (const CXXThrowExpr *Throw = dyn_cast<CXXThrowExpr>(Cond)) { 1798 // Conditional operator handling can give us a throw expression as a 1799 // condition for a case like: 1800 // br(c ? throw x : y, t, f) -> br(c, br(throw x, t, f), br(y, t, f) 1801 // Fold this to: 1802 // br(c, throw x, br(y, t, f)) 1803 EmitCXXThrowExpr(Throw, /*KeepInsertionPoint*/false); 1804 return; 1805 } 1806 1807 // Emit the code with the fully general case. 1808 llvm::Value *CondV; 1809 { 1810 ApplyDebugLocation DL(*this, Cond); 1811 CondV = EvaluateExprAsBool(Cond); 1812 } 1813 1814 llvm::MDNode *Weights = nullptr; 1815 llvm::MDNode *Unpredictable = nullptr; 1816 1817 // If the branch has a condition wrapped by __builtin_unpredictable, 1818 // create metadata that specifies that the branch is unpredictable. 1819 // Don't bother if not optimizing because that metadata would not be used. 1820 auto *Call = dyn_cast<CallExpr>(Cond->IgnoreImpCasts()); 1821 if (Call && CGM.getCodeGenOpts().OptimizationLevel != 0) { 1822 auto *FD = dyn_cast_or_null<FunctionDecl>(Call->getCalleeDecl()); 1823 if (FD && FD->getBuiltinID() == Builtin::BI__builtin_unpredictable) { 1824 llvm::MDBuilder MDHelper(getLLVMContext()); 1825 Unpredictable = MDHelper.createUnpredictable(); 1826 } 1827 } 1828 1829 // If there is a Likelihood knowledge for the cond, lower it. 1830 // Note that if not optimizing this won't emit anything. 1831 llvm::Value *NewCondV = emitCondLikelihoodViaExpectIntrinsic(CondV, LH); 1832 if (CondV != NewCondV) 1833 CondV = NewCondV; 1834 else { 1835 // Otherwise, lower profile counts. Note that we do this even at -O0. 1836 uint64_t CurrentCount = std::max(getCurrentProfileCount(), TrueCount); 1837 Weights = createProfileWeights(TrueCount, CurrentCount - TrueCount); 1838 } 1839 1840 Builder.CreateCondBr(CondV, TrueBlock, FalseBlock, Weights, Unpredictable); 1841 } 1842 1843 /// ErrorUnsupported - Print out an error that codegen doesn't support the 1844 /// specified stmt yet. 1845 void CodeGenFunction::ErrorUnsupported(const Stmt *S, const char *Type) { 1846 CGM.ErrorUnsupported(S, Type); 1847 } 1848 1849 /// emitNonZeroVLAInit - Emit the "zero" initialization of a 1850 /// variable-length array whose elements have a non-zero bit-pattern. 1851 /// 1852 /// \param baseType the inner-most element type of the array 1853 /// \param src - a char* pointing to the bit-pattern for a single 1854 /// base element of the array 1855 /// \param sizeInChars - the total size of the VLA, in chars 1856 static void emitNonZeroVLAInit(CodeGenFunction &CGF, QualType baseType, 1857 Address dest, Address src, 1858 llvm::Value *sizeInChars) { 1859 CGBuilderTy &Builder = CGF.Builder; 1860 1861 CharUnits baseSize = CGF.getContext().getTypeSizeInChars(baseType); 1862 llvm::Value *baseSizeInChars 1863 = llvm::ConstantInt::get(CGF.IntPtrTy, baseSize.getQuantity()); 1864 1865 Address begin = 1866 Builder.CreateElementBitCast(dest, CGF.Int8Ty, "vla.begin"); 1867 llvm::Value *end = Builder.CreateInBoundsGEP( 1868 begin.getElementType(), begin.getPointer(), sizeInChars, "vla.end"); 1869 1870 llvm::BasicBlock *originBB = CGF.Builder.GetInsertBlock(); 1871 llvm::BasicBlock *loopBB = CGF.createBasicBlock("vla-init.loop"); 1872 llvm::BasicBlock *contBB = CGF.createBasicBlock("vla-init.cont"); 1873 1874 // Make a loop over the VLA. C99 guarantees that the VLA element 1875 // count must be nonzero. 1876 CGF.EmitBlock(loopBB); 1877 1878 llvm::PHINode *cur = Builder.CreatePHI(begin.getType(), 2, "vla.cur"); 1879 cur->addIncoming(begin.getPointer(), originBB); 1880 1881 CharUnits curAlign = 1882 dest.getAlignment().alignmentOfArrayElement(baseSize); 1883 1884 // memcpy the individual element bit-pattern. 1885 Builder.CreateMemCpy(Address(cur, curAlign), src, baseSizeInChars, 1886 /*volatile*/ false); 1887 1888 // Go to the next element. 1889 llvm::Value *next = 1890 Builder.CreateInBoundsGEP(CGF.Int8Ty, cur, baseSizeInChars, "vla.next"); 1891 1892 // Leave if that's the end of the VLA. 1893 llvm::Value *done = Builder.CreateICmpEQ(next, end, "vla-init.isdone"); 1894 Builder.CreateCondBr(done, contBB, loopBB); 1895 cur->addIncoming(next, loopBB); 1896 1897 CGF.EmitBlock(contBB); 1898 } 1899 1900 void 1901 CodeGenFunction::EmitNullInitialization(Address DestPtr, QualType Ty) { 1902 // Ignore empty classes in C++. 1903 if (getLangOpts().CPlusPlus) { 1904 if (const RecordType *RT = Ty->getAs<RecordType>()) { 1905 if (cast<CXXRecordDecl>(RT->getDecl())->isEmpty()) 1906 return; 1907 } 1908 } 1909 1910 // Cast the dest ptr to the appropriate i8 pointer type. 1911 if (DestPtr.getElementType() != Int8Ty) 1912 DestPtr = Builder.CreateElementBitCast(DestPtr, Int8Ty); 1913 1914 // Get size and alignment info for this aggregate. 1915 CharUnits size = getContext().getTypeSizeInChars(Ty); 1916 1917 llvm::Value *SizeVal; 1918 const VariableArrayType *vla; 1919 1920 // Don't bother emitting a zero-byte memset. 1921 if (size.isZero()) { 1922 // But note that getTypeInfo returns 0 for a VLA. 1923 if (const VariableArrayType *vlaType = 1924 dyn_cast_or_null<VariableArrayType>( 1925 getContext().getAsArrayType(Ty))) { 1926 auto VlaSize = getVLASize(vlaType); 1927 SizeVal = VlaSize.NumElts; 1928 CharUnits eltSize = getContext().getTypeSizeInChars(VlaSize.Type); 1929 if (!eltSize.isOne()) 1930 SizeVal = Builder.CreateNUWMul(SizeVal, CGM.getSize(eltSize)); 1931 vla = vlaType; 1932 } else { 1933 return; 1934 } 1935 } else { 1936 SizeVal = CGM.getSize(size); 1937 vla = nullptr; 1938 } 1939 1940 // If the type contains a pointer to data member we can't memset it to zero. 1941 // Instead, create a null constant and copy it to the destination. 1942 // TODO: there are other patterns besides zero that we can usefully memset, 1943 // like -1, which happens to be the pattern used by member-pointers. 1944 if (!CGM.getTypes().isZeroInitializable(Ty)) { 1945 // For a VLA, emit a single element, then splat that over the VLA. 1946 if (vla) Ty = getContext().getBaseElementType(vla); 1947 1948 llvm::Constant *NullConstant = CGM.EmitNullConstant(Ty); 1949 1950 llvm::GlobalVariable *NullVariable = 1951 new llvm::GlobalVariable(CGM.getModule(), NullConstant->getType(), 1952 /*isConstant=*/true, 1953 llvm::GlobalVariable::PrivateLinkage, 1954 NullConstant, Twine()); 1955 CharUnits NullAlign = DestPtr.getAlignment(); 1956 NullVariable->setAlignment(NullAlign.getAsAlign()); 1957 Address SrcPtr(Builder.CreateBitCast(NullVariable, Builder.getInt8PtrTy()), 1958 NullAlign); 1959 1960 if (vla) return emitNonZeroVLAInit(*this, Ty, DestPtr, SrcPtr, SizeVal); 1961 1962 // Get and call the appropriate llvm.memcpy overload. 1963 Builder.CreateMemCpy(DestPtr, SrcPtr, SizeVal, false); 1964 return; 1965 } 1966 1967 // Otherwise, just memset the whole thing to zero. This is legal 1968 // because in LLVM, all default initializers (other than the ones we just 1969 // handled above) are guaranteed to have a bit pattern of all zeros. 1970 Builder.CreateMemSet(DestPtr, Builder.getInt8(0), SizeVal, false); 1971 } 1972 1973 llvm::BlockAddress *CodeGenFunction::GetAddrOfLabel(const LabelDecl *L) { 1974 // Make sure that there is a block for the indirect goto. 1975 if (!IndirectBranch) 1976 GetIndirectGotoBlock(); 1977 1978 llvm::BasicBlock *BB = getJumpDestForLabel(L).getBlock(); 1979 1980 // Make sure the indirect branch includes all of the address-taken blocks. 1981 IndirectBranch->addDestination(BB); 1982 return llvm::BlockAddress::get(CurFn, BB); 1983 } 1984 1985 llvm::BasicBlock *CodeGenFunction::GetIndirectGotoBlock() { 1986 // If we already made the indirect branch for indirect goto, return its block. 1987 if (IndirectBranch) return IndirectBranch->getParent(); 1988 1989 CGBuilderTy TmpBuilder(*this, createBasicBlock("indirectgoto")); 1990 1991 // Create the PHI node that indirect gotos will add entries to. 1992 llvm::Value *DestVal = TmpBuilder.CreatePHI(Int8PtrTy, 0, 1993 "indirect.goto.dest"); 1994 1995 // Create the indirect branch instruction. 1996 IndirectBranch = TmpBuilder.CreateIndirectBr(DestVal); 1997 return IndirectBranch->getParent(); 1998 } 1999 2000 /// Computes the length of an array in elements, as well as the base 2001 /// element type and a properly-typed first element pointer. 2002 llvm::Value *CodeGenFunction::emitArrayLength(const ArrayType *origArrayType, 2003 QualType &baseType, 2004 Address &addr) { 2005 const ArrayType *arrayType = origArrayType; 2006 2007 // If it's a VLA, we have to load the stored size. Note that 2008 // this is the size of the VLA in bytes, not its size in elements. 2009 llvm::Value *numVLAElements = nullptr; 2010 if (isa<VariableArrayType>(arrayType)) { 2011 numVLAElements = getVLASize(cast<VariableArrayType>(arrayType)).NumElts; 2012 2013 // Walk into all VLAs. This doesn't require changes to addr, 2014 // which has type T* where T is the first non-VLA element type. 2015 do { 2016 QualType elementType = arrayType->getElementType(); 2017 arrayType = getContext().getAsArrayType(elementType); 2018 2019 // If we only have VLA components, 'addr' requires no adjustment. 2020 if (!arrayType) { 2021 baseType = elementType; 2022 return numVLAElements; 2023 } 2024 } while (isa<VariableArrayType>(arrayType)); 2025 2026 // We get out here only if we find a constant array type 2027 // inside the VLA. 2028 } 2029 2030 // We have some number of constant-length arrays, so addr should 2031 // have LLVM type [M x [N x [...]]]*. Build a GEP that walks 2032 // down to the first element of addr. 2033 SmallVector<llvm::Value*, 8> gepIndices; 2034 2035 // GEP down to the array type. 2036 llvm::ConstantInt *zero = Builder.getInt32(0); 2037 gepIndices.push_back(zero); 2038 2039 uint64_t countFromCLAs = 1; 2040 QualType eltType; 2041 2042 llvm::ArrayType *llvmArrayType = 2043 dyn_cast<llvm::ArrayType>(addr.getElementType()); 2044 while (llvmArrayType) { 2045 assert(isa<ConstantArrayType>(arrayType)); 2046 assert(cast<ConstantArrayType>(arrayType)->getSize().getZExtValue() 2047 == llvmArrayType->getNumElements()); 2048 2049 gepIndices.push_back(zero); 2050 countFromCLAs *= llvmArrayType->getNumElements(); 2051 eltType = arrayType->getElementType(); 2052 2053 llvmArrayType = 2054 dyn_cast<llvm::ArrayType>(llvmArrayType->getElementType()); 2055 arrayType = getContext().getAsArrayType(arrayType->getElementType()); 2056 assert((!llvmArrayType || arrayType) && 2057 "LLVM and Clang types are out-of-synch"); 2058 } 2059 2060 if (arrayType) { 2061 // From this point onwards, the Clang array type has been emitted 2062 // as some other type (probably a packed struct). Compute the array 2063 // size, and just emit the 'begin' expression as a bitcast. 2064 while (arrayType) { 2065 countFromCLAs *= 2066 cast<ConstantArrayType>(arrayType)->getSize().getZExtValue(); 2067 eltType = arrayType->getElementType(); 2068 arrayType = getContext().getAsArrayType(eltType); 2069 } 2070 2071 llvm::Type *baseType = ConvertType(eltType); 2072 addr = Builder.CreateElementBitCast(addr, baseType, "array.begin"); 2073 } else { 2074 // Create the actual GEP. 2075 addr = Address(Builder.CreateInBoundsGEP( 2076 addr.getElementType(), addr.getPointer(), gepIndices, "array.begin"), 2077 addr.getAlignment()); 2078 } 2079 2080 baseType = eltType; 2081 2082 llvm::Value *numElements 2083 = llvm::ConstantInt::get(SizeTy, countFromCLAs); 2084 2085 // If we had any VLA dimensions, factor them in. 2086 if (numVLAElements) 2087 numElements = Builder.CreateNUWMul(numVLAElements, numElements); 2088 2089 return numElements; 2090 } 2091 2092 CodeGenFunction::VlaSizePair CodeGenFunction::getVLASize(QualType type) { 2093 const VariableArrayType *vla = getContext().getAsVariableArrayType(type); 2094 assert(vla && "type was not a variable array type!"); 2095 return getVLASize(vla); 2096 } 2097 2098 CodeGenFunction::VlaSizePair 2099 CodeGenFunction::getVLASize(const VariableArrayType *type) { 2100 // The number of elements so far; always size_t. 2101 llvm::Value *numElements = nullptr; 2102 2103 QualType elementType; 2104 do { 2105 elementType = type->getElementType(); 2106 llvm::Value *vlaSize = VLASizeMap[type->getSizeExpr()]; 2107 assert(vlaSize && "no size for VLA!"); 2108 assert(vlaSize->getType() == SizeTy); 2109 2110 if (!numElements) { 2111 numElements = vlaSize; 2112 } else { 2113 // It's undefined behavior if this wraps around, so mark it that way. 2114 // FIXME: Teach -fsanitize=undefined to trap this. 2115 numElements = Builder.CreateNUWMul(numElements, vlaSize); 2116 } 2117 } while ((type = getContext().getAsVariableArrayType(elementType))); 2118 2119 return { numElements, elementType }; 2120 } 2121 2122 CodeGenFunction::VlaSizePair 2123 CodeGenFunction::getVLAElements1D(QualType type) { 2124 const VariableArrayType *vla = getContext().getAsVariableArrayType(type); 2125 assert(vla && "type was not a variable array type!"); 2126 return getVLAElements1D(vla); 2127 } 2128 2129 CodeGenFunction::VlaSizePair 2130 CodeGenFunction::getVLAElements1D(const VariableArrayType *Vla) { 2131 llvm::Value *VlaSize = VLASizeMap[Vla->getSizeExpr()]; 2132 assert(VlaSize && "no size for VLA!"); 2133 assert(VlaSize->getType() == SizeTy); 2134 return { VlaSize, Vla->getElementType() }; 2135 } 2136 2137 void CodeGenFunction::EmitVariablyModifiedType(QualType type) { 2138 assert(type->isVariablyModifiedType() && 2139 "Must pass variably modified type to EmitVLASizes!"); 2140 2141 EnsureInsertPoint(); 2142 2143 // We're going to walk down into the type and look for VLA 2144 // expressions. 2145 do { 2146 assert(type->isVariablyModifiedType()); 2147 2148 const Type *ty = type.getTypePtr(); 2149 switch (ty->getTypeClass()) { 2150 2151 #define TYPE(Class, Base) 2152 #define ABSTRACT_TYPE(Class, Base) 2153 #define NON_CANONICAL_TYPE(Class, Base) 2154 #define DEPENDENT_TYPE(Class, Base) case Type::Class: 2155 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base) 2156 #include "clang/AST/TypeNodes.inc" 2157 llvm_unreachable("unexpected dependent type!"); 2158 2159 // These types are never variably-modified. 2160 case Type::Builtin: 2161 case Type::Complex: 2162 case Type::Vector: 2163 case Type::ExtVector: 2164 case Type::ConstantMatrix: 2165 case Type::Record: 2166 case Type::Enum: 2167 case Type::Elaborated: 2168 case Type::TemplateSpecialization: 2169 case Type::ObjCTypeParam: 2170 case Type::ObjCObject: 2171 case Type::ObjCInterface: 2172 case Type::ObjCObjectPointer: 2173 case Type::ExtInt: 2174 llvm_unreachable("type class is never variably-modified!"); 2175 2176 case Type::Adjusted: 2177 type = cast<AdjustedType>(ty)->getAdjustedType(); 2178 break; 2179 2180 case Type::Decayed: 2181 type = cast<DecayedType>(ty)->getPointeeType(); 2182 break; 2183 2184 case Type::Pointer: 2185 type = cast<PointerType>(ty)->getPointeeType(); 2186 break; 2187 2188 case Type::BlockPointer: 2189 type = cast<BlockPointerType>(ty)->getPointeeType(); 2190 break; 2191 2192 case Type::LValueReference: 2193 case Type::RValueReference: 2194 type = cast<ReferenceType>(ty)->getPointeeType(); 2195 break; 2196 2197 case Type::MemberPointer: 2198 type = cast<MemberPointerType>(ty)->getPointeeType(); 2199 break; 2200 2201 case Type::ConstantArray: 2202 case Type::IncompleteArray: 2203 // Losing element qualification here is fine. 2204 type = cast<ArrayType>(ty)->getElementType(); 2205 break; 2206 2207 case Type::VariableArray: { 2208 // Losing element qualification here is fine. 2209 const VariableArrayType *vat = cast<VariableArrayType>(ty); 2210 2211 // Unknown size indication requires no size computation. 2212 // Otherwise, evaluate and record it. 2213 if (const Expr *size = vat->getSizeExpr()) { 2214 // It's possible that we might have emitted this already, 2215 // e.g. with a typedef and a pointer to it. 2216 llvm::Value *&entry = VLASizeMap[size]; 2217 if (!entry) { 2218 llvm::Value *Size = EmitScalarExpr(size); 2219 2220 // C11 6.7.6.2p5: 2221 // If the size is an expression that is not an integer constant 2222 // expression [...] each time it is evaluated it shall have a value 2223 // greater than zero. 2224 if (SanOpts.has(SanitizerKind::VLABound) && 2225 size->getType()->isSignedIntegerType()) { 2226 SanitizerScope SanScope(this); 2227 llvm::Value *Zero = llvm::Constant::getNullValue(Size->getType()); 2228 llvm::Constant *StaticArgs[] = { 2229 EmitCheckSourceLocation(size->getBeginLoc()), 2230 EmitCheckTypeDescriptor(size->getType())}; 2231 EmitCheck(std::make_pair(Builder.CreateICmpSGT(Size, Zero), 2232 SanitizerKind::VLABound), 2233 SanitizerHandler::VLABoundNotPositive, StaticArgs, Size); 2234 } 2235 2236 // Always zexting here would be wrong if it weren't 2237 // undefined behavior to have a negative bound. 2238 entry = Builder.CreateIntCast(Size, SizeTy, /*signed*/ false); 2239 } 2240 } 2241 type = vat->getElementType(); 2242 break; 2243 } 2244 2245 case Type::FunctionProto: 2246 case Type::FunctionNoProto: 2247 type = cast<FunctionType>(ty)->getReturnType(); 2248 break; 2249 2250 case Type::Paren: 2251 case Type::TypeOf: 2252 case Type::UnaryTransform: 2253 case Type::Attributed: 2254 case Type::SubstTemplateTypeParm: 2255 case Type::MacroQualified: 2256 // Keep walking after single level desugaring. 2257 type = type.getSingleStepDesugaredType(getContext()); 2258 break; 2259 2260 case Type::Typedef: 2261 case Type::Decltype: 2262 case Type::Auto: 2263 case Type::DeducedTemplateSpecialization: 2264 // Stop walking: nothing to do. 2265 return; 2266 2267 case Type::TypeOfExpr: 2268 // Stop walking: emit typeof expression. 2269 EmitIgnoredExpr(cast<TypeOfExprType>(ty)->getUnderlyingExpr()); 2270 return; 2271 2272 case Type::Atomic: 2273 type = cast<AtomicType>(ty)->getValueType(); 2274 break; 2275 2276 case Type::Pipe: 2277 type = cast<PipeType>(ty)->getElementType(); 2278 break; 2279 } 2280 } while (type->isVariablyModifiedType()); 2281 } 2282 2283 Address CodeGenFunction::EmitVAListRef(const Expr* E) { 2284 if (getContext().getBuiltinVaListType()->isArrayType()) 2285 return EmitPointerWithAlignment(E); 2286 return EmitLValue(E).getAddress(*this); 2287 } 2288 2289 Address CodeGenFunction::EmitMSVAListRef(const Expr *E) { 2290 return EmitLValue(E).getAddress(*this); 2291 } 2292 2293 void CodeGenFunction::EmitDeclRefExprDbgValue(const DeclRefExpr *E, 2294 const APValue &Init) { 2295 assert(Init.hasValue() && "Invalid DeclRefExpr initializer!"); 2296 if (CGDebugInfo *Dbg = getDebugInfo()) 2297 if (CGM.getCodeGenOpts().hasReducedDebugInfo()) 2298 Dbg->EmitGlobalVariable(E->getDecl(), Init); 2299 } 2300 2301 CodeGenFunction::PeepholeProtection 2302 CodeGenFunction::protectFromPeepholes(RValue rvalue) { 2303 // At the moment, the only aggressive peephole we do in IR gen 2304 // is trunc(zext) folding, but if we add more, we can easily 2305 // extend this protection. 2306 2307 if (!rvalue.isScalar()) return PeepholeProtection(); 2308 llvm::Value *value = rvalue.getScalarVal(); 2309 if (!isa<llvm::ZExtInst>(value)) return PeepholeProtection(); 2310 2311 // Just make an extra bitcast. 2312 assert(HaveInsertPoint()); 2313 llvm::Instruction *inst = new llvm::BitCastInst(value, value->getType(), "", 2314 Builder.GetInsertBlock()); 2315 2316 PeepholeProtection protection; 2317 protection.Inst = inst; 2318 return protection; 2319 } 2320 2321 void CodeGenFunction::unprotectFromPeepholes(PeepholeProtection protection) { 2322 if (!protection.Inst) return; 2323 2324 // In theory, we could try to duplicate the peepholes now, but whatever. 2325 protection.Inst->eraseFromParent(); 2326 } 2327 2328 void CodeGenFunction::emitAlignmentAssumption(llvm::Value *PtrValue, 2329 QualType Ty, SourceLocation Loc, 2330 SourceLocation AssumptionLoc, 2331 llvm::Value *Alignment, 2332 llvm::Value *OffsetValue) { 2333 if (Alignment->getType() != IntPtrTy) 2334 Alignment = 2335 Builder.CreateIntCast(Alignment, IntPtrTy, false, "casted.align"); 2336 if (OffsetValue && OffsetValue->getType() != IntPtrTy) 2337 OffsetValue = 2338 Builder.CreateIntCast(OffsetValue, IntPtrTy, true, "casted.offset"); 2339 llvm::Value *TheCheck = nullptr; 2340 if (SanOpts.has(SanitizerKind::Alignment)) { 2341 llvm::Value *PtrIntValue = 2342 Builder.CreatePtrToInt(PtrValue, IntPtrTy, "ptrint"); 2343 2344 if (OffsetValue) { 2345 bool IsOffsetZero = false; 2346 if (const auto *CI = dyn_cast<llvm::ConstantInt>(OffsetValue)) 2347 IsOffsetZero = CI->isZero(); 2348 2349 if (!IsOffsetZero) 2350 PtrIntValue = Builder.CreateSub(PtrIntValue, OffsetValue, "offsetptr"); 2351 } 2352 2353 llvm::Value *Zero = llvm::ConstantInt::get(IntPtrTy, 0); 2354 llvm::Value *Mask = 2355 Builder.CreateSub(Alignment, llvm::ConstantInt::get(IntPtrTy, 1)); 2356 llvm::Value *MaskedPtr = Builder.CreateAnd(PtrIntValue, Mask, "maskedptr"); 2357 TheCheck = Builder.CreateICmpEQ(MaskedPtr, Zero, "maskcond"); 2358 } 2359 llvm::Instruction *Assumption = Builder.CreateAlignmentAssumption( 2360 CGM.getDataLayout(), PtrValue, Alignment, OffsetValue); 2361 2362 if (!SanOpts.has(SanitizerKind::Alignment)) 2363 return; 2364 emitAlignmentAssumptionCheck(PtrValue, Ty, Loc, AssumptionLoc, Alignment, 2365 OffsetValue, TheCheck, Assumption); 2366 } 2367 2368 void CodeGenFunction::emitAlignmentAssumption(llvm::Value *PtrValue, 2369 const Expr *E, 2370 SourceLocation AssumptionLoc, 2371 llvm::Value *Alignment, 2372 llvm::Value *OffsetValue) { 2373 if (auto *CE = dyn_cast<CastExpr>(E)) 2374 E = CE->getSubExprAsWritten(); 2375 QualType Ty = E->getType(); 2376 SourceLocation Loc = E->getExprLoc(); 2377 2378 emitAlignmentAssumption(PtrValue, Ty, Loc, AssumptionLoc, Alignment, 2379 OffsetValue); 2380 } 2381 2382 llvm::Value *CodeGenFunction::EmitAnnotationCall(llvm::Function *AnnotationFn, 2383 llvm::Value *AnnotatedVal, 2384 StringRef AnnotationStr, 2385 SourceLocation Location, 2386 const AnnotateAttr *Attr) { 2387 SmallVector<llvm::Value *, 5> Args = { 2388 AnnotatedVal, 2389 Builder.CreateBitCast(CGM.EmitAnnotationString(AnnotationStr), Int8PtrTy), 2390 Builder.CreateBitCast(CGM.EmitAnnotationUnit(Location), Int8PtrTy), 2391 CGM.EmitAnnotationLineNo(Location), 2392 }; 2393 if (Attr) 2394 Args.push_back(CGM.EmitAnnotationArgs(Attr)); 2395 return Builder.CreateCall(AnnotationFn, Args); 2396 } 2397 2398 void CodeGenFunction::EmitVarAnnotations(const VarDecl *D, llvm::Value *V) { 2399 assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute"); 2400 // FIXME We create a new bitcast for every annotation because that's what 2401 // llvm-gcc was doing. 2402 for (const auto *I : D->specific_attrs<AnnotateAttr>()) 2403 EmitAnnotationCall(CGM.getIntrinsic(llvm::Intrinsic::var_annotation), 2404 Builder.CreateBitCast(V, CGM.Int8PtrTy, V->getName()), 2405 I->getAnnotation(), D->getLocation(), I); 2406 } 2407 2408 Address CodeGenFunction::EmitFieldAnnotations(const FieldDecl *D, 2409 Address Addr) { 2410 assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute"); 2411 llvm::Value *V = Addr.getPointer(); 2412 llvm::Type *VTy = V->getType(); 2413 auto *PTy = dyn_cast<llvm::PointerType>(VTy); 2414 unsigned AS = PTy ? PTy->getAddressSpace() : 0; 2415 llvm::PointerType *IntrinTy = 2416 llvm::PointerType::getWithSamePointeeType(CGM.Int8PtrTy, AS); 2417 llvm::Function *F = 2418 CGM.getIntrinsic(llvm::Intrinsic::ptr_annotation, IntrinTy); 2419 2420 for (const auto *I : D->specific_attrs<AnnotateAttr>()) { 2421 // FIXME Always emit the cast inst so we can differentiate between 2422 // annotation on the first field of a struct and annotation on the struct 2423 // itself. 2424 if (VTy != IntrinTy) 2425 V = Builder.CreateBitCast(V, IntrinTy); 2426 V = EmitAnnotationCall(F, V, I->getAnnotation(), D->getLocation(), I); 2427 V = Builder.CreateBitCast(V, VTy); 2428 } 2429 2430 return Address(V, Addr.getAlignment()); 2431 } 2432 2433 CodeGenFunction::CGCapturedStmtInfo::~CGCapturedStmtInfo() { } 2434 2435 CodeGenFunction::SanitizerScope::SanitizerScope(CodeGenFunction *CGF) 2436 : CGF(CGF) { 2437 assert(!CGF->IsSanitizerScope); 2438 CGF->IsSanitizerScope = true; 2439 } 2440 2441 CodeGenFunction::SanitizerScope::~SanitizerScope() { 2442 CGF->IsSanitizerScope = false; 2443 } 2444 2445 void CodeGenFunction::InsertHelper(llvm::Instruction *I, 2446 const llvm::Twine &Name, 2447 llvm::BasicBlock *BB, 2448 llvm::BasicBlock::iterator InsertPt) const { 2449 LoopStack.InsertHelper(I); 2450 if (IsSanitizerScope) 2451 CGM.getSanitizerMetadata()->disableSanitizerForInstruction(I); 2452 } 2453 2454 void CGBuilderInserter::InsertHelper( 2455 llvm::Instruction *I, const llvm::Twine &Name, llvm::BasicBlock *BB, 2456 llvm::BasicBlock::iterator InsertPt) const { 2457 llvm::IRBuilderDefaultInserter::InsertHelper(I, Name, BB, InsertPt); 2458 if (CGF) 2459 CGF->InsertHelper(I, Name, BB, InsertPt); 2460 } 2461 2462 // Emits an error if we don't have a valid set of target features for the 2463 // called function. 2464 void CodeGenFunction::checkTargetFeatures(const CallExpr *E, 2465 const FunctionDecl *TargetDecl) { 2466 return checkTargetFeatures(E->getBeginLoc(), TargetDecl); 2467 } 2468 2469 // Emits an error if we don't have a valid set of target features for the 2470 // called function. 2471 void CodeGenFunction::checkTargetFeatures(SourceLocation Loc, 2472 const FunctionDecl *TargetDecl) { 2473 // Early exit if this is an indirect call. 2474 if (!TargetDecl) 2475 return; 2476 2477 // Get the current enclosing function if it exists. If it doesn't 2478 // we can't check the target features anyhow. 2479 const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(CurCodeDecl); 2480 if (!FD) 2481 return; 2482 2483 // Grab the required features for the call. For a builtin this is listed in 2484 // the td file with the default cpu, for an always_inline function this is any 2485 // listed cpu and any listed features. 2486 unsigned BuiltinID = TargetDecl->getBuiltinID(); 2487 std::string MissingFeature; 2488 llvm::StringMap<bool> CallerFeatureMap; 2489 CGM.getContext().getFunctionFeatureMap(CallerFeatureMap, FD); 2490 if (BuiltinID) { 2491 StringRef FeatureList( 2492 CGM.getContext().BuiltinInfo.getRequiredFeatures(BuiltinID)); 2493 // Return if the builtin doesn't have any required features. 2494 if (FeatureList.empty()) 2495 return; 2496 assert(FeatureList.find(' ') == StringRef::npos && 2497 "Space in feature list"); 2498 TargetFeatures TF(CallerFeatureMap); 2499 if (!TF.hasRequiredFeatures(FeatureList)) 2500 CGM.getDiags().Report(Loc, diag::err_builtin_needs_feature) 2501 << TargetDecl->getDeclName() << FeatureList; 2502 } else if (!TargetDecl->isMultiVersion() && 2503 TargetDecl->hasAttr<TargetAttr>()) { 2504 // Get the required features for the callee. 2505 2506 const TargetAttr *TD = TargetDecl->getAttr<TargetAttr>(); 2507 ParsedTargetAttr ParsedAttr = 2508 CGM.getContext().filterFunctionTargetAttrs(TD); 2509 2510 SmallVector<StringRef, 1> ReqFeatures; 2511 llvm::StringMap<bool> CalleeFeatureMap; 2512 CGM.getContext().getFunctionFeatureMap(CalleeFeatureMap, TargetDecl); 2513 2514 for (const auto &F : ParsedAttr.Features) { 2515 if (F[0] == '+' && CalleeFeatureMap.lookup(F.substr(1))) 2516 ReqFeatures.push_back(StringRef(F).substr(1)); 2517 } 2518 2519 for (const auto &F : CalleeFeatureMap) { 2520 // Only positive features are "required". 2521 if (F.getValue()) 2522 ReqFeatures.push_back(F.getKey()); 2523 } 2524 if (!llvm::all_of(ReqFeatures, [&](StringRef Feature) { 2525 if (!CallerFeatureMap.lookup(Feature)) { 2526 MissingFeature = Feature.str(); 2527 return false; 2528 } 2529 return true; 2530 })) 2531 CGM.getDiags().Report(Loc, diag::err_function_needs_feature) 2532 << FD->getDeclName() << TargetDecl->getDeclName() << MissingFeature; 2533 } 2534 } 2535 2536 void CodeGenFunction::EmitSanitizerStatReport(llvm::SanitizerStatKind SSK) { 2537 if (!CGM.getCodeGenOpts().SanitizeStats) 2538 return; 2539 2540 llvm::IRBuilder<> IRB(Builder.GetInsertBlock(), Builder.GetInsertPoint()); 2541 IRB.SetCurrentDebugLocation(Builder.getCurrentDebugLocation()); 2542 CGM.getSanStats().create(IRB, SSK); 2543 } 2544 2545 llvm::Value * 2546 CodeGenFunction::FormResolverCondition(const MultiVersionResolverOption &RO) { 2547 llvm::Value *Condition = nullptr; 2548 2549 if (!RO.Conditions.Architecture.empty()) 2550 Condition = EmitX86CpuIs(RO.Conditions.Architecture); 2551 2552 if (!RO.Conditions.Features.empty()) { 2553 llvm::Value *FeatureCond = EmitX86CpuSupports(RO.Conditions.Features); 2554 Condition = 2555 Condition ? Builder.CreateAnd(Condition, FeatureCond) : FeatureCond; 2556 } 2557 return Condition; 2558 } 2559 2560 static void CreateMultiVersionResolverReturn(CodeGenModule &CGM, 2561 llvm::Function *Resolver, 2562 CGBuilderTy &Builder, 2563 llvm::Function *FuncToReturn, 2564 bool SupportsIFunc) { 2565 if (SupportsIFunc) { 2566 Builder.CreateRet(FuncToReturn); 2567 return; 2568 } 2569 2570 llvm::SmallVector<llvm::Value *, 10> Args; 2571 llvm::for_each(Resolver->args(), 2572 [&](llvm::Argument &Arg) { Args.push_back(&Arg); }); 2573 2574 llvm::CallInst *Result = Builder.CreateCall(FuncToReturn, Args); 2575 Result->setTailCallKind(llvm::CallInst::TCK_MustTail); 2576 2577 if (Resolver->getReturnType()->isVoidTy()) 2578 Builder.CreateRetVoid(); 2579 else 2580 Builder.CreateRet(Result); 2581 } 2582 2583 void CodeGenFunction::EmitMultiVersionResolver( 2584 llvm::Function *Resolver, ArrayRef<MultiVersionResolverOption> Options) { 2585 assert(getContext().getTargetInfo().getTriple().isX86() && 2586 "Only implemented for x86 targets"); 2587 2588 bool SupportsIFunc = getContext().getTargetInfo().supportsIFunc(); 2589 2590 // Main function's basic block. 2591 llvm::BasicBlock *CurBlock = createBasicBlock("resolver_entry", Resolver); 2592 Builder.SetInsertPoint(CurBlock); 2593 EmitX86CpuInit(); 2594 2595 for (const MultiVersionResolverOption &RO : Options) { 2596 Builder.SetInsertPoint(CurBlock); 2597 llvm::Value *Condition = FormResolverCondition(RO); 2598 2599 // The 'default' or 'generic' case. 2600 if (!Condition) { 2601 assert(&RO == Options.end() - 1 && 2602 "Default or Generic case must be last"); 2603 CreateMultiVersionResolverReturn(CGM, Resolver, Builder, RO.Function, 2604 SupportsIFunc); 2605 return; 2606 } 2607 2608 llvm::BasicBlock *RetBlock = createBasicBlock("resolver_return", Resolver); 2609 CGBuilderTy RetBuilder(*this, RetBlock); 2610 CreateMultiVersionResolverReturn(CGM, Resolver, RetBuilder, RO.Function, 2611 SupportsIFunc); 2612 CurBlock = createBasicBlock("resolver_else", Resolver); 2613 Builder.CreateCondBr(Condition, RetBlock, CurBlock); 2614 } 2615 2616 // If no generic/default, emit an unreachable. 2617 Builder.SetInsertPoint(CurBlock); 2618 llvm::CallInst *TrapCall = EmitTrapCall(llvm::Intrinsic::trap); 2619 TrapCall->setDoesNotReturn(); 2620 TrapCall->setDoesNotThrow(); 2621 Builder.CreateUnreachable(); 2622 Builder.ClearInsertionPoint(); 2623 } 2624 2625 // Loc - where the diagnostic will point, where in the source code this 2626 // alignment has failed. 2627 // SecondaryLoc - if present (will be present if sufficiently different from 2628 // Loc), the diagnostic will additionally point a "Note:" to this location. 2629 // It should be the location where the __attribute__((assume_aligned)) 2630 // was written e.g. 2631 void CodeGenFunction::emitAlignmentAssumptionCheck( 2632 llvm::Value *Ptr, QualType Ty, SourceLocation Loc, 2633 SourceLocation SecondaryLoc, llvm::Value *Alignment, 2634 llvm::Value *OffsetValue, llvm::Value *TheCheck, 2635 llvm::Instruction *Assumption) { 2636 assert(Assumption && isa<llvm::CallInst>(Assumption) && 2637 cast<llvm::CallInst>(Assumption)->getCalledOperand() == 2638 llvm::Intrinsic::getDeclaration( 2639 Builder.GetInsertBlock()->getParent()->getParent(), 2640 llvm::Intrinsic::assume) && 2641 "Assumption should be a call to llvm.assume()."); 2642 assert(&(Builder.GetInsertBlock()->back()) == Assumption && 2643 "Assumption should be the last instruction of the basic block, " 2644 "since the basic block is still being generated."); 2645 2646 if (!SanOpts.has(SanitizerKind::Alignment)) 2647 return; 2648 2649 // Don't check pointers to volatile data. The behavior here is implementation- 2650 // defined. 2651 if (Ty->getPointeeType().isVolatileQualified()) 2652 return; 2653 2654 // We need to temorairly remove the assumption so we can insert the 2655 // sanitizer check before it, else the check will be dropped by optimizations. 2656 Assumption->removeFromParent(); 2657 2658 { 2659 SanitizerScope SanScope(this); 2660 2661 if (!OffsetValue) 2662 OffsetValue = Builder.getInt1(0); // no offset. 2663 2664 llvm::Constant *StaticData[] = {EmitCheckSourceLocation(Loc), 2665 EmitCheckSourceLocation(SecondaryLoc), 2666 EmitCheckTypeDescriptor(Ty)}; 2667 llvm::Value *DynamicData[] = {EmitCheckValue(Ptr), 2668 EmitCheckValue(Alignment), 2669 EmitCheckValue(OffsetValue)}; 2670 EmitCheck({std::make_pair(TheCheck, SanitizerKind::Alignment)}, 2671 SanitizerHandler::AlignmentAssumption, StaticData, DynamicData); 2672 } 2673 2674 // We are now in the (new, empty) "cont" basic block. 2675 // Reintroduce the assumption. 2676 Builder.Insert(Assumption); 2677 // FIXME: Assumption still has it's original basic block as it's Parent. 2678 } 2679 2680 llvm::DebugLoc CodeGenFunction::SourceLocToDebugLoc(SourceLocation Location) { 2681 if (CGDebugInfo *DI = getDebugInfo()) 2682 return DI->SourceLocToDebugLoc(Location); 2683 2684 return llvm::DebugLoc(); 2685 } 2686 2687 llvm::Value * 2688 CodeGenFunction::emitCondLikelihoodViaExpectIntrinsic(llvm::Value *Cond, 2689 Stmt::Likelihood LH) { 2690 switch (LH) { 2691 case Stmt::LH_None: 2692 return Cond; 2693 case Stmt::LH_Likely: 2694 case Stmt::LH_Unlikely: 2695 // Don't generate llvm.expect on -O0 as the backend won't use it for 2696 // anything. 2697 if (CGM.getCodeGenOpts().OptimizationLevel == 0) 2698 return Cond; 2699 llvm::Type *CondTy = Cond->getType(); 2700 assert(CondTy->isIntegerTy(1) && "expecting condition to be a boolean"); 2701 llvm::Function *FnExpect = 2702 CGM.getIntrinsic(llvm::Intrinsic::expect, CondTy); 2703 llvm::Value *ExpectedValueOfCond = 2704 llvm::ConstantInt::getBool(CondTy, LH == Stmt::LH_Likely); 2705 return Builder.CreateCall(FnExpect, {Cond, ExpectedValueOfCond}, 2706 Cond->getName() + ".expval"); 2707 } 2708 llvm_unreachable("Unknown Likelihood"); 2709 } 2710