1 //===--- CodeGenFunction.cpp - Emit LLVM Code from ASTs for a Function ----===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This coordinates the per-function state used while generating code. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "CodeGenFunction.h" 14 #include "CGBlocks.h" 15 #include "CGCUDARuntime.h" 16 #include "CGCXXABI.h" 17 #include "CGCleanup.h" 18 #include "CGDebugInfo.h" 19 #include "CGOpenMPRuntime.h" 20 #include "CodeGenModule.h" 21 #include "CodeGenPGO.h" 22 #include "TargetInfo.h" 23 #include "clang/AST/ASTContext.h" 24 #include "clang/AST/ASTLambda.h" 25 #include "clang/AST/Attr.h" 26 #include "clang/AST/Decl.h" 27 #include "clang/AST/DeclCXX.h" 28 #include "clang/AST/Expr.h" 29 #include "clang/AST/StmtCXX.h" 30 #include "clang/AST/StmtObjC.h" 31 #include "clang/Basic/Builtins.h" 32 #include "clang/Basic/CodeGenOptions.h" 33 #include "clang/Basic/TargetInfo.h" 34 #include "clang/CodeGen/CGFunctionInfo.h" 35 #include "clang/Frontend/FrontendDiagnostic.h" 36 #include "llvm/ADT/ArrayRef.h" 37 #include "llvm/Frontend/OpenMP/OMPIRBuilder.h" 38 #include "llvm/IR/DataLayout.h" 39 #include "llvm/IR/Dominators.h" 40 #include "llvm/IR/FPEnv.h" 41 #include "llvm/IR/IntrinsicInst.h" 42 #include "llvm/IR/Intrinsics.h" 43 #include "llvm/IR/MDBuilder.h" 44 #include "llvm/IR/Operator.h" 45 #include "llvm/Support/CRC.h" 46 #include "llvm/Transforms/Scalar/LowerExpectIntrinsic.h" 47 #include "llvm/Transforms/Utils/PromoteMemToReg.h" 48 using namespace clang; 49 using namespace CodeGen; 50 51 /// shouldEmitLifetimeMarkers - Decide whether we need emit the life-time 52 /// markers. 53 static bool shouldEmitLifetimeMarkers(const CodeGenOptions &CGOpts, 54 const LangOptions &LangOpts) { 55 if (CGOpts.DisableLifetimeMarkers) 56 return false; 57 58 // Sanitizers may use markers. 59 if (CGOpts.SanitizeAddressUseAfterScope || 60 LangOpts.Sanitize.has(SanitizerKind::HWAddress) || 61 LangOpts.Sanitize.has(SanitizerKind::Memory)) 62 return true; 63 64 // For now, only in optimized builds. 65 return CGOpts.OptimizationLevel != 0; 66 } 67 68 CodeGenFunction::CodeGenFunction(CodeGenModule &cgm, bool suppressNewContext) 69 : CodeGenTypeCache(cgm), CGM(cgm), Target(cgm.getTarget()), 70 Builder(cgm, cgm.getModule().getContext(), llvm::ConstantFolder(), 71 CGBuilderInserterTy(this)), 72 SanOpts(CGM.getLangOpts().Sanitize), CurFPFeatures(CGM.getLangOpts()), 73 DebugInfo(CGM.getModuleDebugInfo()), PGO(cgm), 74 ShouldEmitLifetimeMarkers( 75 shouldEmitLifetimeMarkers(CGM.getCodeGenOpts(), CGM.getLangOpts())) { 76 if (!suppressNewContext) 77 CGM.getCXXABI().getMangleContext().startNewFunction(); 78 79 SetFastMathFlags(CurFPFeatures); 80 SetFPModel(); 81 } 82 83 CodeGenFunction::~CodeGenFunction() { 84 assert(LifetimeExtendedCleanupStack.empty() && "failed to emit a cleanup"); 85 86 if (getLangOpts().OpenMP && CurFn) 87 CGM.getOpenMPRuntime().functionFinished(*this); 88 89 // If we have an OpenMPIRBuilder we want to finalize functions (incl. 90 // outlining etc) at some point. Doing it once the function codegen is done 91 // seems to be a reasonable spot. We do it here, as opposed to the deletion 92 // time of the CodeGenModule, because we have to ensure the IR has not yet 93 // been "emitted" to the outside, thus, modifications are still sensible. 94 if (CGM.getLangOpts().OpenMPIRBuilder && CurFn) 95 CGM.getOpenMPRuntime().getOMPBuilder().finalize(CurFn); 96 } 97 98 // Map the LangOption for exception behavior into 99 // the corresponding enum in the IR. 100 llvm::fp::ExceptionBehavior 101 clang::ToConstrainedExceptMD(LangOptions::FPExceptionModeKind Kind) { 102 103 switch (Kind) { 104 case LangOptions::FPE_Ignore: return llvm::fp::ebIgnore; 105 case LangOptions::FPE_MayTrap: return llvm::fp::ebMayTrap; 106 case LangOptions::FPE_Strict: return llvm::fp::ebStrict; 107 } 108 llvm_unreachable("Unsupported FP Exception Behavior"); 109 } 110 111 void CodeGenFunction::SetFPModel() { 112 llvm::RoundingMode RM = getLangOpts().getFPRoundingMode(); 113 auto fpExceptionBehavior = ToConstrainedExceptMD( 114 getLangOpts().getFPExceptionMode()); 115 116 Builder.setDefaultConstrainedRounding(RM); 117 Builder.setDefaultConstrainedExcept(fpExceptionBehavior); 118 Builder.setIsFPConstrained(fpExceptionBehavior != llvm::fp::ebIgnore || 119 RM != llvm::RoundingMode::NearestTiesToEven); 120 } 121 122 void CodeGenFunction::SetFastMathFlags(FPOptions FPFeatures) { 123 llvm::FastMathFlags FMF; 124 FMF.setAllowReassoc(FPFeatures.getAllowFPReassociate()); 125 FMF.setNoNaNs(FPFeatures.getNoHonorNaNs()); 126 FMF.setNoInfs(FPFeatures.getNoHonorInfs()); 127 FMF.setNoSignedZeros(FPFeatures.getNoSignedZero()); 128 FMF.setAllowReciprocal(FPFeatures.getAllowReciprocal()); 129 FMF.setApproxFunc(FPFeatures.getAllowApproxFunc()); 130 FMF.setAllowContract(FPFeatures.allowFPContractAcrossStatement()); 131 Builder.setFastMathFlags(FMF); 132 } 133 134 CodeGenFunction::CGFPOptionsRAII::CGFPOptionsRAII(CodeGenFunction &CGF, 135 const Expr *E) 136 : CGF(CGF) { 137 ConstructorHelper(E->getFPFeaturesInEffect(CGF.getLangOpts())); 138 } 139 140 CodeGenFunction::CGFPOptionsRAII::CGFPOptionsRAII(CodeGenFunction &CGF, 141 FPOptions FPFeatures) 142 : CGF(CGF) { 143 ConstructorHelper(FPFeatures); 144 } 145 146 void CodeGenFunction::CGFPOptionsRAII::ConstructorHelper(FPOptions FPFeatures) { 147 OldFPFeatures = CGF.CurFPFeatures; 148 CGF.CurFPFeatures = FPFeatures; 149 150 OldExcept = CGF.Builder.getDefaultConstrainedExcept(); 151 OldRounding = CGF.Builder.getDefaultConstrainedRounding(); 152 153 if (OldFPFeatures == FPFeatures) 154 return; 155 156 FMFGuard.emplace(CGF.Builder); 157 158 llvm::RoundingMode NewRoundingBehavior = 159 static_cast<llvm::RoundingMode>(FPFeatures.getRoundingMode()); 160 CGF.Builder.setDefaultConstrainedRounding(NewRoundingBehavior); 161 auto NewExceptionBehavior = 162 ToConstrainedExceptMD(static_cast<LangOptions::FPExceptionModeKind>( 163 FPFeatures.getFPExceptionMode())); 164 CGF.Builder.setDefaultConstrainedExcept(NewExceptionBehavior); 165 166 CGF.SetFastMathFlags(FPFeatures); 167 168 assert((CGF.CurFuncDecl == nullptr || CGF.Builder.getIsFPConstrained() || 169 isa<CXXConstructorDecl>(CGF.CurFuncDecl) || 170 isa<CXXDestructorDecl>(CGF.CurFuncDecl) || 171 (NewExceptionBehavior == llvm::fp::ebIgnore && 172 NewRoundingBehavior == llvm::RoundingMode::NearestTiesToEven)) && 173 "FPConstrained should be enabled on entire function"); 174 175 auto mergeFnAttrValue = [&](StringRef Name, bool Value) { 176 auto OldValue = 177 CGF.CurFn->getFnAttribute(Name).getValueAsString() == "true"; 178 auto NewValue = OldValue & Value; 179 if (OldValue != NewValue) 180 CGF.CurFn->addFnAttr(Name, llvm::toStringRef(NewValue)); 181 }; 182 mergeFnAttrValue("no-infs-fp-math", FPFeatures.getNoHonorInfs()); 183 mergeFnAttrValue("no-nans-fp-math", FPFeatures.getNoHonorNaNs()); 184 mergeFnAttrValue("no-signed-zeros-fp-math", FPFeatures.getNoSignedZero()); 185 mergeFnAttrValue("unsafe-fp-math", FPFeatures.getAllowFPReassociate() && 186 FPFeatures.getAllowReciprocal() && 187 FPFeatures.getAllowApproxFunc() && 188 FPFeatures.getNoSignedZero()); 189 } 190 191 CodeGenFunction::CGFPOptionsRAII::~CGFPOptionsRAII() { 192 CGF.CurFPFeatures = OldFPFeatures; 193 CGF.Builder.setDefaultConstrainedExcept(OldExcept); 194 CGF.Builder.setDefaultConstrainedRounding(OldRounding); 195 } 196 197 LValue CodeGenFunction::MakeNaturalAlignAddrLValue(llvm::Value *V, QualType T) { 198 LValueBaseInfo BaseInfo; 199 TBAAAccessInfo TBAAInfo; 200 CharUnits Alignment = CGM.getNaturalTypeAlignment(T, &BaseInfo, &TBAAInfo); 201 return LValue::MakeAddr(Address(V, Alignment), T, getContext(), BaseInfo, 202 TBAAInfo); 203 } 204 205 /// Given a value of type T* that may not be to a complete object, 206 /// construct an l-value with the natural pointee alignment of T. 207 LValue 208 CodeGenFunction::MakeNaturalAlignPointeeAddrLValue(llvm::Value *V, QualType T) { 209 LValueBaseInfo BaseInfo; 210 TBAAAccessInfo TBAAInfo; 211 CharUnits Align = CGM.getNaturalTypeAlignment(T, &BaseInfo, &TBAAInfo, 212 /* forPointeeType= */ true); 213 return MakeAddrLValue(Address(V, Align), T, BaseInfo, TBAAInfo); 214 } 215 216 217 llvm::Type *CodeGenFunction::ConvertTypeForMem(QualType T) { 218 return CGM.getTypes().ConvertTypeForMem(T); 219 } 220 221 llvm::Type *CodeGenFunction::ConvertType(QualType T) { 222 return CGM.getTypes().ConvertType(T); 223 } 224 225 TypeEvaluationKind CodeGenFunction::getEvaluationKind(QualType type) { 226 type = type.getCanonicalType(); 227 while (true) { 228 switch (type->getTypeClass()) { 229 #define TYPE(name, parent) 230 #define ABSTRACT_TYPE(name, parent) 231 #define NON_CANONICAL_TYPE(name, parent) case Type::name: 232 #define DEPENDENT_TYPE(name, parent) case Type::name: 233 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(name, parent) case Type::name: 234 #include "clang/AST/TypeNodes.inc" 235 llvm_unreachable("non-canonical or dependent type in IR-generation"); 236 237 case Type::Auto: 238 case Type::DeducedTemplateSpecialization: 239 llvm_unreachable("undeduced type in IR-generation"); 240 241 // Various scalar types. 242 case Type::Builtin: 243 case Type::Pointer: 244 case Type::BlockPointer: 245 case Type::LValueReference: 246 case Type::RValueReference: 247 case Type::MemberPointer: 248 case Type::Vector: 249 case Type::ExtVector: 250 case Type::ConstantMatrix: 251 case Type::FunctionProto: 252 case Type::FunctionNoProto: 253 case Type::Enum: 254 case Type::ObjCObjectPointer: 255 case Type::Pipe: 256 case Type::ExtInt: 257 return TEK_Scalar; 258 259 // Complexes. 260 case Type::Complex: 261 return TEK_Complex; 262 263 // Arrays, records, and Objective-C objects. 264 case Type::ConstantArray: 265 case Type::IncompleteArray: 266 case Type::VariableArray: 267 case Type::Record: 268 case Type::ObjCObject: 269 case Type::ObjCInterface: 270 return TEK_Aggregate; 271 272 // We operate on atomic values according to their underlying type. 273 case Type::Atomic: 274 type = cast<AtomicType>(type)->getValueType(); 275 continue; 276 } 277 llvm_unreachable("unknown type kind!"); 278 } 279 } 280 281 llvm::DebugLoc CodeGenFunction::EmitReturnBlock() { 282 // For cleanliness, we try to avoid emitting the return block for 283 // simple cases. 284 llvm::BasicBlock *CurBB = Builder.GetInsertBlock(); 285 286 if (CurBB) { 287 assert(!CurBB->getTerminator() && "Unexpected terminated block."); 288 289 // We have a valid insert point, reuse it if it is empty or there are no 290 // explicit jumps to the return block. 291 if (CurBB->empty() || ReturnBlock.getBlock()->use_empty()) { 292 ReturnBlock.getBlock()->replaceAllUsesWith(CurBB); 293 delete ReturnBlock.getBlock(); 294 ReturnBlock = JumpDest(); 295 } else 296 EmitBlock(ReturnBlock.getBlock()); 297 return llvm::DebugLoc(); 298 } 299 300 // Otherwise, if the return block is the target of a single direct 301 // branch then we can just put the code in that block instead. This 302 // cleans up functions which started with a unified return block. 303 if (ReturnBlock.getBlock()->hasOneUse()) { 304 llvm::BranchInst *BI = 305 dyn_cast<llvm::BranchInst>(*ReturnBlock.getBlock()->user_begin()); 306 if (BI && BI->isUnconditional() && 307 BI->getSuccessor(0) == ReturnBlock.getBlock()) { 308 // Record/return the DebugLoc of the simple 'return' expression to be used 309 // later by the actual 'ret' instruction. 310 llvm::DebugLoc Loc = BI->getDebugLoc(); 311 Builder.SetInsertPoint(BI->getParent()); 312 BI->eraseFromParent(); 313 delete ReturnBlock.getBlock(); 314 ReturnBlock = JumpDest(); 315 return Loc; 316 } 317 } 318 319 // FIXME: We are at an unreachable point, there is no reason to emit the block 320 // unless it has uses. However, we still need a place to put the debug 321 // region.end for now. 322 323 EmitBlock(ReturnBlock.getBlock()); 324 return llvm::DebugLoc(); 325 } 326 327 static void EmitIfUsed(CodeGenFunction &CGF, llvm::BasicBlock *BB) { 328 if (!BB) return; 329 if (!BB->use_empty()) 330 return CGF.CurFn->getBasicBlockList().push_back(BB); 331 delete BB; 332 } 333 334 void CodeGenFunction::FinishFunction(SourceLocation EndLoc) { 335 assert(BreakContinueStack.empty() && 336 "mismatched push/pop in break/continue stack!"); 337 338 bool OnlySimpleReturnStmts = NumSimpleReturnExprs > 0 339 && NumSimpleReturnExprs == NumReturnExprs 340 && ReturnBlock.getBlock()->use_empty(); 341 // Usually the return expression is evaluated before the cleanup 342 // code. If the function contains only a simple return statement, 343 // such as a constant, the location before the cleanup code becomes 344 // the last useful breakpoint in the function, because the simple 345 // return expression will be evaluated after the cleanup code. To be 346 // safe, set the debug location for cleanup code to the location of 347 // the return statement. Otherwise the cleanup code should be at the 348 // end of the function's lexical scope. 349 // 350 // If there are multiple branches to the return block, the branch 351 // instructions will get the location of the return statements and 352 // all will be fine. 353 if (CGDebugInfo *DI = getDebugInfo()) { 354 if (OnlySimpleReturnStmts) 355 DI->EmitLocation(Builder, LastStopPoint); 356 else 357 DI->EmitLocation(Builder, EndLoc); 358 } 359 360 // Pop any cleanups that might have been associated with the 361 // parameters. Do this in whatever block we're currently in; it's 362 // important to do this before we enter the return block or return 363 // edges will be *really* confused. 364 bool HasCleanups = EHStack.stable_begin() != PrologueCleanupDepth; 365 bool HasOnlyLifetimeMarkers = 366 HasCleanups && EHStack.containsOnlyLifetimeMarkers(PrologueCleanupDepth); 367 bool EmitRetDbgLoc = !HasCleanups || HasOnlyLifetimeMarkers; 368 if (HasCleanups) { 369 // Make sure the line table doesn't jump back into the body for 370 // the ret after it's been at EndLoc. 371 Optional<ApplyDebugLocation> AL; 372 if (CGDebugInfo *DI = getDebugInfo()) { 373 if (OnlySimpleReturnStmts) 374 DI->EmitLocation(Builder, EndLoc); 375 else 376 // We may not have a valid end location. Try to apply it anyway, and 377 // fall back to an artificial location if needed. 378 AL = ApplyDebugLocation::CreateDefaultArtificial(*this, EndLoc); 379 } 380 381 PopCleanupBlocks(PrologueCleanupDepth); 382 } 383 384 // Emit function epilog (to return). 385 llvm::DebugLoc Loc = EmitReturnBlock(); 386 387 if (ShouldInstrumentFunction()) { 388 if (CGM.getCodeGenOpts().InstrumentFunctions) 389 CurFn->addFnAttr("instrument-function-exit", "__cyg_profile_func_exit"); 390 if (CGM.getCodeGenOpts().InstrumentFunctionsAfterInlining) 391 CurFn->addFnAttr("instrument-function-exit-inlined", 392 "__cyg_profile_func_exit"); 393 } 394 395 // Emit debug descriptor for function end. 396 if (CGDebugInfo *DI = getDebugInfo()) 397 DI->EmitFunctionEnd(Builder, CurFn); 398 399 // Reset the debug location to that of the simple 'return' expression, if any 400 // rather than that of the end of the function's scope '}'. 401 ApplyDebugLocation AL(*this, Loc); 402 EmitFunctionEpilog(*CurFnInfo, EmitRetDbgLoc, EndLoc); 403 EmitEndEHSpec(CurCodeDecl); 404 405 assert(EHStack.empty() && 406 "did not remove all scopes from cleanup stack!"); 407 408 // If someone did an indirect goto, emit the indirect goto block at the end of 409 // the function. 410 if (IndirectBranch) { 411 EmitBlock(IndirectBranch->getParent()); 412 Builder.ClearInsertionPoint(); 413 } 414 415 // If some of our locals escaped, insert a call to llvm.localescape in the 416 // entry block. 417 if (!EscapedLocals.empty()) { 418 // Invert the map from local to index into a simple vector. There should be 419 // no holes. 420 SmallVector<llvm::Value *, 4> EscapeArgs; 421 EscapeArgs.resize(EscapedLocals.size()); 422 for (auto &Pair : EscapedLocals) 423 EscapeArgs[Pair.second] = Pair.first; 424 llvm::Function *FrameEscapeFn = llvm::Intrinsic::getDeclaration( 425 &CGM.getModule(), llvm::Intrinsic::localescape); 426 CGBuilderTy(*this, AllocaInsertPt).CreateCall(FrameEscapeFn, EscapeArgs); 427 } 428 429 // Remove the AllocaInsertPt instruction, which is just a convenience for us. 430 llvm::Instruction *Ptr = AllocaInsertPt; 431 AllocaInsertPt = nullptr; 432 Ptr->eraseFromParent(); 433 434 // If someone took the address of a label but never did an indirect goto, we 435 // made a zero entry PHI node, which is illegal, zap it now. 436 if (IndirectBranch) { 437 llvm::PHINode *PN = cast<llvm::PHINode>(IndirectBranch->getAddress()); 438 if (PN->getNumIncomingValues() == 0) { 439 PN->replaceAllUsesWith(llvm::UndefValue::get(PN->getType())); 440 PN->eraseFromParent(); 441 } 442 } 443 444 EmitIfUsed(*this, EHResumeBlock); 445 EmitIfUsed(*this, TerminateLandingPad); 446 EmitIfUsed(*this, TerminateHandler); 447 EmitIfUsed(*this, UnreachableBlock); 448 449 for (const auto &FuncletAndParent : TerminateFunclets) 450 EmitIfUsed(*this, FuncletAndParent.second); 451 452 if (CGM.getCodeGenOpts().EmitDeclMetadata) 453 EmitDeclMetadata(); 454 455 for (const auto &R : DeferredReplacements) { 456 if (llvm::Value *Old = R.first) { 457 Old->replaceAllUsesWith(R.second); 458 cast<llvm::Instruction>(Old)->eraseFromParent(); 459 } 460 } 461 DeferredReplacements.clear(); 462 463 // Eliminate CleanupDestSlot alloca by replacing it with SSA values and 464 // PHIs if the current function is a coroutine. We don't do it for all 465 // functions as it may result in slight increase in numbers of instructions 466 // if compiled with no optimizations. We do it for coroutine as the lifetime 467 // of CleanupDestSlot alloca make correct coroutine frame building very 468 // difficult. 469 if (NormalCleanupDest.isValid() && isCoroutine()) { 470 llvm::DominatorTree DT(*CurFn); 471 llvm::PromoteMemToReg( 472 cast<llvm::AllocaInst>(NormalCleanupDest.getPointer()), DT); 473 NormalCleanupDest = Address::invalid(); 474 } 475 476 // Scan function arguments for vector width. 477 for (llvm::Argument &A : CurFn->args()) 478 if (auto *VT = dyn_cast<llvm::VectorType>(A.getType())) 479 LargestVectorWidth = 480 std::max((uint64_t)LargestVectorWidth, 481 VT->getPrimitiveSizeInBits().getKnownMinSize()); 482 483 // Update vector width based on return type. 484 if (auto *VT = dyn_cast<llvm::VectorType>(CurFn->getReturnType())) 485 LargestVectorWidth = 486 std::max((uint64_t)LargestVectorWidth, 487 VT->getPrimitiveSizeInBits().getKnownMinSize()); 488 489 // Add the required-vector-width attribute. This contains the max width from: 490 // 1. min-vector-width attribute used in the source program. 491 // 2. Any builtins used that have a vector width specified. 492 // 3. Values passed in and out of inline assembly. 493 // 4. Width of vector arguments and return types for this function. 494 // 5. Width of vector aguments and return types for functions called by this 495 // function. 496 CurFn->addFnAttr("min-legal-vector-width", llvm::utostr(LargestVectorWidth)); 497 498 // Add vscale attribute if appropriate. 499 if (getLangOpts().ArmSveVectorBits) { 500 unsigned VScale = getLangOpts().ArmSveVectorBits / 128; 501 CurFn->addFnAttr(llvm::Attribute::getWithVScaleRangeArgs(getLLVMContext(), 502 VScale, VScale)); 503 } 504 505 // If we generated an unreachable return block, delete it now. 506 if (ReturnBlock.isValid() && ReturnBlock.getBlock()->use_empty()) { 507 Builder.ClearInsertionPoint(); 508 ReturnBlock.getBlock()->eraseFromParent(); 509 } 510 if (ReturnValue.isValid()) { 511 auto *RetAlloca = dyn_cast<llvm::AllocaInst>(ReturnValue.getPointer()); 512 if (RetAlloca && RetAlloca->use_empty()) { 513 RetAlloca->eraseFromParent(); 514 ReturnValue = Address::invalid(); 515 } 516 } 517 } 518 519 /// ShouldInstrumentFunction - Return true if the current function should be 520 /// instrumented with __cyg_profile_func_* calls 521 bool CodeGenFunction::ShouldInstrumentFunction() { 522 if (!CGM.getCodeGenOpts().InstrumentFunctions && 523 !CGM.getCodeGenOpts().InstrumentFunctionsAfterInlining && 524 !CGM.getCodeGenOpts().InstrumentFunctionEntryBare) 525 return false; 526 if (!CurFuncDecl || CurFuncDecl->hasAttr<NoInstrumentFunctionAttr>()) 527 return false; 528 return true; 529 } 530 531 /// ShouldXRayInstrument - Return true if the current function should be 532 /// instrumented with XRay nop sleds. 533 bool CodeGenFunction::ShouldXRayInstrumentFunction() const { 534 return CGM.getCodeGenOpts().XRayInstrumentFunctions; 535 } 536 537 /// AlwaysEmitXRayCustomEvents - Return true if we should emit IR for calls to 538 /// the __xray_customevent(...) builtin calls, when doing XRay instrumentation. 539 bool CodeGenFunction::AlwaysEmitXRayCustomEvents() const { 540 return CGM.getCodeGenOpts().XRayInstrumentFunctions && 541 (CGM.getCodeGenOpts().XRayAlwaysEmitCustomEvents || 542 CGM.getCodeGenOpts().XRayInstrumentationBundle.Mask == 543 XRayInstrKind::Custom); 544 } 545 546 bool CodeGenFunction::AlwaysEmitXRayTypedEvents() const { 547 return CGM.getCodeGenOpts().XRayInstrumentFunctions && 548 (CGM.getCodeGenOpts().XRayAlwaysEmitTypedEvents || 549 CGM.getCodeGenOpts().XRayInstrumentationBundle.Mask == 550 XRayInstrKind::Typed); 551 } 552 553 llvm::Constant * 554 CodeGenFunction::EncodeAddrForUseInPrologue(llvm::Function *F, 555 llvm::Constant *Addr) { 556 // Addresses stored in prologue data can't require run-time fixups and must 557 // be PC-relative. Run-time fixups are undesirable because they necessitate 558 // writable text segments, which are unsafe. And absolute addresses are 559 // undesirable because they break PIE mode. 560 561 // Add a layer of indirection through a private global. Taking its address 562 // won't result in a run-time fixup, even if Addr has linkonce_odr linkage. 563 auto *GV = new llvm::GlobalVariable(CGM.getModule(), Addr->getType(), 564 /*isConstant=*/true, 565 llvm::GlobalValue::PrivateLinkage, Addr); 566 567 // Create a PC-relative address. 568 auto *GOTAsInt = llvm::ConstantExpr::getPtrToInt(GV, IntPtrTy); 569 auto *FuncAsInt = llvm::ConstantExpr::getPtrToInt(F, IntPtrTy); 570 auto *PCRelAsInt = llvm::ConstantExpr::getSub(GOTAsInt, FuncAsInt); 571 return (IntPtrTy == Int32Ty) 572 ? PCRelAsInt 573 : llvm::ConstantExpr::getTrunc(PCRelAsInt, Int32Ty); 574 } 575 576 llvm::Value * 577 CodeGenFunction::DecodeAddrUsedInPrologue(llvm::Value *F, 578 llvm::Value *EncodedAddr) { 579 // Reconstruct the address of the global. 580 auto *PCRelAsInt = Builder.CreateSExt(EncodedAddr, IntPtrTy); 581 auto *FuncAsInt = Builder.CreatePtrToInt(F, IntPtrTy, "func_addr.int"); 582 auto *GOTAsInt = Builder.CreateAdd(PCRelAsInt, FuncAsInt, "global_addr.int"); 583 auto *GOTAddr = Builder.CreateIntToPtr(GOTAsInt, Int8PtrPtrTy, "global_addr"); 584 585 // Load the original pointer through the global. 586 return Builder.CreateLoad(Address(GOTAddr, getPointerAlign()), 587 "decoded_addr"); 588 } 589 590 void CodeGenFunction::EmitOpenCLKernelMetadata(const FunctionDecl *FD, 591 llvm::Function *Fn) 592 { 593 if (!FD->hasAttr<OpenCLKernelAttr>()) 594 return; 595 596 llvm::LLVMContext &Context = getLLVMContext(); 597 598 CGM.GenOpenCLArgMetadata(Fn, FD, this); 599 600 if (const VecTypeHintAttr *A = FD->getAttr<VecTypeHintAttr>()) { 601 QualType HintQTy = A->getTypeHint(); 602 const ExtVectorType *HintEltQTy = HintQTy->getAs<ExtVectorType>(); 603 bool IsSignedInteger = 604 HintQTy->isSignedIntegerType() || 605 (HintEltQTy && HintEltQTy->getElementType()->isSignedIntegerType()); 606 llvm::Metadata *AttrMDArgs[] = { 607 llvm::ConstantAsMetadata::get(llvm::UndefValue::get( 608 CGM.getTypes().ConvertType(A->getTypeHint()))), 609 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 610 llvm::IntegerType::get(Context, 32), 611 llvm::APInt(32, (uint64_t)(IsSignedInteger ? 1 : 0))))}; 612 Fn->setMetadata("vec_type_hint", llvm::MDNode::get(Context, AttrMDArgs)); 613 } 614 615 if (const WorkGroupSizeHintAttr *A = FD->getAttr<WorkGroupSizeHintAttr>()) { 616 llvm::Metadata *AttrMDArgs[] = { 617 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getXDim())), 618 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getYDim())), 619 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getZDim()))}; 620 Fn->setMetadata("work_group_size_hint", llvm::MDNode::get(Context, AttrMDArgs)); 621 } 622 623 if (const ReqdWorkGroupSizeAttr *A = FD->getAttr<ReqdWorkGroupSizeAttr>()) { 624 llvm::Metadata *AttrMDArgs[] = { 625 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getXDim())), 626 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getYDim())), 627 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getZDim()))}; 628 Fn->setMetadata("reqd_work_group_size", llvm::MDNode::get(Context, AttrMDArgs)); 629 } 630 631 if (const OpenCLIntelReqdSubGroupSizeAttr *A = 632 FD->getAttr<OpenCLIntelReqdSubGroupSizeAttr>()) { 633 llvm::Metadata *AttrMDArgs[] = { 634 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getSubGroupSize()))}; 635 Fn->setMetadata("intel_reqd_sub_group_size", 636 llvm::MDNode::get(Context, AttrMDArgs)); 637 } 638 } 639 640 /// Determine whether the function F ends with a return stmt. 641 static bool endsWithReturn(const Decl* F) { 642 const Stmt *Body = nullptr; 643 if (auto *FD = dyn_cast_or_null<FunctionDecl>(F)) 644 Body = FD->getBody(); 645 else if (auto *OMD = dyn_cast_or_null<ObjCMethodDecl>(F)) 646 Body = OMD->getBody(); 647 648 if (auto *CS = dyn_cast_or_null<CompoundStmt>(Body)) { 649 auto LastStmt = CS->body_rbegin(); 650 if (LastStmt != CS->body_rend()) 651 return isa<ReturnStmt>(*LastStmt); 652 } 653 return false; 654 } 655 656 void CodeGenFunction::markAsIgnoreThreadCheckingAtRuntime(llvm::Function *Fn) { 657 if (SanOpts.has(SanitizerKind::Thread)) { 658 Fn->addFnAttr("sanitize_thread_no_checking_at_run_time"); 659 Fn->removeFnAttr(llvm::Attribute::SanitizeThread); 660 } 661 } 662 663 /// Check if the return value of this function requires sanitization. 664 bool CodeGenFunction::requiresReturnValueCheck() const { 665 return requiresReturnValueNullabilityCheck() || 666 (SanOpts.has(SanitizerKind::ReturnsNonnullAttribute) && CurCodeDecl && 667 CurCodeDecl->getAttr<ReturnsNonNullAttr>()); 668 } 669 670 static bool matchesStlAllocatorFn(const Decl *D, const ASTContext &Ctx) { 671 auto *MD = dyn_cast_or_null<CXXMethodDecl>(D); 672 if (!MD || !MD->getDeclName().getAsIdentifierInfo() || 673 !MD->getDeclName().getAsIdentifierInfo()->isStr("allocate") || 674 (MD->getNumParams() != 1 && MD->getNumParams() != 2)) 675 return false; 676 677 if (MD->parameters()[0]->getType().getCanonicalType() != Ctx.getSizeType()) 678 return false; 679 680 if (MD->getNumParams() == 2) { 681 auto *PT = MD->parameters()[1]->getType()->getAs<PointerType>(); 682 if (!PT || !PT->isVoidPointerType() || 683 !PT->getPointeeType().isConstQualified()) 684 return false; 685 } 686 687 return true; 688 } 689 690 /// Return the UBSan prologue signature for \p FD if one is available. 691 static llvm::Constant *getPrologueSignature(CodeGenModule &CGM, 692 const FunctionDecl *FD) { 693 if (const auto *MD = dyn_cast<CXXMethodDecl>(FD)) 694 if (!MD->isStatic()) 695 return nullptr; 696 return CGM.getTargetCodeGenInfo().getUBSanFunctionSignature(CGM); 697 } 698 699 void CodeGenFunction::StartFunction(GlobalDecl GD, QualType RetTy, 700 llvm::Function *Fn, 701 const CGFunctionInfo &FnInfo, 702 const FunctionArgList &Args, 703 SourceLocation Loc, 704 SourceLocation StartLoc) { 705 assert(!CurFn && 706 "Do not use a CodeGenFunction object for more than one function"); 707 708 const Decl *D = GD.getDecl(); 709 710 DidCallStackSave = false; 711 CurCodeDecl = D; 712 if (const auto *FD = dyn_cast_or_null<FunctionDecl>(D)) 713 if (FD->usesSEHTry()) 714 CurSEHParent = FD; 715 CurFuncDecl = (D ? D->getNonClosureContext() : nullptr); 716 FnRetTy = RetTy; 717 CurFn = Fn; 718 CurFnInfo = &FnInfo; 719 assert(CurFn->isDeclaration() && "Function already has body?"); 720 721 // If this function is ignored for any of the enabled sanitizers, 722 // disable the sanitizer for the function. 723 do { 724 #define SANITIZER(NAME, ID) \ 725 if (SanOpts.empty()) \ 726 break; \ 727 if (SanOpts.has(SanitizerKind::ID)) \ 728 if (CGM.isInNoSanitizeList(SanitizerKind::ID, Fn, Loc)) \ 729 SanOpts.set(SanitizerKind::ID, false); 730 731 #include "clang/Basic/Sanitizers.def" 732 #undef SANITIZER 733 } while (0); 734 735 if (D) { 736 // Apply the no_sanitize* attributes to SanOpts. 737 for (auto Attr : D->specific_attrs<NoSanitizeAttr>()) { 738 SanitizerMask mask = Attr->getMask(); 739 SanOpts.Mask &= ~mask; 740 if (mask & SanitizerKind::Address) 741 SanOpts.set(SanitizerKind::KernelAddress, false); 742 if (mask & SanitizerKind::KernelAddress) 743 SanOpts.set(SanitizerKind::Address, false); 744 if (mask & SanitizerKind::HWAddress) 745 SanOpts.set(SanitizerKind::KernelHWAddress, false); 746 if (mask & SanitizerKind::KernelHWAddress) 747 SanOpts.set(SanitizerKind::HWAddress, false); 748 } 749 } 750 751 // Apply sanitizer attributes to the function. 752 if (SanOpts.hasOneOf(SanitizerKind::Address | SanitizerKind::KernelAddress)) 753 Fn->addFnAttr(llvm::Attribute::SanitizeAddress); 754 if (SanOpts.hasOneOf(SanitizerKind::HWAddress | SanitizerKind::KernelHWAddress)) 755 Fn->addFnAttr(llvm::Attribute::SanitizeHWAddress); 756 if (SanOpts.has(SanitizerKind::MemTag)) 757 Fn->addFnAttr(llvm::Attribute::SanitizeMemTag); 758 if (SanOpts.has(SanitizerKind::Thread)) 759 Fn->addFnAttr(llvm::Attribute::SanitizeThread); 760 if (SanOpts.hasOneOf(SanitizerKind::Memory | SanitizerKind::KernelMemory)) 761 Fn->addFnAttr(llvm::Attribute::SanitizeMemory); 762 if (SanOpts.has(SanitizerKind::SafeStack)) 763 Fn->addFnAttr(llvm::Attribute::SafeStack); 764 if (SanOpts.has(SanitizerKind::ShadowCallStack)) 765 Fn->addFnAttr(llvm::Attribute::ShadowCallStack); 766 767 // Apply fuzzing attribute to the function. 768 if (SanOpts.hasOneOf(SanitizerKind::Fuzzer | SanitizerKind::FuzzerNoLink)) 769 Fn->addFnAttr(llvm::Attribute::OptForFuzzing); 770 771 // Ignore TSan memory acesses from within ObjC/ObjC++ dealloc, initialize, 772 // .cxx_destruct, __destroy_helper_block_ and all of their calees at run time. 773 if (SanOpts.has(SanitizerKind::Thread)) { 774 if (const auto *OMD = dyn_cast_or_null<ObjCMethodDecl>(D)) { 775 IdentifierInfo *II = OMD->getSelector().getIdentifierInfoForSlot(0); 776 if (OMD->getMethodFamily() == OMF_dealloc || 777 OMD->getMethodFamily() == OMF_initialize || 778 (OMD->getSelector().isUnarySelector() && II->isStr(".cxx_destruct"))) { 779 markAsIgnoreThreadCheckingAtRuntime(Fn); 780 } 781 } 782 } 783 784 // Ignore unrelated casts in STL allocate() since the allocator must cast 785 // from void* to T* before object initialization completes. Don't match on the 786 // namespace because not all allocators are in std:: 787 if (D && SanOpts.has(SanitizerKind::CFIUnrelatedCast)) { 788 if (matchesStlAllocatorFn(D, getContext())) 789 SanOpts.Mask &= ~SanitizerKind::CFIUnrelatedCast; 790 } 791 792 // Ignore null checks in coroutine functions since the coroutines passes 793 // are not aware of how to move the extra UBSan instructions across the split 794 // coroutine boundaries. 795 if (D && SanOpts.has(SanitizerKind::Null)) 796 if (const auto *FD = dyn_cast<FunctionDecl>(D)) 797 if (FD->getBody() && 798 FD->getBody()->getStmtClass() == Stmt::CoroutineBodyStmtClass) 799 SanOpts.Mask &= ~SanitizerKind::Null; 800 801 // Apply xray attributes to the function (as a string, for now) 802 bool AlwaysXRayAttr = false; 803 if (const auto *XRayAttr = D ? D->getAttr<XRayInstrumentAttr>() : nullptr) { 804 if (CGM.getCodeGenOpts().XRayInstrumentationBundle.has( 805 XRayInstrKind::FunctionEntry) || 806 CGM.getCodeGenOpts().XRayInstrumentationBundle.has( 807 XRayInstrKind::FunctionExit)) { 808 if (XRayAttr->alwaysXRayInstrument() && ShouldXRayInstrumentFunction()) { 809 Fn->addFnAttr("function-instrument", "xray-always"); 810 AlwaysXRayAttr = true; 811 } 812 if (XRayAttr->neverXRayInstrument()) 813 Fn->addFnAttr("function-instrument", "xray-never"); 814 if (const auto *LogArgs = D->getAttr<XRayLogArgsAttr>()) 815 if (ShouldXRayInstrumentFunction()) 816 Fn->addFnAttr("xray-log-args", 817 llvm::utostr(LogArgs->getArgumentCount())); 818 } 819 } else { 820 if (ShouldXRayInstrumentFunction() && !CGM.imbueXRayAttrs(Fn, Loc)) 821 Fn->addFnAttr( 822 "xray-instruction-threshold", 823 llvm::itostr(CGM.getCodeGenOpts().XRayInstructionThreshold)); 824 } 825 826 if (ShouldXRayInstrumentFunction()) { 827 if (CGM.getCodeGenOpts().XRayIgnoreLoops) 828 Fn->addFnAttr("xray-ignore-loops"); 829 830 if (!CGM.getCodeGenOpts().XRayInstrumentationBundle.has( 831 XRayInstrKind::FunctionExit)) 832 Fn->addFnAttr("xray-skip-exit"); 833 834 if (!CGM.getCodeGenOpts().XRayInstrumentationBundle.has( 835 XRayInstrKind::FunctionEntry)) 836 Fn->addFnAttr("xray-skip-entry"); 837 838 auto FuncGroups = CGM.getCodeGenOpts().XRayTotalFunctionGroups; 839 if (FuncGroups > 1) { 840 auto FuncName = llvm::makeArrayRef<uint8_t>( 841 CurFn->getName().bytes_begin(), CurFn->getName().bytes_end()); 842 auto Group = crc32(FuncName) % FuncGroups; 843 if (Group != CGM.getCodeGenOpts().XRaySelectedFunctionGroup && 844 !AlwaysXRayAttr) 845 Fn->addFnAttr("function-instrument", "xray-never"); 846 } 847 } 848 849 if (CGM.getCodeGenOpts().getProfileInstr() != CodeGenOptions::ProfileNone) 850 if (CGM.isProfileInstrExcluded(Fn, Loc)) 851 Fn->addFnAttr(llvm::Attribute::NoProfile); 852 853 unsigned Count, Offset; 854 if (const auto *Attr = 855 D ? D->getAttr<PatchableFunctionEntryAttr>() : nullptr) { 856 Count = Attr->getCount(); 857 Offset = Attr->getOffset(); 858 } else { 859 Count = CGM.getCodeGenOpts().PatchableFunctionEntryCount; 860 Offset = CGM.getCodeGenOpts().PatchableFunctionEntryOffset; 861 } 862 if (Count && Offset <= Count) { 863 Fn->addFnAttr("patchable-function-entry", std::to_string(Count - Offset)); 864 if (Offset) 865 Fn->addFnAttr("patchable-function-prefix", std::to_string(Offset)); 866 } 867 868 // Add no-jump-tables value. 869 if (CGM.getCodeGenOpts().NoUseJumpTables) 870 Fn->addFnAttr("no-jump-tables", "true"); 871 872 // Add no-inline-line-tables value. 873 if (CGM.getCodeGenOpts().NoInlineLineTables) 874 Fn->addFnAttr("no-inline-line-tables"); 875 876 // Add profile-sample-accurate value. 877 if (CGM.getCodeGenOpts().ProfileSampleAccurate) 878 Fn->addFnAttr("profile-sample-accurate"); 879 880 if (!CGM.getCodeGenOpts().SampleProfileFile.empty()) 881 Fn->addFnAttr("use-sample-profile"); 882 883 if (D && D->hasAttr<CFICanonicalJumpTableAttr>()) 884 Fn->addFnAttr("cfi-canonical-jump-table"); 885 886 if (getLangOpts().OpenCL) { 887 // Add metadata for a kernel function. 888 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) 889 EmitOpenCLKernelMetadata(FD, Fn); 890 } 891 892 // If we are checking function types, emit a function type signature as 893 // prologue data. 894 if (getLangOpts().CPlusPlus && SanOpts.has(SanitizerKind::Function)) { 895 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) { 896 if (llvm::Constant *PrologueSig = getPrologueSignature(CGM, FD)) { 897 // Remove any (C++17) exception specifications, to allow calling e.g. a 898 // noexcept function through a non-noexcept pointer. 899 auto ProtoTy = 900 getContext().getFunctionTypeWithExceptionSpec(FD->getType(), 901 EST_None); 902 llvm::Constant *FTRTTIConst = 903 CGM.GetAddrOfRTTIDescriptor(ProtoTy, /*ForEH=*/true); 904 llvm::Constant *FTRTTIConstEncoded = 905 EncodeAddrForUseInPrologue(Fn, FTRTTIConst); 906 llvm::Constant *PrologueStructElems[] = {PrologueSig, 907 FTRTTIConstEncoded}; 908 llvm::Constant *PrologueStructConst = 909 llvm::ConstantStruct::getAnon(PrologueStructElems, /*Packed=*/true); 910 Fn->setPrologueData(PrologueStructConst); 911 } 912 } 913 } 914 915 // If we're checking nullability, we need to know whether we can check the 916 // return value. Initialize the flag to 'true' and refine it in EmitParmDecl. 917 if (SanOpts.has(SanitizerKind::NullabilityReturn)) { 918 auto Nullability = FnRetTy->getNullability(getContext()); 919 if (Nullability && *Nullability == NullabilityKind::NonNull) { 920 if (!(SanOpts.has(SanitizerKind::ReturnsNonnullAttribute) && 921 CurCodeDecl && CurCodeDecl->getAttr<ReturnsNonNullAttr>())) 922 RetValNullabilityPrecondition = 923 llvm::ConstantInt::getTrue(getLLVMContext()); 924 } 925 } 926 927 // If we're in C++ mode and the function name is "main", it is guaranteed 928 // to be norecurse by the standard (3.6.1.3 "The function main shall not be 929 // used within a program"). 930 // 931 // OpenCL C 2.0 v2.2-11 s6.9.i: 932 // Recursion is not supported. 933 // 934 // SYCL v1.2.1 s3.10: 935 // kernels cannot include RTTI information, exception classes, 936 // recursive code, virtual functions or make use of C++ libraries that 937 // are not compiled for the device. 938 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) { 939 if ((getLangOpts().CPlusPlus && FD->isMain()) || getLangOpts().OpenCL || 940 getLangOpts().SYCLIsDevice || 941 (getLangOpts().CUDA && FD->hasAttr<CUDAGlobalAttr>())) 942 Fn->addFnAttr(llvm::Attribute::NoRecurse); 943 } 944 945 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) { 946 Builder.setIsFPConstrained(FD->hasAttr<StrictFPAttr>()); 947 if (FD->hasAttr<StrictFPAttr>()) 948 Fn->addFnAttr(llvm::Attribute::StrictFP); 949 } 950 951 // If a custom alignment is used, force realigning to this alignment on 952 // any main function which certainly will need it. 953 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) 954 if ((FD->isMain() || FD->isMSVCRTEntryPoint()) && 955 CGM.getCodeGenOpts().StackAlignment) 956 Fn->addFnAttr("stackrealign"); 957 958 llvm::BasicBlock *EntryBB = createBasicBlock("entry", CurFn); 959 960 // Create a marker to make it easy to insert allocas into the entryblock 961 // later. Don't create this with the builder, because we don't want it 962 // folded. 963 llvm::Value *Undef = llvm::UndefValue::get(Int32Ty); 964 AllocaInsertPt = new llvm::BitCastInst(Undef, Int32Ty, "allocapt", EntryBB); 965 966 ReturnBlock = getJumpDestInCurrentScope("return"); 967 968 Builder.SetInsertPoint(EntryBB); 969 970 // If we're checking the return value, allocate space for a pointer to a 971 // precise source location of the checked return statement. 972 if (requiresReturnValueCheck()) { 973 ReturnLocation = CreateDefaultAlignTempAlloca(Int8PtrTy, "return.sloc.ptr"); 974 InitTempAlloca(ReturnLocation, llvm::ConstantPointerNull::get(Int8PtrTy)); 975 } 976 977 // Emit subprogram debug descriptor. 978 if (CGDebugInfo *DI = getDebugInfo()) { 979 // Reconstruct the type from the argument list so that implicit parameters, 980 // such as 'this' and 'vtt', show up in the debug info. Preserve the calling 981 // convention. 982 CallingConv CC = CallingConv::CC_C; 983 if (auto *FD = dyn_cast_or_null<FunctionDecl>(D)) 984 if (const auto *SrcFnTy = FD->getType()->getAs<FunctionType>()) 985 CC = SrcFnTy->getCallConv(); 986 SmallVector<QualType, 16> ArgTypes; 987 for (const VarDecl *VD : Args) 988 ArgTypes.push_back(VD->getType()); 989 QualType FnType = getContext().getFunctionType( 990 RetTy, ArgTypes, FunctionProtoType::ExtProtoInfo(CC)); 991 DI->emitFunctionStart(GD, Loc, StartLoc, FnType, CurFn, CurFuncIsThunk); 992 } 993 994 if (ShouldInstrumentFunction()) { 995 if (CGM.getCodeGenOpts().InstrumentFunctions) 996 CurFn->addFnAttr("instrument-function-entry", "__cyg_profile_func_enter"); 997 if (CGM.getCodeGenOpts().InstrumentFunctionsAfterInlining) 998 CurFn->addFnAttr("instrument-function-entry-inlined", 999 "__cyg_profile_func_enter"); 1000 if (CGM.getCodeGenOpts().InstrumentFunctionEntryBare) 1001 CurFn->addFnAttr("instrument-function-entry-inlined", 1002 "__cyg_profile_func_enter_bare"); 1003 } 1004 1005 // Since emitting the mcount call here impacts optimizations such as function 1006 // inlining, we just add an attribute to insert a mcount call in backend. 1007 // The attribute "counting-function" is set to mcount function name which is 1008 // architecture dependent. 1009 if (CGM.getCodeGenOpts().InstrumentForProfiling) { 1010 // Calls to fentry/mcount should not be generated if function has 1011 // the no_instrument_function attribute. 1012 if (!CurFuncDecl || !CurFuncDecl->hasAttr<NoInstrumentFunctionAttr>()) { 1013 if (CGM.getCodeGenOpts().CallFEntry) 1014 Fn->addFnAttr("fentry-call", "true"); 1015 else { 1016 Fn->addFnAttr("instrument-function-entry-inlined", 1017 getTarget().getMCountName()); 1018 } 1019 if (CGM.getCodeGenOpts().MNopMCount) { 1020 if (!CGM.getCodeGenOpts().CallFEntry) 1021 CGM.getDiags().Report(diag::err_opt_not_valid_without_opt) 1022 << "-mnop-mcount" << "-mfentry"; 1023 Fn->addFnAttr("mnop-mcount"); 1024 } 1025 1026 if (CGM.getCodeGenOpts().RecordMCount) { 1027 if (!CGM.getCodeGenOpts().CallFEntry) 1028 CGM.getDiags().Report(diag::err_opt_not_valid_without_opt) 1029 << "-mrecord-mcount" << "-mfentry"; 1030 Fn->addFnAttr("mrecord-mcount"); 1031 } 1032 } 1033 } 1034 1035 if (CGM.getCodeGenOpts().PackedStack) { 1036 if (getContext().getTargetInfo().getTriple().getArch() != 1037 llvm::Triple::systemz) 1038 CGM.getDiags().Report(diag::err_opt_not_valid_on_target) 1039 << "-mpacked-stack"; 1040 Fn->addFnAttr("packed-stack"); 1041 } 1042 1043 if (RetTy->isVoidType()) { 1044 // Void type; nothing to return. 1045 ReturnValue = Address::invalid(); 1046 1047 // Count the implicit return. 1048 if (!endsWithReturn(D)) 1049 ++NumReturnExprs; 1050 } else if (CurFnInfo->getReturnInfo().getKind() == ABIArgInfo::Indirect) { 1051 // Indirect return; emit returned value directly into sret slot. 1052 // This reduces code size, and affects correctness in C++. 1053 auto AI = CurFn->arg_begin(); 1054 if (CurFnInfo->getReturnInfo().isSRetAfterThis()) 1055 ++AI; 1056 ReturnValue = Address(&*AI, CurFnInfo->getReturnInfo().getIndirectAlign()); 1057 if (!CurFnInfo->getReturnInfo().getIndirectByVal()) { 1058 ReturnValuePointer = 1059 CreateDefaultAlignTempAlloca(Int8PtrTy, "result.ptr"); 1060 Builder.CreateStore(Builder.CreatePointerBitCastOrAddrSpaceCast( 1061 ReturnValue.getPointer(), Int8PtrTy), 1062 ReturnValuePointer); 1063 } 1064 } else if (CurFnInfo->getReturnInfo().getKind() == ABIArgInfo::InAlloca && 1065 !hasScalarEvaluationKind(CurFnInfo->getReturnType())) { 1066 // Load the sret pointer from the argument struct and return into that. 1067 unsigned Idx = CurFnInfo->getReturnInfo().getInAllocaFieldIndex(); 1068 llvm::Function::arg_iterator EI = CurFn->arg_end(); 1069 --EI; 1070 llvm::Value *Addr = Builder.CreateStructGEP(nullptr, &*EI, Idx); 1071 llvm::Type *Ty = 1072 cast<llvm::GetElementPtrInst>(Addr)->getResultElementType(); 1073 ReturnValuePointer = Address(Addr, getPointerAlign()); 1074 Addr = Builder.CreateAlignedLoad(Ty, Addr, getPointerAlign(), "agg.result"); 1075 ReturnValue = Address(Addr, CGM.getNaturalTypeAlignment(RetTy)); 1076 } else { 1077 ReturnValue = CreateIRTemp(RetTy, "retval"); 1078 1079 // Tell the epilog emitter to autorelease the result. We do this 1080 // now so that various specialized functions can suppress it 1081 // during their IR-generation. 1082 if (getLangOpts().ObjCAutoRefCount && 1083 !CurFnInfo->isReturnsRetained() && 1084 RetTy->isObjCRetainableType()) 1085 AutoreleaseResult = true; 1086 } 1087 1088 EmitStartEHSpec(CurCodeDecl); 1089 1090 PrologueCleanupDepth = EHStack.stable_begin(); 1091 1092 // Emit OpenMP specific initialization of the device functions. 1093 if (getLangOpts().OpenMP && CurCodeDecl) 1094 CGM.getOpenMPRuntime().emitFunctionProlog(*this, CurCodeDecl); 1095 1096 EmitFunctionProlog(*CurFnInfo, CurFn, Args); 1097 1098 if (D && isa<CXXMethodDecl>(D) && cast<CXXMethodDecl>(D)->isInstance()) { 1099 CGM.getCXXABI().EmitInstanceFunctionProlog(*this); 1100 const CXXMethodDecl *MD = cast<CXXMethodDecl>(D); 1101 if (MD->getParent()->isLambda() && 1102 MD->getOverloadedOperator() == OO_Call) { 1103 // We're in a lambda; figure out the captures. 1104 MD->getParent()->getCaptureFields(LambdaCaptureFields, 1105 LambdaThisCaptureField); 1106 if (LambdaThisCaptureField) { 1107 // If the lambda captures the object referred to by '*this' - either by 1108 // value or by reference, make sure CXXThisValue points to the correct 1109 // object. 1110 1111 // Get the lvalue for the field (which is a copy of the enclosing object 1112 // or contains the address of the enclosing object). 1113 LValue ThisFieldLValue = EmitLValueForLambdaField(LambdaThisCaptureField); 1114 if (!LambdaThisCaptureField->getType()->isPointerType()) { 1115 // If the enclosing object was captured by value, just use its address. 1116 CXXThisValue = ThisFieldLValue.getAddress(*this).getPointer(); 1117 } else { 1118 // Load the lvalue pointed to by the field, since '*this' was captured 1119 // by reference. 1120 CXXThisValue = 1121 EmitLoadOfLValue(ThisFieldLValue, SourceLocation()).getScalarVal(); 1122 } 1123 } 1124 for (auto *FD : MD->getParent()->fields()) { 1125 if (FD->hasCapturedVLAType()) { 1126 auto *ExprArg = EmitLoadOfLValue(EmitLValueForLambdaField(FD), 1127 SourceLocation()).getScalarVal(); 1128 auto VAT = FD->getCapturedVLAType(); 1129 VLASizeMap[VAT->getSizeExpr()] = ExprArg; 1130 } 1131 } 1132 } else { 1133 // Not in a lambda; just use 'this' from the method. 1134 // FIXME: Should we generate a new load for each use of 'this'? The 1135 // fast register allocator would be happier... 1136 CXXThisValue = CXXABIThisValue; 1137 } 1138 1139 // Check the 'this' pointer once per function, if it's available. 1140 if (CXXABIThisValue) { 1141 SanitizerSet SkippedChecks; 1142 SkippedChecks.set(SanitizerKind::ObjectSize, true); 1143 QualType ThisTy = MD->getThisType(); 1144 1145 // If this is the call operator of a lambda with no capture-default, it 1146 // may have a static invoker function, which may call this operator with 1147 // a null 'this' pointer. 1148 if (isLambdaCallOperator(MD) && 1149 MD->getParent()->getLambdaCaptureDefault() == LCD_None) 1150 SkippedChecks.set(SanitizerKind::Null, true); 1151 1152 EmitTypeCheck( 1153 isa<CXXConstructorDecl>(MD) ? TCK_ConstructorCall : TCK_MemberCall, 1154 Loc, CXXABIThisValue, ThisTy, CXXABIThisAlignment, SkippedChecks); 1155 } 1156 } 1157 1158 // If any of the arguments have a variably modified type, make sure to 1159 // emit the type size. 1160 for (FunctionArgList::const_iterator i = Args.begin(), e = Args.end(); 1161 i != e; ++i) { 1162 const VarDecl *VD = *i; 1163 1164 // Dig out the type as written from ParmVarDecls; it's unclear whether 1165 // the standard (C99 6.9.1p10) requires this, but we're following the 1166 // precedent set by gcc. 1167 QualType Ty; 1168 if (const ParmVarDecl *PVD = dyn_cast<ParmVarDecl>(VD)) 1169 Ty = PVD->getOriginalType(); 1170 else 1171 Ty = VD->getType(); 1172 1173 if (Ty->isVariablyModifiedType()) 1174 EmitVariablyModifiedType(Ty); 1175 } 1176 // Emit a location at the end of the prologue. 1177 if (CGDebugInfo *DI = getDebugInfo()) 1178 DI->EmitLocation(Builder, StartLoc); 1179 1180 // TODO: Do we need to handle this in two places like we do with 1181 // target-features/target-cpu? 1182 if (CurFuncDecl) 1183 if (const auto *VecWidth = CurFuncDecl->getAttr<MinVectorWidthAttr>()) 1184 LargestVectorWidth = VecWidth->getVectorWidth(); 1185 } 1186 1187 void CodeGenFunction::EmitFunctionBody(const Stmt *Body) { 1188 incrementProfileCounter(Body); 1189 if (CPlusPlusWithProgress()) 1190 FnIsMustProgress = true; 1191 1192 if (const CompoundStmt *S = dyn_cast<CompoundStmt>(Body)) 1193 EmitCompoundStmtWithoutScope(*S); 1194 else 1195 EmitStmt(Body); 1196 1197 // This is checked after emitting the function body so we know if there 1198 // are any permitted infinite loops. 1199 if (FnIsMustProgress) 1200 CurFn->addFnAttr(llvm::Attribute::MustProgress); 1201 } 1202 1203 /// When instrumenting to collect profile data, the counts for some blocks 1204 /// such as switch cases need to not include the fall-through counts, so 1205 /// emit a branch around the instrumentation code. When not instrumenting, 1206 /// this just calls EmitBlock(). 1207 void CodeGenFunction::EmitBlockWithFallThrough(llvm::BasicBlock *BB, 1208 const Stmt *S) { 1209 llvm::BasicBlock *SkipCountBB = nullptr; 1210 if (HaveInsertPoint() && CGM.getCodeGenOpts().hasProfileClangInstr()) { 1211 // When instrumenting for profiling, the fallthrough to certain 1212 // statements needs to skip over the instrumentation code so that we 1213 // get an accurate count. 1214 SkipCountBB = createBasicBlock("skipcount"); 1215 EmitBranch(SkipCountBB); 1216 } 1217 EmitBlock(BB); 1218 uint64_t CurrentCount = getCurrentProfileCount(); 1219 incrementProfileCounter(S); 1220 setCurrentProfileCount(getCurrentProfileCount() + CurrentCount); 1221 if (SkipCountBB) 1222 EmitBlock(SkipCountBB); 1223 } 1224 1225 /// Tries to mark the given function nounwind based on the 1226 /// non-existence of any throwing calls within it. We believe this is 1227 /// lightweight enough to do at -O0. 1228 static void TryMarkNoThrow(llvm::Function *F) { 1229 // LLVM treats 'nounwind' on a function as part of the type, so we 1230 // can't do this on functions that can be overwritten. 1231 if (F->isInterposable()) return; 1232 1233 for (llvm::BasicBlock &BB : *F) 1234 for (llvm::Instruction &I : BB) 1235 if (I.mayThrow()) 1236 return; 1237 1238 F->setDoesNotThrow(); 1239 } 1240 1241 QualType CodeGenFunction::BuildFunctionArgList(GlobalDecl GD, 1242 FunctionArgList &Args) { 1243 const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl()); 1244 QualType ResTy = FD->getReturnType(); 1245 1246 const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD); 1247 if (MD && MD->isInstance()) { 1248 if (CGM.getCXXABI().HasThisReturn(GD)) 1249 ResTy = MD->getThisType(); 1250 else if (CGM.getCXXABI().hasMostDerivedReturn(GD)) 1251 ResTy = CGM.getContext().VoidPtrTy; 1252 CGM.getCXXABI().buildThisParam(*this, Args); 1253 } 1254 1255 // The base version of an inheriting constructor whose constructed base is a 1256 // virtual base is not passed any arguments (because it doesn't actually call 1257 // the inherited constructor). 1258 bool PassedParams = true; 1259 if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(FD)) 1260 if (auto Inherited = CD->getInheritedConstructor()) 1261 PassedParams = 1262 getTypes().inheritingCtorHasParams(Inherited, GD.getCtorType()); 1263 1264 if (PassedParams) { 1265 for (auto *Param : FD->parameters()) { 1266 Args.push_back(Param); 1267 if (!Param->hasAttr<PassObjectSizeAttr>()) 1268 continue; 1269 1270 auto *Implicit = ImplicitParamDecl::Create( 1271 getContext(), Param->getDeclContext(), Param->getLocation(), 1272 /*Id=*/nullptr, getContext().getSizeType(), ImplicitParamDecl::Other); 1273 SizeArguments[Param] = Implicit; 1274 Args.push_back(Implicit); 1275 } 1276 } 1277 1278 if (MD && (isa<CXXConstructorDecl>(MD) || isa<CXXDestructorDecl>(MD))) 1279 CGM.getCXXABI().addImplicitStructorParams(*this, ResTy, Args); 1280 1281 return ResTy; 1282 } 1283 1284 void CodeGenFunction::GenerateCode(GlobalDecl GD, llvm::Function *Fn, 1285 const CGFunctionInfo &FnInfo) { 1286 const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl()); 1287 CurGD = GD; 1288 1289 FunctionArgList Args; 1290 QualType ResTy = BuildFunctionArgList(GD, Args); 1291 1292 // Check if we should generate debug info for this function. 1293 if (FD->hasAttr<NoDebugAttr>()) 1294 DebugInfo = nullptr; // disable debug info indefinitely for this function 1295 1296 // The function might not have a body if we're generating thunks for a 1297 // function declaration. 1298 SourceRange BodyRange; 1299 if (Stmt *Body = FD->getBody()) 1300 BodyRange = Body->getSourceRange(); 1301 else 1302 BodyRange = FD->getLocation(); 1303 CurEHLocation = BodyRange.getEnd(); 1304 1305 // Use the location of the start of the function to determine where 1306 // the function definition is located. By default use the location 1307 // of the declaration as the location for the subprogram. A function 1308 // may lack a declaration in the source code if it is created by code 1309 // gen. (examples: _GLOBAL__I_a, __cxx_global_array_dtor, thunk). 1310 SourceLocation Loc = FD->getLocation(); 1311 1312 // If this is a function specialization then use the pattern body 1313 // as the location for the function. 1314 if (const FunctionDecl *SpecDecl = FD->getTemplateInstantiationPattern()) 1315 if (SpecDecl->hasBody(SpecDecl)) 1316 Loc = SpecDecl->getLocation(); 1317 1318 Stmt *Body = FD->getBody(); 1319 1320 if (Body) { 1321 // Coroutines always emit lifetime markers. 1322 if (isa<CoroutineBodyStmt>(Body)) 1323 ShouldEmitLifetimeMarkers = true; 1324 1325 // Initialize helper which will detect jumps which can cause invalid 1326 // lifetime markers. 1327 if (ShouldEmitLifetimeMarkers) 1328 Bypasses.Init(Body); 1329 } 1330 1331 // Emit the standard function prologue. 1332 StartFunction(GD, ResTy, Fn, FnInfo, Args, Loc, BodyRange.getBegin()); 1333 1334 // Save parameters for coroutine function. 1335 if (Body && isa_and_nonnull<CoroutineBodyStmt>(Body)) 1336 for (const auto *ParamDecl : FD->parameters()) 1337 FnArgs.push_back(ParamDecl); 1338 1339 // Generate the body of the function. 1340 PGO.assignRegionCounters(GD, CurFn); 1341 if (isa<CXXDestructorDecl>(FD)) 1342 EmitDestructorBody(Args); 1343 else if (isa<CXXConstructorDecl>(FD)) 1344 EmitConstructorBody(Args); 1345 else if (getLangOpts().CUDA && 1346 !getLangOpts().CUDAIsDevice && 1347 FD->hasAttr<CUDAGlobalAttr>()) 1348 CGM.getCUDARuntime().emitDeviceStub(*this, Args); 1349 else if (isa<CXXMethodDecl>(FD) && 1350 cast<CXXMethodDecl>(FD)->isLambdaStaticInvoker()) { 1351 // The lambda static invoker function is special, because it forwards or 1352 // clones the body of the function call operator (but is actually static). 1353 EmitLambdaStaticInvokeBody(cast<CXXMethodDecl>(FD)); 1354 } else if (FD->isDefaulted() && isa<CXXMethodDecl>(FD) && 1355 (cast<CXXMethodDecl>(FD)->isCopyAssignmentOperator() || 1356 cast<CXXMethodDecl>(FD)->isMoveAssignmentOperator())) { 1357 // Implicit copy-assignment gets the same special treatment as implicit 1358 // copy-constructors. 1359 emitImplicitAssignmentOperatorBody(Args); 1360 } else if (Body) { 1361 EmitFunctionBody(Body); 1362 } else 1363 llvm_unreachable("no definition for emitted function"); 1364 1365 // C++11 [stmt.return]p2: 1366 // Flowing off the end of a function [...] results in undefined behavior in 1367 // a value-returning function. 1368 // C11 6.9.1p12: 1369 // If the '}' that terminates a function is reached, and the value of the 1370 // function call is used by the caller, the behavior is undefined. 1371 if (getLangOpts().CPlusPlus && !FD->hasImplicitReturnZero() && !SawAsmBlock && 1372 !FD->getReturnType()->isVoidType() && Builder.GetInsertBlock()) { 1373 bool ShouldEmitUnreachable = 1374 CGM.getCodeGenOpts().StrictReturn || 1375 !CGM.MayDropFunctionReturn(FD->getASTContext(), FD->getReturnType()); 1376 if (SanOpts.has(SanitizerKind::Return)) { 1377 SanitizerScope SanScope(this); 1378 llvm::Value *IsFalse = Builder.getFalse(); 1379 EmitCheck(std::make_pair(IsFalse, SanitizerKind::Return), 1380 SanitizerHandler::MissingReturn, 1381 EmitCheckSourceLocation(FD->getLocation()), None); 1382 } else if (ShouldEmitUnreachable) { 1383 if (CGM.getCodeGenOpts().OptimizationLevel == 0) 1384 EmitTrapCall(llvm::Intrinsic::trap); 1385 } 1386 if (SanOpts.has(SanitizerKind::Return) || ShouldEmitUnreachable) { 1387 Builder.CreateUnreachable(); 1388 Builder.ClearInsertionPoint(); 1389 } 1390 } 1391 1392 // Emit the standard function epilogue. 1393 FinishFunction(BodyRange.getEnd()); 1394 1395 // If we haven't marked the function nothrow through other means, do 1396 // a quick pass now to see if we can. 1397 if (!CurFn->doesNotThrow()) 1398 TryMarkNoThrow(CurFn); 1399 } 1400 1401 /// ContainsLabel - Return true if the statement contains a label in it. If 1402 /// this statement is not executed normally, it not containing a label means 1403 /// that we can just remove the code. 1404 bool CodeGenFunction::ContainsLabel(const Stmt *S, bool IgnoreCaseStmts) { 1405 // Null statement, not a label! 1406 if (!S) return false; 1407 1408 // If this is a label, we have to emit the code, consider something like: 1409 // if (0) { ... foo: bar(); } goto foo; 1410 // 1411 // TODO: If anyone cared, we could track __label__'s, since we know that you 1412 // can't jump to one from outside their declared region. 1413 if (isa<LabelStmt>(S)) 1414 return true; 1415 1416 // If this is a case/default statement, and we haven't seen a switch, we have 1417 // to emit the code. 1418 if (isa<SwitchCase>(S) && !IgnoreCaseStmts) 1419 return true; 1420 1421 // If this is a switch statement, we want to ignore cases below it. 1422 if (isa<SwitchStmt>(S)) 1423 IgnoreCaseStmts = true; 1424 1425 // Scan subexpressions for verboten labels. 1426 for (const Stmt *SubStmt : S->children()) 1427 if (ContainsLabel(SubStmt, IgnoreCaseStmts)) 1428 return true; 1429 1430 return false; 1431 } 1432 1433 /// containsBreak - Return true if the statement contains a break out of it. 1434 /// If the statement (recursively) contains a switch or loop with a break 1435 /// inside of it, this is fine. 1436 bool CodeGenFunction::containsBreak(const Stmt *S) { 1437 // Null statement, not a label! 1438 if (!S) return false; 1439 1440 // If this is a switch or loop that defines its own break scope, then we can 1441 // include it and anything inside of it. 1442 if (isa<SwitchStmt>(S) || isa<WhileStmt>(S) || isa<DoStmt>(S) || 1443 isa<ForStmt>(S)) 1444 return false; 1445 1446 if (isa<BreakStmt>(S)) 1447 return true; 1448 1449 // Scan subexpressions for verboten breaks. 1450 for (const Stmt *SubStmt : S->children()) 1451 if (containsBreak(SubStmt)) 1452 return true; 1453 1454 return false; 1455 } 1456 1457 bool CodeGenFunction::mightAddDeclToScope(const Stmt *S) { 1458 if (!S) return false; 1459 1460 // Some statement kinds add a scope and thus never add a decl to the current 1461 // scope. Note, this list is longer than the list of statements that might 1462 // have an unscoped decl nested within them, but this way is conservatively 1463 // correct even if more statement kinds are added. 1464 if (isa<IfStmt>(S) || isa<SwitchStmt>(S) || isa<WhileStmt>(S) || 1465 isa<DoStmt>(S) || isa<ForStmt>(S) || isa<CompoundStmt>(S) || 1466 isa<CXXForRangeStmt>(S) || isa<CXXTryStmt>(S) || 1467 isa<ObjCForCollectionStmt>(S) || isa<ObjCAtTryStmt>(S)) 1468 return false; 1469 1470 if (isa<DeclStmt>(S)) 1471 return true; 1472 1473 for (const Stmt *SubStmt : S->children()) 1474 if (mightAddDeclToScope(SubStmt)) 1475 return true; 1476 1477 return false; 1478 } 1479 1480 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold 1481 /// to a constant, or if it does but contains a label, return false. If it 1482 /// constant folds return true and set the boolean result in Result. 1483 bool CodeGenFunction::ConstantFoldsToSimpleInteger(const Expr *Cond, 1484 bool &ResultBool, 1485 bool AllowLabels) { 1486 llvm::APSInt ResultInt; 1487 if (!ConstantFoldsToSimpleInteger(Cond, ResultInt, AllowLabels)) 1488 return false; 1489 1490 ResultBool = ResultInt.getBoolValue(); 1491 return true; 1492 } 1493 1494 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold 1495 /// to a constant, or if it does but contains a label, return false. If it 1496 /// constant folds return true and set the folded value. 1497 bool CodeGenFunction::ConstantFoldsToSimpleInteger(const Expr *Cond, 1498 llvm::APSInt &ResultInt, 1499 bool AllowLabels) { 1500 // FIXME: Rename and handle conversion of other evaluatable things 1501 // to bool. 1502 Expr::EvalResult Result; 1503 if (!Cond->EvaluateAsInt(Result, getContext())) 1504 return false; // Not foldable, not integer or not fully evaluatable. 1505 1506 llvm::APSInt Int = Result.Val.getInt(); 1507 if (!AllowLabels && CodeGenFunction::ContainsLabel(Cond)) 1508 return false; // Contains a label. 1509 1510 ResultInt = Int; 1511 return true; 1512 } 1513 1514 /// Determine whether the given condition is an instrumentable condition 1515 /// (i.e. no "&&" or "||"). 1516 bool CodeGenFunction::isInstrumentedCondition(const Expr *C) { 1517 // Bypass simplistic logical-NOT operator before determining whether the 1518 // condition contains any other logical operator. 1519 if (const UnaryOperator *UnOp = dyn_cast<UnaryOperator>(C->IgnoreParens())) 1520 if (UnOp->getOpcode() == UO_LNot) 1521 C = UnOp->getSubExpr(); 1522 1523 const BinaryOperator *BOp = dyn_cast<BinaryOperator>(C->IgnoreParens()); 1524 return (!BOp || !BOp->isLogicalOp()); 1525 } 1526 1527 /// EmitBranchToCounterBlock - Emit a conditional branch to a new block that 1528 /// increments a profile counter based on the semantics of the given logical 1529 /// operator opcode. This is used to instrument branch condition coverage for 1530 /// logical operators. 1531 void CodeGenFunction::EmitBranchToCounterBlock( 1532 const Expr *Cond, BinaryOperator::Opcode LOp, llvm::BasicBlock *TrueBlock, 1533 llvm::BasicBlock *FalseBlock, uint64_t TrueCount /* = 0 */, 1534 Stmt::Likelihood LH /* =None */, const Expr *CntrIdx /* = nullptr */) { 1535 // If not instrumenting, just emit a branch. 1536 bool InstrumentRegions = CGM.getCodeGenOpts().hasProfileClangInstr(); 1537 if (!InstrumentRegions || !isInstrumentedCondition(Cond)) 1538 return EmitBranchOnBoolExpr(Cond, TrueBlock, FalseBlock, TrueCount, LH); 1539 1540 llvm::BasicBlock *ThenBlock = NULL; 1541 llvm::BasicBlock *ElseBlock = NULL; 1542 llvm::BasicBlock *NextBlock = NULL; 1543 1544 // Create the block we'll use to increment the appropriate counter. 1545 llvm::BasicBlock *CounterIncrBlock = createBasicBlock("lop.rhscnt"); 1546 1547 // Set block pointers according to Logical-AND (BO_LAnd) semantics. This 1548 // means we need to evaluate the condition and increment the counter on TRUE: 1549 // 1550 // if (Cond) 1551 // goto CounterIncrBlock; 1552 // else 1553 // goto FalseBlock; 1554 // 1555 // CounterIncrBlock: 1556 // Counter++; 1557 // goto TrueBlock; 1558 1559 if (LOp == BO_LAnd) { 1560 ThenBlock = CounterIncrBlock; 1561 ElseBlock = FalseBlock; 1562 NextBlock = TrueBlock; 1563 } 1564 1565 // Set block pointers according to Logical-OR (BO_LOr) semantics. This means 1566 // we need to evaluate the condition and increment the counter on FALSE: 1567 // 1568 // if (Cond) 1569 // goto TrueBlock; 1570 // else 1571 // goto CounterIncrBlock; 1572 // 1573 // CounterIncrBlock: 1574 // Counter++; 1575 // goto FalseBlock; 1576 1577 else if (LOp == BO_LOr) { 1578 ThenBlock = TrueBlock; 1579 ElseBlock = CounterIncrBlock; 1580 NextBlock = FalseBlock; 1581 } else { 1582 llvm_unreachable("Expected Opcode must be that of a Logical Operator"); 1583 } 1584 1585 // Emit Branch based on condition. 1586 EmitBranchOnBoolExpr(Cond, ThenBlock, ElseBlock, TrueCount, LH); 1587 1588 // Emit the block containing the counter increment(s). 1589 EmitBlock(CounterIncrBlock); 1590 1591 // Increment corresponding counter; if index not provided, use Cond as index. 1592 incrementProfileCounter(CntrIdx ? CntrIdx : Cond); 1593 1594 // Go to the next block. 1595 EmitBranch(NextBlock); 1596 } 1597 1598 /// EmitBranchOnBoolExpr - Emit a branch on a boolean condition (e.g. for an if 1599 /// statement) to the specified blocks. Based on the condition, this might try 1600 /// to simplify the codegen of the conditional based on the branch. 1601 /// \param LH The value of the likelihood attribute on the True branch. 1602 void CodeGenFunction::EmitBranchOnBoolExpr(const Expr *Cond, 1603 llvm::BasicBlock *TrueBlock, 1604 llvm::BasicBlock *FalseBlock, 1605 uint64_t TrueCount, 1606 Stmt::Likelihood LH) { 1607 Cond = Cond->IgnoreParens(); 1608 1609 if (const BinaryOperator *CondBOp = dyn_cast<BinaryOperator>(Cond)) { 1610 1611 // Handle X && Y in a condition. 1612 if (CondBOp->getOpcode() == BO_LAnd) { 1613 // If we have "1 && X", simplify the code. "0 && X" would have constant 1614 // folded if the case was simple enough. 1615 bool ConstantBool = false; 1616 if (ConstantFoldsToSimpleInteger(CondBOp->getLHS(), ConstantBool) && 1617 ConstantBool) { 1618 // br(1 && X) -> br(X). 1619 incrementProfileCounter(CondBOp); 1620 return EmitBranchToCounterBlock(CondBOp->getRHS(), BO_LAnd, TrueBlock, 1621 FalseBlock, TrueCount, LH); 1622 } 1623 1624 // If we have "X && 1", simplify the code to use an uncond branch. 1625 // "X && 0" would have been constant folded to 0. 1626 if (ConstantFoldsToSimpleInteger(CondBOp->getRHS(), ConstantBool) && 1627 ConstantBool) { 1628 // br(X && 1) -> br(X). 1629 return EmitBranchToCounterBlock(CondBOp->getLHS(), BO_LAnd, TrueBlock, 1630 FalseBlock, TrueCount, LH, CondBOp); 1631 } 1632 1633 // Emit the LHS as a conditional. If the LHS conditional is false, we 1634 // want to jump to the FalseBlock. 1635 llvm::BasicBlock *LHSTrue = createBasicBlock("land.lhs.true"); 1636 // The counter tells us how often we evaluate RHS, and all of TrueCount 1637 // can be propagated to that branch. 1638 uint64_t RHSCount = getProfileCount(CondBOp->getRHS()); 1639 1640 ConditionalEvaluation eval(*this); 1641 { 1642 ApplyDebugLocation DL(*this, Cond); 1643 // Propagate the likelihood attribute like __builtin_expect 1644 // __builtin_expect(X && Y, 1) -> X and Y are likely 1645 // __builtin_expect(X && Y, 0) -> only Y is unlikely 1646 EmitBranchOnBoolExpr(CondBOp->getLHS(), LHSTrue, FalseBlock, RHSCount, 1647 LH == Stmt::LH_Unlikely ? Stmt::LH_None : LH); 1648 EmitBlock(LHSTrue); 1649 } 1650 1651 incrementProfileCounter(CondBOp); 1652 setCurrentProfileCount(getProfileCount(CondBOp->getRHS())); 1653 1654 // Any temporaries created here are conditional. 1655 eval.begin(*this); 1656 EmitBranchToCounterBlock(CondBOp->getRHS(), BO_LAnd, TrueBlock, 1657 FalseBlock, TrueCount, LH); 1658 eval.end(*this); 1659 1660 return; 1661 } 1662 1663 if (CondBOp->getOpcode() == BO_LOr) { 1664 // If we have "0 || X", simplify the code. "1 || X" would have constant 1665 // folded if the case was simple enough. 1666 bool ConstantBool = false; 1667 if (ConstantFoldsToSimpleInteger(CondBOp->getLHS(), ConstantBool) && 1668 !ConstantBool) { 1669 // br(0 || X) -> br(X). 1670 incrementProfileCounter(CondBOp); 1671 return EmitBranchToCounterBlock(CondBOp->getRHS(), BO_LOr, TrueBlock, 1672 FalseBlock, TrueCount, LH); 1673 } 1674 1675 // If we have "X || 0", simplify the code to use an uncond branch. 1676 // "X || 1" would have been constant folded to 1. 1677 if (ConstantFoldsToSimpleInteger(CondBOp->getRHS(), ConstantBool) && 1678 !ConstantBool) { 1679 // br(X || 0) -> br(X). 1680 return EmitBranchToCounterBlock(CondBOp->getLHS(), BO_LOr, TrueBlock, 1681 FalseBlock, TrueCount, LH, CondBOp); 1682 } 1683 1684 // Emit the LHS as a conditional. If the LHS conditional is true, we 1685 // want to jump to the TrueBlock. 1686 llvm::BasicBlock *LHSFalse = createBasicBlock("lor.lhs.false"); 1687 // We have the count for entry to the RHS and for the whole expression 1688 // being true, so we can divy up True count between the short circuit and 1689 // the RHS. 1690 uint64_t LHSCount = 1691 getCurrentProfileCount() - getProfileCount(CondBOp->getRHS()); 1692 uint64_t RHSCount = TrueCount - LHSCount; 1693 1694 ConditionalEvaluation eval(*this); 1695 { 1696 // Propagate the likelihood attribute like __builtin_expect 1697 // __builtin_expect(X || Y, 1) -> only Y is likely 1698 // __builtin_expect(X || Y, 0) -> both X and Y are unlikely 1699 ApplyDebugLocation DL(*this, Cond); 1700 EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, LHSFalse, LHSCount, 1701 LH == Stmt::LH_Likely ? Stmt::LH_None : LH); 1702 EmitBlock(LHSFalse); 1703 } 1704 1705 incrementProfileCounter(CondBOp); 1706 setCurrentProfileCount(getProfileCount(CondBOp->getRHS())); 1707 1708 // Any temporaries created here are conditional. 1709 eval.begin(*this); 1710 EmitBranchToCounterBlock(CondBOp->getRHS(), BO_LOr, TrueBlock, FalseBlock, 1711 RHSCount, LH); 1712 1713 eval.end(*this); 1714 1715 return; 1716 } 1717 } 1718 1719 if (const UnaryOperator *CondUOp = dyn_cast<UnaryOperator>(Cond)) { 1720 // br(!x, t, f) -> br(x, f, t) 1721 if (CondUOp->getOpcode() == UO_LNot) { 1722 // Negate the count. 1723 uint64_t FalseCount = getCurrentProfileCount() - TrueCount; 1724 // The values of the enum are chosen to make this negation possible. 1725 LH = static_cast<Stmt::Likelihood>(-LH); 1726 // Negate the condition and swap the destination blocks. 1727 return EmitBranchOnBoolExpr(CondUOp->getSubExpr(), FalseBlock, TrueBlock, 1728 FalseCount, LH); 1729 } 1730 } 1731 1732 if (const ConditionalOperator *CondOp = dyn_cast<ConditionalOperator>(Cond)) { 1733 // br(c ? x : y, t, f) -> br(c, br(x, t, f), br(y, t, f)) 1734 llvm::BasicBlock *LHSBlock = createBasicBlock("cond.true"); 1735 llvm::BasicBlock *RHSBlock = createBasicBlock("cond.false"); 1736 1737 // The ConditionalOperator itself has no likelihood information for its 1738 // true and false branches. This matches the behavior of __builtin_expect. 1739 ConditionalEvaluation cond(*this); 1740 EmitBranchOnBoolExpr(CondOp->getCond(), LHSBlock, RHSBlock, 1741 getProfileCount(CondOp), Stmt::LH_None); 1742 1743 // When computing PGO branch weights, we only know the overall count for 1744 // the true block. This code is essentially doing tail duplication of the 1745 // naive code-gen, introducing new edges for which counts are not 1746 // available. Divide the counts proportionally between the LHS and RHS of 1747 // the conditional operator. 1748 uint64_t LHSScaledTrueCount = 0; 1749 if (TrueCount) { 1750 double LHSRatio = 1751 getProfileCount(CondOp) / (double)getCurrentProfileCount(); 1752 LHSScaledTrueCount = TrueCount * LHSRatio; 1753 } 1754 1755 cond.begin(*this); 1756 EmitBlock(LHSBlock); 1757 incrementProfileCounter(CondOp); 1758 { 1759 ApplyDebugLocation DL(*this, Cond); 1760 EmitBranchOnBoolExpr(CondOp->getLHS(), TrueBlock, FalseBlock, 1761 LHSScaledTrueCount, LH); 1762 } 1763 cond.end(*this); 1764 1765 cond.begin(*this); 1766 EmitBlock(RHSBlock); 1767 EmitBranchOnBoolExpr(CondOp->getRHS(), TrueBlock, FalseBlock, 1768 TrueCount - LHSScaledTrueCount, LH); 1769 cond.end(*this); 1770 1771 return; 1772 } 1773 1774 if (const CXXThrowExpr *Throw = dyn_cast<CXXThrowExpr>(Cond)) { 1775 // Conditional operator handling can give us a throw expression as a 1776 // condition for a case like: 1777 // br(c ? throw x : y, t, f) -> br(c, br(throw x, t, f), br(y, t, f) 1778 // Fold this to: 1779 // br(c, throw x, br(y, t, f)) 1780 EmitCXXThrowExpr(Throw, /*KeepInsertionPoint*/false); 1781 return; 1782 } 1783 1784 // Emit the code with the fully general case. 1785 llvm::Value *CondV; 1786 { 1787 ApplyDebugLocation DL(*this, Cond); 1788 CondV = EvaluateExprAsBool(Cond); 1789 } 1790 1791 llvm::MDNode *Weights = nullptr; 1792 llvm::MDNode *Unpredictable = nullptr; 1793 1794 // If the branch has a condition wrapped by __builtin_unpredictable, 1795 // create metadata that specifies that the branch is unpredictable. 1796 // Don't bother if not optimizing because that metadata would not be used. 1797 auto *Call = dyn_cast<CallExpr>(Cond->IgnoreImpCasts()); 1798 if (Call && CGM.getCodeGenOpts().OptimizationLevel != 0) { 1799 auto *FD = dyn_cast_or_null<FunctionDecl>(Call->getCalleeDecl()); 1800 if (FD && FD->getBuiltinID() == Builtin::BI__builtin_unpredictable) { 1801 llvm::MDBuilder MDHelper(getLLVMContext()); 1802 Unpredictable = MDHelper.createUnpredictable(); 1803 } 1804 } 1805 1806 // If there is a Likelihood knowledge for the cond, lower it. 1807 // Note that if not optimizing this won't emit anything. 1808 llvm::Value *NewCondV = emitCondLikelihoodViaExpectIntrinsic(CondV, LH); 1809 if (CondV != NewCondV) 1810 CondV = NewCondV; 1811 else { 1812 // Otherwise, lower profile counts. Note that we do this even at -O0. 1813 uint64_t CurrentCount = std::max(getCurrentProfileCount(), TrueCount); 1814 Weights = createProfileWeights(TrueCount, CurrentCount - TrueCount); 1815 } 1816 1817 Builder.CreateCondBr(CondV, TrueBlock, FalseBlock, Weights, Unpredictable); 1818 } 1819 1820 /// ErrorUnsupported - Print out an error that codegen doesn't support the 1821 /// specified stmt yet. 1822 void CodeGenFunction::ErrorUnsupported(const Stmt *S, const char *Type) { 1823 CGM.ErrorUnsupported(S, Type); 1824 } 1825 1826 /// emitNonZeroVLAInit - Emit the "zero" initialization of a 1827 /// variable-length array whose elements have a non-zero bit-pattern. 1828 /// 1829 /// \param baseType the inner-most element type of the array 1830 /// \param src - a char* pointing to the bit-pattern for a single 1831 /// base element of the array 1832 /// \param sizeInChars - the total size of the VLA, in chars 1833 static void emitNonZeroVLAInit(CodeGenFunction &CGF, QualType baseType, 1834 Address dest, Address src, 1835 llvm::Value *sizeInChars) { 1836 CGBuilderTy &Builder = CGF.Builder; 1837 1838 CharUnits baseSize = CGF.getContext().getTypeSizeInChars(baseType); 1839 llvm::Value *baseSizeInChars 1840 = llvm::ConstantInt::get(CGF.IntPtrTy, baseSize.getQuantity()); 1841 1842 Address begin = 1843 Builder.CreateElementBitCast(dest, CGF.Int8Ty, "vla.begin"); 1844 llvm::Value *end = Builder.CreateInBoundsGEP( 1845 begin.getElementType(), begin.getPointer(), sizeInChars, "vla.end"); 1846 1847 llvm::BasicBlock *originBB = CGF.Builder.GetInsertBlock(); 1848 llvm::BasicBlock *loopBB = CGF.createBasicBlock("vla-init.loop"); 1849 llvm::BasicBlock *contBB = CGF.createBasicBlock("vla-init.cont"); 1850 1851 // Make a loop over the VLA. C99 guarantees that the VLA element 1852 // count must be nonzero. 1853 CGF.EmitBlock(loopBB); 1854 1855 llvm::PHINode *cur = Builder.CreatePHI(begin.getType(), 2, "vla.cur"); 1856 cur->addIncoming(begin.getPointer(), originBB); 1857 1858 CharUnits curAlign = 1859 dest.getAlignment().alignmentOfArrayElement(baseSize); 1860 1861 // memcpy the individual element bit-pattern. 1862 Builder.CreateMemCpy(Address(cur, curAlign), src, baseSizeInChars, 1863 /*volatile*/ false); 1864 1865 // Go to the next element. 1866 llvm::Value *next = 1867 Builder.CreateInBoundsGEP(CGF.Int8Ty, cur, baseSizeInChars, "vla.next"); 1868 1869 // Leave if that's the end of the VLA. 1870 llvm::Value *done = Builder.CreateICmpEQ(next, end, "vla-init.isdone"); 1871 Builder.CreateCondBr(done, contBB, loopBB); 1872 cur->addIncoming(next, loopBB); 1873 1874 CGF.EmitBlock(contBB); 1875 } 1876 1877 void 1878 CodeGenFunction::EmitNullInitialization(Address DestPtr, QualType Ty) { 1879 // Ignore empty classes in C++. 1880 if (getLangOpts().CPlusPlus) { 1881 if (const RecordType *RT = Ty->getAs<RecordType>()) { 1882 if (cast<CXXRecordDecl>(RT->getDecl())->isEmpty()) 1883 return; 1884 } 1885 } 1886 1887 // Cast the dest ptr to the appropriate i8 pointer type. 1888 if (DestPtr.getElementType() != Int8Ty) 1889 DestPtr = Builder.CreateElementBitCast(DestPtr, Int8Ty); 1890 1891 // Get size and alignment info for this aggregate. 1892 CharUnits size = getContext().getTypeSizeInChars(Ty); 1893 1894 llvm::Value *SizeVal; 1895 const VariableArrayType *vla; 1896 1897 // Don't bother emitting a zero-byte memset. 1898 if (size.isZero()) { 1899 // But note that getTypeInfo returns 0 for a VLA. 1900 if (const VariableArrayType *vlaType = 1901 dyn_cast_or_null<VariableArrayType>( 1902 getContext().getAsArrayType(Ty))) { 1903 auto VlaSize = getVLASize(vlaType); 1904 SizeVal = VlaSize.NumElts; 1905 CharUnits eltSize = getContext().getTypeSizeInChars(VlaSize.Type); 1906 if (!eltSize.isOne()) 1907 SizeVal = Builder.CreateNUWMul(SizeVal, CGM.getSize(eltSize)); 1908 vla = vlaType; 1909 } else { 1910 return; 1911 } 1912 } else { 1913 SizeVal = CGM.getSize(size); 1914 vla = nullptr; 1915 } 1916 1917 // If the type contains a pointer to data member we can't memset it to zero. 1918 // Instead, create a null constant and copy it to the destination. 1919 // TODO: there are other patterns besides zero that we can usefully memset, 1920 // like -1, which happens to be the pattern used by member-pointers. 1921 if (!CGM.getTypes().isZeroInitializable(Ty)) { 1922 // For a VLA, emit a single element, then splat that over the VLA. 1923 if (vla) Ty = getContext().getBaseElementType(vla); 1924 1925 llvm::Constant *NullConstant = CGM.EmitNullConstant(Ty); 1926 1927 llvm::GlobalVariable *NullVariable = 1928 new llvm::GlobalVariable(CGM.getModule(), NullConstant->getType(), 1929 /*isConstant=*/true, 1930 llvm::GlobalVariable::PrivateLinkage, 1931 NullConstant, Twine()); 1932 CharUnits NullAlign = DestPtr.getAlignment(); 1933 NullVariable->setAlignment(NullAlign.getAsAlign()); 1934 Address SrcPtr(Builder.CreateBitCast(NullVariable, Builder.getInt8PtrTy()), 1935 NullAlign); 1936 1937 if (vla) return emitNonZeroVLAInit(*this, Ty, DestPtr, SrcPtr, SizeVal); 1938 1939 // Get and call the appropriate llvm.memcpy overload. 1940 Builder.CreateMemCpy(DestPtr, SrcPtr, SizeVal, false); 1941 return; 1942 } 1943 1944 // Otherwise, just memset the whole thing to zero. This is legal 1945 // because in LLVM, all default initializers (other than the ones we just 1946 // handled above) are guaranteed to have a bit pattern of all zeros. 1947 Builder.CreateMemSet(DestPtr, Builder.getInt8(0), SizeVal, false); 1948 } 1949 1950 llvm::BlockAddress *CodeGenFunction::GetAddrOfLabel(const LabelDecl *L) { 1951 // Make sure that there is a block for the indirect goto. 1952 if (!IndirectBranch) 1953 GetIndirectGotoBlock(); 1954 1955 llvm::BasicBlock *BB = getJumpDestForLabel(L).getBlock(); 1956 1957 // Make sure the indirect branch includes all of the address-taken blocks. 1958 IndirectBranch->addDestination(BB); 1959 return llvm::BlockAddress::get(CurFn, BB); 1960 } 1961 1962 llvm::BasicBlock *CodeGenFunction::GetIndirectGotoBlock() { 1963 // If we already made the indirect branch for indirect goto, return its block. 1964 if (IndirectBranch) return IndirectBranch->getParent(); 1965 1966 CGBuilderTy TmpBuilder(*this, createBasicBlock("indirectgoto")); 1967 1968 // Create the PHI node that indirect gotos will add entries to. 1969 llvm::Value *DestVal = TmpBuilder.CreatePHI(Int8PtrTy, 0, 1970 "indirect.goto.dest"); 1971 1972 // Create the indirect branch instruction. 1973 IndirectBranch = TmpBuilder.CreateIndirectBr(DestVal); 1974 return IndirectBranch->getParent(); 1975 } 1976 1977 /// Computes the length of an array in elements, as well as the base 1978 /// element type and a properly-typed first element pointer. 1979 llvm::Value *CodeGenFunction::emitArrayLength(const ArrayType *origArrayType, 1980 QualType &baseType, 1981 Address &addr) { 1982 const ArrayType *arrayType = origArrayType; 1983 1984 // If it's a VLA, we have to load the stored size. Note that 1985 // this is the size of the VLA in bytes, not its size in elements. 1986 llvm::Value *numVLAElements = nullptr; 1987 if (isa<VariableArrayType>(arrayType)) { 1988 numVLAElements = getVLASize(cast<VariableArrayType>(arrayType)).NumElts; 1989 1990 // Walk into all VLAs. This doesn't require changes to addr, 1991 // which has type T* where T is the first non-VLA element type. 1992 do { 1993 QualType elementType = arrayType->getElementType(); 1994 arrayType = getContext().getAsArrayType(elementType); 1995 1996 // If we only have VLA components, 'addr' requires no adjustment. 1997 if (!arrayType) { 1998 baseType = elementType; 1999 return numVLAElements; 2000 } 2001 } while (isa<VariableArrayType>(arrayType)); 2002 2003 // We get out here only if we find a constant array type 2004 // inside the VLA. 2005 } 2006 2007 // We have some number of constant-length arrays, so addr should 2008 // have LLVM type [M x [N x [...]]]*. Build a GEP that walks 2009 // down to the first element of addr. 2010 SmallVector<llvm::Value*, 8> gepIndices; 2011 2012 // GEP down to the array type. 2013 llvm::ConstantInt *zero = Builder.getInt32(0); 2014 gepIndices.push_back(zero); 2015 2016 uint64_t countFromCLAs = 1; 2017 QualType eltType; 2018 2019 llvm::ArrayType *llvmArrayType = 2020 dyn_cast<llvm::ArrayType>(addr.getElementType()); 2021 while (llvmArrayType) { 2022 assert(isa<ConstantArrayType>(arrayType)); 2023 assert(cast<ConstantArrayType>(arrayType)->getSize().getZExtValue() 2024 == llvmArrayType->getNumElements()); 2025 2026 gepIndices.push_back(zero); 2027 countFromCLAs *= llvmArrayType->getNumElements(); 2028 eltType = arrayType->getElementType(); 2029 2030 llvmArrayType = 2031 dyn_cast<llvm::ArrayType>(llvmArrayType->getElementType()); 2032 arrayType = getContext().getAsArrayType(arrayType->getElementType()); 2033 assert((!llvmArrayType || arrayType) && 2034 "LLVM and Clang types are out-of-synch"); 2035 } 2036 2037 if (arrayType) { 2038 // From this point onwards, the Clang array type has been emitted 2039 // as some other type (probably a packed struct). Compute the array 2040 // size, and just emit the 'begin' expression as a bitcast. 2041 while (arrayType) { 2042 countFromCLAs *= 2043 cast<ConstantArrayType>(arrayType)->getSize().getZExtValue(); 2044 eltType = arrayType->getElementType(); 2045 arrayType = getContext().getAsArrayType(eltType); 2046 } 2047 2048 llvm::Type *baseType = ConvertType(eltType); 2049 addr = Builder.CreateElementBitCast(addr, baseType, "array.begin"); 2050 } else { 2051 // Create the actual GEP. 2052 addr = Address(Builder.CreateInBoundsGEP( 2053 addr.getElementType(), addr.getPointer(), gepIndices, "array.begin"), 2054 addr.getAlignment()); 2055 } 2056 2057 baseType = eltType; 2058 2059 llvm::Value *numElements 2060 = llvm::ConstantInt::get(SizeTy, countFromCLAs); 2061 2062 // If we had any VLA dimensions, factor them in. 2063 if (numVLAElements) 2064 numElements = Builder.CreateNUWMul(numVLAElements, numElements); 2065 2066 return numElements; 2067 } 2068 2069 CodeGenFunction::VlaSizePair CodeGenFunction::getVLASize(QualType type) { 2070 const VariableArrayType *vla = getContext().getAsVariableArrayType(type); 2071 assert(vla && "type was not a variable array type!"); 2072 return getVLASize(vla); 2073 } 2074 2075 CodeGenFunction::VlaSizePair 2076 CodeGenFunction::getVLASize(const VariableArrayType *type) { 2077 // The number of elements so far; always size_t. 2078 llvm::Value *numElements = nullptr; 2079 2080 QualType elementType; 2081 do { 2082 elementType = type->getElementType(); 2083 llvm::Value *vlaSize = VLASizeMap[type->getSizeExpr()]; 2084 assert(vlaSize && "no size for VLA!"); 2085 assert(vlaSize->getType() == SizeTy); 2086 2087 if (!numElements) { 2088 numElements = vlaSize; 2089 } else { 2090 // It's undefined behavior if this wraps around, so mark it that way. 2091 // FIXME: Teach -fsanitize=undefined to trap this. 2092 numElements = Builder.CreateNUWMul(numElements, vlaSize); 2093 } 2094 } while ((type = getContext().getAsVariableArrayType(elementType))); 2095 2096 return { numElements, elementType }; 2097 } 2098 2099 CodeGenFunction::VlaSizePair 2100 CodeGenFunction::getVLAElements1D(QualType type) { 2101 const VariableArrayType *vla = getContext().getAsVariableArrayType(type); 2102 assert(vla && "type was not a variable array type!"); 2103 return getVLAElements1D(vla); 2104 } 2105 2106 CodeGenFunction::VlaSizePair 2107 CodeGenFunction::getVLAElements1D(const VariableArrayType *Vla) { 2108 llvm::Value *VlaSize = VLASizeMap[Vla->getSizeExpr()]; 2109 assert(VlaSize && "no size for VLA!"); 2110 assert(VlaSize->getType() == SizeTy); 2111 return { VlaSize, Vla->getElementType() }; 2112 } 2113 2114 void CodeGenFunction::EmitVariablyModifiedType(QualType type) { 2115 assert(type->isVariablyModifiedType() && 2116 "Must pass variably modified type to EmitVLASizes!"); 2117 2118 EnsureInsertPoint(); 2119 2120 // We're going to walk down into the type and look for VLA 2121 // expressions. 2122 do { 2123 assert(type->isVariablyModifiedType()); 2124 2125 const Type *ty = type.getTypePtr(); 2126 switch (ty->getTypeClass()) { 2127 2128 #define TYPE(Class, Base) 2129 #define ABSTRACT_TYPE(Class, Base) 2130 #define NON_CANONICAL_TYPE(Class, Base) 2131 #define DEPENDENT_TYPE(Class, Base) case Type::Class: 2132 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base) 2133 #include "clang/AST/TypeNodes.inc" 2134 llvm_unreachable("unexpected dependent type!"); 2135 2136 // These types are never variably-modified. 2137 case Type::Builtin: 2138 case Type::Complex: 2139 case Type::Vector: 2140 case Type::ExtVector: 2141 case Type::ConstantMatrix: 2142 case Type::Record: 2143 case Type::Enum: 2144 case Type::Elaborated: 2145 case Type::TemplateSpecialization: 2146 case Type::ObjCTypeParam: 2147 case Type::ObjCObject: 2148 case Type::ObjCInterface: 2149 case Type::ObjCObjectPointer: 2150 case Type::ExtInt: 2151 llvm_unreachable("type class is never variably-modified!"); 2152 2153 case Type::Adjusted: 2154 type = cast<AdjustedType>(ty)->getAdjustedType(); 2155 break; 2156 2157 case Type::Decayed: 2158 type = cast<DecayedType>(ty)->getPointeeType(); 2159 break; 2160 2161 case Type::Pointer: 2162 type = cast<PointerType>(ty)->getPointeeType(); 2163 break; 2164 2165 case Type::BlockPointer: 2166 type = cast<BlockPointerType>(ty)->getPointeeType(); 2167 break; 2168 2169 case Type::LValueReference: 2170 case Type::RValueReference: 2171 type = cast<ReferenceType>(ty)->getPointeeType(); 2172 break; 2173 2174 case Type::MemberPointer: 2175 type = cast<MemberPointerType>(ty)->getPointeeType(); 2176 break; 2177 2178 case Type::ConstantArray: 2179 case Type::IncompleteArray: 2180 // Losing element qualification here is fine. 2181 type = cast<ArrayType>(ty)->getElementType(); 2182 break; 2183 2184 case Type::VariableArray: { 2185 // Losing element qualification here is fine. 2186 const VariableArrayType *vat = cast<VariableArrayType>(ty); 2187 2188 // Unknown size indication requires no size computation. 2189 // Otherwise, evaluate and record it. 2190 if (const Expr *size = vat->getSizeExpr()) { 2191 // It's possible that we might have emitted this already, 2192 // e.g. with a typedef and a pointer to it. 2193 llvm::Value *&entry = VLASizeMap[size]; 2194 if (!entry) { 2195 llvm::Value *Size = EmitScalarExpr(size); 2196 2197 // C11 6.7.6.2p5: 2198 // If the size is an expression that is not an integer constant 2199 // expression [...] each time it is evaluated it shall have a value 2200 // greater than zero. 2201 if (SanOpts.has(SanitizerKind::VLABound) && 2202 size->getType()->isSignedIntegerType()) { 2203 SanitizerScope SanScope(this); 2204 llvm::Value *Zero = llvm::Constant::getNullValue(Size->getType()); 2205 llvm::Constant *StaticArgs[] = { 2206 EmitCheckSourceLocation(size->getBeginLoc()), 2207 EmitCheckTypeDescriptor(size->getType())}; 2208 EmitCheck(std::make_pair(Builder.CreateICmpSGT(Size, Zero), 2209 SanitizerKind::VLABound), 2210 SanitizerHandler::VLABoundNotPositive, StaticArgs, Size); 2211 } 2212 2213 // Always zexting here would be wrong if it weren't 2214 // undefined behavior to have a negative bound. 2215 entry = Builder.CreateIntCast(Size, SizeTy, /*signed*/ false); 2216 } 2217 } 2218 type = vat->getElementType(); 2219 break; 2220 } 2221 2222 case Type::FunctionProto: 2223 case Type::FunctionNoProto: 2224 type = cast<FunctionType>(ty)->getReturnType(); 2225 break; 2226 2227 case Type::Paren: 2228 case Type::TypeOf: 2229 case Type::UnaryTransform: 2230 case Type::Attributed: 2231 case Type::SubstTemplateTypeParm: 2232 case Type::MacroQualified: 2233 // Keep walking after single level desugaring. 2234 type = type.getSingleStepDesugaredType(getContext()); 2235 break; 2236 2237 case Type::Typedef: 2238 case Type::Decltype: 2239 case Type::Auto: 2240 case Type::DeducedTemplateSpecialization: 2241 // Stop walking: nothing to do. 2242 return; 2243 2244 case Type::TypeOfExpr: 2245 // Stop walking: emit typeof expression. 2246 EmitIgnoredExpr(cast<TypeOfExprType>(ty)->getUnderlyingExpr()); 2247 return; 2248 2249 case Type::Atomic: 2250 type = cast<AtomicType>(ty)->getValueType(); 2251 break; 2252 2253 case Type::Pipe: 2254 type = cast<PipeType>(ty)->getElementType(); 2255 break; 2256 } 2257 } while (type->isVariablyModifiedType()); 2258 } 2259 2260 Address CodeGenFunction::EmitVAListRef(const Expr* E) { 2261 if (getContext().getBuiltinVaListType()->isArrayType()) 2262 return EmitPointerWithAlignment(E); 2263 return EmitLValue(E).getAddress(*this); 2264 } 2265 2266 Address CodeGenFunction::EmitMSVAListRef(const Expr *E) { 2267 return EmitLValue(E).getAddress(*this); 2268 } 2269 2270 void CodeGenFunction::EmitDeclRefExprDbgValue(const DeclRefExpr *E, 2271 const APValue &Init) { 2272 assert(Init.hasValue() && "Invalid DeclRefExpr initializer!"); 2273 if (CGDebugInfo *Dbg = getDebugInfo()) 2274 if (CGM.getCodeGenOpts().hasReducedDebugInfo()) 2275 Dbg->EmitGlobalVariable(E->getDecl(), Init); 2276 } 2277 2278 CodeGenFunction::PeepholeProtection 2279 CodeGenFunction::protectFromPeepholes(RValue rvalue) { 2280 // At the moment, the only aggressive peephole we do in IR gen 2281 // is trunc(zext) folding, but if we add more, we can easily 2282 // extend this protection. 2283 2284 if (!rvalue.isScalar()) return PeepholeProtection(); 2285 llvm::Value *value = rvalue.getScalarVal(); 2286 if (!isa<llvm::ZExtInst>(value)) return PeepholeProtection(); 2287 2288 // Just make an extra bitcast. 2289 assert(HaveInsertPoint()); 2290 llvm::Instruction *inst = new llvm::BitCastInst(value, value->getType(), "", 2291 Builder.GetInsertBlock()); 2292 2293 PeepholeProtection protection; 2294 protection.Inst = inst; 2295 return protection; 2296 } 2297 2298 void CodeGenFunction::unprotectFromPeepholes(PeepholeProtection protection) { 2299 if (!protection.Inst) return; 2300 2301 // In theory, we could try to duplicate the peepholes now, but whatever. 2302 protection.Inst->eraseFromParent(); 2303 } 2304 2305 void CodeGenFunction::emitAlignmentAssumption(llvm::Value *PtrValue, 2306 QualType Ty, SourceLocation Loc, 2307 SourceLocation AssumptionLoc, 2308 llvm::Value *Alignment, 2309 llvm::Value *OffsetValue) { 2310 if (Alignment->getType() != IntPtrTy) 2311 Alignment = 2312 Builder.CreateIntCast(Alignment, IntPtrTy, false, "casted.align"); 2313 if (OffsetValue && OffsetValue->getType() != IntPtrTy) 2314 OffsetValue = 2315 Builder.CreateIntCast(OffsetValue, IntPtrTy, true, "casted.offset"); 2316 llvm::Value *TheCheck = nullptr; 2317 if (SanOpts.has(SanitizerKind::Alignment)) { 2318 llvm::Value *PtrIntValue = 2319 Builder.CreatePtrToInt(PtrValue, IntPtrTy, "ptrint"); 2320 2321 if (OffsetValue) { 2322 bool IsOffsetZero = false; 2323 if (const auto *CI = dyn_cast<llvm::ConstantInt>(OffsetValue)) 2324 IsOffsetZero = CI->isZero(); 2325 2326 if (!IsOffsetZero) 2327 PtrIntValue = Builder.CreateSub(PtrIntValue, OffsetValue, "offsetptr"); 2328 } 2329 2330 llvm::Value *Zero = llvm::ConstantInt::get(IntPtrTy, 0); 2331 llvm::Value *Mask = 2332 Builder.CreateSub(Alignment, llvm::ConstantInt::get(IntPtrTy, 1)); 2333 llvm::Value *MaskedPtr = Builder.CreateAnd(PtrIntValue, Mask, "maskedptr"); 2334 TheCheck = Builder.CreateICmpEQ(MaskedPtr, Zero, "maskcond"); 2335 } 2336 llvm::Instruction *Assumption = Builder.CreateAlignmentAssumption( 2337 CGM.getDataLayout(), PtrValue, Alignment, OffsetValue); 2338 2339 if (!SanOpts.has(SanitizerKind::Alignment)) 2340 return; 2341 emitAlignmentAssumptionCheck(PtrValue, Ty, Loc, AssumptionLoc, Alignment, 2342 OffsetValue, TheCheck, Assumption); 2343 } 2344 2345 void CodeGenFunction::emitAlignmentAssumption(llvm::Value *PtrValue, 2346 const Expr *E, 2347 SourceLocation AssumptionLoc, 2348 llvm::Value *Alignment, 2349 llvm::Value *OffsetValue) { 2350 if (auto *CE = dyn_cast<CastExpr>(E)) 2351 E = CE->getSubExprAsWritten(); 2352 QualType Ty = E->getType(); 2353 SourceLocation Loc = E->getExprLoc(); 2354 2355 emitAlignmentAssumption(PtrValue, Ty, Loc, AssumptionLoc, Alignment, 2356 OffsetValue); 2357 } 2358 2359 llvm::Value *CodeGenFunction::EmitAnnotationCall(llvm::Function *AnnotationFn, 2360 llvm::Value *AnnotatedVal, 2361 StringRef AnnotationStr, 2362 SourceLocation Location, 2363 const AnnotateAttr *Attr) { 2364 SmallVector<llvm::Value *, 5> Args = { 2365 AnnotatedVal, 2366 Builder.CreateBitCast(CGM.EmitAnnotationString(AnnotationStr), Int8PtrTy), 2367 Builder.CreateBitCast(CGM.EmitAnnotationUnit(Location), Int8PtrTy), 2368 CGM.EmitAnnotationLineNo(Location), 2369 }; 2370 if (Attr) 2371 Args.push_back(CGM.EmitAnnotationArgs(Attr)); 2372 return Builder.CreateCall(AnnotationFn, Args); 2373 } 2374 2375 void CodeGenFunction::EmitVarAnnotations(const VarDecl *D, llvm::Value *V) { 2376 assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute"); 2377 // FIXME We create a new bitcast for every annotation because that's what 2378 // llvm-gcc was doing. 2379 for (const auto *I : D->specific_attrs<AnnotateAttr>()) 2380 EmitAnnotationCall(CGM.getIntrinsic(llvm::Intrinsic::var_annotation), 2381 Builder.CreateBitCast(V, CGM.Int8PtrTy, V->getName()), 2382 I->getAnnotation(), D->getLocation(), I); 2383 } 2384 2385 Address CodeGenFunction::EmitFieldAnnotations(const FieldDecl *D, 2386 Address Addr) { 2387 assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute"); 2388 llvm::Value *V = Addr.getPointer(); 2389 llvm::Type *VTy = V->getType(); 2390 llvm::Function *F = CGM.getIntrinsic(llvm::Intrinsic::ptr_annotation, 2391 CGM.Int8PtrTy); 2392 2393 for (const auto *I : D->specific_attrs<AnnotateAttr>()) { 2394 // FIXME Always emit the cast inst so we can differentiate between 2395 // annotation on the first field of a struct and annotation on the struct 2396 // itself. 2397 if (VTy != CGM.Int8PtrTy) 2398 V = Builder.CreateBitCast(V, CGM.Int8PtrTy); 2399 V = EmitAnnotationCall(F, V, I->getAnnotation(), D->getLocation(), I); 2400 V = Builder.CreateBitCast(V, VTy); 2401 } 2402 2403 return Address(V, Addr.getAlignment()); 2404 } 2405 2406 CodeGenFunction::CGCapturedStmtInfo::~CGCapturedStmtInfo() { } 2407 2408 CodeGenFunction::SanitizerScope::SanitizerScope(CodeGenFunction *CGF) 2409 : CGF(CGF) { 2410 assert(!CGF->IsSanitizerScope); 2411 CGF->IsSanitizerScope = true; 2412 } 2413 2414 CodeGenFunction::SanitizerScope::~SanitizerScope() { 2415 CGF->IsSanitizerScope = false; 2416 } 2417 2418 void CodeGenFunction::InsertHelper(llvm::Instruction *I, 2419 const llvm::Twine &Name, 2420 llvm::BasicBlock *BB, 2421 llvm::BasicBlock::iterator InsertPt) const { 2422 LoopStack.InsertHelper(I); 2423 if (IsSanitizerScope) 2424 CGM.getSanitizerMetadata()->disableSanitizerForInstruction(I); 2425 } 2426 2427 void CGBuilderInserter::InsertHelper( 2428 llvm::Instruction *I, const llvm::Twine &Name, llvm::BasicBlock *BB, 2429 llvm::BasicBlock::iterator InsertPt) const { 2430 llvm::IRBuilderDefaultInserter::InsertHelper(I, Name, BB, InsertPt); 2431 if (CGF) 2432 CGF->InsertHelper(I, Name, BB, InsertPt); 2433 } 2434 2435 // Emits an error if we don't have a valid set of target features for the 2436 // called function. 2437 void CodeGenFunction::checkTargetFeatures(const CallExpr *E, 2438 const FunctionDecl *TargetDecl) { 2439 return checkTargetFeatures(E->getBeginLoc(), TargetDecl); 2440 } 2441 2442 // Emits an error if we don't have a valid set of target features for the 2443 // called function. 2444 void CodeGenFunction::checkTargetFeatures(SourceLocation Loc, 2445 const FunctionDecl *TargetDecl) { 2446 // Early exit if this is an indirect call. 2447 if (!TargetDecl) 2448 return; 2449 2450 // Get the current enclosing function if it exists. If it doesn't 2451 // we can't check the target features anyhow. 2452 const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(CurCodeDecl); 2453 if (!FD) 2454 return; 2455 2456 // Grab the required features for the call. For a builtin this is listed in 2457 // the td file with the default cpu, for an always_inline function this is any 2458 // listed cpu and any listed features. 2459 unsigned BuiltinID = TargetDecl->getBuiltinID(); 2460 std::string MissingFeature; 2461 llvm::StringMap<bool> CallerFeatureMap; 2462 CGM.getContext().getFunctionFeatureMap(CallerFeatureMap, FD); 2463 if (BuiltinID) { 2464 StringRef FeatureList( 2465 CGM.getContext().BuiltinInfo.getRequiredFeatures(BuiltinID)); 2466 // Return if the builtin doesn't have any required features. 2467 if (FeatureList.empty()) 2468 return; 2469 assert(FeatureList.find(' ') == StringRef::npos && 2470 "Space in feature list"); 2471 TargetFeatures TF(CallerFeatureMap); 2472 if (!TF.hasRequiredFeatures(FeatureList)) 2473 CGM.getDiags().Report(Loc, diag::err_builtin_needs_feature) 2474 << TargetDecl->getDeclName() << FeatureList; 2475 } else if (!TargetDecl->isMultiVersion() && 2476 TargetDecl->hasAttr<TargetAttr>()) { 2477 // Get the required features for the callee. 2478 2479 const TargetAttr *TD = TargetDecl->getAttr<TargetAttr>(); 2480 ParsedTargetAttr ParsedAttr = 2481 CGM.getContext().filterFunctionTargetAttrs(TD); 2482 2483 SmallVector<StringRef, 1> ReqFeatures; 2484 llvm::StringMap<bool> CalleeFeatureMap; 2485 CGM.getContext().getFunctionFeatureMap(CalleeFeatureMap, TargetDecl); 2486 2487 for (const auto &F : ParsedAttr.Features) { 2488 if (F[0] == '+' && CalleeFeatureMap.lookup(F.substr(1))) 2489 ReqFeatures.push_back(StringRef(F).substr(1)); 2490 } 2491 2492 for (const auto &F : CalleeFeatureMap) { 2493 // Only positive features are "required". 2494 if (F.getValue()) 2495 ReqFeatures.push_back(F.getKey()); 2496 } 2497 if (!llvm::all_of(ReqFeatures, [&](StringRef Feature) { 2498 if (!CallerFeatureMap.lookup(Feature)) { 2499 MissingFeature = Feature.str(); 2500 return false; 2501 } 2502 return true; 2503 })) 2504 CGM.getDiags().Report(Loc, diag::err_function_needs_feature) 2505 << FD->getDeclName() << TargetDecl->getDeclName() << MissingFeature; 2506 } 2507 } 2508 2509 void CodeGenFunction::EmitSanitizerStatReport(llvm::SanitizerStatKind SSK) { 2510 if (!CGM.getCodeGenOpts().SanitizeStats) 2511 return; 2512 2513 llvm::IRBuilder<> IRB(Builder.GetInsertBlock(), Builder.GetInsertPoint()); 2514 IRB.SetCurrentDebugLocation(Builder.getCurrentDebugLocation()); 2515 CGM.getSanStats().create(IRB, SSK); 2516 } 2517 2518 llvm::Value * 2519 CodeGenFunction::FormResolverCondition(const MultiVersionResolverOption &RO) { 2520 llvm::Value *Condition = nullptr; 2521 2522 if (!RO.Conditions.Architecture.empty()) 2523 Condition = EmitX86CpuIs(RO.Conditions.Architecture); 2524 2525 if (!RO.Conditions.Features.empty()) { 2526 llvm::Value *FeatureCond = EmitX86CpuSupports(RO.Conditions.Features); 2527 Condition = 2528 Condition ? Builder.CreateAnd(Condition, FeatureCond) : FeatureCond; 2529 } 2530 return Condition; 2531 } 2532 2533 static void CreateMultiVersionResolverReturn(CodeGenModule &CGM, 2534 llvm::Function *Resolver, 2535 CGBuilderTy &Builder, 2536 llvm::Function *FuncToReturn, 2537 bool SupportsIFunc) { 2538 if (SupportsIFunc) { 2539 Builder.CreateRet(FuncToReturn); 2540 return; 2541 } 2542 2543 llvm::SmallVector<llvm::Value *, 10> Args; 2544 llvm::for_each(Resolver->args(), 2545 [&](llvm::Argument &Arg) { Args.push_back(&Arg); }); 2546 2547 llvm::CallInst *Result = Builder.CreateCall(FuncToReturn, Args); 2548 Result->setTailCallKind(llvm::CallInst::TCK_MustTail); 2549 2550 if (Resolver->getReturnType()->isVoidTy()) 2551 Builder.CreateRetVoid(); 2552 else 2553 Builder.CreateRet(Result); 2554 } 2555 2556 void CodeGenFunction::EmitMultiVersionResolver( 2557 llvm::Function *Resolver, ArrayRef<MultiVersionResolverOption> Options) { 2558 assert(getContext().getTargetInfo().getTriple().isX86() && 2559 "Only implemented for x86 targets"); 2560 2561 bool SupportsIFunc = getContext().getTargetInfo().supportsIFunc(); 2562 2563 // Main function's basic block. 2564 llvm::BasicBlock *CurBlock = createBasicBlock("resolver_entry", Resolver); 2565 Builder.SetInsertPoint(CurBlock); 2566 EmitX86CpuInit(); 2567 2568 for (const MultiVersionResolverOption &RO : Options) { 2569 Builder.SetInsertPoint(CurBlock); 2570 llvm::Value *Condition = FormResolverCondition(RO); 2571 2572 // The 'default' or 'generic' case. 2573 if (!Condition) { 2574 assert(&RO == Options.end() - 1 && 2575 "Default or Generic case must be last"); 2576 CreateMultiVersionResolverReturn(CGM, Resolver, Builder, RO.Function, 2577 SupportsIFunc); 2578 return; 2579 } 2580 2581 llvm::BasicBlock *RetBlock = createBasicBlock("resolver_return", Resolver); 2582 CGBuilderTy RetBuilder(*this, RetBlock); 2583 CreateMultiVersionResolverReturn(CGM, Resolver, RetBuilder, RO.Function, 2584 SupportsIFunc); 2585 CurBlock = createBasicBlock("resolver_else", Resolver); 2586 Builder.CreateCondBr(Condition, RetBlock, CurBlock); 2587 } 2588 2589 // If no generic/default, emit an unreachable. 2590 Builder.SetInsertPoint(CurBlock); 2591 llvm::CallInst *TrapCall = EmitTrapCall(llvm::Intrinsic::trap); 2592 TrapCall->setDoesNotReturn(); 2593 TrapCall->setDoesNotThrow(); 2594 Builder.CreateUnreachable(); 2595 Builder.ClearInsertionPoint(); 2596 } 2597 2598 // Loc - where the diagnostic will point, where in the source code this 2599 // alignment has failed. 2600 // SecondaryLoc - if present (will be present if sufficiently different from 2601 // Loc), the diagnostic will additionally point a "Note:" to this location. 2602 // It should be the location where the __attribute__((assume_aligned)) 2603 // was written e.g. 2604 void CodeGenFunction::emitAlignmentAssumptionCheck( 2605 llvm::Value *Ptr, QualType Ty, SourceLocation Loc, 2606 SourceLocation SecondaryLoc, llvm::Value *Alignment, 2607 llvm::Value *OffsetValue, llvm::Value *TheCheck, 2608 llvm::Instruction *Assumption) { 2609 assert(Assumption && isa<llvm::CallInst>(Assumption) && 2610 cast<llvm::CallInst>(Assumption)->getCalledOperand() == 2611 llvm::Intrinsic::getDeclaration( 2612 Builder.GetInsertBlock()->getParent()->getParent(), 2613 llvm::Intrinsic::assume) && 2614 "Assumption should be a call to llvm.assume()."); 2615 assert(&(Builder.GetInsertBlock()->back()) == Assumption && 2616 "Assumption should be the last instruction of the basic block, " 2617 "since the basic block is still being generated."); 2618 2619 if (!SanOpts.has(SanitizerKind::Alignment)) 2620 return; 2621 2622 // Don't check pointers to volatile data. The behavior here is implementation- 2623 // defined. 2624 if (Ty->getPointeeType().isVolatileQualified()) 2625 return; 2626 2627 // We need to temorairly remove the assumption so we can insert the 2628 // sanitizer check before it, else the check will be dropped by optimizations. 2629 Assumption->removeFromParent(); 2630 2631 { 2632 SanitizerScope SanScope(this); 2633 2634 if (!OffsetValue) 2635 OffsetValue = Builder.getInt1(0); // no offset. 2636 2637 llvm::Constant *StaticData[] = {EmitCheckSourceLocation(Loc), 2638 EmitCheckSourceLocation(SecondaryLoc), 2639 EmitCheckTypeDescriptor(Ty)}; 2640 llvm::Value *DynamicData[] = {EmitCheckValue(Ptr), 2641 EmitCheckValue(Alignment), 2642 EmitCheckValue(OffsetValue)}; 2643 EmitCheck({std::make_pair(TheCheck, SanitizerKind::Alignment)}, 2644 SanitizerHandler::AlignmentAssumption, StaticData, DynamicData); 2645 } 2646 2647 // We are now in the (new, empty) "cont" basic block. 2648 // Reintroduce the assumption. 2649 Builder.Insert(Assumption); 2650 // FIXME: Assumption still has it's original basic block as it's Parent. 2651 } 2652 2653 llvm::DebugLoc CodeGenFunction::SourceLocToDebugLoc(SourceLocation Location) { 2654 if (CGDebugInfo *DI = getDebugInfo()) 2655 return DI->SourceLocToDebugLoc(Location); 2656 2657 return llvm::DebugLoc(); 2658 } 2659 2660 llvm::Value * 2661 CodeGenFunction::emitCondLikelihoodViaExpectIntrinsic(llvm::Value *Cond, 2662 Stmt::Likelihood LH) { 2663 switch (LH) { 2664 case Stmt::LH_None: 2665 return Cond; 2666 case Stmt::LH_Likely: 2667 case Stmt::LH_Unlikely: 2668 // Don't generate llvm.expect on -O0 as the backend won't use it for 2669 // anything. 2670 if (CGM.getCodeGenOpts().OptimizationLevel == 0) 2671 return Cond; 2672 llvm::Type *CondTy = Cond->getType(); 2673 assert(CondTy->isIntegerTy(1) && "expecting condition to be a boolean"); 2674 llvm::Function *FnExpect = 2675 CGM.getIntrinsic(llvm::Intrinsic::expect, CondTy); 2676 llvm::Value *ExpectedValueOfCond = 2677 llvm::ConstantInt::getBool(CondTy, LH == Stmt::LH_Likely); 2678 return Builder.CreateCall(FnExpect, {Cond, ExpectedValueOfCond}, 2679 Cond->getName() + ".expval"); 2680 } 2681 llvm_unreachable("Unknown Likelihood"); 2682 } 2683