xref: /llvm-project/clang/lib/CodeGen/CodeGenFunction.cpp (revision 397ac44f623f891d8f05d6673a95984ac0a26671)
1 //===--- CodeGenFunction.cpp - Emit LLVM Code from ASTs for a Function ----===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This coordinates the per-function state used while generating code.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "CodeGenFunction.h"
14 #include "CGBlocks.h"
15 #include "CGCUDARuntime.h"
16 #include "CGCXXABI.h"
17 #include "CGCleanup.h"
18 #include "CGDebugInfo.h"
19 #include "CGHLSLRuntime.h"
20 #include "CGOpenMPRuntime.h"
21 #include "CodeGenModule.h"
22 #include "CodeGenPGO.h"
23 #include "TargetInfo.h"
24 #include "clang/AST/ASTContext.h"
25 #include "clang/AST/ASTLambda.h"
26 #include "clang/AST/Attr.h"
27 #include "clang/AST/Decl.h"
28 #include "clang/AST/DeclCXX.h"
29 #include "clang/AST/Expr.h"
30 #include "clang/AST/StmtCXX.h"
31 #include "clang/AST/StmtObjC.h"
32 #include "clang/Basic/Builtins.h"
33 #include "clang/Basic/CodeGenOptions.h"
34 #include "clang/Basic/TargetBuiltins.h"
35 #include "clang/Basic/TargetInfo.h"
36 #include "clang/CodeGen/CGFunctionInfo.h"
37 #include "clang/Frontend/FrontendDiagnostic.h"
38 #include "llvm/ADT/ArrayRef.h"
39 #include "llvm/Frontend/OpenMP/OMPIRBuilder.h"
40 #include "llvm/IR/DataLayout.h"
41 #include "llvm/IR/Dominators.h"
42 #include "llvm/IR/FPEnv.h"
43 #include "llvm/IR/IntrinsicInst.h"
44 #include "llvm/IR/Intrinsics.h"
45 #include "llvm/IR/MDBuilder.h"
46 #include "llvm/Support/CRC.h"
47 #include "llvm/Support/xxhash.h"
48 #include "llvm/Transforms/Scalar/LowerExpectIntrinsic.h"
49 #include "llvm/Transforms/Utils/PromoteMemToReg.h"
50 #include <optional>
51 
52 using namespace clang;
53 using namespace CodeGen;
54 
55 namespace llvm {
56 extern cl::opt<bool> EnableSingleByteCoverage;
57 } // namespace llvm
58 
59 /// shouldEmitLifetimeMarkers - Decide whether we need emit the life-time
60 /// markers.
61 static bool shouldEmitLifetimeMarkers(const CodeGenOptions &CGOpts,
62                                       const LangOptions &LangOpts) {
63   if (CGOpts.DisableLifetimeMarkers)
64     return false;
65 
66   // Sanitizers may use markers.
67   if (CGOpts.SanitizeAddressUseAfterScope ||
68       LangOpts.Sanitize.has(SanitizerKind::HWAddress) ||
69       LangOpts.Sanitize.has(SanitizerKind::Memory))
70     return true;
71 
72   // For now, only in optimized builds.
73   return CGOpts.OptimizationLevel != 0;
74 }
75 
76 CodeGenFunction::CodeGenFunction(CodeGenModule &cgm, bool suppressNewContext)
77     : CodeGenTypeCache(cgm), CGM(cgm), Target(cgm.getTarget()),
78       Builder(cgm, cgm.getModule().getContext(), llvm::ConstantFolder(),
79               CGBuilderInserterTy(this)),
80       SanOpts(CGM.getLangOpts().Sanitize), CurFPFeatures(CGM.getLangOpts()),
81       DebugInfo(CGM.getModuleDebugInfo()), PGO(cgm),
82       ShouldEmitLifetimeMarkers(
83           shouldEmitLifetimeMarkers(CGM.getCodeGenOpts(), CGM.getLangOpts())) {
84   if (!suppressNewContext)
85     CGM.getCXXABI().getMangleContext().startNewFunction();
86   EHStack.setCGF(this);
87 
88   SetFastMathFlags(CurFPFeatures);
89 }
90 
91 CodeGenFunction::~CodeGenFunction() {
92   assert(LifetimeExtendedCleanupStack.empty() && "failed to emit a cleanup");
93   assert(DeferredDeactivationCleanupStack.empty() &&
94          "missed to deactivate a cleanup");
95 
96   if (getLangOpts().OpenMP && CurFn)
97     CGM.getOpenMPRuntime().functionFinished(*this);
98 
99   // If we have an OpenMPIRBuilder we want to finalize functions (incl.
100   // outlining etc) at some point. Doing it once the function codegen is done
101   // seems to be a reasonable spot. We do it here, as opposed to the deletion
102   // time of the CodeGenModule, because we have to ensure the IR has not yet
103   // been "emitted" to the outside, thus, modifications are still sensible.
104   if (CGM.getLangOpts().OpenMPIRBuilder && CurFn)
105     CGM.getOpenMPRuntime().getOMPBuilder().finalize(CurFn);
106 }
107 
108 // Map the LangOption for exception behavior into
109 // the corresponding enum in the IR.
110 llvm::fp::ExceptionBehavior
111 clang::ToConstrainedExceptMD(LangOptions::FPExceptionModeKind Kind) {
112 
113   switch (Kind) {
114   case LangOptions::FPE_Ignore:  return llvm::fp::ebIgnore;
115   case LangOptions::FPE_MayTrap: return llvm::fp::ebMayTrap;
116   case LangOptions::FPE_Strict:  return llvm::fp::ebStrict;
117   default:
118     llvm_unreachable("Unsupported FP Exception Behavior");
119   }
120 }
121 
122 void CodeGenFunction::SetFastMathFlags(FPOptions FPFeatures) {
123   llvm::FastMathFlags FMF;
124   FMF.setAllowReassoc(FPFeatures.getAllowFPReassociate());
125   FMF.setNoNaNs(FPFeatures.getNoHonorNaNs());
126   FMF.setNoInfs(FPFeatures.getNoHonorInfs());
127   FMF.setNoSignedZeros(FPFeatures.getNoSignedZero());
128   FMF.setAllowReciprocal(FPFeatures.getAllowReciprocal());
129   FMF.setApproxFunc(FPFeatures.getAllowApproxFunc());
130   FMF.setAllowContract(FPFeatures.allowFPContractAcrossStatement());
131   Builder.setFastMathFlags(FMF);
132 }
133 
134 CodeGenFunction::CGFPOptionsRAII::CGFPOptionsRAII(CodeGenFunction &CGF,
135                                                   const Expr *E)
136     : CGF(CGF) {
137   ConstructorHelper(E->getFPFeaturesInEffect(CGF.getLangOpts()));
138 }
139 
140 CodeGenFunction::CGFPOptionsRAII::CGFPOptionsRAII(CodeGenFunction &CGF,
141                                                   FPOptions FPFeatures)
142     : CGF(CGF) {
143   ConstructorHelper(FPFeatures);
144 }
145 
146 void CodeGenFunction::CGFPOptionsRAII::ConstructorHelper(FPOptions FPFeatures) {
147   OldFPFeatures = CGF.CurFPFeatures;
148   CGF.CurFPFeatures = FPFeatures;
149 
150   OldExcept = CGF.Builder.getDefaultConstrainedExcept();
151   OldRounding = CGF.Builder.getDefaultConstrainedRounding();
152 
153   if (OldFPFeatures == FPFeatures)
154     return;
155 
156   FMFGuard.emplace(CGF.Builder);
157 
158   llvm::RoundingMode NewRoundingBehavior = FPFeatures.getRoundingMode();
159   CGF.Builder.setDefaultConstrainedRounding(NewRoundingBehavior);
160   auto NewExceptionBehavior =
161       ToConstrainedExceptMD(static_cast<LangOptions::FPExceptionModeKind>(
162           FPFeatures.getExceptionMode()));
163   CGF.Builder.setDefaultConstrainedExcept(NewExceptionBehavior);
164 
165   CGF.SetFastMathFlags(FPFeatures);
166 
167   assert((CGF.CurFuncDecl == nullptr || CGF.Builder.getIsFPConstrained() ||
168           isa<CXXConstructorDecl>(CGF.CurFuncDecl) ||
169           isa<CXXDestructorDecl>(CGF.CurFuncDecl) ||
170           (NewExceptionBehavior == llvm::fp::ebIgnore &&
171            NewRoundingBehavior == llvm::RoundingMode::NearestTiesToEven)) &&
172          "FPConstrained should be enabled on entire function");
173 
174   auto mergeFnAttrValue = [&](StringRef Name, bool Value) {
175     auto OldValue =
176         CGF.CurFn->getFnAttribute(Name).getValueAsBool();
177     auto NewValue = OldValue & Value;
178     if (OldValue != NewValue)
179       CGF.CurFn->addFnAttr(Name, llvm::toStringRef(NewValue));
180   };
181   mergeFnAttrValue("no-infs-fp-math", FPFeatures.getNoHonorInfs());
182   mergeFnAttrValue("no-nans-fp-math", FPFeatures.getNoHonorNaNs());
183   mergeFnAttrValue("no-signed-zeros-fp-math", FPFeatures.getNoSignedZero());
184   mergeFnAttrValue(
185       "unsafe-fp-math",
186       FPFeatures.getAllowFPReassociate() && FPFeatures.getAllowReciprocal() &&
187           FPFeatures.getAllowApproxFunc() && FPFeatures.getNoSignedZero() &&
188           FPFeatures.allowFPContractAcrossStatement());
189 }
190 
191 CodeGenFunction::CGFPOptionsRAII::~CGFPOptionsRAII() {
192   CGF.CurFPFeatures = OldFPFeatures;
193   CGF.Builder.setDefaultConstrainedExcept(OldExcept);
194   CGF.Builder.setDefaultConstrainedRounding(OldRounding);
195 }
196 
197 static LValue
198 makeNaturalAlignAddrLValue(llvm::Value *V, QualType T, bool ForPointeeType,
199                            bool MightBeSigned, CodeGenFunction &CGF,
200                            KnownNonNull_t IsKnownNonNull = NotKnownNonNull) {
201   LValueBaseInfo BaseInfo;
202   TBAAAccessInfo TBAAInfo;
203   CharUnits Alignment =
204       CGF.CGM.getNaturalTypeAlignment(T, &BaseInfo, &TBAAInfo, ForPointeeType);
205   Address Addr =
206       MightBeSigned
207           ? CGF.makeNaturalAddressForPointer(V, T, Alignment, false, nullptr,
208                                              nullptr, IsKnownNonNull)
209           : Address(V, CGF.ConvertTypeForMem(T), Alignment, IsKnownNonNull);
210   return CGF.MakeAddrLValue(Addr, T, BaseInfo, TBAAInfo);
211 }
212 
213 LValue
214 CodeGenFunction::MakeNaturalAlignAddrLValue(llvm::Value *V, QualType T,
215                                             KnownNonNull_t IsKnownNonNull) {
216   return ::makeNaturalAlignAddrLValue(V, T, /*ForPointeeType*/ false,
217                                       /*MightBeSigned*/ true, *this,
218                                       IsKnownNonNull);
219 }
220 
221 LValue
222 CodeGenFunction::MakeNaturalAlignPointeeAddrLValue(llvm::Value *V, QualType T) {
223   return ::makeNaturalAlignAddrLValue(V, T, /*ForPointeeType*/ true,
224                                       /*MightBeSigned*/ true, *this);
225 }
226 
227 LValue CodeGenFunction::MakeNaturalAlignRawAddrLValue(llvm::Value *V,
228                                                       QualType T) {
229   return ::makeNaturalAlignAddrLValue(V, T, /*ForPointeeType*/ false,
230                                       /*MightBeSigned*/ false, *this);
231 }
232 
233 LValue CodeGenFunction::MakeNaturalAlignPointeeRawAddrLValue(llvm::Value *V,
234                                                              QualType T) {
235   return ::makeNaturalAlignAddrLValue(V, T, /*ForPointeeType*/ true,
236                                       /*MightBeSigned*/ false, *this);
237 }
238 
239 llvm::Type *CodeGenFunction::ConvertTypeForMem(QualType T) {
240   return CGM.getTypes().ConvertTypeForMem(T);
241 }
242 
243 llvm::Type *CodeGenFunction::ConvertType(QualType T) {
244   return CGM.getTypes().ConvertType(T);
245 }
246 
247 llvm::Type *CodeGenFunction::convertTypeForLoadStore(QualType ASTTy,
248                                                      llvm::Type *LLVMTy) {
249   return CGM.getTypes().convertTypeForLoadStore(ASTTy, LLVMTy);
250 }
251 
252 TypeEvaluationKind CodeGenFunction::getEvaluationKind(QualType type) {
253   type = type.getCanonicalType();
254   while (true) {
255     switch (type->getTypeClass()) {
256 #define TYPE(name, parent)
257 #define ABSTRACT_TYPE(name, parent)
258 #define NON_CANONICAL_TYPE(name, parent) case Type::name:
259 #define DEPENDENT_TYPE(name, parent) case Type::name:
260 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(name, parent) case Type::name:
261 #include "clang/AST/TypeNodes.inc"
262       llvm_unreachable("non-canonical or dependent type in IR-generation");
263 
264     case Type::Auto:
265     case Type::DeducedTemplateSpecialization:
266       llvm_unreachable("undeduced type in IR-generation");
267 
268     // Various scalar types.
269     case Type::Builtin:
270     case Type::Pointer:
271     case Type::BlockPointer:
272     case Type::LValueReference:
273     case Type::RValueReference:
274     case Type::MemberPointer:
275     case Type::Vector:
276     case Type::ExtVector:
277     case Type::ConstantMatrix:
278     case Type::FunctionProto:
279     case Type::FunctionNoProto:
280     case Type::Enum:
281     case Type::ObjCObjectPointer:
282     case Type::Pipe:
283     case Type::BitInt:
284     case Type::HLSLAttributedResource:
285       return TEK_Scalar;
286 
287     // Complexes.
288     case Type::Complex:
289       return TEK_Complex;
290 
291     // Arrays, records, and Objective-C objects.
292     case Type::ConstantArray:
293     case Type::IncompleteArray:
294     case Type::VariableArray:
295     case Type::Record:
296     case Type::ObjCObject:
297     case Type::ObjCInterface:
298     case Type::ArrayParameter:
299       return TEK_Aggregate;
300 
301     // We operate on atomic values according to their underlying type.
302     case Type::Atomic:
303       type = cast<AtomicType>(type)->getValueType();
304       continue;
305     }
306     llvm_unreachable("unknown type kind!");
307   }
308 }
309 
310 llvm::DebugLoc CodeGenFunction::EmitReturnBlock() {
311   // For cleanliness, we try to avoid emitting the return block for
312   // simple cases.
313   llvm::BasicBlock *CurBB = Builder.GetInsertBlock();
314 
315   if (CurBB) {
316     assert(!CurBB->getTerminator() && "Unexpected terminated block.");
317 
318     // We have a valid insert point, reuse it if it is empty or there are no
319     // explicit jumps to the return block.
320     if (CurBB->empty() || ReturnBlock.getBlock()->use_empty()) {
321       ReturnBlock.getBlock()->replaceAllUsesWith(CurBB);
322       delete ReturnBlock.getBlock();
323       ReturnBlock = JumpDest();
324     } else
325       EmitBlock(ReturnBlock.getBlock());
326     return llvm::DebugLoc();
327   }
328 
329   // Otherwise, if the return block is the target of a single direct
330   // branch then we can just put the code in that block instead. This
331   // cleans up functions which started with a unified return block.
332   if (ReturnBlock.getBlock()->hasOneUse()) {
333     llvm::BranchInst *BI =
334       dyn_cast<llvm::BranchInst>(*ReturnBlock.getBlock()->user_begin());
335     if (BI && BI->isUnconditional() &&
336         BI->getSuccessor(0) == ReturnBlock.getBlock()) {
337       // Record/return the DebugLoc of the simple 'return' expression to be used
338       // later by the actual 'ret' instruction.
339       llvm::DebugLoc Loc = BI->getDebugLoc();
340       Builder.SetInsertPoint(BI->getParent());
341       BI->eraseFromParent();
342       delete ReturnBlock.getBlock();
343       ReturnBlock = JumpDest();
344       return Loc;
345     }
346   }
347 
348   // FIXME: We are at an unreachable point, there is no reason to emit the block
349   // unless it has uses. However, we still need a place to put the debug
350   // region.end for now.
351 
352   EmitBlock(ReturnBlock.getBlock());
353   return llvm::DebugLoc();
354 }
355 
356 static void EmitIfUsed(CodeGenFunction &CGF, llvm::BasicBlock *BB) {
357   if (!BB) return;
358   if (!BB->use_empty()) {
359     CGF.CurFn->insert(CGF.CurFn->end(), BB);
360     return;
361   }
362   delete BB;
363 }
364 
365 void CodeGenFunction::FinishFunction(SourceLocation EndLoc) {
366   assert(BreakContinueStack.empty() &&
367          "mismatched push/pop in break/continue stack!");
368   assert(LifetimeExtendedCleanupStack.empty() &&
369          "mismatched push/pop of cleanups in EHStack!");
370   assert(DeferredDeactivationCleanupStack.empty() &&
371          "mismatched activate/deactivate of cleanups!");
372 
373   if (CGM.shouldEmitConvergenceTokens()) {
374     ConvergenceTokenStack.pop_back();
375     assert(ConvergenceTokenStack.empty() &&
376            "mismatched push/pop in convergence stack!");
377   }
378 
379   bool OnlySimpleReturnStmts = NumSimpleReturnExprs > 0
380     && NumSimpleReturnExprs == NumReturnExprs
381     && ReturnBlock.getBlock()->use_empty();
382   // Usually the return expression is evaluated before the cleanup
383   // code.  If the function contains only a simple return statement,
384   // such as a constant, the location before the cleanup code becomes
385   // the last useful breakpoint in the function, because the simple
386   // return expression will be evaluated after the cleanup code. To be
387   // safe, set the debug location for cleanup code to the location of
388   // the return statement.  Otherwise the cleanup code should be at the
389   // end of the function's lexical scope.
390   //
391   // If there are multiple branches to the return block, the branch
392   // instructions will get the location of the return statements and
393   // all will be fine.
394   if (CGDebugInfo *DI = getDebugInfo()) {
395     if (OnlySimpleReturnStmts)
396       DI->EmitLocation(Builder, LastStopPoint);
397     else
398       DI->EmitLocation(Builder, EndLoc);
399   }
400 
401   // Pop any cleanups that might have been associated with the
402   // parameters.  Do this in whatever block we're currently in; it's
403   // important to do this before we enter the return block or return
404   // edges will be *really* confused.
405   bool HasCleanups = EHStack.stable_begin() != PrologueCleanupDepth;
406   bool HasOnlyLifetimeMarkers =
407       HasCleanups && EHStack.containsOnlyLifetimeMarkers(PrologueCleanupDepth);
408   bool EmitRetDbgLoc = !HasCleanups || HasOnlyLifetimeMarkers;
409 
410   std::optional<ApplyDebugLocation> OAL;
411   if (HasCleanups) {
412     // Make sure the line table doesn't jump back into the body for
413     // the ret after it's been at EndLoc.
414     if (CGDebugInfo *DI = getDebugInfo()) {
415       if (OnlySimpleReturnStmts)
416         DI->EmitLocation(Builder, EndLoc);
417       else
418         // We may not have a valid end location. Try to apply it anyway, and
419         // fall back to an artificial location if needed.
420         OAL = ApplyDebugLocation::CreateDefaultArtificial(*this, EndLoc);
421     }
422 
423     PopCleanupBlocks(PrologueCleanupDepth);
424   }
425 
426   // Emit function epilog (to return).
427   llvm::DebugLoc Loc = EmitReturnBlock();
428 
429   if (ShouldInstrumentFunction()) {
430     if (CGM.getCodeGenOpts().InstrumentFunctions)
431       CurFn->addFnAttr("instrument-function-exit", "__cyg_profile_func_exit");
432     if (CGM.getCodeGenOpts().InstrumentFunctionsAfterInlining)
433       CurFn->addFnAttr("instrument-function-exit-inlined",
434                        "__cyg_profile_func_exit");
435   }
436 
437   // Emit debug descriptor for function end.
438   if (CGDebugInfo *DI = getDebugInfo())
439     DI->EmitFunctionEnd(Builder, CurFn);
440 
441   // Reset the debug location to that of the simple 'return' expression, if any
442   // rather than that of the end of the function's scope '}'.
443   ApplyDebugLocation AL(*this, Loc);
444   EmitFunctionEpilog(*CurFnInfo, EmitRetDbgLoc, EndLoc);
445   EmitEndEHSpec(CurCodeDecl);
446 
447   assert(EHStack.empty() &&
448          "did not remove all scopes from cleanup stack!");
449 
450   // If someone did an indirect goto, emit the indirect goto block at the end of
451   // the function.
452   if (IndirectBranch) {
453     EmitBlock(IndirectBranch->getParent());
454     Builder.ClearInsertionPoint();
455   }
456 
457   // If some of our locals escaped, insert a call to llvm.localescape in the
458   // entry block.
459   if (!EscapedLocals.empty()) {
460     // Invert the map from local to index into a simple vector. There should be
461     // no holes.
462     SmallVector<llvm::Value *, 4> EscapeArgs;
463     EscapeArgs.resize(EscapedLocals.size());
464     for (auto &Pair : EscapedLocals)
465       EscapeArgs[Pair.second] = Pair.first;
466     llvm::Function *FrameEscapeFn = llvm::Intrinsic::getOrInsertDeclaration(
467         &CGM.getModule(), llvm::Intrinsic::localescape);
468     CGBuilderTy(*this, AllocaInsertPt).CreateCall(FrameEscapeFn, EscapeArgs);
469   }
470 
471   // Remove the AllocaInsertPt instruction, which is just a convenience for us.
472   llvm::Instruction *Ptr = AllocaInsertPt;
473   AllocaInsertPt = nullptr;
474   Ptr->eraseFromParent();
475 
476   // PostAllocaInsertPt, if created, was lazily created when it was required,
477   // remove it now since it was just created for our own convenience.
478   if (PostAllocaInsertPt) {
479     llvm::Instruction *PostPtr = PostAllocaInsertPt;
480     PostAllocaInsertPt = nullptr;
481     PostPtr->eraseFromParent();
482   }
483 
484   // If someone took the address of a label but never did an indirect goto, we
485   // made a zero entry PHI node, which is illegal, zap it now.
486   if (IndirectBranch) {
487     llvm::PHINode *PN = cast<llvm::PHINode>(IndirectBranch->getAddress());
488     if (PN->getNumIncomingValues() == 0) {
489       PN->replaceAllUsesWith(llvm::PoisonValue::get(PN->getType()));
490       PN->eraseFromParent();
491     }
492   }
493 
494   EmitIfUsed(*this, EHResumeBlock);
495   EmitIfUsed(*this, TerminateLandingPad);
496   EmitIfUsed(*this, TerminateHandler);
497   EmitIfUsed(*this, UnreachableBlock);
498 
499   for (const auto &FuncletAndParent : TerminateFunclets)
500     EmitIfUsed(*this, FuncletAndParent.second);
501 
502   if (CGM.getCodeGenOpts().EmitDeclMetadata)
503     EmitDeclMetadata();
504 
505   for (const auto &R : DeferredReplacements) {
506     if (llvm::Value *Old = R.first) {
507       Old->replaceAllUsesWith(R.second);
508       cast<llvm::Instruction>(Old)->eraseFromParent();
509     }
510   }
511   DeferredReplacements.clear();
512 
513   // Eliminate CleanupDestSlot alloca by replacing it with SSA values and
514   // PHIs if the current function is a coroutine. We don't do it for all
515   // functions as it may result in slight increase in numbers of instructions
516   // if compiled with no optimizations. We do it for coroutine as the lifetime
517   // of CleanupDestSlot alloca make correct coroutine frame building very
518   // difficult.
519   if (NormalCleanupDest.isValid() && isCoroutine()) {
520     llvm::DominatorTree DT(*CurFn);
521     llvm::PromoteMemToReg(
522         cast<llvm::AllocaInst>(NormalCleanupDest.getPointer()), DT);
523     NormalCleanupDest = Address::invalid();
524   }
525 
526   // Scan function arguments for vector width.
527   for (llvm::Argument &A : CurFn->args())
528     if (auto *VT = dyn_cast<llvm::VectorType>(A.getType()))
529       LargestVectorWidth =
530           std::max((uint64_t)LargestVectorWidth,
531                    VT->getPrimitiveSizeInBits().getKnownMinValue());
532 
533   // Update vector width based on return type.
534   if (auto *VT = dyn_cast<llvm::VectorType>(CurFn->getReturnType()))
535     LargestVectorWidth =
536         std::max((uint64_t)LargestVectorWidth,
537                  VT->getPrimitiveSizeInBits().getKnownMinValue());
538 
539   if (CurFnInfo->getMaxVectorWidth() > LargestVectorWidth)
540     LargestVectorWidth = CurFnInfo->getMaxVectorWidth();
541 
542   // Add the min-legal-vector-width attribute. This contains the max width from:
543   // 1. min-vector-width attribute used in the source program.
544   // 2. Any builtins used that have a vector width specified.
545   // 3. Values passed in and out of inline assembly.
546   // 4. Width of vector arguments and return types for this function.
547   // 5. Width of vector arguments and return types for functions called by this
548   //    function.
549   if (getContext().getTargetInfo().getTriple().isX86())
550     CurFn->addFnAttr("min-legal-vector-width",
551                      llvm::utostr(LargestVectorWidth));
552 
553   // Add vscale_range attribute if appropriate.
554   std::optional<std::pair<unsigned, unsigned>> VScaleRange =
555       getContext().getTargetInfo().getVScaleRange(getLangOpts());
556   if (VScaleRange) {
557     CurFn->addFnAttr(llvm::Attribute::getWithVScaleRangeArgs(
558         getLLVMContext(), VScaleRange->first, VScaleRange->second));
559   }
560 
561   // If we generated an unreachable return block, delete it now.
562   if (ReturnBlock.isValid() && ReturnBlock.getBlock()->use_empty()) {
563     Builder.ClearInsertionPoint();
564     ReturnBlock.getBlock()->eraseFromParent();
565   }
566   if (ReturnValue.isValid()) {
567     auto *RetAlloca =
568         dyn_cast<llvm::AllocaInst>(ReturnValue.emitRawPointer(*this));
569     if (RetAlloca && RetAlloca->use_empty()) {
570       RetAlloca->eraseFromParent();
571       ReturnValue = Address::invalid();
572     }
573   }
574 }
575 
576 /// ShouldInstrumentFunction - Return true if the current function should be
577 /// instrumented with __cyg_profile_func_* calls
578 bool CodeGenFunction::ShouldInstrumentFunction() {
579   if (!CGM.getCodeGenOpts().InstrumentFunctions &&
580       !CGM.getCodeGenOpts().InstrumentFunctionsAfterInlining &&
581       !CGM.getCodeGenOpts().InstrumentFunctionEntryBare)
582     return false;
583   if (!CurFuncDecl || CurFuncDecl->hasAttr<NoInstrumentFunctionAttr>())
584     return false;
585   return true;
586 }
587 
588 bool CodeGenFunction::ShouldSkipSanitizerInstrumentation() {
589   if (!CurFuncDecl)
590     return false;
591   return CurFuncDecl->hasAttr<DisableSanitizerInstrumentationAttr>();
592 }
593 
594 /// ShouldXRayInstrument - Return true if the current function should be
595 /// instrumented with XRay nop sleds.
596 bool CodeGenFunction::ShouldXRayInstrumentFunction() const {
597   return CGM.getCodeGenOpts().XRayInstrumentFunctions;
598 }
599 
600 /// AlwaysEmitXRayCustomEvents - Return true if we should emit IR for calls to
601 /// the __xray_customevent(...) builtin calls, when doing XRay instrumentation.
602 bool CodeGenFunction::AlwaysEmitXRayCustomEvents() const {
603   return CGM.getCodeGenOpts().XRayInstrumentFunctions &&
604          (CGM.getCodeGenOpts().XRayAlwaysEmitCustomEvents ||
605           CGM.getCodeGenOpts().XRayInstrumentationBundle.Mask ==
606               XRayInstrKind::Custom);
607 }
608 
609 bool CodeGenFunction::AlwaysEmitXRayTypedEvents() const {
610   return CGM.getCodeGenOpts().XRayInstrumentFunctions &&
611          (CGM.getCodeGenOpts().XRayAlwaysEmitTypedEvents ||
612           CGM.getCodeGenOpts().XRayInstrumentationBundle.Mask ==
613               XRayInstrKind::Typed);
614 }
615 
616 llvm::ConstantInt *
617 CodeGenFunction::getUBSanFunctionTypeHash(QualType Ty) const {
618   // Remove any (C++17) exception specifications, to allow calling e.g. a
619   // noexcept function through a non-noexcept pointer.
620   if (!Ty->isFunctionNoProtoType())
621     Ty = getContext().getFunctionTypeWithExceptionSpec(Ty, EST_None);
622   std::string Mangled;
623   llvm::raw_string_ostream Out(Mangled);
624   CGM.getCXXABI().getMangleContext().mangleCanonicalTypeName(Ty, Out, false);
625   return llvm::ConstantInt::get(
626       CGM.Int32Ty, static_cast<uint32_t>(llvm::xxh3_64bits(Mangled)));
627 }
628 
629 void CodeGenFunction::EmitKernelMetadata(const FunctionDecl *FD,
630                                          llvm::Function *Fn) {
631   if (!FD->hasAttr<OpenCLKernelAttr>() && !FD->hasAttr<CUDAGlobalAttr>())
632     return;
633 
634   llvm::LLVMContext &Context = getLLVMContext();
635 
636   CGM.GenKernelArgMetadata(Fn, FD, this);
637 
638   if (!(getLangOpts().OpenCL ||
639         (getLangOpts().CUDA &&
640          getContext().getTargetInfo().getTriple().isSPIRV())))
641     return;
642 
643   if (const VecTypeHintAttr *A = FD->getAttr<VecTypeHintAttr>()) {
644     QualType HintQTy = A->getTypeHint();
645     const ExtVectorType *HintEltQTy = HintQTy->getAs<ExtVectorType>();
646     bool IsSignedInteger =
647         HintQTy->isSignedIntegerType() ||
648         (HintEltQTy && HintEltQTy->getElementType()->isSignedIntegerType());
649     llvm::Metadata *AttrMDArgs[] = {
650         llvm::ConstantAsMetadata::get(llvm::UndefValue::get(
651             CGM.getTypes().ConvertType(A->getTypeHint()))),
652         llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
653             llvm::IntegerType::get(Context, 32),
654             llvm::APInt(32, (uint64_t)(IsSignedInteger ? 1 : 0))))};
655     Fn->setMetadata("vec_type_hint", llvm::MDNode::get(Context, AttrMDArgs));
656   }
657 
658   if (const WorkGroupSizeHintAttr *A = FD->getAttr<WorkGroupSizeHintAttr>()) {
659     llvm::Metadata *AttrMDArgs[] = {
660         llvm::ConstantAsMetadata::get(Builder.getInt32(A->getXDim())),
661         llvm::ConstantAsMetadata::get(Builder.getInt32(A->getYDim())),
662         llvm::ConstantAsMetadata::get(Builder.getInt32(A->getZDim()))};
663     Fn->setMetadata("work_group_size_hint", llvm::MDNode::get(Context, AttrMDArgs));
664   }
665 
666   if (const ReqdWorkGroupSizeAttr *A = FD->getAttr<ReqdWorkGroupSizeAttr>()) {
667     llvm::Metadata *AttrMDArgs[] = {
668         llvm::ConstantAsMetadata::get(Builder.getInt32(A->getXDim())),
669         llvm::ConstantAsMetadata::get(Builder.getInt32(A->getYDim())),
670         llvm::ConstantAsMetadata::get(Builder.getInt32(A->getZDim()))};
671     Fn->setMetadata("reqd_work_group_size", llvm::MDNode::get(Context, AttrMDArgs));
672   }
673 
674   if (const OpenCLIntelReqdSubGroupSizeAttr *A =
675           FD->getAttr<OpenCLIntelReqdSubGroupSizeAttr>()) {
676     llvm::Metadata *AttrMDArgs[] = {
677         llvm::ConstantAsMetadata::get(Builder.getInt32(A->getSubGroupSize()))};
678     Fn->setMetadata("intel_reqd_sub_group_size",
679                     llvm::MDNode::get(Context, AttrMDArgs));
680   }
681 }
682 
683 /// Determine whether the function F ends with a return stmt.
684 static bool endsWithReturn(const Decl* F) {
685   const Stmt *Body = nullptr;
686   if (auto *FD = dyn_cast_or_null<FunctionDecl>(F))
687     Body = FD->getBody();
688   else if (auto *OMD = dyn_cast_or_null<ObjCMethodDecl>(F))
689     Body = OMD->getBody();
690 
691   if (auto *CS = dyn_cast_or_null<CompoundStmt>(Body)) {
692     auto LastStmt = CS->body_rbegin();
693     if (LastStmt != CS->body_rend())
694       return isa<ReturnStmt>(*LastStmt);
695   }
696   return false;
697 }
698 
699 void CodeGenFunction::markAsIgnoreThreadCheckingAtRuntime(llvm::Function *Fn) {
700   if (SanOpts.has(SanitizerKind::Thread)) {
701     Fn->addFnAttr("sanitize_thread_no_checking_at_run_time");
702     Fn->removeFnAttr(llvm::Attribute::SanitizeThread);
703   }
704 }
705 
706 /// Check if the return value of this function requires sanitization.
707 bool CodeGenFunction::requiresReturnValueCheck() const {
708   return requiresReturnValueNullabilityCheck() ||
709          (SanOpts.has(SanitizerKind::ReturnsNonnullAttribute) && CurCodeDecl &&
710           CurCodeDecl->getAttr<ReturnsNonNullAttr>());
711 }
712 
713 static bool matchesStlAllocatorFn(const Decl *D, const ASTContext &Ctx) {
714   auto *MD = dyn_cast_or_null<CXXMethodDecl>(D);
715   if (!MD || !MD->getDeclName().getAsIdentifierInfo() ||
716       !MD->getDeclName().getAsIdentifierInfo()->isStr("allocate") ||
717       (MD->getNumParams() != 1 && MD->getNumParams() != 2))
718     return false;
719 
720   if (MD->parameters()[0]->getType().getCanonicalType() != Ctx.getSizeType())
721     return false;
722 
723   if (MD->getNumParams() == 2) {
724     auto *PT = MD->parameters()[1]->getType()->getAs<PointerType>();
725     if (!PT || !PT->isVoidPointerType() ||
726         !PT->getPointeeType().isConstQualified())
727       return false;
728   }
729 
730   return true;
731 }
732 
733 bool CodeGenFunction::isInAllocaArgument(CGCXXABI &ABI, QualType Ty) {
734   const CXXRecordDecl *RD = Ty->getAsCXXRecordDecl();
735   return RD && ABI.getRecordArgABI(RD) == CGCXXABI::RAA_DirectInMemory;
736 }
737 
738 bool CodeGenFunction::hasInAllocaArg(const CXXMethodDecl *MD) {
739   return getTarget().getTriple().getArch() == llvm::Triple::x86 &&
740          getTarget().getCXXABI().isMicrosoft() &&
741          llvm::any_of(MD->parameters(), [&](ParmVarDecl *P) {
742            return isInAllocaArgument(CGM.getCXXABI(), P->getType());
743          });
744 }
745 
746 /// Return the UBSan prologue signature for \p FD if one is available.
747 static llvm::Constant *getPrologueSignature(CodeGenModule &CGM,
748                                             const FunctionDecl *FD) {
749   if (const auto *MD = dyn_cast<CXXMethodDecl>(FD))
750     if (!MD->isStatic())
751       return nullptr;
752   return CGM.getTargetCodeGenInfo().getUBSanFunctionSignature(CGM);
753 }
754 
755 void CodeGenFunction::StartFunction(GlobalDecl GD, QualType RetTy,
756                                     llvm::Function *Fn,
757                                     const CGFunctionInfo &FnInfo,
758                                     const FunctionArgList &Args,
759                                     SourceLocation Loc,
760                                     SourceLocation StartLoc) {
761   assert(!CurFn &&
762          "Do not use a CodeGenFunction object for more than one function");
763 
764   const Decl *D = GD.getDecl();
765 
766   DidCallStackSave = false;
767   CurCodeDecl = D;
768   const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D);
769   if (FD && FD->usesSEHTry())
770     CurSEHParent = GD;
771   CurFuncDecl = (D ? D->getNonClosureContext() : nullptr);
772   FnRetTy = RetTy;
773   CurFn = Fn;
774   CurFnInfo = &FnInfo;
775   assert(CurFn->isDeclaration() && "Function already has body?");
776 
777   // If this function is ignored for any of the enabled sanitizers,
778   // disable the sanitizer for the function.
779   do {
780 #define SANITIZER(NAME, ID)                                                    \
781   if (SanOpts.empty())                                                         \
782     break;                                                                     \
783   if (SanOpts.has(SanitizerKind::ID))                                          \
784     if (CGM.isInNoSanitizeList(SanitizerKind::ID, Fn, Loc))                    \
785       SanOpts.set(SanitizerKind::ID, false);
786 
787 #include "clang/Basic/Sanitizers.def"
788 #undef SANITIZER
789   } while (false);
790 
791   if (D) {
792     const bool SanitizeBounds = SanOpts.hasOneOf(SanitizerKind::Bounds);
793     SanitizerMask no_sanitize_mask;
794     bool NoSanitizeCoverage = false;
795 
796     for (auto *Attr : D->specific_attrs<NoSanitizeAttr>()) {
797       no_sanitize_mask |= Attr->getMask();
798       // SanitizeCoverage is not handled by SanOpts.
799       if (Attr->hasCoverage())
800         NoSanitizeCoverage = true;
801     }
802 
803     // Apply the no_sanitize* attributes to SanOpts.
804     SanOpts.Mask &= ~no_sanitize_mask;
805     if (no_sanitize_mask & SanitizerKind::Address)
806       SanOpts.set(SanitizerKind::KernelAddress, false);
807     if (no_sanitize_mask & SanitizerKind::KernelAddress)
808       SanOpts.set(SanitizerKind::Address, false);
809     if (no_sanitize_mask & SanitizerKind::HWAddress)
810       SanOpts.set(SanitizerKind::KernelHWAddress, false);
811     if (no_sanitize_mask & SanitizerKind::KernelHWAddress)
812       SanOpts.set(SanitizerKind::HWAddress, false);
813 
814     if (SanitizeBounds && !SanOpts.hasOneOf(SanitizerKind::Bounds))
815       Fn->addFnAttr(llvm::Attribute::NoSanitizeBounds);
816 
817     if (NoSanitizeCoverage && CGM.getCodeGenOpts().hasSanitizeCoverage())
818       Fn->addFnAttr(llvm::Attribute::NoSanitizeCoverage);
819 
820     // Some passes need the non-negated no_sanitize attribute. Pass them on.
821     if (CGM.getCodeGenOpts().hasSanitizeBinaryMetadata()) {
822       if (no_sanitize_mask & SanitizerKind::Thread)
823         Fn->addFnAttr("no_sanitize_thread");
824     }
825   }
826 
827   if (ShouldSkipSanitizerInstrumentation()) {
828     CurFn->addFnAttr(llvm::Attribute::DisableSanitizerInstrumentation);
829   } else {
830     // Apply sanitizer attributes to the function.
831     if (SanOpts.hasOneOf(SanitizerKind::Address | SanitizerKind::KernelAddress))
832       Fn->addFnAttr(llvm::Attribute::SanitizeAddress);
833     if (SanOpts.hasOneOf(SanitizerKind::HWAddress |
834                          SanitizerKind::KernelHWAddress))
835       Fn->addFnAttr(llvm::Attribute::SanitizeHWAddress);
836     if (SanOpts.has(SanitizerKind::MemtagStack))
837       Fn->addFnAttr(llvm::Attribute::SanitizeMemTag);
838     if (SanOpts.has(SanitizerKind::Thread))
839       Fn->addFnAttr(llvm::Attribute::SanitizeThread);
840     if (SanOpts.has(SanitizerKind::Type))
841       Fn->addFnAttr(llvm::Attribute::SanitizeType);
842     if (SanOpts.has(SanitizerKind::NumericalStability))
843       Fn->addFnAttr(llvm::Attribute::SanitizeNumericalStability);
844     if (SanOpts.hasOneOf(SanitizerKind::Memory | SanitizerKind::KernelMemory))
845       Fn->addFnAttr(llvm::Attribute::SanitizeMemory);
846   }
847   if (SanOpts.has(SanitizerKind::SafeStack))
848     Fn->addFnAttr(llvm::Attribute::SafeStack);
849   if (SanOpts.has(SanitizerKind::ShadowCallStack))
850     Fn->addFnAttr(llvm::Attribute::ShadowCallStack);
851 
852   if (SanOpts.has(SanitizerKind::Realtime))
853     if (FD && FD->getASTContext().hasAnyFunctionEffects())
854       for (const FunctionEffectWithCondition &Fe : FD->getFunctionEffects()) {
855         if (Fe.Effect.kind() == FunctionEffect::Kind::NonBlocking)
856           Fn->addFnAttr(llvm::Attribute::SanitizeRealtime);
857         else if (Fe.Effect.kind() == FunctionEffect::Kind::Blocking)
858           Fn->addFnAttr(llvm::Attribute::SanitizeRealtimeBlocking);
859       }
860 
861   // Apply fuzzing attribute to the function.
862   if (SanOpts.hasOneOf(SanitizerKind::Fuzzer | SanitizerKind::FuzzerNoLink))
863     Fn->addFnAttr(llvm::Attribute::OptForFuzzing);
864 
865   // Ignore TSan memory acesses from within ObjC/ObjC++ dealloc, initialize,
866   // .cxx_destruct, __destroy_helper_block_ and all of their calees at run time.
867   if (SanOpts.has(SanitizerKind::Thread)) {
868     if (const auto *OMD = dyn_cast_or_null<ObjCMethodDecl>(D)) {
869       const IdentifierInfo *II = OMD->getSelector().getIdentifierInfoForSlot(0);
870       if (OMD->getMethodFamily() == OMF_dealloc ||
871           OMD->getMethodFamily() == OMF_initialize ||
872           (OMD->getSelector().isUnarySelector() && II->isStr(".cxx_destruct"))) {
873         markAsIgnoreThreadCheckingAtRuntime(Fn);
874       }
875     }
876   }
877 
878   // Ignore unrelated casts in STL allocate() since the allocator must cast
879   // from void* to T* before object initialization completes. Don't match on the
880   // namespace because not all allocators are in std::
881   if (D && SanOpts.has(SanitizerKind::CFIUnrelatedCast)) {
882     if (matchesStlAllocatorFn(D, getContext()))
883       SanOpts.Mask &= ~SanitizerKind::CFIUnrelatedCast;
884   }
885 
886   // Ignore null checks in coroutine functions since the coroutines passes
887   // are not aware of how to move the extra UBSan instructions across the split
888   // coroutine boundaries.
889   if (D && SanOpts.has(SanitizerKind::Null))
890     if (FD && FD->getBody() &&
891         FD->getBody()->getStmtClass() == Stmt::CoroutineBodyStmtClass)
892       SanOpts.Mask &= ~SanitizerKind::Null;
893 
894   // Add pointer authentication attributes.
895   const CodeGenOptions &CodeGenOpts = CGM.getCodeGenOpts();
896   if (CodeGenOpts.PointerAuth.ReturnAddresses)
897     Fn->addFnAttr("ptrauth-returns");
898   if (CodeGenOpts.PointerAuth.FunctionPointers)
899     Fn->addFnAttr("ptrauth-calls");
900   if (CodeGenOpts.PointerAuth.AuthTraps)
901     Fn->addFnAttr("ptrauth-auth-traps");
902   if (CodeGenOpts.PointerAuth.IndirectGotos)
903     Fn->addFnAttr("ptrauth-indirect-gotos");
904   if (CodeGenOpts.PointerAuth.AArch64JumpTableHardening)
905     Fn->addFnAttr("aarch64-jump-table-hardening");
906 
907   // Apply xray attributes to the function (as a string, for now)
908   bool AlwaysXRayAttr = false;
909   if (const auto *XRayAttr = D ? D->getAttr<XRayInstrumentAttr>() : nullptr) {
910     if (CGM.getCodeGenOpts().XRayInstrumentationBundle.has(
911             XRayInstrKind::FunctionEntry) ||
912         CGM.getCodeGenOpts().XRayInstrumentationBundle.has(
913             XRayInstrKind::FunctionExit)) {
914       if (XRayAttr->alwaysXRayInstrument() && ShouldXRayInstrumentFunction()) {
915         Fn->addFnAttr("function-instrument", "xray-always");
916         AlwaysXRayAttr = true;
917       }
918       if (XRayAttr->neverXRayInstrument())
919         Fn->addFnAttr("function-instrument", "xray-never");
920       if (const auto *LogArgs = D->getAttr<XRayLogArgsAttr>())
921         if (ShouldXRayInstrumentFunction())
922           Fn->addFnAttr("xray-log-args",
923                         llvm::utostr(LogArgs->getArgumentCount()));
924     }
925   } else {
926     if (ShouldXRayInstrumentFunction() && !CGM.imbueXRayAttrs(Fn, Loc))
927       Fn->addFnAttr(
928           "xray-instruction-threshold",
929           llvm::itostr(CGM.getCodeGenOpts().XRayInstructionThreshold));
930   }
931 
932   if (ShouldXRayInstrumentFunction()) {
933     if (CGM.getCodeGenOpts().XRayIgnoreLoops)
934       Fn->addFnAttr("xray-ignore-loops");
935 
936     if (!CGM.getCodeGenOpts().XRayInstrumentationBundle.has(
937             XRayInstrKind::FunctionExit))
938       Fn->addFnAttr("xray-skip-exit");
939 
940     if (!CGM.getCodeGenOpts().XRayInstrumentationBundle.has(
941             XRayInstrKind::FunctionEntry))
942       Fn->addFnAttr("xray-skip-entry");
943 
944     auto FuncGroups = CGM.getCodeGenOpts().XRayTotalFunctionGroups;
945     if (FuncGroups > 1) {
946       auto FuncName = llvm::ArrayRef<uint8_t>(CurFn->getName().bytes_begin(),
947                                               CurFn->getName().bytes_end());
948       auto Group = crc32(FuncName) % FuncGroups;
949       if (Group != CGM.getCodeGenOpts().XRaySelectedFunctionGroup &&
950           !AlwaysXRayAttr)
951         Fn->addFnAttr("function-instrument", "xray-never");
952     }
953   }
954 
955   if (CGM.getCodeGenOpts().getProfileInstr() != CodeGenOptions::ProfileNone) {
956     switch (CGM.isFunctionBlockedFromProfileInstr(Fn, Loc)) {
957     case ProfileList::Skip:
958       Fn->addFnAttr(llvm::Attribute::SkipProfile);
959       break;
960     case ProfileList::Forbid:
961       Fn->addFnAttr(llvm::Attribute::NoProfile);
962       break;
963     case ProfileList::Allow:
964       break;
965     }
966   }
967 
968   unsigned Count, Offset;
969   if (const auto *Attr =
970           D ? D->getAttr<PatchableFunctionEntryAttr>() : nullptr) {
971     Count = Attr->getCount();
972     Offset = Attr->getOffset();
973   } else {
974     Count = CGM.getCodeGenOpts().PatchableFunctionEntryCount;
975     Offset = CGM.getCodeGenOpts().PatchableFunctionEntryOffset;
976   }
977   if (Count && Offset <= Count) {
978     Fn->addFnAttr("patchable-function-entry", std::to_string(Count - Offset));
979     if (Offset)
980       Fn->addFnAttr("patchable-function-prefix", std::to_string(Offset));
981   }
982   // Instruct that functions for COFF/CodeView targets should start with a
983   // patchable instruction, but only on x86/x64. Don't forward this to ARM/ARM64
984   // backends as they don't need it -- instructions on these architectures are
985   // always atomically patchable at runtime.
986   if (CGM.getCodeGenOpts().HotPatch &&
987       getContext().getTargetInfo().getTriple().isX86() &&
988       getContext().getTargetInfo().getTriple().getEnvironment() !=
989           llvm::Triple::CODE16)
990     Fn->addFnAttr("patchable-function", "prologue-short-redirect");
991 
992   // Add no-jump-tables value.
993   if (CGM.getCodeGenOpts().NoUseJumpTables)
994     Fn->addFnAttr("no-jump-tables", "true");
995 
996   // Add no-inline-line-tables value.
997   if (CGM.getCodeGenOpts().NoInlineLineTables)
998     Fn->addFnAttr("no-inline-line-tables");
999 
1000   // Add profile-sample-accurate value.
1001   if (CGM.getCodeGenOpts().ProfileSampleAccurate)
1002     Fn->addFnAttr("profile-sample-accurate");
1003 
1004   if (!CGM.getCodeGenOpts().SampleProfileFile.empty())
1005     Fn->addFnAttr("use-sample-profile");
1006 
1007   if (D && D->hasAttr<CFICanonicalJumpTableAttr>())
1008     Fn->addFnAttr("cfi-canonical-jump-table");
1009 
1010   if (D && D->hasAttr<NoProfileFunctionAttr>())
1011     Fn->addFnAttr(llvm::Attribute::NoProfile);
1012 
1013   if (D && D->hasAttr<HybridPatchableAttr>())
1014     Fn->addFnAttr(llvm::Attribute::HybridPatchable);
1015 
1016   if (D) {
1017     // Function attributes take precedence over command line flags.
1018     if (auto *A = D->getAttr<FunctionReturnThunksAttr>()) {
1019       switch (A->getThunkType()) {
1020       case FunctionReturnThunksAttr::Kind::Keep:
1021         break;
1022       case FunctionReturnThunksAttr::Kind::Extern:
1023         Fn->addFnAttr(llvm::Attribute::FnRetThunkExtern);
1024         break;
1025       }
1026     } else if (CGM.getCodeGenOpts().FunctionReturnThunks)
1027       Fn->addFnAttr(llvm::Attribute::FnRetThunkExtern);
1028   }
1029 
1030   if (FD && (getLangOpts().OpenCL ||
1031              (getLangOpts().CUDA &&
1032               getContext().getTargetInfo().getTriple().isSPIRV()) ||
1033              ((getLangOpts().HIP || getLangOpts().OffloadViaLLVM) &&
1034               getLangOpts().CUDAIsDevice))) {
1035     // Add metadata for a kernel function.
1036     EmitKernelMetadata(FD, Fn);
1037   }
1038 
1039   if (FD && FD->hasAttr<ClspvLibclcBuiltinAttr>()) {
1040     Fn->setMetadata("clspv_libclc_builtin",
1041                     llvm::MDNode::get(getLLVMContext(), {}));
1042   }
1043 
1044   // If we are checking function types, emit a function type signature as
1045   // prologue data.
1046   if (FD && SanOpts.has(SanitizerKind::Function)) {
1047     if (llvm::Constant *PrologueSig = getPrologueSignature(CGM, FD)) {
1048       llvm::LLVMContext &Ctx = Fn->getContext();
1049       llvm::MDBuilder MDB(Ctx);
1050       Fn->setMetadata(
1051           llvm::LLVMContext::MD_func_sanitize,
1052           MDB.createRTTIPointerPrologue(
1053               PrologueSig, getUBSanFunctionTypeHash(FD->getType())));
1054     }
1055   }
1056 
1057   // If we're checking nullability, we need to know whether we can check the
1058   // return value. Initialize the flag to 'true' and refine it in EmitParmDecl.
1059   if (SanOpts.has(SanitizerKind::NullabilityReturn)) {
1060     auto Nullability = FnRetTy->getNullability();
1061     if (Nullability && *Nullability == NullabilityKind::NonNull &&
1062         !FnRetTy->isRecordType()) {
1063       if (!(SanOpts.has(SanitizerKind::ReturnsNonnullAttribute) &&
1064             CurCodeDecl && CurCodeDecl->getAttr<ReturnsNonNullAttr>()))
1065         RetValNullabilityPrecondition =
1066             llvm::ConstantInt::getTrue(getLLVMContext());
1067     }
1068   }
1069 
1070   // If we're in C++ mode and the function name is "main", it is guaranteed
1071   // to be norecurse by the standard (3.6.1.3 "The function main shall not be
1072   // used within a program").
1073   //
1074   // OpenCL C 2.0 v2.2-11 s6.9.i:
1075   //     Recursion is not supported.
1076   //
1077   // HLSL
1078   //     Recursion is not supported.
1079   //
1080   // SYCL v1.2.1 s3.10:
1081   //     kernels cannot include RTTI information, exception classes,
1082   //     recursive code, virtual functions or make use of C++ libraries that
1083   //     are not compiled for the device.
1084   if (FD &&
1085       ((getLangOpts().CPlusPlus && FD->isMain()) || getLangOpts().OpenCL ||
1086        getLangOpts().HLSL || getLangOpts().SYCLIsDevice ||
1087        (getLangOpts().CUDA && FD->hasAttr<CUDAGlobalAttr>())))
1088     Fn->addFnAttr(llvm::Attribute::NoRecurse);
1089 
1090   llvm::RoundingMode RM = getLangOpts().getDefaultRoundingMode();
1091   llvm::fp::ExceptionBehavior FPExceptionBehavior =
1092       ToConstrainedExceptMD(getLangOpts().getDefaultExceptionMode());
1093   Builder.setDefaultConstrainedRounding(RM);
1094   Builder.setDefaultConstrainedExcept(FPExceptionBehavior);
1095   if ((FD && (FD->UsesFPIntrin() || FD->hasAttr<StrictFPAttr>())) ||
1096       (!FD && (FPExceptionBehavior != llvm::fp::ebIgnore ||
1097                RM != llvm::RoundingMode::NearestTiesToEven))) {
1098     Builder.setIsFPConstrained(true);
1099     Fn->addFnAttr(llvm::Attribute::StrictFP);
1100   }
1101 
1102   // If a custom alignment is used, force realigning to this alignment on
1103   // any main function which certainly will need it.
1104   if (FD && ((FD->isMain() || FD->isMSVCRTEntryPoint()) &&
1105              CGM.getCodeGenOpts().StackAlignment))
1106     Fn->addFnAttr("stackrealign");
1107 
1108   // "main" doesn't need to zero out call-used registers.
1109   if (FD && FD->isMain())
1110     Fn->removeFnAttr("zero-call-used-regs");
1111 
1112   llvm::BasicBlock *EntryBB = createBasicBlock("entry", CurFn);
1113 
1114   // Create a marker to make it easy to insert allocas into the entryblock
1115   // later.  Don't create this with the builder, because we don't want it
1116   // folded.
1117   llvm::Value *Poison = llvm::PoisonValue::get(Int32Ty);
1118   AllocaInsertPt = new llvm::BitCastInst(Poison, Int32Ty, "allocapt", EntryBB);
1119 
1120   ReturnBlock = getJumpDestInCurrentScope("return");
1121 
1122   Builder.SetInsertPoint(EntryBB);
1123 
1124   // If we're checking the return value, allocate space for a pointer to a
1125   // precise source location of the checked return statement.
1126   if (requiresReturnValueCheck()) {
1127     ReturnLocation = CreateDefaultAlignTempAlloca(Int8PtrTy, "return.sloc.ptr");
1128     Builder.CreateStore(llvm::ConstantPointerNull::get(Int8PtrTy),
1129                         ReturnLocation);
1130   }
1131 
1132   // Emit subprogram debug descriptor.
1133   if (CGDebugInfo *DI = getDebugInfo()) {
1134     // Reconstruct the type from the argument list so that implicit parameters,
1135     // such as 'this' and 'vtt', show up in the debug info. Preserve the calling
1136     // convention.
1137     DI->emitFunctionStart(GD, Loc, StartLoc,
1138                           DI->getFunctionType(FD, RetTy, Args), CurFn,
1139                           CurFuncIsThunk);
1140   }
1141 
1142   if (ShouldInstrumentFunction()) {
1143     if (CGM.getCodeGenOpts().InstrumentFunctions)
1144       CurFn->addFnAttr("instrument-function-entry", "__cyg_profile_func_enter");
1145     if (CGM.getCodeGenOpts().InstrumentFunctionsAfterInlining)
1146       CurFn->addFnAttr("instrument-function-entry-inlined",
1147                        "__cyg_profile_func_enter");
1148     if (CGM.getCodeGenOpts().InstrumentFunctionEntryBare)
1149       CurFn->addFnAttr("instrument-function-entry-inlined",
1150                        "__cyg_profile_func_enter_bare");
1151   }
1152 
1153   // Since emitting the mcount call here impacts optimizations such as function
1154   // inlining, we just add an attribute to insert a mcount call in backend.
1155   // The attribute "counting-function" is set to mcount function name which is
1156   // architecture dependent.
1157   if (CGM.getCodeGenOpts().InstrumentForProfiling) {
1158     // Calls to fentry/mcount should not be generated if function has
1159     // the no_instrument_function attribute.
1160     if (!CurFuncDecl || !CurFuncDecl->hasAttr<NoInstrumentFunctionAttr>()) {
1161       if (CGM.getCodeGenOpts().CallFEntry)
1162         Fn->addFnAttr("fentry-call", "true");
1163       else {
1164         Fn->addFnAttr("instrument-function-entry-inlined",
1165                       getTarget().getMCountName());
1166       }
1167       if (CGM.getCodeGenOpts().MNopMCount) {
1168         if (!CGM.getCodeGenOpts().CallFEntry)
1169           CGM.getDiags().Report(diag::err_opt_not_valid_without_opt)
1170             << "-mnop-mcount" << "-mfentry";
1171         Fn->addFnAttr("mnop-mcount");
1172       }
1173 
1174       if (CGM.getCodeGenOpts().RecordMCount) {
1175         if (!CGM.getCodeGenOpts().CallFEntry)
1176           CGM.getDiags().Report(diag::err_opt_not_valid_without_opt)
1177             << "-mrecord-mcount" << "-mfentry";
1178         Fn->addFnAttr("mrecord-mcount");
1179       }
1180     }
1181   }
1182 
1183   if (CGM.getCodeGenOpts().PackedStack) {
1184     if (getContext().getTargetInfo().getTriple().getArch() !=
1185         llvm::Triple::systemz)
1186       CGM.getDiags().Report(diag::err_opt_not_valid_on_target)
1187         << "-mpacked-stack";
1188     Fn->addFnAttr("packed-stack");
1189   }
1190 
1191   if (CGM.getCodeGenOpts().WarnStackSize != UINT_MAX &&
1192       !CGM.getDiags().isIgnored(diag::warn_fe_backend_frame_larger_than, Loc))
1193     Fn->addFnAttr("warn-stack-size",
1194                   std::to_string(CGM.getCodeGenOpts().WarnStackSize));
1195 
1196   if (RetTy->isVoidType()) {
1197     // Void type; nothing to return.
1198     ReturnValue = Address::invalid();
1199 
1200     // Count the implicit return.
1201     if (!endsWithReturn(D))
1202       ++NumReturnExprs;
1203   } else if (CurFnInfo->getReturnInfo().getKind() == ABIArgInfo::Indirect) {
1204     // Indirect return; emit returned value directly into sret slot.
1205     // This reduces code size, and affects correctness in C++.
1206     auto AI = CurFn->arg_begin();
1207     if (CurFnInfo->getReturnInfo().isSRetAfterThis())
1208       ++AI;
1209     ReturnValue = makeNaturalAddressForPointer(
1210         &*AI, RetTy, CurFnInfo->getReturnInfo().getIndirectAlign(), false,
1211         nullptr, nullptr, KnownNonNull);
1212     if (!CurFnInfo->getReturnInfo().getIndirectByVal()) {
1213       ReturnValuePointer =
1214           CreateDefaultAlignTempAlloca(ReturnValue.getType(), "result.ptr");
1215       Builder.CreateStore(ReturnValue.emitRawPointer(*this),
1216                           ReturnValuePointer);
1217     }
1218   } else if (CurFnInfo->getReturnInfo().getKind() == ABIArgInfo::InAlloca &&
1219              !hasScalarEvaluationKind(CurFnInfo->getReturnType())) {
1220     // Load the sret pointer from the argument struct and return into that.
1221     unsigned Idx = CurFnInfo->getReturnInfo().getInAllocaFieldIndex();
1222     llvm::Function::arg_iterator EI = CurFn->arg_end();
1223     --EI;
1224     llvm::Value *Addr = Builder.CreateStructGEP(
1225         CurFnInfo->getArgStruct(), &*EI, Idx);
1226     llvm::Type *Ty =
1227         cast<llvm::GetElementPtrInst>(Addr)->getResultElementType();
1228     ReturnValuePointer = Address(Addr, Ty, getPointerAlign());
1229     Addr = Builder.CreateAlignedLoad(Ty, Addr, getPointerAlign(), "agg.result");
1230     ReturnValue = Address(Addr, ConvertType(RetTy),
1231                           CGM.getNaturalTypeAlignment(RetTy), KnownNonNull);
1232   } else {
1233     ReturnValue = CreateIRTemp(RetTy, "retval");
1234 
1235     // Tell the epilog emitter to autorelease the result.  We do this
1236     // now so that various specialized functions can suppress it
1237     // during their IR-generation.
1238     if (getLangOpts().ObjCAutoRefCount &&
1239         !CurFnInfo->isReturnsRetained() &&
1240         RetTy->isObjCRetainableType())
1241       AutoreleaseResult = true;
1242   }
1243 
1244   EmitStartEHSpec(CurCodeDecl);
1245 
1246   PrologueCleanupDepth = EHStack.stable_begin();
1247 
1248   // Emit OpenMP specific initialization of the device functions.
1249   if (getLangOpts().OpenMP && CurCodeDecl)
1250     CGM.getOpenMPRuntime().emitFunctionProlog(*this, CurCodeDecl);
1251 
1252   if (FD && getLangOpts().HLSL) {
1253     // Handle emitting HLSL entry functions.
1254     if (FD->hasAttr<HLSLShaderAttr>()) {
1255       CGM.getHLSLRuntime().emitEntryFunction(FD, Fn);
1256     }
1257     CGM.getHLSLRuntime().setHLSLFunctionAttributes(FD, Fn);
1258   }
1259 
1260   EmitFunctionProlog(*CurFnInfo, CurFn, Args);
1261 
1262   if (const CXXMethodDecl *MD = dyn_cast_if_present<CXXMethodDecl>(D);
1263       MD && !MD->isStatic()) {
1264     bool IsInLambda =
1265         MD->getParent()->isLambda() && MD->getOverloadedOperator() == OO_Call;
1266     if (MD->isImplicitObjectMemberFunction())
1267       CGM.getCXXABI().EmitInstanceFunctionProlog(*this);
1268     if (IsInLambda) {
1269       // We're in a lambda; figure out the captures.
1270       MD->getParent()->getCaptureFields(LambdaCaptureFields,
1271                                         LambdaThisCaptureField);
1272       if (LambdaThisCaptureField) {
1273         // If the lambda captures the object referred to by '*this' - either by
1274         // value or by reference, make sure CXXThisValue points to the correct
1275         // object.
1276 
1277         // Get the lvalue for the field (which is a copy of the enclosing object
1278         // or contains the address of the enclosing object).
1279         LValue ThisFieldLValue = EmitLValueForLambdaField(LambdaThisCaptureField);
1280         if (!LambdaThisCaptureField->getType()->isPointerType()) {
1281           // If the enclosing object was captured by value, just use its
1282           // address. Sign this pointer.
1283           CXXThisValue = ThisFieldLValue.getPointer(*this);
1284         } else {
1285           // Load the lvalue pointed to by the field, since '*this' was captured
1286           // by reference.
1287           CXXThisValue =
1288               EmitLoadOfLValue(ThisFieldLValue, SourceLocation()).getScalarVal();
1289         }
1290       }
1291       for (auto *FD : MD->getParent()->fields()) {
1292         if (FD->hasCapturedVLAType()) {
1293           auto *ExprArg = EmitLoadOfLValue(EmitLValueForLambdaField(FD),
1294                                            SourceLocation()).getScalarVal();
1295           auto VAT = FD->getCapturedVLAType();
1296           VLASizeMap[VAT->getSizeExpr()] = ExprArg;
1297         }
1298       }
1299     } else if (MD->isImplicitObjectMemberFunction()) {
1300       // Not in a lambda; just use 'this' from the method.
1301       // FIXME: Should we generate a new load for each use of 'this'?  The
1302       // fast register allocator would be happier...
1303       CXXThisValue = CXXABIThisValue;
1304     }
1305 
1306     // Check the 'this' pointer once per function, if it's available.
1307     if (CXXABIThisValue) {
1308       SanitizerSet SkippedChecks;
1309       SkippedChecks.set(SanitizerKind::ObjectSize, true);
1310       QualType ThisTy = MD->getThisType();
1311 
1312       // If this is the call operator of a lambda with no captures, it
1313       // may have a static invoker function, which may call this operator with
1314       // a null 'this' pointer.
1315       if (isLambdaCallOperator(MD) && MD->getParent()->isCapturelessLambda())
1316         SkippedChecks.set(SanitizerKind::Null, true);
1317 
1318       EmitTypeCheck(
1319           isa<CXXConstructorDecl>(MD) ? TCK_ConstructorCall : TCK_MemberCall,
1320           Loc, CXXABIThisValue, ThisTy, CXXABIThisAlignment, SkippedChecks);
1321     }
1322   }
1323 
1324   // If any of the arguments have a variably modified type, make sure to
1325   // emit the type size, but only if the function is not naked. Naked functions
1326   // have no prolog to run this evaluation.
1327   if (!FD || !FD->hasAttr<NakedAttr>()) {
1328     for (const VarDecl *VD : Args) {
1329       // Dig out the type as written from ParmVarDecls; it's unclear whether
1330       // the standard (C99 6.9.1p10) requires this, but we're following the
1331       // precedent set by gcc.
1332       QualType Ty;
1333       if (const ParmVarDecl *PVD = dyn_cast<ParmVarDecl>(VD))
1334         Ty = PVD->getOriginalType();
1335       else
1336         Ty = VD->getType();
1337 
1338       if (Ty->isVariablyModifiedType())
1339         EmitVariablyModifiedType(Ty);
1340     }
1341   }
1342   // Emit a location at the end of the prologue.
1343   if (CGDebugInfo *DI = getDebugInfo())
1344     DI->EmitLocation(Builder, StartLoc);
1345   // TODO: Do we need to handle this in two places like we do with
1346   // target-features/target-cpu?
1347   if (CurFuncDecl)
1348     if (const auto *VecWidth = CurFuncDecl->getAttr<MinVectorWidthAttr>())
1349       LargestVectorWidth = VecWidth->getVectorWidth();
1350 
1351   if (CGM.shouldEmitConvergenceTokens())
1352     ConvergenceTokenStack.push_back(getOrEmitConvergenceEntryToken(CurFn));
1353 }
1354 
1355 void CodeGenFunction::EmitFunctionBody(const Stmt *Body) {
1356   incrementProfileCounter(Body);
1357   maybeCreateMCDCCondBitmap();
1358   if (const CompoundStmt *S = dyn_cast<CompoundStmt>(Body))
1359     EmitCompoundStmtWithoutScope(*S);
1360   else
1361     EmitStmt(Body);
1362 }
1363 
1364 /// When instrumenting to collect profile data, the counts for some blocks
1365 /// such as switch cases need to not include the fall-through counts, so
1366 /// emit a branch around the instrumentation code. When not instrumenting,
1367 /// this just calls EmitBlock().
1368 void CodeGenFunction::EmitBlockWithFallThrough(llvm::BasicBlock *BB,
1369                                                const Stmt *S) {
1370   llvm::BasicBlock *SkipCountBB = nullptr;
1371   // Do not skip over the instrumentation when single byte coverage mode is
1372   // enabled.
1373   if (HaveInsertPoint() && CGM.getCodeGenOpts().hasProfileClangInstr() &&
1374       !llvm::EnableSingleByteCoverage) {
1375     // When instrumenting for profiling, the fallthrough to certain
1376     // statements needs to skip over the instrumentation code so that we
1377     // get an accurate count.
1378     SkipCountBB = createBasicBlock("skipcount");
1379     EmitBranch(SkipCountBB);
1380   }
1381   EmitBlock(BB);
1382   uint64_t CurrentCount = getCurrentProfileCount();
1383   incrementProfileCounter(S);
1384   setCurrentProfileCount(getCurrentProfileCount() + CurrentCount);
1385   if (SkipCountBB)
1386     EmitBlock(SkipCountBB);
1387 }
1388 
1389 /// Tries to mark the given function nounwind based on the
1390 /// non-existence of any throwing calls within it.  We believe this is
1391 /// lightweight enough to do at -O0.
1392 static void TryMarkNoThrow(llvm::Function *F) {
1393   // LLVM treats 'nounwind' on a function as part of the type, so we
1394   // can't do this on functions that can be overwritten.
1395   if (F->isInterposable()) return;
1396 
1397   for (llvm::BasicBlock &BB : *F)
1398     for (llvm::Instruction &I : BB)
1399       if (I.mayThrow())
1400         return;
1401 
1402   F->setDoesNotThrow();
1403 }
1404 
1405 QualType CodeGenFunction::BuildFunctionArgList(GlobalDecl GD,
1406                                                FunctionArgList &Args) {
1407   const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
1408   QualType ResTy = FD->getReturnType();
1409 
1410   const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD);
1411   if (MD && MD->isImplicitObjectMemberFunction()) {
1412     if (CGM.getCXXABI().HasThisReturn(GD))
1413       ResTy = MD->getThisType();
1414     else if (CGM.getCXXABI().hasMostDerivedReturn(GD))
1415       ResTy = CGM.getContext().VoidPtrTy;
1416     CGM.getCXXABI().buildThisParam(*this, Args);
1417   }
1418 
1419   // The base version of an inheriting constructor whose constructed base is a
1420   // virtual base is not passed any arguments (because it doesn't actually call
1421   // the inherited constructor).
1422   bool PassedParams = true;
1423   if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(FD))
1424     if (auto Inherited = CD->getInheritedConstructor())
1425       PassedParams =
1426           getTypes().inheritingCtorHasParams(Inherited, GD.getCtorType());
1427 
1428   if (PassedParams) {
1429     for (auto *Param : FD->parameters()) {
1430       Args.push_back(Param);
1431       if (!Param->hasAttr<PassObjectSizeAttr>())
1432         continue;
1433 
1434       auto *Implicit = ImplicitParamDecl::Create(
1435           getContext(), Param->getDeclContext(), Param->getLocation(),
1436           /*Id=*/nullptr, getContext().getSizeType(), ImplicitParamKind::Other);
1437       SizeArguments[Param] = Implicit;
1438       Args.push_back(Implicit);
1439     }
1440   }
1441 
1442   if (MD && (isa<CXXConstructorDecl>(MD) || isa<CXXDestructorDecl>(MD)))
1443     CGM.getCXXABI().addImplicitStructorParams(*this, ResTy, Args);
1444 
1445   return ResTy;
1446 }
1447 
1448 void CodeGenFunction::GenerateCode(GlobalDecl GD, llvm::Function *Fn,
1449                                    const CGFunctionInfo &FnInfo) {
1450   assert(Fn && "generating code for null Function");
1451   const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
1452   CurGD = GD;
1453 
1454   FunctionArgList Args;
1455   QualType ResTy = BuildFunctionArgList(GD, Args);
1456 
1457   CGM.getTargetCodeGenInfo().checkFunctionABI(CGM, FD);
1458 
1459   if (FD->isInlineBuiltinDeclaration()) {
1460     // When generating code for a builtin with an inline declaration, use a
1461     // mangled name to hold the actual body, while keeping an external
1462     // definition in case the function pointer is referenced somewhere.
1463     std::string FDInlineName = (Fn->getName() + ".inline").str();
1464     llvm::Module *M = Fn->getParent();
1465     llvm::Function *Clone = M->getFunction(FDInlineName);
1466     if (!Clone) {
1467       Clone = llvm::Function::Create(Fn->getFunctionType(),
1468                                      llvm::GlobalValue::InternalLinkage,
1469                                      Fn->getAddressSpace(), FDInlineName, M);
1470       Clone->addFnAttr(llvm::Attribute::AlwaysInline);
1471     }
1472     Fn->setLinkage(llvm::GlobalValue::ExternalLinkage);
1473     Fn = Clone;
1474   } else {
1475     // Detect the unusual situation where an inline version is shadowed by a
1476     // non-inline version. In that case we should pick the external one
1477     // everywhere. That's GCC behavior too. Unfortunately, I cannot find a way
1478     // to detect that situation before we reach codegen, so do some late
1479     // replacement.
1480     for (const FunctionDecl *PD = FD->getPreviousDecl(); PD;
1481          PD = PD->getPreviousDecl()) {
1482       if (LLVM_UNLIKELY(PD->isInlineBuiltinDeclaration())) {
1483         std::string FDInlineName = (Fn->getName() + ".inline").str();
1484         llvm::Module *M = Fn->getParent();
1485         if (llvm::Function *Clone = M->getFunction(FDInlineName)) {
1486           Clone->replaceAllUsesWith(Fn);
1487           Clone->eraseFromParent();
1488         }
1489         break;
1490       }
1491     }
1492   }
1493 
1494   // Check if we should generate debug info for this function.
1495   if (FD->hasAttr<NoDebugAttr>()) {
1496     // Clear non-distinct debug info that was possibly attached to the function
1497     // due to an earlier declaration without the nodebug attribute
1498     Fn->setSubprogram(nullptr);
1499     // Disable debug info indefinitely for this function
1500     DebugInfo = nullptr;
1501   }
1502 
1503   // The function might not have a body if we're generating thunks for a
1504   // function declaration.
1505   SourceRange BodyRange;
1506   if (Stmt *Body = FD->getBody())
1507     BodyRange = Body->getSourceRange();
1508   else
1509     BodyRange = FD->getLocation();
1510   CurEHLocation = BodyRange.getEnd();
1511 
1512   // Use the location of the start of the function to determine where
1513   // the function definition is located. By default use the location
1514   // of the declaration as the location for the subprogram. A function
1515   // may lack a declaration in the source code if it is created by code
1516   // gen. (examples: _GLOBAL__I_a, __cxx_global_array_dtor, thunk).
1517   SourceLocation Loc = FD->getLocation();
1518 
1519   // If this is a function specialization then use the pattern body
1520   // as the location for the function.
1521   if (const FunctionDecl *SpecDecl = FD->getTemplateInstantiationPattern())
1522     if (SpecDecl->hasBody(SpecDecl))
1523       Loc = SpecDecl->getLocation();
1524 
1525   Stmt *Body = FD->getBody();
1526 
1527   if (Body) {
1528     // Coroutines always emit lifetime markers.
1529     if (isa<CoroutineBodyStmt>(Body))
1530       ShouldEmitLifetimeMarkers = true;
1531 
1532     // Initialize helper which will detect jumps which can cause invalid
1533     // lifetime markers.
1534     if (ShouldEmitLifetimeMarkers)
1535       Bypasses.Init(Body);
1536   }
1537 
1538   // Emit the standard function prologue.
1539   StartFunction(GD, ResTy, Fn, FnInfo, Args, Loc, BodyRange.getBegin());
1540 
1541   // Save parameters for coroutine function.
1542   if (Body && isa_and_nonnull<CoroutineBodyStmt>(Body))
1543     llvm::append_range(FnArgs, FD->parameters());
1544 
1545   // Ensure that the function adheres to the forward progress guarantee, which
1546   // is required by certain optimizations.
1547   // In C++11 and up, the attribute will be removed if the body contains a
1548   // trivial empty loop.
1549   if (checkIfFunctionMustProgress())
1550     CurFn->addFnAttr(llvm::Attribute::MustProgress);
1551 
1552   // Generate the body of the function.
1553   PGO.assignRegionCounters(GD, CurFn);
1554   if (isa<CXXDestructorDecl>(FD))
1555     EmitDestructorBody(Args);
1556   else if (isa<CXXConstructorDecl>(FD))
1557     EmitConstructorBody(Args);
1558   else if (getLangOpts().CUDA &&
1559            !getLangOpts().CUDAIsDevice &&
1560            FD->hasAttr<CUDAGlobalAttr>())
1561     CGM.getCUDARuntime().emitDeviceStub(*this, Args);
1562   else if (isa<CXXMethodDecl>(FD) &&
1563            cast<CXXMethodDecl>(FD)->isLambdaStaticInvoker()) {
1564     // The lambda static invoker function is special, because it forwards or
1565     // clones the body of the function call operator (but is actually static).
1566     EmitLambdaStaticInvokeBody(cast<CXXMethodDecl>(FD));
1567   } else if (isa<CXXMethodDecl>(FD) &&
1568              isLambdaCallOperator(cast<CXXMethodDecl>(FD)) &&
1569              !FnInfo.isDelegateCall() &&
1570              cast<CXXMethodDecl>(FD)->getParent()->getLambdaStaticInvoker() &&
1571              hasInAllocaArg(cast<CXXMethodDecl>(FD))) {
1572     // If emitting a lambda with static invoker on X86 Windows, change
1573     // the call operator body.
1574     // Make sure that this is a call operator with an inalloca arg and check
1575     // for delegate call to make sure this is the original call op and not the
1576     // new forwarding function for the static invoker.
1577     EmitLambdaInAllocaCallOpBody(cast<CXXMethodDecl>(FD));
1578   } else if (FD->isDefaulted() && isa<CXXMethodDecl>(FD) &&
1579              (cast<CXXMethodDecl>(FD)->isCopyAssignmentOperator() ||
1580               cast<CXXMethodDecl>(FD)->isMoveAssignmentOperator())) {
1581     // Implicit copy-assignment gets the same special treatment as implicit
1582     // copy-constructors.
1583     emitImplicitAssignmentOperatorBody(Args);
1584   } else if (Body) {
1585     EmitFunctionBody(Body);
1586   } else
1587     llvm_unreachable("no definition for emitted function");
1588 
1589   // C++11 [stmt.return]p2:
1590   //   Flowing off the end of a function [...] results in undefined behavior in
1591   //   a value-returning function.
1592   // C11 6.9.1p12:
1593   //   If the '}' that terminates a function is reached, and the value of the
1594   //   function call is used by the caller, the behavior is undefined.
1595   if (getLangOpts().CPlusPlus && !FD->hasImplicitReturnZero() && !SawAsmBlock &&
1596       !FD->getReturnType()->isVoidType() && Builder.GetInsertBlock()) {
1597     bool ShouldEmitUnreachable =
1598         CGM.getCodeGenOpts().StrictReturn ||
1599         !CGM.MayDropFunctionReturn(FD->getASTContext(), FD->getReturnType());
1600     if (SanOpts.has(SanitizerKind::Return)) {
1601       SanitizerScope SanScope(this);
1602       llvm::Value *IsFalse = Builder.getFalse();
1603       EmitCheck(std::make_pair(IsFalse, SanitizerKind::Return),
1604                 SanitizerHandler::MissingReturn,
1605                 EmitCheckSourceLocation(FD->getLocation()), {});
1606     } else if (ShouldEmitUnreachable) {
1607       if (CGM.getCodeGenOpts().OptimizationLevel == 0)
1608         EmitTrapCall(llvm::Intrinsic::trap);
1609     }
1610     if (SanOpts.has(SanitizerKind::Return) || ShouldEmitUnreachable) {
1611       Builder.CreateUnreachable();
1612       Builder.ClearInsertionPoint();
1613     }
1614   }
1615 
1616   // Emit the standard function epilogue.
1617   FinishFunction(BodyRange.getEnd());
1618 
1619   PGO.verifyCounterMap();
1620 
1621   // If we haven't marked the function nothrow through other means, do
1622   // a quick pass now to see if we can.
1623   if (!CurFn->doesNotThrow())
1624     TryMarkNoThrow(CurFn);
1625 }
1626 
1627 /// ContainsLabel - Return true if the statement contains a label in it.  If
1628 /// this statement is not executed normally, it not containing a label means
1629 /// that we can just remove the code.
1630 bool CodeGenFunction::ContainsLabel(const Stmt *S, bool IgnoreCaseStmts) {
1631   // Null statement, not a label!
1632   if (!S) return false;
1633 
1634   // If this is a label, we have to emit the code, consider something like:
1635   // if (0) {  ...  foo:  bar(); }  goto foo;
1636   //
1637   // TODO: If anyone cared, we could track __label__'s, since we know that you
1638   // can't jump to one from outside their declared region.
1639   if (isa<LabelStmt>(S))
1640     return true;
1641 
1642   // If this is a case/default statement, and we haven't seen a switch, we have
1643   // to emit the code.
1644   if (isa<SwitchCase>(S) && !IgnoreCaseStmts)
1645     return true;
1646 
1647   // If this is a switch statement, we want to ignore cases below it.
1648   if (isa<SwitchStmt>(S))
1649     IgnoreCaseStmts = true;
1650 
1651   // Scan subexpressions for verboten labels.
1652   for (const Stmt *SubStmt : S->children())
1653     if (ContainsLabel(SubStmt, IgnoreCaseStmts))
1654       return true;
1655 
1656   return false;
1657 }
1658 
1659 /// containsBreak - Return true if the statement contains a break out of it.
1660 /// If the statement (recursively) contains a switch or loop with a break
1661 /// inside of it, this is fine.
1662 bool CodeGenFunction::containsBreak(const Stmt *S) {
1663   // Null statement, not a label!
1664   if (!S) return false;
1665 
1666   // If this is a switch or loop that defines its own break scope, then we can
1667   // include it and anything inside of it.
1668   if (isa<SwitchStmt>(S) || isa<WhileStmt>(S) || isa<DoStmt>(S) ||
1669       isa<ForStmt>(S))
1670     return false;
1671 
1672   if (isa<BreakStmt>(S))
1673     return true;
1674 
1675   // Scan subexpressions for verboten breaks.
1676   for (const Stmt *SubStmt : S->children())
1677     if (containsBreak(SubStmt))
1678       return true;
1679 
1680   return false;
1681 }
1682 
1683 bool CodeGenFunction::mightAddDeclToScope(const Stmt *S) {
1684   if (!S) return false;
1685 
1686   // Some statement kinds add a scope and thus never add a decl to the current
1687   // scope. Note, this list is longer than the list of statements that might
1688   // have an unscoped decl nested within them, but this way is conservatively
1689   // correct even if more statement kinds are added.
1690   if (isa<IfStmt>(S) || isa<SwitchStmt>(S) || isa<WhileStmt>(S) ||
1691       isa<DoStmt>(S) || isa<ForStmt>(S) || isa<CompoundStmt>(S) ||
1692       isa<CXXForRangeStmt>(S) || isa<CXXTryStmt>(S) ||
1693       isa<ObjCForCollectionStmt>(S) || isa<ObjCAtTryStmt>(S))
1694     return false;
1695 
1696   if (isa<DeclStmt>(S))
1697     return true;
1698 
1699   for (const Stmt *SubStmt : S->children())
1700     if (mightAddDeclToScope(SubStmt))
1701       return true;
1702 
1703   return false;
1704 }
1705 
1706 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold
1707 /// to a constant, or if it does but contains a label, return false.  If it
1708 /// constant folds return true and set the boolean result in Result.
1709 bool CodeGenFunction::ConstantFoldsToSimpleInteger(const Expr *Cond,
1710                                                    bool &ResultBool,
1711                                                    bool AllowLabels) {
1712   // If MC/DC is enabled, disable folding so that we can instrument all
1713   // conditions to yield complete test vectors. We still keep track of
1714   // folded conditions during region mapping and visualization.
1715   if (!AllowLabels && CGM.getCodeGenOpts().hasProfileClangInstr() &&
1716       CGM.getCodeGenOpts().MCDCCoverage)
1717     return false;
1718 
1719   llvm::APSInt ResultInt;
1720   if (!ConstantFoldsToSimpleInteger(Cond, ResultInt, AllowLabels))
1721     return false;
1722 
1723   ResultBool = ResultInt.getBoolValue();
1724   return true;
1725 }
1726 
1727 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold
1728 /// to a constant, or if it does but contains a label, return false.  If it
1729 /// constant folds return true and set the folded value.
1730 bool CodeGenFunction::ConstantFoldsToSimpleInteger(const Expr *Cond,
1731                                                    llvm::APSInt &ResultInt,
1732                                                    bool AllowLabels) {
1733   // FIXME: Rename and handle conversion of other evaluatable things
1734   // to bool.
1735   Expr::EvalResult Result;
1736   if (!Cond->EvaluateAsInt(Result, getContext()))
1737     return false;  // Not foldable, not integer or not fully evaluatable.
1738 
1739   llvm::APSInt Int = Result.Val.getInt();
1740   if (!AllowLabels && CodeGenFunction::ContainsLabel(Cond))
1741     return false;  // Contains a label.
1742 
1743   PGO.markStmtMaybeUsed(Cond);
1744   ResultInt = Int;
1745   return true;
1746 }
1747 
1748 /// Strip parentheses and simplistic logical-NOT operators.
1749 const Expr *CodeGenFunction::stripCond(const Expr *C) {
1750   while (const UnaryOperator *Op = dyn_cast<UnaryOperator>(C->IgnoreParens())) {
1751     if (Op->getOpcode() != UO_LNot)
1752       break;
1753     C = Op->getSubExpr();
1754   }
1755   return C->IgnoreParens();
1756 }
1757 
1758 /// Determine whether the given condition is an instrumentable condition
1759 /// (i.e. no "&&" or "||").
1760 bool CodeGenFunction::isInstrumentedCondition(const Expr *C) {
1761   const BinaryOperator *BOp = dyn_cast<BinaryOperator>(stripCond(C));
1762   return (!BOp || !BOp->isLogicalOp());
1763 }
1764 
1765 /// EmitBranchToCounterBlock - Emit a conditional branch to a new block that
1766 /// increments a profile counter based on the semantics of the given logical
1767 /// operator opcode.  This is used to instrument branch condition coverage for
1768 /// logical operators.
1769 void CodeGenFunction::EmitBranchToCounterBlock(
1770     const Expr *Cond, BinaryOperator::Opcode LOp, llvm::BasicBlock *TrueBlock,
1771     llvm::BasicBlock *FalseBlock, uint64_t TrueCount /* = 0 */,
1772     Stmt::Likelihood LH /* =None */, const Expr *CntrIdx /* = nullptr */) {
1773   // If not instrumenting, just emit a branch.
1774   bool InstrumentRegions = CGM.getCodeGenOpts().hasProfileClangInstr();
1775   if (!InstrumentRegions || !isInstrumentedCondition(Cond))
1776     return EmitBranchOnBoolExpr(Cond, TrueBlock, FalseBlock, TrueCount, LH);
1777 
1778   const Stmt *CntrStmt = (CntrIdx ? CntrIdx : Cond);
1779 
1780   llvm::BasicBlock *ThenBlock = nullptr;
1781   llvm::BasicBlock *ElseBlock = nullptr;
1782   llvm::BasicBlock *NextBlock = nullptr;
1783 
1784   // Create the block we'll use to increment the appropriate counter.
1785   llvm::BasicBlock *CounterIncrBlock = createBasicBlock("lop.rhscnt");
1786 
1787   // Set block pointers according to Logical-AND (BO_LAnd) semantics. This
1788   // means we need to evaluate the condition and increment the counter on TRUE:
1789   //
1790   // if (Cond)
1791   //   goto CounterIncrBlock;
1792   // else
1793   //   goto FalseBlock;
1794   //
1795   // CounterIncrBlock:
1796   //   Counter++;
1797   //   goto TrueBlock;
1798 
1799   if (LOp == BO_LAnd) {
1800     ThenBlock = CounterIncrBlock;
1801     ElseBlock = FalseBlock;
1802     NextBlock = TrueBlock;
1803   }
1804 
1805   // Set block pointers according to Logical-OR (BO_LOr) semantics. This means
1806   // we need to evaluate the condition and increment the counter on FALSE:
1807   //
1808   // if (Cond)
1809   //   goto TrueBlock;
1810   // else
1811   //   goto CounterIncrBlock;
1812   //
1813   // CounterIncrBlock:
1814   //   Counter++;
1815   //   goto FalseBlock;
1816 
1817   else if (LOp == BO_LOr) {
1818     ThenBlock = TrueBlock;
1819     ElseBlock = CounterIncrBlock;
1820     NextBlock = FalseBlock;
1821   } else {
1822     llvm_unreachable("Expected Opcode must be that of a Logical Operator");
1823   }
1824 
1825   // Emit Branch based on condition.
1826   EmitBranchOnBoolExpr(Cond, ThenBlock, ElseBlock, TrueCount, LH);
1827 
1828   // Emit the block containing the counter increment(s).
1829   EmitBlock(CounterIncrBlock);
1830 
1831   // Increment corresponding counter; if index not provided, use Cond as index.
1832   incrementProfileCounter(CntrStmt);
1833 
1834   // Go to the next block.
1835   EmitBranch(NextBlock);
1836 }
1837 
1838 /// EmitBranchOnBoolExpr - Emit a branch on a boolean condition (e.g. for an if
1839 /// statement) to the specified blocks.  Based on the condition, this might try
1840 /// to simplify the codegen of the conditional based on the branch.
1841 /// \param LH The value of the likelihood attribute on the True branch.
1842 /// \param ConditionalOp Used by MC/DC code coverage to track the result of the
1843 /// ConditionalOperator (ternary) through a recursive call for the operator's
1844 /// LHS and RHS nodes.
1845 void CodeGenFunction::EmitBranchOnBoolExpr(
1846     const Expr *Cond, llvm::BasicBlock *TrueBlock, llvm::BasicBlock *FalseBlock,
1847     uint64_t TrueCount, Stmt::Likelihood LH, const Expr *ConditionalOp) {
1848   Cond = Cond->IgnoreParens();
1849 
1850   if (const BinaryOperator *CondBOp = dyn_cast<BinaryOperator>(Cond)) {
1851     // Handle X && Y in a condition.
1852     if (CondBOp->getOpcode() == BO_LAnd) {
1853       MCDCLogOpStack.push_back(CondBOp);
1854 
1855       // If we have "1 && X", simplify the code.  "0 && X" would have constant
1856       // folded if the case was simple enough.
1857       bool ConstantBool = false;
1858       if (ConstantFoldsToSimpleInteger(CondBOp->getLHS(), ConstantBool) &&
1859           ConstantBool) {
1860         // br(1 && X) -> br(X).
1861         incrementProfileCounter(CondBOp);
1862         EmitBranchToCounterBlock(CondBOp->getRHS(), BO_LAnd, TrueBlock,
1863                                  FalseBlock, TrueCount, LH);
1864         MCDCLogOpStack.pop_back();
1865         return;
1866       }
1867 
1868       // If we have "X && 1", simplify the code to use an uncond branch.
1869       // "X && 0" would have been constant folded to 0.
1870       if (ConstantFoldsToSimpleInteger(CondBOp->getRHS(), ConstantBool) &&
1871           ConstantBool) {
1872         // br(X && 1) -> br(X).
1873         EmitBranchToCounterBlock(CondBOp->getLHS(), BO_LAnd, TrueBlock,
1874                                  FalseBlock, TrueCount, LH, CondBOp);
1875         MCDCLogOpStack.pop_back();
1876         return;
1877       }
1878 
1879       // Emit the LHS as a conditional.  If the LHS conditional is false, we
1880       // want to jump to the FalseBlock.
1881       llvm::BasicBlock *LHSTrue = createBasicBlock("land.lhs.true");
1882       // The counter tells us how often we evaluate RHS, and all of TrueCount
1883       // can be propagated to that branch.
1884       uint64_t RHSCount = getProfileCount(CondBOp->getRHS());
1885 
1886       ConditionalEvaluation eval(*this);
1887       {
1888         ApplyDebugLocation DL(*this, Cond);
1889         // Propagate the likelihood attribute like __builtin_expect
1890         // __builtin_expect(X && Y, 1) -> X and Y are likely
1891         // __builtin_expect(X && Y, 0) -> only Y is unlikely
1892         EmitBranchOnBoolExpr(CondBOp->getLHS(), LHSTrue, FalseBlock, RHSCount,
1893                              LH == Stmt::LH_Unlikely ? Stmt::LH_None : LH);
1894         EmitBlock(LHSTrue);
1895       }
1896 
1897       incrementProfileCounter(CondBOp);
1898       setCurrentProfileCount(getProfileCount(CondBOp->getRHS()));
1899 
1900       // Any temporaries created here are conditional.
1901       eval.begin(*this);
1902       EmitBranchToCounterBlock(CondBOp->getRHS(), BO_LAnd, TrueBlock,
1903                                FalseBlock, TrueCount, LH);
1904       eval.end(*this);
1905       MCDCLogOpStack.pop_back();
1906       return;
1907     }
1908 
1909     if (CondBOp->getOpcode() == BO_LOr) {
1910       MCDCLogOpStack.push_back(CondBOp);
1911 
1912       // If we have "0 || X", simplify the code.  "1 || X" would have constant
1913       // folded if the case was simple enough.
1914       bool ConstantBool = false;
1915       if (ConstantFoldsToSimpleInteger(CondBOp->getLHS(), ConstantBool) &&
1916           !ConstantBool) {
1917         // br(0 || X) -> br(X).
1918         incrementProfileCounter(CondBOp);
1919         EmitBranchToCounterBlock(CondBOp->getRHS(), BO_LOr, TrueBlock,
1920                                  FalseBlock, TrueCount, LH);
1921         MCDCLogOpStack.pop_back();
1922         return;
1923       }
1924 
1925       // If we have "X || 0", simplify the code to use an uncond branch.
1926       // "X || 1" would have been constant folded to 1.
1927       if (ConstantFoldsToSimpleInteger(CondBOp->getRHS(), ConstantBool) &&
1928           !ConstantBool) {
1929         // br(X || 0) -> br(X).
1930         EmitBranchToCounterBlock(CondBOp->getLHS(), BO_LOr, TrueBlock,
1931                                  FalseBlock, TrueCount, LH, CondBOp);
1932         MCDCLogOpStack.pop_back();
1933         return;
1934       }
1935       // Emit the LHS as a conditional.  If the LHS conditional is true, we
1936       // want to jump to the TrueBlock.
1937       llvm::BasicBlock *LHSFalse = createBasicBlock("lor.lhs.false");
1938       // We have the count for entry to the RHS and for the whole expression
1939       // being true, so we can divy up True count between the short circuit and
1940       // the RHS.
1941       uint64_t LHSCount =
1942           getCurrentProfileCount() - getProfileCount(CondBOp->getRHS());
1943       uint64_t RHSCount = TrueCount - LHSCount;
1944 
1945       ConditionalEvaluation eval(*this);
1946       {
1947         // Propagate the likelihood attribute like __builtin_expect
1948         // __builtin_expect(X || Y, 1) -> only Y is likely
1949         // __builtin_expect(X || Y, 0) -> both X and Y are unlikely
1950         ApplyDebugLocation DL(*this, Cond);
1951         EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, LHSFalse, LHSCount,
1952                              LH == Stmt::LH_Likely ? Stmt::LH_None : LH);
1953         EmitBlock(LHSFalse);
1954       }
1955 
1956       incrementProfileCounter(CondBOp);
1957       setCurrentProfileCount(getProfileCount(CondBOp->getRHS()));
1958 
1959       // Any temporaries created here are conditional.
1960       eval.begin(*this);
1961       EmitBranchToCounterBlock(CondBOp->getRHS(), BO_LOr, TrueBlock, FalseBlock,
1962                                RHSCount, LH);
1963 
1964       eval.end(*this);
1965       MCDCLogOpStack.pop_back();
1966       return;
1967     }
1968   }
1969 
1970   if (const UnaryOperator *CondUOp = dyn_cast<UnaryOperator>(Cond)) {
1971     // br(!x, t, f) -> br(x, f, t)
1972     // Avoid doing this optimization when instrumenting a condition for MC/DC.
1973     // LNot is taken as part of the condition for simplicity, and changing its
1974     // sense negatively impacts test vector tracking.
1975     bool MCDCCondition = CGM.getCodeGenOpts().hasProfileClangInstr() &&
1976                          CGM.getCodeGenOpts().MCDCCoverage &&
1977                          isInstrumentedCondition(Cond);
1978     if (CondUOp->getOpcode() == UO_LNot && !MCDCCondition) {
1979       // Negate the count.
1980       uint64_t FalseCount = getCurrentProfileCount() - TrueCount;
1981       // The values of the enum are chosen to make this negation possible.
1982       LH = static_cast<Stmt::Likelihood>(-LH);
1983       // Negate the condition and swap the destination blocks.
1984       return EmitBranchOnBoolExpr(CondUOp->getSubExpr(), FalseBlock, TrueBlock,
1985                                   FalseCount, LH);
1986     }
1987   }
1988 
1989   if (const ConditionalOperator *CondOp = dyn_cast<ConditionalOperator>(Cond)) {
1990     // br(c ? x : y, t, f) -> br(c, br(x, t, f), br(y, t, f))
1991     llvm::BasicBlock *LHSBlock = createBasicBlock("cond.true");
1992     llvm::BasicBlock *RHSBlock = createBasicBlock("cond.false");
1993 
1994     // The ConditionalOperator itself has no likelihood information for its
1995     // true and false branches. This matches the behavior of __builtin_expect.
1996     ConditionalEvaluation cond(*this);
1997     EmitBranchOnBoolExpr(CondOp->getCond(), LHSBlock, RHSBlock,
1998                          getProfileCount(CondOp), Stmt::LH_None);
1999 
2000     // When computing PGO branch weights, we only know the overall count for
2001     // the true block. This code is essentially doing tail duplication of the
2002     // naive code-gen, introducing new edges for which counts are not
2003     // available. Divide the counts proportionally between the LHS and RHS of
2004     // the conditional operator.
2005     uint64_t LHSScaledTrueCount = 0;
2006     if (TrueCount) {
2007       double LHSRatio =
2008           getProfileCount(CondOp) / (double)getCurrentProfileCount();
2009       LHSScaledTrueCount = TrueCount * LHSRatio;
2010     }
2011 
2012     cond.begin(*this);
2013     EmitBlock(LHSBlock);
2014     incrementProfileCounter(CondOp);
2015     {
2016       ApplyDebugLocation DL(*this, Cond);
2017       EmitBranchOnBoolExpr(CondOp->getLHS(), TrueBlock, FalseBlock,
2018                            LHSScaledTrueCount, LH, CondOp);
2019     }
2020     cond.end(*this);
2021 
2022     cond.begin(*this);
2023     EmitBlock(RHSBlock);
2024     EmitBranchOnBoolExpr(CondOp->getRHS(), TrueBlock, FalseBlock,
2025                          TrueCount - LHSScaledTrueCount, LH, CondOp);
2026     cond.end(*this);
2027 
2028     return;
2029   }
2030 
2031   if (const CXXThrowExpr *Throw = dyn_cast<CXXThrowExpr>(Cond)) {
2032     // Conditional operator handling can give us a throw expression as a
2033     // condition for a case like:
2034     //   br(c ? throw x : y, t, f) -> br(c, br(throw x, t, f), br(y, t, f)
2035     // Fold this to:
2036     //   br(c, throw x, br(y, t, f))
2037     EmitCXXThrowExpr(Throw, /*KeepInsertionPoint*/false);
2038     return;
2039   }
2040 
2041   // Emit the code with the fully general case.
2042   llvm::Value *CondV;
2043   {
2044     ApplyDebugLocation DL(*this, Cond);
2045     CondV = EvaluateExprAsBool(Cond);
2046   }
2047 
2048   // If not at the top of the logical operator nest, update MCDC temp with the
2049   // boolean result of the evaluated condition.
2050   if (!MCDCLogOpStack.empty()) {
2051     const Expr *MCDCBaseExpr = Cond;
2052     // When a nested ConditionalOperator (ternary) is encountered in a boolean
2053     // expression, MC/DC tracks the result of the ternary, and this is tied to
2054     // the ConditionalOperator expression and not the ternary's LHS or RHS. If
2055     // this is the case, the ConditionalOperator expression is passed through
2056     // the ConditionalOp parameter and then used as the MCDC base expression.
2057     if (ConditionalOp)
2058       MCDCBaseExpr = ConditionalOp;
2059 
2060     maybeUpdateMCDCCondBitmap(MCDCBaseExpr, CondV);
2061   }
2062 
2063   llvm::MDNode *Weights = nullptr;
2064   llvm::MDNode *Unpredictable = nullptr;
2065 
2066   // If the branch has a condition wrapped by __builtin_unpredictable,
2067   // create metadata that specifies that the branch is unpredictable.
2068   // Don't bother if not optimizing because that metadata would not be used.
2069   auto *Call = dyn_cast<CallExpr>(Cond->IgnoreImpCasts());
2070   if (Call && CGM.getCodeGenOpts().OptimizationLevel != 0) {
2071     auto *FD = dyn_cast_or_null<FunctionDecl>(Call->getCalleeDecl());
2072     if (FD && FD->getBuiltinID() == Builtin::BI__builtin_unpredictable) {
2073       llvm::MDBuilder MDHelper(getLLVMContext());
2074       Unpredictable = MDHelper.createUnpredictable();
2075     }
2076   }
2077 
2078   // If there is a Likelihood knowledge for the cond, lower it.
2079   // Note that if not optimizing this won't emit anything.
2080   llvm::Value *NewCondV = emitCondLikelihoodViaExpectIntrinsic(CondV, LH);
2081   if (CondV != NewCondV)
2082     CondV = NewCondV;
2083   else {
2084     // Otherwise, lower profile counts. Note that we do this even at -O0.
2085     uint64_t CurrentCount = std::max(getCurrentProfileCount(), TrueCount);
2086     Weights = createProfileWeights(TrueCount, CurrentCount - TrueCount);
2087   }
2088 
2089   Builder.CreateCondBr(CondV, TrueBlock, FalseBlock, Weights, Unpredictable);
2090 }
2091 
2092 /// ErrorUnsupported - Print out an error that codegen doesn't support the
2093 /// specified stmt yet.
2094 void CodeGenFunction::ErrorUnsupported(const Stmt *S, const char *Type) {
2095   CGM.ErrorUnsupported(S, Type);
2096 }
2097 
2098 /// emitNonZeroVLAInit - Emit the "zero" initialization of a
2099 /// variable-length array whose elements have a non-zero bit-pattern.
2100 ///
2101 /// \param baseType the inner-most element type of the array
2102 /// \param src - a char* pointing to the bit-pattern for a single
2103 /// base element of the array
2104 /// \param sizeInChars - the total size of the VLA, in chars
2105 static void emitNonZeroVLAInit(CodeGenFunction &CGF, QualType baseType,
2106                                Address dest, Address src,
2107                                llvm::Value *sizeInChars) {
2108   CGBuilderTy &Builder = CGF.Builder;
2109 
2110   CharUnits baseSize = CGF.getContext().getTypeSizeInChars(baseType);
2111   llvm::Value *baseSizeInChars
2112     = llvm::ConstantInt::get(CGF.IntPtrTy, baseSize.getQuantity());
2113 
2114   Address begin = dest.withElementType(CGF.Int8Ty);
2115   llvm::Value *end = Builder.CreateInBoundsGEP(begin.getElementType(),
2116                                                begin.emitRawPointer(CGF),
2117                                                sizeInChars, "vla.end");
2118 
2119   llvm::BasicBlock *originBB = CGF.Builder.GetInsertBlock();
2120   llvm::BasicBlock *loopBB = CGF.createBasicBlock("vla-init.loop");
2121   llvm::BasicBlock *contBB = CGF.createBasicBlock("vla-init.cont");
2122 
2123   // Make a loop over the VLA.  C99 guarantees that the VLA element
2124   // count must be nonzero.
2125   CGF.EmitBlock(loopBB);
2126 
2127   llvm::PHINode *cur = Builder.CreatePHI(begin.getType(), 2, "vla.cur");
2128   cur->addIncoming(begin.emitRawPointer(CGF), originBB);
2129 
2130   CharUnits curAlign =
2131     dest.getAlignment().alignmentOfArrayElement(baseSize);
2132 
2133   // memcpy the individual element bit-pattern.
2134   Builder.CreateMemCpy(Address(cur, CGF.Int8Ty, curAlign), src, baseSizeInChars,
2135                        /*volatile*/ false);
2136 
2137   // Go to the next element.
2138   llvm::Value *next =
2139     Builder.CreateInBoundsGEP(CGF.Int8Ty, cur, baseSizeInChars, "vla.next");
2140 
2141   // Leave if that's the end of the VLA.
2142   llvm::Value *done = Builder.CreateICmpEQ(next, end, "vla-init.isdone");
2143   Builder.CreateCondBr(done, contBB, loopBB);
2144   cur->addIncoming(next, loopBB);
2145 
2146   CGF.EmitBlock(contBB);
2147 }
2148 
2149 void
2150 CodeGenFunction::EmitNullInitialization(Address DestPtr, QualType Ty) {
2151   // Ignore empty classes in C++.
2152   if (getLangOpts().CPlusPlus) {
2153     if (const RecordType *RT = Ty->getAs<RecordType>()) {
2154       if (cast<CXXRecordDecl>(RT->getDecl())->isEmpty())
2155         return;
2156     }
2157   }
2158 
2159   if (DestPtr.getElementType() != Int8Ty)
2160     DestPtr = DestPtr.withElementType(Int8Ty);
2161 
2162   // Get size and alignment info for this aggregate.
2163   CharUnits size = getContext().getTypeSizeInChars(Ty);
2164 
2165   llvm::Value *SizeVal;
2166   const VariableArrayType *vla;
2167 
2168   // Don't bother emitting a zero-byte memset.
2169   if (size.isZero()) {
2170     // But note that getTypeInfo returns 0 for a VLA.
2171     if (const VariableArrayType *vlaType =
2172           dyn_cast_or_null<VariableArrayType>(
2173                                           getContext().getAsArrayType(Ty))) {
2174       auto VlaSize = getVLASize(vlaType);
2175       SizeVal = VlaSize.NumElts;
2176       CharUnits eltSize = getContext().getTypeSizeInChars(VlaSize.Type);
2177       if (!eltSize.isOne())
2178         SizeVal = Builder.CreateNUWMul(SizeVal, CGM.getSize(eltSize));
2179       vla = vlaType;
2180     } else {
2181       return;
2182     }
2183   } else {
2184     SizeVal = CGM.getSize(size);
2185     vla = nullptr;
2186   }
2187 
2188   // If the type contains a pointer to data member we can't memset it to zero.
2189   // Instead, create a null constant and copy it to the destination.
2190   // TODO: there are other patterns besides zero that we can usefully memset,
2191   // like -1, which happens to be the pattern used by member-pointers.
2192   if (!CGM.getTypes().isZeroInitializable(Ty)) {
2193     // For a VLA, emit a single element, then splat that over the VLA.
2194     if (vla) Ty = getContext().getBaseElementType(vla);
2195 
2196     llvm::Constant *NullConstant = CGM.EmitNullConstant(Ty);
2197 
2198     llvm::GlobalVariable *NullVariable =
2199       new llvm::GlobalVariable(CGM.getModule(), NullConstant->getType(),
2200                                /*isConstant=*/true,
2201                                llvm::GlobalVariable::PrivateLinkage,
2202                                NullConstant, Twine());
2203     CharUnits NullAlign = DestPtr.getAlignment();
2204     NullVariable->setAlignment(NullAlign.getAsAlign());
2205     Address SrcPtr(NullVariable, Builder.getInt8Ty(), NullAlign);
2206 
2207     if (vla) return emitNonZeroVLAInit(*this, Ty, DestPtr, SrcPtr, SizeVal);
2208 
2209     // Get and call the appropriate llvm.memcpy overload.
2210     Builder.CreateMemCpy(DestPtr, SrcPtr, SizeVal, false);
2211     return;
2212   }
2213 
2214   // Otherwise, just memset the whole thing to zero.  This is legal
2215   // because in LLVM, all default initializers (other than the ones we just
2216   // handled above) are guaranteed to have a bit pattern of all zeros.
2217   Builder.CreateMemSet(DestPtr, Builder.getInt8(0), SizeVal, false);
2218 }
2219 
2220 llvm::BlockAddress *CodeGenFunction::GetAddrOfLabel(const LabelDecl *L) {
2221   // Make sure that there is a block for the indirect goto.
2222   if (!IndirectBranch)
2223     GetIndirectGotoBlock();
2224 
2225   llvm::BasicBlock *BB = getJumpDestForLabel(L).getBlock();
2226 
2227   // Make sure the indirect branch includes all of the address-taken blocks.
2228   IndirectBranch->addDestination(BB);
2229   return llvm::BlockAddress::get(CurFn, BB);
2230 }
2231 
2232 llvm::BasicBlock *CodeGenFunction::GetIndirectGotoBlock() {
2233   // If we already made the indirect branch for indirect goto, return its block.
2234   if (IndirectBranch) return IndirectBranch->getParent();
2235 
2236   CGBuilderTy TmpBuilder(*this, createBasicBlock("indirectgoto"));
2237 
2238   // Create the PHI node that indirect gotos will add entries to.
2239   llvm::Value *DestVal = TmpBuilder.CreatePHI(Int8PtrTy, 0,
2240                                               "indirect.goto.dest");
2241 
2242   // Create the indirect branch instruction.
2243   IndirectBranch = TmpBuilder.CreateIndirectBr(DestVal);
2244   return IndirectBranch->getParent();
2245 }
2246 
2247 /// Computes the length of an array in elements, as well as the base
2248 /// element type and a properly-typed first element pointer.
2249 llvm::Value *CodeGenFunction::emitArrayLength(const ArrayType *origArrayType,
2250                                               QualType &baseType,
2251                                               Address &addr) {
2252   const ArrayType *arrayType = origArrayType;
2253 
2254   // If it's a VLA, we have to load the stored size.  Note that
2255   // this is the size of the VLA in bytes, not its size in elements.
2256   llvm::Value *numVLAElements = nullptr;
2257   if (isa<VariableArrayType>(arrayType)) {
2258     numVLAElements = getVLASize(cast<VariableArrayType>(arrayType)).NumElts;
2259 
2260     // Walk into all VLAs.  This doesn't require changes to addr,
2261     // which has type T* where T is the first non-VLA element type.
2262     do {
2263       QualType elementType = arrayType->getElementType();
2264       arrayType = getContext().getAsArrayType(elementType);
2265 
2266       // If we only have VLA components, 'addr' requires no adjustment.
2267       if (!arrayType) {
2268         baseType = elementType;
2269         return numVLAElements;
2270       }
2271     } while (isa<VariableArrayType>(arrayType));
2272 
2273     // We get out here only if we find a constant array type
2274     // inside the VLA.
2275   }
2276 
2277   // We have some number of constant-length arrays, so addr should
2278   // have LLVM type [M x [N x [...]]]*.  Build a GEP that walks
2279   // down to the first element of addr.
2280   SmallVector<llvm::Value*, 8> gepIndices;
2281 
2282   // GEP down to the array type.
2283   llvm::ConstantInt *zero = Builder.getInt32(0);
2284   gepIndices.push_back(zero);
2285 
2286   uint64_t countFromCLAs = 1;
2287   QualType eltType;
2288 
2289   llvm::ArrayType *llvmArrayType =
2290     dyn_cast<llvm::ArrayType>(addr.getElementType());
2291   while (llvmArrayType) {
2292     assert(isa<ConstantArrayType>(arrayType));
2293     assert(cast<ConstantArrayType>(arrayType)->getZExtSize() ==
2294            llvmArrayType->getNumElements());
2295 
2296     gepIndices.push_back(zero);
2297     countFromCLAs *= llvmArrayType->getNumElements();
2298     eltType = arrayType->getElementType();
2299 
2300     llvmArrayType =
2301       dyn_cast<llvm::ArrayType>(llvmArrayType->getElementType());
2302     arrayType = getContext().getAsArrayType(arrayType->getElementType());
2303     assert((!llvmArrayType || arrayType) &&
2304            "LLVM and Clang types are out-of-synch");
2305   }
2306 
2307   if (arrayType) {
2308     // From this point onwards, the Clang array type has been emitted
2309     // as some other type (probably a packed struct). Compute the array
2310     // size, and just emit the 'begin' expression as a bitcast.
2311     while (arrayType) {
2312       countFromCLAs *= cast<ConstantArrayType>(arrayType)->getZExtSize();
2313       eltType = arrayType->getElementType();
2314       arrayType = getContext().getAsArrayType(eltType);
2315     }
2316 
2317     llvm::Type *baseType = ConvertType(eltType);
2318     addr = addr.withElementType(baseType);
2319   } else {
2320     // Create the actual GEP.
2321     addr = Address(Builder.CreateInBoundsGEP(addr.getElementType(),
2322                                              addr.emitRawPointer(*this),
2323                                              gepIndices, "array.begin"),
2324                    ConvertTypeForMem(eltType), addr.getAlignment());
2325   }
2326 
2327   baseType = eltType;
2328 
2329   llvm::Value *numElements
2330     = llvm::ConstantInt::get(SizeTy, countFromCLAs);
2331 
2332   // If we had any VLA dimensions, factor them in.
2333   if (numVLAElements)
2334     numElements = Builder.CreateNUWMul(numVLAElements, numElements);
2335 
2336   return numElements;
2337 }
2338 
2339 CodeGenFunction::VlaSizePair CodeGenFunction::getVLASize(QualType type) {
2340   const VariableArrayType *vla = getContext().getAsVariableArrayType(type);
2341   assert(vla && "type was not a variable array type!");
2342   return getVLASize(vla);
2343 }
2344 
2345 CodeGenFunction::VlaSizePair
2346 CodeGenFunction::getVLASize(const VariableArrayType *type) {
2347   // The number of elements so far; always size_t.
2348   llvm::Value *numElements = nullptr;
2349 
2350   QualType elementType;
2351   do {
2352     elementType = type->getElementType();
2353     llvm::Value *vlaSize = VLASizeMap[type->getSizeExpr()];
2354     assert(vlaSize && "no size for VLA!");
2355     assert(vlaSize->getType() == SizeTy);
2356 
2357     if (!numElements) {
2358       numElements = vlaSize;
2359     } else {
2360       // It's undefined behavior if this wraps around, so mark it that way.
2361       // FIXME: Teach -fsanitize=undefined to trap this.
2362       numElements = Builder.CreateNUWMul(numElements, vlaSize);
2363     }
2364   } while ((type = getContext().getAsVariableArrayType(elementType)));
2365 
2366   return { numElements, elementType };
2367 }
2368 
2369 CodeGenFunction::VlaSizePair
2370 CodeGenFunction::getVLAElements1D(QualType type) {
2371   const VariableArrayType *vla = getContext().getAsVariableArrayType(type);
2372   assert(vla && "type was not a variable array type!");
2373   return getVLAElements1D(vla);
2374 }
2375 
2376 CodeGenFunction::VlaSizePair
2377 CodeGenFunction::getVLAElements1D(const VariableArrayType *Vla) {
2378   llvm::Value *VlaSize = VLASizeMap[Vla->getSizeExpr()];
2379   assert(VlaSize && "no size for VLA!");
2380   assert(VlaSize->getType() == SizeTy);
2381   return { VlaSize, Vla->getElementType() };
2382 }
2383 
2384 void CodeGenFunction::EmitVariablyModifiedType(QualType type) {
2385   assert(type->isVariablyModifiedType() &&
2386          "Must pass variably modified type to EmitVLASizes!");
2387 
2388   EnsureInsertPoint();
2389 
2390   // We're going to walk down into the type and look for VLA
2391   // expressions.
2392   do {
2393     assert(type->isVariablyModifiedType());
2394 
2395     const Type *ty = type.getTypePtr();
2396     switch (ty->getTypeClass()) {
2397 
2398 #define TYPE(Class, Base)
2399 #define ABSTRACT_TYPE(Class, Base)
2400 #define NON_CANONICAL_TYPE(Class, Base)
2401 #define DEPENDENT_TYPE(Class, Base) case Type::Class:
2402 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base)
2403 #include "clang/AST/TypeNodes.inc"
2404       llvm_unreachable("unexpected dependent type!");
2405 
2406     // These types are never variably-modified.
2407     case Type::Builtin:
2408     case Type::Complex:
2409     case Type::Vector:
2410     case Type::ExtVector:
2411     case Type::ConstantMatrix:
2412     case Type::Record:
2413     case Type::Enum:
2414     case Type::Using:
2415     case Type::TemplateSpecialization:
2416     case Type::ObjCTypeParam:
2417     case Type::ObjCObject:
2418     case Type::ObjCInterface:
2419     case Type::ObjCObjectPointer:
2420     case Type::BitInt:
2421       llvm_unreachable("type class is never variably-modified!");
2422 
2423     case Type::Elaborated:
2424       type = cast<ElaboratedType>(ty)->getNamedType();
2425       break;
2426 
2427     case Type::Adjusted:
2428       type = cast<AdjustedType>(ty)->getAdjustedType();
2429       break;
2430 
2431     case Type::Decayed:
2432       type = cast<DecayedType>(ty)->getPointeeType();
2433       break;
2434 
2435     case Type::Pointer:
2436       type = cast<PointerType>(ty)->getPointeeType();
2437       break;
2438 
2439     case Type::BlockPointer:
2440       type = cast<BlockPointerType>(ty)->getPointeeType();
2441       break;
2442 
2443     case Type::LValueReference:
2444     case Type::RValueReference:
2445       type = cast<ReferenceType>(ty)->getPointeeType();
2446       break;
2447 
2448     case Type::MemberPointer:
2449       type = cast<MemberPointerType>(ty)->getPointeeType();
2450       break;
2451 
2452     case Type::ArrayParameter:
2453     case Type::ConstantArray:
2454     case Type::IncompleteArray:
2455       // Losing element qualification here is fine.
2456       type = cast<ArrayType>(ty)->getElementType();
2457       break;
2458 
2459     case Type::VariableArray: {
2460       // Losing element qualification here is fine.
2461       const VariableArrayType *vat = cast<VariableArrayType>(ty);
2462 
2463       // Unknown size indication requires no size computation.
2464       // Otherwise, evaluate and record it.
2465       if (const Expr *sizeExpr = vat->getSizeExpr()) {
2466         // It's possible that we might have emitted this already,
2467         // e.g. with a typedef and a pointer to it.
2468         llvm::Value *&entry = VLASizeMap[sizeExpr];
2469         if (!entry) {
2470           llvm::Value *size = EmitScalarExpr(sizeExpr);
2471 
2472           // C11 6.7.6.2p5:
2473           //   If the size is an expression that is not an integer constant
2474           //   expression [...] each time it is evaluated it shall have a value
2475           //   greater than zero.
2476           if (SanOpts.has(SanitizerKind::VLABound)) {
2477             SanitizerScope SanScope(this);
2478             llvm::Value *Zero = llvm::Constant::getNullValue(size->getType());
2479             clang::QualType SEType = sizeExpr->getType();
2480             llvm::Value *CheckCondition =
2481                 SEType->isSignedIntegerType()
2482                     ? Builder.CreateICmpSGT(size, Zero)
2483                     : Builder.CreateICmpUGT(size, Zero);
2484             llvm::Constant *StaticArgs[] = {
2485                 EmitCheckSourceLocation(sizeExpr->getBeginLoc()),
2486                 EmitCheckTypeDescriptor(SEType)};
2487             EmitCheck(std::make_pair(CheckCondition, SanitizerKind::VLABound),
2488                       SanitizerHandler::VLABoundNotPositive, StaticArgs, size);
2489           }
2490 
2491           // Always zexting here would be wrong if it weren't
2492           // undefined behavior to have a negative bound.
2493           // FIXME: What about when size's type is larger than size_t?
2494           entry = Builder.CreateIntCast(size, SizeTy, /*signed*/ false);
2495         }
2496       }
2497       type = vat->getElementType();
2498       break;
2499     }
2500 
2501     case Type::FunctionProto:
2502     case Type::FunctionNoProto:
2503       type = cast<FunctionType>(ty)->getReturnType();
2504       break;
2505 
2506     case Type::Paren:
2507     case Type::TypeOf:
2508     case Type::UnaryTransform:
2509     case Type::Attributed:
2510     case Type::BTFTagAttributed:
2511     case Type::HLSLAttributedResource:
2512     case Type::SubstTemplateTypeParm:
2513     case Type::MacroQualified:
2514     case Type::CountAttributed:
2515       // Keep walking after single level desugaring.
2516       type = type.getSingleStepDesugaredType(getContext());
2517       break;
2518 
2519     case Type::Typedef:
2520     case Type::Decltype:
2521     case Type::Auto:
2522     case Type::DeducedTemplateSpecialization:
2523     case Type::PackIndexing:
2524       // Stop walking: nothing to do.
2525       return;
2526 
2527     case Type::TypeOfExpr:
2528       // Stop walking: emit typeof expression.
2529       EmitIgnoredExpr(cast<TypeOfExprType>(ty)->getUnderlyingExpr());
2530       return;
2531 
2532     case Type::Atomic:
2533       type = cast<AtomicType>(ty)->getValueType();
2534       break;
2535 
2536     case Type::Pipe:
2537       type = cast<PipeType>(ty)->getElementType();
2538       break;
2539     }
2540   } while (type->isVariablyModifiedType());
2541 }
2542 
2543 Address CodeGenFunction::EmitVAListRef(const Expr* E) {
2544   if (getContext().getBuiltinVaListType()->isArrayType())
2545     return EmitPointerWithAlignment(E);
2546   return EmitLValue(E).getAddress();
2547 }
2548 
2549 Address CodeGenFunction::EmitMSVAListRef(const Expr *E) {
2550   return EmitLValue(E).getAddress();
2551 }
2552 
2553 void CodeGenFunction::EmitDeclRefExprDbgValue(const DeclRefExpr *E,
2554                                               const APValue &Init) {
2555   assert(Init.hasValue() && "Invalid DeclRefExpr initializer!");
2556   if (CGDebugInfo *Dbg = getDebugInfo())
2557     if (CGM.getCodeGenOpts().hasReducedDebugInfo())
2558       Dbg->EmitGlobalVariable(E->getDecl(), Init);
2559 }
2560 
2561 CodeGenFunction::PeepholeProtection
2562 CodeGenFunction::protectFromPeepholes(RValue rvalue) {
2563   // At the moment, the only aggressive peephole we do in IR gen
2564   // is trunc(zext) folding, but if we add more, we can easily
2565   // extend this protection.
2566 
2567   if (!rvalue.isScalar()) return PeepholeProtection();
2568   llvm::Value *value = rvalue.getScalarVal();
2569   if (!isa<llvm::ZExtInst>(value)) return PeepholeProtection();
2570 
2571   // Just make an extra bitcast.
2572   assert(HaveInsertPoint());
2573   llvm::Instruction *inst = new llvm::BitCastInst(value, value->getType(), "",
2574                                                   Builder.GetInsertBlock());
2575 
2576   PeepholeProtection protection;
2577   protection.Inst = inst;
2578   return protection;
2579 }
2580 
2581 void CodeGenFunction::unprotectFromPeepholes(PeepholeProtection protection) {
2582   if (!protection.Inst) return;
2583 
2584   // In theory, we could try to duplicate the peepholes now, but whatever.
2585   protection.Inst->eraseFromParent();
2586 }
2587 
2588 void CodeGenFunction::emitAlignmentAssumption(llvm::Value *PtrValue,
2589                                               QualType Ty, SourceLocation Loc,
2590                                               SourceLocation AssumptionLoc,
2591                                               llvm::Value *Alignment,
2592                                               llvm::Value *OffsetValue) {
2593   if (Alignment->getType() != IntPtrTy)
2594     Alignment =
2595         Builder.CreateIntCast(Alignment, IntPtrTy, false, "casted.align");
2596   if (OffsetValue && OffsetValue->getType() != IntPtrTy)
2597     OffsetValue =
2598         Builder.CreateIntCast(OffsetValue, IntPtrTy, true, "casted.offset");
2599   llvm::Value *TheCheck = nullptr;
2600   if (SanOpts.has(SanitizerKind::Alignment)) {
2601     llvm::Value *PtrIntValue =
2602         Builder.CreatePtrToInt(PtrValue, IntPtrTy, "ptrint");
2603 
2604     if (OffsetValue) {
2605       bool IsOffsetZero = false;
2606       if (const auto *CI = dyn_cast<llvm::ConstantInt>(OffsetValue))
2607         IsOffsetZero = CI->isZero();
2608 
2609       if (!IsOffsetZero)
2610         PtrIntValue = Builder.CreateSub(PtrIntValue, OffsetValue, "offsetptr");
2611     }
2612 
2613     llvm::Value *Zero = llvm::ConstantInt::get(IntPtrTy, 0);
2614     llvm::Value *Mask =
2615         Builder.CreateSub(Alignment, llvm::ConstantInt::get(IntPtrTy, 1));
2616     llvm::Value *MaskedPtr = Builder.CreateAnd(PtrIntValue, Mask, "maskedptr");
2617     TheCheck = Builder.CreateICmpEQ(MaskedPtr, Zero, "maskcond");
2618   }
2619   llvm::Instruction *Assumption = Builder.CreateAlignmentAssumption(
2620       CGM.getDataLayout(), PtrValue, Alignment, OffsetValue);
2621 
2622   if (!SanOpts.has(SanitizerKind::Alignment))
2623     return;
2624   emitAlignmentAssumptionCheck(PtrValue, Ty, Loc, AssumptionLoc, Alignment,
2625                                OffsetValue, TheCheck, Assumption);
2626 }
2627 
2628 void CodeGenFunction::emitAlignmentAssumption(llvm::Value *PtrValue,
2629                                               const Expr *E,
2630                                               SourceLocation AssumptionLoc,
2631                                               llvm::Value *Alignment,
2632                                               llvm::Value *OffsetValue) {
2633   QualType Ty = E->getType();
2634   SourceLocation Loc = E->getExprLoc();
2635 
2636   emitAlignmentAssumption(PtrValue, Ty, Loc, AssumptionLoc, Alignment,
2637                           OffsetValue);
2638 }
2639 
2640 llvm::Value *CodeGenFunction::EmitAnnotationCall(llvm::Function *AnnotationFn,
2641                                                  llvm::Value *AnnotatedVal,
2642                                                  StringRef AnnotationStr,
2643                                                  SourceLocation Location,
2644                                                  const AnnotateAttr *Attr) {
2645   SmallVector<llvm::Value *, 5> Args = {
2646       AnnotatedVal,
2647       CGM.EmitAnnotationString(AnnotationStr),
2648       CGM.EmitAnnotationUnit(Location),
2649       CGM.EmitAnnotationLineNo(Location),
2650   };
2651   if (Attr)
2652     Args.push_back(CGM.EmitAnnotationArgs(Attr));
2653   return Builder.CreateCall(AnnotationFn, Args);
2654 }
2655 
2656 void CodeGenFunction::EmitVarAnnotations(const VarDecl *D, llvm::Value *V) {
2657   assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute");
2658   for (const auto *I : D->specific_attrs<AnnotateAttr>())
2659     EmitAnnotationCall(CGM.getIntrinsic(llvm::Intrinsic::var_annotation,
2660                                         {V->getType(), CGM.ConstGlobalsPtrTy}),
2661                        V, I->getAnnotation(), D->getLocation(), I);
2662 }
2663 
2664 Address CodeGenFunction::EmitFieldAnnotations(const FieldDecl *D,
2665                                               Address Addr) {
2666   assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute");
2667   llvm::Value *V = Addr.emitRawPointer(*this);
2668   llvm::Type *VTy = V->getType();
2669   auto *PTy = dyn_cast<llvm::PointerType>(VTy);
2670   unsigned AS = PTy ? PTy->getAddressSpace() : 0;
2671   llvm::PointerType *IntrinTy =
2672       llvm::PointerType::get(CGM.getLLVMContext(), AS);
2673   llvm::Function *F = CGM.getIntrinsic(llvm::Intrinsic::ptr_annotation,
2674                                        {IntrinTy, CGM.ConstGlobalsPtrTy});
2675 
2676   for (const auto *I : D->specific_attrs<AnnotateAttr>()) {
2677     // FIXME Always emit the cast inst so we can differentiate between
2678     // annotation on the first field of a struct and annotation on the struct
2679     // itself.
2680     if (VTy != IntrinTy)
2681       V = Builder.CreateBitCast(V, IntrinTy);
2682     V = EmitAnnotationCall(F, V, I->getAnnotation(), D->getLocation(), I);
2683     V = Builder.CreateBitCast(V, VTy);
2684   }
2685 
2686   return Address(V, Addr.getElementType(), Addr.getAlignment());
2687 }
2688 
2689 CodeGenFunction::CGCapturedStmtInfo::~CGCapturedStmtInfo() { }
2690 
2691 CodeGenFunction::SanitizerScope::SanitizerScope(CodeGenFunction *CGF)
2692     : CGF(CGF) {
2693   assert(!CGF->IsSanitizerScope);
2694   CGF->IsSanitizerScope = true;
2695 }
2696 
2697 CodeGenFunction::SanitizerScope::~SanitizerScope() {
2698   CGF->IsSanitizerScope = false;
2699 }
2700 
2701 void CodeGenFunction::InsertHelper(llvm::Instruction *I,
2702                                    const llvm::Twine &Name,
2703                                    llvm::BasicBlock::iterator InsertPt) const {
2704   LoopStack.InsertHelper(I);
2705   if (IsSanitizerScope)
2706     I->setNoSanitizeMetadata();
2707 }
2708 
2709 void CGBuilderInserter::InsertHelper(
2710     llvm::Instruction *I, const llvm::Twine &Name,
2711     llvm::BasicBlock::iterator InsertPt) const {
2712   llvm::IRBuilderDefaultInserter::InsertHelper(I, Name, InsertPt);
2713   if (CGF)
2714     CGF->InsertHelper(I, Name, InsertPt);
2715 }
2716 
2717 // Emits an error if we don't have a valid set of target features for the
2718 // called function.
2719 void CodeGenFunction::checkTargetFeatures(const CallExpr *E,
2720                                           const FunctionDecl *TargetDecl) {
2721   // SemaChecking cannot handle below x86 builtins because they have different
2722   // parameter ranges with different TargetAttribute of caller.
2723   if (CGM.getContext().getTargetInfo().getTriple().isX86()) {
2724     unsigned BuiltinID = TargetDecl->getBuiltinID();
2725     if (BuiltinID == X86::BI__builtin_ia32_cmpps ||
2726         BuiltinID == X86::BI__builtin_ia32_cmpss ||
2727         BuiltinID == X86::BI__builtin_ia32_cmppd ||
2728         BuiltinID == X86::BI__builtin_ia32_cmpsd) {
2729       const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(CurCodeDecl);
2730       llvm::StringMap<bool> TargetFetureMap;
2731       CGM.getContext().getFunctionFeatureMap(TargetFetureMap, FD);
2732       llvm::APSInt Result =
2733           *(E->getArg(2)->getIntegerConstantExpr(CGM.getContext()));
2734       if (Result.getSExtValue() > 7 && !TargetFetureMap.lookup("avx"))
2735         CGM.getDiags().Report(E->getBeginLoc(), diag::err_builtin_needs_feature)
2736             << TargetDecl->getDeclName() << "avx";
2737     }
2738   }
2739   return checkTargetFeatures(E->getBeginLoc(), TargetDecl);
2740 }
2741 
2742 // Emits an error if we don't have a valid set of target features for the
2743 // called function.
2744 void CodeGenFunction::checkTargetFeatures(SourceLocation Loc,
2745                                           const FunctionDecl *TargetDecl) {
2746   // Early exit if this is an indirect call.
2747   if (!TargetDecl)
2748     return;
2749 
2750   // Get the current enclosing function if it exists. If it doesn't
2751   // we can't check the target features anyhow.
2752   const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(CurCodeDecl);
2753   if (!FD)
2754     return;
2755 
2756   // Grab the required features for the call. For a builtin this is listed in
2757   // the td file with the default cpu, for an always_inline function this is any
2758   // listed cpu and any listed features.
2759   unsigned BuiltinID = TargetDecl->getBuiltinID();
2760   std::string MissingFeature;
2761   llvm::StringMap<bool> CallerFeatureMap;
2762   CGM.getContext().getFunctionFeatureMap(CallerFeatureMap, FD);
2763   // When compiling in HipStdPar mode we have to be conservative in rejecting
2764   // target specific features in the FE, and defer the possible error to the
2765   // AcceleratorCodeSelection pass, wherein iff an unsupported target builtin is
2766   // referenced by an accelerator executable function, we emit an error.
2767   bool IsHipStdPar = getLangOpts().HIPStdPar && getLangOpts().CUDAIsDevice;
2768   if (BuiltinID) {
2769     StringRef FeatureList(CGM.getContext().BuiltinInfo.getRequiredFeatures(BuiltinID));
2770     if (!Builtin::evaluateRequiredTargetFeatures(
2771         FeatureList, CallerFeatureMap) && !IsHipStdPar) {
2772       CGM.getDiags().Report(Loc, diag::err_builtin_needs_feature)
2773           << TargetDecl->getDeclName()
2774           << FeatureList;
2775     }
2776   } else if (!TargetDecl->isMultiVersion() &&
2777              TargetDecl->hasAttr<TargetAttr>()) {
2778     // Get the required features for the callee.
2779 
2780     const TargetAttr *TD = TargetDecl->getAttr<TargetAttr>();
2781     ParsedTargetAttr ParsedAttr =
2782         CGM.getContext().filterFunctionTargetAttrs(TD);
2783 
2784     SmallVector<StringRef, 1> ReqFeatures;
2785     llvm::StringMap<bool> CalleeFeatureMap;
2786     CGM.getContext().getFunctionFeatureMap(CalleeFeatureMap, TargetDecl);
2787 
2788     for (const auto &F : ParsedAttr.Features) {
2789       if (F[0] == '+' && CalleeFeatureMap.lookup(F.substr(1)))
2790         ReqFeatures.push_back(StringRef(F).substr(1));
2791     }
2792 
2793     for (const auto &F : CalleeFeatureMap) {
2794       // Only positive features are "required".
2795       if (F.getValue())
2796         ReqFeatures.push_back(F.getKey());
2797     }
2798     if (!llvm::all_of(ReqFeatures, [&](StringRef Feature) {
2799       if (!CallerFeatureMap.lookup(Feature)) {
2800         MissingFeature = Feature.str();
2801         return false;
2802       }
2803       return true;
2804     }) && !IsHipStdPar)
2805       CGM.getDiags().Report(Loc, diag::err_function_needs_feature)
2806           << FD->getDeclName() << TargetDecl->getDeclName() << MissingFeature;
2807   } else if (!FD->isMultiVersion() && FD->hasAttr<TargetAttr>()) {
2808     llvm::StringMap<bool> CalleeFeatureMap;
2809     CGM.getContext().getFunctionFeatureMap(CalleeFeatureMap, TargetDecl);
2810 
2811     for (const auto &F : CalleeFeatureMap) {
2812       if (F.getValue() && (!CallerFeatureMap.lookup(F.getKey()) ||
2813                            !CallerFeatureMap.find(F.getKey())->getValue()) &&
2814           !IsHipStdPar)
2815         CGM.getDiags().Report(Loc, diag::err_function_needs_feature)
2816             << FD->getDeclName() << TargetDecl->getDeclName() << F.getKey();
2817     }
2818   }
2819 }
2820 
2821 void CodeGenFunction::EmitSanitizerStatReport(llvm::SanitizerStatKind SSK) {
2822   if (!CGM.getCodeGenOpts().SanitizeStats)
2823     return;
2824 
2825   llvm::IRBuilder<> IRB(Builder.GetInsertBlock(), Builder.GetInsertPoint());
2826   IRB.SetCurrentDebugLocation(Builder.getCurrentDebugLocation());
2827   CGM.getSanStats().create(IRB, SSK);
2828 }
2829 
2830 void CodeGenFunction::EmitKCFIOperandBundle(
2831     const CGCallee &Callee, SmallVectorImpl<llvm::OperandBundleDef> &Bundles) {
2832   const FunctionProtoType *FP =
2833       Callee.getAbstractInfo().getCalleeFunctionProtoType();
2834   if (FP)
2835     Bundles.emplace_back("kcfi", CGM.CreateKCFITypeId(FP->desugar()));
2836 }
2837 
2838 llvm::Value *
2839 CodeGenFunction::FormAArch64ResolverCondition(const FMVResolverOption &RO) {
2840   return RO.Features.empty() ? nullptr : EmitAArch64CpuSupports(RO.Features);
2841 }
2842 
2843 llvm::Value *
2844 CodeGenFunction::FormX86ResolverCondition(const FMVResolverOption &RO) {
2845   llvm::Value *Condition = nullptr;
2846 
2847   if (RO.Architecture) {
2848     StringRef Arch = *RO.Architecture;
2849     // If arch= specifies an x86-64 micro-architecture level, test the feature
2850     // with __builtin_cpu_supports, otherwise use __builtin_cpu_is.
2851     if (Arch.starts_with("x86-64"))
2852       Condition = EmitX86CpuSupports({Arch});
2853     else
2854       Condition = EmitX86CpuIs(Arch);
2855   }
2856 
2857   if (!RO.Features.empty()) {
2858     llvm::Value *FeatureCond = EmitX86CpuSupports(RO.Features);
2859     Condition =
2860         Condition ? Builder.CreateAnd(Condition, FeatureCond) : FeatureCond;
2861   }
2862   return Condition;
2863 }
2864 
2865 static void CreateMultiVersionResolverReturn(CodeGenModule &CGM,
2866                                              llvm::Function *Resolver,
2867                                              CGBuilderTy &Builder,
2868                                              llvm::Function *FuncToReturn,
2869                                              bool SupportsIFunc) {
2870   if (SupportsIFunc) {
2871     Builder.CreateRet(FuncToReturn);
2872     return;
2873   }
2874 
2875   llvm::SmallVector<llvm::Value *, 10> Args(
2876       llvm::make_pointer_range(Resolver->args()));
2877 
2878   llvm::CallInst *Result = Builder.CreateCall(FuncToReturn, Args);
2879   Result->setTailCallKind(llvm::CallInst::TCK_MustTail);
2880 
2881   if (Resolver->getReturnType()->isVoidTy())
2882     Builder.CreateRetVoid();
2883   else
2884     Builder.CreateRet(Result);
2885 }
2886 
2887 void CodeGenFunction::EmitMultiVersionResolver(
2888     llvm::Function *Resolver, ArrayRef<FMVResolverOption> Options) {
2889 
2890   llvm::Triple::ArchType ArchType =
2891       getContext().getTargetInfo().getTriple().getArch();
2892 
2893   switch (ArchType) {
2894   case llvm::Triple::x86:
2895   case llvm::Triple::x86_64:
2896     EmitX86MultiVersionResolver(Resolver, Options);
2897     return;
2898   case llvm::Triple::aarch64:
2899     EmitAArch64MultiVersionResolver(Resolver, Options);
2900     return;
2901   case llvm::Triple::riscv32:
2902   case llvm::Triple::riscv64:
2903     EmitRISCVMultiVersionResolver(Resolver, Options);
2904     return;
2905 
2906   default:
2907     assert(false && "Only implemented for x86, AArch64 and RISC-V targets");
2908   }
2909 }
2910 
2911 void CodeGenFunction::EmitRISCVMultiVersionResolver(
2912     llvm::Function *Resolver, ArrayRef<FMVResolverOption> Options) {
2913 
2914   if (getContext().getTargetInfo().getTriple().getOS() !=
2915       llvm::Triple::OSType::Linux) {
2916     CGM.getDiags().Report(diag::err_os_unsupport_riscv_fmv);
2917     return;
2918   }
2919 
2920   llvm::BasicBlock *CurBlock = createBasicBlock("resolver_entry", Resolver);
2921   Builder.SetInsertPoint(CurBlock);
2922   EmitRISCVCpuInit();
2923 
2924   bool SupportsIFunc = getContext().getTargetInfo().supportsIFunc();
2925   bool HasDefault = false;
2926   unsigned DefaultIndex = 0;
2927 
2928   // Check the each candidate function.
2929   for (unsigned Index = 0; Index < Options.size(); Index++) {
2930 
2931     if (Options[Index].Features.empty()) {
2932       HasDefault = true;
2933       DefaultIndex = Index;
2934       continue;
2935     }
2936 
2937     Builder.SetInsertPoint(CurBlock);
2938 
2939     // FeaturesCondition: The bitmask of the required extension has been
2940     // enabled by the runtime object.
2941     // (__riscv_feature_bits.features[i] & REQUIRED_BITMASK) ==
2942     // REQUIRED_BITMASK
2943     //
2944     // When condition is met, return this version of the function.
2945     // Otherwise, try the next version.
2946     //
2947     // if (FeaturesConditionVersion1)
2948     //     return Version1;
2949     // else if (FeaturesConditionVersion2)
2950     //     return Version2;
2951     // else if (FeaturesConditionVersion3)
2952     //     return Version3;
2953     // ...
2954     // else
2955     //     return DefaultVersion;
2956 
2957     // TODO: Add a condition to check the length before accessing elements.
2958     // Without checking the length first, we may access an incorrect memory
2959     // address when using different versions.
2960     llvm::SmallVector<StringRef, 8> CurrTargetAttrFeats;
2961     llvm::SmallVector<std::string, 8> TargetAttrFeats;
2962 
2963     for (StringRef Feat : Options[Index].Features) {
2964       std::vector<std::string> FeatStr =
2965           getContext().getTargetInfo().parseTargetAttr(Feat).Features;
2966 
2967       assert(FeatStr.size() == 1 && "Feature string not delimited");
2968 
2969       std::string &CurrFeat = FeatStr.front();
2970       if (CurrFeat[0] == '+')
2971         TargetAttrFeats.push_back(CurrFeat.substr(1));
2972     }
2973 
2974     if (TargetAttrFeats.empty())
2975       continue;
2976 
2977     for (std::string &Feat : TargetAttrFeats)
2978       CurrTargetAttrFeats.push_back(Feat);
2979 
2980     Builder.SetInsertPoint(CurBlock);
2981     llvm::Value *FeatsCondition = EmitRISCVCpuSupports(CurrTargetAttrFeats);
2982 
2983     llvm::BasicBlock *RetBlock = createBasicBlock("resolver_return", Resolver);
2984     CGBuilderTy RetBuilder(*this, RetBlock);
2985     CreateMultiVersionResolverReturn(CGM, Resolver, RetBuilder,
2986                                      Options[Index].Function, SupportsIFunc);
2987     llvm::BasicBlock *ElseBlock = createBasicBlock("resolver_else", Resolver);
2988 
2989     Builder.SetInsertPoint(CurBlock);
2990     Builder.CreateCondBr(FeatsCondition, RetBlock, ElseBlock);
2991 
2992     CurBlock = ElseBlock;
2993   }
2994 
2995   // Finally, emit the default one.
2996   if (HasDefault) {
2997     Builder.SetInsertPoint(CurBlock);
2998     CreateMultiVersionResolverReturn(
2999         CGM, Resolver, Builder, Options[DefaultIndex].Function, SupportsIFunc);
3000     return;
3001   }
3002 
3003   // If no generic/default, emit an unreachable.
3004   Builder.SetInsertPoint(CurBlock);
3005   llvm::CallInst *TrapCall = EmitTrapCall(llvm::Intrinsic::trap);
3006   TrapCall->setDoesNotReturn();
3007   TrapCall->setDoesNotThrow();
3008   Builder.CreateUnreachable();
3009   Builder.ClearInsertionPoint();
3010 }
3011 
3012 void CodeGenFunction::EmitAArch64MultiVersionResolver(
3013     llvm::Function *Resolver, ArrayRef<FMVResolverOption> Options) {
3014   assert(!Options.empty() && "No multiversion resolver options found");
3015   assert(Options.back().Features.size() == 0 && "Default case must be last");
3016   bool SupportsIFunc = getContext().getTargetInfo().supportsIFunc();
3017   assert(SupportsIFunc &&
3018          "Multiversion resolver requires target IFUNC support");
3019   bool AArch64CpuInitialized = false;
3020   llvm::BasicBlock *CurBlock = createBasicBlock("resolver_entry", Resolver);
3021 
3022   for (const FMVResolverOption &RO : Options) {
3023     Builder.SetInsertPoint(CurBlock);
3024     llvm::Value *Condition = FormAArch64ResolverCondition(RO);
3025 
3026     // The 'default' or 'all features enabled' case.
3027     if (!Condition) {
3028       CreateMultiVersionResolverReturn(CGM, Resolver, Builder, RO.Function,
3029                                        SupportsIFunc);
3030       return;
3031     }
3032 
3033     if (!AArch64CpuInitialized) {
3034       Builder.SetInsertPoint(CurBlock, CurBlock->begin());
3035       EmitAArch64CpuInit();
3036       AArch64CpuInitialized = true;
3037       Builder.SetInsertPoint(CurBlock);
3038     }
3039 
3040     llvm::BasicBlock *RetBlock = createBasicBlock("resolver_return", Resolver);
3041     CGBuilderTy RetBuilder(*this, RetBlock);
3042     CreateMultiVersionResolverReturn(CGM, Resolver, RetBuilder, RO.Function,
3043                                      SupportsIFunc);
3044     CurBlock = createBasicBlock("resolver_else", Resolver);
3045     Builder.CreateCondBr(Condition, RetBlock, CurBlock);
3046   }
3047 
3048   // If no default, emit an unreachable.
3049   Builder.SetInsertPoint(CurBlock);
3050   llvm::CallInst *TrapCall = EmitTrapCall(llvm::Intrinsic::trap);
3051   TrapCall->setDoesNotReturn();
3052   TrapCall->setDoesNotThrow();
3053   Builder.CreateUnreachable();
3054   Builder.ClearInsertionPoint();
3055 }
3056 
3057 void CodeGenFunction::EmitX86MultiVersionResolver(
3058     llvm::Function *Resolver, ArrayRef<FMVResolverOption> Options) {
3059 
3060   bool SupportsIFunc = getContext().getTargetInfo().supportsIFunc();
3061 
3062   // Main function's basic block.
3063   llvm::BasicBlock *CurBlock = createBasicBlock("resolver_entry", Resolver);
3064   Builder.SetInsertPoint(CurBlock);
3065   EmitX86CpuInit();
3066 
3067   for (const FMVResolverOption &RO : Options) {
3068     Builder.SetInsertPoint(CurBlock);
3069     llvm::Value *Condition = FormX86ResolverCondition(RO);
3070 
3071     // The 'default' or 'generic' case.
3072     if (!Condition) {
3073       assert(&RO == Options.end() - 1 &&
3074              "Default or Generic case must be last");
3075       CreateMultiVersionResolverReturn(CGM, Resolver, Builder, RO.Function,
3076                                        SupportsIFunc);
3077       return;
3078     }
3079 
3080     llvm::BasicBlock *RetBlock = createBasicBlock("resolver_return", Resolver);
3081     CGBuilderTy RetBuilder(*this, RetBlock);
3082     CreateMultiVersionResolverReturn(CGM, Resolver, RetBuilder, RO.Function,
3083                                      SupportsIFunc);
3084     CurBlock = createBasicBlock("resolver_else", Resolver);
3085     Builder.CreateCondBr(Condition, RetBlock, CurBlock);
3086   }
3087 
3088   // If no generic/default, emit an unreachable.
3089   Builder.SetInsertPoint(CurBlock);
3090   llvm::CallInst *TrapCall = EmitTrapCall(llvm::Intrinsic::trap);
3091   TrapCall->setDoesNotReturn();
3092   TrapCall->setDoesNotThrow();
3093   Builder.CreateUnreachable();
3094   Builder.ClearInsertionPoint();
3095 }
3096 
3097 // Loc - where the diagnostic will point, where in the source code this
3098 //  alignment has failed.
3099 // SecondaryLoc - if present (will be present if sufficiently different from
3100 //  Loc), the diagnostic will additionally point a "Note:" to this location.
3101 //  It should be the location where the __attribute__((assume_aligned))
3102 //  was written e.g.
3103 void CodeGenFunction::emitAlignmentAssumptionCheck(
3104     llvm::Value *Ptr, QualType Ty, SourceLocation Loc,
3105     SourceLocation SecondaryLoc, llvm::Value *Alignment,
3106     llvm::Value *OffsetValue, llvm::Value *TheCheck,
3107     llvm::Instruction *Assumption) {
3108   assert(isa_and_nonnull<llvm::CallInst>(Assumption) &&
3109          cast<llvm::CallInst>(Assumption)->getCalledOperand() ==
3110              llvm::Intrinsic::getOrInsertDeclaration(
3111                  Builder.GetInsertBlock()->getParent()->getParent(),
3112                  llvm::Intrinsic::assume) &&
3113          "Assumption should be a call to llvm.assume().");
3114   assert(&(Builder.GetInsertBlock()->back()) == Assumption &&
3115          "Assumption should be the last instruction of the basic block, "
3116          "since the basic block is still being generated.");
3117 
3118   if (!SanOpts.has(SanitizerKind::Alignment))
3119     return;
3120 
3121   // Don't check pointers to volatile data. The behavior here is implementation-
3122   // defined.
3123   if (Ty->getPointeeType().isVolatileQualified())
3124     return;
3125 
3126   // We need to temorairly remove the assumption so we can insert the
3127   // sanitizer check before it, else the check will be dropped by optimizations.
3128   Assumption->removeFromParent();
3129 
3130   {
3131     SanitizerScope SanScope(this);
3132 
3133     if (!OffsetValue)
3134       OffsetValue = Builder.getInt1(false); // no offset.
3135 
3136     llvm::Constant *StaticData[] = {EmitCheckSourceLocation(Loc),
3137                                     EmitCheckSourceLocation(SecondaryLoc),
3138                                     EmitCheckTypeDescriptor(Ty)};
3139     llvm::Value *DynamicData[] = {EmitCheckValue(Ptr),
3140                                   EmitCheckValue(Alignment),
3141                                   EmitCheckValue(OffsetValue)};
3142     EmitCheck({std::make_pair(TheCheck, SanitizerKind::Alignment)},
3143               SanitizerHandler::AlignmentAssumption, StaticData, DynamicData);
3144   }
3145 
3146   // We are now in the (new, empty) "cont" basic block.
3147   // Reintroduce the assumption.
3148   Builder.Insert(Assumption);
3149   // FIXME: Assumption still has it's original basic block as it's Parent.
3150 }
3151 
3152 llvm::DebugLoc CodeGenFunction::SourceLocToDebugLoc(SourceLocation Location) {
3153   if (CGDebugInfo *DI = getDebugInfo())
3154     return DI->SourceLocToDebugLoc(Location);
3155 
3156   return llvm::DebugLoc();
3157 }
3158 
3159 llvm::Value *
3160 CodeGenFunction::emitCondLikelihoodViaExpectIntrinsic(llvm::Value *Cond,
3161                                                       Stmt::Likelihood LH) {
3162   switch (LH) {
3163   case Stmt::LH_None:
3164     return Cond;
3165   case Stmt::LH_Likely:
3166   case Stmt::LH_Unlikely:
3167     // Don't generate llvm.expect on -O0 as the backend won't use it for
3168     // anything.
3169     if (CGM.getCodeGenOpts().OptimizationLevel == 0)
3170       return Cond;
3171     llvm::Type *CondTy = Cond->getType();
3172     assert(CondTy->isIntegerTy(1) && "expecting condition to be a boolean");
3173     llvm::Function *FnExpect =
3174         CGM.getIntrinsic(llvm::Intrinsic::expect, CondTy);
3175     llvm::Value *ExpectedValueOfCond =
3176         llvm::ConstantInt::getBool(CondTy, LH == Stmt::LH_Likely);
3177     return Builder.CreateCall(FnExpect, {Cond, ExpectedValueOfCond},
3178                               Cond->getName() + ".expval");
3179   }
3180   llvm_unreachable("Unknown Likelihood");
3181 }
3182 
3183 llvm::Value *CodeGenFunction::emitBoolVecConversion(llvm::Value *SrcVec,
3184                                                     unsigned NumElementsDst,
3185                                                     const llvm::Twine &Name) {
3186   auto *SrcTy = cast<llvm::FixedVectorType>(SrcVec->getType());
3187   unsigned NumElementsSrc = SrcTy->getNumElements();
3188   if (NumElementsSrc == NumElementsDst)
3189     return SrcVec;
3190 
3191   std::vector<int> ShuffleMask(NumElementsDst, -1);
3192   for (unsigned MaskIdx = 0;
3193        MaskIdx < std::min<>(NumElementsDst, NumElementsSrc); ++MaskIdx)
3194     ShuffleMask[MaskIdx] = MaskIdx;
3195 
3196   return Builder.CreateShuffleVector(SrcVec, ShuffleMask, Name);
3197 }
3198 
3199 void CodeGenFunction::EmitPointerAuthOperandBundle(
3200     const CGPointerAuthInfo &PointerAuth,
3201     SmallVectorImpl<llvm::OperandBundleDef> &Bundles) {
3202   if (!PointerAuth.isSigned())
3203     return;
3204 
3205   auto *Key = Builder.getInt32(PointerAuth.getKey());
3206 
3207   llvm::Value *Discriminator = PointerAuth.getDiscriminator();
3208   if (!Discriminator)
3209     Discriminator = Builder.getSize(0);
3210 
3211   llvm::Value *Args[] = {Key, Discriminator};
3212   Bundles.emplace_back("ptrauth", Args);
3213 }
3214 
3215 static llvm::Value *EmitPointerAuthCommon(CodeGenFunction &CGF,
3216                                           const CGPointerAuthInfo &PointerAuth,
3217                                           llvm::Value *Pointer,
3218                                           unsigned IntrinsicID) {
3219   if (!PointerAuth)
3220     return Pointer;
3221 
3222   auto Key = CGF.Builder.getInt32(PointerAuth.getKey());
3223 
3224   llvm::Value *Discriminator = PointerAuth.getDiscriminator();
3225   if (!Discriminator) {
3226     Discriminator = CGF.Builder.getSize(0);
3227   }
3228 
3229   // Convert the pointer to intptr_t before signing it.
3230   auto OrigType = Pointer->getType();
3231   Pointer = CGF.Builder.CreatePtrToInt(Pointer, CGF.IntPtrTy);
3232 
3233   // call i64 @llvm.ptrauth.sign.i64(i64 %pointer, i32 %key, i64 %discriminator)
3234   auto Intrinsic = CGF.CGM.getIntrinsic(IntrinsicID);
3235   Pointer = CGF.EmitRuntimeCall(Intrinsic, {Pointer, Key, Discriminator});
3236 
3237   // Convert back to the original type.
3238   Pointer = CGF.Builder.CreateIntToPtr(Pointer, OrigType);
3239   return Pointer;
3240 }
3241 
3242 llvm::Value *
3243 CodeGenFunction::EmitPointerAuthSign(const CGPointerAuthInfo &PointerAuth,
3244                                      llvm::Value *Pointer) {
3245   if (!PointerAuth.shouldSign())
3246     return Pointer;
3247   return EmitPointerAuthCommon(*this, PointerAuth, Pointer,
3248                                llvm::Intrinsic::ptrauth_sign);
3249 }
3250 
3251 static llvm::Value *EmitStrip(CodeGenFunction &CGF,
3252                               const CGPointerAuthInfo &PointerAuth,
3253                               llvm::Value *Pointer) {
3254   auto StripIntrinsic = CGF.CGM.getIntrinsic(llvm::Intrinsic::ptrauth_strip);
3255 
3256   auto Key = CGF.Builder.getInt32(PointerAuth.getKey());
3257   // Convert the pointer to intptr_t before signing it.
3258   auto OrigType = Pointer->getType();
3259   Pointer = CGF.EmitRuntimeCall(
3260       StripIntrinsic, {CGF.Builder.CreatePtrToInt(Pointer, CGF.IntPtrTy), Key});
3261   return CGF.Builder.CreateIntToPtr(Pointer, OrigType);
3262 }
3263 
3264 llvm::Value *
3265 CodeGenFunction::EmitPointerAuthAuth(const CGPointerAuthInfo &PointerAuth,
3266                                      llvm::Value *Pointer) {
3267   if (PointerAuth.shouldStrip()) {
3268     return EmitStrip(*this, PointerAuth, Pointer);
3269   }
3270   if (!PointerAuth.shouldAuth()) {
3271     return Pointer;
3272   }
3273 
3274   return EmitPointerAuthCommon(*this, PointerAuth, Pointer,
3275                                llvm::Intrinsic::ptrauth_auth);
3276 }
3277