1 //===--- CodeGenFunction.cpp - Emit LLVM Code from ASTs for a Function ----===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This coordinates the per-function state used while generating code. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "CodeGenFunction.h" 14 #include "CGBlocks.h" 15 #include "CGCUDARuntime.h" 16 #include "CGCXXABI.h" 17 #include "CGCleanup.h" 18 #include "CGDebugInfo.h" 19 #include "CGOpenMPRuntime.h" 20 #include "CodeGenModule.h" 21 #include "CodeGenPGO.h" 22 #include "TargetInfo.h" 23 #include "clang/AST/ASTContext.h" 24 #include "clang/AST/ASTLambda.h" 25 #include "clang/AST/Attr.h" 26 #include "clang/AST/Decl.h" 27 #include "clang/AST/DeclCXX.h" 28 #include "clang/AST/Expr.h" 29 #include "clang/AST/StmtCXX.h" 30 #include "clang/AST/StmtObjC.h" 31 #include "clang/Basic/Builtins.h" 32 #include "clang/Basic/CodeGenOptions.h" 33 #include "clang/Basic/TargetInfo.h" 34 #include "clang/CodeGen/CGFunctionInfo.h" 35 #include "clang/Frontend/FrontendDiagnostic.h" 36 #include "llvm/ADT/ArrayRef.h" 37 #include "llvm/Frontend/OpenMP/OMPIRBuilder.h" 38 #include "llvm/IR/DataLayout.h" 39 #include "llvm/IR/Dominators.h" 40 #include "llvm/IR/FPEnv.h" 41 #include "llvm/IR/IntrinsicInst.h" 42 #include "llvm/IR/Intrinsics.h" 43 #include "llvm/IR/MDBuilder.h" 44 #include "llvm/IR/Operator.h" 45 #include "llvm/Support/CRC.h" 46 #include "llvm/Transforms/Scalar/LowerExpectIntrinsic.h" 47 #include "llvm/Transforms/Utils/PromoteMemToReg.h" 48 using namespace clang; 49 using namespace CodeGen; 50 51 /// shouldEmitLifetimeMarkers - Decide whether we need emit the life-time 52 /// markers. 53 static bool shouldEmitLifetimeMarkers(const CodeGenOptions &CGOpts, 54 const LangOptions &LangOpts) { 55 if (CGOpts.DisableLifetimeMarkers) 56 return false; 57 58 // Sanitizers may use markers. 59 if (CGOpts.SanitizeAddressUseAfterScope || 60 LangOpts.Sanitize.has(SanitizerKind::HWAddress) || 61 LangOpts.Sanitize.has(SanitizerKind::Memory)) 62 return true; 63 64 // For now, only in optimized builds. 65 return CGOpts.OptimizationLevel != 0; 66 } 67 68 CodeGenFunction::CodeGenFunction(CodeGenModule &cgm, bool suppressNewContext) 69 : CodeGenTypeCache(cgm), CGM(cgm), Target(cgm.getTarget()), 70 Builder(cgm, cgm.getModule().getContext(), llvm::ConstantFolder(), 71 CGBuilderInserterTy(this)), 72 SanOpts(CGM.getLangOpts().Sanitize), CurFPFeatures(CGM.getLangOpts()), 73 DebugInfo(CGM.getModuleDebugInfo()), PGO(cgm), 74 ShouldEmitLifetimeMarkers( 75 shouldEmitLifetimeMarkers(CGM.getCodeGenOpts(), CGM.getLangOpts())) { 76 if (!suppressNewContext) 77 CGM.getCXXABI().getMangleContext().startNewFunction(); 78 79 SetFastMathFlags(CurFPFeatures); 80 SetFPModel(); 81 } 82 83 CodeGenFunction::~CodeGenFunction() { 84 assert(LifetimeExtendedCleanupStack.empty() && "failed to emit a cleanup"); 85 86 if (getLangOpts().OpenMP && CurFn) 87 CGM.getOpenMPRuntime().functionFinished(*this); 88 89 // If we have an OpenMPIRBuilder we want to finalize functions (incl. 90 // outlining etc) at some point. Doing it once the function codegen is done 91 // seems to be a reasonable spot. We do it here, as opposed to the deletion 92 // time of the CodeGenModule, because we have to ensure the IR has not yet 93 // been "emitted" to the outside, thus, modifications are still sensible. 94 if (CGM.getLangOpts().OpenMPIRBuilder && CurFn) 95 CGM.getOpenMPRuntime().getOMPBuilder().finalize(CurFn); 96 } 97 98 // Map the LangOption for exception behavior into 99 // the corresponding enum in the IR. 100 llvm::fp::ExceptionBehavior 101 clang::ToConstrainedExceptMD(LangOptions::FPExceptionModeKind Kind) { 102 103 switch (Kind) { 104 case LangOptions::FPE_Ignore: return llvm::fp::ebIgnore; 105 case LangOptions::FPE_MayTrap: return llvm::fp::ebMayTrap; 106 case LangOptions::FPE_Strict: return llvm::fp::ebStrict; 107 } 108 llvm_unreachable("Unsupported FP Exception Behavior"); 109 } 110 111 void CodeGenFunction::SetFPModel() { 112 llvm::RoundingMode RM = getLangOpts().getFPRoundingMode(); 113 auto fpExceptionBehavior = ToConstrainedExceptMD( 114 getLangOpts().getFPExceptionMode()); 115 116 Builder.setDefaultConstrainedRounding(RM); 117 Builder.setDefaultConstrainedExcept(fpExceptionBehavior); 118 Builder.setIsFPConstrained(fpExceptionBehavior != llvm::fp::ebIgnore || 119 RM != llvm::RoundingMode::NearestTiesToEven); 120 } 121 122 void CodeGenFunction::SetFastMathFlags(FPOptions FPFeatures) { 123 llvm::FastMathFlags FMF; 124 FMF.setAllowReassoc(FPFeatures.getAllowFPReassociate()); 125 FMF.setNoNaNs(FPFeatures.getNoHonorNaNs()); 126 FMF.setNoInfs(FPFeatures.getNoHonorInfs()); 127 FMF.setNoSignedZeros(FPFeatures.getNoSignedZero()); 128 FMF.setAllowReciprocal(FPFeatures.getAllowReciprocal()); 129 FMF.setApproxFunc(FPFeatures.getAllowApproxFunc()); 130 FMF.setAllowContract(FPFeatures.allowFPContractAcrossStatement()); 131 Builder.setFastMathFlags(FMF); 132 } 133 134 CodeGenFunction::CGFPOptionsRAII::CGFPOptionsRAII(CodeGenFunction &CGF, 135 const Expr *E) 136 : CGF(CGF) { 137 ConstructorHelper(E->getFPFeaturesInEffect(CGF.getLangOpts())); 138 } 139 140 CodeGenFunction::CGFPOptionsRAII::CGFPOptionsRAII(CodeGenFunction &CGF, 141 FPOptions FPFeatures) 142 : CGF(CGF) { 143 ConstructorHelper(FPFeatures); 144 } 145 146 void CodeGenFunction::CGFPOptionsRAII::ConstructorHelper(FPOptions FPFeatures) { 147 OldFPFeatures = CGF.CurFPFeatures; 148 CGF.CurFPFeatures = FPFeatures; 149 150 OldExcept = CGF.Builder.getDefaultConstrainedExcept(); 151 OldRounding = CGF.Builder.getDefaultConstrainedRounding(); 152 153 if (OldFPFeatures == FPFeatures) 154 return; 155 156 FMFGuard.emplace(CGF.Builder); 157 158 llvm::RoundingMode NewRoundingBehavior = 159 static_cast<llvm::RoundingMode>(FPFeatures.getRoundingMode()); 160 CGF.Builder.setDefaultConstrainedRounding(NewRoundingBehavior); 161 auto NewExceptionBehavior = 162 ToConstrainedExceptMD(static_cast<LangOptions::FPExceptionModeKind>( 163 FPFeatures.getFPExceptionMode())); 164 CGF.Builder.setDefaultConstrainedExcept(NewExceptionBehavior); 165 166 CGF.SetFastMathFlags(FPFeatures); 167 168 assert((CGF.CurFuncDecl == nullptr || CGF.Builder.getIsFPConstrained() || 169 isa<CXXConstructorDecl>(CGF.CurFuncDecl) || 170 isa<CXXDestructorDecl>(CGF.CurFuncDecl) || 171 (NewExceptionBehavior == llvm::fp::ebIgnore && 172 NewRoundingBehavior == llvm::RoundingMode::NearestTiesToEven)) && 173 "FPConstrained should be enabled on entire function"); 174 175 auto mergeFnAttrValue = [&](StringRef Name, bool Value) { 176 auto OldValue = 177 CGF.CurFn->getFnAttribute(Name).getValueAsString() == "true"; 178 auto NewValue = OldValue & Value; 179 if (OldValue != NewValue) 180 CGF.CurFn->addFnAttr(Name, llvm::toStringRef(NewValue)); 181 }; 182 mergeFnAttrValue("no-infs-fp-math", FPFeatures.getNoHonorInfs()); 183 mergeFnAttrValue("no-nans-fp-math", FPFeatures.getNoHonorNaNs()); 184 mergeFnAttrValue("no-signed-zeros-fp-math", FPFeatures.getNoSignedZero()); 185 mergeFnAttrValue("unsafe-fp-math", FPFeatures.getAllowFPReassociate() && 186 FPFeatures.getAllowReciprocal() && 187 FPFeatures.getAllowApproxFunc() && 188 FPFeatures.getNoSignedZero()); 189 } 190 191 CodeGenFunction::CGFPOptionsRAII::~CGFPOptionsRAII() { 192 CGF.CurFPFeatures = OldFPFeatures; 193 CGF.Builder.setDefaultConstrainedExcept(OldExcept); 194 CGF.Builder.setDefaultConstrainedRounding(OldRounding); 195 } 196 197 LValue CodeGenFunction::MakeNaturalAlignAddrLValue(llvm::Value *V, QualType T) { 198 LValueBaseInfo BaseInfo; 199 TBAAAccessInfo TBAAInfo; 200 CharUnits Alignment = CGM.getNaturalTypeAlignment(T, &BaseInfo, &TBAAInfo); 201 return LValue::MakeAddr(Address(V, Alignment), T, getContext(), BaseInfo, 202 TBAAInfo); 203 } 204 205 /// Given a value of type T* that may not be to a complete object, 206 /// construct an l-value with the natural pointee alignment of T. 207 LValue 208 CodeGenFunction::MakeNaturalAlignPointeeAddrLValue(llvm::Value *V, QualType T) { 209 LValueBaseInfo BaseInfo; 210 TBAAAccessInfo TBAAInfo; 211 CharUnits Align = CGM.getNaturalTypeAlignment(T, &BaseInfo, &TBAAInfo, 212 /* forPointeeType= */ true); 213 return MakeAddrLValue(Address(V, Align), T, BaseInfo, TBAAInfo); 214 } 215 216 217 llvm::Type *CodeGenFunction::ConvertTypeForMem(QualType T) { 218 return CGM.getTypes().ConvertTypeForMem(T); 219 } 220 221 llvm::Type *CodeGenFunction::ConvertType(QualType T) { 222 return CGM.getTypes().ConvertType(T); 223 } 224 225 TypeEvaluationKind CodeGenFunction::getEvaluationKind(QualType type) { 226 type = type.getCanonicalType(); 227 while (true) { 228 switch (type->getTypeClass()) { 229 #define TYPE(name, parent) 230 #define ABSTRACT_TYPE(name, parent) 231 #define NON_CANONICAL_TYPE(name, parent) case Type::name: 232 #define DEPENDENT_TYPE(name, parent) case Type::name: 233 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(name, parent) case Type::name: 234 #include "clang/AST/TypeNodes.inc" 235 llvm_unreachable("non-canonical or dependent type in IR-generation"); 236 237 case Type::Auto: 238 case Type::DeducedTemplateSpecialization: 239 llvm_unreachable("undeduced type in IR-generation"); 240 241 // Various scalar types. 242 case Type::Builtin: 243 case Type::Pointer: 244 case Type::BlockPointer: 245 case Type::LValueReference: 246 case Type::RValueReference: 247 case Type::MemberPointer: 248 case Type::Vector: 249 case Type::ExtVector: 250 case Type::ConstantMatrix: 251 case Type::FunctionProto: 252 case Type::FunctionNoProto: 253 case Type::Enum: 254 case Type::ObjCObjectPointer: 255 case Type::Pipe: 256 case Type::ExtInt: 257 return TEK_Scalar; 258 259 // Complexes. 260 case Type::Complex: 261 return TEK_Complex; 262 263 // Arrays, records, and Objective-C objects. 264 case Type::ConstantArray: 265 case Type::IncompleteArray: 266 case Type::VariableArray: 267 case Type::Record: 268 case Type::ObjCObject: 269 case Type::ObjCInterface: 270 return TEK_Aggregate; 271 272 // We operate on atomic values according to their underlying type. 273 case Type::Atomic: 274 type = cast<AtomicType>(type)->getValueType(); 275 continue; 276 } 277 llvm_unreachable("unknown type kind!"); 278 } 279 } 280 281 llvm::DebugLoc CodeGenFunction::EmitReturnBlock() { 282 // For cleanliness, we try to avoid emitting the return block for 283 // simple cases. 284 llvm::BasicBlock *CurBB = Builder.GetInsertBlock(); 285 286 if (CurBB) { 287 assert(!CurBB->getTerminator() && "Unexpected terminated block."); 288 289 // We have a valid insert point, reuse it if it is empty or there are no 290 // explicit jumps to the return block. 291 if (CurBB->empty() || ReturnBlock.getBlock()->use_empty()) { 292 ReturnBlock.getBlock()->replaceAllUsesWith(CurBB); 293 delete ReturnBlock.getBlock(); 294 ReturnBlock = JumpDest(); 295 } else 296 EmitBlock(ReturnBlock.getBlock()); 297 return llvm::DebugLoc(); 298 } 299 300 // Otherwise, if the return block is the target of a single direct 301 // branch then we can just put the code in that block instead. This 302 // cleans up functions which started with a unified return block. 303 if (ReturnBlock.getBlock()->hasOneUse()) { 304 llvm::BranchInst *BI = 305 dyn_cast<llvm::BranchInst>(*ReturnBlock.getBlock()->user_begin()); 306 if (BI && BI->isUnconditional() && 307 BI->getSuccessor(0) == ReturnBlock.getBlock()) { 308 // Record/return the DebugLoc of the simple 'return' expression to be used 309 // later by the actual 'ret' instruction. 310 llvm::DebugLoc Loc = BI->getDebugLoc(); 311 Builder.SetInsertPoint(BI->getParent()); 312 BI->eraseFromParent(); 313 delete ReturnBlock.getBlock(); 314 ReturnBlock = JumpDest(); 315 return Loc; 316 } 317 } 318 319 // FIXME: We are at an unreachable point, there is no reason to emit the block 320 // unless it has uses. However, we still need a place to put the debug 321 // region.end for now. 322 323 EmitBlock(ReturnBlock.getBlock()); 324 return llvm::DebugLoc(); 325 } 326 327 static void EmitIfUsed(CodeGenFunction &CGF, llvm::BasicBlock *BB) { 328 if (!BB) return; 329 if (!BB->use_empty()) 330 return CGF.CurFn->getBasicBlockList().push_back(BB); 331 delete BB; 332 } 333 334 void CodeGenFunction::FinishFunction(SourceLocation EndLoc) { 335 assert(BreakContinueStack.empty() && 336 "mismatched push/pop in break/continue stack!"); 337 338 bool OnlySimpleReturnStmts = NumSimpleReturnExprs > 0 339 && NumSimpleReturnExprs == NumReturnExprs 340 && ReturnBlock.getBlock()->use_empty(); 341 // Usually the return expression is evaluated before the cleanup 342 // code. If the function contains only a simple return statement, 343 // such as a constant, the location before the cleanup code becomes 344 // the last useful breakpoint in the function, because the simple 345 // return expression will be evaluated after the cleanup code. To be 346 // safe, set the debug location for cleanup code to the location of 347 // the return statement. Otherwise the cleanup code should be at the 348 // end of the function's lexical scope. 349 // 350 // If there are multiple branches to the return block, the branch 351 // instructions will get the location of the return statements and 352 // all will be fine. 353 if (CGDebugInfo *DI = getDebugInfo()) { 354 if (OnlySimpleReturnStmts) 355 DI->EmitLocation(Builder, LastStopPoint); 356 else 357 DI->EmitLocation(Builder, EndLoc); 358 } 359 360 // Pop any cleanups that might have been associated with the 361 // parameters. Do this in whatever block we're currently in; it's 362 // important to do this before we enter the return block or return 363 // edges will be *really* confused. 364 bool HasCleanups = EHStack.stable_begin() != PrologueCleanupDepth; 365 bool HasOnlyLifetimeMarkers = 366 HasCleanups && EHStack.containsOnlyLifetimeMarkers(PrologueCleanupDepth); 367 bool EmitRetDbgLoc = !HasCleanups || HasOnlyLifetimeMarkers; 368 if (HasCleanups) { 369 // Make sure the line table doesn't jump back into the body for 370 // the ret after it's been at EndLoc. 371 Optional<ApplyDebugLocation> AL; 372 if (CGDebugInfo *DI = getDebugInfo()) { 373 if (OnlySimpleReturnStmts) 374 DI->EmitLocation(Builder, EndLoc); 375 else 376 // We may not have a valid end location. Try to apply it anyway, and 377 // fall back to an artificial location if needed. 378 AL = ApplyDebugLocation::CreateDefaultArtificial(*this, EndLoc); 379 } 380 381 PopCleanupBlocks(PrologueCleanupDepth); 382 } 383 384 // Emit function epilog (to return). 385 llvm::DebugLoc Loc = EmitReturnBlock(); 386 387 if (ShouldInstrumentFunction()) { 388 if (CGM.getCodeGenOpts().InstrumentFunctions) 389 CurFn->addFnAttr("instrument-function-exit", "__cyg_profile_func_exit"); 390 if (CGM.getCodeGenOpts().InstrumentFunctionsAfterInlining) 391 CurFn->addFnAttr("instrument-function-exit-inlined", 392 "__cyg_profile_func_exit"); 393 } 394 395 // Emit debug descriptor for function end. 396 if (CGDebugInfo *DI = getDebugInfo()) 397 DI->EmitFunctionEnd(Builder, CurFn); 398 399 // Reset the debug location to that of the simple 'return' expression, if any 400 // rather than that of the end of the function's scope '}'. 401 ApplyDebugLocation AL(*this, Loc); 402 EmitFunctionEpilog(*CurFnInfo, EmitRetDbgLoc, EndLoc); 403 EmitEndEHSpec(CurCodeDecl); 404 405 assert(EHStack.empty() && 406 "did not remove all scopes from cleanup stack!"); 407 408 // If someone did an indirect goto, emit the indirect goto block at the end of 409 // the function. 410 if (IndirectBranch) { 411 EmitBlock(IndirectBranch->getParent()); 412 Builder.ClearInsertionPoint(); 413 } 414 415 // If some of our locals escaped, insert a call to llvm.localescape in the 416 // entry block. 417 if (!EscapedLocals.empty()) { 418 // Invert the map from local to index into a simple vector. There should be 419 // no holes. 420 SmallVector<llvm::Value *, 4> EscapeArgs; 421 EscapeArgs.resize(EscapedLocals.size()); 422 for (auto &Pair : EscapedLocals) 423 EscapeArgs[Pair.second] = Pair.first; 424 llvm::Function *FrameEscapeFn = llvm::Intrinsic::getDeclaration( 425 &CGM.getModule(), llvm::Intrinsic::localescape); 426 CGBuilderTy(*this, AllocaInsertPt).CreateCall(FrameEscapeFn, EscapeArgs); 427 } 428 429 // Remove the AllocaInsertPt instruction, which is just a convenience for us. 430 llvm::Instruction *Ptr = AllocaInsertPt; 431 AllocaInsertPt = nullptr; 432 Ptr->eraseFromParent(); 433 434 // If someone took the address of a label but never did an indirect goto, we 435 // made a zero entry PHI node, which is illegal, zap it now. 436 if (IndirectBranch) { 437 llvm::PHINode *PN = cast<llvm::PHINode>(IndirectBranch->getAddress()); 438 if (PN->getNumIncomingValues() == 0) { 439 PN->replaceAllUsesWith(llvm::UndefValue::get(PN->getType())); 440 PN->eraseFromParent(); 441 } 442 } 443 444 EmitIfUsed(*this, EHResumeBlock); 445 EmitIfUsed(*this, TerminateLandingPad); 446 EmitIfUsed(*this, TerminateHandler); 447 EmitIfUsed(*this, UnreachableBlock); 448 449 for (const auto &FuncletAndParent : TerminateFunclets) 450 EmitIfUsed(*this, FuncletAndParent.second); 451 452 if (CGM.getCodeGenOpts().EmitDeclMetadata) 453 EmitDeclMetadata(); 454 455 for (const auto &R : DeferredReplacements) { 456 if (llvm::Value *Old = R.first) { 457 Old->replaceAllUsesWith(R.second); 458 cast<llvm::Instruction>(Old)->eraseFromParent(); 459 } 460 } 461 DeferredReplacements.clear(); 462 463 // Eliminate CleanupDestSlot alloca by replacing it with SSA values and 464 // PHIs if the current function is a coroutine. We don't do it for all 465 // functions as it may result in slight increase in numbers of instructions 466 // if compiled with no optimizations. We do it for coroutine as the lifetime 467 // of CleanupDestSlot alloca make correct coroutine frame building very 468 // difficult. 469 if (NormalCleanupDest.isValid() && isCoroutine()) { 470 llvm::DominatorTree DT(*CurFn); 471 llvm::PromoteMemToReg( 472 cast<llvm::AllocaInst>(NormalCleanupDest.getPointer()), DT); 473 NormalCleanupDest = Address::invalid(); 474 } 475 476 // Scan function arguments for vector width. 477 for (llvm::Argument &A : CurFn->args()) 478 if (auto *VT = dyn_cast<llvm::VectorType>(A.getType())) 479 LargestVectorWidth = 480 std::max((uint64_t)LargestVectorWidth, 481 VT->getPrimitiveSizeInBits().getKnownMinSize()); 482 483 // Update vector width based on return type. 484 if (auto *VT = dyn_cast<llvm::VectorType>(CurFn->getReturnType())) 485 LargestVectorWidth = 486 std::max((uint64_t)LargestVectorWidth, 487 VT->getPrimitiveSizeInBits().getKnownMinSize()); 488 489 // Add the required-vector-width attribute. This contains the max width from: 490 // 1. min-vector-width attribute used in the source program. 491 // 2. Any builtins used that have a vector width specified. 492 // 3. Values passed in and out of inline assembly. 493 // 4. Width of vector arguments and return types for this function. 494 // 5. Width of vector aguments and return types for functions called by this 495 // function. 496 if (LargestVectorWidth) 497 CurFn->addFnAttr("min-legal-vector-width", llvm::utostr(LargestVectorWidth)); 498 499 // If we generated an unreachable return block, delete it now. 500 if (ReturnBlock.isValid() && ReturnBlock.getBlock()->use_empty()) { 501 Builder.ClearInsertionPoint(); 502 ReturnBlock.getBlock()->eraseFromParent(); 503 } 504 if (ReturnValue.isValid()) { 505 auto *RetAlloca = dyn_cast<llvm::AllocaInst>(ReturnValue.getPointer()); 506 if (RetAlloca && RetAlloca->use_empty()) { 507 RetAlloca->eraseFromParent(); 508 ReturnValue = Address::invalid(); 509 } 510 } 511 } 512 513 /// ShouldInstrumentFunction - Return true if the current function should be 514 /// instrumented with __cyg_profile_func_* calls 515 bool CodeGenFunction::ShouldInstrumentFunction() { 516 if (!CGM.getCodeGenOpts().InstrumentFunctions && 517 !CGM.getCodeGenOpts().InstrumentFunctionsAfterInlining && 518 !CGM.getCodeGenOpts().InstrumentFunctionEntryBare) 519 return false; 520 if (!CurFuncDecl || CurFuncDecl->hasAttr<NoInstrumentFunctionAttr>()) 521 return false; 522 return true; 523 } 524 525 /// ShouldXRayInstrument - Return true if the current function should be 526 /// instrumented with XRay nop sleds. 527 bool CodeGenFunction::ShouldXRayInstrumentFunction() const { 528 return CGM.getCodeGenOpts().XRayInstrumentFunctions; 529 } 530 531 /// AlwaysEmitXRayCustomEvents - Return true if we should emit IR for calls to 532 /// the __xray_customevent(...) builtin calls, when doing XRay instrumentation. 533 bool CodeGenFunction::AlwaysEmitXRayCustomEvents() const { 534 return CGM.getCodeGenOpts().XRayInstrumentFunctions && 535 (CGM.getCodeGenOpts().XRayAlwaysEmitCustomEvents || 536 CGM.getCodeGenOpts().XRayInstrumentationBundle.Mask == 537 XRayInstrKind::Custom); 538 } 539 540 bool CodeGenFunction::AlwaysEmitXRayTypedEvents() const { 541 return CGM.getCodeGenOpts().XRayInstrumentFunctions && 542 (CGM.getCodeGenOpts().XRayAlwaysEmitTypedEvents || 543 CGM.getCodeGenOpts().XRayInstrumentationBundle.Mask == 544 XRayInstrKind::Typed); 545 } 546 547 llvm::Constant * 548 CodeGenFunction::EncodeAddrForUseInPrologue(llvm::Function *F, 549 llvm::Constant *Addr) { 550 // Addresses stored in prologue data can't require run-time fixups and must 551 // be PC-relative. Run-time fixups are undesirable because they necessitate 552 // writable text segments, which are unsafe. And absolute addresses are 553 // undesirable because they break PIE mode. 554 555 // Add a layer of indirection through a private global. Taking its address 556 // won't result in a run-time fixup, even if Addr has linkonce_odr linkage. 557 auto *GV = new llvm::GlobalVariable(CGM.getModule(), Addr->getType(), 558 /*isConstant=*/true, 559 llvm::GlobalValue::PrivateLinkage, Addr); 560 561 // Create a PC-relative address. 562 auto *GOTAsInt = llvm::ConstantExpr::getPtrToInt(GV, IntPtrTy); 563 auto *FuncAsInt = llvm::ConstantExpr::getPtrToInt(F, IntPtrTy); 564 auto *PCRelAsInt = llvm::ConstantExpr::getSub(GOTAsInt, FuncAsInt); 565 return (IntPtrTy == Int32Ty) 566 ? PCRelAsInt 567 : llvm::ConstantExpr::getTrunc(PCRelAsInt, Int32Ty); 568 } 569 570 llvm::Value * 571 CodeGenFunction::DecodeAddrUsedInPrologue(llvm::Value *F, 572 llvm::Value *EncodedAddr) { 573 // Reconstruct the address of the global. 574 auto *PCRelAsInt = Builder.CreateSExt(EncodedAddr, IntPtrTy); 575 auto *FuncAsInt = Builder.CreatePtrToInt(F, IntPtrTy, "func_addr.int"); 576 auto *GOTAsInt = Builder.CreateAdd(PCRelAsInt, FuncAsInt, "global_addr.int"); 577 auto *GOTAddr = Builder.CreateIntToPtr(GOTAsInt, Int8PtrPtrTy, "global_addr"); 578 579 // Load the original pointer through the global. 580 return Builder.CreateLoad(Address(GOTAddr, getPointerAlign()), 581 "decoded_addr"); 582 } 583 584 void CodeGenFunction::EmitOpenCLKernelMetadata(const FunctionDecl *FD, 585 llvm::Function *Fn) 586 { 587 if (!FD->hasAttr<OpenCLKernelAttr>()) 588 return; 589 590 llvm::LLVMContext &Context = getLLVMContext(); 591 592 CGM.GenOpenCLArgMetadata(Fn, FD, this); 593 594 if (const VecTypeHintAttr *A = FD->getAttr<VecTypeHintAttr>()) { 595 QualType HintQTy = A->getTypeHint(); 596 const ExtVectorType *HintEltQTy = HintQTy->getAs<ExtVectorType>(); 597 bool IsSignedInteger = 598 HintQTy->isSignedIntegerType() || 599 (HintEltQTy && HintEltQTy->getElementType()->isSignedIntegerType()); 600 llvm::Metadata *AttrMDArgs[] = { 601 llvm::ConstantAsMetadata::get(llvm::UndefValue::get( 602 CGM.getTypes().ConvertType(A->getTypeHint()))), 603 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 604 llvm::IntegerType::get(Context, 32), 605 llvm::APInt(32, (uint64_t)(IsSignedInteger ? 1 : 0))))}; 606 Fn->setMetadata("vec_type_hint", llvm::MDNode::get(Context, AttrMDArgs)); 607 } 608 609 if (const WorkGroupSizeHintAttr *A = FD->getAttr<WorkGroupSizeHintAttr>()) { 610 llvm::Metadata *AttrMDArgs[] = { 611 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getXDim())), 612 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getYDim())), 613 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getZDim()))}; 614 Fn->setMetadata("work_group_size_hint", llvm::MDNode::get(Context, AttrMDArgs)); 615 } 616 617 if (const ReqdWorkGroupSizeAttr *A = FD->getAttr<ReqdWorkGroupSizeAttr>()) { 618 llvm::Metadata *AttrMDArgs[] = { 619 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getXDim())), 620 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getYDim())), 621 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getZDim()))}; 622 Fn->setMetadata("reqd_work_group_size", llvm::MDNode::get(Context, AttrMDArgs)); 623 } 624 625 if (const OpenCLIntelReqdSubGroupSizeAttr *A = 626 FD->getAttr<OpenCLIntelReqdSubGroupSizeAttr>()) { 627 llvm::Metadata *AttrMDArgs[] = { 628 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getSubGroupSize()))}; 629 Fn->setMetadata("intel_reqd_sub_group_size", 630 llvm::MDNode::get(Context, AttrMDArgs)); 631 } 632 } 633 634 /// Determine whether the function F ends with a return stmt. 635 static bool endsWithReturn(const Decl* F) { 636 const Stmt *Body = nullptr; 637 if (auto *FD = dyn_cast_or_null<FunctionDecl>(F)) 638 Body = FD->getBody(); 639 else if (auto *OMD = dyn_cast_or_null<ObjCMethodDecl>(F)) 640 Body = OMD->getBody(); 641 642 if (auto *CS = dyn_cast_or_null<CompoundStmt>(Body)) { 643 auto LastStmt = CS->body_rbegin(); 644 if (LastStmt != CS->body_rend()) 645 return isa<ReturnStmt>(*LastStmt); 646 } 647 return false; 648 } 649 650 void CodeGenFunction::markAsIgnoreThreadCheckingAtRuntime(llvm::Function *Fn) { 651 if (SanOpts.has(SanitizerKind::Thread)) { 652 Fn->addFnAttr("sanitize_thread_no_checking_at_run_time"); 653 Fn->removeFnAttr(llvm::Attribute::SanitizeThread); 654 } 655 } 656 657 /// Check if the return value of this function requires sanitization. 658 bool CodeGenFunction::requiresReturnValueCheck() const { 659 return requiresReturnValueNullabilityCheck() || 660 (SanOpts.has(SanitizerKind::ReturnsNonnullAttribute) && CurCodeDecl && 661 CurCodeDecl->getAttr<ReturnsNonNullAttr>()); 662 } 663 664 static bool matchesStlAllocatorFn(const Decl *D, const ASTContext &Ctx) { 665 auto *MD = dyn_cast_or_null<CXXMethodDecl>(D); 666 if (!MD || !MD->getDeclName().getAsIdentifierInfo() || 667 !MD->getDeclName().getAsIdentifierInfo()->isStr("allocate") || 668 (MD->getNumParams() != 1 && MD->getNumParams() != 2)) 669 return false; 670 671 if (MD->parameters()[0]->getType().getCanonicalType() != Ctx.getSizeType()) 672 return false; 673 674 if (MD->getNumParams() == 2) { 675 auto *PT = MD->parameters()[1]->getType()->getAs<PointerType>(); 676 if (!PT || !PT->isVoidPointerType() || 677 !PT->getPointeeType().isConstQualified()) 678 return false; 679 } 680 681 return true; 682 } 683 684 /// Return the UBSan prologue signature for \p FD if one is available. 685 static llvm::Constant *getPrologueSignature(CodeGenModule &CGM, 686 const FunctionDecl *FD) { 687 if (const auto *MD = dyn_cast<CXXMethodDecl>(FD)) 688 if (!MD->isStatic()) 689 return nullptr; 690 return CGM.getTargetCodeGenInfo().getUBSanFunctionSignature(CGM); 691 } 692 693 void CodeGenFunction::StartFunction(GlobalDecl GD, QualType RetTy, 694 llvm::Function *Fn, 695 const CGFunctionInfo &FnInfo, 696 const FunctionArgList &Args, 697 SourceLocation Loc, 698 SourceLocation StartLoc) { 699 assert(!CurFn && 700 "Do not use a CodeGenFunction object for more than one function"); 701 702 const Decl *D = GD.getDecl(); 703 704 DidCallStackSave = false; 705 CurCodeDecl = D; 706 if (const auto *FD = dyn_cast_or_null<FunctionDecl>(D)) 707 if (FD->usesSEHTry()) 708 CurSEHParent = FD; 709 CurFuncDecl = (D ? D->getNonClosureContext() : nullptr); 710 FnRetTy = RetTy; 711 CurFn = Fn; 712 CurFnInfo = &FnInfo; 713 assert(CurFn->isDeclaration() && "Function already has body?"); 714 715 // If this function is ignored for any of the enabled sanitizers, 716 // disable the sanitizer for the function. 717 do { 718 #define SANITIZER(NAME, ID) \ 719 if (SanOpts.empty()) \ 720 break; \ 721 if (SanOpts.has(SanitizerKind::ID)) \ 722 if (CGM.isInNoSanitizeList(SanitizerKind::ID, Fn, Loc)) \ 723 SanOpts.set(SanitizerKind::ID, false); 724 725 #include "clang/Basic/Sanitizers.def" 726 #undef SANITIZER 727 } while (0); 728 729 if (D) { 730 // Apply the no_sanitize* attributes to SanOpts. 731 for (auto Attr : D->specific_attrs<NoSanitizeAttr>()) { 732 SanitizerMask mask = Attr->getMask(); 733 SanOpts.Mask &= ~mask; 734 if (mask & SanitizerKind::Address) 735 SanOpts.set(SanitizerKind::KernelAddress, false); 736 if (mask & SanitizerKind::KernelAddress) 737 SanOpts.set(SanitizerKind::Address, false); 738 if (mask & SanitizerKind::HWAddress) 739 SanOpts.set(SanitizerKind::KernelHWAddress, false); 740 if (mask & SanitizerKind::KernelHWAddress) 741 SanOpts.set(SanitizerKind::HWAddress, false); 742 } 743 } 744 745 // Apply sanitizer attributes to the function. 746 if (SanOpts.hasOneOf(SanitizerKind::Address | SanitizerKind::KernelAddress)) 747 Fn->addFnAttr(llvm::Attribute::SanitizeAddress); 748 if (SanOpts.hasOneOf(SanitizerKind::HWAddress | SanitizerKind::KernelHWAddress)) 749 Fn->addFnAttr(llvm::Attribute::SanitizeHWAddress); 750 if (SanOpts.has(SanitizerKind::MemTag)) 751 Fn->addFnAttr(llvm::Attribute::SanitizeMemTag); 752 if (SanOpts.has(SanitizerKind::Thread)) 753 Fn->addFnAttr(llvm::Attribute::SanitizeThread); 754 if (SanOpts.hasOneOf(SanitizerKind::Memory | SanitizerKind::KernelMemory)) 755 Fn->addFnAttr(llvm::Attribute::SanitizeMemory); 756 if (SanOpts.has(SanitizerKind::SafeStack)) 757 Fn->addFnAttr(llvm::Attribute::SafeStack); 758 if (SanOpts.has(SanitizerKind::ShadowCallStack)) 759 Fn->addFnAttr(llvm::Attribute::ShadowCallStack); 760 761 // Apply fuzzing attribute to the function. 762 if (SanOpts.hasOneOf(SanitizerKind::Fuzzer | SanitizerKind::FuzzerNoLink)) 763 Fn->addFnAttr(llvm::Attribute::OptForFuzzing); 764 765 // Ignore TSan memory acesses from within ObjC/ObjC++ dealloc, initialize, 766 // .cxx_destruct, __destroy_helper_block_ and all of their calees at run time. 767 if (SanOpts.has(SanitizerKind::Thread)) { 768 if (const auto *OMD = dyn_cast_or_null<ObjCMethodDecl>(D)) { 769 IdentifierInfo *II = OMD->getSelector().getIdentifierInfoForSlot(0); 770 if (OMD->getMethodFamily() == OMF_dealloc || 771 OMD->getMethodFamily() == OMF_initialize || 772 (OMD->getSelector().isUnarySelector() && II->isStr(".cxx_destruct"))) { 773 markAsIgnoreThreadCheckingAtRuntime(Fn); 774 } 775 } 776 } 777 778 // Ignore unrelated casts in STL allocate() since the allocator must cast 779 // from void* to T* before object initialization completes. Don't match on the 780 // namespace because not all allocators are in std:: 781 if (D && SanOpts.has(SanitizerKind::CFIUnrelatedCast)) { 782 if (matchesStlAllocatorFn(D, getContext())) 783 SanOpts.Mask &= ~SanitizerKind::CFIUnrelatedCast; 784 } 785 786 // Ignore null checks in coroutine functions since the coroutines passes 787 // are not aware of how to move the extra UBSan instructions across the split 788 // coroutine boundaries. 789 if (D && SanOpts.has(SanitizerKind::Null)) 790 if (const auto *FD = dyn_cast<FunctionDecl>(D)) 791 if (FD->getBody() && 792 FD->getBody()->getStmtClass() == Stmt::CoroutineBodyStmtClass) 793 SanOpts.Mask &= ~SanitizerKind::Null; 794 795 // Apply xray attributes to the function (as a string, for now) 796 bool AlwaysXRayAttr = false; 797 if (const auto *XRayAttr = D ? D->getAttr<XRayInstrumentAttr>() : nullptr) { 798 if (CGM.getCodeGenOpts().XRayInstrumentationBundle.has( 799 XRayInstrKind::FunctionEntry) || 800 CGM.getCodeGenOpts().XRayInstrumentationBundle.has( 801 XRayInstrKind::FunctionExit)) { 802 if (XRayAttr->alwaysXRayInstrument() && ShouldXRayInstrumentFunction()) { 803 Fn->addFnAttr("function-instrument", "xray-always"); 804 AlwaysXRayAttr = true; 805 } 806 if (XRayAttr->neverXRayInstrument()) 807 Fn->addFnAttr("function-instrument", "xray-never"); 808 if (const auto *LogArgs = D->getAttr<XRayLogArgsAttr>()) 809 if (ShouldXRayInstrumentFunction()) 810 Fn->addFnAttr("xray-log-args", 811 llvm::utostr(LogArgs->getArgumentCount())); 812 } 813 } else { 814 if (ShouldXRayInstrumentFunction() && !CGM.imbueXRayAttrs(Fn, Loc)) 815 Fn->addFnAttr( 816 "xray-instruction-threshold", 817 llvm::itostr(CGM.getCodeGenOpts().XRayInstructionThreshold)); 818 } 819 820 if (ShouldXRayInstrumentFunction()) { 821 if (CGM.getCodeGenOpts().XRayIgnoreLoops) 822 Fn->addFnAttr("xray-ignore-loops"); 823 824 if (!CGM.getCodeGenOpts().XRayInstrumentationBundle.has( 825 XRayInstrKind::FunctionExit)) 826 Fn->addFnAttr("xray-skip-exit"); 827 828 if (!CGM.getCodeGenOpts().XRayInstrumentationBundle.has( 829 XRayInstrKind::FunctionEntry)) 830 Fn->addFnAttr("xray-skip-entry"); 831 832 auto FuncGroups = CGM.getCodeGenOpts().XRayTotalFunctionGroups; 833 if (FuncGroups > 1) { 834 auto FuncName = llvm::makeArrayRef<uint8_t>( 835 CurFn->getName().bytes_begin(), CurFn->getName().bytes_end()); 836 auto Group = crc32(FuncName) % FuncGroups; 837 if (Group != CGM.getCodeGenOpts().XRaySelectedFunctionGroup && 838 !AlwaysXRayAttr) 839 Fn->addFnAttr("function-instrument", "xray-never"); 840 } 841 } 842 843 if (CGM.getCodeGenOpts().getProfileInstr() != CodeGenOptions::ProfileNone) 844 if (CGM.isProfileInstrExcluded(Fn, Loc)) 845 Fn->addFnAttr(llvm::Attribute::NoProfile); 846 847 unsigned Count, Offset; 848 if (const auto *Attr = 849 D ? D->getAttr<PatchableFunctionEntryAttr>() : nullptr) { 850 Count = Attr->getCount(); 851 Offset = Attr->getOffset(); 852 } else { 853 Count = CGM.getCodeGenOpts().PatchableFunctionEntryCount; 854 Offset = CGM.getCodeGenOpts().PatchableFunctionEntryOffset; 855 } 856 if (Count && Offset <= Count) { 857 Fn->addFnAttr("patchable-function-entry", std::to_string(Count - Offset)); 858 if (Offset) 859 Fn->addFnAttr("patchable-function-prefix", std::to_string(Offset)); 860 } 861 862 // Add no-jump-tables value. 863 if (CGM.getCodeGenOpts().NoUseJumpTables) 864 Fn->addFnAttr("no-jump-tables", "true"); 865 866 // Add no-inline-line-tables value. 867 if (CGM.getCodeGenOpts().NoInlineLineTables) 868 Fn->addFnAttr("no-inline-line-tables"); 869 870 // Add profile-sample-accurate value. 871 if (CGM.getCodeGenOpts().ProfileSampleAccurate) 872 Fn->addFnAttr("profile-sample-accurate"); 873 874 if (!CGM.getCodeGenOpts().SampleProfileFile.empty()) 875 Fn->addFnAttr("use-sample-profile"); 876 877 if (D && D->hasAttr<CFICanonicalJumpTableAttr>()) 878 Fn->addFnAttr("cfi-canonical-jump-table"); 879 880 if (getLangOpts().OpenCL) { 881 // Add metadata for a kernel function. 882 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) 883 EmitOpenCLKernelMetadata(FD, Fn); 884 } 885 886 // If we are checking function types, emit a function type signature as 887 // prologue data. 888 if (getLangOpts().CPlusPlus && SanOpts.has(SanitizerKind::Function)) { 889 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) { 890 if (llvm::Constant *PrologueSig = getPrologueSignature(CGM, FD)) { 891 // Remove any (C++17) exception specifications, to allow calling e.g. a 892 // noexcept function through a non-noexcept pointer. 893 auto ProtoTy = 894 getContext().getFunctionTypeWithExceptionSpec(FD->getType(), 895 EST_None); 896 llvm::Constant *FTRTTIConst = 897 CGM.GetAddrOfRTTIDescriptor(ProtoTy, /*ForEH=*/true); 898 llvm::Constant *FTRTTIConstEncoded = 899 EncodeAddrForUseInPrologue(Fn, FTRTTIConst); 900 llvm::Constant *PrologueStructElems[] = {PrologueSig, 901 FTRTTIConstEncoded}; 902 llvm::Constant *PrologueStructConst = 903 llvm::ConstantStruct::getAnon(PrologueStructElems, /*Packed=*/true); 904 Fn->setPrologueData(PrologueStructConst); 905 } 906 } 907 } 908 909 // If we're checking nullability, we need to know whether we can check the 910 // return value. Initialize the flag to 'true' and refine it in EmitParmDecl. 911 if (SanOpts.has(SanitizerKind::NullabilityReturn)) { 912 auto Nullability = FnRetTy->getNullability(getContext()); 913 if (Nullability && *Nullability == NullabilityKind::NonNull) { 914 if (!(SanOpts.has(SanitizerKind::ReturnsNonnullAttribute) && 915 CurCodeDecl && CurCodeDecl->getAttr<ReturnsNonNullAttr>())) 916 RetValNullabilityPrecondition = 917 llvm::ConstantInt::getTrue(getLLVMContext()); 918 } 919 } 920 921 // If we're in C++ mode and the function name is "main", it is guaranteed 922 // to be norecurse by the standard (3.6.1.3 "The function main shall not be 923 // used within a program"). 924 // 925 // OpenCL C 2.0 v2.2-11 s6.9.i: 926 // Recursion is not supported. 927 // 928 // SYCL v1.2.1 s3.10: 929 // kernels cannot include RTTI information, exception classes, 930 // recursive code, virtual functions or make use of C++ libraries that 931 // are not compiled for the device. 932 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) { 933 if ((getLangOpts().CPlusPlus && FD->isMain()) || getLangOpts().OpenCL || 934 getLangOpts().SYCLIsDevice || 935 (getLangOpts().CUDA && FD->hasAttr<CUDAGlobalAttr>())) 936 Fn->addFnAttr(llvm::Attribute::NoRecurse); 937 } 938 939 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) { 940 Builder.setIsFPConstrained(FD->hasAttr<StrictFPAttr>()); 941 if (FD->hasAttr<StrictFPAttr>()) 942 Fn->addFnAttr(llvm::Attribute::StrictFP); 943 } 944 945 // If a custom alignment is used, force realigning to this alignment on 946 // any main function which certainly will need it. 947 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) 948 if ((FD->isMain() || FD->isMSVCRTEntryPoint()) && 949 CGM.getCodeGenOpts().StackAlignment) 950 Fn->addFnAttr("stackrealign"); 951 952 llvm::BasicBlock *EntryBB = createBasicBlock("entry", CurFn); 953 954 // Create a marker to make it easy to insert allocas into the entryblock 955 // later. Don't create this with the builder, because we don't want it 956 // folded. 957 llvm::Value *Undef = llvm::UndefValue::get(Int32Ty); 958 AllocaInsertPt = new llvm::BitCastInst(Undef, Int32Ty, "allocapt", EntryBB); 959 960 ReturnBlock = getJumpDestInCurrentScope("return"); 961 962 Builder.SetInsertPoint(EntryBB); 963 964 // If we're checking the return value, allocate space for a pointer to a 965 // precise source location of the checked return statement. 966 if (requiresReturnValueCheck()) { 967 ReturnLocation = CreateDefaultAlignTempAlloca(Int8PtrTy, "return.sloc.ptr"); 968 InitTempAlloca(ReturnLocation, llvm::ConstantPointerNull::get(Int8PtrTy)); 969 } 970 971 // Emit subprogram debug descriptor. 972 if (CGDebugInfo *DI = getDebugInfo()) { 973 // Reconstruct the type from the argument list so that implicit parameters, 974 // such as 'this' and 'vtt', show up in the debug info. Preserve the calling 975 // convention. 976 CallingConv CC = CallingConv::CC_C; 977 if (auto *FD = dyn_cast_or_null<FunctionDecl>(D)) 978 if (const auto *SrcFnTy = FD->getType()->getAs<FunctionType>()) 979 CC = SrcFnTy->getCallConv(); 980 SmallVector<QualType, 16> ArgTypes; 981 for (const VarDecl *VD : Args) 982 ArgTypes.push_back(VD->getType()); 983 QualType FnType = getContext().getFunctionType( 984 RetTy, ArgTypes, FunctionProtoType::ExtProtoInfo(CC)); 985 DI->emitFunctionStart(GD, Loc, StartLoc, FnType, CurFn, CurFuncIsThunk); 986 } 987 988 if (ShouldInstrumentFunction()) { 989 if (CGM.getCodeGenOpts().InstrumentFunctions) 990 CurFn->addFnAttr("instrument-function-entry", "__cyg_profile_func_enter"); 991 if (CGM.getCodeGenOpts().InstrumentFunctionsAfterInlining) 992 CurFn->addFnAttr("instrument-function-entry-inlined", 993 "__cyg_profile_func_enter"); 994 if (CGM.getCodeGenOpts().InstrumentFunctionEntryBare) 995 CurFn->addFnAttr("instrument-function-entry-inlined", 996 "__cyg_profile_func_enter_bare"); 997 } 998 999 // Since emitting the mcount call here impacts optimizations such as function 1000 // inlining, we just add an attribute to insert a mcount call in backend. 1001 // The attribute "counting-function" is set to mcount function name which is 1002 // architecture dependent. 1003 if (CGM.getCodeGenOpts().InstrumentForProfiling) { 1004 // Calls to fentry/mcount should not be generated if function has 1005 // the no_instrument_function attribute. 1006 if (!CurFuncDecl || !CurFuncDecl->hasAttr<NoInstrumentFunctionAttr>()) { 1007 if (CGM.getCodeGenOpts().CallFEntry) 1008 Fn->addFnAttr("fentry-call", "true"); 1009 else { 1010 Fn->addFnAttr("instrument-function-entry-inlined", 1011 getTarget().getMCountName()); 1012 } 1013 if (CGM.getCodeGenOpts().MNopMCount) { 1014 if (!CGM.getCodeGenOpts().CallFEntry) 1015 CGM.getDiags().Report(diag::err_opt_not_valid_without_opt) 1016 << "-mnop-mcount" << "-mfentry"; 1017 Fn->addFnAttr("mnop-mcount"); 1018 } 1019 1020 if (CGM.getCodeGenOpts().RecordMCount) { 1021 if (!CGM.getCodeGenOpts().CallFEntry) 1022 CGM.getDiags().Report(diag::err_opt_not_valid_without_opt) 1023 << "-mrecord-mcount" << "-mfentry"; 1024 Fn->addFnAttr("mrecord-mcount"); 1025 } 1026 } 1027 } 1028 1029 if (CGM.getCodeGenOpts().PackedStack) { 1030 if (getContext().getTargetInfo().getTriple().getArch() != 1031 llvm::Triple::systemz) 1032 CGM.getDiags().Report(diag::err_opt_not_valid_on_target) 1033 << "-mpacked-stack"; 1034 Fn->addFnAttr("packed-stack"); 1035 } 1036 1037 if (RetTy->isVoidType()) { 1038 // Void type; nothing to return. 1039 ReturnValue = Address::invalid(); 1040 1041 // Count the implicit return. 1042 if (!endsWithReturn(D)) 1043 ++NumReturnExprs; 1044 } else if (CurFnInfo->getReturnInfo().getKind() == ABIArgInfo::Indirect) { 1045 // Indirect return; emit returned value directly into sret slot. 1046 // This reduces code size, and affects correctness in C++. 1047 auto AI = CurFn->arg_begin(); 1048 if (CurFnInfo->getReturnInfo().isSRetAfterThis()) 1049 ++AI; 1050 ReturnValue = Address(&*AI, CurFnInfo->getReturnInfo().getIndirectAlign()); 1051 if (!CurFnInfo->getReturnInfo().getIndirectByVal()) { 1052 ReturnValuePointer = 1053 CreateDefaultAlignTempAlloca(Int8PtrTy, "result.ptr"); 1054 Builder.CreateStore(Builder.CreatePointerBitCastOrAddrSpaceCast( 1055 ReturnValue.getPointer(), Int8PtrTy), 1056 ReturnValuePointer); 1057 } 1058 } else if (CurFnInfo->getReturnInfo().getKind() == ABIArgInfo::InAlloca && 1059 !hasScalarEvaluationKind(CurFnInfo->getReturnType())) { 1060 // Load the sret pointer from the argument struct and return into that. 1061 unsigned Idx = CurFnInfo->getReturnInfo().getInAllocaFieldIndex(); 1062 llvm::Function::arg_iterator EI = CurFn->arg_end(); 1063 --EI; 1064 llvm::Value *Addr = Builder.CreateStructGEP(nullptr, &*EI, Idx); 1065 llvm::Type *Ty = 1066 cast<llvm::GetElementPtrInst>(Addr)->getResultElementType(); 1067 ReturnValuePointer = Address(Addr, getPointerAlign()); 1068 Addr = Builder.CreateAlignedLoad(Ty, Addr, getPointerAlign(), "agg.result"); 1069 ReturnValue = Address(Addr, CGM.getNaturalTypeAlignment(RetTy)); 1070 } else { 1071 ReturnValue = CreateIRTemp(RetTy, "retval"); 1072 1073 // Tell the epilog emitter to autorelease the result. We do this 1074 // now so that various specialized functions can suppress it 1075 // during their IR-generation. 1076 if (getLangOpts().ObjCAutoRefCount && 1077 !CurFnInfo->isReturnsRetained() && 1078 RetTy->isObjCRetainableType()) 1079 AutoreleaseResult = true; 1080 } 1081 1082 EmitStartEHSpec(CurCodeDecl); 1083 1084 PrologueCleanupDepth = EHStack.stable_begin(); 1085 1086 // Emit OpenMP specific initialization of the device functions. 1087 if (getLangOpts().OpenMP && CurCodeDecl) 1088 CGM.getOpenMPRuntime().emitFunctionProlog(*this, CurCodeDecl); 1089 1090 EmitFunctionProlog(*CurFnInfo, CurFn, Args); 1091 1092 if (D && isa<CXXMethodDecl>(D) && cast<CXXMethodDecl>(D)->isInstance()) { 1093 CGM.getCXXABI().EmitInstanceFunctionProlog(*this); 1094 const CXXMethodDecl *MD = cast<CXXMethodDecl>(D); 1095 if (MD->getParent()->isLambda() && 1096 MD->getOverloadedOperator() == OO_Call) { 1097 // We're in a lambda; figure out the captures. 1098 MD->getParent()->getCaptureFields(LambdaCaptureFields, 1099 LambdaThisCaptureField); 1100 if (LambdaThisCaptureField) { 1101 // If the lambda captures the object referred to by '*this' - either by 1102 // value or by reference, make sure CXXThisValue points to the correct 1103 // object. 1104 1105 // Get the lvalue for the field (which is a copy of the enclosing object 1106 // or contains the address of the enclosing object). 1107 LValue ThisFieldLValue = EmitLValueForLambdaField(LambdaThisCaptureField); 1108 if (!LambdaThisCaptureField->getType()->isPointerType()) { 1109 // If the enclosing object was captured by value, just use its address. 1110 CXXThisValue = ThisFieldLValue.getAddress(*this).getPointer(); 1111 } else { 1112 // Load the lvalue pointed to by the field, since '*this' was captured 1113 // by reference. 1114 CXXThisValue = 1115 EmitLoadOfLValue(ThisFieldLValue, SourceLocation()).getScalarVal(); 1116 } 1117 } 1118 for (auto *FD : MD->getParent()->fields()) { 1119 if (FD->hasCapturedVLAType()) { 1120 auto *ExprArg = EmitLoadOfLValue(EmitLValueForLambdaField(FD), 1121 SourceLocation()).getScalarVal(); 1122 auto VAT = FD->getCapturedVLAType(); 1123 VLASizeMap[VAT->getSizeExpr()] = ExprArg; 1124 } 1125 } 1126 } else { 1127 // Not in a lambda; just use 'this' from the method. 1128 // FIXME: Should we generate a new load for each use of 'this'? The 1129 // fast register allocator would be happier... 1130 CXXThisValue = CXXABIThisValue; 1131 } 1132 1133 // Check the 'this' pointer once per function, if it's available. 1134 if (CXXABIThisValue) { 1135 SanitizerSet SkippedChecks; 1136 SkippedChecks.set(SanitizerKind::ObjectSize, true); 1137 QualType ThisTy = MD->getThisType(); 1138 1139 // If this is the call operator of a lambda with no capture-default, it 1140 // may have a static invoker function, which may call this operator with 1141 // a null 'this' pointer. 1142 if (isLambdaCallOperator(MD) && 1143 MD->getParent()->getLambdaCaptureDefault() == LCD_None) 1144 SkippedChecks.set(SanitizerKind::Null, true); 1145 1146 EmitTypeCheck( 1147 isa<CXXConstructorDecl>(MD) ? TCK_ConstructorCall : TCK_MemberCall, 1148 Loc, CXXABIThisValue, ThisTy, CXXABIThisAlignment, SkippedChecks); 1149 } 1150 } 1151 1152 // If any of the arguments have a variably modified type, make sure to 1153 // emit the type size. 1154 for (FunctionArgList::const_iterator i = Args.begin(), e = Args.end(); 1155 i != e; ++i) { 1156 const VarDecl *VD = *i; 1157 1158 // Dig out the type as written from ParmVarDecls; it's unclear whether 1159 // the standard (C99 6.9.1p10) requires this, but we're following the 1160 // precedent set by gcc. 1161 QualType Ty; 1162 if (const ParmVarDecl *PVD = dyn_cast<ParmVarDecl>(VD)) 1163 Ty = PVD->getOriginalType(); 1164 else 1165 Ty = VD->getType(); 1166 1167 if (Ty->isVariablyModifiedType()) 1168 EmitVariablyModifiedType(Ty); 1169 } 1170 // Emit a location at the end of the prologue. 1171 if (CGDebugInfo *DI = getDebugInfo()) 1172 DI->EmitLocation(Builder, StartLoc); 1173 1174 // TODO: Do we need to handle this in two places like we do with 1175 // target-features/target-cpu? 1176 if (CurFuncDecl) 1177 if (const auto *VecWidth = CurFuncDecl->getAttr<MinVectorWidthAttr>()) 1178 LargestVectorWidth = VecWidth->getVectorWidth(); 1179 } 1180 1181 void CodeGenFunction::EmitFunctionBody(const Stmt *Body) { 1182 incrementProfileCounter(Body); 1183 if (CPlusPlusWithProgress()) 1184 FnIsMustProgress = true; 1185 1186 if (const CompoundStmt *S = dyn_cast<CompoundStmt>(Body)) 1187 EmitCompoundStmtWithoutScope(*S); 1188 else 1189 EmitStmt(Body); 1190 1191 // This is checked after emitting the function body so we know if there 1192 // are any permitted infinite loops. 1193 if (FnIsMustProgress) 1194 CurFn->addFnAttr(llvm::Attribute::MustProgress); 1195 } 1196 1197 /// When instrumenting to collect profile data, the counts for some blocks 1198 /// such as switch cases need to not include the fall-through counts, so 1199 /// emit a branch around the instrumentation code. When not instrumenting, 1200 /// this just calls EmitBlock(). 1201 void CodeGenFunction::EmitBlockWithFallThrough(llvm::BasicBlock *BB, 1202 const Stmt *S) { 1203 llvm::BasicBlock *SkipCountBB = nullptr; 1204 if (HaveInsertPoint() && CGM.getCodeGenOpts().hasProfileClangInstr()) { 1205 // When instrumenting for profiling, the fallthrough to certain 1206 // statements needs to skip over the instrumentation code so that we 1207 // get an accurate count. 1208 SkipCountBB = createBasicBlock("skipcount"); 1209 EmitBranch(SkipCountBB); 1210 } 1211 EmitBlock(BB); 1212 uint64_t CurrentCount = getCurrentProfileCount(); 1213 incrementProfileCounter(S); 1214 setCurrentProfileCount(getCurrentProfileCount() + CurrentCount); 1215 if (SkipCountBB) 1216 EmitBlock(SkipCountBB); 1217 } 1218 1219 /// Tries to mark the given function nounwind based on the 1220 /// non-existence of any throwing calls within it. We believe this is 1221 /// lightweight enough to do at -O0. 1222 static void TryMarkNoThrow(llvm::Function *F) { 1223 // LLVM treats 'nounwind' on a function as part of the type, so we 1224 // can't do this on functions that can be overwritten. 1225 if (F->isInterposable()) return; 1226 1227 for (llvm::BasicBlock &BB : *F) 1228 for (llvm::Instruction &I : BB) 1229 if (I.mayThrow()) 1230 return; 1231 1232 F->setDoesNotThrow(); 1233 } 1234 1235 QualType CodeGenFunction::BuildFunctionArgList(GlobalDecl GD, 1236 FunctionArgList &Args) { 1237 const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl()); 1238 QualType ResTy = FD->getReturnType(); 1239 1240 const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD); 1241 if (MD && MD->isInstance()) { 1242 if (CGM.getCXXABI().HasThisReturn(GD)) 1243 ResTy = MD->getThisType(); 1244 else if (CGM.getCXXABI().hasMostDerivedReturn(GD)) 1245 ResTy = CGM.getContext().VoidPtrTy; 1246 CGM.getCXXABI().buildThisParam(*this, Args); 1247 } 1248 1249 // The base version of an inheriting constructor whose constructed base is a 1250 // virtual base is not passed any arguments (because it doesn't actually call 1251 // the inherited constructor). 1252 bool PassedParams = true; 1253 if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(FD)) 1254 if (auto Inherited = CD->getInheritedConstructor()) 1255 PassedParams = 1256 getTypes().inheritingCtorHasParams(Inherited, GD.getCtorType()); 1257 1258 if (PassedParams) { 1259 for (auto *Param : FD->parameters()) { 1260 Args.push_back(Param); 1261 if (!Param->hasAttr<PassObjectSizeAttr>()) 1262 continue; 1263 1264 auto *Implicit = ImplicitParamDecl::Create( 1265 getContext(), Param->getDeclContext(), Param->getLocation(), 1266 /*Id=*/nullptr, getContext().getSizeType(), ImplicitParamDecl::Other); 1267 SizeArguments[Param] = Implicit; 1268 Args.push_back(Implicit); 1269 } 1270 } 1271 1272 if (MD && (isa<CXXConstructorDecl>(MD) || isa<CXXDestructorDecl>(MD))) 1273 CGM.getCXXABI().addImplicitStructorParams(*this, ResTy, Args); 1274 1275 return ResTy; 1276 } 1277 1278 void CodeGenFunction::GenerateCode(GlobalDecl GD, llvm::Function *Fn, 1279 const CGFunctionInfo &FnInfo) { 1280 const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl()); 1281 CurGD = GD; 1282 1283 FunctionArgList Args; 1284 QualType ResTy = BuildFunctionArgList(GD, Args); 1285 1286 // Check if we should generate debug info for this function. 1287 if (FD->hasAttr<NoDebugAttr>()) 1288 DebugInfo = nullptr; // disable debug info indefinitely for this function 1289 1290 // The function might not have a body if we're generating thunks for a 1291 // function declaration. 1292 SourceRange BodyRange; 1293 if (Stmt *Body = FD->getBody()) 1294 BodyRange = Body->getSourceRange(); 1295 else 1296 BodyRange = FD->getLocation(); 1297 CurEHLocation = BodyRange.getEnd(); 1298 1299 // Use the location of the start of the function to determine where 1300 // the function definition is located. By default use the location 1301 // of the declaration as the location for the subprogram. A function 1302 // may lack a declaration in the source code if it is created by code 1303 // gen. (examples: _GLOBAL__I_a, __cxx_global_array_dtor, thunk). 1304 SourceLocation Loc = FD->getLocation(); 1305 1306 // If this is a function specialization then use the pattern body 1307 // as the location for the function. 1308 if (const FunctionDecl *SpecDecl = FD->getTemplateInstantiationPattern()) 1309 if (SpecDecl->hasBody(SpecDecl)) 1310 Loc = SpecDecl->getLocation(); 1311 1312 Stmt *Body = FD->getBody(); 1313 1314 // Initialize helper which will detect jumps which can cause invalid lifetime 1315 // markers. 1316 if (Body && ShouldEmitLifetimeMarkers) 1317 Bypasses.Init(Body); 1318 1319 // Emit the standard function prologue. 1320 StartFunction(GD, ResTy, Fn, FnInfo, Args, Loc, BodyRange.getBegin()); 1321 1322 // Generate the body of the function. 1323 PGO.assignRegionCounters(GD, CurFn); 1324 if (isa<CXXDestructorDecl>(FD)) 1325 EmitDestructorBody(Args); 1326 else if (isa<CXXConstructorDecl>(FD)) 1327 EmitConstructorBody(Args); 1328 else if (getLangOpts().CUDA && 1329 !getLangOpts().CUDAIsDevice && 1330 FD->hasAttr<CUDAGlobalAttr>()) 1331 CGM.getCUDARuntime().emitDeviceStub(*this, Args); 1332 else if (isa<CXXMethodDecl>(FD) && 1333 cast<CXXMethodDecl>(FD)->isLambdaStaticInvoker()) { 1334 // The lambda static invoker function is special, because it forwards or 1335 // clones the body of the function call operator (but is actually static). 1336 EmitLambdaStaticInvokeBody(cast<CXXMethodDecl>(FD)); 1337 } else if (FD->isDefaulted() && isa<CXXMethodDecl>(FD) && 1338 (cast<CXXMethodDecl>(FD)->isCopyAssignmentOperator() || 1339 cast<CXXMethodDecl>(FD)->isMoveAssignmentOperator())) { 1340 // Implicit copy-assignment gets the same special treatment as implicit 1341 // copy-constructors. 1342 emitImplicitAssignmentOperatorBody(Args); 1343 } else if (Body) { 1344 EmitFunctionBody(Body); 1345 } else 1346 llvm_unreachable("no definition for emitted function"); 1347 1348 // C++11 [stmt.return]p2: 1349 // Flowing off the end of a function [...] results in undefined behavior in 1350 // a value-returning function. 1351 // C11 6.9.1p12: 1352 // If the '}' that terminates a function is reached, and the value of the 1353 // function call is used by the caller, the behavior is undefined. 1354 if (getLangOpts().CPlusPlus && !FD->hasImplicitReturnZero() && !SawAsmBlock && 1355 !FD->getReturnType()->isVoidType() && Builder.GetInsertBlock()) { 1356 bool ShouldEmitUnreachable = 1357 CGM.getCodeGenOpts().StrictReturn || 1358 !CGM.MayDropFunctionReturn(FD->getASTContext(), FD->getReturnType()); 1359 if (SanOpts.has(SanitizerKind::Return)) { 1360 SanitizerScope SanScope(this); 1361 llvm::Value *IsFalse = Builder.getFalse(); 1362 EmitCheck(std::make_pair(IsFalse, SanitizerKind::Return), 1363 SanitizerHandler::MissingReturn, 1364 EmitCheckSourceLocation(FD->getLocation()), None); 1365 } else if (ShouldEmitUnreachable) { 1366 if (CGM.getCodeGenOpts().OptimizationLevel == 0) 1367 EmitTrapCall(llvm::Intrinsic::trap); 1368 } 1369 if (SanOpts.has(SanitizerKind::Return) || ShouldEmitUnreachable) { 1370 Builder.CreateUnreachable(); 1371 Builder.ClearInsertionPoint(); 1372 } 1373 } 1374 1375 // Emit the standard function epilogue. 1376 FinishFunction(BodyRange.getEnd()); 1377 1378 // If we haven't marked the function nothrow through other means, do 1379 // a quick pass now to see if we can. 1380 if (!CurFn->doesNotThrow()) 1381 TryMarkNoThrow(CurFn); 1382 } 1383 1384 /// ContainsLabel - Return true if the statement contains a label in it. If 1385 /// this statement is not executed normally, it not containing a label means 1386 /// that we can just remove the code. 1387 bool CodeGenFunction::ContainsLabel(const Stmt *S, bool IgnoreCaseStmts) { 1388 // Null statement, not a label! 1389 if (!S) return false; 1390 1391 // If this is a label, we have to emit the code, consider something like: 1392 // if (0) { ... foo: bar(); } goto foo; 1393 // 1394 // TODO: If anyone cared, we could track __label__'s, since we know that you 1395 // can't jump to one from outside their declared region. 1396 if (isa<LabelStmt>(S)) 1397 return true; 1398 1399 // If this is a case/default statement, and we haven't seen a switch, we have 1400 // to emit the code. 1401 if (isa<SwitchCase>(S) && !IgnoreCaseStmts) 1402 return true; 1403 1404 // If this is a switch statement, we want to ignore cases below it. 1405 if (isa<SwitchStmt>(S)) 1406 IgnoreCaseStmts = true; 1407 1408 // Scan subexpressions for verboten labels. 1409 for (const Stmt *SubStmt : S->children()) 1410 if (ContainsLabel(SubStmt, IgnoreCaseStmts)) 1411 return true; 1412 1413 return false; 1414 } 1415 1416 /// containsBreak - Return true if the statement contains a break out of it. 1417 /// If the statement (recursively) contains a switch or loop with a break 1418 /// inside of it, this is fine. 1419 bool CodeGenFunction::containsBreak(const Stmt *S) { 1420 // Null statement, not a label! 1421 if (!S) return false; 1422 1423 // If this is a switch or loop that defines its own break scope, then we can 1424 // include it and anything inside of it. 1425 if (isa<SwitchStmt>(S) || isa<WhileStmt>(S) || isa<DoStmt>(S) || 1426 isa<ForStmt>(S)) 1427 return false; 1428 1429 if (isa<BreakStmt>(S)) 1430 return true; 1431 1432 // Scan subexpressions for verboten breaks. 1433 for (const Stmt *SubStmt : S->children()) 1434 if (containsBreak(SubStmt)) 1435 return true; 1436 1437 return false; 1438 } 1439 1440 bool CodeGenFunction::mightAddDeclToScope(const Stmt *S) { 1441 if (!S) return false; 1442 1443 // Some statement kinds add a scope and thus never add a decl to the current 1444 // scope. Note, this list is longer than the list of statements that might 1445 // have an unscoped decl nested within them, but this way is conservatively 1446 // correct even if more statement kinds are added. 1447 if (isa<IfStmt>(S) || isa<SwitchStmt>(S) || isa<WhileStmt>(S) || 1448 isa<DoStmt>(S) || isa<ForStmt>(S) || isa<CompoundStmt>(S) || 1449 isa<CXXForRangeStmt>(S) || isa<CXXTryStmt>(S) || 1450 isa<ObjCForCollectionStmt>(S) || isa<ObjCAtTryStmt>(S)) 1451 return false; 1452 1453 if (isa<DeclStmt>(S)) 1454 return true; 1455 1456 for (const Stmt *SubStmt : S->children()) 1457 if (mightAddDeclToScope(SubStmt)) 1458 return true; 1459 1460 return false; 1461 } 1462 1463 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold 1464 /// to a constant, or if it does but contains a label, return false. If it 1465 /// constant folds return true and set the boolean result in Result. 1466 bool CodeGenFunction::ConstantFoldsToSimpleInteger(const Expr *Cond, 1467 bool &ResultBool, 1468 bool AllowLabels) { 1469 llvm::APSInt ResultInt; 1470 if (!ConstantFoldsToSimpleInteger(Cond, ResultInt, AllowLabels)) 1471 return false; 1472 1473 ResultBool = ResultInt.getBoolValue(); 1474 return true; 1475 } 1476 1477 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold 1478 /// to a constant, or if it does but contains a label, return false. If it 1479 /// constant folds return true and set the folded value. 1480 bool CodeGenFunction::ConstantFoldsToSimpleInteger(const Expr *Cond, 1481 llvm::APSInt &ResultInt, 1482 bool AllowLabels) { 1483 // FIXME: Rename and handle conversion of other evaluatable things 1484 // to bool. 1485 Expr::EvalResult Result; 1486 if (!Cond->EvaluateAsInt(Result, getContext())) 1487 return false; // Not foldable, not integer or not fully evaluatable. 1488 1489 llvm::APSInt Int = Result.Val.getInt(); 1490 if (!AllowLabels && CodeGenFunction::ContainsLabel(Cond)) 1491 return false; // Contains a label. 1492 1493 ResultInt = Int; 1494 return true; 1495 } 1496 1497 /// Determine whether the given condition is an instrumentable condition 1498 /// (i.e. no "&&" or "||"). 1499 bool CodeGenFunction::isInstrumentedCondition(const Expr *C) { 1500 // Bypass simplistic logical-NOT operator before determining whether the 1501 // condition contains any other logical operator. 1502 if (const UnaryOperator *UnOp = dyn_cast<UnaryOperator>(C->IgnoreParens())) 1503 if (UnOp->getOpcode() == UO_LNot) 1504 C = UnOp->getSubExpr(); 1505 1506 const BinaryOperator *BOp = dyn_cast<BinaryOperator>(C->IgnoreParens()); 1507 return (!BOp || !BOp->isLogicalOp()); 1508 } 1509 1510 /// EmitBranchToCounterBlock - Emit a conditional branch to a new block that 1511 /// increments a profile counter based on the semantics of the given logical 1512 /// operator opcode. This is used to instrument branch condition coverage for 1513 /// logical operators. 1514 void CodeGenFunction::EmitBranchToCounterBlock( 1515 const Expr *Cond, BinaryOperator::Opcode LOp, llvm::BasicBlock *TrueBlock, 1516 llvm::BasicBlock *FalseBlock, uint64_t TrueCount /* = 0 */, 1517 Stmt::Likelihood LH /* =None */, const Expr *CntrIdx /* = nullptr */) { 1518 // If not instrumenting, just emit a branch. 1519 bool InstrumentRegions = CGM.getCodeGenOpts().hasProfileClangInstr(); 1520 if (!InstrumentRegions || !isInstrumentedCondition(Cond)) 1521 return EmitBranchOnBoolExpr(Cond, TrueBlock, FalseBlock, TrueCount, LH); 1522 1523 llvm::BasicBlock *ThenBlock = NULL; 1524 llvm::BasicBlock *ElseBlock = NULL; 1525 llvm::BasicBlock *NextBlock = NULL; 1526 1527 // Create the block we'll use to increment the appropriate counter. 1528 llvm::BasicBlock *CounterIncrBlock = createBasicBlock("lop.rhscnt"); 1529 1530 // Set block pointers according to Logical-AND (BO_LAnd) semantics. This 1531 // means we need to evaluate the condition and increment the counter on TRUE: 1532 // 1533 // if (Cond) 1534 // goto CounterIncrBlock; 1535 // else 1536 // goto FalseBlock; 1537 // 1538 // CounterIncrBlock: 1539 // Counter++; 1540 // goto TrueBlock; 1541 1542 if (LOp == BO_LAnd) { 1543 ThenBlock = CounterIncrBlock; 1544 ElseBlock = FalseBlock; 1545 NextBlock = TrueBlock; 1546 } 1547 1548 // Set block pointers according to Logical-OR (BO_LOr) semantics. This means 1549 // we need to evaluate the condition and increment the counter on FALSE: 1550 // 1551 // if (Cond) 1552 // goto TrueBlock; 1553 // else 1554 // goto CounterIncrBlock; 1555 // 1556 // CounterIncrBlock: 1557 // Counter++; 1558 // goto FalseBlock; 1559 1560 else if (LOp == BO_LOr) { 1561 ThenBlock = TrueBlock; 1562 ElseBlock = CounterIncrBlock; 1563 NextBlock = FalseBlock; 1564 } else { 1565 llvm_unreachable("Expected Opcode must be that of a Logical Operator"); 1566 } 1567 1568 // Emit Branch based on condition. 1569 EmitBranchOnBoolExpr(Cond, ThenBlock, ElseBlock, TrueCount, LH); 1570 1571 // Emit the block containing the counter increment(s). 1572 EmitBlock(CounterIncrBlock); 1573 1574 // Increment corresponding counter; if index not provided, use Cond as index. 1575 incrementProfileCounter(CntrIdx ? CntrIdx : Cond); 1576 1577 // Go to the next block. 1578 EmitBranch(NextBlock); 1579 } 1580 1581 /// EmitBranchOnBoolExpr - Emit a branch on a boolean condition (e.g. for an if 1582 /// statement) to the specified blocks. Based on the condition, this might try 1583 /// to simplify the codegen of the conditional based on the branch. 1584 /// \param LH The value of the likelihood attribute on the True branch. 1585 void CodeGenFunction::EmitBranchOnBoolExpr(const Expr *Cond, 1586 llvm::BasicBlock *TrueBlock, 1587 llvm::BasicBlock *FalseBlock, 1588 uint64_t TrueCount, 1589 Stmt::Likelihood LH) { 1590 Cond = Cond->IgnoreParens(); 1591 1592 if (const BinaryOperator *CondBOp = dyn_cast<BinaryOperator>(Cond)) { 1593 1594 // Handle X && Y in a condition. 1595 if (CondBOp->getOpcode() == BO_LAnd) { 1596 // If we have "1 && X", simplify the code. "0 && X" would have constant 1597 // folded if the case was simple enough. 1598 bool ConstantBool = false; 1599 if (ConstantFoldsToSimpleInteger(CondBOp->getLHS(), ConstantBool) && 1600 ConstantBool) { 1601 // br(1 && X) -> br(X). 1602 incrementProfileCounter(CondBOp); 1603 return EmitBranchToCounterBlock(CondBOp->getRHS(), BO_LAnd, TrueBlock, 1604 FalseBlock, TrueCount, LH); 1605 } 1606 1607 // If we have "X && 1", simplify the code to use an uncond branch. 1608 // "X && 0" would have been constant folded to 0. 1609 if (ConstantFoldsToSimpleInteger(CondBOp->getRHS(), ConstantBool) && 1610 ConstantBool) { 1611 // br(X && 1) -> br(X). 1612 return EmitBranchToCounterBlock(CondBOp->getLHS(), BO_LAnd, TrueBlock, 1613 FalseBlock, TrueCount, LH, CondBOp); 1614 } 1615 1616 // Emit the LHS as a conditional. If the LHS conditional is false, we 1617 // want to jump to the FalseBlock. 1618 llvm::BasicBlock *LHSTrue = createBasicBlock("land.lhs.true"); 1619 // The counter tells us how often we evaluate RHS, and all of TrueCount 1620 // can be propagated to that branch. 1621 uint64_t RHSCount = getProfileCount(CondBOp->getRHS()); 1622 1623 ConditionalEvaluation eval(*this); 1624 { 1625 ApplyDebugLocation DL(*this, Cond); 1626 // Propagate the likelihood attribute like __builtin_expect 1627 // __builtin_expect(X && Y, 1) -> X and Y are likely 1628 // __builtin_expect(X && Y, 0) -> only Y is unlikely 1629 EmitBranchOnBoolExpr(CondBOp->getLHS(), LHSTrue, FalseBlock, RHSCount, 1630 LH == Stmt::LH_Unlikely ? Stmt::LH_None : LH); 1631 EmitBlock(LHSTrue); 1632 } 1633 1634 incrementProfileCounter(CondBOp); 1635 setCurrentProfileCount(getProfileCount(CondBOp->getRHS())); 1636 1637 // Any temporaries created here are conditional. 1638 eval.begin(*this); 1639 EmitBranchToCounterBlock(CondBOp->getRHS(), BO_LAnd, TrueBlock, 1640 FalseBlock, TrueCount, LH); 1641 eval.end(*this); 1642 1643 return; 1644 } 1645 1646 if (CondBOp->getOpcode() == BO_LOr) { 1647 // If we have "0 || X", simplify the code. "1 || X" would have constant 1648 // folded if the case was simple enough. 1649 bool ConstantBool = false; 1650 if (ConstantFoldsToSimpleInteger(CondBOp->getLHS(), ConstantBool) && 1651 !ConstantBool) { 1652 // br(0 || X) -> br(X). 1653 incrementProfileCounter(CondBOp); 1654 return EmitBranchToCounterBlock(CondBOp->getRHS(), BO_LOr, TrueBlock, 1655 FalseBlock, TrueCount, LH); 1656 } 1657 1658 // If we have "X || 0", simplify the code to use an uncond branch. 1659 // "X || 1" would have been constant folded to 1. 1660 if (ConstantFoldsToSimpleInteger(CondBOp->getRHS(), ConstantBool) && 1661 !ConstantBool) { 1662 // br(X || 0) -> br(X). 1663 return EmitBranchToCounterBlock(CondBOp->getLHS(), BO_LOr, TrueBlock, 1664 FalseBlock, TrueCount, LH, CondBOp); 1665 } 1666 1667 // Emit the LHS as a conditional. If the LHS conditional is true, we 1668 // want to jump to the TrueBlock. 1669 llvm::BasicBlock *LHSFalse = createBasicBlock("lor.lhs.false"); 1670 // We have the count for entry to the RHS and for the whole expression 1671 // being true, so we can divy up True count between the short circuit and 1672 // the RHS. 1673 uint64_t LHSCount = 1674 getCurrentProfileCount() - getProfileCount(CondBOp->getRHS()); 1675 uint64_t RHSCount = TrueCount - LHSCount; 1676 1677 ConditionalEvaluation eval(*this); 1678 { 1679 // Propagate the likelihood attribute like __builtin_expect 1680 // __builtin_expect(X || Y, 1) -> only Y is likely 1681 // __builtin_expect(X || Y, 0) -> both X and Y are unlikely 1682 ApplyDebugLocation DL(*this, Cond); 1683 EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, LHSFalse, LHSCount, 1684 LH == Stmt::LH_Likely ? Stmt::LH_None : LH); 1685 EmitBlock(LHSFalse); 1686 } 1687 1688 incrementProfileCounter(CondBOp); 1689 setCurrentProfileCount(getProfileCount(CondBOp->getRHS())); 1690 1691 // Any temporaries created here are conditional. 1692 eval.begin(*this); 1693 EmitBranchToCounterBlock(CondBOp->getRHS(), BO_LOr, TrueBlock, FalseBlock, 1694 RHSCount, LH); 1695 1696 eval.end(*this); 1697 1698 return; 1699 } 1700 } 1701 1702 if (const UnaryOperator *CondUOp = dyn_cast<UnaryOperator>(Cond)) { 1703 // br(!x, t, f) -> br(x, f, t) 1704 if (CondUOp->getOpcode() == UO_LNot) { 1705 // Negate the count. 1706 uint64_t FalseCount = getCurrentProfileCount() - TrueCount; 1707 // The values of the enum are chosen to make this negation possible. 1708 LH = static_cast<Stmt::Likelihood>(-LH); 1709 // Negate the condition and swap the destination blocks. 1710 return EmitBranchOnBoolExpr(CondUOp->getSubExpr(), FalseBlock, TrueBlock, 1711 FalseCount, LH); 1712 } 1713 } 1714 1715 if (const ConditionalOperator *CondOp = dyn_cast<ConditionalOperator>(Cond)) { 1716 // br(c ? x : y, t, f) -> br(c, br(x, t, f), br(y, t, f)) 1717 llvm::BasicBlock *LHSBlock = createBasicBlock("cond.true"); 1718 llvm::BasicBlock *RHSBlock = createBasicBlock("cond.false"); 1719 1720 // The ConditionalOperator itself has no likelihood information for its 1721 // true and false branches. This matches the behavior of __builtin_expect. 1722 ConditionalEvaluation cond(*this); 1723 EmitBranchOnBoolExpr(CondOp->getCond(), LHSBlock, RHSBlock, 1724 getProfileCount(CondOp), Stmt::LH_None); 1725 1726 // When computing PGO branch weights, we only know the overall count for 1727 // the true block. This code is essentially doing tail duplication of the 1728 // naive code-gen, introducing new edges for which counts are not 1729 // available. Divide the counts proportionally between the LHS and RHS of 1730 // the conditional operator. 1731 uint64_t LHSScaledTrueCount = 0; 1732 if (TrueCount) { 1733 double LHSRatio = 1734 getProfileCount(CondOp) / (double)getCurrentProfileCount(); 1735 LHSScaledTrueCount = TrueCount * LHSRatio; 1736 } 1737 1738 cond.begin(*this); 1739 EmitBlock(LHSBlock); 1740 incrementProfileCounter(CondOp); 1741 { 1742 ApplyDebugLocation DL(*this, Cond); 1743 EmitBranchOnBoolExpr(CondOp->getLHS(), TrueBlock, FalseBlock, 1744 LHSScaledTrueCount, LH); 1745 } 1746 cond.end(*this); 1747 1748 cond.begin(*this); 1749 EmitBlock(RHSBlock); 1750 EmitBranchOnBoolExpr(CondOp->getRHS(), TrueBlock, FalseBlock, 1751 TrueCount - LHSScaledTrueCount, LH); 1752 cond.end(*this); 1753 1754 return; 1755 } 1756 1757 if (const CXXThrowExpr *Throw = dyn_cast<CXXThrowExpr>(Cond)) { 1758 // Conditional operator handling can give us a throw expression as a 1759 // condition for a case like: 1760 // br(c ? throw x : y, t, f) -> br(c, br(throw x, t, f), br(y, t, f) 1761 // Fold this to: 1762 // br(c, throw x, br(y, t, f)) 1763 EmitCXXThrowExpr(Throw, /*KeepInsertionPoint*/false); 1764 return; 1765 } 1766 1767 // If the branch has a condition wrapped by __builtin_unpredictable, 1768 // create metadata that specifies that the branch is unpredictable. 1769 // Don't bother if not optimizing because that metadata would not be used. 1770 llvm::MDNode *Unpredictable = nullptr; 1771 auto *Call = dyn_cast<CallExpr>(Cond->IgnoreImpCasts()); 1772 if (Call && CGM.getCodeGenOpts().OptimizationLevel != 0) { 1773 auto *FD = dyn_cast_or_null<FunctionDecl>(Call->getCalleeDecl()); 1774 if (FD && FD->getBuiltinID() == Builtin::BI__builtin_unpredictable) { 1775 llvm::MDBuilder MDHelper(getLLVMContext()); 1776 Unpredictable = MDHelper.createUnpredictable(); 1777 } 1778 } 1779 1780 llvm::MDNode *Weights = createBranchWeights(LH); 1781 if (!Weights) { 1782 uint64_t CurrentCount = std::max(getCurrentProfileCount(), TrueCount); 1783 Weights = createProfileWeights(TrueCount, CurrentCount - TrueCount); 1784 } 1785 1786 // Emit the code with the fully general case. 1787 llvm::Value *CondV; 1788 { 1789 ApplyDebugLocation DL(*this, Cond); 1790 CondV = EvaluateExprAsBool(Cond); 1791 } 1792 Builder.CreateCondBr(CondV, TrueBlock, FalseBlock, Weights, Unpredictable); 1793 } 1794 1795 /// ErrorUnsupported - Print out an error that codegen doesn't support the 1796 /// specified stmt yet. 1797 void CodeGenFunction::ErrorUnsupported(const Stmt *S, const char *Type) { 1798 CGM.ErrorUnsupported(S, Type); 1799 } 1800 1801 /// emitNonZeroVLAInit - Emit the "zero" initialization of a 1802 /// variable-length array whose elements have a non-zero bit-pattern. 1803 /// 1804 /// \param baseType the inner-most element type of the array 1805 /// \param src - a char* pointing to the bit-pattern for a single 1806 /// base element of the array 1807 /// \param sizeInChars - the total size of the VLA, in chars 1808 static void emitNonZeroVLAInit(CodeGenFunction &CGF, QualType baseType, 1809 Address dest, Address src, 1810 llvm::Value *sizeInChars) { 1811 CGBuilderTy &Builder = CGF.Builder; 1812 1813 CharUnits baseSize = CGF.getContext().getTypeSizeInChars(baseType); 1814 llvm::Value *baseSizeInChars 1815 = llvm::ConstantInt::get(CGF.IntPtrTy, baseSize.getQuantity()); 1816 1817 Address begin = 1818 Builder.CreateElementBitCast(dest, CGF.Int8Ty, "vla.begin"); 1819 llvm::Value *end = Builder.CreateInBoundsGEP( 1820 begin.getElementType(), begin.getPointer(), sizeInChars, "vla.end"); 1821 1822 llvm::BasicBlock *originBB = CGF.Builder.GetInsertBlock(); 1823 llvm::BasicBlock *loopBB = CGF.createBasicBlock("vla-init.loop"); 1824 llvm::BasicBlock *contBB = CGF.createBasicBlock("vla-init.cont"); 1825 1826 // Make a loop over the VLA. C99 guarantees that the VLA element 1827 // count must be nonzero. 1828 CGF.EmitBlock(loopBB); 1829 1830 llvm::PHINode *cur = Builder.CreatePHI(begin.getType(), 2, "vla.cur"); 1831 cur->addIncoming(begin.getPointer(), originBB); 1832 1833 CharUnits curAlign = 1834 dest.getAlignment().alignmentOfArrayElement(baseSize); 1835 1836 // memcpy the individual element bit-pattern. 1837 Builder.CreateMemCpy(Address(cur, curAlign), src, baseSizeInChars, 1838 /*volatile*/ false); 1839 1840 // Go to the next element. 1841 llvm::Value *next = 1842 Builder.CreateInBoundsGEP(CGF.Int8Ty, cur, baseSizeInChars, "vla.next"); 1843 1844 // Leave if that's the end of the VLA. 1845 llvm::Value *done = Builder.CreateICmpEQ(next, end, "vla-init.isdone"); 1846 Builder.CreateCondBr(done, contBB, loopBB); 1847 cur->addIncoming(next, loopBB); 1848 1849 CGF.EmitBlock(contBB); 1850 } 1851 1852 void 1853 CodeGenFunction::EmitNullInitialization(Address DestPtr, QualType Ty) { 1854 // Ignore empty classes in C++. 1855 if (getLangOpts().CPlusPlus) { 1856 if (const RecordType *RT = Ty->getAs<RecordType>()) { 1857 if (cast<CXXRecordDecl>(RT->getDecl())->isEmpty()) 1858 return; 1859 } 1860 } 1861 1862 // Cast the dest ptr to the appropriate i8 pointer type. 1863 if (DestPtr.getElementType() != Int8Ty) 1864 DestPtr = Builder.CreateElementBitCast(DestPtr, Int8Ty); 1865 1866 // Get size and alignment info for this aggregate. 1867 CharUnits size = getContext().getTypeSizeInChars(Ty); 1868 1869 llvm::Value *SizeVal; 1870 const VariableArrayType *vla; 1871 1872 // Don't bother emitting a zero-byte memset. 1873 if (size.isZero()) { 1874 // But note that getTypeInfo returns 0 for a VLA. 1875 if (const VariableArrayType *vlaType = 1876 dyn_cast_or_null<VariableArrayType>( 1877 getContext().getAsArrayType(Ty))) { 1878 auto VlaSize = getVLASize(vlaType); 1879 SizeVal = VlaSize.NumElts; 1880 CharUnits eltSize = getContext().getTypeSizeInChars(VlaSize.Type); 1881 if (!eltSize.isOne()) 1882 SizeVal = Builder.CreateNUWMul(SizeVal, CGM.getSize(eltSize)); 1883 vla = vlaType; 1884 } else { 1885 return; 1886 } 1887 } else { 1888 SizeVal = CGM.getSize(size); 1889 vla = nullptr; 1890 } 1891 1892 // If the type contains a pointer to data member we can't memset it to zero. 1893 // Instead, create a null constant and copy it to the destination. 1894 // TODO: there are other patterns besides zero that we can usefully memset, 1895 // like -1, which happens to be the pattern used by member-pointers. 1896 if (!CGM.getTypes().isZeroInitializable(Ty)) { 1897 // For a VLA, emit a single element, then splat that over the VLA. 1898 if (vla) Ty = getContext().getBaseElementType(vla); 1899 1900 llvm::Constant *NullConstant = CGM.EmitNullConstant(Ty); 1901 1902 llvm::GlobalVariable *NullVariable = 1903 new llvm::GlobalVariable(CGM.getModule(), NullConstant->getType(), 1904 /*isConstant=*/true, 1905 llvm::GlobalVariable::PrivateLinkage, 1906 NullConstant, Twine()); 1907 CharUnits NullAlign = DestPtr.getAlignment(); 1908 NullVariable->setAlignment(NullAlign.getAsAlign()); 1909 Address SrcPtr(Builder.CreateBitCast(NullVariable, Builder.getInt8PtrTy()), 1910 NullAlign); 1911 1912 if (vla) return emitNonZeroVLAInit(*this, Ty, DestPtr, SrcPtr, SizeVal); 1913 1914 // Get and call the appropriate llvm.memcpy overload. 1915 Builder.CreateMemCpy(DestPtr, SrcPtr, SizeVal, false); 1916 return; 1917 } 1918 1919 // Otherwise, just memset the whole thing to zero. This is legal 1920 // because in LLVM, all default initializers (other than the ones we just 1921 // handled above) are guaranteed to have a bit pattern of all zeros. 1922 Builder.CreateMemSet(DestPtr, Builder.getInt8(0), SizeVal, false); 1923 } 1924 1925 llvm::BlockAddress *CodeGenFunction::GetAddrOfLabel(const LabelDecl *L) { 1926 // Make sure that there is a block for the indirect goto. 1927 if (!IndirectBranch) 1928 GetIndirectGotoBlock(); 1929 1930 llvm::BasicBlock *BB = getJumpDestForLabel(L).getBlock(); 1931 1932 // Make sure the indirect branch includes all of the address-taken blocks. 1933 IndirectBranch->addDestination(BB); 1934 return llvm::BlockAddress::get(CurFn, BB); 1935 } 1936 1937 llvm::BasicBlock *CodeGenFunction::GetIndirectGotoBlock() { 1938 // If we already made the indirect branch for indirect goto, return its block. 1939 if (IndirectBranch) return IndirectBranch->getParent(); 1940 1941 CGBuilderTy TmpBuilder(*this, createBasicBlock("indirectgoto")); 1942 1943 // Create the PHI node that indirect gotos will add entries to. 1944 llvm::Value *DestVal = TmpBuilder.CreatePHI(Int8PtrTy, 0, 1945 "indirect.goto.dest"); 1946 1947 // Create the indirect branch instruction. 1948 IndirectBranch = TmpBuilder.CreateIndirectBr(DestVal); 1949 return IndirectBranch->getParent(); 1950 } 1951 1952 /// Computes the length of an array in elements, as well as the base 1953 /// element type and a properly-typed first element pointer. 1954 llvm::Value *CodeGenFunction::emitArrayLength(const ArrayType *origArrayType, 1955 QualType &baseType, 1956 Address &addr) { 1957 const ArrayType *arrayType = origArrayType; 1958 1959 // If it's a VLA, we have to load the stored size. Note that 1960 // this is the size of the VLA in bytes, not its size in elements. 1961 llvm::Value *numVLAElements = nullptr; 1962 if (isa<VariableArrayType>(arrayType)) { 1963 numVLAElements = getVLASize(cast<VariableArrayType>(arrayType)).NumElts; 1964 1965 // Walk into all VLAs. This doesn't require changes to addr, 1966 // which has type T* where T is the first non-VLA element type. 1967 do { 1968 QualType elementType = arrayType->getElementType(); 1969 arrayType = getContext().getAsArrayType(elementType); 1970 1971 // If we only have VLA components, 'addr' requires no adjustment. 1972 if (!arrayType) { 1973 baseType = elementType; 1974 return numVLAElements; 1975 } 1976 } while (isa<VariableArrayType>(arrayType)); 1977 1978 // We get out here only if we find a constant array type 1979 // inside the VLA. 1980 } 1981 1982 // We have some number of constant-length arrays, so addr should 1983 // have LLVM type [M x [N x [...]]]*. Build a GEP that walks 1984 // down to the first element of addr. 1985 SmallVector<llvm::Value*, 8> gepIndices; 1986 1987 // GEP down to the array type. 1988 llvm::ConstantInt *zero = Builder.getInt32(0); 1989 gepIndices.push_back(zero); 1990 1991 uint64_t countFromCLAs = 1; 1992 QualType eltType; 1993 1994 llvm::ArrayType *llvmArrayType = 1995 dyn_cast<llvm::ArrayType>(addr.getElementType()); 1996 while (llvmArrayType) { 1997 assert(isa<ConstantArrayType>(arrayType)); 1998 assert(cast<ConstantArrayType>(arrayType)->getSize().getZExtValue() 1999 == llvmArrayType->getNumElements()); 2000 2001 gepIndices.push_back(zero); 2002 countFromCLAs *= llvmArrayType->getNumElements(); 2003 eltType = arrayType->getElementType(); 2004 2005 llvmArrayType = 2006 dyn_cast<llvm::ArrayType>(llvmArrayType->getElementType()); 2007 arrayType = getContext().getAsArrayType(arrayType->getElementType()); 2008 assert((!llvmArrayType || arrayType) && 2009 "LLVM and Clang types are out-of-synch"); 2010 } 2011 2012 if (arrayType) { 2013 // From this point onwards, the Clang array type has been emitted 2014 // as some other type (probably a packed struct). Compute the array 2015 // size, and just emit the 'begin' expression as a bitcast. 2016 while (arrayType) { 2017 countFromCLAs *= 2018 cast<ConstantArrayType>(arrayType)->getSize().getZExtValue(); 2019 eltType = arrayType->getElementType(); 2020 arrayType = getContext().getAsArrayType(eltType); 2021 } 2022 2023 llvm::Type *baseType = ConvertType(eltType); 2024 addr = Builder.CreateElementBitCast(addr, baseType, "array.begin"); 2025 } else { 2026 // Create the actual GEP. 2027 addr = Address(Builder.CreateInBoundsGEP( 2028 addr.getElementType(), addr.getPointer(), gepIndices, "array.begin"), 2029 addr.getAlignment()); 2030 } 2031 2032 baseType = eltType; 2033 2034 llvm::Value *numElements 2035 = llvm::ConstantInt::get(SizeTy, countFromCLAs); 2036 2037 // If we had any VLA dimensions, factor them in. 2038 if (numVLAElements) 2039 numElements = Builder.CreateNUWMul(numVLAElements, numElements); 2040 2041 return numElements; 2042 } 2043 2044 CodeGenFunction::VlaSizePair CodeGenFunction::getVLASize(QualType type) { 2045 const VariableArrayType *vla = getContext().getAsVariableArrayType(type); 2046 assert(vla && "type was not a variable array type!"); 2047 return getVLASize(vla); 2048 } 2049 2050 CodeGenFunction::VlaSizePair 2051 CodeGenFunction::getVLASize(const VariableArrayType *type) { 2052 // The number of elements so far; always size_t. 2053 llvm::Value *numElements = nullptr; 2054 2055 QualType elementType; 2056 do { 2057 elementType = type->getElementType(); 2058 llvm::Value *vlaSize = VLASizeMap[type->getSizeExpr()]; 2059 assert(vlaSize && "no size for VLA!"); 2060 assert(vlaSize->getType() == SizeTy); 2061 2062 if (!numElements) { 2063 numElements = vlaSize; 2064 } else { 2065 // It's undefined behavior if this wraps around, so mark it that way. 2066 // FIXME: Teach -fsanitize=undefined to trap this. 2067 numElements = Builder.CreateNUWMul(numElements, vlaSize); 2068 } 2069 } while ((type = getContext().getAsVariableArrayType(elementType))); 2070 2071 return { numElements, elementType }; 2072 } 2073 2074 CodeGenFunction::VlaSizePair 2075 CodeGenFunction::getVLAElements1D(QualType type) { 2076 const VariableArrayType *vla = getContext().getAsVariableArrayType(type); 2077 assert(vla && "type was not a variable array type!"); 2078 return getVLAElements1D(vla); 2079 } 2080 2081 CodeGenFunction::VlaSizePair 2082 CodeGenFunction::getVLAElements1D(const VariableArrayType *Vla) { 2083 llvm::Value *VlaSize = VLASizeMap[Vla->getSizeExpr()]; 2084 assert(VlaSize && "no size for VLA!"); 2085 assert(VlaSize->getType() == SizeTy); 2086 return { VlaSize, Vla->getElementType() }; 2087 } 2088 2089 void CodeGenFunction::EmitVariablyModifiedType(QualType type) { 2090 assert(type->isVariablyModifiedType() && 2091 "Must pass variably modified type to EmitVLASizes!"); 2092 2093 EnsureInsertPoint(); 2094 2095 // We're going to walk down into the type and look for VLA 2096 // expressions. 2097 do { 2098 assert(type->isVariablyModifiedType()); 2099 2100 const Type *ty = type.getTypePtr(); 2101 switch (ty->getTypeClass()) { 2102 2103 #define TYPE(Class, Base) 2104 #define ABSTRACT_TYPE(Class, Base) 2105 #define NON_CANONICAL_TYPE(Class, Base) 2106 #define DEPENDENT_TYPE(Class, Base) case Type::Class: 2107 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base) 2108 #include "clang/AST/TypeNodes.inc" 2109 llvm_unreachable("unexpected dependent type!"); 2110 2111 // These types are never variably-modified. 2112 case Type::Builtin: 2113 case Type::Complex: 2114 case Type::Vector: 2115 case Type::ExtVector: 2116 case Type::ConstantMatrix: 2117 case Type::Record: 2118 case Type::Enum: 2119 case Type::Elaborated: 2120 case Type::TemplateSpecialization: 2121 case Type::ObjCTypeParam: 2122 case Type::ObjCObject: 2123 case Type::ObjCInterface: 2124 case Type::ObjCObjectPointer: 2125 case Type::ExtInt: 2126 llvm_unreachable("type class is never variably-modified!"); 2127 2128 case Type::Adjusted: 2129 type = cast<AdjustedType>(ty)->getAdjustedType(); 2130 break; 2131 2132 case Type::Decayed: 2133 type = cast<DecayedType>(ty)->getPointeeType(); 2134 break; 2135 2136 case Type::Pointer: 2137 type = cast<PointerType>(ty)->getPointeeType(); 2138 break; 2139 2140 case Type::BlockPointer: 2141 type = cast<BlockPointerType>(ty)->getPointeeType(); 2142 break; 2143 2144 case Type::LValueReference: 2145 case Type::RValueReference: 2146 type = cast<ReferenceType>(ty)->getPointeeType(); 2147 break; 2148 2149 case Type::MemberPointer: 2150 type = cast<MemberPointerType>(ty)->getPointeeType(); 2151 break; 2152 2153 case Type::ConstantArray: 2154 case Type::IncompleteArray: 2155 // Losing element qualification here is fine. 2156 type = cast<ArrayType>(ty)->getElementType(); 2157 break; 2158 2159 case Type::VariableArray: { 2160 // Losing element qualification here is fine. 2161 const VariableArrayType *vat = cast<VariableArrayType>(ty); 2162 2163 // Unknown size indication requires no size computation. 2164 // Otherwise, evaluate and record it. 2165 if (const Expr *size = vat->getSizeExpr()) { 2166 // It's possible that we might have emitted this already, 2167 // e.g. with a typedef and a pointer to it. 2168 llvm::Value *&entry = VLASizeMap[size]; 2169 if (!entry) { 2170 llvm::Value *Size = EmitScalarExpr(size); 2171 2172 // C11 6.7.6.2p5: 2173 // If the size is an expression that is not an integer constant 2174 // expression [...] each time it is evaluated it shall have a value 2175 // greater than zero. 2176 if (SanOpts.has(SanitizerKind::VLABound) && 2177 size->getType()->isSignedIntegerType()) { 2178 SanitizerScope SanScope(this); 2179 llvm::Value *Zero = llvm::Constant::getNullValue(Size->getType()); 2180 llvm::Constant *StaticArgs[] = { 2181 EmitCheckSourceLocation(size->getBeginLoc()), 2182 EmitCheckTypeDescriptor(size->getType())}; 2183 EmitCheck(std::make_pair(Builder.CreateICmpSGT(Size, Zero), 2184 SanitizerKind::VLABound), 2185 SanitizerHandler::VLABoundNotPositive, StaticArgs, Size); 2186 } 2187 2188 // Always zexting here would be wrong if it weren't 2189 // undefined behavior to have a negative bound. 2190 entry = Builder.CreateIntCast(Size, SizeTy, /*signed*/ false); 2191 } 2192 } 2193 type = vat->getElementType(); 2194 break; 2195 } 2196 2197 case Type::FunctionProto: 2198 case Type::FunctionNoProto: 2199 type = cast<FunctionType>(ty)->getReturnType(); 2200 break; 2201 2202 case Type::Paren: 2203 case Type::TypeOf: 2204 case Type::UnaryTransform: 2205 case Type::Attributed: 2206 case Type::SubstTemplateTypeParm: 2207 case Type::MacroQualified: 2208 // Keep walking after single level desugaring. 2209 type = type.getSingleStepDesugaredType(getContext()); 2210 break; 2211 2212 case Type::Typedef: 2213 case Type::Decltype: 2214 case Type::Auto: 2215 case Type::DeducedTemplateSpecialization: 2216 // Stop walking: nothing to do. 2217 return; 2218 2219 case Type::TypeOfExpr: 2220 // Stop walking: emit typeof expression. 2221 EmitIgnoredExpr(cast<TypeOfExprType>(ty)->getUnderlyingExpr()); 2222 return; 2223 2224 case Type::Atomic: 2225 type = cast<AtomicType>(ty)->getValueType(); 2226 break; 2227 2228 case Type::Pipe: 2229 type = cast<PipeType>(ty)->getElementType(); 2230 break; 2231 } 2232 } while (type->isVariablyModifiedType()); 2233 } 2234 2235 Address CodeGenFunction::EmitVAListRef(const Expr* E) { 2236 if (getContext().getBuiltinVaListType()->isArrayType()) 2237 return EmitPointerWithAlignment(E); 2238 return EmitLValue(E).getAddress(*this); 2239 } 2240 2241 Address CodeGenFunction::EmitMSVAListRef(const Expr *E) { 2242 return EmitLValue(E).getAddress(*this); 2243 } 2244 2245 void CodeGenFunction::EmitDeclRefExprDbgValue(const DeclRefExpr *E, 2246 const APValue &Init) { 2247 assert(Init.hasValue() && "Invalid DeclRefExpr initializer!"); 2248 if (CGDebugInfo *Dbg = getDebugInfo()) 2249 if (CGM.getCodeGenOpts().hasReducedDebugInfo()) 2250 Dbg->EmitGlobalVariable(E->getDecl(), Init); 2251 } 2252 2253 CodeGenFunction::PeepholeProtection 2254 CodeGenFunction::protectFromPeepholes(RValue rvalue) { 2255 // At the moment, the only aggressive peephole we do in IR gen 2256 // is trunc(zext) folding, but if we add more, we can easily 2257 // extend this protection. 2258 2259 if (!rvalue.isScalar()) return PeepholeProtection(); 2260 llvm::Value *value = rvalue.getScalarVal(); 2261 if (!isa<llvm::ZExtInst>(value)) return PeepholeProtection(); 2262 2263 // Just make an extra bitcast. 2264 assert(HaveInsertPoint()); 2265 llvm::Instruction *inst = new llvm::BitCastInst(value, value->getType(), "", 2266 Builder.GetInsertBlock()); 2267 2268 PeepholeProtection protection; 2269 protection.Inst = inst; 2270 return protection; 2271 } 2272 2273 void CodeGenFunction::unprotectFromPeepholes(PeepholeProtection protection) { 2274 if (!protection.Inst) return; 2275 2276 // In theory, we could try to duplicate the peepholes now, but whatever. 2277 protection.Inst->eraseFromParent(); 2278 } 2279 2280 void CodeGenFunction::emitAlignmentAssumption(llvm::Value *PtrValue, 2281 QualType Ty, SourceLocation Loc, 2282 SourceLocation AssumptionLoc, 2283 llvm::Value *Alignment, 2284 llvm::Value *OffsetValue) { 2285 if (Alignment->getType() != IntPtrTy) 2286 Alignment = 2287 Builder.CreateIntCast(Alignment, IntPtrTy, false, "casted.align"); 2288 if (OffsetValue && OffsetValue->getType() != IntPtrTy) 2289 OffsetValue = 2290 Builder.CreateIntCast(OffsetValue, IntPtrTy, true, "casted.offset"); 2291 llvm::Value *TheCheck = nullptr; 2292 if (SanOpts.has(SanitizerKind::Alignment)) { 2293 llvm::Value *PtrIntValue = 2294 Builder.CreatePtrToInt(PtrValue, IntPtrTy, "ptrint"); 2295 2296 if (OffsetValue) { 2297 bool IsOffsetZero = false; 2298 if (const auto *CI = dyn_cast<llvm::ConstantInt>(OffsetValue)) 2299 IsOffsetZero = CI->isZero(); 2300 2301 if (!IsOffsetZero) 2302 PtrIntValue = Builder.CreateSub(PtrIntValue, OffsetValue, "offsetptr"); 2303 } 2304 2305 llvm::Value *Zero = llvm::ConstantInt::get(IntPtrTy, 0); 2306 llvm::Value *Mask = 2307 Builder.CreateSub(Alignment, llvm::ConstantInt::get(IntPtrTy, 1)); 2308 llvm::Value *MaskedPtr = Builder.CreateAnd(PtrIntValue, Mask, "maskedptr"); 2309 TheCheck = Builder.CreateICmpEQ(MaskedPtr, Zero, "maskcond"); 2310 } 2311 llvm::Instruction *Assumption = Builder.CreateAlignmentAssumption( 2312 CGM.getDataLayout(), PtrValue, Alignment, OffsetValue); 2313 2314 if (!SanOpts.has(SanitizerKind::Alignment)) 2315 return; 2316 emitAlignmentAssumptionCheck(PtrValue, Ty, Loc, AssumptionLoc, Alignment, 2317 OffsetValue, TheCheck, Assumption); 2318 } 2319 2320 void CodeGenFunction::emitAlignmentAssumption(llvm::Value *PtrValue, 2321 const Expr *E, 2322 SourceLocation AssumptionLoc, 2323 llvm::Value *Alignment, 2324 llvm::Value *OffsetValue) { 2325 if (auto *CE = dyn_cast<CastExpr>(E)) 2326 E = CE->getSubExprAsWritten(); 2327 QualType Ty = E->getType(); 2328 SourceLocation Loc = E->getExprLoc(); 2329 2330 emitAlignmentAssumption(PtrValue, Ty, Loc, AssumptionLoc, Alignment, 2331 OffsetValue); 2332 } 2333 2334 llvm::Value *CodeGenFunction::EmitAnnotationCall(llvm::Function *AnnotationFn, 2335 llvm::Value *AnnotatedVal, 2336 StringRef AnnotationStr, 2337 SourceLocation Location, 2338 const AnnotateAttr *Attr) { 2339 SmallVector<llvm::Value *, 5> Args = { 2340 AnnotatedVal, 2341 Builder.CreateBitCast(CGM.EmitAnnotationString(AnnotationStr), Int8PtrTy), 2342 Builder.CreateBitCast(CGM.EmitAnnotationUnit(Location), Int8PtrTy), 2343 CGM.EmitAnnotationLineNo(Location), 2344 }; 2345 if (Attr) 2346 Args.push_back(CGM.EmitAnnotationArgs(Attr)); 2347 return Builder.CreateCall(AnnotationFn, Args); 2348 } 2349 2350 void CodeGenFunction::EmitVarAnnotations(const VarDecl *D, llvm::Value *V) { 2351 assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute"); 2352 // FIXME We create a new bitcast for every annotation because that's what 2353 // llvm-gcc was doing. 2354 for (const auto *I : D->specific_attrs<AnnotateAttr>()) 2355 EmitAnnotationCall(CGM.getIntrinsic(llvm::Intrinsic::var_annotation), 2356 Builder.CreateBitCast(V, CGM.Int8PtrTy, V->getName()), 2357 I->getAnnotation(), D->getLocation(), I); 2358 } 2359 2360 Address CodeGenFunction::EmitFieldAnnotations(const FieldDecl *D, 2361 Address Addr) { 2362 assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute"); 2363 llvm::Value *V = Addr.getPointer(); 2364 llvm::Type *VTy = V->getType(); 2365 llvm::Function *F = CGM.getIntrinsic(llvm::Intrinsic::ptr_annotation, 2366 CGM.Int8PtrTy); 2367 2368 for (const auto *I : D->specific_attrs<AnnotateAttr>()) { 2369 // FIXME Always emit the cast inst so we can differentiate between 2370 // annotation on the first field of a struct and annotation on the struct 2371 // itself. 2372 if (VTy != CGM.Int8PtrTy) 2373 V = Builder.CreateBitCast(V, CGM.Int8PtrTy); 2374 V = EmitAnnotationCall(F, V, I->getAnnotation(), D->getLocation(), I); 2375 V = Builder.CreateBitCast(V, VTy); 2376 } 2377 2378 return Address(V, Addr.getAlignment()); 2379 } 2380 2381 CodeGenFunction::CGCapturedStmtInfo::~CGCapturedStmtInfo() { } 2382 2383 CodeGenFunction::SanitizerScope::SanitizerScope(CodeGenFunction *CGF) 2384 : CGF(CGF) { 2385 assert(!CGF->IsSanitizerScope); 2386 CGF->IsSanitizerScope = true; 2387 } 2388 2389 CodeGenFunction::SanitizerScope::~SanitizerScope() { 2390 CGF->IsSanitizerScope = false; 2391 } 2392 2393 void CodeGenFunction::InsertHelper(llvm::Instruction *I, 2394 const llvm::Twine &Name, 2395 llvm::BasicBlock *BB, 2396 llvm::BasicBlock::iterator InsertPt) const { 2397 LoopStack.InsertHelper(I); 2398 if (IsSanitizerScope) 2399 CGM.getSanitizerMetadata()->disableSanitizerForInstruction(I); 2400 } 2401 2402 void CGBuilderInserter::InsertHelper( 2403 llvm::Instruction *I, const llvm::Twine &Name, llvm::BasicBlock *BB, 2404 llvm::BasicBlock::iterator InsertPt) const { 2405 llvm::IRBuilderDefaultInserter::InsertHelper(I, Name, BB, InsertPt); 2406 if (CGF) 2407 CGF->InsertHelper(I, Name, BB, InsertPt); 2408 } 2409 2410 // Emits an error if we don't have a valid set of target features for the 2411 // called function. 2412 void CodeGenFunction::checkTargetFeatures(const CallExpr *E, 2413 const FunctionDecl *TargetDecl) { 2414 return checkTargetFeatures(E->getBeginLoc(), TargetDecl); 2415 } 2416 2417 // Emits an error if we don't have a valid set of target features for the 2418 // called function. 2419 void CodeGenFunction::checkTargetFeatures(SourceLocation Loc, 2420 const FunctionDecl *TargetDecl) { 2421 // Early exit if this is an indirect call. 2422 if (!TargetDecl) 2423 return; 2424 2425 // Get the current enclosing function if it exists. If it doesn't 2426 // we can't check the target features anyhow. 2427 const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(CurCodeDecl); 2428 if (!FD) 2429 return; 2430 2431 // Grab the required features for the call. For a builtin this is listed in 2432 // the td file with the default cpu, for an always_inline function this is any 2433 // listed cpu and any listed features. 2434 unsigned BuiltinID = TargetDecl->getBuiltinID(); 2435 std::string MissingFeature; 2436 llvm::StringMap<bool> CallerFeatureMap; 2437 CGM.getContext().getFunctionFeatureMap(CallerFeatureMap, FD); 2438 if (BuiltinID) { 2439 StringRef FeatureList( 2440 CGM.getContext().BuiltinInfo.getRequiredFeatures(BuiltinID)); 2441 // Return if the builtin doesn't have any required features. 2442 if (FeatureList.empty()) 2443 return; 2444 assert(FeatureList.find(' ') == StringRef::npos && 2445 "Space in feature list"); 2446 TargetFeatures TF(CallerFeatureMap); 2447 if (!TF.hasRequiredFeatures(FeatureList)) 2448 CGM.getDiags().Report(Loc, diag::err_builtin_needs_feature) 2449 << TargetDecl->getDeclName() << FeatureList; 2450 } else if (!TargetDecl->isMultiVersion() && 2451 TargetDecl->hasAttr<TargetAttr>()) { 2452 // Get the required features for the callee. 2453 2454 const TargetAttr *TD = TargetDecl->getAttr<TargetAttr>(); 2455 ParsedTargetAttr ParsedAttr = 2456 CGM.getContext().filterFunctionTargetAttrs(TD); 2457 2458 SmallVector<StringRef, 1> ReqFeatures; 2459 llvm::StringMap<bool> CalleeFeatureMap; 2460 CGM.getContext().getFunctionFeatureMap(CalleeFeatureMap, TargetDecl); 2461 2462 for (const auto &F : ParsedAttr.Features) { 2463 if (F[0] == '+' && CalleeFeatureMap.lookup(F.substr(1))) 2464 ReqFeatures.push_back(StringRef(F).substr(1)); 2465 } 2466 2467 for (const auto &F : CalleeFeatureMap) { 2468 // Only positive features are "required". 2469 if (F.getValue()) 2470 ReqFeatures.push_back(F.getKey()); 2471 } 2472 if (!llvm::all_of(ReqFeatures, [&](StringRef Feature) { 2473 if (!CallerFeatureMap.lookup(Feature)) { 2474 MissingFeature = Feature.str(); 2475 return false; 2476 } 2477 return true; 2478 })) 2479 CGM.getDiags().Report(Loc, diag::err_function_needs_feature) 2480 << FD->getDeclName() << TargetDecl->getDeclName() << MissingFeature; 2481 } 2482 } 2483 2484 void CodeGenFunction::EmitSanitizerStatReport(llvm::SanitizerStatKind SSK) { 2485 if (!CGM.getCodeGenOpts().SanitizeStats) 2486 return; 2487 2488 llvm::IRBuilder<> IRB(Builder.GetInsertBlock(), Builder.GetInsertPoint()); 2489 IRB.SetCurrentDebugLocation(Builder.getCurrentDebugLocation()); 2490 CGM.getSanStats().create(IRB, SSK); 2491 } 2492 2493 llvm::Value * 2494 CodeGenFunction::FormResolverCondition(const MultiVersionResolverOption &RO) { 2495 llvm::Value *Condition = nullptr; 2496 2497 if (!RO.Conditions.Architecture.empty()) 2498 Condition = EmitX86CpuIs(RO.Conditions.Architecture); 2499 2500 if (!RO.Conditions.Features.empty()) { 2501 llvm::Value *FeatureCond = EmitX86CpuSupports(RO.Conditions.Features); 2502 Condition = 2503 Condition ? Builder.CreateAnd(Condition, FeatureCond) : FeatureCond; 2504 } 2505 return Condition; 2506 } 2507 2508 static void CreateMultiVersionResolverReturn(CodeGenModule &CGM, 2509 llvm::Function *Resolver, 2510 CGBuilderTy &Builder, 2511 llvm::Function *FuncToReturn, 2512 bool SupportsIFunc) { 2513 if (SupportsIFunc) { 2514 Builder.CreateRet(FuncToReturn); 2515 return; 2516 } 2517 2518 llvm::SmallVector<llvm::Value *, 10> Args; 2519 llvm::for_each(Resolver->args(), 2520 [&](llvm::Argument &Arg) { Args.push_back(&Arg); }); 2521 2522 llvm::CallInst *Result = Builder.CreateCall(FuncToReturn, Args); 2523 Result->setTailCallKind(llvm::CallInst::TCK_MustTail); 2524 2525 if (Resolver->getReturnType()->isVoidTy()) 2526 Builder.CreateRetVoid(); 2527 else 2528 Builder.CreateRet(Result); 2529 } 2530 2531 void CodeGenFunction::EmitMultiVersionResolver( 2532 llvm::Function *Resolver, ArrayRef<MultiVersionResolverOption> Options) { 2533 assert(getContext().getTargetInfo().getTriple().isX86() && 2534 "Only implemented for x86 targets"); 2535 2536 bool SupportsIFunc = getContext().getTargetInfo().supportsIFunc(); 2537 2538 // Main function's basic block. 2539 llvm::BasicBlock *CurBlock = createBasicBlock("resolver_entry", Resolver); 2540 Builder.SetInsertPoint(CurBlock); 2541 EmitX86CpuInit(); 2542 2543 for (const MultiVersionResolverOption &RO : Options) { 2544 Builder.SetInsertPoint(CurBlock); 2545 llvm::Value *Condition = FormResolverCondition(RO); 2546 2547 // The 'default' or 'generic' case. 2548 if (!Condition) { 2549 assert(&RO == Options.end() - 1 && 2550 "Default or Generic case must be last"); 2551 CreateMultiVersionResolverReturn(CGM, Resolver, Builder, RO.Function, 2552 SupportsIFunc); 2553 return; 2554 } 2555 2556 llvm::BasicBlock *RetBlock = createBasicBlock("resolver_return", Resolver); 2557 CGBuilderTy RetBuilder(*this, RetBlock); 2558 CreateMultiVersionResolverReturn(CGM, Resolver, RetBuilder, RO.Function, 2559 SupportsIFunc); 2560 CurBlock = createBasicBlock("resolver_else", Resolver); 2561 Builder.CreateCondBr(Condition, RetBlock, CurBlock); 2562 } 2563 2564 // If no generic/default, emit an unreachable. 2565 Builder.SetInsertPoint(CurBlock); 2566 llvm::CallInst *TrapCall = EmitTrapCall(llvm::Intrinsic::trap); 2567 TrapCall->setDoesNotReturn(); 2568 TrapCall->setDoesNotThrow(); 2569 Builder.CreateUnreachable(); 2570 Builder.ClearInsertionPoint(); 2571 } 2572 2573 // Loc - where the diagnostic will point, where in the source code this 2574 // alignment has failed. 2575 // SecondaryLoc - if present (will be present if sufficiently different from 2576 // Loc), the diagnostic will additionally point a "Note:" to this location. 2577 // It should be the location where the __attribute__((assume_aligned)) 2578 // was written e.g. 2579 void CodeGenFunction::emitAlignmentAssumptionCheck( 2580 llvm::Value *Ptr, QualType Ty, SourceLocation Loc, 2581 SourceLocation SecondaryLoc, llvm::Value *Alignment, 2582 llvm::Value *OffsetValue, llvm::Value *TheCheck, 2583 llvm::Instruction *Assumption) { 2584 assert(Assumption && isa<llvm::CallInst>(Assumption) && 2585 cast<llvm::CallInst>(Assumption)->getCalledOperand() == 2586 llvm::Intrinsic::getDeclaration( 2587 Builder.GetInsertBlock()->getParent()->getParent(), 2588 llvm::Intrinsic::assume) && 2589 "Assumption should be a call to llvm.assume()."); 2590 assert(&(Builder.GetInsertBlock()->back()) == Assumption && 2591 "Assumption should be the last instruction of the basic block, " 2592 "since the basic block is still being generated."); 2593 2594 if (!SanOpts.has(SanitizerKind::Alignment)) 2595 return; 2596 2597 // Don't check pointers to volatile data. The behavior here is implementation- 2598 // defined. 2599 if (Ty->getPointeeType().isVolatileQualified()) 2600 return; 2601 2602 // We need to temorairly remove the assumption so we can insert the 2603 // sanitizer check before it, else the check will be dropped by optimizations. 2604 Assumption->removeFromParent(); 2605 2606 { 2607 SanitizerScope SanScope(this); 2608 2609 if (!OffsetValue) 2610 OffsetValue = Builder.getInt1(0); // no offset. 2611 2612 llvm::Constant *StaticData[] = {EmitCheckSourceLocation(Loc), 2613 EmitCheckSourceLocation(SecondaryLoc), 2614 EmitCheckTypeDescriptor(Ty)}; 2615 llvm::Value *DynamicData[] = {EmitCheckValue(Ptr), 2616 EmitCheckValue(Alignment), 2617 EmitCheckValue(OffsetValue)}; 2618 EmitCheck({std::make_pair(TheCheck, SanitizerKind::Alignment)}, 2619 SanitizerHandler::AlignmentAssumption, StaticData, DynamicData); 2620 } 2621 2622 // We are now in the (new, empty) "cont" basic block. 2623 // Reintroduce the assumption. 2624 Builder.Insert(Assumption); 2625 // FIXME: Assumption still has it's original basic block as it's Parent. 2626 } 2627 2628 llvm::DebugLoc CodeGenFunction::SourceLocToDebugLoc(SourceLocation Location) { 2629 if (CGDebugInfo *DI = getDebugInfo()) 2630 return DI->SourceLocToDebugLoc(Location); 2631 2632 return llvm::DebugLoc(); 2633 } 2634 2635 static Optional<std::pair<uint32_t, uint32_t>> 2636 getLikelihoodWeights(Stmt::Likelihood LH) { 2637 switch (LH) { 2638 case Stmt::LH_Unlikely: 2639 return std::pair<uint32_t, uint32_t>(llvm::UnlikelyBranchWeight, 2640 llvm::LikelyBranchWeight); 2641 case Stmt::LH_None: 2642 return None; 2643 case Stmt::LH_Likely: 2644 return std::pair<uint32_t, uint32_t>(llvm::LikelyBranchWeight, 2645 llvm::UnlikelyBranchWeight); 2646 } 2647 llvm_unreachable("Unknown Likelihood"); 2648 } 2649 2650 llvm::MDNode *CodeGenFunction::createBranchWeights(Stmt::Likelihood LH) const { 2651 Optional<std::pair<uint32_t, uint32_t>> LHW = getLikelihoodWeights(LH); 2652 if (!LHW) 2653 return nullptr; 2654 2655 llvm::MDBuilder MDHelper(CGM.getLLVMContext()); 2656 return MDHelper.createBranchWeights(LHW->first, LHW->second); 2657 } 2658 2659 llvm::MDNode *CodeGenFunction::createProfileOrBranchWeightsForLoop( 2660 const Stmt *Cond, uint64_t LoopCount, const Stmt *Body) const { 2661 llvm::MDNode *Weights = createProfileWeightsForLoop(Cond, LoopCount); 2662 if (!Weights && CGM.getCodeGenOpts().OptimizationLevel) 2663 Weights = createBranchWeights(Stmt::getLikelihood(Body)); 2664 2665 return Weights; 2666 } 2667