xref: /llvm-project/clang/lib/CodeGen/CodeGenFunction.cpp (revision 37d6be90524ca1659521ab879aaae5e5501f1e97)
1 //===--- CodeGenFunction.cpp - Emit LLVM Code from ASTs for a Function ----===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This coordinates the per-function state used while generating code.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "CodeGenFunction.h"
14 #include "CGBlocks.h"
15 #include "CGCUDARuntime.h"
16 #include "CGCXXABI.h"
17 #include "CGCleanup.h"
18 #include "CGDebugInfo.h"
19 #include "CGOpenMPRuntime.h"
20 #include "CodeGenModule.h"
21 #include "CodeGenPGO.h"
22 #include "TargetInfo.h"
23 #include "clang/AST/ASTContext.h"
24 #include "clang/AST/ASTLambda.h"
25 #include "clang/AST/Attr.h"
26 #include "clang/AST/Decl.h"
27 #include "clang/AST/DeclCXX.h"
28 #include "clang/AST/Expr.h"
29 #include "clang/AST/StmtCXX.h"
30 #include "clang/AST/StmtObjC.h"
31 #include "clang/Basic/Builtins.h"
32 #include "clang/Basic/CodeGenOptions.h"
33 #include "clang/Basic/TargetInfo.h"
34 #include "clang/CodeGen/CGFunctionInfo.h"
35 #include "clang/Frontend/FrontendDiagnostic.h"
36 #include "llvm/ADT/ArrayRef.h"
37 #include "llvm/Frontend/OpenMP/OMPIRBuilder.h"
38 #include "llvm/IR/DataLayout.h"
39 #include "llvm/IR/Dominators.h"
40 #include "llvm/IR/FPEnv.h"
41 #include "llvm/IR/IntrinsicInst.h"
42 #include "llvm/IR/Intrinsics.h"
43 #include "llvm/IR/MDBuilder.h"
44 #include "llvm/IR/Operator.h"
45 #include "llvm/Support/CRC.h"
46 #include "llvm/Transforms/Scalar/LowerExpectIntrinsic.h"
47 #include "llvm/Transforms/Utils/PromoteMemToReg.h"
48 using namespace clang;
49 using namespace CodeGen;
50 
51 /// shouldEmitLifetimeMarkers - Decide whether we need emit the life-time
52 /// markers.
53 static bool shouldEmitLifetimeMarkers(const CodeGenOptions &CGOpts,
54                                       const LangOptions &LangOpts) {
55   if (CGOpts.DisableLifetimeMarkers)
56     return false;
57 
58   // Sanitizers may use markers.
59   if (CGOpts.SanitizeAddressUseAfterScope ||
60       LangOpts.Sanitize.has(SanitizerKind::HWAddress) ||
61       LangOpts.Sanitize.has(SanitizerKind::Memory))
62     return true;
63 
64   // For now, only in optimized builds.
65   return CGOpts.OptimizationLevel != 0;
66 }
67 
68 CodeGenFunction::CodeGenFunction(CodeGenModule &cgm, bool suppressNewContext)
69     : CodeGenTypeCache(cgm), CGM(cgm), Target(cgm.getTarget()),
70       Builder(cgm, cgm.getModule().getContext(), llvm::ConstantFolder(),
71               CGBuilderInserterTy(this)),
72       SanOpts(CGM.getLangOpts().Sanitize), CurFPFeatures(CGM.getLangOpts()),
73       DebugInfo(CGM.getModuleDebugInfo()), PGO(cgm),
74       ShouldEmitLifetimeMarkers(
75           shouldEmitLifetimeMarkers(CGM.getCodeGenOpts(), CGM.getLangOpts())) {
76   if (!suppressNewContext)
77     CGM.getCXXABI().getMangleContext().startNewFunction();
78 
79   SetFastMathFlags(CurFPFeatures);
80   SetFPModel();
81 }
82 
83 CodeGenFunction::~CodeGenFunction() {
84   assert(LifetimeExtendedCleanupStack.empty() && "failed to emit a cleanup");
85 
86   if (getLangOpts().OpenMP && CurFn)
87     CGM.getOpenMPRuntime().functionFinished(*this);
88 
89   // If we have an OpenMPIRBuilder we want to finalize functions (incl.
90   // outlining etc) at some point. Doing it once the function codegen is done
91   // seems to be a reasonable spot. We do it here, as opposed to the deletion
92   // time of the CodeGenModule, because we have to ensure the IR has not yet
93   // been "emitted" to the outside, thus, modifications are still sensible.
94   if (CGM.getLangOpts().OpenMPIRBuilder && CurFn)
95     CGM.getOpenMPRuntime().getOMPBuilder().finalize(CurFn);
96 }
97 
98 // Map the LangOption for exception behavior into
99 // the corresponding enum in the IR.
100 llvm::fp::ExceptionBehavior
101 clang::ToConstrainedExceptMD(LangOptions::FPExceptionModeKind Kind) {
102 
103   switch (Kind) {
104   case LangOptions::FPE_Ignore:  return llvm::fp::ebIgnore;
105   case LangOptions::FPE_MayTrap: return llvm::fp::ebMayTrap;
106   case LangOptions::FPE_Strict:  return llvm::fp::ebStrict;
107   }
108   llvm_unreachable("Unsupported FP Exception Behavior");
109 }
110 
111 void CodeGenFunction::SetFPModel() {
112   llvm::RoundingMode RM = getLangOpts().getFPRoundingMode();
113   auto fpExceptionBehavior = ToConstrainedExceptMD(
114                                getLangOpts().getFPExceptionMode());
115 
116   Builder.setDefaultConstrainedRounding(RM);
117   Builder.setDefaultConstrainedExcept(fpExceptionBehavior);
118   Builder.setIsFPConstrained(fpExceptionBehavior != llvm::fp::ebIgnore ||
119                              RM != llvm::RoundingMode::NearestTiesToEven);
120 }
121 
122 void CodeGenFunction::SetFastMathFlags(FPOptions FPFeatures) {
123   llvm::FastMathFlags FMF;
124   FMF.setAllowReassoc(FPFeatures.getAllowFPReassociate());
125   FMF.setNoNaNs(FPFeatures.getNoHonorNaNs());
126   FMF.setNoInfs(FPFeatures.getNoHonorInfs());
127   FMF.setNoSignedZeros(FPFeatures.getNoSignedZero());
128   FMF.setAllowReciprocal(FPFeatures.getAllowReciprocal());
129   FMF.setApproxFunc(FPFeatures.getAllowApproxFunc());
130   FMF.setAllowContract(FPFeatures.allowFPContractAcrossStatement());
131   Builder.setFastMathFlags(FMF);
132 }
133 
134 CodeGenFunction::CGFPOptionsRAII::CGFPOptionsRAII(CodeGenFunction &CGF,
135                                                   const Expr *E)
136     : CGF(CGF) {
137   ConstructorHelper(E->getFPFeaturesInEffect(CGF.getLangOpts()));
138 }
139 
140 CodeGenFunction::CGFPOptionsRAII::CGFPOptionsRAII(CodeGenFunction &CGF,
141                                                   FPOptions FPFeatures)
142     : CGF(CGF) {
143   ConstructorHelper(FPFeatures);
144 }
145 
146 void CodeGenFunction::CGFPOptionsRAII::ConstructorHelper(FPOptions FPFeatures) {
147   OldFPFeatures = CGF.CurFPFeatures;
148   CGF.CurFPFeatures = FPFeatures;
149 
150   OldExcept = CGF.Builder.getDefaultConstrainedExcept();
151   OldRounding = CGF.Builder.getDefaultConstrainedRounding();
152 
153   if (OldFPFeatures == FPFeatures)
154     return;
155 
156   FMFGuard.emplace(CGF.Builder);
157 
158   llvm::RoundingMode NewRoundingBehavior =
159       static_cast<llvm::RoundingMode>(FPFeatures.getRoundingMode());
160   CGF.Builder.setDefaultConstrainedRounding(NewRoundingBehavior);
161   auto NewExceptionBehavior =
162       ToConstrainedExceptMD(static_cast<LangOptions::FPExceptionModeKind>(
163           FPFeatures.getFPExceptionMode()));
164   CGF.Builder.setDefaultConstrainedExcept(NewExceptionBehavior);
165 
166   CGF.SetFastMathFlags(FPFeatures);
167 
168   assert((CGF.CurFuncDecl == nullptr || CGF.Builder.getIsFPConstrained() ||
169           isa<CXXConstructorDecl>(CGF.CurFuncDecl) ||
170           isa<CXXDestructorDecl>(CGF.CurFuncDecl) ||
171           (NewExceptionBehavior == llvm::fp::ebIgnore &&
172            NewRoundingBehavior == llvm::RoundingMode::NearestTiesToEven)) &&
173          "FPConstrained should be enabled on entire function");
174 
175   auto mergeFnAttrValue = [&](StringRef Name, bool Value) {
176     auto OldValue =
177         CGF.CurFn->getFnAttribute(Name).getValueAsString() == "true";
178     auto NewValue = OldValue & Value;
179     if (OldValue != NewValue)
180       CGF.CurFn->addFnAttr(Name, llvm::toStringRef(NewValue));
181   };
182   mergeFnAttrValue("no-infs-fp-math", FPFeatures.getNoHonorInfs());
183   mergeFnAttrValue("no-nans-fp-math", FPFeatures.getNoHonorNaNs());
184   mergeFnAttrValue("no-signed-zeros-fp-math", FPFeatures.getNoSignedZero());
185   mergeFnAttrValue("unsafe-fp-math", FPFeatures.getAllowFPReassociate() &&
186                                          FPFeatures.getAllowReciprocal() &&
187                                          FPFeatures.getAllowApproxFunc() &&
188                                          FPFeatures.getNoSignedZero());
189 }
190 
191 CodeGenFunction::CGFPOptionsRAII::~CGFPOptionsRAII() {
192   CGF.CurFPFeatures = OldFPFeatures;
193   CGF.Builder.setDefaultConstrainedExcept(OldExcept);
194   CGF.Builder.setDefaultConstrainedRounding(OldRounding);
195 }
196 
197 LValue CodeGenFunction::MakeNaturalAlignAddrLValue(llvm::Value *V, QualType T) {
198   LValueBaseInfo BaseInfo;
199   TBAAAccessInfo TBAAInfo;
200   CharUnits Alignment = CGM.getNaturalTypeAlignment(T, &BaseInfo, &TBAAInfo);
201   return LValue::MakeAddr(Address(V, Alignment), T, getContext(), BaseInfo,
202                           TBAAInfo);
203 }
204 
205 /// Given a value of type T* that may not be to a complete object,
206 /// construct an l-value with the natural pointee alignment of T.
207 LValue
208 CodeGenFunction::MakeNaturalAlignPointeeAddrLValue(llvm::Value *V, QualType T) {
209   LValueBaseInfo BaseInfo;
210   TBAAAccessInfo TBAAInfo;
211   CharUnits Align = CGM.getNaturalTypeAlignment(T, &BaseInfo, &TBAAInfo,
212                                                 /* forPointeeType= */ true);
213   return MakeAddrLValue(Address(V, Align), T, BaseInfo, TBAAInfo);
214 }
215 
216 
217 llvm::Type *CodeGenFunction::ConvertTypeForMem(QualType T) {
218   return CGM.getTypes().ConvertTypeForMem(T);
219 }
220 
221 llvm::Type *CodeGenFunction::ConvertType(QualType T) {
222   return CGM.getTypes().ConvertType(T);
223 }
224 
225 TypeEvaluationKind CodeGenFunction::getEvaluationKind(QualType type) {
226   type = type.getCanonicalType();
227   while (true) {
228     switch (type->getTypeClass()) {
229 #define TYPE(name, parent)
230 #define ABSTRACT_TYPE(name, parent)
231 #define NON_CANONICAL_TYPE(name, parent) case Type::name:
232 #define DEPENDENT_TYPE(name, parent) case Type::name:
233 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(name, parent) case Type::name:
234 #include "clang/AST/TypeNodes.inc"
235       llvm_unreachable("non-canonical or dependent type in IR-generation");
236 
237     case Type::Auto:
238     case Type::DeducedTemplateSpecialization:
239       llvm_unreachable("undeduced type in IR-generation");
240 
241     // Various scalar types.
242     case Type::Builtin:
243     case Type::Pointer:
244     case Type::BlockPointer:
245     case Type::LValueReference:
246     case Type::RValueReference:
247     case Type::MemberPointer:
248     case Type::Vector:
249     case Type::ExtVector:
250     case Type::ConstantMatrix:
251     case Type::FunctionProto:
252     case Type::FunctionNoProto:
253     case Type::Enum:
254     case Type::ObjCObjectPointer:
255     case Type::Pipe:
256     case Type::ExtInt:
257       return TEK_Scalar;
258 
259     // Complexes.
260     case Type::Complex:
261       return TEK_Complex;
262 
263     // Arrays, records, and Objective-C objects.
264     case Type::ConstantArray:
265     case Type::IncompleteArray:
266     case Type::VariableArray:
267     case Type::Record:
268     case Type::ObjCObject:
269     case Type::ObjCInterface:
270       return TEK_Aggregate;
271 
272     // We operate on atomic values according to their underlying type.
273     case Type::Atomic:
274       type = cast<AtomicType>(type)->getValueType();
275       continue;
276     }
277     llvm_unreachable("unknown type kind!");
278   }
279 }
280 
281 llvm::DebugLoc CodeGenFunction::EmitReturnBlock() {
282   // For cleanliness, we try to avoid emitting the return block for
283   // simple cases.
284   llvm::BasicBlock *CurBB = Builder.GetInsertBlock();
285 
286   if (CurBB) {
287     assert(!CurBB->getTerminator() && "Unexpected terminated block.");
288 
289     // We have a valid insert point, reuse it if it is empty or there are no
290     // explicit jumps to the return block.
291     if (CurBB->empty() || ReturnBlock.getBlock()->use_empty()) {
292       ReturnBlock.getBlock()->replaceAllUsesWith(CurBB);
293       delete ReturnBlock.getBlock();
294       ReturnBlock = JumpDest();
295     } else
296       EmitBlock(ReturnBlock.getBlock());
297     return llvm::DebugLoc();
298   }
299 
300   // Otherwise, if the return block is the target of a single direct
301   // branch then we can just put the code in that block instead. This
302   // cleans up functions which started with a unified return block.
303   if (ReturnBlock.getBlock()->hasOneUse()) {
304     llvm::BranchInst *BI =
305       dyn_cast<llvm::BranchInst>(*ReturnBlock.getBlock()->user_begin());
306     if (BI && BI->isUnconditional() &&
307         BI->getSuccessor(0) == ReturnBlock.getBlock()) {
308       // Record/return the DebugLoc of the simple 'return' expression to be used
309       // later by the actual 'ret' instruction.
310       llvm::DebugLoc Loc = BI->getDebugLoc();
311       Builder.SetInsertPoint(BI->getParent());
312       BI->eraseFromParent();
313       delete ReturnBlock.getBlock();
314       ReturnBlock = JumpDest();
315       return Loc;
316     }
317   }
318 
319   // FIXME: We are at an unreachable point, there is no reason to emit the block
320   // unless it has uses. However, we still need a place to put the debug
321   // region.end for now.
322 
323   EmitBlock(ReturnBlock.getBlock());
324   return llvm::DebugLoc();
325 }
326 
327 static void EmitIfUsed(CodeGenFunction &CGF, llvm::BasicBlock *BB) {
328   if (!BB) return;
329   if (!BB->use_empty())
330     return CGF.CurFn->getBasicBlockList().push_back(BB);
331   delete BB;
332 }
333 
334 void CodeGenFunction::FinishFunction(SourceLocation EndLoc) {
335   assert(BreakContinueStack.empty() &&
336          "mismatched push/pop in break/continue stack!");
337 
338   bool OnlySimpleReturnStmts = NumSimpleReturnExprs > 0
339     && NumSimpleReturnExprs == NumReturnExprs
340     && ReturnBlock.getBlock()->use_empty();
341   // Usually the return expression is evaluated before the cleanup
342   // code.  If the function contains only a simple return statement,
343   // such as a constant, the location before the cleanup code becomes
344   // the last useful breakpoint in the function, because the simple
345   // return expression will be evaluated after the cleanup code. To be
346   // safe, set the debug location for cleanup code to the location of
347   // the return statement.  Otherwise the cleanup code should be at the
348   // end of the function's lexical scope.
349   //
350   // If there are multiple branches to the return block, the branch
351   // instructions will get the location of the return statements and
352   // all will be fine.
353   if (CGDebugInfo *DI = getDebugInfo()) {
354     if (OnlySimpleReturnStmts)
355       DI->EmitLocation(Builder, LastStopPoint);
356     else
357       DI->EmitLocation(Builder, EndLoc);
358   }
359 
360   // Pop any cleanups that might have been associated with the
361   // parameters.  Do this in whatever block we're currently in; it's
362   // important to do this before we enter the return block or return
363   // edges will be *really* confused.
364   bool HasCleanups = EHStack.stable_begin() != PrologueCleanupDepth;
365   bool HasOnlyLifetimeMarkers =
366       HasCleanups && EHStack.containsOnlyLifetimeMarkers(PrologueCleanupDepth);
367   bool EmitRetDbgLoc = !HasCleanups || HasOnlyLifetimeMarkers;
368   if (HasCleanups) {
369     // Make sure the line table doesn't jump back into the body for
370     // the ret after it's been at EndLoc.
371     Optional<ApplyDebugLocation> AL;
372     if (CGDebugInfo *DI = getDebugInfo()) {
373       if (OnlySimpleReturnStmts)
374         DI->EmitLocation(Builder, EndLoc);
375       else
376         // We may not have a valid end location. Try to apply it anyway, and
377         // fall back to an artificial location if needed.
378         AL = ApplyDebugLocation::CreateDefaultArtificial(*this, EndLoc);
379     }
380 
381     PopCleanupBlocks(PrologueCleanupDepth);
382   }
383 
384   // Emit function epilog (to return).
385   llvm::DebugLoc Loc = EmitReturnBlock();
386 
387   if (ShouldInstrumentFunction()) {
388     if (CGM.getCodeGenOpts().InstrumentFunctions)
389       CurFn->addFnAttr("instrument-function-exit", "__cyg_profile_func_exit");
390     if (CGM.getCodeGenOpts().InstrumentFunctionsAfterInlining)
391       CurFn->addFnAttr("instrument-function-exit-inlined",
392                        "__cyg_profile_func_exit");
393   }
394 
395   // Emit debug descriptor for function end.
396   if (CGDebugInfo *DI = getDebugInfo())
397     DI->EmitFunctionEnd(Builder, CurFn);
398 
399   // Reset the debug location to that of the simple 'return' expression, if any
400   // rather than that of the end of the function's scope '}'.
401   ApplyDebugLocation AL(*this, Loc);
402   EmitFunctionEpilog(*CurFnInfo, EmitRetDbgLoc, EndLoc);
403   EmitEndEHSpec(CurCodeDecl);
404 
405   assert(EHStack.empty() &&
406          "did not remove all scopes from cleanup stack!");
407 
408   // If someone did an indirect goto, emit the indirect goto block at the end of
409   // the function.
410   if (IndirectBranch) {
411     EmitBlock(IndirectBranch->getParent());
412     Builder.ClearInsertionPoint();
413   }
414 
415   // If some of our locals escaped, insert a call to llvm.localescape in the
416   // entry block.
417   if (!EscapedLocals.empty()) {
418     // Invert the map from local to index into a simple vector. There should be
419     // no holes.
420     SmallVector<llvm::Value *, 4> EscapeArgs;
421     EscapeArgs.resize(EscapedLocals.size());
422     for (auto &Pair : EscapedLocals)
423       EscapeArgs[Pair.second] = Pair.first;
424     llvm::Function *FrameEscapeFn = llvm::Intrinsic::getDeclaration(
425         &CGM.getModule(), llvm::Intrinsic::localescape);
426     CGBuilderTy(*this, AllocaInsertPt).CreateCall(FrameEscapeFn, EscapeArgs);
427   }
428 
429   // Remove the AllocaInsertPt instruction, which is just a convenience for us.
430   llvm::Instruction *Ptr = AllocaInsertPt;
431   AllocaInsertPt = nullptr;
432   Ptr->eraseFromParent();
433 
434   // If someone took the address of a label but never did an indirect goto, we
435   // made a zero entry PHI node, which is illegal, zap it now.
436   if (IndirectBranch) {
437     llvm::PHINode *PN = cast<llvm::PHINode>(IndirectBranch->getAddress());
438     if (PN->getNumIncomingValues() == 0) {
439       PN->replaceAllUsesWith(llvm::UndefValue::get(PN->getType()));
440       PN->eraseFromParent();
441     }
442   }
443 
444   EmitIfUsed(*this, EHResumeBlock);
445   EmitIfUsed(*this, TerminateLandingPad);
446   EmitIfUsed(*this, TerminateHandler);
447   EmitIfUsed(*this, UnreachableBlock);
448 
449   for (const auto &FuncletAndParent : TerminateFunclets)
450     EmitIfUsed(*this, FuncletAndParent.second);
451 
452   if (CGM.getCodeGenOpts().EmitDeclMetadata)
453     EmitDeclMetadata();
454 
455   for (const auto &R : DeferredReplacements) {
456     if (llvm::Value *Old = R.first) {
457       Old->replaceAllUsesWith(R.second);
458       cast<llvm::Instruction>(Old)->eraseFromParent();
459     }
460   }
461   DeferredReplacements.clear();
462 
463   // Eliminate CleanupDestSlot alloca by replacing it with SSA values and
464   // PHIs if the current function is a coroutine. We don't do it for all
465   // functions as it may result in slight increase in numbers of instructions
466   // if compiled with no optimizations. We do it for coroutine as the lifetime
467   // of CleanupDestSlot alloca make correct coroutine frame building very
468   // difficult.
469   if (NormalCleanupDest.isValid() && isCoroutine()) {
470     llvm::DominatorTree DT(*CurFn);
471     llvm::PromoteMemToReg(
472         cast<llvm::AllocaInst>(NormalCleanupDest.getPointer()), DT);
473     NormalCleanupDest = Address::invalid();
474   }
475 
476   // Scan function arguments for vector width.
477   for (llvm::Argument &A : CurFn->args())
478     if (auto *VT = dyn_cast<llvm::VectorType>(A.getType()))
479       LargestVectorWidth =
480           std::max((uint64_t)LargestVectorWidth,
481                    VT->getPrimitiveSizeInBits().getKnownMinSize());
482 
483   // Update vector width based on return type.
484   if (auto *VT = dyn_cast<llvm::VectorType>(CurFn->getReturnType()))
485     LargestVectorWidth =
486         std::max((uint64_t)LargestVectorWidth,
487                  VT->getPrimitiveSizeInBits().getKnownMinSize());
488 
489   // Add the required-vector-width attribute. This contains the max width from:
490   // 1. min-vector-width attribute used in the source program.
491   // 2. Any builtins used that have a vector width specified.
492   // 3. Values passed in and out of inline assembly.
493   // 4. Width of vector arguments and return types for this function.
494   // 5. Width of vector aguments and return types for functions called by this
495   //    function.
496   if (LargestVectorWidth)
497     CurFn->addFnAttr("min-legal-vector-width", llvm::utostr(LargestVectorWidth));
498 
499   // If we generated an unreachable return block, delete it now.
500   if (ReturnBlock.isValid() && ReturnBlock.getBlock()->use_empty()) {
501     Builder.ClearInsertionPoint();
502     ReturnBlock.getBlock()->eraseFromParent();
503   }
504   if (ReturnValue.isValid()) {
505     auto *RetAlloca = dyn_cast<llvm::AllocaInst>(ReturnValue.getPointer());
506     if (RetAlloca && RetAlloca->use_empty()) {
507       RetAlloca->eraseFromParent();
508       ReturnValue = Address::invalid();
509     }
510   }
511 }
512 
513 /// ShouldInstrumentFunction - Return true if the current function should be
514 /// instrumented with __cyg_profile_func_* calls
515 bool CodeGenFunction::ShouldInstrumentFunction() {
516   if (!CGM.getCodeGenOpts().InstrumentFunctions &&
517       !CGM.getCodeGenOpts().InstrumentFunctionsAfterInlining &&
518       !CGM.getCodeGenOpts().InstrumentFunctionEntryBare)
519     return false;
520   if (!CurFuncDecl || CurFuncDecl->hasAttr<NoInstrumentFunctionAttr>())
521     return false;
522   return true;
523 }
524 
525 /// ShouldXRayInstrument - Return true if the current function should be
526 /// instrumented with XRay nop sleds.
527 bool CodeGenFunction::ShouldXRayInstrumentFunction() const {
528   return CGM.getCodeGenOpts().XRayInstrumentFunctions;
529 }
530 
531 /// AlwaysEmitXRayCustomEvents - Return true if we should emit IR for calls to
532 /// the __xray_customevent(...) builtin calls, when doing XRay instrumentation.
533 bool CodeGenFunction::AlwaysEmitXRayCustomEvents() const {
534   return CGM.getCodeGenOpts().XRayInstrumentFunctions &&
535          (CGM.getCodeGenOpts().XRayAlwaysEmitCustomEvents ||
536           CGM.getCodeGenOpts().XRayInstrumentationBundle.Mask ==
537               XRayInstrKind::Custom);
538 }
539 
540 bool CodeGenFunction::AlwaysEmitXRayTypedEvents() const {
541   return CGM.getCodeGenOpts().XRayInstrumentFunctions &&
542          (CGM.getCodeGenOpts().XRayAlwaysEmitTypedEvents ||
543           CGM.getCodeGenOpts().XRayInstrumentationBundle.Mask ==
544               XRayInstrKind::Typed);
545 }
546 
547 llvm::Constant *
548 CodeGenFunction::EncodeAddrForUseInPrologue(llvm::Function *F,
549                                             llvm::Constant *Addr) {
550   // Addresses stored in prologue data can't require run-time fixups and must
551   // be PC-relative. Run-time fixups are undesirable because they necessitate
552   // writable text segments, which are unsafe. And absolute addresses are
553   // undesirable because they break PIE mode.
554 
555   // Add a layer of indirection through a private global. Taking its address
556   // won't result in a run-time fixup, even if Addr has linkonce_odr linkage.
557   auto *GV = new llvm::GlobalVariable(CGM.getModule(), Addr->getType(),
558                                       /*isConstant=*/true,
559                                       llvm::GlobalValue::PrivateLinkage, Addr);
560 
561   // Create a PC-relative address.
562   auto *GOTAsInt = llvm::ConstantExpr::getPtrToInt(GV, IntPtrTy);
563   auto *FuncAsInt = llvm::ConstantExpr::getPtrToInt(F, IntPtrTy);
564   auto *PCRelAsInt = llvm::ConstantExpr::getSub(GOTAsInt, FuncAsInt);
565   return (IntPtrTy == Int32Ty)
566              ? PCRelAsInt
567              : llvm::ConstantExpr::getTrunc(PCRelAsInt, Int32Ty);
568 }
569 
570 llvm::Value *
571 CodeGenFunction::DecodeAddrUsedInPrologue(llvm::Value *F,
572                                           llvm::Value *EncodedAddr) {
573   // Reconstruct the address of the global.
574   auto *PCRelAsInt = Builder.CreateSExt(EncodedAddr, IntPtrTy);
575   auto *FuncAsInt = Builder.CreatePtrToInt(F, IntPtrTy, "func_addr.int");
576   auto *GOTAsInt = Builder.CreateAdd(PCRelAsInt, FuncAsInt, "global_addr.int");
577   auto *GOTAddr = Builder.CreateIntToPtr(GOTAsInt, Int8PtrPtrTy, "global_addr");
578 
579   // Load the original pointer through the global.
580   return Builder.CreateLoad(Address(GOTAddr, getPointerAlign()),
581                             "decoded_addr");
582 }
583 
584 void CodeGenFunction::EmitOpenCLKernelMetadata(const FunctionDecl *FD,
585                                                llvm::Function *Fn)
586 {
587   if (!FD->hasAttr<OpenCLKernelAttr>())
588     return;
589 
590   llvm::LLVMContext &Context = getLLVMContext();
591 
592   CGM.GenOpenCLArgMetadata(Fn, FD, this);
593 
594   if (const VecTypeHintAttr *A = FD->getAttr<VecTypeHintAttr>()) {
595     QualType HintQTy = A->getTypeHint();
596     const ExtVectorType *HintEltQTy = HintQTy->getAs<ExtVectorType>();
597     bool IsSignedInteger =
598         HintQTy->isSignedIntegerType() ||
599         (HintEltQTy && HintEltQTy->getElementType()->isSignedIntegerType());
600     llvm::Metadata *AttrMDArgs[] = {
601         llvm::ConstantAsMetadata::get(llvm::UndefValue::get(
602             CGM.getTypes().ConvertType(A->getTypeHint()))),
603         llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
604             llvm::IntegerType::get(Context, 32),
605             llvm::APInt(32, (uint64_t)(IsSignedInteger ? 1 : 0))))};
606     Fn->setMetadata("vec_type_hint", llvm::MDNode::get(Context, AttrMDArgs));
607   }
608 
609   if (const WorkGroupSizeHintAttr *A = FD->getAttr<WorkGroupSizeHintAttr>()) {
610     llvm::Metadata *AttrMDArgs[] = {
611         llvm::ConstantAsMetadata::get(Builder.getInt32(A->getXDim())),
612         llvm::ConstantAsMetadata::get(Builder.getInt32(A->getYDim())),
613         llvm::ConstantAsMetadata::get(Builder.getInt32(A->getZDim()))};
614     Fn->setMetadata("work_group_size_hint", llvm::MDNode::get(Context, AttrMDArgs));
615   }
616 
617   if (const ReqdWorkGroupSizeAttr *A = FD->getAttr<ReqdWorkGroupSizeAttr>()) {
618     llvm::Metadata *AttrMDArgs[] = {
619         llvm::ConstantAsMetadata::get(Builder.getInt32(A->getXDim())),
620         llvm::ConstantAsMetadata::get(Builder.getInt32(A->getYDim())),
621         llvm::ConstantAsMetadata::get(Builder.getInt32(A->getZDim()))};
622     Fn->setMetadata("reqd_work_group_size", llvm::MDNode::get(Context, AttrMDArgs));
623   }
624 
625   if (const OpenCLIntelReqdSubGroupSizeAttr *A =
626           FD->getAttr<OpenCLIntelReqdSubGroupSizeAttr>()) {
627     llvm::Metadata *AttrMDArgs[] = {
628         llvm::ConstantAsMetadata::get(Builder.getInt32(A->getSubGroupSize()))};
629     Fn->setMetadata("intel_reqd_sub_group_size",
630                     llvm::MDNode::get(Context, AttrMDArgs));
631   }
632 }
633 
634 /// Determine whether the function F ends with a return stmt.
635 static bool endsWithReturn(const Decl* F) {
636   const Stmt *Body = nullptr;
637   if (auto *FD = dyn_cast_or_null<FunctionDecl>(F))
638     Body = FD->getBody();
639   else if (auto *OMD = dyn_cast_or_null<ObjCMethodDecl>(F))
640     Body = OMD->getBody();
641 
642   if (auto *CS = dyn_cast_or_null<CompoundStmt>(Body)) {
643     auto LastStmt = CS->body_rbegin();
644     if (LastStmt != CS->body_rend())
645       return isa<ReturnStmt>(*LastStmt);
646   }
647   return false;
648 }
649 
650 void CodeGenFunction::markAsIgnoreThreadCheckingAtRuntime(llvm::Function *Fn) {
651   if (SanOpts.has(SanitizerKind::Thread)) {
652     Fn->addFnAttr("sanitize_thread_no_checking_at_run_time");
653     Fn->removeFnAttr(llvm::Attribute::SanitizeThread);
654   }
655 }
656 
657 /// Check if the return value of this function requires sanitization.
658 bool CodeGenFunction::requiresReturnValueCheck() const {
659   return requiresReturnValueNullabilityCheck() ||
660          (SanOpts.has(SanitizerKind::ReturnsNonnullAttribute) && CurCodeDecl &&
661           CurCodeDecl->getAttr<ReturnsNonNullAttr>());
662 }
663 
664 static bool matchesStlAllocatorFn(const Decl *D, const ASTContext &Ctx) {
665   auto *MD = dyn_cast_or_null<CXXMethodDecl>(D);
666   if (!MD || !MD->getDeclName().getAsIdentifierInfo() ||
667       !MD->getDeclName().getAsIdentifierInfo()->isStr("allocate") ||
668       (MD->getNumParams() != 1 && MD->getNumParams() != 2))
669     return false;
670 
671   if (MD->parameters()[0]->getType().getCanonicalType() != Ctx.getSizeType())
672     return false;
673 
674   if (MD->getNumParams() == 2) {
675     auto *PT = MD->parameters()[1]->getType()->getAs<PointerType>();
676     if (!PT || !PT->isVoidPointerType() ||
677         !PT->getPointeeType().isConstQualified())
678       return false;
679   }
680 
681   return true;
682 }
683 
684 /// Return the UBSan prologue signature for \p FD if one is available.
685 static llvm::Constant *getPrologueSignature(CodeGenModule &CGM,
686                                             const FunctionDecl *FD) {
687   if (const auto *MD = dyn_cast<CXXMethodDecl>(FD))
688     if (!MD->isStatic())
689       return nullptr;
690   return CGM.getTargetCodeGenInfo().getUBSanFunctionSignature(CGM);
691 }
692 
693 void CodeGenFunction::StartFunction(GlobalDecl GD, QualType RetTy,
694                                     llvm::Function *Fn,
695                                     const CGFunctionInfo &FnInfo,
696                                     const FunctionArgList &Args,
697                                     SourceLocation Loc,
698                                     SourceLocation StartLoc) {
699   assert(!CurFn &&
700          "Do not use a CodeGenFunction object for more than one function");
701 
702   const Decl *D = GD.getDecl();
703 
704   DidCallStackSave = false;
705   CurCodeDecl = D;
706   if (const auto *FD = dyn_cast_or_null<FunctionDecl>(D))
707     if (FD->usesSEHTry())
708       CurSEHParent = FD;
709   CurFuncDecl = (D ? D->getNonClosureContext() : nullptr);
710   FnRetTy = RetTy;
711   CurFn = Fn;
712   CurFnInfo = &FnInfo;
713   assert(CurFn->isDeclaration() && "Function already has body?");
714 
715   // If this function is ignored for any of the enabled sanitizers,
716   // disable the sanitizer for the function.
717   do {
718 #define SANITIZER(NAME, ID)                                                    \
719   if (SanOpts.empty())                                                         \
720     break;                                                                     \
721   if (SanOpts.has(SanitizerKind::ID))                                          \
722     if (CGM.isInNoSanitizeList(SanitizerKind::ID, Fn, Loc))                    \
723       SanOpts.set(SanitizerKind::ID, false);
724 
725 #include "clang/Basic/Sanitizers.def"
726 #undef SANITIZER
727   } while (0);
728 
729   if (D) {
730     // Apply the no_sanitize* attributes to SanOpts.
731     for (auto Attr : D->specific_attrs<NoSanitizeAttr>()) {
732       SanitizerMask mask = Attr->getMask();
733       SanOpts.Mask &= ~mask;
734       if (mask & SanitizerKind::Address)
735         SanOpts.set(SanitizerKind::KernelAddress, false);
736       if (mask & SanitizerKind::KernelAddress)
737         SanOpts.set(SanitizerKind::Address, false);
738       if (mask & SanitizerKind::HWAddress)
739         SanOpts.set(SanitizerKind::KernelHWAddress, false);
740       if (mask & SanitizerKind::KernelHWAddress)
741         SanOpts.set(SanitizerKind::HWAddress, false);
742     }
743   }
744 
745   // Apply sanitizer attributes to the function.
746   if (SanOpts.hasOneOf(SanitizerKind::Address | SanitizerKind::KernelAddress))
747     Fn->addFnAttr(llvm::Attribute::SanitizeAddress);
748   if (SanOpts.hasOneOf(SanitizerKind::HWAddress | SanitizerKind::KernelHWAddress))
749     Fn->addFnAttr(llvm::Attribute::SanitizeHWAddress);
750   if (SanOpts.has(SanitizerKind::MemTag))
751     Fn->addFnAttr(llvm::Attribute::SanitizeMemTag);
752   if (SanOpts.has(SanitizerKind::Thread))
753     Fn->addFnAttr(llvm::Attribute::SanitizeThread);
754   if (SanOpts.hasOneOf(SanitizerKind::Memory | SanitizerKind::KernelMemory))
755     Fn->addFnAttr(llvm::Attribute::SanitizeMemory);
756   if (SanOpts.has(SanitizerKind::SafeStack))
757     Fn->addFnAttr(llvm::Attribute::SafeStack);
758   if (SanOpts.has(SanitizerKind::ShadowCallStack))
759     Fn->addFnAttr(llvm::Attribute::ShadowCallStack);
760 
761   // Apply fuzzing attribute to the function.
762   if (SanOpts.hasOneOf(SanitizerKind::Fuzzer | SanitizerKind::FuzzerNoLink))
763     Fn->addFnAttr(llvm::Attribute::OptForFuzzing);
764 
765   // Ignore TSan memory acesses from within ObjC/ObjC++ dealloc, initialize,
766   // .cxx_destruct, __destroy_helper_block_ and all of their calees at run time.
767   if (SanOpts.has(SanitizerKind::Thread)) {
768     if (const auto *OMD = dyn_cast_or_null<ObjCMethodDecl>(D)) {
769       IdentifierInfo *II = OMD->getSelector().getIdentifierInfoForSlot(0);
770       if (OMD->getMethodFamily() == OMF_dealloc ||
771           OMD->getMethodFamily() == OMF_initialize ||
772           (OMD->getSelector().isUnarySelector() && II->isStr(".cxx_destruct"))) {
773         markAsIgnoreThreadCheckingAtRuntime(Fn);
774       }
775     }
776   }
777 
778   // Ignore unrelated casts in STL allocate() since the allocator must cast
779   // from void* to T* before object initialization completes. Don't match on the
780   // namespace because not all allocators are in std::
781   if (D && SanOpts.has(SanitizerKind::CFIUnrelatedCast)) {
782     if (matchesStlAllocatorFn(D, getContext()))
783       SanOpts.Mask &= ~SanitizerKind::CFIUnrelatedCast;
784   }
785 
786   // Ignore null checks in coroutine functions since the coroutines passes
787   // are not aware of how to move the extra UBSan instructions across the split
788   // coroutine boundaries.
789   if (D && SanOpts.has(SanitizerKind::Null))
790     if (const auto *FD = dyn_cast<FunctionDecl>(D))
791       if (FD->getBody() &&
792           FD->getBody()->getStmtClass() == Stmt::CoroutineBodyStmtClass)
793         SanOpts.Mask &= ~SanitizerKind::Null;
794 
795   // Apply xray attributes to the function (as a string, for now)
796   bool AlwaysXRayAttr = false;
797   if (const auto *XRayAttr = D ? D->getAttr<XRayInstrumentAttr>() : nullptr) {
798     if (CGM.getCodeGenOpts().XRayInstrumentationBundle.has(
799             XRayInstrKind::FunctionEntry) ||
800         CGM.getCodeGenOpts().XRayInstrumentationBundle.has(
801             XRayInstrKind::FunctionExit)) {
802       if (XRayAttr->alwaysXRayInstrument() && ShouldXRayInstrumentFunction()) {
803         Fn->addFnAttr("function-instrument", "xray-always");
804         AlwaysXRayAttr = true;
805       }
806       if (XRayAttr->neverXRayInstrument())
807         Fn->addFnAttr("function-instrument", "xray-never");
808       if (const auto *LogArgs = D->getAttr<XRayLogArgsAttr>())
809         if (ShouldXRayInstrumentFunction())
810           Fn->addFnAttr("xray-log-args",
811                         llvm::utostr(LogArgs->getArgumentCount()));
812     }
813   } else {
814     if (ShouldXRayInstrumentFunction() && !CGM.imbueXRayAttrs(Fn, Loc))
815       Fn->addFnAttr(
816           "xray-instruction-threshold",
817           llvm::itostr(CGM.getCodeGenOpts().XRayInstructionThreshold));
818   }
819 
820   if (ShouldXRayInstrumentFunction()) {
821     if (CGM.getCodeGenOpts().XRayIgnoreLoops)
822       Fn->addFnAttr("xray-ignore-loops");
823 
824     if (!CGM.getCodeGenOpts().XRayInstrumentationBundle.has(
825             XRayInstrKind::FunctionExit))
826       Fn->addFnAttr("xray-skip-exit");
827 
828     if (!CGM.getCodeGenOpts().XRayInstrumentationBundle.has(
829             XRayInstrKind::FunctionEntry))
830       Fn->addFnAttr("xray-skip-entry");
831 
832     auto FuncGroups = CGM.getCodeGenOpts().XRayTotalFunctionGroups;
833     if (FuncGroups > 1) {
834       auto FuncName = llvm::makeArrayRef<uint8_t>(
835           CurFn->getName().bytes_begin(), CurFn->getName().bytes_end());
836       auto Group = crc32(FuncName) % FuncGroups;
837       if (Group != CGM.getCodeGenOpts().XRaySelectedFunctionGroup &&
838           !AlwaysXRayAttr)
839         Fn->addFnAttr("function-instrument", "xray-never");
840     }
841   }
842 
843   if (CGM.getCodeGenOpts().getProfileInstr() != CodeGenOptions::ProfileNone)
844     if (CGM.isProfileInstrExcluded(Fn, Loc))
845       Fn->addFnAttr(llvm::Attribute::NoProfile);
846 
847   unsigned Count, Offset;
848   if (const auto *Attr =
849           D ? D->getAttr<PatchableFunctionEntryAttr>() : nullptr) {
850     Count = Attr->getCount();
851     Offset = Attr->getOffset();
852   } else {
853     Count = CGM.getCodeGenOpts().PatchableFunctionEntryCount;
854     Offset = CGM.getCodeGenOpts().PatchableFunctionEntryOffset;
855   }
856   if (Count && Offset <= Count) {
857     Fn->addFnAttr("patchable-function-entry", std::to_string(Count - Offset));
858     if (Offset)
859       Fn->addFnAttr("patchable-function-prefix", std::to_string(Offset));
860   }
861 
862   // Add no-jump-tables value.
863   if (CGM.getCodeGenOpts().NoUseJumpTables)
864     Fn->addFnAttr("no-jump-tables", "true");
865 
866   // Add no-inline-line-tables value.
867   if (CGM.getCodeGenOpts().NoInlineLineTables)
868     Fn->addFnAttr("no-inline-line-tables");
869 
870   // Add profile-sample-accurate value.
871   if (CGM.getCodeGenOpts().ProfileSampleAccurate)
872     Fn->addFnAttr("profile-sample-accurate");
873 
874   if (!CGM.getCodeGenOpts().SampleProfileFile.empty())
875     Fn->addFnAttr("use-sample-profile");
876 
877   if (D && D->hasAttr<CFICanonicalJumpTableAttr>())
878     Fn->addFnAttr("cfi-canonical-jump-table");
879 
880   if (getLangOpts().OpenCL) {
881     // Add metadata for a kernel function.
882     if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D))
883       EmitOpenCLKernelMetadata(FD, Fn);
884   }
885 
886   // If we are checking function types, emit a function type signature as
887   // prologue data.
888   if (getLangOpts().CPlusPlus && SanOpts.has(SanitizerKind::Function)) {
889     if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) {
890       if (llvm::Constant *PrologueSig = getPrologueSignature(CGM, FD)) {
891         // Remove any (C++17) exception specifications, to allow calling e.g. a
892         // noexcept function through a non-noexcept pointer.
893         auto ProtoTy =
894           getContext().getFunctionTypeWithExceptionSpec(FD->getType(),
895                                                         EST_None);
896         llvm::Constant *FTRTTIConst =
897             CGM.GetAddrOfRTTIDescriptor(ProtoTy, /*ForEH=*/true);
898         llvm::Constant *FTRTTIConstEncoded =
899             EncodeAddrForUseInPrologue(Fn, FTRTTIConst);
900         llvm::Constant *PrologueStructElems[] = {PrologueSig,
901                                                  FTRTTIConstEncoded};
902         llvm::Constant *PrologueStructConst =
903             llvm::ConstantStruct::getAnon(PrologueStructElems, /*Packed=*/true);
904         Fn->setPrologueData(PrologueStructConst);
905       }
906     }
907   }
908 
909   // If we're checking nullability, we need to know whether we can check the
910   // return value. Initialize the flag to 'true' and refine it in EmitParmDecl.
911   if (SanOpts.has(SanitizerKind::NullabilityReturn)) {
912     auto Nullability = FnRetTy->getNullability(getContext());
913     if (Nullability && *Nullability == NullabilityKind::NonNull) {
914       if (!(SanOpts.has(SanitizerKind::ReturnsNonnullAttribute) &&
915             CurCodeDecl && CurCodeDecl->getAttr<ReturnsNonNullAttr>()))
916         RetValNullabilityPrecondition =
917             llvm::ConstantInt::getTrue(getLLVMContext());
918     }
919   }
920 
921   // If we're in C++ mode and the function name is "main", it is guaranteed
922   // to be norecurse by the standard (3.6.1.3 "The function main shall not be
923   // used within a program").
924   //
925   // OpenCL C 2.0 v2.2-11 s6.9.i:
926   //     Recursion is not supported.
927   //
928   // SYCL v1.2.1 s3.10:
929   //     kernels cannot include RTTI information, exception classes,
930   //     recursive code, virtual functions or make use of C++ libraries that
931   //     are not compiled for the device.
932   if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) {
933     if ((getLangOpts().CPlusPlus && FD->isMain()) || getLangOpts().OpenCL ||
934         getLangOpts().SYCLIsDevice ||
935         (getLangOpts().CUDA && FD->hasAttr<CUDAGlobalAttr>()))
936       Fn->addFnAttr(llvm::Attribute::NoRecurse);
937   }
938 
939   if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) {
940     Builder.setIsFPConstrained(FD->hasAttr<StrictFPAttr>());
941     if (FD->hasAttr<StrictFPAttr>())
942       Fn->addFnAttr(llvm::Attribute::StrictFP);
943   }
944 
945   // If a custom alignment is used, force realigning to this alignment on
946   // any main function which certainly will need it.
947   if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D))
948     if ((FD->isMain() || FD->isMSVCRTEntryPoint()) &&
949         CGM.getCodeGenOpts().StackAlignment)
950       Fn->addFnAttr("stackrealign");
951 
952   llvm::BasicBlock *EntryBB = createBasicBlock("entry", CurFn);
953 
954   // Create a marker to make it easy to insert allocas into the entryblock
955   // later.  Don't create this with the builder, because we don't want it
956   // folded.
957   llvm::Value *Undef = llvm::UndefValue::get(Int32Ty);
958   AllocaInsertPt = new llvm::BitCastInst(Undef, Int32Ty, "allocapt", EntryBB);
959 
960   ReturnBlock = getJumpDestInCurrentScope("return");
961 
962   Builder.SetInsertPoint(EntryBB);
963 
964   // If we're checking the return value, allocate space for a pointer to a
965   // precise source location of the checked return statement.
966   if (requiresReturnValueCheck()) {
967     ReturnLocation = CreateDefaultAlignTempAlloca(Int8PtrTy, "return.sloc.ptr");
968     InitTempAlloca(ReturnLocation, llvm::ConstantPointerNull::get(Int8PtrTy));
969   }
970 
971   // Emit subprogram debug descriptor.
972   if (CGDebugInfo *DI = getDebugInfo()) {
973     // Reconstruct the type from the argument list so that implicit parameters,
974     // such as 'this' and 'vtt', show up in the debug info. Preserve the calling
975     // convention.
976     CallingConv CC = CallingConv::CC_C;
977     if (auto *FD = dyn_cast_or_null<FunctionDecl>(D))
978       if (const auto *SrcFnTy = FD->getType()->getAs<FunctionType>())
979         CC = SrcFnTy->getCallConv();
980     SmallVector<QualType, 16> ArgTypes;
981     for (const VarDecl *VD : Args)
982       ArgTypes.push_back(VD->getType());
983     QualType FnType = getContext().getFunctionType(
984         RetTy, ArgTypes, FunctionProtoType::ExtProtoInfo(CC));
985     DI->emitFunctionStart(GD, Loc, StartLoc, FnType, CurFn, CurFuncIsThunk);
986   }
987 
988   if (ShouldInstrumentFunction()) {
989     if (CGM.getCodeGenOpts().InstrumentFunctions)
990       CurFn->addFnAttr("instrument-function-entry", "__cyg_profile_func_enter");
991     if (CGM.getCodeGenOpts().InstrumentFunctionsAfterInlining)
992       CurFn->addFnAttr("instrument-function-entry-inlined",
993                        "__cyg_profile_func_enter");
994     if (CGM.getCodeGenOpts().InstrumentFunctionEntryBare)
995       CurFn->addFnAttr("instrument-function-entry-inlined",
996                        "__cyg_profile_func_enter_bare");
997   }
998 
999   // Since emitting the mcount call here impacts optimizations such as function
1000   // inlining, we just add an attribute to insert a mcount call in backend.
1001   // The attribute "counting-function" is set to mcount function name which is
1002   // architecture dependent.
1003   if (CGM.getCodeGenOpts().InstrumentForProfiling) {
1004     // Calls to fentry/mcount should not be generated if function has
1005     // the no_instrument_function attribute.
1006     if (!CurFuncDecl || !CurFuncDecl->hasAttr<NoInstrumentFunctionAttr>()) {
1007       if (CGM.getCodeGenOpts().CallFEntry)
1008         Fn->addFnAttr("fentry-call", "true");
1009       else {
1010         Fn->addFnAttr("instrument-function-entry-inlined",
1011                       getTarget().getMCountName());
1012       }
1013       if (CGM.getCodeGenOpts().MNopMCount) {
1014         if (!CGM.getCodeGenOpts().CallFEntry)
1015           CGM.getDiags().Report(diag::err_opt_not_valid_without_opt)
1016             << "-mnop-mcount" << "-mfentry";
1017         Fn->addFnAttr("mnop-mcount");
1018       }
1019 
1020       if (CGM.getCodeGenOpts().RecordMCount) {
1021         if (!CGM.getCodeGenOpts().CallFEntry)
1022           CGM.getDiags().Report(diag::err_opt_not_valid_without_opt)
1023             << "-mrecord-mcount" << "-mfentry";
1024         Fn->addFnAttr("mrecord-mcount");
1025       }
1026     }
1027   }
1028 
1029   if (CGM.getCodeGenOpts().PackedStack) {
1030     if (getContext().getTargetInfo().getTriple().getArch() !=
1031         llvm::Triple::systemz)
1032       CGM.getDiags().Report(diag::err_opt_not_valid_on_target)
1033         << "-mpacked-stack";
1034     Fn->addFnAttr("packed-stack");
1035   }
1036 
1037   if (RetTy->isVoidType()) {
1038     // Void type; nothing to return.
1039     ReturnValue = Address::invalid();
1040 
1041     // Count the implicit return.
1042     if (!endsWithReturn(D))
1043       ++NumReturnExprs;
1044   } else if (CurFnInfo->getReturnInfo().getKind() == ABIArgInfo::Indirect) {
1045     // Indirect return; emit returned value directly into sret slot.
1046     // This reduces code size, and affects correctness in C++.
1047     auto AI = CurFn->arg_begin();
1048     if (CurFnInfo->getReturnInfo().isSRetAfterThis())
1049       ++AI;
1050     ReturnValue = Address(&*AI, CurFnInfo->getReturnInfo().getIndirectAlign());
1051     if (!CurFnInfo->getReturnInfo().getIndirectByVal()) {
1052       ReturnValuePointer =
1053           CreateDefaultAlignTempAlloca(Int8PtrTy, "result.ptr");
1054       Builder.CreateStore(Builder.CreatePointerBitCastOrAddrSpaceCast(
1055                               ReturnValue.getPointer(), Int8PtrTy),
1056                           ReturnValuePointer);
1057     }
1058   } else if (CurFnInfo->getReturnInfo().getKind() == ABIArgInfo::InAlloca &&
1059              !hasScalarEvaluationKind(CurFnInfo->getReturnType())) {
1060     // Load the sret pointer from the argument struct and return into that.
1061     unsigned Idx = CurFnInfo->getReturnInfo().getInAllocaFieldIndex();
1062     llvm::Function::arg_iterator EI = CurFn->arg_end();
1063     --EI;
1064     llvm::Value *Addr = Builder.CreateStructGEP(nullptr, &*EI, Idx);
1065     llvm::Type *Ty =
1066         cast<llvm::GetElementPtrInst>(Addr)->getResultElementType();
1067     ReturnValuePointer = Address(Addr, getPointerAlign());
1068     Addr = Builder.CreateAlignedLoad(Ty, Addr, getPointerAlign(), "agg.result");
1069     ReturnValue = Address(Addr, CGM.getNaturalTypeAlignment(RetTy));
1070   } else {
1071     ReturnValue = CreateIRTemp(RetTy, "retval");
1072 
1073     // Tell the epilog emitter to autorelease the result.  We do this
1074     // now so that various specialized functions can suppress it
1075     // during their IR-generation.
1076     if (getLangOpts().ObjCAutoRefCount &&
1077         !CurFnInfo->isReturnsRetained() &&
1078         RetTy->isObjCRetainableType())
1079       AutoreleaseResult = true;
1080   }
1081 
1082   EmitStartEHSpec(CurCodeDecl);
1083 
1084   PrologueCleanupDepth = EHStack.stable_begin();
1085 
1086   // Emit OpenMP specific initialization of the device functions.
1087   if (getLangOpts().OpenMP && CurCodeDecl)
1088     CGM.getOpenMPRuntime().emitFunctionProlog(*this, CurCodeDecl);
1089 
1090   EmitFunctionProlog(*CurFnInfo, CurFn, Args);
1091 
1092   if (D && isa<CXXMethodDecl>(D) && cast<CXXMethodDecl>(D)->isInstance()) {
1093     CGM.getCXXABI().EmitInstanceFunctionProlog(*this);
1094     const CXXMethodDecl *MD = cast<CXXMethodDecl>(D);
1095     if (MD->getParent()->isLambda() &&
1096         MD->getOverloadedOperator() == OO_Call) {
1097       // We're in a lambda; figure out the captures.
1098       MD->getParent()->getCaptureFields(LambdaCaptureFields,
1099                                         LambdaThisCaptureField);
1100       if (LambdaThisCaptureField) {
1101         // If the lambda captures the object referred to by '*this' - either by
1102         // value or by reference, make sure CXXThisValue points to the correct
1103         // object.
1104 
1105         // Get the lvalue for the field (which is a copy of the enclosing object
1106         // or contains the address of the enclosing object).
1107         LValue ThisFieldLValue = EmitLValueForLambdaField(LambdaThisCaptureField);
1108         if (!LambdaThisCaptureField->getType()->isPointerType()) {
1109           // If the enclosing object was captured by value, just use its address.
1110           CXXThisValue = ThisFieldLValue.getAddress(*this).getPointer();
1111         } else {
1112           // Load the lvalue pointed to by the field, since '*this' was captured
1113           // by reference.
1114           CXXThisValue =
1115               EmitLoadOfLValue(ThisFieldLValue, SourceLocation()).getScalarVal();
1116         }
1117       }
1118       for (auto *FD : MD->getParent()->fields()) {
1119         if (FD->hasCapturedVLAType()) {
1120           auto *ExprArg = EmitLoadOfLValue(EmitLValueForLambdaField(FD),
1121                                            SourceLocation()).getScalarVal();
1122           auto VAT = FD->getCapturedVLAType();
1123           VLASizeMap[VAT->getSizeExpr()] = ExprArg;
1124         }
1125       }
1126     } else {
1127       // Not in a lambda; just use 'this' from the method.
1128       // FIXME: Should we generate a new load for each use of 'this'?  The
1129       // fast register allocator would be happier...
1130       CXXThisValue = CXXABIThisValue;
1131     }
1132 
1133     // Check the 'this' pointer once per function, if it's available.
1134     if (CXXABIThisValue) {
1135       SanitizerSet SkippedChecks;
1136       SkippedChecks.set(SanitizerKind::ObjectSize, true);
1137       QualType ThisTy = MD->getThisType();
1138 
1139       // If this is the call operator of a lambda with no capture-default, it
1140       // may have a static invoker function, which may call this operator with
1141       // a null 'this' pointer.
1142       if (isLambdaCallOperator(MD) &&
1143           MD->getParent()->getLambdaCaptureDefault() == LCD_None)
1144         SkippedChecks.set(SanitizerKind::Null, true);
1145 
1146       EmitTypeCheck(
1147           isa<CXXConstructorDecl>(MD) ? TCK_ConstructorCall : TCK_MemberCall,
1148           Loc, CXXABIThisValue, ThisTy, CXXABIThisAlignment, SkippedChecks);
1149     }
1150   }
1151 
1152   // If any of the arguments have a variably modified type, make sure to
1153   // emit the type size.
1154   for (FunctionArgList::const_iterator i = Args.begin(), e = Args.end();
1155        i != e; ++i) {
1156     const VarDecl *VD = *i;
1157 
1158     // Dig out the type as written from ParmVarDecls; it's unclear whether
1159     // the standard (C99 6.9.1p10) requires this, but we're following the
1160     // precedent set by gcc.
1161     QualType Ty;
1162     if (const ParmVarDecl *PVD = dyn_cast<ParmVarDecl>(VD))
1163       Ty = PVD->getOriginalType();
1164     else
1165       Ty = VD->getType();
1166 
1167     if (Ty->isVariablyModifiedType())
1168       EmitVariablyModifiedType(Ty);
1169   }
1170   // Emit a location at the end of the prologue.
1171   if (CGDebugInfo *DI = getDebugInfo())
1172     DI->EmitLocation(Builder, StartLoc);
1173 
1174   // TODO: Do we need to handle this in two places like we do with
1175   // target-features/target-cpu?
1176   if (CurFuncDecl)
1177     if (const auto *VecWidth = CurFuncDecl->getAttr<MinVectorWidthAttr>())
1178       LargestVectorWidth = VecWidth->getVectorWidth();
1179 }
1180 
1181 void CodeGenFunction::EmitFunctionBody(const Stmt *Body) {
1182   incrementProfileCounter(Body);
1183   if (CPlusPlusWithProgress())
1184     FnIsMustProgress = true;
1185 
1186   if (const CompoundStmt *S = dyn_cast<CompoundStmt>(Body))
1187     EmitCompoundStmtWithoutScope(*S);
1188   else
1189     EmitStmt(Body);
1190 
1191   // This is checked after emitting the function body so we know if there
1192   // are any permitted infinite loops.
1193   if (FnIsMustProgress)
1194     CurFn->addFnAttr(llvm::Attribute::MustProgress);
1195 }
1196 
1197 /// When instrumenting to collect profile data, the counts for some blocks
1198 /// such as switch cases need to not include the fall-through counts, so
1199 /// emit a branch around the instrumentation code. When not instrumenting,
1200 /// this just calls EmitBlock().
1201 void CodeGenFunction::EmitBlockWithFallThrough(llvm::BasicBlock *BB,
1202                                                const Stmt *S) {
1203   llvm::BasicBlock *SkipCountBB = nullptr;
1204   if (HaveInsertPoint() && CGM.getCodeGenOpts().hasProfileClangInstr()) {
1205     // When instrumenting for profiling, the fallthrough to certain
1206     // statements needs to skip over the instrumentation code so that we
1207     // get an accurate count.
1208     SkipCountBB = createBasicBlock("skipcount");
1209     EmitBranch(SkipCountBB);
1210   }
1211   EmitBlock(BB);
1212   uint64_t CurrentCount = getCurrentProfileCount();
1213   incrementProfileCounter(S);
1214   setCurrentProfileCount(getCurrentProfileCount() + CurrentCount);
1215   if (SkipCountBB)
1216     EmitBlock(SkipCountBB);
1217 }
1218 
1219 /// Tries to mark the given function nounwind based on the
1220 /// non-existence of any throwing calls within it.  We believe this is
1221 /// lightweight enough to do at -O0.
1222 static void TryMarkNoThrow(llvm::Function *F) {
1223   // LLVM treats 'nounwind' on a function as part of the type, so we
1224   // can't do this on functions that can be overwritten.
1225   if (F->isInterposable()) return;
1226 
1227   for (llvm::BasicBlock &BB : *F)
1228     for (llvm::Instruction &I : BB)
1229       if (I.mayThrow())
1230         return;
1231 
1232   F->setDoesNotThrow();
1233 }
1234 
1235 QualType CodeGenFunction::BuildFunctionArgList(GlobalDecl GD,
1236                                                FunctionArgList &Args) {
1237   const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
1238   QualType ResTy = FD->getReturnType();
1239 
1240   const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD);
1241   if (MD && MD->isInstance()) {
1242     if (CGM.getCXXABI().HasThisReturn(GD))
1243       ResTy = MD->getThisType();
1244     else if (CGM.getCXXABI().hasMostDerivedReturn(GD))
1245       ResTy = CGM.getContext().VoidPtrTy;
1246     CGM.getCXXABI().buildThisParam(*this, Args);
1247   }
1248 
1249   // The base version of an inheriting constructor whose constructed base is a
1250   // virtual base is not passed any arguments (because it doesn't actually call
1251   // the inherited constructor).
1252   bool PassedParams = true;
1253   if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(FD))
1254     if (auto Inherited = CD->getInheritedConstructor())
1255       PassedParams =
1256           getTypes().inheritingCtorHasParams(Inherited, GD.getCtorType());
1257 
1258   if (PassedParams) {
1259     for (auto *Param : FD->parameters()) {
1260       Args.push_back(Param);
1261       if (!Param->hasAttr<PassObjectSizeAttr>())
1262         continue;
1263 
1264       auto *Implicit = ImplicitParamDecl::Create(
1265           getContext(), Param->getDeclContext(), Param->getLocation(),
1266           /*Id=*/nullptr, getContext().getSizeType(), ImplicitParamDecl::Other);
1267       SizeArguments[Param] = Implicit;
1268       Args.push_back(Implicit);
1269     }
1270   }
1271 
1272   if (MD && (isa<CXXConstructorDecl>(MD) || isa<CXXDestructorDecl>(MD)))
1273     CGM.getCXXABI().addImplicitStructorParams(*this, ResTy, Args);
1274 
1275   return ResTy;
1276 }
1277 
1278 void CodeGenFunction::GenerateCode(GlobalDecl GD, llvm::Function *Fn,
1279                                    const CGFunctionInfo &FnInfo) {
1280   const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
1281   CurGD = GD;
1282 
1283   FunctionArgList Args;
1284   QualType ResTy = BuildFunctionArgList(GD, Args);
1285 
1286   // Check if we should generate debug info for this function.
1287   if (FD->hasAttr<NoDebugAttr>())
1288     DebugInfo = nullptr; // disable debug info indefinitely for this function
1289 
1290   // The function might not have a body if we're generating thunks for a
1291   // function declaration.
1292   SourceRange BodyRange;
1293   if (Stmt *Body = FD->getBody())
1294     BodyRange = Body->getSourceRange();
1295   else
1296     BodyRange = FD->getLocation();
1297   CurEHLocation = BodyRange.getEnd();
1298 
1299   // Use the location of the start of the function to determine where
1300   // the function definition is located. By default use the location
1301   // of the declaration as the location for the subprogram. A function
1302   // may lack a declaration in the source code if it is created by code
1303   // gen. (examples: _GLOBAL__I_a, __cxx_global_array_dtor, thunk).
1304   SourceLocation Loc = FD->getLocation();
1305 
1306   // If this is a function specialization then use the pattern body
1307   // as the location for the function.
1308   if (const FunctionDecl *SpecDecl = FD->getTemplateInstantiationPattern())
1309     if (SpecDecl->hasBody(SpecDecl))
1310       Loc = SpecDecl->getLocation();
1311 
1312   Stmt *Body = FD->getBody();
1313 
1314   // Initialize helper which will detect jumps which can cause invalid lifetime
1315   // markers.
1316   if (Body && ShouldEmitLifetimeMarkers)
1317     Bypasses.Init(Body);
1318 
1319   // Emit the standard function prologue.
1320   StartFunction(GD, ResTy, Fn, FnInfo, Args, Loc, BodyRange.getBegin());
1321 
1322   // Generate the body of the function.
1323   PGO.assignRegionCounters(GD, CurFn);
1324   if (isa<CXXDestructorDecl>(FD))
1325     EmitDestructorBody(Args);
1326   else if (isa<CXXConstructorDecl>(FD))
1327     EmitConstructorBody(Args);
1328   else if (getLangOpts().CUDA &&
1329            !getLangOpts().CUDAIsDevice &&
1330            FD->hasAttr<CUDAGlobalAttr>())
1331     CGM.getCUDARuntime().emitDeviceStub(*this, Args);
1332   else if (isa<CXXMethodDecl>(FD) &&
1333            cast<CXXMethodDecl>(FD)->isLambdaStaticInvoker()) {
1334     // The lambda static invoker function is special, because it forwards or
1335     // clones the body of the function call operator (but is actually static).
1336     EmitLambdaStaticInvokeBody(cast<CXXMethodDecl>(FD));
1337   } else if (FD->isDefaulted() && isa<CXXMethodDecl>(FD) &&
1338              (cast<CXXMethodDecl>(FD)->isCopyAssignmentOperator() ||
1339               cast<CXXMethodDecl>(FD)->isMoveAssignmentOperator())) {
1340     // Implicit copy-assignment gets the same special treatment as implicit
1341     // copy-constructors.
1342     emitImplicitAssignmentOperatorBody(Args);
1343   } else if (Body) {
1344     EmitFunctionBody(Body);
1345   } else
1346     llvm_unreachable("no definition for emitted function");
1347 
1348   // C++11 [stmt.return]p2:
1349   //   Flowing off the end of a function [...] results in undefined behavior in
1350   //   a value-returning function.
1351   // C11 6.9.1p12:
1352   //   If the '}' that terminates a function is reached, and the value of the
1353   //   function call is used by the caller, the behavior is undefined.
1354   if (getLangOpts().CPlusPlus && !FD->hasImplicitReturnZero() && !SawAsmBlock &&
1355       !FD->getReturnType()->isVoidType() && Builder.GetInsertBlock()) {
1356     bool ShouldEmitUnreachable =
1357         CGM.getCodeGenOpts().StrictReturn ||
1358         !CGM.MayDropFunctionReturn(FD->getASTContext(), FD->getReturnType());
1359     if (SanOpts.has(SanitizerKind::Return)) {
1360       SanitizerScope SanScope(this);
1361       llvm::Value *IsFalse = Builder.getFalse();
1362       EmitCheck(std::make_pair(IsFalse, SanitizerKind::Return),
1363                 SanitizerHandler::MissingReturn,
1364                 EmitCheckSourceLocation(FD->getLocation()), None);
1365     } else if (ShouldEmitUnreachable) {
1366       if (CGM.getCodeGenOpts().OptimizationLevel == 0)
1367         EmitTrapCall(llvm::Intrinsic::trap);
1368     }
1369     if (SanOpts.has(SanitizerKind::Return) || ShouldEmitUnreachable) {
1370       Builder.CreateUnreachable();
1371       Builder.ClearInsertionPoint();
1372     }
1373   }
1374 
1375   // Emit the standard function epilogue.
1376   FinishFunction(BodyRange.getEnd());
1377 
1378   // If we haven't marked the function nothrow through other means, do
1379   // a quick pass now to see if we can.
1380   if (!CurFn->doesNotThrow())
1381     TryMarkNoThrow(CurFn);
1382 }
1383 
1384 /// ContainsLabel - Return true if the statement contains a label in it.  If
1385 /// this statement is not executed normally, it not containing a label means
1386 /// that we can just remove the code.
1387 bool CodeGenFunction::ContainsLabel(const Stmt *S, bool IgnoreCaseStmts) {
1388   // Null statement, not a label!
1389   if (!S) return false;
1390 
1391   // If this is a label, we have to emit the code, consider something like:
1392   // if (0) {  ...  foo:  bar(); }  goto foo;
1393   //
1394   // TODO: If anyone cared, we could track __label__'s, since we know that you
1395   // can't jump to one from outside their declared region.
1396   if (isa<LabelStmt>(S))
1397     return true;
1398 
1399   // If this is a case/default statement, and we haven't seen a switch, we have
1400   // to emit the code.
1401   if (isa<SwitchCase>(S) && !IgnoreCaseStmts)
1402     return true;
1403 
1404   // If this is a switch statement, we want to ignore cases below it.
1405   if (isa<SwitchStmt>(S))
1406     IgnoreCaseStmts = true;
1407 
1408   // Scan subexpressions for verboten labels.
1409   for (const Stmt *SubStmt : S->children())
1410     if (ContainsLabel(SubStmt, IgnoreCaseStmts))
1411       return true;
1412 
1413   return false;
1414 }
1415 
1416 /// containsBreak - Return true if the statement contains a break out of it.
1417 /// If the statement (recursively) contains a switch or loop with a break
1418 /// inside of it, this is fine.
1419 bool CodeGenFunction::containsBreak(const Stmt *S) {
1420   // Null statement, not a label!
1421   if (!S) return false;
1422 
1423   // If this is a switch or loop that defines its own break scope, then we can
1424   // include it and anything inside of it.
1425   if (isa<SwitchStmt>(S) || isa<WhileStmt>(S) || isa<DoStmt>(S) ||
1426       isa<ForStmt>(S))
1427     return false;
1428 
1429   if (isa<BreakStmt>(S))
1430     return true;
1431 
1432   // Scan subexpressions for verboten breaks.
1433   for (const Stmt *SubStmt : S->children())
1434     if (containsBreak(SubStmt))
1435       return true;
1436 
1437   return false;
1438 }
1439 
1440 bool CodeGenFunction::mightAddDeclToScope(const Stmt *S) {
1441   if (!S) return false;
1442 
1443   // Some statement kinds add a scope and thus never add a decl to the current
1444   // scope. Note, this list is longer than the list of statements that might
1445   // have an unscoped decl nested within them, but this way is conservatively
1446   // correct even if more statement kinds are added.
1447   if (isa<IfStmt>(S) || isa<SwitchStmt>(S) || isa<WhileStmt>(S) ||
1448       isa<DoStmt>(S) || isa<ForStmt>(S) || isa<CompoundStmt>(S) ||
1449       isa<CXXForRangeStmt>(S) || isa<CXXTryStmt>(S) ||
1450       isa<ObjCForCollectionStmt>(S) || isa<ObjCAtTryStmt>(S))
1451     return false;
1452 
1453   if (isa<DeclStmt>(S))
1454     return true;
1455 
1456   for (const Stmt *SubStmt : S->children())
1457     if (mightAddDeclToScope(SubStmt))
1458       return true;
1459 
1460   return false;
1461 }
1462 
1463 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold
1464 /// to a constant, or if it does but contains a label, return false.  If it
1465 /// constant folds return true and set the boolean result in Result.
1466 bool CodeGenFunction::ConstantFoldsToSimpleInteger(const Expr *Cond,
1467                                                    bool &ResultBool,
1468                                                    bool AllowLabels) {
1469   llvm::APSInt ResultInt;
1470   if (!ConstantFoldsToSimpleInteger(Cond, ResultInt, AllowLabels))
1471     return false;
1472 
1473   ResultBool = ResultInt.getBoolValue();
1474   return true;
1475 }
1476 
1477 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold
1478 /// to a constant, or if it does but contains a label, return false.  If it
1479 /// constant folds return true and set the folded value.
1480 bool CodeGenFunction::ConstantFoldsToSimpleInteger(const Expr *Cond,
1481                                                    llvm::APSInt &ResultInt,
1482                                                    bool AllowLabels) {
1483   // FIXME: Rename and handle conversion of other evaluatable things
1484   // to bool.
1485   Expr::EvalResult Result;
1486   if (!Cond->EvaluateAsInt(Result, getContext()))
1487     return false;  // Not foldable, not integer or not fully evaluatable.
1488 
1489   llvm::APSInt Int = Result.Val.getInt();
1490   if (!AllowLabels && CodeGenFunction::ContainsLabel(Cond))
1491     return false;  // Contains a label.
1492 
1493   ResultInt = Int;
1494   return true;
1495 }
1496 
1497 /// Determine whether the given condition is an instrumentable condition
1498 /// (i.e. no "&&" or "||").
1499 bool CodeGenFunction::isInstrumentedCondition(const Expr *C) {
1500   // Bypass simplistic logical-NOT operator before determining whether the
1501   // condition contains any other logical operator.
1502   if (const UnaryOperator *UnOp = dyn_cast<UnaryOperator>(C->IgnoreParens()))
1503     if (UnOp->getOpcode() == UO_LNot)
1504       C = UnOp->getSubExpr();
1505 
1506   const BinaryOperator *BOp = dyn_cast<BinaryOperator>(C->IgnoreParens());
1507   return (!BOp || !BOp->isLogicalOp());
1508 }
1509 
1510 /// EmitBranchToCounterBlock - Emit a conditional branch to a new block that
1511 /// increments a profile counter based on the semantics of the given logical
1512 /// operator opcode.  This is used to instrument branch condition coverage for
1513 /// logical operators.
1514 void CodeGenFunction::EmitBranchToCounterBlock(
1515     const Expr *Cond, BinaryOperator::Opcode LOp, llvm::BasicBlock *TrueBlock,
1516     llvm::BasicBlock *FalseBlock, uint64_t TrueCount /* = 0 */,
1517     Stmt::Likelihood LH /* =None */, const Expr *CntrIdx /* = nullptr */) {
1518   // If not instrumenting, just emit a branch.
1519   bool InstrumentRegions = CGM.getCodeGenOpts().hasProfileClangInstr();
1520   if (!InstrumentRegions || !isInstrumentedCondition(Cond))
1521     return EmitBranchOnBoolExpr(Cond, TrueBlock, FalseBlock, TrueCount, LH);
1522 
1523   llvm::BasicBlock *ThenBlock = NULL;
1524   llvm::BasicBlock *ElseBlock = NULL;
1525   llvm::BasicBlock *NextBlock = NULL;
1526 
1527   // Create the block we'll use to increment the appropriate counter.
1528   llvm::BasicBlock *CounterIncrBlock = createBasicBlock("lop.rhscnt");
1529 
1530   // Set block pointers according to Logical-AND (BO_LAnd) semantics. This
1531   // means we need to evaluate the condition and increment the counter on TRUE:
1532   //
1533   // if (Cond)
1534   //   goto CounterIncrBlock;
1535   // else
1536   //   goto FalseBlock;
1537   //
1538   // CounterIncrBlock:
1539   //   Counter++;
1540   //   goto TrueBlock;
1541 
1542   if (LOp == BO_LAnd) {
1543     ThenBlock = CounterIncrBlock;
1544     ElseBlock = FalseBlock;
1545     NextBlock = TrueBlock;
1546   }
1547 
1548   // Set block pointers according to Logical-OR (BO_LOr) semantics. This means
1549   // we need to evaluate the condition and increment the counter on FALSE:
1550   //
1551   // if (Cond)
1552   //   goto TrueBlock;
1553   // else
1554   //   goto CounterIncrBlock;
1555   //
1556   // CounterIncrBlock:
1557   //   Counter++;
1558   //   goto FalseBlock;
1559 
1560   else if (LOp == BO_LOr) {
1561     ThenBlock = TrueBlock;
1562     ElseBlock = CounterIncrBlock;
1563     NextBlock = FalseBlock;
1564   } else {
1565     llvm_unreachable("Expected Opcode must be that of a Logical Operator");
1566   }
1567 
1568   // Emit Branch based on condition.
1569   EmitBranchOnBoolExpr(Cond, ThenBlock, ElseBlock, TrueCount, LH);
1570 
1571   // Emit the block containing the counter increment(s).
1572   EmitBlock(CounterIncrBlock);
1573 
1574   // Increment corresponding counter; if index not provided, use Cond as index.
1575   incrementProfileCounter(CntrIdx ? CntrIdx : Cond);
1576 
1577   // Go to the next block.
1578   EmitBranch(NextBlock);
1579 }
1580 
1581 /// EmitBranchOnBoolExpr - Emit a branch on a boolean condition (e.g. for an if
1582 /// statement) to the specified blocks.  Based on the condition, this might try
1583 /// to simplify the codegen of the conditional based on the branch.
1584 /// \param LH The value of the likelihood attribute on the True branch.
1585 void CodeGenFunction::EmitBranchOnBoolExpr(const Expr *Cond,
1586                                            llvm::BasicBlock *TrueBlock,
1587                                            llvm::BasicBlock *FalseBlock,
1588                                            uint64_t TrueCount,
1589                                            Stmt::Likelihood LH) {
1590   Cond = Cond->IgnoreParens();
1591 
1592   if (const BinaryOperator *CondBOp = dyn_cast<BinaryOperator>(Cond)) {
1593 
1594     // Handle X && Y in a condition.
1595     if (CondBOp->getOpcode() == BO_LAnd) {
1596       // If we have "1 && X", simplify the code.  "0 && X" would have constant
1597       // folded if the case was simple enough.
1598       bool ConstantBool = false;
1599       if (ConstantFoldsToSimpleInteger(CondBOp->getLHS(), ConstantBool) &&
1600           ConstantBool) {
1601         // br(1 && X) -> br(X).
1602         incrementProfileCounter(CondBOp);
1603         return EmitBranchToCounterBlock(CondBOp->getRHS(), BO_LAnd, TrueBlock,
1604                                         FalseBlock, TrueCount, LH);
1605       }
1606 
1607       // If we have "X && 1", simplify the code to use an uncond branch.
1608       // "X && 0" would have been constant folded to 0.
1609       if (ConstantFoldsToSimpleInteger(CondBOp->getRHS(), ConstantBool) &&
1610           ConstantBool) {
1611         // br(X && 1) -> br(X).
1612         return EmitBranchToCounterBlock(CondBOp->getLHS(), BO_LAnd, TrueBlock,
1613                                         FalseBlock, TrueCount, LH, CondBOp);
1614       }
1615 
1616       // Emit the LHS as a conditional.  If the LHS conditional is false, we
1617       // want to jump to the FalseBlock.
1618       llvm::BasicBlock *LHSTrue = createBasicBlock("land.lhs.true");
1619       // The counter tells us how often we evaluate RHS, and all of TrueCount
1620       // can be propagated to that branch.
1621       uint64_t RHSCount = getProfileCount(CondBOp->getRHS());
1622 
1623       ConditionalEvaluation eval(*this);
1624       {
1625         ApplyDebugLocation DL(*this, Cond);
1626         // Propagate the likelihood attribute like __builtin_expect
1627         // __builtin_expect(X && Y, 1) -> X and Y are likely
1628         // __builtin_expect(X && Y, 0) -> only Y is unlikely
1629         EmitBranchOnBoolExpr(CondBOp->getLHS(), LHSTrue, FalseBlock, RHSCount,
1630                              LH == Stmt::LH_Unlikely ? Stmt::LH_None : LH);
1631         EmitBlock(LHSTrue);
1632       }
1633 
1634       incrementProfileCounter(CondBOp);
1635       setCurrentProfileCount(getProfileCount(CondBOp->getRHS()));
1636 
1637       // Any temporaries created here are conditional.
1638       eval.begin(*this);
1639       EmitBranchToCounterBlock(CondBOp->getRHS(), BO_LAnd, TrueBlock,
1640                                FalseBlock, TrueCount, LH);
1641       eval.end(*this);
1642 
1643       return;
1644     }
1645 
1646     if (CondBOp->getOpcode() == BO_LOr) {
1647       // If we have "0 || X", simplify the code.  "1 || X" would have constant
1648       // folded if the case was simple enough.
1649       bool ConstantBool = false;
1650       if (ConstantFoldsToSimpleInteger(CondBOp->getLHS(), ConstantBool) &&
1651           !ConstantBool) {
1652         // br(0 || X) -> br(X).
1653         incrementProfileCounter(CondBOp);
1654         return EmitBranchToCounterBlock(CondBOp->getRHS(), BO_LOr, TrueBlock,
1655                                         FalseBlock, TrueCount, LH);
1656       }
1657 
1658       // If we have "X || 0", simplify the code to use an uncond branch.
1659       // "X || 1" would have been constant folded to 1.
1660       if (ConstantFoldsToSimpleInteger(CondBOp->getRHS(), ConstantBool) &&
1661           !ConstantBool) {
1662         // br(X || 0) -> br(X).
1663         return EmitBranchToCounterBlock(CondBOp->getLHS(), BO_LOr, TrueBlock,
1664                                         FalseBlock, TrueCount, LH, CondBOp);
1665       }
1666 
1667       // Emit the LHS as a conditional.  If the LHS conditional is true, we
1668       // want to jump to the TrueBlock.
1669       llvm::BasicBlock *LHSFalse = createBasicBlock("lor.lhs.false");
1670       // We have the count for entry to the RHS and for the whole expression
1671       // being true, so we can divy up True count between the short circuit and
1672       // the RHS.
1673       uint64_t LHSCount =
1674           getCurrentProfileCount() - getProfileCount(CondBOp->getRHS());
1675       uint64_t RHSCount = TrueCount - LHSCount;
1676 
1677       ConditionalEvaluation eval(*this);
1678       {
1679         // Propagate the likelihood attribute like __builtin_expect
1680         // __builtin_expect(X || Y, 1) -> only Y is likely
1681         // __builtin_expect(X || Y, 0) -> both X and Y are unlikely
1682         ApplyDebugLocation DL(*this, Cond);
1683         EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, LHSFalse, LHSCount,
1684                              LH == Stmt::LH_Likely ? Stmt::LH_None : LH);
1685         EmitBlock(LHSFalse);
1686       }
1687 
1688       incrementProfileCounter(CondBOp);
1689       setCurrentProfileCount(getProfileCount(CondBOp->getRHS()));
1690 
1691       // Any temporaries created here are conditional.
1692       eval.begin(*this);
1693       EmitBranchToCounterBlock(CondBOp->getRHS(), BO_LOr, TrueBlock, FalseBlock,
1694                                RHSCount, LH);
1695 
1696       eval.end(*this);
1697 
1698       return;
1699     }
1700   }
1701 
1702   if (const UnaryOperator *CondUOp = dyn_cast<UnaryOperator>(Cond)) {
1703     // br(!x, t, f) -> br(x, f, t)
1704     if (CondUOp->getOpcode() == UO_LNot) {
1705       // Negate the count.
1706       uint64_t FalseCount = getCurrentProfileCount() - TrueCount;
1707       // The values of the enum are chosen to make this negation possible.
1708       LH = static_cast<Stmt::Likelihood>(-LH);
1709       // Negate the condition and swap the destination blocks.
1710       return EmitBranchOnBoolExpr(CondUOp->getSubExpr(), FalseBlock, TrueBlock,
1711                                   FalseCount, LH);
1712     }
1713   }
1714 
1715   if (const ConditionalOperator *CondOp = dyn_cast<ConditionalOperator>(Cond)) {
1716     // br(c ? x : y, t, f) -> br(c, br(x, t, f), br(y, t, f))
1717     llvm::BasicBlock *LHSBlock = createBasicBlock("cond.true");
1718     llvm::BasicBlock *RHSBlock = createBasicBlock("cond.false");
1719 
1720     // The ConditionalOperator itself has no likelihood information for its
1721     // true and false branches. This matches the behavior of __builtin_expect.
1722     ConditionalEvaluation cond(*this);
1723     EmitBranchOnBoolExpr(CondOp->getCond(), LHSBlock, RHSBlock,
1724                          getProfileCount(CondOp), Stmt::LH_None);
1725 
1726     // When computing PGO branch weights, we only know the overall count for
1727     // the true block. This code is essentially doing tail duplication of the
1728     // naive code-gen, introducing new edges for which counts are not
1729     // available. Divide the counts proportionally between the LHS and RHS of
1730     // the conditional operator.
1731     uint64_t LHSScaledTrueCount = 0;
1732     if (TrueCount) {
1733       double LHSRatio =
1734           getProfileCount(CondOp) / (double)getCurrentProfileCount();
1735       LHSScaledTrueCount = TrueCount * LHSRatio;
1736     }
1737 
1738     cond.begin(*this);
1739     EmitBlock(LHSBlock);
1740     incrementProfileCounter(CondOp);
1741     {
1742       ApplyDebugLocation DL(*this, Cond);
1743       EmitBranchOnBoolExpr(CondOp->getLHS(), TrueBlock, FalseBlock,
1744                            LHSScaledTrueCount, LH);
1745     }
1746     cond.end(*this);
1747 
1748     cond.begin(*this);
1749     EmitBlock(RHSBlock);
1750     EmitBranchOnBoolExpr(CondOp->getRHS(), TrueBlock, FalseBlock,
1751                          TrueCount - LHSScaledTrueCount, LH);
1752     cond.end(*this);
1753 
1754     return;
1755   }
1756 
1757   if (const CXXThrowExpr *Throw = dyn_cast<CXXThrowExpr>(Cond)) {
1758     // Conditional operator handling can give us a throw expression as a
1759     // condition for a case like:
1760     //   br(c ? throw x : y, t, f) -> br(c, br(throw x, t, f), br(y, t, f)
1761     // Fold this to:
1762     //   br(c, throw x, br(y, t, f))
1763     EmitCXXThrowExpr(Throw, /*KeepInsertionPoint*/false);
1764     return;
1765   }
1766 
1767   // If the branch has a condition wrapped by __builtin_unpredictable,
1768   // create metadata that specifies that the branch is unpredictable.
1769   // Don't bother if not optimizing because that metadata would not be used.
1770   llvm::MDNode *Unpredictable = nullptr;
1771   auto *Call = dyn_cast<CallExpr>(Cond->IgnoreImpCasts());
1772   if (Call && CGM.getCodeGenOpts().OptimizationLevel != 0) {
1773     auto *FD = dyn_cast_or_null<FunctionDecl>(Call->getCalleeDecl());
1774     if (FD && FD->getBuiltinID() == Builtin::BI__builtin_unpredictable) {
1775       llvm::MDBuilder MDHelper(getLLVMContext());
1776       Unpredictable = MDHelper.createUnpredictable();
1777     }
1778   }
1779 
1780   llvm::MDNode *Weights = createBranchWeights(LH);
1781   if (!Weights) {
1782     uint64_t CurrentCount = std::max(getCurrentProfileCount(), TrueCount);
1783     Weights = createProfileWeights(TrueCount, CurrentCount - TrueCount);
1784   }
1785 
1786   // Emit the code with the fully general case.
1787   llvm::Value *CondV;
1788   {
1789     ApplyDebugLocation DL(*this, Cond);
1790     CondV = EvaluateExprAsBool(Cond);
1791   }
1792   Builder.CreateCondBr(CondV, TrueBlock, FalseBlock, Weights, Unpredictable);
1793 }
1794 
1795 /// ErrorUnsupported - Print out an error that codegen doesn't support the
1796 /// specified stmt yet.
1797 void CodeGenFunction::ErrorUnsupported(const Stmt *S, const char *Type) {
1798   CGM.ErrorUnsupported(S, Type);
1799 }
1800 
1801 /// emitNonZeroVLAInit - Emit the "zero" initialization of a
1802 /// variable-length array whose elements have a non-zero bit-pattern.
1803 ///
1804 /// \param baseType the inner-most element type of the array
1805 /// \param src - a char* pointing to the bit-pattern for a single
1806 /// base element of the array
1807 /// \param sizeInChars - the total size of the VLA, in chars
1808 static void emitNonZeroVLAInit(CodeGenFunction &CGF, QualType baseType,
1809                                Address dest, Address src,
1810                                llvm::Value *sizeInChars) {
1811   CGBuilderTy &Builder = CGF.Builder;
1812 
1813   CharUnits baseSize = CGF.getContext().getTypeSizeInChars(baseType);
1814   llvm::Value *baseSizeInChars
1815     = llvm::ConstantInt::get(CGF.IntPtrTy, baseSize.getQuantity());
1816 
1817   Address begin =
1818     Builder.CreateElementBitCast(dest, CGF.Int8Ty, "vla.begin");
1819   llvm::Value *end = Builder.CreateInBoundsGEP(
1820       begin.getElementType(), begin.getPointer(), sizeInChars, "vla.end");
1821 
1822   llvm::BasicBlock *originBB = CGF.Builder.GetInsertBlock();
1823   llvm::BasicBlock *loopBB = CGF.createBasicBlock("vla-init.loop");
1824   llvm::BasicBlock *contBB = CGF.createBasicBlock("vla-init.cont");
1825 
1826   // Make a loop over the VLA.  C99 guarantees that the VLA element
1827   // count must be nonzero.
1828   CGF.EmitBlock(loopBB);
1829 
1830   llvm::PHINode *cur = Builder.CreatePHI(begin.getType(), 2, "vla.cur");
1831   cur->addIncoming(begin.getPointer(), originBB);
1832 
1833   CharUnits curAlign =
1834     dest.getAlignment().alignmentOfArrayElement(baseSize);
1835 
1836   // memcpy the individual element bit-pattern.
1837   Builder.CreateMemCpy(Address(cur, curAlign), src, baseSizeInChars,
1838                        /*volatile*/ false);
1839 
1840   // Go to the next element.
1841   llvm::Value *next =
1842     Builder.CreateInBoundsGEP(CGF.Int8Ty, cur, baseSizeInChars, "vla.next");
1843 
1844   // Leave if that's the end of the VLA.
1845   llvm::Value *done = Builder.CreateICmpEQ(next, end, "vla-init.isdone");
1846   Builder.CreateCondBr(done, contBB, loopBB);
1847   cur->addIncoming(next, loopBB);
1848 
1849   CGF.EmitBlock(contBB);
1850 }
1851 
1852 void
1853 CodeGenFunction::EmitNullInitialization(Address DestPtr, QualType Ty) {
1854   // Ignore empty classes in C++.
1855   if (getLangOpts().CPlusPlus) {
1856     if (const RecordType *RT = Ty->getAs<RecordType>()) {
1857       if (cast<CXXRecordDecl>(RT->getDecl())->isEmpty())
1858         return;
1859     }
1860   }
1861 
1862   // Cast the dest ptr to the appropriate i8 pointer type.
1863   if (DestPtr.getElementType() != Int8Ty)
1864     DestPtr = Builder.CreateElementBitCast(DestPtr, Int8Ty);
1865 
1866   // Get size and alignment info for this aggregate.
1867   CharUnits size = getContext().getTypeSizeInChars(Ty);
1868 
1869   llvm::Value *SizeVal;
1870   const VariableArrayType *vla;
1871 
1872   // Don't bother emitting a zero-byte memset.
1873   if (size.isZero()) {
1874     // But note that getTypeInfo returns 0 for a VLA.
1875     if (const VariableArrayType *vlaType =
1876           dyn_cast_or_null<VariableArrayType>(
1877                                           getContext().getAsArrayType(Ty))) {
1878       auto VlaSize = getVLASize(vlaType);
1879       SizeVal = VlaSize.NumElts;
1880       CharUnits eltSize = getContext().getTypeSizeInChars(VlaSize.Type);
1881       if (!eltSize.isOne())
1882         SizeVal = Builder.CreateNUWMul(SizeVal, CGM.getSize(eltSize));
1883       vla = vlaType;
1884     } else {
1885       return;
1886     }
1887   } else {
1888     SizeVal = CGM.getSize(size);
1889     vla = nullptr;
1890   }
1891 
1892   // If the type contains a pointer to data member we can't memset it to zero.
1893   // Instead, create a null constant and copy it to the destination.
1894   // TODO: there are other patterns besides zero that we can usefully memset,
1895   // like -1, which happens to be the pattern used by member-pointers.
1896   if (!CGM.getTypes().isZeroInitializable(Ty)) {
1897     // For a VLA, emit a single element, then splat that over the VLA.
1898     if (vla) Ty = getContext().getBaseElementType(vla);
1899 
1900     llvm::Constant *NullConstant = CGM.EmitNullConstant(Ty);
1901 
1902     llvm::GlobalVariable *NullVariable =
1903       new llvm::GlobalVariable(CGM.getModule(), NullConstant->getType(),
1904                                /*isConstant=*/true,
1905                                llvm::GlobalVariable::PrivateLinkage,
1906                                NullConstant, Twine());
1907     CharUnits NullAlign = DestPtr.getAlignment();
1908     NullVariable->setAlignment(NullAlign.getAsAlign());
1909     Address SrcPtr(Builder.CreateBitCast(NullVariable, Builder.getInt8PtrTy()),
1910                    NullAlign);
1911 
1912     if (vla) return emitNonZeroVLAInit(*this, Ty, DestPtr, SrcPtr, SizeVal);
1913 
1914     // Get and call the appropriate llvm.memcpy overload.
1915     Builder.CreateMemCpy(DestPtr, SrcPtr, SizeVal, false);
1916     return;
1917   }
1918 
1919   // Otherwise, just memset the whole thing to zero.  This is legal
1920   // because in LLVM, all default initializers (other than the ones we just
1921   // handled above) are guaranteed to have a bit pattern of all zeros.
1922   Builder.CreateMemSet(DestPtr, Builder.getInt8(0), SizeVal, false);
1923 }
1924 
1925 llvm::BlockAddress *CodeGenFunction::GetAddrOfLabel(const LabelDecl *L) {
1926   // Make sure that there is a block for the indirect goto.
1927   if (!IndirectBranch)
1928     GetIndirectGotoBlock();
1929 
1930   llvm::BasicBlock *BB = getJumpDestForLabel(L).getBlock();
1931 
1932   // Make sure the indirect branch includes all of the address-taken blocks.
1933   IndirectBranch->addDestination(BB);
1934   return llvm::BlockAddress::get(CurFn, BB);
1935 }
1936 
1937 llvm::BasicBlock *CodeGenFunction::GetIndirectGotoBlock() {
1938   // If we already made the indirect branch for indirect goto, return its block.
1939   if (IndirectBranch) return IndirectBranch->getParent();
1940 
1941   CGBuilderTy TmpBuilder(*this, createBasicBlock("indirectgoto"));
1942 
1943   // Create the PHI node that indirect gotos will add entries to.
1944   llvm::Value *DestVal = TmpBuilder.CreatePHI(Int8PtrTy, 0,
1945                                               "indirect.goto.dest");
1946 
1947   // Create the indirect branch instruction.
1948   IndirectBranch = TmpBuilder.CreateIndirectBr(DestVal);
1949   return IndirectBranch->getParent();
1950 }
1951 
1952 /// Computes the length of an array in elements, as well as the base
1953 /// element type and a properly-typed first element pointer.
1954 llvm::Value *CodeGenFunction::emitArrayLength(const ArrayType *origArrayType,
1955                                               QualType &baseType,
1956                                               Address &addr) {
1957   const ArrayType *arrayType = origArrayType;
1958 
1959   // If it's a VLA, we have to load the stored size.  Note that
1960   // this is the size of the VLA in bytes, not its size in elements.
1961   llvm::Value *numVLAElements = nullptr;
1962   if (isa<VariableArrayType>(arrayType)) {
1963     numVLAElements = getVLASize(cast<VariableArrayType>(arrayType)).NumElts;
1964 
1965     // Walk into all VLAs.  This doesn't require changes to addr,
1966     // which has type T* where T is the first non-VLA element type.
1967     do {
1968       QualType elementType = arrayType->getElementType();
1969       arrayType = getContext().getAsArrayType(elementType);
1970 
1971       // If we only have VLA components, 'addr' requires no adjustment.
1972       if (!arrayType) {
1973         baseType = elementType;
1974         return numVLAElements;
1975       }
1976     } while (isa<VariableArrayType>(arrayType));
1977 
1978     // We get out here only if we find a constant array type
1979     // inside the VLA.
1980   }
1981 
1982   // We have some number of constant-length arrays, so addr should
1983   // have LLVM type [M x [N x [...]]]*.  Build a GEP that walks
1984   // down to the first element of addr.
1985   SmallVector<llvm::Value*, 8> gepIndices;
1986 
1987   // GEP down to the array type.
1988   llvm::ConstantInt *zero = Builder.getInt32(0);
1989   gepIndices.push_back(zero);
1990 
1991   uint64_t countFromCLAs = 1;
1992   QualType eltType;
1993 
1994   llvm::ArrayType *llvmArrayType =
1995     dyn_cast<llvm::ArrayType>(addr.getElementType());
1996   while (llvmArrayType) {
1997     assert(isa<ConstantArrayType>(arrayType));
1998     assert(cast<ConstantArrayType>(arrayType)->getSize().getZExtValue()
1999              == llvmArrayType->getNumElements());
2000 
2001     gepIndices.push_back(zero);
2002     countFromCLAs *= llvmArrayType->getNumElements();
2003     eltType = arrayType->getElementType();
2004 
2005     llvmArrayType =
2006       dyn_cast<llvm::ArrayType>(llvmArrayType->getElementType());
2007     arrayType = getContext().getAsArrayType(arrayType->getElementType());
2008     assert((!llvmArrayType || arrayType) &&
2009            "LLVM and Clang types are out-of-synch");
2010   }
2011 
2012   if (arrayType) {
2013     // From this point onwards, the Clang array type has been emitted
2014     // as some other type (probably a packed struct). Compute the array
2015     // size, and just emit the 'begin' expression as a bitcast.
2016     while (arrayType) {
2017       countFromCLAs *=
2018           cast<ConstantArrayType>(arrayType)->getSize().getZExtValue();
2019       eltType = arrayType->getElementType();
2020       arrayType = getContext().getAsArrayType(eltType);
2021     }
2022 
2023     llvm::Type *baseType = ConvertType(eltType);
2024     addr = Builder.CreateElementBitCast(addr, baseType, "array.begin");
2025   } else {
2026     // Create the actual GEP.
2027     addr = Address(Builder.CreateInBoundsGEP(
2028         addr.getElementType(), addr.getPointer(), gepIndices, "array.begin"),
2029         addr.getAlignment());
2030   }
2031 
2032   baseType = eltType;
2033 
2034   llvm::Value *numElements
2035     = llvm::ConstantInt::get(SizeTy, countFromCLAs);
2036 
2037   // If we had any VLA dimensions, factor them in.
2038   if (numVLAElements)
2039     numElements = Builder.CreateNUWMul(numVLAElements, numElements);
2040 
2041   return numElements;
2042 }
2043 
2044 CodeGenFunction::VlaSizePair CodeGenFunction::getVLASize(QualType type) {
2045   const VariableArrayType *vla = getContext().getAsVariableArrayType(type);
2046   assert(vla && "type was not a variable array type!");
2047   return getVLASize(vla);
2048 }
2049 
2050 CodeGenFunction::VlaSizePair
2051 CodeGenFunction::getVLASize(const VariableArrayType *type) {
2052   // The number of elements so far; always size_t.
2053   llvm::Value *numElements = nullptr;
2054 
2055   QualType elementType;
2056   do {
2057     elementType = type->getElementType();
2058     llvm::Value *vlaSize = VLASizeMap[type->getSizeExpr()];
2059     assert(vlaSize && "no size for VLA!");
2060     assert(vlaSize->getType() == SizeTy);
2061 
2062     if (!numElements) {
2063       numElements = vlaSize;
2064     } else {
2065       // It's undefined behavior if this wraps around, so mark it that way.
2066       // FIXME: Teach -fsanitize=undefined to trap this.
2067       numElements = Builder.CreateNUWMul(numElements, vlaSize);
2068     }
2069   } while ((type = getContext().getAsVariableArrayType(elementType)));
2070 
2071   return { numElements, elementType };
2072 }
2073 
2074 CodeGenFunction::VlaSizePair
2075 CodeGenFunction::getVLAElements1D(QualType type) {
2076   const VariableArrayType *vla = getContext().getAsVariableArrayType(type);
2077   assert(vla && "type was not a variable array type!");
2078   return getVLAElements1D(vla);
2079 }
2080 
2081 CodeGenFunction::VlaSizePair
2082 CodeGenFunction::getVLAElements1D(const VariableArrayType *Vla) {
2083   llvm::Value *VlaSize = VLASizeMap[Vla->getSizeExpr()];
2084   assert(VlaSize && "no size for VLA!");
2085   assert(VlaSize->getType() == SizeTy);
2086   return { VlaSize, Vla->getElementType() };
2087 }
2088 
2089 void CodeGenFunction::EmitVariablyModifiedType(QualType type) {
2090   assert(type->isVariablyModifiedType() &&
2091          "Must pass variably modified type to EmitVLASizes!");
2092 
2093   EnsureInsertPoint();
2094 
2095   // We're going to walk down into the type and look for VLA
2096   // expressions.
2097   do {
2098     assert(type->isVariablyModifiedType());
2099 
2100     const Type *ty = type.getTypePtr();
2101     switch (ty->getTypeClass()) {
2102 
2103 #define TYPE(Class, Base)
2104 #define ABSTRACT_TYPE(Class, Base)
2105 #define NON_CANONICAL_TYPE(Class, Base)
2106 #define DEPENDENT_TYPE(Class, Base) case Type::Class:
2107 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base)
2108 #include "clang/AST/TypeNodes.inc"
2109       llvm_unreachable("unexpected dependent type!");
2110 
2111     // These types are never variably-modified.
2112     case Type::Builtin:
2113     case Type::Complex:
2114     case Type::Vector:
2115     case Type::ExtVector:
2116     case Type::ConstantMatrix:
2117     case Type::Record:
2118     case Type::Enum:
2119     case Type::Elaborated:
2120     case Type::TemplateSpecialization:
2121     case Type::ObjCTypeParam:
2122     case Type::ObjCObject:
2123     case Type::ObjCInterface:
2124     case Type::ObjCObjectPointer:
2125     case Type::ExtInt:
2126       llvm_unreachable("type class is never variably-modified!");
2127 
2128     case Type::Adjusted:
2129       type = cast<AdjustedType>(ty)->getAdjustedType();
2130       break;
2131 
2132     case Type::Decayed:
2133       type = cast<DecayedType>(ty)->getPointeeType();
2134       break;
2135 
2136     case Type::Pointer:
2137       type = cast<PointerType>(ty)->getPointeeType();
2138       break;
2139 
2140     case Type::BlockPointer:
2141       type = cast<BlockPointerType>(ty)->getPointeeType();
2142       break;
2143 
2144     case Type::LValueReference:
2145     case Type::RValueReference:
2146       type = cast<ReferenceType>(ty)->getPointeeType();
2147       break;
2148 
2149     case Type::MemberPointer:
2150       type = cast<MemberPointerType>(ty)->getPointeeType();
2151       break;
2152 
2153     case Type::ConstantArray:
2154     case Type::IncompleteArray:
2155       // Losing element qualification here is fine.
2156       type = cast<ArrayType>(ty)->getElementType();
2157       break;
2158 
2159     case Type::VariableArray: {
2160       // Losing element qualification here is fine.
2161       const VariableArrayType *vat = cast<VariableArrayType>(ty);
2162 
2163       // Unknown size indication requires no size computation.
2164       // Otherwise, evaluate and record it.
2165       if (const Expr *size = vat->getSizeExpr()) {
2166         // It's possible that we might have emitted this already,
2167         // e.g. with a typedef and a pointer to it.
2168         llvm::Value *&entry = VLASizeMap[size];
2169         if (!entry) {
2170           llvm::Value *Size = EmitScalarExpr(size);
2171 
2172           // C11 6.7.6.2p5:
2173           //   If the size is an expression that is not an integer constant
2174           //   expression [...] each time it is evaluated it shall have a value
2175           //   greater than zero.
2176           if (SanOpts.has(SanitizerKind::VLABound) &&
2177               size->getType()->isSignedIntegerType()) {
2178             SanitizerScope SanScope(this);
2179             llvm::Value *Zero = llvm::Constant::getNullValue(Size->getType());
2180             llvm::Constant *StaticArgs[] = {
2181                 EmitCheckSourceLocation(size->getBeginLoc()),
2182                 EmitCheckTypeDescriptor(size->getType())};
2183             EmitCheck(std::make_pair(Builder.CreateICmpSGT(Size, Zero),
2184                                      SanitizerKind::VLABound),
2185                       SanitizerHandler::VLABoundNotPositive, StaticArgs, Size);
2186           }
2187 
2188           // Always zexting here would be wrong if it weren't
2189           // undefined behavior to have a negative bound.
2190           entry = Builder.CreateIntCast(Size, SizeTy, /*signed*/ false);
2191         }
2192       }
2193       type = vat->getElementType();
2194       break;
2195     }
2196 
2197     case Type::FunctionProto:
2198     case Type::FunctionNoProto:
2199       type = cast<FunctionType>(ty)->getReturnType();
2200       break;
2201 
2202     case Type::Paren:
2203     case Type::TypeOf:
2204     case Type::UnaryTransform:
2205     case Type::Attributed:
2206     case Type::SubstTemplateTypeParm:
2207     case Type::MacroQualified:
2208       // Keep walking after single level desugaring.
2209       type = type.getSingleStepDesugaredType(getContext());
2210       break;
2211 
2212     case Type::Typedef:
2213     case Type::Decltype:
2214     case Type::Auto:
2215     case Type::DeducedTemplateSpecialization:
2216       // Stop walking: nothing to do.
2217       return;
2218 
2219     case Type::TypeOfExpr:
2220       // Stop walking: emit typeof expression.
2221       EmitIgnoredExpr(cast<TypeOfExprType>(ty)->getUnderlyingExpr());
2222       return;
2223 
2224     case Type::Atomic:
2225       type = cast<AtomicType>(ty)->getValueType();
2226       break;
2227 
2228     case Type::Pipe:
2229       type = cast<PipeType>(ty)->getElementType();
2230       break;
2231     }
2232   } while (type->isVariablyModifiedType());
2233 }
2234 
2235 Address CodeGenFunction::EmitVAListRef(const Expr* E) {
2236   if (getContext().getBuiltinVaListType()->isArrayType())
2237     return EmitPointerWithAlignment(E);
2238   return EmitLValue(E).getAddress(*this);
2239 }
2240 
2241 Address CodeGenFunction::EmitMSVAListRef(const Expr *E) {
2242   return EmitLValue(E).getAddress(*this);
2243 }
2244 
2245 void CodeGenFunction::EmitDeclRefExprDbgValue(const DeclRefExpr *E,
2246                                               const APValue &Init) {
2247   assert(Init.hasValue() && "Invalid DeclRefExpr initializer!");
2248   if (CGDebugInfo *Dbg = getDebugInfo())
2249     if (CGM.getCodeGenOpts().hasReducedDebugInfo())
2250       Dbg->EmitGlobalVariable(E->getDecl(), Init);
2251 }
2252 
2253 CodeGenFunction::PeepholeProtection
2254 CodeGenFunction::protectFromPeepholes(RValue rvalue) {
2255   // At the moment, the only aggressive peephole we do in IR gen
2256   // is trunc(zext) folding, but if we add more, we can easily
2257   // extend this protection.
2258 
2259   if (!rvalue.isScalar()) return PeepholeProtection();
2260   llvm::Value *value = rvalue.getScalarVal();
2261   if (!isa<llvm::ZExtInst>(value)) return PeepholeProtection();
2262 
2263   // Just make an extra bitcast.
2264   assert(HaveInsertPoint());
2265   llvm::Instruction *inst = new llvm::BitCastInst(value, value->getType(), "",
2266                                                   Builder.GetInsertBlock());
2267 
2268   PeepholeProtection protection;
2269   protection.Inst = inst;
2270   return protection;
2271 }
2272 
2273 void CodeGenFunction::unprotectFromPeepholes(PeepholeProtection protection) {
2274   if (!protection.Inst) return;
2275 
2276   // In theory, we could try to duplicate the peepholes now, but whatever.
2277   protection.Inst->eraseFromParent();
2278 }
2279 
2280 void CodeGenFunction::emitAlignmentAssumption(llvm::Value *PtrValue,
2281                                               QualType Ty, SourceLocation Loc,
2282                                               SourceLocation AssumptionLoc,
2283                                               llvm::Value *Alignment,
2284                                               llvm::Value *OffsetValue) {
2285   if (Alignment->getType() != IntPtrTy)
2286     Alignment =
2287         Builder.CreateIntCast(Alignment, IntPtrTy, false, "casted.align");
2288   if (OffsetValue && OffsetValue->getType() != IntPtrTy)
2289     OffsetValue =
2290         Builder.CreateIntCast(OffsetValue, IntPtrTy, true, "casted.offset");
2291   llvm::Value *TheCheck = nullptr;
2292   if (SanOpts.has(SanitizerKind::Alignment)) {
2293     llvm::Value *PtrIntValue =
2294         Builder.CreatePtrToInt(PtrValue, IntPtrTy, "ptrint");
2295 
2296     if (OffsetValue) {
2297       bool IsOffsetZero = false;
2298       if (const auto *CI = dyn_cast<llvm::ConstantInt>(OffsetValue))
2299         IsOffsetZero = CI->isZero();
2300 
2301       if (!IsOffsetZero)
2302         PtrIntValue = Builder.CreateSub(PtrIntValue, OffsetValue, "offsetptr");
2303     }
2304 
2305     llvm::Value *Zero = llvm::ConstantInt::get(IntPtrTy, 0);
2306     llvm::Value *Mask =
2307         Builder.CreateSub(Alignment, llvm::ConstantInt::get(IntPtrTy, 1));
2308     llvm::Value *MaskedPtr = Builder.CreateAnd(PtrIntValue, Mask, "maskedptr");
2309     TheCheck = Builder.CreateICmpEQ(MaskedPtr, Zero, "maskcond");
2310   }
2311   llvm::Instruction *Assumption = Builder.CreateAlignmentAssumption(
2312       CGM.getDataLayout(), PtrValue, Alignment, OffsetValue);
2313 
2314   if (!SanOpts.has(SanitizerKind::Alignment))
2315     return;
2316   emitAlignmentAssumptionCheck(PtrValue, Ty, Loc, AssumptionLoc, Alignment,
2317                                OffsetValue, TheCheck, Assumption);
2318 }
2319 
2320 void CodeGenFunction::emitAlignmentAssumption(llvm::Value *PtrValue,
2321                                               const Expr *E,
2322                                               SourceLocation AssumptionLoc,
2323                                               llvm::Value *Alignment,
2324                                               llvm::Value *OffsetValue) {
2325   if (auto *CE = dyn_cast<CastExpr>(E))
2326     E = CE->getSubExprAsWritten();
2327   QualType Ty = E->getType();
2328   SourceLocation Loc = E->getExprLoc();
2329 
2330   emitAlignmentAssumption(PtrValue, Ty, Loc, AssumptionLoc, Alignment,
2331                           OffsetValue);
2332 }
2333 
2334 llvm::Value *CodeGenFunction::EmitAnnotationCall(llvm::Function *AnnotationFn,
2335                                                  llvm::Value *AnnotatedVal,
2336                                                  StringRef AnnotationStr,
2337                                                  SourceLocation Location,
2338                                                  const AnnotateAttr *Attr) {
2339   SmallVector<llvm::Value *, 5> Args = {
2340       AnnotatedVal,
2341       Builder.CreateBitCast(CGM.EmitAnnotationString(AnnotationStr), Int8PtrTy),
2342       Builder.CreateBitCast(CGM.EmitAnnotationUnit(Location), Int8PtrTy),
2343       CGM.EmitAnnotationLineNo(Location),
2344   };
2345   if (Attr)
2346     Args.push_back(CGM.EmitAnnotationArgs(Attr));
2347   return Builder.CreateCall(AnnotationFn, Args);
2348 }
2349 
2350 void CodeGenFunction::EmitVarAnnotations(const VarDecl *D, llvm::Value *V) {
2351   assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute");
2352   // FIXME We create a new bitcast for every annotation because that's what
2353   // llvm-gcc was doing.
2354   for (const auto *I : D->specific_attrs<AnnotateAttr>())
2355     EmitAnnotationCall(CGM.getIntrinsic(llvm::Intrinsic::var_annotation),
2356                        Builder.CreateBitCast(V, CGM.Int8PtrTy, V->getName()),
2357                        I->getAnnotation(), D->getLocation(), I);
2358 }
2359 
2360 Address CodeGenFunction::EmitFieldAnnotations(const FieldDecl *D,
2361                                               Address Addr) {
2362   assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute");
2363   llvm::Value *V = Addr.getPointer();
2364   llvm::Type *VTy = V->getType();
2365   llvm::Function *F = CGM.getIntrinsic(llvm::Intrinsic::ptr_annotation,
2366                                     CGM.Int8PtrTy);
2367 
2368   for (const auto *I : D->specific_attrs<AnnotateAttr>()) {
2369     // FIXME Always emit the cast inst so we can differentiate between
2370     // annotation on the first field of a struct and annotation on the struct
2371     // itself.
2372     if (VTy != CGM.Int8PtrTy)
2373       V = Builder.CreateBitCast(V, CGM.Int8PtrTy);
2374     V = EmitAnnotationCall(F, V, I->getAnnotation(), D->getLocation(), I);
2375     V = Builder.CreateBitCast(V, VTy);
2376   }
2377 
2378   return Address(V, Addr.getAlignment());
2379 }
2380 
2381 CodeGenFunction::CGCapturedStmtInfo::~CGCapturedStmtInfo() { }
2382 
2383 CodeGenFunction::SanitizerScope::SanitizerScope(CodeGenFunction *CGF)
2384     : CGF(CGF) {
2385   assert(!CGF->IsSanitizerScope);
2386   CGF->IsSanitizerScope = true;
2387 }
2388 
2389 CodeGenFunction::SanitizerScope::~SanitizerScope() {
2390   CGF->IsSanitizerScope = false;
2391 }
2392 
2393 void CodeGenFunction::InsertHelper(llvm::Instruction *I,
2394                                    const llvm::Twine &Name,
2395                                    llvm::BasicBlock *BB,
2396                                    llvm::BasicBlock::iterator InsertPt) const {
2397   LoopStack.InsertHelper(I);
2398   if (IsSanitizerScope)
2399     CGM.getSanitizerMetadata()->disableSanitizerForInstruction(I);
2400 }
2401 
2402 void CGBuilderInserter::InsertHelper(
2403     llvm::Instruction *I, const llvm::Twine &Name, llvm::BasicBlock *BB,
2404     llvm::BasicBlock::iterator InsertPt) const {
2405   llvm::IRBuilderDefaultInserter::InsertHelper(I, Name, BB, InsertPt);
2406   if (CGF)
2407     CGF->InsertHelper(I, Name, BB, InsertPt);
2408 }
2409 
2410 // Emits an error if we don't have a valid set of target features for the
2411 // called function.
2412 void CodeGenFunction::checkTargetFeatures(const CallExpr *E,
2413                                           const FunctionDecl *TargetDecl) {
2414   return checkTargetFeatures(E->getBeginLoc(), TargetDecl);
2415 }
2416 
2417 // Emits an error if we don't have a valid set of target features for the
2418 // called function.
2419 void CodeGenFunction::checkTargetFeatures(SourceLocation Loc,
2420                                           const FunctionDecl *TargetDecl) {
2421   // Early exit if this is an indirect call.
2422   if (!TargetDecl)
2423     return;
2424 
2425   // Get the current enclosing function if it exists. If it doesn't
2426   // we can't check the target features anyhow.
2427   const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(CurCodeDecl);
2428   if (!FD)
2429     return;
2430 
2431   // Grab the required features for the call. For a builtin this is listed in
2432   // the td file with the default cpu, for an always_inline function this is any
2433   // listed cpu and any listed features.
2434   unsigned BuiltinID = TargetDecl->getBuiltinID();
2435   std::string MissingFeature;
2436   llvm::StringMap<bool> CallerFeatureMap;
2437   CGM.getContext().getFunctionFeatureMap(CallerFeatureMap, FD);
2438   if (BuiltinID) {
2439     StringRef FeatureList(
2440         CGM.getContext().BuiltinInfo.getRequiredFeatures(BuiltinID));
2441     // Return if the builtin doesn't have any required features.
2442     if (FeatureList.empty())
2443       return;
2444     assert(FeatureList.find(' ') == StringRef::npos &&
2445            "Space in feature list");
2446     TargetFeatures TF(CallerFeatureMap);
2447     if (!TF.hasRequiredFeatures(FeatureList))
2448       CGM.getDiags().Report(Loc, diag::err_builtin_needs_feature)
2449           << TargetDecl->getDeclName() << FeatureList;
2450   } else if (!TargetDecl->isMultiVersion() &&
2451              TargetDecl->hasAttr<TargetAttr>()) {
2452     // Get the required features for the callee.
2453 
2454     const TargetAttr *TD = TargetDecl->getAttr<TargetAttr>();
2455     ParsedTargetAttr ParsedAttr =
2456         CGM.getContext().filterFunctionTargetAttrs(TD);
2457 
2458     SmallVector<StringRef, 1> ReqFeatures;
2459     llvm::StringMap<bool> CalleeFeatureMap;
2460     CGM.getContext().getFunctionFeatureMap(CalleeFeatureMap, TargetDecl);
2461 
2462     for (const auto &F : ParsedAttr.Features) {
2463       if (F[0] == '+' && CalleeFeatureMap.lookup(F.substr(1)))
2464         ReqFeatures.push_back(StringRef(F).substr(1));
2465     }
2466 
2467     for (const auto &F : CalleeFeatureMap) {
2468       // Only positive features are "required".
2469       if (F.getValue())
2470         ReqFeatures.push_back(F.getKey());
2471     }
2472     if (!llvm::all_of(ReqFeatures, [&](StringRef Feature) {
2473       if (!CallerFeatureMap.lookup(Feature)) {
2474         MissingFeature = Feature.str();
2475         return false;
2476       }
2477       return true;
2478     }))
2479       CGM.getDiags().Report(Loc, diag::err_function_needs_feature)
2480           << FD->getDeclName() << TargetDecl->getDeclName() << MissingFeature;
2481   }
2482 }
2483 
2484 void CodeGenFunction::EmitSanitizerStatReport(llvm::SanitizerStatKind SSK) {
2485   if (!CGM.getCodeGenOpts().SanitizeStats)
2486     return;
2487 
2488   llvm::IRBuilder<> IRB(Builder.GetInsertBlock(), Builder.GetInsertPoint());
2489   IRB.SetCurrentDebugLocation(Builder.getCurrentDebugLocation());
2490   CGM.getSanStats().create(IRB, SSK);
2491 }
2492 
2493 llvm::Value *
2494 CodeGenFunction::FormResolverCondition(const MultiVersionResolverOption &RO) {
2495   llvm::Value *Condition = nullptr;
2496 
2497   if (!RO.Conditions.Architecture.empty())
2498     Condition = EmitX86CpuIs(RO.Conditions.Architecture);
2499 
2500   if (!RO.Conditions.Features.empty()) {
2501     llvm::Value *FeatureCond = EmitX86CpuSupports(RO.Conditions.Features);
2502     Condition =
2503         Condition ? Builder.CreateAnd(Condition, FeatureCond) : FeatureCond;
2504   }
2505   return Condition;
2506 }
2507 
2508 static void CreateMultiVersionResolverReturn(CodeGenModule &CGM,
2509                                              llvm::Function *Resolver,
2510                                              CGBuilderTy &Builder,
2511                                              llvm::Function *FuncToReturn,
2512                                              bool SupportsIFunc) {
2513   if (SupportsIFunc) {
2514     Builder.CreateRet(FuncToReturn);
2515     return;
2516   }
2517 
2518   llvm::SmallVector<llvm::Value *, 10> Args;
2519   llvm::for_each(Resolver->args(),
2520                  [&](llvm::Argument &Arg) { Args.push_back(&Arg); });
2521 
2522   llvm::CallInst *Result = Builder.CreateCall(FuncToReturn, Args);
2523   Result->setTailCallKind(llvm::CallInst::TCK_MustTail);
2524 
2525   if (Resolver->getReturnType()->isVoidTy())
2526     Builder.CreateRetVoid();
2527   else
2528     Builder.CreateRet(Result);
2529 }
2530 
2531 void CodeGenFunction::EmitMultiVersionResolver(
2532     llvm::Function *Resolver, ArrayRef<MultiVersionResolverOption> Options) {
2533   assert(getContext().getTargetInfo().getTriple().isX86() &&
2534          "Only implemented for x86 targets");
2535 
2536   bool SupportsIFunc = getContext().getTargetInfo().supportsIFunc();
2537 
2538   // Main function's basic block.
2539   llvm::BasicBlock *CurBlock = createBasicBlock("resolver_entry", Resolver);
2540   Builder.SetInsertPoint(CurBlock);
2541   EmitX86CpuInit();
2542 
2543   for (const MultiVersionResolverOption &RO : Options) {
2544     Builder.SetInsertPoint(CurBlock);
2545     llvm::Value *Condition = FormResolverCondition(RO);
2546 
2547     // The 'default' or 'generic' case.
2548     if (!Condition) {
2549       assert(&RO == Options.end() - 1 &&
2550              "Default or Generic case must be last");
2551       CreateMultiVersionResolverReturn(CGM, Resolver, Builder, RO.Function,
2552                                        SupportsIFunc);
2553       return;
2554     }
2555 
2556     llvm::BasicBlock *RetBlock = createBasicBlock("resolver_return", Resolver);
2557     CGBuilderTy RetBuilder(*this, RetBlock);
2558     CreateMultiVersionResolverReturn(CGM, Resolver, RetBuilder, RO.Function,
2559                                      SupportsIFunc);
2560     CurBlock = createBasicBlock("resolver_else", Resolver);
2561     Builder.CreateCondBr(Condition, RetBlock, CurBlock);
2562   }
2563 
2564   // If no generic/default, emit an unreachable.
2565   Builder.SetInsertPoint(CurBlock);
2566   llvm::CallInst *TrapCall = EmitTrapCall(llvm::Intrinsic::trap);
2567   TrapCall->setDoesNotReturn();
2568   TrapCall->setDoesNotThrow();
2569   Builder.CreateUnreachable();
2570   Builder.ClearInsertionPoint();
2571 }
2572 
2573 // Loc - where the diagnostic will point, where in the source code this
2574 //  alignment has failed.
2575 // SecondaryLoc - if present (will be present if sufficiently different from
2576 //  Loc), the diagnostic will additionally point a "Note:" to this location.
2577 //  It should be the location where the __attribute__((assume_aligned))
2578 //  was written e.g.
2579 void CodeGenFunction::emitAlignmentAssumptionCheck(
2580     llvm::Value *Ptr, QualType Ty, SourceLocation Loc,
2581     SourceLocation SecondaryLoc, llvm::Value *Alignment,
2582     llvm::Value *OffsetValue, llvm::Value *TheCheck,
2583     llvm::Instruction *Assumption) {
2584   assert(Assumption && isa<llvm::CallInst>(Assumption) &&
2585          cast<llvm::CallInst>(Assumption)->getCalledOperand() ==
2586              llvm::Intrinsic::getDeclaration(
2587                  Builder.GetInsertBlock()->getParent()->getParent(),
2588                  llvm::Intrinsic::assume) &&
2589          "Assumption should be a call to llvm.assume().");
2590   assert(&(Builder.GetInsertBlock()->back()) == Assumption &&
2591          "Assumption should be the last instruction of the basic block, "
2592          "since the basic block is still being generated.");
2593 
2594   if (!SanOpts.has(SanitizerKind::Alignment))
2595     return;
2596 
2597   // Don't check pointers to volatile data. The behavior here is implementation-
2598   // defined.
2599   if (Ty->getPointeeType().isVolatileQualified())
2600     return;
2601 
2602   // We need to temorairly remove the assumption so we can insert the
2603   // sanitizer check before it, else the check will be dropped by optimizations.
2604   Assumption->removeFromParent();
2605 
2606   {
2607     SanitizerScope SanScope(this);
2608 
2609     if (!OffsetValue)
2610       OffsetValue = Builder.getInt1(0); // no offset.
2611 
2612     llvm::Constant *StaticData[] = {EmitCheckSourceLocation(Loc),
2613                                     EmitCheckSourceLocation(SecondaryLoc),
2614                                     EmitCheckTypeDescriptor(Ty)};
2615     llvm::Value *DynamicData[] = {EmitCheckValue(Ptr),
2616                                   EmitCheckValue(Alignment),
2617                                   EmitCheckValue(OffsetValue)};
2618     EmitCheck({std::make_pair(TheCheck, SanitizerKind::Alignment)},
2619               SanitizerHandler::AlignmentAssumption, StaticData, DynamicData);
2620   }
2621 
2622   // We are now in the (new, empty) "cont" basic block.
2623   // Reintroduce the assumption.
2624   Builder.Insert(Assumption);
2625   // FIXME: Assumption still has it's original basic block as it's Parent.
2626 }
2627 
2628 llvm::DebugLoc CodeGenFunction::SourceLocToDebugLoc(SourceLocation Location) {
2629   if (CGDebugInfo *DI = getDebugInfo())
2630     return DI->SourceLocToDebugLoc(Location);
2631 
2632   return llvm::DebugLoc();
2633 }
2634 
2635 static Optional<std::pair<uint32_t, uint32_t>>
2636 getLikelihoodWeights(Stmt::Likelihood LH) {
2637   switch (LH) {
2638   case Stmt::LH_Unlikely:
2639     return std::pair<uint32_t, uint32_t>(llvm::UnlikelyBranchWeight,
2640                                          llvm::LikelyBranchWeight);
2641   case Stmt::LH_None:
2642     return None;
2643   case Stmt::LH_Likely:
2644     return std::pair<uint32_t, uint32_t>(llvm::LikelyBranchWeight,
2645                                          llvm::UnlikelyBranchWeight);
2646   }
2647   llvm_unreachable("Unknown Likelihood");
2648 }
2649 
2650 llvm::MDNode *CodeGenFunction::createBranchWeights(Stmt::Likelihood LH) const {
2651   Optional<std::pair<uint32_t, uint32_t>> LHW = getLikelihoodWeights(LH);
2652   if (!LHW)
2653     return nullptr;
2654 
2655   llvm::MDBuilder MDHelper(CGM.getLLVMContext());
2656   return MDHelper.createBranchWeights(LHW->first, LHW->second);
2657 }
2658 
2659 llvm::MDNode *CodeGenFunction::createProfileOrBranchWeightsForLoop(
2660     const Stmt *Cond, uint64_t LoopCount, const Stmt *Body) const {
2661   llvm::MDNode *Weights = createProfileWeightsForLoop(Cond, LoopCount);
2662   if (!Weights && CGM.getCodeGenOpts().OptimizationLevel)
2663     Weights = createBranchWeights(Stmt::getLikelihood(Body));
2664 
2665   return Weights;
2666 }
2667