xref: /llvm-project/clang/lib/CodeGen/CodeGenFunction.cpp (revision 3575d23ca866e0510b322e4520d6cbcebee18c22)
1 //===--- CodeGenFunction.cpp - Emit LLVM Code from ASTs for a Function ----===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This coordinates the per-function state used while generating code.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "CodeGenFunction.h"
14 #include "CGBlocks.h"
15 #include "CGCUDARuntime.h"
16 #include "CGCXXABI.h"
17 #include "CGCleanup.h"
18 #include "CGDebugInfo.h"
19 #include "CGHLSLRuntime.h"
20 #include "CGOpenMPRuntime.h"
21 #include "CodeGenModule.h"
22 #include "CodeGenPGO.h"
23 #include "TargetInfo.h"
24 #include "clang/AST/ASTContext.h"
25 #include "clang/AST/ASTLambda.h"
26 #include "clang/AST/Attr.h"
27 #include "clang/AST/Decl.h"
28 #include "clang/AST/DeclCXX.h"
29 #include "clang/AST/Expr.h"
30 #include "clang/AST/StmtCXX.h"
31 #include "clang/AST/StmtObjC.h"
32 #include "clang/Basic/Builtins.h"
33 #include "clang/Basic/CodeGenOptions.h"
34 #include "clang/Basic/TargetBuiltins.h"
35 #include "clang/Basic/TargetInfo.h"
36 #include "clang/CodeGen/CGFunctionInfo.h"
37 #include "clang/Frontend/FrontendDiagnostic.h"
38 #include "llvm/ADT/ArrayRef.h"
39 #include "llvm/Frontend/OpenMP/OMPIRBuilder.h"
40 #include "llvm/IR/DataLayout.h"
41 #include "llvm/IR/Dominators.h"
42 #include "llvm/IR/FPEnv.h"
43 #include "llvm/IR/IntrinsicInst.h"
44 #include "llvm/IR/Intrinsics.h"
45 #include "llvm/IR/MDBuilder.h"
46 #include "llvm/IR/Operator.h"
47 #include "llvm/Support/CRC.h"
48 #include "llvm/Support/xxhash.h"
49 #include "llvm/Transforms/Scalar/LowerExpectIntrinsic.h"
50 #include "llvm/Transforms/Utils/PromoteMemToReg.h"
51 #include <optional>
52 
53 using namespace clang;
54 using namespace CodeGen;
55 
56 namespace llvm {
57 extern cl::opt<bool> EnableSingleByteCoverage;
58 } // namespace llvm
59 
60 /// shouldEmitLifetimeMarkers - Decide whether we need emit the life-time
61 /// markers.
62 static bool shouldEmitLifetimeMarkers(const CodeGenOptions &CGOpts,
63                                       const LangOptions &LangOpts) {
64   if (CGOpts.DisableLifetimeMarkers)
65     return false;
66 
67   // Sanitizers may use markers.
68   if (CGOpts.SanitizeAddressUseAfterScope ||
69       LangOpts.Sanitize.has(SanitizerKind::HWAddress) ||
70       LangOpts.Sanitize.has(SanitizerKind::Memory))
71     return true;
72 
73   // For now, only in optimized builds.
74   return CGOpts.OptimizationLevel != 0;
75 }
76 
77 CodeGenFunction::CodeGenFunction(CodeGenModule &cgm, bool suppressNewContext)
78     : CodeGenTypeCache(cgm), CGM(cgm), Target(cgm.getTarget()),
79       Builder(cgm, cgm.getModule().getContext(), llvm::ConstantFolder(),
80               CGBuilderInserterTy(this)),
81       SanOpts(CGM.getLangOpts().Sanitize), CurFPFeatures(CGM.getLangOpts()),
82       DebugInfo(CGM.getModuleDebugInfo()), PGO(cgm),
83       ShouldEmitLifetimeMarkers(
84           shouldEmitLifetimeMarkers(CGM.getCodeGenOpts(), CGM.getLangOpts())) {
85   if (!suppressNewContext)
86     CGM.getCXXABI().getMangleContext().startNewFunction();
87   EHStack.setCGF(this);
88 
89   SetFastMathFlags(CurFPFeatures);
90 }
91 
92 CodeGenFunction::~CodeGenFunction() {
93   assert(LifetimeExtendedCleanupStack.empty() && "failed to emit a cleanup");
94   assert(DeferredDeactivationCleanupStack.empty() &&
95          "missed to deactivate a cleanup");
96 
97   if (getLangOpts().OpenMP && CurFn)
98     CGM.getOpenMPRuntime().functionFinished(*this);
99 
100   // If we have an OpenMPIRBuilder we want to finalize functions (incl.
101   // outlining etc) at some point. Doing it once the function codegen is done
102   // seems to be a reasonable spot. We do it here, as opposed to the deletion
103   // time of the CodeGenModule, because we have to ensure the IR has not yet
104   // been "emitted" to the outside, thus, modifications are still sensible.
105   if (CGM.getLangOpts().OpenMPIRBuilder && CurFn)
106     CGM.getOpenMPRuntime().getOMPBuilder().finalize(CurFn);
107 }
108 
109 // Map the LangOption for exception behavior into
110 // the corresponding enum in the IR.
111 llvm::fp::ExceptionBehavior
112 clang::ToConstrainedExceptMD(LangOptions::FPExceptionModeKind Kind) {
113 
114   switch (Kind) {
115   case LangOptions::FPE_Ignore:  return llvm::fp::ebIgnore;
116   case LangOptions::FPE_MayTrap: return llvm::fp::ebMayTrap;
117   case LangOptions::FPE_Strict:  return llvm::fp::ebStrict;
118   default:
119     llvm_unreachable("Unsupported FP Exception Behavior");
120   }
121 }
122 
123 void CodeGenFunction::SetFastMathFlags(FPOptions FPFeatures) {
124   llvm::FastMathFlags FMF;
125   FMF.setAllowReassoc(FPFeatures.getAllowFPReassociate());
126   FMF.setNoNaNs(FPFeatures.getNoHonorNaNs());
127   FMF.setNoInfs(FPFeatures.getNoHonorInfs());
128   FMF.setNoSignedZeros(FPFeatures.getNoSignedZero());
129   FMF.setAllowReciprocal(FPFeatures.getAllowReciprocal());
130   FMF.setApproxFunc(FPFeatures.getAllowApproxFunc());
131   FMF.setAllowContract(FPFeatures.allowFPContractAcrossStatement());
132   Builder.setFastMathFlags(FMF);
133 }
134 
135 CodeGenFunction::CGFPOptionsRAII::CGFPOptionsRAII(CodeGenFunction &CGF,
136                                                   const Expr *E)
137     : CGF(CGF) {
138   ConstructorHelper(E->getFPFeaturesInEffect(CGF.getLangOpts()));
139 }
140 
141 CodeGenFunction::CGFPOptionsRAII::CGFPOptionsRAII(CodeGenFunction &CGF,
142                                                   FPOptions FPFeatures)
143     : CGF(CGF) {
144   ConstructorHelper(FPFeatures);
145 }
146 
147 void CodeGenFunction::CGFPOptionsRAII::ConstructorHelper(FPOptions FPFeatures) {
148   OldFPFeatures = CGF.CurFPFeatures;
149   CGF.CurFPFeatures = FPFeatures;
150 
151   OldExcept = CGF.Builder.getDefaultConstrainedExcept();
152   OldRounding = CGF.Builder.getDefaultConstrainedRounding();
153 
154   if (OldFPFeatures == FPFeatures)
155     return;
156 
157   FMFGuard.emplace(CGF.Builder);
158 
159   llvm::RoundingMode NewRoundingBehavior = FPFeatures.getRoundingMode();
160   CGF.Builder.setDefaultConstrainedRounding(NewRoundingBehavior);
161   auto NewExceptionBehavior =
162       ToConstrainedExceptMD(static_cast<LangOptions::FPExceptionModeKind>(
163           FPFeatures.getExceptionMode()));
164   CGF.Builder.setDefaultConstrainedExcept(NewExceptionBehavior);
165 
166   CGF.SetFastMathFlags(FPFeatures);
167 
168   assert((CGF.CurFuncDecl == nullptr || CGF.Builder.getIsFPConstrained() ||
169           isa<CXXConstructorDecl>(CGF.CurFuncDecl) ||
170           isa<CXXDestructorDecl>(CGF.CurFuncDecl) ||
171           (NewExceptionBehavior == llvm::fp::ebIgnore &&
172            NewRoundingBehavior == llvm::RoundingMode::NearestTiesToEven)) &&
173          "FPConstrained should be enabled on entire function");
174 
175   auto mergeFnAttrValue = [&](StringRef Name, bool Value) {
176     auto OldValue =
177         CGF.CurFn->getFnAttribute(Name).getValueAsBool();
178     auto NewValue = OldValue & Value;
179     if (OldValue != NewValue)
180       CGF.CurFn->addFnAttr(Name, llvm::toStringRef(NewValue));
181   };
182   mergeFnAttrValue("no-infs-fp-math", FPFeatures.getNoHonorInfs());
183   mergeFnAttrValue("no-nans-fp-math", FPFeatures.getNoHonorNaNs());
184   mergeFnAttrValue("no-signed-zeros-fp-math", FPFeatures.getNoSignedZero());
185   mergeFnAttrValue(
186       "unsafe-fp-math",
187       FPFeatures.getAllowFPReassociate() && FPFeatures.getAllowReciprocal() &&
188           FPFeatures.getAllowApproxFunc() && FPFeatures.getNoSignedZero() &&
189           FPFeatures.allowFPContractAcrossStatement());
190 }
191 
192 CodeGenFunction::CGFPOptionsRAII::~CGFPOptionsRAII() {
193   CGF.CurFPFeatures = OldFPFeatures;
194   CGF.Builder.setDefaultConstrainedExcept(OldExcept);
195   CGF.Builder.setDefaultConstrainedRounding(OldRounding);
196 }
197 
198 static LValue MakeNaturalAlignAddrLValue(llvm::Value *V, QualType T,
199                                          bool ForPointeeType,
200                                          CodeGenFunction &CGF) {
201   LValueBaseInfo BaseInfo;
202   TBAAAccessInfo TBAAInfo;
203   CharUnits Alignment =
204       CGF.CGM.getNaturalTypeAlignment(T, &BaseInfo, &TBAAInfo, ForPointeeType);
205   Address Addr = Address(V, CGF.ConvertTypeForMem(T), Alignment);
206   return CGF.MakeAddrLValue(Addr, T, BaseInfo, TBAAInfo);
207 }
208 
209 LValue CodeGenFunction::MakeNaturalAlignAddrLValue(llvm::Value *V, QualType T) {
210   return ::MakeNaturalAlignAddrLValue(V, T, /*ForPointeeType*/ false, *this);
211 }
212 
213 LValue
214 CodeGenFunction::MakeNaturalAlignPointeeAddrLValue(llvm::Value *V, QualType T) {
215   return ::MakeNaturalAlignAddrLValue(V, T, /*ForPointeeType*/ true, *this);
216 }
217 
218 LValue CodeGenFunction::MakeNaturalAlignRawAddrLValue(llvm::Value *V,
219                                                       QualType T) {
220   return ::MakeNaturalAlignAddrLValue(V, T, /*ForPointeeType*/ false, *this);
221 }
222 
223 LValue CodeGenFunction::MakeNaturalAlignPointeeRawAddrLValue(llvm::Value *V,
224                                                              QualType T) {
225   return ::MakeNaturalAlignAddrLValue(V, T, /*ForPointeeType*/ true, *this);
226 }
227 
228 llvm::Type *CodeGenFunction::ConvertTypeForMem(QualType T) {
229   return CGM.getTypes().ConvertTypeForMem(T);
230 }
231 
232 llvm::Type *CodeGenFunction::ConvertType(QualType T) {
233   return CGM.getTypes().ConvertType(T);
234 }
235 
236 TypeEvaluationKind CodeGenFunction::getEvaluationKind(QualType type) {
237   type = type.getCanonicalType();
238   while (true) {
239     switch (type->getTypeClass()) {
240 #define TYPE(name, parent)
241 #define ABSTRACT_TYPE(name, parent)
242 #define NON_CANONICAL_TYPE(name, parent) case Type::name:
243 #define DEPENDENT_TYPE(name, parent) case Type::name:
244 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(name, parent) case Type::name:
245 #include "clang/AST/TypeNodes.inc"
246       llvm_unreachable("non-canonical or dependent type in IR-generation");
247 
248     case Type::Auto:
249     case Type::DeducedTemplateSpecialization:
250       llvm_unreachable("undeduced type in IR-generation");
251 
252     // Various scalar types.
253     case Type::Builtin:
254     case Type::Pointer:
255     case Type::BlockPointer:
256     case Type::LValueReference:
257     case Type::RValueReference:
258     case Type::MemberPointer:
259     case Type::Vector:
260     case Type::ExtVector:
261     case Type::ConstantMatrix:
262     case Type::FunctionProto:
263     case Type::FunctionNoProto:
264     case Type::Enum:
265     case Type::ObjCObjectPointer:
266     case Type::Pipe:
267     case Type::BitInt:
268       return TEK_Scalar;
269 
270     // Complexes.
271     case Type::Complex:
272       return TEK_Complex;
273 
274     // Arrays, records, and Objective-C objects.
275     case Type::ConstantArray:
276     case Type::IncompleteArray:
277     case Type::VariableArray:
278     case Type::Record:
279     case Type::ObjCObject:
280     case Type::ObjCInterface:
281     case Type::ArrayParameter:
282       return TEK_Aggregate;
283 
284     // We operate on atomic values according to their underlying type.
285     case Type::Atomic:
286       type = cast<AtomicType>(type)->getValueType();
287       continue;
288     }
289     llvm_unreachable("unknown type kind!");
290   }
291 }
292 
293 llvm::DebugLoc CodeGenFunction::EmitReturnBlock() {
294   // For cleanliness, we try to avoid emitting the return block for
295   // simple cases.
296   llvm::BasicBlock *CurBB = Builder.GetInsertBlock();
297 
298   if (CurBB) {
299     assert(!CurBB->getTerminator() && "Unexpected terminated block.");
300 
301     // We have a valid insert point, reuse it if it is empty or there are no
302     // explicit jumps to the return block.
303     if (CurBB->empty() || ReturnBlock.getBlock()->use_empty()) {
304       ReturnBlock.getBlock()->replaceAllUsesWith(CurBB);
305       delete ReturnBlock.getBlock();
306       ReturnBlock = JumpDest();
307     } else
308       EmitBlock(ReturnBlock.getBlock());
309     return llvm::DebugLoc();
310   }
311 
312   // Otherwise, if the return block is the target of a single direct
313   // branch then we can just put the code in that block instead. This
314   // cleans up functions which started with a unified return block.
315   if (ReturnBlock.getBlock()->hasOneUse()) {
316     llvm::BranchInst *BI =
317       dyn_cast<llvm::BranchInst>(*ReturnBlock.getBlock()->user_begin());
318     if (BI && BI->isUnconditional() &&
319         BI->getSuccessor(0) == ReturnBlock.getBlock()) {
320       // Record/return the DebugLoc of the simple 'return' expression to be used
321       // later by the actual 'ret' instruction.
322       llvm::DebugLoc Loc = BI->getDebugLoc();
323       Builder.SetInsertPoint(BI->getParent());
324       BI->eraseFromParent();
325       delete ReturnBlock.getBlock();
326       ReturnBlock = JumpDest();
327       return Loc;
328     }
329   }
330 
331   // FIXME: We are at an unreachable point, there is no reason to emit the block
332   // unless it has uses. However, we still need a place to put the debug
333   // region.end for now.
334 
335   EmitBlock(ReturnBlock.getBlock());
336   return llvm::DebugLoc();
337 }
338 
339 static void EmitIfUsed(CodeGenFunction &CGF, llvm::BasicBlock *BB) {
340   if (!BB) return;
341   if (!BB->use_empty()) {
342     CGF.CurFn->insert(CGF.CurFn->end(), BB);
343     return;
344   }
345   delete BB;
346 }
347 
348 void CodeGenFunction::FinishFunction(SourceLocation EndLoc) {
349   assert(BreakContinueStack.empty() &&
350          "mismatched push/pop in break/continue stack!");
351   assert(LifetimeExtendedCleanupStack.empty() &&
352          "mismatched push/pop of cleanups in EHStack!");
353   assert(DeferredDeactivationCleanupStack.empty() &&
354          "mismatched activate/deactivate of cleanups!");
355 
356   if (CGM.shouldEmitConvergenceTokens()) {
357     ConvergenceTokenStack.pop_back();
358     assert(ConvergenceTokenStack.empty() &&
359            "mismatched push/pop in convergence stack!");
360   }
361 
362   bool OnlySimpleReturnStmts = NumSimpleReturnExprs > 0
363     && NumSimpleReturnExprs == NumReturnExprs
364     && ReturnBlock.getBlock()->use_empty();
365   // Usually the return expression is evaluated before the cleanup
366   // code.  If the function contains only a simple return statement,
367   // such as a constant, the location before the cleanup code becomes
368   // the last useful breakpoint in the function, because the simple
369   // return expression will be evaluated after the cleanup code. To be
370   // safe, set the debug location for cleanup code to the location of
371   // the return statement.  Otherwise the cleanup code should be at the
372   // end of the function's lexical scope.
373   //
374   // If there are multiple branches to the return block, the branch
375   // instructions will get the location of the return statements and
376   // all will be fine.
377   if (CGDebugInfo *DI = getDebugInfo()) {
378     if (OnlySimpleReturnStmts)
379       DI->EmitLocation(Builder, LastStopPoint);
380     else
381       DI->EmitLocation(Builder, EndLoc);
382   }
383 
384   // Pop any cleanups that might have been associated with the
385   // parameters.  Do this in whatever block we're currently in; it's
386   // important to do this before we enter the return block or return
387   // edges will be *really* confused.
388   bool HasCleanups = EHStack.stable_begin() != PrologueCleanupDepth;
389   bool HasOnlyLifetimeMarkers =
390       HasCleanups && EHStack.containsOnlyLifetimeMarkers(PrologueCleanupDepth);
391   bool EmitRetDbgLoc = !HasCleanups || HasOnlyLifetimeMarkers;
392 
393   std::optional<ApplyDebugLocation> OAL;
394   if (HasCleanups) {
395     // Make sure the line table doesn't jump back into the body for
396     // the ret after it's been at EndLoc.
397     if (CGDebugInfo *DI = getDebugInfo()) {
398       if (OnlySimpleReturnStmts)
399         DI->EmitLocation(Builder, EndLoc);
400       else
401         // We may not have a valid end location. Try to apply it anyway, and
402         // fall back to an artificial location if needed.
403         OAL = ApplyDebugLocation::CreateDefaultArtificial(*this, EndLoc);
404     }
405 
406     PopCleanupBlocks(PrologueCleanupDepth);
407   }
408 
409   // Emit function epilog (to return).
410   llvm::DebugLoc Loc = EmitReturnBlock();
411 
412   if (ShouldInstrumentFunction()) {
413     if (CGM.getCodeGenOpts().InstrumentFunctions)
414       CurFn->addFnAttr("instrument-function-exit", "__cyg_profile_func_exit");
415     if (CGM.getCodeGenOpts().InstrumentFunctionsAfterInlining)
416       CurFn->addFnAttr("instrument-function-exit-inlined",
417                        "__cyg_profile_func_exit");
418   }
419 
420   // Emit debug descriptor for function end.
421   if (CGDebugInfo *DI = getDebugInfo())
422     DI->EmitFunctionEnd(Builder, CurFn);
423 
424   // Reset the debug location to that of the simple 'return' expression, if any
425   // rather than that of the end of the function's scope '}'.
426   ApplyDebugLocation AL(*this, Loc);
427   EmitFunctionEpilog(*CurFnInfo, EmitRetDbgLoc, EndLoc);
428   EmitEndEHSpec(CurCodeDecl);
429 
430   assert(EHStack.empty() &&
431          "did not remove all scopes from cleanup stack!");
432 
433   // If someone did an indirect goto, emit the indirect goto block at the end of
434   // the function.
435   if (IndirectBranch) {
436     EmitBlock(IndirectBranch->getParent());
437     Builder.ClearInsertionPoint();
438   }
439 
440   // If some of our locals escaped, insert a call to llvm.localescape in the
441   // entry block.
442   if (!EscapedLocals.empty()) {
443     // Invert the map from local to index into a simple vector. There should be
444     // no holes.
445     SmallVector<llvm::Value *, 4> EscapeArgs;
446     EscapeArgs.resize(EscapedLocals.size());
447     for (auto &Pair : EscapedLocals)
448       EscapeArgs[Pair.second] = Pair.first;
449     llvm::Function *FrameEscapeFn = llvm::Intrinsic::getDeclaration(
450         &CGM.getModule(), llvm::Intrinsic::localescape);
451     CGBuilderTy(*this, AllocaInsertPt).CreateCall(FrameEscapeFn, EscapeArgs);
452   }
453 
454   // Remove the AllocaInsertPt instruction, which is just a convenience for us.
455   llvm::Instruction *Ptr = AllocaInsertPt;
456   AllocaInsertPt = nullptr;
457   Ptr->eraseFromParent();
458 
459   // PostAllocaInsertPt, if created, was lazily created when it was required,
460   // remove it now since it was just created for our own convenience.
461   if (PostAllocaInsertPt) {
462     llvm::Instruction *PostPtr = PostAllocaInsertPt;
463     PostAllocaInsertPt = nullptr;
464     PostPtr->eraseFromParent();
465   }
466 
467   // If someone took the address of a label but never did an indirect goto, we
468   // made a zero entry PHI node, which is illegal, zap it now.
469   if (IndirectBranch) {
470     llvm::PHINode *PN = cast<llvm::PHINode>(IndirectBranch->getAddress());
471     if (PN->getNumIncomingValues() == 0) {
472       PN->replaceAllUsesWith(llvm::UndefValue::get(PN->getType()));
473       PN->eraseFromParent();
474     }
475   }
476 
477   EmitIfUsed(*this, EHResumeBlock);
478   EmitIfUsed(*this, TerminateLandingPad);
479   EmitIfUsed(*this, TerminateHandler);
480   EmitIfUsed(*this, UnreachableBlock);
481 
482   for (const auto &FuncletAndParent : TerminateFunclets)
483     EmitIfUsed(*this, FuncletAndParent.second);
484 
485   if (CGM.getCodeGenOpts().EmitDeclMetadata)
486     EmitDeclMetadata();
487 
488   for (const auto &R : DeferredReplacements) {
489     if (llvm::Value *Old = R.first) {
490       Old->replaceAllUsesWith(R.second);
491       cast<llvm::Instruction>(Old)->eraseFromParent();
492     }
493   }
494   DeferredReplacements.clear();
495 
496   // Eliminate CleanupDestSlot alloca by replacing it with SSA values and
497   // PHIs if the current function is a coroutine. We don't do it for all
498   // functions as it may result in slight increase in numbers of instructions
499   // if compiled with no optimizations. We do it for coroutine as the lifetime
500   // of CleanupDestSlot alloca make correct coroutine frame building very
501   // difficult.
502   if (NormalCleanupDest.isValid() && isCoroutine()) {
503     llvm::DominatorTree DT(*CurFn);
504     llvm::PromoteMemToReg(
505         cast<llvm::AllocaInst>(NormalCleanupDest.getPointer()), DT);
506     NormalCleanupDest = Address::invalid();
507   }
508 
509   // Scan function arguments for vector width.
510   for (llvm::Argument &A : CurFn->args())
511     if (auto *VT = dyn_cast<llvm::VectorType>(A.getType()))
512       LargestVectorWidth =
513           std::max((uint64_t)LargestVectorWidth,
514                    VT->getPrimitiveSizeInBits().getKnownMinValue());
515 
516   // Update vector width based on return type.
517   if (auto *VT = dyn_cast<llvm::VectorType>(CurFn->getReturnType()))
518     LargestVectorWidth =
519         std::max((uint64_t)LargestVectorWidth,
520                  VT->getPrimitiveSizeInBits().getKnownMinValue());
521 
522   if (CurFnInfo->getMaxVectorWidth() > LargestVectorWidth)
523     LargestVectorWidth = CurFnInfo->getMaxVectorWidth();
524 
525   // Add the min-legal-vector-width attribute. This contains the max width from:
526   // 1. min-vector-width attribute used in the source program.
527   // 2. Any builtins used that have a vector width specified.
528   // 3. Values passed in and out of inline assembly.
529   // 4. Width of vector arguments and return types for this function.
530   // 5. Width of vector arguments and return types for functions called by this
531   //    function.
532   if (getContext().getTargetInfo().getTriple().isX86())
533     CurFn->addFnAttr("min-legal-vector-width",
534                      llvm::utostr(LargestVectorWidth));
535 
536   // Add vscale_range attribute if appropriate.
537   std::optional<std::pair<unsigned, unsigned>> VScaleRange =
538       getContext().getTargetInfo().getVScaleRange(getLangOpts());
539   if (VScaleRange) {
540     CurFn->addFnAttr(llvm::Attribute::getWithVScaleRangeArgs(
541         getLLVMContext(), VScaleRange->first, VScaleRange->second));
542   }
543 
544   // If we generated an unreachable return block, delete it now.
545   if (ReturnBlock.isValid() && ReturnBlock.getBlock()->use_empty()) {
546     Builder.ClearInsertionPoint();
547     ReturnBlock.getBlock()->eraseFromParent();
548   }
549   if (ReturnValue.isValid()) {
550     auto *RetAlloca =
551         dyn_cast<llvm::AllocaInst>(ReturnValue.emitRawPointer(*this));
552     if (RetAlloca && RetAlloca->use_empty()) {
553       RetAlloca->eraseFromParent();
554       ReturnValue = Address::invalid();
555     }
556   }
557 }
558 
559 /// ShouldInstrumentFunction - Return true if the current function should be
560 /// instrumented with __cyg_profile_func_* calls
561 bool CodeGenFunction::ShouldInstrumentFunction() {
562   if (!CGM.getCodeGenOpts().InstrumentFunctions &&
563       !CGM.getCodeGenOpts().InstrumentFunctionsAfterInlining &&
564       !CGM.getCodeGenOpts().InstrumentFunctionEntryBare)
565     return false;
566   if (!CurFuncDecl || CurFuncDecl->hasAttr<NoInstrumentFunctionAttr>())
567     return false;
568   return true;
569 }
570 
571 bool CodeGenFunction::ShouldSkipSanitizerInstrumentation() {
572   if (!CurFuncDecl)
573     return false;
574   return CurFuncDecl->hasAttr<DisableSanitizerInstrumentationAttr>();
575 }
576 
577 /// ShouldXRayInstrument - Return true if the current function should be
578 /// instrumented with XRay nop sleds.
579 bool CodeGenFunction::ShouldXRayInstrumentFunction() const {
580   return CGM.getCodeGenOpts().XRayInstrumentFunctions;
581 }
582 
583 /// AlwaysEmitXRayCustomEvents - Return true if we should emit IR for calls to
584 /// the __xray_customevent(...) builtin calls, when doing XRay instrumentation.
585 bool CodeGenFunction::AlwaysEmitXRayCustomEvents() const {
586   return CGM.getCodeGenOpts().XRayInstrumentFunctions &&
587          (CGM.getCodeGenOpts().XRayAlwaysEmitCustomEvents ||
588           CGM.getCodeGenOpts().XRayInstrumentationBundle.Mask ==
589               XRayInstrKind::Custom);
590 }
591 
592 bool CodeGenFunction::AlwaysEmitXRayTypedEvents() const {
593   return CGM.getCodeGenOpts().XRayInstrumentFunctions &&
594          (CGM.getCodeGenOpts().XRayAlwaysEmitTypedEvents ||
595           CGM.getCodeGenOpts().XRayInstrumentationBundle.Mask ==
596               XRayInstrKind::Typed);
597 }
598 
599 llvm::ConstantInt *
600 CodeGenFunction::getUBSanFunctionTypeHash(QualType Ty) const {
601   // Remove any (C++17) exception specifications, to allow calling e.g. a
602   // noexcept function through a non-noexcept pointer.
603   if (!Ty->isFunctionNoProtoType())
604     Ty = getContext().getFunctionTypeWithExceptionSpec(Ty, EST_None);
605   std::string Mangled;
606   llvm::raw_string_ostream Out(Mangled);
607   CGM.getCXXABI().getMangleContext().mangleCanonicalTypeName(Ty, Out, false);
608   return llvm::ConstantInt::get(
609       CGM.Int32Ty, static_cast<uint32_t>(llvm::xxh3_64bits(Mangled)));
610 }
611 
612 void CodeGenFunction::EmitKernelMetadata(const FunctionDecl *FD,
613                                          llvm::Function *Fn) {
614   if (!FD->hasAttr<OpenCLKernelAttr>() && !FD->hasAttr<CUDAGlobalAttr>())
615     return;
616 
617   llvm::LLVMContext &Context = getLLVMContext();
618 
619   CGM.GenKernelArgMetadata(Fn, FD, this);
620 
621   if (!getLangOpts().OpenCL)
622     return;
623 
624   if (const VecTypeHintAttr *A = FD->getAttr<VecTypeHintAttr>()) {
625     QualType HintQTy = A->getTypeHint();
626     const ExtVectorType *HintEltQTy = HintQTy->getAs<ExtVectorType>();
627     bool IsSignedInteger =
628         HintQTy->isSignedIntegerType() ||
629         (HintEltQTy && HintEltQTy->getElementType()->isSignedIntegerType());
630     llvm::Metadata *AttrMDArgs[] = {
631         llvm::ConstantAsMetadata::get(llvm::UndefValue::get(
632             CGM.getTypes().ConvertType(A->getTypeHint()))),
633         llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
634             llvm::IntegerType::get(Context, 32),
635             llvm::APInt(32, (uint64_t)(IsSignedInteger ? 1 : 0))))};
636     Fn->setMetadata("vec_type_hint", llvm::MDNode::get(Context, AttrMDArgs));
637   }
638 
639   if (const WorkGroupSizeHintAttr *A = FD->getAttr<WorkGroupSizeHintAttr>()) {
640     llvm::Metadata *AttrMDArgs[] = {
641         llvm::ConstantAsMetadata::get(Builder.getInt32(A->getXDim())),
642         llvm::ConstantAsMetadata::get(Builder.getInt32(A->getYDim())),
643         llvm::ConstantAsMetadata::get(Builder.getInt32(A->getZDim()))};
644     Fn->setMetadata("work_group_size_hint", llvm::MDNode::get(Context, AttrMDArgs));
645   }
646 
647   if (const ReqdWorkGroupSizeAttr *A = FD->getAttr<ReqdWorkGroupSizeAttr>()) {
648     llvm::Metadata *AttrMDArgs[] = {
649         llvm::ConstantAsMetadata::get(Builder.getInt32(A->getXDim())),
650         llvm::ConstantAsMetadata::get(Builder.getInt32(A->getYDim())),
651         llvm::ConstantAsMetadata::get(Builder.getInt32(A->getZDim()))};
652     Fn->setMetadata("reqd_work_group_size", llvm::MDNode::get(Context, AttrMDArgs));
653   }
654 
655   if (const OpenCLIntelReqdSubGroupSizeAttr *A =
656           FD->getAttr<OpenCLIntelReqdSubGroupSizeAttr>()) {
657     llvm::Metadata *AttrMDArgs[] = {
658         llvm::ConstantAsMetadata::get(Builder.getInt32(A->getSubGroupSize()))};
659     Fn->setMetadata("intel_reqd_sub_group_size",
660                     llvm::MDNode::get(Context, AttrMDArgs));
661   }
662 }
663 
664 /// Determine whether the function F ends with a return stmt.
665 static bool endsWithReturn(const Decl* F) {
666   const Stmt *Body = nullptr;
667   if (auto *FD = dyn_cast_or_null<FunctionDecl>(F))
668     Body = FD->getBody();
669   else if (auto *OMD = dyn_cast_or_null<ObjCMethodDecl>(F))
670     Body = OMD->getBody();
671 
672   if (auto *CS = dyn_cast_or_null<CompoundStmt>(Body)) {
673     auto LastStmt = CS->body_rbegin();
674     if (LastStmt != CS->body_rend())
675       return isa<ReturnStmt>(*LastStmt);
676   }
677   return false;
678 }
679 
680 void CodeGenFunction::markAsIgnoreThreadCheckingAtRuntime(llvm::Function *Fn) {
681   if (SanOpts.has(SanitizerKind::Thread)) {
682     Fn->addFnAttr("sanitize_thread_no_checking_at_run_time");
683     Fn->removeFnAttr(llvm::Attribute::SanitizeThread);
684   }
685 }
686 
687 /// Check if the return value of this function requires sanitization.
688 bool CodeGenFunction::requiresReturnValueCheck() const {
689   return requiresReturnValueNullabilityCheck() ||
690          (SanOpts.has(SanitizerKind::ReturnsNonnullAttribute) && CurCodeDecl &&
691           CurCodeDecl->getAttr<ReturnsNonNullAttr>());
692 }
693 
694 static bool matchesStlAllocatorFn(const Decl *D, const ASTContext &Ctx) {
695   auto *MD = dyn_cast_or_null<CXXMethodDecl>(D);
696   if (!MD || !MD->getDeclName().getAsIdentifierInfo() ||
697       !MD->getDeclName().getAsIdentifierInfo()->isStr("allocate") ||
698       (MD->getNumParams() != 1 && MD->getNumParams() != 2))
699     return false;
700 
701   if (MD->parameters()[0]->getType().getCanonicalType() != Ctx.getSizeType())
702     return false;
703 
704   if (MD->getNumParams() == 2) {
705     auto *PT = MD->parameters()[1]->getType()->getAs<PointerType>();
706     if (!PT || !PT->isVoidPointerType() ||
707         !PT->getPointeeType().isConstQualified())
708       return false;
709   }
710 
711   return true;
712 }
713 
714 bool CodeGenFunction::isInAllocaArgument(CGCXXABI &ABI, QualType Ty) {
715   const CXXRecordDecl *RD = Ty->getAsCXXRecordDecl();
716   return RD && ABI.getRecordArgABI(RD) == CGCXXABI::RAA_DirectInMemory;
717 }
718 
719 bool CodeGenFunction::hasInAllocaArg(const CXXMethodDecl *MD) {
720   return getTarget().getTriple().getArch() == llvm::Triple::x86 &&
721          getTarget().getCXXABI().isMicrosoft() &&
722          llvm::any_of(MD->parameters(), [&](ParmVarDecl *P) {
723            return isInAllocaArgument(CGM.getCXXABI(), P->getType());
724          });
725 }
726 
727 /// Return the UBSan prologue signature for \p FD if one is available.
728 static llvm::Constant *getPrologueSignature(CodeGenModule &CGM,
729                                             const FunctionDecl *FD) {
730   if (const auto *MD = dyn_cast<CXXMethodDecl>(FD))
731     if (!MD->isStatic())
732       return nullptr;
733   return CGM.getTargetCodeGenInfo().getUBSanFunctionSignature(CGM);
734 }
735 
736 void CodeGenFunction::StartFunction(GlobalDecl GD, QualType RetTy,
737                                     llvm::Function *Fn,
738                                     const CGFunctionInfo &FnInfo,
739                                     const FunctionArgList &Args,
740                                     SourceLocation Loc,
741                                     SourceLocation StartLoc) {
742   assert(!CurFn &&
743          "Do not use a CodeGenFunction object for more than one function");
744 
745   const Decl *D = GD.getDecl();
746 
747   DidCallStackSave = false;
748   CurCodeDecl = D;
749   const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D);
750   if (FD && FD->usesSEHTry())
751     CurSEHParent = GD;
752   CurFuncDecl = (D ? D->getNonClosureContext() : nullptr);
753   FnRetTy = RetTy;
754   CurFn = Fn;
755   CurFnInfo = &FnInfo;
756   assert(CurFn->isDeclaration() && "Function already has body?");
757 
758   // If this function is ignored for any of the enabled sanitizers,
759   // disable the sanitizer for the function.
760   do {
761 #define SANITIZER(NAME, ID)                                                    \
762   if (SanOpts.empty())                                                         \
763     break;                                                                     \
764   if (SanOpts.has(SanitizerKind::ID))                                          \
765     if (CGM.isInNoSanitizeList(SanitizerKind::ID, Fn, Loc))                    \
766       SanOpts.set(SanitizerKind::ID, false);
767 
768 #include "clang/Basic/Sanitizers.def"
769 #undef SANITIZER
770   } while (false);
771 
772   if (D) {
773     const bool SanitizeBounds = SanOpts.hasOneOf(SanitizerKind::Bounds);
774     SanitizerMask no_sanitize_mask;
775     bool NoSanitizeCoverage = false;
776 
777     for (auto *Attr : D->specific_attrs<NoSanitizeAttr>()) {
778       no_sanitize_mask |= Attr->getMask();
779       // SanitizeCoverage is not handled by SanOpts.
780       if (Attr->hasCoverage())
781         NoSanitizeCoverage = true;
782     }
783 
784     // Apply the no_sanitize* attributes to SanOpts.
785     SanOpts.Mask &= ~no_sanitize_mask;
786     if (no_sanitize_mask & SanitizerKind::Address)
787       SanOpts.set(SanitizerKind::KernelAddress, false);
788     if (no_sanitize_mask & SanitizerKind::KernelAddress)
789       SanOpts.set(SanitizerKind::Address, false);
790     if (no_sanitize_mask & SanitizerKind::HWAddress)
791       SanOpts.set(SanitizerKind::KernelHWAddress, false);
792     if (no_sanitize_mask & SanitizerKind::KernelHWAddress)
793       SanOpts.set(SanitizerKind::HWAddress, false);
794 
795     if (SanitizeBounds && !SanOpts.hasOneOf(SanitizerKind::Bounds))
796       Fn->addFnAttr(llvm::Attribute::NoSanitizeBounds);
797 
798     if (NoSanitizeCoverage && CGM.getCodeGenOpts().hasSanitizeCoverage())
799       Fn->addFnAttr(llvm::Attribute::NoSanitizeCoverage);
800 
801     // Some passes need the non-negated no_sanitize attribute. Pass them on.
802     if (CGM.getCodeGenOpts().hasSanitizeBinaryMetadata()) {
803       if (no_sanitize_mask & SanitizerKind::Thread)
804         Fn->addFnAttr("no_sanitize_thread");
805     }
806   }
807 
808   if (ShouldSkipSanitizerInstrumentation()) {
809     CurFn->addFnAttr(llvm::Attribute::DisableSanitizerInstrumentation);
810   } else {
811     // Apply sanitizer attributes to the function.
812     if (SanOpts.hasOneOf(SanitizerKind::Address | SanitizerKind::KernelAddress))
813       Fn->addFnAttr(llvm::Attribute::SanitizeAddress);
814     if (SanOpts.hasOneOf(SanitizerKind::HWAddress |
815                          SanitizerKind::KernelHWAddress))
816       Fn->addFnAttr(llvm::Attribute::SanitizeHWAddress);
817     if (SanOpts.has(SanitizerKind::MemtagStack))
818       Fn->addFnAttr(llvm::Attribute::SanitizeMemTag);
819     if (SanOpts.has(SanitizerKind::Thread))
820       Fn->addFnAttr(llvm::Attribute::SanitizeThread);
821     if (SanOpts.hasOneOf(SanitizerKind::Memory | SanitizerKind::KernelMemory))
822       Fn->addFnAttr(llvm::Attribute::SanitizeMemory);
823   }
824   if (SanOpts.has(SanitizerKind::SafeStack))
825     Fn->addFnAttr(llvm::Attribute::SafeStack);
826   if (SanOpts.has(SanitizerKind::ShadowCallStack))
827     Fn->addFnAttr(llvm::Attribute::ShadowCallStack);
828 
829   // Apply fuzzing attribute to the function.
830   if (SanOpts.hasOneOf(SanitizerKind::Fuzzer | SanitizerKind::FuzzerNoLink))
831     Fn->addFnAttr(llvm::Attribute::OptForFuzzing);
832 
833   // Ignore TSan memory acesses from within ObjC/ObjC++ dealloc, initialize,
834   // .cxx_destruct, __destroy_helper_block_ and all of their calees at run time.
835   if (SanOpts.has(SanitizerKind::Thread)) {
836     if (const auto *OMD = dyn_cast_or_null<ObjCMethodDecl>(D)) {
837       const IdentifierInfo *II = OMD->getSelector().getIdentifierInfoForSlot(0);
838       if (OMD->getMethodFamily() == OMF_dealloc ||
839           OMD->getMethodFamily() == OMF_initialize ||
840           (OMD->getSelector().isUnarySelector() && II->isStr(".cxx_destruct"))) {
841         markAsIgnoreThreadCheckingAtRuntime(Fn);
842       }
843     }
844   }
845 
846   // Ignore unrelated casts in STL allocate() since the allocator must cast
847   // from void* to T* before object initialization completes. Don't match on the
848   // namespace because not all allocators are in std::
849   if (D && SanOpts.has(SanitizerKind::CFIUnrelatedCast)) {
850     if (matchesStlAllocatorFn(D, getContext()))
851       SanOpts.Mask &= ~SanitizerKind::CFIUnrelatedCast;
852   }
853 
854   // Ignore null checks in coroutine functions since the coroutines passes
855   // are not aware of how to move the extra UBSan instructions across the split
856   // coroutine boundaries.
857   if (D && SanOpts.has(SanitizerKind::Null))
858     if (FD && FD->getBody() &&
859         FD->getBody()->getStmtClass() == Stmt::CoroutineBodyStmtClass)
860       SanOpts.Mask &= ~SanitizerKind::Null;
861 
862   // Apply xray attributes to the function (as a string, for now)
863   bool AlwaysXRayAttr = false;
864   if (const auto *XRayAttr = D ? D->getAttr<XRayInstrumentAttr>() : nullptr) {
865     if (CGM.getCodeGenOpts().XRayInstrumentationBundle.has(
866             XRayInstrKind::FunctionEntry) ||
867         CGM.getCodeGenOpts().XRayInstrumentationBundle.has(
868             XRayInstrKind::FunctionExit)) {
869       if (XRayAttr->alwaysXRayInstrument() && ShouldXRayInstrumentFunction()) {
870         Fn->addFnAttr("function-instrument", "xray-always");
871         AlwaysXRayAttr = true;
872       }
873       if (XRayAttr->neverXRayInstrument())
874         Fn->addFnAttr("function-instrument", "xray-never");
875       if (const auto *LogArgs = D->getAttr<XRayLogArgsAttr>())
876         if (ShouldXRayInstrumentFunction())
877           Fn->addFnAttr("xray-log-args",
878                         llvm::utostr(LogArgs->getArgumentCount()));
879     }
880   } else {
881     if (ShouldXRayInstrumentFunction() && !CGM.imbueXRayAttrs(Fn, Loc))
882       Fn->addFnAttr(
883           "xray-instruction-threshold",
884           llvm::itostr(CGM.getCodeGenOpts().XRayInstructionThreshold));
885   }
886 
887   if (ShouldXRayInstrumentFunction()) {
888     if (CGM.getCodeGenOpts().XRayIgnoreLoops)
889       Fn->addFnAttr("xray-ignore-loops");
890 
891     if (!CGM.getCodeGenOpts().XRayInstrumentationBundle.has(
892             XRayInstrKind::FunctionExit))
893       Fn->addFnAttr("xray-skip-exit");
894 
895     if (!CGM.getCodeGenOpts().XRayInstrumentationBundle.has(
896             XRayInstrKind::FunctionEntry))
897       Fn->addFnAttr("xray-skip-entry");
898 
899     auto FuncGroups = CGM.getCodeGenOpts().XRayTotalFunctionGroups;
900     if (FuncGroups > 1) {
901       auto FuncName = llvm::ArrayRef<uint8_t>(CurFn->getName().bytes_begin(),
902                                               CurFn->getName().bytes_end());
903       auto Group = crc32(FuncName) % FuncGroups;
904       if (Group != CGM.getCodeGenOpts().XRaySelectedFunctionGroup &&
905           !AlwaysXRayAttr)
906         Fn->addFnAttr("function-instrument", "xray-never");
907     }
908   }
909 
910   if (CGM.getCodeGenOpts().getProfileInstr() != CodeGenOptions::ProfileNone) {
911     switch (CGM.isFunctionBlockedFromProfileInstr(Fn, Loc)) {
912     case ProfileList::Skip:
913       Fn->addFnAttr(llvm::Attribute::SkipProfile);
914       break;
915     case ProfileList::Forbid:
916       Fn->addFnAttr(llvm::Attribute::NoProfile);
917       break;
918     case ProfileList::Allow:
919       break;
920     }
921   }
922 
923   unsigned Count, Offset;
924   if (const auto *Attr =
925           D ? D->getAttr<PatchableFunctionEntryAttr>() : nullptr) {
926     Count = Attr->getCount();
927     Offset = Attr->getOffset();
928   } else {
929     Count = CGM.getCodeGenOpts().PatchableFunctionEntryCount;
930     Offset = CGM.getCodeGenOpts().PatchableFunctionEntryOffset;
931   }
932   if (Count && Offset <= Count) {
933     Fn->addFnAttr("patchable-function-entry", std::to_string(Count - Offset));
934     if (Offset)
935       Fn->addFnAttr("patchable-function-prefix", std::to_string(Offset));
936   }
937   // Instruct that functions for COFF/CodeView targets should start with a
938   // patchable instruction, but only on x86/x64. Don't forward this to ARM/ARM64
939   // backends as they don't need it -- instructions on these architectures are
940   // always atomically patchable at runtime.
941   if (CGM.getCodeGenOpts().HotPatch &&
942       getContext().getTargetInfo().getTriple().isX86() &&
943       getContext().getTargetInfo().getTriple().getEnvironment() !=
944           llvm::Triple::CODE16)
945     Fn->addFnAttr("patchable-function", "prologue-short-redirect");
946 
947   // Add no-jump-tables value.
948   if (CGM.getCodeGenOpts().NoUseJumpTables)
949     Fn->addFnAttr("no-jump-tables", "true");
950 
951   // Add no-inline-line-tables value.
952   if (CGM.getCodeGenOpts().NoInlineLineTables)
953     Fn->addFnAttr("no-inline-line-tables");
954 
955   // Add profile-sample-accurate value.
956   if (CGM.getCodeGenOpts().ProfileSampleAccurate)
957     Fn->addFnAttr("profile-sample-accurate");
958 
959   if (!CGM.getCodeGenOpts().SampleProfileFile.empty())
960     Fn->addFnAttr("use-sample-profile");
961 
962   if (D && D->hasAttr<CFICanonicalJumpTableAttr>())
963     Fn->addFnAttr("cfi-canonical-jump-table");
964 
965   if (D && D->hasAttr<NoProfileFunctionAttr>())
966     Fn->addFnAttr(llvm::Attribute::NoProfile);
967 
968   if (D) {
969     // Function attributes take precedence over command line flags.
970     if (auto *A = D->getAttr<FunctionReturnThunksAttr>()) {
971       switch (A->getThunkType()) {
972       case FunctionReturnThunksAttr::Kind::Keep:
973         break;
974       case FunctionReturnThunksAttr::Kind::Extern:
975         Fn->addFnAttr(llvm::Attribute::FnRetThunkExtern);
976         break;
977       }
978     } else if (CGM.getCodeGenOpts().FunctionReturnThunks)
979       Fn->addFnAttr(llvm::Attribute::FnRetThunkExtern);
980   }
981 
982   if (FD && (getLangOpts().OpenCL ||
983              (getLangOpts().HIP && getLangOpts().CUDAIsDevice))) {
984     // Add metadata for a kernel function.
985     EmitKernelMetadata(FD, Fn);
986   }
987 
988   if (FD && FD->hasAttr<ClspvLibclcBuiltinAttr>()) {
989     Fn->setMetadata("clspv_libclc_builtin",
990                     llvm::MDNode::get(getLLVMContext(), {}));
991   }
992 
993   // If we are checking function types, emit a function type signature as
994   // prologue data.
995   if (FD && SanOpts.has(SanitizerKind::Function)) {
996     if (llvm::Constant *PrologueSig = getPrologueSignature(CGM, FD)) {
997       llvm::LLVMContext &Ctx = Fn->getContext();
998       llvm::MDBuilder MDB(Ctx);
999       Fn->setMetadata(
1000           llvm::LLVMContext::MD_func_sanitize,
1001           MDB.createRTTIPointerPrologue(
1002               PrologueSig, getUBSanFunctionTypeHash(FD->getType())));
1003     }
1004   }
1005 
1006   // If we're checking nullability, we need to know whether we can check the
1007   // return value. Initialize the flag to 'true' and refine it in EmitParmDecl.
1008   if (SanOpts.has(SanitizerKind::NullabilityReturn)) {
1009     auto Nullability = FnRetTy->getNullability();
1010     if (Nullability && *Nullability == NullabilityKind::NonNull &&
1011         !FnRetTy->isRecordType()) {
1012       if (!(SanOpts.has(SanitizerKind::ReturnsNonnullAttribute) &&
1013             CurCodeDecl && CurCodeDecl->getAttr<ReturnsNonNullAttr>()))
1014         RetValNullabilityPrecondition =
1015             llvm::ConstantInt::getTrue(getLLVMContext());
1016     }
1017   }
1018 
1019   // If we're in C++ mode and the function name is "main", it is guaranteed
1020   // to be norecurse by the standard (3.6.1.3 "The function main shall not be
1021   // used within a program").
1022   //
1023   // OpenCL C 2.0 v2.2-11 s6.9.i:
1024   //     Recursion is not supported.
1025   //
1026   // SYCL v1.2.1 s3.10:
1027   //     kernels cannot include RTTI information, exception classes,
1028   //     recursive code, virtual functions or make use of C++ libraries that
1029   //     are not compiled for the device.
1030   if (FD && ((getLangOpts().CPlusPlus && FD->isMain()) ||
1031              getLangOpts().OpenCL || getLangOpts().SYCLIsDevice ||
1032              (getLangOpts().CUDA && FD->hasAttr<CUDAGlobalAttr>())))
1033     Fn->addFnAttr(llvm::Attribute::NoRecurse);
1034 
1035   llvm::RoundingMode RM = getLangOpts().getDefaultRoundingMode();
1036   llvm::fp::ExceptionBehavior FPExceptionBehavior =
1037       ToConstrainedExceptMD(getLangOpts().getDefaultExceptionMode());
1038   Builder.setDefaultConstrainedRounding(RM);
1039   Builder.setDefaultConstrainedExcept(FPExceptionBehavior);
1040   if ((FD && (FD->UsesFPIntrin() || FD->hasAttr<StrictFPAttr>())) ||
1041       (!FD && (FPExceptionBehavior != llvm::fp::ebIgnore ||
1042                RM != llvm::RoundingMode::NearestTiesToEven))) {
1043     Builder.setIsFPConstrained(true);
1044     Fn->addFnAttr(llvm::Attribute::StrictFP);
1045   }
1046 
1047   // If a custom alignment is used, force realigning to this alignment on
1048   // any main function which certainly will need it.
1049   if (FD && ((FD->isMain() || FD->isMSVCRTEntryPoint()) &&
1050              CGM.getCodeGenOpts().StackAlignment))
1051     Fn->addFnAttr("stackrealign");
1052 
1053   // "main" doesn't need to zero out call-used registers.
1054   if (FD && FD->isMain())
1055     Fn->removeFnAttr("zero-call-used-regs");
1056 
1057   llvm::BasicBlock *EntryBB = createBasicBlock("entry", CurFn);
1058 
1059   // Create a marker to make it easy to insert allocas into the entryblock
1060   // later.  Don't create this with the builder, because we don't want it
1061   // folded.
1062   llvm::Value *Undef = llvm::UndefValue::get(Int32Ty);
1063   AllocaInsertPt = new llvm::BitCastInst(Undef, Int32Ty, "allocapt", EntryBB);
1064 
1065   ReturnBlock = getJumpDestInCurrentScope("return");
1066 
1067   Builder.SetInsertPoint(EntryBB);
1068 
1069   // If we're checking the return value, allocate space for a pointer to a
1070   // precise source location of the checked return statement.
1071   if (requiresReturnValueCheck()) {
1072     ReturnLocation = CreateDefaultAlignTempAlloca(Int8PtrTy, "return.sloc.ptr");
1073     Builder.CreateStore(llvm::ConstantPointerNull::get(Int8PtrTy),
1074                         ReturnLocation);
1075   }
1076 
1077   // Emit subprogram debug descriptor.
1078   if (CGDebugInfo *DI = getDebugInfo()) {
1079     // Reconstruct the type from the argument list so that implicit parameters,
1080     // such as 'this' and 'vtt', show up in the debug info. Preserve the calling
1081     // convention.
1082     DI->emitFunctionStart(GD, Loc, StartLoc,
1083                           DI->getFunctionType(FD, RetTy, Args), CurFn,
1084                           CurFuncIsThunk);
1085   }
1086 
1087   if (ShouldInstrumentFunction()) {
1088     if (CGM.getCodeGenOpts().InstrumentFunctions)
1089       CurFn->addFnAttr("instrument-function-entry", "__cyg_profile_func_enter");
1090     if (CGM.getCodeGenOpts().InstrumentFunctionsAfterInlining)
1091       CurFn->addFnAttr("instrument-function-entry-inlined",
1092                        "__cyg_profile_func_enter");
1093     if (CGM.getCodeGenOpts().InstrumentFunctionEntryBare)
1094       CurFn->addFnAttr("instrument-function-entry-inlined",
1095                        "__cyg_profile_func_enter_bare");
1096   }
1097 
1098   // Since emitting the mcount call here impacts optimizations such as function
1099   // inlining, we just add an attribute to insert a mcount call in backend.
1100   // The attribute "counting-function" is set to mcount function name which is
1101   // architecture dependent.
1102   if (CGM.getCodeGenOpts().InstrumentForProfiling) {
1103     // Calls to fentry/mcount should not be generated if function has
1104     // the no_instrument_function attribute.
1105     if (!CurFuncDecl || !CurFuncDecl->hasAttr<NoInstrumentFunctionAttr>()) {
1106       if (CGM.getCodeGenOpts().CallFEntry)
1107         Fn->addFnAttr("fentry-call", "true");
1108       else {
1109         Fn->addFnAttr("instrument-function-entry-inlined",
1110                       getTarget().getMCountName());
1111       }
1112       if (CGM.getCodeGenOpts().MNopMCount) {
1113         if (!CGM.getCodeGenOpts().CallFEntry)
1114           CGM.getDiags().Report(diag::err_opt_not_valid_without_opt)
1115             << "-mnop-mcount" << "-mfentry";
1116         Fn->addFnAttr("mnop-mcount");
1117       }
1118 
1119       if (CGM.getCodeGenOpts().RecordMCount) {
1120         if (!CGM.getCodeGenOpts().CallFEntry)
1121           CGM.getDiags().Report(diag::err_opt_not_valid_without_opt)
1122             << "-mrecord-mcount" << "-mfentry";
1123         Fn->addFnAttr("mrecord-mcount");
1124       }
1125     }
1126   }
1127 
1128   if (CGM.getCodeGenOpts().PackedStack) {
1129     if (getContext().getTargetInfo().getTriple().getArch() !=
1130         llvm::Triple::systemz)
1131       CGM.getDiags().Report(diag::err_opt_not_valid_on_target)
1132         << "-mpacked-stack";
1133     Fn->addFnAttr("packed-stack");
1134   }
1135 
1136   if (CGM.getCodeGenOpts().WarnStackSize != UINT_MAX &&
1137       !CGM.getDiags().isIgnored(diag::warn_fe_backend_frame_larger_than, Loc))
1138     Fn->addFnAttr("warn-stack-size",
1139                   std::to_string(CGM.getCodeGenOpts().WarnStackSize));
1140 
1141   if (RetTy->isVoidType()) {
1142     // Void type; nothing to return.
1143     ReturnValue = Address::invalid();
1144 
1145     // Count the implicit return.
1146     if (!endsWithReturn(D))
1147       ++NumReturnExprs;
1148   } else if (CurFnInfo->getReturnInfo().getKind() == ABIArgInfo::Indirect) {
1149     // Indirect return; emit returned value directly into sret slot.
1150     // This reduces code size, and affects correctness in C++.
1151     auto AI = CurFn->arg_begin();
1152     if (CurFnInfo->getReturnInfo().isSRetAfterThis())
1153       ++AI;
1154     ReturnValue = makeNaturalAddressForPointer(
1155         &*AI, RetTy, CurFnInfo->getReturnInfo().getIndirectAlign(), false,
1156         nullptr, nullptr, KnownNonNull);
1157     if (!CurFnInfo->getReturnInfo().getIndirectByVal()) {
1158       ReturnValuePointer =
1159           CreateDefaultAlignTempAlloca(ReturnValue.getType(), "result.ptr");
1160       Builder.CreateStore(ReturnValue.emitRawPointer(*this),
1161                           ReturnValuePointer);
1162     }
1163   } else if (CurFnInfo->getReturnInfo().getKind() == ABIArgInfo::InAlloca &&
1164              !hasScalarEvaluationKind(CurFnInfo->getReturnType())) {
1165     // Load the sret pointer from the argument struct and return into that.
1166     unsigned Idx = CurFnInfo->getReturnInfo().getInAllocaFieldIndex();
1167     llvm::Function::arg_iterator EI = CurFn->arg_end();
1168     --EI;
1169     llvm::Value *Addr = Builder.CreateStructGEP(
1170         CurFnInfo->getArgStruct(), &*EI, Idx);
1171     llvm::Type *Ty =
1172         cast<llvm::GetElementPtrInst>(Addr)->getResultElementType();
1173     ReturnValuePointer = Address(Addr, Ty, getPointerAlign());
1174     Addr = Builder.CreateAlignedLoad(Ty, Addr, getPointerAlign(), "agg.result");
1175     ReturnValue = Address(Addr, ConvertType(RetTy),
1176                           CGM.getNaturalTypeAlignment(RetTy), KnownNonNull);
1177   } else {
1178     ReturnValue = CreateIRTemp(RetTy, "retval");
1179 
1180     // Tell the epilog emitter to autorelease the result.  We do this
1181     // now so that various specialized functions can suppress it
1182     // during their IR-generation.
1183     if (getLangOpts().ObjCAutoRefCount &&
1184         !CurFnInfo->isReturnsRetained() &&
1185         RetTy->isObjCRetainableType())
1186       AutoreleaseResult = true;
1187   }
1188 
1189   EmitStartEHSpec(CurCodeDecl);
1190 
1191   PrologueCleanupDepth = EHStack.stable_begin();
1192 
1193   // Emit OpenMP specific initialization of the device functions.
1194   if (getLangOpts().OpenMP && CurCodeDecl)
1195     CGM.getOpenMPRuntime().emitFunctionProlog(*this, CurCodeDecl);
1196 
1197   // Handle emitting HLSL entry functions.
1198   if (D && D->hasAttr<HLSLShaderAttr>())
1199     CGM.getHLSLRuntime().emitEntryFunction(FD, Fn);
1200 
1201   EmitFunctionProlog(*CurFnInfo, CurFn, Args);
1202 
1203   if (const CXXMethodDecl *MD = dyn_cast_if_present<CXXMethodDecl>(D);
1204       MD && !MD->isStatic()) {
1205     bool IsInLambda =
1206         MD->getParent()->isLambda() && MD->getOverloadedOperator() == OO_Call;
1207     if (MD->isImplicitObjectMemberFunction())
1208       CGM.getCXXABI().EmitInstanceFunctionProlog(*this);
1209     if (IsInLambda) {
1210       // We're in a lambda; figure out the captures.
1211       MD->getParent()->getCaptureFields(LambdaCaptureFields,
1212                                         LambdaThisCaptureField);
1213       if (LambdaThisCaptureField) {
1214         // If the lambda captures the object referred to by '*this' - either by
1215         // value or by reference, make sure CXXThisValue points to the correct
1216         // object.
1217 
1218         // Get the lvalue for the field (which is a copy of the enclosing object
1219         // or contains the address of the enclosing object).
1220         LValue ThisFieldLValue = EmitLValueForLambdaField(LambdaThisCaptureField);
1221         if (!LambdaThisCaptureField->getType()->isPointerType()) {
1222           // If the enclosing object was captured by value, just use its
1223           // address. Sign this pointer.
1224           CXXThisValue = ThisFieldLValue.getPointer(*this);
1225         } else {
1226           // Load the lvalue pointed to by the field, since '*this' was captured
1227           // by reference.
1228           CXXThisValue =
1229               EmitLoadOfLValue(ThisFieldLValue, SourceLocation()).getScalarVal();
1230         }
1231       }
1232       for (auto *FD : MD->getParent()->fields()) {
1233         if (FD->hasCapturedVLAType()) {
1234           auto *ExprArg = EmitLoadOfLValue(EmitLValueForLambdaField(FD),
1235                                            SourceLocation()).getScalarVal();
1236           auto VAT = FD->getCapturedVLAType();
1237           VLASizeMap[VAT->getSizeExpr()] = ExprArg;
1238         }
1239       }
1240     } else if (MD->isImplicitObjectMemberFunction()) {
1241       // Not in a lambda; just use 'this' from the method.
1242       // FIXME: Should we generate a new load for each use of 'this'?  The
1243       // fast register allocator would be happier...
1244       CXXThisValue = CXXABIThisValue;
1245     }
1246 
1247     // Check the 'this' pointer once per function, if it's available.
1248     if (CXXABIThisValue) {
1249       SanitizerSet SkippedChecks;
1250       SkippedChecks.set(SanitizerKind::ObjectSize, true);
1251       QualType ThisTy = MD->getThisType();
1252 
1253       // If this is the call operator of a lambda with no captures, it
1254       // may have a static invoker function, which may call this operator with
1255       // a null 'this' pointer.
1256       if (isLambdaCallOperator(MD) && MD->getParent()->isCapturelessLambda())
1257         SkippedChecks.set(SanitizerKind::Null, true);
1258 
1259       EmitTypeCheck(
1260           isa<CXXConstructorDecl>(MD) ? TCK_ConstructorCall : TCK_MemberCall,
1261           Loc, CXXABIThisValue, ThisTy, CXXABIThisAlignment, SkippedChecks);
1262     }
1263   }
1264 
1265   // If any of the arguments have a variably modified type, make sure to
1266   // emit the type size, but only if the function is not naked. Naked functions
1267   // have no prolog to run this evaluation.
1268   if (!FD || !FD->hasAttr<NakedAttr>()) {
1269     for (const VarDecl *VD : Args) {
1270       // Dig out the type as written from ParmVarDecls; it's unclear whether
1271       // the standard (C99 6.9.1p10) requires this, but we're following the
1272       // precedent set by gcc.
1273       QualType Ty;
1274       if (const ParmVarDecl *PVD = dyn_cast<ParmVarDecl>(VD))
1275         Ty = PVD->getOriginalType();
1276       else
1277         Ty = VD->getType();
1278 
1279       if (Ty->isVariablyModifiedType())
1280         EmitVariablyModifiedType(Ty);
1281     }
1282   }
1283   // Emit a location at the end of the prologue.
1284   if (CGDebugInfo *DI = getDebugInfo())
1285     DI->EmitLocation(Builder, StartLoc);
1286   // TODO: Do we need to handle this in two places like we do with
1287   // target-features/target-cpu?
1288   if (CurFuncDecl)
1289     if (const auto *VecWidth = CurFuncDecl->getAttr<MinVectorWidthAttr>())
1290       LargestVectorWidth = VecWidth->getVectorWidth();
1291 
1292   if (CGM.shouldEmitConvergenceTokens())
1293     ConvergenceTokenStack.push_back(getOrEmitConvergenceEntryToken(CurFn));
1294 }
1295 
1296 void CodeGenFunction::EmitFunctionBody(const Stmt *Body) {
1297   incrementProfileCounter(Body);
1298   maybeCreateMCDCCondBitmap();
1299   if (const CompoundStmt *S = dyn_cast<CompoundStmt>(Body))
1300     EmitCompoundStmtWithoutScope(*S);
1301   else
1302     EmitStmt(Body);
1303 }
1304 
1305 /// When instrumenting to collect profile data, the counts for some blocks
1306 /// such as switch cases need to not include the fall-through counts, so
1307 /// emit a branch around the instrumentation code. When not instrumenting,
1308 /// this just calls EmitBlock().
1309 void CodeGenFunction::EmitBlockWithFallThrough(llvm::BasicBlock *BB,
1310                                                const Stmt *S) {
1311   llvm::BasicBlock *SkipCountBB = nullptr;
1312   // Do not skip over the instrumentation when single byte coverage mode is
1313   // enabled.
1314   if (HaveInsertPoint() && CGM.getCodeGenOpts().hasProfileClangInstr() &&
1315       !llvm::EnableSingleByteCoverage) {
1316     // When instrumenting for profiling, the fallthrough to certain
1317     // statements needs to skip over the instrumentation code so that we
1318     // get an accurate count.
1319     SkipCountBB = createBasicBlock("skipcount");
1320     EmitBranch(SkipCountBB);
1321   }
1322   EmitBlock(BB);
1323   uint64_t CurrentCount = getCurrentProfileCount();
1324   incrementProfileCounter(S);
1325   setCurrentProfileCount(getCurrentProfileCount() + CurrentCount);
1326   if (SkipCountBB)
1327     EmitBlock(SkipCountBB);
1328 }
1329 
1330 /// Tries to mark the given function nounwind based on the
1331 /// non-existence of any throwing calls within it.  We believe this is
1332 /// lightweight enough to do at -O0.
1333 static void TryMarkNoThrow(llvm::Function *F) {
1334   // LLVM treats 'nounwind' on a function as part of the type, so we
1335   // can't do this on functions that can be overwritten.
1336   if (F->isInterposable()) return;
1337 
1338   for (llvm::BasicBlock &BB : *F)
1339     for (llvm::Instruction &I : BB)
1340       if (I.mayThrow())
1341         return;
1342 
1343   F->setDoesNotThrow();
1344 }
1345 
1346 QualType CodeGenFunction::BuildFunctionArgList(GlobalDecl GD,
1347                                                FunctionArgList &Args) {
1348   const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
1349   QualType ResTy = FD->getReturnType();
1350 
1351   const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD);
1352   if (MD && MD->isImplicitObjectMemberFunction()) {
1353     if (CGM.getCXXABI().HasThisReturn(GD))
1354       ResTy = MD->getThisType();
1355     else if (CGM.getCXXABI().hasMostDerivedReturn(GD))
1356       ResTy = CGM.getContext().VoidPtrTy;
1357     CGM.getCXXABI().buildThisParam(*this, Args);
1358   }
1359 
1360   // The base version of an inheriting constructor whose constructed base is a
1361   // virtual base is not passed any arguments (because it doesn't actually call
1362   // the inherited constructor).
1363   bool PassedParams = true;
1364   if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(FD))
1365     if (auto Inherited = CD->getInheritedConstructor())
1366       PassedParams =
1367           getTypes().inheritingCtorHasParams(Inherited, GD.getCtorType());
1368 
1369   if (PassedParams) {
1370     for (auto *Param : FD->parameters()) {
1371       Args.push_back(Param);
1372       if (!Param->hasAttr<PassObjectSizeAttr>())
1373         continue;
1374 
1375       auto *Implicit = ImplicitParamDecl::Create(
1376           getContext(), Param->getDeclContext(), Param->getLocation(),
1377           /*Id=*/nullptr, getContext().getSizeType(), ImplicitParamKind::Other);
1378       SizeArguments[Param] = Implicit;
1379       Args.push_back(Implicit);
1380     }
1381   }
1382 
1383   if (MD && (isa<CXXConstructorDecl>(MD) || isa<CXXDestructorDecl>(MD)))
1384     CGM.getCXXABI().addImplicitStructorParams(*this, ResTy, Args);
1385 
1386   return ResTy;
1387 }
1388 
1389 void CodeGenFunction::GenerateCode(GlobalDecl GD, llvm::Function *Fn,
1390                                    const CGFunctionInfo &FnInfo) {
1391   assert(Fn && "generating code for null Function");
1392   const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
1393   CurGD = GD;
1394 
1395   FunctionArgList Args;
1396   QualType ResTy = BuildFunctionArgList(GD, Args);
1397 
1398   CGM.getTargetCodeGenInfo().checkFunctionABI(CGM, FD);
1399 
1400   if (FD->isInlineBuiltinDeclaration()) {
1401     // When generating code for a builtin with an inline declaration, use a
1402     // mangled name to hold the actual body, while keeping an external
1403     // definition in case the function pointer is referenced somewhere.
1404     std::string FDInlineName = (Fn->getName() + ".inline").str();
1405     llvm::Module *M = Fn->getParent();
1406     llvm::Function *Clone = M->getFunction(FDInlineName);
1407     if (!Clone) {
1408       Clone = llvm::Function::Create(Fn->getFunctionType(),
1409                                      llvm::GlobalValue::InternalLinkage,
1410                                      Fn->getAddressSpace(), FDInlineName, M);
1411       Clone->addFnAttr(llvm::Attribute::AlwaysInline);
1412     }
1413     Fn->setLinkage(llvm::GlobalValue::ExternalLinkage);
1414     Fn = Clone;
1415   } else {
1416     // Detect the unusual situation where an inline version is shadowed by a
1417     // non-inline version. In that case we should pick the external one
1418     // everywhere. That's GCC behavior too. Unfortunately, I cannot find a way
1419     // to detect that situation before we reach codegen, so do some late
1420     // replacement.
1421     for (const FunctionDecl *PD = FD->getPreviousDecl(); PD;
1422          PD = PD->getPreviousDecl()) {
1423       if (LLVM_UNLIKELY(PD->isInlineBuiltinDeclaration())) {
1424         std::string FDInlineName = (Fn->getName() + ".inline").str();
1425         llvm::Module *M = Fn->getParent();
1426         if (llvm::Function *Clone = M->getFunction(FDInlineName)) {
1427           Clone->replaceAllUsesWith(Fn);
1428           Clone->eraseFromParent();
1429         }
1430         break;
1431       }
1432     }
1433   }
1434 
1435   // Check if we should generate debug info for this function.
1436   if (FD->hasAttr<NoDebugAttr>()) {
1437     // Clear non-distinct debug info that was possibly attached to the function
1438     // due to an earlier declaration without the nodebug attribute
1439     Fn->setSubprogram(nullptr);
1440     // Disable debug info indefinitely for this function
1441     DebugInfo = nullptr;
1442   }
1443 
1444   // The function might not have a body if we're generating thunks for a
1445   // function declaration.
1446   SourceRange BodyRange;
1447   if (Stmt *Body = FD->getBody())
1448     BodyRange = Body->getSourceRange();
1449   else
1450     BodyRange = FD->getLocation();
1451   CurEHLocation = BodyRange.getEnd();
1452 
1453   // Use the location of the start of the function to determine where
1454   // the function definition is located. By default use the location
1455   // of the declaration as the location for the subprogram. A function
1456   // may lack a declaration in the source code if it is created by code
1457   // gen. (examples: _GLOBAL__I_a, __cxx_global_array_dtor, thunk).
1458   SourceLocation Loc = FD->getLocation();
1459 
1460   // If this is a function specialization then use the pattern body
1461   // as the location for the function.
1462   if (const FunctionDecl *SpecDecl = FD->getTemplateInstantiationPattern())
1463     if (SpecDecl->hasBody(SpecDecl))
1464       Loc = SpecDecl->getLocation();
1465 
1466   Stmt *Body = FD->getBody();
1467 
1468   if (Body) {
1469     // Coroutines always emit lifetime markers.
1470     if (isa<CoroutineBodyStmt>(Body))
1471       ShouldEmitLifetimeMarkers = true;
1472 
1473     // Initialize helper which will detect jumps which can cause invalid
1474     // lifetime markers.
1475     if (ShouldEmitLifetimeMarkers)
1476       Bypasses.Init(Body);
1477   }
1478 
1479   // Emit the standard function prologue.
1480   StartFunction(GD, ResTy, Fn, FnInfo, Args, Loc, BodyRange.getBegin());
1481 
1482   // Save parameters for coroutine function.
1483   if (Body && isa_and_nonnull<CoroutineBodyStmt>(Body))
1484     llvm::append_range(FnArgs, FD->parameters());
1485 
1486   // Ensure that the function adheres to the forward progress guarantee, which
1487   // is required by certain optimizations.
1488   // In C++11 and up, the attribute will be removed if the body contains a
1489   // trivial empty loop.
1490   if (checkIfFunctionMustProgress())
1491     CurFn->addFnAttr(llvm::Attribute::MustProgress);
1492 
1493   // Generate the body of the function.
1494   PGO.assignRegionCounters(GD, CurFn);
1495   if (isa<CXXDestructorDecl>(FD))
1496     EmitDestructorBody(Args);
1497   else if (isa<CXXConstructorDecl>(FD))
1498     EmitConstructorBody(Args);
1499   else if (getLangOpts().CUDA &&
1500            !getLangOpts().CUDAIsDevice &&
1501            FD->hasAttr<CUDAGlobalAttr>())
1502     CGM.getCUDARuntime().emitDeviceStub(*this, Args);
1503   else if (isa<CXXMethodDecl>(FD) &&
1504            cast<CXXMethodDecl>(FD)->isLambdaStaticInvoker()) {
1505     // The lambda static invoker function is special, because it forwards or
1506     // clones the body of the function call operator (but is actually static).
1507     EmitLambdaStaticInvokeBody(cast<CXXMethodDecl>(FD));
1508   } else if (isa<CXXMethodDecl>(FD) &&
1509              isLambdaCallOperator(cast<CXXMethodDecl>(FD)) &&
1510              !FnInfo.isDelegateCall() &&
1511              cast<CXXMethodDecl>(FD)->getParent()->getLambdaStaticInvoker() &&
1512              hasInAllocaArg(cast<CXXMethodDecl>(FD))) {
1513     // If emitting a lambda with static invoker on X86 Windows, change
1514     // the call operator body.
1515     // Make sure that this is a call operator with an inalloca arg and check
1516     // for delegate call to make sure this is the original call op and not the
1517     // new forwarding function for the static invoker.
1518     EmitLambdaInAllocaCallOpBody(cast<CXXMethodDecl>(FD));
1519   } else if (FD->isDefaulted() && isa<CXXMethodDecl>(FD) &&
1520              (cast<CXXMethodDecl>(FD)->isCopyAssignmentOperator() ||
1521               cast<CXXMethodDecl>(FD)->isMoveAssignmentOperator())) {
1522     // Implicit copy-assignment gets the same special treatment as implicit
1523     // copy-constructors.
1524     emitImplicitAssignmentOperatorBody(Args);
1525   } else if (Body) {
1526     EmitFunctionBody(Body);
1527   } else
1528     llvm_unreachable("no definition for emitted function");
1529 
1530   // C++11 [stmt.return]p2:
1531   //   Flowing off the end of a function [...] results in undefined behavior in
1532   //   a value-returning function.
1533   // C11 6.9.1p12:
1534   //   If the '}' that terminates a function is reached, and the value of the
1535   //   function call is used by the caller, the behavior is undefined.
1536   if (getLangOpts().CPlusPlus && !FD->hasImplicitReturnZero() && !SawAsmBlock &&
1537       !FD->getReturnType()->isVoidType() && Builder.GetInsertBlock()) {
1538     bool ShouldEmitUnreachable =
1539         CGM.getCodeGenOpts().StrictReturn ||
1540         !CGM.MayDropFunctionReturn(FD->getASTContext(), FD->getReturnType());
1541     if (SanOpts.has(SanitizerKind::Return)) {
1542       SanitizerScope SanScope(this);
1543       llvm::Value *IsFalse = Builder.getFalse();
1544       EmitCheck(std::make_pair(IsFalse, SanitizerKind::Return),
1545                 SanitizerHandler::MissingReturn,
1546                 EmitCheckSourceLocation(FD->getLocation()), std::nullopt);
1547     } else if (ShouldEmitUnreachable) {
1548       if (CGM.getCodeGenOpts().OptimizationLevel == 0)
1549         EmitTrapCall(llvm::Intrinsic::trap);
1550     }
1551     if (SanOpts.has(SanitizerKind::Return) || ShouldEmitUnreachable) {
1552       Builder.CreateUnreachable();
1553       Builder.ClearInsertionPoint();
1554     }
1555   }
1556 
1557   // Emit the standard function epilogue.
1558   FinishFunction(BodyRange.getEnd());
1559 
1560   // If we haven't marked the function nothrow through other means, do
1561   // a quick pass now to see if we can.
1562   if (!CurFn->doesNotThrow())
1563     TryMarkNoThrow(CurFn);
1564 }
1565 
1566 /// ContainsLabel - Return true if the statement contains a label in it.  If
1567 /// this statement is not executed normally, it not containing a label means
1568 /// that we can just remove the code.
1569 bool CodeGenFunction::ContainsLabel(const Stmt *S, bool IgnoreCaseStmts) {
1570   // Null statement, not a label!
1571   if (!S) return false;
1572 
1573   // If this is a label, we have to emit the code, consider something like:
1574   // if (0) {  ...  foo:  bar(); }  goto foo;
1575   //
1576   // TODO: If anyone cared, we could track __label__'s, since we know that you
1577   // can't jump to one from outside their declared region.
1578   if (isa<LabelStmt>(S))
1579     return true;
1580 
1581   // If this is a case/default statement, and we haven't seen a switch, we have
1582   // to emit the code.
1583   if (isa<SwitchCase>(S) && !IgnoreCaseStmts)
1584     return true;
1585 
1586   // If this is a switch statement, we want to ignore cases below it.
1587   if (isa<SwitchStmt>(S))
1588     IgnoreCaseStmts = true;
1589 
1590   // Scan subexpressions for verboten labels.
1591   for (const Stmt *SubStmt : S->children())
1592     if (ContainsLabel(SubStmt, IgnoreCaseStmts))
1593       return true;
1594 
1595   return false;
1596 }
1597 
1598 /// containsBreak - Return true if the statement contains a break out of it.
1599 /// If the statement (recursively) contains a switch or loop with a break
1600 /// inside of it, this is fine.
1601 bool CodeGenFunction::containsBreak(const Stmt *S) {
1602   // Null statement, not a label!
1603   if (!S) return false;
1604 
1605   // If this is a switch or loop that defines its own break scope, then we can
1606   // include it and anything inside of it.
1607   if (isa<SwitchStmt>(S) || isa<WhileStmt>(S) || isa<DoStmt>(S) ||
1608       isa<ForStmt>(S))
1609     return false;
1610 
1611   if (isa<BreakStmt>(S))
1612     return true;
1613 
1614   // Scan subexpressions for verboten breaks.
1615   for (const Stmt *SubStmt : S->children())
1616     if (containsBreak(SubStmt))
1617       return true;
1618 
1619   return false;
1620 }
1621 
1622 bool CodeGenFunction::mightAddDeclToScope(const Stmt *S) {
1623   if (!S) return false;
1624 
1625   // Some statement kinds add a scope and thus never add a decl to the current
1626   // scope. Note, this list is longer than the list of statements that might
1627   // have an unscoped decl nested within them, but this way is conservatively
1628   // correct even if more statement kinds are added.
1629   if (isa<IfStmt>(S) || isa<SwitchStmt>(S) || isa<WhileStmt>(S) ||
1630       isa<DoStmt>(S) || isa<ForStmt>(S) || isa<CompoundStmt>(S) ||
1631       isa<CXXForRangeStmt>(S) || isa<CXXTryStmt>(S) ||
1632       isa<ObjCForCollectionStmt>(S) || isa<ObjCAtTryStmt>(S))
1633     return false;
1634 
1635   if (isa<DeclStmt>(S))
1636     return true;
1637 
1638   for (const Stmt *SubStmt : S->children())
1639     if (mightAddDeclToScope(SubStmt))
1640       return true;
1641 
1642   return false;
1643 }
1644 
1645 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold
1646 /// to a constant, or if it does but contains a label, return false.  If it
1647 /// constant folds return true and set the boolean result in Result.
1648 bool CodeGenFunction::ConstantFoldsToSimpleInteger(const Expr *Cond,
1649                                                    bool &ResultBool,
1650                                                    bool AllowLabels) {
1651   // If MC/DC is enabled, disable folding so that we can instrument all
1652   // conditions to yield complete test vectors. We still keep track of
1653   // folded conditions during region mapping and visualization.
1654   if (!AllowLabels && CGM.getCodeGenOpts().hasProfileClangInstr() &&
1655       CGM.getCodeGenOpts().MCDCCoverage)
1656     return false;
1657 
1658   llvm::APSInt ResultInt;
1659   if (!ConstantFoldsToSimpleInteger(Cond, ResultInt, AllowLabels))
1660     return false;
1661 
1662   ResultBool = ResultInt.getBoolValue();
1663   return true;
1664 }
1665 
1666 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold
1667 /// to a constant, or if it does but contains a label, return false.  If it
1668 /// constant folds return true and set the folded value.
1669 bool CodeGenFunction::ConstantFoldsToSimpleInteger(const Expr *Cond,
1670                                                    llvm::APSInt &ResultInt,
1671                                                    bool AllowLabels) {
1672   // FIXME: Rename and handle conversion of other evaluatable things
1673   // to bool.
1674   Expr::EvalResult Result;
1675   if (!Cond->EvaluateAsInt(Result, getContext()))
1676     return false;  // Not foldable, not integer or not fully evaluatable.
1677 
1678   llvm::APSInt Int = Result.Val.getInt();
1679   if (!AllowLabels && CodeGenFunction::ContainsLabel(Cond))
1680     return false;  // Contains a label.
1681 
1682   ResultInt = Int;
1683   return true;
1684 }
1685 
1686 /// Strip parentheses and simplistic logical-NOT operators.
1687 const Expr *CodeGenFunction::stripCond(const Expr *C) {
1688   while (const UnaryOperator *Op = dyn_cast<UnaryOperator>(C->IgnoreParens())) {
1689     if (Op->getOpcode() != UO_LNot)
1690       break;
1691     C = Op->getSubExpr();
1692   }
1693   return C->IgnoreParens();
1694 }
1695 
1696 /// Determine whether the given condition is an instrumentable condition
1697 /// (i.e. no "&&" or "||").
1698 bool CodeGenFunction::isInstrumentedCondition(const Expr *C) {
1699   const BinaryOperator *BOp = dyn_cast<BinaryOperator>(stripCond(C));
1700   return (!BOp || !BOp->isLogicalOp());
1701 }
1702 
1703 /// EmitBranchToCounterBlock - Emit a conditional branch to a new block that
1704 /// increments a profile counter based on the semantics of the given logical
1705 /// operator opcode.  This is used to instrument branch condition coverage for
1706 /// logical operators.
1707 void CodeGenFunction::EmitBranchToCounterBlock(
1708     const Expr *Cond, BinaryOperator::Opcode LOp, llvm::BasicBlock *TrueBlock,
1709     llvm::BasicBlock *FalseBlock, uint64_t TrueCount /* = 0 */,
1710     Stmt::Likelihood LH /* =None */, const Expr *CntrIdx /* = nullptr */) {
1711   // If not instrumenting, just emit a branch.
1712   bool InstrumentRegions = CGM.getCodeGenOpts().hasProfileClangInstr();
1713   if (!InstrumentRegions || !isInstrumentedCondition(Cond))
1714     return EmitBranchOnBoolExpr(Cond, TrueBlock, FalseBlock, TrueCount, LH);
1715 
1716   llvm::BasicBlock *ThenBlock = nullptr;
1717   llvm::BasicBlock *ElseBlock = nullptr;
1718   llvm::BasicBlock *NextBlock = nullptr;
1719 
1720   // Create the block we'll use to increment the appropriate counter.
1721   llvm::BasicBlock *CounterIncrBlock = createBasicBlock("lop.rhscnt");
1722 
1723   // Set block pointers according to Logical-AND (BO_LAnd) semantics. This
1724   // means we need to evaluate the condition and increment the counter on TRUE:
1725   //
1726   // if (Cond)
1727   //   goto CounterIncrBlock;
1728   // else
1729   //   goto FalseBlock;
1730   //
1731   // CounterIncrBlock:
1732   //   Counter++;
1733   //   goto TrueBlock;
1734 
1735   if (LOp == BO_LAnd) {
1736     ThenBlock = CounterIncrBlock;
1737     ElseBlock = FalseBlock;
1738     NextBlock = TrueBlock;
1739   }
1740 
1741   // Set block pointers according to Logical-OR (BO_LOr) semantics. This means
1742   // we need to evaluate the condition and increment the counter on FALSE:
1743   //
1744   // if (Cond)
1745   //   goto TrueBlock;
1746   // else
1747   //   goto CounterIncrBlock;
1748   //
1749   // CounterIncrBlock:
1750   //   Counter++;
1751   //   goto FalseBlock;
1752 
1753   else if (LOp == BO_LOr) {
1754     ThenBlock = TrueBlock;
1755     ElseBlock = CounterIncrBlock;
1756     NextBlock = FalseBlock;
1757   } else {
1758     llvm_unreachable("Expected Opcode must be that of a Logical Operator");
1759   }
1760 
1761   // Emit Branch based on condition.
1762   EmitBranchOnBoolExpr(Cond, ThenBlock, ElseBlock, TrueCount, LH);
1763 
1764   // Emit the block containing the counter increment(s).
1765   EmitBlock(CounterIncrBlock);
1766 
1767   // Increment corresponding counter; if index not provided, use Cond as index.
1768   incrementProfileCounter(CntrIdx ? CntrIdx : Cond);
1769 
1770   // Go to the next block.
1771   EmitBranch(NextBlock);
1772 }
1773 
1774 /// EmitBranchOnBoolExpr - Emit a branch on a boolean condition (e.g. for an if
1775 /// statement) to the specified blocks.  Based on the condition, this might try
1776 /// to simplify the codegen of the conditional based on the branch.
1777 /// \param LH The value of the likelihood attribute on the True branch.
1778 /// \param ConditionalOp Used by MC/DC code coverage to track the result of the
1779 /// ConditionalOperator (ternary) through a recursive call for the operator's
1780 /// LHS and RHS nodes.
1781 void CodeGenFunction::EmitBranchOnBoolExpr(
1782     const Expr *Cond, llvm::BasicBlock *TrueBlock, llvm::BasicBlock *FalseBlock,
1783     uint64_t TrueCount, Stmt::Likelihood LH, const Expr *ConditionalOp) {
1784   Cond = Cond->IgnoreParens();
1785 
1786   if (const BinaryOperator *CondBOp = dyn_cast<BinaryOperator>(Cond)) {
1787     // Handle X && Y in a condition.
1788     if (CondBOp->getOpcode() == BO_LAnd) {
1789       MCDCLogOpStack.push_back(CondBOp);
1790 
1791       // If we have "1 && X", simplify the code.  "0 && X" would have constant
1792       // folded if the case was simple enough.
1793       bool ConstantBool = false;
1794       if (ConstantFoldsToSimpleInteger(CondBOp->getLHS(), ConstantBool) &&
1795           ConstantBool) {
1796         // br(1 && X) -> br(X).
1797         incrementProfileCounter(CondBOp);
1798         EmitBranchToCounterBlock(CondBOp->getRHS(), BO_LAnd, TrueBlock,
1799                                  FalseBlock, TrueCount, LH);
1800         MCDCLogOpStack.pop_back();
1801         return;
1802       }
1803 
1804       // If we have "X && 1", simplify the code to use an uncond branch.
1805       // "X && 0" would have been constant folded to 0.
1806       if (ConstantFoldsToSimpleInteger(CondBOp->getRHS(), ConstantBool) &&
1807           ConstantBool) {
1808         // br(X && 1) -> br(X).
1809         EmitBranchToCounterBlock(CondBOp->getLHS(), BO_LAnd, TrueBlock,
1810                                  FalseBlock, TrueCount, LH, CondBOp);
1811         MCDCLogOpStack.pop_back();
1812         return;
1813       }
1814 
1815       // Emit the LHS as a conditional.  If the LHS conditional is false, we
1816       // want to jump to the FalseBlock.
1817       llvm::BasicBlock *LHSTrue = createBasicBlock("land.lhs.true");
1818       // The counter tells us how often we evaluate RHS, and all of TrueCount
1819       // can be propagated to that branch.
1820       uint64_t RHSCount = getProfileCount(CondBOp->getRHS());
1821 
1822       ConditionalEvaluation eval(*this);
1823       {
1824         ApplyDebugLocation DL(*this, Cond);
1825         // Propagate the likelihood attribute like __builtin_expect
1826         // __builtin_expect(X && Y, 1) -> X and Y are likely
1827         // __builtin_expect(X && Y, 0) -> only Y is unlikely
1828         EmitBranchOnBoolExpr(CondBOp->getLHS(), LHSTrue, FalseBlock, RHSCount,
1829                              LH == Stmt::LH_Unlikely ? Stmt::LH_None : LH);
1830         EmitBlock(LHSTrue);
1831       }
1832 
1833       incrementProfileCounter(CondBOp);
1834       setCurrentProfileCount(getProfileCount(CondBOp->getRHS()));
1835 
1836       // Any temporaries created here are conditional.
1837       eval.begin(*this);
1838       EmitBranchToCounterBlock(CondBOp->getRHS(), BO_LAnd, TrueBlock,
1839                                FalseBlock, TrueCount, LH);
1840       eval.end(*this);
1841       MCDCLogOpStack.pop_back();
1842       return;
1843     }
1844 
1845     if (CondBOp->getOpcode() == BO_LOr) {
1846       MCDCLogOpStack.push_back(CondBOp);
1847 
1848       // If we have "0 || X", simplify the code.  "1 || X" would have constant
1849       // folded if the case was simple enough.
1850       bool ConstantBool = false;
1851       if (ConstantFoldsToSimpleInteger(CondBOp->getLHS(), ConstantBool) &&
1852           !ConstantBool) {
1853         // br(0 || X) -> br(X).
1854         incrementProfileCounter(CondBOp);
1855         EmitBranchToCounterBlock(CondBOp->getRHS(), BO_LOr, TrueBlock,
1856                                  FalseBlock, TrueCount, LH);
1857         MCDCLogOpStack.pop_back();
1858         return;
1859       }
1860 
1861       // If we have "X || 0", simplify the code to use an uncond branch.
1862       // "X || 1" would have been constant folded to 1.
1863       if (ConstantFoldsToSimpleInteger(CondBOp->getRHS(), ConstantBool) &&
1864           !ConstantBool) {
1865         // br(X || 0) -> br(X).
1866         EmitBranchToCounterBlock(CondBOp->getLHS(), BO_LOr, TrueBlock,
1867                                  FalseBlock, TrueCount, LH, CondBOp);
1868         MCDCLogOpStack.pop_back();
1869         return;
1870       }
1871       // Emit the LHS as a conditional.  If the LHS conditional is true, we
1872       // want to jump to the TrueBlock.
1873       llvm::BasicBlock *LHSFalse = createBasicBlock("lor.lhs.false");
1874       // We have the count for entry to the RHS and for the whole expression
1875       // being true, so we can divy up True count between the short circuit and
1876       // the RHS.
1877       uint64_t LHSCount =
1878           getCurrentProfileCount() - getProfileCount(CondBOp->getRHS());
1879       uint64_t RHSCount = TrueCount - LHSCount;
1880 
1881       ConditionalEvaluation eval(*this);
1882       {
1883         // Propagate the likelihood attribute like __builtin_expect
1884         // __builtin_expect(X || Y, 1) -> only Y is likely
1885         // __builtin_expect(X || Y, 0) -> both X and Y are unlikely
1886         ApplyDebugLocation DL(*this, Cond);
1887         EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, LHSFalse, LHSCount,
1888                              LH == Stmt::LH_Likely ? Stmt::LH_None : LH);
1889         EmitBlock(LHSFalse);
1890       }
1891 
1892       incrementProfileCounter(CondBOp);
1893       setCurrentProfileCount(getProfileCount(CondBOp->getRHS()));
1894 
1895       // Any temporaries created here are conditional.
1896       eval.begin(*this);
1897       EmitBranchToCounterBlock(CondBOp->getRHS(), BO_LOr, TrueBlock, FalseBlock,
1898                                RHSCount, LH);
1899 
1900       eval.end(*this);
1901       MCDCLogOpStack.pop_back();
1902       return;
1903     }
1904   }
1905 
1906   if (const UnaryOperator *CondUOp = dyn_cast<UnaryOperator>(Cond)) {
1907     // br(!x, t, f) -> br(x, f, t)
1908     // Avoid doing this optimization when instrumenting a condition for MC/DC.
1909     // LNot is taken as part of the condition for simplicity, and changing its
1910     // sense negatively impacts test vector tracking.
1911     bool MCDCCondition = CGM.getCodeGenOpts().hasProfileClangInstr() &&
1912                          CGM.getCodeGenOpts().MCDCCoverage &&
1913                          isInstrumentedCondition(Cond);
1914     if (CondUOp->getOpcode() == UO_LNot && !MCDCCondition) {
1915       // Negate the count.
1916       uint64_t FalseCount = getCurrentProfileCount() - TrueCount;
1917       // The values of the enum are chosen to make this negation possible.
1918       LH = static_cast<Stmt::Likelihood>(-LH);
1919       // Negate the condition and swap the destination blocks.
1920       return EmitBranchOnBoolExpr(CondUOp->getSubExpr(), FalseBlock, TrueBlock,
1921                                   FalseCount, LH);
1922     }
1923   }
1924 
1925   if (const ConditionalOperator *CondOp = dyn_cast<ConditionalOperator>(Cond)) {
1926     // br(c ? x : y, t, f) -> br(c, br(x, t, f), br(y, t, f))
1927     llvm::BasicBlock *LHSBlock = createBasicBlock("cond.true");
1928     llvm::BasicBlock *RHSBlock = createBasicBlock("cond.false");
1929 
1930     // The ConditionalOperator itself has no likelihood information for its
1931     // true and false branches. This matches the behavior of __builtin_expect.
1932     ConditionalEvaluation cond(*this);
1933     EmitBranchOnBoolExpr(CondOp->getCond(), LHSBlock, RHSBlock,
1934                          getProfileCount(CondOp), Stmt::LH_None);
1935 
1936     // When computing PGO branch weights, we only know the overall count for
1937     // the true block. This code is essentially doing tail duplication of the
1938     // naive code-gen, introducing new edges for which counts are not
1939     // available. Divide the counts proportionally between the LHS and RHS of
1940     // the conditional operator.
1941     uint64_t LHSScaledTrueCount = 0;
1942     if (TrueCount) {
1943       double LHSRatio =
1944           getProfileCount(CondOp) / (double)getCurrentProfileCount();
1945       LHSScaledTrueCount = TrueCount * LHSRatio;
1946     }
1947 
1948     cond.begin(*this);
1949     EmitBlock(LHSBlock);
1950     incrementProfileCounter(CondOp);
1951     {
1952       ApplyDebugLocation DL(*this, Cond);
1953       EmitBranchOnBoolExpr(CondOp->getLHS(), TrueBlock, FalseBlock,
1954                            LHSScaledTrueCount, LH, CondOp);
1955     }
1956     cond.end(*this);
1957 
1958     cond.begin(*this);
1959     EmitBlock(RHSBlock);
1960     EmitBranchOnBoolExpr(CondOp->getRHS(), TrueBlock, FalseBlock,
1961                          TrueCount - LHSScaledTrueCount, LH, CondOp);
1962     cond.end(*this);
1963 
1964     return;
1965   }
1966 
1967   if (const CXXThrowExpr *Throw = dyn_cast<CXXThrowExpr>(Cond)) {
1968     // Conditional operator handling can give us a throw expression as a
1969     // condition for a case like:
1970     //   br(c ? throw x : y, t, f) -> br(c, br(throw x, t, f), br(y, t, f)
1971     // Fold this to:
1972     //   br(c, throw x, br(y, t, f))
1973     EmitCXXThrowExpr(Throw, /*KeepInsertionPoint*/false);
1974     return;
1975   }
1976 
1977   // Emit the code with the fully general case.
1978   llvm::Value *CondV;
1979   {
1980     ApplyDebugLocation DL(*this, Cond);
1981     CondV = EvaluateExprAsBool(Cond);
1982   }
1983 
1984   // If not at the top of the logical operator nest, update MCDC temp with the
1985   // boolean result of the evaluated condition.
1986   if (!MCDCLogOpStack.empty()) {
1987     const Expr *MCDCBaseExpr = Cond;
1988     // When a nested ConditionalOperator (ternary) is encountered in a boolean
1989     // expression, MC/DC tracks the result of the ternary, and this is tied to
1990     // the ConditionalOperator expression and not the ternary's LHS or RHS. If
1991     // this is the case, the ConditionalOperator expression is passed through
1992     // the ConditionalOp parameter and then used as the MCDC base expression.
1993     if (ConditionalOp)
1994       MCDCBaseExpr = ConditionalOp;
1995 
1996     maybeUpdateMCDCCondBitmap(MCDCBaseExpr, CondV);
1997   }
1998 
1999   llvm::MDNode *Weights = nullptr;
2000   llvm::MDNode *Unpredictable = nullptr;
2001 
2002   // If the branch has a condition wrapped by __builtin_unpredictable,
2003   // create metadata that specifies that the branch is unpredictable.
2004   // Don't bother if not optimizing because that metadata would not be used.
2005   auto *Call = dyn_cast<CallExpr>(Cond->IgnoreImpCasts());
2006   if (Call && CGM.getCodeGenOpts().OptimizationLevel != 0) {
2007     auto *FD = dyn_cast_or_null<FunctionDecl>(Call->getCalleeDecl());
2008     if (FD && FD->getBuiltinID() == Builtin::BI__builtin_unpredictable) {
2009       llvm::MDBuilder MDHelper(getLLVMContext());
2010       Unpredictable = MDHelper.createUnpredictable();
2011     }
2012   }
2013 
2014   // If there is a Likelihood knowledge for the cond, lower it.
2015   // Note that if not optimizing this won't emit anything.
2016   llvm::Value *NewCondV = emitCondLikelihoodViaExpectIntrinsic(CondV, LH);
2017   if (CondV != NewCondV)
2018     CondV = NewCondV;
2019   else {
2020     // Otherwise, lower profile counts. Note that we do this even at -O0.
2021     uint64_t CurrentCount = std::max(getCurrentProfileCount(), TrueCount);
2022     Weights = createProfileWeights(TrueCount, CurrentCount - TrueCount);
2023   }
2024 
2025   Builder.CreateCondBr(CondV, TrueBlock, FalseBlock, Weights, Unpredictable);
2026 }
2027 
2028 /// ErrorUnsupported - Print out an error that codegen doesn't support the
2029 /// specified stmt yet.
2030 void CodeGenFunction::ErrorUnsupported(const Stmt *S, const char *Type) {
2031   CGM.ErrorUnsupported(S, Type);
2032 }
2033 
2034 /// emitNonZeroVLAInit - Emit the "zero" initialization of a
2035 /// variable-length array whose elements have a non-zero bit-pattern.
2036 ///
2037 /// \param baseType the inner-most element type of the array
2038 /// \param src - a char* pointing to the bit-pattern for a single
2039 /// base element of the array
2040 /// \param sizeInChars - the total size of the VLA, in chars
2041 static void emitNonZeroVLAInit(CodeGenFunction &CGF, QualType baseType,
2042                                Address dest, Address src,
2043                                llvm::Value *sizeInChars) {
2044   CGBuilderTy &Builder = CGF.Builder;
2045 
2046   CharUnits baseSize = CGF.getContext().getTypeSizeInChars(baseType);
2047   llvm::Value *baseSizeInChars
2048     = llvm::ConstantInt::get(CGF.IntPtrTy, baseSize.getQuantity());
2049 
2050   Address begin = dest.withElementType(CGF.Int8Ty);
2051   llvm::Value *end = Builder.CreateInBoundsGEP(begin.getElementType(),
2052                                                begin.emitRawPointer(CGF),
2053                                                sizeInChars, "vla.end");
2054 
2055   llvm::BasicBlock *originBB = CGF.Builder.GetInsertBlock();
2056   llvm::BasicBlock *loopBB = CGF.createBasicBlock("vla-init.loop");
2057   llvm::BasicBlock *contBB = CGF.createBasicBlock("vla-init.cont");
2058 
2059   // Make a loop over the VLA.  C99 guarantees that the VLA element
2060   // count must be nonzero.
2061   CGF.EmitBlock(loopBB);
2062 
2063   llvm::PHINode *cur = Builder.CreatePHI(begin.getType(), 2, "vla.cur");
2064   cur->addIncoming(begin.emitRawPointer(CGF), originBB);
2065 
2066   CharUnits curAlign =
2067     dest.getAlignment().alignmentOfArrayElement(baseSize);
2068 
2069   // memcpy the individual element bit-pattern.
2070   Builder.CreateMemCpy(Address(cur, CGF.Int8Ty, curAlign), src, baseSizeInChars,
2071                        /*volatile*/ false);
2072 
2073   // Go to the next element.
2074   llvm::Value *next =
2075     Builder.CreateInBoundsGEP(CGF.Int8Ty, cur, baseSizeInChars, "vla.next");
2076 
2077   // Leave if that's the end of the VLA.
2078   llvm::Value *done = Builder.CreateICmpEQ(next, end, "vla-init.isdone");
2079   Builder.CreateCondBr(done, contBB, loopBB);
2080   cur->addIncoming(next, loopBB);
2081 
2082   CGF.EmitBlock(contBB);
2083 }
2084 
2085 void
2086 CodeGenFunction::EmitNullInitialization(Address DestPtr, QualType Ty) {
2087   // Ignore empty classes in C++.
2088   if (getLangOpts().CPlusPlus) {
2089     if (const RecordType *RT = Ty->getAs<RecordType>()) {
2090       if (cast<CXXRecordDecl>(RT->getDecl())->isEmpty())
2091         return;
2092     }
2093   }
2094 
2095   if (DestPtr.getElementType() != Int8Ty)
2096     DestPtr = DestPtr.withElementType(Int8Ty);
2097 
2098   // Get size and alignment info for this aggregate.
2099   CharUnits size = getContext().getTypeSizeInChars(Ty);
2100 
2101   llvm::Value *SizeVal;
2102   const VariableArrayType *vla;
2103 
2104   // Don't bother emitting a zero-byte memset.
2105   if (size.isZero()) {
2106     // But note that getTypeInfo returns 0 for a VLA.
2107     if (const VariableArrayType *vlaType =
2108           dyn_cast_or_null<VariableArrayType>(
2109                                           getContext().getAsArrayType(Ty))) {
2110       auto VlaSize = getVLASize(vlaType);
2111       SizeVal = VlaSize.NumElts;
2112       CharUnits eltSize = getContext().getTypeSizeInChars(VlaSize.Type);
2113       if (!eltSize.isOne())
2114         SizeVal = Builder.CreateNUWMul(SizeVal, CGM.getSize(eltSize));
2115       vla = vlaType;
2116     } else {
2117       return;
2118     }
2119   } else {
2120     SizeVal = CGM.getSize(size);
2121     vla = nullptr;
2122   }
2123 
2124   // If the type contains a pointer to data member we can't memset it to zero.
2125   // Instead, create a null constant and copy it to the destination.
2126   // TODO: there are other patterns besides zero that we can usefully memset,
2127   // like -1, which happens to be the pattern used by member-pointers.
2128   if (!CGM.getTypes().isZeroInitializable(Ty)) {
2129     // For a VLA, emit a single element, then splat that over the VLA.
2130     if (vla) Ty = getContext().getBaseElementType(vla);
2131 
2132     llvm::Constant *NullConstant = CGM.EmitNullConstant(Ty);
2133 
2134     llvm::GlobalVariable *NullVariable =
2135       new llvm::GlobalVariable(CGM.getModule(), NullConstant->getType(),
2136                                /*isConstant=*/true,
2137                                llvm::GlobalVariable::PrivateLinkage,
2138                                NullConstant, Twine());
2139     CharUnits NullAlign = DestPtr.getAlignment();
2140     NullVariable->setAlignment(NullAlign.getAsAlign());
2141     Address SrcPtr(NullVariable, Builder.getInt8Ty(), NullAlign);
2142 
2143     if (vla) return emitNonZeroVLAInit(*this, Ty, DestPtr, SrcPtr, SizeVal);
2144 
2145     // Get and call the appropriate llvm.memcpy overload.
2146     Builder.CreateMemCpy(DestPtr, SrcPtr, SizeVal, false);
2147     return;
2148   }
2149 
2150   // Otherwise, just memset the whole thing to zero.  This is legal
2151   // because in LLVM, all default initializers (other than the ones we just
2152   // handled above) are guaranteed to have a bit pattern of all zeros.
2153   Builder.CreateMemSet(DestPtr, Builder.getInt8(0), SizeVal, false);
2154 }
2155 
2156 llvm::BlockAddress *CodeGenFunction::GetAddrOfLabel(const LabelDecl *L) {
2157   // Make sure that there is a block for the indirect goto.
2158   if (!IndirectBranch)
2159     GetIndirectGotoBlock();
2160 
2161   llvm::BasicBlock *BB = getJumpDestForLabel(L).getBlock();
2162 
2163   // Make sure the indirect branch includes all of the address-taken blocks.
2164   IndirectBranch->addDestination(BB);
2165   return llvm::BlockAddress::get(CurFn, BB);
2166 }
2167 
2168 llvm::BasicBlock *CodeGenFunction::GetIndirectGotoBlock() {
2169   // If we already made the indirect branch for indirect goto, return its block.
2170   if (IndirectBranch) return IndirectBranch->getParent();
2171 
2172   CGBuilderTy TmpBuilder(*this, createBasicBlock("indirectgoto"));
2173 
2174   // Create the PHI node that indirect gotos will add entries to.
2175   llvm::Value *DestVal = TmpBuilder.CreatePHI(Int8PtrTy, 0,
2176                                               "indirect.goto.dest");
2177 
2178   // Create the indirect branch instruction.
2179   IndirectBranch = TmpBuilder.CreateIndirectBr(DestVal);
2180   return IndirectBranch->getParent();
2181 }
2182 
2183 /// Computes the length of an array in elements, as well as the base
2184 /// element type and a properly-typed first element pointer.
2185 llvm::Value *CodeGenFunction::emitArrayLength(const ArrayType *origArrayType,
2186                                               QualType &baseType,
2187                                               Address &addr) {
2188   const ArrayType *arrayType = origArrayType;
2189 
2190   // If it's a VLA, we have to load the stored size.  Note that
2191   // this is the size of the VLA in bytes, not its size in elements.
2192   llvm::Value *numVLAElements = nullptr;
2193   if (isa<VariableArrayType>(arrayType)) {
2194     numVLAElements = getVLASize(cast<VariableArrayType>(arrayType)).NumElts;
2195 
2196     // Walk into all VLAs.  This doesn't require changes to addr,
2197     // which has type T* where T is the first non-VLA element type.
2198     do {
2199       QualType elementType = arrayType->getElementType();
2200       arrayType = getContext().getAsArrayType(elementType);
2201 
2202       // If we only have VLA components, 'addr' requires no adjustment.
2203       if (!arrayType) {
2204         baseType = elementType;
2205         return numVLAElements;
2206       }
2207     } while (isa<VariableArrayType>(arrayType));
2208 
2209     // We get out here only if we find a constant array type
2210     // inside the VLA.
2211   }
2212 
2213   // We have some number of constant-length arrays, so addr should
2214   // have LLVM type [M x [N x [...]]]*.  Build a GEP that walks
2215   // down to the first element of addr.
2216   SmallVector<llvm::Value*, 8> gepIndices;
2217 
2218   // GEP down to the array type.
2219   llvm::ConstantInt *zero = Builder.getInt32(0);
2220   gepIndices.push_back(zero);
2221 
2222   uint64_t countFromCLAs = 1;
2223   QualType eltType;
2224 
2225   llvm::ArrayType *llvmArrayType =
2226     dyn_cast<llvm::ArrayType>(addr.getElementType());
2227   while (llvmArrayType) {
2228     assert(isa<ConstantArrayType>(arrayType));
2229     assert(cast<ConstantArrayType>(arrayType)->getZExtSize() ==
2230            llvmArrayType->getNumElements());
2231 
2232     gepIndices.push_back(zero);
2233     countFromCLAs *= llvmArrayType->getNumElements();
2234     eltType = arrayType->getElementType();
2235 
2236     llvmArrayType =
2237       dyn_cast<llvm::ArrayType>(llvmArrayType->getElementType());
2238     arrayType = getContext().getAsArrayType(arrayType->getElementType());
2239     assert((!llvmArrayType || arrayType) &&
2240            "LLVM and Clang types are out-of-synch");
2241   }
2242 
2243   if (arrayType) {
2244     // From this point onwards, the Clang array type has been emitted
2245     // as some other type (probably a packed struct). Compute the array
2246     // size, and just emit the 'begin' expression as a bitcast.
2247     while (arrayType) {
2248       countFromCLAs *= cast<ConstantArrayType>(arrayType)->getZExtSize();
2249       eltType = arrayType->getElementType();
2250       arrayType = getContext().getAsArrayType(eltType);
2251     }
2252 
2253     llvm::Type *baseType = ConvertType(eltType);
2254     addr = addr.withElementType(baseType);
2255   } else {
2256     // Create the actual GEP.
2257     addr = Address(Builder.CreateInBoundsGEP(addr.getElementType(),
2258                                              addr.emitRawPointer(*this),
2259                                              gepIndices, "array.begin"),
2260                    ConvertTypeForMem(eltType), addr.getAlignment());
2261   }
2262 
2263   baseType = eltType;
2264 
2265   llvm::Value *numElements
2266     = llvm::ConstantInt::get(SizeTy, countFromCLAs);
2267 
2268   // If we had any VLA dimensions, factor them in.
2269   if (numVLAElements)
2270     numElements = Builder.CreateNUWMul(numVLAElements, numElements);
2271 
2272   return numElements;
2273 }
2274 
2275 CodeGenFunction::VlaSizePair CodeGenFunction::getVLASize(QualType type) {
2276   const VariableArrayType *vla = getContext().getAsVariableArrayType(type);
2277   assert(vla && "type was not a variable array type!");
2278   return getVLASize(vla);
2279 }
2280 
2281 CodeGenFunction::VlaSizePair
2282 CodeGenFunction::getVLASize(const VariableArrayType *type) {
2283   // The number of elements so far; always size_t.
2284   llvm::Value *numElements = nullptr;
2285 
2286   QualType elementType;
2287   do {
2288     elementType = type->getElementType();
2289     llvm::Value *vlaSize = VLASizeMap[type->getSizeExpr()];
2290     assert(vlaSize && "no size for VLA!");
2291     assert(vlaSize->getType() == SizeTy);
2292 
2293     if (!numElements) {
2294       numElements = vlaSize;
2295     } else {
2296       // It's undefined behavior if this wraps around, so mark it that way.
2297       // FIXME: Teach -fsanitize=undefined to trap this.
2298       numElements = Builder.CreateNUWMul(numElements, vlaSize);
2299     }
2300   } while ((type = getContext().getAsVariableArrayType(elementType)));
2301 
2302   return { numElements, elementType };
2303 }
2304 
2305 CodeGenFunction::VlaSizePair
2306 CodeGenFunction::getVLAElements1D(QualType type) {
2307   const VariableArrayType *vla = getContext().getAsVariableArrayType(type);
2308   assert(vla && "type was not a variable array type!");
2309   return getVLAElements1D(vla);
2310 }
2311 
2312 CodeGenFunction::VlaSizePair
2313 CodeGenFunction::getVLAElements1D(const VariableArrayType *Vla) {
2314   llvm::Value *VlaSize = VLASizeMap[Vla->getSizeExpr()];
2315   assert(VlaSize && "no size for VLA!");
2316   assert(VlaSize->getType() == SizeTy);
2317   return { VlaSize, Vla->getElementType() };
2318 }
2319 
2320 void CodeGenFunction::EmitVariablyModifiedType(QualType type) {
2321   assert(type->isVariablyModifiedType() &&
2322          "Must pass variably modified type to EmitVLASizes!");
2323 
2324   EnsureInsertPoint();
2325 
2326   // We're going to walk down into the type and look for VLA
2327   // expressions.
2328   do {
2329     assert(type->isVariablyModifiedType());
2330 
2331     const Type *ty = type.getTypePtr();
2332     switch (ty->getTypeClass()) {
2333 
2334 #define TYPE(Class, Base)
2335 #define ABSTRACT_TYPE(Class, Base)
2336 #define NON_CANONICAL_TYPE(Class, Base)
2337 #define DEPENDENT_TYPE(Class, Base) case Type::Class:
2338 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base)
2339 #include "clang/AST/TypeNodes.inc"
2340       llvm_unreachable("unexpected dependent type!");
2341 
2342     // These types are never variably-modified.
2343     case Type::Builtin:
2344     case Type::Complex:
2345     case Type::Vector:
2346     case Type::ExtVector:
2347     case Type::ConstantMatrix:
2348     case Type::Record:
2349     case Type::Enum:
2350     case Type::Using:
2351     case Type::TemplateSpecialization:
2352     case Type::ObjCTypeParam:
2353     case Type::ObjCObject:
2354     case Type::ObjCInterface:
2355     case Type::ObjCObjectPointer:
2356     case Type::BitInt:
2357       llvm_unreachable("type class is never variably-modified!");
2358 
2359     case Type::Elaborated:
2360       type = cast<ElaboratedType>(ty)->getNamedType();
2361       break;
2362 
2363     case Type::Adjusted:
2364       type = cast<AdjustedType>(ty)->getAdjustedType();
2365       break;
2366 
2367     case Type::Decayed:
2368       type = cast<DecayedType>(ty)->getPointeeType();
2369       break;
2370 
2371     case Type::Pointer:
2372       type = cast<PointerType>(ty)->getPointeeType();
2373       break;
2374 
2375     case Type::BlockPointer:
2376       type = cast<BlockPointerType>(ty)->getPointeeType();
2377       break;
2378 
2379     case Type::LValueReference:
2380     case Type::RValueReference:
2381       type = cast<ReferenceType>(ty)->getPointeeType();
2382       break;
2383 
2384     case Type::MemberPointer:
2385       type = cast<MemberPointerType>(ty)->getPointeeType();
2386       break;
2387 
2388     case Type::ArrayParameter:
2389     case Type::ConstantArray:
2390     case Type::IncompleteArray:
2391       // Losing element qualification here is fine.
2392       type = cast<ArrayType>(ty)->getElementType();
2393       break;
2394 
2395     case Type::VariableArray: {
2396       // Losing element qualification here is fine.
2397       const VariableArrayType *vat = cast<VariableArrayType>(ty);
2398 
2399       // Unknown size indication requires no size computation.
2400       // Otherwise, evaluate and record it.
2401       if (const Expr *sizeExpr = vat->getSizeExpr()) {
2402         // It's possible that we might have emitted this already,
2403         // e.g. with a typedef and a pointer to it.
2404         llvm::Value *&entry = VLASizeMap[sizeExpr];
2405         if (!entry) {
2406           llvm::Value *size = EmitScalarExpr(sizeExpr);
2407 
2408           // C11 6.7.6.2p5:
2409           //   If the size is an expression that is not an integer constant
2410           //   expression [...] each time it is evaluated it shall have a value
2411           //   greater than zero.
2412           if (SanOpts.has(SanitizerKind::VLABound)) {
2413             SanitizerScope SanScope(this);
2414             llvm::Value *Zero = llvm::Constant::getNullValue(size->getType());
2415             clang::QualType SEType = sizeExpr->getType();
2416             llvm::Value *CheckCondition =
2417                 SEType->isSignedIntegerType()
2418                     ? Builder.CreateICmpSGT(size, Zero)
2419                     : Builder.CreateICmpUGT(size, Zero);
2420             llvm::Constant *StaticArgs[] = {
2421                 EmitCheckSourceLocation(sizeExpr->getBeginLoc()),
2422                 EmitCheckTypeDescriptor(SEType)};
2423             EmitCheck(std::make_pair(CheckCondition, SanitizerKind::VLABound),
2424                       SanitizerHandler::VLABoundNotPositive, StaticArgs, size);
2425           }
2426 
2427           // Always zexting here would be wrong if it weren't
2428           // undefined behavior to have a negative bound.
2429           // FIXME: What about when size's type is larger than size_t?
2430           entry = Builder.CreateIntCast(size, SizeTy, /*signed*/ false);
2431         }
2432       }
2433       type = vat->getElementType();
2434       break;
2435     }
2436 
2437     case Type::FunctionProto:
2438     case Type::FunctionNoProto:
2439       type = cast<FunctionType>(ty)->getReturnType();
2440       break;
2441 
2442     case Type::Paren:
2443     case Type::TypeOf:
2444     case Type::UnaryTransform:
2445     case Type::Attributed:
2446     case Type::BTFTagAttributed:
2447     case Type::SubstTemplateTypeParm:
2448     case Type::MacroQualified:
2449     case Type::CountAttributed:
2450       // Keep walking after single level desugaring.
2451       type = type.getSingleStepDesugaredType(getContext());
2452       break;
2453 
2454     case Type::Typedef:
2455     case Type::Decltype:
2456     case Type::Auto:
2457     case Type::DeducedTemplateSpecialization:
2458     case Type::PackIndexing:
2459       // Stop walking: nothing to do.
2460       return;
2461 
2462     case Type::TypeOfExpr:
2463       // Stop walking: emit typeof expression.
2464       EmitIgnoredExpr(cast<TypeOfExprType>(ty)->getUnderlyingExpr());
2465       return;
2466 
2467     case Type::Atomic:
2468       type = cast<AtomicType>(ty)->getValueType();
2469       break;
2470 
2471     case Type::Pipe:
2472       type = cast<PipeType>(ty)->getElementType();
2473       break;
2474     }
2475   } while (type->isVariablyModifiedType());
2476 }
2477 
2478 Address CodeGenFunction::EmitVAListRef(const Expr* E) {
2479   if (getContext().getBuiltinVaListType()->isArrayType())
2480     return EmitPointerWithAlignment(E);
2481   return EmitLValue(E).getAddress();
2482 }
2483 
2484 Address CodeGenFunction::EmitMSVAListRef(const Expr *E) {
2485   return EmitLValue(E).getAddress();
2486 }
2487 
2488 void CodeGenFunction::EmitDeclRefExprDbgValue(const DeclRefExpr *E,
2489                                               const APValue &Init) {
2490   assert(Init.hasValue() && "Invalid DeclRefExpr initializer!");
2491   if (CGDebugInfo *Dbg = getDebugInfo())
2492     if (CGM.getCodeGenOpts().hasReducedDebugInfo())
2493       Dbg->EmitGlobalVariable(E->getDecl(), Init);
2494 }
2495 
2496 CodeGenFunction::PeepholeProtection
2497 CodeGenFunction::protectFromPeepholes(RValue rvalue) {
2498   // At the moment, the only aggressive peephole we do in IR gen
2499   // is trunc(zext) folding, but if we add more, we can easily
2500   // extend this protection.
2501 
2502   if (!rvalue.isScalar()) return PeepholeProtection();
2503   llvm::Value *value = rvalue.getScalarVal();
2504   if (!isa<llvm::ZExtInst>(value)) return PeepholeProtection();
2505 
2506   // Just make an extra bitcast.
2507   assert(HaveInsertPoint());
2508   llvm::Instruction *inst = new llvm::BitCastInst(value, value->getType(), "",
2509                                                   Builder.GetInsertBlock());
2510 
2511   PeepholeProtection protection;
2512   protection.Inst = inst;
2513   return protection;
2514 }
2515 
2516 void CodeGenFunction::unprotectFromPeepholes(PeepholeProtection protection) {
2517   if (!protection.Inst) return;
2518 
2519   // In theory, we could try to duplicate the peepholes now, but whatever.
2520   protection.Inst->eraseFromParent();
2521 }
2522 
2523 void CodeGenFunction::emitAlignmentAssumption(llvm::Value *PtrValue,
2524                                               QualType Ty, SourceLocation Loc,
2525                                               SourceLocation AssumptionLoc,
2526                                               llvm::Value *Alignment,
2527                                               llvm::Value *OffsetValue) {
2528   if (Alignment->getType() != IntPtrTy)
2529     Alignment =
2530         Builder.CreateIntCast(Alignment, IntPtrTy, false, "casted.align");
2531   if (OffsetValue && OffsetValue->getType() != IntPtrTy)
2532     OffsetValue =
2533         Builder.CreateIntCast(OffsetValue, IntPtrTy, true, "casted.offset");
2534   llvm::Value *TheCheck = nullptr;
2535   if (SanOpts.has(SanitizerKind::Alignment)) {
2536     llvm::Value *PtrIntValue =
2537         Builder.CreatePtrToInt(PtrValue, IntPtrTy, "ptrint");
2538 
2539     if (OffsetValue) {
2540       bool IsOffsetZero = false;
2541       if (const auto *CI = dyn_cast<llvm::ConstantInt>(OffsetValue))
2542         IsOffsetZero = CI->isZero();
2543 
2544       if (!IsOffsetZero)
2545         PtrIntValue = Builder.CreateSub(PtrIntValue, OffsetValue, "offsetptr");
2546     }
2547 
2548     llvm::Value *Zero = llvm::ConstantInt::get(IntPtrTy, 0);
2549     llvm::Value *Mask =
2550         Builder.CreateSub(Alignment, llvm::ConstantInt::get(IntPtrTy, 1));
2551     llvm::Value *MaskedPtr = Builder.CreateAnd(PtrIntValue, Mask, "maskedptr");
2552     TheCheck = Builder.CreateICmpEQ(MaskedPtr, Zero, "maskcond");
2553   }
2554   llvm::Instruction *Assumption = Builder.CreateAlignmentAssumption(
2555       CGM.getDataLayout(), PtrValue, Alignment, OffsetValue);
2556 
2557   if (!SanOpts.has(SanitizerKind::Alignment))
2558     return;
2559   emitAlignmentAssumptionCheck(PtrValue, Ty, Loc, AssumptionLoc, Alignment,
2560                                OffsetValue, TheCheck, Assumption);
2561 }
2562 
2563 void CodeGenFunction::emitAlignmentAssumption(llvm::Value *PtrValue,
2564                                               const Expr *E,
2565                                               SourceLocation AssumptionLoc,
2566                                               llvm::Value *Alignment,
2567                                               llvm::Value *OffsetValue) {
2568   QualType Ty = E->getType();
2569   SourceLocation Loc = E->getExprLoc();
2570 
2571   emitAlignmentAssumption(PtrValue, Ty, Loc, AssumptionLoc, Alignment,
2572                           OffsetValue);
2573 }
2574 
2575 llvm::Value *CodeGenFunction::EmitAnnotationCall(llvm::Function *AnnotationFn,
2576                                                  llvm::Value *AnnotatedVal,
2577                                                  StringRef AnnotationStr,
2578                                                  SourceLocation Location,
2579                                                  const AnnotateAttr *Attr) {
2580   SmallVector<llvm::Value *, 5> Args = {
2581       AnnotatedVal,
2582       CGM.EmitAnnotationString(AnnotationStr),
2583       CGM.EmitAnnotationUnit(Location),
2584       CGM.EmitAnnotationLineNo(Location),
2585   };
2586   if (Attr)
2587     Args.push_back(CGM.EmitAnnotationArgs(Attr));
2588   return Builder.CreateCall(AnnotationFn, Args);
2589 }
2590 
2591 void CodeGenFunction::EmitVarAnnotations(const VarDecl *D, llvm::Value *V) {
2592   assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute");
2593   for (const auto *I : D->specific_attrs<AnnotateAttr>())
2594     EmitAnnotationCall(CGM.getIntrinsic(llvm::Intrinsic::var_annotation,
2595                                         {V->getType(), CGM.ConstGlobalsPtrTy}),
2596                        V, I->getAnnotation(), D->getLocation(), I);
2597 }
2598 
2599 Address CodeGenFunction::EmitFieldAnnotations(const FieldDecl *D,
2600                                               Address Addr) {
2601   assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute");
2602   llvm::Value *V = Addr.emitRawPointer(*this);
2603   llvm::Type *VTy = V->getType();
2604   auto *PTy = dyn_cast<llvm::PointerType>(VTy);
2605   unsigned AS = PTy ? PTy->getAddressSpace() : 0;
2606   llvm::PointerType *IntrinTy =
2607       llvm::PointerType::get(CGM.getLLVMContext(), AS);
2608   llvm::Function *F = CGM.getIntrinsic(llvm::Intrinsic::ptr_annotation,
2609                                        {IntrinTy, CGM.ConstGlobalsPtrTy});
2610 
2611   for (const auto *I : D->specific_attrs<AnnotateAttr>()) {
2612     // FIXME Always emit the cast inst so we can differentiate between
2613     // annotation on the first field of a struct and annotation on the struct
2614     // itself.
2615     if (VTy != IntrinTy)
2616       V = Builder.CreateBitCast(V, IntrinTy);
2617     V = EmitAnnotationCall(F, V, I->getAnnotation(), D->getLocation(), I);
2618     V = Builder.CreateBitCast(V, VTy);
2619   }
2620 
2621   return Address(V, Addr.getElementType(), Addr.getAlignment());
2622 }
2623 
2624 CodeGenFunction::CGCapturedStmtInfo::~CGCapturedStmtInfo() { }
2625 
2626 CodeGenFunction::SanitizerScope::SanitizerScope(CodeGenFunction *CGF)
2627     : CGF(CGF) {
2628   assert(!CGF->IsSanitizerScope);
2629   CGF->IsSanitizerScope = true;
2630 }
2631 
2632 CodeGenFunction::SanitizerScope::~SanitizerScope() {
2633   CGF->IsSanitizerScope = false;
2634 }
2635 
2636 void CodeGenFunction::InsertHelper(llvm::Instruction *I,
2637                                    const llvm::Twine &Name,
2638                                    llvm::BasicBlock *BB,
2639                                    llvm::BasicBlock::iterator InsertPt) const {
2640   LoopStack.InsertHelper(I);
2641   if (IsSanitizerScope)
2642     I->setNoSanitizeMetadata();
2643 }
2644 
2645 void CGBuilderInserter::InsertHelper(
2646     llvm::Instruction *I, const llvm::Twine &Name, llvm::BasicBlock *BB,
2647     llvm::BasicBlock::iterator InsertPt) const {
2648   llvm::IRBuilderDefaultInserter::InsertHelper(I, Name, BB, InsertPt);
2649   if (CGF)
2650     CGF->InsertHelper(I, Name, BB, InsertPt);
2651 }
2652 
2653 // Emits an error if we don't have a valid set of target features for the
2654 // called function.
2655 void CodeGenFunction::checkTargetFeatures(const CallExpr *E,
2656                                           const FunctionDecl *TargetDecl) {
2657   // SemaChecking cannot handle below x86 builtins because they have different
2658   // parameter ranges with different TargetAttribute of caller.
2659   if (CGM.getContext().getTargetInfo().getTriple().isX86()) {
2660     unsigned BuiltinID = TargetDecl->getBuiltinID();
2661     if (BuiltinID == X86::BI__builtin_ia32_cmpps ||
2662         BuiltinID == X86::BI__builtin_ia32_cmpss ||
2663         BuiltinID == X86::BI__builtin_ia32_cmppd ||
2664         BuiltinID == X86::BI__builtin_ia32_cmpsd) {
2665       const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(CurCodeDecl);
2666       llvm::StringMap<bool> TargetFetureMap;
2667       CGM.getContext().getFunctionFeatureMap(TargetFetureMap, FD);
2668       llvm::APSInt Result =
2669           *(E->getArg(2)->getIntegerConstantExpr(CGM.getContext()));
2670       if (Result.getSExtValue() > 7 && !TargetFetureMap.lookup("avx"))
2671         CGM.getDiags().Report(E->getBeginLoc(), diag::err_builtin_needs_feature)
2672             << TargetDecl->getDeclName() << "avx";
2673     }
2674   }
2675   return checkTargetFeatures(E->getBeginLoc(), TargetDecl);
2676 }
2677 
2678 // Emits an error if we don't have a valid set of target features for the
2679 // called function.
2680 void CodeGenFunction::checkTargetFeatures(SourceLocation Loc,
2681                                           const FunctionDecl *TargetDecl) {
2682   // Early exit if this is an indirect call.
2683   if (!TargetDecl)
2684     return;
2685 
2686   // Get the current enclosing function if it exists. If it doesn't
2687   // we can't check the target features anyhow.
2688   const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(CurCodeDecl);
2689   if (!FD)
2690     return;
2691 
2692   // Grab the required features for the call. For a builtin this is listed in
2693   // the td file with the default cpu, for an always_inline function this is any
2694   // listed cpu and any listed features.
2695   unsigned BuiltinID = TargetDecl->getBuiltinID();
2696   std::string MissingFeature;
2697   llvm::StringMap<bool> CallerFeatureMap;
2698   CGM.getContext().getFunctionFeatureMap(CallerFeatureMap, FD);
2699   // When compiling in HipStdPar mode we have to be conservative in rejecting
2700   // target specific features in the FE, and defer the possible error to the
2701   // AcceleratorCodeSelection pass, wherein iff an unsupported target builtin is
2702   // referenced by an accelerator executable function, we emit an error.
2703   bool IsHipStdPar = getLangOpts().HIPStdPar && getLangOpts().CUDAIsDevice;
2704   if (BuiltinID) {
2705     StringRef FeatureList(CGM.getContext().BuiltinInfo.getRequiredFeatures(BuiltinID));
2706     if (!Builtin::evaluateRequiredTargetFeatures(
2707         FeatureList, CallerFeatureMap) && !IsHipStdPar) {
2708       CGM.getDiags().Report(Loc, diag::err_builtin_needs_feature)
2709           << TargetDecl->getDeclName()
2710           << FeatureList;
2711     }
2712   } else if (!TargetDecl->isMultiVersion() &&
2713              TargetDecl->hasAttr<TargetAttr>()) {
2714     // Get the required features for the callee.
2715 
2716     const TargetAttr *TD = TargetDecl->getAttr<TargetAttr>();
2717     ParsedTargetAttr ParsedAttr =
2718         CGM.getContext().filterFunctionTargetAttrs(TD);
2719 
2720     SmallVector<StringRef, 1> ReqFeatures;
2721     llvm::StringMap<bool> CalleeFeatureMap;
2722     CGM.getContext().getFunctionFeatureMap(CalleeFeatureMap, TargetDecl);
2723 
2724     for (const auto &F : ParsedAttr.Features) {
2725       if (F[0] == '+' && CalleeFeatureMap.lookup(F.substr(1)))
2726         ReqFeatures.push_back(StringRef(F).substr(1));
2727     }
2728 
2729     for (const auto &F : CalleeFeatureMap) {
2730       // Only positive features are "required".
2731       if (F.getValue())
2732         ReqFeatures.push_back(F.getKey());
2733     }
2734     if (!llvm::all_of(ReqFeatures, [&](StringRef Feature) {
2735       if (!CallerFeatureMap.lookup(Feature)) {
2736         MissingFeature = Feature.str();
2737         return false;
2738       }
2739       return true;
2740     }) && !IsHipStdPar)
2741       CGM.getDiags().Report(Loc, diag::err_function_needs_feature)
2742           << FD->getDeclName() << TargetDecl->getDeclName() << MissingFeature;
2743   } else if (!FD->isMultiVersion() && FD->hasAttr<TargetAttr>()) {
2744     llvm::StringMap<bool> CalleeFeatureMap;
2745     CGM.getContext().getFunctionFeatureMap(CalleeFeatureMap, TargetDecl);
2746 
2747     for (const auto &F : CalleeFeatureMap) {
2748       if (F.getValue() && (!CallerFeatureMap.lookup(F.getKey()) ||
2749                            !CallerFeatureMap.find(F.getKey())->getValue()) &&
2750           !IsHipStdPar)
2751         CGM.getDiags().Report(Loc, diag::err_function_needs_feature)
2752             << FD->getDeclName() << TargetDecl->getDeclName() << F.getKey();
2753     }
2754   }
2755 }
2756 
2757 void CodeGenFunction::EmitSanitizerStatReport(llvm::SanitizerStatKind SSK) {
2758   if (!CGM.getCodeGenOpts().SanitizeStats)
2759     return;
2760 
2761   llvm::IRBuilder<> IRB(Builder.GetInsertBlock(), Builder.GetInsertPoint());
2762   IRB.SetCurrentDebugLocation(Builder.getCurrentDebugLocation());
2763   CGM.getSanStats().create(IRB, SSK);
2764 }
2765 
2766 void CodeGenFunction::EmitKCFIOperandBundle(
2767     const CGCallee &Callee, SmallVectorImpl<llvm::OperandBundleDef> &Bundles) {
2768   const FunctionProtoType *FP =
2769       Callee.getAbstractInfo().getCalleeFunctionProtoType();
2770   if (FP)
2771     Bundles.emplace_back("kcfi", CGM.CreateKCFITypeId(FP->desugar()));
2772 }
2773 
2774 llvm::Value *CodeGenFunction::FormAArch64ResolverCondition(
2775     const MultiVersionResolverOption &RO) {
2776   llvm::SmallVector<StringRef, 8> CondFeatures;
2777   for (const StringRef &Feature : RO.Conditions.Features) {
2778     // Optimize the Function Multi Versioning resolver by creating conditions
2779     // only for features that are not enabled in the target. The exception is
2780     // for features whose extension instructions are executed as NOP on targets
2781     // without extension support.
2782     if (!getContext().getTargetInfo().hasFeature(Feature) || Feature == "bti" ||
2783         Feature == "memtag" || Feature == "memtag2" || Feature == "memtag3" ||
2784         Feature == "dgh")
2785       CondFeatures.push_back(Feature);
2786   }
2787   if (!CondFeatures.empty()) {
2788     return EmitAArch64CpuSupports(CondFeatures);
2789   }
2790   return nullptr;
2791 }
2792 
2793 llvm::Value *CodeGenFunction::FormX86ResolverCondition(
2794     const MultiVersionResolverOption &RO) {
2795   llvm::Value *Condition = nullptr;
2796 
2797   if (!RO.Conditions.Architecture.empty()) {
2798     StringRef Arch = RO.Conditions.Architecture;
2799     // If arch= specifies an x86-64 micro-architecture level, test the feature
2800     // with __builtin_cpu_supports, otherwise use __builtin_cpu_is.
2801     if (Arch.starts_with("x86-64"))
2802       Condition = EmitX86CpuSupports({Arch});
2803     else
2804       Condition = EmitX86CpuIs(Arch);
2805   }
2806 
2807   if (!RO.Conditions.Features.empty()) {
2808     llvm::Value *FeatureCond = EmitX86CpuSupports(RO.Conditions.Features);
2809     Condition =
2810         Condition ? Builder.CreateAnd(Condition, FeatureCond) : FeatureCond;
2811   }
2812   return Condition;
2813 }
2814 
2815 static void CreateMultiVersionResolverReturn(CodeGenModule &CGM,
2816                                              llvm::Function *Resolver,
2817                                              CGBuilderTy &Builder,
2818                                              llvm::Function *FuncToReturn,
2819                                              bool SupportsIFunc) {
2820   if (SupportsIFunc) {
2821     Builder.CreateRet(FuncToReturn);
2822     return;
2823   }
2824 
2825   llvm::SmallVector<llvm::Value *, 10> Args(
2826       llvm::make_pointer_range(Resolver->args()));
2827 
2828   llvm::CallInst *Result = Builder.CreateCall(FuncToReturn, Args);
2829   Result->setTailCallKind(llvm::CallInst::TCK_MustTail);
2830 
2831   if (Resolver->getReturnType()->isVoidTy())
2832     Builder.CreateRetVoid();
2833   else
2834     Builder.CreateRet(Result);
2835 }
2836 
2837 void CodeGenFunction::EmitMultiVersionResolver(
2838     llvm::Function *Resolver, ArrayRef<MultiVersionResolverOption> Options) {
2839 
2840   llvm::Triple::ArchType ArchType =
2841       getContext().getTargetInfo().getTriple().getArch();
2842 
2843   switch (ArchType) {
2844   case llvm::Triple::x86:
2845   case llvm::Triple::x86_64:
2846     EmitX86MultiVersionResolver(Resolver, Options);
2847     return;
2848   case llvm::Triple::aarch64:
2849     EmitAArch64MultiVersionResolver(Resolver, Options);
2850     return;
2851 
2852   default:
2853     assert(false && "Only implemented for x86 and AArch64 targets");
2854   }
2855 }
2856 
2857 void CodeGenFunction::EmitAArch64MultiVersionResolver(
2858     llvm::Function *Resolver, ArrayRef<MultiVersionResolverOption> Options) {
2859   assert(!Options.empty() && "No multiversion resolver options found");
2860   assert(Options.back().Conditions.Features.size() == 0 &&
2861          "Default case must be last");
2862   bool SupportsIFunc = getContext().getTargetInfo().supportsIFunc();
2863   assert(SupportsIFunc &&
2864          "Multiversion resolver requires target IFUNC support");
2865   bool AArch64CpuInitialized = false;
2866   llvm::BasicBlock *CurBlock = createBasicBlock("resolver_entry", Resolver);
2867 
2868   for (const MultiVersionResolverOption &RO : Options) {
2869     Builder.SetInsertPoint(CurBlock);
2870     llvm::Value *Condition = FormAArch64ResolverCondition(RO);
2871 
2872     // The 'default' or 'all features enabled' case.
2873     if (!Condition) {
2874       CreateMultiVersionResolverReturn(CGM, Resolver, Builder, RO.Function,
2875                                        SupportsIFunc);
2876       return;
2877     }
2878 
2879     if (!AArch64CpuInitialized) {
2880       Builder.SetInsertPoint(CurBlock, CurBlock->begin());
2881       EmitAArch64CpuInit();
2882       AArch64CpuInitialized = true;
2883       Builder.SetInsertPoint(CurBlock);
2884     }
2885 
2886     llvm::BasicBlock *RetBlock = createBasicBlock("resolver_return", Resolver);
2887     CGBuilderTy RetBuilder(*this, RetBlock);
2888     CreateMultiVersionResolverReturn(CGM, Resolver, RetBuilder, RO.Function,
2889                                      SupportsIFunc);
2890     CurBlock = createBasicBlock("resolver_else", Resolver);
2891     Builder.CreateCondBr(Condition, RetBlock, CurBlock);
2892   }
2893 
2894   // If no default, emit an unreachable.
2895   Builder.SetInsertPoint(CurBlock);
2896   llvm::CallInst *TrapCall = EmitTrapCall(llvm::Intrinsic::trap);
2897   TrapCall->setDoesNotReturn();
2898   TrapCall->setDoesNotThrow();
2899   Builder.CreateUnreachable();
2900   Builder.ClearInsertionPoint();
2901 }
2902 
2903 void CodeGenFunction::EmitX86MultiVersionResolver(
2904     llvm::Function *Resolver, ArrayRef<MultiVersionResolverOption> Options) {
2905 
2906   bool SupportsIFunc = getContext().getTargetInfo().supportsIFunc();
2907 
2908   // Main function's basic block.
2909   llvm::BasicBlock *CurBlock = createBasicBlock("resolver_entry", Resolver);
2910   Builder.SetInsertPoint(CurBlock);
2911   EmitX86CpuInit();
2912 
2913   for (const MultiVersionResolverOption &RO : Options) {
2914     Builder.SetInsertPoint(CurBlock);
2915     llvm::Value *Condition = FormX86ResolverCondition(RO);
2916 
2917     // The 'default' or 'generic' case.
2918     if (!Condition) {
2919       assert(&RO == Options.end() - 1 &&
2920              "Default or Generic case must be last");
2921       CreateMultiVersionResolverReturn(CGM, Resolver, Builder, RO.Function,
2922                                        SupportsIFunc);
2923       return;
2924     }
2925 
2926     llvm::BasicBlock *RetBlock = createBasicBlock("resolver_return", Resolver);
2927     CGBuilderTy RetBuilder(*this, RetBlock);
2928     CreateMultiVersionResolverReturn(CGM, Resolver, RetBuilder, RO.Function,
2929                                      SupportsIFunc);
2930     CurBlock = createBasicBlock("resolver_else", Resolver);
2931     Builder.CreateCondBr(Condition, RetBlock, CurBlock);
2932   }
2933 
2934   // If no generic/default, emit an unreachable.
2935   Builder.SetInsertPoint(CurBlock);
2936   llvm::CallInst *TrapCall = EmitTrapCall(llvm::Intrinsic::trap);
2937   TrapCall->setDoesNotReturn();
2938   TrapCall->setDoesNotThrow();
2939   Builder.CreateUnreachable();
2940   Builder.ClearInsertionPoint();
2941 }
2942 
2943 // Loc - where the diagnostic will point, where in the source code this
2944 //  alignment has failed.
2945 // SecondaryLoc - if present (will be present if sufficiently different from
2946 //  Loc), the diagnostic will additionally point a "Note:" to this location.
2947 //  It should be the location where the __attribute__((assume_aligned))
2948 //  was written e.g.
2949 void CodeGenFunction::emitAlignmentAssumptionCheck(
2950     llvm::Value *Ptr, QualType Ty, SourceLocation Loc,
2951     SourceLocation SecondaryLoc, llvm::Value *Alignment,
2952     llvm::Value *OffsetValue, llvm::Value *TheCheck,
2953     llvm::Instruction *Assumption) {
2954   assert(Assumption && isa<llvm::CallInst>(Assumption) &&
2955          cast<llvm::CallInst>(Assumption)->getCalledOperand() ==
2956              llvm::Intrinsic::getDeclaration(
2957                  Builder.GetInsertBlock()->getParent()->getParent(),
2958                  llvm::Intrinsic::assume) &&
2959          "Assumption should be a call to llvm.assume().");
2960   assert(&(Builder.GetInsertBlock()->back()) == Assumption &&
2961          "Assumption should be the last instruction of the basic block, "
2962          "since the basic block is still being generated.");
2963 
2964   if (!SanOpts.has(SanitizerKind::Alignment))
2965     return;
2966 
2967   // Don't check pointers to volatile data. The behavior here is implementation-
2968   // defined.
2969   if (Ty->getPointeeType().isVolatileQualified())
2970     return;
2971 
2972   // We need to temorairly remove the assumption so we can insert the
2973   // sanitizer check before it, else the check will be dropped by optimizations.
2974   Assumption->removeFromParent();
2975 
2976   {
2977     SanitizerScope SanScope(this);
2978 
2979     if (!OffsetValue)
2980       OffsetValue = Builder.getInt1(false); // no offset.
2981 
2982     llvm::Constant *StaticData[] = {EmitCheckSourceLocation(Loc),
2983                                     EmitCheckSourceLocation(SecondaryLoc),
2984                                     EmitCheckTypeDescriptor(Ty)};
2985     llvm::Value *DynamicData[] = {EmitCheckValue(Ptr),
2986                                   EmitCheckValue(Alignment),
2987                                   EmitCheckValue(OffsetValue)};
2988     EmitCheck({std::make_pair(TheCheck, SanitizerKind::Alignment)},
2989               SanitizerHandler::AlignmentAssumption, StaticData, DynamicData);
2990   }
2991 
2992   // We are now in the (new, empty) "cont" basic block.
2993   // Reintroduce the assumption.
2994   Builder.Insert(Assumption);
2995   // FIXME: Assumption still has it's original basic block as it's Parent.
2996 }
2997 
2998 llvm::DebugLoc CodeGenFunction::SourceLocToDebugLoc(SourceLocation Location) {
2999   if (CGDebugInfo *DI = getDebugInfo())
3000     return DI->SourceLocToDebugLoc(Location);
3001 
3002   return llvm::DebugLoc();
3003 }
3004 
3005 llvm::Value *
3006 CodeGenFunction::emitCondLikelihoodViaExpectIntrinsic(llvm::Value *Cond,
3007                                                       Stmt::Likelihood LH) {
3008   switch (LH) {
3009   case Stmt::LH_None:
3010     return Cond;
3011   case Stmt::LH_Likely:
3012   case Stmt::LH_Unlikely:
3013     // Don't generate llvm.expect on -O0 as the backend won't use it for
3014     // anything.
3015     if (CGM.getCodeGenOpts().OptimizationLevel == 0)
3016       return Cond;
3017     llvm::Type *CondTy = Cond->getType();
3018     assert(CondTy->isIntegerTy(1) && "expecting condition to be a boolean");
3019     llvm::Function *FnExpect =
3020         CGM.getIntrinsic(llvm::Intrinsic::expect, CondTy);
3021     llvm::Value *ExpectedValueOfCond =
3022         llvm::ConstantInt::getBool(CondTy, LH == Stmt::LH_Likely);
3023     return Builder.CreateCall(FnExpect, {Cond, ExpectedValueOfCond},
3024                               Cond->getName() + ".expval");
3025   }
3026   llvm_unreachable("Unknown Likelihood");
3027 }
3028 
3029 llvm::Value *CodeGenFunction::emitBoolVecConversion(llvm::Value *SrcVec,
3030                                                     unsigned NumElementsDst,
3031                                                     const llvm::Twine &Name) {
3032   auto *SrcTy = cast<llvm::FixedVectorType>(SrcVec->getType());
3033   unsigned NumElementsSrc = SrcTy->getNumElements();
3034   if (NumElementsSrc == NumElementsDst)
3035     return SrcVec;
3036 
3037   std::vector<int> ShuffleMask(NumElementsDst, -1);
3038   for (unsigned MaskIdx = 0;
3039        MaskIdx < std::min<>(NumElementsDst, NumElementsSrc); ++MaskIdx)
3040     ShuffleMask[MaskIdx] = MaskIdx;
3041 
3042   return Builder.CreateShuffleVector(SrcVec, ShuffleMask, Name);
3043 }
3044