1 //===--- CodeGenFunction.cpp - Emit LLVM Code from ASTs for a Function ----===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This coordinates the per-function state used while generating code. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "CodeGenFunction.h" 14 #include "CGBlocks.h" 15 #include "CGCUDARuntime.h" 16 #include "CGCXXABI.h" 17 #include "CGCleanup.h" 18 #include "CGDebugInfo.h" 19 #include "CGHLSLRuntime.h" 20 #include "CGOpenMPRuntime.h" 21 #include "CodeGenModule.h" 22 #include "CodeGenPGO.h" 23 #include "TargetInfo.h" 24 #include "clang/AST/ASTContext.h" 25 #include "clang/AST/ASTLambda.h" 26 #include "clang/AST/Attr.h" 27 #include "clang/AST/Decl.h" 28 #include "clang/AST/DeclCXX.h" 29 #include "clang/AST/Expr.h" 30 #include "clang/AST/StmtCXX.h" 31 #include "clang/AST/StmtObjC.h" 32 #include "clang/Basic/Builtins.h" 33 #include "clang/Basic/CodeGenOptions.h" 34 #include "clang/Basic/TargetBuiltins.h" 35 #include "clang/Basic/TargetInfo.h" 36 #include "clang/CodeGen/CGFunctionInfo.h" 37 #include "clang/Frontend/FrontendDiagnostic.h" 38 #include "llvm/ADT/ArrayRef.h" 39 #include "llvm/Frontend/OpenMP/OMPIRBuilder.h" 40 #include "llvm/IR/DataLayout.h" 41 #include "llvm/IR/Dominators.h" 42 #include "llvm/IR/FPEnv.h" 43 #include "llvm/IR/IntrinsicInst.h" 44 #include "llvm/IR/Intrinsics.h" 45 #include "llvm/IR/MDBuilder.h" 46 #include "llvm/IR/Operator.h" 47 #include "llvm/Support/CRC.h" 48 #include "llvm/Support/xxhash.h" 49 #include "llvm/Transforms/Scalar/LowerExpectIntrinsic.h" 50 #include "llvm/Transforms/Utils/PromoteMemToReg.h" 51 #include <optional> 52 53 using namespace clang; 54 using namespace CodeGen; 55 56 namespace llvm { 57 extern cl::opt<bool> EnableSingleByteCoverage; 58 } // namespace llvm 59 60 /// shouldEmitLifetimeMarkers - Decide whether we need emit the life-time 61 /// markers. 62 static bool shouldEmitLifetimeMarkers(const CodeGenOptions &CGOpts, 63 const LangOptions &LangOpts) { 64 if (CGOpts.DisableLifetimeMarkers) 65 return false; 66 67 // Sanitizers may use markers. 68 if (CGOpts.SanitizeAddressUseAfterScope || 69 LangOpts.Sanitize.has(SanitizerKind::HWAddress) || 70 LangOpts.Sanitize.has(SanitizerKind::Memory)) 71 return true; 72 73 // For now, only in optimized builds. 74 return CGOpts.OptimizationLevel != 0; 75 } 76 77 CodeGenFunction::CodeGenFunction(CodeGenModule &cgm, bool suppressNewContext) 78 : CodeGenTypeCache(cgm), CGM(cgm), Target(cgm.getTarget()), 79 Builder(cgm, cgm.getModule().getContext(), llvm::ConstantFolder(), 80 CGBuilderInserterTy(this)), 81 SanOpts(CGM.getLangOpts().Sanitize), CurFPFeatures(CGM.getLangOpts()), 82 DebugInfo(CGM.getModuleDebugInfo()), PGO(cgm), 83 ShouldEmitLifetimeMarkers( 84 shouldEmitLifetimeMarkers(CGM.getCodeGenOpts(), CGM.getLangOpts())) { 85 if (!suppressNewContext) 86 CGM.getCXXABI().getMangleContext().startNewFunction(); 87 EHStack.setCGF(this); 88 89 SetFastMathFlags(CurFPFeatures); 90 } 91 92 CodeGenFunction::~CodeGenFunction() { 93 assert(LifetimeExtendedCleanupStack.empty() && "failed to emit a cleanup"); 94 assert(DeferredDeactivationCleanupStack.empty() && 95 "missed to deactivate a cleanup"); 96 97 if (getLangOpts().OpenMP && CurFn) 98 CGM.getOpenMPRuntime().functionFinished(*this); 99 100 // If we have an OpenMPIRBuilder we want to finalize functions (incl. 101 // outlining etc) at some point. Doing it once the function codegen is done 102 // seems to be a reasonable spot. We do it here, as opposed to the deletion 103 // time of the CodeGenModule, because we have to ensure the IR has not yet 104 // been "emitted" to the outside, thus, modifications are still sensible. 105 if (CGM.getLangOpts().OpenMPIRBuilder && CurFn) 106 CGM.getOpenMPRuntime().getOMPBuilder().finalize(CurFn); 107 } 108 109 // Map the LangOption for exception behavior into 110 // the corresponding enum in the IR. 111 llvm::fp::ExceptionBehavior 112 clang::ToConstrainedExceptMD(LangOptions::FPExceptionModeKind Kind) { 113 114 switch (Kind) { 115 case LangOptions::FPE_Ignore: return llvm::fp::ebIgnore; 116 case LangOptions::FPE_MayTrap: return llvm::fp::ebMayTrap; 117 case LangOptions::FPE_Strict: return llvm::fp::ebStrict; 118 default: 119 llvm_unreachable("Unsupported FP Exception Behavior"); 120 } 121 } 122 123 void CodeGenFunction::SetFastMathFlags(FPOptions FPFeatures) { 124 llvm::FastMathFlags FMF; 125 FMF.setAllowReassoc(FPFeatures.getAllowFPReassociate()); 126 FMF.setNoNaNs(FPFeatures.getNoHonorNaNs()); 127 FMF.setNoInfs(FPFeatures.getNoHonorInfs()); 128 FMF.setNoSignedZeros(FPFeatures.getNoSignedZero()); 129 FMF.setAllowReciprocal(FPFeatures.getAllowReciprocal()); 130 FMF.setApproxFunc(FPFeatures.getAllowApproxFunc()); 131 FMF.setAllowContract(FPFeatures.allowFPContractAcrossStatement()); 132 Builder.setFastMathFlags(FMF); 133 } 134 135 CodeGenFunction::CGFPOptionsRAII::CGFPOptionsRAII(CodeGenFunction &CGF, 136 const Expr *E) 137 : CGF(CGF) { 138 ConstructorHelper(E->getFPFeaturesInEffect(CGF.getLangOpts())); 139 } 140 141 CodeGenFunction::CGFPOptionsRAII::CGFPOptionsRAII(CodeGenFunction &CGF, 142 FPOptions FPFeatures) 143 : CGF(CGF) { 144 ConstructorHelper(FPFeatures); 145 } 146 147 void CodeGenFunction::CGFPOptionsRAII::ConstructorHelper(FPOptions FPFeatures) { 148 OldFPFeatures = CGF.CurFPFeatures; 149 CGF.CurFPFeatures = FPFeatures; 150 151 OldExcept = CGF.Builder.getDefaultConstrainedExcept(); 152 OldRounding = CGF.Builder.getDefaultConstrainedRounding(); 153 154 if (OldFPFeatures == FPFeatures) 155 return; 156 157 FMFGuard.emplace(CGF.Builder); 158 159 llvm::RoundingMode NewRoundingBehavior = FPFeatures.getRoundingMode(); 160 CGF.Builder.setDefaultConstrainedRounding(NewRoundingBehavior); 161 auto NewExceptionBehavior = 162 ToConstrainedExceptMD(static_cast<LangOptions::FPExceptionModeKind>( 163 FPFeatures.getExceptionMode())); 164 CGF.Builder.setDefaultConstrainedExcept(NewExceptionBehavior); 165 166 CGF.SetFastMathFlags(FPFeatures); 167 168 assert((CGF.CurFuncDecl == nullptr || CGF.Builder.getIsFPConstrained() || 169 isa<CXXConstructorDecl>(CGF.CurFuncDecl) || 170 isa<CXXDestructorDecl>(CGF.CurFuncDecl) || 171 (NewExceptionBehavior == llvm::fp::ebIgnore && 172 NewRoundingBehavior == llvm::RoundingMode::NearestTiesToEven)) && 173 "FPConstrained should be enabled on entire function"); 174 175 auto mergeFnAttrValue = [&](StringRef Name, bool Value) { 176 auto OldValue = 177 CGF.CurFn->getFnAttribute(Name).getValueAsBool(); 178 auto NewValue = OldValue & Value; 179 if (OldValue != NewValue) 180 CGF.CurFn->addFnAttr(Name, llvm::toStringRef(NewValue)); 181 }; 182 mergeFnAttrValue("no-infs-fp-math", FPFeatures.getNoHonorInfs()); 183 mergeFnAttrValue("no-nans-fp-math", FPFeatures.getNoHonorNaNs()); 184 mergeFnAttrValue("no-signed-zeros-fp-math", FPFeatures.getNoSignedZero()); 185 mergeFnAttrValue( 186 "unsafe-fp-math", 187 FPFeatures.getAllowFPReassociate() && FPFeatures.getAllowReciprocal() && 188 FPFeatures.getAllowApproxFunc() && FPFeatures.getNoSignedZero() && 189 FPFeatures.allowFPContractAcrossStatement()); 190 } 191 192 CodeGenFunction::CGFPOptionsRAII::~CGFPOptionsRAII() { 193 CGF.CurFPFeatures = OldFPFeatures; 194 CGF.Builder.setDefaultConstrainedExcept(OldExcept); 195 CGF.Builder.setDefaultConstrainedRounding(OldRounding); 196 } 197 198 static LValue MakeNaturalAlignAddrLValue(llvm::Value *V, QualType T, 199 bool ForPointeeType, 200 CodeGenFunction &CGF) { 201 LValueBaseInfo BaseInfo; 202 TBAAAccessInfo TBAAInfo; 203 CharUnits Alignment = 204 CGF.CGM.getNaturalTypeAlignment(T, &BaseInfo, &TBAAInfo, ForPointeeType); 205 Address Addr = Address(V, CGF.ConvertTypeForMem(T), Alignment); 206 return CGF.MakeAddrLValue(Addr, T, BaseInfo, TBAAInfo); 207 } 208 209 LValue CodeGenFunction::MakeNaturalAlignAddrLValue(llvm::Value *V, QualType T) { 210 return ::MakeNaturalAlignAddrLValue(V, T, /*ForPointeeType*/ false, *this); 211 } 212 213 LValue 214 CodeGenFunction::MakeNaturalAlignPointeeAddrLValue(llvm::Value *V, QualType T) { 215 return ::MakeNaturalAlignAddrLValue(V, T, /*ForPointeeType*/ true, *this); 216 } 217 218 LValue CodeGenFunction::MakeNaturalAlignRawAddrLValue(llvm::Value *V, 219 QualType T) { 220 return ::MakeNaturalAlignAddrLValue(V, T, /*ForPointeeType*/ false, *this); 221 } 222 223 LValue CodeGenFunction::MakeNaturalAlignPointeeRawAddrLValue(llvm::Value *V, 224 QualType T) { 225 return ::MakeNaturalAlignAddrLValue(V, T, /*ForPointeeType*/ true, *this); 226 } 227 228 llvm::Type *CodeGenFunction::ConvertTypeForMem(QualType T) { 229 return CGM.getTypes().ConvertTypeForMem(T); 230 } 231 232 llvm::Type *CodeGenFunction::ConvertType(QualType T) { 233 return CGM.getTypes().ConvertType(T); 234 } 235 236 TypeEvaluationKind CodeGenFunction::getEvaluationKind(QualType type) { 237 type = type.getCanonicalType(); 238 while (true) { 239 switch (type->getTypeClass()) { 240 #define TYPE(name, parent) 241 #define ABSTRACT_TYPE(name, parent) 242 #define NON_CANONICAL_TYPE(name, parent) case Type::name: 243 #define DEPENDENT_TYPE(name, parent) case Type::name: 244 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(name, parent) case Type::name: 245 #include "clang/AST/TypeNodes.inc" 246 llvm_unreachable("non-canonical or dependent type in IR-generation"); 247 248 case Type::Auto: 249 case Type::DeducedTemplateSpecialization: 250 llvm_unreachable("undeduced type in IR-generation"); 251 252 // Various scalar types. 253 case Type::Builtin: 254 case Type::Pointer: 255 case Type::BlockPointer: 256 case Type::LValueReference: 257 case Type::RValueReference: 258 case Type::MemberPointer: 259 case Type::Vector: 260 case Type::ExtVector: 261 case Type::ConstantMatrix: 262 case Type::FunctionProto: 263 case Type::FunctionNoProto: 264 case Type::Enum: 265 case Type::ObjCObjectPointer: 266 case Type::Pipe: 267 case Type::BitInt: 268 return TEK_Scalar; 269 270 // Complexes. 271 case Type::Complex: 272 return TEK_Complex; 273 274 // Arrays, records, and Objective-C objects. 275 case Type::ConstantArray: 276 case Type::IncompleteArray: 277 case Type::VariableArray: 278 case Type::Record: 279 case Type::ObjCObject: 280 case Type::ObjCInterface: 281 case Type::ArrayParameter: 282 return TEK_Aggregate; 283 284 // We operate on atomic values according to their underlying type. 285 case Type::Atomic: 286 type = cast<AtomicType>(type)->getValueType(); 287 continue; 288 } 289 llvm_unreachable("unknown type kind!"); 290 } 291 } 292 293 llvm::DebugLoc CodeGenFunction::EmitReturnBlock() { 294 // For cleanliness, we try to avoid emitting the return block for 295 // simple cases. 296 llvm::BasicBlock *CurBB = Builder.GetInsertBlock(); 297 298 if (CurBB) { 299 assert(!CurBB->getTerminator() && "Unexpected terminated block."); 300 301 // We have a valid insert point, reuse it if it is empty or there are no 302 // explicit jumps to the return block. 303 if (CurBB->empty() || ReturnBlock.getBlock()->use_empty()) { 304 ReturnBlock.getBlock()->replaceAllUsesWith(CurBB); 305 delete ReturnBlock.getBlock(); 306 ReturnBlock = JumpDest(); 307 } else 308 EmitBlock(ReturnBlock.getBlock()); 309 return llvm::DebugLoc(); 310 } 311 312 // Otherwise, if the return block is the target of a single direct 313 // branch then we can just put the code in that block instead. This 314 // cleans up functions which started with a unified return block. 315 if (ReturnBlock.getBlock()->hasOneUse()) { 316 llvm::BranchInst *BI = 317 dyn_cast<llvm::BranchInst>(*ReturnBlock.getBlock()->user_begin()); 318 if (BI && BI->isUnconditional() && 319 BI->getSuccessor(0) == ReturnBlock.getBlock()) { 320 // Record/return the DebugLoc of the simple 'return' expression to be used 321 // later by the actual 'ret' instruction. 322 llvm::DebugLoc Loc = BI->getDebugLoc(); 323 Builder.SetInsertPoint(BI->getParent()); 324 BI->eraseFromParent(); 325 delete ReturnBlock.getBlock(); 326 ReturnBlock = JumpDest(); 327 return Loc; 328 } 329 } 330 331 // FIXME: We are at an unreachable point, there is no reason to emit the block 332 // unless it has uses. However, we still need a place to put the debug 333 // region.end for now. 334 335 EmitBlock(ReturnBlock.getBlock()); 336 return llvm::DebugLoc(); 337 } 338 339 static void EmitIfUsed(CodeGenFunction &CGF, llvm::BasicBlock *BB) { 340 if (!BB) return; 341 if (!BB->use_empty()) { 342 CGF.CurFn->insert(CGF.CurFn->end(), BB); 343 return; 344 } 345 delete BB; 346 } 347 348 void CodeGenFunction::FinishFunction(SourceLocation EndLoc) { 349 assert(BreakContinueStack.empty() && 350 "mismatched push/pop in break/continue stack!"); 351 assert(LifetimeExtendedCleanupStack.empty() && 352 "mismatched push/pop of cleanups in EHStack!"); 353 assert(DeferredDeactivationCleanupStack.empty() && 354 "mismatched activate/deactivate of cleanups!"); 355 356 if (CGM.shouldEmitConvergenceTokens()) { 357 ConvergenceTokenStack.pop_back(); 358 assert(ConvergenceTokenStack.empty() && 359 "mismatched push/pop in convergence stack!"); 360 } 361 362 bool OnlySimpleReturnStmts = NumSimpleReturnExprs > 0 363 && NumSimpleReturnExprs == NumReturnExprs 364 && ReturnBlock.getBlock()->use_empty(); 365 // Usually the return expression is evaluated before the cleanup 366 // code. If the function contains only a simple return statement, 367 // such as a constant, the location before the cleanup code becomes 368 // the last useful breakpoint in the function, because the simple 369 // return expression will be evaluated after the cleanup code. To be 370 // safe, set the debug location for cleanup code to the location of 371 // the return statement. Otherwise the cleanup code should be at the 372 // end of the function's lexical scope. 373 // 374 // If there are multiple branches to the return block, the branch 375 // instructions will get the location of the return statements and 376 // all will be fine. 377 if (CGDebugInfo *DI = getDebugInfo()) { 378 if (OnlySimpleReturnStmts) 379 DI->EmitLocation(Builder, LastStopPoint); 380 else 381 DI->EmitLocation(Builder, EndLoc); 382 } 383 384 // Pop any cleanups that might have been associated with the 385 // parameters. Do this in whatever block we're currently in; it's 386 // important to do this before we enter the return block or return 387 // edges will be *really* confused. 388 bool HasCleanups = EHStack.stable_begin() != PrologueCleanupDepth; 389 bool HasOnlyLifetimeMarkers = 390 HasCleanups && EHStack.containsOnlyLifetimeMarkers(PrologueCleanupDepth); 391 bool EmitRetDbgLoc = !HasCleanups || HasOnlyLifetimeMarkers; 392 393 std::optional<ApplyDebugLocation> OAL; 394 if (HasCleanups) { 395 // Make sure the line table doesn't jump back into the body for 396 // the ret after it's been at EndLoc. 397 if (CGDebugInfo *DI = getDebugInfo()) { 398 if (OnlySimpleReturnStmts) 399 DI->EmitLocation(Builder, EndLoc); 400 else 401 // We may not have a valid end location. Try to apply it anyway, and 402 // fall back to an artificial location if needed. 403 OAL = ApplyDebugLocation::CreateDefaultArtificial(*this, EndLoc); 404 } 405 406 PopCleanupBlocks(PrologueCleanupDepth); 407 } 408 409 // Emit function epilog (to return). 410 llvm::DebugLoc Loc = EmitReturnBlock(); 411 412 if (ShouldInstrumentFunction()) { 413 if (CGM.getCodeGenOpts().InstrumentFunctions) 414 CurFn->addFnAttr("instrument-function-exit", "__cyg_profile_func_exit"); 415 if (CGM.getCodeGenOpts().InstrumentFunctionsAfterInlining) 416 CurFn->addFnAttr("instrument-function-exit-inlined", 417 "__cyg_profile_func_exit"); 418 } 419 420 // Emit debug descriptor for function end. 421 if (CGDebugInfo *DI = getDebugInfo()) 422 DI->EmitFunctionEnd(Builder, CurFn); 423 424 // Reset the debug location to that of the simple 'return' expression, if any 425 // rather than that of the end of the function's scope '}'. 426 ApplyDebugLocation AL(*this, Loc); 427 EmitFunctionEpilog(*CurFnInfo, EmitRetDbgLoc, EndLoc); 428 EmitEndEHSpec(CurCodeDecl); 429 430 assert(EHStack.empty() && 431 "did not remove all scopes from cleanup stack!"); 432 433 // If someone did an indirect goto, emit the indirect goto block at the end of 434 // the function. 435 if (IndirectBranch) { 436 EmitBlock(IndirectBranch->getParent()); 437 Builder.ClearInsertionPoint(); 438 } 439 440 // If some of our locals escaped, insert a call to llvm.localescape in the 441 // entry block. 442 if (!EscapedLocals.empty()) { 443 // Invert the map from local to index into a simple vector. There should be 444 // no holes. 445 SmallVector<llvm::Value *, 4> EscapeArgs; 446 EscapeArgs.resize(EscapedLocals.size()); 447 for (auto &Pair : EscapedLocals) 448 EscapeArgs[Pair.second] = Pair.first; 449 llvm::Function *FrameEscapeFn = llvm::Intrinsic::getDeclaration( 450 &CGM.getModule(), llvm::Intrinsic::localescape); 451 CGBuilderTy(*this, AllocaInsertPt).CreateCall(FrameEscapeFn, EscapeArgs); 452 } 453 454 // Remove the AllocaInsertPt instruction, which is just a convenience for us. 455 llvm::Instruction *Ptr = AllocaInsertPt; 456 AllocaInsertPt = nullptr; 457 Ptr->eraseFromParent(); 458 459 // PostAllocaInsertPt, if created, was lazily created when it was required, 460 // remove it now since it was just created for our own convenience. 461 if (PostAllocaInsertPt) { 462 llvm::Instruction *PostPtr = PostAllocaInsertPt; 463 PostAllocaInsertPt = nullptr; 464 PostPtr->eraseFromParent(); 465 } 466 467 // If someone took the address of a label but never did an indirect goto, we 468 // made a zero entry PHI node, which is illegal, zap it now. 469 if (IndirectBranch) { 470 llvm::PHINode *PN = cast<llvm::PHINode>(IndirectBranch->getAddress()); 471 if (PN->getNumIncomingValues() == 0) { 472 PN->replaceAllUsesWith(llvm::UndefValue::get(PN->getType())); 473 PN->eraseFromParent(); 474 } 475 } 476 477 EmitIfUsed(*this, EHResumeBlock); 478 EmitIfUsed(*this, TerminateLandingPad); 479 EmitIfUsed(*this, TerminateHandler); 480 EmitIfUsed(*this, UnreachableBlock); 481 482 for (const auto &FuncletAndParent : TerminateFunclets) 483 EmitIfUsed(*this, FuncletAndParent.second); 484 485 if (CGM.getCodeGenOpts().EmitDeclMetadata) 486 EmitDeclMetadata(); 487 488 for (const auto &R : DeferredReplacements) { 489 if (llvm::Value *Old = R.first) { 490 Old->replaceAllUsesWith(R.second); 491 cast<llvm::Instruction>(Old)->eraseFromParent(); 492 } 493 } 494 DeferredReplacements.clear(); 495 496 // Eliminate CleanupDestSlot alloca by replacing it with SSA values and 497 // PHIs if the current function is a coroutine. We don't do it for all 498 // functions as it may result in slight increase in numbers of instructions 499 // if compiled with no optimizations. We do it for coroutine as the lifetime 500 // of CleanupDestSlot alloca make correct coroutine frame building very 501 // difficult. 502 if (NormalCleanupDest.isValid() && isCoroutine()) { 503 llvm::DominatorTree DT(*CurFn); 504 llvm::PromoteMemToReg( 505 cast<llvm::AllocaInst>(NormalCleanupDest.getPointer()), DT); 506 NormalCleanupDest = Address::invalid(); 507 } 508 509 // Scan function arguments for vector width. 510 for (llvm::Argument &A : CurFn->args()) 511 if (auto *VT = dyn_cast<llvm::VectorType>(A.getType())) 512 LargestVectorWidth = 513 std::max((uint64_t)LargestVectorWidth, 514 VT->getPrimitiveSizeInBits().getKnownMinValue()); 515 516 // Update vector width based on return type. 517 if (auto *VT = dyn_cast<llvm::VectorType>(CurFn->getReturnType())) 518 LargestVectorWidth = 519 std::max((uint64_t)LargestVectorWidth, 520 VT->getPrimitiveSizeInBits().getKnownMinValue()); 521 522 if (CurFnInfo->getMaxVectorWidth() > LargestVectorWidth) 523 LargestVectorWidth = CurFnInfo->getMaxVectorWidth(); 524 525 // Add the min-legal-vector-width attribute. This contains the max width from: 526 // 1. min-vector-width attribute used in the source program. 527 // 2. Any builtins used that have a vector width specified. 528 // 3. Values passed in and out of inline assembly. 529 // 4. Width of vector arguments and return types for this function. 530 // 5. Width of vector arguments and return types for functions called by this 531 // function. 532 if (getContext().getTargetInfo().getTriple().isX86()) 533 CurFn->addFnAttr("min-legal-vector-width", 534 llvm::utostr(LargestVectorWidth)); 535 536 // Add vscale_range attribute if appropriate. 537 std::optional<std::pair<unsigned, unsigned>> VScaleRange = 538 getContext().getTargetInfo().getVScaleRange(getLangOpts()); 539 if (VScaleRange) { 540 CurFn->addFnAttr(llvm::Attribute::getWithVScaleRangeArgs( 541 getLLVMContext(), VScaleRange->first, VScaleRange->second)); 542 } 543 544 // If we generated an unreachable return block, delete it now. 545 if (ReturnBlock.isValid() && ReturnBlock.getBlock()->use_empty()) { 546 Builder.ClearInsertionPoint(); 547 ReturnBlock.getBlock()->eraseFromParent(); 548 } 549 if (ReturnValue.isValid()) { 550 auto *RetAlloca = 551 dyn_cast<llvm::AllocaInst>(ReturnValue.emitRawPointer(*this)); 552 if (RetAlloca && RetAlloca->use_empty()) { 553 RetAlloca->eraseFromParent(); 554 ReturnValue = Address::invalid(); 555 } 556 } 557 } 558 559 /// ShouldInstrumentFunction - Return true if the current function should be 560 /// instrumented with __cyg_profile_func_* calls 561 bool CodeGenFunction::ShouldInstrumentFunction() { 562 if (!CGM.getCodeGenOpts().InstrumentFunctions && 563 !CGM.getCodeGenOpts().InstrumentFunctionsAfterInlining && 564 !CGM.getCodeGenOpts().InstrumentFunctionEntryBare) 565 return false; 566 if (!CurFuncDecl || CurFuncDecl->hasAttr<NoInstrumentFunctionAttr>()) 567 return false; 568 return true; 569 } 570 571 bool CodeGenFunction::ShouldSkipSanitizerInstrumentation() { 572 if (!CurFuncDecl) 573 return false; 574 return CurFuncDecl->hasAttr<DisableSanitizerInstrumentationAttr>(); 575 } 576 577 /// ShouldXRayInstrument - Return true if the current function should be 578 /// instrumented with XRay nop sleds. 579 bool CodeGenFunction::ShouldXRayInstrumentFunction() const { 580 return CGM.getCodeGenOpts().XRayInstrumentFunctions; 581 } 582 583 /// AlwaysEmitXRayCustomEvents - Return true if we should emit IR for calls to 584 /// the __xray_customevent(...) builtin calls, when doing XRay instrumentation. 585 bool CodeGenFunction::AlwaysEmitXRayCustomEvents() const { 586 return CGM.getCodeGenOpts().XRayInstrumentFunctions && 587 (CGM.getCodeGenOpts().XRayAlwaysEmitCustomEvents || 588 CGM.getCodeGenOpts().XRayInstrumentationBundle.Mask == 589 XRayInstrKind::Custom); 590 } 591 592 bool CodeGenFunction::AlwaysEmitXRayTypedEvents() const { 593 return CGM.getCodeGenOpts().XRayInstrumentFunctions && 594 (CGM.getCodeGenOpts().XRayAlwaysEmitTypedEvents || 595 CGM.getCodeGenOpts().XRayInstrumentationBundle.Mask == 596 XRayInstrKind::Typed); 597 } 598 599 llvm::ConstantInt * 600 CodeGenFunction::getUBSanFunctionTypeHash(QualType Ty) const { 601 // Remove any (C++17) exception specifications, to allow calling e.g. a 602 // noexcept function through a non-noexcept pointer. 603 if (!Ty->isFunctionNoProtoType()) 604 Ty = getContext().getFunctionTypeWithExceptionSpec(Ty, EST_None); 605 std::string Mangled; 606 llvm::raw_string_ostream Out(Mangled); 607 CGM.getCXXABI().getMangleContext().mangleCanonicalTypeName(Ty, Out, false); 608 return llvm::ConstantInt::get( 609 CGM.Int32Ty, static_cast<uint32_t>(llvm::xxh3_64bits(Mangled))); 610 } 611 612 void CodeGenFunction::EmitKernelMetadata(const FunctionDecl *FD, 613 llvm::Function *Fn) { 614 if (!FD->hasAttr<OpenCLKernelAttr>() && !FD->hasAttr<CUDAGlobalAttr>()) 615 return; 616 617 llvm::LLVMContext &Context = getLLVMContext(); 618 619 CGM.GenKernelArgMetadata(Fn, FD, this); 620 621 if (!getLangOpts().OpenCL) 622 return; 623 624 if (const VecTypeHintAttr *A = FD->getAttr<VecTypeHintAttr>()) { 625 QualType HintQTy = A->getTypeHint(); 626 const ExtVectorType *HintEltQTy = HintQTy->getAs<ExtVectorType>(); 627 bool IsSignedInteger = 628 HintQTy->isSignedIntegerType() || 629 (HintEltQTy && HintEltQTy->getElementType()->isSignedIntegerType()); 630 llvm::Metadata *AttrMDArgs[] = { 631 llvm::ConstantAsMetadata::get(llvm::UndefValue::get( 632 CGM.getTypes().ConvertType(A->getTypeHint()))), 633 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 634 llvm::IntegerType::get(Context, 32), 635 llvm::APInt(32, (uint64_t)(IsSignedInteger ? 1 : 0))))}; 636 Fn->setMetadata("vec_type_hint", llvm::MDNode::get(Context, AttrMDArgs)); 637 } 638 639 if (const WorkGroupSizeHintAttr *A = FD->getAttr<WorkGroupSizeHintAttr>()) { 640 llvm::Metadata *AttrMDArgs[] = { 641 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getXDim())), 642 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getYDim())), 643 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getZDim()))}; 644 Fn->setMetadata("work_group_size_hint", llvm::MDNode::get(Context, AttrMDArgs)); 645 } 646 647 if (const ReqdWorkGroupSizeAttr *A = FD->getAttr<ReqdWorkGroupSizeAttr>()) { 648 llvm::Metadata *AttrMDArgs[] = { 649 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getXDim())), 650 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getYDim())), 651 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getZDim()))}; 652 Fn->setMetadata("reqd_work_group_size", llvm::MDNode::get(Context, AttrMDArgs)); 653 } 654 655 if (const OpenCLIntelReqdSubGroupSizeAttr *A = 656 FD->getAttr<OpenCLIntelReqdSubGroupSizeAttr>()) { 657 llvm::Metadata *AttrMDArgs[] = { 658 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getSubGroupSize()))}; 659 Fn->setMetadata("intel_reqd_sub_group_size", 660 llvm::MDNode::get(Context, AttrMDArgs)); 661 } 662 } 663 664 /// Determine whether the function F ends with a return stmt. 665 static bool endsWithReturn(const Decl* F) { 666 const Stmt *Body = nullptr; 667 if (auto *FD = dyn_cast_or_null<FunctionDecl>(F)) 668 Body = FD->getBody(); 669 else if (auto *OMD = dyn_cast_or_null<ObjCMethodDecl>(F)) 670 Body = OMD->getBody(); 671 672 if (auto *CS = dyn_cast_or_null<CompoundStmt>(Body)) { 673 auto LastStmt = CS->body_rbegin(); 674 if (LastStmt != CS->body_rend()) 675 return isa<ReturnStmt>(*LastStmt); 676 } 677 return false; 678 } 679 680 void CodeGenFunction::markAsIgnoreThreadCheckingAtRuntime(llvm::Function *Fn) { 681 if (SanOpts.has(SanitizerKind::Thread)) { 682 Fn->addFnAttr("sanitize_thread_no_checking_at_run_time"); 683 Fn->removeFnAttr(llvm::Attribute::SanitizeThread); 684 } 685 } 686 687 /// Check if the return value of this function requires sanitization. 688 bool CodeGenFunction::requiresReturnValueCheck() const { 689 return requiresReturnValueNullabilityCheck() || 690 (SanOpts.has(SanitizerKind::ReturnsNonnullAttribute) && CurCodeDecl && 691 CurCodeDecl->getAttr<ReturnsNonNullAttr>()); 692 } 693 694 static bool matchesStlAllocatorFn(const Decl *D, const ASTContext &Ctx) { 695 auto *MD = dyn_cast_or_null<CXXMethodDecl>(D); 696 if (!MD || !MD->getDeclName().getAsIdentifierInfo() || 697 !MD->getDeclName().getAsIdentifierInfo()->isStr("allocate") || 698 (MD->getNumParams() != 1 && MD->getNumParams() != 2)) 699 return false; 700 701 if (MD->parameters()[0]->getType().getCanonicalType() != Ctx.getSizeType()) 702 return false; 703 704 if (MD->getNumParams() == 2) { 705 auto *PT = MD->parameters()[1]->getType()->getAs<PointerType>(); 706 if (!PT || !PT->isVoidPointerType() || 707 !PT->getPointeeType().isConstQualified()) 708 return false; 709 } 710 711 return true; 712 } 713 714 bool CodeGenFunction::isInAllocaArgument(CGCXXABI &ABI, QualType Ty) { 715 const CXXRecordDecl *RD = Ty->getAsCXXRecordDecl(); 716 return RD && ABI.getRecordArgABI(RD) == CGCXXABI::RAA_DirectInMemory; 717 } 718 719 bool CodeGenFunction::hasInAllocaArg(const CXXMethodDecl *MD) { 720 return getTarget().getTriple().getArch() == llvm::Triple::x86 && 721 getTarget().getCXXABI().isMicrosoft() && 722 llvm::any_of(MD->parameters(), [&](ParmVarDecl *P) { 723 return isInAllocaArgument(CGM.getCXXABI(), P->getType()); 724 }); 725 } 726 727 /// Return the UBSan prologue signature for \p FD if one is available. 728 static llvm::Constant *getPrologueSignature(CodeGenModule &CGM, 729 const FunctionDecl *FD) { 730 if (const auto *MD = dyn_cast<CXXMethodDecl>(FD)) 731 if (!MD->isStatic()) 732 return nullptr; 733 return CGM.getTargetCodeGenInfo().getUBSanFunctionSignature(CGM); 734 } 735 736 void CodeGenFunction::StartFunction(GlobalDecl GD, QualType RetTy, 737 llvm::Function *Fn, 738 const CGFunctionInfo &FnInfo, 739 const FunctionArgList &Args, 740 SourceLocation Loc, 741 SourceLocation StartLoc) { 742 assert(!CurFn && 743 "Do not use a CodeGenFunction object for more than one function"); 744 745 const Decl *D = GD.getDecl(); 746 747 DidCallStackSave = false; 748 CurCodeDecl = D; 749 const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D); 750 if (FD && FD->usesSEHTry()) 751 CurSEHParent = GD; 752 CurFuncDecl = (D ? D->getNonClosureContext() : nullptr); 753 FnRetTy = RetTy; 754 CurFn = Fn; 755 CurFnInfo = &FnInfo; 756 assert(CurFn->isDeclaration() && "Function already has body?"); 757 758 // If this function is ignored for any of the enabled sanitizers, 759 // disable the sanitizer for the function. 760 do { 761 #define SANITIZER(NAME, ID) \ 762 if (SanOpts.empty()) \ 763 break; \ 764 if (SanOpts.has(SanitizerKind::ID)) \ 765 if (CGM.isInNoSanitizeList(SanitizerKind::ID, Fn, Loc)) \ 766 SanOpts.set(SanitizerKind::ID, false); 767 768 #include "clang/Basic/Sanitizers.def" 769 #undef SANITIZER 770 } while (false); 771 772 if (D) { 773 const bool SanitizeBounds = SanOpts.hasOneOf(SanitizerKind::Bounds); 774 SanitizerMask no_sanitize_mask; 775 bool NoSanitizeCoverage = false; 776 777 for (auto *Attr : D->specific_attrs<NoSanitizeAttr>()) { 778 no_sanitize_mask |= Attr->getMask(); 779 // SanitizeCoverage is not handled by SanOpts. 780 if (Attr->hasCoverage()) 781 NoSanitizeCoverage = true; 782 } 783 784 // Apply the no_sanitize* attributes to SanOpts. 785 SanOpts.Mask &= ~no_sanitize_mask; 786 if (no_sanitize_mask & SanitizerKind::Address) 787 SanOpts.set(SanitizerKind::KernelAddress, false); 788 if (no_sanitize_mask & SanitizerKind::KernelAddress) 789 SanOpts.set(SanitizerKind::Address, false); 790 if (no_sanitize_mask & SanitizerKind::HWAddress) 791 SanOpts.set(SanitizerKind::KernelHWAddress, false); 792 if (no_sanitize_mask & SanitizerKind::KernelHWAddress) 793 SanOpts.set(SanitizerKind::HWAddress, false); 794 795 if (SanitizeBounds && !SanOpts.hasOneOf(SanitizerKind::Bounds)) 796 Fn->addFnAttr(llvm::Attribute::NoSanitizeBounds); 797 798 if (NoSanitizeCoverage && CGM.getCodeGenOpts().hasSanitizeCoverage()) 799 Fn->addFnAttr(llvm::Attribute::NoSanitizeCoverage); 800 801 // Some passes need the non-negated no_sanitize attribute. Pass them on. 802 if (CGM.getCodeGenOpts().hasSanitizeBinaryMetadata()) { 803 if (no_sanitize_mask & SanitizerKind::Thread) 804 Fn->addFnAttr("no_sanitize_thread"); 805 } 806 } 807 808 if (ShouldSkipSanitizerInstrumentation()) { 809 CurFn->addFnAttr(llvm::Attribute::DisableSanitizerInstrumentation); 810 } else { 811 // Apply sanitizer attributes to the function. 812 if (SanOpts.hasOneOf(SanitizerKind::Address | SanitizerKind::KernelAddress)) 813 Fn->addFnAttr(llvm::Attribute::SanitizeAddress); 814 if (SanOpts.hasOneOf(SanitizerKind::HWAddress | 815 SanitizerKind::KernelHWAddress)) 816 Fn->addFnAttr(llvm::Attribute::SanitizeHWAddress); 817 if (SanOpts.has(SanitizerKind::MemtagStack)) 818 Fn->addFnAttr(llvm::Attribute::SanitizeMemTag); 819 if (SanOpts.has(SanitizerKind::Thread)) 820 Fn->addFnAttr(llvm::Attribute::SanitizeThread); 821 if (SanOpts.hasOneOf(SanitizerKind::Memory | SanitizerKind::KernelMemory)) 822 Fn->addFnAttr(llvm::Attribute::SanitizeMemory); 823 } 824 if (SanOpts.has(SanitizerKind::SafeStack)) 825 Fn->addFnAttr(llvm::Attribute::SafeStack); 826 if (SanOpts.has(SanitizerKind::ShadowCallStack)) 827 Fn->addFnAttr(llvm::Attribute::ShadowCallStack); 828 829 // Apply fuzzing attribute to the function. 830 if (SanOpts.hasOneOf(SanitizerKind::Fuzzer | SanitizerKind::FuzzerNoLink)) 831 Fn->addFnAttr(llvm::Attribute::OptForFuzzing); 832 833 // Ignore TSan memory acesses from within ObjC/ObjC++ dealloc, initialize, 834 // .cxx_destruct, __destroy_helper_block_ and all of their calees at run time. 835 if (SanOpts.has(SanitizerKind::Thread)) { 836 if (const auto *OMD = dyn_cast_or_null<ObjCMethodDecl>(D)) { 837 const IdentifierInfo *II = OMD->getSelector().getIdentifierInfoForSlot(0); 838 if (OMD->getMethodFamily() == OMF_dealloc || 839 OMD->getMethodFamily() == OMF_initialize || 840 (OMD->getSelector().isUnarySelector() && II->isStr(".cxx_destruct"))) { 841 markAsIgnoreThreadCheckingAtRuntime(Fn); 842 } 843 } 844 } 845 846 // Ignore unrelated casts in STL allocate() since the allocator must cast 847 // from void* to T* before object initialization completes. Don't match on the 848 // namespace because not all allocators are in std:: 849 if (D && SanOpts.has(SanitizerKind::CFIUnrelatedCast)) { 850 if (matchesStlAllocatorFn(D, getContext())) 851 SanOpts.Mask &= ~SanitizerKind::CFIUnrelatedCast; 852 } 853 854 // Ignore null checks in coroutine functions since the coroutines passes 855 // are not aware of how to move the extra UBSan instructions across the split 856 // coroutine boundaries. 857 if (D && SanOpts.has(SanitizerKind::Null)) 858 if (FD && FD->getBody() && 859 FD->getBody()->getStmtClass() == Stmt::CoroutineBodyStmtClass) 860 SanOpts.Mask &= ~SanitizerKind::Null; 861 862 // Apply xray attributes to the function (as a string, for now) 863 bool AlwaysXRayAttr = false; 864 if (const auto *XRayAttr = D ? D->getAttr<XRayInstrumentAttr>() : nullptr) { 865 if (CGM.getCodeGenOpts().XRayInstrumentationBundle.has( 866 XRayInstrKind::FunctionEntry) || 867 CGM.getCodeGenOpts().XRayInstrumentationBundle.has( 868 XRayInstrKind::FunctionExit)) { 869 if (XRayAttr->alwaysXRayInstrument() && ShouldXRayInstrumentFunction()) { 870 Fn->addFnAttr("function-instrument", "xray-always"); 871 AlwaysXRayAttr = true; 872 } 873 if (XRayAttr->neverXRayInstrument()) 874 Fn->addFnAttr("function-instrument", "xray-never"); 875 if (const auto *LogArgs = D->getAttr<XRayLogArgsAttr>()) 876 if (ShouldXRayInstrumentFunction()) 877 Fn->addFnAttr("xray-log-args", 878 llvm::utostr(LogArgs->getArgumentCount())); 879 } 880 } else { 881 if (ShouldXRayInstrumentFunction() && !CGM.imbueXRayAttrs(Fn, Loc)) 882 Fn->addFnAttr( 883 "xray-instruction-threshold", 884 llvm::itostr(CGM.getCodeGenOpts().XRayInstructionThreshold)); 885 } 886 887 if (ShouldXRayInstrumentFunction()) { 888 if (CGM.getCodeGenOpts().XRayIgnoreLoops) 889 Fn->addFnAttr("xray-ignore-loops"); 890 891 if (!CGM.getCodeGenOpts().XRayInstrumentationBundle.has( 892 XRayInstrKind::FunctionExit)) 893 Fn->addFnAttr("xray-skip-exit"); 894 895 if (!CGM.getCodeGenOpts().XRayInstrumentationBundle.has( 896 XRayInstrKind::FunctionEntry)) 897 Fn->addFnAttr("xray-skip-entry"); 898 899 auto FuncGroups = CGM.getCodeGenOpts().XRayTotalFunctionGroups; 900 if (FuncGroups > 1) { 901 auto FuncName = llvm::ArrayRef<uint8_t>(CurFn->getName().bytes_begin(), 902 CurFn->getName().bytes_end()); 903 auto Group = crc32(FuncName) % FuncGroups; 904 if (Group != CGM.getCodeGenOpts().XRaySelectedFunctionGroup && 905 !AlwaysXRayAttr) 906 Fn->addFnAttr("function-instrument", "xray-never"); 907 } 908 } 909 910 if (CGM.getCodeGenOpts().getProfileInstr() != CodeGenOptions::ProfileNone) { 911 switch (CGM.isFunctionBlockedFromProfileInstr(Fn, Loc)) { 912 case ProfileList::Skip: 913 Fn->addFnAttr(llvm::Attribute::SkipProfile); 914 break; 915 case ProfileList::Forbid: 916 Fn->addFnAttr(llvm::Attribute::NoProfile); 917 break; 918 case ProfileList::Allow: 919 break; 920 } 921 } 922 923 unsigned Count, Offset; 924 if (const auto *Attr = 925 D ? D->getAttr<PatchableFunctionEntryAttr>() : nullptr) { 926 Count = Attr->getCount(); 927 Offset = Attr->getOffset(); 928 } else { 929 Count = CGM.getCodeGenOpts().PatchableFunctionEntryCount; 930 Offset = CGM.getCodeGenOpts().PatchableFunctionEntryOffset; 931 } 932 if (Count && Offset <= Count) { 933 Fn->addFnAttr("patchable-function-entry", std::to_string(Count - Offset)); 934 if (Offset) 935 Fn->addFnAttr("patchable-function-prefix", std::to_string(Offset)); 936 } 937 // Instruct that functions for COFF/CodeView targets should start with a 938 // patchable instruction, but only on x86/x64. Don't forward this to ARM/ARM64 939 // backends as they don't need it -- instructions on these architectures are 940 // always atomically patchable at runtime. 941 if (CGM.getCodeGenOpts().HotPatch && 942 getContext().getTargetInfo().getTriple().isX86() && 943 getContext().getTargetInfo().getTriple().getEnvironment() != 944 llvm::Triple::CODE16) 945 Fn->addFnAttr("patchable-function", "prologue-short-redirect"); 946 947 // Add no-jump-tables value. 948 if (CGM.getCodeGenOpts().NoUseJumpTables) 949 Fn->addFnAttr("no-jump-tables", "true"); 950 951 // Add no-inline-line-tables value. 952 if (CGM.getCodeGenOpts().NoInlineLineTables) 953 Fn->addFnAttr("no-inline-line-tables"); 954 955 // Add profile-sample-accurate value. 956 if (CGM.getCodeGenOpts().ProfileSampleAccurate) 957 Fn->addFnAttr("profile-sample-accurate"); 958 959 if (!CGM.getCodeGenOpts().SampleProfileFile.empty()) 960 Fn->addFnAttr("use-sample-profile"); 961 962 if (D && D->hasAttr<CFICanonicalJumpTableAttr>()) 963 Fn->addFnAttr("cfi-canonical-jump-table"); 964 965 if (D && D->hasAttr<NoProfileFunctionAttr>()) 966 Fn->addFnAttr(llvm::Attribute::NoProfile); 967 968 if (D) { 969 // Function attributes take precedence over command line flags. 970 if (auto *A = D->getAttr<FunctionReturnThunksAttr>()) { 971 switch (A->getThunkType()) { 972 case FunctionReturnThunksAttr::Kind::Keep: 973 break; 974 case FunctionReturnThunksAttr::Kind::Extern: 975 Fn->addFnAttr(llvm::Attribute::FnRetThunkExtern); 976 break; 977 } 978 } else if (CGM.getCodeGenOpts().FunctionReturnThunks) 979 Fn->addFnAttr(llvm::Attribute::FnRetThunkExtern); 980 } 981 982 if (FD && (getLangOpts().OpenCL || 983 (getLangOpts().HIP && getLangOpts().CUDAIsDevice))) { 984 // Add metadata for a kernel function. 985 EmitKernelMetadata(FD, Fn); 986 } 987 988 if (FD && FD->hasAttr<ClspvLibclcBuiltinAttr>()) { 989 Fn->setMetadata("clspv_libclc_builtin", 990 llvm::MDNode::get(getLLVMContext(), {})); 991 } 992 993 // If we are checking function types, emit a function type signature as 994 // prologue data. 995 if (FD && SanOpts.has(SanitizerKind::Function)) { 996 if (llvm::Constant *PrologueSig = getPrologueSignature(CGM, FD)) { 997 llvm::LLVMContext &Ctx = Fn->getContext(); 998 llvm::MDBuilder MDB(Ctx); 999 Fn->setMetadata( 1000 llvm::LLVMContext::MD_func_sanitize, 1001 MDB.createRTTIPointerPrologue( 1002 PrologueSig, getUBSanFunctionTypeHash(FD->getType()))); 1003 } 1004 } 1005 1006 // If we're checking nullability, we need to know whether we can check the 1007 // return value. Initialize the flag to 'true' and refine it in EmitParmDecl. 1008 if (SanOpts.has(SanitizerKind::NullabilityReturn)) { 1009 auto Nullability = FnRetTy->getNullability(); 1010 if (Nullability && *Nullability == NullabilityKind::NonNull && 1011 !FnRetTy->isRecordType()) { 1012 if (!(SanOpts.has(SanitizerKind::ReturnsNonnullAttribute) && 1013 CurCodeDecl && CurCodeDecl->getAttr<ReturnsNonNullAttr>())) 1014 RetValNullabilityPrecondition = 1015 llvm::ConstantInt::getTrue(getLLVMContext()); 1016 } 1017 } 1018 1019 // If we're in C++ mode and the function name is "main", it is guaranteed 1020 // to be norecurse by the standard (3.6.1.3 "The function main shall not be 1021 // used within a program"). 1022 // 1023 // OpenCL C 2.0 v2.2-11 s6.9.i: 1024 // Recursion is not supported. 1025 // 1026 // SYCL v1.2.1 s3.10: 1027 // kernels cannot include RTTI information, exception classes, 1028 // recursive code, virtual functions or make use of C++ libraries that 1029 // are not compiled for the device. 1030 if (FD && ((getLangOpts().CPlusPlus && FD->isMain()) || 1031 getLangOpts().OpenCL || getLangOpts().SYCLIsDevice || 1032 (getLangOpts().CUDA && FD->hasAttr<CUDAGlobalAttr>()))) 1033 Fn->addFnAttr(llvm::Attribute::NoRecurse); 1034 1035 llvm::RoundingMode RM = getLangOpts().getDefaultRoundingMode(); 1036 llvm::fp::ExceptionBehavior FPExceptionBehavior = 1037 ToConstrainedExceptMD(getLangOpts().getDefaultExceptionMode()); 1038 Builder.setDefaultConstrainedRounding(RM); 1039 Builder.setDefaultConstrainedExcept(FPExceptionBehavior); 1040 if ((FD && (FD->UsesFPIntrin() || FD->hasAttr<StrictFPAttr>())) || 1041 (!FD && (FPExceptionBehavior != llvm::fp::ebIgnore || 1042 RM != llvm::RoundingMode::NearestTiesToEven))) { 1043 Builder.setIsFPConstrained(true); 1044 Fn->addFnAttr(llvm::Attribute::StrictFP); 1045 } 1046 1047 // If a custom alignment is used, force realigning to this alignment on 1048 // any main function which certainly will need it. 1049 if (FD && ((FD->isMain() || FD->isMSVCRTEntryPoint()) && 1050 CGM.getCodeGenOpts().StackAlignment)) 1051 Fn->addFnAttr("stackrealign"); 1052 1053 // "main" doesn't need to zero out call-used registers. 1054 if (FD && FD->isMain()) 1055 Fn->removeFnAttr("zero-call-used-regs"); 1056 1057 llvm::BasicBlock *EntryBB = createBasicBlock("entry", CurFn); 1058 1059 // Create a marker to make it easy to insert allocas into the entryblock 1060 // later. Don't create this with the builder, because we don't want it 1061 // folded. 1062 llvm::Value *Undef = llvm::UndefValue::get(Int32Ty); 1063 AllocaInsertPt = new llvm::BitCastInst(Undef, Int32Ty, "allocapt", EntryBB); 1064 1065 ReturnBlock = getJumpDestInCurrentScope("return"); 1066 1067 Builder.SetInsertPoint(EntryBB); 1068 1069 // If we're checking the return value, allocate space for a pointer to a 1070 // precise source location of the checked return statement. 1071 if (requiresReturnValueCheck()) { 1072 ReturnLocation = CreateDefaultAlignTempAlloca(Int8PtrTy, "return.sloc.ptr"); 1073 Builder.CreateStore(llvm::ConstantPointerNull::get(Int8PtrTy), 1074 ReturnLocation); 1075 } 1076 1077 // Emit subprogram debug descriptor. 1078 if (CGDebugInfo *DI = getDebugInfo()) { 1079 // Reconstruct the type from the argument list so that implicit parameters, 1080 // such as 'this' and 'vtt', show up in the debug info. Preserve the calling 1081 // convention. 1082 DI->emitFunctionStart(GD, Loc, StartLoc, 1083 DI->getFunctionType(FD, RetTy, Args), CurFn, 1084 CurFuncIsThunk); 1085 } 1086 1087 if (ShouldInstrumentFunction()) { 1088 if (CGM.getCodeGenOpts().InstrumentFunctions) 1089 CurFn->addFnAttr("instrument-function-entry", "__cyg_profile_func_enter"); 1090 if (CGM.getCodeGenOpts().InstrumentFunctionsAfterInlining) 1091 CurFn->addFnAttr("instrument-function-entry-inlined", 1092 "__cyg_profile_func_enter"); 1093 if (CGM.getCodeGenOpts().InstrumentFunctionEntryBare) 1094 CurFn->addFnAttr("instrument-function-entry-inlined", 1095 "__cyg_profile_func_enter_bare"); 1096 } 1097 1098 // Since emitting the mcount call here impacts optimizations such as function 1099 // inlining, we just add an attribute to insert a mcount call in backend. 1100 // The attribute "counting-function" is set to mcount function name which is 1101 // architecture dependent. 1102 if (CGM.getCodeGenOpts().InstrumentForProfiling) { 1103 // Calls to fentry/mcount should not be generated if function has 1104 // the no_instrument_function attribute. 1105 if (!CurFuncDecl || !CurFuncDecl->hasAttr<NoInstrumentFunctionAttr>()) { 1106 if (CGM.getCodeGenOpts().CallFEntry) 1107 Fn->addFnAttr("fentry-call", "true"); 1108 else { 1109 Fn->addFnAttr("instrument-function-entry-inlined", 1110 getTarget().getMCountName()); 1111 } 1112 if (CGM.getCodeGenOpts().MNopMCount) { 1113 if (!CGM.getCodeGenOpts().CallFEntry) 1114 CGM.getDiags().Report(diag::err_opt_not_valid_without_opt) 1115 << "-mnop-mcount" << "-mfentry"; 1116 Fn->addFnAttr("mnop-mcount"); 1117 } 1118 1119 if (CGM.getCodeGenOpts().RecordMCount) { 1120 if (!CGM.getCodeGenOpts().CallFEntry) 1121 CGM.getDiags().Report(diag::err_opt_not_valid_without_opt) 1122 << "-mrecord-mcount" << "-mfentry"; 1123 Fn->addFnAttr("mrecord-mcount"); 1124 } 1125 } 1126 } 1127 1128 if (CGM.getCodeGenOpts().PackedStack) { 1129 if (getContext().getTargetInfo().getTriple().getArch() != 1130 llvm::Triple::systemz) 1131 CGM.getDiags().Report(diag::err_opt_not_valid_on_target) 1132 << "-mpacked-stack"; 1133 Fn->addFnAttr("packed-stack"); 1134 } 1135 1136 if (CGM.getCodeGenOpts().WarnStackSize != UINT_MAX && 1137 !CGM.getDiags().isIgnored(diag::warn_fe_backend_frame_larger_than, Loc)) 1138 Fn->addFnAttr("warn-stack-size", 1139 std::to_string(CGM.getCodeGenOpts().WarnStackSize)); 1140 1141 if (RetTy->isVoidType()) { 1142 // Void type; nothing to return. 1143 ReturnValue = Address::invalid(); 1144 1145 // Count the implicit return. 1146 if (!endsWithReturn(D)) 1147 ++NumReturnExprs; 1148 } else if (CurFnInfo->getReturnInfo().getKind() == ABIArgInfo::Indirect) { 1149 // Indirect return; emit returned value directly into sret slot. 1150 // This reduces code size, and affects correctness in C++. 1151 auto AI = CurFn->arg_begin(); 1152 if (CurFnInfo->getReturnInfo().isSRetAfterThis()) 1153 ++AI; 1154 ReturnValue = makeNaturalAddressForPointer( 1155 &*AI, RetTy, CurFnInfo->getReturnInfo().getIndirectAlign(), false, 1156 nullptr, nullptr, KnownNonNull); 1157 if (!CurFnInfo->getReturnInfo().getIndirectByVal()) { 1158 ReturnValuePointer = 1159 CreateDefaultAlignTempAlloca(ReturnValue.getType(), "result.ptr"); 1160 Builder.CreateStore(ReturnValue.emitRawPointer(*this), 1161 ReturnValuePointer); 1162 } 1163 } else if (CurFnInfo->getReturnInfo().getKind() == ABIArgInfo::InAlloca && 1164 !hasScalarEvaluationKind(CurFnInfo->getReturnType())) { 1165 // Load the sret pointer from the argument struct and return into that. 1166 unsigned Idx = CurFnInfo->getReturnInfo().getInAllocaFieldIndex(); 1167 llvm::Function::arg_iterator EI = CurFn->arg_end(); 1168 --EI; 1169 llvm::Value *Addr = Builder.CreateStructGEP( 1170 CurFnInfo->getArgStruct(), &*EI, Idx); 1171 llvm::Type *Ty = 1172 cast<llvm::GetElementPtrInst>(Addr)->getResultElementType(); 1173 ReturnValuePointer = Address(Addr, Ty, getPointerAlign()); 1174 Addr = Builder.CreateAlignedLoad(Ty, Addr, getPointerAlign(), "agg.result"); 1175 ReturnValue = Address(Addr, ConvertType(RetTy), 1176 CGM.getNaturalTypeAlignment(RetTy), KnownNonNull); 1177 } else { 1178 ReturnValue = CreateIRTemp(RetTy, "retval"); 1179 1180 // Tell the epilog emitter to autorelease the result. We do this 1181 // now so that various specialized functions can suppress it 1182 // during their IR-generation. 1183 if (getLangOpts().ObjCAutoRefCount && 1184 !CurFnInfo->isReturnsRetained() && 1185 RetTy->isObjCRetainableType()) 1186 AutoreleaseResult = true; 1187 } 1188 1189 EmitStartEHSpec(CurCodeDecl); 1190 1191 PrologueCleanupDepth = EHStack.stable_begin(); 1192 1193 // Emit OpenMP specific initialization of the device functions. 1194 if (getLangOpts().OpenMP && CurCodeDecl) 1195 CGM.getOpenMPRuntime().emitFunctionProlog(*this, CurCodeDecl); 1196 1197 // Handle emitting HLSL entry functions. 1198 if (D && D->hasAttr<HLSLShaderAttr>()) 1199 CGM.getHLSLRuntime().emitEntryFunction(FD, Fn); 1200 1201 EmitFunctionProlog(*CurFnInfo, CurFn, Args); 1202 1203 if (const CXXMethodDecl *MD = dyn_cast_if_present<CXXMethodDecl>(D); 1204 MD && !MD->isStatic()) { 1205 bool IsInLambda = 1206 MD->getParent()->isLambda() && MD->getOverloadedOperator() == OO_Call; 1207 if (MD->isImplicitObjectMemberFunction()) 1208 CGM.getCXXABI().EmitInstanceFunctionProlog(*this); 1209 if (IsInLambda) { 1210 // We're in a lambda; figure out the captures. 1211 MD->getParent()->getCaptureFields(LambdaCaptureFields, 1212 LambdaThisCaptureField); 1213 if (LambdaThisCaptureField) { 1214 // If the lambda captures the object referred to by '*this' - either by 1215 // value or by reference, make sure CXXThisValue points to the correct 1216 // object. 1217 1218 // Get the lvalue for the field (which is a copy of the enclosing object 1219 // or contains the address of the enclosing object). 1220 LValue ThisFieldLValue = EmitLValueForLambdaField(LambdaThisCaptureField); 1221 if (!LambdaThisCaptureField->getType()->isPointerType()) { 1222 // If the enclosing object was captured by value, just use its 1223 // address. Sign this pointer. 1224 CXXThisValue = ThisFieldLValue.getPointer(*this); 1225 } else { 1226 // Load the lvalue pointed to by the field, since '*this' was captured 1227 // by reference. 1228 CXXThisValue = 1229 EmitLoadOfLValue(ThisFieldLValue, SourceLocation()).getScalarVal(); 1230 } 1231 } 1232 for (auto *FD : MD->getParent()->fields()) { 1233 if (FD->hasCapturedVLAType()) { 1234 auto *ExprArg = EmitLoadOfLValue(EmitLValueForLambdaField(FD), 1235 SourceLocation()).getScalarVal(); 1236 auto VAT = FD->getCapturedVLAType(); 1237 VLASizeMap[VAT->getSizeExpr()] = ExprArg; 1238 } 1239 } 1240 } else if (MD->isImplicitObjectMemberFunction()) { 1241 // Not in a lambda; just use 'this' from the method. 1242 // FIXME: Should we generate a new load for each use of 'this'? The 1243 // fast register allocator would be happier... 1244 CXXThisValue = CXXABIThisValue; 1245 } 1246 1247 // Check the 'this' pointer once per function, if it's available. 1248 if (CXXABIThisValue) { 1249 SanitizerSet SkippedChecks; 1250 SkippedChecks.set(SanitizerKind::ObjectSize, true); 1251 QualType ThisTy = MD->getThisType(); 1252 1253 // If this is the call operator of a lambda with no captures, it 1254 // may have a static invoker function, which may call this operator with 1255 // a null 'this' pointer. 1256 if (isLambdaCallOperator(MD) && MD->getParent()->isCapturelessLambda()) 1257 SkippedChecks.set(SanitizerKind::Null, true); 1258 1259 EmitTypeCheck( 1260 isa<CXXConstructorDecl>(MD) ? TCK_ConstructorCall : TCK_MemberCall, 1261 Loc, CXXABIThisValue, ThisTy, CXXABIThisAlignment, SkippedChecks); 1262 } 1263 } 1264 1265 // If any of the arguments have a variably modified type, make sure to 1266 // emit the type size, but only if the function is not naked. Naked functions 1267 // have no prolog to run this evaluation. 1268 if (!FD || !FD->hasAttr<NakedAttr>()) { 1269 for (const VarDecl *VD : Args) { 1270 // Dig out the type as written from ParmVarDecls; it's unclear whether 1271 // the standard (C99 6.9.1p10) requires this, but we're following the 1272 // precedent set by gcc. 1273 QualType Ty; 1274 if (const ParmVarDecl *PVD = dyn_cast<ParmVarDecl>(VD)) 1275 Ty = PVD->getOriginalType(); 1276 else 1277 Ty = VD->getType(); 1278 1279 if (Ty->isVariablyModifiedType()) 1280 EmitVariablyModifiedType(Ty); 1281 } 1282 } 1283 // Emit a location at the end of the prologue. 1284 if (CGDebugInfo *DI = getDebugInfo()) 1285 DI->EmitLocation(Builder, StartLoc); 1286 // TODO: Do we need to handle this in two places like we do with 1287 // target-features/target-cpu? 1288 if (CurFuncDecl) 1289 if (const auto *VecWidth = CurFuncDecl->getAttr<MinVectorWidthAttr>()) 1290 LargestVectorWidth = VecWidth->getVectorWidth(); 1291 1292 if (CGM.shouldEmitConvergenceTokens()) 1293 ConvergenceTokenStack.push_back(getOrEmitConvergenceEntryToken(CurFn)); 1294 } 1295 1296 void CodeGenFunction::EmitFunctionBody(const Stmt *Body) { 1297 incrementProfileCounter(Body); 1298 maybeCreateMCDCCondBitmap(); 1299 if (const CompoundStmt *S = dyn_cast<CompoundStmt>(Body)) 1300 EmitCompoundStmtWithoutScope(*S); 1301 else 1302 EmitStmt(Body); 1303 } 1304 1305 /// When instrumenting to collect profile data, the counts for some blocks 1306 /// such as switch cases need to not include the fall-through counts, so 1307 /// emit a branch around the instrumentation code. When not instrumenting, 1308 /// this just calls EmitBlock(). 1309 void CodeGenFunction::EmitBlockWithFallThrough(llvm::BasicBlock *BB, 1310 const Stmt *S) { 1311 llvm::BasicBlock *SkipCountBB = nullptr; 1312 // Do not skip over the instrumentation when single byte coverage mode is 1313 // enabled. 1314 if (HaveInsertPoint() && CGM.getCodeGenOpts().hasProfileClangInstr() && 1315 !llvm::EnableSingleByteCoverage) { 1316 // When instrumenting for profiling, the fallthrough to certain 1317 // statements needs to skip over the instrumentation code so that we 1318 // get an accurate count. 1319 SkipCountBB = createBasicBlock("skipcount"); 1320 EmitBranch(SkipCountBB); 1321 } 1322 EmitBlock(BB); 1323 uint64_t CurrentCount = getCurrentProfileCount(); 1324 incrementProfileCounter(S); 1325 setCurrentProfileCount(getCurrentProfileCount() + CurrentCount); 1326 if (SkipCountBB) 1327 EmitBlock(SkipCountBB); 1328 } 1329 1330 /// Tries to mark the given function nounwind based on the 1331 /// non-existence of any throwing calls within it. We believe this is 1332 /// lightweight enough to do at -O0. 1333 static void TryMarkNoThrow(llvm::Function *F) { 1334 // LLVM treats 'nounwind' on a function as part of the type, so we 1335 // can't do this on functions that can be overwritten. 1336 if (F->isInterposable()) return; 1337 1338 for (llvm::BasicBlock &BB : *F) 1339 for (llvm::Instruction &I : BB) 1340 if (I.mayThrow()) 1341 return; 1342 1343 F->setDoesNotThrow(); 1344 } 1345 1346 QualType CodeGenFunction::BuildFunctionArgList(GlobalDecl GD, 1347 FunctionArgList &Args) { 1348 const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl()); 1349 QualType ResTy = FD->getReturnType(); 1350 1351 const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD); 1352 if (MD && MD->isImplicitObjectMemberFunction()) { 1353 if (CGM.getCXXABI().HasThisReturn(GD)) 1354 ResTy = MD->getThisType(); 1355 else if (CGM.getCXXABI().hasMostDerivedReturn(GD)) 1356 ResTy = CGM.getContext().VoidPtrTy; 1357 CGM.getCXXABI().buildThisParam(*this, Args); 1358 } 1359 1360 // The base version of an inheriting constructor whose constructed base is a 1361 // virtual base is not passed any arguments (because it doesn't actually call 1362 // the inherited constructor). 1363 bool PassedParams = true; 1364 if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(FD)) 1365 if (auto Inherited = CD->getInheritedConstructor()) 1366 PassedParams = 1367 getTypes().inheritingCtorHasParams(Inherited, GD.getCtorType()); 1368 1369 if (PassedParams) { 1370 for (auto *Param : FD->parameters()) { 1371 Args.push_back(Param); 1372 if (!Param->hasAttr<PassObjectSizeAttr>()) 1373 continue; 1374 1375 auto *Implicit = ImplicitParamDecl::Create( 1376 getContext(), Param->getDeclContext(), Param->getLocation(), 1377 /*Id=*/nullptr, getContext().getSizeType(), ImplicitParamKind::Other); 1378 SizeArguments[Param] = Implicit; 1379 Args.push_back(Implicit); 1380 } 1381 } 1382 1383 if (MD && (isa<CXXConstructorDecl>(MD) || isa<CXXDestructorDecl>(MD))) 1384 CGM.getCXXABI().addImplicitStructorParams(*this, ResTy, Args); 1385 1386 return ResTy; 1387 } 1388 1389 void CodeGenFunction::GenerateCode(GlobalDecl GD, llvm::Function *Fn, 1390 const CGFunctionInfo &FnInfo) { 1391 assert(Fn && "generating code for null Function"); 1392 const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl()); 1393 CurGD = GD; 1394 1395 FunctionArgList Args; 1396 QualType ResTy = BuildFunctionArgList(GD, Args); 1397 1398 CGM.getTargetCodeGenInfo().checkFunctionABI(CGM, FD); 1399 1400 if (FD->isInlineBuiltinDeclaration()) { 1401 // When generating code for a builtin with an inline declaration, use a 1402 // mangled name to hold the actual body, while keeping an external 1403 // definition in case the function pointer is referenced somewhere. 1404 std::string FDInlineName = (Fn->getName() + ".inline").str(); 1405 llvm::Module *M = Fn->getParent(); 1406 llvm::Function *Clone = M->getFunction(FDInlineName); 1407 if (!Clone) { 1408 Clone = llvm::Function::Create(Fn->getFunctionType(), 1409 llvm::GlobalValue::InternalLinkage, 1410 Fn->getAddressSpace(), FDInlineName, M); 1411 Clone->addFnAttr(llvm::Attribute::AlwaysInline); 1412 } 1413 Fn->setLinkage(llvm::GlobalValue::ExternalLinkage); 1414 Fn = Clone; 1415 } else { 1416 // Detect the unusual situation where an inline version is shadowed by a 1417 // non-inline version. In that case we should pick the external one 1418 // everywhere. That's GCC behavior too. Unfortunately, I cannot find a way 1419 // to detect that situation before we reach codegen, so do some late 1420 // replacement. 1421 for (const FunctionDecl *PD = FD->getPreviousDecl(); PD; 1422 PD = PD->getPreviousDecl()) { 1423 if (LLVM_UNLIKELY(PD->isInlineBuiltinDeclaration())) { 1424 std::string FDInlineName = (Fn->getName() + ".inline").str(); 1425 llvm::Module *M = Fn->getParent(); 1426 if (llvm::Function *Clone = M->getFunction(FDInlineName)) { 1427 Clone->replaceAllUsesWith(Fn); 1428 Clone->eraseFromParent(); 1429 } 1430 break; 1431 } 1432 } 1433 } 1434 1435 // Check if we should generate debug info for this function. 1436 if (FD->hasAttr<NoDebugAttr>()) { 1437 // Clear non-distinct debug info that was possibly attached to the function 1438 // due to an earlier declaration without the nodebug attribute 1439 Fn->setSubprogram(nullptr); 1440 // Disable debug info indefinitely for this function 1441 DebugInfo = nullptr; 1442 } 1443 1444 // The function might not have a body if we're generating thunks for a 1445 // function declaration. 1446 SourceRange BodyRange; 1447 if (Stmt *Body = FD->getBody()) 1448 BodyRange = Body->getSourceRange(); 1449 else 1450 BodyRange = FD->getLocation(); 1451 CurEHLocation = BodyRange.getEnd(); 1452 1453 // Use the location of the start of the function to determine where 1454 // the function definition is located. By default use the location 1455 // of the declaration as the location for the subprogram. A function 1456 // may lack a declaration in the source code if it is created by code 1457 // gen. (examples: _GLOBAL__I_a, __cxx_global_array_dtor, thunk). 1458 SourceLocation Loc = FD->getLocation(); 1459 1460 // If this is a function specialization then use the pattern body 1461 // as the location for the function. 1462 if (const FunctionDecl *SpecDecl = FD->getTemplateInstantiationPattern()) 1463 if (SpecDecl->hasBody(SpecDecl)) 1464 Loc = SpecDecl->getLocation(); 1465 1466 Stmt *Body = FD->getBody(); 1467 1468 if (Body) { 1469 // Coroutines always emit lifetime markers. 1470 if (isa<CoroutineBodyStmt>(Body)) 1471 ShouldEmitLifetimeMarkers = true; 1472 1473 // Initialize helper which will detect jumps which can cause invalid 1474 // lifetime markers. 1475 if (ShouldEmitLifetimeMarkers) 1476 Bypasses.Init(Body); 1477 } 1478 1479 // Emit the standard function prologue. 1480 StartFunction(GD, ResTy, Fn, FnInfo, Args, Loc, BodyRange.getBegin()); 1481 1482 // Save parameters for coroutine function. 1483 if (Body && isa_and_nonnull<CoroutineBodyStmt>(Body)) 1484 llvm::append_range(FnArgs, FD->parameters()); 1485 1486 // Ensure that the function adheres to the forward progress guarantee, which 1487 // is required by certain optimizations. 1488 // In C++11 and up, the attribute will be removed if the body contains a 1489 // trivial empty loop. 1490 if (checkIfFunctionMustProgress()) 1491 CurFn->addFnAttr(llvm::Attribute::MustProgress); 1492 1493 // Generate the body of the function. 1494 PGO.assignRegionCounters(GD, CurFn); 1495 if (isa<CXXDestructorDecl>(FD)) 1496 EmitDestructorBody(Args); 1497 else if (isa<CXXConstructorDecl>(FD)) 1498 EmitConstructorBody(Args); 1499 else if (getLangOpts().CUDA && 1500 !getLangOpts().CUDAIsDevice && 1501 FD->hasAttr<CUDAGlobalAttr>()) 1502 CGM.getCUDARuntime().emitDeviceStub(*this, Args); 1503 else if (isa<CXXMethodDecl>(FD) && 1504 cast<CXXMethodDecl>(FD)->isLambdaStaticInvoker()) { 1505 // The lambda static invoker function is special, because it forwards or 1506 // clones the body of the function call operator (but is actually static). 1507 EmitLambdaStaticInvokeBody(cast<CXXMethodDecl>(FD)); 1508 } else if (isa<CXXMethodDecl>(FD) && 1509 isLambdaCallOperator(cast<CXXMethodDecl>(FD)) && 1510 !FnInfo.isDelegateCall() && 1511 cast<CXXMethodDecl>(FD)->getParent()->getLambdaStaticInvoker() && 1512 hasInAllocaArg(cast<CXXMethodDecl>(FD))) { 1513 // If emitting a lambda with static invoker on X86 Windows, change 1514 // the call operator body. 1515 // Make sure that this is a call operator with an inalloca arg and check 1516 // for delegate call to make sure this is the original call op and not the 1517 // new forwarding function for the static invoker. 1518 EmitLambdaInAllocaCallOpBody(cast<CXXMethodDecl>(FD)); 1519 } else if (FD->isDefaulted() && isa<CXXMethodDecl>(FD) && 1520 (cast<CXXMethodDecl>(FD)->isCopyAssignmentOperator() || 1521 cast<CXXMethodDecl>(FD)->isMoveAssignmentOperator())) { 1522 // Implicit copy-assignment gets the same special treatment as implicit 1523 // copy-constructors. 1524 emitImplicitAssignmentOperatorBody(Args); 1525 } else if (Body) { 1526 EmitFunctionBody(Body); 1527 } else 1528 llvm_unreachable("no definition for emitted function"); 1529 1530 // C++11 [stmt.return]p2: 1531 // Flowing off the end of a function [...] results in undefined behavior in 1532 // a value-returning function. 1533 // C11 6.9.1p12: 1534 // If the '}' that terminates a function is reached, and the value of the 1535 // function call is used by the caller, the behavior is undefined. 1536 if (getLangOpts().CPlusPlus && !FD->hasImplicitReturnZero() && !SawAsmBlock && 1537 !FD->getReturnType()->isVoidType() && Builder.GetInsertBlock()) { 1538 bool ShouldEmitUnreachable = 1539 CGM.getCodeGenOpts().StrictReturn || 1540 !CGM.MayDropFunctionReturn(FD->getASTContext(), FD->getReturnType()); 1541 if (SanOpts.has(SanitizerKind::Return)) { 1542 SanitizerScope SanScope(this); 1543 llvm::Value *IsFalse = Builder.getFalse(); 1544 EmitCheck(std::make_pair(IsFalse, SanitizerKind::Return), 1545 SanitizerHandler::MissingReturn, 1546 EmitCheckSourceLocation(FD->getLocation()), std::nullopt); 1547 } else if (ShouldEmitUnreachable) { 1548 if (CGM.getCodeGenOpts().OptimizationLevel == 0) 1549 EmitTrapCall(llvm::Intrinsic::trap); 1550 } 1551 if (SanOpts.has(SanitizerKind::Return) || ShouldEmitUnreachable) { 1552 Builder.CreateUnreachable(); 1553 Builder.ClearInsertionPoint(); 1554 } 1555 } 1556 1557 // Emit the standard function epilogue. 1558 FinishFunction(BodyRange.getEnd()); 1559 1560 // If we haven't marked the function nothrow through other means, do 1561 // a quick pass now to see if we can. 1562 if (!CurFn->doesNotThrow()) 1563 TryMarkNoThrow(CurFn); 1564 } 1565 1566 /// ContainsLabel - Return true if the statement contains a label in it. If 1567 /// this statement is not executed normally, it not containing a label means 1568 /// that we can just remove the code. 1569 bool CodeGenFunction::ContainsLabel(const Stmt *S, bool IgnoreCaseStmts) { 1570 // Null statement, not a label! 1571 if (!S) return false; 1572 1573 // If this is a label, we have to emit the code, consider something like: 1574 // if (0) { ... foo: bar(); } goto foo; 1575 // 1576 // TODO: If anyone cared, we could track __label__'s, since we know that you 1577 // can't jump to one from outside their declared region. 1578 if (isa<LabelStmt>(S)) 1579 return true; 1580 1581 // If this is a case/default statement, and we haven't seen a switch, we have 1582 // to emit the code. 1583 if (isa<SwitchCase>(S) && !IgnoreCaseStmts) 1584 return true; 1585 1586 // If this is a switch statement, we want to ignore cases below it. 1587 if (isa<SwitchStmt>(S)) 1588 IgnoreCaseStmts = true; 1589 1590 // Scan subexpressions for verboten labels. 1591 for (const Stmt *SubStmt : S->children()) 1592 if (ContainsLabel(SubStmt, IgnoreCaseStmts)) 1593 return true; 1594 1595 return false; 1596 } 1597 1598 /// containsBreak - Return true if the statement contains a break out of it. 1599 /// If the statement (recursively) contains a switch or loop with a break 1600 /// inside of it, this is fine. 1601 bool CodeGenFunction::containsBreak(const Stmt *S) { 1602 // Null statement, not a label! 1603 if (!S) return false; 1604 1605 // If this is a switch or loop that defines its own break scope, then we can 1606 // include it and anything inside of it. 1607 if (isa<SwitchStmt>(S) || isa<WhileStmt>(S) || isa<DoStmt>(S) || 1608 isa<ForStmt>(S)) 1609 return false; 1610 1611 if (isa<BreakStmt>(S)) 1612 return true; 1613 1614 // Scan subexpressions for verboten breaks. 1615 for (const Stmt *SubStmt : S->children()) 1616 if (containsBreak(SubStmt)) 1617 return true; 1618 1619 return false; 1620 } 1621 1622 bool CodeGenFunction::mightAddDeclToScope(const Stmt *S) { 1623 if (!S) return false; 1624 1625 // Some statement kinds add a scope and thus never add a decl to the current 1626 // scope. Note, this list is longer than the list of statements that might 1627 // have an unscoped decl nested within them, but this way is conservatively 1628 // correct even if more statement kinds are added. 1629 if (isa<IfStmt>(S) || isa<SwitchStmt>(S) || isa<WhileStmt>(S) || 1630 isa<DoStmt>(S) || isa<ForStmt>(S) || isa<CompoundStmt>(S) || 1631 isa<CXXForRangeStmt>(S) || isa<CXXTryStmt>(S) || 1632 isa<ObjCForCollectionStmt>(S) || isa<ObjCAtTryStmt>(S)) 1633 return false; 1634 1635 if (isa<DeclStmt>(S)) 1636 return true; 1637 1638 for (const Stmt *SubStmt : S->children()) 1639 if (mightAddDeclToScope(SubStmt)) 1640 return true; 1641 1642 return false; 1643 } 1644 1645 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold 1646 /// to a constant, or if it does but contains a label, return false. If it 1647 /// constant folds return true and set the boolean result in Result. 1648 bool CodeGenFunction::ConstantFoldsToSimpleInteger(const Expr *Cond, 1649 bool &ResultBool, 1650 bool AllowLabels) { 1651 // If MC/DC is enabled, disable folding so that we can instrument all 1652 // conditions to yield complete test vectors. We still keep track of 1653 // folded conditions during region mapping and visualization. 1654 if (!AllowLabels && CGM.getCodeGenOpts().hasProfileClangInstr() && 1655 CGM.getCodeGenOpts().MCDCCoverage) 1656 return false; 1657 1658 llvm::APSInt ResultInt; 1659 if (!ConstantFoldsToSimpleInteger(Cond, ResultInt, AllowLabels)) 1660 return false; 1661 1662 ResultBool = ResultInt.getBoolValue(); 1663 return true; 1664 } 1665 1666 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold 1667 /// to a constant, or if it does but contains a label, return false. If it 1668 /// constant folds return true and set the folded value. 1669 bool CodeGenFunction::ConstantFoldsToSimpleInteger(const Expr *Cond, 1670 llvm::APSInt &ResultInt, 1671 bool AllowLabels) { 1672 // FIXME: Rename and handle conversion of other evaluatable things 1673 // to bool. 1674 Expr::EvalResult Result; 1675 if (!Cond->EvaluateAsInt(Result, getContext())) 1676 return false; // Not foldable, not integer or not fully evaluatable. 1677 1678 llvm::APSInt Int = Result.Val.getInt(); 1679 if (!AllowLabels && CodeGenFunction::ContainsLabel(Cond)) 1680 return false; // Contains a label. 1681 1682 ResultInt = Int; 1683 return true; 1684 } 1685 1686 /// Strip parentheses and simplistic logical-NOT operators. 1687 const Expr *CodeGenFunction::stripCond(const Expr *C) { 1688 while (const UnaryOperator *Op = dyn_cast<UnaryOperator>(C->IgnoreParens())) { 1689 if (Op->getOpcode() != UO_LNot) 1690 break; 1691 C = Op->getSubExpr(); 1692 } 1693 return C->IgnoreParens(); 1694 } 1695 1696 /// Determine whether the given condition is an instrumentable condition 1697 /// (i.e. no "&&" or "||"). 1698 bool CodeGenFunction::isInstrumentedCondition(const Expr *C) { 1699 const BinaryOperator *BOp = dyn_cast<BinaryOperator>(stripCond(C)); 1700 return (!BOp || !BOp->isLogicalOp()); 1701 } 1702 1703 /// EmitBranchToCounterBlock - Emit a conditional branch to a new block that 1704 /// increments a profile counter based on the semantics of the given logical 1705 /// operator opcode. This is used to instrument branch condition coverage for 1706 /// logical operators. 1707 void CodeGenFunction::EmitBranchToCounterBlock( 1708 const Expr *Cond, BinaryOperator::Opcode LOp, llvm::BasicBlock *TrueBlock, 1709 llvm::BasicBlock *FalseBlock, uint64_t TrueCount /* = 0 */, 1710 Stmt::Likelihood LH /* =None */, const Expr *CntrIdx /* = nullptr */) { 1711 // If not instrumenting, just emit a branch. 1712 bool InstrumentRegions = CGM.getCodeGenOpts().hasProfileClangInstr(); 1713 if (!InstrumentRegions || !isInstrumentedCondition(Cond)) 1714 return EmitBranchOnBoolExpr(Cond, TrueBlock, FalseBlock, TrueCount, LH); 1715 1716 llvm::BasicBlock *ThenBlock = nullptr; 1717 llvm::BasicBlock *ElseBlock = nullptr; 1718 llvm::BasicBlock *NextBlock = nullptr; 1719 1720 // Create the block we'll use to increment the appropriate counter. 1721 llvm::BasicBlock *CounterIncrBlock = createBasicBlock("lop.rhscnt"); 1722 1723 // Set block pointers according to Logical-AND (BO_LAnd) semantics. This 1724 // means we need to evaluate the condition and increment the counter on TRUE: 1725 // 1726 // if (Cond) 1727 // goto CounterIncrBlock; 1728 // else 1729 // goto FalseBlock; 1730 // 1731 // CounterIncrBlock: 1732 // Counter++; 1733 // goto TrueBlock; 1734 1735 if (LOp == BO_LAnd) { 1736 ThenBlock = CounterIncrBlock; 1737 ElseBlock = FalseBlock; 1738 NextBlock = TrueBlock; 1739 } 1740 1741 // Set block pointers according to Logical-OR (BO_LOr) semantics. This means 1742 // we need to evaluate the condition and increment the counter on FALSE: 1743 // 1744 // if (Cond) 1745 // goto TrueBlock; 1746 // else 1747 // goto CounterIncrBlock; 1748 // 1749 // CounterIncrBlock: 1750 // Counter++; 1751 // goto FalseBlock; 1752 1753 else if (LOp == BO_LOr) { 1754 ThenBlock = TrueBlock; 1755 ElseBlock = CounterIncrBlock; 1756 NextBlock = FalseBlock; 1757 } else { 1758 llvm_unreachable("Expected Opcode must be that of a Logical Operator"); 1759 } 1760 1761 // Emit Branch based on condition. 1762 EmitBranchOnBoolExpr(Cond, ThenBlock, ElseBlock, TrueCount, LH); 1763 1764 // Emit the block containing the counter increment(s). 1765 EmitBlock(CounterIncrBlock); 1766 1767 // Increment corresponding counter; if index not provided, use Cond as index. 1768 incrementProfileCounter(CntrIdx ? CntrIdx : Cond); 1769 1770 // Go to the next block. 1771 EmitBranch(NextBlock); 1772 } 1773 1774 /// EmitBranchOnBoolExpr - Emit a branch on a boolean condition (e.g. for an if 1775 /// statement) to the specified blocks. Based on the condition, this might try 1776 /// to simplify the codegen of the conditional based on the branch. 1777 /// \param LH The value of the likelihood attribute on the True branch. 1778 /// \param ConditionalOp Used by MC/DC code coverage to track the result of the 1779 /// ConditionalOperator (ternary) through a recursive call for the operator's 1780 /// LHS and RHS nodes. 1781 void CodeGenFunction::EmitBranchOnBoolExpr( 1782 const Expr *Cond, llvm::BasicBlock *TrueBlock, llvm::BasicBlock *FalseBlock, 1783 uint64_t TrueCount, Stmt::Likelihood LH, const Expr *ConditionalOp) { 1784 Cond = Cond->IgnoreParens(); 1785 1786 if (const BinaryOperator *CondBOp = dyn_cast<BinaryOperator>(Cond)) { 1787 // Handle X && Y in a condition. 1788 if (CondBOp->getOpcode() == BO_LAnd) { 1789 MCDCLogOpStack.push_back(CondBOp); 1790 1791 // If we have "1 && X", simplify the code. "0 && X" would have constant 1792 // folded if the case was simple enough. 1793 bool ConstantBool = false; 1794 if (ConstantFoldsToSimpleInteger(CondBOp->getLHS(), ConstantBool) && 1795 ConstantBool) { 1796 // br(1 && X) -> br(X). 1797 incrementProfileCounter(CondBOp); 1798 EmitBranchToCounterBlock(CondBOp->getRHS(), BO_LAnd, TrueBlock, 1799 FalseBlock, TrueCount, LH); 1800 MCDCLogOpStack.pop_back(); 1801 return; 1802 } 1803 1804 // If we have "X && 1", simplify the code to use an uncond branch. 1805 // "X && 0" would have been constant folded to 0. 1806 if (ConstantFoldsToSimpleInteger(CondBOp->getRHS(), ConstantBool) && 1807 ConstantBool) { 1808 // br(X && 1) -> br(X). 1809 EmitBranchToCounterBlock(CondBOp->getLHS(), BO_LAnd, TrueBlock, 1810 FalseBlock, TrueCount, LH, CondBOp); 1811 MCDCLogOpStack.pop_back(); 1812 return; 1813 } 1814 1815 // Emit the LHS as a conditional. If the LHS conditional is false, we 1816 // want to jump to the FalseBlock. 1817 llvm::BasicBlock *LHSTrue = createBasicBlock("land.lhs.true"); 1818 // The counter tells us how often we evaluate RHS, and all of TrueCount 1819 // can be propagated to that branch. 1820 uint64_t RHSCount = getProfileCount(CondBOp->getRHS()); 1821 1822 ConditionalEvaluation eval(*this); 1823 { 1824 ApplyDebugLocation DL(*this, Cond); 1825 // Propagate the likelihood attribute like __builtin_expect 1826 // __builtin_expect(X && Y, 1) -> X and Y are likely 1827 // __builtin_expect(X && Y, 0) -> only Y is unlikely 1828 EmitBranchOnBoolExpr(CondBOp->getLHS(), LHSTrue, FalseBlock, RHSCount, 1829 LH == Stmt::LH_Unlikely ? Stmt::LH_None : LH); 1830 EmitBlock(LHSTrue); 1831 } 1832 1833 incrementProfileCounter(CondBOp); 1834 setCurrentProfileCount(getProfileCount(CondBOp->getRHS())); 1835 1836 // Any temporaries created here are conditional. 1837 eval.begin(*this); 1838 EmitBranchToCounterBlock(CondBOp->getRHS(), BO_LAnd, TrueBlock, 1839 FalseBlock, TrueCount, LH); 1840 eval.end(*this); 1841 MCDCLogOpStack.pop_back(); 1842 return; 1843 } 1844 1845 if (CondBOp->getOpcode() == BO_LOr) { 1846 MCDCLogOpStack.push_back(CondBOp); 1847 1848 // If we have "0 || X", simplify the code. "1 || X" would have constant 1849 // folded if the case was simple enough. 1850 bool ConstantBool = false; 1851 if (ConstantFoldsToSimpleInteger(CondBOp->getLHS(), ConstantBool) && 1852 !ConstantBool) { 1853 // br(0 || X) -> br(X). 1854 incrementProfileCounter(CondBOp); 1855 EmitBranchToCounterBlock(CondBOp->getRHS(), BO_LOr, TrueBlock, 1856 FalseBlock, TrueCount, LH); 1857 MCDCLogOpStack.pop_back(); 1858 return; 1859 } 1860 1861 // If we have "X || 0", simplify the code to use an uncond branch. 1862 // "X || 1" would have been constant folded to 1. 1863 if (ConstantFoldsToSimpleInteger(CondBOp->getRHS(), ConstantBool) && 1864 !ConstantBool) { 1865 // br(X || 0) -> br(X). 1866 EmitBranchToCounterBlock(CondBOp->getLHS(), BO_LOr, TrueBlock, 1867 FalseBlock, TrueCount, LH, CondBOp); 1868 MCDCLogOpStack.pop_back(); 1869 return; 1870 } 1871 // Emit the LHS as a conditional. If the LHS conditional is true, we 1872 // want to jump to the TrueBlock. 1873 llvm::BasicBlock *LHSFalse = createBasicBlock("lor.lhs.false"); 1874 // We have the count for entry to the RHS and for the whole expression 1875 // being true, so we can divy up True count between the short circuit and 1876 // the RHS. 1877 uint64_t LHSCount = 1878 getCurrentProfileCount() - getProfileCount(CondBOp->getRHS()); 1879 uint64_t RHSCount = TrueCount - LHSCount; 1880 1881 ConditionalEvaluation eval(*this); 1882 { 1883 // Propagate the likelihood attribute like __builtin_expect 1884 // __builtin_expect(X || Y, 1) -> only Y is likely 1885 // __builtin_expect(X || Y, 0) -> both X and Y are unlikely 1886 ApplyDebugLocation DL(*this, Cond); 1887 EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, LHSFalse, LHSCount, 1888 LH == Stmt::LH_Likely ? Stmt::LH_None : LH); 1889 EmitBlock(LHSFalse); 1890 } 1891 1892 incrementProfileCounter(CondBOp); 1893 setCurrentProfileCount(getProfileCount(CondBOp->getRHS())); 1894 1895 // Any temporaries created here are conditional. 1896 eval.begin(*this); 1897 EmitBranchToCounterBlock(CondBOp->getRHS(), BO_LOr, TrueBlock, FalseBlock, 1898 RHSCount, LH); 1899 1900 eval.end(*this); 1901 MCDCLogOpStack.pop_back(); 1902 return; 1903 } 1904 } 1905 1906 if (const UnaryOperator *CondUOp = dyn_cast<UnaryOperator>(Cond)) { 1907 // br(!x, t, f) -> br(x, f, t) 1908 // Avoid doing this optimization when instrumenting a condition for MC/DC. 1909 // LNot is taken as part of the condition for simplicity, and changing its 1910 // sense negatively impacts test vector tracking. 1911 bool MCDCCondition = CGM.getCodeGenOpts().hasProfileClangInstr() && 1912 CGM.getCodeGenOpts().MCDCCoverage && 1913 isInstrumentedCondition(Cond); 1914 if (CondUOp->getOpcode() == UO_LNot && !MCDCCondition) { 1915 // Negate the count. 1916 uint64_t FalseCount = getCurrentProfileCount() - TrueCount; 1917 // The values of the enum are chosen to make this negation possible. 1918 LH = static_cast<Stmt::Likelihood>(-LH); 1919 // Negate the condition and swap the destination blocks. 1920 return EmitBranchOnBoolExpr(CondUOp->getSubExpr(), FalseBlock, TrueBlock, 1921 FalseCount, LH); 1922 } 1923 } 1924 1925 if (const ConditionalOperator *CondOp = dyn_cast<ConditionalOperator>(Cond)) { 1926 // br(c ? x : y, t, f) -> br(c, br(x, t, f), br(y, t, f)) 1927 llvm::BasicBlock *LHSBlock = createBasicBlock("cond.true"); 1928 llvm::BasicBlock *RHSBlock = createBasicBlock("cond.false"); 1929 1930 // The ConditionalOperator itself has no likelihood information for its 1931 // true and false branches. This matches the behavior of __builtin_expect. 1932 ConditionalEvaluation cond(*this); 1933 EmitBranchOnBoolExpr(CondOp->getCond(), LHSBlock, RHSBlock, 1934 getProfileCount(CondOp), Stmt::LH_None); 1935 1936 // When computing PGO branch weights, we only know the overall count for 1937 // the true block. This code is essentially doing tail duplication of the 1938 // naive code-gen, introducing new edges for which counts are not 1939 // available. Divide the counts proportionally between the LHS and RHS of 1940 // the conditional operator. 1941 uint64_t LHSScaledTrueCount = 0; 1942 if (TrueCount) { 1943 double LHSRatio = 1944 getProfileCount(CondOp) / (double)getCurrentProfileCount(); 1945 LHSScaledTrueCount = TrueCount * LHSRatio; 1946 } 1947 1948 cond.begin(*this); 1949 EmitBlock(LHSBlock); 1950 incrementProfileCounter(CondOp); 1951 { 1952 ApplyDebugLocation DL(*this, Cond); 1953 EmitBranchOnBoolExpr(CondOp->getLHS(), TrueBlock, FalseBlock, 1954 LHSScaledTrueCount, LH, CondOp); 1955 } 1956 cond.end(*this); 1957 1958 cond.begin(*this); 1959 EmitBlock(RHSBlock); 1960 EmitBranchOnBoolExpr(CondOp->getRHS(), TrueBlock, FalseBlock, 1961 TrueCount - LHSScaledTrueCount, LH, CondOp); 1962 cond.end(*this); 1963 1964 return; 1965 } 1966 1967 if (const CXXThrowExpr *Throw = dyn_cast<CXXThrowExpr>(Cond)) { 1968 // Conditional operator handling can give us a throw expression as a 1969 // condition for a case like: 1970 // br(c ? throw x : y, t, f) -> br(c, br(throw x, t, f), br(y, t, f) 1971 // Fold this to: 1972 // br(c, throw x, br(y, t, f)) 1973 EmitCXXThrowExpr(Throw, /*KeepInsertionPoint*/false); 1974 return; 1975 } 1976 1977 // Emit the code with the fully general case. 1978 llvm::Value *CondV; 1979 { 1980 ApplyDebugLocation DL(*this, Cond); 1981 CondV = EvaluateExprAsBool(Cond); 1982 } 1983 1984 // If not at the top of the logical operator nest, update MCDC temp with the 1985 // boolean result of the evaluated condition. 1986 if (!MCDCLogOpStack.empty()) { 1987 const Expr *MCDCBaseExpr = Cond; 1988 // When a nested ConditionalOperator (ternary) is encountered in a boolean 1989 // expression, MC/DC tracks the result of the ternary, and this is tied to 1990 // the ConditionalOperator expression and not the ternary's LHS or RHS. If 1991 // this is the case, the ConditionalOperator expression is passed through 1992 // the ConditionalOp parameter and then used as the MCDC base expression. 1993 if (ConditionalOp) 1994 MCDCBaseExpr = ConditionalOp; 1995 1996 maybeUpdateMCDCCondBitmap(MCDCBaseExpr, CondV); 1997 } 1998 1999 llvm::MDNode *Weights = nullptr; 2000 llvm::MDNode *Unpredictable = nullptr; 2001 2002 // If the branch has a condition wrapped by __builtin_unpredictable, 2003 // create metadata that specifies that the branch is unpredictable. 2004 // Don't bother if not optimizing because that metadata would not be used. 2005 auto *Call = dyn_cast<CallExpr>(Cond->IgnoreImpCasts()); 2006 if (Call && CGM.getCodeGenOpts().OptimizationLevel != 0) { 2007 auto *FD = dyn_cast_or_null<FunctionDecl>(Call->getCalleeDecl()); 2008 if (FD && FD->getBuiltinID() == Builtin::BI__builtin_unpredictable) { 2009 llvm::MDBuilder MDHelper(getLLVMContext()); 2010 Unpredictable = MDHelper.createUnpredictable(); 2011 } 2012 } 2013 2014 // If there is a Likelihood knowledge for the cond, lower it. 2015 // Note that if not optimizing this won't emit anything. 2016 llvm::Value *NewCondV = emitCondLikelihoodViaExpectIntrinsic(CondV, LH); 2017 if (CondV != NewCondV) 2018 CondV = NewCondV; 2019 else { 2020 // Otherwise, lower profile counts. Note that we do this even at -O0. 2021 uint64_t CurrentCount = std::max(getCurrentProfileCount(), TrueCount); 2022 Weights = createProfileWeights(TrueCount, CurrentCount - TrueCount); 2023 } 2024 2025 Builder.CreateCondBr(CondV, TrueBlock, FalseBlock, Weights, Unpredictable); 2026 } 2027 2028 /// ErrorUnsupported - Print out an error that codegen doesn't support the 2029 /// specified stmt yet. 2030 void CodeGenFunction::ErrorUnsupported(const Stmt *S, const char *Type) { 2031 CGM.ErrorUnsupported(S, Type); 2032 } 2033 2034 /// emitNonZeroVLAInit - Emit the "zero" initialization of a 2035 /// variable-length array whose elements have a non-zero bit-pattern. 2036 /// 2037 /// \param baseType the inner-most element type of the array 2038 /// \param src - a char* pointing to the bit-pattern for a single 2039 /// base element of the array 2040 /// \param sizeInChars - the total size of the VLA, in chars 2041 static void emitNonZeroVLAInit(CodeGenFunction &CGF, QualType baseType, 2042 Address dest, Address src, 2043 llvm::Value *sizeInChars) { 2044 CGBuilderTy &Builder = CGF.Builder; 2045 2046 CharUnits baseSize = CGF.getContext().getTypeSizeInChars(baseType); 2047 llvm::Value *baseSizeInChars 2048 = llvm::ConstantInt::get(CGF.IntPtrTy, baseSize.getQuantity()); 2049 2050 Address begin = dest.withElementType(CGF.Int8Ty); 2051 llvm::Value *end = Builder.CreateInBoundsGEP(begin.getElementType(), 2052 begin.emitRawPointer(CGF), 2053 sizeInChars, "vla.end"); 2054 2055 llvm::BasicBlock *originBB = CGF.Builder.GetInsertBlock(); 2056 llvm::BasicBlock *loopBB = CGF.createBasicBlock("vla-init.loop"); 2057 llvm::BasicBlock *contBB = CGF.createBasicBlock("vla-init.cont"); 2058 2059 // Make a loop over the VLA. C99 guarantees that the VLA element 2060 // count must be nonzero. 2061 CGF.EmitBlock(loopBB); 2062 2063 llvm::PHINode *cur = Builder.CreatePHI(begin.getType(), 2, "vla.cur"); 2064 cur->addIncoming(begin.emitRawPointer(CGF), originBB); 2065 2066 CharUnits curAlign = 2067 dest.getAlignment().alignmentOfArrayElement(baseSize); 2068 2069 // memcpy the individual element bit-pattern. 2070 Builder.CreateMemCpy(Address(cur, CGF.Int8Ty, curAlign), src, baseSizeInChars, 2071 /*volatile*/ false); 2072 2073 // Go to the next element. 2074 llvm::Value *next = 2075 Builder.CreateInBoundsGEP(CGF.Int8Ty, cur, baseSizeInChars, "vla.next"); 2076 2077 // Leave if that's the end of the VLA. 2078 llvm::Value *done = Builder.CreateICmpEQ(next, end, "vla-init.isdone"); 2079 Builder.CreateCondBr(done, contBB, loopBB); 2080 cur->addIncoming(next, loopBB); 2081 2082 CGF.EmitBlock(contBB); 2083 } 2084 2085 void 2086 CodeGenFunction::EmitNullInitialization(Address DestPtr, QualType Ty) { 2087 // Ignore empty classes in C++. 2088 if (getLangOpts().CPlusPlus) { 2089 if (const RecordType *RT = Ty->getAs<RecordType>()) { 2090 if (cast<CXXRecordDecl>(RT->getDecl())->isEmpty()) 2091 return; 2092 } 2093 } 2094 2095 if (DestPtr.getElementType() != Int8Ty) 2096 DestPtr = DestPtr.withElementType(Int8Ty); 2097 2098 // Get size and alignment info for this aggregate. 2099 CharUnits size = getContext().getTypeSizeInChars(Ty); 2100 2101 llvm::Value *SizeVal; 2102 const VariableArrayType *vla; 2103 2104 // Don't bother emitting a zero-byte memset. 2105 if (size.isZero()) { 2106 // But note that getTypeInfo returns 0 for a VLA. 2107 if (const VariableArrayType *vlaType = 2108 dyn_cast_or_null<VariableArrayType>( 2109 getContext().getAsArrayType(Ty))) { 2110 auto VlaSize = getVLASize(vlaType); 2111 SizeVal = VlaSize.NumElts; 2112 CharUnits eltSize = getContext().getTypeSizeInChars(VlaSize.Type); 2113 if (!eltSize.isOne()) 2114 SizeVal = Builder.CreateNUWMul(SizeVal, CGM.getSize(eltSize)); 2115 vla = vlaType; 2116 } else { 2117 return; 2118 } 2119 } else { 2120 SizeVal = CGM.getSize(size); 2121 vla = nullptr; 2122 } 2123 2124 // If the type contains a pointer to data member we can't memset it to zero. 2125 // Instead, create a null constant and copy it to the destination. 2126 // TODO: there are other patterns besides zero that we can usefully memset, 2127 // like -1, which happens to be the pattern used by member-pointers. 2128 if (!CGM.getTypes().isZeroInitializable(Ty)) { 2129 // For a VLA, emit a single element, then splat that over the VLA. 2130 if (vla) Ty = getContext().getBaseElementType(vla); 2131 2132 llvm::Constant *NullConstant = CGM.EmitNullConstant(Ty); 2133 2134 llvm::GlobalVariable *NullVariable = 2135 new llvm::GlobalVariable(CGM.getModule(), NullConstant->getType(), 2136 /*isConstant=*/true, 2137 llvm::GlobalVariable::PrivateLinkage, 2138 NullConstant, Twine()); 2139 CharUnits NullAlign = DestPtr.getAlignment(); 2140 NullVariable->setAlignment(NullAlign.getAsAlign()); 2141 Address SrcPtr(NullVariable, Builder.getInt8Ty(), NullAlign); 2142 2143 if (vla) return emitNonZeroVLAInit(*this, Ty, DestPtr, SrcPtr, SizeVal); 2144 2145 // Get and call the appropriate llvm.memcpy overload. 2146 Builder.CreateMemCpy(DestPtr, SrcPtr, SizeVal, false); 2147 return; 2148 } 2149 2150 // Otherwise, just memset the whole thing to zero. This is legal 2151 // because in LLVM, all default initializers (other than the ones we just 2152 // handled above) are guaranteed to have a bit pattern of all zeros. 2153 Builder.CreateMemSet(DestPtr, Builder.getInt8(0), SizeVal, false); 2154 } 2155 2156 llvm::BlockAddress *CodeGenFunction::GetAddrOfLabel(const LabelDecl *L) { 2157 // Make sure that there is a block for the indirect goto. 2158 if (!IndirectBranch) 2159 GetIndirectGotoBlock(); 2160 2161 llvm::BasicBlock *BB = getJumpDestForLabel(L).getBlock(); 2162 2163 // Make sure the indirect branch includes all of the address-taken blocks. 2164 IndirectBranch->addDestination(BB); 2165 return llvm::BlockAddress::get(CurFn, BB); 2166 } 2167 2168 llvm::BasicBlock *CodeGenFunction::GetIndirectGotoBlock() { 2169 // If we already made the indirect branch for indirect goto, return its block. 2170 if (IndirectBranch) return IndirectBranch->getParent(); 2171 2172 CGBuilderTy TmpBuilder(*this, createBasicBlock("indirectgoto")); 2173 2174 // Create the PHI node that indirect gotos will add entries to. 2175 llvm::Value *DestVal = TmpBuilder.CreatePHI(Int8PtrTy, 0, 2176 "indirect.goto.dest"); 2177 2178 // Create the indirect branch instruction. 2179 IndirectBranch = TmpBuilder.CreateIndirectBr(DestVal); 2180 return IndirectBranch->getParent(); 2181 } 2182 2183 /// Computes the length of an array in elements, as well as the base 2184 /// element type and a properly-typed first element pointer. 2185 llvm::Value *CodeGenFunction::emitArrayLength(const ArrayType *origArrayType, 2186 QualType &baseType, 2187 Address &addr) { 2188 const ArrayType *arrayType = origArrayType; 2189 2190 // If it's a VLA, we have to load the stored size. Note that 2191 // this is the size of the VLA in bytes, not its size in elements. 2192 llvm::Value *numVLAElements = nullptr; 2193 if (isa<VariableArrayType>(arrayType)) { 2194 numVLAElements = getVLASize(cast<VariableArrayType>(arrayType)).NumElts; 2195 2196 // Walk into all VLAs. This doesn't require changes to addr, 2197 // which has type T* where T is the first non-VLA element type. 2198 do { 2199 QualType elementType = arrayType->getElementType(); 2200 arrayType = getContext().getAsArrayType(elementType); 2201 2202 // If we only have VLA components, 'addr' requires no adjustment. 2203 if (!arrayType) { 2204 baseType = elementType; 2205 return numVLAElements; 2206 } 2207 } while (isa<VariableArrayType>(arrayType)); 2208 2209 // We get out here only if we find a constant array type 2210 // inside the VLA. 2211 } 2212 2213 // We have some number of constant-length arrays, so addr should 2214 // have LLVM type [M x [N x [...]]]*. Build a GEP that walks 2215 // down to the first element of addr. 2216 SmallVector<llvm::Value*, 8> gepIndices; 2217 2218 // GEP down to the array type. 2219 llvm::ConstantInt *zero = Builder.getInt32(0); 2220 gepIndices.push_back(zero); 2221 2222 uint64_t countFromCLAs = 1; 2223 QualType eltType; 2224 2225 llvm::ArrayType *llvmArrayType = 2226 dyn_cast<llvm::ArrayType>(addr.getElementType()); 2227 while (llvmArrayType) { 2228 assert(isa<ConstantArrayType>(arrayType)); 2229 assert(cast<ConstantArrayType>(arrayType)->getZExtSize() == 2230 llvmArrayType->getNumElements()); 2231 2232 gepIndices.push_back(zero); 2233 countFromCLAs *= llvmArrayType->getNumElements(); 2234 eltType = arrayType->getElementType(); 2235 2236 llvmArrayType = 2237 dyn_cast<llvm::ArrayType>(llvmArrayType->getElementType()); 2238 arrayType = getContext().getAsArrayType(arrayType->getElementType()); 2239 assert((!llvmArrayType || arrayType) && 2240 "LLVM and Clang types are out-of-synch"); 2241 } 2242 2243 if (arrayType) { 2244 // From this point onwards, the Clang array type has been emitted 2245 // as some other type (probably a packed struct). Compute the array 2246 // size, and just emit the 'begin' expression as a bitcast. 2247 while (arrayType) { 2248 countFromCLAs *= cast<ConstantArrayType>(arrayType)->getZExtSize(); 2249 eltType = arrayType->getElementType(); 2250 arrayType = getContext().getAsArrayType(eltType); 2251 } 2252 2253 llvm::Type *baseType = ConvertType(eltType); 2254 addr = addr.withElementType(baseType); 2255 } else { 2256 // Create the actual GEP. 2257 addr = Address(Builder.CreateInBoundsGEP(addr.getElementType(), 2258 addr.emitRawPointer(*this), 2259 gepIndices, "array.begin"), 2260 ConvertTypeForMem(eltType), addr.getAlignment()); 2261 } 2262 2263 baseType = eltType; 2264 2265 llvm::Value *numElements 2266 = llvm::ConstantInt::get(SizeTy, countFromCLAs); 2267 2268 // If we had any VLA dimensions, factor them in. 2269 if (numVLAElements) 2270 numElements = Builder.CreateNUWMul(numVLAElements, numElements); 2271 2272 return numElements; 2273 } 2274 2275 CodeGenFunction::VlaSizePair CodeGenFunction::getVLASize(QualType type) { 2276 const VariableArrayType *vla = getContext().getAsVariableArrayType(type); 2277 assert(vla && "type was not a variable array type!"); 2278 return getVLASize(vla); 2279 } 2280 2281 CodeGenFunction::VlaSizePair 2282 CodeGenFunction::getVLASize(const VariableArrayType *type) { 2283 // The number of elements so far; always size_t. 2284 llvm::Value *numElements = nullptr; 2285 2286 QualType elementType; 2287 do { 2288 elementType = type->getElementType(); 2289 llvm::Value *vlaSize = VLASizeMap[type->getSizeExpr()]; 2290 assert(vlaSize && "no size for VLA!"); 2291 assert(vlaSize->getType() == SizeTy); 2292 2293 if (!numElements) { 2294 numElements = vlaSize; 2295 } else { 2296 // It's undefined behavior if this wraps around, so mark it that way. 2297 // FIXME: Teach -fsanitize=undefined to trap this. 2298 numElements = Builder.CreateNUWMul(numElements, vlaSize); 2299 } 2300 } while ((type = getContext().getAsVariableArrayType(elementType))); 2301 2302 return { numElements, elementType }; 2303 } 2304 2305 CodeGenFunction::VlaSizePair 2306 CodeGenFunction::getVLAElements1D(QualType type) { 2307 const VariableArrayType *vla = getContext().getAsVariableArrayType(type); 2308 assert(vla && "type was not a variable array type!"); 2309 return getVLAElements1D(vla); 2310 } 2311 2312 CodeGenFunction::VlaSizePair 2313 CodeGenFunction::getVLAElements1D(const VariableArrayType *Vla) { 2314 llvm::Value *VlaSize = VLASizeMap[Vla->getSizeExpr()]; 2315 assert(VlaSize && "no size for VLA!"); 2316 assert(VlaSize->getType() == SizeTy); 2317 return { VlaSize, Vla->getElementType() }; 2318 } 2319 2320 void CodeGenFunction::EmitVariablyModifiedType(QualType type) { 2321 assert(type->isVariablyModifiedType() && 2322 "Must pass variably modified type to EmitVLASizes!"); 2323 2324 EnsureInsertPoint(); 2325 2326 // We're going to walk down into the type and look for VLA 2327 // expressions. 2328 do { 2329 assert(type->isVariablyModifiedType()); 2330 2331 const Type *ty = type.getTypePtr(); 2332 switch (ty->getTypeClass()) { 2333 2334 #define TYPE(Class, Base) 2335 #define ABSTRACT_TYPE(Class, Base) 2336 #define NON_CANONICAL_TYPE(Class, Base) 2337 #define DEPENDENT_TYPE(Class, Base) case Type::Class: 2338 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base) 2339 #include "clang/AST/TypeNodes.inc" 2340 llvm_unreachable("unexpected dependent type!"); 2341 2342 // These types are never variably-modified. 2343 case Type::Builtin: 2344 case Type::Complex: 2345 case Type::Vector: 2346 case Type::ExtVector: 2347 case Type::ConstantMatrix: 2348 case Type::Record: 2349 case Type::Enum: 2350 case Type::Using: 2351 case Type::TemplateSpecialization: 2352 case Type::ObjCTypeParam: 2353 case Type::ObjCObject: 2354 case Type::ObjCInterface: 2355 case Type::ObjCObjectPointer: 2356 case Type::BitInt: 2357 llvm_unreachable("type class is never variably-modified!"); 2358 2359 case Type::Elaborated: 2360 type = cast<ElaboratedType>(ty)->getNamedType(); 2361 break; 2362 2363 case Type::Adjusted: 2364 type = cast<AdjustedType>(ty)->getAdjustedType(); 2365 break; 2366 2367 case Type::Decayed: 2368 type = cast<DecayedType>(ty)->getPointeeType(); 2369 break; 2370 2371 case Type::Pointer: 2372 type = cast<PointerType>(ty)->getPointeeType(); 2373 break; 2374 2375 case Type::BlockPointer: 2376 type = cast<BlockPointerType>(ty)->getPointeeType(); 2377 break; 2378 2379 case Type::LValueReference: 2380 case Type::RValueReference: 2381 type = cast<ReferenceType>(ty)->getPointeeType(); 2382 break; 2383 2384 case Type::MemberPointer: 2385 type = cast<MemberPointerType>(ty)->getPointeeType(); 2386 break; 2387 2388 case Type::ArrayParameter: 2389 case Type::ConstantArray: 2390 case Type::IncompleteArray: 2391 // Losing element qualification here is fine. 2392 type = cast<ArrayType>(ty)->getElementType(); 2393 break; 2394 2395 case Type::VariableArray: { 2396 // Losing element qualification here is fine. 2397 const VariableArrayType *vat = cast<VariableArrayType>(ty); 2398 2399 // Unknown size indication requires no size computation. 2400 // Otherwise, evaluate and record it. 2401 if (const Expr *sizeExpr = vat->getSizeExpr()) { 2402 // It's possible that we might have emitted this already, 2403 // e.g. with a typedef and a pointer to it. 2404 llvm::Value *&entry = VLASizeMap[sizeExpr]; 2405 if (!entry) { 2406 llvm::Value *size = EmitScalarExpr(sizeExpr); 2407 2408 // C11 6.7.6.2p5: 2409 // If the size is an expression that is not an integer constant 2410 // expression [...] each time it is evaluated it shall have a value 2411 // greater than zero. 2412 if (SanOpts.has(SanitizerKind::VLABound)) { 2413 SanitizerScope SanScope(this); 2414 llvm::Value *Zero = llvm::Constant::getNullValue(size->getType()); 2415 clang::QualType SEType = sizeExpr->getType(); 2416 llvm::Value *CheckCondition = 2417 SEType->isSignedIntegerType() 2418 ? Builder.CreateICmpSGT(size, Zero) 2419 : Builder.CreateICmpUGT(size, Zero); 2420 llvm::Constant *StaticArgs[] = { 2421 EmitCheckSourceLocation(sizeExpr->getBeginLoc()), 2422 EmitCheckTypeDescriptor(SEType)}; 2423 EmitCheck(std::make_pair(CheckCondition, SanitizerKind::VLABound), 2424 SanitizerHandler::VLABoundNotPositive, StaticArgs, size); 2425 } 2426 2427 // Always zexting here would be wrong if it weren't 2428 // undefined behavior to have a negative bound. 2429 // FIXME: What about when size's type is larger than size_t? 2430 entry = Builder.CreateIntCast(size, SizeTy, /*signed*/ false); 2431 } 2432 } 2433 type = vat->getElementType(); 2434 break; 2435 } 2436 2437 case Type::FunctionProto: 2438 case Type::FunctionNoProto: 2439 type = cast<FunctionType>(ty)->getReturnType(); 2440 break; 2441 2442 case Type::Paren: 2443 case Type::TypeOf: 2444 case Type::UnaryTransform: 2445 case Type::Attributed: 2446 case Type::BTFTagAttributed: 2447 case Type::SubstTemplateTypeParm: 2448 case Type::MacroQualified: 2449 case Type::CountAttributed: 2450 // Keep walking after single level desugaring. 2451 type = type.getSingleStepDesugaredType(getContext()); 2452 break; 2453 2454 case Type::Typedef: 2455 case Type::Decltype: 2456 case Type::Auto: 2457 case Type::DeducedTemplateSpecialization: 2458 case Type::PackIndexing: 2459 // Stop walking: nothing to do. 2460 return; 2461 2462 case Type::TypeOfExpr: 2463 // Stop walking: emit typeof expression. 2464 EmitIgnoredExpr(cast<TypeOfExprType>(ty)->getUnderlyingExpr()); 2465 return; 2466 2467 case Type::Atomic: 2468 type = cast<AtomicType>(ty)->getValueType(); 2469 break; 2470 2471 case Type::Pipe: 2472 type = cast<PipeType>(ty)->getElementType(); 2473 break; 2474 } 2475 } while (type->isVariablyModifiedType()); 2476 } 2477 2478 Address CodeGenFunction::EmitVAListRef(const Expr* E) { 2479 if (getContext().getBuiltinVaListType()->isArrayType()) 2480 return EmitPointerWithAlignment(E); 2481 return EmitLValue(E).getAddress(); 2482 } 2483 2484 Address CodeGenFunction::EmitMSVAListRef(const Expr *E) { 2485 return EmitLValue(E).getAddress(); 2486 } 2487 2488 void CodeGenFunction::EmitDeclRefExprDbgValue(const DeclRefExpr *E, 2489 const APValue &Init) { 2490 assert(Init.hasValue() && "Invalid DeclRefExpr initializer!"); 2491 if (CGDebugInfo *Dbg = getDebugInfo()) 2492 if (CGM.getCodeGenOpts().hasReducedDebugInfo()) 2493 Dbg->EmitGlobalVariable(E->getDecl(), Init); 2494 } 2495 2496 CodeGenFunction::PeepholeProtection 2497 CodeGenFunction::protectFromPeepholes(RValue rvalue) { 2498 // At the moment, the only aggressive peephole we do in IR gen 2499 // is trunc(zext) folding, but if we add more, we can easily 2500 // extend this protection. 2501 2502 if (!rvalue.isScalar()) return PeepholeProtection(); 2503 llvm::Value *value = rvalue.getScalarVal(); 2504 if (!isa<llvm::ZExtInst>(value)) return PeepholeProtection(); 2505 2506 // Just make an extra bitcast. 2507 assert(HaveInsertPoint()); 2508 llvm::Instruction *inst = new llvm::BitCastInst(value, value->getType(), "", 2509 Builder.GetInsertBlock()); 2510 2511 PeepholeProtection protection; 2512 protection.Inst = inst; 2513 return protection; 2514 } 2515 2516 void CodeGenFunction::unprotectFromPeepholes(PeepholeProtection protection) { 2517 if (!protection.Inst) return; 2518 2519 // In theory, we could try to duplicate the peepholes now, but whatever. 2520 protection.Inst->eraseFromParent(); 2521 } 2522 2523 void CodeGenFunction::emitAlignmentAssumption(llvm::Value *PtrValue, 2524 QualType Ty, SourceLocation Loc, 2525 SourceLocation AssumptionLoc, 2526 llvm::Value *Alignment, 2527 llvm::Value *OffsetValue) { 2528 if (Alignment->getType() != IntPtrTy) 2529 Alignment = 2530 Builder.CreateIntCast(Alignment, IntPtrTy, false, "casted.align"); 2531 if (OffsetValue && OffsetValue->getType() != IntPtrTy) 2532 OffsetValue = 2533 Builder.CreateIntCast(OffsetValue, IntPtrTy, true, "casted.offset"); 2534 llvm::Value *TheCheck = nullptr; 2535 if (SanOpts.has(SanitizerKind::Alignment)) { 2536 llvm::Value *PtrIntValue = 2537 Builder.CreatePtrToInt(PtrValue, IntPtrTy, "ptrint"); 2538 2539 if (OffsetValue) { 2540 bool IsOffsetZero = false; 2541 if (const auto *CI = dyn_cast<llvm::ConstantInt>(OffsetValue)) 2542 IsOffsetZero = CI->isZero(); 2543 2544 if (!IsOffsetZero) 2545 PtrIntValue = Builder.CreateSub(PtrIntValue, OffsetValue, "offsetptr"); 2546 } 2547 2548 llvm::Value *Zero = llvm::ConstantInt::get(IntPtrTy, 0); 2549 llvm::Value *Mask = 2550 Builder.CreateSub(Alignment, llvm::ConstantInt::get(IntPtrTy, 1)); 2551 llvm::Value *MaskedPtr = Builder.CreateAnd(PtrIntValue, Mask, "maskedptr"); 2552 TheCheck = Builder.CreateICmpEQ(MaskedPtr, Zero, "maskcond"); 2553 } 2554 llvm::Instruction *Assumption = Builder.CreateAlignmentAssumption( 2555 CGM.getDataLayout(), PtrValue, Alignment, OffsetValue); 2556 2557 if (!SanOpts.has(SanitizerKind::Alignment)) 2558 return; 2559 emitAlignmentAssumptionCheck(PtrValue, Ty, Loc, AssumptionLoc, Alignment, 2560 OffsetValue, TheCheck, Assumption); 2561 } 2562 2563 void CodeGenFunction::emitAlignmentAssumption(llvm::Value *PtrValue, 2564 const Expr *E, 2565 SourceLocation AssumptionLoc, 2566 llvm::Value *Alignment, 2567 llvm::Value *OffsetValue) { 2568 QualType Ty = E->getType(); 2569 SourceLocation Loc = E->getExprLoc(); 2570 2571 emitAlignmentAssumption(PtrValue, Ty, Loc, AssumptionLoc, Alignment, 2572 OffsetValue); 2573 } 2574 2575 llvm::Value *CodeGenFunction::EmitAnnotationCall(llvm::Function *AnnotationFn, 2576 llvm::Value *AnnotatedVal, 2577 StringRef AnnotationStr, 2578 SourceLocation Location, 2579 const AnnotateAttr *Attr) { 2580 SmallVector<llvm::Value *, 5> Args = { 2581 AnnotatedVal, 2582 CGM.EmitAnnotationString(AnnotationStr), 2583 CGM.EmitAnnotationUnit(Location), 2584 CGM.EmitAnnotationLineNo(Location), 2585 }; 2586 if (Attr) 2587 Args.push_back(CGM.EmitAnnotationArgs(Attr)); 2588 return Builder.CreateCall(AnnotationFn, Args); 2589 } 2590 2591 void CodeGenFunction::EmitVarAnnotations(const VarDecl *D, llvm::Value *V) { 2592 assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute"); 2593 for (const auto *I : D->specific_attrs<AnnotateAttr>()) 2594 EmitAnnotationCall(CGM.getIntrinsic(llvm::Intrinsic::var_annotation, 2595 {V->getType(), CGM.ConstGlobalsPtrTy}), 2596 V, I->getAnnotation(), D->getLocation(), I); 2597 } 2598 2599 Address CodeGenFunction::EmitFieldAnnotations(const FieldDecl *D, 2600 Address Addr) { 2601 assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute"); 2602 llvm::Value *V = Addr.emitRawPointer(*this); 2603 llvm::Type *VTy = V->getType(); 2604 auto *PTy = dyn_cast<llvm::PointerType>(VTy); 2605 unsigned AS = PTy ? PTy->getAddressSpace() : 0; 2606 llvm::PointerType *IntrinTy = 2607 llvm::PointerType::get(CGM.getLLVMContext(), AS); 2608 llvm::Function *F = CGM.getIntrinsic(llvm::Intrinsic::ptr_annotation, 2609 {IntrinTy, CGM.ConstGlobalsPtrTy}); 2610 2611 for (const auto *I : D->specific_attrs<AnnotateAttr>()) { 2612 // FIXME Always emit the cast inst so we can differentiate between 2613 // annotation on the first field of a struct and annotation on the struct 2614 // itself. 2615 if (VTy != IntrinTy) 2616 V = Builder.CreateBitCast(V, IntrinTy); 2617 V = EmitAnnotationCall(F, V, I->getAnnotation(), D->getLocation(), I); 2618 V = Builder.CreateBitCast(V, VTy); 2619 } 2620 2621 return Address(V, Addr.getElementType(), Addr.getAlignment()); 2622 } 2623 2624 CodeGenFunction::CGCapturedStmtInfo::~CGCapturedStmtInfo() { } 2625 2626 CodeGenFunction::SanitizerScope::SanitizerScope(CodeGenFunction *CGF) 2627 : CGF(CGF) { 2628 assert(!CGF->IsSanitizerScope); 2629 CGF->IsSanitizerScope = true; 2630 } 2631 2632 CodeGenFunction::SanitizerScope::~SanitizerScope() { 2633 CGF->IsSanitizerScope = false; 2634 } 2635 2636 void CodeGenFunction::InsertHelper(llvm::Instruction *I, 2637 const llvm::Twine &Name, 2638 llvm::BasicBlock *BB, 2639 llvm::BasicBlock::iterator InsertPt) const { 2640 LoopStack.InsertHelper(I); 2641 if (IsSanitizerScope) 2642 I->setNoSanitizeMetadata(); 2643 } 2644 2645 void CGBuilderInserter::InsertHelper( 2646 llvm::Instruction *I, const llvm::Twine &Name, llvm::BasicBlock *BB, 2647 llvm::BasicBlock::iterator InsertPt) const { 2648 llvm::IRBuilderDefaultInserter::InsertHelper(I, Name, BB, InsertPt); 2649 if (CGF) 2650 CGF->InsertHelper(I, Name, BB, InsertPt); 2651 } 2652 2653 // Emits an error if we don't have a valid set of target features for the 2654 // called function. 2655 void CodeGenFunction::checkTargetFeatures(const CallExpr *E, 2656 const FunctionDecl *TargetDecl) { 2657 // SemaChecking cannot handle below x86 builtins because they have different 2658 // parameter ranges with different TargetAttribute of caller. 2659 if (CGM.getContext().getTargetInfo().getTriple().isX86()) { 2660 unsigned BuiltinID = TargetDecl->getBuiltinID(); 2661 if (BuiltinID == X86::BI__builtin_ia32_cmpps || 2662 BuiltinID == X86::BI__builtin_ia32_cmpss || 2663 BuiltinID == X86::BI__builtin_ia32_cmppd || 2664 BuiltinID == X86::BI__builtin_ia32_cmpsd) { 2665 const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(CurCodeDecl); 2666 llvm::StringMap<bool> TargetFetureMap; 2667 CGM.getContext().getFunctionFeatureMap(TargetFetureMap, FD); 2668 llvm::APSInt Result = 2669 *(E->getArg(2)->getIntegerConstantExpr(CGM.getContext())); 2670 if (Result.getSExtValue() > 7 && !TargetFetureMap.lookup("avx")) 2671 CGM.getDiags().Report(E->getBeginLoc(), diag::err_builtin_needs_feature) 2672 << TargetDecl->getDeclName() << "avx"; 2673 } 2674 } 2675 return checkTargetFeatures(E->getBeginLoc(), TargetDecl); 2676 } 2677 2678 // Emits an error if we don't have a valid set of target features for the 2679 // called function. 2680 void CodeGenFunction::checkTargetFeatures(SourceLocation Loc, 2681 const FunctionDecl *TargetDecl) { 2682 // Early exit if this is an indirect call. 2683 if (!TargetDecl) 2684 return; 2685 2686 // Get the current enclosing function if it exists. If it doesn't 2687 // we can't check the target features anyhow. 2688 const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(CurCodeDecl); 2689 if (!FD) 2690 return; 2691 2692 // Grab the required features for the call. For a builtin this is listed in 2693 // the td file with the default cpu, for an always_inline function this is any 2694 // listed cpu and any listed features. 2695 unsigned BuiltinID = TargetDecl->getBuiltinID(); 2696 std::string MissingFeature; 2697 llvm::StringMap<bool> CallerFeatureMap; 2698 CGM.getContext().getFunctionFeatureMap(CallerFeatureMap, FD); 2699 // When compiling in HipStdPar mode we have to be conservative in rejecting 2700 // target specific features in the FE, and defer the possible error to the 2701 // AcceleratorCodeSelection pass, wherein iff an unsupported target builtin is 2702 // referenced by an accelerator executable function, we emit an error. 2703 bool IsHipStdPar = getLangOpts().HIPStdPar && getLangOpts().CUDAIsDevice; 2704 if (BuiltinID) { 2705 StringRef FeatureList(CGM.getContext().BuiltinInfo.getRequiredFeatures(BuiltinID)); 2706 if (!Builtin::evaluateRequiredTargetFeatures( 2707 FeatureList, CallerFeatureMap) && !IsHipStdPar) { 2708 CGM.getDiags().Report(Loc, diag::err_builtin_needs_feature) 2709 << TargetDecl->getDeclName() 2710 << FeatureList; 2711 } 2712 } else if (!TargetDecl->isMultiVersion() && 2713 TargetDecl->hasAttr<TargetAttr>()) { 2714 // Get the required features for the callee. 2715 2716 const TargetAttr *TD = TargetDecl->getAttr<TargetAttr>(); 2717 ParsedTargetAttr ParsedAttr = 2718 CGM.getContext().filterFunctionTargetAttrs(TD); 2719 2720 SmallVector<StringRef, 1> ReqFeatures; 2721 llvm::StringMap<bool> CalleeFeatureMap; 2722 CGM.getContext().getFunctionFeatureMap(CalleeFeatureMap, TargetDecl); 2723 2724 for (const auto &F : ParsedAttr.Features) { 2725 if (F[0] == '+' && CalleeFeatureMap.lookup(F.substr(1))) 2726 ReqFeatures.push_back(StringRef(F).substr(1)); 2727 } 2728 2729 for (const auto &F : CalleeFeatureMap) { 2730 // Only positive features are "required". 2731 if (F.getValue()) 2732 ReqFeatures.push_back(F.getKey()); 2733 } 2734 if (!llvm::all_of(ReqFeatures, [&](StringRef Feature) { 2735 if (!CallerFeatureMap.lookup(Feature)) { 2736 MissingFeature = Feature.str(); 2737 return false; 2738 } 2739 return true; 2740 }) && !IsHipStdPar) 2741 CGM.getDiags().Report(Loc, diag::err_function_needs_feature) 2742 << FD->getDeclName() << TargetDecl->getDeclName() << MissingFeature; 2743 } else if (!FD->isMultiVersion() && FD->hasAttr<TargetAttr>()) { 2744 llvm::StringMap<bool> CalleeFeatureMap; 2745 CGM.getContext().getFunctionFeatureMap(CalleeFeatureMap, TargetDecl); 2746 2747 for (const auto &F : CalleeFeatureMap) { 2748 if (F.getValue() && (!CallerFeatureMap.lookup(F.getKey()) || 2749 !CallerFeatureMap.find(F.getKey())->getValue()) && 2750 !IsHipStdPar) 2751 CGM.getDiags().Report(Loc, diag::err_function_needs_feature) 2752 << FD->getDeclName() << TargetDecl->getDeclName() << F.getKey(); 2753 } 2754 } 2755 } 2756 2757 void CodeGenFunction::EmitSanitizerStatReport(llvm::SanitizerStatKind SSK) { 2758 if (!CGM.getCodeGenOpts().SanitizeStats) 2759 return; 2760 2761 llvm::IRBuilder<> IRB(Builder.GetInsertBlock(), Builder.GetInsertPoint()); 2762 IRB.SetCurrentDebugLocation(Builder.getCurrentDebugLocation()); 2763 CGM.getSanStats().create(IRB, SSK); 2764 } 2765 2766 void CodeGenFunction::EmitKCFIOperandBundle( 2767 const CGCallee &Callee, SmallVectorImpl<llvm::OperandBundleDef> &Bundles) { 2768 const FunctionProtoType *FP = 2769 Callee.getAbstractInfo().getCalleeFunctionProtoType(); 2770 if (FP) 2771 Bundles.emplace_back("kcfi", CGM.CreateKCFITypeId(FP->desugar())); 2772 } 2773 2774 llvm::Value *CodeGenFunction::FormAArch64ResolverCondition( 2775 const MultiVersionResolverOption &RO) { 2776 llvm::SmallVector<StringRef, 8> CondFeatures; 2777 for (const StringRef &Feature : RO.Conditions.Features) { 2778 // Optimize the Function Multi Versioning resolver by creating conditions 2779 // only for features that are not enabled in the target. The exception is 2780 // for features whose extension instructions are executed as NOP on targets 2781 // without extension support. 2782 if (!getContext().getTargetInfo().hasFeature(Feature) || Feature == "bti" || 2783 Feature == "memtag" || Feature == "memtag2" || Feature == "memtag3" || 2784 Feature == "dgh") 2785 CondFeatures.push_back(Feature); 2786 } 2787 if (!CondFeatures.empty()) { 2788 return EmitAArch64CpuSupports(CondFeatures); 2789 } 2790 return nullptr; 2791 } 2792 2793 llvm::Value *CodeGenFunction::FormX86ResolverCondition( 2794 const MultiVersionResolverOption &RO) { 2795 llvm::Value *Condition = nullptr; 2796 2797 if (!RO.Conditions.Architecture.empty()) { 2798 StringRef Arch = RO.Conditions.Architecture; 2799 // If arch= specifies an x86-64 micro-architecture level, test the feature 2800 // with __builtin_cpu_supports, otherwise use __builtin_cpu_is. 2801 if (Arch.starts_with("x86-64")) 2802 Condition = EmitX86CpuSupports({Arch}); 2803 else 2804 Condition = EmitX86CpuIs(Arch); 2805 } 2806 2807 if (!RO.Conditions.Features.empty()) { 2808 llvm::Value *FeatureCond = EmitX86CpuSupports(RO.Conditions.Features); 2809 Condition = 2810 Condition ? Builder.CreateAnd(Condition, FeatureCond) : FeatureCond; 2811 } 2812 return Condition; 2813 } 2814 2815 static void CreateMultiVersionResolverReturn(CodeGenModule &CGM, 2816 llvm::Function *Resolver, 2817 CGBuilderTy &Builder, 2818 llvm::Function *FuncToReturn, 2819 bool SupportsIFunc) { 2820 if (SupportsIFunc) { 2821 Builder.CreateRet(FuncToReturn); 2822 return; 2823 } 2824 2825 llvm::SmallVector<llvm::Value *, 10> Args( 2826 llvm::make_pointer_range(Resolver->args())); 2827 2828 llvm::CallInst *Result = Builder.CreateCall(FuncToReturn, Args); 2829 Result->setTailCallKind(llvm::CallInst::TCK_MustTail); 2830 2831 if (Resolver->getReturnType()->isVoidTy()) 2832 Builder.CreateRetVoid(); 2833 else 2834 Builder.CreateRet(Result); 2835 } 2836 2837 void CodeGenFunction::EmitMultiVersionResolver( 2838 llvm::Function *Resolver, ArrayRef<MultiVersionResolverOption> Options) { 2839 2840 llvm::Triple::ArchType ArchType = 2841 getContext().getTargetInfo().getTriple().getArch(); 2842 2843 switch (ArchType) { 2844 case llvm::Triple::x86: 2845 case llvm::Triple::x86_64: 2846 EmitX86MultiVersionResolver(Resolver, Options); 2847 return; 2848 case llvm::Triple::aarch64: 2849 EmitAArch64MultiVersionResolver(Resolver, Options); 2850 return; 2851 2852 default: 2853 assert(false && "Only implemented for x86 and AArch64 targets"); 2854 } 2855 } 2856 2857 void CodeGenFunction::EmitAArch64MultiVersionResolver( 2858 llvm::Function *Resolver, ArrayRef<MultiVersionResolverOption> Options) { 2859 assert(!Options.empty() && "No multiversion resolver options found"); 2860 assert(Options.back().Conditions.Features.size() == 0 && 2861 "Default case must be last"); 2862 bool SupportsIFunc = getContext().getTargetInfo().supportsIFunc(); 2863 assert(SupportsIFunc && 2864 "Multiversion resolver requires target IFUNC support"); 2865 bool AArch64CpuInitialized = false; 2866 llvm::BasicBlock *CurBlock = createBasicBlock("resolver_entry", Resolver); 2867 2868 for (const MultiVersionResolverOption &RO : Options) { 2869 Builder.SetInsertPoint(CurBlock); 2870 llvm::Value *Condition = FormAArch64ResolverCondition(RO); 2871 2872 // The 'default' or 'all features enabled' case. 2873 if (!Condition) { 2874 CreateMultiVersionResolverReturn(CGM, Resolver, Builder, RO.Function, 2875 SupportsIFunc); 2876 return; 2877 } 2878 2879 if (!AArch64CpuInitialized) { 2880 Builder.SetInsertPoint(CurBlock, CurBlock->begin()); 2881 EmitAArch64CpuInit(); 2882 AArch64CpuInitialized = true; 2883 Builder.SetInsertPoint(CurBlock); 2884 } 2885 2886 llvm::BasicBlock *RetBlock = createBasicBlock("resolver_return", Resolver); 2887 CGBuilderTy RetBuilder(*this, RetBlock); 2888 CreateMultiVersionResolverReturn(CGM, Resolver, RetBuilder, RO.Function, 2889 SupportsIFunc); 2890 CurBlock = createBasicBlock("resolver_else", Resolver); 2891 Builder.CreateCondBr(Condition, RetBlock, CurBlock); 2892 } 2893 2894 // If no default, emit an unreachable. 2895 Builder.SetInsertPoint(CurBlock); 2896 llvm::CallInst *TrapCall = EmitTrapCall(llvm::Intrinsic::trap); 2897 TrapCall->setDoesNotReturn(); 2898 TrapCall->setDoesNotThrow(); 2899 Builder.CreateUnreachable(); 2900 Builder.ClearInsertionPoint(); 2901 } 2902 2903 void CodeGenFunction::EmitX86MultiVersionResolver( 2904 llvm::Function *Resolver, ArrayRef<MultiVersionResolverOption> Options) { 2905 2906 bool SupportsIFunc = getContext().getTargetInfo().supportsIFunc(); 2907 2908 // Main function's basic block. 2909 llvm::BasicBlock *CurBlock = createBasicBlock("resolver_entry", Resolver); 2910 Builder.SetInsertPoint(CurBlock); 2911 EmitX86CpuInit(); 2912 2913 for (const MultiVersionResolverOption &RO : Options) { 2914 Builder.SetInsertPoint(CurBlock); 2915 llvm::Value *Condition = FormX86ResolverCondition(RO); 2916 2917 // The 'default' or 'generic' case. 2918 if (!Condition) { 2919 assert(&RO == Options.end() - 1 && 2920 "Default or Generic case must be last"); 2921 CreateMultiVersionResolverReturn(CGM, Resolver, Builder, RO.Function, 2922 SupportsIFunc); 2923 return; 2924 } 2925 2926 llvm::BasicBlock *RetBlock = createBasicBlock("resolver_return", Resolver); 2927 CGBuilderTy RetBuilder(*this, RetBlock); 2928 CreateMultiVersionResolverReturn(CGM, Resolver, RetBuilder, RO.Function, 2929 SupportsIFunc); 2930 CurBlock = createBasicBlock("resolver_else", Resolver); 2931 Builder.CreateCondBr(Condition, RetBlock, CurBlock); 2932 } 2933 2934 // If no generic/default, emit an unreachable. 2935 Builder.SetInsertPoint(CurBlock); 2936 llvm::CallInst *TrapCall = EmitTrapCall(llvm::Intrinsic::trap); 2937 TrapCall->setDoesNotReturn(); 2938 TrapCall->setDoesNotThrow(); 2939 Builder.CreateUnreachable(); 2940 Builder.ClearInsertionPoint(); 2941 } 2942 2943 // Loc - where the diagnostic will point, where in the source code this 2944 // alignment has failed. 2945 // SecondaryLoc - if present (will be present if sufficiently different from 2946 // Loc), the diagnostic will additionally point a "Note:" to this location. 2947 // It should be the location where the __attribute__((assume_aligned)) 2948 // was written e.g. 2949 void CodeGenFunction::emitAlignmentAssumptionCheck( 2950 llvm::Value *Ptr, QualType Ty, SourceLocation Loc, 2951 SourceLocation SecondaryLoc, llvm::Value *Alignment, 2952 llvm::Value *OffsetValue, llvm::Value *TheCheck, 2953 llvm::Instruction *Assumption) { 2954 assert(Assumption && isa<llvm::CallInst>(Assumption) && 2955 cast<llvm::CallInst>(Assumption)->getCalledOperand() == 2956 llvm::Intrinsic::getDeclaration( 2957 Builder.GetInsertBlock()->getParent()->getParent(), 2958 llvm::Intrinsic::assume) && 2959 "Assumption should be a call to llvm.assume()."); 2960 assert(&(Builder.GetInsertBlock()->back()) == Assumption && 2961 "Assumption should be the last instruction of the basic block, " 2962 "since the basic block is still being generated."); 2963 2964 if (!SanOpts.has(SanitizerKind::Alignment)) 2965 return; 2966 2967 // Don't check pointers to volatile data. The behavior here is implementation- 2968 // defined. 2969 if (Ty->getPointeeType().isVolatileQualified()) 2970 return; 2971 2972 // We need to temorairly remove the assumption so we can insert the 2973 // sanitizer check before it, else the check will be dropped by optimizations. 2974 Assumption->removeFromParent(); 2975 2976 { 2977 SanitizerScope SanScope(this); 2978 2979 if (!OffsetValue) 2980 OffsetValue = Builder.getInt1(false); // no offset. 2981 2982 llvm::Constant *StaticData[] = {EmitCheckSourceLocation(Loc), 2983 EmitCheckSourceLocation(SecondaryLoc), 2984 EmitCheckTypeDescriptor(Ty)}; 2985 llvm::Value *DynamicData[] = {EmitCheckValue(Ptr), 2986 EmitCheckValue(Alignment), 2987 EmitCheckValue(OffsetValue)}; 2988 EmitCheck({std::make_pair(TheCheck, SanitizerKind::Alignment)}, 2989 SanitizerHandler::AlignmentAssumption, StaticData, DynamicData); 2990 } 2991 2992 // We are now in the (new, empty) "cont" basic block. 2993 // Reintroduce the assumption. 2994 Builder.Insert(Assumption); 2995 // FIXME: Assumption still has it's original basic block as it's Parent. 2996 } 2997 2998 llvm::DebugLoc CodeGenFunction::SourceLocToDebugLoc(SourceLocation Location) { 2999 if (CGDebugInfo *DI = getDebugInfo()) 3000 return DI->SourceLocToDebugLoc(Location); 3001 3002 return llvm::DebugLoc(); 3003 } 3004 3005 llvm::Value * 3006 CodeGenFunction::emitCondLikelihoodViaExpectIntrinsic(llvm::Value *Cond, 3007 Stmt::Likelihood LH) { 3008 switch (LH) { 3009 case Stmt::LH_None: 3010 return Cond; 3011 case Stmt::LH_Likely: 3012 case Stmt::LH_Unlikely: 3013 // Don't generate llvm.expect on -O0 as the backend won't use it for 3014 // anything. 3015 if (CGM.getCodeGenOpts().OptimizationLevel == 0) 3016 return Cond; 3017 llvm::Type *CondTy = Cond->getType(); 3018 assert(CondTy->isIntegerTy(1) && "expecting condition to be a boolean"); 3019 llvm::Function *FnExpect = 3020 CGM.getIntrinsic(llvm::Intrinsic::expect, CondTy); 3021 llvm::Value *ExpectedValueOfCond = 3022 llvm::ConstantInt::getBool(CondTy, LH == Stmt::LH_Likely); 3023 return Builder.CreateCall(FnExpect, {Cond, ExpectedValueOfCond}, 3024 Cond->getName() + ".expval"); 3025 } 3026 llvm_unreachable("Unknown Likelihood"); 3027 } 3028 3029 llvm::Value *CodeGenFunction::emitBoolVecConversion(llvm::Value *SrcVec, 3030 unsigned NumElementsDst, 3031 const llvm::Twine &Name) { 3032 auto *SrcTy = cast<llvm::FixedVectorType>(SrcVec->getType()); 3033 unsigned NumElementsSrc = SrcTy->getNumElements(); 3034 if (NumElementsSrc == NumElementsDst) 3035 return SrcVec; 3036 3037 std::vector<int> ShuffleMask(NumElementsDst, -1); 3038 for (unsigned MaskIdx = 0; 3039 MaskIdx < std::min<>(NumElementsDst, NumElementsSrc); ++MaskIdx) 3040 ShuffleMask[MaskIdx] = MaskIdx; 3041 3042 return Builder.CreateShuffleVector(SrcVec, ShuffleMask, Name); 3043 } 3044