xref: /llvm-project/clang/lib/CodeGen/CodeGenFunction.cpp (revision 2eb6e30fe83ccce3cf01e596e73fa6385facd44b)
1 //===--- CodeGenFunction.cpp - Emit LLVM Code from ASTs for a Function ----===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This coordinates the per-function state used while generating code.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "CodeGenFunction.h"
14 #include "CGBlocks.h"
15 #include "CGCUDARuntime.h"
16 #include "CGCXXABI.h"
17 #include "CGCleanup.h"
18 #include "CGDebugInfo.h"
19 #include "CGHLSLRuntime.h"
20 #include "CGOpenMPRuntime.h"
21 #include "CodeGenModule.h"
22 #include "CodeGenPGO.h"
23 #include "TargetInfo.h"
24 #include "clang/AST/ASTContext.h"
25 #include "clang/AST/ASTLambda.h"
26 #include "clang/AST/Attr.h"
27 #include "clang/AST/Decl.h"
28 #include "clang/AST/DeclCXX.h"
29 #include "clang/AST/Expr.h"
30 #include "clang/AST/StmtCXX.h"
31 #include "clang/AST/StmtObjC.h"
32 #include "clang/Basic/Builtins.h"
33 #include "clang/Basic/CodeGenOptions.h"
34 #include "clang/Basic/TargetBuiltins.h"
35 #include "clang/Basic/TargetInfo.h"
36 #include "clang/CodeGen/CGFunctionInfo.h"
37 #include "clang/Frontend/FrontendDiagnostic.h"
38 #include "llvm/ADT/ArrayRef.h"
39 #include "llvm/Frontend/OpenMP/OMPIRBuilder.h"
40 #include "llvm/IR/DataLayout.h"
41 #include "llvm/IR/Dominators.h"
42 #include "llvm/IR/FPEnv.h"
43 #include "llvm/IR/IntrinsicInst.h"
44 #include "llvm/IR/Intrinsics.h"
45 #include "llvm/IR/MDBuilder.h"
46 #include "llvm/IR/Operator.h"
47 #include "llvm/Support/CRC.h"
48 #include "llvm/Support/xxhash.h"
49 #include "llvm/Transforms/Scalar/LowerExpectIntrinsic.h"
50 #include "llvm/Transforms/Utils/PromoteMemToReg.h"
51 #include <optional>
52 
53 using namespace clang;
54 using namespace CodeGen;
55 
56 namespace llvm {
57 extern cl::opt<bool> EnableSingleByteCoverage;
58 } // namespace llvm
59 
60 /// shouldEmitLifetimeMarkers - Decide whether we need emit the life-time
61 /// markers.
62 static bool shouldEmitLifetimeMarkers(const CodeGenOptions &CGOpts,
63                                       const LangOptions &LangOpts) {
64   if (CGOpts.DisableLifetimeMarkers)
65     return false;
66 
67   // Sanitizers may use markers.
68   if (CGOpts.SanitizeAddressUseAfterScope ||
69       LangOpts.Sanitize.has(SanitizerKind::HWAddress) ||
70       LangOpts.Sanitize.has(SanitizerKind::Memory))
71     return true;
72 
73   // For now, only in optimized builds.
74   return CGOpts.OptimizationLevel != 0;
75 }
76 
77 CodeGenFunction::CodeGenFunction(CodeGenModule &cgm, bool suppressNewContext)
78     : CodeGenTypeCache(cgm), CGM(cgm), Target(cgm.getTarget()),
79       Builder(cgm, cgm.getModule().getContext(), llvm::ConstantFolder(),
80               CGBuilderInserterTy(this)),
81       SanOpts(CGM.getLangOpts().Sanitize), CurFPFeatures(CGM.getLangOpts()),
82       DebugInfo(CGM.getModuleDebugInfo()), PGO(cgm),
83       ShouldEmitLifetimeMarkers(
84           shouldEmitLifetimeMarkers(CGM.getCodeGenOpts(), CGM.getLangOpts())) {
85   if (!suppressNewContext)
86     CGM.getCXXABI().getMangleContext().startNewFunction();
87   EHStack.setCGF(this);
88 
89   SetFastMathFlags(CurFPFeatures);
90 }
91 
92 CodeGenFunction::~CodeGenFunction() {
93   assert(LifetimeExtendedCleanupStack.empty() && "failed to emit a cleanup");
94   assert(DeferredDeactivationCleanupStack.empty() &&
95          "missed to deactivate a cleanup");
96 
97   if (getLangOpts().OpenMP && CurFn)
98     CGM.getOpenMPRuntime().functionFinished(*this);
99 
100   // If we have an OpenMPIRBuilder we want to finalize functions (incl.
101   // outlining etc) at some point. Doing it once the function codegen is done
102   // seems to be a reasonable spot. We do it here, as opposed to the deletion
103   // time of the CodeGenModule, because we have to ensure the IR has not yet
104   // been "emitted" to the outside, thus, modifications are still sensible.
105   if (CGM.getLangOpts().OpenMPIRBuilder && CurFn)
106     CGM.getOpenMPRuntime().getOMPBuilder().finalize(CurFn);
107 }
108 
109 // Map the LangOption for exception behavior into
110 // the corresponding enum in the IR.
111 llvm::fp::ExceptionBehavior
112 clang::ToConstrainedExceptMD(LangOptions::FPExceptionModeKind Kind) {
113 
114   switch (Kind) {
115   case LangOptions::FPE_Ignore:  return llvm::fp::ebIgnore;
116   case LangOptions::FPE_MayTrap: return llvm::fp::ebMayTrap;
117   case LangOptions::FPE_Strict:  return llvm::fp::ebStrict;
118   default:
119     llvm_unreachable("Unsupported FP Exception Behavior");
120   }
121 }
122 
123 void CodeGenFunction::SetFastMathFlags(FPOptions FPFeatures) {
124   llvm::FastMathFlags FMF;
125   FMF.setAllowReassoc(FPFeatures.getAllowFPReassociate());
126   FMF.setNoNaNs(FPFeatures.getNoHonorNaNs());
127   FMF.setNoInfs(FPFeatures.getNoHonorInfs());
128   FMF.setNoSignedZeros(FPFeatures.getNoSignedZero());
129   FMF.setAllowReciprocal(FPFeatures.getAllowReciprocal());
130   FMF.setApproxFunc(FPFeatures.getAllowApproxFunc());
131   FMF.setAllowContract(FPFeatures.allowFPContractAcrossStatement());
132   Builder.setFastMathFlags(FMF);
133 }
134 
135 CodeGenFunction::CGFPOptionsRAII::CGFPOptionsRAII(CodeGenFunction &CGF,
136                                                   const Expr *E)
137     : CGF(CGF) {
138   ConstructorHelper(E->getFPFeaturesInEffect(CGF.getLangOpts()));
139 }
140 
141 CodeGenFunction::CGFPOptionsRAII::CGFPOptionsRAII(CodeGenFunction &CGF,
142                                                   FPOptions FPFeatures)
143     : CGF(CGF) {
144   ConstructorHelper(FPFeatures);
145 }
146 
147 void CodeGenFunction::CGFPOptionsRAII::ConstructorHelper(FPOptions FPFeatures) {
148   OldFPFeatures = CGF.CurFPFeatures;
149   CGF.CurFPFeatures = FPFeatures;
150 
151   OldExcept = CGF.Builder.getDefaultConstrainedExcept();
152   OldRounding = CGF.Builder.getDefaultConstrainedRounding();
153 
154   if (OldFPFeatures == FPFeatures)
155     return;
156 
157   FMFGuard.emplace(CGF.Builder);
158 
159   llvm::RoundingMode NewRoundingBehavior = FPFeatures.getRoundingMode();
160   CGF.Builder.setDefaultConstrainedRounding(NewRoundingBehavior);
161   auto NewExceptionBehavior =
162       ToConstrainedExceptMD(static_cast<LangOptions::FPExceptionModeKind>(
163           FPFeatures.getExceptionMode()));
164   CGF.Builder.setDefaultConstrainedExcept(NewExceptionBehavior);
165 
166   CGF.SetFastMathFlags(FPFeatures);
167 
168   assert((CGF.CurFuncDecl == nullptr || CGF.Builder.getIsFPConstrained() ||
169           isa<CXXConstructorDecl>(CGF.CurFuncDecl) ||
170           isa<CXXDestructorDecl>(CGF.CurFuncDecl) ||
171           (NewExceptionBehavior == llvm::fp::ebIgnore &&
172            NewRoundingBehavior == llvm::RoundingMode::NearestTiesToEven)) &&
173          "FPConstrained should be enabled on entire function");
174 
175   auto mergeFnAttrValue = [&](StringRef Name, bool Value) {
176     auto OldValue =
177         CGF.CurFn->getFnAttribute(Name).getValueAsBool();
178     auto NewValue = OldValue & Value;
179     if (OldValue != NewValue)
180       CGF.CurFn->addFnAttr(Name, llvm::toStringRef(NewValue));
181   };
182   mergeFnAttrValue("no-infs-fp-math", FPFeatures.getNoHonorInfs());
183   mergeFnAttrValue("no-nans-fp-math", FPFeatures.getNoHonorNaNs());
184   mergeFnAttrValue("no-signed-zeros-fp-math", FPFeatures.getNoSignedZero());
185   mergeFnAttrValue(
186       "unsafe-fp-math",
187       FPFeatures.getAllowFPReassociate() && FPFeatures.getAllowReciprocal() &&
188           FPFeatures.getAllowApproxFunc() && FPFeatures.getNoSignedZero() &&
189           FPFeatures.allowFPContractAcrossStatement());
190 }
191 
192 CodeGenFunction::CGFPOptionsRAII::~CGFPOptionsRAII() {
193   CGF.CurFPFeatures = OldFPFeatures;
194   CGF.Builder.setDefaultConstrainedExcept(OldExcept);
195   CGF.Builder.setDefaultConstrainedRounding(OldRounding);
196 }
197 
198 static LValue
199 makeNaturalAlignAddrLValue(llvm::Value *V, QualType T, bool ForPointeeType,
200                            bool MightBeSigned, CodeGenFunction &CGF,
201                            KnownNonNull_t IsKnownNonNull = NotKnownNonNull) {
202   LValueBaseInfo BaseInfo;
203   TBAAAccessInfo TBAAInfo;
204   CharUnits Alignment =
205       CGF.CGM.getNaturalTypeAlignment(T, &BaseInfo, &TBAAInfo, ForPointeeType);
206   Address Addr =
207       MightBeSigned
208           ? CGF.makeNaturalAddressForPointer(V, T, Alignment, false, nullptr,
209                                              nullptr, IsKnownNonNull)
210           : Address(V, CGF.ConvertTypeForMem(T), Alignment, IsKnownNonNull);
211   return CGF.MakeAddrLValue(Addr, T, BaseInfo, TBAAInfo);
212 }
213 
214 LValue
215 CodeGenFunction::MakeNaturalAlignAddrLValue(llvm::Value *V, QualType T,
216                                             KnownNonNull_t IsKnownNonNull) {
217   return ::makeNaturalAlignAddrLValue(V, T, /*ForPointeeType*/ false,
218                                       /*MightBeSigned*/ true, *this,
219                                       IsKnownNonNull);
220 }
221 
222 LValue
223 CodeGenFunction::MakeNaturalAlignPointeeAddrLValue(llvm::Value *V, QualType T) {
224   return ::makeNaturalAlignAddrLValue(V, T, /*ForPointeeType*/ true,
225                                       /*MightBeSigned*/ true, *this);
226 }
227 
228 LValue CodeGenFunction::MakeNaturalAlignRawAddrLValue(llvm::Value *V,
229                                                       QualType T) {
230   return ::makeNaturalAlignAddrLValue(V, T, /*ForPointeeType*/ false,
231                                       /*MightBeSigned*/ false, *this);
232 }
233 
234 LValue CodeGenFunction::MakeNaturalAlignPointeeRawAddrLValue(llvm::Value *V,
235                                                              QualType T) {
236   return ::makeNaturalAlignAddrLValue(V, T, /*ForPointeeType*/ true,
237                                       /*MightBeSigned*/ false, *this);
238 }
239 
240 llvm::Type *CodeGenFunction::ConvertTypeForMem(QualType T) {
241   return CGM.getTypes().ConvertTypeForMem(T);
242 }
243 
244 llvm::Type *CodeGenFunction::ConvertType(QualType T) {
245   return CGM.getTypes().ConvertType(T);
246 }
247 
248 llvm::Type *CodeGenFunction::convertTypeForLoadStore(QualType ASTTy,
249                                                      llvm::Type *LLVMTy) {
250   return CGM.getTypes().convertTypeForLoadStore(ASTTy, LLVMTy);
251 }
252 
253 TypeEvaluationKind CodeGenFunction::getEvaluationKind(QualType type) {
254   type = type.getCanonicalType();
255   while (true) {
256     switch (type->getTypeClass()) {
257 #define TYPE(name, parent)
258 #define ABSTRACT_TYPE(name, parent)
259 #define NON_CANONICAL_TYPE(name, parent) case Type::name:
260 #define DEPENDENT_TYPE(name, parent) case Type::name:
261 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(name, parent) case Type::name:
262 #include "clang/AST/TypeNodes.inc"
263       llvm_unreachable("non-canonical or dependent type in IR-generation");
264 
265     case Type::Auto:
266     case Type::DeducedTemplateSpecialization:
267       llvm_unreachable("undeduced type in IR-generation");
268 
269     // Various scalar types.
270     case Type::Builtin:
271     case Type::Pointer:
272     case Type::BlockPointer:
273     case Type::LValueReference:
274     case Type::RValueReference:
275     case Type::MemberPointer:
276     case Type::Vector:
277     case Type::ExtVector:
278     case Type::ConstantMatrix:
279     case Type::FunctionProto:
280     case Type::FunctionNoProto:
281     case Type::Enum:
282     case Type::ObjCObjectPointer:
283     case Type::Pipe:
284     case Type::BitInt:
285       return TEK_Scalar;
286 
287     // Complexes.
288     case Type::Complex:
289       return TEK_Complex;
290 
291     // Arrays, records, and Objective-C objects.
292     case Type::ConstantArray:
293     case Type::IncompleteArray:
294     case Type::VariableArray:
295     case Type::Record:
296     case Type::ObjCObject:
297     case Type::ObjCInterface:
298     case Type::ArrayParameter:
299       return TEK_Aggregate;
300 
301     // We operate on atomic values according to their underlying type.
302     case Type::Atomic:
303       type = cast<AtomicType>(type)->getValueType();
304       continue;
305     }
306     llvm_unreachable("unknown type kind!");
307   }
308 }
309 
310 llvm::DebugLoc CodeGenFunction::EmitReturnBlock() {
311   // For cleanliness, we try to avoid emitting the return block for
312   // simple cases.
313   llvm::BasicBlock *CurBB = Builder.GetInsertBlock();
314 
315   if (CurBB) {
316     assert(!CurBB->getTerminator() && "Unexpected terminated block.");
317 
318     // We have a valid insert point, reuse it if it is empty or there are no
319     // explicit jumps to the return block.
320     if (CurBB->empty() || ReturnBlock.getBlock()->use_empty()) {
321       ReturnBlock.getBlock()->replaceAllUsesWith(CurBB);
322       delete ReturnBlock.getBlock();
323       ReturnBlock = JumpDest();
324     } else
325       EmitBlock(ReturnBlock.getBlock());
326     return llvm::DebugLoc();
327   }
328 
329   // Otherwise, if the return block is the target of a single direct
330   // branch then we can just put the code in that block instead. This
331   // cleans up functions which started with a unified return block.
332   if (ReturnBlock.getBlock()->hasOneUse()) {
333     llvm::BranchInst *BI =
334       dyn_cast<llvm::BranchInst>(*ReturnBlock.getBlock()->user_begin());
335     if (BI && BI->isUnconditional() &&
336         BI->getSuccessor(0) == ReturnBlock.getBlock()) {
337       // Record/return the DebugLoc of the simple 'return' expression to be used
338       // later by the actual 'ret' instruction.
339       llvm::DebugLoc Loc = BI->getDebugLoc();
340       Builder.SetInsertPoint(BI->getParent());
341       BI->eraseFromParent();
342       delete ReturnBlock.getBlock();
343       ReturnBlock = JumpDest();
344       return Loc;
345     }
346   }
347 
348   // FIXME: We are at an unreachable point, there is no reason to emit the block
349   // unless it has uses. However, we still need a place to put the debug
350   // region.end for now.
351 
352   EmitBlock(ReturnBlock.getBlock());
353   return llvm::DebugLoc();
354 }
355 
356 static void EmitIfUsed(CodeGenFunction &CGF, llvm::BasicBlock *BB) {
357   if (!BB) return;
358   if (!BB->use_empty()) {
359     CGF.CurFn->insert(CGF.CurFn->end(), BB);
360     return;
361   }
362   delete BB;
363 }
364 
365 void CodeGenFunction::FinishFunction(SourceLocation EndLoc) {
366   assert(BreakContinueStack.empty() &&
367          "mismatched push/pop in break/continue stack!");
368   assert(LifetimeExtendedCleanupStack.empty() &&
369          "mismatched push/pop of cleanups in EHStack!");
370   assert(DeferredDeactivationCleanupStack.empty() &&
371          "mismatched activate/deactivate of cleanups!");
372 
373   if (CGM.shouldEmitConvergenceTokens()) {
374     ConvergenceTokenStack.pop_back();
375     assert(ConvergenceTokenStack.empty() &&
376            "mismatched push/pop in convergence stack!");
377   }
378 
379   bool OnlySimpleReturnStmts = NumSimpleReturnExprs > 0
380     && NumSimpleReturnExprs == NumReturnExprs
381     && ReturnBlock.getBlock()->use_empty();
382   // Usually the return expression is evaluated before the cleanup
383   // code.  If the function contains only a simple return statement,
384   // such as a constant, the location before the cleanup code becomes
385   // the last useful breakpoint in the function, because the simple
386   // return expression will be evaluated after the cleanup code. To be
387   // safe, set the debug location for cleanup code to the location of
388   // the return statement.  Otherwise the cleanup code should be at the
389   // end of the function's lexical scope.
390   //
391   // If there are multiple branches to the return block, the branch
392   // instructions will get the location of the return statements and
393   // all will be fine.
394   if (CGDebugInfo *DI = getDebugInfo()) {
395     if (OnlySimpleReturnStmts)
396       DI->EmitLocation(Builder, LastStopPoint);
397     else
398       DI->EmitLocation(Builder, EndLoc);
399   }
400 
401   // Pop any cleanups that might have been associated with the
402   // parameters.  Do this in whatever block we're currently in; it's
403   // important to do this before we enter the return block or return
404   // edges will be *really* confused.
405   bool HasCleanups = EHStack.stable_begin() != PrologueCleanupDepth;
406   bool HasOnlyLifetimeMarkers =
407       HasCleanups && EHStack.containsOnlyLifetimeMarkers(PrologueCleanupDepth);
408   bool EmitRetDbgLoc = !HasCleanups || HasOnlyLifetimeMarkers;
409 
410   std::optional<ApplyDebugLocation> OAL;
411   if (HasCleanups) {
412     // Make sure the line table doesn't jump back into the body for
413     // the ret after it's been at EndLoc.
414     if (CGDebugInfo *DI = getDebugInfo()) {
415       if (OnlySimpleReturnStmts)
416         DI->EmitLocation(Builder, EndLoc);
417       else
418         // We may not have a valid end location. Try to apply it anyway, and
419         // fall back to an artificial location if needed.
420         OAL = ApplyDebugLocation::CreateDefaultArtificial(*this, EndLoc);
421     }
422 
423     PopCleanupBlocks(PrologueCleanupDepth);
424   }
425 
426   // Emit function epilog (to return).
427   llvm::DebugLoc Loc = EmitReturnBlock();
428 
429   if (ShouldInstrumentFunction()) {
430     if (CGM.getCodeGenOpts().InstrumentFunctions)
431       CurFn->addFnAttr("instrument-function-exit", "__cyg_profile_func_exit");
432     if (CGM.getCodeGenOpts().InstrumentFunctionsAfterInlining)
433       CurFn->addFnAttr("instrument-function-exit-inlined",
434                        "__cyg_profile_func_exit");
435   }
436 
437   // Emit debug descriptor for function end.
438   if (CGDebugInfo *DI = getDebugInfo())
439     DI->EmitFunctionEnd(Builder, CurFn);
440 
441   // Reset the debug location to that of the simple 'return' expression, if any
442   // rather than that of the end of the function's scope '}'.
443   ApplyDebugLocation AL(*this, Loc);
444   EmitFunctionEpilog(*CurFnInfo, EmitRetDbgLoc, EndLoc);
445   EmitEndEHSpec(CurCodeDecl);
446 
447   assert(EHStack.empty() &&
448          "did not remove all scopes from cleanup stack!");
449 
450   // If someone did an indirect goto, emit the indirect goto block at the end of
451   // the function.
452   if (IndirectBranch) {
453     EmitBlock(IndirectBranch->getParent());
454     Builder.ClearInsertionPoint();
455   }
456 
457   // If some of our locals escaped, insert a call to llvm.localescape in the
458   // entry block.
459   if (!EscapedLocals.empty()) {
460     // Invert the map from local to index into a simple vector. There should be
461     // no holes.
462     SmallVector<llvm::Value *, 4> EscapeArgs;
463     EscapeArgs.resize(EscapedLocals.size());
464     for (auto &Pair : EscapedLocals)
465       EscapeArgs[Pair.second] = Pair.first;
466     llvm::Function *FrameEscapeFn = llvm::Intrinsic::getDeclaration(
467         &CGM.getModule(), llvm::Intrinsic::localescape);
468     CGBuilderTy(*this, AllocaInsertPt).CreateCall(FrameEscapeFn, EscapeArgs);
469   }
470 
471   // Remove the AllocaInsertPt instruction, which is just a convenience for us.
472   llvm::Instruction *Ptr = AllocaInsertPt;
473   AllocaInsertPt = nullptr;
474   Ptr->eraseFromParent();
475 
476   // PostAllocaInsertPt, if created, was lazily created when it was required,
477   // remove it now since it was just created for our own convenience.
478   if (PostAllocaInsertPt) {
479     llvm::Instruction *PostPtr = PostAllocaInsertPt;
480     PostAllocaInsertPt = nullptr;
481     PostPtr->eraseFromParent();
482   }
483 
484   // If someone took the address of a label but never did an indirect goto, we
485   // made a zero entry PHI node, which is illegal, zap it now.
486   if (IndirectBranch) {
487     llvm::PHINode *PN = cast<llvm::PHINode>(IndirectBranch->getAddress());
488     if (PN->getNumIncomingValues() == 0) {
489       PN->replaceAllUsesWith(llvm::UndefValue::get(PN->getType()));
490       PN->eraseFromParent();
491     }
492   }
493 
494   EmitIfUsed(*this, EHResumeBlock);
495   EmitIfUsed(*this, TerminateLandingPad);
496   EmitIfUsed(*this, TerminateHandler);
497   EmitIfUsed(*this, UnreachableBlock);
498 
499   for (const auto &FuncletAndParent : TerminateFunclets)
500     EmitIfUsed(*this, FuncletAndParent.second);
501 
502   if (CGM.getCodeGenOpts().EmitDeclMetadata)
503     EmitDeclMetadata();
504 
505   for (const auto &R : DeferredReplacements) {
506     if (llvm::Value *Old = R.first) {
507       Old->replaceAllUsesWith(R.second);
508       cast<llvm::Instruction>(Old)->eraseFromParent();
509     }
510   }
511   DeferredReplacements.clear();
512 
513   // Eliminate CleanupDestSlot alloca by replacing it with SSA values and
514   // PHIs if the current function is a coroutine. We don't do it for all
515   // functions as it may result in slight increase in numbers of instructions
516   // if compiled with no optimizations. We do it for coroutine as the lifetime
517   // of CleanupDestSlot alloca make correct coroutine frame building very
518   // difficult.
519   if (NormalCleanupDest.isValid() && isCoroutine()) {
520     llvm::DominatorTree DT(*CurFn);
521     llvm::PromoteMemToReg(
522         cast<llvm::AllocaInst>(NormalCleanupDest.getPointer()), DT);
523     NormalCleanupDest = Address::invalid();
524   }
525 
526   // Scan function arguments for vector width.
527   for (llvm::Argument &A : CurFn->args())
528     if (auto *VT = dyn_cast<llvm::VectorType>(A.getType()))
529       LargestVectorWidth =
530           std::max((uint64_t)LargestVectorWidth,
531                    VT->getPrimitiveSizeInBits().getKnownMinValue());
532 
533   // Update vector width based on return type.
534   if (auto *VT = dyn_cast<llvm::VectorType>(CurFn->getReturnType()))
535     LargestVectorWidth =
536         std::max((uint64_t)LargestVectorWidth,
537                  VT->getPrimitiveSizeInBits().getKnownMinValue());
538 
539   if (CurFnInfo->getMaxVectorWidth() > LargestVectorWidth)
540     LargestVectorWidth = CurFnInfo->getMaxVectorWidth();
541 
542   // Add the min-legal-vector-width attribute. This contains the max width from:
543   // 1. min-vector-width attribute used in the source program.
544   // 2. Any builtins used that have a vector width specified.
545   // 3. Values passed in and out of inline assembly.
546   // 4. Width of vector arguments and return types for this function.
547   // 5. Width of vector arguments and return types for functions called by this
548   //    function.
549   if (getContext().getTargetInfo().getTriple().isX86())
550     CurFn->addFnAttr("min-legal-vector-width",
551                      llvm::utostr(LargestVectorWidth));
552 
553   // Add vscale_range attribute if appropriate.
554   std::optional<std::pair<unsigned, unsigned>> VScaleRange =
555       getContext().getTargetInfo().getVScaleRange(getLangOpts());
556   if (VScaleRange) {
557     CurFn->addFnAttr(llvm::Attribute::getWithVScaleRangeArgs(
558         getLLVMContext(), VScaleRange->first, VScaleRange->second));
559   }
560 
561   // If we generated an unreachable return block, delete it now.
562   if (ReturnBlock.isValid() && ReturnBlock.getBlock()->use_empty()) {
563     Builder.ClearInsertionPoint();
564     ReturnBlock.getBlock()->eraseFromParent();
565   }
566   if (ReturnValue.isValid()) {
567     auto *RetAlloca =
568         dyn_cast<llvm::AllocaInst>(ReturnValue.emitRawPointer(*this));
569     if (RetAlloca && RetAlloca->use_empty()) {
570       RetAlloca->eraseFromParent();
571       ReturnValue = Address::invalid();
572     }
573   }
574 }
575 
576 /// ShouldInstrumentFunction - Return true if the current function should be
577 /// instrumented with __cyg_profile_func_* calls
578 bool CodeGenFunction::ShouldInstrumentFunction() {
579   if (!CGM.getCodeGenOpts().InstrumentFunctions &&
580       !CGM.getCodeGenOpts().InstrumentFunctionsAfterInlining &&
581       !CGM.getCodeGenOpts().InstrumentFunctionEntryBare)
582     return false;
583   if (!CurFuncDecl || CurFuncDecl->hasAttr<NoInstrumentFunctionAttr>())
584     return false;
585   return true;
586 }
587 
588 bool CodeGenFunction::ShouldSkipSanitizerInstrumentation() {
589   if (!CurFuncDecl)
590     return false;
591   return CurFuncDecl->hasAttr<DisableSanitizerInstrumentationAttr>();
592 }
593 
594 /// ShouldXRayInstrument - Return true if the current function should be
595 /// instrumented with XRay nop sleds.
596 bool CodeGenFunction::ShouldXRayInstrumentFunction() const {
597   return CGM.getCodeGenOpts().XRayInstrumentFunctions;
598 }
599 
600 /// AlwaysEmitXRayCustomEvents - Return true if we should emit IR for calls to
601 /// the __xray_customevent(...) builtin calls, when doing XRay instrumentation.
602 bool CodeGenFunction::AlwaysEmitXRayCustomEvents() const {
603   return CGM.getCodeGenOpts().XRayInstrumentFunctions &&
604          (CGM.getCodeGenOpts().XRayAlwaysEmitCustomEvents ||
605           CGM.getCodeGenOpts().XRayInstrumentationBundle.Mask ==
606               XRayInstrKind::Custom);
607 }
608 
609 bool CodeGenFunction::AlwaysEmitXRayTypedEvents() const {
610   return CGM.getCodeGenOpts().XRayInstrumentFunctions &&
611          (CGM.getCodeGenOpts().XRayAlwaysEmitTypedEvents ||
612           CGM.getCodeGenOpts().XRayInstrumentationBundle.Mask ==
613               XRayInstrKind::Typed);
614 }
615 
616 llvm::ConstantInt *
617 CodeGenFunction::getUBSanFunctionTypeHash(QualType Ty) const {
618   // Remove any (C++17) exception specifications, to allow calling e.g. a
619   // noexcept function through a non-noexcept pointer.
620   if (!Ty->isFunctionNoProtoType())
621     Ty = getContext().getFunctionTypeWithExceptionSpec(Ty, EST_None);
622   std::string Mangled;
623   llvm::raw_string_ostream Out(Mangled);
624   CGM.getCXXABI().getMangleContext().mangleCanonicalTypeName(Ty, Out, false);
625   return llvm::ConstantInt::get(
626       CGM.Int32Ty, static_cast<uint32_t>(llvm::xxh3_64bits(Mangled)));
627 }
628 
629 void CodeGenFunction::EmitKernelMetadata(const FunctionDecl *FD,
630                                          llvm::Function *Fn) {
631   if (!FD->hasAttr<OpenCLKernelAttr>() && !FD->hasAttr<CUDAGlobalAttr>())
632     return;
633 
634   llvm::LLVMContext &Context = getLLVMContext();
635 
636   CGM.GenKernelArgMetadata(Fn, FD, this);
637 
638   if (!getLangOpts().OpenCL)
639     return;
640 
641   if (const VecTypeHintAttr *A = FD->getAttr<VecTypeHintAttr>()) {
642     QualType HintQTy = A->getTypeHint();
643     const ExtVectorType *HintEltQTy = HintQTy->getAs<ExtVectorType>();
644     bool IsSignedInteger =
645         HintQTy->isSignedIntegerType() ||
646         (HintEltQTy && HintEltQTy->getElementType()->isSignedIntegerType());
647     llvm::Metadata *AttrMDArgs[] = {
648         llvm::ConstantAsMetadata::get(llvm::UndefValue::get(
649             CGM.getTypes().ConvertType(A->getTypeHint()))),
650         llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
651             llvm::IntegerType::get(Context, 32),
652             llvm::APInt(32, (uint64_t)(IsSignedInteger ? 1 : 0))))};
653     Fn->setMetadata("vec_type_hint", llvm::MDNode::get(Context, AttrMDArgs));
654   }
655 
656   if (const WorkGroupSizeHintAttr *A = FD->getAttr<WorkGroupSizeHintAttr>()) {
657     llvm::Metadata *AttrMDArgs[] = {
658         llvm::ConstantAsMetadata::get(Builder.getInt32(A->getXDim())),
659         llvm::ConstantAsMetadata::get(Builder.getInt32(A->getYDim())),
660         llvm::ConstantAsMetadata::get(Builder.getInt32(A->getZDim()))};
661     Fn->setMetadata("work_group_size_hint", llvm::MDNode::get(Context, AttrMDArgs));
662   }
663 
664   if (const ReqdWorkGroupSizeAttr *A = FD->getAttr<ReqdWorkGroupSizeAttr>()) {
665     llvm::Metadata *AttrMDArgs[] = {
666         llvm::ConstantAsMetadata::get(Builder.getInt32(A->getXDim())),
667         llvm::ConstantAsMetadata::get(Builder.getInt32(A->getYDim())),
668         llvm::ConstantAsMetadata::get(Builder.getInt32(A->getZDim()))};
669     Fn->setMetadata("reqd_work_group_size", llvm::MDNode::get(Context, AttrMDArgs));
670   }
671 
672   if (const OpenCLIntelReqdSubGroupSizeAttr *A =
673           FD->getAttr<OpenCLIntelReqdSubGroupSizeAttr>()) {
674     llvm::Metadata *AttrMDArgs[] = {
675         llvm::ConstantAsMetadata::get(Builder.getInt32(A->getSubGroupSize()))};
676     Fn->setMetadata("intel_reqd_sub_group_size",
677                     llvm::MDNode::get(Context, AttrMDArgs));
678   }
679 }
680 
681 /// Determine whether the function F ends with a return stmt.
682 static bool endsWithReturn(const Decl* F) {
683   const Stmt *Body = nullptr;
684   if (auto *FD = dyn_cast_or_null<FunctionDecl>(F))
685     Body = FD->getBody();
686   else if (auto *OMD = dyn_cast_or_null<ObjCMethodDecl>(F))
687     Body = OMD->getBody();
688 
689   if (auto *CS = dyn_cast_or_null<CompoundStmt>(Body)) {
690     auto LastStmt = CS->body_rbegin();
691     if (LastStmt != CS->body_rend())
692       return isa<ReturnStmt>(*LastStmt);
693   }
694   return false;
695 }
696 
697 void CodeGenFunction::markAsIgnoreThreadCheckingAtRuntime(llvm::Function *Fn) {
698   if (SanOpts.has(SanitizerKind::Thread)) {
699     Fn->addFnAttr("sanitize_thread_no_checking_at_run_time");
700     Fn->removeFnAttr(llvm::Attribute::SanitizeThread);
701   }
702 }
703 
704 /// Check if the return value of this function requires sanitization.
705 bool CodeGenFunction::requiresReturnValueCheck() const {
706   return requiresReturnValueNullabilityCheck() ||
707          (SanOpts.has(SanitizerKind::ReturnsNonnullAttribute) && CurCodeDecl &&
708           CurCodeDecl->getAttr<ReturnsNonNullAttr>());
709 }
710 
711 static bool matchesStlAllocatorFn(const Decl *D, const ASTContext &Ctx) {
712   auto *MD = dyn_cast_or_null<CXXMethodDecl>(D);
713   if (!MD || !MD->getDeclName().getAsIdentifierInfo() ||
714       !MD->getDeclName().getAsIdentifierInfo()->isStr("allocate") ||
715       (MD->getNumParams() != 1 && MD->getNumParams() != 2))
716     return false;
717 
718   if (MD->parameters()[0]->getType().getCanonicalType() != Ctx.getSizeType())
719     return false;
720 
721   if (MD->getNumParams() == 2) {
722     auto *PT = MD->parameters()[1]->getType()->getAs<PointerType>();
723     if (!PT || !PT->isVoidPointerType() ||
724         !PT->getPointeeType().isConstQualified())
725       return false;
726   }
727 
728   return true;
729 }
730 
731 bool CodeGenFunction::isInAllocaArgument(CGCXXABI &ABI, QualType Ty) {
732   const CXXRecordDecl *RD = Ty->getAsCXXRecordDecl();
733   return RD && ABI.getRecordArgABI(RD) == CGCXXABI::RAA_DirectInMemory;
734 }
735 
736 bool CodeGenFunction::hasInAllocaArg(const CXXMethodDecl *MD) {
737   return getTarget().getTriple().getArch() == llvm::Triple::x86 &&
738          getTarget().getCXXABI().isMicrosoft() &&
739          llvm::any_of(MD->parameters(), [&](ParmVarDecl *P) {
740            return isInAllocaArgument(CGM.getCXXABI(), P->getType());
741          });
742 }
743 
744 /// Return the UBSan prologue signature for \p FD if one is available.
745 static llvm::Constant *getPrologueSignature(CodeGenModule &CGM,
746                                             const FunctionDecl *FD) {
747   if (const auto *MD = dyn_cast<CXXMethodDecl>(FD))
748     if (!MD->isStatic())
749       return nullptr;
750   return CGM.getTargetCodeGenInfo().getUBSanFunctionSignature(CGM);
751 }
752 
753 void CodeGenFunction::StartFunction(GlobalDecl GD, QualType RetTy,
754                                     llvm::Function *Fn,
755                                     const CGFunctionInfo &FnInfo,
756                                     const FunctionArgList &Args,
757                                     SourceLocation Loc,
758                                     SourceLocation StartLoc) {
759   assert(!CurFn &&
760          "Do not use a CodeGenFunction object for more than one function");
761 
762   const Decl *D = GD.getDecl();
763 
764   DidCallStackSave = false;
765   CurCodeDecl = D;
766   const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D);
767   if (FD && FD->usesSEHTry())
768     CurSEHParent = GD;
769   CurFuncDecl = (D ? D->getNonClosureContext() : nullptr);
770   FnRetTy = RetTy;
771   CurFn = Fn;
772   CurFnInfo = &FnInfo;
773   assert(CurFn->isDeclaration() && "Function already has body?");
774 
775   // If this function is ignored for any of the enabled sanitizers,
776   // disable the sanitizer for the function.
777   do {
778 #define SANITIZER(NAME, ID)                                                    \
779   if (SanOpts.empty())                                                         \
780     break;                                                                     \
781   if (SanOpts.has(SanitizerKind::ID))                                          \
782     if (CGM.isInNoSanitizeList(SanitizerKind::ID, Fn, Loc))                    \
783       SanOpts.set(SanitizerKind::ID, false);
784 
785 #include "clang/Basic/Sanitizers.def"
786 #undef SANITIZER
787   } while (false);
788 
789   if (D) {
790     const bool SanitizeBounds = SanOpts.hasOneOf(SanitizerKind::Bounds);
791     SanitizerMask no_sanitize_mask;
792     bool NoSanitizeCoverage = false;
793 
794     for (auto *Attr : D->specific_attrs<NoSanitizeAttr>()) {
795       no_sanitize_mask |= Attr->getMask();
796       // SanitizeCoverage is not handled by SanOpts.
797       if (Attr->hasCoverage())
798         NoSanitizeCoverage = true;
799     }
800 
801     // Apply the no_sanitize* attributes to SanOpts.
802     SanOpts.Mask &= ~no_sanitize_mask;
803     if (no_sanitize_mask & SanitizerKind::Address)
804       SanOpts.set(SanitizerKind::KernelAddress, false);
805     if (no_sanitize_mask & SanitizerKind::KernelAddress)
806       SanOpts.set(SanitizerKind::Address, false);
807     if (no_sanitize_mask & SanitizerKind::HWAddress)
808       SanOpts.set(SanitizerKind::KernelHWAddress, false);
809     if (no_sanitize_mask & SanitizerKind::KernelHWAddress)
810       SanOpts.set(SanitizerKind::HWAddress, false);
811 
812     if (SanitizeBounds && !SanOpts.hasOneOf(SanitizerKind::Bounds))
813       Fn->addFnAttr(llvm::Attribute::NoSanitizeBounds);
814 
815     if (NoSanitizeCoverage && CGM.getCodeGenOpts().hasSanitizeCoverage())
816       Fn->addFnAttr(llvm::Attribute::NoSanitizeCoverage);
817 
818     // Some passes need the non-negated no_sanitize attribute. Pass them on.
819     if (CGM.getCodeGenOpts().hasSanitizeBinaryMetadata()) {
820       if (no_sanitize_mask & SanitizerKind::Thread)
821         Fn->addFnAttr("no_sanitize_thread");
822     }
823   }
824 
825   if (ShouldSkipSanitizerInstrumentation()) {
826     CurFn->addFnAttr(llvm::Attribute::DisableSanitizerInstrumentation);
827   } else {
828     // Apply sanitizer attributes to the function.
829     if (SanOpts.hasOneOf(SanitizerKind::Address | SanitizerKind::KernelAddress))
830       Fn->addFnAttr(llvm::Attribute::SanitizeAddress);
831     if (SanOpts.hasOneOf(SanitizerKind::HWAddress |
832                          SanitizerKind::KernelHWAddress))
833       Fn->addFnAttr(llvm::Attribute::SanitizeHWAddress);
834     if (SanOpts.has(SanitizerKind::MemtagStack))
835       Fn->addFnAttr(llvm::Attribute::SanitizeMemTag);
836     if (SanOpts.has(SanitizerKind::Thread))
837       Fn->addFnAttr(llvm::Attribute::SanitizeThread);
838     if (SanOpts.has(SanitizerKind::NumericalStability))
839       Fn->addFnAttr(llvm::Attribute::SanitizeNumericalStability);
840     if (SanOpts.hasOneOf(SanitizerKind::Memory | SanitizerKind::KernelMemory))
841       Fn->addFnAttr(llvm::Attribute::SanitizeMemory);
842   }
843   if (SanOpts.has(SanitizerKind::SafeStack))
844     Fn->addFnAttr(llvm::Attribute::SafeStack);
845   if (SanOpts.has(SanitizerKind::ShadowCallStack))
846     Fn->addFnAttr(llvm::Attribute::ShadowCallStack);
847 
848   // Apply fuzzing attribute to the function.
849   if (SanOpts.hasOneOf(SanitizerKind::Fuzzer | SanitizerKind::FuzzerNoLink))
850     Fn->addFnAttr(llvm::Attribute::OptForFuzzing);
851 
852   // Ignore TSan memory acesses from within ObjC/ObjC++ dealloc, initialize,
853   // .cxx_destruct, __destroy_helper_block_ and all of their calees at run time.
854   if (SanOpts.has(SanitizerKind::Thread)) {
855     if (const auto *OMD = dyn_cast_or_null<ObjCMethodDecl>(D)) {
856       const IdentifierInfo *II = OMD->getSelector().getIdentifierInfoForSlot(0);
857       if (OMD->getMethodFamily() == OMF_dealloc ||
858           OMD->getMethodFamily() == OMF_initialize ||
859           (OMD->getSelector().isUnarySelector() && II->isStr(".cxx_destruct"))) {
860         markAsIgnoreThreadCheckingAtRuntime(Fn);
861       }
862     }
863   }
864 
865   // Ignore unrelated casts in STL allocate() since the allocator must cast
866   // from void* to T* before object initialization completes. Don't match on the
867   // namespace because not all allocators are in std::
868   if (D && SanOpts.has(SanitizerKind::CFIUnrelatedCast)) {
869     if (matchesStlAllocatorFn(D, getContext()))
870       SanOpts.Mask &= ~SanitizerKind::CFIUnrelatedCast;
871   }
872 
873   // Ignore null checks in coroutine functions since the coroutines passes
874   // are not aware of how to move the extra UBSan instructions across the split
875   // coroutine boundaries.
876   if (D && SanOpts.has(SanitizerKind::Null))
877     if (FD && FD->getBody() &&
878         FD->getBody()->getStmtClass() == Stmt::CoroutineBodyStmtClass)
879       SanOpts.Mask &= ~SanitizerKind::Null;
880 
881   // Add pointer authentication attributes.
882   const CodeGenOptions &CodeGenOpts = CGM.getCodeGenOpts();
883   if (CodeGenOpts.PointerAuth.ReturnAddresses)
884     Fn->addFnAttr("ptrauth-returns");
885   if (CodeGenOpts.PointerAuth.FunctionPointers)
886     Fn->addFnAttr("ptrauth-calls");
887   if (CodeGenOpts.PointerAuth.IndirectGotos)
888     Fn->addFnAttr("ptrauth-indirect-gotos");
889 
890   // Apply xray attributes to the function (as a string, for now)
891   bool AlwaysXRayAttr = false;
892   if (const auto *XRayAttr = D ? D->getAttr<XRayInstrumentAttr>() : nullptr) {
893     if (CGM.getCodeGenOpts().XRayInstrumentationBundle.has(
894             XRayInstrKind::FunctionEntry) ||
895         CGM.getCodeGenOpts().XRayInstrumentationBundle.has(
896             XRayInstrKind::FunctionExit)) {
897       if (XRayAttr->alwaysXRayInstrument() && ShouldXRayInstrumentFunction()) {
898         Fn->addFnAttr("function-instrument", "xray-always");
899         AlwaysXRayAttr = true;
900       }
901       if (XRayAttr->neverXRayInstrument())
902         Fn->addFnAttr("function-instrument", "xray-never");
903       if (const auto *LogArgs = D->getAttr<XRayLogArgsAttr>())
904         if (ShouldXRayInstrumentFunction())
905           Fn->addFnAttr("xray-log-args",
906                         llvm::utostr(LogArgs->getArgumentCount()));
907     }
908   } else {
909     if (ShouldXRayInstrumentFunction() && !CGM.imbueXRayAttrs(Fn, Loc))
910       Fn->addFnAttr(
911           "xray-instruction-threshold",
912           llvm::itostr(CGM.getCodeGenOpts().XRayInstructionThreshold));
913   }
914 
915   if (ShouldXRayInstrumentFunction()) {
916     if (CGM.getCodeGenOpts().XRayIgnoreLoops)
917       Fn->addFnAttr("xray-ignore-loops");
918 
919     if (!CGM.getCodeGenOpts().XRayInstrumentationBundle.has(
920             XRayInstrKind::FunctionExit))
921       Fn->addFnAttr("xray-skip-exit");
922 
923     if (!CGM.getCodeGenOpts().XRayInstrumentationBundle.has(
924             XRayInstrKind::FunctionEntry))
925       Fn->addFnAttr("xray-skip-entry");
926 
927     auto FuncGroups = CGM.getCodeGenOpts().XRayTotalFunctionGroups;
928     if (FuncGroups > 1) {
929       auto FuncName = llvm::ArrayRef<uint8_t>(CurFn->getName().bytes_begin(),
930                                               CurFn->getName().bytes_end());
931       auto Group = crc32(FuncName) % FuncGroups;
932       if (Group != CGM.getCodeGenOpts().XRaySelectedFunctionGroup &&
933           !AlwaysXRayAttr)
934         Fn->addFnAttr("function-instrument", "xray-never");
935     }
936   }
937 
938   if (CGM.getCodeGenOpts().getProfileInstr() != CodeGenOptions::ProfileNone) {
939     switch (CGM.isFunctionBlockedFromProfileInstr(Fn, Loc)) {
940     case ProfileList::Skip:
941       Fn->addFnAttr(llvm::Attribute::SkipProfile);
942       break;
943     case ProfileList::Forbid:
944       Fn->addFnAttr(llvm::Attribute::NoProfile);
945       break;
946     case ProfileList::Allow:
947       break;
948     }
949   }
950 
951   unsigned Count, Offset;
952   if (const auto *Attr =
953           D ? D->getAttr<PatchableFunctionEntryAttr>() : nullptr) {
954     Count = Attr->getCount();
955     Offset = Attr->getOffset();
956   } else {
957     Count = CGM.getCodeGenOpts().PatchableFunctionEntryCount;
958     Offset = CGM.getCodeGenOpts().PatchableFunctionEntryOffset;
959   }
960   if (Count && Offset <= Count) {
961     Fn->addFnAttr("patchable-function-entry", std::to_string(Count - Offset));
962     if (Offset)
963       Fn->addFnAttr("patchable-function-prefix", std::to_string(Offset));
964   }
965   // Instruct that functions for COFF/CodeView targets should start with a
966   // patchable instruction, but only on x86/x64. Don't forward this to ARM/ARM64
967   // backends as they don't need it -- instructions on these architectures are
968   // always atomically patchable at runtime.
969   if (CGM.getCodeGenOpts().HotPatch &&
970       getContext().getTargetInfo().getTriple().isX86() &&
971       getContext().getTargetInfo().getTriple().getEnvironment() !=
972           llvm::Triple::CODE16)
973     Fn->addFnAttr("patchable-function", "prologue-short-redirect");
974 
975   // Add no-jump-tables value.
976   if (CGM.getCodeGenOpts().NoUseJumpTables)
977     Fn->addFnAttr("no-jump-tables", "true");
978 
979   // Add no-inline-line-tables value.
980   if (CGM.getCodeGenOpts().NoInlineLineTables)
981     Fn->addFnAttr("no-inline-line-tables");
982 
983   // Add profile-sample-accurate value.
984   if (CGM.getCodeGenOpts().ProfileSampleAccurate)
985     Fn->addFnAttr("profile-sample-accurate");
986 
987   if (!CGM.getCodeGenOpts().SampleProfileFile.empty())
988     Fn->addFnAttr("use-sample-profile");
989 
990   if (D && D->hasAttr<CFICanonicalJumpTableAttr>())
991     Fn->addFnAttr("cfi-canonical-jump-table");
992 
993   if (D && D->hasAttr<NoProfileFunctionAttr>())
994     Fn->addFnAttr(llvm::Attribute::NoProfile);
995 
996   if (D && D->hasAttr<HybridPatchableAttr>())
997     Fn->addFnAttr(llvm::Attribute::HybridPatchable);
998 
999   if (D) {
1000     // Function attributes take precedence over command line flags.
1001     if (auto *A = D->getAttr<FunctionReturnThunksAttr>()) {
1002       switch (A->getThunkType()) {
1003       case FunctionReturnThunksAttr::Kind::Keep:
1004         break;
1005       case FunctionReturnThunksAttr::Kind::Extern:
1006         Fn->addFnAttr(llvm::Attribute::FnRetThunkExtern);
1007         break;
1008       }
1009     } else if (CGM.getCodeGenOpts().FunctionReturnThunks)
1010       Fn->addFnAttr(llvm::Attribute::FnRetThunkExtern);
1011   }
1012 
1013   if (FD && (getLangOpts().OpenCL ||
1014              (getLangOpts().HIP && getLangOpts().CUDAIsDevice))) {
1015     // Add metadata for a kernel function.
1016     EmitKernelMetadata(FD, Fn);
1017   }
1018 
1019   if (FD && FD->hasAttr<ClspvLibclcBuiltinAttr>()) {
1020     Fn->setMetadata("clspv_libclc_builtin",
1021                     llvm::MDNode::get(getLLVMContext(), {}));
1022   }
1023 
1024   // If we are checking function types, emit a function type signature as
1025   // prologue data.
1026   if (FD && SanOpts.has(SanitizerKind::Function)) {
1027     if (llvm::Constant *PrologueSig = getPrologueSignature(CGM, FD)) {
1028       llvm::LLVMContext &Ctx = Fn->getContext();
1029       llvm::MDBuilder MDB(Ctx);
1030       Fn->setMetadata(
1031           llvm::LLVMContext::MD_func_sanitize,
1032           MDB.createRTTIPointerPrologue(
1033               PrologueSig, getUBSanFunctionTypeHash(FD->getType())));
1034     }
1035   }
1036 
1037   // If we're checking nullability, we need to know whether we can check the
1038   // return value. Initialize the flag to 'true' and refine it in EmitParmDecl.
1039   if (SanOpts.has(SanitizerKind::NullabilityReturn)) {
1040     auto Nullability = FnRetTy->getNullability();
1041     if (Nullability && *Nullability == NullabilityKind::NonNull &&
1042         !FnRetTy->isRecordType()) {
1043       if (!(SanOpts.has(SanitizerKind::ReturnsNonnullAttribute) &&
1044             CurCodeDecl && CurCodeDecl->getAttr<ReturnsNonNullAttr>()))
1045         RetValNullabilityPrecondition =
1046             llvm::ConstantInt::getTrue(getLLVMContext());
1047     }
1048   }
1049 
1050   // If we're in C++ mode and the function name is "main", it is guaranteed
1051   // to be norecurse by the standard (3.6.1.3 "The function main shall not be
1052   // used within a program").
1053   //
1054   // OpenCL C 2.0 v2.2-11 s6.9.i:
1055   //     Recursion is not supported.
1056   //
1057   // SYCL v1.2.1 s3.10:
1058   //     kernels cannot include RTTI information, exception classes,
1059   //     recursive code, virtual functions or make use of C++ libraries that
1060   //     are not compiled for the device.
1061   if (FD && ((getLangOpts().CPlusPlus && FD->isMain()) ||
1062              getLangOpts().OpenCL || getLangOpts().SYCLIsDevice ||
1063              (getLangOpts().CUDA && FD->hasAttr<CUDAGlobalAttr>())))
1064     Fn->addFnAttr(llvm::Attribute::NoRecurse);
1065 
1066   llvm::RoundingMode RM = getLangOpts().getDefaultRoundingMode();
1067   llvm::fp::ExceptionBehavior FPExceptionBehavior =
1068       ToConstrainedExceptMD(getLangOpts().getDefaultExceptionMode());
1069   Builder.setDefaultConstrainedRounding(RM);
1070   Builder.setDefaultConstrainedExcept(FPExceptionBehavior);
1071   if ((FD && (FD->UsesFPIntrin() || FD->hasAttr<StrictFPAttr>())) ||
1072       (!FD && (FPExceptionBehavior != llvm::fp::ebIgnore ||
1073                RM != llvm::RoundingMode::NearestTiesToEven))) {
1074     Builder.setIsFPConstrained(true);
1075     Fn->addFnAttr(llvm::Attribute::StrictFP);
1076   }
1077 
1078   // If a custom alignment is used, force realigning to this alignment on
1079   // any main function which certainly will need it.
1080   if (FD && ((FD->isMain() || FD->isMSVCRTEntryPoint()) &&
1081              CGM.getCodeGenOpts().StackAlignment))
1082     Fn->addFnAttr("stackrealign");
1083 
1084   // "main" doesn't need to zero out call-used registers.
1085   if (FD && FD->isMain())
1086     Fn->removeFnAttr("zero-call-used-regs");
1087 
1088   llvm::BasicBlock *EntryBB = createBasicBlock("entry", CurFn);
1089 
1090   // Create a marker to make it easy to insert allocas into the entryblock
1091   // later.  Don't create this with the builder, because we don't want it
1092   // folded.
1093   llvm::Value *Undef = llvm::UndefValue::get(Int32Ty);
1094   AllocaInsertPt = new llvm::BitCastInst(Undef, Int32Ty, "allocapt", EntryBB);
1095 
1096   ReturnBlock = getJumpDestInCurrentScope("return");
1097 
1098   Builder.SetInsertPoint(EntryBB);
1099 
1100   // If we're checking the return value, allocate space for a pointer to a
1101   // precise source location of the checked return statement.
1102   if (requiresReturnValueCheck()) {
1103     ReturnLocation = CreateDefaultAlignTempAlloca(Int8PtrTy, "return.sloc.ptr");
1104     Builder.CreateStore(llvm::ConstantPointerNull::get(Int8PtrTy),
1105                         ReturnLocation);
1106   }
1107 
1108   // Emit subprogram debug descriptor.
1109   if (CGDebugInfo *DI = getDebugInfo()) {
1110     // Reconstruct the type from the argument list so that implicit parameters,
1111     // such as 'this' and 'vtt', show up in the debug info. Preserve the calling
1112     // convention.
1113     DI->emitFunctionStart(GD, Loc, StartLoc,
1114                           DI->getFunctionType(FD, RetTy, Args), CurFn,
1115                           CurFuncIsThunk);
1116   }
1117 
1118   if (ShouldInstrumentFunction()) {
1119     if (CGM.getCodeGenOpts().InstrumentFunctions)
1120       CurFn->addFnAttr("instrument-function-entry", "__cyg_profile_func_enter");
1121     if (CGM.getCodeGenOpts().InstrumentFunctionsAfterInlining)
1122       CurFn->addFnAttr("instrument-function-entry-inlined",
1123                        "__cyg_profile_func_enter");
1124     if (CGM.getCodeGenOpts().InstrumentFunctionEntryBare)
1125       CurFn->addFnAttr("instrument-function-entry-inlined",
1126                        "__cyg_profile_func_enter_bare");
1127   }
1128 
1129   // Since emitting the mcount call here impacts optimizations such as function
1130   // inlining, we just add an attribute to insert a mcount call in backend.
1131   // The attribute "counting-function" is set to mcount function name which is
1132   // architecture dependent.
1133   if (CGM.getCodeGenOpts().InstrumentForProfiling) {
1134     // Calls to fentry/mcount should not be generated if function has
1135     // the no_instrument_function attribute.
1136     if (!CurFuncDecl || !CurFuncDecl->hasAttr<NoInstrumentFunctionAttr>()) {
1137       if (CGM.getCodeGenOpts().CallFEntry)
1138         Fn->addFnAttr("fentry-call", "true");
1139       else {
1140         Fn->addFnAttr("instrument-function-entry-inlined",
1141                       getTarget().getMCountName());
1142       }
1143       if (CGM.getCodeGenOpts().MNopMCount) {
1144         if (!CGM.getCodeGenOpts().CallFEntry)
1145           CGM.getDiags().Report(diag::err_opt_not_valid_without_opt)
1146             << "-mnop-mcount" << "-mfentry";
1147         Fn->addFnAttr("mnop-mcount");
1148       }
1149 
1150       if (CGM.getCodeGenOpts().RecordMCount) {
1151         if (!CGM.getCodeGenOpts().CallFEntry)
1152           CGM.getDiags().Report(diag::err_opt_not_valid_without_opt)
1153             << "-mrecord-mcount" << "-mfentry";
1154         Fn->addFnAttr("mrecord-mcount");
1155       }
1156     }
1157   }
1158 
1159   if (CGM.getCodeGenOpts().PackedStack) {
1160     if (getContext().getTargetInfo().getTriple().getArch() !=
1161         llvm::Triple::systemz)
1162       CGM.getDiags().Report(diag::err_opt_not_valid_on_target)
1163         << "-mpacked-stack";
1164     Fn->addFnAttr("packed-stack");
1165   }
1166 
1167   if (CGM.getCodeGenOpts().WarnStackSize != UINT_MAX &&
1168       !CGM.getDiags().isIgnored(diag::warn_fe_backend_frame_larger_than, Loc))
1169     Fn->addFnAttr("warn-stack-size",
1170                   std::to_string(CGM.getCodeGenOpts().WarnStackSize));
1171 
1172   if (RetTy->isVoidType()) {
1173     // Void type; nothing to return.
1174     ReturnValue = Address::invalid();
1175 
1176     // Count the implicit return.
1177     if (!endsWithReturn(D))
1178       ++NumReturnExprs;
1179   } else if (CurFnInfo->getReturnInfo().getKind() == ABIArgInfo::Indirect) {
1180     // Indirect return; emit returned value directly into sret slot.
1181     // This reduces code size, and affects correctness in C++.
1182     auto AI = CurFn->arg_begin();
1183     if (CurFnInfo->getReturnInfo().isSRetAfterThis())
1184       ++AI;
1185     ReturnValue = makeNaturalAddressForPointer(
1186         &*AI, RetTy, CurFnInfo->getReturnInfo().getIndirectAlign(), false,
1187         nullptr, nullptr, KnownNonNull);
1188     if (!CurFnInfo->getReturnInfo().getIndirectByVal()) {
1189       ReturnValuePointer =
1190           CreateDefaultAlignTempAlloca(ReturnValue.getType(), "result.ptr");
1191       Builder.CreateStore(ReturnValue.emitRawPointer(*this),
1192                           ReturnValuePointer);
1193     }
1194   } else if (CurFnInfo->getReturnInfo().getKind() == ABIArgInfo::InAlloca &&
1195              !hasScalarEvaluationKind(CurFnInfo->getReturnType())) {
1196     // Load the sret pointer from the argument struct and return into that.
1197     unsigned Idx = CurFnInfo->getReturnInfo().getInAllocaFieldIndex();
1198     llvm::Function::arg_iterator EI = CurFn->arg_end();
1199     --EI;
1200     llvm::Value *Addr = Builder.CreateStructGEP(
1201         CurFnInfo->getArgStruct(), &*EI, Idx);
1202     llvm::Type *Ty =
1203         cast<llvm::GetElementPtrInst>(Addr)->getResultElementType();
1204     ReturnValuePointer = Address(Addr, Ty, getPointerAlign());
1205     Addr = Builder.CreateAlignedLoad(Ty, Addr, getPointerAlign(), "agg.result");
1206     ReturnValue = Address(Addr, ConvertType(RetTy),
1207                           CGM.getNaturalTypeAlignment(RetTy), KnownNonNull);
1208   } else {
1209     ReturnValue = CreateIRTemp(RetTy, "retval");
1210 
1211     // Tell the epilog emitter to autorelease the result.  We do this
1212     // now so that various specialized functions can suppress it
1213     // during their IR-generation.
1214     if (getLangOpts().ObjCAutoRefCount &&
1215         !CurFnInfo->isReturnsRetained() &&
1216         RetTy->isObjCRetainableType())
1217       AutoreleaseResult = true;
1218   }
1219 
1220   EmitStartEHSpec(CurCodeDecl);
1221 
1222   PrologueCleanupDepth = EHStack.stable_begin();
1223 
1224   // Emit OpenMP specific initialization of the device functions.
1225   if (getLangOpts().OpenMP && CurCodeDecl)
1226     CGM.getOpenMPRuntime().emitFunctionProlog(*this, CurCodeDecl);
1227 
1228   // Handle emitting HLSL entry functions.
1229   if (D && D->hasAttr<HLSLShaderAttr>())
1230     CGM.getHLSLRuntime().emitEntryFunction(FD, Fn);
1231 
1232   EmitFunctionProlog(*CurFnInfo, CurFn, Args);
1233 
1234   if (const CXXMethodDecl *MD = dyn_cast_if_present<CXXMethodDecl>(D);
1235       MD && !MD->isStatic()) {
1236     bool IsInLambda =
1237         MD->getParent()->isLambda() && MD->getOverloadedOperator() == OO_Call;
1238     if (MD->isImplicitObjectMemberFunction())
1239       CGM.getCXXABI().EmitInstanceFunctionProlog(*this);
1240     if (IsInLambda) {
1241       // We're in a lambda; figure out the captures.
1242       MD->getParent()->getCaptureFields(LambdaCaptureFields,
1243                                         LambdaThisCaptureField);
1244       if (LambdaThisCaptureField) {
1245         // If the lambda captures the object referred to by '*this' - either by
1246         // value or by reference, make sure CXXThisValue points to the correct
1247         // object.
1248 
1249         // Get the lvalue for the field (which is a copy of the enclosing object
1250         // or contains the address of the enclosing object).
1251         LValue ThisFieldLValue = EmitLValueForLambdaField(LambdaThisCaptureField);
1252         if (!LambdaThisCaptureField->getType()->isPointerType()) {
1253           // If the enclosing object was captured by value, just use its
1254           // address. Sign this pointer.
1255           CXXThisValue = ThisFieldLValue.getPointer(*this);
1256         } else {
1257           // Load the lvalue pointed to by the field, since '*this' was captured
1258           // by reference.
1259           CXXThisValue =
1260               EmitLoadOfLValue(ThisFieldLValue, SourceLocation()).getScalarVal();
1261         }
1262       }
1263       for (auto *FD : MD->getParent()->fields()) {
1264         if (FD->hasCapturedVLAType()) {
1265           auto *ExprArg = EmitLoadOfLValue(EmitLValueForLambdaField(FD),
1266                                            SourceLocation()).getScalarVal();
1267           auto VAT = FD->getCapturedVLAType();
1268           VLASizeMap[VAT->getSizeExpr()] = ExprArg;
1269         }
1270       }
1271     } else if (MD->isImplicitObjectMemberFunction()) {
1272       // Not in a lambda; just use 'this' from the method.
1273       // FIXME: Should we generate a new load for each use of 'this'?  The
1274       // fast register allocator would be happier...
1275       CXXThisValue = CXXABIThisValue;
1276     }
1277 
1278     // Check the 'this' pointer once per function, if it's available.
1279     if (CXXABIThisValue) {
1280       SanitizerSet SkippedChecks;
1281       SkippedChecks.set(SanitizerKind::ObjectSize, true);
1282       QualType ThisTy = MD->getThisType();
1283 
1284       // If this is the call operator of a lambda with no captures, it
1285       // may have a static invoker function, which may call this operator with
1286       // a null 'this' pointer.
1287       if (isLambdaCallOperator(MD) && MD->getParent()->isCapturelessLambda())
1288         SkippedChecks.set(SanitizerKind::Null, true);
1289 
1290       EmitTypeCheck(
1291           isa<CXXConstructorDecl>(MD) ? TCK_ConstructorCall : TCK_MemberCall,
1292           Loc, CXXABIThisValue, ThisTy, CXXABIThisAlignment, SkippedChecks);
1293     }
1294   }
1295 
1296   // If any of the arguments have a variably modified type, make sure to
1297   // emit the type size, but only if the function is not naked. Naked functions
1298   // have no prolog to run this evaluation.
1299   if (!FD || !FD->hasAttr<NakedAttr>()) {
1300     for (const VarDecl *VD : Args) {
1301       // Dig out the type as written from ParmVarDecls; it's unclear whether
1302       // the standard (C99 6.9.1p10) requires this, but we're following the
1303       // precedent set by gcc.
1304       QualType Ty;
1305       if (const ParmVarDecl *PVD = dyn_cast<ParmVarDecl>(VD))
1306         Ty = PVD->getOriginalType();
1307       else
1308         Ty = VD->getType();
1309 
1310       if (Ty->isVariablyModifiedType())
1311         EmitVariablyModifiedType(Ty);
1312     }
1313   }
1314   // Emit a location at the end of the prologue.
1315   if (CGDebugInfo *DI = getDebugInfo())
1316     DI->EmitLocation(Builder, StartLoc);
1317   // TODO: Do we need to handle this in two places like we do with
1318   // target-features/target-cpu?
1319   if (CurFuncDecl)
1320     if (const auto *VecWidth = CurFuncDecl->getAttr<MinVectorWidthAttr>())
1321       LargestVectorWidth = VecWidth->getVectorWidth();
1322 
1323   if (CGM.shouldEmitConvergenceTokens())
1324     ConvergenceTokenStack.push_back(getOrEmitConvergenceEntryToken(CurFn));
1325 }
1326 
1327 void CodeGenFunction::EmitFunctionBody(const Stmt *Body) {
1328   incrementProfileCounter(Body);
1329   maybeCreateMCDCCondBitmap();
1330   if (const CompoundStmt *S = dyn_cast<CompoundStmt>(Body))
1331     EmitCompoundStmtWithoutScope(*S);
1332   else
1333     EmitStmt(Body);
1334 }
1335 
1336 /// When instrumenting to collect profile data, the counts for some blocks
1337 /// such as switch cases need to not include the fall-through counts, so
1338 /// emit a branch around the instrumentation code. When not instrumenting,
1339 /// this just calls EmitBlock().
1340 void CodeGenFunction::EmitBlockWithFallThrough(llvm::BasicBlock *BB,
1341                                                const Stmt *S) {
1342   llvm::BasicBlock *SkipCountBB = nullptr;
1343   // Do not skip over the instrumentation when single byte coverage mode is
1344   // enabled.
1345   if (HaveInsertPoint() && CGM.getCodeGenOpts().hasProfileClangInstr() &&
1346       !llvm::EnableSingleByteCoverage) {
1347     // When instrumenting for profiling, the fallthrough to certain
1348     // statements needs to skip over the instrumentation code so that we
1349     // get an accurate count.
1350     SkipCountBB = createBasicBlock("skipcount");
1351     EmitBranch(SkipCountBB);
1352   }
1353   EmitBlock(BB);
1354   uint64_t CurrentCount = getCurrentProfileCount();
1355   incrementProfileCounter(S);
1356   setCurrentProfileCount(getCurrentProfileCount() + CurrentCount);
1357   if (SkipCountBB)
1358     EmitBlock(SkipCountBB);
1359 }
1360 
1361 /// Tries to mark the given function nounwind based on the
1362 /// non-existence of any throwing calls within it.  We believe this is
1363 /// lightweight enough to do at -O0.
1364 static void TryMarkNoThrow(llvm::Function *F) {
1365   // LLVM treats 'nounwind' on a function as part of the type, so we
1366   // can't do this on functions that can be overwritten.
1367   if (F->isInterposable()) return;
1368 
1369   for (llvm::BasicBlock &BB : *F)
1370     for (llvm::Instruction &I : BB)
1371       if (I.mayThrow())
1372         return;
1373 
1374   F->setDoesNotThrow();
1375 }
1376 
1377 QualType CodeGenFunction::BuildFunctionArgList(GlobalDecl GD,
1378                                                FunctionArgList &Args) {
1379   const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
1380   QualType ResTy = FD->getReturnType();
1381 
1382   const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD);
1383   if (MD && MD->isImplicitObjectMemberFunction()) {
1384     if (CGM.getCXXABI().HasThisReturn(GD))
1385       ResTy = MD->getThisType();
1386     else if (CGM.getCXXABI().hasMostDerivedReturn(GD))
1387       ResTy = CGM.getContext().VoidPtrTy;
1388     CGM.getCXXABI().buildThisParam(*this, Args);
1389   }
1390 
1391   // The base version of an inheriting constructor whose constructed base is a
1392   // virtual base is not passed any arguments (because it doesn't actually call
1393   // the inherited constructor).
1394   bool PassedParams = true;
1395   if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(FD))
1396     if (auto Inherited = CD->getInheritedConstructor())
1397       PassedParams =
1398           getTypes().inheritingCtorHasParams(Inherited, GD.getCtorType());
1399 
1400   if (PassedParams) {
1401     for (auto *Param : FD->parameters()) {
1402       Args.push_back(Param);
1403       if (!Param->hasAttr<PassObjectSizeAttr>())
1404         continue;
1405 
1406       auto *Implicit = ImplicitParamDecl::Create(
1407           getContext(), Param->getDeclContext(), Param->getLocation(),
1408           /*Id=*/nullptr, getContext().getSizeType(), ImplicitParamKind::Other);
1409       SizeArguments[Param] = Implicit;
1410       Args.push_back(Implicit);
1411     }
1412   }
1413 
1414   if (MD && (isa<CXXConstructorDecl>(MD) || isa<CXXDestructorDecl>(MD)))
1415     CGM.getCXXABI().addImplicitStructorParams(*this, ResTy, Args);
1416 
1417   return ResTy;
1418 }
1419 
1420 void CodeGenFunction::GenerateCode(GlobalDecl GD, llvm::Function *Fn,
1421                                    const CGFunctionInfo &FnInfo) {
1422   assert(Fn && "generating code for null Function");
1423   const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
1424   CurGD = GD;
1425 
1426   FunctionArgList Args;
1427   QualType ResTy = BuildFunctionArgList(GD, Args);
1428 
1429   CGM.getTargetCodeGenInfo().checkFunctionABI(CGM, FD);
1430 
1431   if (FD->isInlineBuiltinDeclaration()) {
1432     // When generating code for a builtin with an inline declaration, use a
1433     // mangled name to hold the actual body, while keeping an external
1434     // definition in case the function pointer is referenced somewhere.
1435     std::string FDInlineName = (Fn->getName() + ".inline").str();
1436     llvm::Module *M = Fn->getParent();
1437     llvm::Function *Clone = M->getFunction(FDInlineName);
1438     if (!Clone) {
1439       Clone = llvm::Function::Create(Fn->getFunctionType(),
1440                                      llvm::GlobalValue::InternalLinkage,
1441                                      Fn->getAddressSpace(), FDInlineName, M);
1442       Clone->addFnAttr(llvm::Attribute::AlwaysInline);
1443     }
1444     Fn->setLinkage(llvm::GlobalValue::ExternalLinkage);
1445     Fn = Clone;
1446   } else {
1447     // Detect the unusual situation where an inline version is shadowed by a
1448     // non-inline version. In that case we should pick the external one
1449     // everywhere. That's GCC behavior too. Unfortunately, I cannot find a way
1450     // to detect that situation before we reach codegen, so do some late
1451     // replacement.
1452     for (const FunctionDecl *PD = FD->getPreviousDecl(); PD;
1453          PD = PD->getPreviousDecl()) {
1454       if (LLVM_UNLIKELY(PD->isInlineBuiltinDeclaration())) {
1455         std::string FDInlineName = (Fn->getName() + ".inline").str();
1456         llvm::Module *M = Fn->getParent();
1457         if (llvm::Function *Clone = M->getFunction(FDInlineName)) {
1458           Clone->replaceAllUsesWith(Fn);
1459           Clone->eraseFromParent();
1460         }
1461         break;
1462       }
1463     }
1464   }
1465 
1466   // Check if we should generate debug info for this function.
1467   if (FD->hasAttr<NoDebugAttr>()) {
1468     // Clear non-distinct debug info that was possibly attached to the function
1469     // due to an earlier declaration without the nodebug attribute
1470     Fn->setSubprogram(nullptr);
1471     // Disable debug info indefinitely for this function
1472     DebugInfo = nullptr;
1473   }
1474 
1475   // The function might not have a body if we're generating thunks for a
1476   // function declaration.
1477   SourceRange BodyRange;
1478   if (Stmt *Body = FD->getBody())
1479     BodyRange = Body->getSourceRange();
1480   else
1481     BodyRange = FD->getLocation();
1482   CurEHLocation = BodyRange.getEnd();
1483 
1484   // Use the location of the start of the function to determine where
1485   // the function definition is located. By default use the location
1486   // of the declaration as the location for the subprogram. A function
1487   // may lack a declaration in the source code if it is created by code
1488   // gen. (examples: _GLOBAL__I_a, __cxx_global_array_dtor, thunk).
1489   SourceLocation Loc = FD->getLocation();
1490 
1491   // If this is a function specialization then use the pattern body
1492   // as the location for the function.
1493   if (const FunctionDecl *SpecDecl = FD->getTemplateInstantiationPattern())
1494     if (SpecDecl->hasBody(SpecDecl))
1495       Loc = SpecDecl->getLocation();
1496 
1497   Stmt *Body = FD->getBody();
1498 
1499   if (Body) {
1500     // Coroutines always emit lifetime markers.
1501     if (isa<CoroutineBodyStmt>(Body))
1502       ShouldEmitLifetimeMarkers = true;
1503 
1504     // Initialize helper which will detect jumps which can cause invalid
1505     // lifetime markers.
1506     if (ShouldEmitLifetimeMarkers)
1507       Bypasses.Init(Body);
1508   }
1509 
1510   // Emit the standard function prologue.
1511   StartFunction(GD, ResTy, Fn, FnInfo, Args, Loc, BodyRange.getBegin());
1512 
1513   // Save parameters for coroutine function.
1514   if (Body && isa_and_nonnull<CoroutineBodyStmt>(Body))
1515     llvm::append_range(FnArgs, FD->parameters());
1516 
1517   // Ensure that the function adheres to the forward progress guarantee, which
1518   // is required by certain optimizations.
1519   // In C++11 and up, the attribute will be removed if the body contains a
1520   // trivial empty loop.
1521   if (checkIfFunctionMustProgress())
1522     CurFn->addFnAttr(llvm::Attribute::MustProgress);
1523 
1524   // Generate the body of the function.
1525   PGO.assignRegionCounters(GD, CurFn);
1526   if (isa<CXXDestructorDecl>(FD))
1527     EmitDestructorBody(Args);
1528   else if (isa<CXXConstructorDecl>(FD))
1529     EmitConstructorBody(Args);
1530   else if (getLangOpts().CUDA &&
1531            !getLangOpts().CUDAIsDevice &&
1532            FD->hasAttr<CUDAGlobalAttr>())
1533     CGM.getCUDARuntime().emitDeviceStub(*this, Args);
1534   else if (isa<CXXMethodDecl>(FD) &&
1535            cast<CXXMethodDecl>(FD)->isLambdaStaticInvoker()) {
1536     // The lambda static invoker function is special, because it forwards or
1537     // clones the body of the function call operator (but is actually static).
1538     EmitLambdaStaticInvokeBody(cast<CXXMethodDecl>(FD));
1539   } else if (isa<CXXMethodDecl>(FD) &&
1540              isLambdaCallOperator(cast<CXXMethodDecl>(FD)) &&
1541              !FnInfo.isDelegateCall() &&
1542              cast<CXXMethodDecl>(FD)->getParent()->getLambdaStaticInvoker() &&
1543              hasInAllocaArg(cast<CXXMethodDecl>(FD))) {
1544     // If emitting a lambda with static invoker on X86 Windows, change
1545     // the call operator body.
1546     // Make sure that this is a call operator with an inalloca arg and check
1547     // for delegate call to make sure this is the original call op and not the
1548     // new forwarding function for the static invoker.
1549     EmitLambdaInAllocaCallOpBody(cast<CXXMethodDecl>(FD));
1550   } else if (FD->isDefaulted() && isa<CXXMethodDecl>(FD) &&
1551              (cast<CXXMethodDecl>(FD)->isCopyAssignmentOperator() ||
1552               cast<CXXMethodDecl>(FD)->isMoveAssignmentOperator())) {
1553     // Implicit copy-assignment gets the same special treatment as implicit
1554     // copy-constructors.
1555     emitImplicitAssignmentOperatorBody(Args);
1556   } else if (Body) {
1557     EmitFunctionBody(Body);
1558   } else
1559     llvm_unreachable("no definition for emitted function");
1560 
1561   // C++11 [stmt.return]p2:
1562   //   Flowing off the end of a function [...] results in undefined behavior in
1563   //   a value-returning function.
1564   // C11 6.9.1p12:
1565   //   If the '}' that terminates a function is reached, and the value of the
1566   //   function call is used by the caller, the behavior is undefined.
1567   if (getLangOpts().CPlusPlus && !FD->hasImplicitReturnZero() && !SawAsmBlock &&
1568       !FD->getReturnType()->isVoidType() && Builder.GetInsertBlock()) {
1569     bool ShouldEmitUnreachable =
1570         CGM.getCodeGenOpts().StrictReturn ||
1571         !CGM.MayDropFunctionReturn(FD->getASTContext(), FD->getReturnType());
1572     if (SanOpts.has(SanitizerKind::Return)) {
1573       SanitizerScope SanScope(this);
1574       llvm::Value *IsFalse = Builder.getFalse();
1575       EmitCheck(std::make_pair(IsFalse, SanitizerKind::Return),
1576                 SanitizerHandler::MissingReturn,
1577                 EmitCheckSourceLocation(FD->getLocation()), std::nullopt);
1578     } else if (ShouldEmitUnreachable) {
1579       if (CGM.getCodeGenOpts().OptimizationLevel == 0)
1580         EmitTrapCall(llvm::Intrinsic::trap);
1581     }
1582     if (SanOpts.has(SanitizerKind::Return) || ShouldEmitUnreachable) {
1583       Builder.CreateUnreachable();
1584       Builder.ClearInsertionPoint();
1585     }
1586   }
1587 
1588   // Emit the standard function epilogue.
1589   FinishFunction(BodyRange.getEnd());
1590 
1591   // If we haven't marked the function nothrow through other means, do
1592   // a quick pass now to see if we can.
1593   if (!CurFn->doesNotThrow())
1594     TryMarkNoThrow(CurFn);
1595 }
1596 
1597 /// ContainsLabel - Return true if the statement contains a label in it.  If
1598 /// this statement is not executed normally, it not containing a label means
1599 /// that we can just remove the code.
1600 bool CodeGenFunction::ContainsLabel(const Stmt *S, bool IgnoreCaseStmts) {
1601   // Null statement, not a label!
1602   if (!S) return false;
1603 
1604   // If this is a label, we have to emit the code, consider something like:
1605   // if (0) {  ...  foo:  bar(); }  goto foo;
1606   //
1607   // TODO: If anyone cared, we could track __label__'s, since we know that you
1608   // can't jump to one from outside their declared region.
1609   if (isa<LabelStmt>(S))
1610     return true;
1611 
1612   // If this is a case/default statement, and we haven't seen a switch, we have
1613   // to emit the code.
1614   if (isa<SwitchCase>(S) && !IgnoreCaseStmts)
1615     return true;
1616 
1617   // If this is a switch statement, we want to ignore cases below it.
1618   if (isa<SwitchStmt>(S))
1619     IgnoreCaseStmts = true;
1620 
1621   // Scan subexpressions for verboten labels.
1622   for (const Stmt *SubStmt : S->children())
1623     if (ContainsLabel(SubStmt, IgnoreCaseStmts))
1624       return true;
1625 
1626   return false;
1627 }
1628 
1629 /// containsBreak - Return true if the statement contains a break out of it.
1630 /// If the statement (recursively) contains a switch or loop with a break
1631 /// inside of it, this is fine.
1632 bool CodeGenFunction::containsBreak(const Stmt *S) {
1633   // Null statement, not a label!
1634   if (!S) return false;
1635 
1636   // If this is a switch or loop that defines its own break scope, then we can
1637   // include it and anything inside of it.
1638   if (isa<SwitchStmt>(S) || isa<WhileStmt>(S) || isa<DoStmt>(S) ||
1639       isa<ForStmt>(S))
1640     return false;
1641 
1642   if (isa<BreakStmt>(S))
1643     return true;
1644 
1645   // Scan subexpressions for verboten breaks.
1646   for (const Stmt *SubStmt : S->children())
1647     if (containsBreak(SubStmt))
1648       return true;
1649 
1650   return false;
1651 }
1652 
1653 bool CodeGenFunction::mightAddDeclToScope(const Stmt *S) {
1654   if (!S) return false;
1655 
1656   // Some statement kinds add a scope and thus never add a decl to the current
1657   // scope. Note, this list is longer than the list of statements that might
1658   // have an unscoped decl nested within them, but this way is conservatively
1659   // correct even if more statement kinds are added.
1660   if (isa<IfStmt>(S) || isa<SwitchStmt>(S) || isa<WhileStmt>(S) ||
1661       isa<DoStmt>(S) || isa<ForStmt>(S) || isa<CompoundStmt>(S) ||
1662       isa<CXXForRangeStmt>(S) || isa<CXXTryStmt>(S) ||
1663       isa<ObjCForCollectionStmt>(S) || isa<ObjCAtTryStmt>(S))
1664     return false;
1665 
1666   if (isa<DeclStmt>(S))
1667     return true;
1668 
1669   for (const Stmt *SubStmt : S->children())
1670     if (mightAddDeclToScope(SubStmt))
1671       return true;
1672 
1673   return false;
1674 }
1675 
1676 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold
1677 /// to a constant, or if it does but contains a label, return false.  If it
1678 /// constant folds return true and set the boolean result in Result.
1679 bool CodeGenFunction::ConstantFoldsToSimpleInteger(const Expr *Cond,
1680                                                    bool &ResultBool,
1681                                                    bool AllowLabels) {
1682   // If MC/DC is enabled, disable folding so that we can instrument all
1683   // conditions to yield complete test vectors. We still keep track of
1684   // folded conditions during region mapping and visualization.
1685   if (!AllowLabels && CGM.getCodeGenOpts().hasProfileClangInstr() &&
1686       CGM.getCodeGenOpts().MCDCCoverage)
1687     return false;
1688 
1689   llvm::APSInt ResultInt;
1690   if (!ConstantFoldsToSimpleInteger(Cond, ResultInt, AllowLabels))
1691     return false;
1692 
1693   ResultBool = ResultInt.getBoolValue();
1694   return true;
1695 }
1696 
1697 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold
1698 /// to a constant, or if it does but contains a label, return false.  If it
1699 /// constant folds return true and set the folded value.
1700 bool CodeGenFunction::ConstantFoldsToSimpleInteger(const Expr *Cond,
1701                                                    llvm::APSInt &ResultInt,
1702                                                    bool AllowLabels) {
1703   // FIXME: Rename and handle conversion of other evaluatable things
1704   // to bool.
1705   Expr::EvalResult Result;
1706   if (!Cond->EvaluateAsInt(Result, getContext()))
1707     return false;  // Not foldable, not integer or not fully evaluatable.
1708 
1709   llvm::APSInt Int = Result.Val.getInt();
1710   if (!AllowLabels && CodeGenFunction::ContainsLabel(Cond))
1711     return false;  // Contains a label.
1712 
1713   ResultInt = Int;
1714   return true;
1715 }
1716 
1717 /// Strip parentheses and simplistic logical-NOT operators.
1718 const Expr *CodeGenFunction::stripCond(const Expr *C) {
1719   while (const UnaryOperator *Op = dyn_cast<UnaryOperator>(C->IgnoreParens())) {
1720     if (Op->getOpcode() != UO_LNot)
1721       break;
1722     C = Op->getSubExpr();
1723   }
1724   return C->IgnoreParens();
1725 }
1726 
1727 /// Determine whether the given condition is an instrumentable condition
1728 /// (i.e. no "&&" or "||").
1729 bool CodeGenFunction::isInstrumentedCondition(const Expr *C) {
1730   const BinaryOperator *BOp = dyn_cast<BinaryOperator>(stripCond(C));
1731   return (!BOp || !BOp->isLogicalOp());
1732 }
1733 
1734 /// EmitBranchToCounterBlock - Emit a conditional branch to a new block that
1735 /// increments a profile counter based on the semantics of the given logical
1736 /// operator opcode.  This is used to instrument branch condition coverage for
1737 /// logical operators.
1738 void CodeGenFunction::EmitBranchToCounterBlock(
1739     const Expr *Cond, BinaryOperator::Opcode LOp, llvm::BasicBlock *TrueBlock,
1740     llvm::BasicBlock *FalseBlock, uint64_t TrueCount /* = 0 */,
1741     Stmt::Likelihood LH /* =None */, const Expr *CntrIdx /* = nullptr */) {
1742   // If not instrumenting, just emit a branch.
1743   bool InstrumentRegions = CGM.getCodeGenOpts().hasProfileClangInstr();
1744   if (!InstrumentRegions || !isInstrumentedCondition(Cond))
1745     return EmitBranchOnBoolExpr(Cond, TrueBlock, FalseBlock, TrueCount, LH);
1746 
1747   llvm::BasicBlock *ThenBlock = nullptr;
1748   llvm::BasicBlock *ElseBlock = nullptr;
1749   llvm::BasicBlock *NextBlock = nullptr;
1750 
1751   // Create the block we'll use to increment the appropriate counter.
1752   llvm::BasicBlock *CounterIncrBlock = createBasicBlock("lop.rhscnt");
1753 
1754   // Set block pointers according to Logical-AND (BO_LAnd) semantics. This
1755   // means we need to evaluate the condition and increment the counter on TRUE:
1756   //
1757   // if (Cond)
1758   //   goto CounterIncrBlock;
1759   // else
1760   //   goto FalseBlock;
1761   //
1762   // CounterIncrBlock:
1763   //   Counter++;
1764   //   goto TrueBlock;
1765 
1766   if (LOp == BO_LAnd) {
1767     ThenBlock = CounterIncrBlock;
1768     ElseBlock = FalseBlock;
1769     NextBlock = TrueBlock;
1770   }
1771 
1772   // Set block pointers according to Logical-OR (BO_LOr) semantics. This means
1773   // we need to evaluate the condition and increment the counter on FALSE:
1774   //
1775   // if (Cond)
1776   //   goto TrueBlock;
1777   // else
1778   //   goto CounterIncrBlock;
1779   //
1780   // CounterIncrBlock:
1781   //   Counter++;
1782   //   goto FalseBlock;
1783 
1784   else if (LOp == BO_LOr) {
1785     ThenBlock = TrueBlock;
1786     ElseBlock = CounterIncrBlock;
1787     NextBlock = FalseBlock;
1788   } else {
1789     llvm_unreachable("Expected Opcode must be that of a Logical Operator");
1790   }
1791 
1792   // Emit Branch based on condition.
1793   EmitBranchOnBoolExpr(Cond, ThenBlock, ElseBlock, TrueCount, LH);
1794 
1795   // Emit the block containing the counter increment(s).
1796   EmitBlock(CounterIncrBlock);
1797 
1798   // Increment corresponding counter; if index not provided, use Cond as index.
1799   incrementProfileCounter(CntrIdx ? CntrIdx : Cond);
1800 
1801   // Go to the next block.
1802   EmitBranch(NextBlock);
1803 }
1804 
1805 /// EmitBranchOnBoolExpr - Emit a branch on a boolean condition (e.g. for an if
1806 /// statement) to the specified blocks.  Based on the condition, this might try
1807 /// to simplify the codegen of the conditional based on the branch.
1808 /// \param LH The value of the likelihood attribute on the True branch.
1809 /// \param ConditionalOp Used by MC/DC code coverage to track the result of the
1810 /// ConditionalOperator (ternary) through a recursive call for the operator's
1811 /// LHS and RHS nodes.
1812 void CodeGenFunction::EmitBranchOnBoolExpr(
1813     const Expr *Cond, llvm::BasicBlock *TrueBlock, llvm::BasicBlock *FalseBlock,
1814     uint64_t TrueCount, Stmt::Likelihood LH, const Expr *ConditionalOp) {
1815   Cond = Cond->IgnoreParens();
1816 
1817   if (const BinaryOperator *CondBOp = dyn_cast<BinaryOperator>(Cond)) {
1818     // Handle X && Y in a condition.
1819     if (CondBOp->getOpcode() == BO_LAnd) {
1820       MCDCLogOpStack.push_back(CondBOp);
1821 
1822       // If we have "1 && X", simplify the code.  "0 && X" would have constant
1823       // folded if the case was simple enough.
1824       bool ConstantBool = false;
1825       if (ConstantFoldsToSimpleInteger(CondBOp->getLHS(), ConstantBool) &&
1826           ConstantBool) {
1827         // br(1 && X) -> br(X).
1828         incrementProfileCounter(CondBOp);
1829         EmitBranchToCounterBlock(CondBOp->getRHS(), BO_LAnd, TrueBlock,
1830                                  FalseBlock, TrueCount, LH);
1831         MCDCLogOpStack.pop_back();
1832         return;
1833       }
1834 
1835       // If we have "X && 1", simplify the code to use an uncond branch.
1836       // "X && 0" would have been constant folded to 0.
1837       if (ConstantFoldsToSimpleInteger(CondBOp->getRHS(), ConstantBool) &&
1838           ConstantBool) {
1839         // br(X && 1) -> br(X).
1840         EmitBranchToCounterBlock(CondBOp->getLHS(), BO_LAnd, TrueBlock,
1841                                  FalseBlock, TrueCount, LH, CondBOp);
1842         MCDCLogOpStack.pop_back();
1843         return;
1844       }
1845 
1846       // Emit the LHS as a conditional.  If the LHS conditional is false, we
1847       // want to jump to the FalseBlock.
1848       llvm::BasicBlock *LHSTrue = createBasicBlock("land.lhs.true");
1849       // The counter tells us how often we evaluate RHS, and all of TrueCount
1850       // can be propagated to that branch.
1851       uint64_t RHSCount = getProfileCount(CondBOp->getRHS());
1852 
1853       ConditionalEvaluation eval(*this);
1854       {
1855         ApplyDebugLocation DL(*this, Cond);
1856         // Propagate the likelihood attribute like __builtin_expect
1857         // __builtin_expect(X && Y, 1) -> X and Y are likely
1858         // __builtin_expect(X && Y, 0) -> only Y is unlikely
1859         EmitBranchOnBoolExpr(CondBOp->getLHS(), LHSTrue, FalseBlock, RHSCount,
1860                              LH == Stmt::LH_Unlikely ? Stmt::LH_None : LH);
1861         EmitBlock(LHSTrue);
1862       }
1863 
1864       incrementProfileCounter(CondBOp);
1865       setCurrentProfileCount(getProfileCount(CondBOp->getRHS()));
1866 
1867       // Any temporaries created here are conditional.
1868       eval.begin(*this);
1869       EmitBranchToCounterBlock(CondBOp->getRHS(), BO_LAnd, TrueBlock,
1870                                FalseBlock, TrueCount, LH);
1871       eval.end(*this);
1872       MCDCLogOpStack.pop_back();
1873       return;
1874     }
1875 
1876     if (CondBOp->getOpcode() == BO_LOr) {
1877       MCDCLogOpStack.push_back(CondBOp);
1878 
1879       // If we have "0 || X", simplify the code.  "1 || X" would have constant
1880       // folded if the case was simple enough.
1881       bool ConstantBool = false;
1882       if (ConstantFoldsToSimpleInteger(CondBOp->getLHS(), ConstantBool) &&
1883           !ConstantBool) {
1884         // br(0 || X) -> br(X).
1885         incrementProfileCounter(CondBOp);
1886         EmitBranchToCounterBlock(CondBOp->getRHS(), BO_LOr, TrueBlock,
1887                                  FalseBlock, TrueCount, LH);
1888         MCDCLogOpStack.pop_back();
1889         return;
1890       }
1891 
1892       // If we have "X || 0", simplify the code to use an uncond branch.
1893       // "X || 1" would have been constant folded to 1.
1894       if (ConstantFoldsToSimpleInteger(CondBOp->getRHS(), ConstantBool) &&
1895           !ConstantBool) {
1896         // br(X || 0) -> br(X).
1897         EmitBranchToCounterBlock(CondBOp->getLHS(), BO_LOr, TrueBlock,
1898                                  FalseBlock, TrueCount, LH, CondBOp);
1899         MCDCLogOpStack.pop_back();
1900         return;
1901       }
1902       // Emit the LHS as a conditional.  If the LHS conditional is true, we
1903       // want to jump to the TrueBlock.
1904       llvm::BasicBlock *LHSFalse = createBasicBlock("lor.lhs.false");
1905       // We have the count for entry to the RHS and for the whole expression
1906       // being true, so we can divy up True count between the short circuit and
1907       // the RHS.
1908       uint64_t LHSCount =
1909           getCurrentProfileCount() - getProfileCount(CondBOp->getRHS());
1910       uint64_t RHSCount = TrueCount - LHSCount;
1911 
1912       ConditionalEvaluation eval(*this);
1913       {
1914         // Propagate the likelihood attribute like __builtin_expect
1915         // __builtin_expect(X || Y, 1) -> only Y is likely
1916         // __builtin_expect(X || Y, 0) -> both X and Y are unlikely
1917         ApplyDebugLocation DL(*this, Cond);
1918         EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, LHSFalse, LHSCount,
1919                              LH == Stmt::LH_Likely ? Stmt::LH_None : LH);
1920         EmitBlock(LHSFalse);
1921       }
1922 
1923       incrementProfileCounter(CondBOp);
1924       setCurrentProfileCount(getProfileCount(CondBOp->getRHS()));
1925 
1926       // Any temporaries created here are conditional.
1927       eval.begin(*this);
1928       EmitBranchToCounterBlock(CondBOp->getRHS(), BO_LOr, TrueBlock, FalseBlock,
1929                                RHSCount, LH);
1930 
1931       eval.end(*this);
1932       MCDCLogOpStack.pop_back();
1933       return;
1934     }
1935   }
1936 
1937   if (const UnaryOperator *CondUOp = dyn_cast<UnaryOperator>(Cond)) {
1938     // br(!x, t, f) -> br(x, f, t)
1939     // Avoid doing this optimization when instrumenting a condition for MC/DC.
1940     // LNot is taken as part of the condition for simplicity, and changing its
1941     // sense negatively impacts test vector tracking.
1942     bool MCDCCondition = CGM.getCodeGenOpts().hasProfileClangInstr() &&
1943                          CGM.getCodeGenOpts().MCDCCoverage &&
1944                          isInstrumentedCondition(Cond);
1945     if (CondUOp->getOpcode() == UO_LNot && !MCDCCondition) {
1946       // Negate the count.
1947       uint64_t FalseCount = getCurrentProfileCount() - TrueCount;
1948       // The values of the enum are chosen to make this negation possible.
1949       LH = static_cast<Stmt::Likelihood>(-LH);
1950       // Negate the condition and swap the destination blocks.
1951       return EmitBranchOnBoolExpr(CondUOp->getSubExpr(), FalseBlock, TrueBlock,
1952                                   FalseCount, LH);
1953     }
1954   }
1955 
1956   if (const ConditionalOperator *CondOp = dyn_cast<ConditionalOperator>(Cond)) {
1957     // br(c ? x : y, t, f) -> br(c, br(x, t, f), br(y, t, f))
1958     llvm::BasicBlock *LHSBlock = createBasicBlock("cond.true");
1959     llvm::BasicBlock *RHSBlock = createBasicBlock("cond.false");
1960 
1961     // The ConditionalOperator itself has no likelihood information for its
1962     // true and false branches. This matches the behavior of __builtin_expect.
1963     ConditionalEvaluation cond(*this);
1964     EmitBranchOnBoolExpr(CondOp->getCond(), LHSBlock, RHSBlock,
1965                          getProfileCount(CondOp), Stmt::LH_None);
1966 
1967     // When computing PGO branch weights, we only know the overall count for
1968     // the true block. This code is essentially doing tail duplication of the
1969     // naive code-gen, introducing new edges for which counts are not
1970     // available. Divide the counts proportionally between the LHS and RHS of
1971     // the conditional operator.
1972     uint64_t LHSScaledTrueCount = 0;
1973     if (TrueCount) {
1974       double LHSRatio =
1975           getProfileCount(CondOp) / (double)getCurrentProfileCount();
1976       LHSScaledTrueCount = TrueCount * LHSRatio;
1977     }
1978 
1979     cond.begin(*this);
1980     EmitBlock(LHSBlock);
1981     incrementProfileCounter(CondOp);
1982     {
1983       ApplyDebugLocation DL(*this, Cond);
1984       EmitBranchOnBoolExpr(CondOp->getLHS(), TrueBlock, FalseBlock,
1985                            LHSScaledTrueCount, LH, CondOp);
1986     }
1987     cond.end(*this);
1988 
1989     cond.begin(*this);
1990     EmitBlock(RHSBlock);
1991     EmitBranchOnBoolExpr(CondOp->getRHS(), TrueBlock, FalseBlock,
1992                          TrueCount - LHSScaledTrueCount, LH, CondOp);
1993     cond.end(*this);
1994 
1995     return;
1996   }
1997 
1998   if (const CXXThrowExpr *Throw = dyn_cast<CXXThrowExpr>(Cond)) {
1999     // Conditional operator handling can give us a throw expression as a
2000     // condition for a case like:
2001     //   br(c ? throw x : y, t, f) -> br(c, br(throw x, t, f), br(y, t, f)
2002     // Fold this to:
2003     //   br(c, throw x, br(y, t, f))
2004     EmitCXXThrowExpr(Throw, /*KeepInsertionPoint*/false);
2005     return;
2006   }
2007 
2008   // Emit the code with the fully general case.
2009   llvm::Value *CondV;
2010   {
2011     ApplyDebugLocation DL(*this, Cond);
2012     CondV = EvaluateExprAsBool(Cond);
2013   }
2014 
2015   // If not at the top of the logical operator nest, update MCDC temp with the
2016   // boolean result of the evaluated condition.
2017   if (!MCDCLogOpStack.empty()) {
2018     const Expr *MCDCBaseExpr = Cond;
2019     // When a nested ConditionalOperator (ternary) is encountered in a boolean
2020     // expression, MC/DC tracks the result of the ternary, and this is tied to
2021     // the ConditionalOperator expression and not the ternary's LHS or RHS. If
2022     // this is the case, the ConditionalOperator expression is passed through
2023     // the ConditionalOp parameter and then used as the MCDC base expression.
2024     if (ConditionalOp)
2025       MCDCBaseExpr = ConditionalOp;
2026 
2027     maybeUpdateMCDCCondBitmap(MCDCBaseExpr, CondV);
2028   }
2029 
2030   llvm::MDNode *Weights = nullptr;
2031   llvm::MDNode *Unpredictable = nullptr;
2032 
2033   // If the branch has a condition wrapped by __builtin_unpredictable,
2034   // create metadata that specifies that the branch is unpredictable.
2035   // Don't bother if not optimizing because that metadata would not be used.
2036   auto *Call = dyn_cast<CallExpr>(Cond->IgnoreImpCasts());
2037   if (Call && CGM.getCodeGenOpts().OptimizationLevel != 0) {
2038     auto *FD = dyn_cast_or_null<FunctionDecl>(Call->getCalleeDecl());
2039     if (FD && FD->getBuiltinID() == Builtin::BI__builtin_unpredictable) {
2040       llvm::MDBuilder MDHelper(getLLVMContext());
2041       Unpredictable = MDHelper.createUnpredictable();
2042     }
2043   }
2044 
2045   // If there is a Likelihood knowledge for the cond, lower it.
2046   // Note that if not optimizing this won't emit anything.
2047   llvm::Value *NewCondV = emitCondLikelihoodViaExpectIntrinsic(CondV, LH);
2048   if (CondV != NewCondV)
2049     CondV = NewCondV;
2050   else {
2051     // Otherwise, lower profile counts. Note that we do this even at -O0.
2052     uint64_t CurrentCount = std::max(getCurrentProfileCount(), TrueCount);
2053     Weights = createProfileWeights(TrueCount, CurrentCount - TrueCount);
2054   }
2055 
2056   Builder.CreateCondBr(CondV, TrueBlock, FalseBlock, Weights, Unpredictable);
2057 }
2058 
2059 /// ErrorUnsupported - Print out an error that codegen doesn't support the
2060 /// specified stmt yet.
2061 void CodeGenFunction::ErrorUnsupported(const Stmt *S, const char *Type) {
2062   CGM.ErrorUnsupported(S, Type);
2063 }
2064 
2065 /// emitNonZeroVLAInit - Emit the "zero" initialization of a
2066 /// variable-length array whose elements have a non-zero bit-pattern.
2067 ///
2068 /// \param baseType the inner-most element type of the array
2069 /// \param src - a char* pointing to the bit-pattern for a single
2070 /// base element of the array
2071 /// \param sizeInChars - the total size of the VLA, in chars
2072 static void emitNonZeroVLAInit(CodeGenFunction &CGF, QualType baseType,
2073                                Address dest, Address src,
2074                                llvm::Value *sizeInChars) {
2075   CGBuilderTy &Builder = CGF.Builder;
2076 
2077   CharUnits baseSize = CGF.getContext().getTypeSizeInChars(baseType);
2078   llvm::Value *baseSizeInChars
2079     = llvm::ConstantInt::get(CGF.IntPtrTy, baseSize.getQuantity());
2080 
2081   Address begin = dest.withElementType(CGF.Int8Ty);
2082   llvm::Value *end = Builder.CreateInBoundsGEP(begin.getElementType(),
2083                                                begin.emitRawPointer(CGF),
2084                                                sizeInChars, "vla.end");
2085 
2086   llvm::BasicBlock *originBB = CGF.Builder.GetInsertBlock();
2087   llvm::BasicBlock *loopBB = CGF.createBasicBlock("vla-init.loop");
2088   llvm::BasicBlock *contBB = CGF.createBasicBlock("vla-init.cont");
2089 
2090   // Make a loop over the VLA.  C99 guarantees that the VLA element
2091   // count must be nonzero.
2092   CGF.EmitBlock(loopBB);
2093 
2094   llvm::PHINode *cur = Builder.CreatePHI(begin.getType(), 2, "vla.cur");
2095   cur->addIncoming(begin.emitRawPointer(CGF), originBB);
2096 
2097   CharUnits curAlign =
2098     dest.getAlignment().alignmentOfArrayElement(baseSize);
2099 
2100   // memcpy the individual element bit-pattern.
2101   Builder.CreateMemCpy(Address(cur, CGF.Int8Ty, curAlign), src, baseSizeInChars,
2102                        /*volatile*/ false);
2103 
2104   // Go to the next element.
2105   llvm::Value *next =
2106     Builder.CreateInBoundsGEP(CGF.Int8Ty, cur, baseSizeInChars, "vla.next");
2107 
2108   // Leave if that's the end of the VLA.
2109   llvm::Value *done = Builder.CreateICmpEQ(next, end, "vla-init.isdone");
2110   Builder.CreateCondBr(done, contBB, loopBB);
2111   cur->addIncoming(next, loopBB);
2112 
2113   CGF.EmitBlock(contBB);
2114 }
2115 
2116 void
2117 CodeGenFunction::EmitNullInitialization(Address DestPtr, QualType Ty) {
2118   // Ignore empty classes in C++.
2119   if (getLangOpts().CPlusPlus) {
2120     if (const RecordType *RT = Ty->getAs<RecordType>()) {
2121       if (cast<CXXRecordDecl>(RT->getDecl())->isEmpty())
2122         return;
2123     }
2124   }
2125 
2126   if (DestPtr.getElementType() != Int8Ty)
2127     DestPtr = DestPtr.withElementType(Int8Ty);
2128 
2129   // Get size and alignment info for this aggregate.
2130   CharUnits size = getContext().getTypeSizeInChars(Ty);
2131 
2132   llvm::Value *SizeVal;
2133   const VariableArrayType *vla;
2134 
2135   // Don't bother emitting a zero-byte memset.
2136   if (size.isZero()) {
2137     // But note that getTypeInfo returns 0 for a VLA.
2138     if (const VariableArrayType *vlaType =
2139           dyn_cast_or_null<VariableArrayType>(
2140                                           getContext().getAsArrayType(Ty))) {
2141       auto VlaSize = getVLASize(vlaType);
2142       SizeVal = VlaSize.NumElts;
2143       CharUnits eltSize = getContext().getTypeSizeInChars(VlaSize.Type);
2144       if (!eltSize.isOne())
2145         SizeVal = Builder.CreateNUWMul(SizeVal, CGM.getSize(eltSize));
2146       vla = vlaType;
2147     } else {
2148       return;
2149     }
2150   } else {
2151     SizeVal = CGM.getSize(size);
2152     vla = nullptr;
2153   }
2154 
2155   // If the type contains a pointer to data member we can't memset it to zero.
2156   // Instead, create a null constant and copy it to the destination.
2157   // TODO: there are other patterns besides zero that we can usefully memset,
2158   // like -1, which happens to be the pattern used by member-pointers.
2159   if (!CGM.getTypes().isZeroInitializable(Ty)) {
2160     // For a VLA, emit a single element, then splat that over the VLA.
2161     if (vla) Ty = getContext().getBaseElementType(vla);
2162 
2163     llvm::Constant *NullConstant = CGM.EmitNullConstant(Ty);
2164 
2165     llvm::GlobalVariable *NullVariable =
2166       new llvm::GlobalVariable(CGM.getModule(), NullConstant->getType(),
2167                                /*isConstant=*/true,
2168                                llvm::GlobalVariable::PrivateLinkage,
2169                                NullConstant, Twine());
2170     CharUnits NullAlign = DestPtr.getAlignment();
2171     NullVariable->setAlignment(NullAlign.getAsAlign());
2172     Address SrcPtr(NullVariable, Builder.getInt8Ty(), NullAlign);
2173 
2174     if (vla) return emitNonZeroVLAInit(*this, Ty, DestPtr, SrcPtr, SizeVal);
2175 
2176     // Get and call the appropriate llvm.memcpy overload.
2177     Builder.CreateMemCpy(DestPtr, SrcPtr, SizeVal, false);
2178     return;
2179   }
2180 
2181   // Otherwise, just memset the whole thing to zero.  This is legal
2182   // because in LLVM, all default initializers (other than the ones we just
2183   // handled above) are guaranteed to have a bit pattern of all zeros.
2184   Builder.CreateMemSet(DestPtr, Builder.getInt8(0), SizeVal, false);
2185 }
2186 
2187 llvm::BlockAddress *CodeGenFunction::GetAddrOfLabel(const LabelDecl *L) {
2188   // Make sure that there is a block for the indirect goto.
2189   if (!IndirectBranch)
2190     GetIndirectGotoBlock();
2191 
2192   llvm::BasicBlock *BB = getJumpDestForLabel(L).getBlock();
2193 
2194   // Make sure the indirect branch includes all of the address-taken blocks.
2195   IndirectBranch->addDestination(BB);
2196   return llvm::BlockAddress::get(CurFn, BB);
2197 }
2198 
2199 llvm::BasicBlock *CodeGenFunction::GetIndirectGotoBlock() {
2200   // If we already made the indirect branch for indirect goto, return its block.
2201   if (IndirectBranch) return IndirectBranch->getParent();
2202 
2203   CGBuilderTy TmpBuilder(*this, createBasicBlock("indirectgoto"));
2204 
2205   // Create the PHI node that indirect gotos will add entries to.
2206   llvm::Value *DestVal = TmpBuilder.CreatePHI(Int8PtrTy, 0,
2207                                               "indirect.goto.dest");
2208 
2209   // Create the indirect branch instruction.
2210   IndirectBranch = TmpBuilder.CreateIndirectBr(DestVal);
2211   return IndirectBranch->getParent();
2212 }
2213 
2214 /// Computes the length of an array in elements, as well as the base
2215 /// element type and a properly-typed first element pointer.
2216 llvm::Value *CodeGenFunction::emitArrayLength(const ArrayType *origArrayType,
2217                                               QualType &baseType,
2218                                               Address &addr) {
2219   const ArrayType *arrayType = origArrayType;
2220 
2221   // If it's a VLA, we have to load the stored size.  Note that
2222   // this is the size of the VLA in bytes, not its size in elements.
2223   llvm::Value *numVLAElements = nullptr;
2224   if (isa<VariableArrayType>(arrayType)) {
2225     numVLAElements = getVLASize(cast<VariableArrayType>(arrayType)).NumElts;
2226 
2227     // Walk into all VLAs.  This doesn't require changes to addr,
2228     // which has type T* where T is the first non-VLA element type.
2229     do {
2230       QualType elementType = arrayType->getElementType();
2231       arrayType = getContext().getAsArrayType(elementType);
2232 
2233       // If we only have VLA components, 'addr' requires no adjustment.
2234       if (!arrayType) {
2235         baseType = elementType;
2236         return numVLAElements;
2237       }
2238     } while (isa<VariableArrayType>(arrayType));
2239 
2240     // We get out here only if we find a constant array type
2241     // inside the VLA.
2242   }
2243 
2244   // We have some number of constant-length arrays, so addr should
2245   // have LLVM type [M x [N x [...]]]*.  Build a GEP that walks
2246   // down to the first element of addr.
2247   SmallVector<llvm::Value*, 8> gepIndices;
2248 
2249   // GEP down to the array type.
2250   llvm::ConstantInt *zero = Builder.getInt32(0);
2251   gepIndices.push_back(zero);
2252 
2253   uint64_t countFromCLAs = 1;
2254   QualType eltType;
2255 
2256   llvm::ArrayType *llvmArrayType =
2257     dyn_cast<llvm::ArrayType>(addr.getElementType());
2258   while (llvmArrayType) {
2259     assert(isa<ConstantArrayType>(arrayType));
2260     assert(cast<ConstantArrayType>(arrayType)->getZExtSize() ==
2261            llvmArrayType->getNumElements());
2262 
2263     gepIndices.push_back(zero);
2264     countFromCLAs *= llvmArrayType->getNumElements();
2265     eltType = arrayType->getElementType();
2266 
2267     llvmArrayType =
2268       dyn_cast<llvm::ArrayType>(llvmArrayType->getElementType());
2269     arrayType = getContext().getAsArrayType(arrayType->getElementType());
2270     assert((!llvmArrayType || arrayType) &&
2271            "LLVM and Clang types are out-of-synch");
2272   }
2273 
2274   if (arrayType) {
2275     // From this point onwards, the Clang array type has been emitted
2276     // as some other type (probably a packed struct). Compute the array
2277     // size, and just emit the 'begin' expression as a bitcast.
2278     while (arrayType) {
2279       countFromCLAs *= cast<ConstantArrayType>(arrayType)->getZExtSize();
2280       eltType = arrayType->getElementType();
2281       arrayType = getContext().getAsArrayType(eltType);
2282     }
2283 
2284     llvm::Type *baseType = ConvertType(eltType);
2285     addr = addr.withElementType(baseType);
2286   } else {
2287     // Create the actual GEP.
2288     addr = Address(Builder.CreateInBoundsGEP(addr.getElementType(),
2289                                              addr.emitRawPointer(*this),
2290                                              gepIndices, "array.begin"),
2291                    ConvertTypeForMem(eltType), addr.getAlignment());
2292   }
2293 
2294   baseType = eltType;
2295 
2296   llvm::Value *numElements
2297     = llvm::ConstantInt::get(SizeTy, countFromCLAs);
2298 
2299   // If we had any VLA dimensions, factor them in.
2300   if (numVLAElements)
2301     numElements = Builder.CreateNUWMul(numVLAElements, numElements);
2302 
2303   return numElements;
2304 }
2305 
2306 CodeGenFunction::VlaSizePair CodeGenFunction::getVLASize(QualType type) {
2307   const VariableArrayType *vla = getContext().getAsVariableArrayType(type);
2308   assert(vla && "type was not a variable array type!");
2309   return getVLASize(vla);
2310 }
2311 
2312 CodeGenFunction::VlaSizePair
2313 CodeGenFunction::getVLASize(const VariableArrayType *type) {
2314   // The number of elements so far; always size_t.
2315   llvm::Value *numElements = nullptr;
2316 
2317   QualType elementType;
2318   do {
2319     elementType = type->getElementType();
2320     llvm::Value *vlaSize = VLASizeMap[type->getSizeExpr()];
2321     assert(vlaSize && "no size for VLA!");
2322     assert(vlaSize->getType() == SizeTy);
2323 
2324     if (!numElements) {
2325       numElements = vlaSize;
2326     } else {
2327       // It's undefined behavior if this wraps around, so mark it that way.
2328       // FIXME: Teach -fsanitize=undefined to trap this.
2329       numElements = Builder.CreateNUWMul(numElements, vlaSize);
2330     }
2331   } while ((type = getContext().getAsVariableArrayType(elementType)));
2332 
2333   return { numElements, elementType };
2334 }
2335 
2336 CodeGenFunction::VlaSizePair
2337 CodeGenFunction::getVLAElements1D(QualType type) {
2338   const VariableArrayType *vla = getContext().getAsVariableArrayType(type);
2339   assert(vla && "type was not a variable array type!");
2340   return getVLAElements1D(vla);
2341 }
2342 
2343 CodeGenFunction::VlaSizePair
2344 CodeGenFunction::getVLAElements1D(const VariableArrayType *Vla) {
2345   llvm::Value *VlaSize = VLASizeMap[Vla->getSizeExpr()];
2346   assert(VlaSize && "no size for VLA!");
2347   assert(VlaSize->getType() == SizeTy);
2348   return { VlaSize, Vla->getElementType() };
2349 }
2350 
2351 void CodeGenFunction::EmitVariablyModifiedType(QualType type) {
2352   assert(type->isVariablyModifiedType() &&
2353          "Must pass variably modified type to EmitVLASizes!");
2354 
2355   EnsureInsertPoint();
2356 
2357   // We're going to walk down into the type and look for VLA
2358   // expressions.
2359   do {
2360     assert(type->isVariablyModifiedType());
2361 
2362     const Type *ty = type.getTypePtr();
2363     switch (ty->getTypeClass()) {
2364 
2365 #define TYPE(Class, Base)
2366 #define ABSTRACT_TYPE(Class, Base)
2367 #define NON_CANONICAL_TYPE(Class, Base)
2368 #define DEPENDENT_TYPE(Class, Base) case Type::Class:
2369 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base)
2370 #include "clang/AST/TypeNodes.inc"
2371       llvm_unreachable("unexpected dependent type!");
2372 
2373     // These types are never variably-modified.
2374     case Type::Builtin:
2375     case Type::Complex:
2376     case Type::Vector:
2377     case Type::ExtVector:
2378     case Type::ConstantMatrix:
2379     case Type::Record:
2380     case Type::Enum:
2381     case Type::Using:
2382     case Type::TemplateSpecialization:
2383     case Type::ObjCTypeParam:
2384     case Type::ObjCObject:
2385     case Type::ObjCInterface:
2386     case Type::ObjCObjectPointer:
2387     case Type::BitInt:
2388       llvm_unreachable("type class is never variably-modified!");
2389 
2390     case Type::Elaborated:
2391       type = cast<ElaboratedType>(ty)->getNamedType();
2392       break;
2393 
2394     case Type::Adjusted:
2395       type = cast<AdjustedType>(ty)->getAdjustedType();
2396       break;
2397 
2398     case Type::Decayed:
2399       type = cast<DecayedType>(ty)->getPointeeType();
2400       break;
2401 
2402     case Type::Pointer:
2403       type = cast<PointerType>(ty)->getPointeeType();
2404       break;
2405 
2406     case Type::BlockPointer:
2407       type = cast<BlockPointerType>(ty)->getPointeeType();
2408       break;
2409 
2410     case Type::LValueReference:
2411     case Type::RValueReference:
2412       type = cast<ReferenceType>(ty)->getPointeeType();
2413       break;
2414 
2415     case Type::MemberPointer:
2416       type = cast<MemberPointerType>(ty)->getPointeeType();
2417       break;
2418 
2419     case Type::ArrayParameter:
2420     case Type::ConstantArray:
2421     case Type::IncompleteArray:
2422       // Losing element qualification here is fine.
2423       type = cast<ArrayType>(ty)->getElementType();
2424       break;
2425 
2426     case Type::VariableArray: {
2427       // Losing element qualification here is fine.
2428       const VariableArrayType *vat = cast<VariableArrayType>(ty);
2429 
2430       // Unknown size indication requires no size computation.
2431       // Otherwise, evaluate and record it.
2432       if (const Expr *sizeExpr = vat->getSizeExpr()) {
2433         // It's possible that we might have emitted this already,
2434         // e.g. with a typedef and a pointer to it.
2435         llvm::Value *&entry = VLASizeMap[sizeExpr];
2436         if (!entry) {
2437           llvm::Value *size = EmitScalarExpr(sizeExpr);
2438 
2439           // C11 6.7.6.2p5:
2440           //   If the size is an expression that is not an integer constant
2441           //   expression [...] each time it is evaluated it shall have a value
2442           //   greater than zero.
2443           if (SanOpts.has(SanitizerKind::VLABound)) {
2444             SanitizerScope SanScope(this);
2445             llvm::Value *Zero = llvm::Constant::getNullValue(size->getType());
2446             clang::QualType SEType = sizeExpr->getType();
2447             llvm::Value *CheckCondition =
2448                 SEType->isSignedIntegerType()
2449                     ? Builder.CreateICmpSGT(size, Zero)
2450                     : Builder.CreateICmpUGT(size, Zero);
2451             llvm::Constant *StaticArgs[] = {
2452                 EmitCheckSourceLocation(sizeExpr->getBeginLoc()),
2453                 EmitCheckTypeDescriptor(SEType)};
2454             EmitCheck(std::make_pair(CheckCondition, SanitizerKind::VLABound),
2455                       SanitizerHandler::VLABoundNotPositive, StaticArgs, size);
2456           }
2457 
2458           // Always zexting here would be wrong if it weren't
2459           // undefined behavior to have a negative bound.
2460           // FIXME: What about when size's type is larger than size_t?
2461           entry = Builder.CreateIntCast(size, SizeTy, /*signed*/ false);
2462         }
2463       }
2464       type = vat->getElementType();
2465       break;
2466     }
2467 
2468     case Type::FunctionProto:
2469     case Type::FunctionNoProto:
2470       type = cast<FunctionType>(ty)->getReturnType();
2471       break;
2472 
2473     case Type::Paren:
2474     case Type::TypeOf:
2475     case Type::UnaryTransform:
2476     case Type::Attributed:
2477     case Type::BTFTagAttributed:
2478     case Type::SubstTemplateTypeParm:
2479     case Type::MacroQualified:
2480     case Type::CountAttributed:
2481       // Keep walking after single level desugaring.
2482       type = type.getSingleStepDesugaredType(getContext());
2483       break;
2484 
2485     case Type::Typedef:
2486     case Type::Decltype:
2487     case Type::Auto:
2488     case Type::DeducedTemplateSpecialization:
2489     case Type::PackIndexing:
2490       // Stop walking: nothing to do.
2491       return;
2492 
2493     case Type::TypeOfExpr:
2494       // Stop walking: emit typeof expression.
2495       EmitIgnoredExpr(cast<TypeOfExprType>(ty)->getUnderlyingExpr());
2496       return;
2497 
2498     case Type::Atomic:
2499       type = cast<AtomicType>(ty)->getValueType();
2500       break;
2501 
2502     case Type::Pipe:
2503       type = cast<PipeType>(ty)->getElementType();
2504       break;
2505     }
2506   } while (type->isVariablyModifiedType());
2507 }
2508 
2509 Address CodeGenFunction::EmitVAListRef(const Expr* E) {
2510   if (getContext().getBuiltinVaListType()->isArrayType())
2511     return EmitPointerWithAlignment(E);
2512   return EmitLValue(E).getAddress();
2513 }
2514 
2515 Address CodeGenFunction::EmitMSVAListRef(const Expr *E) {
2516   return EmitLValue(E).getAddress();
2517 }
2518 
2519 void CodeGenFunction::EmitDeclRefExprDbgValue(const DeclRefExpr *E,
2520                                               const APValue &Init) {
2521   assert(Init.hasValue() && "Invalid DeclRefExpr initializer!");
2522   if (CGDebugInfo *Dbg = getDebugInfo())
2523     if (CGM.getCodeGenOpts().hasReducedDebugInfo())
2524       Dbg->EmitGlobalVariable(E->getDecl(), Init);
2525 }
2526 
2527 CodeGenFunction::PeepholeProtection
2528 CodeGenFunction::protectFromPeepholes(RValue rvalue) {
2529   // At the moment, the only aggressive peephole we do in IR gen
2530   // is trunc(zext) folding, but if we add more, we can easily
2531   // extend this protection.
2532 
2533   if (!rvalue.isScalar()) return PeepholeProtection();
2534   llvm::Value *value = rvalue.getScalarVal();
2535   if (!isa<llvm::ZExtInst>(value)) return PeepholeProtection();
2536 
2537   // Just make an extra bitcast.
2538   assert(HaveInsertPoint());
2539   llvm::Instruction *inst = new llvm::BitCastInst(value, value->getType(), "",
2540                                                   Builder.GetInsertBlock());
2541 
2542   PeepholeProtection protection;
2543   protection.Inst = inst;
2544   return protection;
2545 }
2546 
2547 void CodeGenFunction::unprotectFromPeepholes(PeepholeProtection protection) {
2548   if (!protection.Inst) return;
2549 
2550   // In theory, we could try to duplicate the peepholes now, but whatever.
2551   protection.Inst->eraseFromParent();
2552 }
2553 
2554 void CodeGenFunction::emitAlignmentAssumption(llvm::Value *PtrValue,
2555                                               QualType Ty, SourceLocation Loc,
2556                                               SourceLocation AssumptionLoc,
2557                                               llvm::Value *Alignment,
2558                                               llvm::Value *OffsetValue) {
2559   if (Alignment->getType() != IntPtrTy)
2560     Alignment =
2561         Builder.CreateIntCast(Alignment, IntPtrTy, false, "casted.align");
2562   if (OffsetValue && OffsetValue->getType() != IntPtrTy)
2563     OffsetValue =
2564         Builder.CreateIntCast(OffsetValue, IntPtrTy, true, "casted.offset");
2565   llvm::Value *TheCheck = nullptr;
2566   if (SanOpts.has(SanitizerKind::Alignment)) {
2567     llvm::Value *PtrIntValue =
2568         Builder.CreatePtrToInt(PtrValue, IntPtrTy, "ptrint");
2569 
2570     if (OffsetValue) {
2571       bool IsOffsetZero = false;
2572       if (const auto *CI = dyn_cast<llvm::ConstantInt>(OffsetValue))
2573         IsOffsetZero = CI->isZero();
2574 
2575       if (!IsOffsetZero)
2576         PtrIntValue = Builder.CreateSub(PtrIntValue, OffsetValue, "offsetptr");
2577     }
2578 
2579     llvm::Value *Zero = llvm::ConstantInt::get(IntPtrTy, 0);
2580     llvm::Value *Mask =
2581         Builder.CreateSub(Alignment, llvm::ConstantInt::get(IntPtrTy, 1));
2582     llvm::Value *MaskedPtr = Builder.CreateAnd(PtrIntValue, Mask, "maskedptr");
2583     TheCheck = Builder.CreateICmpEQ(MaskedPtr, Zero, "maskcond");
2584   }
2585   llvm::Instruction *Assumption = Builder.CreateAlignmentAssumption(
2586       CGM.getDataLayout(), PtrValue, Alignment, OffsetValue);
2587 
2588   if (!SanOpts.has(SanitizerKind::Alignment))
2589     return;
2590   emitAlignmentAssumptionCheck(PtrValue, Ty, Loc, AssumptionLoc, Alignment,
2591                                OffsetValue, TheCheck, Assumption);
2592 }
2593 
2594 void CodeGenFunction::emitAlignmentAssumption(llvm::Value *PtrValue,
2595                                               const Expr *E,
2596                                               SourceLocation AssumptionLoc,
2597                                               llvm::Value *Alignment,
2598                                               llvm::Value *OffsetValue) {
2599   QualType Ty = E->getType();
2600   SourceLocation Loc = E->getExprLoc();
2601 
2602   emitAlignmentAssumption(PtrValue, Ty, Loc, AssumptionLoc, Alignment,
2603                           OffsetValue);
2604 }
2605 
2606 llvm::Value *CodeGenFunction::EmitAnnotationCall(llvm::Function *AnnotationFn,
2607                                                  llvm::Value *AnnotatedVal,
2608                                                  StringRef AnnotationStr,
2609                                                  SourceLocation Location,
2610                                                  const AnnotateAttr *Attr) {
2611   SmallVector<llvm::Value *, 5> Args = {
2612       AnnotatedVal,
2613       CGM.EmitAnnotationString(AnnotationStr),
2614       CGM.EmitAnnotationUnit(Location),
2615       CGM.EmitAnnotationLineNo(Location),
2616   };
2617   if (Attr)
2618     Args.push_back(CGM.EmitAnnotationArgs(Attr));
2619   return Builder.CreateCall(AnnotationFn, Args);
2620 }
2621 
2622 void CodeGenFunction::EmitVarAnnotations(const VarDecl *D, llvm::Value *V) {
2623   assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute");
2624   for (const auto *I : D->specific_attrs<AnnotateAttr>())
2625     EmitAnnotationCall(CGM.getIntrinsic(llvm::Intrinsic::var_annotation,
2626                                         {V->getType(), CGM.ConstGlobalsPtrTy}),
2627                        V, I->getAnnotation(), D->getLocation(), I);
2628 }
2629 
2630 Address CodeGenFunction::EmitFieldAnnotations(const FieldDecl *D,
2631                                               Address Addr) {
2632   assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute");
2633   llvm::Value *V = Addr.emitRawPointer(*this);
2634   llvm::Type *VTy = V->getType();
2635   auto *PTy = dyn_cast<llvm::PointerType>(VTy);
2636   unsigned AS = PTy ? PTy->getAddressSpace() : 0;
2637   llvm::PointerType *IntrinTy =
2638       llvm::PointerType::get(CGM.getLLVMContext(), AS);
2639   llvm::Function *F = CGM.getIntrinsic(llvm::Intrinsic::ptr_annotation,
2640                                        {IntrinTy, CGM.ConstGlobalsPtrTy});
2641 
2642   for (const auto *I : D->specific_attrs<AnnotateAttr>()) {
2643     // FIXME Always emit the cast inst so we can differentiate between
2644     // annotation on the first field of a struct and annotation on the struct
2645     // itself.
2646     if (VTy != IntrinTy)
2647       V = Builder.CreateBitCast(V, IntrinTy);
2648     V = EmitAnnotationCall(F, V, I->getAnnotation(), D->getLocation(), I);
2649     V = Builder.CreateBitCast(V, VTy);
2650   }
2651 
2652   return Address(V, Addr.getElementType(), Addr.getAlignment());
2653 }
2654 
2655 CodeGenFunction::CGCapturedStmtInfo::~CGCapturedStmtInfo() { }
2656 
2657 CodeGenFunction::SanitizerScope::SanitizerScope(CodeGenFunction *CGF)
2658     : CGF(CGF) {
2659   assert(!CGF->IsSanitizerScope);
2660   CGF->IsSanitizerScope = true;
2661 }
2662 
2663 CodeGenFunction::SanitizerScope::~SanitizerScope() {
2664   CGF->IsSanitizerScope = false;
2665 }
2666 
2667 void CodeGenFunction::InsertHelper(llvm::Instruction *I,
2668                                    const llvm::Twine &Name,
2669                                    llvm::BasicBlock::iterator InsertPt) const {
2670   LoopStack.InsertHelper(I);
2671   if (IsSanitizerScope)
2672     I->setNoSanitizeMetadata();
2673 }
2674 
2675 void CGBuilderInserter::InsertHelper(
2676     llvm::Instruction *I, const llvm::Twine &Name,
2677     llvm::BasicBlock::iterator InsertPt) const {
2678   llvm::IRBuilderDefaultInserter::InsertHelper(I, Name, InsertPt);
2679   if (CGF)
2680     CGF->InsertHelper(I, Name, InsertPt);
2681 }
2682 
2683 // Emits an error if we don't have a valid set of target features for the
2684 // called function.
2685 void CodeGenFunction::checkTargetFeatures(const CallExpr *E,
2686                                           const FunctionDecl *TargetDecl) {
2687   // SemaChecking cannot handle below x86 builtins because they have different
2688   // parameter ranges with different TargetAttribute of caller.
2689   if (CGM.getContext().getTargetInfo().getTriple().isX86()) {
2690     unsigned BuiltinID = TargetDecl->getBuiltinID();
2691     if (BuiltinID == X86::BI__builtin_ia32_cmpps ||
2692         BuiltinID == X86::BI__builtin_ia32_cmpss ||
2693         BuiltinID == X86::BI__builtin_ia32_cmppd ||
2694         BuiltinID == X86::BI__builtin_ia32_cmpsd) {
2695       const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(CurCodeDecl);
2696       llvm::StringMap<bool> TargetFetureMap;
2697       CGM.getContext().getFunctionFeatureMap(TargetFetureMap, FD);
2698       llvm::APSInt Result =
2699           *(E->getArg(2)->getIntegerConstantExpr(CGM.getContext()));
2700       if (Result.getSExtValue() > 7 && !TargetFetureMap.lookup("avx"))
2701         CGM.getDiags().Report(E->getBeginLoc(), diag::err_builtin_needs_feature)
2702             << TargetDecl->getDeclName() << "avx";
2703     }
2704   }
2705   return checkTargetFeatures(E->getBeginLoc(), TargetDecl);
2706 }
2707 
2708 // Emits an error if we don't have a valid set of target features for the
2709 // called function.
2710 void CodeGenFunction::checkTargetFeatures(SourceLocation Loc,
2711                                           const FunctionDecl *TargetDecl) {
2712   // Early exit if this is an indirect call.
2713   if (!TargetDecl)
2714     return;
2715 
2716   // Get the current enclosing function if it exists. If it doesn't
2717   // we can't check the target features anyhow.
2718   const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(CurCodeDecl);
2719   if (!FD)
2720     return;
2721 
2722   // Grab the required features for the call. For a builtin this is listed in
2723   // the td file with the default cpu, for an always_inline function this is any
2724   // listed cpu and any listed features.
2725   unsigned BuiltinID = TargetDecl->getBuiltinID();
2726   std::string MissingFeature;
2727   llvm::StringMap<bool> CallerFeatureMap;
2728   CGM.getContext().getFunctionFeatureMap(CallerFeatureMap, FD);
2729   // When compiling in HipStdPar mode we have to be conservative in rejecting
2730   // target specific features in the FE, and defer the possible error to the
2731   // AcceleratorCodeSelection pass, wherein iff an unsupported target builtin is
2732   // referenced by an accelerator executable function, we emit an error.
2733   bool IsHipStdPar = getLangOpts().HIPStdPar && getLangOpts().CUDAIsDevice;
2734   if (BuiltinID) {
2735     StringRef FeatureList(CGM.getContext().BuiltinInfo.getRequiredFeatures(BuiltinID));
2736     if (!Builtin::evaluateRequiredTargetFeatures(
2737         FeatureList, CallerFeatureMap) && !IsHipStdPar) {
2738       CGM.getDiags().Report(Loc, diag::err_builtin_needs_feature)
2739           << TargetDecl->getDeclName()
2740           << FeatureList;
2741     }
2742   } else if (!TargetDecl->isMultiVersion() &&
2743              TargetDecl->hasAttr<TargetAttr>()) {
2744     // Get the required features for the callee.
2745 
2746     const TargetAttr *TD = TargetDecl->getAttr<TargetAttr>();
2747     ParsedTargetAttr ParsedAttr =
2748         CGM.getContext().filterFunctionTargetAttrs(TD);
2749 
2750     SmallVector<StringRef, 1> ReqFeatures;
2751     llvm::StringMap<bool> CalleeFeatureMap;
2752     CGM.getContext().getFunctionFeatureMap(CalleeFeatureMap, TargetDecl);
2753 
2754     for (const auto &F : ParsedAttr.Features) {
2755       if (F[0] == '+' && CalleeFeatureMap.lookup(F.substr(1)))
2756         ReqFeatures.push_back(StringRef(F).substr(1));
2757     }
2758 
2759     for (const auto &F : CalleeFeatureMap) {
2760       // Only positive features are "required".
2761       if (F.getValue())
2762         ReqFeatures.push_back(F.getKey());
2763     }
2764     if (!llvm::all_of(ReqFeatures, [&](StringRef Feature) {
2765       if (!CallerFeatureMap.lookup(Feature)) {
2766         MissingFeature = Feature.str();
2767         return false;
2768       }
2769       return true;
2770     }) && !IsHipStdPar)
2771       CGM.getDiags().Report(Loc, diag::err_function_needs_feature)
2772           << FD->getDeclName() << TargetDecl->getDeclName() << MissingFeature;
2773   } else if (!FD->isMultiVersion() && FD->hasAttr<TargetAttr>()) {
2774     llvm::StringMap<bool> CalleeFeatureMap;
2775     CGM.getContext().getFunctionFeatureMap(CalleeFeatureMap, TargetDecl);
2776 
2777     for (const auto &F : CalleeFeatureMap) {
2778       if (F.getValue() && (!CallerFeatureMap.lookup(F.getKey()) ||
2779                            !CallerFeatureMap.find(F.getKey())->getValue()) &&
2780           !IsHipStdPar)
2781         CGM.getDiags().Report(Loc, diag::err_function_needs_feature)
2782             << FD->getDeclName() << TargetDecl->getDeclName() << F.getKey();
2783     }
2784   }
2785 }
2786 
2787 void CodeGenFunction::EmitSanitizerStatReport(llvm::SanitizerStatKind SSK) {
2788   if (!CGM.getCodeGenOpts().SanitizeStats)
2789     return;
2790 
2791   llvm::IRBuilder<> IRB(Builder.GetInsertBlock(), Builder.GetInsertPoint());
2792   IRB.SetCurrentDebugLocation(Builder.getCurrentDebugLocation());
2793   CGM.getSanStats().create(IRB, SSK);
2794 }
2795 
2796 void CodeGenFunction::EmitKCFIOperandBundle(
2797     const CGCallee &Callee, SmallVectorImpl<llvm::OperandBundleDef> &Bundles) {
2798   const FunctionProtoType *FP =
2799       Callee.getAbstractInfo().getCalleeFunctionProtoType();
2800   if (FP)
2801     Bundles.emplace_back("kcfi", CGM.CreateKCFITypeId(FP->desugar()));
2802 }
2803 
2804 llvm::Value *CodeGenFunction::FormAArch64ResolverCondition(
2805     const MultiVersionResolverOption &RO) {
2806   llvm::SmallVector<StringRef, 8> CondFeatures;
2807   for (const StringRef &Feature : RO.Conditions.Features)
2808     CondFeatures.push_back(Feature);
2809   if (!CondFeatures.empty()) {
2810     return EmitAArch64CpuSupports(CondFeatures);
2811   }
2812   return nullptr;
2813 }
2814 
2815 llvm::Value *CodeGenFunction::FormX86ResolverCondition(
2816     const MultiVersionResolverOption &RO) {
2817   llvm::Value *Condition = nullptr;
2818 
2819   if (!RO.Conditions.Architecture.empty()) {
2820     StringRef Arch = RO.Conditions.Architecture;
2821     // If arch= specifies an x86-64 micro-architecture level, test the feature
2822     // with __builtin_cpu_supports, otherwise use __builtin_cpu_is.
2823     if (Arch.starts_with("x86-64"))
2824       Condition = EmitX86CpuSupports({Arch});
2825     else
2826       Condition = EmitX86CpuIs(Arch);
2827   }
2828 
2829   if (!RO.Conditions.Features.empty()) {
2830     llvm::Value *FeatureCond = EmitX86CpuSupports(RO.Conditions.Features);
2831     Condition =
2832         Condition ? Builder.CreateAnd(Condition, FeatureCond) : FeatureCond;
2833   }
2834   return Condition;
2835 }
2836 
2837 static void CreateMultiVersionResolverReturn(CodeGenModule &CGM,
2838                                              llvm::Function *Resolver,
2839                                              CGBuilderTy &Builder,
2840                                              llvm::Function *FuncToReturn,
2841                                              bool SupportsIFunc) {
2842   if (SupportsIFunc) {
2843     Builder.CreateRet(FuncToReturn);
2844     return;
2845   }
2846 
2847   llvm::SmallVector<llvm::Value *, 10> Args(
2848       llvm::make_pointer_range(Resolver->args()));
2849 
2850   llvm::CallInst *Result = Builder.CreateCall(FuncToReturn, Args);
2851   Result->setTailCallKind(llvm::CallInst::TCK_MustTail);
2852 
2853   if (Resolver->getReturnType()->isVoidTy())
2854     Builder.CreateRetVoid();
2855   else
2856     Builder.CreateRet(Result);
2857 }
2858 
2859 void CodeGenFunction::EmitMultiVersionResolver(
2860     llvm::Function *Resolver, ArrayRef<MultiVersionResolverOption> Options) {
2861 
2862   llvm::Triple::ArchType ArchType =
2863       getContext().getTargetInfo().getTriple().getArch();
2864 
2865   switch (ArchType) {
2866   case llvm::Triple::x86:
2867   case llvm::Triple::x86_64:
2868     EmitX86MultiVersionResolver(Resolver, Options);
2869     return;
2870   case llvm::Triple::aarch64:
2871     EmitAArch64MultiVersionResolver(Resolver, Options);
2872     return;
2873 
2874   default:
2875     assert(false && "Only implemented for x86 and AArch64 targets");
2876   }
2877 }
2878 
2879 void CodeGenFunction::EmitAArch64MultiVersionResolver(
2880     llvm::Function *Resolver, ArrayRef<MultiVersionResolverOption> Options) {
2881   assert(!Options.empty() && "No multiversion resolver options found");
2882   assert(Options.back().Conditions.Features.size() == 0 &&
2883          "Default case must be last");
2884   bool SupportsIFunc = getContext().getTargetInfo().supportsIFunc();
2885   assert(SupportsIFunc &&
2886          "Multiversion resolver requires target IFUNC support");
2887   bool AArch64CpuInitialized = false;
2888   llvm::BasicBlock *CurBlock = createBasicBlock("resolver_entry", Resolver);
2889 
2890   for (const MultiVersionResolverOption &RO : Options) {
2891     Builder.SetInsertPoint(CurBlock);
2892     llvm::Value *Condition = FormAArch64ResolverCondition(RO);
2893 
2894     // The 'default' or 'all features enabled' case.
2895     if (!Condition) {
2896       CreateMultiVersionResolverReturn(CGM, Resolver, Builder, RO.Function,
2897                                        SupportsIFunc);
2898       return;
2899     }
2900 
2901     if (!AArch64CpuInitialized) {
2902       Builder.SetInsertPoint(CurBlock, CurBlock->begin());
2903       EmitAArch64CpuInit();
2904       AArch64CpuInitialized = true;
2905       Builder.SetInsertPoint(CurBlock);
2906     }
2907 
2908     llvm::BasicBlock *RetBlock = createBasicBlock("resolver_return", Resolver);
2909     CGBuilderTy RetBuilder(*this, RetBlock);
2910     CreateMultiVersionResolverReturn(CGM, Resolver, RetBuilder, RO.Function,
2911                                      SupportsIFunc);
2912     CurBlock = createBasicBlock("resolver_else", Resolver);
2913     Builder.CreateCondBr(Condition, RetBlock, CurBlock);
2914   }
2915 
2916   // If no default, emit an unreachable.
2917   Builder.SetInsertPoint(CurBlock);
2918   llvm::CallInst *TrapCall = EmitTrapCall(llvm::Intrinsic::trap);
2919   TrapCall->setDoesNotReturn();
2920   TrapCall->setDoesNotThrow();
2921   Builder.CreateUnreachable();
2922   Builder.ClearInsertionPoint();
2923 }
2924 
2925 void CodeGenFunction::EmitX86MultiVersionResolver(
2926     llvm::Function *Resolver, ArrayRef<MultiVersionResolverOption> Options) {
2927 
2928   bool SupportsIFunc = getContext().getTargetInfo().supportsIFunc();
2929 
2930   // Main function's basic block.
2931   llvm::BasicBlock *CurBlock = createBasicBlock("resolver_entry", Resolver);
2932   Builder.SetInsertPoint(CurBlock);
2933   EmitX86CpuInit();
2934 
2935   for (const MultiVersionResolverOption &RO : Options) {
2936     Builder.SetInsertPoint(CurBlock);
2937     llvm::Value *Condition = FormX86ResolverCondition(RO);
2938 
2939     // The 'default' or 'generic' case.
2940     if (!Condition) {
2941       assert(&RO == Options.end() - 1 &&
2942              "Default or Generic case must be last");
2943       CreateMultiVersionResolverReturn(CGM, Resolver, Builder, RO.Function,
2944                                        SupportsIFunc);
2945       return;
2946     }
2947 
2948     llvm::BasicBlock *RetBlock = createBasicBlock("resolver_return", Resolver);
2949     CGBuilderTy RetBuilder(*this, RetBlock);
2950     CreateMultiVersionResolverReturn(CGM, Resolver, RetBuilder, RO.Function,
2951                                      SupportsIFunc);
2952     CurBlock = createBasicBlock("resolver_else", Resolver);
2953     Builder.CreateCondBr(Condition, RetBlock, CurBlock);
2954   }
2955 
2956   // If no generic/default, emit an unreachable.
2957   Builder.SetInsertPoint(CurBlock);
2958   llvm::CallInst *TrapCall = EmitTrapCall(llvm::Intrinsic::trap);
2959   TrapCall->setDoesNotReturn();
2960   TrapCall->setDoesNotThrow();
2961   Builder.CreateUnreachable();
2962   Builder.ClearInsertionPoint();
2963 }
2964 
2965 // Loc - where the diagnostic will point, where in the source code this
2966 //  alignment has failed.
2967 // SecondaryLoc - if present (will be present if sufficiently different from
2968 //  Loc), the diagnostic will additionally point a "Note:" to this location.
2969 //  It should be the location where the __attribute__((assume_aligned))
2970 //  was written e.g.
2971 void CodeGenFunction::emitAlignmentAssumptionCheck(
2972     llvm::Value *Ptr, QualType Ty, SourceLocation Loc,
2973     SourceLocation SecondaryLoc, llvm::Value *Alignment,
2974     llvm::Value *OffsetValue, llvm::Value *TheCheck,
2975     llvm::Instruction *Assumption) {
2976   assert(isa_and_nonnull<llvm::CallInst>(Assumption) &&
2977          cast<llvm::CallInst>(Assumption)->getCalledOperand() ==
2978              llvm::Intrinsic::getDeclaration(
2979                  Builder.GetInsertBlock()->getParent()->getParent(),
2980                  llvm::Intrinsic::assume) &&
2981          "Assumption should be a call to llvm.assume().");
2982   assert(&(Builder.GetInsertBlock()->back()) == Assumption &&
2983          "Assumption should be the last instruction of the basic block, "
2984          "since the basic block is still being generated.");
2985 
2986   if (!SanOpts.has(SanitizerKind::Alignment))
2987     return;
2988 
2989   // Don't check pointers to volatile data. The behavior here is implementation-
2990   // defined.
2991   if (Ty->getPointeeType().isVolatileQualified())
2992     return;
2993 
2994   // We need to temorairly remove the assumption so we can insert the
2995   // sanitizer check before it, else the check will be dropped by optimizations.
2996   Assumption->removeFromParent();
2997 
2998   {
2999     SanitizerScope SanScope(this);
3000 
3001     if (!OffsetValue)
3002       OffsetValue = Builder.getInt1(false); // no offset.
3003 
3004     llvm::Constant *StaticData[] = {EmitCheckSourceLocation(Loc),
3005                                     EmitCheckSourceLocation(SecondaryLoc),
3006                                     EmitCheckTypeDescriptor(Ty)};
3007     llvm::Value *DynamicData[] = {EmitCheckValue(Ptr),
3008                                   EmitCheckValue(Alignment),
3009                                   EmitCheckValue(OffsetValue)};
3010     EmitCheck({std::make_pair(TheCheck, SanitizerKind::Alignment)},
3011               SanitizerHandler::AlignmentAssumption, StaticData, DynamicData);
3012   }
3013 
3014   // We are now in the (new, empty) "cont" basic block.
3015   // Reintroduce the assumption.
3016   Builder.Insert(Assumption);
3017   // FIXME: Assumption still has it's original basic block as it's Parent.
3018 }
3019 
3020 llvm::DebugLoc CodeGenFunction::SourceLocToDebugLoc(SourceLocation Location) {
3021   if (CGDebugInfo *DI = getDebugInfo())
3022     return DI->SourceLocToDebugLoc(Location);
3023 
3024   return llvm::DebugLoc();
3025 }
3026 
3027 llvm::Value *
3028 CodeGenFunction::emitCondLikelihoodViaExpectIntrinsic(llvm::Value *Cond,
3029                                                       Stmt::Likelihood LH) {
3030   switch (LH) {
3031   case Stmt::LH_None:
3032     return Cond;
3033   case Stmt::LH_Likely:
3034   case Stmt::LH_Unlikely:
3035     // Don't generate llvm.expect on -O0 as the backend won't use it for
3036     // anything.
3037     if (CGM.getCodeGenOpts().OptimizationLevel == 0)
3038       return Cond;
3039     llvm::Type *CondTy = Cond->getType();
3040     assert(CondTy->isIntegerTy(1) && "expecting condition to be a boolean");
3041     llvm::Function *FnExpect =
3042         CGM.getIntrinsic(llvm::Intrinsic::expect, CondTy);
3043     llvm::Value *ExpectedValueOfCond =
3044         llvm::ConstantInt::getBool(CondTy, LH == Stmt::LH_Likely);
3045     return Builder.CreateCall(FnExpect, {Cond, ExpectedValueOfCond},
3046                               Cond->getName() + ".expval");
3047   }
3048   llvm_unreachable("Unknown Likelihood");
3049 }
3050 
3051 llvm::Value *CodeGenFunction::emitBoolVecConversion(llvm::Value *SrcVec,
3052                                                     unsigned NumElementsDst,
3053                                                     const llvm::Twine &Name) {
3054   auto *SrcTy = cast<llvm::FixedVectorType>(SrcVec->getType());
3055   unsigned NumElementsSrc = SrcTy->getNumElements();
3056   if (NumElementsSrc == NumElementsDst)
3057     return SrcVec;
3058 
3059   std::vector<int> ShuffleMask(NumElementsDst, -1);
3060   for (unsigned MaskIdx = 0;
3061        MaskIdx < std::min<>(NumElementsDst, NumElementsSrc); ++MaskIdx)
3062     ShuffleMask[MaskIdx] = MaskIdx;
3063 
3064   return Builder.CreateShuffleVector(SrcVec, ShuffleMask, Name);
3065 }
3066 
3067 void CodeGenFunction::EmitPointerAuthOperandBundle(
3068     const CGPointerAuthInfo &PointerAuth,
3069     SmallVectorImpl<llvm::OperandBundleDef> &Bundles) {
3070   if (!PointerAuth.isSigned())
3071     return;
3072 
3073   auto *Key = Builder.getInt32(PointerAuth.getKey());
3074 
3075   llvm::Value *Discriminator = PointerAuth.getDiscriminator();
3076   if (!Discriminator)
3077     Discriminator = Builder.getSize(0);
3078 
3079   llvm::Value *Args[] = {Key, Discriminator};
3080   Bundles.emplace_back("ptrauth", Args);
3081 }
3082 
3083 static llvm::Value *EmitPointerAuthCommon(CodeGenFunction &CGF,
3084                                           const CGPointerAuthInfo &PointerAuth,
3085                                           llvm::Value *Pointer,
3086                                           unsigned IntrinsicID) {
3087   if (!PointerAuth)
3088     return Pointer;
3089 
3090   auto Key = CGF.Builder.getInt32(PointerAuth.getKey());
3091 
3092   llvm::Value *Discriminator = PointerAuth.getDiscriminator();
3093   if (!Discriminator) {
3094     Discriminator = CGF.Builder.getSize(0);
3095   }
3096 
3097   // Convert the pointer to intptr_t before signing it.
3098   auto OrigType = Pointer->getType();
3099   Pointer = CGF.Builder.CreatePtrToInt(Pointer, CGF.IntPtrTy);
3100 
3101   // call i64 @llvm.ptrauth.sign.i64(i64 %pointer, i32 %key, i64 %discriminator)
3102   auto Intrinsic = CGF.CGM.getIntrinsic(IntrinsicID);
3103   Pointer = CGF.EmitRuntimeCall(Intrinsic, {Pointer, Key, Discriminator});
3104 
3105   // Convert back to the original type.
3106   Pointer = CGF.Builder.CreateIntToPtr(Pointer, OrigType);
3107   return Pointer;
3108 }
3109 
3110 llvm::Value *
3111 CodeGenFunction::EmitPointerAuthSign(const CGPointerAuthInfo &PointerAuth,
3112                                      llvm::Value *Pointer) {
3113   if (!PointerAuth.shouldSign())
3114     return Pointer;
3115   return EmitPointerAuthCommon(*this, PointerAuth, Pointer,
3116                                llvm::Intrinsic::ptrauth_sign);
3117 }
3118 
3119 static llvm::Value *EmitStrip(CodeGenFunction &CGF,
3120                               const CGPointerAuthInfo &PointerAuth,
3121                               llvm::Value *Pointer) {
3122   auto StripIntrinsic = CGF.CGM.getIntrinsic(llvm::Intrinsic::ptrauth_strip);
3123 
3124   auto Key = CGF.Builder.getInt32(PointerAuth.getKey());
3125   // Convert the pointer to intptr_t before signing it.
3126   auto OrigType = Pointer->getType();
3127   Pointer = CGF.EmitRuntimeCall(
3128       StripIntrinsic, {CGF.Builder.CreatePtrToInt(Pointer, CGF.IntPtrTy), Key});
3129   return CGF.Builder.CreateIntToPtr(Pointer, OrigType);
3130 }
3131 
3132 llvm::Value *
3133 CodeGenFunction::EmitPointerAuthAuth(const CGPointerAuthInfo &PointerAuth,
3134                                      llvm::Value *Pointer) {
3135   if (PointerAuth.shouldStrip()) {
3136     return EmitStrip(*this, PointerAuth, Pointer);
3137   }
3138   if (!PointerAuth.shouldAuth()) {
3139     return Pointer;
3140   }
3141 
3142   return EmitPointerAuthCommon(*this, PointerAuth, Pointer,
3143                                llvm::Intrinsic::ptrauth_auth);
3144 }
3145