1 //===--- CodeGenFunction.cpp - Emit LLVM Code from ASTs for a Function ----===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This coordinates the per-function state used while generating code. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "CodeGenFunction.h" 14 #include "CGBlocks.h" 15 #include "CGCUDARuntime.h" 16 #include "CGCXXABI.h" 17 #include "CGCleanup.h" 18 #include "CGDebugInfo.h" 19 #include "CGOpenMPRuntime.h" 20 #include "CodeGenModule.h" 21 #include "CodeGenPGO.h" 22 #include "TargetInfo.h" 23 #include "clang/AST/ASTContext.h" 24 #include "clang/AST/ASTLambda.h" 25 #include "clang/AST/Attr.h" 26 #include "clang/AST/Decl.h" 27 #include "clang/AST/DeclCXX.h" 28 #include "clang/AST/Expr.h" 29 #include "clang/AST/StmtCXX.h" 30 #include "clang/AST/StmtObjC.h" 31 #include "clang/Basic/Builtins.h" 32 #include "clang/Basic/CodeGenOptions.h" 33 #include "clang/Basic/TargetInfo.h" 34 #include "clang/CodeGen/CGFunctionInfo.h" 35 #include "clang/Frontend/FrontendDiagnostic.h" 36 #include "llvm/ADT/ArrayRef.h" 37 #include "llvm/Frontend/OpenMP/OMPIRBuilder.h" 38 #include "llvm/IR/DataLayout.h" 39 #include "llvm/IR/Dominators.h" 40 #include "llvm/IR/FPEnv.h" 41 #include "llvm/IR/IntrinsicInst.h" 42 #include "llvm/IR/Intrinsics.h" 43 #include "llvm/IR/MDBuilder.h" 44 #include "llvm/IR/Operator.h" 45 #include "llvm/Support/CRC.h" 46 #include "llvm/Transforms/Scalar/LowerExpectIntrinsic.h" 47 #include "llvm/Transforms/Utils/PromoteMemToReg.h" 48 49 using namespace clang; 50 using namespace CodeGen; 51 52 /// shouldEmitLifetimeMarkers - Decide whether we need emit the life-time 53 /// markers. 54 static bool shouldEmitLifetimeMarkers(const CodeGenOptions &CGOpts, 55 const LangOptions &LangOpts) { 56 if (CGOpts.DisableLifetimeMarkers) 57 return false; 58 59 // Sanitizers may use markers. 60 if (CGOpts.SanitizeAddressUseAfterScope || 61 LangOpts.Sanitize.has(SanitizerKind::HWAddress) || 62 LangOpts.Sanitize.has(SanitizerKind::Memory)) 63 return true; 64 65 // For now, only in optimized builds. 66 return CGOpts.OptimizationLevel != 0; 67 } 68 69 CodeGenFunction::CodeGenFunction(CodeGenModule &cgm, bool suppressNewContext) 70 : CodeGenTypeCache(cgm), CGM(cgm), Target(cgm.getTarget()), 71 Builder(cgm, cgm.getModule().getContext(), llvm::ConstantFolder(), 72 CGBuilderInserterTy(this)), 73 SanOpts(CGM.getLangOpts().Sanitize), CurFPFeatures(CGM.getLangOpts()), 74 DebugInfo(CGM.getModuleDebugInfo()), PGO(cgm), 75 ShouldEmitLifetimeMarkers( 76 shouldEmitLifetimeMarkers(CGM.getCodeGenOpts(), CGM.getLangOpts())) { 77 if (!suppressNewContext) 78 CGM.getCXXABI().getMangleContext().startNewFunction(); 79 EHStack.setCGF(this); 80 81 SetFastMathFlags(CurFPFeatures); 82 } 83 84 CodeGenFunction::~CodeGenFunction() { 85 assert(LifetimeExtendedCleanupStack.empty() && "failed to emit a cleanup"); 86 87 if (getLangOpts().OpenMP && CurFn) 88 CGM.getOpenMPRuntime().functionFinished(*this); 89 90 // If we have an OpenMPIRBuilder we want to finalize functions (incl. 91 // outlining etc) at some point. Doing it once the function codegen is done 92 // seems to be a reasonable spot. We do it here, as opposed to the deletion 93 // time of the CodeGenModule, because we have to ensure the IR has not yet 94 // been "emitted" to the outside, thus, modifications are still sensible. 95 if (CGM.getLangOpts().OpenMPIRBuilder && CurFn) 96 CGM.getOpenMPRuntime().getOMPBuilder().finalize(CurFn); 97 } 98 99 // Map the LangOption for exception behavior into 100 // the corresponding enum in the IR. 101 llvm::fp::ExceptionBehavior 102 clang::ToConstrainedExceptMD(LangOptions::FPExceptionModeKind Kind) { 103 104 switch (Kind) { 105 case LangOptions::FPE_Ignore: return llvm::fp::ebIgnore; 106 case LangOptions::FPE_MayTrap: return llvm::fp::ebMayTrap; 107 case LangOptions::FPE_Strict: return llvm::fp::ebStrict; 108 } 109 llvm_unreachable("Unsupported FP Exception Behavior"); 110 } 111 112 void CodeGenFunction::SetFastMathFlags(FPOptions FPFeatures) { 113 llvm::FastMathFlags FMF; 114 FMF.setAllowReassoc(FPFeatures.getAllowFPReassociate()); 115 FMF.setNoNaNs(FPFeatures.getNoHonorNaNs()); 116 FMF.setNoInfs(FPFeatures.getNoHonorInfs()); 117 FMF.setNoSignedZeros(FPFeatures.getNoSignedZero()); 118 FMF.setAllowReciprocal(FPFeatures.getAllowReciprocal()); 119 FMF.setApproxFunc(FPFeatures.getAllowApproxFunc()); 120 FMF.setAllowContract(FPFeatures.allowFPContractAcrossStatement()); 121 Builder.setFastMathFlags(FMF); 122 } 123 124 CodeGenFunction::CGFPOptionsRAII::CGFPOptionsRAII(CodeGenFunction &CGF, 125 const Expr *E) 126 : CGF(CGF) { 127 ConstructorHelper(E->getFPFeaturesInEffect(CGF.getLangOpts())); 128 } 129 130 CodeGenFunction::CGFPOptionsRAII::CGFPOptionsRAII(CodeGenFunction &CGF, 131 FPOptions FPFeatures) 132 : CGF(CGF) { 133 ConstructorHelper(FPFeatures); 134 } 135 136 void CodeGenFunction::CGFPOptionsRAII::ConstructorHelper(FPOptions FPFeatures) { 137 OldFPFeatures = CGF.CurFPFeatures; 138 CGF.CurFPFeatures = FPFeatures; 139 140 OldExcept = CGF.Builder.getDefaultConstrainedExcept(); 141 OldRounding = CGF.Builder.getDefaultConstrainedRounding(); 142 143 if (OldFPFeatures == FPFeatures) 144 return; 145 146 FMFGuard.emplace(CGF.Builder); 147 148 llvm::RoundingMode NewRoundingBehavior = 149 static_cast<llvm::RoundingMode>(FPFeatures.getRoundingMode()); 150 CGF.Builder.setDefaultConstrainedRounding(NewRoundingBehavior); 151 auto NewExceptionBehavior = 152 ToConstrainedExceptMD(static_cast<LangOptions::FPExceptionModeKind>( 153 FPFeatures.getFPExceptionMode())); 154 CGF.Builder.setDefaultConstrainedExcept(NewExceptionBehavior); 155 156 CGF.SetFastMathFlags(FPFeatures); 157 158 assert((CGF.CurFuncDecl == nullptr || CGF.Builder.getIsFPConstrained() || 159 isa<CXXConstructorDecl>(CGF.CurFuncDecl) || 160 isa<CXXDestructorDecl>(CGF.CurFuncDecl) || 161 (NewExceptionBehavior == llvm::fp::ebIgnore && 162 NewRoundingBehavior == llvm::RoundingMode::NearestTiesToEven)) && 163 "FPConstrained should be enabled on entire function"); 164 165 auto mergeFnAttrValue = [&](StringRef Name, bool Value) { 166 auto OldValue = 167 CGF.CurFn->getFnAttribute(Name).getValueAsBool(); 168 auto NewValue = OldValue & Value; 169 if (OldValue != NewValue) 170 CGF.CurFn->addFnAttr(Name, llvm::toStringRef(NewValue)); 171 }; 172 mergeFnAttrValue("no-infs-fp-math", FPFeatures.getNoHonorInfs()); 173 mergeFnAttrValue("no-nans-fp-math", FPFeatures.getNoHonorNaNs()); 174 mergeFnAttrValue("no-signed-zeros-fp-math", FPFeatures.getNoSignedZero()); 175 mergeFnAttrValue("unsafe-fp-math", FPFeatures.getAllowFPReassociate() && 176 FPFeatures.getAllowReciprocal() && 177 FPFeatures.getAllowApproxFunc() && 178 FPFeatures.getNoSignedZero()); 179 } 180 181 CodeGenFunction::CGFPOptionsRAII::~CGFPOptionsRAII() { 182 CGF.CurFPFeatures = OldFPFeatures; 183 CGF.Builder.setDefaultConstrainedExcept(OldExcept); 184 CGF.Builder.setDefaultConstrainedRounding(OldRounding); 185 } 186 187 LValue CodeGenFunction::MakeNaturalAlignAddrLValue(llvm::Value *V, QualType T) { 188 LValueBaseInfo BaseInfo; 189 TBAAAccessInfo TBAAInfo; 190 CharUnits Alignment = CGM.getNaturalTypeAlignment(T, &BaseInfo, &TBAAInfo); 191 return LValue::MakeAddr(Address(V, Alignment), T, getContext(), BaseInfo, 192 TBAAInfo); 193 } 194 195 /// Given a value of type T* that may not be to a complete object, 196 /// construct an l-value with the natural pointee alignment of T. 197 LValue 198 CodeGenFunction::MakeNaturalAlignPointeeAddrLValue(llvm::Value *V, QualType T) { 199 LValueBaseInfo BaseInfo; 200 TBAAAccessInfo TBAAInfo; 201 CharUnits Align = CGM.getNaturalTypeAlignment(T, &BaseInfo, &TBAAInfo, 202 /* forPointeeType= */ true); 203 return MakeAddrLValue(Address(V, Align), T, BaseInfo, TBAAInfo); 204 } 205 206 207 llvm::Type *CodeGenFunction::ConvertTypeForMem(QualType T) { 208 return CGM.getTypes().ConvertTypeForMem(T); 209 } 210 211 llvm::Type *CodeGenFunction::ConvertType(QualType T) { 212 return CGM.getTypes().ConvertType(T); 213 } 214 215 TypeEvaluationKind CodeGenFunction::getEvaluationKind(QualType type) { 216 type = type.getCanonicalType(); 217 while (true) { 218 switch (type->getTypeClass()) { 219 #define TYPE(name, parent) 220 #define ABSTRACT_TYPE(name, parent) 221 #define NON_CANONICAL_TYPE(name, parent) case Type::name: 222 #define DEPENDENT_TYPE(name, parent) case Type::name: 223 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(name, parent) case Type::name: 224 #include "clang/AST/TypeNodes.inc" 225 llvm_unreachable("non-canonical or dependent type in IR-generation"); 226 227 case Type::Auto: 228 case Type::DeducedTemplateSpecialization: 229 llvm_unreachable("undeduced type in IR-generation"); 230 231 // Various scalar types. 232 case Type::Builtin: 233 case Type::Pointer: 234 case Type::BlockPointer: 235 case Type::LValueReference: 236 case Type::RValueReference: 237 case Type::MemberPointer: 238 case Type::Vector: 239 case Type::ExtVector: 240 case Type::ConstantMatrix: 241 case Type::FunctionProto: 242 case Type::FunctionNoProto: 243 case Type::Enum: 244 case Type::ObjCObjectPointer: 245 case Type::Pipe: 246 case Type::BitInt: 247 return TEK_Scalar; 248 249 // Complexes. 250 case Type::Complex: 251 return TEK_Complex; 252 253 // Arrays, records, and Objective-C objects. 254 case Type::ConstantArray: 255 case Type::IncompleteArray: 256 case Type::VariableArray: 257 case Type::Record: 258 case Type::ObjCObject: 259 case Type::ObjCInterface: 260 return TEK_Aggregate; 261 262 // We operate on atomic values according to their underlying type. 263 case Type::Atomic: 264 type = cast<AtomicType>(type)->getValueType(); 265 continue; 266 } 267 llvm_unreachable("unknown type kind!"); 268 } 269 } 270 271 llvm::DebugLoc CodeGenFunction::EmitReturnBlock() { 272 // For cleanliness, we try to avoid emitting the return block for 273 // simple cases. 274 llvm::BasicBlock *CurBB = Builder.GetInsertBlock(); 275 276 if (CurBB) { 277 assert(!CurBB->getTerminator() && "Unexpected terminated block."); 278 279 // We have a valid insert point, reuse it if it is empty or there are no 280 // explicit jumps to the return block. 281 if (CurBB->empty() || ReturnBlock.getBlock()->use_empty()) { 282 ReturnBlock.getBlock()->replaceAllUsesWith(CurBB); 283 delete ReturnBlock.getBlock(); 284 ReturnBlock = JumpDest(); 285 } else 286 EmitBlock(ReturnBlock.getBlock()); 287 return llvm::DebugLoc(); 288 } 289 290 // Otherwise, if the return block is the target of a single direct 291 // branch then we can just put the code in that block instead. This 292 // cleans up functions which started with a unified return block. 293 if (ReturnBlock.getBlock()->hasOneUse()) { 294 llvm::BranchInst *BI = 295 dyn_cast<llvm::BranchInst>(*ReturnBlock.getBlock()->user_begin()); 296 if (BI && BI->isUnconditional() && 297 BI->getSuccessor(0) == ReturnBlock.getBlock()) { 298 // Record/return the DebugLoc of the simple 'return' expression to be used 299 // later by the actual 'ret' instruction. 300 llvm::DebugLoc Loc = BI->getDebugLoc(); 301 Builder.SetInsertPoint(BI->getParent()); 302 BI->eraseFromParent(); 303 delete ReturnBlock.getBlock(); 304 ReturnBlock = JumpDest(); 305 return Loc; 306 } 307 } 308 309 // FIXME: We are at an unreachable point, there is no reason to emit the block 310 // unless it has uses. However, we still need a place to put the debug 311 // region.end for now. 312 313 EmitBlock(ReturnBlock.getBlock()); 314 return llvm::DebugLoc(); 315 } 316 317 static void EmitIfUsed(CodeGenFunction &CGF, llvm::BasicBlock *BB) { 318 if (!BB) return; 319 if (!BB->use_empty()) 320 return CGF.CurFn->getBasicBlockList().push_back(BB); 321 delete BB; 322 } 323 324 void CodeGenFunction::FinishFunction(SourceLocation EndLoc) { 325 assert(BreakContinueStack.empty() && 326 "mismatched push/pop in break/continue stack!"); 327 328 bool OnlySimpleReturnStmts = NumSimpleReturnExprs > 0 329 && NumSimpleReturnExprs == NumReturnExprs 330 && ReturnBlock.getBlock()->use_empty(); 331 // Usually the return expression is evaluated before the cleanup 332 // code. If the function contains only a simple return statement, 333 // such as a constant, the location before the cleanup code becomes 334 // the last useful breakpoint in the function, because the simple 335 // return expression will be evaluated after the cleanup code. To be 336 // safe, set the debug location for cleanup code to the location of 337 // the return statement. Otherwise the cleanup code should be at the 338 // end of the function's lexical scope. 339 // 340 // If there are multiple branches to the return block, the branch 341 // instructions will get the location of the return statements and 342 // all will be fine. 343 if (CGDebugInfo *DI = getDebugInfo()) { 344 if (OnlySimpleReturnStmts) 345 DI->EmitLocation(Builder, LastStopPoint); 346 else 347 DI->EmitLocation(Builder, EndLoc); 348 } 349 350 // Pop any cleanups that might have been associated with the 351 // parameters. Do this in whatever block we're currently in; it's 352 // important to do this before we enter the return block or return 353 // edges will be *really* confused. 354 bool HasCleanups = EHStack.stable_begin() != PrologueCleanupDepth; 355 bool HasOnlyLifetimeMarkers = 356 HasCleanups && EHStack.containsOnlyLifetimeMarkers(PrologueCleanupDepth); 357 bool EmitRetDbgLoc = !HasCleanups || HasOnlyLifetimeMarkers; 358 if (HasCleanups) { 359 // Make sure the line table doesn't jump back into the body for 360 // the ret after it's been at EndLoc. 361 Optional<ApplyDebugLocation> AL; 362 if (CGDebugInfo *DI = getDebugInfo()) { 363 if (OnlySimpleReturnStmts) 364 DI->EmitLocation(Builder, EndLoc); 365 else 366 // We may not have a valid end location. Try to apply it anyway, and 367 // fall back to an artificial location if needed. 368 AL = ApplyDebugLocation::CreateDefaultArtificial(*this, EndLoc); 369 } 370 371 PopCleanupBlocks(PrologueCleanupDepth); 372 } 373 374 // Emit function epilog (to return). 375 llvm::DebugLoc Loc = EmitReturnBlock(); 376 377 if (ShouldInstrumentFunction()) { 378 if (CGM.getCodeGenOpts().InstrumentFunctions) 379 CurFn->addFnAttr("instrument-function-exit", "__cyg_profile_func_exit"); 380 if (CGM.getCodeGenOpts().InstrumentFunctionsAfterInlining) 381 CurFn->addFnAttr("instrument-function-exit-inlined", 382 "__cyg_profile_func_exit"); 383 } 384 385 // Emit debug descriptor for function end. 386 if (CGDebugInfo *DI = getDebugInfo()) 387 DI->EmitFunctionEnd(Builder, CurFn); 388 389 // Reset the debug location to that of the simple 'return' expression, if any 390 // rather than that of the end of the function's scope '}'. 391 ApplyDebugLocation AL(*this, Loc); 392 EmitFunctionEpilog(*CurFnInfo, EmitRetDbgLoc, EndLoc); 393 EmitEndEHSpec(CurCodeDecl); 394 395 assert(EHStack.empty() && 396 "did not remove all scopes from cleanup stack!"); 397 398 // If someone did an indirect goto, emit the indirect goto block at the end of 399 // the function. 400 if (IndirectBranch) { 401 EmitBlock(IndirectBranch->getParent()); 402 Builder.ClearInsertionPoint(); 403 } 404 405 // If some of our locals escaped, insert a call to llvm.localescape in the 406 // entry block. 407 if (!EscapedLocals.empty()) { 408 // Invert the map from local to index into a simple vector. There should be 409 // no holes. 410 SmallVector<llvm::Value *, 4> EscapeArgs; 411 EscapeArgs.resize(EscapedLocals.size()); 412 for (auto &Pair : EscapedLocals) 413 EscapeArgs[Pair.second] = Pair.first; 414 llvm::Function *FrameEscapeFn = llvm::Intrinsic::getDeclaration( 415 &CGM.getModule(), llvm::Intrinsic::localescape); 416 CGBuilderTy(*this, AllocaInsertPt).CreateCall(FrameEscapeFn, EscapeArgs); 417 } 418 419 // Remove the AllocaInsertPt instruction, which is just a convenience for us. 420 llvm::Instruction *Ptr = AllocaInsertPt; 421 AllocaInsertPt = nullptr; 422 Ptr->eraseFromParent(); 423 424 // PostAllocaInsertPt, if created, was lazily created when it was required, 425 // remove it now since it was just created for our own convenience. 426 if (PostAllocaInsertPt) { 427 llvm::Instruction *PostPtr = PostAllocaInsertPt; 428 PostAllocaInsertPt = nullptr; 429 PostPtr->eraseFromParent(); 430 } 431 432 // If someone took the address of a label but never did an indirect goto, we 433 // made a zero entry PHI node, which is illegal, zap it now. 434 if (IndirectBranch) { 435 llvm::PHINode *PN = cast<llvm::PHINode>(IndirectBranch->getAddress()); 436 if (PN->getNumIncomingValues() == 0) { 437 PN->replaceAllUsesWith(llvm::UndefValue::get(PN->getType())); 438 PN->eraseFromParent(); 439 } 440 } 441 442 EmitIfUsed(*this, EHResumeBlock); 443 EmitIfUsed(*this, TerminateLandingPad); 444 EmitIfUsed(*this, TerminateHandler); 445 EmitIfUsed(*this, UnreachableBlock); 446 447 for (const auto &FuncletAndParent : TerminateFunclets) 448 EmitIfUsed(*this, FuncletAndParent.second); 449 450 if (CGM.getCodeGenOpts().EmitDeclMetadata) 451 EmitDeclMetadata(); 452 453 for (const auto &R : DeferredReplacements) { 454 if (llvm::Value *Old = R.first) { 455 Old->replaceAllUsesWith(R.second); 456 cast<llvm::Instruction>(Old)->eraseFromParent(); 457 } 458 } 459 DeferredReplacements.clear(); 460 461 // Eliminate CleanupDestSlot alloca by replacing it with SSA values and 462 // PHIs if the current function is a coroutine. We don't do it for all 463 // functions as it may result in slight increase in numbers of instructions 464 // if compiled with no optimizations. We do it for coroutine as the lifetime 465 // of CleanupDestSlot alloca make correct coroutine frame building very 466 // difficult. 467 if (NormalCleanupDest.isValid() && isCoroutine()) { 468 llvm::DominatorTree DT(*CurFn); 469 llvm::PromoteMemToReg( 470 cast<llvm::AllocaInst>(NormalCleanupDest.getPointer()), DT); 471 NormalCleanupDest = Address::invalid(); 472 } 473 474 // Scan function arguments for vector width. 475 for (llvm::Argument &A : CurFn->args()) 476 if (auto *VT = dyn_cast<llvm::VectorType>(A.getType())) 477 LargestVectorWidth = 478 std::max((uint64_t)LargestVectorWidth, 479 VT->getPrimitiveSizeInBits().getKnownMinSize()); 480 481 // Update vector width based on return type. 482 if (auto *VT = dyn_cast<llvm::VectorType>(CurFn->getReturnType())) 483 LargestVectorWidth = 484 std::max((uint64_t)LargestVectorWidth, 485 VT->getPrimitiveSizeInBits().getKnownMinSize()); 486 487 // Add the required-vector-width attribute. This contains the max width from: 488 // 1. min-vector-width attribute used in the source program. 489 // 2. Any builtins used that have a vector width specified. 490 // 3. Values passed in and out of inline assembly. 491 // 4. Width of vector arguments and return types for this function. 492 // 5. Width of vector aguments and return types for functions called by this 493 // function. 494 CurFn->addFnAttr("min-legal-vector-width", llvm::utostr(LargestVectorWidth)); 495 496 // Add vscale_range attribute if appropriate. 497 Optional<std::pair<unsigned, unsigned>> VScaleRange = 498 getContext().getTargetInfo().getVScaleRange(getLangOpts()); 499 if (VScaleRange) { 500 CurFn->addFnAttr(llvm::Attribute::getWithVScaleRangeArgs( 501 getLLVMContext(), VScaleRange.getValue().first, 502 VScaleRange.getValue().second)); 503 } 504 505 // If we generated an unreachable return block, delete it now. 506 if (ReturnBlock.isValid() && ReturnBlock.getBlock()->use_empty()) { 507 Builder.ClearInsertionPoint(); 508 ReturnBlock.getBlock()->eraseFromParent(); 509 } 510 if (ReturnValue.isValid()) { 511 auto *RetAlloca = dyn_cast<llvm::AllocaInst>(ReturnValue.getPointer()); 512 if (RetAlloca && RetAlloca->use_empty()) { 513 RetAlloca->eraseFromParent(); 514 ReturnValue = Address::invalid(); 515 } 516 } 517 } 518 519 /// ShouldInstrumentFunction - Return true if the current function should be 520 /// instrumented with __cyg_profile_func_* calls 521 bool CodeGenFunction::ShouldInstrumentFunction() { 522 if (!CGM.getCodeGenOpts().InstrumentFunctions && 523 !CGM.getCodeGenOpts().InstrumentFunctionsAfterInlining && 524 !CGM.getCodeGenOpts().InstrumentFunctionEntryBare) 525 return false; 526 if (!CurFuncDecl || CurFuncDecl->hasAttr<NoInstrumentFunctionAttr>()) 527 return false; 528 return true; 529 } 530 531 bool CodeGenFunction::ShouldSkipSanitizerInstrumentation() { 532 if (!CurFuncDecl) 533 return false; 534 return CurFuncDecl->hasAttr<DisableSanitizerInstrumentationAttr>(); 535 } 536 537 /// ShouldXRayInstrument - Return true if the current function should be 538 /// instrumented with XRay nop sleds. 539 bool CodeGenFunction::ShouldXRayInstrumentFunction() const { 540 return CGM.getCodeGenOpts().XRayInstrumentFunctions; 541 } 542 543 /// AlwaysEmitXRayCustomEvents - Return true if we should emit IR for calls to 544 /// the __xray_customevent(...) builtin calls, when doing XRay instrumentation. 545 bool CodeGenFunction::AlwaysEmitXRayCustomEvents() const { 546 return CGM.getCodeGenOpts().XRayInstrumentFunctions && 547 (CGM.getCodeGenOpts().XRayAlwaysEmitCustomEvents || 548 CGM.getCodeGenOpts().XRayInstrumentationBundle.Mask == 549 XRayInstrKind::Custom); 550 } 551 552 bool CodeGenFunction::AlwaysEmitXRayTypedEvents() const { 553 return CGM.getCodeGenOpts().XRayInstrumentFunctions && 554 (CGM.getCodeGenOpts().XRayAlwaysEmitTypedEvents || 555 CGM.getCodeGenOpts().XRayInstrumentationBundle.Mask == 556 XRayInstrKind::Typed); 557 } 558 559 llvm::Constant * 560 CodeGenFunction::EncodeAddrForUseInPrologue(llvm::Function *F, 561 llvm::Constant *Addr) { 562 // Addresses stored in prologue data can't require run-time fixups and must 563 // be PC-relative. Run-time fixups are undesirable because they necessitate 564 // writable text segments, which are unsafe. And absolute addresses are 565 // undesirable because they break PIE mode. 566 567 // Add a layer of indirection through a private global. Taking its address 568 // won't result in a run-time fixup, even if Addr has linkonce_odr linkage. 569 auto *GV = new llvm::GlobalVariable(CGM.getModule(), Addr->getType(), 570 /*isConstant=*/true, 571 llvm::GlobalValue::PrivateLinkage, Addr); 572 573 // Create a PC-relative address. 574 auto *GOTAsInt = llvm::ConstantExpr::getPtrToInt(GV, IntPtrTy); 575 auto *FuncAsInt = llvm::ConstantExpr::getPtrToInt(F, IntPtrTy); 576 auto *PCRelAsInt = llvm::ConstantExpr::getSub(GOTAsInt, FuncAsInt); 577 return (IntPtrTy == Int32Ty) 578 ? PCRelAsInt 579 : llvm::ConstantExpr::getTrunc(PCRelAsInt, Int32Ty); 580 } 581 582 llvm::Value * 583 CodeGenFunction::DecodeAddrUsedInPrologue(llvm::Value *F, 584 llvm::Value *EncodedAddr) { 585 // Reconstruct the address of the global. 586 auto *PCRelAsInt = Builder.CreateSExt(EncodedAddr, IntPtrTy); 587 auto *FuncAsInt = Builder.CreatePtrToInt(F, IntPtrTy, "func_addr.int"); 588 auto *GOTAsInt = Builder.CreateAdd(PCRelAsInt, FuncAsInt, "global_addr.int"); 589 auto *GOTAddr = Builder.CreateIntToPtr(GOTAsInt, Int8PtrPtrTy, "global_addr"); 590 591 // Load the original pointer through the global. 592 return Builder.CreateLoad(Address(GOTAddr, getPointerAlign()), 593 "decoded_addr"); 594 } 595 596 void CodeGenFunction::EmitOpenCLKernelMetadata(const FunctionDecl *FD, 597 llvm::Function *Fn) 598 { 599 if (!FD->hasAttr<OpenCLKernelAttr>()) 600 return; 601 602 llvm::LLVMContext &Context = getLLVMContext(); 603 604 CGM.GenOpenCLArgMetadata(Fn, FD, this); 605 606 if (const VecTypeHintAttr *A = FD->getAttr<VecTypeHintAttr>()) { 607 QualType HintQTy = A->getTypeHint(); 608 const ExtVectorType *HintEltQTy = HintQTy->getAs<ExtVectorType>(); 609 bool IsSignedInteger = 610 HintQTy->isSignedIntegerType() || 611 (HintEltQTy && HintEltQTy->getElementType()->isSignedIntegerType()); 612 llvm::Metadata *AttrMDArgs[] = { 613 llvm::ConstantAsMetadata::get(llvm::UndefValue::get( 614 CGM.getTypes().ConvertType(A->getTypeHint()))), 615 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 616 llvm::IntegerType::get(Context, 32), 617 llvm::APInt(32, (uint64_t)(IsSignedInteger ? 1 : 0))))}; 618 Fn->setMetadata("vec_type_hint", llvm::MDNode::get(Context, AttrMDArgs)); 619 } 620 621 if (const WorkGroupSizeHintAttr *A = FD->getAttr<WorkGroupSizeHintAttr>()) { 622 llvm::Metadata *AttrMDArgs[] = { 623 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getXDim())), 624 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getYDim())), 625 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getZDim()))}; 626 Fn->setMetadata("work_group_size_hint", llvm::MDNode::get(Context, AttrMDArgs)); 627 } 628 629 if (const ReqdWorkGroupSizeAttr *A = FD->getAttr<ReqdWorkGroupSizeAttr>()) { 630 llvm::Metadata *AttrMDArgs[] = { 631 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getXDim())), 632 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getYDim())), 633 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getZDim()))}; 634 Fn->setMetadata("reqd_work_group_size", llvm::MDNode::get(Context, AttrMDArgs)); 635 } 636 637 if (const OpenCLIntelReqdSubGroupSizeAttr *A = 638 FD->getAttr<OpenCLIntelReqdSubGroupSizeAttr>()) { 639 llvm::Metadata *AttrMDArgs[] = { 640 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getSubGroupSize()))}; 641 Fn->setMetadata("intel_reqd_sub_group_size", 642 llvm::MDNode::get(Context, AttrMDArgs)); 643 } 644 } 645 646 /// Determine whether the function F ends with a return stmt. 647 static bool endsWithReturn(const Decl* F) { 648 const Stmt *Body = nullptr; 649 if (auto *FD = dyn_cast_or_null<FunctionDecl>(F)) 650 Body = FD->getBody(); 651 else if (auto *OMD = dyn_cast_or_null<ObjCMethodDecl>(F)) 652 Body = OMD->getBody(); 653 654 if (auto *CS = dyn_cast_or_null<CompoundStmt>(Body)) { 655 auto LastStmt = CS->body_rbegin(); 656 if (LastStmt != CS->body_rend()) 657 return isa<ReturnStmt>(*LastStmt); 658 } 659 return false; 660 } 661 662 void CodeGenFunction::markAsIgnoreThreadCheckingAtRuntime(llvm::Function *Fn) { 663 if (SanOpts.has(SanitizerKind::Thread)) { 664 Fn->addFnAttr("sanitize_thread_no_checking_at_run_time"); 665 Fn->removeFnAttr(llvm::Attribute::SanitizeThread); 666 } 667 } 668 669 /// Check if the return value of this function requires sanitization. 670 bool CodeGenFunction::requiresReturnValueCheck() const { 671 return requiresReturnValueNullabilityCheck() || 672 (SanOpts.has(SanitizerKind::ReturnsNonnullAttribute) && CurCodeDecl && 673 CurCodeDecl->getAttr<ReturnsNonNullAttr>()); 674 } 675 676 static bool matchesStlAllocatorFn(const Decl *D, const ASTContext &Ctx) { 677 auto *MD = dyn_cast_or_null<CXXMethodDecl>(D); 678 if (!MD || !MD->getDeclName().getAsIdentifierInfo() || 679 !MD->getDeclName().getAsIdentifierInfo()->isStr("allocate") || 680 (MD->getNumParams() != 1 && MD->getNumParams() != 2)) 681 return false; 682 683 if (MD->parameters()[0]->getType().getCanonicalType() != Ctx.getSizeType()) 684 return false; 685 686 if (MD->getNumParams() == 2) { 687 auto *PT = MD->parameters()[1]->getType()->getAs<PointerType>(); 688 if (!PT || !PT->isVoidPointerType() || 689 !PT->getPointeeType().isConstQualified()) 690 return false; 691 } 692 693 return true; 694 } 695 696 /// Return the UBSan prologue signature for \p FD if one is available. 697 static llvm::Constant *getPrologueSignature(CodeGenModule &CGM, 698 const FunctionDecl *FD) { 699 if (const auto *MD = dyn_cast<CXXMethodDecl>(FD)) 700 if (!MD->isStatic()) 701 return nullptr; 702 return CGM.getTargetCodeGenInfo().getUBSanFunctionSignature(CGM); 703 } 704 705 void CodeGenFunction::StartFunction(GlobalDecl GD, QualType RetTy, 706 llvm::Function *Fn, 707 const CGFunctionInfo &FnInfo, 708 const FunctionArgList &Args, 709 SourceLocation Loc, 710 SourceLocation StartLoc) { 711 assert(!CurFn && 712 "Do not use a CodeGenFunction object for more than one function"); 713 714 const Decl *D = GD.getDecl(); 715 716 DidCallStackSave = false; 717 CurCodeDecl = D; 718 const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D); 719 if (FD && FD->usesSEHTry()) 720 CurSEHParent = FD; 721 CurFuncDecl = (D ? D->getNonClosureContext() : nullptr); 722 FnRetTy = RetTy; 723 CurFn = Fn; 724 CurFnInfo = &FnInfo; 725 assert(CurFn->isDeclaration() && "Function already has body?"); 726 727 // If this function is ignored for any of the enabled sanitizers, 728 // disable the sanitizer for the function. 729 do { 730 #define SANITIZER(NAME, ID) \ 731 if (SanOpts.empty()) \ 732 break; \ 733 if (SanOpts.has(SanitizerKind::ID)) \ 734 if (CGM.isInNoSanitizeList(SanitizerKind::ID, Fn, Loc)) \ 735 SanOpts.set(SanitizerKind::ID, false); 736 737 #include "clang/Basic/Sanitizers.def" 738 #undef SANITIZER 739 } while (0); 740 741 if (D) { 742 bool NoSanitizeCoverage = false; 743 744 for (auto Attr : D->specific_attrs<NoSanitizeAttr>()) { 745 // Apply the no_sanitize* attributes to SanOpts. 746 SanitizerMask mask = Attr->getMask(); 747 SanOpts.Mask &= ~mask; 748 if (mask & SanitizerKind::Address) 749 SanOpts.set(SanitizerKind::KernelAddress, false); 750 if (mask & SanitizerKind::KernelAddress) 751 SanOpts.set(SanitizerKind::Address, false); 752 if (mask & SanitizerKind::HWAddress) 753 SanOpts.set(SanitizerKind::KernelHWAddress, false); 754 if (mask & SanitizerKind::KernelHWAddress) 755 SanOpts.set(SanitizerKind::HWAddress, false); 756 757 // SanitizeCoverage is not handled by SanOpts. 758 if (Attr->hasCoverage()) 759 NoSanitizeCoverage = true; 760 } 761 762 if (NoSanitizeCoverage && CGM.getCodeGenOpts().hasSanitizeCoverage()) 763 Fn->addFnAttr(llvm::Attribute::NoSanitizeCoverage); 764 } 765 766 if (ShouldSkipSanitizerInstrumentation()) { 767 CurFn->addFnAttr(llvm::Attribute::DisableSanitizerInstrumentation); 768 } else { 769 // Apply sanitizer attributes to the function. 770 if (SanOpts.hasOneOf(SanitizerKind::Address | SanitizerKind::KernelAddress)) 771 Fn->addFnAttr(llvm::Attribute::SanitizeAddress); 772 if (SanOpts.hasOneOf(SanitizerKind::HWAddress | 773 SanitizerKind::KernelHWAddress)) 774 Fn->addFnAttr(llvm::Attribute::SanitizeHWAddress); 775 if (SanOpts.has(SanitizerKind::MemTag)) 776 Fn->addFnAttr(llvm::Attribute::SanitizeMemTag); 777 if (SanOpts.has(SanitizerKind::Thread)) 778 Fn->addFnAttr(llvm::Attribute::SanitizeThread); 779 if (SanOpts.hasOneOf(SanitizerKind::Memory | SanitizerKind::KernelMemory)) 780 Fn->addFnAttr(llvm::Attribute::SanitizeMemory); 781 } 782 if (SanOpts.has(SanitizerKind::SafeStack)) 783 Fn->addFnAttr(llvm::Attribute::SafeStack); 784 if (SanOpts.has(SanitizerKind::ShadowCallStack)) 785 Fn->addFnAttr(llvm::Attribute::ShadowCallStack); 786 787 // Apply fuzzing attribute to the function. 788 if (SanOpts.hasOneOf(SanitizerKind::Fuzzer | SanitizerKind::FuzzerNoLink)) 789 Fn->addFnAttr(llvm::Attribute::OptForFuzzing); 790 791 // Ignore TSan memory acesses from within ObjC/ObjC++ dealloc, initialize, 792 // .cxx_destruct, __destroy_helper_block_ and all of their calees at run time. 793 if (SanOpts.has(SanitizerKind::Thread)) { 794 if (const auto *OMD = dyn_cast_or_null<ObjCMethodDecl>(D)) { 795 IdentifierInfo *II = OMD->getSelector().getIdentifierInfoForSlot(0); 796 if (OMD->getMethodFamily() == OMF_dealloc || 797 OMD->getMethodFamily() == OMF_initialize || 798 (OMD->getSelector().isUnarySelector() && II->isStr(".cxx_destruct"))) { 799 markAsIgnoreThreadCheckingAtRuntime(Fn); 800 } 801 } 802 } 803 804 // Ignore unrelated casts in STL allocate() since the allocator must cast 805 // from void* to T* before object initialization completes. Don't match on the 806 // namespace because not all allocators are in std:: 807 if (D && SanOpts.has(SanitizerKind::CFIUnrelatedCast)) { 808 if (matchesStlAllocatorFn(D, getContext())) 809 SanOpts.Mask &= ~SanitizerKind::CFIUnrelatedCast; 810 } 811 812 // Ignore null checks in coroutine functions since the coroutines passes 813 // are not aware of how to move the extra UBSan instructions across the split 814 // coroutine boundaries. 815 if (D && SanOpts.has(SanitizerKind::Null)) 816 if (FD && FD->getBody() && 817 FD->getBody()->getStmtClass() == Stmt::CoroutineBodyStmtClass) 818 SanOpts.Mask &= ~SanitizerKind::Null; 819 820 // Apply xray attributes to the function (as a string, for now) 821 bool AlwaysXRayAttr = false; 822 if (const auto *XRayAttr = D ? D->getAttr<XRayInstrumentAttr>() : nullptr) { 823 if (CGM.getCodeGenOpts().XRayInstrumentationBundle.has( 824 XRayInstrKind::FunctionEntry) || 825 CGM.getCodeGenOpts().XRayInstrumentationBundle.has( 826 XRayInstrKind::FunctionExit)) { 827 if (XRayAttr->alwaysXRayInstrument() && ShouldXRayInstrumentFunction()) { 828 Fn->addFnAttr("function-instrument", "xray-always"); 829 AlwaysXRayAttr = true; 830 } 831 if (XRayAttr->neverXRayInstrument()) 832 Fn->addFnAttr("function-instrument", "xray-never"); 833 if (const auto *LogArgs = D->getAttr<XRayLogArgsAttr>()) 834 if (ShouldXRayInstrumentFunction()) 835 Fn->addFnAttr("xray-log-args", 836 llvm::utostr(LogArgs->getArgumentCount())); 837 } 838 } else { 839 if (ShouldXRayInstrumentFunction() && !CGM.imbueXRayAttrs(Fn, Loc)) 840 Fn->addFnAttr( 841 "xray-instruction-threshold", 842 llvm::itostr(CGM.getCodeGenOpts().XRayInstructionThreshold)); 843 } 844 845 if (ShouldXRayInstrumentFunction()) { 846 if (CGM.getCodeGenOpts().XRayIgnoreLoops) 847 Fn->addFnAttr("xray-ignore-loops"); 848 849 if (!CGM.getCodeGenOpts().XRayInstrumentationBundle.has( 850 XRayInstrKind::FunctionExit)) 851 Fn->addFnAttr("xray-skip-exit"); 852 853 if (!CGM.getCodeGenOpts().XRayInstrumentationBundle.has( 854 XRayInstrKind::FunctionEntry)) 855 Fn->addFnAttr("xray-skip-entry"); 856 857 auto FuncGroups = CGM.getCodeGenOpts().XRayTotalFunctionGroups; 858 if (FuncGroups > 1) { 859 auto FuncName = llvm::makeArrayRef<uint8_t>( 860 CurFn->getName().bytes_begin(), CurFn->getName().bytes_end()); 861 auto Group = crc32(FuncName) % FuncGroups; 862 if (Group != CGM.getCodeGenOpts().XRaySelectedFunctionGroup && 863 !AlwaysXRayAttr) 864 Fn->addFnAttr("function-instrument", "xray-never"); 865 } 866 } 867 868 if (CGM.getCodeGenOpts().getProfileInstr() != CodeGenOptions::ProfileNone) 869 if (CGM.isProfileInstrExcluded(Fn, Loc)) 870 Fn->addFnAttr(llvm::Attribute::NoProfile); 871 872 unsigned Count, Offset; 873 if (const auto *Attr = 874 D ? D->getAttr<PatchableFunctionEntryAttr>() : nullptr) { 875 Count = Attr->getCount(); 876 Offset = Attr->getOffset(); 877 } else { 878 Count = CGM.getCodeGenOpts().PatchableFunctionEntryCount; 879 Offset = CGM.getCodeGenOpts().PatchableFunctionEntryOffset; 880 } 881 if (Count && Offset <= Count) { 882 Fn->addFnAttr("patchable-function-entry", std::to_string(Count - Offset)); 883 if (Offset) 884 Fn->addFnAttr("patchable-function-prefix", std::to_string(Offset)); 885 } 886 887 // Add no-jump-tables value. 888 if (CGM.getCodeGenOpts().NoUseJumpTables) 889 Fn->addFnAttr("no-jump-tables", "true"); 890 891 // Add no-inline-line-tables value. 892 if (CGM.getCodeGenOpts().NoInlineLineTables) 893 Fn->addFnAttr("no-inline-line-tables"); 894 895 // Add profile-sample-accurate value. 896 if (CGM.getCodeGenOpts().ProfileSampleAccurate) 897 Fn->addFnAttr("profile-sample-accurate"); 898 899 if (!CGM.getCodeGenOpts().SampleProfileFile.empty()) 900 Fn->addFnAttr("use-sample-profile"); 901 902 if (D && D->hasAttr<CFICanonicalJumpTableAttr>()) 903 Fn->addFnAttr("cfi-canonical-jump-table"); 904 905 if (D && D->hasAttr<NoProfileFunctionAttr>()) 906 Fn->addFnAttr(llvm::Attribute::NoProfile); 907 908 if (FD && getLangOpts().OpenCL) { 909 // Add metadata for a kernel function. 910 EmitOpenCLKernelMetadata(FD, Fn); 911 } 912 913 // If we are checking function types, emit a function type signature as 914 // prologue data. 915 if (FD && getLangOpts().CPlusPlus && SanOpts.has(SanitizerKind::Function)) { 916 if (llvm::Constant *PrologueSig = getPrologueSignature(CGM, FD)) { 917 // Remove any (C++17) exception specifications, to allow calling e.g. a 918 // noexcept function through a non-noexcept pointer. 919 auto ProtoTy = getContext().getFunctionTypeWithExceptionSpec( 920 FD->getType(), EST_None); 921 llvm::Constant *FTRTTIConst = 922 CGM.GetAddrOfRTTIDescriptor(ProtoTy, /*ForEH=*/true); 923 llvm::Constant *FTRTTIConstEncoded = 924 EncodeAddrForUseInPrologue(Fn, FTRTTIConst); 925 llvm::Constant *PrologueStructElems[] = {PrologueSig, FTRTTIConstEncoded}; 926 llvm::Constant *PrologueStructConst = 927 llvm::ConstantStruct::getAnon(PrologueStructElems, /*Packed=*/true); 928 Fn->setPrologueData(PrologueStructConst); 929 } 930 } 931 932 // If we're checking nullability, we need to know whether we can check the 933 // return value. Initialize the flag to 'true' and refine it in EmitParmDecl. 934 if (SanOpts.has(SanitizerKind::NullabilityReturn)) { 935 auto Nullability = FnRetTy->getNullability(getContext()); 936 if (Nullability && *Nullability == NullabilityKind::NonNull) { 937 if (!(SanOpts.has(SanitizerKind::ReturnsNonnullAttribute) && 938 CurCodeDecl && CurCodeDecl->getAttr<ReturnsNonNullAttr>())) 939 RetValNullabilityPrecondition = 940 llvm::ConstantInt::getTrue(getLLVMContext()); 941 } 942 } 943 944 // If we're in C++ mode and the function name is "main", it is guaranteed 945 // to be norecurse by the standard (3.6.1.3 "The function main shall not be 946 // used within a program"). 947 // 948 // OpenCL C 2.0 v2.2-11 s6.9.i: 949 // Recursion is not supported. 950 // 951 // SYCL v1.2.1 s3.10: 952 // kernels cannot include RTTI information, exception classes, 953 // recursive code, virtual functions or make use of C++ libraries that 954 // are not compiled for the device. 955 if (FD && ((getLangOpts().CPlusPlus && FD->isMain()) || 956 getLangOpts().OpenCL || getLangOpts().SYCLIsDevice || 957 (getLangOpts().CUDA && FD->hasAttr<CUDAGlobalAttr>()))) 958 Fn->addFnAttr(llvm::Attribute::NoRecurse); 959 960 llvm::RoundingMode RM = getLangOpts().getFPRoundingMode(); 961 llvm::fp::ExceptionBehavior FPExceptionBehavior = 962 ToConstrainedExceptMD(getLangOpts().getFPExceptionMode()); 963 Builder.setDefaultConstrainedRounding(RM); 964 Builder.setDefaultConstrainedExcept(FPExceptionBehavior); 965 if ((FD && (FD->UsesFPIntrin() || FD->hasAttr<StrictFPAttr>())) || 966 (!FD && (FPExceptionBehavior != llvm::fp::ebIgnore || 967 RM != llvm::RoundingMode::NearestTiesToEven))) { 968 Builder.setIsFPConstrained(true); 969 Fn->addFnAttr(llvm::Attribute::StrictFP); 970 } 971 972 // If a custom alignment is used, force realigning to this alignment on 973 // any main function which certainly will need it. 974 if (FD && ((FD->isMain() || FD->isMSVCRTEntryPoint()) && 975 CGM.getCodeGenOpts().StackAlignment)) 976 Fn->addFnAttr("stackrealign"); 977 978 llvm::BasicBlock *EntryBB = createBasicBlock("entry", CurFn); 979 980 // Create a marker to make it easy to insert allocas into the entryblock 981 // later. Don't create this with the builder, because we don't want it 982 // folded. 983 llvm::Value *Undef = llvm::UndefValue::get(Int32Ty); 984 AllocaInsertPt = new llvm::BitCastInst(Undef, Int32Ty, "allocapt", EntryBB); 985 986 ReturnBlock = getJumpDestInCurrentScope("return"); 987 988 Builder.SetInsertPoint(EntryBB); 989 990 // If we're checking the return value, allocate space for a pointer to a 991 // precise source location of the checked return statement. 992 if (requiresReturnValueCheck()) { 993 ReturnLocation = CreateDefaultAlignTempAlloca(Int8PtrTy, "return.sloc.ptr"); 994 Builder.CreateStore(llvm::ConstantPointerNull::get(Int8PtrTy), 995 ReturnLocation); 996 } 997 998 // Emit subprogram debug descriptor. 999 if (CGDebugInfo *DI = getDebugInfo()) { 1000 // Reconstruct the type from the argument list so that implicit parameters, 1001 // such as 'this' and 'vtt', show up in the debug info. Preserve the calling 1002 // convention. 1003 DI->emitFunctionStart(GD, Loc, StartLoc, 1004 DI->getFunctionType(FD, RetTy, Args), CurFn, 1005 CurFuncIsThunk); 1006 } 1007 1008 if (ShouldInstrumentFunction()) { 1009 if (CGM.getCodeGenOpts().InstrumentFunctions) 1010 CurFn->addFnAttr("instrument-function-entry", "__cyg_profile_func_enter"); 1011 if (CGM.getCodeGenOpts().InstrumentFunctionsAfterInlining) 1012 CurFn->addFnAttr("instrument-function-entry-inlined", 1013 "__cyg_profile_func_enter"); 1014 if (CGM.getCodeGenOpts().InstrumentFunctionEntryBare) 1015 CurFn->addFnAttr("instrument-function-entry-inlined", 1016 "__cyg_profile_func_enter_bare"); 1017 } 1018 1019 // Since emitting the mcount call here impacts optimizations such as function 1020 // inlining, we just add an attribute to insert a mcount call in backend. 1021 // The attribute "counting-function" is set to mcount function name which is 1022 // architecture dependent. 1023 if (CGM.getCodeGenOpts().InstrumentForProfiling) { 1024 // Calls to fentry/mcount should not be generated if function has 1025 // the no_instrument_function attribute. 1026 if (!CurFuncDecl || !CurFuncDecl->hasAttr<NoInstrumentFunctionAttr>()) { 1027 if (CGM.getCodeGenOpts().CallFEntry) 1028 Fn->addFnAttr("fentry-call", "true"); 1029 else { 1030 Fn->addFnAttr("instrument-function-entry-inlined", 1031 getTarget().getMCountName()); 1032 } 1033 if (CGM.getCodeGenOpts().MNopMCount) { 1034 if (!CGM.getCodeGenOpts().CallFEntry) 1035 CGM.getDiags().Report(diag::err_opt_not_valid_without_opt) 1036 << "-mnop-mcount" << "-mfentry"; 1037 Fn->addFnAttr("mnop-mcount"); 1038 } 1039 1040 if (CGM.getCodeGenOpts().RecordMCount) { 1041 if (!CGM.getCodeGenOpts().CallFEntry) 1042 CGM.getDiags().Report(diag::err_opt_not_valid_without_opt) 1043 << "-mrecord-mcount" << "-mfentry"; 1044 Fn->addFnAttr("mrecord-mcount"); 1045 } 1046 } 1047 } 1048 1049 if (CGM.getCodeGenOpts().PackedStack) { 1050 if (getContext().getTargetInfo().getTriple().getArch() != 1051 llvm::Triple::systemz) 1052 CGM.getDiags().Report(diag::err_opt_not_valid_on_target) 1053 << "-mpacked-stack"; 1054 Fn->addFnAttr("packed-stack"); 1055 } 1056 1057 if (CGM.getCodeGenOpts().WarnStackSize != UINT_MAX && 1058 !CGM.getDiags().isIgnored(diag::warn_fe_backend_frame_larger_than, Loc)) 1059 Fn->addFnAttr("warn-stack-size", 1060 std::to_string(CGM.getCodeGenOpts().WarnStackSize)); 1061 1062 if (RetTy->isVoidType()) { 1063 // Void type; nothing to return. 1064 ReturnValue = Address::invalid(); 1065 1066 // Count the implicit return. 1067 if (!endsWithReturn(D)) 1068 ++NumReturnExprs; 1069 } else if (CurFnInfo->getReturnInfo().getKind() == ABIArgInfo::Indirect) { 1070 // Indirect return; emit returned value directly into sret slot. 1071 // This reduces code size, and affects correctness in C++. 1072 auto AI = CurFn->arg_begin(); 1073 if (CurFnInfo->getReturnInfo().isSRetAfterThis()) 1074 ++AI; 1075 ReturnValue = Address(&*AI, CurFnInfo->getReturnInfo().getIndirectAlign()); 1076 if (!CurFnInfo->getReturnInfo().getIndirectByVal()) { 1077 ReturnValuePointer = 1078 CreateDefaultAlignTempAlloca(Int8PtrTy, "result.ptr"); 1079 Builder.CreateStore(Builder.CreatePointerBitCastOrAddrSpaceCast( 1080 ReturnValue.getPointer(), Int8PtrTy), 1081 ReturnValuePointer); 1082 } 1083 } else if (CurFnInfo->getReturnInfo().getKind() == ABIArgInfo::InAlloca && 1084 !hasScalarEvaluationKind(CurFnInfo->getReturnType())) { 1085 // Load the sret pointer from the argument struct and return into that. 1086 unsigned Idx = CurFnInfo->getReturnInfo().getInAllocaFieldIndex(); 1087 llvm::Function::arg_iterator EI = CurFn->arg_end(); 1088 --EI; 1089 llvm::Value *Addr = Builder.CreateStructGEP( 1090 EI->getType()->getPointerElementType(), &*EI, Idx); 1091 llvm::Type *Ty = 1092 cast<llvm::GetElementPtrInst>(Addr)->getResultElementType(); 1093 ReturnValuePointer = Address(Addr, getPointerAlign()); 1094 Addr = Builder.CreateAlignedLoad(Ty, Addr, getPointerAlign(), "agg.result"); 1095 ReturnValue = Address(Addr, CGM.getNaturalTypeAlignment(RetTy)); 1096 } else { 1097 ReturnValue = CreateIRTemp(RetTy, "retval"); 1098 1099 // Tell the epilog emitter to autorelease the result. We do this 1100 // now so that various specialized functions can suppress it 1101 // during their IR-generation. 1102 if (getLangOpts().ObjCAutoRefCount && 1103 !CurFnInfo->isReturnsRetained() && 1104 RetTy->isObjCRetainableType()) 1105 AutoreleaseResult = true; 1106 } 1107 1108 EmitStartEHSpec(CurCodeDecl); 1109 1110 PrologueCleanupDepth = EHStack.stable_begin(); 1111 1112 // Emit OpenMP specific initialization of the device functions. 1113 if (getLangOpts().OpenMP && CurCodeDecl) 1114 CGM.getOpenMPRuntime().emitFunctionProlog(*this, CurCodeDecl); 1115 1116 EmitFunctionProlog(*CurFnInfo, CurFn, Args); 1117 1118 if (D && isa<CXXMethodDecl>(D) && cast<CXXMethodDecl>(D)->isInstance()) { 1119 CGM.getCXXABI().EmitInstanceFunctionProlog(*this); 1120 const CXXMethodDecl *MD = cast<CXXMethodDecl>(D); 1121 if (MD->getParent()->isLambda() && 1122 MD->getOverloadedOperator() == OO_Call) { 1123 // We're in a lambda; figure out the captures. 1124 MD->getParent()->getCaptureFields(LambdaCaptureFields, 1125 LambdaThisCaptureField); 1126 if (LambdaThisCaptureField) { 1127 // If the lambda captures the object referred to by '*this' - either by 1128 // value or by reference, make sure CXXThisValue points to the correct 1129 // object. 1130 1131 // Get the lvalue for the field (which is a copy of the enclosing object 1132 // or contains the address of the enclosing object). 1133 LValue ThisFieldLValue = EmitLValueForLambdaField(LambdaThisCaptureField); 1134 if (!LambdaThisCaptureField->getType()->isPointerType()) { 1135 // If the enclosing object was captured by value, just use its address. 1136 CXXThisValue = ThisFieldLValue.getAddress(*this).getPointer(); 1137 } else { 1138 // Load the lvalue pointed to by the field, since '*this' was captured 1139 // by reference. 1140 CXXThisValue = 1141 EmitLoadOfLValue(ThisFieldLValue, SourceLocation()).getScalarVal(); 1142 } 1143 } 1144 for (auto *FD : MD->getParent()->fields()) { 1145 if (FD->hasCapturedVLAType()) { 1146 auto *ExprArg = EmitLoadOfLValue(EmitLValueForLambdaField(FD), 1147 SourceLocation()).getScalarVal(); 1148 auto VAT = FD->getCapturedVLAType(); 1149 VLASizeMap[VAT->getSizeExpr()] = ExprArg; 1150 } 1151 } 1152 } else { 1153 // Not in a lambda; just use 'this' from the method. 1154 // FIXME: Should we generate a new load for each use of 'this'? The 1155 // fast register allocator would be happier... 1156 CXXThisValue = CXXABIThisValue; 1157 } 1158 1159 // Check the 'this' pointer once per function, if it's available. 1160 if (CXXABIThisValue) { 1161 SanitizerSet SkippedChecks; 1162 SkippedChecks.set(SanitizerKind::ObjectSize, true); 1163 QualType ThisTy = MD->getThisType(); 1164 1165 // If this is the call operator of a lambda with no capture-default, it 1166 // may have a static invoker function, which may call this operator with 1167 // a null 'this' pointer. 1168 if (isLambdaCallOperator(MD) && 1169 MD->getParent()->getLambdaCaptureDefault() == LCD_None) 1170 SkippedChecks.set(SanitizerKind::Null, true); 1171 1172 EmitTypeCheck( 1173 isa<CXXConstructorDecl>(MD) ? TCK_ConstructorCall : TCK_MemberCall, 1174 Loc, CXXABIThisValue, ThisTy, CXXABIThisAlignment, SkippedChecks); 1175 } 1176 } 1177 1178 // If any of the arguments have a variably modified type, make sure to 1179 // emit the type size. 1180 for (FunctionArgList::const_iterator i = Args.begin(), e = Args.end(); 1181 i != e; ++i) { 1182 const VarDecl *VD = *i; 1183 1184 // Dig out the type as written from ParmVarDecls; it's unclear whether 1185 // the standard (C99 6.9.1p10) requires this, but we're following the 1186 // precedent set by gcc. 1187 QualType Ty; 1188 if (const ParmVarDecl *PVD = dyn_cast<ParmVarDecl>(VD)) 1189 Ty = PVD->getOriginalType(); 1190 else 1191 Ty = VD->getType(); 1192 1193 if (Ty->isVariablyModifiedType()) 1194 EmitVariablyModifiedType(Ty); 1195 } 1196 // Emit a location at the end of the prologue. 1197 if (CGDebugInfo *DI = getDebugInfo()) 1198 DI->EmitLocation(Builder, StartLoc); 1199 1200 // TODO: Do we need to handle this in two places like we do with 1201 // target-features/target-cpu? 1202 if (CurFuncDecl) 1203 if (const auto *VecWidth = CurFuncDecl->getAttr<MinVectorWidthAttr>()) 1204 LargestVectorWidth = VecWidth->getVectorWidth(); 1205 } 1206 1207 void CodeGenFunction::EmitFunctionBody(const Stmt *Body) { 1208 incrementProfileCounter(Body); 1209 if (const CompoundStmt *S = dyn_cast<CompoundStmt>(Body)) 1210 EmitCompoundStmtWithoutScope(*S); 1211 else 1212 EmitStmt(Body); 1213 1214 // This is checked after emitting the function body so we know if there 1215 // are any permitted infinite loops. 1216 if (checkIfFunctionMustProgress()) 1217 CurFn->addFnAttr(llvm::Attribute::MustProgress); 1218 } 1219 1220 /// When instrumenting to collect profile data, the counts for some blocks 1221 /// such as switch cases need to not include the fall-through counts, so 1222 /// emit a branch around the instrumentation code. When not instrumenting, 1223 /// this just calls EmitBlock(). 1224 void CodeGenFunction::EmitBlockWithFallThrough(llvm::BasicBlock *BB, 1225 const Stmt *S) { 1226 llvm::BasicBlock *SkipCountBB = nullptr; 1227 if (HaveInsertPoint() && CGM.getCodeGenOpts().hasProfileClangInstr()) { 1228 // When instrumenting for profiling, the fallthrough to certain 1229 // statements needs to skip over the instrumentation code so that we 1230 // get an accurate count. 1231 SkipCountBB = createBasicBlock("skipcount"); 1232 EmitBranch(SkipCountBB); 1233 } 1234 EmitBlock(BB); 1235 uint64_t CurrentCount = getCurrentProfileCount(); 1236 incrementProfileCounter(S); 1237 setCurrentProfileCount(getCurrentProfileCount() + CurrentCount); 1238 if (SkipCountBB) 1239 EmitBlock(SkipCountBB); 1240 } 1241 1242 /// Tries to mark the given function nounwind based on the 1243 /// non-existence of any throwing calls within it. We believe this is 1244 /// lightweight enough to do at -O0. 1245 static void TryMarkNoThrow(llvm::Function *F) { 1246 // LLVM treats 'nounwind' on a function as part of the type, so we 1247 // can't do this on functions that can be overwritten. 1248 if (F->isInterposable()) return; 1249 1250 for (llvm::BasicBlock &BB : *F) 1251 for (llvm::Instruction &I : BB) 1252 if (I.mayThrow()) 1253 return; 1254 1255 F->setDoesNotThrow(); 1256 } 1257 1258 QualType CodeGenFunction::BuildFunctionArgList(GlobalDecl GD, 1259 FunctionArgList &Args) { 1260 const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl()); 1261 QualType ResTy = FD->getReturnType(); 1262 1263 const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD); 1264 if (MD && MD->isInstance()) { 1265 if (CGM.getCXXABI().HasThisReturn(GD)) 1266 ResTy = MD->getThisType(); 1267 else if (CGM.getCXXABI().hasMostDerivedReturn(GD)) 1268 ResTy = CGM.getContext().VoidPtrTy; 1269 CGM.getCXXABI().buildThisParam(*this, Args); 1270 } 1271 1272 // The base version of an inheriting constructor whose constructed base is a 1273 // virtual base is not passed any arguments (because it doesn't actually call 1274 // the inherited constructor). 1275 bool PassedParams = true; 1276 if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(FD)) 1277 if (auto Inherited = CD->getInheritedConstructor()) 1278 PassedParams = 1279 getTypes().inheritingCtorHasParams(Inherited, GD.getCtorType()); 1280 1281 if (PassedParams) { 1282 for (auto *Param : FD->parameters()) { 1283 Args.push_back(Param); 1284 if (!Param->hasAttr<PassObjectSizeAttr>()) 1285 continue; 1286 1287 auto *Implicit = ImplicitParamDecl::Create( 1288 getContext(), Param->getDeclContext(), Param->getLocation(), 1289 /*Id=*/nullptr, getContext().getSizeType(), ImplicitParamDecl::Other); 1290 SizeArguments[Param] = Implicit; 1291 Args.push_back(Implicit); 1292 } 1293 } 1294 1295 if (MD && (isa<CXXConstructorDecl>(MD) || isa<CXXDestructorDecl>(MD))) 1296 CGM.getCXXABI().addImplicitStructorParams(*this, ResTy, Args); 1297 1298 return ResTy; 1299 } 1300 1301 void CodeGenFunction::GenerateCode(GlobalDecl GD, llvm::Function *Fn, 1302 const CGFunctionInfo &FnInfo) { 1303 const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl()); 1304 CurGD = GD; 1305 1306 FunctionArgList Args; 1307 QualType ResTy = BuildFunctionArgList(GD, Args); 1308 1309 // When generating code for a builtin with an inline declaration, use a 1310 // mangled name to hold the actual body, while keeping an external definition 1311 // in case the function pointer is referenced somewhere. 1312 if (Fn) { 1313 if (FD->isInlineBuiltinDeclaration()) { 1314 std::string FDInlineName = (Fn->getName() + ".inline").str(); 1315 llvm::Module *M = Fn->getParent(); 1316 llvm::Function *Clone = M->getFunction(FDInlineName); 1317 if (!Clone) { 1318 Clone = llvm::Function::Create(Fn->getFunctionType(), 1319 llvm::GlobalValue::InternalLinkage, 1320 Fn->getAddressSpace(), FDInlineName, M); 1321 Clone->addFnAttr(llvm::Attribute::AlwaysInline); 1322 } 1323 Fn->setLinkage(llvm::GlobalValue::ExternalLinkage); 1324 Fn = Clone; 1325 } 1326 1327 // Detect the unusual situation where an inline version is shadowed by a 1328 // non-inline version. In that case we should pick the external one 1329 // everywhere. That's GCC behavior too. Unfortunately, I cannot find a way 1330 // to detect that situation before we reach codegen, so do some late 1331 // replacement. 1332 else { 1333 for (const FunctionDecl *PD = FD->getPreviousDecl(); PD; 1334 PD = PD->getPreviousDecl()) { 1335 if (LLVM_UNLIKELY(PD->isInlineBuiltinDeclaration())) { 1336 std::string FDInlineName = (Fn->getName() + ".inline").str(); 1337 llvm::Module *M = Fn->getParent(); 1338 if (llvm::Function *Clone = M->getFunction(FDInlineName)) { 1339 Clone->replaceAllUsesWith(Fn); 1340 Clone->eraseFromParent(); 1341 } 1342 break; 1343 } 1344 } 1345 } 1346 } 1347 1348 // Check if we should generate debug info for this function. 1349 if (FD->hasAttr<NoDebugAttr>()) { 1350 // Clear non-distinct debug info that was possibly attached to the function 1351 // due to an earlier declaration without the nodebug attribute 1352 if (Fn) 1353 Fn->setSubprogram(nullptr); 1354 // Disable debug info indefinitely for this function 1355 DebugInfo = nullptr; 1356 } 1357 1358 // The function might not have a body if we're generating thunks for a 1359 // function declaration. 1360 SourceRange BodyRange; 1361 if (Stmt *Body = FD->getBody()) 1362 BodyRange = Body->getSourceRange(); 1363 else 1364 BodyRange = FD->getLocation(); 1365 CurEHLocation = BodyRange.getEnd(); 1366 1367 // Use the location of the start of the function to determine where 1368 // the function definition is located. By default use the location 1369 // of the declaration as the location for the subprogram. A function 1370 // may lack a declaration in the source code if it is created by code 1371 // gen. (examples: _GLOBAL__I_a, __cxx_global_array_dtor, thunk). 1372 SourceLocation Loc = FD->getLocation(); 1373 1374 // If this is a function specialization then use the pattern body 1375 // as the location for the function. 1376 if (const FunctionDecl *SpecDecl = FD->getTemplateInstantiationPattern()) 1377 if (SpecDecl->hasBody(SpecDecl)) 1378 Loc = SpecDecl->getLocation(); 1379 1380 Stmt *Body = FD->getBody(); 1381 1382 if (Body) { 1383 // Coroutines always emit lifetime markers. 1384 if (isa<CoroutineBodyStmt>(Body)) 1385 ShouldEmitLifetimeMarkers = true; 1386 1387 // Initialize helper which will detect jumps which can cause invalid 1388 // lifetime markers. 1389 if (ShouldEmitLifetimeMarkers) 1390 Bypasses.Init(Body); 1391 } 1392 1393 // Emit the standard function prologue. 1394 StartFunction(GD, ResTy, Fn, FnInfo, Args, Loc, BodyRange.getBegin()); 1395 1396 // Save parameters for coroutine function. 1397 if (Body && isa_and_nonnull<CoroutineBodyStmt>(Body)) 1398 for (const auto *ParamDecl : FD->parameters()) 1399 FnArgs.push_back(ParamDecl); 1400 1401 // Generate the body of the function. 1402 PGO.assignRegionCounters(GD, CurFn); 1403 if (isa<CXXDestructorDecl>(FD)) 1404 EmitDestructorBody(Args); 1405 else if (isa<CXXConstructorDecl>(FD)) 1406 EmitConstructorBody(Args); 1407 else if (getLangOpts().CUDA && 1408 !getLangOpts().CUDAIsDevice && 1409 FD->hasAttr<CUDAGlobalAttr>()) 1410 CGM.getCUDARuntime().emitDeviceStub(*this, Args); 1411 else if (isa<CXXMethodDecl>(FD) && 1412 cast<CXXMethodDecl>(FD)->isLambdaStaticInvoker()) { 1413 // The lambda static invoker function is special, because it forwards or 1414 // clones the body of the function call operator (but is actually static). 1415 EmitLambdaStaticInvokeBody(cast<CXXMethodDecl>(FD)); 1416 } else if (FD->isDefaulted() && isa<CXXMethodDecl>(FD) && 1417 (cast<CXXMethodDecl>(FD)->isCopyAssignmentOperator() || 1418 cast<CXXMethodDecl>(FD)->isMoveAssignmentOperator())) { 1419 // Implicit copy-assignment gets the same special treatment as implicit 1420 // copy-constructors. 1421 emitImplicitAssignmentOperatorBody(Args); 1422 } else if (Body) { 1423 EmitFunctionBody(Body); 1424 } else 1425 llvm_unreachable("no definition for emitted function"); 1426 1427 // C++11 [stmt.return]p2: 1428 // Flowing off the end of a function [...] results in undefined behavior in 1429 // a value-returning function. 1430 // C11 6.9.1p12: 1431 // If the '}' that terminates a function is reached, and the value of the 1432 // function call is used by the caller, the behavior is undefined. 1433 if (getLangOpts().CPlusPlus && !FD->hasImplicitReturnZero() && !SawAsmBlock && 1434 !FD->getReturnType()->isVoidType() && Builder.GetInsertBlock()) { 1435 bool ShouldEmitUnreachable = 1436 CGM.getCodeGenOpts().StrictReturn || 1437 !CGM.MayDropFunctionReturn(FD->getASTContext(), FD->getReturnType()); 1438 if (SanOpts.has(SanitizerKind::Return)) { 1439 SanitizerScope SanScope(this); 1440 llvm::Value *IsFalse = Builder.getFalse(); 1441 EmitCheck(std::make_pair(IsFalse, SanitizerKind::Return), 1442 SanitizerHandler::MissingReturn, 1443 EmitCheckSourceLocation(FD->getLocation()), None); 1444 } else if (ShouldEmitUnreachable) { 1445 if (CGM.getCodeGenOpts().OptimizationLevel == 0) 1446 EmitTrapCall(llvm::Intrinsic::trap); 1447 } 1448 if (SanOpts.has(SanitizerKind::Return) || ShouldEmitUnreachable) { 1449 Builder.CreateUnreachable(); 1450 Builder.ClearInsertionPoint(); 1451 } 1452 } 1453 1454 // Emit the standard function epilogue. 1455 FinishFunction(BodyRange.getEnd()); 1456 1457 // If we haven't marked the function nothrow through other means, do 1458 // a quick pass now to see if we can. 1459 if (!CurFn->doesNotThrow()) 1460 TryMarkNoThrow(CurFn); 1461 } 1462 1463 /// ContainsLabel - Return true if the statement contains a label in it. If 1464 /// this statement is not executed normally, it not containing a label means 1465 /// that we can just remove the code. 1466 bool CodeGenFunction::ContainsLabel(const Stmt *S, bool IgnoreCaseStmts) { 1467 // Null statement, not a label! 1468 if (!S) return false; 1469 1470 // If this is a label, we have to emit the code, consider something like: 1471 // if (0) { ... foo: bar(); } goto foo; 1472 // 1473 // TODO: If anyone cared, we could track __label__'s, since we know that you 1474 // can't jump to one from outside their declared region. 1475 if (isa<LabelStmt>(S)) 1476 return true; 1477 1478 // If this is a case/default statement, and we haven't seen a switch, we have 1479 // to emit the code. 1480 if (isa<SwitchCase>(S) && !IgnoreCaseStmts) 1481 return true; 1482 1483 // If this is a switch statement, we want to ignore cases below it. 1484 if (isa<SwitchStmt>(S)) 1485 IgnoreCaseStmts = true; 1486 1487 // Scan subexpressions for verboten labels. 1488 for (const Stmt *SubStmt : S->children()) 1489 if (ContainsLabel(SubStmt, IgnoreCaseStmts)) 1490 return true; 1491 1492 return false; 1493 } 1494 1495 /// containsBreak - Return true if the statement contains a break out of it. 1496 /// If the statement (recursively) contains a switch or loop with a break 1497 /// inside of it, this is fine. 1498 bool CodeGenFunction::containsBreak(const Stmt *S) { 1499 // Null statement, not a label! 1500 if (!S) return false; 1501 1502 // If this is a switch or loop that defines its own break scope, then we can 1503 // include it and anything inside of it. 1504 if (isa<SwitchStmt>(S) || isa<WhileStmt>(S) || isa<DoStmt>(S) || 1505 isa<ForStmt>(S)) 1506 return false; 1507 1508 if (isa<BreakStmt>(S)) 1509 return true; 1510 1511 // Scan subexpressions for verboten breaks. 1512 for (const Stmt *SubStmt : S->children()) 1513 if (containsBreak(SubStmt)) 1514 return true; 1515 1516 return false; 1517 } 1518 1519 bool CodeGenFunction::mightAddDeclToScope(const Stmt *S) { 1520 if (!S) return false; 1521 1522 // Some statement kinds add a scope and thus never add a decl to the current 1523 // scope. Note, this list is longer than the list of statements that might 1524 // have an unscoped decl nested within them, but this way is conservatively 1525 // correct even if more statement kinds are added. 1526 if (isa<IfStmt>(S) || isa<SwitchStmt>(S) || isa<WhileStmt>(S) || 1527 isa<DoStmt>(S) || isa<ForStmt>(S) || isa<CompoundStmt>(S) || 1528 isa<CXXForRangeStmt>(S) || isa<CXXTryStmt>(S) || 1529 isa<ObjCForCollectionStmt>(S) || isa<ObjCAtTryStmt>(S)) 1530 return false; 1531 1532 if (isa<DeclStmt>(S)) 1533 return true; 1534 1535 for (const Stmt *SubStmt : S->children()) 1536 if (mightAddDeclToScope(SubStmt)) 1537 return true; 1538 1539 return false; 1540 } 1541 1542 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold 1543 /// to a constant, or if it does but contains a label, return false. If it 1544 /// constant folds return true and set the boolean result in Result. 1545 bool CodeGenFunction::ConstantFoldsToSimpleInteger(const Expr *Cond, 1546 bool &ResultBool, 1547 bool AllowLabels) { 1548 llvm::APSInt ResultInt; 1549 if (!ConstantFoldsToSimpleInteger(Cond, ResultInt, AllowLabels)) 1550 return false; 1551 1552 ResultBool = ResultInt.getBoolValue(); 1553 return true; 1554 } 1555 1556 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold 1557 /// to a constant, or if it does but contains a label, return false. If it 1558 /// constant folds return true and set the folded value. 1559 bool CodeGenFunction::ConstantFoldsToSimpleInteger(const Expr *Cond, 1560 llvm::APSInt &ResultInt, 1561 bool AllowLabels) { 1562 // FIXME: Rename and handle conversion of other evaluatable things 1563 // to bool. 1564 Expr::EvalResult Result; 1565 if (!Cond->EvaluateAsInt(Result, getContext())) 1566 return false; // Not foldable, not integer or not fully evaluatable. 1567 1568 llvm::APSInt Int = Result.Val.getInt(); 1569 if (!AllowLabels && CodeGenFunction::ContainsLabel(Cond)) 1570 return false; // Contains a label. 1571 1572 ResultInt = Int; 1573 return true; 1574 } 1575 1576 /// Determine whether the given condition is an instrumentable condition 1577 /// (i.e. no "&&" or "||"). 1578 bool CodeGenFunction::isInstrumentedCondition(const Expr *C) { 1579 // Bypass simplistic logical-NOT operator before determining whether the 1580 // condition contains any other logical operator. 1581 if (const UnaryOperator *UnOp = dyn_cast<UnaryOperator>(C->IgnoreParens())) 1582 if (UnOp->getOpcode() == UO_LNot) 1583 C = UnOp->getSubExpr(); 1584 1585 const BinaryOperator *BOp = dyn_cast<BinaryOperator>(C->IgnoreParens()); 1586 return (!BOp || !BOp->isLogicalOp()); 1587 } 1588 1589 /// EmitBranchToCounterBlock - Emit a conditional branch to a new block that 1590 /// increments a profile counter based on the semantics of the given logical 1591 /// operator opcode. This is used to instrument branch condition coverage for 1592 /// logical operators. 1593 void CodeGenFunction::EmitBranchToCounterBlock( 1594 const Expr *Cond, BinaryOperator::Opcode LOp, llvm::BasicBlock *TrueBlock, 1595 llvm::BasicBlock *FalseBlock, uint64_t TrueCount /* = 0 */, 1596 Stmt::Likelihood LH /* =None */, const Expr *CntrIdx /* = nullptr */) { 1597 // If not instrumenting, just emit a branch. 1598 bool InstrumentRegions = CGM.getCodeGenOpts().hasProfileClangInstr(); 1599 if (!InstrumentRegions || !isInstrumentedCondition(Cond)) 1600 return EmitBranchOnBoolExpr(Cond, TrueBlock, FalseBlock, TrueCount, LH); 1601 1602 llvm::BasicBlock *ThenBlock = NULL; 1603 llvm::BasicBlock *ElseBlock = NULL; 1604 llvm::BasicBlock *NextBlock = NULL; 1605 1606 // Create the block we'll use to increment the appropriate counter. 1607 llvm::BasicBlock *CounterIncrBlock = createBasicBlock("lop.rhscnt"); 1608 1609 // Set block pointers according to Logical-AND (BO_LAnd) semantics. This 1610 // means we need to evaluate the condition and increment the counter on TRUE: 1611 // 1612 // if (Cond) 1613 // goto CounterIncrBlock; 1614 // else 1615 // goto FalseBlock; 1616 // 1617 // CounterIncrBlock: 1618 // Counter++; 1619 // goto TrueBlock; 1620 1621 if (LOp == BO_LAnd) { 1622 ThenBlock = CounterIncrBlock; 1623 ElseBlock = FalseBlock; 1624 NextBlock = TrueBlock; 1625 } 1626 1627 // Set block pointers according to Logical-OR (BO_LOr) semantics. This means 1628 // we need to evaluate the condition and increment the counter on FALSE: 1629 // 1630 // if (Cond) 1631 // goto TrueBlock; 1632 // else 1633 // goto CounterIncrBlock; 1634 // 1635 // CounterIncrBlock: 1636 // Counter++; 1637 // goto FalseBlock; 1638 1639 else if (LOp == BO_LOr) { 1640 ThenBlock = TrueBlock; 1641 ElseBlock = CounterIncrBlock; 1642 NextBlock = FalseBlock; 1643 } else { 1644 llvm_unreachable("Expected Opcode must be that of a Logical Operator"); 1645 } 1646 1647 // Emit Branch based on condition. 1648 EmitBranchOnBoolExpr(Cond, ThenBlock, ElseBlock, TrueCount, LH); 1649 1650 // Emit the block containing the counter increment(s). 1651 EmitBlock(CounterIncrBlock); 1652 1653 // Increment corresponding counter; if index not provided, use Cond as index. 1654 incrementProfileCounter(CntrIdx ? CntrIdx : Cond); 1655 1656 // Go to the next block. 1657 EmitBranch(NextBlock); 1658 } 1659 1660 /// EmitBranchOnBoolExpr - Emit a branch on a boolean condition (e.g. for an if 1661 /// statement) to the specified blocks. Based on the condition, this might try 1662 /// to simplify the codegen of the conditional based on the branch. 1663 /// \param LH The value of the likelihood attribute on the True branch. 1664 void CodeGenFunction::EmitBranchOnBoolExpr(const Expr *Cond, 1665 llvm::BasicBlock *TrueBlock, 1666 llvm::BasicBlock *FalseBlock, 1667 uint64_t TrueCount, 1668 Stmt::Likelihood LH) { 1669 Cond = Cond->IgnoreParens(); 1670 1671 if (const BinaryOperator *CondBOp = dyn_cast<BinaryOperator>(Cond)) { 1672 1673 // Handle X && Y in a condition. 1674 if (CondBOp->getOpcode() == BO_LAnd) { 1675 // If we have "1 && X", simplify the code. "0 && X" would have constant 1676 // folded if the case was simple enough. 1677 bool ConstantBool = false; 1678 if (ConstantFoldsToSimpleInteger(CondBOp->getLHS(), ConstantBool) && 1679 ConstantBool) { 1680 // br(1 && X) -> br(X). 1681 incrementProfileCounter(CondBOp); 1682 return EmitBranchToCounterBlock(CondBOp->getRHS(), BO_LAnd, TrueBlock, 1683 FalseBlock, TrueCount, LH); 1684 } 1685 1686 // If we have "X && 1", simplify the code to use an uncond branch. 1687 // "X && 0" would have been constant folded to 0. 1688 if (ConstantFoldsToSimpleInteger(CondBOp->getRHS(), ConstantBool) && 1689 ConstantBool) { 1690 // br(X && 1) -> br(X). 1691 return EmitBranchToCounterBlock(CondBOp->getLHS(), BO_LAnd, TrueBlock, 1692 FalseBlock, TrueCount, LH, CondBOp); 1693 } 1694 1695 // Emit the LHS as a conditional. If the LHS conditional is false, we 1696 // want to jump to the FalseBlock. 1697 llvm::BasicBlock *LHSTrue = createBasicBlock("land.lhs.true"); 1698 // The counter tells us how often we evaluate RHS, and all of TrueCount 1699 // can be propagated to that branch. 1700 uint64_t RHSCount = getProfileCount(CondBOp->getRHS()); 1701 1702 ConditionalEvaluation eval(*this); 1703 { 1704 ApplyDebugLocation DL(*this, Cond); 1705 // Propagate the likelihood attribute like __builtin_expect 1706 // __builtin_expect(X && Y, 1) -> X and Y are likely 1707 // __builtin_expect(X && Y, 0) -> only Y is unlikely 1708 EmitBranchOnBoolExpr(CondBOp->getLHS(), LHSTrue, FalseBlock, RHSCount, 1709 LH == Stmt::LH_Unlikely ? Stmt::LH_None : LH); 1710 EmitBlock(LHSTrue); 1711 } 1712 1713 incrementProfileCounter(CondBOp); 1714 setCurrentProfileCount(getProfileCount(CondBOp->getRHS())); 1715 1716 // Any temporaries created here are conditional. 1717 eval.begin(*this); 1718 EmitBranchToCounterBlock(CondBOp->getRHS(), BO_LAnd, TrueBlock, 1719 FalseBlock, TrueCount, LH); 1720 eval.end(*this); 1721 1722 return; 1723 } 1724 1725 if (CondBOp->getOpcode() == BO_LOr) { 1726 // If we have "0 || X", simplify the code. "1 || X" would have constant 1727 // folded if the case was simple enough. 1728 bool ConstantBool = false; 1729 if (ConstantFoldsToSimpleInteger(CondBOp->getLHS(), ConstantBool) && 1730 !ConstantBool) { 1731 // br(0 || X) -> br(X). 1732 incrementProfileCounter(CondBOp); 1733 return EmitBranchToCounterBlock(CondBOp->getRHS(), BO_LOr, TrueBlock, 1734 FalseBlock, TrueCount, LH); 1735 } 1736 1737 // If we have "X || 0", simplify the code to use an uncond branch. 1738 // "X || 1" would have been constant folded to 1. 1739 if (ConstantFoldsToSimpleInteger(CondBOp->getRHS(), ConstantBool) && 1740 !ConstantBool) { 1741 // br(X || 0) -> br(X). 1742 return EmitBranchToCounterBlock(CondBOp->getLHS(), BO_LOr, TrueBlock, 1743 FalseBlock, TrueCount, LH, CondBOp); 1744 } 1745 1746 // Emit the LHS as a conditional. If the LHS conditional is true, we 1747 // want to jump to the TrueBlock. 1748 llvm::BasicBlock *LHSFalse = createBasicBlock("lor.lhs.false"); 1749 // We have the count for entry to the RHS and for the whole expression 1750 // being true, so we can divy up True count between the short circuit and 1751 // the RHS. 1752 uint64_t LHSCount = 1753 getCurrentProfileCount() - getProfileCount(CondBOp->getRHS()); 1754 uint64_t RHSCount = TrueCount - LHSCount; 1755 1756 ConditionalEvaluation eval(*this); 1757 { 1758 // Propagate the likelihood attribute like __builtin_expect 1759 // __builtin_expect(X || Y, 1) -> only Y is likely 1760 // __builtin_expect(X || Y, 0) -> both X and Y are unlikely 1761 ApplyDebugLocation DL(*this, Cond); 1762 EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, LHSFalse, LHSCount, 1763 LH == Stmt::LH_Likely ? Stmt::LH_None : LH); 1764 EmitBlock(LHSFalse); 1765 } 1766 1767 incrementProfileCounter(CondBOp); 1768 setCurrentProfileCount(getProfileCount(CondBOp->getRHS())); 1769 1770 // Any temporaries created here are conditional. 1771 eval.begin(*this); 1772 EmitBranchToCounterBlock(CondBOp->getRHS(), BO_LOr, TrueBlock, FalseBlock, 1773 RHSCount, LH); 1774 1775 eval.end(*this); 1776 1777 return; 1778 } 1779 } 1780 1781 if (const UnaryOperator *CondUOp = dyn_cast<UnaryOperator>(Cond)) { 1782 // br(!x, t, f) -> br(x, f, t) 1783 if (CondUOp->getOpcode() == UO_LNot) { 1784 // Negate the count. 1785 uint64_t FalseCount = getCurrentProfileCount() - TrueCount; 1786 // The values of the enum are chosen to make this negation possible. 1787 LH = static_cast<Stmt::Likelihood>(-LH); 1788 // Negate the condition and swap the destination blocks. 1789 return EmitBranchOnBoolExpr(CondUOp->getSubExpr(), FalseBlock, TrueBlock, 1790 FalseCount, LH); 1791 } 1792 } 1793 1794 if (const ConditionalOperator *CondOp = dyn_cast<ConditionalOperator>(Cond)) { 1795 // br(c ? x : y, t, f) -> br(c, br(x, t, f), br(y, t, f)) 1796 llvm::BasicBlock *LHSBlock = createBasicBlock("cond.true"); 1797 llvm::BasicBlock *RHSBlock = createBasicBlock("cond.false"); 1798 1799 // The ConditionalOperator itself has no likelihood information for its 1800 // true and false branches. This matches the behavior of __builtin_expect. 1801 ConditionalEvaluation cond(*this); 1802 EmitBranchOnBoolExpr(CondOp->getCond(), LHSBlock, RHSBlock, 1803 getProfileCount(CondOp), Stmt::LH_None); 1804 1805 // When computing PGO branch weights, we only know the overall count for 1806 // the true block. This code is essentially doing tail duplication of the 1807 // naive code-gen, introducing new edges for which counts are not 1808 // available. Divide the counts proportionally between the LHS and RHS of 1809 // the conditional operator. 1810 uint64_t LHSScaledTrueCount = 0; 1811 if (TrueCount) { 1812 double LHSRatio = 1813 getProfileCount(CondOp) / (double)getCurrentProfileCount(); 1814 LHSScaledTrueCount = TrueCount * LHSRatio; 1815 } 1816 1817 cond.begin(*this); 1818 EmitBlock(LHSBlock); 1819 incrementProfileCounter(CondOp); 1820 { 1821 ApplyDebugLocation DL(*this, Cond); 1822 EmitBranchOnBoolExpr(CondOp->getLHS(), TrueBlock, FalseBlock, 1823 LHSScaledTrueCount, LH); 1824 } 1825 cond.end(*this); 1826 1827 cond.begin(*this); 1828 EmitBlock(RHSBlock); 1829 EmitBranchOnBoolExpr(CondOp->getRHS(), TrueBlock, FalseBlock, 1830 TrueCount - LHSScaledTrueCount, LH); 1831 cond.end(*this); 1832 1833 return; 1834 } 1835 1836 if (const CXXThrowExpr *Throw = dyn_cast<CXXThrowExpr>(Cond)) { 1837 // Conditional operator handling can give us a throw expression as a 1838 // condition for a case like: 1839 // br(c ? throw x : y, t, f) -> br(c, br(throw x, t, f), br(y, t, f) 1840 // Fold this to: 1841 // br(c, throw x, br(y, t, f)) 1842 EmitCXXThrowExpr(Throw, /*KeepInsertionPoint*/false); 1843 return; 1844 } 1845 1846 // Emit the code with the fully general case. 1847 llvm::Value *CondV; 1848 { 1849 ApplyDebugLocation DL(*this, Cond); 1850 CondV = EvaluateExprAsBool(Cond); 1851 } 1852 1853 llvm::MDNode *Weights = nullptr; 1854 llvm::MDNode *Unpredictable = nullptr; 1855 1856 // If the branch has a condition wrapped by __builtin_unpredictable, 1857 // create metadata that specifies that the branch is unpredictable. 1858 // Don't bother if not optimizing because that metadata would not be used. 1859 auto *Call = dyn_cast<CallExpr>(Cond->IgnoreImpCasts()); 1860 if (Call && CGM.getCodeGenOpts().OptimizationLevel != 0) { 1861 auto *FD = dyn_cast_or_null<FunctionDecl>(Call->getCalleeDecl()); 1862 if (FD && FD->getBuiltinID() == Builtin::BI__builtin_unpredictable) { 1863 llvm::MDBuilder MDHelper(getLLVMContext()); 1864 Unpredictable = MDHelper.createUnpredictable(); 1865 } 1866 } 1867 1868 // If there is a Likelihood knowledge for the cond, lower it. 1869 // Note that if not optimizing this won't emit anything. 1870 llvm::Value *NewCondV = emitCondLikelihoodViaExpectIntrinsic(CondV, LH); 1871 if (CondV != NewCondV) 1872 CondV = NewCondV; 1873 else { 1874 // Otherwise, lower profile counts. Note that we do this even at -O0. 1875 uint64_t CurrentCount = std::max(getCurrentProfileCount(), TrueCount); 1876 Weights = createProfileWeights(TrueCount, CurrentCount - TrueCount); 1877 } 1878 1879 Builder.CreateCondBr(CondV, TrueBlock, FalseBlock, Weights, Unpredictable); 1880 } 1881 1882 /// ErrorUnsupported - Print out an error that codegen doesn't support the 1883 /// specified stmt yet. 1884 void CodeGenFunction::ErrorUnsupported(const Stmt *S, const char *Type) { 1885 CGM.ErrorUnsupported(S, Type); 1886 } 1887 1888 /// emitNonZeroVLAInit - Emit the "zero" initialization of a 1889 /// variable-length array whose elements have a non-zero bit-pattern. 1890 /// 1891 /// \param baseType the inner-most element type of the array 1892 /// \param src - a char* pointing to the bit-pattern for a single 1893 /// base element of the array 1894 /// \param sizeInChars - the total size of the VLA, in chars 1895 static void emitNonZeroVLAInit(CodeGenFunction &CGF, QualType baseType, 1896 Address dest, Address src, 1897 llvm::Value *sizeInChars) { 1898 CGBuilderTy &Builder = CGF.Builder; 1899 1900 CharUnits baseSize = CGF.getContext().getTypeSizeInChars(baseType); 1901 llvm::Value *baseSizeInChars 1902 = llvm::ConstantInt::get(CGF.IntPtrTy, baseSize.getQuantity()); 1903 1904 Address begin = 1905 Builder.CreateElementBitCast(dest, CGF.Int8Ty, "vla.begin"); 1906 llvm::Value *end = Builder.CreateInBoundsGEP( 1907 begin.getElementType(), begin.getPointer(), sizeInChars, "vla.end"); 1908 1909 llvm::BasicBlock *originBB = CGF.Builder.GetInsertBlock(); 1910 llvm::BasicBlock *loopBB = CGF.createBasicBlock("vla-init.loop"); 1911 llvm::BasicBlock *contBB = CGF.createBasicBlock("vla-init.cont"); 1912 1913 // Make a loop over the VLA. C99 guarantees that the VLA element 1914 // count must be nonzero. 1915 CGF.EmitBlock(loopBB); 1916 1917 llvm::PHINode *cur = Builder.CreatePHI(begin.getType(), 2, "vla.cur"); 1918 cur->addIncoming(begin.getPointer(), originBB); 1919 1920 CharUnits curAlign = 1921 dest.getAlignment().alignmentOfArrayElement(baseSize); 1922 1923 // memcpy the individual element bit-pattern. 1924 Builder.CreateMemCpy(Address(cur, curAlign), src, baseSizeInChars, 1925 /*volatile*/ false); 1926 1927 // Go to the next element. 1928 llvm::Value *next = 1929 Builder.CreateInBoundsGEP(CGF.Int8Ty, cur, baseSizeInChars, "vla.next"); 1930 1931 // Leave if that's the end of the VLA. 1932 llvm::Value *done = Builder.CreateICmpEQ(next, end, "vla-init.isdone"); 1933 Builder.CreateCondBr(done, contBB, loopBB); 1934 cur->addIncoming(next, loopBB); 1935 1936 CGF.EmitBlock(contBB); 1937 } 1938 1939 void 1940 CodeGenFunction::EmitNullInitialization(Address DestPtr, QualType Ty) { 1941 // Ignore empty classes in C++. 1942 if (getLangOpts().CPlusPlus) { 1943 if (const RecordType *RT = Ty->getAs<RecordType>()) { 1944 if (cast<CXXRecordDecl>(RT->getDecl())->isEmpty()) 1945 return; 1946 } 1947 } 1948 1949 // Cast the dest ptr to the appropriate i8 pointer type. 1950 if (DestPtr.getElementType() != Int8Ty) 1951 DestPtr = Builder.CreateElementBitCast(DestPtr, Int8Ty); 1952 1953 // Get size and alignment info for this aggregate. 1954 CharUnits size = getContext().getTypeSizeInChars(Ty); 1955 1956 llvm::Value *SizeVal; 1957 const VariableArrayType *vla; 1958 1959 // Don't bother emitting a zero-byte memset. 1960 if (size.isZero()) { 1961 // But note that getTypeInfo returns 0 for a VLA. 1962 if (const VariableArrayType *vlaType = 1963 dyn_cast_or_null<VariableArrayType>( 1964 getContext().getAsArrayType(Ty))) { 1965 auto VlaSize = getVLASize(vlaType); 1966 SizeVal = VlaSize.NumElts; 1967 CharUnits eltSize = getContext().getTypeSizeInChars(VlaSize.Type); 1968 if (!eltSize.isOne()) 1969 SizeVal = Builder.CreateNUWMul(SizeVal, CGM.getSize(eltSize)); 1970 vla = vlaType; 1971 } else { 1972 return; 1973 } 1974 } else { 1975 SizeVal = CGM.getSize(size); 1976 vla = nullptr; 1977 } 1978 1979 // If the type contains a pointer to data member we can't memset it to zero. 1980 // Instead, create a null constant and copy it to the destination. 1981 // TODO: there are other patterns besides zero that we can usefully memset, 1982 // like -1, which happens to be the pattern used by member-pointers. 1983 if (!CGM.getTypes().isZeroInitializable(Ty)) { 1984 // For a VLA, emit a single element, then splat that over the VLA. 1985 if (vla) Ty = getContext().getBaseElementType(vla); 1986 1987 llvm::Constant *NullConstant = CGM.EmitNullConstant(Ty); 1988 1989 llvm::GlobalVariable *NullVariable = 1990 new llvm::GlobalVariable(CGM.getModule(), NullConstant->getType(), 1991 /*isConstant=*/true, 1992 llvm::GlobalVariable::PrivateLinkage, 1993 NullConstant, Twine()); 1994 CharUnits NullAlign = DestPtr.getAlignment(); 1995 NullVariable->setAlignment(NullAlign.getAsAlign()); 1996 Address SrcPtr(Builder.CreateBitCast(NullVariable, Builder.getInt8PtrTy()), 1997 NullAlign); 1998 1999 if (vla) return emitNonZeroVLAInit(*this, Ty, DestPtr, SrcPtr, SizeVal); 2000 2001 // Get and call the appropriate llvm.memcpy overload. 2002 Builder.CreateMemCpy(DestPtr, SrcPtr, SizeVal, false); 2003 return; 2004 } 2005 2006 // Otherwise, just memset the whole thing to zero. This is legal 2007 // because in LLVM, all default initializers (other than the ones we just 2008 // handled above) are guaranteed to have a bit pattern of all zeros. 2009 Builder.CreateMemSet(DestPtr, Builder.getInt8(0), SizeVal, false); 2010 } 2011 2012 llvm::BlockAddress *CodeGenFunction::GetAddrOfLabel(const LabelDecl *L) { 2013 // Make sure that there is a block for the indirect goto. 2014 if (!IndirectBranch) 2015 GetIndirectGotoBlock(); 2016 2017 llvm::BasicBlock *BB = getJumpDestForLabel(L).getBlock(); 2018 2019 // Make sure the indirect branch includes all of the address-taken blocks. 2020 IndirectBranch->addDestination(BB); 2021 return llvm::BlockAddress::get(CurFn, BB); 2022 } 2023 2024 llvm::BasicBlock *CodeGenFunction::GetIndirectGotoBlock() { 2025 // If we already made the indirect branch for indirect goto, return its block. 2026 if (IndirectBranch) return IndirectBranch->getParent(); 2027 2028 CGBuilderTy TmpBuilder(*this, createBasicBlock("indirectgoto")); 2029 2030 // Create the PHI node that indirect gotos will add entries to. 2031 llvm::Value *DestVal = TmpBuilder.CreatePHI(Int8PtrTy, 0, 2032 "indirect.goto.dest"); 2033 2034 // Create the indirect branch instruction. 2035 IndirectBranch = TmpBuilder.CreateIndirectBr(DestVal); 2036 return IndirectBranch->getParent(); 2037 } 2038 2039 /// Computes the length of an array in elements, as well as the base 2040 /// element type and a properly-typed first element pointer. 2041 llvm::Value *CodeGenFunction::emitArrayLength(const ArrayType *origArrayType, 2042 QualType &baseType, 2043 Address &addr) { 2044 const ArrayType *arrayType = origArrayType; 2045 2046 // If it's a VLA, we have to load the stored size. Note that 2047 // this is the size of the VLA in bytes, not its size in elements. 2048 llvm::Value *numVLAElements = nullptr; 2049 if (isa<VariableArrayType>(arrayType)) { 2050 numVLAElements = getVLASize(cast<VariableArrayType>(arrayType)).NumElts; 2051 2052 // Walk into all VLAs. This doesn't require changes to addr, 2053 // which has type T* where T is the first non-VLA element type. 2054 do { 2055 QualType elementType = arrayType->getElementType(); 2056 arrayType = getContext().getAsArrayType(elementType); 2057 2058 // If we only have VLA components, 'addr' requires no adjustment. 2059 if (!arrayType) { 2060 baseType = elementType; 2061 return numVLAElements; 2062 } 2063 } while (isa<VariableArrayType>(arrayType)); 2064 2065 // We get out here only if we find a constant array type 2066 // inside the VLA. 2067 } 2068 2069 // We have some number of constant-length arrays, so addr should 2070 // have LLVM type [M x [N x [...]]]*. Build a GEP that walks 2071 // down to the first element of addr. 2072 SmallVector<llvm::Value*, 8> gepIndices; 2073 2074 // GEP down to the array type. 2075 llvm::ConstantInt *zero = Builder.getInt32(0); 2076 gepIndices.push_back(zero); 2077 2078 uint64_t countFromCLAs = 1; 2079 QualType eltType; 2080 2081 llvm::ArrayType *llvmArrayType = 2082 dyn_cast<llvm::ArrayType>(addr.getElementType()); 2083 while (llvmArrayType) { 2084 assert(isa<ConstantArrayType>(arrayType)); 2085 assert(cast<ConstantArrayType>(arrayType)->getSize().getZExtValue() 2086 == llvmArrayType->getNumElements()); 2087 2088 gepIndices.push_back(zero); 2089 countFromCLAs *= llvmArrayType->getNumElements(); 2090 eltType = arrayType->getElementType(); 2091 2092 llvmArrayType = 2093 dyn_cast<llvm::ArrayType>(llvmArrayType->getElementType()); 2094 arrayType = getContext().getAsArrayType(arrayType->getElementType()); 2095 assert((!llvmArrayType || arrayType) && 2096 "LLVM and Clang types are out-of-synch"); 2097 } 2098 2099 if (arrayType) { 2100 // From this point onwards, the Clang array type has been emitted 2101 // as some other type (probably a packed struct). Compute the array 2102 // size, and just emit the 'begin' expression as a bitcast. 2103 while (arrayType) { 2104 countFromCLAs *= 2105 cast<ConstantArrayType>(arrayType)->getSize().getZExtValue(); 2106 eltType = arrayType->getElementType(); 2107 arrayType = getContext().getAsArrayType(eltType); 2108 } 2109 2110 llvm::Type *baseType = ConvertType(eltType); 2111 addr = Builder.CreateElementBitCast(addr, baseType, "array.begin"); 2112 } else { 2113 // Create the actual GEP. 2114 addr = Address(Builder.CreateInBoundsGEP( 2115 addr.getElementType(), addr.getPointer(), gepIndices, "array.begin"), 2116 addr.getAlignment()); 2117 } 2118 2119 baseType = eltType; 2120 2121 llvm::Value *numElements 2122 = llvm::ConstantInt::get(SizeTy, countFromCLAs); 2123 2124 // If we had any VLA dimensions, factor them in. 2125 if (numVLAElements) 2126 numElements = Builder.CreateNUWMul(numVLAElements, numElements); 2127 2128 return numElements; 2129 } 2130 2131 CodeGenFunction::VlaSizePair CodeGenFunction::getVLASize(QualType type) { 2132 const VariableArrayType *vla = getContext().getAsVariableArrayType(type); 2133 assert(vla && "type was not a variable array type!"); 2134 return getVLASize(vla); 2135 } 2136 2137 CodeGenFunction::VlaSizePair 2138 CodeGenFunction::getVLASize(const VariableArrayType *type) { 2139 // The number of elements so far; always size_t. 2140 llvm::Value *numElements = nullptr; 2141 2142 QualType elementType; 2143 do { 2144 elementType = type->getElementType(); 2145 llvm::Value *vlaSize = VLASizeMap[type->getSizeExpr()]; 2146 assert(vlaSize && "no size for VLA!"); 2147 assert(vlaSize->getType() == SizeTy); 2148 2149 if (!numElements) { 2150 numElements = vlaSize; 2151 } else { 2152 // It's undefined behavior if this wraps around, so mark it that way. 2153 // FIXME: Teach -fsanitize=undefined to trap this. 2154 numElements = Builder.CreateNUWMul(numElements, vlaSize); 2155 } 2156 } while ((type = getContext().getAsVariableArrayType(elementType))); 2157 2158 return { numElements, elementType }; 2159 } 2160 2161 CodeGenFunction::VlaSizePair 2162 CodeGenFunction::getVLAElements1D(QualType type) { 2163 const VariableArrayType *vla = getContext().getAsVariableArrayType(type); 2164 assert(vla && "type was not a variable array type!"); 2165 return getVLAElements1D(vla); 2166 } 2167 2168 CodeGenFunction::VlaSizePair 2169 CodeGenFunction::getVLAElements1D(const VariableArrayType *Vla) { 2170 llvm::Value *VlaSize = VLASizeMap[Vla->getSizeExpr()]; 2171 assert(VlaSize && "no size for VLA!"); 2172 assert(VlaSize->getType() == SizeTy); 2173 return { VlaSize, Vla->getElementType() }; 2174 } 2175 2176 void CodeGenFunction::EmitVariablyModifiedType(QualType type) { 2177 assert(type->isVariablyModifiedType() && 2178 "Must pass variably modified type to EmitVLASizes!"); 2179 2180 EnsureInsertPoint(); 2181 2182 // We're going to walk down into the type and look for VLA 2183 // expressions. 2184 do { 2185 assert(type->isVariablyModifiedType()); 2186 2187 const Type *ty = type.getTypePtr(); 2188 switch (ty->getTypeClass()) { 2189 2190 #define TYPE(Class, Base) 2191 #define ABSTRACT_TYPE(Class, Base) 2192 #define NON_CANONICAL_TYPE(Class, Base) 2193 #define DEPENDENT_TYPE(Class, Base) case Type::Class: 2194 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base) 2195 #include "clang/AST/TypeNodes.inc" 2196 llvm_unreachable("unexpected dependent type!"); 2197 2198 // These types are never variably-modified. 2199 case Type::Builtin: 2200 case Type::Complex: 2201 case Type::Vector: 2202 case Type::ExtVector: 2203 case Type::ConstantMatrix: 2204 case Type::Record: 2205 case Type::Enum: 2206 case Type::Elaborated: 2207 case Type::TemplateSpecialization: 2208 case Type::ObjCTypeParam: 2209 case Type::ObjCObject: 2210 case Type::ObjCInterface: 2211 case Type::ObjCObjectPointer: 2212 case Type::BitInt: 2213 llvm_unreachable("type class is never variably-modified!"); 2214 2215 case Type::Adjusted: 2216 type = cast<AdjustedType>(ty)->getAdjustedType(); 2217 break; 2218 2219 case Type::Decayed: 2220 type = cast<DecayedType>(ty)->getPointeeType(); 2221 break; 2222 2223 case Type::Pointer: 2224 type = cast<PointerType>(ty)->getPointeeType(); 2225 break; 2226 2227 case Type::BlockPointer: 2228 type = cast<BlockPointerType>(ty)->getPointeeType(); 2229 break; 2230 2231 case Type::LValueReference: 2232 case Type::RValueReference: 2233 type = cast<ReferenceType>(ty)->getPointeeType(); 2234 break; 2235 2236 case Type::MemberPointer: 2237 type = cast<MemberPointerType>(ty)->getPointeeType(); 2238 break; 2239 2240 case Type::ConstantArray: 2241 case Type::IncompleteArray: 2242 // Losing element qualification here is fine. 2243 type = cast<ArrayType>(ty)->getElementType(); 2244 break; 2245 2246 case Type::VariableArray: { 2247 // Losing element qualification here is fine. 2248 const VariableArrayType *vat = cast<VariableArrayType>(ty); 2249 2250 // Unknown size indication requires no size computation. 2251 // Otherwise, evaluate and record it. 2252 if (const Expr *size = vat->getSizeExpr()) { 2253 // It's possible that we might have emitted this already, 2254 // e.g. with a typedef and a pointer to it. 2255 llvm::Value *&entry = VLASizeMap[size]; 2256 if (!entry) { 2257 llvm::Value *Size = EmitScalarExpr(size); 2258 2259 // C11 6.7.6.2p5: 2260 // If the size is an expression that is not an integer constant 2261 // expression [...] each time it is evaluated it shall have a value 2262 // greater than zero. 2263 if (SanOpts.has(SanitizerKind::VLABound) && 2264 size->getType()->isSignedIntegerType()) { 2265 SanitizerScope SanScope(this); 2266 llvm::Value *Zero = llvm::Constant::getNullValue(Size->getType()); 2267 llvm::Constant *StaticArgs[] = { 2268 EmitCheckSourceLocation(size->getBeginLoc()), 2269 EmitCheckTypeDescriptor(size->getType())}; 2270 EmitCheck(std::make_pair(Builder.CreateICmpSGT(Size, Zero), 2271 SanitizerKind::VLABound), 2272 SanitizerHandler::VLABoundNotPositive, StaticArgs, Size); 2273 } 2274 2275 // Always zexting here would be wrong if it weren't 2276 // undefined behavior to have a negative bound. 2277 entry = Builder.CreateIntCast(Size, SizeTy, /*signed*/ false); 2278 } 2279 } 2280 type = vat->getElementType(); 2281 break; 2282 } 2283 2284 case Type::FunctionProto: 2285 case Type::FunctionNoProto: 2286 type = cast<FunctionType>(ty)->getReturnType(); 2287 break; 2288 2289 case Type::Paren: 2290 case Type::TypeOf: 2291 case Type::UnaryTransform: 2292 case Type::Attributed: 2293 case Type::SubstTemplateTypeParm: 2294 case Type::MacroQualified: 2295 // Keep walking after single level desugaring. 2296 type = type.getSingleStepDesugaredType(getContext()); 2297 break; 2298 2299 case Type::Typedef: 2300 case Type::Decltype: 2301 case Type::Auto: 2302 case Type::DeducedTemplateSpecialization: 2303 // Stop walking: nothing to do. 2304 return; 2305 2306 case Type::TypeOfExpr: 2307 // Stop walking: emit typeof expression. 2308 EmitIgnoredExpr(cast<TypeOfExprType>(ty)->getUnderlyingExpr()); 2309 return; 2310 2311 case Type::Atomic: 2312 type = cast<AtomicType>(ty)->getValueType(); 2313 break; 2314 2315 case Type::Pipe: 2316 type = cast<PipeType>(ty)->getElementType(); 2317 break; 2318 } 2319 } while (type->isVariablyModifiedType()); 2320 } 2321 2322 Address CodeGenFunction::EmitVAListRef(const Expr* E) { 2323 if (getContext().getBuiltinVaListType()->isArrayType()) 2324 return EmitPointerWithAlignment(E); 2325 return EmitLValue(E).getAddress(*this); 2326 } 2327 2328 Address CodeGenFunction::EmitMSVAListRef(const Expr *E) { 2329 return EmitLValue(E).getAddress(*this); 2330 } 2331 2332 void CodeGenFunction::EmitDeclRefExprDbgValue(const DeclRefExpr *E, 2333 const APValue &Init) { 2334 assert(Init.hasValue() && "Invalid DeclRefExpr initializer!"); 2335 if (CGDebugInfo *Dbg = getDebugInfo()) 2336 if (CGM.getCodeGenOpts().hasReducedDebugInfo()) 2337 Dbg->EmitGlobalVariable(E->getDecl(), Init); 2338 } 2339 2340 CodeGenFunction::PeepholeProtection 2341 CodeGenFunction::protectFromPeepholes(RValue rvalue) { 2342 // At the moment, the only aggressive peephole we do in IR gen 2343 // is trunc(zext) folding, but if we add more, we can easily 2344 // extend this protection. 2345 2346 if (!rvalue.isScalar()) return PeepholeProtection(); 2347 llvm::Value *value = rvalue.getScalarVal(); 2348 if (!isa<llvm::ZExtInst>(value)) return PeepholeProtection(); 2349 2350 // Just make an extra bitcast. 2351 assert(HaveInsertPoint()); 2352 llvm::Instruction *inst = new llvm::BitCastInst(value, value->getType(), "", 2353 Builder.GetInsertBlock()); 2354 2355 PeepholeProtection protection; 2356 protection.Inst = inst; 2357 return protection; 2358 } 2359 2360 void CodeGenFunction::unprotectFromPeepholes(PeepholeProtection protection) { 2361 if (!protection.Inst) return; 2362 2363 // In theory, we could try to duplicate the peepholes now, but whatever. 2364 protection.Inst->eraseFromParent(); 2365 } 2366 2367 void CodeGenFunction::emitAlignmentAssumption(llvm::Value *PtrValue, 2368 QualType Ty, SourceLocation Loc, 2369 SourceLocation AssumptionLoc, 2370 llvm::Value *Alignment, 2371 llvm::Value *OffsetValue) { 2372 if (Alignment->getType() != IntPtrTy) 2373 Alignment = 2374 Builder.CreateIntCast(Alignment, IntPtrTy, false, "casted.align"); 2375 if (OffsetValue && OffsetValue->getType() != IntPtrTy) 2376 OffsetValue = 2377 Builder.CreateIntCast(OffsetValue, IntPtrTy, true, "casted.offset"); 2378 llvm::Value *TheCheck = nullptr; 2379 if (SanOpts.has(SanitizerKind::Alignment)) { 2380 llvm::Value *PtrIntValue = 2381 Builder.CreatePtrToInt(PtrValue, IntPtrTy, "ptrint"); 2382 2383 if (OffsetValue) { 2384 bool IsOffsetZero = false; 2385 if (const auto *CI = dyn_cast<llvm::ConstantInt>(OffsetValue)) 2386 IsOffsetZero = CI->isZero(); 2387 2388 if (!IsOffsetZero) 2389 PtrIntValue = Builder.CreateSub(PtrIntValue, OffsetValue, "offsetptr"); 2390 } 2391 2392 llvm::Value *Zero = llvm::ConstantInt::get(IntPtrTy, 0); 2393 llvm::Value *Mask = 2394 Builder.CreateSub(Alignment, llvm::ConstantInt::get(IntPtrTy, 1)); 2395 llvm::Value *MaskedPtr = Builder.CreateAnd(PtrIntValue, Mask, "maskedptr"); 2396 TheCheck = Builder.CreateICmpEQ(MaskedPtr, Zero, "maskcond"); 2397 } 2398 llvm::Instruction *Assumption = Builder.CreateAlignmentAssumption( 2399 CGM.getDataLayout(), PtrValue, Alignment, OffsetValue); 2400 2401 if (!SanOpts.has(SanitizerKind::Alignment)) 2402 return; 2403 emitAlignmentAssumptionCheck(PtrValue, Ty, Loc, AssumptionLoc, Alignment, 2404 OffsetValue, TheCheck, Assumption); 2405 } 2406 2407 void CodeGenFunction::emitAlignmentAssumption(llvm::Value *PtrValue, 2408 const Expr *E, 2409 SourceLocation AssumptionLoc, 2410 llvm::Value *Alignment, 2411 llvm::Value *OffsetValue) { 2412 if (auto *CE = dyn_cast<CastExpr>(E)) 2413 E = CE->getSubExprAsWritten(); 2414 QualType Ty = E->getType(); 2415 SourceLocation Loc = E->getExprLoc(); 2416 2417 emitAlignmentAssumption(PtrValue, Ty, Loc, AssumptionLoc, Alignment, 2418 OffsetValue); 2419 } 2420 2421 llvm::Value *CodeGenFunction::EmitAnnotationCall(llvm::Function *AnnotationFn, 2422 llvm::Value *AnnotatedVal, 2423 StringRef AnnotationStr, 2424 SourceLocation Location, 2425 const AnnotateAttr *Attr) { 2426 SmallVector<llvm::Value *, 5> Args = { 2427 AnnotatedVal, 2428 Builder.CreateBitCast(CGM.EmitAnnotationString(AnnotationStr), Int8PtrTy), 2429 Builder.CreateBitCast(CGM.EmitAnnotationUnit(Location), Int8PtrTy), 2430 CGM.EmitAnnotationLineNo(Location), 2431 }; 2432 if (Attr) 2433 Args.push_back(CGM.EmitAnnotationArgs(Attr)); 2434 return Builder.CreateCall(AnnotationFn, Args); 2435 } 2436 2437 void CodeGenFunction::EmitVarAnnotations(const VarDecl *D, llvm::Value *V) { 2438 assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute"); 2439 // FIXME We create a new bitcast for every annotation because that's what 2440 // llvm-gcc was doing. 2441 for (const auto *I : D->specific_attrs<AnnotateAttr>()) 2442 EmitAnnotationCall(CGM.getIntrinsic(llvm::Intrinsic::var_annotation), 2443 Builder.CreateBitCast(V, CGM.Int8PtrTy, V->getName()), 2444 I->getAnnotation(), D->getLocation(), I); 2445 } 2446 2447 Address CodeGenFunction::EmitFieldAnnotations(const FieldDecl *D, 2448 Address Addr) { 2449 assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute"); 2450 llvm::Value *V = Addr.getPointer(); 2451 llvm::Type *VTy = V->getType(); 2452 auto *PTy = dyn_cast<llvm::PointerType>(VTy); 2453 unsigned AS = PTy ? PTy->getAddressSpace() : 0; 2454 llvm::PointerType *IntrinTy = 2455 llvm::PointerType::getWithSamePointeeType(CGM.Int8PtrTy, AS); 2456 llvm::Function *F = 2457 CGM.getIntrinsic(llvm::Intrinsic::ptr_annotation, IntrinTy); 2458 2459 for (const auto *I : D->specific_attrs<AnnotateAttr>()) { 2460 // FIXME Always emit the cast inst so we can differentiate between 2461 // annotation on the first field of a struct and annotation on the struct 2462 // itself. 2463 if (VTy != IntrinTy) 2464 V = Builder.CreateBitCast(V, IntrinTy); 2465 V = EmitAnnotationCall(F, V, I->getAnnotation(), D->getLocation(), I); 2466 V = Builder.CreateBitCast(V, VTy); 2467 } 2468 2469 return Address(V, Addr.getAlignment()); 2470 } 2471 2472 CodeGenFunction::CGCapturedStmtInfo::~CGCapturedStmtInfo() { } 2473 2474 CodeGenFunction::SanitizerScope::SanitizerScope(CodeGenFunction *CGF) 2475 : CGF(CGF) { 2476 assert(!CGF->IsSanitizerScope); 2477 CGF->IsSanitizerScope = true; 2478 } 2479 2480 CodeGenFunction::SanitizerScope::~SanitizerScope() { 2481 CGF->IsSanitizerScope = false; 2482 } 2483 2484 void CodeGenFunction::InsertHelper(llvm::Instruction *I, 2485 const llvm::Twine &Name, 2486 llvm::BasicBlock *BB, 2487 llvm::BasicBlock::iterator InsertPt) const { 2488 LoopStack.InsertHelper(I); 2489 if (IsSanitizerScope) 2490 CGM.getSanitizerMetadata()->disableSanitizerForInstruction(I); 2491 } 2492 2493 void CGBuilderInserter::InsertHelper( 2494 llvm::Instruction *I, const llvm::Twine &Name, llvm::BasicBlock *BB, 2495 llvm::BasicBlock::iterator InsertPt) const { 2496 llvm::IRBuilderDefaultInserter::InsertHelper(I, Name, BB, InsertPt); 2497 if (CGF) 2498 CGF->InsertHelper(I, Name, BB, InsertPt); 2499 } 2500 2501 // Emits an error if we don't have a valid set of target features for the 2502 // called function. 2503 void CodeGenFunction::checkTargetFeatures(const CallExpr *E, 2504 const FunctionDecl *TargetDecl) { 2505 return checkTargetFeatures(E->getBeginLoc(), TargetDecl); 2506 } 2507 2508 // Emits an error if we don't have a valid set of target features for the 2509 // called function. 2510 void CodeGenFunction::checkTargetFeatures(SourceLocation Loc, 2511 const FunctionDecl *TargetDecl) { 2512 // Early exit if this is an indirect call. 2513 if (!TargetDecl) 2514 return; 2515 2516 // Get the current enclosing function if it exists. If it doesn't 2517 // we can't check the target features anyhow. 2518 const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(CurCodeDecl); 2519 if (!FD) 2520 return; 2521 2522 // Grab the required features for the call. For a builtin this is listed in 2523 // the td file with the default cpu, for an always_inline function this is any 2524 // listed cpu and any listed features. 2525 unsigned BuiltinID = TargetDecl->getBuiltinID(); 2526 std::string MissingFeature; 2527 llvm::StringMap<bool> CallerFeatureMap; 2528 CGM.getContext().getFunctionFeatureMap(CallerFeatureMap, FD); 2529 if (BuiltinID) { 2530 StringRef FeatureList( 2531 CGM.getContext().BuiltinInfo.getRequiredFeatures(BuiltinID)); 2532 // Return if the builtin doesn't have any required features. 2533 if (FeatureList.empty()) 2534 return; 2535 assert(!FeatureList.contains(' ') && "Space in feature list"); 2536 TargetFeatures TF(CallerFeatureMap); 2537 if (!TF.hasRequiredFeatures(FeatureList)) 2538 CGM.getDiags().Report(Loc, diag::err_builtin_needs_feature) 2539 << TargetDecl->getDeclName() << FeatureList; 2540 } else if (!TargetDecl->isMultiVersion() && 2541 TargetDecl->hasAttr<TargetAttr>()) { 2542 // Get the required features for the callee. 2543 2544 const TargetAttr *TD = TargetDecl->getAttr<TargetAttr>(); 2545 ParsedTargetAttr ParsedAttr = 2546 CGM.getContext().filterFunctionTargetAttrs(TD); 2547 2548 SmallVector<StringRef, 1> ReqFeatures; 2549 llvm::StringMap<bool> CalleeFeatureMap; 2550 CGM.getContext().getFunctionFeatureMap(CalleeFeatureMap, TargetDecl); 2551 2552 for (const auto &F : ParsedAttr.Features) { 2553 if (F[0] == '+' && CalleeFeatureMap.lookup(F.substr(1))) 2554 ReqFeatures.push_back(StringRef(F).substr(1)); 2555 } 2556 2557 for (const auto &F : CalleeFeatureMap) { 2558 // Only positive features are "required". 2559 if (F.getValue()) 2560 ReqFeatures.push_back(F.getKey()); 2561 } 2562 if (!llvm::all_of(ReqFeatures, [&](StringRef Feature) { 2563 if (!CallerFeatureMap.lookup(Feature)) { 2564 MissingFeature = Feature.str(); 2565 return false; 2566 } 2567 return true; 2568 })) 2569 CGM.getDiags().Report(Loc, diag::err_function_needs_feature) 2570 << FD->getDeclName() << TargetDecl->getDeclName() << MissingFeature; 2571 } 2572 } 2573 2574 void CodeGenFunction::EmitSanitizerStatReport(llvm::SanitizerStatKind SSK) { 2575 if (!CGM.getCodeGenOpts().SanitizeStats) 2576 return; 2577 2578 llvm::IRBuilder<> IRB(Builder.GetInsertBlock(), Builder.GetInsertPoint()); 2579 IRB.SetCurrentDebugLocation(Builder.getCurrentDebugLocation()); 2580 CGM.getSanStats().create(IRB, SSK); 2581 } 2582 2583 llvm::Value * 2584 CodeGenFunction::FormResolverCondition(const MultiVersionResolverOption &RO) { 2585 llvm::Value *Condition = nullptr; 2586 2587 if (!RO.Conditions.Architecture.empty()) 2588 Condition = EmitX86CpuIs(RO.Conditions.Architecture); 2589 2590 if (!RO.Conditions.Features.empty()) { 2591 llvm::Value *FeatureCond = EmitX86CpuSupports(RO.Conditions.Features); 2592 Condition = 2593 Condition ? Builder.CreateAnd(Condition, FeatureCond) : FeatureCond; 2594 } 2595 return Condition; 2596 } 2597 2598 static void CreateMultiVersionResolverReturn(CodeGenModule &CGM, 2599 llvm::Function *Resolver, 2600 CGBuilderTy &Builder, 2601 llvm::Function *FuncToReturn, 2602 bool SupportsIFunc) { 2603 if (SupportsIFunc) { 2604 Builder.CreateRet(FuncToReturn); 2605 return; 2606 } 2607 2608 llvm::SmallVector<llvm::Value *, 10> Args; 2609 llvm::for_each(Resolver->args(), 2610 [&](llvm::Argument &Arg) { Args.push_back(&Arg); }); 2611 2612 llvm::CallInst *Result = Builder.CreateCall(FuncToReturn, Args); 2613 Result->setTailCallKind(llvm::CallInst::TCK_MustTail); 2614 2615 if (Resolver->getReturnType()->isVoidTy()) 2616 Builder.CreateRetVoid(); 2617 else 2618 Builder.CreateRet(Result); 2619 } 2620 2621 void CodeGenFunction::EmitMultiVersionResolver( 2622 llvm::Function *Resolver, ArrayRef<MultiVersionResolverOption> Options) { 2623 assert(getContext().getTargetInfo().getTriple().isX86() && 2624 "Only implemented for x86 targets"); 2625 2626 bool SupportsIFunc = getContext().getTargetInfo().supportsIFunc(); 2627 2628 // Main function's basic block. 2629 llvm::BasicBlock *CurBlock = createBasicBlock("resolver_entry", Resolver); 2630 Builder.SetInsertPoint(CurBlock); 2631 EmitX86CpuInit(); 2632 2633 for (const MultiVersionResolverOption &RO : Options) { 2634 Builder.SetInsertPoint(CurBlock); 2635 llvm::Value *Condition = FormResolverCondition(RO); 2636 2637 // The 'default' or 'generic' case. 2638 if (!Condition) { 2639 assert(&RO == Options.end() - 1 && 2640 "Default or Generic case must be last"); 2641 CreateMultiVersionResolverReturn(CGM, Resolver, Builder, RO.Function, 2642 SupportsIFunc); 2643 return; 2644 } 2645 2646 llvm::BasicBlock *RetBlock = createBasicBlock("resolver_return", Resolver); 2647 CGBuilderTy RetBuilder(*this, RetBlock); 2648 CreateMultiVersionResolverReturn(CGM, Resolver, RetBuilder, RO.Function, 2649 SupportsIFunc); 2650 CurBlock = createBasicBlock("resolver_else", Resolver); 2651 Builder.CreateCondBr(Condition, RetBlock, CurBlock); 2652 } 2653 2654 // If no generic/default, emit an unreachable. 2655 Builder.SetInsertPoint(CurBlock); 2656 llvm::CallInst *TrapCall = EmitTrapCall(llvm::Intrinsic::trap); 2657 TrapCall->setDoesNotReturn(); 2658 TrapCall->setDoesNotThrow(); 2659 Builder.CreateUnreachable(); 2660 Builder.ClearInsertionPoint(); 2661 } 2662 2663 // Loc - where the diagnostic will point, where in the source code this 2664 // alignment has failed. 2665 // SecondaryLoc - if present (will be present if sufficiently different from 2666 // Loc), the diagnostic will additionally point a "Note:" to this location. 2667 // It should be the location where the __attribute__((assume_aligned)) 2668 // was written e.g. 2669 void CodeGenFunction::emitAlignmentAssumptionCheck( 2670 llvm::Value *Ptr, QualType Ty, SourceLocation Loc, 2671 SourceLocation SecondaryLoc, llvm::Value *Alignment, 2672 llvm::Value *OffsetValue, llvm::Value *TheCheck, 2673 llvm::Instruction *Assumption) { 2674 assert(Assumption && isa<llvm::CallInst>(Assumption) && 2675 cast<llvm::CallInst>(Assumption)->getCalledOperand() == 2676 llvm::Intrinsic::getDeclaration( 2677 Builder.GetInsertBlock()->getParent()->getParent(), 2678 llvm::Intrinsic::assume) && 2679 "Assumption should be a call to llvm.assume()."); 2680 assert(&(Builder.GetInsertBlock()->back()) == Assumption && 2681 "Assumption should be the last instruction of the basic block, " 2682 "since the basic block is still being generated."); 2683 2684 if (!SanOpts.has(SanitizerKind::Alignment)) 2685 return; 2686 2687 // Don't check pointers to volatile data. The behavior here is implementation- 2688 // defined. 2689 if (Ty->getPointeeType().isVolatileQualified()) 2690 return; 2691 2692 // We need to temorairly remove the assumption so we can insert the 2693 // sanitizer check before it, else the check will be dropped by optimizations. 2694 Assumption->removeFromParent(); 2695 2696 { 2697 SanitizerScope SanScope(this); 2698 2699 if (!OffsetValue) 2700 OffsetValue = Builder.getInt1(0); // no offset. 2701 2702 llvm::Constant *StaticData[] = {EmitCheckSourceLocation(Loc), 2703 EmitCheckSourceLocation(SecondaryLoc), 2704 EmitCheckTypeDescriptor(Ty)}; 2705 llvm::Value *DynamicData[] = {EmitCheckValue(Ptr), 2706 EmitCheckValue(Alignment), 2707 EmitCheckValue(OffsetValue)}; 2708 EmitCheck({std::make_pair(TheCheck, SanitizerKind::Alignment)}, 2709 SanitizerHandler::AlignmentAssumption, StaticData, DynamicData); 2710 } 2711 2712 // We are now in the (new, empty) "cont" basic block. 2713 // Reintroduce the assumption. 2714 Builder.Insert(Assumption); 2715 // FIXME: Assumption still has it's original basic block as it's Parent. 2716 } 2717 2718 llvm::DebugLoc CodeGenFunction::SourceLocToDebugLoc(SourceLocation Location) { 2719 if (CGDebugInfo *DI = getDebugInfo()) 2720 return DI->SourceLocToDebugLoc(Location); 2721 2722 return llvm::DebugLoc(); 2723 } 2724 2725 llvm::Value * 2726 CodeGenFunction::emitCondLikelihoodViaExpectIntrinsic(llvm::Value *Cond, 2727 Stmt::Likelihood LH) { 2728 switch (LH) { 2729 case Stmt::LH_None: 2730 return Cond; 2731 case Stmt::LH_Likely: 2732 case Stmt::LH_Unlikely: 2733 // Don't generate llvm.expect on -O0 as the backend won't use it for 2734 // anything. 2735 if (CGM.getCodeGenOpts().OptimizationLevel == 0) 2736 return Cond; 2737 llvm::Type *CondTy = Cond->getType(); 2738 assert(CondTy->isIntegerTy(1) && "expecting condition to be a boolean"); 2739 llvm::Function *FnExpect = 2740 CGM.getIntrinsic(llvm::Intrinsic::expect, CondTy); 2741 llvm::Value *ExpectedValueOfCond = 2742 llvm::ConstantInt::getBool(CondTy, LH == Stmt::LH_Likely); 2743 return Builder.CreateCall(FnExpect, {Cond, ExpectedValueOfCond}, 2744 Cond->getName() + ".expval"); 2745 } 2746 llvm_unreachable("Unknown Likelihood"); 2747 } 2748