xref: /llvm-project/clang/lib/CodeGen/CodeGenFunction.cpp (revision 280333021e9550d80f5c1152a34e33e81df1e178)
1 //===--- CodeGenFunction.cpp - Emit LLVM Code from ASTs for a Function ----===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This coordinates the per-function state used while generating code.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "CodeGenFunction.h"
14 #include "CGBlocks.h"
15 #include "CGCUDARuntime.h"
16 #include "CGCXXABI.h"
17 #include "CGCleanup.h"
18 #include "CGDebugInfo.h"
19 #include "CGOpenMPRuntime.h"
20 #include "CodeGenModule.h"
21 #include "CodeGenPGO.h"
22 #include "TargetInfo.h"
23 #include "clang/AST/ASTContext.h"
24 #include "clang/AST/ASTLambda.h"
25 #include "clang/AST/Attr.h"
26 #include "clang/AST/Decl.h"
27 #include "clang/AST/DeclCXX.h"
28 #include "clang/AST/Expr.h"
29 #include "clang/AST/StmtCXX.h"
30 #include "clang/AST/StmtObjC.h"
31 #include "clang/Basic/Builtins.h"
32 #include "clang/Basic/CodeGenOptions.h"
33 #include "clang/Basic/TargetInfo.h"
34 #include "clang/CodeGen/CGFunctionInfo.h"
35 #include "clang/Frontend/FrontendDiagnostic.h"
36 #include "llvm/ADT/ArrayRef.h"
37 #include "llvm/Frontend/OpenMP/OMPIRBuilder.h"
38 #include "llvm/IR/DataLayout.h"
39 #include "llvm/IR/Dominators.h"
40 #include "llvm/IR/FPEnv.h"
41 #include "llvm/IR/IntrinsicInst.h"
42 #include "llvm/IR/Intrinsics.h"
43 #include "llvm/IR/MDBuilder.h"
44 #include "llvm/IR/Operator.h"
45 #include "llvm/Support/CRC.h"
46 #include "llvm/Transforms/Scalar/LowerExpectIntrinsic.h"
47 #include "llvm/Transforms/Utils/PromoteMemToReg.h"
48 using namespace clang;
49 using namespace CodeGen;
50 
51 /// shouldEmitLifetimeMarkers - Decide whether we need emit the life-time
52 /// markers.
53 static bool shouldEmitLifetimeMarkers(const CodeGenOptions &CGOpts,
54                                       const LangOptions &LangOpts) {
55   if (CGOpts.DisableLifetimeMarkers)
56     return false;
57 
58   // Sanitizers may use markers.
59   if (CGOpts.SanitizeAddressUseAfterScope ||
60       LangOpts.Sanitize.has(SanitizerKind::HWAddress) ||
61       LangOpts.Sanitize.has(SanitizerKind::Memory))
62     return true;
63 
64   // For now, only in optimized builds.
65   return CGOpts.OptimizationLevel != 0;
66 }
67 
68 CodeGenFunction::CodeGenFunction(CodeGenModule &cgm, bool suppressNewContext)
69     : CodeGenTypeCache(cgm), CGM(cgm), Target(cgm.getTarget()),
70       Builder(cgm, cgm.getModule().getContext(), llvm::ConstantFolder(),
71               CGBuilderInserterTy(this)),
72       SanOpts(CGM.getLangOpts().Sanitize), CurFPFeatures(CGM.getLangOpts()),
73       DebugInfo(CGM.getModuleDebugInfo()), PGO(cgm),
74       ShouldEmitLifetimeMarkers(
75           shouldEmitLifetimeMarkers(CGM.getCodeGenOpts(), CGM.getLangOpts())) {
76   if (!suppressNewContext)
77     CGM.getCXXABI().getMangleContext().startNewFunction();
78   EHStack.setCGF(this);
79 
80   SetFastMathFlags(CurFPFeatures);
81   SetFPModel();
82 }
83 
84 CodeGenFunction::~CodeGenFunction() {
85   assert(LifetimeExtendedCleanupStack.empty() && "failed to emit a cleanup");
86 
87   if (getLangOpts().OpenMP && CurFn)
88     CGM.getOpenMPRuntime().functionFinished(*this);
89 
90   // If we have an OpenMPIRBuilder we want to finalize functions (incl.
91   // outlining etc) at some point. Doing it once the function codegen is done
92   // seems to be a reasonable spot. We do it here, as opposed to the deletion
93   // time of the CodeGenModule, because we have to ensure the IR has not yet
94   // been "emitted" to the outside, thus, modifications are still sensible.
95   if (CGM.getLangOpts().OpenMPIRBuilder && CurFn)
96     CGM.getOpenMPRuntime().getOMPBuilder().finalize(CurFn);
97 }
98 
99 // Map the LangOption for exception behavior into
100 // the corresponding enum in the IR.
101 llvm::fp::ExceptionBehavior
102 clang::ToConstrainedExceptMD(LangOptions::FPExceptionModeKind Kind) {
103 
104   switch (Kind) {
105   case LangOptions::FPE_Ignore:  return llvm::fp::ebIgnore;
106   case LangOptions::FPE_MayTrap: return llvm::fp::ebMayTrap;
107   case LangOptions::FPE_Strict:  return llvm::fp::ebStrict;
108   }
109   llvm_unreachable("Unsupported FP Exception Behavior");
110 }
111 
112 void CodeGenFunction::SetFPModel() {
113   llvm::RoundingMode RM = getLangOpts().getFPRoundingMode();
114   auto fpExceptionBehavior = ToConstrainedExceptMD(
115                                getLangOpts().getFPExceptionMode());
116 
117   Builder.setDefaultConstrainedRounding(RM);
118   Builder.setDefaultConstrainedExcept(fpExceptionBehavior);
119   Builder.setIsFPConstrained(fpExceptionBehavior != llvm::fp::ebIgnore ||
120                              RM != llvm::RoundingMode::NearestTiesToEven);
121 }
122 
123 void CodeGenFunction::SetFastMathFlags(FPOptions FPFeatures) {
124   llvm::FastMathFlags FMF;
125   FMF.setAllowReassoc(FPFeatures.getAllowFPReassociate());
126   FMF.setNoNaNs(FPFeatures.getNoHonorNaNs());
127   FMF.setNoInfs(FPFeatures.getNoHonorInfs());
128   FMF.setNoSignedZeros(FPFeatures.getNoSignedZero());
129   FMF.setAllowReciprocal(FPFeatures.getAllowReciprocal());
130   FMF.setApproxFunc(FPFeatures.getAllowApproxFunc());
131   FMF.setAllowContract(FPFeatures.allowFPContractAcrossStatement());
132   Builder.setFastMathFlags(FMF);
133 }
134 
135 CodeGenFunction::CGFPOptionsRAII::CGFPOptionsRAII(CodeGenFunction &CGF,
136                                                   const Expr *E)
137     : CGF(CGF) {
138   ConstructorHelper(E->getFPFeaturesInEffect(CGF.getLangOpts()));
139 }
140 
141 CodeGenFunction::CGFPOptionsRAII::CGFPOptionsRAII(CodeGenFunction &CGF,
142                                                   FPOptions FPFeatures)
143     : CGF(CGF) {
144   ConstructorHelper(FPFeatures);
145 }
146 
147 void CodeGenFunction::CGFPOptionsRAII::ConstructorHelper(FPOptions FPFeatures) {
148   OldFPFeatures = CGF.CurFPFeatures;
149   CGF.CurFPFeatures = FPFeatures;
150 
151   OldExcept = CGF.Builder.getDefaultConstrainedExcept();
152   OldRounding = CGF.Builder.getDefaultConstrainedRounding();
153 
154   if (OldFPFeatures == FPFeatures)
155     return;
156 
157   FMFGuard.emplace(CGF.Builder);
158 
159   llvm::RoundingMode NewRoundingBehavior =
160       static_cast<llvm::RoundingMode>(FPFeatures.getRoundingMode());
161   CGF.Builder.setDefaultConstrainedRounding(NewRoundingBehavior);
162   auto NewExceptionBehavior =
163       ToConstrainedExceptMD(static_cast<LangOptions::FPExceptionModeKind>(
164           FPFeatures.getFPExceptionMode()));
165   CGF.Builder.setDefaultConstrainedExcept(NewExceptionBehavior);
166 
167   CGF.SetFastMathFlags(FPFeatures);
168 
169   assert((CGF.CurFuncDecl == nullptr || CGF.Builder.getIsFPConstrained() ||
170           isa<CXXConstructorDecl>(CGF.CurFuncDecl) ||
171           isa<CXXDestructorDecl>(CGF.CurFuncDecl) ||
172           (NewExceptionBehavior == llvm::fp::ebIgnore &&
173            NewRoundingBehavior == llvm::RoundingMode::NearestTiesToEven)) &&
174          "FPConstrained should be enabled on entire function");
175 
176   auto mergeFnAttrValue = [&](StringRef Name, bool Value) {
177     auto OldValue =
178         CGF.CurFn->getFnAttribute(Name).getValueAsBool();
179     auto NewValue = OldValue & Value;
180     if (OldValue != NewValue)
181       CGF.CurFn->addFnAttr(Name, llvm::toStringRef(NewValue));
182   };
183   mergeFnAttrValue("no-infs-fp-math", FPFeatures.getNoHonorInfs());
184   mergeFnAttrValue("no-nans-fp-math", FPFeatures.getNoHonorNaNs());
185   mergeFnAttrValue("no-signed-zeros-fp-math", FPFeatures.getNoSignedZero());
186   mergeFnAttrValue("unsafe-fp-math", FPFeatures.getAllowFPReassociate() &&
187                                          FPFeatures.getAllowReciprocal() &&
188                                          FPFeatures.getAllowApproxFunc() &&
189                                          FPFeatures.getNoSignedZero());
190 }
191 
192 CodeGenFunction::CGFPOptionsRAII::~CGFPOptionsRAII() {
193   CGF.CurFPFeatures = OldFPFeatures;
194   CGF.Builder.setDefaultConstrainedExcept(OldExcept);
195   CGF.Builder.setDefaultConstrainedRounding(OldRounding);
196 }
197 
198 LValue CodeGenFunction::MakeNaturalAlignAddrLValue(llvm::Value *V, QualType T) {
199   LValueBaseInfo BaseInfo;
200   TBAAAccessInfo TBAAInfo;
201   CharUnits Alignment = CGM.getNaturalTypeAlignment(T, &BaseInfo, &TBAAInfo);
202   return LValue::MakeAddr(Address(V, Alignment), T, getContext(), BaseInfo,
203                           TBAAInfo);
204 }
205 
206 /// Given a value of type T* that may not be to a complete object,
207 /// construct an l-value with the natural pointee alignment of T.
208 LValue
209 CodeGenFunction::MakeNaturalAlignPointeeAddrLValue(llvm::Value *V, QualType T) {
210   LValueBaseInfo BaseInfo;
211   TBAAAccessInfo TBAAInfo;
212   CharUnits Align = CGM.getNaturalTypeAlignment(T, &BaseInfo, &TBAAInfo,
213                                                 /* forPointeeType= */ true);
214   return MakeAddrLValue(Address(V, Align), T, BaseInfo, TBAAInfo);
215 }
216 
217 
218 llvm::Type *CodeGenFunction::ConvertTypeForMem(QualType T) {
219   return CGM.getTypes().ConvertTypeForMem(T);
220 }
221 
222 llvm::Type *CodeGenFunction::ConvertType(QualType T) {
223   return CGM.getTypes().ConvertType(T);
224 }
225 
226 TypeEvaluationKind CodeGenFunction::getEvaluationKind(QualType type) {
227   type = type.getCanonicalType();
228   while (true) {
229     switch (type->getTypeClass()) {
230 #define TYPE(name, parent)
231 #define ABSTRACT_TYPE(name, parent)
232 #define NON_CANONICAL_TYPE(name, parent) case Type::name:
233 #define DEPENDENT_TYPE(name, parent) case Type::name:
234 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(name, parent) case Type::name:
235 #include "clang/AST/TypeNodes.inc"
236       llvm_unreachable("non-canonical or dependent type in IR-generation");
237 
238     case Type::Auto:
239     case Type::DeducedTemplateSpecialization:
240       llvm_unreachable("undeduced type in IR-generation");
241 
242     // Various scalar types.
243     case Type::Builtin:
244     case Type::Pointer:
245     case Type::BlockPointer:
246     case Type::LValueReference:
247     case Type::RValueReference:
248     case Type::MemberPointer:
249     case Type::Vector:
250     case Type::ExtVector:
251     case Type::ConstantMatrix:
252     case Type::FunctionProto:
253     case Type::FunctionNoProto:
254     case Type::Enum:
255     case Type::ObjCObjectPointer:
256     case Type::Pipe:
257     case Type::ExtInt:
258       return TEK_Scalar;
259 
260     // Complexes.
261     case Type::Complex:
262       return TEK_Complex;
263 
264     // Arrays, records, and Objective-C objects.
265     case Type::ConstantArray:
266     case Type::IncompleteArray:
267     case Type::VariableArray:
268     case Type::Record:
269     case Type::ObjCObject:
270     case Type::ObjCInterface:
271       return TEK_Aggregate;
272 
273     // We operate on atomic values according to their underlying type.
274     case Type::Atomic:
275       type = cast<AtomicType>(type)->getValueType();
276       continue;
277     }
278     llvm_unreachable("unknown type kind!");
279   }
280 }
281 
282 llvm::DebugLoc CodeGenFunction::EmitReturnBlock() {
283   // For cleanliness, we try to avoid emitting the return block for
284   // simple cases.
285   llvm::BasicBlock *CurBB = Builder.GetInsertBlock();
286 
287   if (CurBB) {
288     assert(!CurBB->getTerminator() && "Unexpected terminated block.");
289 
290     // We have a valid insert point, reuse it if it is empty or there are no
291     // explicit jumps to the return block.
292     if (CurBB->empty() || ReturnBlock.getBlock()->use_empty()) {
293       ReturnBlock.getBlock()->replaceAllUsesWith(CurBB);
294       delete ReturnBlock.getBlock();
295       ReturnBlock = JumpDest();
296     } else
297       EmitBlock(ReturnBlock.getBlock());
298     return llvm::DebugLoc();
299   }
300 
301   // Otherwise, if the return block is the target of a single direct
302   // branch then we can just put the code in that block instead. This
303   // cleans up functions which started with a unified return block.
304   if (ReturnBlock.getBlock()->hasOneUse()) {
305     llvm::BranchInst *BI =
306       dyn_cast<llvm::BranchInst>(*ReturnBlock.getBlock()->user_begin());
307     if (BI && BI->isUnconditional() &&
308         BI->getSuccessor(0) == ReturnBlock.getBlock()) {
309       // Record/return the DebugLoc of the simple 'return' expression to be used
310       // later by the actual 'ret' instruction.
311       llvm::DebugLoc Loc = BI->getDebugLoc();
312       Builder.SetInsertPoint(BI->getParent());
313       BI->eraseFromParent();
314       delete ReturnBlock.getBlock();
315       ReturnBlock = JumpDest();
316       return Loc;
317     }
318   }
319 
320   // FIXME: We are at an unreachable point, there is no reason to emit the block
321   // unless it has uses. However, we still need a place to put the debug
322   // region.end for now.
323 
324   EmitBlock(ReturnBlock.getBlock());
325   return llvm::DebugLoc();
326 }
327 
328 static void EmitIfUsed(CodeGenFunction &CGF, llvm::BasicBlock *BB) {
329   if (!BB) return;
330   if (!BB->use_empty())
331     return CGF.CurFn->getBasicBlockList().push_back(BB);
332   delete BB;
333 }
334 
335 void CodeGenFunction::FinishFunction(SourceLocation EndLoc) {
336   assert(BreakContinueStack.empty() &&
337          "mismatched push/pop in break/continue stack!");
338 
339   bool OnlySimpleReturnStmts = NumSimpleReturnExprs > 0
340     && NumSimpleReturnExprs == NumReturnExprs
341     && ReturnBlock.getBlock()->use_empty();
342   // Usually the return expression is evaluated before the cleanup
343   // code.  If the function contains only a simple return statement,
344   // such as a constant, the location before the cleanup code becomes
345   // the last useful breakpoint in the function, because the simple
346   // return expression will be evaluated after the cleanup code. To be
347   // safe, set the debug location for cleanup code to the location of
348   // the return statement.  Otherwise the cleanup code should be at the
349   // end of the function's lexical scope.
350   //
351   // If there are multiple branches to the return block, the branch
352   // instructions will get the location of the return statements and
353   // all will be fine.
354   if (CGDebugInfo *DI = getDebugInfo()) {
355     if (OnlySimpleReturnStmts)
356       DI->EmitLocation(Builder, LastStopPoint);
357     else
358       DI->EmitLocation(Builder, EndLoc);
359   }
360 
361   // Pop any cleanups that might have been associated with the
362   // parameters.  Do this in whatever block we're currently in; it's
363   // important to do this before we enter the return block or return
364   // edges will be *really* confused.
365   bool HasCleanups = EHStack.stable_begin() != PrologueCleanupDepth;
366   bool HasOnlyLifetimeMarkers =
367       HasCleanups && EHStack.containsOnlyLifetimeMarkers(PrologueCleanupDepth);
368   bool EmitRetDbgLoc = !HasCleanups || HasOnlyLifetimeMarkers;
369   if (HasCleanups) {
370     // Make sure the line table doesn't jump back into the body for
371     // the ret after it's been at EndLoc.
372     Optional<ApplyDebugLocation> AL;
373     if (CGDebugInfo *DI = getDebugInfo()) {
374       if (OnlySimpleReturnStmts)
375         DI->EmitLocation(Builder, EndLoc);
376       else
377         // We may not have a valid end location. Try to apply it anyway, and
378         // fall back to an artificial location if needed.
379         AL = ApplyDebugLocation::CreateDefaultArtificial(*this, EndLoc);
380     }
381 
382     PopCleanupBlocks(PrologueCleanupDepth);
383   }
384 
385   // Emit function epilog (to return).
386   llvm::DebugLoc Loc = EmitReturnBlock();
387 
388   if (ShouldInstrumentFunction()) {
389     if (CGM.getCodeGenOpts().InstrumentFunctions)
390       CurFn->addFnAttr("instrument-function-exit", "__cyg_profile_func_exit");
391     if (CGM.getCodeGenOpts().InstrumentFunctionsAfterInlining)
392       CurFn->addFnAttr("instrument-function-exit-inlined",
393                        "__cyg_profile_func_exit");
394   }
395 
396   // Emit debug descriptor for function end.
397   if (CGDebugInfo *DI = getDebugInfo())
398     DI->EmitFunctionEnd(Builder, CurFn);
399 
400   // Reset the debug location to that of the simple 'return' expression, if any
401   // rather than that of the end of the function's scope '}'.
402   ApplyDebugLocation AL(*this, Loc);
403   EmitFunctionEpilog(*CurFnInfo, EmitRetDbgLoc, EndLoc);
404   EmitEndEHSpec(CurCodeDecl);
405 
406   assert(EHStack.empty() &&
407          "did not remove all scopes from cleanup stack!");
408 
409   // If someone did an indirect goto, emit the indirect goto block at the end of
410   // the function.
411   if (IndirectBranch) {
412     EmitBlock(IndirectBranch->getParent());
413     Builder.ClearInsertionPoint();
414   }
415 
416   // If some of our locals escaped, insert a call to llvm.localescape in the
417   // entry block.
418   if (!EscapedLocals.empty()) {
419     // Invert the map from local to index into a simple vector. There should be
420     // no holes.
421     SmallVector<llvm::Value *, 4> EscapeArgs;
422     EscapeArgs.resize(EscapedLocals.size());
423     for (auto &Pair : EscapedLocals)
424       EscapeArgs[Pair.second] = Pair.first;
425     llvm::Function *FrameEscapeFn = llvm::Intrinsic::getDeclaration(
426         &CGM.getModule(), llvm::Intrinsic::localescape);
427     CGBuilderTy(*this, AllocaInsertPt).CreateCall(FrameEscapeFn, EscapeArgs);
428   }
429 
430   // Remove the AllocaInsertPt instruction, which is just a convenience for us.
431   llvm::Instruction *Ptr = AllocaInsertPt;
432   AllocaInsertPt = nullptr;
433   Ptr->eraseFromParent();
434 
435   // If someone took the address of a label but never did an indirect goto, we
436   // made a zero entry PHI node, which is illegal, zap it now.
437   if (IndirectBranch) {
438     llvm::PHINode *PN = cast<llvm::PHINode>(IndirectBranch->getAddress());
439     if (PN->getNumIncomingValues() == 0) {
440       PN->replaceAllUsesWith(llvm::UndefValue::get(PN->getType()));
441       PN->eraseFromParent();
442     }
443   }
444 
445   EmitIfUsed(*this, EHResumeBlock);
446   EmitIfUsed(*this, TerminateLandingPad);
447   EmitIfUsed(*this, TerminateHandler);
448   EmitIfUsed(*this, UnreachableBlock);
449 
450   for (const auto &FuncletAndParent : TerminateFunclets)
451     EmitIfUsed(*this, FuncletAndParent.second);
452 
453   if (CGM.getCodeGenOpts().EmitDeclMetadata)
454     EmitDeclMetadata();
455 
456   for (const auto &R : DeferredReplacements) {
457     if (llvm::Value *Old = R.first) {
458       Old->replaceAllUsesWith(R.second);
459       cast<llvm::Instruction>(Old)->eraseFromParent();
460     }
461   }
462   DeferredReplacements.clear();
463 
464   // Eliminate CleanupDestSlot alloca by replacing it with SSA values and
465   // PHIs if the current function is a coroutine. We don't do it for all
466   // functions as it may result in slight increase in numbers of instructions
467   // if compiled with no optimizations. We do it for coroutine as the lifetime
468   // of CleanupDestSlot alloca make correct coroutine frame building very
469   // difficult.
470   if (NormalCleanupDest.isValid() && isCoroutine()) {
471     llvm::DominatorTree DT(*CurFn);
472     llvm::PromoteMemToReg(
473         cast<llvm::AllocaInst>(NormalCleanupDest.getPointer()), DT);
474     NormalCleanupDest = Address::invalid();
475   }
476 
477   // Scan function arguments for vector width.
478   for (llvm::Argument &A : CurFn->args())
479     if (auto *VT = dyn_cast<llvm::VectorType>(A.getType()))
480       LargestVectorWidth =
481           std::max((uint64_t)LargestVectorWidth,
482                    VT->getPrimitiveSizeInBits().getKnownMinSize());
483 
484   // Update vector width based on return type.
485   if (auto *VT = dyn_cast<llvm::VectorType>(CurFn->getReturnType()))
486     LargestVectorWidth =
487         std::max((uint64_t)LargestVectorWidth,
488                  VT->getPrimitiveSizeInBits().getKnownMinSize());
489 
490   // Add the required-vector-width attribute. This contains the max width from:
491   // 1. min-vector-width attribute used in the source program.
492   // 2. Any builtins used that have a vector width specified.
493   // 3. Values passed in and out of inline assembly.
494   // 4. Width of vector arguments and return types for this function.
495   // 5. Width of vector aguments and return types for functions called by this
496   //    function.
497   CurFn->addFnAttr("min-legal-vector-width", llvm::utostr(LargestVectorWidth));
498 
499   // Add vscale attribute if appropriate.
500   if (getLangOpts().ArmSveVectorBits) {
501     unsigned VScale = getLangOpts().ArmSveVectorBits / 128;
502     CurFn->addFnAttr(llvm::Attribute::getWithVScaleRangeArgs(getLLVMContext(),
503                                                              VScale, VScale));
504   }
505 
506   // If we generated an unreachable return block, delete it now.
507   if (ReturnBlock.isValid() && ReturnBlock.getBlock()->use_empty()) {
508     Builder.ClearInsertionPoint();
509     ReturnBlock.getBlock()->eraseFromParent();
510   }
511   if (ReturnValue.isValid()) {
512     auto *RetAlloca = dyn_cast<llvm::AllocaInst>(ReturnValue.getPointer());
513     if (RetAlloca && RetAlloca->use_empty()) {
514       RetAlloca->eraseFromParent();
515       ReturnValue = Address::invalid();
516     }
517   }
518 }
519 
520 /// ShouldInstrumentFunction - Return true if the current function should be
521 /// instrumented with __cyg_profile_func_* calls
522 bool CodeGenFunction::ShouldInstrumentFunction() {
523   if (!CGM.getCodeGenOpts().InstrumentFunctions &&
524       !CGM.getCodeGenOpts().InstrumentFunctionsAfterInlining &&
525       !CGM.getCodeGenOpts().InstrumentFunctionEntryBare)
526     return false;
527   if (!CurFuncDecl || CurFuncDecl->hasAttr<NoInstrumentFunctionAttr>())
528     return false;
529   return true;
530 }
531 
532 /// ShouldXRayInstrument - Return true if the current function should be
533 /// instrumented with XRay nop sleds.
534 bool CodeGenFunction::ShouldXRayInstrumentFunction() const {
535   return CGM.getCodeGenOpts().XRayInstrumentFunctions;
536 }
537 
538 /// AlwaysEmitXRayCustomEvents - Return true if we should emit IR for calls to
539 /// the __xray_customevent(...) builtin calls, when doing XRay instrumentation.
540 bool CodeGenFunction::AlwaysEmitXRayCustomEvents() const {
541   return CGM.getCodeGenOpts().XRayInstrumentFunctions &&
542          (CGM.getCodeGenOpts().XRayAlwaysEmitCustomEvents ||
543           CGM.getCodeGenOpts().XRayInstrumentationBundle.Mask ==
544               XRayInstrKind::Custom);
545 }
546 
547 bool CodeGenFunction::AlwaysEmitXRayTypedEvents() const {
548   return CGM.getCodeGenOpts().XRayInstrumentFunctions &&
549          (CGM.getCodeGenOpts().XRayAlwaysEmitTypedEvents ||
550           CGM.getCodeGenOpts().XRayInstrumentationBundle.Mask ==
551               XRayInstrKind::Typed);
552 }
553 
554 llvm::Constant *
555 CodeGenFunction::EncodeAddrForUseInPrologue(llvm::Function *F,
556                                             llvm::Constant *Addr) {
557   // Addresses stored in prologue data can't require run-time fixups and must
558   // be PC-relative. Run-time fixups are undesirable because they necessitate
559   // writable text segments, which are unsafe. And absolute addresses are
560   // undesirable because they break PIE mode.
561 
562   // Add a layer of indirection through a private global. Taking its address
563   // won't result in a run-time fixup, even if Addr has linkonce_odr linkage.
564   auto *GV = new llvm::GlobalVariable(CGM.getModule(), Addr->getType(),
565                                       /*isConstant=*/true,
566                                       llvm::GlobalValue::PrivateLinkage, Addr);
567 
568   // Create a PC-relative address.
569   auto *GOTAsInt = llvm::ConstantExpr::getPtrToInt(GV, IntPtrTy);
570   auto *FuncAsInt = llvm::ConstantExpr::getPtrToInt(F, IntPtrTy);
571   auto *PCRelAsInt = llvm::ConstantExpr::getSub(GOTAsInt, FuncAsInt);
572   return (IntPtrTy == Int32Ty)
573              ? PCRelAsInt
574              : llvm::ConstantExpr::getTrunc(PCRelAsInt, Int32Ty);
575 }
576 
577 llvm::Value *
578 CodeGenFunction::DecodeAddrUsedInPrologue(llvm::Value *F,
579                                           llvm::Value *EncodedAddr) {
580   // Reconstruct the address of the global.
581   auto *PCRelAsInt = Builder.CreateSExt(EncodedAddr, IntPtrTy);
582   auto *FuncAsInt = Builder.CreatePtrToInt(F, IntPtrTy, "func_addr.int");
583   auto *GOTAsInt = Builder.CreateAdd(PCRelAsInt, FuncAsInt, "global_addr.int");
584   auto *GOTAddr = Builder.CreateIntToPtr(GOTAsInt, Int8PtrPtrTy, "global_addr");
585 
586   // Load the original pointer through the global.
587   return Builder.CreateLoad(Address(GOTAddr, getPointerAlign()),
588                             "decoded_addr");
589 }
590 
591 void CodeGenFunction::EmitOpenCLKernelMetadata(const FunctionDecl *FD,
592                                                llvm::Function *Fn)
593 {
594   if (!FD->hasAttr<OpenCLKernelAttr>())
595     return;
596 
597   llvm::LLVMContext &Context = getLLVMContext();
598 
599   CGM.GenOpenCLArgMetadata(Fn, FD, this);
600 
601   if (const VecTypeHintAttr *A = FD->getAttr<VecTypeHintAttr>()) {
602     QualType HintQTy = A->getTypeHint();
603     const ExtVectorType *HintEltQTy = HintQTy->getAs<ExtVectorType>();
604     bool IsSignedInteger =
605         HintQTy->isSignedIntegerType() ||
606         (HintEltQTy && HintEltQTy->getElementType()->isSignedIntegerType());
607     llvm::Metadata *AttrMDArgs[] = {
608         llvm::ConstantAsMetadata::get(llvm::UndefValue::get(
609             CGM.getTypes().ConvertType(A->getTypeHint()))),
610         llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
611             llvm::IntegerType::get(Context, 32),
612             llvm::APInt(32, (uint64_t)(IsSignedInteger ? 1 : 0))))};
613     Fn->setMetadata("vec_type_hint", llvm::MDNode::get(Context, AttrMDArgs));
614   }
615 
616   if (const WorkGroupSizeHintAttr *A = FD->getAttr<WorkGroupSizeHintAttr>()) {
617     llvm::Metadata *AttrMDArgs[] = {
618         llvm::ConstantAsMetadata::get(Builder.getInt32(A->getXDim())),
619         llvm::ConstantAsMetadata::get(Builder.getInt32(A->getYDim())),
620         llvm::ConstantAsMetadata::get(Builder.getInt32(A->getZDim()))};
621     Fn->setMetadata("work_group_size_hint", llvm::MDNode::get(Context, AttrMDArgs));
622   }
623 
624   if (const ReqdWorkGroupSizeAttr *A = FD->getAttr<ReqdWorkGroupSizeAttr>()) {
625     llvm::Metadata *AttrMDArgs[] = {
626         llvm::ConstantAsMetadata::get(Builder.getInt32(A->getXDim())),
627         llvm::ConstantAsMetadata::get(Builder.getInt32(A->getYDim())),
628         llvm::ConstantAsMetadata::get(Builder.getInt32(A->getZDim()))};
629     Fn->setMetadata("reqd_work_group_size", llvm::MDNode::get(Context, AttrMDArgs));
630   }
631 
632   if (const OpenCLIntelReqdSubGroupSizeAttr *A =
633           FD->getAttr<OpenCLIntelReqdSubGroupSizeAttr>()) {
634     llvm::Metadata *AttrMDArgs[] = {
635         llvm::ConstantAsMetadata::get(Builder.getInt32(A->getSubGroupSize()))};
636     Fn->setMetadata("intel_reqd_sub_group_size",
637                     llvm::MDNode::get(Context, AttrMDArgs));
638   }
639 }
640 
641 /// Determine whether the function F ends with a return stmt.
642 static bool endsWithReturn(const Decl* F) {
643   const Stmt *Body = nullptr;
644   if (auto *FD = dyn_cast_or_null<FunctionDecl>(F))
645     Body = FD->getBody();
646   else if (auto *OMD = dyn_cast_or_null<ObjCMethodDecl>(F))
647     Body = OMD->getBody();
648 
649   if (auto *CS = dyn_cast_or_null<CompoundStmt>(Body)) {
650     auto LastStmt = CS->body_rbegin();
651     if (LastStmt != CS->body_rend())
652       return isa<ReturnStmt>(*LastStmt);
653   }
654   return false;
655 }
656 
657 void CodeGenFunction::markAsIgnoreThreadCheckingAtRuntime(llvm::Function *Fn) {
658   if (SanOpts.has(SanitizerKind::Thread)) {
659     Fn->addFnAttr("sanitize_thread_no_checking_at_run_time");
660     Fn->removeFnAttr(llvm::Attribute::SanitizeThread);
661   }
662 }
663 
664 /// Check if the return value of this function requires sanitization.
665 bool CodeGenFunction::requiresReturnValueCheck() const {
666   return requiresReturnValueNullabilityCheck() ||
667          (SanOpts.has(SanitizerKind::ReturnsNonnullAttribute) && CurCodeDecl &&
668           CurCodeDecl->getAttr<ReturnsNonNullAttr>());
669 }
670 
671 static bool matchesStlAllocatorFn(const Decl *D, const ASTContext &Ctx) {
672   auto *MD = dyn_cast_or_null<CXXMethodDecl>(D);
673   if (!MD || !MD->getDeclName().getAsIdentifierInfo() ||
674       !MD->getDeclName().getAsIdentifierInfo()->isStr("allocate") ||
675       (MD->getNumParams() != 1 && MD->getNumParams() != 2))
676     return false;
677 
678   if (MD->parameters()[0]->getType().getCanonicalType() != Ctx.getSizeType())
679     return false;
680 
681   if (MD->getNumParams() == 2) {
682     auto *PT = MD->parameters()[1]->getType()->getAs<PointerType>();
683     if (!PT || !PT->isVoidPointerType() ||
684         !PT->getPointeeType().isConstQualified())
685       return false;
686   }
687 
688   return true;
689 }
690 
691 /// Return the UBSan prologue signature for \p FD if one is available.
692 static llvm::Constant *getPrologueSignature(CodeGenModule &CGM,
693                                             const FunctionDecl *FD) {
694   if (const auto *MD = dyn_cast<CXXMethodDecl>(FD))
695     if (!MD->isStatic())
696       return nullptr;
697   return CGM.getTargetCodeGenInfo().getUBSanFunctionSignature(CGM);
698 }
699 
700 void CodeGenFunction::StartFunction(GlobalDecl GD, QualType RetTy,
701                                     llvm::Function *Fn,
702                                     const CGFunctionInfo &FnInfo,
703                                     const FunctionArgList &Args,
704                                     SourceLocation Loc,
705                                     SourceLocation StartLoc) {
706   assert(!CurFn &&
707          "Do not use a CodeGenFunction object for more than one function");
708 
709   const Decl *D = GD.getDecl();
710 
711   DidCallStackSave = false;
712   CurCodeDecl = D;
713   if (const auto *FD = dyn_cast_or_null<FunctionDecl>(D))
714     if (FD->usesSEHTry())
715       CurSEHParent = FD;
716   CurFuncDecl = (D ? D->getNonClosureContext() : nullptr);
717   FnRetTy = RetTy;
718   CurFn = Fn;
719   CurFnInfo = &FnInfo;
720   assert(CurFn->isDeclaration() && "Function already has body?");
721 
722   // If this function is ignored for any of the enabled sanitizers,
723   // disable the sanitizer for the function.
724   do {
725 #define SANITIZER(NAME, ID)                                                    \
726   if (SanOpts.empty())                                                         \
727     break;                                                                     \
728   if (SanOpts.has(SanitizerKind::ID))                                          \
729     if (CGM.isInNoSanitizeList(SanitizerKind::ID, Fn, Loc))                    \
730       SanOpts.set(SanitizerKind::ID, false);
731 
732 #include "clang/Basic/Sanitizers.def"
733 #undef SANITIZER
734   } while (0);
735 
736   if (D) {
737     bool NoSanitizeCoverage = false;
738 
739     for (auto Attr : D->specific_attrs<NoSanitizeAttr>()) {
740       // Apply the no_sanitize* attributes to SanOpts.
741       SanitizerMask mask = Attr->getMask();
742       SanOpts.Mask &= ~mask;
743       if (mask & SanitizerKind::Address)
744         SanOpts.set(SanitizerKind::KernelAddress, false);
745       if (mask & SanitizerKind::KernelAddress)
746         SanOpts.set(SanitizerKind::Address, false);
747       if (mask & SanitizerKind::HWAddress)
748         SanOpts.set(SanitizerKind::KernelHWAddress, false);
749       if (mask & SanitizerKind::KernelHWAddress)
750         SanOpts.set(SanitizerKind::HWAddress, false);
751 
752       // SanitizeCoverage is not handled by SanOpts.
753       if (Attr->hasCoverage())
754         NoSanitizeCoverage = true;
755     }
756 
757     if (NoSanitizeCoverage && CGM.getCodeGenOpts().hasSanitizeCoverage())
758       Fn->addFnAttr(llvm::Attribute::NoSanitizeCoverage);
759   }
760 
761   // Apply sanitizer attributes to the function.
762   if (SanOpts.hasOneOf(SanitizerKind::Address | SanitizerKind::KernelAddress))
763     Fn->addFnAttr(llvm::Attribute::SanitizeAddress);
764   if (SanOpts.hasOneOf(SanitizerKind::HWAddress | SanitizerKind::KernelHWAddress))
765     Fn->addFnAttr(llvm::Attribute::SanitizeHWAddress);
766   if (SanOpts.has(SanitizerKind::MemTag))
767     Fn->addFnAttr(llvm::Attribute::SanitizeMemTag);
768   if (SanOpts.has(SanitizerKind::Thread))
769     Fn->addFnAttr(llvm::Attribute::SanitizeThread);
770   if (SanOpts.hasOneOf(SanitizerKind::Memory | SanitizerKind::KernelMemory))
771     Fn->addFnAttr(llvm::Attribute::SanitizeMemory);
772   if (SanOpts.has(SanitizerKind::SafeStack))
773     Fn->addFnAttr(llvm::Attribute::SafeStack);
774   if (SanOpts.has(SanitizerKind::ShadowCallStack))
775     Fn->addFnAttr(llvm::Attribute::ShadowCallStack);
776 
777   // Apply fuzzing attribute to the function.
778   if (SanOpts.hasOneOf(SanitizerKind::Fuzzer | SanitizerKind::FuzzerNoLink))
779     Fn->addFnAttr(llvm::Attribute::OptForFuzzing);
780 
781   // Ignore TSan memory acesses from within ObjC/ObjC++ dealloc, initialize,
782   // .cxx_destruct, __destroy_helper_block_ and all of their calees at run time.
783   if (SanOpts.has(SanitizerKind::Thread)) {
784     if (const auto *OMD = dyn_cast_or_null<ObjCMethodDecl>(D)) {
785       IdentifierInfo *II = OMD->getSelector().getIdentifierInfoForSlot(0);
786       if (OMD->getMethodFamily() == OMF_dealloc ||
787           OMD->getMethodFamily() == OMF_initialize ||
788           (OMD->getSelector().isUnarySelector() && II->isStr(".cxx_destruct"))) {
789         markAsIgnoreThreadCheckingAtRuntime(Fn);
790       }
791     }
792   }
793 
794   // Ignore unrelated casts in STL allocate() since the allocator must cast
795   // from void* to T* before object initialization completes. Don't match on the
796   // namespace because not all allocators are in std::
797   if (D && SanOpts.has(SanitizerKind::CFIUnrelatedCast)) {
798     if (matchesStlAllocatorFn(D, getContext()))
799       SanOpts.Mask &= ~SanitizerKind::CFIUnrelatedCast;
800   }
801 
802   // Ignore null checks in coroutine functions since the coroutines passes
803   // are not aware of how to move the extra UBSan instructions across the split
804   // coroutine boundaries.
805   if (D && SanOpts.has(SanitizerKind::Null))
806     if (const auto *FD = dyn_cast<FunctionDecl>(D))
807       if (FD->getBody() &&
808           FD->getBody()->getStmtClass() == Stmt::CoroutineBodyStmtClass)
809         SanOpts.Mask &= ~SanitizerKind::Null;
810 
811   // Apply xray attributes to the function (as a string, for now)
812   bool AlwaysXRayAttr = false;
813   if (const auto *XRayAttr = D ? D->getAttr<XRayInstrumentAttr>() : nullptr) {
814     if (CGM.getCodeGenOpts().XRayInstrumentationBundle.has(
815             XRayInstrKind::FunctionEntry) ||
816         CGM.getCodeGenOpts().XRayInstrumentationBundle.has(
817             XRayInstrKind::FunctionExit)) {
818       if (XRayAttr->alwaysXRayInstrument() && ShouldXRayInstrumentFunction()) {
819         Fn->addFnAttr("function-instrument", "xray-always");
820         AlwaysXRayAttr = true;
821       }
822       if (XRayAttr->neverXRayInstrument())
823         Fn->addFnAttr("function-instrument", "xray-never");
824       if (const auto *LogArgs = D->getAttr<XRayLogArgsAttr>())
825         if (ShouldXRayInstrumentFunction())
826           Fn->addFnAttr("xray-log-args",
827                         llvm::utostr(LogArgs->getArgumentCount()));
828     }
829   } else {
830     if (ShouldXRayInstrumentFunction() && !CGM.imbueXRayAttrs(Fn, Loc))
831       Fn->addFnAttr(
832           "xray-instruction-threshold",
833           llvm::itostr(CGM.getCodeGenOpts().XRayInstructionThreshold));
834   }
835 
836   if (ShouldXRayInstrumentFunction()) {
837     if (CGM.getCodeGenOpts().XRayIgnoreLoops)
838       Fn->addFnAttr("xray-ignore-loops");
839 
840     if (!CGM.getCodeGenOpts().XRayInstrumentationBundle.has(
841             XRayInstrKind::FunctionExit))
842       Fn->addFnAttr("xray-skip-exit");
843 
844     if (!CGM.getCodeGenOpts().XRayInstrumentationBundle.has(
845             XRayInstrKind::FunctionEntry))
846       Fn->addFnAttr("xray-skip-entry");
847 
848     auto FuncGroups = CGM.getCodeGenOpts().XRayTotalFunctionGroups;
849     if (FuncGroups > 1) {
850       auto FuncName = llvm::makeArrayRef<uint8_t>(
851           CurFn->getName().bytes_begin(), CurFn->getName().bytes_end());
852       auto Group = crc32(FuncName) % FuncGroups;
853       if (Group != CGM.getCodeGenOpts().XRaySelectedFunctionGroup &&
854           !AlwaysXRayAttr)
855         Fn->addFnAttr("function-instrument", "xray-never");
856     }
857   }
858 
859   if (CGM.getCodeGenOpts().getProfileInstr() != CodeGenOptions::ProfileNone)
860     if (CGM.isProfileInstrExcluded(Fn, Loc))
861       Fn->addFnAttr(llvm::Attribute::NoProfile);
862 
863   unsigned Count, Offset;
864   if (const auto *Attr =
865           D ? D->getAttr<PatchableFunctionEntryAttr>() : nullptr) {
866     Count = Attr->getCount();
867     Offset = Attr->getOffset();
868   } else {
869     Count = CGM.getCodeGenOpts().PatchableFunctionEntryCount;
870     Offset = CGM.getCodeGenOpts().PatchableFunctionEntryOffset;
871   }
872   if (Count && Offset <= Count) {
873     Fn->addFnAttr("patchable-function-entry", std::to_string(Count - Offset));
874     if (Offset)
875       Fn->addFnAttr("patchable-function-prefix", std::to_string(Offset));
876   }
877 
878   // Add no-jump-tables value.
879   if (CGM.getCodeGenOpts().NoUseJumpTables)
880     Fn->addFnAttr("no-jump-tables", "true");
881 
882   // Add no-inline-line-tables value.
883   if (CGM.getCodeGenOpts().NoInlineLineTables)
884     Fn->addFnAttr("no-inline-line-tables");
885 
886   // Add profile-sample-accurate value.
887   if (CGM.getCodeGenOpts().ProfileSampleAccurate)
888     Fn->addFnAttr("profile-sample-accurate");
889 
890   if (!CGM.getCodeGenOpts().SampleProfileFile.empty())
891     Fn->addFnAttr("use-sample-profile");
892 
893   if (D && D->hasAttr<CFICanonicalJumpTableAttr>())
894     Fn->addFnAttr("cfi-canonical-jump-table");
895 
896   if (getLangOpts().OpenCL) {
897     // Add metadata for a kernel function.
898     if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D))
899       EmitOpenCLKernelMetadata(FD, Fn);
900   }
901 
902   // If we are checking function types, emit a function type signature as
903   // prologue data.
904   if (getLangOpts().CPlusPlus && SanOpts.has(SanitizerKind::Function)) {
905     if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) {
906       if (llvm::Constant *PrologueSig = getPrologueSignature(CGM, FD)) {
907         // Remove any (C++17) exception specifications, to allow calling e.g. a
908         // noexcept function through a non-noexcept pointer.
909         auto ProtoTy =
910           getContext().getFunctionTypeWithExceptionSpec(FD->getType(),
911                                                         EST_None);
912         llvm::Constant *FTRTTIConst =
913             CGM.GetAddrOfRTTIDescriptor(ProtoTy, /*ForEH=*/true);
914         llvm::Constant *FTRTTIConstEncoded =
915             EncodeAddrForUseInPrologue(Fn, FTRTTIConst);
916         llvm::Constant *PrologueStructElems[] = {PrologueSig,
917                                                  FTRTTIConstEncoded};
918         llvm::Constant *PrologueStructConst =
919             llvm::ConstantStruct::getAnon(PrologueStructElems, /*Packed=*/true);
920         Fn->setPrologueData(PrologueStructConst);
921       }
922     }
923   }
924 
925   // If we're checking nullability, we need to know whether we can check the
926   // return value. Initialize the flag to 'true' and refine it in EmitParmDecl.
927   if (SanOpts.has(SanitizerKind::NullabilityReturn)) {
928     auto Nullability = FnRetTy->getNullability(getContext());
929     if (Nullability && *Nullability == NullabilityKind::NonNull) {
930       if (!(SanOpts.has(SanitizerKind::ReturnsNonnullAttribute) &&
931             CurCodeDecl && CurCodeDecl->getAttr<ReturnsNonNullAttr>()))
932         RetValNullabilityPrecondition =
933             llvm::ConstantInt::getTrue(getLLVMContext());
934     }
935   }
936 
937   // If we're in C++ mode and the function name is "main", it is guaranteed
938   // to be norecurse by the standard (3.6.1.3 "The function main shall not be
939   // used within a program").
940   //
941   // OpenCL C 2.0 v2.2-11 s6.9.i:
942   //     Recursion is not supported.
943   //
944   // SYCL v1.2.1 s3.10:
945   //     kernels cannot include RTTI information, exception classes,
946   //     recursive code, virtual functions or make use of C++ libraries that
947   //     are not compiled for the device.
948   if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) {
949     if ((getLangOpts().CPlusPlus && FD->isMain()) || getLangOpts().OpenCL ||
950         getLangOpts().SYCLIsDevice ||
951         (getLangOpts().CUDA && FD->hasAttr<CUDAGlobalAttr>()))
952       Fn->addFnAttr(llvm::Attribute::NoRecurse);
953   }
954 
955   if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) {
956     Builder.setIsFPConstrained(FD->hasAttr<StrictFPAttr>());
957     if (FD->hasAttr<StrictFPAttr>())
958       Fn->addFnAttr(llvm::Attribute::StrictFP);
959   }
960 
961   // If a custom alignment is used, force realigning to this alignment on
962   // any main function which certainly will need it.
963   if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D))
964     if ((FD->isMain() || FD->isMSVCRTEntryPoint()) &&
965         CGM.getCodeGenOpts().StackAlignment)
966       Fn->addFnAttr("stackrealign");
967 
968   llvm::BasicBlock *EntryBB = createBasicBlock("entry", CurFn);
969 
970   // Create a marker to make it easy to insert allocas into the entryblock
971   // later.  Don't create this with the builder, because we don't want it
972   // folded.
973   llvm::Value *Undef = llvm::UndefValue::get(Int32Ty);
974   AllocaInsertPt = new llvm::BitCastInst(Undef, Int32Ty, "allocapt", EntryBB);
975 
976   ReturnBlock = getJumpDestInCurrentScope("return");
977 
978   Builder.SetInsertPoint(EntryBB);
979 
980   // If we're checking the return value, allocate space for a pointer to a
981   // precise source location of the checked return statement.
982   if (requiresReturnValueCheck()) {
983     ReturnLocation = CreateDefaultAlignTempAlloca(Int8PtrTy, "return.sloc.ptr");
984     InitTempAlloca(ReturnLocation, llvm::ConstantPointerNull::get(Int8PtrTy));
985   }
986 
987   // Emit subprogram debug descriptor.
988   if (CGDebugInfo *DI = getDebugInfo()) {
989     // Reconstruct the type from the argument list so that implicit parameters,
990     // such as 'this' and 'vtt', show up in the debug info. Preserve the calling
991     // convention.
992     CallingConv CC = CallingConv::CC_C;
993     if (auto *FD = dyn_cast_or_null<FunctionDecl>(D))
994       if (const auto *SrcFnTy = FD->getType()->getAs<FunctionType>())
995         CC = SrcFnTy->getCallConv();
996     SmallVector<QualType, 16> ArgTypes;
997     for (const VarDecl *VD : Args)
998       ArgTypes.push_back(VD->getType());
999     QualType FnType = getContext().getFunctionType(
1000         RetTy, ArgTypes, FunctionProtoType::ExtProtoInfo(CC));
1001     DI->emitFunctionStart(GD, Loc, StartLoc, FnType, CurFn, CurFuncIsThunk);
1002   }
1003 
1004   if (ShouldInstrumentFunction()) {
1005     if (CGM.getCodeGenOpts().InstrumentFunctions)
1006       CurFn->addFnAttr("instrument-function-entry", "__cyg_profile_func_enter");
1007     if (CGM.getCodeGenOpts().InstrumentFunctionsAfterInlining)
1008       CurFn->addFnAttr("instrument-function-entry-inlined",
1009                        "__cyg_profile_func_enter");
1010     if (CGM.getCodeGenOpts().InstrumentFunctionEntryBare)
1011       CurFn->addFnAttr("instrument-function-entry-inlined",
1012                        "__cyg_profile_func_enter_bare");
1013   }
1014 
1015   // Since emitting the mcount call here impacts optimizations such as function
1016   // inlining, we just add an attribute to insert a mcount call in backend.
1017   // The attribute "counting-function" is set to mcount function name which is
1018   // architecture dependent.
1019   if (CGM.getCodeGenOpts().InstrumentForProfiling) {
1020     // Calls to fentry/mcount should not be generated if function has
1021     // the no_instrument_function attribute.
1022     if (!CurFuncDecl || !CurFuncDecl->hasAttr<NoInstrumentFunctionAttr>()) {
1023       if (CGM.getCodeGenOpts().CallFEntry)
1024         Fn->addFnAttr("fentry-call", "true");
1025       else {
1026         Fn->addFnAttr("instrument-function-entry-inlined",
1027                       getTarget().getMCountName());
1028       }
1029       if (CGM.getCodeGenOpts().MNopMCount) {
1030         if (!CGM.getCodeGenOpts().CallFEntry)
1031           CGM.getDiags().Report(diag::err_opt_not_valid_without_opt)
1032             << "-mnop-mcount" << "-mfentry";
1033         Fn->addFnAttr("mnop-mcount");
1034       }
1035 
1036       if (CGM.getCodeGenOpts().RecordMCount) {
1037         if (!CGM.getCodeGenOpts().CallFEntry)
1038           CGM.getDiags().Report(diag::err_opt_not_valid_without_opt)
1039             << "-mrecord-mcount" << "-mfentry";
1040         Fn->addFnAttr("mrecord-mcount");
1041       }
1042     }
1043   }
1044 
1045   if (CGM.getCodeGenOpts().PackedStack) {
1046     if (getContext().getTargetInfo().getTriple().getArch() !=
1047         llvm::Triple::systemz)
1048       CGM.getDiags().Report(diag::err_opt_not_valid_on_target)
1049         << "-mpacked-stack";
1050     Fn->addFnAttr("packed-stack");
1051   }
1052 
1053   if (RetTy->isVoidType()) {
1054     // Void type; nothing to return.
1055     ReturnValue = Address::invalid();
1056 
1057     // Count the implicit return.
1058     if (!endsWithReturn(D))
1059       ++NumReturnExprs;
1060   } else if (CurFnInfo->getReturnInfo().getKind() == ABIArgInfo::Indirect) {
1061     // Indirect return; emit returned value directly into sret slot.
1062     // This reduces code size, and affects correctness in C++.
1063     auto AI = CurFn->arg_begin();
1064     if (CurFnInfo->getReturnInfo().isSRetAfterThis())
1065       ++AI;
1066     ReturnValue = Address(&*AI, CurFnInfo->getReturnInfo().getIndirectAlign());
1067     if (!CurFnInfo->getReturnInfo().getIndirectByVal()) {
1068       ReturnValuePointer =
1069           CreateDefaultAlignTempAlloca(Int8PtrTy, "result.ptr");
1070       Builder.CreateStore(Builder.CreatePointerBitCastOrAddrSpaceCast(
1071                               ReturnValue.getPointer(), Int8PtrTy),
1072                           ReturnValuePointer);
1073     }
1074   } else if (CurFnInfo->getReturnInfo().getKind() == ABIArgInfo::InAlloca &&
1075              !hasScalarEvaluationKind(CurFnInfo->getReturnType())) {
1076     // Load the sret pointer from the argument struct and return into that.
1077     unsigned Idx = CurFnInfo->getReturnInfo().getInAllocaFieldIndex();
1078     llvm::Function::arg_iterator EI = CurFn->arg_end();
1079     --EI;
1080     llvm::Value *Addr = Builder.CreateStructGEP(nullptr, &*EI, Idx);
1081     llvm::Type *Ty =
1082         cast<llvm::GetElementPtrInst>(Addr)->getResultElementType();
1083     ReturnValuePointer = Address(Addr, getPointerAlign());
1084     Addr = Builder.CreateAlignedLoad(Ty, Addr, getPointerAlign(), "agg.result");
1085     ReturnValue = Address(Addr, CGM.getNaturalTypeAlignment(RetTy));
1086   } else {
1087     ReturnValue = CreateIRTemp(RetTy, "retval");
1088 
1089     // Tell the epilog emitter to autorelease the result.  We do this
1090     // now so that various specialized functions can suppress it
1091     // during their IR-generation.
1092     if (getLangOpts().ObjCAutoRefCount &&
1093         !CurFnInfo->isReturnsRetained() &&
1094         RetTy->isObjCRetainableType())
1095       AutoreleaseResult = true;
1096   }
1097 
1098   EmitStartEHSpec(CurCodeDecl);
1099 
1100   PrologueCleanupDepth = EHStack.stable_begin();
1101 
1102   // Emit OpenMP specific initialization of the device functions.
1103   if (getLangOpts().OpenMP && CurCodeDecl)
1104     CGM.getOpenMPRuntime().emitFunctionProlog(*this, CurCodeDecl);
1105 
1106   EmitFunctionProlog(*CurFnInfo, CurFn, Args);
1107 
1108   if (D && isa<CXXMethodDecl>(D) && cast<CXXMethodDecl>(D)->isInstance()) {
1109     CGM.getCXXABI().EmitInstanceFunctionProlog(*this);
1110     const CXXMethodDecl *MD = cast<CXXMethodDecl>(D);
1111     if (MD->getParent()->isLambda() &&
1112         MD->getOverloadedOperator() == OO_Call) {
1113       // We're in a lambda; figure out the captures.
1114       MD->getParent()->getCaptureFields(LambdaCaptureFields,
1115                                         LambdaThisCaptureField);
1116       if (LambdaThisCaptureField) {
1117         // If the lambda captures the object referred to by '*this' - either by
1118         // value or by reference, make sure CXXThisValue points to the correct
1119         // object.
1120 
1121         // Get the lvalue for the field (which is a copy of the enclosing object
1122         // or contains the address of the enclosing object).
1123         LValue ThisFieldLValue = EmitLValueForLambdaField(LambdaThisCaptureField);
1124         if (!LambdaThisCaptureField->getType()->isPointerType()) {
1125           // If the enclosing object was captured by value, just use its address.
1126           CXXThisValue = ThisFieldLValue.getAddress(*this).getPointer();
1127         } else {
1128           // Load the lvalue pointed to by the field, since '*this' was captured
1129           // by reference.
1130           CXXThisValue =
1131               EmitLoadOfLValue(ThisFieldLValue, SourceLocation()).getScalarVal();
1132         }
1133       }
1134       for (auto *FD : MD->getParent()->fields()) {
1135         if (FD->hasCapturedVLAType()) {
1136           auto *ExprArg = EmitLoadOfLValue(EmitLValueForLambdaField(FD),
1137                                            SourceLocation()).getScalarVal();
1138           auto VAT = FD->getCapturedVLAType();
1139           VLASizeMap[VAT->getSizeExpr()] = ExprArg;
1140         }
1141       }
1142     } else {
1143       // Not in a lambda; just use 'this' from the method.
1144       // FIXME: Should we generate a new load for each use of 'this'?  The
1145       // fast register allocator would be happier...
1146       CXXThisValue = CXXABIThisValue;
1147     }
1148 
1149     // Check the 'this' pointer once per function, if it's available.
1150     if (CXXABIThisValue) {
1151       SanitizerSet SkippedChecks;
1152       SkippedChecks.set(SanitizerKind::ObjectSize, true);
1153       QualType ThisTy = MD->getThisType();
1154 
1155       // If this is the call operator of a lambda with no capture-default, it
1156       // may have a static invoker function, which may call this operator with
1157       // a null 'this' pointer.
1158       if (isLambdaCallOperator(MD) &&
1159           MD->getParent()->getLambdaCaptureDefault() == LCD_None)
1160         SkippedChecks.set(SanitizerKind::Null, true);
1161 
1162       EmitTypeCheck(
1163           isa<CXXConstructorDecl>(MD) ? TCK_ConstructorCall : TCK_MemberCall,
1164           Loc, CXXABIThisValue, ThisTy, CXXABIThisAlignment, SkippedChecks);
1165     }
1166   }
1167 
1168   // If any of the arguments have a variably modified type, make sure to
1169   // emit the type size.
1170   for (FunctionArgList::const_iterator i = Args.begin(), e = Args.end();
1171        i != e; ++i) {
1172     const VarDecl *VD = *i;
1173 
1174     // Dig out the type as written from ParmVarDecls; it's unclear whether
1175     // the standard (C99 6.9.1p10) requires this, but we're following the
1176     // precedent set by gcc.
1177     QualType Ty;
1178     if (const ParmVarDecl *PVD = dyn_cast<ParmVarDecl>(VD))
1179       Ty = PVD->getOriginalType();
1180     else
1181       Ty = VD->getType();
1182 
1183     if (Ty->isVariablyModifiedType())
1184       EmitVariablyModifiedType(Ty);
1185   }
1186   // Emit a location at the end of the prologue.
1187   if (CGDebugInfo *DI = getDebugInfo())
1188     DI->EmitLocation(Builder, StartLoc);
1189 
1190   // TODO: Do we need to handle this in two places like we do with
1191   // target-features/target-cpu?
1192   if (CurFuncDecl)
1193     if (const auto *VecWidth = CurFuncDecl->getAttr<MinVectorWidthAttr>())
1194       LargestVectorWidth = VecWidth->getVectorWidth();
1195 }
1196 
1197 void CodeGenFunction::EmitFunctionBody(const Stmt *Body) {
1198   incrementProfileCounter(Body);
1199   if (const CompoundStmt *S = dyn_cast<CompoundStmt>(Body))
1200     EmitCompoundStmtWithoutScope(*S);
1201   else
1202     EmitStmt(Body);
1203 
1204   // This is checked after emitting the function body so we know if there
1205   // are any permitted infinite loops.
1206   if (checkIfFunctionMustProgress())
1207     CurFn->addFnAttr(llvm::Attribute::MustProgress);
1208 }
1209 
1210 /// When instrumenting to collect profile data, the counts for some blocks
1211 /// such as switch cases need to not include the fall-through counts, so
1212 /// emit a branch around the instrumentation code. When not instrumenting,
1213 /// this just calls EmitBlock().
1214 void CodeGenFunction::EmitBlockWithFallThrough(llvm::BasicBlock *BB,
1215                                                const Stmt *S) {
1216   llvm::BasicBlock *SkipCountBB = nullptr;
1217   if (HaveInsertPoint() && CGM.getCodeGenOpts().hasProfileClangInstr()) {
1218     // When instrumenting for profiling, the fallthrough to certain
1219     // statements needs to skip over the instrumentation code so that we
1220     // get an accurate count.
1221     SkipCountBB = createBasicBlock("skipcount");
1222     EmitBranch(SkipCountBB);
1223   }
1224   EmitBlock(BB);
1225   uint64_t CurrentCount = getCurrentProfileCount();
1226   incrementProfileCounter(S);
1227   setCurrentProfileCount(getCurrentProfileCount() + CurrentCount);
1228   if (SkipCountBB)
1229     EmitBlock(SkipCountBB);
1230 }
1231 
1232 /// Tries to mark the given function nounwind based on the
1233 /// non-existence of any throwing calls within it.  We believe this is
1234 /// lightweight enough to do at -O0.
1235 static void TryMarkNoThrow(llvm::Function *F) {
1236   // LLVM treats 'nounwind' on a function as part of the type, so we
1237   // can't do this on functions that can be overwritten.
1238   if (F->isInterposable()) return;
1239 
1240   for (llvm::BasicBlock &BB : *F)
1241     for (llvm::Instruction &I : BB)
1242       if (I.mayThrow())
1243         return;
1244 
1245   F->setDoesNotThrow();
1246 }
1247 
1248 QualType CodeGenFunction::BuildFunctionArgList(GlobalDecl GD,
1249                                                FunctionArgList &Args) {
1250   const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
1251   QualType ResTy = FD->getReturnType();
1252 
1253   const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD);
1254   if (MD && MD->isInstance()) {
1255     if (CGM.getCXXABI().HasThisReturn(GD))
1256       ResTy = MD->getThisType();
1257     else if (CGM.getCXXABI().hasMostDerivedReturn(GD))
1258       ResTy = CGM.getContext().VoidPtrTy;
1259     CGM.getCXXABI().buildThisParam(*this, Args);
1260   }
1261 
1262   // The base version of an inheriting constructor whose constructed base is a
1263   // virtual base is not passed any arguments (because it doesn't actually call
1264   // the inherited constructor).
1265   bool PassedParams = true;
1266   if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(FD))
1267     if (auto Inherited = CD->getInheritedConstructor())
1268       PassedParams =
1269           getTypes().inheritingCtorHasParams(Inherited, GD.getCtorType());
1270 
1271   if (PassedParams) {
1272     for (auto *Param : FD->parameters()) {
1273       Args.push_back(Param);
1274       if (!Param->hasAttr<PassObjectSizeAttr>())
1275         continue;
1276 
1277       auto *Implicit = ImplicitParamDecl::Create(
1278           getContext(), Param->getDeclContext(), Param->getLocation(),
1279           /*Id=*/nullptr, getContext().getSizeType(), ImplicitParamDecl::Other);
1280       SizeArguments[Param] = Implicit;
1281       Args.push_back(Implicit);
1282     }
1283   }
1284 
1285   if (MD && (isa<CXXConstructorDecl>(MD) || isa<CXXDestructorDecl>(MD)))
1286     CGM.getCXXABI().addImplicitStructorParams(*this, ResTy, Args);
1287 
1288   return ResTy;
1289 }
1290 
1291 void CodeGenFunction::GenerateCode(GlobalDecl GD, llvm::Function *Fn,
1292                                    const CGFunctionInfo &FnInfo) {
1293   const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
1294   CurGD = GD;
1295 
1296   FunctionArgList Args;
1297   QualType ResTy = BuildFunctionArgList(GD, Args);
1298 
1299   // Check if we should generate debug info for this function.
1300   if (FD->hasAttr<NoDebugAttr>())
1301     DebugInfo = nullptr; // disable debug info indefinitely for this function
1302 
1303   // The function might not have a body if we're generating thunks for a
1304   // function declaration.
1305   SourceRange BodyRange;
1306   if (Stmt *Body = FD->getBody())
1307     BodyRange = Body->getSourceRange();
1308   else
1309     BodyRange = FD->getLocation();
1310   CurEHLocation = BodyRange.getEnd();
1311 
1312   // Use the location of the start of the function to determine where
1313   // the function definition is located. By default use the location
1314   // of the declaration as the location for the subprogram. A function
1315   // may lack a declaration in the source code if it is created by code
1316   // gen. (examples: _GLOBAL__I_a, __cxx_global_array_dtor, thunk).
1317   SourceLocation Loc = FD->getLocation();
1318 
1319   // If this is a function specialization then use the pattern body
1320   // as the location for the function.
1321   if (const FunctionDecl *SpecDecl = FD->getTemplateInstantiationPattern())
1322     if (SpecDecl->hasBody(SpecDecl))
1323       Loc = SpecDecl->getLocation();
1324 
1325   Stmt *Body = FD->getBody();
1326 
1327   if (Body) {
1328     // Coroutines always emit lifetime markers.
1329     if (isa<CoroutineBodyStmt>(Body))
1330       ShouldEmitLifetimeMarkers = true;
1331 
1332     // Initialize helper which will detect jumps which can cause invalid
1333     // lifetime markers.
1334     if (ShouldEmitLifetimeMarkers)
1335       Bypasses.Init(Body);
1336   }
1337 
1338   // Emit the standard function prologue.
1339   StartFunction(GD, ResTy, Fn, FnInfo, Args, Loc, BodyRange.getBegin());
1340 
1341   // Save parameters for coroutine function.
1342   if (Body && isa_and_nonnull<CoroutineBodyStmt>(Body))
1343     for (const auto *ParamDecl : FD->parameters())
1344       FnArgs.push_back(ParamDecl);
1345 
1346   // Generate the body of the function.
1347   PGO.assignRegionCounters(GD, CurFn);
1348   if (isa<CXXDestructorDecl>(FD))
1349     EmitDestructorBody(Args);
1350   else if (isa<CXXConstructorDecl>(FD))
1351     EmitConstructorBody(Args);
1352   else if (getLangOpts().CUDA &&
1353            !getLangOpts().CUDAIsDevice &&
1354            FD->hasAttr<CUDAGlobalAttr>())
1355     CGM.getCUDARuntime().emitDeviceStub(*this, Args);
1356   else if (isa<CXXMethodDecl>(FD) &&
1357            cast<CXXMethodDecl>(FD)->isLambdaStaticInvoker()) {
1358     // The lambda static invoker function is special, because it forwards or
1359     // clones the body of the function call operator (but is actually static).
1360     EmitLambdaStaticInvokeBody(cast<CXXMethodDecl>(FD));
1361   } else if (FD->isDefaulted() && isa<CXXMethodDecl>(FD) &&
1362              (cast<CXXMethodDecl>(FD)->isCopyAssignmentOperator() ||
1363               cast<CXXMethodDecl>(FD)->isMoveAssignmentOperator())) {
1364     // Implicit copy-assignment gets the same special treatment as implicit
1365     // copy-constructors.
1366     emitImplicitAssignmentOperatorBody(Args);
1367   } else if (Body) {
1368     EmitFunctionBody(Body);
1369   } else
1370     llvm_unreachable("no definition for emitted function");
1371 
1372   // C++11 [stmt.return]p2:
1373   //   Flowing off the end of a function [...] results in undefined behavior in
1374   //   a value-returning function.
1375   // C11 6.9.1p12:
1376   //   If the '}' that terminates a function is reached, and the value of the
1377   //   function call is used by the caller, the behavior is undefined.
1378   if (getLangOpts().CPlusPlus && !FD->hasImplicitReturnZero() && !SawAsmBlock &&
1379       !FD->getReturnType()->isVoidType() && Builder.GetInsertBlock()) {
1380     bool ShouldEmitUnreachable =
1381         CGM.getCodeGenOpts().StrictReturn ||
1382         !CGM.MayDropFunctionReturn(FD->getASTContext(), FD->getReturnType());
1383     if (SanOpts.has(SanitizerKind::Return)) {
1384       SanitizerScope SanScope(this);
1385       llvm::Value *IsFalse = Builder.getFalse();
1386       EmitCheck(std::make_pair(IsFalse, SanitizerKind::Return),
1387                 SanitizerHandler::MissingReturn,
1388                 EmitCheckSourceLocation(FD->getLocation()), None);
1389     } else if (ShouldEmitUnreachable) {
1390       if (CGM.getCodeGenOpts().OptimizationLevel == 0)
1391         EmitTrapCall(llvm::Intrinsic::trap);
1392     }
1393     if (SanOpts.has(SanitizerKind::Return) || ShouldEmitUnreachable) {
1394       Builder.CreateUnreachable();
1395       Builder.ClearInsertionPoint();
1396     }
1397   }
1398 
1399   // Emit the standard function epilogue.
1400   FinishFunction(BodyRange.getEnd());
1401 
1402   // If we haven't marked the function nothrow through other means, do
1403   // a quick pass now to see if we can.
1404   if (!CurFn->doesNotThrow())
1405     TryMarkNoThrow(CurFn);
1406 }
1407 
1408 /// ContainsLabel - Return true if the statement contains a label in it.  If
1409 /// this statement is not executed normally, it not containing a label means
1410 /// that we can just remove the code.
1411 bool CodeGenFunction::ContainsLabel(const Stmt *S, bool IgnoreCaseStmts) {
1412   // Null statement, not a label!
1413   if (!S) return false;
1414 
1415   // If this is a label, we have to emit the code, consider something like:
1416   // if (0) {  ...  foo:  bar(); }  goto foo;
1417   //
1418   // TODO: If anyone cared, we could track __label__'s, since we know that you
1419   // can't jump to one from outside their declared region.
1420   if (isa<LabelStmt>(S))
1421     return true;
1422 
1423   // If this is a case/default statement, and we haven't seen a switch, we have
1424   // to emit the code.
1425   if (isa<SwitchCase>(S) && !IgnoreCaseStmts)
1426     return true;
1427 
1428   // If this is a switch statement, we want to ignore cases below it.
1429   if (isa<SwitchStmt>(S))
1430     IgnoreCaseStmts = true;
1431 
1432   // Scan subexpressions for verboten labels.
1433   for (const Stmt *SubStmt : S->children())
1434     if (ContainsLabel(SubStmt, IgnoreCaseStmts))
1435       return true;
1436 
1437   return false;
1438 }
1439 
1440 /// containsBreak - Return true if the statement contains a break out of it.
1441 /// If the statement (recursively) contains a switch or loop with a break
1442 /// inside of it, this is fine.
1443 bool CodeGenFunction::containsBreak(const Stmt *S) {
1444   // Null statement, not a label!
1445   if (!S) return false;
1446 
1447   // If this is a switch or loop that defines its own break scope, then we can
1448   // include it and anything inside of it.
1449   if (isa<SwitchStmt>(S) || isa<WhileStmt>(S) || isa<DoStmt>(S) ||
1450       isa<ForStmt>(S))
1451     return false;
1452 
1453   if (isa<BreakStmt>(S))
1454     return true;
1455 
1456   // Scan subexpressions for verboten breaks.
1457   for (const Stmt *SubStmt : S->children())
1458     if (containsBreak(SubStmt))
1459       return true;
1460 
1461   return false;
1462 }
1463 
1464 bool CodeGenFunction::mightAddDeclToScope(const Stmt *S) {
1465   if (!S) return false;
1466 
1467   // Some statement kinds add a scope and thus never add a decl to the current
1468   // scope. Note, this list is longer than the list of statements that might
1469   // have an unscoped decl nested within them, but this way is conservatively
1470   // correct even if more statement kinds are added.
1471   if (isa<IfStmt>(S) || isa<SwitchStmt>(S) || isa<WhileStmt>(S) ||
1472       isa<DoStmt>(S) || isa<ForStmt>(S) || isa<CompoundStmt>(S) ||
1473       isa<CXXForRangeStmt>(S) || isa<CXXTryStmt>(S) ||
1474       isa<ObjCForCollectionStmt>(S) || isa<ObjCAtTryStmt>(S))
1475     return false;
1476 
1477   if (isa<DeclStmt>(S))
1478     return true;
1479 
1480   for (const Stmt *SubStmt : S->children())
1481     if (mightAddDeclToScope(SubStmt))
1482       return true;
1483 
1484   return false;
1485 }
1486 
1487 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold
1488 /// to a constant, or if it does but contains a label, return false.  If it
1489 /// constant folds return true and set the boolean result in Result.
1490 bool CodeGenFunction::ConstantFoldsToSimpleInteger(const Expr *Cond,
1491                                                    bool &ResultBool,
1492                                                    bool AllowLabels) {
1493   llvm::APSInt ResultInt;
1494   if (!ConstantFoldsToSimpleInteger(Cond, ResultInt, AllowLabels))
1495     return false;
1496 
1497   ResultBool = ResultInt.getBoolValue();
1498   return true;
1499 }
1500 
1501 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold
1502 /// to a constant, or if it does but contains a label, return false.  If it
1503 /// constant folds return true and set the folded value.
1504 bool CodeGenFunction::ConstantFoldsToSimpleInteger(const Expr *Cond,
1505                                                    llvm::APSInt &ResultInt,
1506                                                    bool AllowLabels) {
1507   // FIXME: Rename and handle conversion of other evaluatable things
1508   // to bool.
1509   Expr::EvalResult Result;
1510   if (!Cond->EvaluateAsInt(Result, getContext()))
1511     return false;  // Not foldable, not integer or not fully evaluatable.
1512 
1513   llvm::APSInt Int = Result.Val.getInt();
1514   if (!AllowLabels && CodeGenFunction::ContainsLabel(Cond))
1515     return false;  // Contains a label.
1516 
1517   ResultInt = Int;
1518   return true;
1519 }
1520 
1521 /// Determine whether the given condition is an instrumentable condition
1522 /// (i.e. no "&&" or "||").
1523 bool CodeGenFunction::isInstrumentedCondition(const Expr *C) {
1524   // Bypass simplistic logical-NOT operator before determining whether the
1525   // condition contains any other logical operator.
1526   if (const UnaryOperator *UnOp = dyn_cast<UnaryOperator>(C->IgnoreParens()))
1527     if (UnOp->getOpcode() == UO_LNot)
1528       C = UnOp->getSubExpr();
1529 
1530   const BinaryOperator *BOp = dyn_cast<BinaryOperator>(C->IgnoreParens());
1531   return (!BOp || !BOp->isLogicalOp());
1532 }
1533 
1534 /// EmitBranchToCounterBlock - Emit a conditional branch to a new block that
1535 /// increments a profile counter based on the semantics of the given logical
1536 /// operator opcode.  This is used to instrument branch condition coverage for
1537 /// logical operators.
1538 void CodeGenFunction::EmitBranchToCounterBlock(
1539     const Expr *Cond, BinaryOperator::Opcode LOp, llvm::BasicBlock *TrueBlock,
1540     llvm::BasicBlock *FalseBlock, uint64_t TrueCount /* = 0 */,
1541     Stmt::Likelihood LH /* =None */, const Expr *CntrIdx /* = nullptr */) {
1542   // If not instrumenting, just emit a branch.
1543   bool InstrumentRegions = CGM.getCodeGenOpts().hasProfileClangInstr();
1544   if (!InstrumentRegions || !isInstrumentedCondition(Cond))
1545     return EmitBranchOnBoolExpr(Cond, TrueBlock, FalseBlock, TrueCount, LH);
1546 
1547   llvm::BasicBlock *ThenBlock = NULL;
1548   llvm::BasicBlock *ElseBlock = NULL;
1549   llvm::BasicBlock *NextBlock = NULL;
1550 
1551   // Create the block we'll use to increment the appropriate counter.
1552   llvm::BasicBlock *CounterIncrBlock = createBasicBlock("lop.rhscnt");
1553 
1554   // Set block pointers according to Logical-AND (BO_LAnd) semantics. This
1555   // means we need to evaluate the condition and increment the counter on TRUE:
1556   //
1557   // if (Cond)
1558   //   goto CounterIncrBlock;
1559   // else
1560   //   goto FalseBlock;
1561   //
1562   // CounterIncrBlock:
1563   //   Counter++;
1564   //   goto TrueBlock;
1565 
1566   if (LOp == BO_LAnd) {
1567     ThenBlock = CounterIncrBlock;
1568     ElseBlock = FalseBlock;
1569     NextBlock = TrueBlock;
1570   }
1571 
1572   // Set block pointers according to Logical-OR (BO_LOr) semantics. This means
1573   // we need to evaluate the condition and increment the counter on FALSE:
1574   //
1575   // if (Cond)
1576   //   goto TrueBlock;
1577   // else
1578   //   goto CounterIncrBlock;
1579   //
1580   // CounterIncrBlock:
1581   //   Counter++;
1582   //   goto FalseBlock;
1583 
1584   else if (LOp == BO_LOr) {
1585     ThenBlock = TrueBlock;
1586     ElseBlock = CounterIncrBlock;
1587     NextBlock = FalseBlock;
1588   } else {
1589     llvm_unreachable("Expected Opcode must be that of a Logical Operator");
1590   }
1591 
1592   // Emit Branch based on condition.
1593   EmitBranchOnBoolExpr(Cond, ThenBlock, ElseBlock, TrueCount, LH);
1594 
1595   // Emit the block containing the counter increment(s).
1596   EmitBlock(CounterIncrBlock);
1597 
1598   // Increment corresponding counter; if index not provided, use Cond as index.
1599   incrementProfileCounter(CntrIdx ? CntrIdx : Cond);
1600 
1601   // Go to the next block.
1602   EmitBranch(NextBlock);
1603 }
1604 
1605 /// EmitBranchOnBoolExpr - Emit a branch on a boolean condition (e.g. for an if
1606 /// statement) to the specified blocks.  Based on the condition, this might try
1607 /// to simplify the codegen of the conditional based on the branch.
1608 /// \param LH The value of the likelihood attribute on the True branch.
1609 void CodeGenFunction::EmitBranchOnBoolExpr(const Expr *Cond,
1610                                            llvm::BasicBlock *TrueBlock,
1611                                            llvm::BasicBlock *FalseBlock,
1612                                            uint64_t TrueCount,
1613                                            Stmt::Likelihood LH) {
1614   Cond = Cond->IgnoreParens();
1615 
1616   if (const BinaryOperator *CondBOp = dyn_cast<BinaryOperator>(Cond)) {
1617 
1618     // Handle X && Y in a condition.
1619     if (CondBOp->getOpcode() == BO_LAnd) {
1620       // If we have "1 && X", simplify the code.  "0 && X" would have constant
1621       // folded if the case was simple enough.
1622       bool ConstantBool = false;
1623       if (ConstantFoldsToSimpleInteger(CondBOp->getLHS(), ConstantBool) &&
1624           ConstantBool) {
1625         // br(1 && X) -> br(X).
1626         incrementProfileCounter(CondBOp);
1627         return EmitBranchToCounterBlock(CondBOp->getRHS(), BO_LAnd, TrueBlock,
1628                                         FalseBlock, TrueCount, LH);
1629       }
1630 
1631       // If we have "X && 1", simplify the code to use an uncond branch.
1632       // "X && 0" would have been constant folded to 0.
1633       if (ConstantFoldsToSimpleInteger(CondBOp->getRHS(), ConstantBool) &&
1634           ConstantBool) {
1635         // br(X && 1) -> br(X).
1636         return EmitBranchToCounterBlock(CondBOp->getLHS(), BO_LAnd, TrueBlock,
1637                                         FalseBlock, TrueCount, LH, CondBOp);
1638       }
1639 
1640       // Emit the LHS as a conditional.  If the LHS conditional is false, we
1641       // want to jump to the FalseBlock.
1642       llvm::BasicBlock *LHSTrue = createBasicBlock("land.lhs.true");
1643       // The counter tells us how often we evaluate RHS, and all of TrueCount
1644       // can be propagated to that branch.
1645       uint64_t RHSCount = getProfileCount(CondBOp->getRHS());
1646 
1647       ConditionalEvaluation eval(*this);
1648       {
1649         ApplyDebugLocation DL(*this, Cond);
1650         // Propagate the likelihood attribute like __builtin_expect
1651         // __builtin_expect(X && Y, 1) -> X and Y are likely
1652         // __builtin_expect(X && Y, 0) -> only Y is unlikely
1653         EmitBranchOnBoolExpr(CondBOp->getLHS(), LHSTrue, FalseBlock, RHSCount,
1654                              LH == Stmt::LH_Unlikely ? Stmt::LH_None : LH);
1655         EmitBlock(LHSTrue);
1656       }
1657 
1658       incrementProfileCounter(CondBOp);
1659       setCurrentProfileCount(getProfileCount(CondBOp->getRHS()));
1660 
1661       // Any temporaries created here are conditional.
1662       eval.begin(*this);
1663       EmitBranchToCounterBlock(CondBOp->getRHS(), BO_LAnd, TrueBlock,
1664                                FalseBlock, TrueCount, LH);
1665       eval.end(*this);
1666 
1667       return;
1668     }
1669 
1670     if (CondBOp->getOpcode() == BO_LOr) {
1671       // If we have "0 || X", simplify the code.  "1 || X" would have constant
1672       // folded if the case was simple enough.
1673       bool ConstantBool = false;
1674       if (ConstantFoldsToSimpleInteger(CondBOp->getLHS(), ConstantBool) &&
1675           !ConstantBool) {
1676         // br(0 || X) -> br(X).
1677         incrementProfileCounter(CondBOp);
1678         return EmitBranchToCounterBlock(CondBOp->getRHS(), BO_LOr, TrueBlock,
1679                                         FalseBlock, TrueCount, LH);
1680       }
1681 
1682       // If we have "X || 0", simplify the code to use an uncond branch.
1683       // "X || 1" would have been constant folded to 1.
1684       if (ConstantFoldsToSimpleInteger(CondBOp->getRHS(), ConstantBool) &&
1685           !ConstantBool) {
1686         // br(X || 0) -> br(X).
1687         return EmitBranchToCounterBlock(CondBOp->getLHS(), BO_LOr, TrueBlock,
1688                                         FalseBlock, TrueCount, LH, CondBOp);
1689       }
1690 
1691       // Emit the LHS as a conditional.  If the LHS conditional is true, we
1692       // want to jump to the TrueBlock.
1693       llvm::BasicBlock *LHSFalse = createBasicBlock("lor.lhs.false");
1694       // We have the count for entry to the RHS and for the whole expression
1695       // being true, so we can divy up True count between the short circuit and
1696       // the RHS.
1697       uint64_t LHSCount =
1698           getCurrentProfileCount() - getProfileCount(CondBOp->getRHS());
1699       uint64_t RHSCount = TrueCount - LHSCount;
1700 
1701       ConditionalEvaluation eval(*this);
1702       {
1703         // Propagate the likelihood attribute like __builtin_expect
1704         // __builtin_expect(X || Y, 1) -> only Y is likely
1705         // __builtin_expect(X || Y, 0) -> both X and Y are unlikely
1706         ApplyDebugLocation DL(*this, Cond);
1707         EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, LHSFalse, LHSCount,
1708                              LH == Stmt::LH_Likely ? Stmt::LH_None : LH);
1709         EmitBlock(LHSFalse);
1710       }
1711 
1712       incrementProfileCounter(CondBOp);
1713       setCurrentProfileCount(getProfileCount(CondBOp->getRHS()));
1714 
1715       // Any temporaries created here are conditional.
1716       eval.begin(*this);
1717       EmitBranchToCounterBlock(CondBOp->getRHS(), BO_LOr, TrueBlock, FalseBlock,
1718                                RHSCount, LH);
1719 
1720       eval.end(*this);
1721 
1722       return;
1723     }
1724   }
1725 
1726   if (const UnaryOperator *CondUOp = dyn_cast<UnaryOperator>(Cond)) {
1727     // br(!x, t, f) -> br(x, f, t)
1728     if (CondUOp->getOpcode() == UO_LNot) {
1729       // Negate the count.
1730       uint64_t FalseCount = getCurrentProfileCount() - TrueCount;
1731       // The values of the enum are chosen to make this negation possible.
1732       LH = static_cast<Stmt::Likelihood>(-LH);
1733       // Negate the condition and swap the destination blocks.
1734       return EmitBranchOnBoolExpr(CondUOp->getSubExpr(), FalseBlock, TrueBlock,
1735                                   FalseCount, LH);
1736     }
1737   }
1738 
1739   if (const ConditionalOperator *CondOp = dyn_cast<ConditionalOperator>(Cond)) {
1740     // br(c ? x : y, t, f) -> br(c, br(x, t, f), br(y, t, f))
1741     llvm::BasicBlock *LHSBlock = createBasicBlock("cond.true");
1742     llvm::BasicBlock *RHSBlock = createBasicBlock("cond.false");
1743 
1744     // The ConditionalOperator itself has no likelihood information for its
1745     // true and false branches. This matches the behavior of __builtin_expect.
1746     ConditionalEvaluation cond(*this);
1747     EmitBranchOnBoolExpr(CondOp->getCond(), LHSBlock, RHSBlock,
1748                          getProfileCount(CondOp), Stmt::LH_None);
1749 
1750     // When computing PGO branch weights, we only know the overall count for
1751     // the true block. This code is essentially doing tail duplication of the
1752     // naive code-gen, introducing new edges for which counts are not
1753     // available. Divide the counts proportionally between the LHS and RHS of
1754     // the conditional operator.
1755     uint64_t LHSScaledTrueCount = 0;
1756     if (TrueCount) {
1757       double LHSRatio =
1758           getProfileCount(CondOp) / (double)getCurrentProfileCount();
1759       LHSScaledTrueCount = TrueCount * LHSRatio;
1760     }
1761 
1762     cond.begin(*this);
1763     EmitBlock(LHSBlock);
1764     incrementProfileCounter(CondOp);
1765     {
1766       ApplyDebugLocation DL(*this, Cond);
1767       EmitBranchOnBoolExpr(CondOp->getLHS(), TrueBlock, FalseBlock,
1768                            LHSScaledTrueCount, LH);
1769     }
1770     cond.end(*this);
1771 
1772     cond.begin(*this);
1773     EmitBlock(RHSBlock);
1774     EmitBranchOnBoolExpr(CondOp->getRHS(), TrueBlock, FalseBlock,
1775                          TrueCount - LHSScaledTrueCount, LH);
1776     cond.end(*this);
1777 
1778     return;
1779   }
1780 
1781   if (const CXXThrowExpr *Throw = dyn_cast<CXXThrowExpr>(Cond)) {
1782     // Conditional operator handling can give us a throw expression as a
1783     // condition for a case like:
1784     //   br(c ? throw x : y, t, f) -> br(c, br(throw x, t, f), br(y, t, f)
1785     // Fold this to:
1786     //   br(c, throw x, br(y, t, f))
1787     EmitCXXThrowExpr(Throw, /*KeepInsertionPoint*/false);
1788     return;
1789   }
1790 
1791   // Emit the code with the fully general case.
1792   llvm::Value *CondV;
1793   {
1794     ApplyDebugLocation DL(*this, Cond);
1795     CondV = EvaluateExprAsBool(Cond);
1796   }
1797 
1798   llvm::MDNode *Weights = nullptr;
1799   llvm::MDNode *Unpredictable = nullptr;
1800 
1801   // If the branch has a condition wrapped by __builtin_unpredictable,
1802   // create metadata that specifies that the branch is unpredictable.
1803   // Don't bother if not optimizing because that metadata would not be used.
1804   auto *Call = dyn_cast<CallExpr>(Cond->IgnoreImpCasts());
1805   if (Call && CGM.getCodeGenOpts().OptimizationLevel != 0) {
1806     auto *FD = dyn_cast_or_null<FunctionDecl>(Call->getCalleeDecl());
1807     if (FD && FD->getBuiltinID() == Builtin::BI__builtin_unpredictable) {
1808       llvm::MDBuilder MDHelper(getLLVMContext());
1809       Unpredictable = MDHelper.createUnpredictable();
1810     }
1811   }
1812 
1813   // If there is a Likelihood knowledge for the cond, lower it.
1814   // Note that if not optimizing this won't emit anything.
1815   llvm::Value *NewCondV = emitCondLikelihoodViaExpectIntrinsic(CondV, LH);
1816   if (CondV != NewCondV)
1817     CondV = NewCondV;
1818   else {
1819     // Otherwise, lower profile counts. Note that we do this even at -O0.
1820     uint64_t CurrentCount = std::max(getCurrentProfileCount(), TrueCount);
1821     Weights = createProfileWeights(TrueCount, CurrentCount - TrueCount);
1822   }
1823 
1824   Builder.CreateCondBr(CondV, TrueBlock, FalseBlock, Weights, Unpredictable);
1825 }
1826 
1827 /// ErrorUnsupported - Print out an error that codegen doesn't support the
1828 /// specified stmt yet.
1829 void CodeGenFunction::ErrorUnsupported(const Stmt *S, const char *Type) {
1830   CGM.ErrorUnsupported(S, Type);
1831 }
1832 
1833 /// emitNonZeroVLAInit - Emit the "zero" initialization of a
1834 /// variable-length array whose elements have a non-zero bit-pattern.
1835 ///
1836 /// \param baseType the inner-most element type of the array
1837 /// \param src - a char* pointing to the bit-pattern for a single
1838 /// base element of the array
1839 /// \param sizeInChars - the total size of the VLA, in chars
1840 static void emitNonZeroVLAInit(CodeGenFunction &CGF, QualType baseType,
1841                                Address dest, Address src,
1842                                llvm::Value *sizeInChars) {
1843   CGBuilderTy &Builder = CGF.Builder;
1844 
1845   CharUnits baseSize = CGF.getContext().getTypeSizeInChars(baseType);
1846   llvm::Value *baseSizeInChars
1847     = llvm::ConstantInt::get(CGF.IntPtrTy, baseSize.getQuantity());
1848 
1849   Address begin =
1850     Builder.CreateElementBitCast(dest, CGF.Int8Ty, "vla.begin");
1851   llvm::Value *end = Builder.CreateInBoundsGEP(
1852       begin.getElementType(), begin.getPointer(), sizeInChars, "vla.end");
1853 
1854   llvm::BasicBlock *originBB = CGF.Builder.GetInsertBlock();
1855   llvm::BasicBlock *loopBB = CGF.createBasicBlock("vla-init.loop");
1856   llvm::BasicBlock *contBB = CGF.createBasicBlock("vla-init.cont");
1857 
1858   // Make a loop over the VLA.  C99 guarantees that the VLA element
1859   // count must be nonzero.
1860   CGF.EmitBlock(loopBB);
1861 
1862   llvm::PHINode *cur = Builder.CreatePHI(begin.getType(), 2, "vla.cur");
1863   cur->addIncoming(begin.getPointer(), originBB);
1864 
1865   CharUnits curAlign =
1866     dest.getAlignment().alignmentOfArrayElement(baseSize);
1867 
1868   // memcpy the individual element bit-pattern.
1869   Builder.CreateMemCpy(Address(cur, curAlign), src, baseSizeInChars,
1870                        /*volatile*/ false);
1871 
1872   // Go to the next element.
1873   llvm::Value *next =
1874     Builder.CreateInBoundsGEP(CGF.Int8Ty, cur, baseSizeInChars, "vla.next");
1875 
1876   // Leave if that's the end of the VLA.
1877   llvm::Value *done = Builder.CreateICmpEQ(next, end, "vla-init.isdone");
1878   Builder.CreateCondBr(done, contBB, loopBB);
1879   cur->addIncoming(next, loopBB);
1880 
1881   CGF.EmitBlock(contBB);
1882 }
1883 
1884 void
1885 CodeGenFunction::EmitNullInitialization(Address DestPtr, QualType Ty) {
1886   // Ignore empty classes in C++.
1887   if (getLangOpts().CPlusPlus) {
1888     if (const RecordType *RT = Ty->getAs<RecordType>()) {
1889       if (cast<CXXRecordDecl>(RT->getDecl())->isEmpty())
1890         return;
1891     }
1892   }
1893 
1894   // Cast the dest ptr to the appropriate i8 pointer type.
1895   if (DestPtr.getElementType() != Int8Ty)
1896     DestPtr = Builder.CreateElementBitCast(DestPtr, Int8Ty);
1897 
1898   // Get size and alignment info for this aggregate.
1899   CharUnits size = getContext().getTypeSizeInChars(Ty);
1900 
1901   llvm::Value *SizeVal;
1902   const VariableArrayType *vla;
1903 
1904   // Don't bother emitting a zero-byte memset.
1905   if (size.isZero()) {
1906     // But note that getTypeInfo returns 0 for a VLA.
1907     if (const VariableArrayType *vlaType =
1908           dyn_cast_or_null<VariableArrayType>(
1909                                           getContext().getAsArrayType(Ty))) {
1910       auto VlaSize = getVLASize(vlaType);
1911       SizeVal = VlaSize.NumElts;
1912       CharUnits eltSize = getContext().getTypeSizeInChars(VlaSize.Type);
1913       if (!eltSize.isOne())
1914         SizeVal = Builder.CreateNUWMul(SizeVal, CGM.getSize(eltSize));
1915       vla = vlaType;
1916     } else {
1917       return;
1918     }
1919   } else {
1920     SizeVal = CGM.getSize(size);
1921     vla = nullptr;
1922   }
1923 
1924   // If the type contains a pointer to data member we can't memset it to zero.
1925   // Instead, create a null constant and copy it to the destination.
1926   // TODO: there are other patterns besides zero that we can usefully memset,
1927   // like -1, which happens to be the pattern used by member-pointers.
1928   if (!CGM.getTypes().isZeroInitializable(Ty)) {
1929     // For a VLA, emit a single element, then splat that over the VLA.
1930     if (vla) Ty = getContext().getBaseElementType(vla);
1931 
1932     llvm::Constant *NullConstant = CGM.EmitNullConstant(Ty);
1933 
1934     llvm::GlobalVariable *NullVariable =
1935       new llvm::GlobalVariable(CGM.getModule(), NullConstant->getType(),
1936                                /*isConstant=*/true,
1937                                llvm::GlobalVariable::PrivateLinkage,
1938                                NullConstant, Twine());
1939     CharUnits NullAlign = DestPtr.getAlignment();
1940     NullVariable->setAlignment(NullAlign.getAsAlign());
1941     Address SrcPtr(Builder.CreateBitCast(NullVariable, Builder.getInt8PtrTy()),
1942                    NullAlign);
1943 
1944     if (vla) return emitNonZeroVLAInit(*this, Ty, DestPtr, SrcPtr, SizeVal);
1945 
1946     // Get and call the appropriate llvm.memcpy overload.
1947     Builder.CreateMemCpy(DestPtr, SrcPtr, SizeVal, false);
1948     return;
1949   }
1950 
1951   // Otherwise, just memset the whole thing to zero.  This is legal
1952   // because in LLVM, all default initializers (other than the ones we just
1953   // handled above) are guaranteed to have a bit pattern of all zeros.
1954   Builder.CreateMemSet(DestPtr, Builder.getInt8(0), SizeVal, false);
1955 }
1956 
1957 llvm::BlockAddress *CodeGenFunction::GetAddrOfLabel(const LabelDecl *L) {
1958   // Make sure that there is a block for the indirect goto.
1959   if (!IndirectBranch)
1960     GetIndirectGotoBlock();
1961 
1962   llvm::BasicBlock *BB = getJumpDestForLabel(L).getBlock();
1963 
1964   // Make sure the indirect branch includes all of the address-taken blocks.
1965   IndirectBranch->addDestination(BB);
1966   return llvm::BlockAddress::get(CurFn, BB);
1967 }
1968 
1969 llvm::BasicBlock *CodeGenFunction::GetIndirectGotoBlock() {
1970   // If we already made the indirect branch for indirect goto, return its block.
1971   if (IndirectBranch) return IndirectBranch->getParent();
1972 
1973   CGBuilderTy TmpBuilder(*this, createBasicBlock("indirectgoto"));
1974 
1975   // Create the PHI node that indirect gotos will add entries to.
1976   llvm::Value *DestVal = TmpBuilder.CreatePHI(Int8PtrTy, 0,
1977                                               "indirect.goto.dest");
1978 
1979   // Create the indirect branch instruction.
1980   IndirectBranch = TmpBuilder.CreateIndirectBr(DestVal);
1981   return IndirectBranch->getParent();
1982 }
1983 
1984 /// Computes the length of an array in elements, as well as the base
1985 /// element type and a properly-typed first element pointer.
1986 llvm::Value *CodeGenFunction::emitArrayLength(const ArrayType *origArrayType,
1987                                               QualType &baseType,
1988                                               Address &addr) {
1989   const ArrayType *arrayType = origArrayType;
1990 
1991   // If it's a VLA, we have to load the stored size.  Note that
1992   // this is the size of the VLA in bytes, not its size in elements.
1993   llvm::Value *numVLAElements = nullptr;
1994   if (isa<VariableArrayType>(arrayType)) {
1995     numVLAElements = getVLASize(cast<VariableArrayType>(arrayType)).NumElts;
1996 
1997     // Walk into all VLAs.  This doesn't require changes to addr,
1998     // which has type T* where T is the first non-VLA element type.
1999     do {
2000       QualType elementType = arrayType->getElementType();
2001       arrayType = getContext().getAsArrayType(elementType);
2002 
2003       // If we only have VLA components, 'addr' requires no adjustment.
2004       if (!arrayType) {
2005         baseType = elementType;
2006         return numVLAElements;
2007       }
2008     } while (isa<VariableArrayType>(arrayType));
2009 
2010     // We get out here only if we find a constant array type
2011     // inside the VLA.
2012   }
2013 
2014   // We have some number of constant-length arrays, so addr should
2015   // have LLVM type [M x [N x [...]]]*.  Build a GEP that walks
2016   // down to the first element of addr.
2017   SmallVector<llvm::Value*, 8> gepIndices;
2018 
2019   // GEP down to the array type.
2020   llvm::ConstantInt *zero = Builder.getInt32(0);
2021   gepIndices.push_back(zero);
2022 
2023   uint64_t countFromCLAs = 1;
2024   QualType eltType;
2025 
2026   llvm::ArrayType *llvmArrayType =
2027     dyn_cast<llvm::ArrayType>(addr.getElementType());
2028   while (llvmArrayType) {
2029     assert(isa<ConstantArrayType>(arrayType));
2030     assert(cast<ConstantArrayType>(arrayType)->getSize().getZExtValue()
2031              == llvmArrayType->getNumElements());
2032 
2033     gepIndices.push_back(zero);
2034     countFromCLAs *= llvmArrayType->getNumElements();
2035     eltType = arrayType->getElementType();
2036 
2037     llvmArrayType =
2038       dyn_cast<llvm::ArrayType>(llvmArrayType->getElementType());
2039     arrayType = getContext().getAsArrayType(arrayType->getElementType());
2040     assert((!llvmArrayType || arrayType) &&
2041            "LLVM and Clang types are out-of-synch");
2042   }
2043 
2044   if (arrayType) {
2045     // From this point onwards, the Clang array type has been emitted
2046     // as some other type (probably a packed struct). Compute the array
2047     // size, and just emit the 'begin' expression as a bitcast.
2048     while (arrayType) {
2049       countFromCLAs *=
2050           cast<ConstantArrayType>(arrayType)->getSize().getZExtValue();
2051       eltType = arrayType->getElementType();
2052       arrayType = getContext().getAsArrayType(eltType);
2053     }
2054 
2055     llvm::Type *baseType = ConvertType(eltType);
2056     addr = Builder.CreateElementBitCast(addr, baseType, "array.begin");
2057   } else {
2058     // Create the actual GEP.
2059     addr = Address(Builder.CreateInBoundsGEP(
2060         addr.getElementType(), addr.getPointer(), gepIndices, "array.begin"),
2061         addr.getAlignment());
2062   }
2063 
2064   baseType = eltType;
2065 
2066   llvm::Value *numElements
2067     = llvm::ConstantInt::get(SizeTy, countFromCLAs);
2068 
2069   // If we had any VLA dimensions, factor them in.
2070   if (numVLAElements)
2071     numElements = Builder.CreateNUWMul(numVLAElements, numElements);
2072 
2073   return numElements;
2074 }
2075 
2076 CodeGenFunction::VlaSizePair CodeGenFunction::getVLASize(QualType type) {
2077   const VariableArrayType *vla = getContext().getAsVariableArrayType(type);
2078   assert(vla && "type was not a variable array type!");
2079   return getVLASize(vla);
2080 }
2081 
2082 CodeGenFunction::VlaSizePair
2083 CodeGenFunction::getVLASize(const VariableArrayType *type) {
2084   // The number of elements so far; always size_t.
2085   llvm::Value *numElements = nullptr;
2086 
2087   QualType elementType;
2088   do {
2089     elementType = type->getElementType();
2090     llvm::Value *vlaSize = VLASizeMap[type->getSizeExpr()];
2091     assert(vlaSize && "no size for VLA!");
2092     assert(vlaSize->getType() == SizeTy);
2093 
2094     if (!numElements) {
2095       numElements = vlaSize;
2096     } else {
2097       // It's undefined behavior if this wraps around, so mark it that way.
2098       // FIXME: Teach -fsanitize=undefined to trap this.
2099       numElements = Builder.CreateNUWMul(numElements, vlaSize);
2100     }
2101   } while ((type = getContext().getAsVariableArrayType(elementType)));
2102 
2103   return { numElements, elementType };
2104 }
2105 
2106 CodeGenFunction::VlaSizePair
2107 CodeGenFunction::getVLAElements1D(QualType type) {
2108   const VariableArrayType *vla = getContext().getAsVariableArrayType(type);
2109   assert(vla && "type was not a variable array type!");
2110   return getVLAElements1D(vla);
2111 }
2112 
2113 CodeGenFunction::VlaSizePair
2114 CodeGenFunction::getVLAElements1D(const VariableArrayType *Vla) {
2115   llvm::Value *VlaSize = VLASizeMap[Vla->getSizeExpr()];
2116   assert(VlaSize && "no size for VLA!");
2117   assert(VlaSize->getType() == SizeTy);
2118   return { VlaSize, Vla->getElementType() };
2119 }
2120 
2121 void CodeGenFunction::EmitVariablyModifiedType(QualType type) {
2122   assert(type->isVariablyModifiedType() &&
2123          "Must pass variably modified type to EmitVLASizes!");
2124 
2125   EnsureInsertPoint();
2126 
2127   // We're going to walk down into the type and look for VLA
2128   // expressions.
2129   do {
2130     assert(type->isVariablyModifiedType());
2131 
2132     const Type *ty = type.getTypePtr();
2133     switch (ty->getTypeClass()) {
2134 
2135 #define TYPE(Class, Base)
2136 #define ABSTRACT_TYPE(Class, Base)
2137 #define NON_CANONICAL_TYPE(Class, Base)
2138 #define DEPENDENT_TYPE(Class, Base) case Type::Class:
2139 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base)
2140 #include "clang/AST/TypeNodes.inc"
2141       llvm_unreachable("unexpected dependent type!");
2142 
2143     // These types are never variably-modified.
2144     case Type::Builtin:
2145     case Type::Complex:
2146     case Type::Vector:
2147     case Type::ExtVector:
2148     case Type::ConstantMatrix:
2149     case Type::Record:
2150     case Type::Enum:
2151     case Type::Elaborated:
2152     case Type::TemplateSpecialization:
2153     case Type::ObjCTypeParam:
2154     case Type::ObjCObject:
2155     case Type::ObjCInterface:
2156     case Type::ObjCObjectPointer:
2157     case Type::ExtInt:
2158       llvm_unreachable("type class is never variably-modified!");
2159 
2160     case Type::Adjusted:
2161       type = cast<AdjustedType>(ty)->getAdjustedType();
2162       break;
2163 
2164     case Type::Decayed:
2165       type = cast<DecayedType>(ty)->getPointeeType();
2166       break;
2167 
2168     case Type::Pointer:
2169       type = cast<PointerType>(ty)->getPointeeType();
2170       break;
2171 
2172     case Type::BlockPointer:
2173       type = cast<BlockPointerType>(ty)->getPointeeType();
2174       break;
2175 
2176     case Type::LValueReference:
2177     case Type::RValueReference:
2178       type = cast<ReferenceType>(ty)->getPointeeType();
2179       break;
2180 
2181     case Type::MemberPointer:
2182       type = cast<MemberPointerType>(ty)->getPointeeType();
2183       break;
2184 
2185     case Type::ConstantArray:
2186     case Type::IncompleteArray:
2187       // Losing element qualification here is fine.
2188       type = cast<ArrayType>(ty)->getElementType();
2189       break;
2190 
2191     case Type::VariableArray: {
2192       // Losing element qualification here is fine.
2193       const VariableArrayType *vat = cast<VariableArrayType>(ty);
2194 
2195       // Unknown size indication requires no size computation.
2196       // Otherwise, evaluate and record it.
2197       if (const Expr *size = vat->getSizeExpr()) {
2198         // It's possible that we might have emitted this already,
2199         // e.g. with a typedef and a pointer to it.
2200         llvm::Value *&entry = VLASizeMap[size];
2201         if (!entry) {
2202           llvm::Value *Size = EmitScalarExpr(size);
2203 
2204           // C11 6.7.6.2p5:
2205           //   If the size is an expression that is not an integer constant
2206           //   expression [...] each time it is evaluated it shall have a value
2207           //   greater than zero.
2208           if (SanOpts.has(SanitizerKind::VLABound) &&
2209               size->getType()->isSignedIntegerType()) {
2210             SanitizerScope SanScope(this);
2211             llvm::Value *Zero = llvm::Constant::getNullValue(Size->getType());
2212             llvm::Constant *StaticArgs[] = {
2213                 EmitCheckSourceLocation(size->getBeginLoc()),
2214                 EmitCheckTypeDescriptor(size->getType())};
2215             EmitCheck(std::make_pair(Builder.CreateICmpSGT(Size, Zero),
2216                                      SanitizerKind::VLABound),
2217                       SanitizerHandler::VLABoundNotPositive, StaticArgs, Size);
2218           }
2219 
2220           // Always zexting here would be wrong if it weren't
2221           // undefined behavior to have a negative bound.
2222           entry = Builder.CreateIntCast(Size, SizeTy, /*signed*/ false);
2223         }
2224       }
2225       type = vat->getElementType();
2226       break;
2227     }
2228 
2229     case Type::FunctionProto:
2230     case Type::FunctionNoProto:
2231       type = cast<FunctionType>(ty)->getReturnType();
2232       break;
2233 
2234     case Type::Paren:
2235     case Type::TypeOf:
2236     case Type::UnaryTransform:
2237     case Type::Attributed:
2238     case Type::SubstTemplateTypeParm:
2239     case Type::MacroQualified:
2240       // Keep walking after single level desugaring.
2241       type = type.getSingleStepDesugaredType(getContext());
2242       break;
2243 
2244     case Type::Typedef:
2245     case Type::Decltype:
2246     case Type::Auto:
2247     case Type::DeducedTemplateSpecialization:
2248       // Stop walking: nothing to do.
2249       return;
2250 
2251     case Type::TypeOfExpr:
2252       // Stop walking: emit typeof expression.
2253       EmitIgnoredExpr(cast<TypeOfExprType>(ty)->getUnderlyingExpr());
2254       return;
2255 
2256     case Type::Atomic:
2257       type = cast<AtomicType>(ty)->getValueType();
2258       break;
2259 
2260     case Type::Pipe:
2261       type = cast<PipeType>(ty)->getElementType();
2262       break;
2263     }
2264   } while (type->isVariablyModifiedType());
2265 }
2266 
2267 Address CodeGenFunction::EmitVAListRef(const Expr* E) {
2268   if (getContext().getBuiltinVaListType()->isArrayType())
2269     return EmitPointerWithAlignment(E);
2270   return EmitLValue(E).getAddress(*this);
2271 }
2272 
2273 Address CodeGenFunction::EmitMSVAListRef(const Expr *E) {
2274   return EmitLValue(E).getAddress(*this);
2275 }
2276 
2277 void CodeGenFunction::EmitDeclRefExprDbgValue(const DeclRefExpr *E,
2278                                               const APValue &Init) {
2279   assert(Init.hasValue() && "Invalid DeclRefExpr initializer!");
2280   if (CGDebugInfo *Dbg = getDebugInfo())
2281     if (CGM.getCodeGenOpts().hasReducedDebugInfo())
2282       Dbg->EmitGlobalVariable(E->getDecl(), Init);
2283 }
2284 
2285 CodeGenFunction::PeepholeProtection
2286 CodeGenFunction::protectFromPeepholes(RValue rvalue) {
2287   // At the moment, the only aggressive peephole we do in IR gen
2288   // is trunc(zext) folding, but if we add more, we can easily
2289   // extend this protection.
2290 
2291   if (!rvalue.isScalar()) return PeepholeProtection();
2292   llvm::Value *value = rvalue.getScalarVal();
2293   if (!isa<llvm::ZExtInst>(value)) return PeepholeProtection();
2294 
2295   // Just make an extra bitcast.
2296   assert(HaveInsertPoint());
2297   llvm::Instruction *inst = new llvm::BitCastInst(value, value->getType(), "",
2298                                                   Builder.GetInsertBlock());
2299 
2300   PeepholeProtection protection;
2301   protection.Inst = inst;
2302   return protection;
2303 }
2304 
2305 void CodeGenFunction::unprotectFromPeepholes(PeepholeProtection protection) {
2306   if (!protection.Inst) return;
2307 
2308   // In theory, we could try to duplicate the peepholes now, but whatever.
2309   protection.Inst->eraseFromParent();
2310 }
2311 
2312 void CodeGenFunction::emitAlignmentAssumption(llvm::Value *PtrValue,
2313                                               QualType Ty, SourceLocation Loc,
2314                                               SourceLocation AssumptionLoc,
2315                                               llvm::Value *Alignment,
2316                                               llvm::Value *OffsetValue) {
2317   if (Alignment->getType() != IntPtrTy)
2318     Alignment =
2319         Builder.CreateIntCast(Alignment, IntPtrTy, false, "casted.align");
2320   if (OffsetValue && OffsetValue->getType() != IntPtrTy)
2321     OffsetValue =
2322         Builder.CreateIntCast(OffsetValue, IntPtrTy, true, "casted.offset");
2323   llvm::Value *TheCheck = nullptr;
2324   if (SanOpts.has(SanitizerKind::Alignment)) {
2325     llvm::Value *PtrIntValue =
2326         Builder.CreatePtrToInt(PtrValue, IntPtrTy, "ptrint");
2327 
2328     if (OffsetValue) {
2329       bool IsOffsetZero = false;
2330       if (const auto *CI = dyn_cast<llvm::ConstantInt>(OffsetValue))
2331         IsOffsetZero = CI->isZero();
2332 
2333       if (!IsOffsetZero)
2334         PtrIntValue = Builder.CreateSub(PtrIntValue, OffsetValue, "offsetptr");
2335     }
2336 
2337     llvm::Value *Zero = llvm::ConstantInt::get(IntPtrTy, 0);
2338     llvm::Value *Mask =
2339         Builder.CreateSub(Alignment, llvm::ConstantInt::get(IntPtrTy, 1));
2340     llvm::Value *MaskedPtr = Builder.CreateAnd(PtrIntValue, Mask, "maskedptr");
2341     TheCheck = Builder.CreateICmpEQ(MaskedPtr, Zero, "maskcond");
2342   }
2343   llvm::Instruction *Assumption = Builder.CreateAlignmentAssumption(
2344       CGM.getDataLayout(), PtrValue, Alignment, OffsetValue);
2345 
2346   if (!SanOpts.has(SanitizerKind::Alignment))
2347     return;
2348   emitAlignmentAssumptionCheck(PtrValue, Ty, Loc, AssumptionLoc, Alignment,
2349                                OffsetValue, TheCheck, Assumption);
2350 }
2351 
2352 void CodeGenFunction::emitAlignmentAssumption(llvm::Value *PtrValue,
2353                                               const Expr *E,
2354                                               SourceLocation AssumptionLoc,
2355                                               llvm::Value *Alignment,
2356                                               llvm::Value *OffsetValue) {
2357   if (auto *CE = dyn_cast<CastExpr>(E))
2358     E = CE->getSubExprAsWritten();
2359   QualType Ty = E->getType();
2360   SourceLocation Loc = E->getExprLoc();
2361 
2362   emitAlignmentAssumption(PtrValue, Ty, Loc, AssumptionLoc, Alignment,
2363                           OffsetValue);
2364 }
2365 
2366 llvm::Value *CodeGenFunction::EmitAnnotationCall(llvm::Function *AnnotationFn,
2367                                                  llvm::Value *AnnotatedVal,
2368                                                  StringRef AnnotationStr,
2369                                                  SourceLocation Location,
2370                                                  const AnnotateAttr *Attr) {
2371   SmallVector<llvm::Value *, 5> Args = {
2372       AnnotatedVal,
2373       Builder.CreateBitCast(CGM.EmitAnnotationString(AnnotationStr), Int8PtrTy),
2374       Builder.CreateBitCast(CGM.EmitAnnotationUnit(Location), Int8PtrTy),
2375       CGM.EmitAnnotationLineNo(Location),
2376   };
2377   if (Attr)
2378     Args.push_back(CGM.EmitAnnotationArgs(Attr));
2379   return Builder.CreateCall(AnnotationFn, Args);
2380 }
2381 
2382 void CodeGenFunction::EmitVarAnnotations(const VarDecl *D, llvm::Value *V) {
2383   assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute");
2384   // FIXME We create a new bitcast for every annotation because that's what
2385   // llvm-gcc was doing.
2386   for (const auto *I : D->specific_attrs<AnnotateAttr>())
2387     EmitAnnotationCall(CGM.getIntrinsic(llvm::Intrinsic::var_annotation),
2388                        Builder.CreateBitCast(V, CGM.Int8PtrTy, V->getName()),
2389                        I->getAnnotation(), D->getLocation(), I);
2390 }
2391 
2392 Address CodeGenFunction::EmitFieldAnnotations(const FieldDecl *D,
2393                                               Address Addr) {
2394   assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute");
2395   llvm::Value *V = Addr.getPointer();
2396   llvm::Type *VTy = V->getType();
2397   llvm::Function *F = CGM.getIntrinsic(llvm::Intrinsic::ptr_annotation,
2398                                     CGM.Int8PtrTy);
2399 
2400   for (const auto *I : D->specific_attrs<AnnotateAttr>()) {
2401     // FIXME Always emit the cast inst so we can differentiate between
2402     // annotation on the first field of a struct and annotation on the struct
2403     // itself.
2404     if (VTy != CGM.Int8PtrTy)
2405       V = Builder.CreateBitCast(V, CGM.Int8PtrTy);
2406     V = EmitAnnotationCall(F, V, I->getAnnotation(), D->getLocation(), I);
2407     V = Builder.CreateBitCast(V, VTy);
2408   }
2409 
2410   return Address(V, Addr.getAlignment());
2411 }
2412 
2413 CodeGenFunction::CGCapturedStmtInfo::~CGCapturedStmtInfo() { }
2414 
2415 CodeGenFunction::SanitizerScope::SanitizerScope(CodeGenFunction *CGF)
2416     : CGF(CGF) {
2417   assert(!CGF->IsSanitizerScope);
2418   CGF->IsSanitizerScope = true;
2419 }
2420 
2421 CodeGenFunction::SanitizerScope::~SanitizerScope() {
2422   CGF->IsSanitizerScope = false;
2423 }
2424 
2425 void CodeGenFunction::InsertHelper(llvm::Instruction *I,
2426                                    const llvm::Twine &Name,
2427                                    llvm::BasicBlock *BB,
2428                                    llvm::BasicBlock::iterator InsertPt) const {
2429   LoopStack.InsertHelper(I);
2430   if (IsSanitizerScope)
2431     CGM.getSanitizerMetadata()->disableSanitizerForInstruction(I);
2432 }
2433 
2434 void CGBuilderInserter::InsertHelper(
2435     llvm::Instruction *I, const llvm::Twine &Name, llvm::BasicBlock *BB,
2436     llvm::BasicBlock::iterator InsertPt) const {
2437   llvm::IRBuilderDefaultInserter::InsertHelper(I, Name, BB, InsertPt);
2438   if (CGF)
2439     CGF->InsertHelper(I, Name, BB, InsertPt);
2440 }
2441 
2442 // Emits an error if we don't have a valid set of target features for the
2443 // called function.
2444 void CodeGenFunction::checkTargetFeatures(const CallExpr *E,
2445                                           const FunctionDecl *TargetDecl) {
2446   return checkTargetFeatures(E->getBeginLoc(), TargetDecl);
2447 }
2448 
2449 // Emits an error if we don't have a valid set of target features for the
2450 // called function.
2451 void CodeGenFunction::checkTargetFeatures(SourceLocation Loc,
2452                                           const FunctionDecl *TargetDecl) {
2453   // Early exit if this is an indirect call.
2454   if (!TargetDecl)
2455     return;
2456 
2457   // Get the current enclosing function if it exists. If it doesn't
2458   // we can't check the target features anyhow.
2459   const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(CurCodeDecl);
2460   if (!FD)
2461     return;
2462 
2463   // Grab the required features for the call. For a builtin this is listed in
2464   // the td file with the default cpu, for an always_inline function this is any
2465   // listed cpu and any listed features.
2466   unsigned BuiltinID = TargetDecl->getBuiltinID();
2467   std::string MissingFeature;
2468   llvm::StringMap<bool> CallerFeatureMap;
2469   CGM.getContext().getFunctionFeatureMap(CallerFeatureMap, FD);
2470   if (BuiltinID) {
2471     StringRef FeatureList(
2472         CGM.getContext().BuiltinInfo.getRequiredFeatures(BuiltinID));
2473     // Return if the builtin doesn't have any required features.
2474     if (FeatureList.empty())
2475       return;
2476     assert(FeatureList.find(' ') == StringRef::npos &&
2477            "Space in feature list");
2478     TargetFeatures TF(CallerFeatureMap);
2479     if (!TF.hasRequiredFeatures(FeatureList))
2480       CGM.getDiags().Report(Loc, diag::err_builtin_needs_feature)
2481           << TargetDecl->getDeclName() << FeatureList;
2482   } else if (!TargetDecl->isMultiVersion() &&
2483              TargetDecl->hasAttr<TargetAttr>()) {
2484     // Get the required features for the callee.
2485 
2486     const TargetAttr *TD = TargetDecl->getAttr<TargetAttr>();
2487     ParsedTargetAttr ParsedAttr =
2488         CGM.getContext().filterFunctionTargetAttrs(TD);
2489 
2490     SmallVector<StringRef, 1> ReqFeatures;
2491     llvm::StringMap<bool> CalleeFeatureMap;
2492     CGM.getContext().getFunctionFeatureMap(CalleeFeatureMap, TargetDecl);
2493 
2494     for (const auto &F : ParsedAttr.Features) {
2495       if (F[0] == '+' && CalleeFeatureMap.lookup(F.substr(1)))
2496         ReqFeatures.push_back(StringRef(F).substr(1));
2497     }
2498 
2499     for (const auto &F : CalleeFeatureMap) {
2500       // Only positive features are "required".
2501       if (F.getValue())
2502         ReqFeatures.push_back(F.getKey());
2503     }
2504     if (!llvm::all_of(ReqFeatures, [&](StringRef Feature) {
2505       if (!CallerFeatureMap.lookup(Feature)) {
2506         MissingFeature = Feature.str();
2507         return false;
2508       }
2509       return true;
2510     }))
2511       CGM.getDiags().Report(Loc, diag::err_function_needs_feature)
2512           << FD->getDeclName() << TargetDecl->getDeclName() << MissingFeature;
2513   }
2514 }
2515 
2516 void CodeGenFunction::EmitSanitizerStatReport(llvm::SanitizerStatKind SSK) {
2517   if (!CGM.getCodeGenOpts().SanitizeStats)
2518     return;
2519 
2520   llvm::IRBuilder<> IRB(Builder.GetInsertBlock(), Builder.GetInsertPoint());
2521   IRB.SetCurrentDebugLocation(Builder.getCurrentDebugLocation());
2522   CGM.getSanStats().create(IRB, SSK);
2523 }
2524 
2525 llvm::Value *
2526 CodeGenFunction::FormResolverCondition(const MultiVersionResolverOption &RO) {
2527   llvm::Value *Condition = nullptr;
2528 
2529   if (!RO.Conditions.Architecture.empty())
2530     Condition = EmitX86CpuIs(RO.Conditions.Architecture);
2531 
2532   if (!RO.Conditions.Features.empty()) {
2533     llvm::Value *FeatureCond = EmitX86CpuSupports(RO.Conditions.Features);
2534     Condition =
2535         Condition ? Builder.CreateAnd(Condition, FeatureCond) : FeatureCond;
2536   }
2537   return Condition;
2538 }
2539 
2540 static void CreateMultiVersionResolverReturn(CodeGenModule &CGM,
2541                                              llvm::Function *Resolver,
2542                                              CGBuilderTy &Builder,
2543                                              llvm::Function *FuncToReturn,
2544                                              bool SupportsIFunc) {
2545   if (SupportsIFunc) {
2546     Builder.CreateRet(FuncToReturn);
2547     return;
2548   }
2549 
2550   llvm::SmallVector<llvm::Value *, 10> Args;
2551   llvm::for_each(Resolver->args(),
2552                  [&](llvm::Argument &Arg) { Args.push_back(&Arg); });
2553 
2554   llvm::CallInst *Result = Builder.CreateCall(FuncToReturn, Args);
2555   Result->setTailCallKind(llvm::CallInst::TCK_MustTail);
2556 
2557   if (Resolver->getReturnType()->isVoidTy())
2558     Builder.CreateRetVoid();
2559   else
2560     Builder.CreateRet(Result);
2561 }
2562 
2563 void CodeGenFunction::EmitMultiVersionResolver(
2564     llvm::Function *Resolver, ArrayRef<MultiVersionResolverOption> Options) {
2565   assert(getContext().getTargetInfo().getTriple().isX86() &&
2566          "Only implemented for x86 targets");
2567 
2568   bool SupportsIFunc = getContext().getTargetInfo().supportsIFunc();
2569 
2570   // Main function's basic block.
2571   llvm::BasicBlock *CurBlock = createBasicBlock("resolver_entry", Resolver);
2572   Builder.SetInsertPoint(CurBlock);
2573   EmitX86CpuInit();
2574 
2575   for (const MultiVersionResolverOption &RO : Options) {
2576     Builder.SetInsertPoint(CurBlock);
2577     llvm::Value *Condition = FormResolverCondition(RO);
2578 
2579     // The 'default' or 'generic' case.
2580     if (!Condition) {
2581       assert(&RO == Options.end() - 1 &&
2582              "Default or Generic case must be last");
2583       CreateMultiVersionResolverReturn(CGM, Resolver, Builder, RO.Function,
2584                                        SupportsIFunc);
2585       return;
2586     }
2587 
2588     llvm::BasicBlock *RetBlock = createBasicBlock("resolver_return", Resolver);
2589     CGBuilderTy RetBuilder(*this, RetBlock);
2590     CreateMultiVersionResolverReturn(CGM, Resolver, RetBuilder, RO.Function,
2591                                      SupportsIFunc);
2592     CurBlock = createBasicBlock("resolver_else", Resolver);
2593     Builder.CreateCondBr(Condition, RetBlock, CurBlock);
2594   }
2595 
2596   // If no generic/default, emit an unreachable.
2597   Builder.SetInsertPoint(CurBlock);
2598   llvm::CallInst *TrapCall = EmitTrapCall(llvm::Intrinsic::trap);
2599   TrapCall->setDoesNotReturn();
2600   TrapCall->setDoesNotThrow();
2601   Builder.CreateUnreachable();
2602   Builder.ClearInsertionPoint();
2603 }
2604 
2605 // Loc - where the diagnostic will point, where in the source code this
2606 //  alignment has failed.
2607 // SecondaryLoc - if present (will be present if sufficiently different from
2608 //  Loc), the diagnostic will additionally point a "Note:" to this location.
2609 //  It should be the location where the __attribute__((assume_aligned))
2610 //  was written e.g.
2611 void CodeGenFunction::emitAlignmentAssumptionCheck(
2612     llvm::Value *Ptr, QualType Ty, SourceLocation Loc,
2613     SourceLocation SecondaryLoc, llvm::Value *Alignment,
2614     llvm::Value *OffsetValue, llvm::Value *TheCheck,
2615     llvm::Instruction *Assumption) {
2616   assert(Assumption && isa<llvm::CallInst>(Assumption) &&
2617          cast<llvm::CallInst>(Assumption)->getCalledOperand() ==
2618              llvm::Intrinsic::getDeclaration(
2619                  Builder.GetInsertBlock()->getParent()->getParent(),
2620                  llvm::Intrinsic::assume) &&
2621          "Assumption should be a call to llvm.assume().");
2622   assert(&(Builder.GetInsertBlock()->back()) == Assumption &&
2623          "Assumption should be the last instruction of the basic block, "
2624          "since the basic block is still being generated.");
2625 
2626   if (!SanOpts.has(SanitizerKind::Alignment))
2627     return;
2628 
2629   // Don't check pointers to volatile data. The behavior here is implementation-
2630   // defined.
2631   if (Ty->getPointeeType().isVolatileQualified())
2632     return;
2633 
2634   // We need to temorairly remove the assumption so we can insert the
2635   // sanitizer check before it, else the check will be dropped by optimizations.
2636   Assumption->removeFromParent();
2637 
2638   {
2639     SanitizerScope SanScope(this);
2640 
2641     if (!OffsetValue)
2642       OffsetValue = Builder.getInt1(0); // no offset.
2643 
2644     llvm::Constant *StaticData[] = {EmitCheckSourceLocation(Loc),
2645                                     EmitCheckSourceLocation(SecondaryLoc),
2646                                     EmitCheckTypeDescriptor(Ty)};
2647     llvm::Value *DynamicData[] = {EmitCheckValue(Ptr),
2648                                   EmitCheckValue(Alignment),
2649                                   EmitCheckValue(OffsetValue)};
2650     EmitCheck({std::make_pair(TheCheck, SanitizerKind::Alignment)},
2651               SanitizerHandler::AlignmentAssumption, StaticData, DynamicData);
2652   }
2653 
2654   // We are now in the (new, empty) "cont" basic block.
2655   // Reintroduce the assumption.
2656   Builder.Insert(Assumption);
2657   // FIXME: Assumption still has it's original basic block as it's Parent.
2658 }
2659 
2660 llvm::DebugLoc CodeGenFunction::SourceLocToDebugLoc(SourceLocation Location) {
2661   if (CGDebugInfo *DI = getDebugInfo())
2662     return DI->SourceLocToDebugLoc(Location);
2663 
2664   return llvm::DebugLoc();
2665 }
2666 
2667 llvm::Value *
2668 CodeGenFunction::emitCondLikelihoodViaExpectIntrinsic(llvm::Value *Cond,
2669                                                       Stmt::Likelihood LH) {
2670   switch (LH) {
2671   case Stmt::LH_None:
2672     return Cond;
2673   case Stmt::LH_Likely:
2674   case Stmt::LH_Unlikely:
2675     // Don't generate llvm.expect on -O0 as the backend won't use it for
2676     // anything.
2677     if (CGM.getCodeGenOpts().OptimizationLevel == 0)
2678       return Cond;
2679     llvm::Type *CondTy = Cond->getType();
2680     assert(CondTy->isIntegerTy(1) && "expecting condition to be a boolean");
2681     llvm::Function *FnExpect =
2682         CGM.getIntrinsic(llvm::Intrinsic::expect, CondTy);
2683     llvm::Value *ExpectedValueOfCond =
2684         llvm::ConstantInt::getBool(CondTy, LH == Stmt::LH_Likely);
2685     return Builder.CreateCall(FnExpect, {Cond, ExpectedValueOfCond},
2686                               Cond->getName() + ".expval");
2687   }
2688   llvm_unreachable("Unknown Likelihood");
2689 }
2690