1 //===--- CodeGenFunction.cpp - Emit LLVM Code from ASTs for a Function ----===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This coordinates the per-function state used while generating code. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "CodeGenFunction.h" 14 #include "CGBlocks.h" 15 #include "CGCUDARuntime.h" 16 #include "CGCXXABI.h" 17 #include "CGCleanup.h" 18 #include "CGDebugInfo.h" 19 #include "CGHLSLRuntime.h" 20 #include "CGOpenMPRuntime.h" 21 #include "CodeGenModule.h" 22 #include "CodeGenPGO.h" 23 #include "TargetInfo.h" 24 #include "clang/AST/ASTContext.h" 25 #include "clang/AST/ASTLambda.h" 26 #include "clang/AST/Attr.h" 27 #include "clang/AST/Decl.h" 28 #include "clang/AST/DeclCXX.h" 29 #include "clang/AST/Expr.h" 30 #include "clang/AST/StmtCXX.h" 31 #include "clang/AST/StmtObjC.h" 32 #include "clang/Basic/Builtins.h" 33 #include "clang/Basic/CodeGenOptions.h" 34 #include "clang/Basic/TargetBuiltins.h" 35 #include "clang/Basic/TargetInfo.h" 36 #include "clang/CodeGen/CGFunctionInfo.h" 37 #include "clang/Frontend/FrontendDiagnostic.h" 38 #include "llvm/ADT/ArrayRef.h" 39 #include "llvm/Frontend/OpenMP/OMPIRBuilder.h" 40 #include "llvm/IR/DataLayout.h" 41 #include "llvm/IR/Dominators.h" 42 #include "llvm/IR/FPEnv.h" 43 #include "llvm/IR/IntrinsicInst.h" 44 #include "llvm/IR/Intrinsics.h" 45 #include "llvm/IR/MDBuilder.h" 46 #include "llvm/IR/Operator.h" 47 #include "llvm/Support/CRC.h" 48 #include "llvm/Support/xxhash.h" 49 #include "llvm/Transforms/Scalar/LowerExpectIntrinsic.h" 50 #include "llvm/Transforms/Utils/PromoteMemToReg.h" 51 #include <optional> 52 53 using namespace clang; 54 using namespace CodeGen; 55 56 namespace llvm { 57 extern cl::opt<bool> EnableSingleByteCoverage; 58 } // namespace llvm 59 60 /// shouldEmitLifetimeMarkers - Decide whether we need emit the life-time 61 /// markers. 62 static bool shouldEmitLifetimeMarkers(const CodeGenOptions &CGOpts, 63 const LangOptions &LangOpts) { 64 if (CGOpts.DisableLifetimeMarkers) 65 return false; 66 67 // Sanitizers may use markers. 68 if (CGOpts.SanitizeAddressUseAfterScope || 69 LangOpts.Sanitize.has(SanitizerKind::HWAddress) || 70 LangOpts.Sanitize.has(SanitizerKind::Memory)) 71 return true; 72 73 // For now, only in optimized builds. 74 return CGOpts.OptimizationLevel != 0; 75 } 76 77 CodeGenFunction::CodeGenFunction(CodeGenModule &cgm, bool suppressNewContext) 78 : CodeGenTypeCache(cgm), CGM(cgm), Target(cgm.getTarget()), 79 Builder(cgm, cgm.getModule().getContext(), llvm::ConstantFolder(), 80 CGBuilderInserterTy(this)), 81 SanOpts(CGM.getLangOpts().Sanitize), CurFPFeatures(CGM.getLangOpts()), 82 DebugInfo(CGM.getModuleDebugInfo()), PGO(cgm), 83 ShouldEmitLifetimeMarkers( 84 shouldEmitLifetimeMarkers(CGM.getCodeGenOpts(), CGM.getLangOpts())) { 85 if (!suppressNewContext) 86 CGM.getCXXABI().getMangleContext().startNewFunction(); 87 EHStack.setCGF(this); 88 89 SetFastMathFlags(CurFPFeatures); 90 } 91 92 CodeGenFunction::~CodeGenFunction() { 93 assert(LifetimeExtendedCleanupStack.empty() && "failed to emit a cleanup"); 94 assert(DeferredDeactivationCleanupStack.empty() && 95 "missed to deactivate a cleanup"); 96 97 if (getLangOpts().OpenMP && CurFn) 98 CGM.getOpenMPRuntime().functionFinished(*this); 99 100 // If we have an OpenMPIRBuilder we want to finalize functions (incl. 101 // outlining etc) at some point. Doing it once the function codegen is done 102 // seems to be a reasonable spot. We do it here, as opposed to the deletion 103 // time of the CodeGenModule, because we have to ensure the IR has not yet 104 // been "emitted" to the outside, thus, modifications are still sensible. 105 if (CGM.getLangOpts().OpenMPIRBuilder && CurFn) 106 CGM.getOpenMPRuntime().getOMPBuilder().finalize(CurFn); 107 } 108 109 // Map the LangOption for exception behavior into 110 // the corresponding enum in the IR. 111 llvm::fp::ExceptionBehavior 112 clang::ToConstrainedExceptMD(LangOptions::FPExceptionModeKind Kind) { 113 114 switch (Kind) { 115 case LangOptions::FPE_Ignore: return llvm::fp::ebIgnore; 116 case LangOptions::FPE_MayTrap: return llvm::fp::ebMayTrap; 117 case LangOptions::FPE_Strict: return llvm::fp::ebStrict; 118 default: 119 llvm_unreachable("Unsupported FP Exception Behavior"); 120 } 121 } 122 123 void CodeGenFunction::SetFastMathFlags(FPOptions FPFeatures) { 124 llvm::FastMathFlags FMF; 125 FMF.setAllowReassoc(FPFeatures.getAllowFPReassociate()); 126 FMF.setNoNaNs(FPFeatures.getNoHonorNaNs()); 127 FMF.setNoInfs(FPFeatures.getNoHonorInfs()); 128 FMF.setNoSignedZeros(FPFeatures.getNoSignedZero()); 129 FMF.setAllowReciprocal(FPFeatures.getAllowReciprocal()); 130 FMF.setApproxFunc(FPFeatures.getAllowApproxFunc()); 131 FMF.setAllowContract(FPFeatures.allowFPContractAcrossStatement()); 132 Builder.setFastMathFlags(FMF); 133 } 134 135 CodeGenFunction::CGFPOptionsRAII::CGFPOptionsRAII(CodeGenFunction &CGF, 136 const Expr *E) 137 : CGF(CGF) { 138 ConstructorHelper(E->getFPFeaturesInEffect(CGF.getLangOpts())); 139 } 140 141 CodeGenFunction::CGFPOptionsRAII::CGFPOptionsRAII(CodeGenFunction &CGF, 142 FPOptions FPFeatures) 143 : CGF(CGF) { 144 ConstructorHelper(FPFeatures); 145 } 146 147 void CodeGenFunction::CGFPOptionsRAII::ConstructorHelper(FPOptions FPFeatures) { 148 OldFPFeatures = CGF.CurFPFeatures; 149 CGF.CurFPFeatures = FPFeatures; 150 151 OldExcept = CGF.Builder.getDefaultConstrainedExcept(); 152 OldRounding = CGF.Builder.getDefaultConstrainedRounding(); 153 154 if (OldFPFeatures == FPFeatures) 155 return; 156 157 FMFGuard.emplace(CGF.Builder); 158 159 llvm::RoundingMode NewRoundingBehavior = FPFeatures.getRoundingMode(); 160 CGF.Builder.setDefaultConstrainedRounding(NewRoundingBehavior); 161 auto NewExceptionBehavior = 162 ToConstrainedExceptMD(static_cast<LangOptions::FPExceptionModeKind>( 163 FPFeatures.getExceptionMode())); 164 CGF.Builder.setDefaultConstrainedExcept(NewExceptionBehavior); 165 166 CGF.SetFastMathFlags(FPFeatures); 167 168 assert((CGF.CurFuncDecl == nullptr || CGF.Builder.getIsFPConstrained() || 169 isa<CXXConstructorDecl>(CGF.CurFuncDecl) || 170 isa<CXXDestructorDecl>(CGF.CurFuncDecl) || 171 (NewExceptionBehavior == llvm::fp::ebIgnore && 172 NewRoundingBehavior == llvm::RoundingMode::NearestTiesToEven)) && 173 "FPConstrained should be enabled on entire function"); 174 175 auto mergeFnAttrValue = [&](StringRef Name, bool Value) { 176 auto OldValue = 177 CGF.CurFn->getFnAttribute(Name).getValueAsBool(); 178 auto NewValue = OldValue & Value; 179 if (OldValue != NewValue) 180 CGF.CurFn->addFnAttr(Name, llvm::toStringRef(NewValue)); 181 }; 182 mergeFnAttrValue("no-infs-fp-math", FPFeatures.getNoHonorInfs()); 183 mergeFnAttrValue("no-nans-fp-math", FPFeatures.getNoHonorNaNs()); 184 mergeFnAttrValue("no-signed-zeros-fp-math", FPFeatures.getNoSignedZero()); 185 mergeFnAttrValue( 186 "unsafe-fp-math", 187 FPFeatures.getAllowFPReassociate() && FPFeatures.getAllowReciprocal() && 188 FPFeatures.getAllowApproxFunc() && FPFeatures.getNoSignedZero() && 189 FPFeatures.allowFPContractAcrossStatement()); 190 } 191 192 CodeGenFunction::CGFPOptionsRAII::~CGFPOptionsRAII() { 193 CGF.CurFPFeatures = OldFPFeatures; 194 CGF.Builder.setDefaultConstrainedExcept(OldExcept); 195 CGF.Builder.setDefaultConstrainedRounding(OldRounding); 196 } 197 198 static LValue 199 makeNaturalAlignAddrLValue(llvm::Value *V, QualType T, bool ForPointeeType, 200 bool MightBeSigned, CodeGenFunction &CGF, 201 KnownNonNull_t IsKnownNonNull = NotKnownNonNull) { 202 LValueBaseInfo BaseInfo; 203 TBAAAccessInfo TBAAInfo; 204 CharUnits Alignment = 205 CGF.CGM.getNaturalTypeAlignment(T, &BaseInfo, &TBAAInfo, ForPointeeType); 206 Address Addr = 207 MightBeSigned 208 ? CGF.makeNaturalAddressForPointer(V, T, Alignment, false, nullptr, 209 nullptr, IsKnownNonNull) 210 : Address(V, CGF.ConvertTypeForMem(T), Alignment, IsKnownNonNull); 211 return CGF.MakeAddrLValue(Addr, T, BaseInfo, TBAAInfo); 212 } 213 214 LValue 215 CodeGenFunction::MakeNaturalAlignAddrLValue(llvm::Value *V, QualType T, 216 KnownNonNull_t IsKnownNonNull) { 217 return ::makeNaturalAlignAddrLValue(V, T, /*ForPointeeType*/ false, 218 /*MightBeSigned*/ true, *this, 219 IsKnownNonNull); 220 } 221 222 LValue 223 CodeGenFunction::MakeNaturalAlignPointeeAddrLValue(llvm::Value *V, QualType T) { 224 return ::makeNaturalAlignAddrLValue(V, T, /*ForPointeeType*/ true, 225 /*MightBeSigned*/ true, *this); 226 } 227 228 LValue CodeGenFunction::MakeNaturalAlignRawAddrLValue(llvm::Value *V, 229 QualType T) { 230 return ::makeNaturalAlignAddrLValue(V, T, /*ForPointeeType*/ false, 231 /*MightBeSigned*/ false, *this); 232 } 233 234 LValue CodeGenFunction::MakeNaturalAlignPointeeRawAddrLValue(llvm::Value *V, 235 QualType T) { 236 return ::makeNaturalAlignAddrLValue(V, T, /*ForPointeeType*/ true, 237 /*MightBeSigned*/ false, *this); 238 } 239 240 llvm::Type *CodeGenFunction::ConvertTypeForMem(QualType T) { 241 return CGM.getTypes().ConvertTypeForMem(T); 242 } 243 244 llvm::Type *CodeGenFunction::ConvertType(QualType T) { 245 return CGM.getTypes().ConvertType(T); 246 } 247 248 llvm::Type *CodeGenFunction::convertTypeForLoadStore(QualType ASTTy, 249 llvm::Type *LLVMTy) { 250 return CGM.getTypes().convertTypeForLoadStore(ASTTy, LLVMTy); 251 } 252 253 TypeEvaluationKind CodeGenFunction::getEvaluationKind(QualType type) { 254 type = type.getCanonicalType(); 255 while (true) { 256 switch (type->getTypeClass()) { 257 #define TYPE(name, parent) 258 #define ABSTRACT_TYPE(name, parent) 259 #define NON_CANONICAL_TYPE(name, parent) case Type::name: 260 #define DEPENDENT_TYPE(name, parent) case Type::name: 261 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(name, parent) case Type::name: 262 #include "clang/AST/TypeNodes.inc" 263 llvm_unreachable("non-canonical or dependent type in IR-generation"); 264 265 case Type::Auto: 266 case Type::DeducedTemplateSpecialization: 267 llvm_unreachable("undeduced type in IR-generation"); 268 269 // Various scalar types. 270 case Type::Builtin: 271 case Type::Pointer: 272 case Type::BlockPointer: 273 case Type::LValueReference: 274 case Type::RValueReference: 275 case Type::MemberPointer: 276 case Type::Vector: 277 case Type::ExtVector: 278 case Type::ConstantMatrix: 279 case Type::FunctionProto: 280 case Type::FunctionNoProto: 281 case Type::Enum: 282 case Type::ObjCObjectPointer: 283 case Type::Pipe: 284 case Type::BitInt: 285 return TEK_Scalar; 286 287 // Complexes. 288 case Type::Complex: 289 return TEK_Complex; 290 291 // Arrays, records, and Objective-C objects. 292 case Type::ConstantArray: 293 case Type::IncompleteArray: 294 case Type::VariableArray: 295 case Type::Record: 296 case Type::ObjCObject: 297 case Type::ObjCInterface: 298 case Type::ArrayParameter: 299 return TEK_Aggregate; 300 301 // We operate on atomic values according to their underlying type. 302 case Type::Atomic: 303 type = cast<AtomicType>(type)->getValueType(); 304 continue; 305 } 306 llvm_unreachable("unknown type kind!"); 307 } 308 } 309 310 llvm::DebugLoc CodeGenFunction::EmitReturnBlock() { 311 // For cleanliness, we try to avoid emitting the return block for 312 // simple cases. 313 llvm::BasicBlock *CurBB = Builder.GetInsertBlock(); 314 315 if (CurBB) { 316 assert(!CurBB->getTerminator() && "Unexpected terminated block."); 317 318 // We have a valid insert point, reuse it if it is empty or there are no 319 // explicit jumps to the return block. 320 if (CurBB->empty() || ReturnBlock.getBlock()->use_empty()) { 321 ReturnBlock.getBlock()->replaceAllUsesWith(CurBB); 322 delete ReturnBlock.getBlock(); 323 ReturnBlock = JumpDest(); 324 } else 325 EmitBlock(ReturnBlock.getBlock()); 326 return llvm::DebugLoc(); 327 } 328 329 // Otherwise, if the return block is the target of a single direct 330 // branch then we can just put the code in that block instead. This 331 // cleans up functions which started with a unified return block. 332 if (ReturnBlock.getBlock()->hasOneUse()) { 333 llvm::BranchInst *BI = 334 dyn_cast<llvm::BranchInst>(*ReturnBlock.getBlock()->user_begin()); 335 if (BI && BI->isUnconditional() && 336 BI->getSuccessor(0) == ReturnBlock.getBlock()) { 337 // Record/return the DebugLoc of the simple 'return' expression to be used 338 // later by the actual 'ret' instruction. 339 llvm::DebugLoc Loc = BI->getDebugLoc(); 340 Builder.SetInsertPoint(BI->getParent()); 341 BI->eraseFromParent(); 342 delete ReturnBlock.getBlock(); 343 ReturnBlock = JumpDest(); 344 return Loc; 345 } 346 } 347 348 // FIXME: We are at an unreachable point, there is no reason to emit the block 349 // unless it has uses. However, we still need a place to put the debug 350 // region.end for now. 351 352 EmitBlock(ReturnBlock.getBlock()); 353 return llvm::DebugLoc(); 354 } 355 356 static void EmitIfUsed(CodeGenFunction &CGF, llvm::BasicBlock *BB) { 357 if (!BB) return; 358 if (!BB->use_empty()) { 359 CGF.CurFn->insert(CGF.CurFn->end(), BB); 360 return; 361 } 362 delete BB; 363 } 364 365 void CodeGenFunction::FinishFunction(SourceLocation EndLoc) { 366 assert(BreakContinueStack.empty() && 367 "mismatched push/pop in break/continue stack!"); 368 assert(LifetimeExtendedCleanupStack.empty() && 369 "mismatched push/pop of cleanups in EHStack!"); 370 assert(DeferredDeactivationCleanupStack.empty() && 371 "mismatched activate/deactivate of cleanups!"); 372 373 if (CGM.shouldEmitConvergenceTokens()) { 374 ConvergenceTokenStack.pop_back(); 375 assert(ConvergenceTokenStack.empty() && 376 "mismatched push/pop in convergence stack!"); 377 } 378 379 bool OnlySimpleReturnStmts = NumSimpleReturnExprs > 0 380 && NumSimpleReturnExprs == NumReturnExprs 381 && ReturnBlock.getBlock()->use_empty(); 382 // Usually the return expression is evaluated before the cleanup 383 // code. If the function contains only a simple return statement, 384 // such as a constant, the location before the cleanup code becomes 385 // the last useful breakpoint in the function, because the simple 386 // return expression will be evaluated after the cleanup code. To be 387 // safe, set the debug location for cleanup code to the location of 388 // the return statement. Otherwise the cleanup code should be at the 389 // end of the function's lexical scope. 390 // 391 // If there are multiple branches to the return block, the branch 392 // instructions will get the location of the return statements and 393 // all will be fine. 394 if (CGDebugInfo *DI = getDebugInfo()) { 395 if (OnlySimpleReturnStmts) 396 DI->EmitLocation(Builder, LastStopPoint); 397 else 398 DI->EmitLocation(Builder, EndLoc); 399 } 400 401 // Pop any cleanups that might have been associated with the 402 // parameters. Do this in whatever block we're currently in; it's 403 // important to do this before we enter the return block or return 404 // edges will be *really* confused. 405 bool HasCleanups = EHStack.stable_begin() != PrologueCleanupDepth; 406 bool HasOnlyLifetimeMarkers = 407 HasCleanups && EHStack.containsOnlyLifetimeMarkers(PrologueCleanupDepth); 408 bool EmitRetDbgLoc = !HasCleanups || HasOnlyLifetimeMarkers; 409 410 std::optional<ApplyDebugLocation> OAL; 411 if (HasCleanups) { 412 // Make sure the line table doesn't jump back into the body for 413 // the ret after it's been at EndLoc. 414 if (CGDebugInfo *DI = getDebugInfo()) { 415 if (OnlySimpleReturnStmts) 416 DI->EmitLocation(Builder, EndLoc); 417 else 418 // We may not have a valid end location. Try to apply it anyway, and 419 // fall back to an artificial location if needed. 420 OAL = ApplyDebugLocation::CreateDefaultArtificial(*this, EndLoc); 421 } 422 423 PopCleanupBlocks(PrologueCleanupDepth); 424 } 425 426 // Emit function epilog (to return). 427 llvm::DebugLoc Loc = EmitReturnBlock(); 428 429 if (ShouldInstrumentFunction()) { 430 if (CGM.getCodeGenOpts().InstrumentFunctions) 431 CurFn->addFnAttr("instrument-function-exit", "__cyg_profile_func_exit"); 432 if (CGM.getCodeGenOpts().InstrumentFunctionsAfterInlining) 433 CurFn->addFnAttr("instrument-function-exit-inlined", 434 "__cyg_profile_func_exit"); 435 } 436 437 // Emit debug descriptor for function end. 438 if (CGDebugInfo *DI = getDebugInfo()) 439 DI->EmitFunctionEnd(Builder, CurFn); 440 441 // Reset the debug location to that of the simple 'return' expression, if any 442 // rather than that of the end of the function's scope '}'. 443 ApplyDebugLocation AL(*this, Loc); 444 EmitFunctionEpilog(*CurFnInfo, EmitRetDbgLoc, EndLoc); 445 EmitEndEHSpec(CurCodeDecl); 446 447 assert(EHStack.empty() && 448 "did not remove all scopes from cleanup stack!"); 449 450 // If someone did an indirect goto, emit the indirect goto block at the end of 451 // the function. 452 if (IndirectBranch) { 453 EmitBlock(IndirectBranch->getParent()); 454 Builder.ClearInsertionPoint(); 455 } 456 457 // If some of our locals escaped, insert a call to llvm.localescape in the 458 // entry block. 459 if (!EscapedLocals.empty()) { 460 // Invert the map from local to index into a simple vector. There should be 461 // no holes. 462 SmallVector<llvm::Value *, 4> EscapeArgs; 463 EscapeArgs.resize(EscapedLocals.size()); 464 for (auto &Pair : EscapedLocals) 465 EscapeArgs[Pair.second] = Pair.first; 466 llvm::Function *FrameEscapeFn = llvm::Intrinsic::getDeclaration( 467 &CGM.getModule(), llvm::Intrinsic::localescape); 468 CGBuilderTy(*this, AllocaInsertPt).CreateCall(FrameEscapeFn, EscapeArgs); 469 } 470 471 // Remove the AllocaInsertPt instruction, which is just a convenience for us. 472 llvm::Instruction *Ptr = AllocaInsertPt; 473 AllocaInsertPt = nullptr; 474 Ptr->eraseFromParent(); 475 476 // PostAllocaInsertPt, if created, was lazily created when it was required, 477 // remove it now since it was just created for our own convenience. 478 if (PostAllocaInsertPt) { 479 llvm::Instruction *PostPtr = PostAllocaInsertPt; 480 PostAllocaInsertPt = nullptr; 481 PostPtr->eraseFromParent(); 482 } 483 484 // If someone took the address of a label but never did an indirect goto, we 485 // made a zero entry PHI node, which is illegal, zap it now. 486 if (IndirectBranch) { 487 llvm::PHINode *PN = cast<llvm::PHINode>(IndirectBranch->getAddress()); 488 if (PN->getNumIncomingValues() == 0) { 489 PN->replaceAllUsesWith(llvm::UndefValue::get(PN->getType())); 490 PN->eraseFromParent(); 491 } 492 } 493 494 EmitIfUsed(*this, EHResumeBlock); 495 EmitIfUsed(*this, TerminateLandingPad); 496 EmitIfUsed(*this, TerminateHandler); 497 EmitIfUsed(*this, UnreachableBlock); 498 499 for (const auto &FuncletAndParent : TerminateFunclets) 500 EmitIfUsed(*this, FuncletAndParent.second); 501 502 if (CGM.getCodeGenOpts().EmitDeclMetadata) 503 EmitDeclMetadata(); 504 505 for (const auto &R : DeferredReplacements) { 506 if (llvm::Value *Old = R.first) { 507 Old->replaceAllUsesWith(R.second); 508 cast<llvm::Instruction>(Old)->eraseFromParent(); 509 } 510 } 511 DeferredReplacements.clear(); 512 513 // Eliminate CleanupDestSlot alloca by replacing it with SSA values and 514 // PHIs if the current function is a coroutine. We don't do it for all 515 // functions as it may result in slight increase in numbers of instructions 516 // if compiled with no optimizations. We do it for coroutine as the lifetime 517 // of CleanupDestSlot alloca make correct coroutine frame building very 518 // difficult. 519 if (NormalCleanupDest.isValid() && isCoroutine()) { 520 llvm::DominatorTree DT(*CurFn); 521 llvm::PromoteMemToReg( 522 cast<llvm::AllocaInst>(NormalCleanupDest.getPointer()), DT); 523 NormalCleanupDest = Address::invalid(); 524 } 525 526 // Scan function arguments for vector width. 527 for (llvm::Argument &A : CurFn->args()) 528 if (auto *VT = dyn_cast<llvm::VectorType>(A.getType())) 529 LargestVectorWidth = 530 std::max((uint64_t)LargestVectorWidth, 531 VT->getPrimitiveSizeInBits().getKnownMinValue()); 532 533 // Update vector width based on return type. 534 if (auto *VT = dyn_cast<llvm::VectorType>(CurFn->getReturnType())) 535 LargestVectorWidth = 536 std::max((uint64_t)LargestVectorWidth, 537 VT->getPrimitiveSizeInBits().getKnownMinValue()); 538 539 if (CurFnInfo->getMaxVectorWidth() > LargestVectorWidth) 540 LargestVectorWidth = CurFnInfo->getMaxVectorWidth(); 541 542 // Add the min-legal-vector-width attribute. This contains the max width from: 543 // 1. min-vector-width attribute used in the source program. 544 // 2. Any builtins used that have a vector width specified. 545 // 3. Values passed in and out of inline assembly. 546 // 4. Width of vector arguments and return types for this function. 547 // 5. Width of vector arguments and return types for functions called by this 548 // function. 549 if (getContext().getTargetInfo().getTriple().isX86()) 550 CurFn->addFnAttr("min-legal-vector-width", 551 llvm::utostr(LargestVectorWidth)); 552 553 // Add vscale_range attribute if appropriate. 554 std::optional<std::pair<unsigned, unsigned>> VScaleRange = 555 getContext().getTargetInfo().getVScaleRange(getLangOpts()); 556 if (VScaleRange) { 557 CurFn->addFnAttr(llvm::Attribute::getWithVScaleRangeArgs( 558 getLLVMContext(), VScaleRange->first, VScaleRange->second)); 559 } 560 561 // If we generated an unreachable return block, delete it now. 562 if (ReturnBlock.isValid() && ReturnBlock.getBlock()->use_empty()) { 563 Builder.ClearInsertionPoint(); 564 ReturnBlock.getBlock()->eraseFromParent(); 565 } 566 if (ReturnValue.isValid()) { 567 auto *RetAlloca = 568 dyn_cast<llvm::AllocaInst>(ReturnValue.emitRawPointer(*this)); 569 if (RetAlloca && RetAlloca->use_empty()) { 570 RetAlloca->eraseFromParent(); 571 ReturnValue = Address::invalid(); 572 } 573 } 574 } 575 576 /// ShouldInstrumentFunction - Return true if the current function should be 577 /// instrumented with __cyg_profile_func_* calls 578 bool CodeGenFunction::ShouldInstrumentFunction() { 579 if (!CGM.getCodeGenOpts().InstrumentFunctions && 580 !CGM.getCodeGenOpts().InstrumentFunctionsAfterInlining && 581 !CGM.getCodeGenOpts().InstrumentFunctionEntryBare) 582 return false; 583 if (!CurFuncDecl || CurFuncDecl->hasAttr<NoInstrumentFunctionAttr>()) 584 return false; 585 return true; 586 } 587 588 bool CodeGenFunction::ShouldSkipSanitizerInstrumentation() { 589 if (!CurFuncDecl) 590 return false; 591 return CurFuncDecl->hasAttr<DisableSanitizerInstrumentationAttr>(); 592 } 593 594 /// ShouldXRayInstrument - Return true if the current function should be 595 /// instrumented with XRay nop sleds. 596 bool CodeGenFunction::ShouldXRayInstrumentFunction() const { 597 return CGM.getCodeGenOpts().XRayInstrumentFunctions; 598 } 599 600 /// AlwaysEmitXRayCustomEvents - Return true if we should emit IR for calls to 601 /// the __xray_customevent(...) builtin calls, when doing XRay instrumentation. 602 bool CodeGenFunction::AlwaysEmitXRayCustomEvents() const { 603 return CGM.getCodeGenOpts().XRayInstrumentFunctions && 604 (CGM.getCodeGenOpts().XRayAlwaysEmitCustomEvents || 605 CGM.getCodeGenOpts().XRayInstrumentationBundle.Mask == 606 XRayInstrKind::Custom); 607 } 608 609 bool CodeGenFunction::AlwaysEmitXRayTypedEvents() const { 610 return CGM.getCodeGenOpts().XRayInstrumentFunctions && 611 (CGM.getCodeGenOpts().XRayAlwaysEmitTypedEvents || 612 CGM.getCodeGenOpts().XRayInstrumentationBundle.Mask == 613 XRayInstrKind::Typed); 614 } 615 616 llvm::ConstantInt * 617 CodeGenFunction::getUBSanFunctionTypeHash(QualType Ty) const { 618 // Remove any (C++17) exception specifications, to allow calling e.g. a 619 // noexcept function through a non-noexcept pointer. 620 if (!Ty->isFunctionNoProtoType()) 621 Ty = getContext().getFunctionTypeWithExceptionSpec(Ty, EST_None); 622 std::string Mangled; 623 llvm::raw_string_ostream Out(Mangled); 624 CGM.getCXXABI().getMangleContext().mangleCanonicalTypeName(Ty, Out, false); 625 return llvm::ConstantInt::get( 626 CGM.Int32Ty, static_cast<uint32_t>(llvm::xxh3_64bits(Mangled))); 627 } 628 629 void CodeGenFunction::EmitKernelMetadata(const FunctionDecl *FD, 630 llvm::Function *Fn) { 631 if (!FD->hasAttr<OpenCLKernelAttr>() && !FD->hasAttr<CUDAGlobalAttr>()) 632 return; 633 634 llvm::LLVMContext &Context = getLLVMContext(); 635 636 CGM.GenKernelArgMetadata(Fn, FD, this); 637 638 if (!getLangOpts().OpenCL) 639 return; 640 641 if (const VecTypeHintAttr *A = FD->getAttr<VecTypeHintAttr>()) { 642 QualType HintQTy = A->getTypeHint(); 643 const ExtVectorType *HintEltQTy = HintQTy->getAs<ExtVectorType>(); 644 bool IsSignedInteger = 645 HintQTy->isSignedIntegerType() || 646 (HintEltQTy && HintEltQTy->getElementType()->isSignedIntegerType()); 647 llvm::Metadata *AttrMDArgs[] = { 648 llvm::ConstantAsMetadata::get(llvm::UndefValue::get( 649 CGM.getTypes().ConvertType(A->getTypeHint()))), 650 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 651 llvm::IntegerType::get(Context, 32), 652 llvm::APInt(32, (uint64_t)(IsSignedInteger ? 1 : 0))))}; 653 Fn->setMetadata("vec_type_hint", llvm::MDNode::get(Context, AttrMDArgs)); 654 } 655 656 if (const WorkGroupSizeHintAttr *A = FD->getAttr<WorkGroupSizeHintAttr>()) { 657 llvm::Metadata *AttrMDArgs[] = { 658 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getXDim())), 659 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getYDim())), 660 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getZDim()))}; 661 Fn->setMetadata("work_group_size_hint", llvm::MDNode::get(Context, AttrMDArgs)); 662 } 663 664 if (const ReqdWorkGroupSizeAttr *A = FD->getAttr<ReqdWorkGroupSizeAttr>()) { 665 llvm::Metadata *AttrMDArgs[] = { 666 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getXDim())), 667 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getYDim())), 668 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getZDim()))}; 669 Fn->setMetadata("reqd_work_group_size", llvm::MDNode::get(Context, AttrMDArgs)); 670 } 671 672 if (const OpenCLIntelReqdSubGroupSizeAttr *A = 673 FD->getAttr<OpenCLIntelReqdSubGroupSizeAttr>()) { 674 llvm::Metadata *AttrMDArgs[] = { 675 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getSubGroupSize()))}; 676 Fn->setMetadata("intel_reqd_sub_group_size", 677 llvm::MDNode::get(Context, AttrMDArgs)); 678 } 679 } 680 681 /// Determine whether the function F ends with a return stmt. 682 static bool endsWithReturn(const Decl* F) { 683 const Stmt *Body = nullptr; 684 if (auto *FD = dyn_cast_or_null<FunctionDecl>(F)) 685 Body = FD->getBody(); 686 else if (auto *OMD = dyn_cast_or_null<ObjCMethodDecl>(F)) 687 Body = OMD->getBody(); 688 689 if (auto *CS = dyn_cast_or_null<CompoundStmt>(Body)) { 690 auto LastStmt = CS->body_rbegin(); 691 if (LastStmt != CS->body_rend()) 692 return isa<ReturnStmt>(*LastStmt); 693 } 694 return false; 695 } 696 697 void CodeGenFunction::markAsIgnoreThreadCheckingAtRuntime(llvm::Function *Fn) { 698 if (SanOpts.has(SanitizerKind::Thread)) { 699 Fn->addFnAttr("sanitize_thread_no_checking_at_run_time"); 700 Fn->removeFnAttr(llvm::Attribute::SanitizeThread); 701 } 702 } 703 704 /// Check if the return value of this function requires sanitization. 705 bool CodeGenFunction::requiresReturnValueCheck() const { 706 return requiresReturnValueNullabilityCheck() || 707 (SanOpts.has(SanitizerKind::ReturnsNonnullAttribute) && CurCodeDecl && 708 CurCodeDecl->getAttr<ReturnsNonNullAttr>()); 709 } 710 711 static bool matchesStlAllocatorFn(const Decl *D, const ASTContext &Ctx) { 712 auto *MD = dyn_cast_or_null<CXXMethodDecl>(D); 713 if (!MD || !MD->getDeclName().getAsIdentifierInfo() || 714 !MD->getDeclName().getAsIdentifierInfo()->isStr("allocate") || 715 (MD->getNumParams() != 1 && MD->getNumParams() != 2)) 716 return false; 717 718 if (MD->parameters()[0]->getType().getCanonicalType() != Ctx.getSizeType()) 719 return false; 720 721 if (MD->getNumParams() == 2) { 722 auto *PT = MD->parameters()[1]->getType()->getAs<PointerType>(); 723 if (!PT || !PT->isVoidPointerType() || 724 !PT->getPointeeType().isConstQualified()) 725 return false; 726 } 727 728 return true; 729 } 730 731 bool CodeGenFunction::isInAllocaArgument(CGCXXABI &ABI, QualType Ty) { 732 const CXXRecordDecl *RD = Ty->getAsCXXRecordDecl(); 733 return RD && ABI.getRecordArgABI(RD) == CGCXXABI::RAA_DirectInMemory; 734 } 735 736 bool CodeGenFunction::hasInAllocaArg(const CXXMethodDecl *MD) { 737 return getTarget().getTriple().getArch() == llvm::Triple::x86 && 738 getTarget().getCXXABI().isMicrosoft() && 739 llvm::any_of(MD->parameters(), [&](ParmVarDecl *P) { 740 return isInAllocaArgument(CGM.getCXXABI(), P->getType()); 741 }); 742 } 743 744 /// Return the UBSan prologue signature for \p FD if one is available. 745 static llvm::Constant *getPrologueSignature(CodeGenModule &CGM, 746 const FunctionDecl *FD) { 747 if (const auto *MD = dyn_cast<CXXMethodDecl>(FD)) 748 if (!MD->isStatic()) 749 return nullptr; 750 return CGM.getTargetCodeGenInfo().getUBSanFunctionSignature(CGM); 751 } 752 753 void CodeGenFunction::StartFunction(GlobalDecl GD, QualType RetTy, 754 llvm::Function *Fn, 755 const CGFunctionInfo &FnInfo, 756 const FunctionArgList &Args, 757 SourceLocation Loc, 758 SourceLocation StartLoc) { 759 assert(!CurFn && 760 "Do not use a CodeGenFunction object for more than one function"); 761 762 const Decl *D = GD.getDecl(); 763 764 DidCallStackSave = false; 765 CurCodeDecl = D; 766 const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D); 767 if (FD && FD->usesSEHTry()) 768 CurSEHParent = GD; 769 CurFuncDecl = (D ? D->getNonClosureContext() : nullptr); 770 FnRetTy = RetTy; 771 CurFn = Fn; 772 CurFnInfo = &FnInfo; 773 assert(CurFn->isDeclaration() && "Function already has body?"); 774 775 // If this function is ignored for any of the enabled sanitizers, 776 // disable the sanitizer for the function. 777 do { 778 #define SANITIZER(NAME, ID) \ 779 if (SanOpts.empty()) \ 780 break; \ 781 if (SanOpts.has(SanitizerKind::ID)) \ 782 if (CGM.isInNoSanitizeList(SanitizerKind::ID, Fn, Loc)) \ 783 SanOpts.set(SanitizerKind::ID, false); 784 785 #include "clang/Basic/Sanitizers.def" 786 #undef SANITIZER 787 } while (false); 788 789 if (D) { 790 const bool SanitizeBounds = SanOpts.hasOneOf(SanitizerKind::Bounds); 791 SanitizerMask no_sanitize_mask; 792 bool NoSanitizeCoverage = false; 793 794 for (auto *Attr : D->specific_attrs<NoSanitizeAttr>()) { 795 no_sanitize_mask |= Attr->getMask(); 796 // SanitizeCoverage is not handled by SanOpts. 797 if (Attr->hasCoverage()) 798 NoSanitizeCoverage = true; 799 } 800 801 // Apply the no_sanitize* attributes to SanOpts. 802 SanOpts.Mask &= ~no_sanitize_mask; 803 if (no_sanitize_mask & SanitizerKind::Address) 804 SanOpts.set(SanitizerKind::KernelAddress, false); 805 if (no_sanitize_mask & SanitizerKind::KernelAddress) 806 SanOpts.set(SanitizerKind::Address, false); 807 if (no_sanitize_mask & SanitizerKind::HWAddress) 808 SanOpts.set(SanitizerKind::KernelHWAddress, false); 809 if (no_sanitize_mask & SanitizerKind::KernelHWAddress) 810 SanOpts.set(SanitizerKind::HWAddress, false); 811 812 if (SanitizeBounds && !SanOpts.hasOneOf(SanitizerKind::Bounds)) 813 Fn->addFnAttr(llvm::Attribute::NoSanitizeBounds); 814 815 if (NoSanitizeCoverage && CGM.getCodeGenOpts().hasSanitizeCoverage()) 816 Fn->addFnAttr(llvm::Attribute::NoSanitizeCoverage); 817 818 // Some passes need the non-negated no_sanitize attribute. Pass them on. 819 if (CGM.getCodeGenOpts().hasSanitizeBinaryMetadata()) { 820 if (no_sanitize_mask & SanitizerKind::Thread) 821 Fn->addFnAttr("no_sanitize_thread"); 822 } 823 } 824 825 if (ShouldSkipSanitizerInstrumentation()) { 826 CurFn->addFnAttr(llvm::Attribute::DisableSanitizerInstrumentation); 827 } else { 828 // Apply sanitizer attributes to the function. 829 if (SanOpts.hasOneOf(SanitizerKind::Address | SanitizerKind::KernelAddress)) 830 Fn->addFnAttr(llvm::Attribute::SanitizeAddress); 831 if (SanOpts.hasOneOf(SanitizerKind::HWAddress | 832 SanitizerKind::KernelHWAddress)) 833 Fn->addFnAttr(llvm::Attribute::SanitizeHWAddress); 834 if (SanOpts.has(SanitizerKind::MemtagStack)) 835 Fn->addFnAttr(llvm::Attribute::SanitizeMemTag); 836 if (SanOpts.has(SanitizerKind::Thread)) 837 Fn->addFnAttr(llvm::Attribute::SanitizeThread); 838 if (SanOpts.has(SanitizerKind::NumericalStability)) 839 Fn->addFnAttr(llvm::Attribute::SanitizeNumericalStability); 840 if (SanOpts.hasOneOf(SanitizerKind::Memory | SanitizerKind::KernelMemory)) 841 Fn->addFnAttr(llvm::Attribute::SanitizeMemory); 842 } 843 if (SanOpts.has(SanitizerKind::SafeStack)) 844 Fn->addFnAttr(llvm::Attribute::SafeStack); 845 if (SanOpts.has(SanitizerKind::ShadowCallStack)) 846 Fn->addFnAttr(llvm::Attribute::ShadowCallStack); 847 848 if (SanOpts.has(SanitizerKind::Realtime)) 849 if (FD && FD->getASTContext().hasAnyFunctionEffects()) 850 for (const FunctionEffectWithCondition &Fe : FD->getFunctionEffects()) { 851 if (Fe.Effect.kind() == FunctionEffect::Kind::NonBlocking) 852 Fn->addFnAttr(llvm::Attribute::SanitizeRealtime); 853 } 854 855 // Apply fuzzing attribute to the function. 856 if (SanOpts.hasOneOf(SanitizerKind::Fuzzer | SanitizerKind::FuzzerNoLink)) 857 Fn->addFnAttr(llvm::Attribute::OptForFuzzing); 858 859 // Ignore TSan memory acesses from within ObjC/ObjC++ dealloc, initialize, 860 // .cxx_destruct, __destroy_helper_block_ and all of their calees at run time. 861 if (SanOpts.has(SanitizerKind::Thread)) { 862 if (const auto *OMD = dyn_cast_or_null<ObjCMethodDecl>(D)) { 863 const IdentifierInfo *II = OMD->getSelector().getIdentifierInfoForSlot(0); 864 if (OMD->getMethodFamily() == OMF_dealloc || 865 OMD->getMethodFamily() == OMF_initialize || 866 (OMD->getSelector().isUnarySelector() && II->isStr(".cxx_destruct"))) { 867 markAsIgnoreThreadCheckingAtRuntime(Fn); 868 } 869 } 870 } 871 872 // Ignore unrelated casts in STL allocate() since the allocator must cast 873 // from void* to T* before object initialization completes. Don't match on the 874 // namespace because not all allocators are in std:: 875 if (D && SanOpts.has(SanitizerKind::CFIUnrelatedCast)) { 876 if (matchesStlAllocatorFn(D, getContext())) 877 SanOpts.Mask &= ~SanitizerKind::CFIUnrelatedCast; 878 } 879 880 // Ignore null checks in coroutine functions since the coroutines passes 881 // are not aware of how to move the extra UBSan instructions across the split 882 // coroutine boundaries. 883 if (D && SanOpts.has(SanitizerKind::Null)) 884 if (FD && FD->getBody() && 885 FD->getBody()->getStmtClass() == Stmt::CoroutineBodyStmtClass) 886 SanOpts.Mask &= ~SanitizerKind::Null; 887 888 // Add pointer authentication attributes. 889 const CodeGenOptions &CodeGenOpts = CGM.getCodeGenOpts(); 890 if (CodeGenOpts.PointerAuth.ReturnAddresses) 891 Fn->addFnAttr("ptrauth-returns"); 892 if (CodeGenOpts.PointerAuth.FunctionPointers) 893 Fn->addFnAttr("ptrauth-calls"); 894 if (CodeGenOpts.PointerAuth.AuthTraps) 895 Fn->addFnAttr("ptrauth-auth-traps"); 896 if (CodeGenOpts.PointerAuth.IndirectGotos) 897 Fn->addFnAttr("ptrauth-indirect-gotos"); 898 899 // Apply xray attributes to the function (as a string, for now) 900 bool AlwaysXRayAttr = false; 901 if (const auto *XRayAttr = D ? D->getAttr<XRayInstrumentAttr>() : nullptr) { 902 if (CGM.getCodeGenOpts().XRayInstrumentationBundle.has( 903 XRayInstrKind::FunctionEntry) || 904 CGM.getCodeGenOpts().XRayInstrumentationBundle.has( 905 XRayInstrKind::FunctionExit)) { 906 if (XRayAttr->alwaysXRayInstrument() && ShouldXRayInstrumentFunction()) { 907 Fn->addFnAttr("function-instrument", "xray-always"); 908 AlwaysXRayAttr = true; 909 } 910 if (XRayAttr->neverXRayInstrument()) 911 Fn->addFnAttr("function-instrument", "xray-never"); 912 if (const auto *LogArgs = D->getAttr<XRayLogArgsAttr>()) 913 if (ShouldXRayInstrumentFunction()) 914 Fn->addFnAttr("xray-log-args", 915 llvm::utostr(LogArgs->getArgumentCount())); 916 } 917 } else { 918 if (ShouldXRayInstrumentFunction() && !CGM.imbueXRayAttrs(Fn, Loc)) 919 Fn->addFnAttr( 920 "xray-instruction-threshold", 921 llvm::itostr(CGM.getCodeGenOpts().XRayInstructionThreshold)); 922 } 923 924 if (ShouldXRayInstrumentFunction()) { 925 if (CGM.getCodeGenOpts().XRayIgnoreLoops) 926 Fn->addFnAttr("xray-ignore-loops"); 927 928 if (!CGM.getCodeGenOpts().XRayInstrumentationBundle.has( 929 XRayInstrKind::FunctionExit)) 930 Fn->addFnAttr("xray-skip-exit"); 931 932 if (!CGM.getCodeGenOpts().XRayInstrumentationBundle.has( 933 XRayInstrKind::FunctionEntry)) 934 Fn->addFnAttr("xray-skip-entry"); 935 936 auto FuncGroups = CGM.getCodeGenOpts().XRayTotalFunctionGroups; 937 if (FuncGroups > 1) { 938 auto FuncName = llvm::ArrayRef<uint8_t>(CurFn->getName().bytes_begin(), 939 CurFn->getName().bytes_end()); 940 auto Group = crc32(FuncName) % FuncGroups; 941 if (Group != CGM.getCodeGenOpts().XRaySelectedFunctionGroup && 942 !AlwaysXRayAttr) 943 Fn->addFnAttr("function-instrument", "xray-never"); 944 } 945 } 946 947 if (CGM.getCodeGenOpts().getProfileInstr() != CodeGenOptions::ProfileNone) { 948 switch (CGM.isFunctionBlockedFromProfileInstr(Fn, Loc)) { 949 case ProfileList::Skip: 950 Fn->addFnAttr(llvm::Attribute::SkipProfile); 951 break; 952 case ProfileList::Forbid: 953 Fn->addFnAttr(llvm::Attribute::NoProfile); 954 break; 955 case ProfileList::Allow: 956 break; 957 } 958 } 959 960 unsigned Count, Offset; 961 if (const auto *Attr = 962 D ? D->getAttr<PatchableFunctionEntryAttr>() : nullptr) { 963 Count = Attr->getCount(); 964 Offset = Attr->getOffset(); 965 } else { 966 Count = CGM.getCodeGenOpts().PatchableFunctionEntryCount; 967 Offset = CGM.getCodeGenOpts().PatchableFunctionEntryOffset; 968 } 969 if (Count && Offset <= Count) { 970 Fn->addFnAttr("patchable-function-entry", std::to_string(Count - Offset)); 971 if (Offset) 972 Fn->addFnAttr("patchable-function-prefix", std::to_string(Offset)); 973 } 974 // Instruct that functions for COFF/CodeView targets should start with a 975 // patchable instruction, but only on x86/x64. Don't forward this to ARM/ARM64 976 // backends as they don't need it -- instructions on these architectures are 977 // always atomically patchable at runtime. 978 if (CGM.getCodeGenOpts().HotPatch && 979 getContext().getTargetInfo().getTriple().isX86() && 980 getContext().getTargetInfo().getTriple().getEnvironment() != 981 llvm::Triple::CODE16) 982 Fn->addFnAttr("patchable-function", "prologue-short-redirect"); 983 984 // Add no-jump-tables value. 985 if (CGM.getCodeGenOpts().NoUseJumpTables) 986 Fn->addFnAttr("no-jump-tables", "true"); 987 988 // Add no-inline-line-tables value. 989 if (CGM.getCodeGenOpts().NoInlineLineTables) 990 Fn->addFnAttr("no-inline-line-tables"); 991 992 // Add profile-sample-accurate value. 993 if (CGM.getCodeGenOpts().ProfileSampleAccurate) 994 Fn->addFnAttr("profile-sample-accurate"); 995 996 if (!CGM.getCodeGenOpts().SampleProfileFile.empty()) 997 Fn->addFnAttr("use-sample-profile"); 998 999 if (D && D->hasAttr<CFICanonicalJumpTableAttr>()) 1000 Fn->addFnAttr("cfi-canonical-jump-table"); 1001 1002 if (D && D->hasAttr<NoProfileFunctionAttr>()) 1003 Fn->addFnAttr(llvm::Attribute::NoProfile); 1004 1005 if (D && D->hasAttr<HybridPatchableAttr>()) 1006 Fn->addFnAttr(llvm::Attribute::HybridPatchable); 1007 1008 if (D) { 1009 // Function attributes take precedence over command line flags. 1010 if (auto *A = D->getAttr<FunctionReturnThunksAttr>()) { 1011 switch (A->getThunkType()) { 1012 case FunctionReturnThunksAttr::Kind::Keep: 1013 break; 1014 case FunctionReturnThunksAttr::Kind::Extern: 1015 Fn->addFnAttr(llvm::Attribute::FnRetThunkExtern); 1016 break; 1017 } 1018 } else if (CGM.getCodeGenOpts().FunctionReturnThunks) 1019 Fn->addFnAttr(llvm::Attribute::FnRetThunkExtern); 1020 } 1021 1022 if (FD && (getLangOpts().OpenCL || 1023 ((getLangOpts().HIP || getLangOpts().OffloadViaLLVM) && 1024 getLangOpts().CUDAIsDevice))) { 1025 // Add metadata for a kernel function. 1026 EmitKernelMetadata(FD, Fn); 1027 } 1028 1029 if (FD && FD->hasAttr<ClspvLibclcBuiltinAttr>()) { 1030 Fn->setMetadata("clspv_libclc_builtin", 1031 llvm::MDNode::get(getLLVMContext(), {})); 1032 } 1033 1034 // If we are checking function types, emit a function type signature as 1035 // prologue data. 1036 if (FD && SanOpts.has(SanitizerKind::Function)) { 1037 if (llvm::Constant *PrologueSig = getPrologueSignature(CGM, FD)) { 1038 llvm::LLVMContext &Ctx = Fn->getContext(); 1039 llvm::MDBuilder MDB(Ctx); 1040 Fn->setMetadata( 1041 llvm::LLVMContext::MD_func_sanitize, 1042 MDB.createRTTIPointerPrologue( 1043 PrologueSig, getUBSanFunctionTypeHash(FD->getType()))); 1044 } 1045 } 1046 1047 // If we're checking nullability, we need to know whether we can check the 1048 // return value. Initialize the flag to 'true' and refine it in EmitParmDecl. 1049 if (SanOpts.has(SanitizerKind::NullabilityReturn)) { 1050 auto Nullability = FnRetTy->getNullability(); 1051 if (Nullability && *Nullability == NullabilityKind::NonNull && 1052 !FnRetTy->isRecordType()) { 1053 if (!(SanOpts.has(SanitizerKind::ReturnsNonnullAttribute) && 1054 CurCodeDecl && CurCodeDecl->getAttr<ReturnsNonNullAttr>())) 1055 RetValNullabilityPrecondition = 1056 llvm::ConstantInt::getTrue(getLLVMContext()); 1057 } 1058 } 1059 1060 // If we're in C++ mode and the function name is "main", it is guaranteed 1061 // to be norecurse by the standard (3.6.1.3 "The function main shall not be 1062 // used within a program"). 1063 // 1064 // OpenCL C 2.0 v2.2-11 s6.9.i: 1065 // Recursion is not supported. 1066 // 1067 // HLSL 1068 // Recursion is not supported. 1069 // 1070 // SYCL v1.2.1 s3.10: 1071 // kernels cannot include RTTI information, exception classes, 1072 // recursive code, virtual functions or make use of C++ libraries that 1073 // are not compiled for the device. 1074 if (FD && 1075 ((getLangOpts().CPlusPlus && FD->isMain()) || getLangOpts().OpenCL || 1076 getLangOpts().HLSL || getLangOpts().SYCLIsDevice || 1077 (getLangOpts().CUDA && FD->hasAttr<CUDAGlobalAttr>()))) 1078 Fn->addFnAttr(llvm::Attribute::NoRecurse); 1079 1080 llvm::RoundingMode RM = getLangOpts().getDefaultRoundingMode(); 1081 llvm::fp::ExceptionBehavior FPExceptionBehavior = 1082 ToConstrainedExceptMD(getLangOpts().getDefaultExceptionMode()); 1083 Builder.setDefaultConstrainedRounding(RM); 1084 Builder.setDefaultConstrainedExcept(FPExceptionBehavior); 1085 if ((FD && (FD->UsesFPIntrin() || FD->hasAttr<StrictFPAttr>())) || 1086 (!FD && (FPExceptionBehavior != llvm::fp::ebIgnore || 1087 RM != llvm::RoundingMode::NearestTiesToEven))) { 1088 Builder.setIsFPConstrained(true); 1089 Fn->addFnAttr(llvm::Attribute::StrictFP); 1090 } 1091 1092 // If a custom alignment is used, force realigning to this alignment on 1093 // any main function which certainly will need it. 1094 if (FD && ((FD->isMain() || FD->isMSVCRTEntryPoint()) && 1095 CGM.getCodeGenOpts().StackAlignment)) 1096 Fn->addFnAttr("stackrealign"); 1097 1098 // "main" doesn't need to zero out call-used registers. 1099 if (FD && FD->isMain()) 1100 Fn->removeFnAttr("zero-call-used-regs"); 1101 1102 llvm::BasicBlock *EntryBB = createBasicBlock("entry", CurFn); 1103 1104 // Create a marker to make it easy to insert allocas into the entryblock 1105 // later. Don't create this with the builder, because we don't want it 1106 // folded. 1107 llvm::Value *Undef = llvm::UndefValue::get(Int32Ty); 1108 AllocaInsertPt = new llvm::BitCastInst(Undef, Int32Ty, "allocapt", EntryBB); 1109 1110 ReturnBlock = getJumpDestInCurrentScope("return"); 1111 1112 Builder.SetInsertPoint(EntryBB); 1113 1114 // If we're checking the return value, allocate space for a pointer to a 1115 // precise source location of the checked return statement. 1116 if (requiresReturnValueCheck()) { 1117 ReturnLocation = CreateDefaultAlignTempAlloca(Int8PtrTy, "return.sloc.ptr"); 1118 Builder.CreateStore(llvm::ConstantPointerNull::get(Int8PtrTy), 1119 ReturnLocation); 1120 } 1121 1122 // Emit subprogram debug descriptor. 1123 if (CGDebugInfo *DI = getDebugInfo()) { 1124 // Reconstruct the type from the argument list so that implicit parameters, 1125 // such as 'this' and 'vtt', show up in the debug info. Preserve the calling 1126 // convention. 1127 DI->emitFunctionStart(GD, Loc, StartLoc, 1128 DI->getFunctionType(FD, RetTy, Args), CurFn, 1129 CurFuncIsThunk); 1130 } 1131 1132 if (ShouldInstrumentFunction()) { 1133 if (CGM.getCodeGenOpts().InstrumentFunctions) 1134 CurFn->addFnAttr("instrument-function-entry", "__cyg_profile_func_enter"); 1135 if (CGM.getCodeGenOpts().InstrumentFunctionsAfterInlining) 1136 CurFn->addFnAttr("instrument-function-entry-inlined", 1137 "__cyg_profile_func_enter"); 1138 if (CGM.getCodeGenOpts().InstrumentFunctionEntryBare) 1139 CurFn->addFnAttr("instrument-function-entry-inlined", 1140 "__cyg_profile_func_enter_bare"); 1141 } 1142 1143 // Since emitting the mcount call here impacts optimizations such as function 1144 // inlining, we just add an attribute to insert a mcount call in backend. 1145 // The attribute "counting-function" is set to mcount function name which is 1146 // architecture dependent. 1147 if (CGM.getCodeGenOpts().InstrumentForProfiling) { 1148 // Calls to fentry/mcount should not be generated if function has 1149 // the no_instrument_function attribute. 1150 if (!CurFuncDecl || !CurFuncDecl->hasAttr<NoInstrumentFunctionAttr>()) { 1151 if (CGM.getCodeGenOpts().CallFEntry) 1152 Fn->addFnAttr("fentry-call", "true"); 1153 else { 1154 Fn->addFnAttr("instrument-function-entry-inlined", 1155 getTarget().getMCountName()); 1156 } 1157 if (CGM.getCodeGenOpts().MNopMCount) { 1158 if (!CGM.getCodeGenOpts().CallFEntry) 1159 CGM.getDiags().Report(diag::err_opt_not_valid_without_opt) 1160 << "-mnop-mcount" << "-mfentry"; 1161 Fn->addFnAttr("mnop-mcount"); 1162 } 1163 1164 if (CGM.getCodeGenOpts().RecordMCount) { 1165 if (!CGM.getCodeGenOpts().CallFEntry) 1166 CGM.getDiags().Report(diag::err_opt_not_valid_without_opt) 1167 << "-mrecord-mcount" << "-mfentry"; 1168 Fn->addFnAttr("mrecord-mcount"); 1169 } 1170 } 1171 } 1172 1173 if (CGM.getCodeGenOpts().PackedStack) { 1174 if (getContext().getTargetInfo().getTriple().getArch() != 1175 llvm::Triple::systemz) 1176 CGM.getDiags().Report(diag::err_opt_not_valid_on_target) 1177 << "-mpacked-stack"; 1178 Fn->addFnAttr("packed-stack"); 1179 } 1180 1181 if (CGM.getCodeGenOpts().WarnStackSize != UINT_MAX && 1182 !CGM.getDiags().isIgnored(diag::warn_fe_backend_frame_larger_than, Loc)) 1183 Fn->addFnAttr("warn-stack-size", 1184 std::to_string(CGM.getCodeGenOpts().WarnStackSize)); 1185 1186 if (RetTy->isVoidType()) { 1187 // Void type; nothing to return. 1188 ReturnValue = Address::invalid(); 1189 1190 // Count the implicit return. 1191 if (!endsWithReturn(D)) 1192 ++NumReturnExprs; 1193 } else if (CurFnInfo->getReturnInfo().getKind() == ABIArgInfo::Indirect) { 1194 // Indirect return; emit returned value directly into sret slot. 1195 // This reduces code size, and affects correctness in C++. 1196 auto AI = CurFn->arg_begin(); 1197 if (CurFnInfo->getReturnInfo().isSRetAfterThis()) 1198 ++AI; 1199 ReturnValue = makeNaturalAddressForPointer( 1200 &*AI, RetTy, CurFnInfo->getReturnInfo().getIndirectAlign(), false, 1201 nullptr, nullptr, KnownNonNull); 1202 if (!CurFnInfo->getReturnInfo().getIndirectByVal()) { 1203 ReturnValuePointer = 1204 CreateDefaultAlignTempAlloca(ReturnValue.getType(), "result.ptr"); 1205 Builder.CreateStore(ReturnValue.emitRawPointer(*this), 1206 ReturnValuePointer); 1207 } 1208 } else if (CurFnInfo->getReturnInfo().getKind() == ABIArgInfo::InAlloca && 1209 !hasScalarEvaluationKind(CurFnInfo->getReturnType())) { 1210 // Load the sret pointer from the argument struct and return into that. 1211 unsigned Idx = CurFnInfo->getReturnInfo().getInAllocaFieldIndex(); 1212 llvm::Function::arg_iterator EI = CurFn->arg_end(); 1213 --EI; 1214 llvm::Value *Addr = Builder.CreateStructGEP( 1215 CurFnInfo->getArgStruct(), &*EI, Idx); 1216 llvm::Type *Ty = 1217 cast<llvm::GetElementPtrInst>(Addr)->getResultElementType(); 1218 ReturnValuePointer = Address(Addr, Ty, getPointerAlign()); 1219 Addr = Builder.CreateAlignedLoad(Ty, Addr, getPointerAlign(), "agg.result"); 1220 ReturnValue = Address(Addr, ConvertType(RetTy), 1221 CGM.getNaturalTypeAlignment(RetTy), KnownNonNull); 1222 } else { 1223 ReturnValue = CreateIRTemp(RetTy, "retval"); 1224 1225 // Tell the epilog emitter to autorelease the result. We do this 1226 // now so that various specialized functions can suppress it 1227 // during their IR-generation. 1228 if (getLangOpts().ObjCAutoRefCount && 1229 !CurFnInfo->isReturnsRetained() && 1230 RetTy->isObjCRetainableType()) 1231 AutoreleaseResult = true; 1232 } 1233 1234 EmitStartEHSpec(CurCodeDecl); 1235 1236 PrologueCleanupDepth = EHStack.stable_begin(); 1237 1238 // Emit OpenMP specific initialization of the device functions. 1239 if (getLangOpts().OpenMP && CurCodeDecl) 1240 CGM.getOpenMPRuntime().emitFunctionProlog(*this, CurCodeDecl); 1241 1242 if (FD && getLangOpts().HLSL) { 1243 // Handle emitting HLSL entry functions. 1244 if (FD->hasAttr<HLSLShaderAttr>()) { 1245 CGM.getHLSLRuntime().emitEntryFunction(FD, Fn); 1246 } 1247 CGM.getHLSLRuntime().setHLSLFunctionAttributes(FD, Fn); 1248 } 1249 1250 EmitFunctionProlog(*CurFnInfo, CurFn, Args); 1251 1252 if (const CXXMethodDecl *MD = dyn_cast_if_present<CXXMethodDecl>(D); 1253 MD && !MD->isStatic()) { 1254 bool IsInLambda = 1255 MD->getParent()->isLambda() && MD->getOverloadedOperator() == OO_Call; 1256 if (MD->isImplicitObjectMemberFunction()) 1257 CGM.getCXXABI().EmitInstanceFunctionProlog(*this); 1258 if (IsInLambda) { 1259 // We're in a lambda; figure out the captures. 1260 MD->getParent()->getCaptureFields(LambdaCaptureFields, 1261 LambdaThisCaptureField); 1262 if (LambdaThisCaptureField) { 1263 // If the lambda captures the object referred to by '*this' - either by 1264 // value or by reference, make sure CXXThisValue points to the correct 1265 // object. 1266 1267 // Get the lvalue for the field (which is a copy of the enclosing object 1268 // or contains the address of the enclosing object). 1269 LValue ThisFieldLValue = EmitLValueForLambdaField(LambdaThisCaptureField); 1270 if (!LambdaThisCaptureField->getType()->isPointerType()) { 1271 // If the enclosing object was captured by value, just use its 1272 // address. Sign this pointer. 1273 CXXThisValue = ThisFieldLValue.getPointer(*this); 1274 } else { 1275 // Load the lvalue pointed to by the field, since '*this' was captured 1276 // by reference. 1277 CXXThisValue = 1278 EmitLoadOfLValue(ThisFieldLValue, SourceLocation()).getScalarVal(); 1279 } 1280 } 1281 for (auto *FD : MD->getParent()->fields()) { 1282 if (FD->hasCapturedVLAType()) { 1283 auto *ExprArg = EmitLoadOfLValue(EmitLValueForLambdaField(FD), 1284 SourceLocation()).getScalarVal(); 1285 auto VAT = FD->getCapturedVLAType(); 1286 VLASizeMap[VAT->getSizeExpr()] = ExprArg; 1287 } 1288 } 1289 } else if (MD->isImplicitObjectMemberFunction()) { 1290 // Not in a lambda; just use 'this' from the method. 1291 // FIXME: Should we generate a new load for each use of 'this'? The 1292 // fast register allocator would be happier... 1293 CXXThisValue = CXXABIThisValue; 1294 } 1295 1296 // Check the 'this' pointer once per function, if it's available. 1297 if (CXXABIThisValue) { 1298 SanitizerSet SkippedChecks; 1299 SkippedChecks.set(SanitizerKind::ObjectSize, true); 1300 QualType ThisTy = MD->getThisType(); 1301 1302 // If this is the call operator of a lambda with no captures, it 1303 // may have a static invoker function, which may call this operator with 1304 // a null 'this' pointer. 1305 if (isLambdaCallOperator(MD) && MD->getParent()->isCapturelessLambda()) 1306 SkippedChecks.set(SanitizerKind::Null, true); 1307 1308 EmitTypeCheck( 1309 isa<CXXConstructorDecl>(MD) ? TCK_ConstructorCall : TCK_MemberCall, 1310 Loc, CXXABIThisValue, ThisTy, CXXABIThisAlignment, SkippedChecks); 1311 } 1312 } 1313 1314 // If any of the arguments have a variably modified type, make sure to 1315 // emit the type size, but only if the function is not naked. Naked functions 1316 // have no prolog to run this evaluation. 1317 if (!FD || !FD->hasAttr<NakedAttr>()) { 1318 for (const VarDecl *VD : Args) { 1319 // Dig out the type as written from ParmVarDecls; it's unclear whether 1320 // the standard (C99 6.9.1p10) requires this, but we're following the 1321 // precedent set by gcc. 1322 QualType Ty; 1323 if (const ParmVarDecl *PVD = dyn_cast<ParmVarDecl>(VD)) 1324 Ty = PVD->getOriginalType(); 1325 else 1326 Ty = VD->getType(); 1327 1328 if (Ty->isVariablyModifiedType()) 1329 EmitVariablyModifiedType(Ty); 1330 } 1331 } 1332 // Emit a location at the end of the prologue. 1333 if (CGDebugInfo *DI = getDebugInfo()) 1334 DI->EmitLocation(Builder, StartLoc); 1335 // TODO: Do we need to handle this in two places like we do with 1336 // target-features/target-cpu? 1337 if (CurFuncDecl) 1338 if (const auto *VecWidth = CurFuncDecl->getAttr<MinVectorWidthAttr>()) 1339 LargestVectorWidth = VecWidth->getVectorWidth(); 1340 1341 if (CGM.shouldEmitConvergenceTokens()) 1342 ConvergenceTokenStack.push_back(getOrEmitConvergenceEntryToken(CurFn)); 1343 } 1344 1345 void CodeGenFunction::EmitFunctionBody(const Stmt *Body) { 1346 incrementProfileCounter(Body); 1347 maybeCreateMCDCCondBitmap(); 1348 if (const CompoundStmt *S = dyn_cast<CompoundStmt>(Body)) 1349 EmitCompoundStmtWithoutScope(*S); 1350 else 1351 EmitStmt(Body); 1352 } 1353 1354 /// When instrumenting to collect profile data, the counts for some blocks 1355 /// such as switch cases need to not include the fall-through counts, so 1356 /// emit a branch around the instrumentation code. When not instrumenting, 1357 /// this just calls EmitBlock(). 1358 void CodeGenFunction::EmitBlockWithFallThrough(llvm::BasicBlock *BB, 1359 const Stmt *S) { 1360 llvm::BasicBlock *SkipCountBB = nullptr; 1361 // Do not skip over the instrumentation when single byte coverage mode is 1362 // enabled. 1363 if (HaveInsertPoint() && CGM.getCodeGenOpts().hasProfileClangInstr() && 1364 !llvm::EnableSingleByteCoverage) { 1365 // When instrumenting for profiling, the fallthrough to certain 1366 // statements needs to skip over the instrumentation code so that we 1367 // get an accurate count. 1368 SkipCountBB = createBasicBlock("skipcount"); 1369 EmitBranch(SkipCountBB); 1370 } 1371 EmitBlock(BB); 1372 uint64_t CurrentCount = getCurrentProfileCount(); 1373 incrementProfileCounter(S); 1374 setCurrentProfileCount(getCurrentProfileCount() + CurrentCount); 1375 if (SkipCountBB) 1376 EmitBlock(SkipCountBB); 1377 } 1378 1379 /// Tries to mark the given function nounwind based on the 1380 /// non-existence of any throwing calls within it. We believe this is 1381 /// lightweight enough to do at -O0. 1382 static void TryMarkNoThrow(llvm::Function *F) { 1383 // LLVM treats 'nounwind' on a function as part of the type, so we 1384 // can't do this on functions that can be overwritten. 1385 if (F->isInterposable()) return; 1386 1387 for (llvm::BasicBlock &BB : *F) 1388 for (llvm::Instruction &I : BB) 1389 if (I.mayThrow()) 1390 return; 1391 1392 F->setDoesNotThrow(); 1393 } 1394 1395 QualType CodeGenFunction::BuildFunctionArgList(GlobalDecl GD, 1396 FunctionArgList &Args) { 1397 const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl()); 1398 QualType ResTy = FD->getReturnType(); 1399 1400 const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD); 1401 if (MD && MD->isImplicitObjectMemberFunction()) { 1402 if (CGM.getCXXABI().HasThisReturn(GD)) 1403 ResTy = MD->getThisType(); 1404 else if (CGM.getCXXABI().hasMostDerivedReturn(GD)) 1405 ResTy = CGM.getContext().VoidPtrTy; 1406 CGM.getCXXABI().buildThisParam(*this, Args); 1407 } 1408 1409 // The base version of an inheriting constructor whose constructed base is a 1410 // virtual base is not passed any arguments (because it doesn't actually call 1411 // the inherited constructor). 1412 bool PassedParams = true; 1413 if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(FD)) 1414 if (auto Inherited = CD->getInheritedConstructor()) 1415 PassedParams = 1416 getTypes().inheritingCtorHasParams(Inherited, GD.getCtorType()); 1417 1418 if (PassedParams) { 1419 for (auto *Param : FD->parameters()) { 1420 Args.push_back(Param); 1421 if (!Param->hasAttr<PassObjectSizeAttr>()) 1422 continue; 1423 1424 auto *Implicit = ImplicitParamDecl::Create( 1425 getContext(), Param->getDeclContext(), Param->getLocation(), 1426 /*Id=*/nullptr, getContext().getSizeType(), ImplicitParamKind::Other); 1427 SizeArguments[Param] = Implicit; 1428 Args.push_back(Implicit); 1429 } 1430 } 1431 1432 if (MD && (isa<CXXConstructorDecl>(MD) || isa<CXXDestructorDecl>(MD))) 1433 CGM.getCXXABI().addImplicitStructorParams(*this, ResTy, Args); 1434 1435 return ResTy; 1436 } 1437 1438 void CodeGenFunction::GenerateCode(GlobalDecl GD, llvm::Function *Fn, 1439 const CGFunctionInfo &FnInfo) { 1440 assert(Fn && "generating code for null Function"); 1441 const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl()); 1442 CurGD = GD; 1443 1444 FunctionArgList Args; 1445 QualType ResTy = BuildFunctionArgList(GD, Args); 1446 1447 CGM.getTargetCodeGenInfo().checkFunctionABI(CGM, FD); 1448 1449 if (FD->isInlineBuiltinDeclaration()) { 1450 // When generating code for a builtin with an inline declaration, use a 1451 // mangled name to hold the actual body, while keeping an external 1452 // definition in case the function pointer is referenced somewhere. 1453 std::string FDInlineName = (Fn->getName() + ".inline").str(); 1454 llvm::Module *M = Fn->getParent(); 1455 llvm::Function *Clone = M->getFunction(FDInlineName); 1456 if (!Clone) { 1457 Clone = llvm::Function::Create(Fn->getFunctionType(), 1458 llvm::GlobalValue::InternalLinkage, 1459 Fn->getAddressSpace(), FDInlineName, M); 1460 Clone->addFnAttr(llvm::Attribute::AlwaysInline); 1461 } 1462 Fn->setLinkage(llvm::GlobalValue::ExternalLinkage); 1463 Fn = Clone; 1464 } else { 1465 // Detect the unusual situation where an inline version is shadowed by a 1466 // non-inline version. In that case we should pick the external one 1467 // everywhere. That's GCC behavior too. Unfortunately, I cannot find a way 1468 // to detect that situation before we reach codegen, so do some late 1469 // replacement. 1470 for (const FunctionDecl *PD = FD->getPreviousDecl(); PD; 1471 PD = PD->getPreviousDecl()) { 1472 if (LLVM_UNLIKELY(PD->isInlineBuiltinDeclaration())) { 1473 std::string FDInlineName = (Fn->getName() + ".inline").str(); 1474 llvm::Module *M = Fn->getParent(); 1475 if (llvm::Function *Clone = M->getFunction(FDInlineName)) { 1476 Clone->replaceAllUsesWith(Fn); 1477 Clone->eraseFromParent(); 1478 } 1479 break; 1480 } 1481 } 1482 } 1483 1484 // Check if we should generate debug info for this function. 1485 if (FD->hasAttr<NoDebugAttr>()) { 1486 // Clear non-distinct debug info that was possibly attached to the function 1487 // due to an earlier declaration without the nodebug attribute 1488 Fn->setSubprogram(nullptr); 1489 // Disable debug info indefinitely for this function 1490 DebugInfo = nullptr; 1491 } 1492 1493 // The function might not have a body if we're generating thunks for a 1494 // function declaration. 1495 SourceRange BodyRange; 1496 if (Stmt *Body = FD->getBody()) 1497 BodyRange = Body->getSourceRange(); 1498 else 1499 BodyRange = FD->getLocation(); 1500 CurEHLocation = BodyRange.getEnd(); 1501 1502 // Use the location of the start of the function to determine where 1503 // the function definition is located. By default use the location 1504 // of the declaration as the location for the subprogram. A function 1505 // may lack a declaration in the source code if it is created by code 1506 // gen. (examples: _GLOBAL__I_a, __cxx_global_array_dtor, thunk). 1507 SourceLocation Loc = FD->getLocation(); 1508 1509 // If this is a function specialization then use the pattern body 1510 // as the location for the function. 1511 if (const FunctionDecl *SpecDecl = FD->getTemplateInstantiationPattern()) 1512 if (SpecDecl->hasBody(SpecDecl)) 1513 Loc = SpecDecl->getLocation(); 1514 1515 Stmt *Body = FD->getBody(); 1516 1517 if (Body) { 1518 // Coroutines always emit lifetime markers. 1519 if (isa<CoroutineBodyStmt>(Body)) 1520 ShouldEmitLifetimeMarkers = true; 1521 1522 // Initialize helper which will detect jumps which can cause invalid 1523 // lifetime markers. 1524 if (ShouldEmitLifetimeMarkers) 1525 Bypasses.Init(Body); 1526 } 1527 1528 // Emit the standard function prologue. 1529 StartFunction(GD, ResTy, Fn, FnInfo, Args, Loc, BodyRange.getBegin()); 1530 1531 // Save parameters for coroutine function. 1532 if (Body && isa_and_nonnull<CoroutineBodyStmt>(Body)) 1533 llvm::append_range(FnArgs, FD->parameters()); 1534 1535 // Ensure that the function adheres to the forward progress guarantee, which 1536 // is required by certain optimizations. 1537 // In C++11 and up, the attribute will be removed if the body contains a 1538 // trivial empty loop. 1539 if (checkIfFunctionMustProgress()) 1540 CurFn->addFnAttr(llvm::Attribute::MustProgress); 1541 1542 // Generate the body of the function. 1543 PGO.assignRegionCounters(GD, CurFn); 1544 if (isa<CXXDestructorDecl>(FD)) 1545 EmitDestructorBody(Args); 1546 else if (isa<CXXConstructorDecl>(FD)) 1547 EmitConstructorBody(Args); 1548 else if (getLangOpts().CUDA && 1549 !getLangOpts().CUDAIsDevice && 1550 FD->hasAttr<CUDAGlobalAttr>()) 1551 CGM.getCUDARuntime().emitDeviceStub(*this, Args); 1552 else if (isa<CXXMethodDecl>(FD) && 1553 cast<CXXMethodDecl>(FD)->isLambdaStaticInvoker()) { 1554 // The lambda static invoker function is special, because it forwards or 1555 // clones the body of the function call operator (but is actually static). 1556 EmitLambdaStaticInvokeBody(cast<CXXMethodDecl>(FD)); 1557 } else if (isa<CXXMethodDecl>(FD) && 1558 isLambdaCallOperator(cast<CXXMethodDecl>(FD)) && 1559 !FnInfo.isDelegateCall() && 1560 cast<CXXMethodDecl>(FD)->getParent()->getLambdaStaticInvoker() && 1561 hasInAllocaArg(cast<CXXMethodDecl>(FD))) { 1562 // If emitting a lambda with static invoker on X86 Windows, change 1563 // the call operator body. 1564 // Make sure that this is a call operator with an inalloca arg and check 1565 // for delegate call to make sure this is the original call op and not the 1566 // new forwarding function for the static invoker. 1567 EmitLambdaInAllocaCallOpBody(cast<CXXMethodDecl>(FD)); 1568 } else if (FD->isDefaulted() && isa<CXXMethodDecl>(FD) && 1569 (cast<CXXMethodDecl>(FD)->isCopyAssignmentOperator() || 1570 cast<CXXMethodDecl>(FD)->isMoveAssignmentOperator())) { 1571 // Implicit copy-assignment gets the same special treatment as implicit 1572 // copy-constructors. 1573 emitImplicitAssignmentOperatorBody(Args); 1574 } else if (Body) { 1575 EmitFunctionBody(Body); 1576 } else 1577 llvm_unreachable("no definition for emitted function"); 1578 1579 // C++11 [stmt.return]p2: 1580 // Flowing off the end of a function [...] results in undefined behavior in 1581 // a value-returning function. 1582 // C11 6.9.1p12: 1583 // If the '}' that terminates a function is reached, and the value of the 1584 // function call is used by the caller, the behavior is undefined. 1585 if (getLangOpts().CPlusPlus && !FD->hasImplicitReturnZero() && !SawAsmBlock && 1586 !FD->getReturnType()->isVoidType() && Builder.GetInsertBlock()) { 1587 bool ShouldEmitUnreachable = 1588 CGM.getCodeGenOpts().StrictReturn || 1589 !CGM.MayDropFunctionReturn(FD->getASTContext(), FD->getReturnType()); 1590 if (SanOpts.has(SanitizerKind::Return)) { 1591 SanitizerScope SanScope(this); 1592 llvm::Value *IsFalse = Builder.getFalse(); 1593 EmitCheck(std::make_pair(IsFalse, SanitizerKind::Return), 1594 SanitizerHandler::MissingReturn, 1595 EmitCheckSourceLocation(FD->getLocation()), std::nullopt); 1596 } else if (ShouldEmitUnreachable) { 1597 if (CGM.getCodeGenOpts().OptimizationLevel == 0) 1598 EmitTrapCall(llvm::Intrinsic::trap); 1599 } 1600 if (SanOpts.has(SanitizerKind::Return) || ShouldEmitUnreachable) { 1601 Builder.CreateUnreachable(); 1602 Builder.ClearInsertionPoint(); 1603 } 1604 } 1605 1606 // Emit the standard function epilogue. 1607 FinishFunction(BodyRange.getEnd()); 1608 1609 // If we haven't marked the function nothrow through other means, do 1610 // a quick pass now to see if we can. 1611 if (!CurFn->doesNotThrow()) 1612 TryMarkNoThrow(CurFn); 1613 } 1614 1615 /// ContainsLabel - Return true if the statement contains a label in it. If 1616 /// this statement is not executed normally, it not containing a label means 1617 /// that we can just remove the code. 1618 bool CodeGenFunction::ContainsLabel(const Stmt *S, bool IgnoreCaseStmts) { 1619 // Null statement, not a label! 1620 if (!S) return false; 1621 1622 // If this is a label, we have to emit the code, consider something like: 1623 // if (0) { ... foo: bar(); } goto foo; 1624 // 1625 // TODO: If anyone cared, we could track __label__'s, since we know that you 1626 // can't jump to one from outside their declared region. 1627 if (isa<LabelStmt>(S)) 1628 return true; 1629 1630 // If this is a case/default statement, and we haven't seen a switch, we have 1631 // to emit the code. 1632 if (isa<SwitchCase>(S) && !IgnoreCaseStmts) 1633 return true; 1634 1635 // If this is a switch statement, we want to ignore cases below it. 1636 if (isa<SwitchStmt>(S)) 1637 IgnoreCaseStmts = true; 1638 1639 // Scan subexpressions for verboten labels. 1640 for (const Stmt *SubStmt : S->children()) 1641 if (ContainsLabel(SubStmt, IgnoreCaseStmts)) 1642 return true; 1643 1644 return false; 1645 } 1646 1647 /// containsBreak - Return true if the statement contains a break out of it. 1648 /// If the statement (recursively) contains a switch or loop with a break 1649 /// inside of it, this is fine. 1650 bool CodeGenFunction::containsBreak(const Stmt *S) { 1651 // Null statement, not a label! 1652 if (!S) return false; 1653 1654 // If this is a switch or loop that defines its own break scope, then we can 1655 // include it and anything inside of it. 1656 if (isa<SwitchStmt>(S) || isa<WhileStmt>(S) || isa<DoStmt>(S) || 1657 isa<ForStmt>(S)) 1658 return false; 1659 1660 if (isa<BreakStmt>(S)) 1661 return true; 1662 1663 // Scan subexpressions for verboten breaks. 1664 for (const Stmt *SubStmt : S->children()) 1665 if (containsBreak(SubStmt)) 1666 return true; 1667 1668 return false; 1669 } 1670 1671 bool CodeGenFunction::mightAddDeclToScope(const Stmt *S) { 1672 if (!S) return false; 1673 1674 // Some statement kinds add a scope and thus never add a decl to the current 1675 // scope. Note, this list is longer than the list of statements that might 1676 // have an unscoped decl nested within them, but this way is conservatively 1677 // correct even if more statement kinds are added. 1678 if (isa<IfStmt>(S) || isa<SwitchStmt>(S) || isa<WhileStmt>(S) || 1679 isa<DoStmt>(S) || isa<ForStmt>(S) || isa<CompoundStmt>(S) || 1680 isa<CXXForRangeStmt>(S) || isa<CXXTryStmt>(S) || 1681 isa<ObjCForCollectionStmt>(S) || isa<ObjCAtTryStmt>(S)) 1682 return false; 1683 1684 if (isa<DeclStmt>(S)) 1685 return true; 1686 1687 for (const Stmt *SubStmt : S->children()) 1688 if (mightAddDeclToScope(SubStmt)) 1689 return true; 1690 1691 return false; 1692 } 1693 1694 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold 1695 /// to a constant, or if it does but contains a label, return false. If it 1696 /// constant folds return true and set the boolean result in Result. 1697 bool CodeGenFunction::ConstantFoldsToSimpleInteger(const Expr *Cond, 1698 bool &ResultBool, 1699 bool AllowLabels) { 1700 // If MC/DC is enabled, disable folding so that we can instrument all 1701 // conditions to yield complete test vectors. We still keep track of 1702 // folded conditions during region mapping and visualization. 1703 if (!AllowLabels && CGM.getCodeGenOpts().hasProfileClangInstr() && 1704 CGM.getCodeGenOpts().MCDCCoverage) 1705 return false; 1706 1707 llvm::APSInt ResultInt; 1708 if (!ConstantFoldsToSimpleInteger(Cond, ResultInt, AllowLabels)) 1709 return false; 1710 1711 ResultBool = ResultInt.getBoolValue(); 1712 return true; 1713 } 1714 1715 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold 1716 /// to a constant, or if it does but contains a label, return false. If it 1717 /// constant folds return true and set the folded value. 1718 bool CodeGenFunction::ConstantFoldsToSimpleInteger(const Expr *Cond, 1719 llvm::APSInt &ResultInt, 1720 bool AllowLabels) { 1721 // FIXME: Rename and handle conversion of other evaluatable things 1722 // to bool. 1723 Expr::EvalResult Result; 1724 if (!Cond->EvaluateAsInt(Result, getContext())) 1725 return false; // Not foldable, not integer or not fully evaluatable. 1726 1727 llvm::APSInt Int = Result.Val.getInt(); 1728 if (!AllowLabels && CodeGenFunction::ContainsLabel(Cond)) 1729 return false; // Contains a label. 1730 1731 ResultInt = Int; 1732 return true; 1733 } 1734 1735 /// Strip parentheses and simplistic logical-NOT operators. 1736 const Expr *CodeGenFunction::stripCond(const Expr *C) { 1737 while (const UnaryOperator *Op = dyn_cast<UnaryOperator>(C->IgnoreParens())) { 1738 if (Op->getOpcode() != UO_LNot) 1739 break; 1740 C = Op->getSubExpr(); 1741 } 1742 return C->IgnoreParens(); 1743 } 1744 1745 /// Determine whether the given condition is an instrumentable condition 1746 /// (i.e. no "&&" or "||"). 1747 bool CodeGenFunction::isInstrumentedCondition(const Expr *C) { 1748 const BinaryOperator *BOp = dyn_cast<BinaryOperator>(stripCond(C)); 1749 return (!BOp || !BOp->isLogicalOp()); 1750 } 1751 1752 /// EmitBranchToCounterBlock - Emit a conditional branch to a new block that 1753 /// increments a profile counter based on the semantics of the given logical 1754 /// operator opcode. This is used to instrument branch condition coverage for 1755 /// logical operators. 1756 void CodeGenFunction::EmitBranchToCounterBlock( 1757 const Expr *Cond, BinaryOperator::Opcode LOp, llvm::BasicBlock *TrueBlock, 1758 llvm::BasicBlock *FalseBlock, uint64_t TrueCount /* = 0 */, 1759 Stmt::Likelihood LH /* =None */, const Expr *CntrIdx /* = nullptr */) { 1760 // If not instrumenting, just emit a branch. 1761 bool InstrumentRegions = CGM.getCodeGenOpts().hasProfileClangInstr(); 1762 if (!InstrumentRegions || !isInstrumentedCondition(Cond)) 1763 return EmitBranchOnBoolExpr(Cond, TrueBlock, FalseBlock, TrueCount, LH); 1764 1765 const Stmt *CntrStmt = (CntrIdx ? CntrIdx : Cond); 1766 1767 llvm::BasicBlock *ThenBlock = nullptr; 1768 llvm::BasicBlock *ElseBlock = nullptr; 1769 llvm::BasicBlock *NextBlock = nullptr; 1770 1771 // Create the block we'll use to increment the appropriate counter. 1772 llvm::BasicBlock *CounterIncrBlock = createBasicBlock("lop.rhscnt"); 1773 1774 // Set block pointers according to Logical-AND (BO_LAnd) semantics. This 1775 // means we need to evaluate the condition and increment the counter on TRUE: 1776 // 1777 // if (Cond) 1778 // goto CounterIncrBlock; 1779 // else 1780 // goto FalseBlock; 1781 // 1782 // CounterIncrBlock: 1783 // Counter++; 1784 // goto TrueBlock; 1785 1786 if (LOp == BO_LAnd) { 1787 ThenBlock = CounterIncrBlock; 1788 ElseBlock = FalseBlock; 1789 NextBlock = TrueBlock; 1790 } 1791 1792 // Set block pointers according to Logical-OR (BO_LOr) semantics. This means 1793 // we need to evaluate the condition and increment the counter on FALSE: 1794 // 1795 // if (Cond) 1796 // goto TrueBlock; 1797 // else 1798 // goto CounterIncrBlock; 1799 // 1800 // CounterIncrBlock: 1801 // Counter++; 1802 // goto FalseBlock; 1803 1804 else if (LOp == BO_LOr) { 1805 ThenBlock = TrueBlock; 1806 ElseBlock = CounterIncrBlock; 1807 NextBlock = FalseBlock; 1808 } else { 1809 llvm_unreachable("Expected Opcode must be that of a Logical Operator"); 1810 } 1811 1812 // Emit Branch based on condition. 1813 EmitBranchOnBoolExpr(Cond, ThenBlock, ElseBlock, TrueCount, LH); 1814 1815 // Emit the block containing the counter increment(s). 1816 EmitBlock(CounterIncrBlock); 1817 1818 // Increment corresponding counter; if index not provided, use Cond as index. 1819 incrementProfileCounter(CntrStmt); 1820 1821 // Go to the next block. 1822 EmitBranch(NextBlock); 1823 } 1824 1825 /// EmitBranchOnBoolExpr - Emit a branch on a boolean condition (e.g. for an if 1826 /// statement) to the specified blocks. Based on the condition, this might try 1827 /// to simplify the codegen of the conditional based on the branch. 1828 /// \param LH The value of the likelihood attribute on the True branch. 1829 /// \param ConditionalOp Used by MC/DC code coverage to track the result of the 1830 /// ConditionalOperator (ternary) through a recursive call for the operator's 1831 /// LHS and RHS nodes. 1832 void CodeGenFunction::EmitBranchOnBoolExpr( 1833 const Expr *Cond, llvm::BasicBlock *TrueBlock, llvm::BasicBlock *FalseBlock, 1834 uint64_t TrueCount, Stmt::Likelihood LH, const Expr *ConditionalOp) { 1835 Cond = Cond->IgnoreParens(); 1836 1837 if (const BinaryOperator *CondBOp = dyn_cast<BinaryOperator>(Cond)) { 1838 // Handle X && Y in a condition. 1839 if (CondBOp->getOpcode() == BO_LAnd) { 1840 MCDCLogOpStack.push_back(CondBOp); 1841 1842 // If we have "1 && X", simplify the code. "0 && X" would have constant 1843 // folded if the case was simple enough. 1844 bool ConstantBool = false; 1845 if (ConstantFoldsToSimpleInteger(CondBOp->getLHS(), ConstantBool) && 1846 ConstantBool) { 1847 // br(1 && X) -> br(X). 1848 incrementProfileCounter(CondBOp); 1849 EmitBranchToCounterBlock(CondBOp->getRHS(), BO_LAnd, TrueBlock, 1850 FalseBlock, TrueCount, LH); 1851 MCDCLogOpStack.pop_back(); 1852 return; 1853 } 1854 1855 // If we have "X && 1", simplify the code to use an uncond branch. 1856 // "X && 0" would have been constant folded to 0. 1857 if (ConstantFoldsToSimpleInteger(CondBOp->getRHS(), ConstantBool) && 1858 ConstantBool) { 1859 // br(X && 1) -> br(X). 1860 EmitBranchToCounterBlock(CondBOp->getLHS(), BO_LAnd, TrueBlock, 1861 FalseBlock, TrueCount, LH, CondBOp); 1862 MCDCLogOpStack.pop_back(); 1863 return; 1864 } 1865 1866 // Emit the LHS as a conditional. If the LHS conditional is false, we 1867 // want to jump to the FalseBlock. 1868 llvm::BasicBlock *LHSTrue = createBasicBlock("land.lhs.true"); 1869 // The counter tells us how often we evaluate RHS, and all of TrueCount 1870 // can be propagated to that branch. 1871 uint64_t RHSCount = getProfileCount(CondBOp->getRHS()); 1872 1873 ConditionalEvaluation eval(*this); 1874 { 1875 ApplyDebugLocation DL(*this, Cond); 1876 // Propagate the likelihood attribute like __builtin_expect 1877 // __builtin_expect(X && Y, 1) -> X and Y are likely 1878 // __builtin_expect(X && Y, 0) -> only Y is unlikely 1879 EmitBranchOnBoolExpr(CondBOp->getLHS(), LHSTrue, FalseBlock, RHSCount, 1880 LH == Stmt::LH_Unlikely ? Stmt::LH_None : LH); 1881 EmitBlock(LHSTrue); 1882 } 1883 1884 incrementProfileCounter(CondBOp); 1885 setCurrentProfileCount(getProfileCount(CondBOp->getRHS())); 1886 1887 // Any temporaries created here are conditional. 1888 eval.begin(*this); 1889 EmitBranchToCounterBlock(CondBOp->getRHS(), BO_LAnd, TrueBlock, 1890 FalseBlock, TrueCount, LH); 1891 eval.end(*this); 1892 MCDCLogOpStack.pop_back(); 1893 return; 1894 } 1895 1896 if (CondBOp->getOpcode() == BO_LOr) { 1897 MCDCLogOpStack.push_back(CondBOp); 1898 1899 // If we have "0 || X", simplify the code. "1 || X" would have constant 1900 // folded if the case was simple enough. 1901 bool ConstantBool = false; 1902 if (ConstantFoldsToSimpleInteger(CondBOp->getLHS(), ConstantBool) && 1903 !ConstantBool) { 1904 // br(0 || X) -> br(X). 1905 incrementProfileCounter(CondBOp); 1906 EmitBranchToCounterBlock(CondBOp->getRHS(), BO_LOr, TrueBlock, 1907 FalseBlock, TrueCount, LH); 1908 MCDCLogOpStack.pop_back(); 1909 return; 1910 } 1911 1912 // If we have "X || 0", simplify the code to use an uncond branch. 1913 // "X || 1" would have been constant folded to 1. 1914 if (ConstantFoldsToSimpleInteger(CondBOp->getRHS(), ConstantBool) && 1915 !ConstantBool) { 1916 // br(X || 0) -> br(X). 1917 EmitBranchToCounterBlock(CondBOp->getLHS(), BO_LOr, TrueBlock, 1918 FalseBlock, TrueCount, LH, CondBOp); 1919 MCDCLogOpStack.pop_back(); 1920 return; 1921 } 1922 // Emit the LHS as a conditional. If the LHS conditional is true, we 1923 // want to jump to the TrueBlock. 1924 llvm::BasicBlock *LHSFalse = createBasicBlock("lor.lhs.false"); 1925 // We have the count for entry to the RHS and for the whole expression 1926 // being true, so we can divy up True count between the short circuit and 1927 // the RHS. 1928 uint64_t LHSCount = 1929 getCurrentProfileCount() - getProfileCount(CondBOp->getRHS()); 1930 uint64_t RHSCount = TrueCount - LHSCount; 1931 1932 ConditionalEvaluation eval(*this); 1933 { 1934 // Propagate the likelihood attribute like __builtin_expect 1935 // __builtin_expect(X || Y, 1) -> only Y is likely 1936 // __builtin_expect(X || Y, 0) -> both X and Y are unlikely 1937 ApplyDebugLocation DL(*this, Cond); 1938 EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, LHSFalse, LHSCount, 1939 LH == Stmt::LH_Likely ? Stmt::LH_None : LH); 1940 EmitBlock(LHSFalse); 1941 } 1942 1943 incrementProfileCounter(CondBOp); 1944 setCurrentProfileCount(getProfileCount(CondBOp->getRHS())); 1945 1946 // Any temporaries created here are conditional. 1947 eval.begin(*this); 1948 EmitBranchToCounterBlock(CondBOp->getRHS(), BO_LOr, TrueBlock, FalseBlock, 1949 RHSCount, LH); 1950 1951 eval.end(*this); 1952 MCDCLogOpStack.pop_back(); 1953 return; 1954 } 1955 } 1956 1957 if (const UnaryOperator *CondUOp = dyn_cast<UnaryOperator>(Cond)) { 1958 // br(!x, t, f) -> br(x, f, t) 1959 // Avoid doing this optimization when instrumenting a condition for MC/DC. 1960 // LNot is taken as part of the condition for simplicity, and changing its 1961 // sense negatively impacts test vector tracking. 1962 bool MCDCCondition = CGM.getCodeGenOpts().hasProfileClangInstr() && 1963 CGM.getCodeGenOpts().MCDCCoverage && 1964 isInstrumentedCondition(Cond); 1965 if (CondUOp->getOpcode() == UO_LNot && !MCDCCondition) { 1966 // Negate the count. 1967 uint64_t FalseCount = getCurrentProfileCount() - TrueCount; 1968 // The values of the enum are chosen to make this negation possible. 1969 LH = static_cast<Stmt::Likelihood>(-LH); 1970 // Negate the condition and swap the destination blocks. 1971 return EmitBranchOnBoolExpr(CondUOp->getSubExpr(), FalseBlock, TrueBlock, 1972 FalseCount, LH); 1973 } 1974 } 1975 1976 if (const ConditionalOperator *CondOp = dyn_cast<ConditionalOperator>(Cond)) { 1977 // br(c ? x : y, t, f) -> br(c, br(x, t, f), br(y, t, f)) 1978 llvm::BasicBlock *LHSBlock = createBasicBlock("cond.true"); 1979 llvm::BasicBlock *RHSBlock = createBasicBlock("cond.false"); 1980 1981 // The ConditionalOperator itself has no likelihood information for its 1982 // true and false branches. This matches the behavior of __builtin_expect. 1983 ConditionalEvaluation cond(*this); 1984 EmitBranchOnBoolExpr(CondOp->getCond(), LHSBlock, RHSBlock, 1985 getProfileCount(CondOp), Stmt::LH_None); 1986 1987 // When computing PGO branch weights, we only know the overall count for 1988 // the true block. This code is essentially doing tail duplication of the 1989 // naive code-gen, introducing new edges for which counts are not 1990 // available. Divide the counts proportionally between the LHS and RHS of 1991 // the conditional operator. 1992 uint64_t LHSScaledTrueCount = 0; 1993 if (TrueCount) { 1994 double LHSRatio = 1995 getProfileCount(CondOp) / (double)getCurrentProfileCount(); 1996 LHSScaledTrueCount = TrueCount * LHSRatio; 1997 } 1998 1999 cond.begin(*this); 2000 EmitBlock(LHSBlock); 2001 incrementProfileCounter(CondOp); 2002 { 2003 ApplyDebugLocation DL(*this, Cond); 2004 EmitBranchOnBoolExpr(CondOp->getLHS(), TrueBlock, FalseBlock, 2005 LHSScaledTrueCount, LH, CondOp); 2006 } 2007 cond.end(*this); 2008 2009 cond.begin(*this); 2010 EmitBlock(RHSBlock); 2011 EmitBranchOnBoolExpr(CondOp->getRHS(), TrueBlock, FalseBlock, 2012 TrueCount - LHSScaledTrueCount, LH, CondOp); 2013 cond.end(*this); 2014 2015 return; 2016 } 2017 2018 if (const CXXThrowExpr *Throw = dyn_cast<CXXThrowExpr>(Cond)) { 2019 // Conditional operator handling can give us a throw expression as a 2020 // condition for a case like: 2021 // br(c ? throw x : y, t, f) -> br(c, br(throw x, t, f), br(y, t, f) 2022 // Fold this to: 2023 // br(c, throw x, br(y, t, f)) 2024 EmitCXXThrowExpr(Throw, /*KeepInsertionPoint*/false); 2025 return; 2026 } 2027 2028 // Emit the code with the fully general case. 2029 llvm::Value *CondV; 2030 { 2031 ApplyDebugLocation DL(*this, Cond); 2032 CondV = EvaluateExprAsBool(Cond); 2033 } 2034 2035 // If not at the top of the logical operator nest, update MCDC temp with the 2036 // boolean result of the evaluated condition. 2037 if (!MCDCLogOpStack.empty()) { 2038 const Expr *MCDCBaseExpr = Cond; 2039 // When a nested ConditionalOperator (ternary) is encountered in a boolean 2040 // expression, MC/DC tracks the result of the ternary, and this is tied to 2041 // the ConditionalOperator expression and not the ternary's LHS or RHS. If 2042 // this is the case, the ConditionalOperator expression is passed through 2043 // the ConditionalOp parameter and then used as the MCDC base expression. 2044 if (ConditionalOp) 2045 MCDCBaseExpr = ConditionalOp; 2046 2047 maybeUpdateMCDCCondBitmap(MCDCBaseExpr, CondV); 2048 } 2049 2050 llvm::MDNode *Weights = nullptr; 2051 llvm::MDNode *Unpredictable = nullptr; 2052 2053 // If the branch has a condition wrapped by __builtin_unpredictable, 2054 // create metadata that specifies that the branch is unpredictable. 2055 // Don't bother if not optimizing because that metadata would not be used. 2056 auto *Call = dyn_cast<CallExpr>(Cond->IgnoreImpCasts()); 2057 if (Call && CGM.getCodeGenOpts().OptimizationLevel != 0) { 2058 auto *FD = dyn_cast_or_null<FunctionDecl>(Call->getCalleeDecl()); 2059 if (FD && FD->getBuiltinID() == Builtin::BI__builtin_unpredictable) { 2060 llvm::MDBuilder MDHelper(getLLVMContext()); 2061 Unpredictable = MDHelper.createUnpredictable(); 2062 } 2063 } 2064 2065 // If there is a Likelihood knowledge for the cond, lower it. 2066 // Note that if not optimizing this won't emit anything. 2067 llvm::Value *NewCondV = emitCondLikelihoodViaExpectIntrinsic(CondV, LH); 2068 if (CondV != NewCondV) 2069 CondV = NewCondV; 2070 else { 2071 // Otherwise, lower profile counts. Note that we do this even at -O0. 2072 uint64_t CurrentCount = std::max(getCurrentProfileCount(), TrueCount); 2073 Weights = createProfileWeights(TrueCount, CurrentCount - TrueCount); 2074 } 2075 2076 Builder.CreateCondBr(CondV, TrueBlock, FalseBlock, Weights, Unpredictable); 2077 } 2078 2079 /// ErrorUnsupported - Print out an error that codegen doesn't support the 2080 /// specified stmt yet. 2081 void CodeGenFunction::ErrorUnsupported(const Stmt *S, const char *Type) { 2082 CGM.ErrorUnsupported(S, Type); 2083 } 2084 2085 /// emitNonZeroVLAInit - Emit the "zero" initialization of a 2086 /// variable-length array whose elements have a non-zero bit-pattern. 2087 /// 2088 /// \param baseType the inner-most element type of the array 2089 /// \param src - a char* pointing to the bit-pattern for a single 2090 /// base element of the array 2091 /// \param sizeInChars - the total size of the VLA, in chars 2092 static void emitNonZeroVLAInit(CodeGenFunction &CGF, QualType baseType, 2093 Address dest, Address src, 2094 llvm::Value *sizeInChars) { 2095 CGBuilderTy &Builder = CGF.Builder; 2096 2097 CharUnits baseSize = CGF.getContext().getTypeSizeInChars(baseType); 2098 llvm::Value *baseSizeInChars 2099 = llvm::ConstantInt::get(CGF.IntPtrTy, baseSize.getQuantity()); 2100 2101 Address begin = dest.withElementType(CGF.Int8Ty); 2102 llvm::Value *end = Builder.CreateInBoundsGEP(begin.getElementType(), 2103 begin.emitRawPointer(CGF), 2104 sizeInChars, "vla.end"); 2105 2106 llvm::BasicBlock *originBB = CGF.Builder.GetInsertBlock(); 2107 llvm::BasicBlock *loopBB = CGF.createBasicBlock("vla-init.loop"); 2108 llvm::BasicBlock *contBB = CGF.createBasicBlock("vla-init.cont"); 2109 2110 // Make a loop over the VLA. C99 guarantees that the VLA element 2111 // count must be nonzero. 2112 CGF.EmitBlock(loopBB); 2113 2114 llvm::PHINode *cur = Builder.CreatePHI(begin.getType(), 2, "vla.cur"); 2115 cur->addIncoming(begin.emitRawPointer(CGF), originBB); 2116 2117 CharUnits curAlign = 2118 dest.getAlignment().alignmentOfArrayElement(baseSize); 2119 2120 // memcpy the individual element bit-pattern. 2121 Builder.CreateMemCpy(Address(cur, CGF.Int8Ty, curAlign), src, baseSizeInChars, 2122 /*volatile*/ false); 2123 2124 // Go to the next element. 2125 llvm::Value *next = 2126 Builder.CreateInBoundsGEP(CGF.Int8Ty, cur, baseSizeInChars, "vla.next"); 2127 2128 // Leave if that's the end of the VLA. 2129 llvm::Value *done = Builder.CreateICmpEQ(next, end, "vla-init.isdone"); 2130 Builder.CreateCondBr(done, contBB, loopBB); 2131 cur->addIncoming(next, loopBB); 2132 2133 CGF.EmitBlock(contBB); 2134 } 2135 2136 void 2137 CodeGenFunction::EmitNullInitialization(Address DestPtr, QualType Ty) { 2138 // Ignore empty classes in C++. 2139 if (getLangOpts().CPlusPlus) { 2140 if (const RecordType *RT = Ty->getAs<RecordType>()) { 2141 if (cast<CXXRecordDecl>(RT->getDecl())->isEmpty()) 2142 return; 2143 } 2144 } 2145 2146 if (DestPtr.getElementType() != Int8Ty) 2147 DestPtr = DestPtr.withElementType(Int8Ty); 2148 2149 // Get size and alignment info for this aggregate. 2150 CharUnits size = getContext().getTypeSizeInChars(Ty); 2151 2152 llvm::Value *SizeVal; 2153 const VariableArrayType *vla; 2154 2155 // Don't bother emitting a zero-byte memset. 2156 if (size.isZero()) { 2157 // But note that getTypeInfo returns 0 for a VLA. 2158 if (const VariableArrayType *vlaType = 2159 dyn_cast_or_null<VariableArrayType>( 2160 getContext().getAsArrayType(Ty))) { 2161 auto VlaSize = getVLASize(vlaType); 2162 SizeVal = VlaSize.NumElts; 2163 CharUnits eltSize = getContext().getTypeSizeInChars(VlaSize.Type); 2164 if (!eltSize.isOne()) 2165 SizeVal = Builder.CreateNUWMul(SizeVal, CGM.getSize(eltSize)); 2166 vla = vlaType; 2167 } else { 2168 return; 2169 } 2170 } else { 2171 SizeVal = CGM.getSize(size); 2172 vla = nullptr; 2173 } 2174 2175 // If the type contains a pointer to data member we can't memset it to zero. 2176 // Instead, create a null constant and copy it to the destination. 2177 // TODO: there are other patterns besides zero that we can usefully memset, 2178 // like -1, which happens to be the pattern used by member-pointers. 2179 if (!CGM.getTypes().isZeroInitializable(Ty)) { 2180 // For a VLA, emit a single element, then splat that over the VLA. 2181 if (vla) Ty = getContext().getBaseElementType(vla); 2182 2183 llvm::Constant *NullConstant = CGM.EmitNullConstant(Ty); 2184 2185 llvm::GlobalVariable *NullVariable = 2186 new llvm::GlobalVariable(CGM.getModule(), NullConstant->getType(), 2187 /*isConstant=*/true, 2188 llvm::GlobalVariable::PrivateLinkage, 2189 NullConstant, Twine()); 2190 CharUnits NullAlign = DestPtr.getAlignment(); 2191 NullVariable->setAlignment(NullAlign.getAsAlign()); 2192 Address SrcPtr(NullVariable, Builder.getInt8Ty(), NullAlign); 2193 2194 if (vla) return emitNonZeroVLAInit(*this, Ty, DestPtr, SrcPtr, SizeVal); 2195 2196 // Get and call the appropriate llvm.memcpy overload. 2197 Builder.CreateMemCpy(DestPtr, SrcPtr, SizeVal, false); 2198 return; 2199 } 2200 2201 // Otherwise, just memset the whole thing to zero. This is legal 2202 // because in LLVM, all default initializers (other than the ones we just 2203 // handled above) are guaranteed to have a bit pattern of all zeros. 2204 Builder.CreateMemSet(DestPtr, Builder.getInt8(0), SizeVal, false); 2205 } 2206 2207 llvm::BlockAddress *CodeGenFunction::GetAddrOfLabel(const LabelDecl *L) { 2208 // Make sure that there is a block for the indirect goto. 2209 if (!IndirectBranch) 2210 GetIndirectGotoBlock(); 2211 2212 llvm::BasicBlock *BB = getJumpDestForLabel(L).getBlock(); 2213 2214 // Make sure the indirect branch includes all of the address-taken blocks. 2215 IndirectBranch->addDestination(BB); 2216 return llvm::BlockAddress::get(CurFn, BB); 2217 } 2218 2219 llvm::BasicBlock *CodeGenFunction::GetIndirectGotoBlock() { 2220 // If we already made the indirect branch for indirect goto, return its block. 2221 if (IndirectBranch) return IndirectBranch->getParent(); 2222 2223 CGBuilderTy TmpBuilder(*this, createBasicBlock("indirectgoto")); 2224 2225 // Create the PHI node that indirect gotos will add entries to. 2226 llvm::Value *DestVal = TmpBuilder.CreatePHI(Int8PtrTy, 0, 2227 "indirect.goto.dest"); 2228 2229 // Create the indirect branch instruction. 2230 IndirectBranch = TmpBuilder.CreateIndirectBr(DestVal); 2231 return IndirectBranch->getParent(); 2232 } 2233 2234 /// Computes the length of an array in elements, as well as the base 2235 /// element type and a properly-typed first element pointer. 2236 llvm::Value *CodeGenFunction::emitArrayLength(const ArrayType *origArrayType, 2237 QualType &baseType, 2238 Address &addr) { 2239 const ArrayType *arrayType = origArrayType; 2240 2241 // If it's a VLA, we have to load the stored size. Note that 2242 // this is the size of the VLA in bytes, not its size in elements. 2243 llvm::Value *numVLAElements = nullptr; 2244 if (isa<VariableArrayType>(arrayType)) { 2245 numVLAElements = getVLASize(cast<VariableArrayType>(arrayType)).NumElts; 2246 2247 // Walk into all VLAs. This doesn't require changes to addr, 2248 // which has type T* where T is the first non-VLA element type. 2249 do { 2250 QualType elementType = arrayType->getElementType(); 2251 arrayType = getContext().getAsArrayType(elementType); 2252 2253 // If we only have VLA components, 'addr' requires no adjustment. 2254 if (!arrayType) { 2255 baseType = elementType; 2256 return numVLAElements; 2257 } 2258 } while (isa<VariableArrayType>(arrayType)); 2259 2260 // We get out here only if we find a constant array type 2261 // inside the VLA. 2262 } 2263 2264 // We have some number of constant-length arrays, so addr should 2265 // have LLVM type [M x [N x [...]]]*. Build a GEP that walks 2266 // down to the first element of addr. 2267 SmallVector<llvm::Value*, 8> gepIndices; 2268 2269 // GEP down to the array type. 2270 llvm::ConstantInt *zero = Builder.getInt32(0); 2271 gepIndices.push_back(zero); 2272 2273 uint64_t countFromCLAs = 1; 2274 QualType eltType; 2275 2276 llvm::ArrayType *llvmArrayType = 2277 dyn_cast<llvm::ArrayType>(addr.getElementType()); 2278 while (llvmArrayType) { 2279 assert(isa<ConstantArrayType>(arrayType)); 2280 assert(cast<ConstantArrayType>(arrayType)->getZExtSize() == 2281 llvmArrayType->getNumElements()); 2282 2283 gepIndices.push_back(zero); 2284 countFromCLAs *= llvmArrayType->getNumElements(); 2285 eltType = arrayType->getElementType(); 2286 2287 llvmArrayType = 2288 dyn_cast<llvm::ArrayType>(llvmArrayType->getElementType()); 2289 arrayType = getContext().getAsArrayType(arrayType->getElementType()); 2290 assert((!llvmArrayType || arrayType) && 2291 "LLVM and Clang types are out-of-synch"); 2292 } 2293 2294 if (arrayType) { 2295 // From this point onwards, the Clang array type has been emitted 2296 // as some other type (probably a packed struct). Compute the array 2297 // size, and just emit the 'begin' expression as a bitcast. 2298 while (arrayType) { 2299 countFromCLAs *= cast<ConstantArrayType>(arrayType)->getZExtSize(); 2300 eltType = arrayType->getElementType(); 2301 arrayType = getContext().getAsArrayType(eltType); 2302 } 2303 2304 llvm::Type *baseType = ConvertType(eltType); 2305 addr = addr.withElementType(baseType); 2306 } else { 2307 // Create the actual GEP. 2308 addr = Address(Builder.CreateInBoundsGEP(addr.getElementType(), 2309 addr.emitRawPointer(*this), 2310 gepIndices, "array.begin"), 2311 ConvertTypeForMem(eltType), addr.getAlignment()); 2312 } 2313 2314 baseType = eltType; 2315 2316 llvm::Value *numElements 2317 = llvm::ConstantInt::get(SizeTy, countFromCLAs); 2318 2319 // If we had any VLA dimensions, factor them in. 2320 if (numVLAElements) 2321 numElements = Builder.CreateNUWMul(numVLAElements, numElements); 2322 2323 return numElements; 2324 } 2325 2326 CodeGenFunction::VlaSizePair CodeGenFunction::getVLASize(QualType type) { 2327 const VariableArrayType *vla = getContext().getAsVariableArrayType(type); 2328 assert(vla && "type was not a variable array type!"); 2329 return getVLASize(vla); 2330 } 2331 2332 CodeGenFunction::VlaSizePair 2333 CodeGenFunction::getVLASize(const VariableArrayType *type) { 2334 // The number of elements so far; always size_t. 2335 llvm::Value *numElements = nullptr; 2336 2337 QualType elementType; 2338 do { 2339 elementType = type->getElementType(); 2340 llvm::Value *vlaSize = VLASizeMap[type->getSizeExpr()]; 2341 assert(vlaSize && "no size for VLA!"); 2342 assert(vlaSize->getType() == SizeTy); 2343 2344 if (!numElements) { 2345 numElements = vlaSize; 2346 } else { 2347 // It's undefined behavior if this wraps around, so mark it that way. 2348 // FIXME: Teach -fsanitize=undefined to trap this. 2349 numElements = Builder.CreateNUWMul(numElements, vlaSize); 2350 } 2351 } while ((type = getContext().getAsVariableArrayType(elementType))); 2352 2353 return { numElements, elementType }; 2354 } 2355 2356 CodeGenFunction::VlaSizePair 2357 CodeGenFunction::getVLAElements1D(QualType type) { 2358 const VariableArrayType *vla = getContext().getAsVariableArrayType(type); 2359 assert(vla && "type was not a variable array type!"); 2360 return getVLAElements1D(vla); 2361 } 2362 2363 CodeGenFunction::VlaSizePair 2364 CodeGenFunction::getVLAElements1D(const VariableArrayType *Vla) { 2365 llvm::Value *VlaSize = VLASizeMap[Vla->getSizeExpr()]; 2366 assert(VlaSize && "no size for VLA!"); 2367 assert(VlaSize->getType() == SizeTy); 2368 return { VlaSize, Vla->getElementType() }; 2369 } 2370 2371 void CodeGenFunction::EmitVariablyModifiedType(QualType type) { 2372 assert(type->isVariablyModifiedType() && 2373 "Must pass variably modified type to EmitVLASizes!"); 2374 2375 EnsureInsertPoint(); 2376 2377 // We're going to walk down into the type and look for VLA 2378 // expressions. 2379 do { 2380 assert(type->isVariablyModifiedType()); 2381 2382 const Type *ty = type.getTypePtr(); 2383 switch (ty->getTypeClass()) { 2384 2385 #define TYPE(Class, Base) 2386 #define ABSTRACT_TYPE(Class, Base) 2387 #define NON_CANONICAL_TYPE(Class, Base) 2388 #define DEPENDENT_TYPE(Class, Base) case Type::Class: 2389 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base) 2390 #include "clang/AST/TypeNodes.inc" 2391 llvm_unreachable("unexpected dependent type!"); 2392 2393 // These types are never variably-modified. 2394 case Type::Builtin: 2395 case Type::Complex: 2396 case Type::Vector: 2397 case Type::ExtVector: 2398 case Type::ConstantMatrix: 2399 case Type::Record: 2400 case Type::Enum: 2401 case Type::Using: 2402 case Type::TemplateSpecialization: 2403 case Type::ObjCTypeParam: 2404 case Type::ObjCObject: 2405 case Type::ObjCInterface: 2406 case Type::ObjCObjectPointer: 2407 case Type::BitInt: 2408 llvm_unreachable("type class is never variably-modified!"); 2409 2410 case Type::Elaborated: 2411 type = cast<ElaboratedType>(ty)->getNamedType(); 2412 break; 2413 2414 case Type::Adjusted: 2415 type = cast<AdjustedType>(ty)->getAdjustedType(); 2416 break; 2417 2418 case Type::Decayed: 2419 type = cast<DecayedType>(ty)->getPointeeType(); 2420 break; 2421 2422 case Type::Pointer: 2423 type = cast<PointerType>(ty)->getPointeeType(); 2424 break; 2425 2426 case Type::BlockPointer: 2427 type = cast<BlockPointerType>(ty)->getPointeeType(); 2428 break; 2429 2430 case Type::LValueReference: 2431 case Type::RValueReference: 2432 type = cast<ReferenceType>(ty)->getPointeeType(); 2433 break; 2434 2435 case Type::MemberPointer: 2436 type = cast<MemberPointerType>(ty)->getPointeeType(); 2437 break; 2438 2439 case Type::ArrayParameter: 2440 case Type::ConstantArray: 2441 case Type::IncompleteArray: 2442 // Losing element qualification here is fine. 2443 type = cast<ArrayType>(ty)->getElementType(); 2444 break; 2445 2446 case Type::VariableArray: { 2447 // Losing element qualification here is fine. 2448 const VariableArrayType *vat = cast<VariableArrayType>(ty); 2449 2450 // Unknown size indication requires no size computation. 2451 // Otherwise, evaluate and record it. 2452 if (const Expr *sizeExpr = vat->getSizeExpr()) { 2453 // It's possible that we might have emitted this already, 2454 // e.g. with a typedef and a pointer to it. 2455 llvm::Value *&entry = VLASizeMap[sizeExpr]; 2456 if (!entry) { 2457 llvm::Value *size = EmitScalarExpr(sizeExpr); 2458 2459 // C11 6.7.6.2p5: 2460 // If the size is an expression that is not an integer constant 2461 // expression [...] each time it is evaluated it shall have a value 2462 // greater than zero. 2463 if (SanOpts.has(SanitizerKind::VLABound)) { 2464 SanitizerScope SanScope(this); 2465 llvm::Value *Zero = llvm::Constant::getNullValue(size->getType()); 2466 clang::QualType SEType = sizeExpr->getType(); 2467 llvm::Value *CheckCondition = 2468 SEType->isSignedIntegerType() 2469 ? Builder.CreateICmpSGT(size, Zero) 2470 : Builder.CreateICmpUGT(size, Zero); 2471 llvm::Constant *StaticArgs[] = { 2472 EmitCheckSourceLocation(sizeExpr->getBeginLoc()), 2473 EmitCheckTypeDescriptor(SEType)}; 2474 EmitCheck(std::make_pair(CheckCondition, SanitizerKind::VLABound), 2475 SanitizerHandler::VLABoundNotPositive, StaticArgs, size); 2476 } 2477 2478 // Always zexting here would be wrong if it weren't 2479 // undefined behavior to have a negative bound. 2480 // FIXME: What about when size's type is larger than size_t? 2481 entry = Builder.CreateIntCast(size, SizeTy, /*signed*/ false); 2482 } 2483 } 2484 type = vat->getElementType(); 2485 break; 2486 } 2487 2488 case Type::FunctionProto: 2489 case Type::FunctionNoProto: 2490 type = cast<FunctionType>(ty)->getReturnType(); 2491 break; 2492 2493 case Type::Paren: 2494 case Type::TypeOf: 2495 case Type::UnaryTransform: 2496 case Type::Attributed: 2497 case Type::BTFTagAttributed: 2498 case Type::HLSLAttributedResource: 2499 case Type::SubstTemplateTypeParm: 2500 case Type::MacroQualified: 2501 case Type::CountAttributed: 2502 // Keep walking after single level desugaring. 2503 type = type.getSingleStepDesugaredType(getContext()); 2504 break; 2505 2506 case Type::Typedef: 2507 case Type::Decltype: 2508 case Type::Auto: 2509 case Type::DeducedTemplateSpecialization: 2510 case Type::PackIndexing: 2511 // Stop walking: nothing to do. 2512 return; 2513 2514 case Type::TypeOfExpr: 2515 // Stop walking: emit typeof expression. 2516 EmitIgnoredExpr(cast<TypeOfExprType>(ty)->getUnderlyingExpr()); 2517 return; 2518 2519 case Type::Atomic: 2520 type = cast<AtomicType>(ty)->getValueType(); 2521 break; 2522 2523 case Type::Pipe: 2524 type = cast<PipeType>(ty)->getElementType(); 2525 break; 2526 } 2527 } while (type->isVariablyModifiedType()); 2528 } 2529 2530 Address CodeGenFunction::EmitVAListRef(const Expr* E) { 2531 if (getContext().getBuiltinVaListType()->isArrayType()) 2532 return EmitPointerWithAlignment(E); 2533 return EmitLValue(E).getAddress(); 2534 } 2535 2536 Address CodeGenFunction::EmitMSVAListRef(const Expr *E) { 2537 return EmitLValue(E).getAddress(); 2538 } 2539 2540 void CodeGenFunction::EmitDeclRefExprDbgValue(const DeclRefExpr *E, 2541 const APValue &Init) { 2542 assert(Init.hasValue() && "Invalid DeclRefExpr initializer!"); 2543 if (CGDebugInfo *Dbg = getDebugInfo()) 2544 if (CGM.getCodeGenOpts().hasReducedDebugInfo()) 2545 Dbg->EmitGlobalVariable(E->getDecl(), Init); 2546 } 2547 2548 CodeGenFunction::PeepholeProtection 2549 CodeGenFunction::protectFromPeepholes(RValue rvalue) { 2550 // At the moment, the only aggressive peephole we do in IR gen 2551 // is trunc(zext) folding, but if we add more, we can easily 2552 // extend this protection. 2553 2554 if (!rvalue.isScalar()) return PeepholeProtection(); 2555 llvm::Value *value = rvalue.getScalarVal(); 2556 if (!isa<llvm::ZExtInst>(value)) return PeepholeProtection(); 2557 2558 // Just make an extra bitcast. 2559 assert(HaveInsertPoint()); 2560 llvm::Instruction *inst = new llvm::BitCastInst(value, value->getType(), "", 2561 Builder.GetInsertBlock()); 2562 2563 PeepholeProtection protection; 2564 protection.Inst = inst; 2565 return protection; 2566 } 2567 2568 void CodeGenFunction::unprotectFromPeepholes(PeepholeProtection protection) { 2569 if (!protection.Inst) return; 2570 2571 // In theory, we could try to duplicate the peepholes now, but whatever. 2572 protection.Inst->eraseFromParent(); 2573 } 2574 2575 void CodeGenFunction::emitAlignmentAssumption(llvm::Value *PtrValue, 2576 QualType Ty, SourceLocation Loc, 2577 SourceLocation AssumptionLoc, 2578 llvm::Value *Alignment, 2579 llvm::Value *OffsetValue) { 2580 if (Alignment->getType() != IntPtrTy) 2581 Alignment = 2582 Builder.CreateIntCast(Alignment, IntPtrTy, false, "casted.align"); 2583 if (OffsetValue && OffsetValue->getType() != IntPtrTy) 2584 OffsetValue = 2585 Builder.CreateIntCast(OffsetValue, IntPtrTy, true, "casted.offset"); 2586 llvm::Value *TheCheck = nullptr; 2587 if (SanOpts.has(SanitizerKind::Alignment)) { 2588 llvm::Value *PtrIntValue = 2589 Builder.CreatePtrToInt(PtrValue, IntPtrTy, "ptrint"); 2590 2591 if (OffsetValue) { 2592 bool IsOffsetZero = false; 2593 if (const auto *CI = dyn_cast<llvm::ConstantInt>(OffsetValue)) 2594 IsOffsetZero = CI->isZero(); 2595 2596 if (!IsOffsetZero) 2597 PtrIntValue = Builder.CreateSub(PtrIntValue, OffsetValue, "offsetptr"); 2598 } 2599 2600 llvm::Value *Zero = llvm::ConstantInt::get(IntPtrTy, 0); 2601 llvm::Value *Mask = 2602 Builder.CreateSub(Alignment, llvm::ConstantInt::get(IntPtrTy, 1)); 2603 llvm::Value *MaskedPtr = Builder.CreateAnd(PtrIntValue, Mask, "maskedptr"); 2604 TheCheck = Builder.CreateICmpEQ(MaskedPtr, Zero, "maskcond"); 2605 } 2606 llvm::Instruction *Assumption = Builder.CreateAlignmentAssumption( 2607 CGM.getDataLayout(), PtrValue, Alignment, OffsetValue); 2608 2609 if (!SanOpts.has(SanitizerKind::Alignment)) 2610 return; 2611 emitAlignmentAssumptionCheck(PtrValue, Ty, Loc, AssumptionLoc, Alignment, 2612 OffsetValue, TheCheck, Assumption); 2613 } 2614 2615 void CodeGenFunction::emitAlignmentAssumption(llvm::Value *PtrValue, 2616 const Expr *E, 2617 SourceLocation AssumptionLoc, 2618 llvm::Value *Alignment, 2619 llvm::Value *OffsetValue) { 2620 QualType Ty = E->getType(); 2621 SourceLocation Loc = E->getExprLoc(); 2622 2623 emitAlignmentAssumption(PtrValue, Ty, Loc, AssumptionLoc, Alignment, 2624 OffsetValue); 2625 } 2626 2627 llvm::Value *CodeGenFunction::EmitAnnotationCall(llvm::Function *AnnotationFn, 2628 llvm::Value *AnnotatedVal, 2629 StringRef AnnotationStr, 2630 SourceLocation Location, 2631 const AnnotateAttr *Attr) { 2632 SmallVector<llvm::Value *, 5> Args = { 2633 AnnotatedVal, 2634 CGM.EmitAnnotationString(AnnotationStr), 2635 CGM.EmitAnnotationUnit(Location), 2636 CGM.EmitAnnotationLineNo(Location), 2637 }; 2638 if (Attr) 2639 Args.push_back(CGM.EmitAnnotationArgs(Attr)); 2640 return Builder.CreateCall(AnnotationFn, Args); 2641 } 2642 2643 void CodeGenFunction::EmitVarAnnotations(const VarDecl *D, llvm::Value *V) { 2644 assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute"); 2645 for (const auto *I : D->specific_attrs<AnnotateAttr>()) 2646 EmitAnnotationCall(CGM.getIntrinsic(llvm::Intrinsic::var_annotation, 2647 {V->getType(), CGM.ConstGlobalsPtrTy}), 2648 V, I->getAnnotation(), D->getLocation(), I); 2649 } 2650 2651 Address CodeGenFunction::EmitFieldAnnotations(const FieldDecl *D, 2652 Address Addr) { 2653 assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute"); 2654 llvm::Value *V = Addr.emitRawPointer(*this); 2655 llvm::Type *VTy = V->getType(); 2656 auto *PTy = dyn_cast<llvm::PointerType>(VTy); 2657 unsigned AS = PTy ? PTy->getAddressSpace() : 0; 2658 llvm::PointerType *IntrinTy = 2659 llvm::PointerType::get(CGM.getLLVMContext(), AS); 2660 llvm::Function *F = CGM.getIntrinsic(llvm::Intrinsic::ptr_annotation, 2661 {IntrinTy, CGM.ConstGlobalsPtrTy}); 2662 2663 for (const auto *I : D->specific_attrs<AnnotateAttr>()) { 2664 // FIXME Always emit the cast inst so we can differentiate between 2665 // annotation on the first field of a struct and annotation on the struct 2666 // itself. 2667 if (VTy != IntrinTy) 2668 V = Builder.CreateBitCast(V, IntrinTy); 2669 V = EmitAnnotationCall(F, V, I->getAnnotation(), D->getLocation(), I); 2670 V = Builder.CreateBitCast(V, VTy); 2671 } 2672 2673 return Address(V, Addr.getElementType(), Addr.getAlignment()); 2674 } 2675 2676 CodeGenFunction::CGCapturedStmtInfo::~CGCapturedStmtInfo() { } 2677 2678 CodeGenFunction::SanitizerScope::SanitizerScope(CodeGenFunction *CGF) 2679 : CGF(CGF) { 2680 assert(!CGF->IsSanitizerScope); 2681 CGF->IsSanitizerScope = true; 2682 } 2683 2684 CodeGenFunction::SanitizerScope::~SanitizerScope() { 2685 CGF->IsSanitizerScope = false; 2686 } 2687 2688 void CodeGenFunction::InsertHelper(llvm::Instruction *I, 2689 const llvm::Twine &Name, 2690 llvm::BasicBlock::iterator InsertPt) const { 2691 LoopStack.InsertHelper(I); 2692 if (IsSanitizerScope) 2693 I->setNoSanitizeMetadata(); 2694 } 2695 2696 void CGBuilderInserter::InsertHelper( 2697 llvm::Instruction *I, const llvm::Twine &Name, 2698 llvm::BasicBlock::iterator InsertPt) const { 2699 llvm::IRBuilderDefaultInserter::InsertHelper(I, Name, InsertPt); 2700 if (CGF) 2701 CGF->InsertHelper(I, Name, InsertPt); 2702 } 2703 2704 // Emits an error if we don't have a valid set of target features for the 2705 // called function. 2706 void CodeGenFunction::checkTargetFeatures(const CallExpr *E, 2707 const FunctionDecl *TargetDecl) { 2708 // SemaChecking cannot handle below x86 builtins because they have different 2709 // parameter ranges with different TargetAttribute of caller. 2710 if (CGM.getContext().getTargetInfo().getTriple().isX86()) { 2711 unsigned BuiltinID = TargetDecl->getBuiltinID(); 2712 if (BuiltinID == X86::BI__builtin_ia32_cmpps || 2713 BuiltinID == X86::BI__builtin_ia32_cmpss || 2714 BuiltinID == X86::BI__builtin_ia32_cmppd || 2715 BuiltinID == X86::BI__builtin_ia32_cmpsd) { 2716 const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(CurCodeDecl); 2717 llvm::StringMap<bool> TargetFetureMap; 2718 CGM.getContext().getFunctionFeatureMap(TargetFetureMap, FD); 2719 llvm::APSInt Result = 2720 *(E->getArg(2)->getIntegerConstantExpr(CGM.getContext())); 2721 if (Result.getSExtValue() > 7 && !TargetFetureMap.lookup("avx")) 2722 CGM.getDiags().Report(E->getBeginLoc(), diag::err_builtin_needs_feature) 2723 << TargetDecl->getDeclName() << "avx"; 2724 } 2725 } 2726 return checkTargetFeatures(E->getBeginLoc(), TargetDecl); 2727 } 2728 2729 // Emits an error if we don't have a valid set of target features for the 2730 // called function. 2731 void CodeGenFunction::checkTargetFeatures(SourceLocation Loc, 2732 const FunctionDecl *TargetDecl) { 2733 // Early exit if this is an indirect call. 2734 if (!TargetDecl) 2735 return; 2736 2737 // Get the current enclosing function if it exists. If it doesn't 2738 // we can't check the target features anyhow. 2739 const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(CurCodeDecl); 2740 if (!FD) 2741 return; 2742 2743 // Grab the required features for the call. For a builtin this is listed in 2744 // the td file with the default cpu, for an always_inline function this is any 2745 // listed cpu and any listed features. 2746 unsigned BuiltinID = TargetDecl->getBuiltinID(); 2747 std::string MissingFeature; 2748 llvm::StringMap<bool> CallerFeatureMap; 2749 CGM.getContext().getFunctionFeatureMap(CallerFeatureMap, FD); 2750 // When compiling in HipStdPar mode we have to be conservative in rejecting 2751 // target specific features in the FE, and defer the possible error to the 2752 // AcceleratorCodeSelection pass, wherein iff an unsupported target builtin is 2753 // referenced by an accelerator executable function, we emit an error. 2754 bool IsHipStdPar = getLangOpts().HIPStdPar && getLangOpts().CUDAIsDevice; 2755 if (BuiltinID) { 2756 StringRef FeatureList(CGM.getContext().BuiltinInfo.getRequiredFeatures(BuiltinID)); 2757 if (!Builtin::evaluateRequiredTargetFeatures( 2758 FeatureList, CallerFeatureMap) && !IsHipStdPar) { 2759 CGM.getDiags().Report(Loc, diag::err_builtin_needs_feature) 2760 << TargetDecl->getDeclName() 2761 << FeatureList; 2762 } 2763 } else if (!TargetDecl->isMultiVersion() && 2764 TargetDecl->hasAttr<TargetAttr>()) { 2765 // Get the required features for the callee. 2766 2767 const TargetAttr *TD = TargetDecl->getAttr<TargetAttr>(); 2768 ParsedTargetAttr ParsedAttr = 2769 CGM.getContext().filterFunctionTargetAttrs(TD); 2770 2771 SmallVector<StringRef, 1> ReqFeatures; 2772 llvm::StringMap<bool> CalleeFeatureMap; 2773 CGM.getContext().getFunctionFeatureMap(CalleeFeatureMap, TargetDecl); 2774 2775 for (const auto &F : ParsedAttr.Features) { 2776 if (F[0] == '+' && CalleeFeatureMap.lookup(F.substr(1))) 2777 ReqFeatures.push_back(StringRef(F).substr(1)); 2778 } 2779 2780 for (const auto &F : CalleeFeatureMap) { 2781 // Only positive features are "required". 2782 if (F.getValue()) 2783 ReqFeatures.push_back(F.getKey()); 2784 } 2785 if (!llvm::all_of(ReqFeatures, [&](StringRef Feature) { 2786 if (!CallerFeatureMap.lookup(Feature)) { 2787 MissingFeature = Feature.str(); 2788 return false; 2789 } 2790 return true; 2791 }) && !IsHipStdPar) 2792 CGM.getDiags().Report(Loc, diag::err_function_needs_feature) 2793 << FD->getDeclName() << TargetDecl->getDeclName() << MissingFeature; 2794 } else if (!FD->isMultiVersion() && FD->hasAttr<TargetAttr>()) { 2795 llvm::StringMap<bool> CalleeFeatureMap; 2796 CGM.getContext().getFunctionFeatureMap(CalleeFeatureMap, TargetDecl); 2797 2798 for (const auto &F : CalleeFeatureMap) { 2799 if (F.getValue() && (!CallerFeatureMap.lookup(F.getKey()) || 2800 !CallerFeatureMap.find(F.getKey())->getValue()) && 2801 !IsHipStdPar) 2802 CGM.getDiags().Report(Loc, diag::err_function_needs_feature) 2803 << FD->getDeclName() << TargetDecl->getDeclName() << F.getKey(); 2804 } 2805 } 2806 } 2807 2808 void CodeGenFunction::EmitSanitizerStatReport(llvm::SanitizerStatKind SSK) { 2809 if (!CGM.getCodeGenOpts().SanitizeStats) 2810 return; 2811 2812 llvm::IRBuilder<> IRB(Builder.GetInsertBlock(), Builder.GetInsertPoint()); 2813 IRB.SetCurrentDebugLocation(Builder.getCurrentDebugLocation()); 2814 CGM.getSanStats().create(IRB, SSK); 2815 } 2816 2817 void CodeGenFunction::EmitKCFIOperandBundle( 2818 const CGCallee &Callee, SmallVectorImpl<llvm::OperandBundleDef> &Bundles) { 2819 const FunctionProtoType *FP = 2820 Callee.getAbstractInfo().getCalleeFunctionProtoType(); 2821 if (FP) 2822 Bundles.emplace_back("kcfi", CGM.CreateKCFITypeId(FP->desugar())); 2823 } 2824 2825 llvm::Value *CodeGenFunction::FormAArch64ResolverCondition( 2826 const MultiVersionResolverOption &RO) { 2827 llvm::SmallVector<StringRef, 8> CondFeatures; 2828 for (const StringRef &Feature : RO.Conditions.Features) 2829 CondFeatures.push_back(Feature); 2830 if (!CondFeatures.empty()) { 2831 return EmitAArch64CpuSupports(CondFeatures); 2832 } 2833 return nullptr; 2834 } 2835 2836 llvm::Value *CodeGenFunction::FormX86ResolverCondition( 2837 const MultiVersionResolverOption &RO) { 2838 llvm::Value *Condition = nullptr; 2839 2840 if (!RO.Conditions.Architecture.empty()) { 2841 StringRef Arch = RO.Conditions.Architecture; 2842 // If arch= specifies an x86-64 micro-architecture level, test the feature 2843 // with __builtin_cpu_supports, otherwise use __builtin_cpu_is. 2844 if (Arch.starts_with("x86-64")) 2845 Condition = EmitX86CpuSupports({Arch}); 2846 else 2847 Condition = EmitX86CpuIs(Arch); 2848 } 2849 2850 if (!RO.Conditions.Features.empty()) { 2851 llvm::Value *FeatureCond = EmitX86CpuSupports(RO.Conditions.Features); 2852 Condition = 2853 Condition ? Builder.CreateAnd(Condition, FeatureCond) : FeatureCond; 2854 } 2855 return Condition; 2856 } 2857 2858 static void CreateMultiVersionResolverReturn(CodeGenModule &CGM, 2859 llvm::Function *Resolver, 2860 CGBuilderTy &Builder, 2861 llvm::Function *FuncToReturn, 2862 bool SupportsIFunc) { 2863 if (SupportsIFunc) { 2864 Builder.CreateRet(FuncToReturn); 2865 return; 2866 } 2867 2868 llvm::SmallVector<llvm::Value *, 10> Args( 2869 llvm::make_pointer_range(Resolver->args())); 2870 2871 llvm::CallInst *Result = Builder.CreateCall(FuncToReturn, Args); 2872 Result->setTailCallKind(llvm::CallInst::TCK_MustTail); 2873 2874 if (Resolver->getReturnType()->isVoidTy()) 2875 Builder.CreateRetVoid(); 2876 else 2877 Builder.CreateRet(Result); 2878 } 2879 2880 void CodeGenFunction::EmitMultiVersionResolver( 2881 llvm::Function *Resolver, ArrayRef<MultiVersionResolverOption> Options) { 2882 2883 llvm::Triple::ArchType ArchType = 2884 getContext().getTargetInfo().getTriple().getArch(); 2885 2886 switch (ArchType) { 2887 case llvm::Triple::x86: 2888 case llvm::Triple::x86_64: 2889 EmitX86MultiVersionResolver(Resolver, Options); 2890 return; 2891 case llvm::Triple::aarch64: 2892 EmitAArch64MultiVersionResolver(Resolver, Options); 2893 return; 2894 case llvm::Triple::riscv32: 2895 case llvm::Triple::riscv64: 2896 EmitRISCVMultiVersionResolver(Resolver, Options); 2897 return; 2898 2899 default: 2900 assert(false && "Only implemented for x86, AArch64 and RISC-V targets"); 2901 } 2902 } 2903 2904 static int getPriorityFromAttrString(StringRef AttrStr) { 2905 SmallVector<StringRef, 8> Attrs; 2906 2907 AttrStr.split(Attrs, ';'); 2908 2909 // Default Priority is zero. 2910 int Priority = 0; 2911 for (auto Attr : Attrs) { 2912 if (Attr.consume_front("priority=")) { 2913 int Result; 2914 if (!Attr.getAsInteger(0, Result)) { 2915 Priority = Result; 2916 } 2917 } 2918 } 2919 2920 return Priority; 2921 } 2922 2923 void CodeGenFunction::EmitRISCVMultiVersionResolver( 2924 llvm::Function *Resolver, ArrayRef<MultiVersionResolverOption> Options) { 2925 2926 if (getContext().getTargetInfo().getTriple().getOS() != 2927 llvm::Triple::OSType::Linux) { 2928 CGM.getDiags().Report(diag::err_os_unsupport_riscv_fmv); 2929 return; 2930 } 2931 2932 llvm::BasicBlock *CurBlock = createBasicBlock("resolver_entry", Resolver); 2933 Builder.SetInsertPoint(CurBlock); 2934 EmitRISCVCpuInit(); 2935 2936 bool SupportsIFunc = getContext().getTargetInfo().supportsIFunc(); 2937 bool HasDefault = false; 2938 unsigned DefaultIndex = 0; 2939 2940 SmallVector<CodeGenFunction::MultiVersionResolverOption, 10> CurrOptions( 2941 Options); 2942 2943 llvm::stable_sort( 2944 CurrOptions, [](const CodeGenFunction::MultiVersionResolverOption &LHS, 2945 const CodeGenFunction::MultiVersionResolverOption &RHS) { 2946 return getPriorityFromAttrString(LHS.Conditions.Features[0]) > 2947 getPriorityFromAttrString(RHS.Conditions.Features[0]); 2948 }); 2949 2950 // Check the each candidate function. 2951 for (unsigned Index = 0; Index < CurrOptions.size(); Index++) { 2952 2953 if (CurrOptions[Index].Conditions.Features[0].starts_with("default")) { 2954 HasDefault = true; 2955 DefaultIndex = Index; 2956 continue; 2957 } 2958 2959 Builder.SetInsertPoint(CurBlock); 2960 2961 std::vector<std::string> TargetAttrFeats = 2962 getContext() 2963 .getTargetInfo() 2964 .parseTargetAttr(CurrOptions[Index].Conditions.Features[0]) 2965 .Features; 2966 2967 if (TargetAttrFeats.empty()) 2968 continue; 2969 2970 // FeaturesCondition: The bitmask of the required extension has been 2971 // enabled by the runtime object. 2972 // (__riscv_feature_bits.features[i] & REQUIRED_BITMASK) == 2973 // REQUIRED_BITMASK 2974 // 2975 // When condition is met, return this version of the function. 2976 // Otherwise, try the next version. 2977 // 2978 // if (FeaturesConditionVersion1) 2979 // return Version1; 2980 // else if (FeaturesConditionVersion2) 2981 // return Version2; 2982 // else if (FeaturesConditionVersion3) 2983 // return Version3; 2984 // ... 2985 // else 2986 // return DefaultVersion; 2987 2988 // TODO: Add a condition to check the length before accessing elements. 2989 // Without checking the length first, we may access an incorrect memory 2990 // address when using different versions. 2991 llvm::SmallVector<StringRef, 8> CurrTargetAttrFeats; 2992 2993 for (auto &Feat : TargetAttrFeats) { 2994 StringRef CurrFeat = Feat; 2995 if (CurrFeat.starts_with('+')) 2996 CurrTargetAttrFeats.push_back(CurrFeat.substr(1)); 2997 } 2998 2999 Builder.SetInsertPoint(CurBlock); 3000 llvm::Value *FeatsCondition = EmitRISCVCpuSupports(CurrTargetAttrFeats); 3001 3002 llvm::BasicBlock *RetBlock = createBasicBlock("resolver_return", Resolver); 3003 CGBuilderTy RetBuilder(*this, RetBlock); 3004 CreateMultiVersionResolverReturn( 3005 CGM, Resolver, RetBuilder, CurrOptions[Index].Function, SupportsIFunc); 3006 llvm::BasicBlock *ElseBlock = createBasicBlock("resolver_else", Resolver); 3007 3008 Builder.SetInsertPoint(CurBlock); 3009 Builder.CreateCondBr(FeatsCondition, RetBlock, ElseBlock); 3010 3011 CurBlock = ElseBlock; 3012 } 3013 3014 // Finally, emit the default one. 3015 if (HasDefault) { 3016 Builder.SetInsertPoint(CurBlock); 3017 CreateMultiVersionResolverReturn(CGM, Resolver, Builder, 3018 CurrOptions[DefaultIndex].Function, 3019 SupportsIFunc); 3020 return; 3021 } 3022 3023 // If no generic/default, emit an unreachable. 3024 Builder.SetInsertPoint(CurBlock); 3025 llvm::CallInst *TrapCall = EmitTrapCall(llvm::Intrinsic::trap); 3026 TrapCall->setDoesNotReturn(); 3027 TrapCall->setDoesNotThrow(); 3028 Builder.CreateUnreachable(); 3029 Builder.ClearInsertionPoint(); 3030 } 3031 3032 void CodeGenFunction::EmitAArch64MultiVersionResolver( 3033 llvm::Function *Resolver, ArrayRef<MultiVersionResolverOption> Options) { 3034 assert(!Options.empty() && "No multiversion resolver options found"); 3035 assert(Options.back().Conditions.Features.size() == 0 && 3036 "Default case must be last"); 3037 bool SupportsIFunc = getContext().getTargetInfo().supportsIFunc(); 3038 assert(SupportsIFunc && 3039 "Multiversion resolver requires target IFUNC support"); 3040 bool AArch64CpuInitialized = false; 3041 llvm::BasicBlock *CurBlock = createBasicBlock("resolver_entry", Resolver); 3042 3043 for (const MultiVersionResolverOption &RO : Options) { 3044 Builder.SetInsertPoint(CurBlock); 3045 llvm::Value *Condition = FormAArch64ResolverCondition(RO); 3046 3047 // The 'default' or 'all features enabled' case. 3048 if (!Condition) { 3049 CreateMultiVersionResolverReturn(CGM, Resolver, Builder, RO.Function, 3050 SupportsIFunc); 3051 return; 3052 } 3053 3054 if (!AArch64CpuInitialized) { 3055 Builder.SetInsertPoint(CurBlock, CurBlock->begin()); 3056 EmitAArch64CpuInit(); 3057 AArch64CpuInitialized = true; 3058 Builder.SetInsertPoint(CurBlock); 3059 } 3060 3061 llvm::BasicBlock *RetBlock = createBasicBlock("resolver_return", Resolver); 3062 CGBuilderTy RetBuilder(*this, RetBlock); 3063 CreateMultiVersionResolverReturn(CGM, Resolver, RetBuilder, RO.Function, 3064 SupportsIFunc); 3065 CurBlock = createBasicBlock("resolver_else", Resolver); 3066 Builder.CreateCondBr(Condition, RetBlock, CurBlock); 3067 } 3068 3069 // If no default, emit an unreachable. 3070 Builder.SetInsertPoint(CurBlock); 3071 llvm::CallInst *TrapCall = EmitTrapCall(llvm::Intrinsic::trap); 3072 TrapCall->setDoesNotReturn(); 3073 TrapCall->setDoesNotThrow(); 3074 Builder.CreateUnreachable(); 3075 Builder.ClearInsertionPoint(); 3076 } 3077 3078 void CodeGenFunction::EmitX86MultiVersionResolver( 3079 llvm::Function *Resolver, ArrayRef<MultiVersionResolverOption> Options) { 3080 3081 bool SupportsIFunc = getContext().getTargetInfo().supportsIFunc(); 3082 3083 // Main function's basic block. 3084 llvm::BasicBlock *CurBlock = createBasicBlock("resolver_entry", Resolver); 3085 Builder.SetInsertPoint(CurBlock); 3086 EmitX86CpuInit(); 3087 3088 for (const MultiVersionResolverOption &RO : Options) { 3089 Builder.SetInsertPoint(CurBlock); 3090 llvm::Value *Condition = FormX86ResolverCondition(RO); 3091 3092 // The 'default' or 'generic' case. 3093 if (!Condition) { 3094 assert(&RO == Options.end() - 1 && 3095 "Default or Generic case must be last"); 3096 CreateMultiVersionResolverReturn(CGM, Resolver, Builder, RO.Function, 3097 SupportsIFunc); 3098 return; 3099 } 3100 3101 llvm::BasicBlock *RetBlock = createBasicBlock("resolver_return", Resolver); 3102 CGBuilderTy RetBuilder(*this, RetBlock); 3103 CreateMultiVersionResolverReturn(CGM, Resolver, RetBuilder, RO.Function, 3104 SupportsIFunc); 3105 CurBlock = createBasicBlock("resolver_else", Resolver); 3106 Builder.CreateCondBr(Condition, RetBlock, CurBlock); 3107 } 3108 3109 // If no generic/default, emit an unreachable. 3110 Builder.SetInsertPoint(CurBlock); 3111 llvm::CallInst *TrapCall = EmitTrapCall(llvm::Intrinsic::trap); 3112 TrapCall->setDoesNotReturn(); 3113 TrapCall->setDoesNotThrow(); 3114 Builder.CreateUnreachable(); 3115 Builder.ClearInsertionPoint(); 3116 } 3117 3118 // Loc - where the diagnostic will point, where in the source code this 3119 // alignment has failed. 3120 // SecondaryLoc - if present (will be present if sufficiently different from 3121 // Loc), the diagnostic will additionally point a "Note:" to this location. 3122 // It should be the location where the __attribute__((assume_aligned)) 3123 // was written e.g. 3124 void CodeGenFunction::emitAlignmentAssumptionCheck( 3125 llvm::Value *Ptr, QualType Ty, SourceLocation Loc, 3126 SourceLocation SecondaryLoc, llvm::Value *Alignment, 3127 llvm::Value *OffsetValue, llvm::Value *TheCheck, 3128 llvm::Instruction *Assumption) { 3129 assert(isa_and_nonnull<llvm::CallInst>(Assumption) && 3130 cast<llvm::CallInst>(Assumption)->getCalledOperand() == 3131 llvm::Intrinsic::getDeclaration( 3132 Builder.GetInsertBlock()->getParent()->getParent(), 3133 llvm::Intrinsic::assume) && 3134 "Assumption should be a call to llvm.assume()."); 3135 assert(&(Builder.GetInsertBlock()->back()) == Assumption && 3136 "Assumption should be the last instruction of the basic block, " 3137 "since the basic block is still being generated."); 3138 3139 if (!SanOpts.has(SanitizerKind::Alignment)) 3140 return; 3141 3142 // Don't check pointers to volatile data. The behavior here is implementation- 3143 // defined. 3144 if (Ty->getPointeeType().isVolatileQualified()) 3145 return; 3146 3147 // We need to temorairly remove the assumption so we can insert the 3148 // sanitizer check before it, else the check will be dropped by optimizations. 3149 Assumption->removeFromParent(); 3150 3151 { 3152 SanitizerScope SanScope(this); 3153 3154 if (!OffsetValue) 3155 OffsetValue = Builder.getInt1(false); // no offset. 3156 3157 llvm::Constant *StaticData[] = {EmitCheckSourceLocation(Loc), 3158 EmitCheckSourceLocation(SecondaryLoc), 3159 EmitCheckTypeDescriptor(Ty)}; 3160 llvm::Value *DynamicData[] = {EmitCheckValue(Ptr), 3161 EmitCheckValue(Alignment), 3162 EmitCheckValue(OffsetValue)}; 3163 EmitCheck({std::make_pair(TheCheck, SanitizerKind::Alignment)}, 3164 SanitizerHandler::AlignmentAssumption, StaticData, DynamicData); 3165 } 3166 3167 // We are now in the (new, empty) "cont" basic block. 3168 // Reintroduce the assumption. 3169 Builder.Insert(Assumption); 3170 // FIXME: Assumption still has it's original basic block as it's Parent. 3171 } 3172 3173 llvm::DebugLoc CodeGenFunction::SourceLocToDebugLoc(SourceLocation Location) { 3174 if (CGDebugInfo *DI = getDebugInfo()) 3175 return DI->SourceLocToDebugLoc(Location); 3176 3177 return llvm::DebugLoc(); 3178 } 3179 3180 llvm::Value * 3181 CodeGenFunction::emitCondLikelihoodViaExpectIntrinsic(llvm::Value *Cond, 3182 Stmt::Likelihood LH) { 3183 switch (LH) { 3184 case Stmt::LH_None: 3185 return Cond; 3186 case Stmt::LH_Likely: 3187 case Stmt::LH_Unlikely: 3188 // Don't generate llvm.expect on -O0 as the backend won't use it for 3189 // anything. 3190 if (CGM.getCodeGenOpts().OptimizationLevel == 0) 3191 return Cond; 3192 llvm::Type *CondTy = Cond->getType(); 3193 assert(CondTy->isIntegerTy(1) && "expecting condition to be a boolean"); 3194 llvm::Function *FnExpect = 3195 CGM.getIntrinsic(llvm::Intrinsic::expect, CondTy); 3196 llvm::Value *ExpectedValueOfCond = 3197 llvm::ConstantInt::getBool(CondTy, LH == Stmt::LH_Likely); 3198 return Builder.CreateCall(FnExpect, {Cond, ExpectedValueOfCond}, 3199 Cond->getName() + ".expval"); 3200 } 3201 llvm_unreachable("Unknown Likelihood"); 3202 } 3203 3204 llvm::Value *CodeGenFunction::emitBoolVecConversion(llvm::Value *SrcVec, 3205 unsigned NumElementsDst, 3206 const llvm::Twine &Name) { 3207 auto *SrcTy = cast<llvm::FixedVectorType>(SrcVec->getType()); 3208 unsigned NumElementsSrc = SrcTy->getNumElements(); 3209 if (NumElementsSrc == NumElementsDst) 3210 return SrcVec; 3211 3212 std::vector<int> ShuffleMask(NumElementsDst, -1); 3213 for (unsigned MaskIdx = 0; 3214 MaskIdx < std::min<>(NumElementsDst, NumElementsSrc); ++MaskIdx) 3215 ShuffleMask[MaskIdx] = MaskIdx; 3216 3217 return Builder.CreateShuffleVector(SrcVec, ShuffleMask, Name); 3218 } 3219 3220 void CodeGenFunction::EmitPointerAuthOperandBundle( 3221 const CGPointerAuthInfo &PointerAuth, 3222 SmallVectorImpl<llvm::OperandBundleDef> &Bundles) { 3223 if (!PointerAuth.isSigned()) 3224 return; 3225 3226 auto *Key = Builder.getInt32(PointerAuth.getKey()); 3227 3228 llvm::Value *Discriminator = PointerAuth.getDiscriminator(); 3229 if (!Discriminator) 3230 Discriminator = Builder.getSize(0); 3231 3232 llvm::Value *Args[] = {Key, Discriminator}; 3233 Bundles.emplace_back("ptrauth", Args); 3234 } 3235 3236 static llvm::Value *EmitPointerAuthCommon(CodeGenFunction &CGF, 3237 const CGPointerAuthInfo &PointerAuth, 3238 llvm::Value *Pointer, 3239 unsigned IntrinsicID) { 3240 if (!PointerAuth) 3241 return Pointer; 3242 3243 auto Key = CGF.Builder.getInt32(PointerAuth.getKey()); 3244 3245 llvm::Value *Discriminator = PointerAuth.getDiscriminator(); 3246 if (!Discriminator) { 3247 Discriminator = CGF.Builder.getSize(0); 3248 } 3249 3250 // Convert the pointer to intptr_t before signing it. 3251 auto OrigType = Pointer->getType(); 3252 Pointer = CGF.Builder.CreatePtrToInt(Pointer, CGF.IntPtrTy); 3253 3254 // call i64 @llvm.ptrauth.sign.i64(i64 %pointer, i32 %key, i64 %discriminator) 3255 auto Intrinsic = CGF.CGM.getIntrinsic(IntrinsicID); 3256 Pointer = CGF.EmitRuntimeCall(Intrinsic, {Pointer, Key, Discriminator}); 3257 3258 // Convert back to the original type. 3259 Pointer = CGF.Builder.CreateIntToPtr(Pointer, OrigType); 3260 return Pointer; 3261 } 3262 3263 llvm::Value * 3264 CodeGenFunction::EmitPointerAuthSign(const CGPointerAuthInfo &PointerAuth, 3265 llvm::Value *Pointer) { 3266 if (!PointerAuth.shouldSign()) 3267 return Pointer; 3268 return EmitPointerAuthCommon(*this, PointerAuth, Pointer, 3269 llvm::Intrinsic::ptrauth_sign); 3270 } 3271 3272 static llvm::Value *EmitStrip(CodeGenFunction &CGF, 3273 const CGPointerAuthInfo &PointerAuth, 3274 llvm::Value *Pointer) { 3275 auto StripIntrinsic = CGF.CGM.getIntrinsic(llvm::Intrinsic::ptrauth_strip); 3276 3277 auto Key = CGF.Builder.getInt32(PointerAuth.getKey()); 3278 // Convert the pointer to intptr_t before signing it. 3279 auto OrigType = Pointer->getType(); 3280 Pointer = CGF.EmitRuntimeCall( 3281 StripIntrinsic, {CGF.Builder.CreatePtrToInt(Pointer, CGF.IntPtrTy), Key}); 3282 return CGF.Builder.CreateIntToPtr(Pointer, OrigType); 3283 } 3284 3285 llvm::Value * 3286 CodeGenFunction::EmitPointerAuthAuth(const CGPointerAuthInfo &PointerAuth, 3287 llvm::Value *Pointer) { 3288 if (PointerAuth.shouldStrip()) { 3289 return EmitStrip(*this, PointerAuth, Pointer); 3290 } 3291 if (!PointerAuth.shouldAuth()) { 3292 return Pointer; 3293 } 3294 3295 return EmitPointerAuthCommon(*this, PointerAuth, Pointer, 3296 llvm::Intrinsic::ptrauth_auth); 3297 } 3298