xref: /llvm-project/clang/lib/CodeGen/CodeGenFunction.cpp (revision 1cc3ffab4076ad727a2346b17b34486d848da9f6)
1 //===--- CodeGenFunction.cpp - Emit LLVM Code from ASTs for a Function ----===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This coordinates the per-function state used while generating code.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "CodeGenFunction.h"
14 #include "CGBlocks.h"
15 #include "CGCUDARuntime.h"
16 #include "CGCXXABI.h"
17 #include "CGCleanup.h"
18 #include "CGDebugInfo.h"
19 #include "CGHLSLRuntime.h"
20 #include "CGOpenMPRuntime.h"
21 #include "CodeGenModule.h"
22 #include "CodeGenPGO.h"
23 #include "TargetInfo.h"
24 #include "clang/AST/ASTContext.h"
25 #include "clang/AST/ASTLambda.h"
26 #include "clang/AST/Attr.h"
27 #include "clang/AST/Decl.h"
28 #include "clang/AST/DeclCXX.h"
29 #include "clang/AST/Expr.h"
30 #include "clang/AST/StmtCXX.h"
31 #include "clang/AST/StmtObjC.h"
32 #include "clang/Basic/Builtins.h"
33 #include "clang/Basic/CodeGenOptions.h"
34 #include "clang/Basic/TargetBuiltins.h"
35 #include "clang/Basic/TargetInfo.h"
36 #include "clang/CodeGen/CGFunctionInfo.h"
37 #include "clang/Frontend/FrontendDiagnostic.h"
38 #include "llvm/ADT/ArrayRef.h"
39 #include "llvm/Frontend/OpenMP/OMPIRBuilder.h"
40 #include "llvm/IR/DataLayout.h"
41 #include "llvm/IR/Dominators.h"
42 #include "llvm/IR/FPEnv.h"
43 #include "llvm/IR/IntrinsicInst.h"
44 #include "llvm/IR/Intrinsics.h"
45 #include "llvm/IR/MDBuilder.h"
46 #include "llvm/IR/Operator.h"
47 #include "llvm/Support/CRC.h"
48 #include "llvm/Support/xxhash.h"
49 #include "llvm/Transforms/Scalar/LowerExpectIntrinsic.h"
50 #include "llvm/Transforms/Utils/PromoteMemToReg.h"
51 #include <optional>
52 
53 using namespace clang;
54 using namespace CodeGen;
55 
56 namespace llvm {
57 extern cl::opt<bool> EnableSingleByteCoverage;
58 } // namespace llvm
59 
60 /// shouldEmitLifetimeMarkers - Decide whether we need emit the life-time
61 /// markers.
62 static bool shouldEmitLifetimeMarkers(const CodeGenOptions &CGOpts,
63                                       const LangOptions &LangOpts) {
64   if (CGOpts.DisableLifetimeMarkers)
65     return false;
66 
67   // Sanitizers may use markers.
68   if (CGOpts.SanitizeAddressUseAfterScope ||
69       LangOpts.Sanitize.has(SanitizerKind::HWAddress) ||
70       LangOpts.Sanitize.has(SanitizerKind::Memory))
71     return true;
72 
73   // For now, only in optimized builds.
74   return CGOpts.OptimizationLevel != 0;
75 }
76 
77 CodeGenFunction::CodeGenFunction(CodeGenModule &cgm, bool suppressNewContext)
78     : CodeGenTypeCache(cgm), CGM(cgm), Target(cgm.getTarget()),
79       Builder(cgm, cgm.getModule().getContext(), llvm::ConstantFolder(),
80               CGBuilderInserterTy(this)),
81       SanOpts(CGM.getLangOpts().Sanitize), CurFPFeatures(CGM.getLangOpts()),
82       DebugInfo(CGM.getModuleDebugInfo()), PGO(cgm),
83       ShouldEmitLifetimeMarkers(
84           shouldEmitLifetimeMarkers(CGM.getCodeGenOpts(), CGM.getLangOpts())) {
85   if (!suppressNewContext)
86     CGM.getCXXABI().getMangleContext().startNewFunction();
87   EHStack.setCGF(this);
88 
89   SetFastMathFlags(CurFPFeatures);
90 }
91 
92 CodeGenFunction::~CodeGenFunction() {
93   assert(LifetimeExtendedCleanupStack.empty() && "failed to emit a cleanup");
94   assert(DeferredDeactivationCleanupStack.empty() &&
95          "missed to deactivate a cleanup");
96 
97   if (getLangOpts().OpenMP && CurFn)
98     CGM.getOpenMPRuntime().functionFinished(*this);
99 
100   // If we have an OpenMPIRBuilder we want to finalize functions (incl.
101   // outlining etc) at some point. Doing it once the function codegen is done
102   // seems to be a reasonable spot. We do it here, as opposed to the deletion
103   // time of the CodeGenModule, because we have to ensure the IR has not yet
104   // been "emitted" to the outside, thus, modifications are still sensible.
105   if (CGM.getLangOpts().OpenMPIRBuilder && CurFn)
106     CGM.getOpenMPRuntime().getOMPBuilder().finalize(CurFn);
107 }
108 
109 // Map the LangOption for exception behavior into
110 // the corresponding enum in the IR.
111 llvm::fp::ExceptionBehavior
112 clang::ToConstrainedExceptMD(LangOptions::FPExceptionModeKind Kind) {
113 
114   switch (Kind) {
115   case LangOptions::FPE_Ignore:  return llvm::fp::ebIgnore;
116   case LangOptions::FPE_MayTrap: return llvm::fp::ebMayTrap;
117   case LangOptions::FPE_Strict:  return llvm::fp::ebStrict;
118   default:
119     llvm_unreachable("Unsupported FP Exception Behavior");
120   }
121 }
122 
123 void CodeGenFunction::SetFastMathFlags(FPOptions FPFeatures) {
124   llvm::FastMathFlags FMF;
125   FMF.setAllowReassoc(FPFeatures.getAllowFPReassociate());
126   FMF.setNoNaNs(FPFeatures.getNoHonorNaNs());
127   FMF.setNoInfs(FPFeatures.getNoHonorInfs());
128   FMF.setNoSignedZeros(FPFeatures.getNoSignedZero());
129   FMF.setAllowReciprocal(FPFeatures.getAllowReciprocal());
130   FMF.setApproxFunc(FPFeatures.getAllowApproxFunc());
131   FMF.setAllowContract(FPFeatures.allowFPContractAcrossStatement());
132   Builder.setFastMathFlags(FMF);
133 }
134 
135 CodeGenFunction::CGFPOptionsRAII::CGFPOptionsRAII(CodeGenFunction &CGF,
136                                                   const Expr *E)
137     : CGF(CGF) {
138   ConstructorHelper(E->getFPFeaturesInEffect(CGF.getLangOpts()));
139 }
140 
141 CodeGenFunction::CGFPOptionsRAII::CGFPOptionsRAII(CodeGenFunction &CGF,
142                                                   FPOptions FPFeatures)
143     : CGF(CGF) {
144   ConstructorHelper(FPFeatures);
145 }
146 
147 void CodeGenFunction::CGFPOptionsRAII::ConstructorHelper(FPOptions FPFeatures) {
148   OldFPFeatures = CGF.CurFPFeatures;
149   CGF.CurFPFeatures = FPFeatures;
150 
151   OldExcept = CGF.Builder.getDefaultConstrainedExcept();
152   OldRounding = CGF.Builder.getDefaultConstrainedRounding();
153 
154   if (OldFPFeatures == FPFeatures)
155     return;
156 
157   FMFGuard.emplace(CGF.Builder);
158 
159   llvm::RoundingMode NewRoundingBehavior = FPFeatures.getRoundingMode();
160   CGF.Builder.setDefaultConstrainedRounding(NewRoundingBehavior);
161   auto NewExceptionBehavior =
162       ToConstrainedExceptMD(static_cast<LangOptions::FPExceptionModeKind>(
163           FPFeatures.getExceptionMode()));
164   CGF.Builder.setDefaultConstrainedExcept(NewExceptionBehavior);
165 
166   CGF.SetFastMathFlags(FPFeatures);
167 
168   assert((CGF.CurFuncDecl == nullptr || CGF.Builder.getIsFPConstrained() ||
169           isa<CXXConstructorDecl>(CGF.CurFuncDecl) ||
170           isa<CXXDestructorDecl>(CGF.CurFuncDecl) ||
171           (NewExceptionBehavior == llvm::fp::ebIgnore &&
172            NewRoundingBehavior == llvm::RoundingMode::NearestTiesToEven)) &&
173          "FPConstrained should be enabled on entire function");
174 
175   auto mergeFnAttrValue = [&](StringRef Name, bool Value) {
176     auto OldValue =
177         CGF.CurFn->getFnAttribute(Name).getValueAsBool();
178     auto NewValue = OldValue & Value;
179     if (OldValue != NewValue)
180       CGF.CurFn->addFnAttr(Name, llvm::toStringRef(NewValue));
181   };
182   mergeFnAttrValue("no-infs-fp-math", FPFeatures.getNoHonorInfs());
183   mergeFnAttrValue("no-nans-fp-math", FPFeatures.getNoHonorNaNs());
184   mergeFnAttrValue("no-signed-zeros-fp-math", FPFeatures.getNoSignedZero());
185   mergeFnAttrValue(
186       "unsafe-fp-math",
187       FPFeatures.getAllowFPReassociate() && FPFeatures.getAllowReciprocal() &&
188           FPFeatures.getAllowApproxFunc() && FPFeatures.getNoSignedZero() &&
189           FPFeatures.allowFPContractAcrossStatement());
190 }
191 
192 CodeGenFunction::CGFPOptionsRAII::~CGFPOptionsRAII() {
193   CGF.CurFPFeatures = OldFPFeatures;
194   CGF.Builder.setDefaultConstrainedExcept(OldExcept);
195   CGF.Builder.setDefaultConstrainedRounding(OldRounding);
196 }
197 
198 static LValue
199 makeNaturalAlignAddrLValue(llvm::Value *V, QualType T, bool ForPointeeType,
200                            bool MightBeSigned, CodeGenFunction &CGF,
201                            KnownNonNull_t IsKnownNonNull = NotKnownNonNull) {
202   LValueBaseInfo BaseInfo;
203   TBAAAccessInfo TBAAInfo;
204   CharUnits Alignment =
205       CGF.CGM.getNaturalTypeAlignment(T, &BaseInfo, &TBAAInfo, ForPointeeType);
206   Address Addr =
207       MightBeSigned
208           ? CGF.makeNaturalAddressForPointer(V, T, Alignment, false, nullptr,
209                                              nullptr, IsKnownNonNull)
210           : Address(V, CGF.ConvertTypeForMem(T), Alignment, IsKnownNonNull);
211   return CGF.MakeAddrLValue(Addr, T, BaseInfo, TBAAInfo);
212 }
213 
214 LValue
215 CodeGenFunction::MakeNaturalAlignAddrLValue(llvm::Value *V, QualType T,
216                                             KnownNonNull_t IsKnownNonNull) {
217   return ::makeNaturalAlignAddrLValue(V, T, /*ForPointeeType*/ false,
218                                       /*MightBeSigned*/ true, *this,
219                                       IsKnownNonNull);
220 }
221 
222 LValue
223 CodeGenFunction::MakeNaturalAlignPointeeAddrLValue(llvm::Value *V, QualType T) {
224   return ::makeNaturalAlignAddrLValue(V, T, /*ForPointeeType*/ true,
225                                       /*MightBeSigned*/ true, *this);
226 }
227 
228 LValue CodeGenFunction::MakeNaturalAlignRawAddrLValue(llvm::Value *V,
229                                                       QualType T) {
230   return ::makeNaturalAlignAddrLValue(V, T, /*ForPointeeType*/ false,
231                                       /*MightBeSigned*/ false, *this);
232 }
233 
234 LValue CodeGenFunction::MakeNaturalAlignPointeeRawAddrLValue(llvm::Value *V,
235                                                              QualType T) {
236   return ::makeNaturalAlignAddrLValue(V, T, /*ForPointeeType*/ true,
237                                       /*MightBeSigned*/ false, *this);
238 }
239 
240 llvm::Type *CodeGenFunction::ConvertTypeForMem(QualType T) {
241   return CGM.getTypes().ConvertTypeForMem(T);
242 }
243 
244 llvm::Type *CodeGenFunction::ConvertType(QualType T) {
245   return CGM.getTypes().ConvertType(T);
246 }
247 
248 llvm::Type *CodeGenFunction::convertTypeForLoadStore(QualType ASTTy,
249                                                      llvm::Type *LLVMTy) {
250   return CGM.getTypes().convertTypeForLoadStore(ASTTy, LLVMTy);
251 }
252 
253 TypeEvaluationKind CodeGenFunction::getEvaluationKind(QualType type) {
254   type = type.getCanonicalType();
255   while (true) {
256     switch (type->getTypeClass()) {
257 #define TYPE(name, parent)
258 #define ABSTRACT_TYPE(name, parent)
259 #define NON_CANONICAL_TYPE(name, parent) case Type::name:
260 #define DEPENDENT_TYPE(name, parent) case Type::name:
261 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(name, parent) case Type::name:
262 #include "clang/AST/TypeNodes.inc"
263       llvm_unreachable("non-canonical or dependent type in IR-generation");
264 
265     case Type::Auto:
266     case Type::DeducedTemplateSpecialization:
267       llvm_unreachable("undeduced type in IR-generation");
268 
269     // Various scalar types.
270     case Type::Builtin:
271     case Type::Pointer:
272     case Type::BlockPointer:
273     case Type::LValueReference:
274     case Type::RValueReference:
275     case Type::MemberPointer:
276     case Type::Vector:
277     case Type::ExtVector:
278     case Type::ConstantMatrix:
279     case Type::FunctionProto:
280     case Type::FunctionNoProto:
281     case Type::Enum:
282     case Type::ObjCObjectPointer:
283     case Type::Pipe:
284     case Type::BitInt:
285       return TEK_Scalar;
286 
287     // Complexes.
288     case Type::Complex:
289       return TEK_Complex;
290 
291     // Arrays, records, and Objective-C objects.
292     case Type::ConstantArray:
293     case Type::IncompleteArray:
294     case Type::VariableArray:
295     case Type::Record:
296     case Type::ObjCObject:
297     case Type::ObjCInterface:
298     case Type::ArrayParameter:
299       return TEK_Aggregate;
300 
301     // We operate on atomic values according to their underlying type.
302     case Type::Atomic:
303       type = cast<AtomicType>(type)->getValueType();
304       continue;
305     }
306     llvm_unreachable("unknown type kind!");
307   }
308 }
309 
310 llvm::DebugLoc CodeGenFunction::EmitReturnBlock() {
311   // For cleanliness, we try to avoid emitting the return block for
312   // simple cases.
313   llvm::BasicBlock *CurBB = Builder.GetInsertBlock();
314 
315   if (CurBB) {
316     assert(!CurBB->getTerminator() && "Unexpected terminated block.");
317 
318     // We have a valid insert point, reuse it if it is empty or there are no
319     // explicit jumps to the return block.
320     if (CurBB->empty() || ReturnBlock.getBlock()->use_empty()) {
321       ReturnBlock.getBlock()->replaceAllUsesWith(CurBB);
322       delete ReturnBlock.getBlock();
323       ReturnBlock = JumpDest();
324     } else
325       EmitBlock(ReturnBlock.getBlock());
326     return llvm::DebugLoc();
327   }
328 
329   // Otherwise, if the return block is the target of a single direct
330   // branch then we can just put the code in that block instead. This
331   // cleans up functions which started with a unified return block.
332   if (ReturnBlock.getBlock()->hasOneUse()) {
333     llvm::BranchInst *BI =
334       dyn_cast<llvm::BranchInst>(*ReturnBlock.getBlock()->user_begin());
335     if (BI && BI->isUnconditional() &&
336         BI->getSuccessor(0) == ReturnBlock.getBlock()) {
337       // Record/return the DebugLoc of the simple 'return' expression to be used
338       // later by the actual 'ret' instruction.
339       llvm::DebugLoc Loc = BI->getDebugLoc();
340       Builder.SetInsertPoint(BI->getParent());
341       BI->eraseFromParent();
342       delete ReturnBlock.getBlock();
343       ReturnBlock = JumpDest();
344       return Loc;
345     }
346   }
347 
348   // FIXME: We are at an unreachable point, there is no reason to emit the block
349   // unless it has uses. However, we still need a place to put the debug
350   // region.end for now.
351 
352   EmitBlock(ReturnBlock.getBlock());
353   return llvm::DebugLoc();
354 }
355 
356 static void EmitIfUsed(CodeGenFunction &CGF, llvm::BasicBlock *BB) {
357   if (!BB) return;
358   if (!BB->use_empty()) {
359     CGF.CurFn->insert(CGF.CurFn->end(), BB);
360     return;
361   }
362   delete BB;
363 }
364 
365 void CodeGenFunction::FinishFunction(SourceLocation EndLoc) {
366   assert(BreakContinueStack.empty() &&
367          "mismatched push/pop in break/continue stack!");
368   assert(LifetimeExtendedCleanupStack.empty() &&
369          "mismatched push/pop of cleanups in EHStack!");
370   assert(DeferredDeactivationCleanupStack.empty() &&
371          "mismatched activate/deactivate of cleanups!");
372 
373   if (CGM.shouldEmitConvergenceTokens()) {
374     ConvergenceTokenStack.pop_back();
375     assert(ConvergenceTokenStack.empty() &&
376            "mismatched push/pop in convergence stack!");
377   }
378 
379   bool OnlySimpleReturnStmts = NumSimpleReturnExprs > 0
380     && NumSimpleReturnExprs == NumReturnExprs
381     && ReturnBlock.getBlock()->use_empty();
382   // Usually the return expression is evaluated before the cleanup
383   // code.  If the function contains only a simple return statement,
384   // such as a constant, the location before the cleanup code becomes
385   // the last useful breakpoint in the function, because the simple
386   // return expression will be evaluated after the cleanup code. To be
387   // safe, set the debug location for cleanup code to the location of
388   // the return statement.  Otherwise the cleanup code should be at the
389   // end of the function's lexical scope.
390   //
391   // If there are multiple branches to the return block, the branch
392   // instructions will get the location of the return statements and
393   // all will be fine.
394   if (CGDebugInfo *DI = getDebugInfo()) {
395     if (OnlySimpleReturnStmts)
396       DI->EmitLocation(Builder, LastStopPoint);
397     else
398       DI->EmitLocation(Builder, EndLoc);
399   }
400 
401   // Pop any cleanups that might have been associated with the
402   // parameters.  Do this in whatever block we're currently in; it's
403   // important to do this before we enter the return block or return
404   // edges will be *really* confused.
405   bool HasCleanups = EHStack.stable_begin() != PrologueCleanupDepth;
406   bool HasOnlyLifetimeMarkers =
407       HasCleanups && EHStack.containsOnlyLifetimeMarkers(PrologueCleanupDepth);
408   bool EmitRetDbgLoc = !HasCleanups || HasOnlyLifetimeMarkers;
409 
410   std::optional<ApplyDebugLocation> OAL;
411   if (HasCleanups) {
412     // Make sure the line table doesn't jump back into the body for
413     // the ret after it's been at EndLoc.
414     if (CGDebugInfo *DI = getDebugInfo()) {
415       if (OnlySimpleReturnStmts)
416         DI->EmitLocation(Builder, EndLoc);
417       else
418         // We may not have a valid end location. Try to apply it anyway, and
419         // fall back to an artificial location if needed.
420         OAL = ApplyDebugLocation::CreateDefaultArtificial(*this, EndLoc);
421     }
422 
423     PopCleanupBlocks(PrologueCleanupDepth);
424   }
425 
426   // Emit function epilog (to return).
427   llvm::DebugLoc Loc = EmitReturnBlock();
428 
429   if (ShouldInstrumentFunction()) {
430     if (CGM.getCodeGenOpts().InstrumentFunctions)
431       CurFn->addFnAttr("instrument-function-exit", "__cyg_profile_func_exit");
432     if (CGM.getCodeGenOpts().InstrumentFunctionsAfterInlining)
433       CurFn->addFnAttr("instrument-function-exit-inlined",
434                        "__cyg_profile_func_exit");
435   }
436 
437   // Emit debug descriptor for function end.
438   if (CGDebugInfo *DI = getDebugInfo())
439     DI->EmitFunctionEnd(Builder, CurFn);
440 
441   // Reset the debug location to that of the simple 'return' expression, if any
442   // rather than that of the end of the function's scope '}'.
443   ApplyDebugLocation AL(*this, Loc);
444   EmitFunctionEpilog(*CurFnInfo, EmitRetDbgLoc, EndLoc);
445   EmitEndEHSpec(CurCodeDecl);
446 
447   assert(EHStack.empty() &&
448          "did not remove all scopes from cleanup stack!");
449 
450   // If someone did an indirect goto, emit the indirect goto block at the end of
451   // the function.
452   if (IndirectBranch) {
453     EmitBlock(IndirectBranch->getParent());
454     Builder.ClearInsertionPoint();
455   }
456 
457   // If some of our locals escaped, insert a call to llvm.localescape in the
458   // entry block.
459   if (!EscapedLocals.empty()) {
460     // Invert the map from local to index into a simple vector. There should be
461     // no holes.
462     SmallVector<llvm::Value *, 4> EscapeArgs;
463     EscapeArgs.resize(EscapedLocals.size());
464     for (auto &Pair : EscapedLocals)
465       EscapeArgs[Pair.second] = Pair.first;
466     llvm::Function *FrameEscapeFn = llvm::Intrinsic::getDeclaration(
467         &CGM.getModule(), llvm::Intrinsic::localescape);
468     CGBuilderTy(*this, AllocaInsertPt).CreateCall(FrameEscapeFn, EscapeArgs);
469   }
470 
471   // Remove the AllocaInsertPt instruction, which is just a convenience for us.
472   llvm::Instruction *Ptr = AllocaInsertPt;
473   AllocaInsertPt = nullptr;
474   Ptr->eraseFromParent();
475 
476   // PostAllocaInsertPt, if created, was lazily created when it was required,
477   // remove it now since it was just created for our own convenience.
478   if (PostAllocaInsertPt) {
479     llvm::Instruction *PostPtr = PostAllocaInsertPt;
480     PostAllocaInsertPt = nullptr;
481     PostPtr->eraseFromParent();
482   }
483 
484   // If someone took the address of a label but never did an indirect goto, we
485   // made a zero entry PHI node, which is illegal, zap it now.
486   if (IndirectBranch) {
487     llvm::PHINode *PN = cast<llvm::PHINode>(IndirectBranch->getAddress());
488     if (PN->getNumIncomingValues() == 0) {
489       PN->replaceAllUsesWith(llvm::UndefValue::get(PN->getType()));
490       PN->eraseFromParent();
491     }
492   }
493 
494   EmitIfUsed(*this, EHResumeBlock);
495   EmitIfUsed(*this, TerminateLandingPad);
496   EmitIfUsed(*this, TerminateHandler);
497   EmitIfUsed(*this, UnreachableBlock);
498 
499   for (const auto &FuncletAndParent : TerminateFunclets)
500     EmitIfUsed(*this, FuncletAndParent.second);
501 
502   if (CGM.getCodeGenOpts().EmitDeclMetadata)
503     EmitDeclMetadata();
504 
505   for (const auto &R : DeferredReplacements) {
506     if (llvm::Value *Old = R.first) {
507       Old->replaceAllUsesWith(R.second);
508       cast<llvm::Instruction>(Old)->eraseFromParent();
509     }
510   }
511   DeferredReplacements.clear();
512 
513   // Eliminate CleanupDestSlot alloca by replacing it with SSA values and
514   // PHIs if the current function is a coroutine. We don't do it for all
515   // functions as it may result in slight increase in numbers of instructions
516   // if compiled with no optimizations. We do it for coroutine as the lifetime
517   // of CleanupDestSlot alloca make correct coroutine frame building very
518   // difficult.
519   if (NormalCleanupDest.isValid() && isCoroutine()) {
520     llvm::DominatorTree DT(*CurFn);
521     llvm::PromoteMemToReg(
522         cast<llvm::AllocaInst>(NormalCleanupDest.getPointer()), DT);
523     NormalCleanupDest = Address::invalid();
524   }
525 
526   // Scan function arguments for vector width.
527   for (llvm::Argument &A : CurFn->args())
528     if (auto *VT = dyn_cast<llvm::VectorType>(A.getType()))
529       LargestVectorWidth =
530           std::max((uint64_t)LargestVectorWidth,
531                    VT->getPrimitiveSizeInBits().getKnownMinValue());
532 
533   // Update vector width based on return type.
534   if (auto *VT = dyn_cast<llvm::VectorType>(CurFn->getReturnType()))
535     LargestVectorWidth =
536         std::max((uint64_t)LargestVectorWidth,
537                  VT->getPrimitiveSizeInBits().getKnownMinValue());
538 
539   if (CurFnInfo->getMaxVectorWidth() > LargestVectorWidth)
540     LargestVectorWidth = CurFnInfo->getMaxVectorWidth();
541 
542   // Add the min-legal-vector-width attribute. This contains the max width from:
543   // 1. min-vector-width attribute used in the source program.
544   // 2. Any builtins used that have a vector width specified.
545   // 3. Values passed in and out of inline assembly.
546   // 4. Width of vector arguments and return types for this function.
547   // 5. Width of vector arguments and return types for functions called by this
548   //    function.
549   if (getContext().getTargetInfo().getTriple().isX86())
550     CurFn->addFnAttr("min-legal-vector-width",
551                      llvm::utostr(LargestVectorWidth));
552 
553   // Add vscale_range attribute if appropriate.
554   std::optional<std::pair<unsigned, unsigned>> VScaleRange =
555       getContext().getTargetInfo().getVScaleRange(getLangOpts());
556   if (VScaleRange) {
557     CurFn->addFnAttr(llvm::Attribute::getWithVScaleRangeArgs(
558         getLLVMContext(), VScaleRange->first, VScaleRange->second));
559   }
560 
561   // If we generated an unreachable return block, delete it now.
562   if (ReturnBlock.isValid() && ReturnBlock.getBlock()->use_empty()) {
563     Builder.ClearInsertionPoint();
564     ReturnBlock.getBlock()->eraseFromParent();
565   }
566   if (ReturnValue.isValid()) {
567     auto *RetAlloca =
568         dyn_cast<llvm::AllocaInst>(ReturnValue.emitRawPointer(*this));
569     if (RetAlloca && RetAlloca->use_empty()) {
570       RetAlloca->eraseFromParent();
571       ReturnValue = Address::invalid();
572     }
573   }
574 }
575 
576 /// ShouldInstrumentFunction - Return true if the current function should be
577 /// instrumented with __cyg_profile_func_* calls
578 bool CodeGenFunction::ShouldInstrumentFunction() {
579   if (!CGM.getCodeGenOpts().InstrumentFunctions &&
580       !CGM.getCodeGenOpts().InstrumentFunctionsAfterInlining &&
581       !CGM.getCodeGenOpts().InstrumentFunctionEntryBare)
582     return false;
583   if (!CurFuncDecl || CurFuncDecl->hasAttr<NoInstrumentFunctionAttr>())
584     return false;
585   return true;
586 }
587 
588 bool CodeGenFunction::ShouldSkipSanitizerInstrumentation() {
589   if (!CurFuncDecl)
590     return false;
591   return CurFuncDecl->hasAttr<DisableSanitizerInstrumentationAttr>();
592 }
593 
594 /// ShouldXRayInstrument - Return true if the current function should be
595 /// instrumented with XRay nop sleds.
596 bool CodeGenFunction::ShouldXRayInstrumentFunction() const {
597   return CGM.getCodeGenOpts().XRayInstrumentFunctions;
598 }
599 
600 /// AlwaysEmitXRayCustomEvents - Return true if we should emit IR for calls to
601 /// the __xray_customevent(...) builtin calls, when doing XRay instrumentation.
602 bool CodeGenFunction::AlwaysEmitXRayCustomEvents() const {
603   return CGM.getCodeGenOpts().XRayInstrumentFunctions &&
604          (CGM.getCodeGenOpts().XRayAlwaysEmitCustomEvents ||
605           CGM.getCodeGenOpts().XRayInstrumentationBundle.Mask ==
606               XRayInstrKind::Custom);
607 }
608 
609 bool CodeGenFunction::AlwaysEmitXRayTypedEvents() const {
610   return CGM.getCodeGenOpts().XRayInstrumentFunctions &&
611          (CGM.getCodeGenOpts().XRayAlwaysEmitTypedEvents ||
612           CGM.getCodeGenOpts().XRayInstrumentationBundle.Mask ==
613               XRayInstrKind::Typed);
614 }
615 
616 llvm::ConstantInt *
617 CodeGenFunction::getUBSanFunctionTypeHash(QualType Ty) const {
618   // Remove any (C++17) exception specifications, to allow calling e.g. a
619   // noexcept function through a non-noexcept pointer.
620   if (!Ty->isFunctionNoProtoType())
621     Ty = getContext().getFunctionTypeWithExceptionSpec(Ty, EST_None);
622   std::string Mangled;
623   llvm::raw_string_ostream Out(Mangled);
624   CGM.getCXXABI().getMangleContext().mangleCanonicalTypeName(Ty, Out, false);
625   return llvm::ConstantInt::get(
626       CGM.Int32Ty, static_cast<uint32_t>(llvm::xxh3_64bits(Mangled)));
627 }
628 
629 void CodeGenFunction::EmitKernelMetadata(const FunctionDecl *FD,
630                                          llvm::Function *Fn) {
631   if (!FD->hasAttr<OpenCLKernelAttr>() && !FD->hasAttr<CUDAGlobalAttr>())
632     return;
633 
634   llvm::LLVMContext &Context = getLLVMContext();
635 
636   CGM.GenKernelArgMetadata(Fn, FD, this);
637 
638   if (!getLangOpts().OpenCL)
639     return;
640 
641   if (const VecTypeHintAttr *A = FD->getAttr<VecTypeHintAttr>()) {
642     QualType HintQTy = A->getTypeHint();
643     const ExtVectorType *HintEltQTy = HintQTy->getAs<ExtVectorType>();
644     bool IsSignedInteger =
645         HintQTy->isSignedIntegerType() ||
646         (HintEltQTy && HintEltQTy->getElementType()->isSignedIntegerType());
647     llvm::Metadata *AttrMDArgs[] = {
648         llvm::ConstantAsMetadata::get(llvm::UndefValue::get(
649             CGM.getTypes().ConvertType(A->getTypeHint()))),
650         llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
651             llvm::IntegerType::get(Context, 32),
652             llvm::APInt(32, (uint64_t)(IsSignedInteger ? 1 : 0))))};
653     Fn->setMetadata("vec_type_hint", llvm::MDNode::get(Context, AttrMDArgs));
654   }
655 
656   if (const WorkGroupSizeHintAttr *A = FD->getAttr<WorkGroupSizeHintAttr>()) {
657     llvm::Metadata *AttrMDArgs[] = {
658         llvm::ConstantAsMetadata::get(Builder.getInt32(A->getXDim())),
659         llvm::ConstantAsMetadata::get(Builder.getInt32(A->getYDim())),
660         llvm::ConstantAsMetadata::get(Builder.getInt32(A->getZDim()))};
661     Fn->setMetadata("work_group_size_hint", llvm::MDNode::get(Context, AttrMDArgs));
662   }
663 
664   if (const ReqdWorkGroupSizeAttr *A = FD->getAttr<ReqdWorkGroupSizeAttr>()) {
665     llvm::Metadata *AttrMDArgs[] = {
666         llvm::ConstantAsMetadata::get(Builder.getInt32(A->getXDim())),
667         llvm::ConstantAsMetadata::get(Builder.getInt32(A->getYDim())),
668         llvm::ConstantAsMetadata::get(Builder.getInt32(A->getZDim()))};
669     Fn->setMetadata("reqd_work_group_size", llvm::MDNode::get(Context, AttrMDArgs));
670   }
671 
672   if (const OpenCLIntelReqdSubGroupSizeAttr *A =
673           FD->getAttr<OpenCLIntelReqdSubGroupSizeAttr>()) {
674     llvm::Metadata *AttrMDArgs[] = {
675         llvm::ConstantAsMetadata::get(Builder.getInt32(A->getSubGroupSize()))};
676     Fn->setMetadata("intel_reqd_sub_group_size",
677                     llvm::MDNode::get(Context, AttrMDArgs));
678   }
679 }
680 
681 /// Determine whether the function F ends with a return stmt.
682 static bool endsWithReturn(const Decl* F) {
683   const Stmt *Body = nullptr;
684   if (auto *FD = dyn_cast_or_null<FunctionDecl>(F))
685     Body = FD->getBody();
686   else if (auto *OMD = dyn_cast_or_null<ObjCMethodDecl>(F))
687     Body = OMD->getBody();
688 
689   if (auto *CS = dyn_cast_or_null<CompoundStmt>(Body)) {
690     auto LastStmt = CS->body_rbegin();
691     if (LastStmt != CS->body_rend())
692       return isa<ReturnStmt>(*LastStmt);
693   }
694   return false;
695 }
696 
697 void CodeGenFunction::markAsIgnoreThreadCheckingAtRuntime(llvm::Function *Fn) {
698   if (SanOpts.has(SanitizerKind::Thread)) {
699     Fn->addFnAttr("sanitize_thread_no_checking_at_run_time");
700     Fn->removeFnAttr(llvm::Attribute::SanitizeThread);
701   }
702 }
703 
704 /// Check if the return value of this function requires sanitization.
705 bool CodeGenFunction::requiresReturnValueCheck() const {
706   return requiresReturnValueNullabilityCheck() ||
707          (SanOpts.has(SanitizerKind::ReturnsNonnullAttribute) && CurCodeDecl &&
708           CurCodeDecl->getAttr<ReturnsNonNullAttr>());
709 }
710 
711 static bool matchesStlAllocatorFn(const Decl *D, const ASTContext &Ctx) {
712   auto *MD = dyn_cast_or_null<CXXMethodDecl>(D);
713   if (!MD || !MD->getDeclName().getAsIdentifierInfo() ||
714       !MD->getDeclName().getAsIdentifierInfo()->isStr("allocate") ||
715       (MD->getNumParams() != 1 && MD->getNumParams() != 2))
716     return false;
717 
718   if (MD->parameters()[0]->getType().getCanonicalType() != Ctx.getSizeType())
719     return false;
720 
721   if (MD->getNumParams() == 2) {
722     auto *PT = MD->parameters()[1]->getType()->getAs<PointerType>();
723     if (!PT || !PT->isVoidPointerType() ||
724         !PT->getPointeeType().isConstQualified())
725       return false;
726   }
727 
728   return true;
729 }
730 
731 bool CodeGenFunction::isInAllocaArgument(CGCXXABI &ABI, QualType Ty) {
732   const CXXRecordDecl *RD = Ty->getAsCXXRecordDecl();
733   return RD && ABI.getRecordArgABI(RD) == CGCXXABI::RAA_DirectInMemory;
734 }
735 
736 bool CodeGenFunction::hasInAllocaArg(const CXXMethodDecl *MD) {
737   return getTarget().getTriple().getArch() == llvm::Triple::x86 &&
738          getTarget().getCXXABI().isMicrosoft() &&
739          llvm::any_of(MD->parameters(), [&](ParmVarDecl *P) {
740            return isInAllocaArgument(CGM.getCXXABI(), P->getType());
741          });
742 }
743 
744 /// Return the UBSan prologue signature for \p FD if one is available.
745 static llvm::Constant *getPrologueSignature(CodeGenModule &CGM,
746                                             const FunctionDecl *FD) {
747   if (const auto *MD = dyn_cast<CXXMethodDecl>(FD))
748     if (!MD->isStatic())
749       return nullptr;
750   return CGM.getTargetCodeGenInfo().getUBSanFunctionSignature(CGM);
751 }
752 
753 void CodeGenFunction::StartFunction(GlobalDecl GD, QualType RetTy,
754                                     llvm::Function *Fn,
755                                     const CGFunctionInfo &FnInfo,
756                                     const FunctionArgList &Args,
757                                     SourceLocation Loc,
758                                     SourceLocation StartLoc) {
759   assert(!CurFn &&
760          "Do not use a CodeGenFunction object for more than one function");
761 
762   const Decl *D = GD.getDecl();
763 
764   DidCallStackSave = false;
765   CurCodeDecl = D;
766   const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D);
767   if (FD && FD->usesSEHTry())
768     CurSEHParent = GD;
769   CurFuncDecl = (D ? D->getNonClosureContext() : nullptr);
770   FnRetTy = RetTy;
771   CurFn = Fn;
772   CurFnInfo = &FnInfo;
773   assert(CurFn->isDeclaration() && "Function already has body?");
774 
775   // If this function is ignored for any of the enabled sanitizers,
776   // disable the sanitizer for the function.
777   do {
778 #define SANITIZER(NAME, ID)                                                    \
779   if (SanOpts.empty())                                                         \
780     break;                                                                     \
781   if (SanOpts.has(SanitizerKind::ID))                                          \
782     if (CGM.isInNoSanitizeList(SanitizerKind::ID, Fn, Loc))                    \
783       SanOpts.set(SanitizerKind::ID, false);
784 
785 #include "clang/Basic/Sanitizers.def"
786 #undef SANITIZER
787   } while (false);
788 
789   if (D) {
790     const bool SanitizeBounds = SanOpts.hasOneOf(SanitizerKind::Bounds);
791     SanitizerMask no_sanitize_mask;
792     bool NoSanitizeCoverage = false;
793 
794     for (auto *Attr : D->specific_attrs<NoSanitizeAttr>()) {
795       no_sanitize_mask |= Attr->getMask();
796       // SanitizeCoverage is not handled by SanOpts.
797       if (Attr->hasCoverage())
798         NoSanitizeCoverage = true;
799     }
800 
801     // Apply the no_sanitize* attributes to SanOpts.
802     SanOpts.Mask &= ~no_sanitize_mask;
803     if (no_sanitize_mask & SanitizerKind::Address)
804       SanOpts.set(SanitizerKind::KernelAddress, false);
805     if (no_sanitize_mask & SanitizerKind::KernelAddress)
806       SanOpts.set(SanitizerKind::Address, false);
807     if (no_sanitize_mask & SanitizerKind::HWAddress)
808       SanOpts.set(SanitizerKind::KernelHWAddress, false);
809     if (no_sanitize_mask & SanitizerKind::KernelHWAddress)
810       SanOpts.set(SanitizerKind::HWAddress, false);
811 
812     if (SanitizeBounds && !SanOpts.hasOneOf(SanitizerKind::Bounds))
813       Fn->addFnAttr(llvm::Attribute::NoSanitizeBounds);
814 
815     if (NoSanitizeCoverage && CGM.getCodeGenOpts().hasSanitizeCoverage())
816       Fn->addFnAttr(llvm::Attribute::NoSanitizeCoverage);
817 
818     // Some passes need the non-negated no_sanitize attribute. Pass them on.
819     if (CGM.getCodeGenOpts().hasSanitizeBinaryMetadata()) {
820       if (no_sanitize_mask & SanitizerKind::Thread)
821         Fn->addFnAttr("no_sanitize_thread");
822     }
823   }
824 
825   if (ShouldSkipSanitizerInstrumentation()) {
826     CurFn->addFnAttr(llvm::Attribute::DisableSanitizerInstrumentation);
827   } else {
828     // Apply sanitizer attributes to the function.
829     if (SanOpts.hasOneOf(SanitizerKind::Address | SanitizerKind::KernelAddress))
830       Fn->addFnAttr(llvm::Attribute::SanitizeAddress);
831     if (SanOpts.hasOneOf(SanitizerKind::HWAddress |
832                          SanitizerKind::KernelHWAddress))
833       Fn->addFnAttr(llvm::Attribute::SanitizeHWAddress);
834     if (SanOpts.has(SanitizerKind::MemtagStack))
835       Fn->addFnAttr(llvm::Attribute::SanitizeMemTag);
836     if (SanOpts.has(SanitizerKind::Thread))
837       Fn->addFnAttr(llvm::Attribute::SanitizeThread);
838     if (SanOpts.has(SanitizerKind::NumericalStability))
839       Fn->addFnAttr(llvm::Attribute::SanitizeNumericalStability);
840     if (SanOpts.hasOneOf(SanitizerKind::Memory | SanitizerKind::KernelMemory))
841       Fn->addFnAttr(llvm::Attribute::SanitizeMemory);
842   }
843   if (SanOpts.has(SanitizerKind::SafeStack))
844     Fn->addFnAttr(llvm::Attribute::SafeStack);
845   if (SanOpts.has(SanitizerKind::ShadowCallStack))
846     Fn->addFnAttr(llvm::Attribute::ShadowCallStack);
847 
848   if (SanOpts.has(SanitizerKind::Realtime))
849     if (FD && FD->getASTContext().hasAnyFunctionEffects())
850       for (const FunctionEffectWithCondition &Fe : FD->getFunctionEffects()) {
851         if (Fe.Effect.kind() == FunctionEffect::Kind::NonBlocking)
852           Fn->addFnAttr(llvm::Attribute::SanitizeRealtime);
853       }
854 
855   // Apply fuzzing attribute to the function.
856   if (SanOpts.hasOneOf(SanitizerKind::Fuzzer | SanitizerKind::FuzzerNoLink))
857     Fn->addFnAttr(llvm::Attribute::OptForFuzzing);
858 
859   // Ignore TSan memory acesses from within ObjC/ObjC++ dealloc, initialize,
860   // .cxx_destruct, __destroy_helper_block_ and all of their calees at run time.
861   if (SanOpts.has(SanitizerKind::Thread)) {
862     if (const auto *OMD = dyn_cast_or_null<ObjCMethodDecl>(D)) {
863       const IdentifierInfo *II = OMD->getSelector().getIdentifierInfoForSlot(0);
864       if (OMD->getMethodFamily() == OMF_dealloc ||
865           OMD->getMethodFamily() == OMF_initialize ||
866           (OMD->getSelector().isUnarySelector() && II->isStr(".cxx_destruct"))) {
867         markAsIgnoreThreadCheckingAtRuntime(Fn);
868       }
869     }
870   }
871 
872   // Ignore unrelated casts in STL allocate() since the allocator must cast
873   // from void* to T* before object initialization completes. Don't match on the
874   // namespace because not all allocators are in std::
875   if (D && SanOpts.has(SanitizerKind::CFIUnrelatedCast)) {
876     if (matchesStlAllocatorFn(D, getContext()))
877       SanOpts.Mask &= ~SanitizerKind::CFIUnrelatedCast;
878   }
879 
880   // Ignore null checks in coroutine functions since the coroutines passes
881   // are not aware of how to move the extra UBSan instructions across the split
882   // coroutine boundaries.
883   if (D && SanOpts.has(SanitizerKind::Null))
884     if (FD && FD->getBody() &&
885         FD->getBody()->getStmtClass() == Stmt::CoroutineBodyStmtClass)
886       SanOpts.Mask &= ~SanitizerKind::Null;
887 
888   // Add pointer authentication attributes.
889   const CodeGenOptions &CodeGenOpts = CGM.getCodeGenOpts();
890   if (CodeGenOpts.PointerAuth.ReturnAddresses)
891     Fn->addFnAttr("ptrauth-returns");
892   if (CodeGenOpts.PointerAuth.FunctionPointers)
893     Fn->addFnAttr("ptrauth-calls");
894   if (CodeGenOpts.PointerAuth.AuthTraps)
895     Fn->addFnAttr("ptrauth-auth-traps");
896   if (CodeGenOpts.PointerAuth.IndirectGotos)
897     Fn->addFnAttr("ptrauth-indirect-gotos");
898 
899   // Apply xray attributes to the function (as a string, for now)
900   bool AlwaysXRayAttr = false;
901   if (const auto *XRayAttr = D ? D->getAttr<XRayInstrumentAttr>() : nullptr) {
902     if (CGM.getCodeGenOpts().XRayInstrumentationBundle.has(
903             XRayInstrKind::FunctionEntry) ||
904         CGM.getCodeGenOpts().XRayInstrumentationBundle.has(
905             XRayInstrKind::FunctionExit)) {
906       if (XRayAttr->alwaysXRayInstrument() && ShouldXRayInstrumentFunction()) {
907         Fn->addFnAttr("function-instrument", "xray-always");
908         AlwaysXRayAttr = true;
909       }
910       if (XRayAttr->neverXRayInstrument())
911         Fn->addFnAttr("function-instrument", "xray-never");
912       if (const auto *LogArgs = D->getAttr<XRayLogArgsAttr>())
913         if (ShouldXRayInstrumentFunction())
914           Fn->addFnAttr("xray-log-args",
915                         llvm::utostr(LogArgs->getArgumentCount()));
916     }
917   } else {
918     if (ShouldXRayInstrumentFunction() && !CGM.imbueXRayAttrs(Fn, Loc))
919       Fn->addFnAttr(
920           "xray-instruction-threshold",
921           llvm::itostr(CGM.getCodeGenOpts().XRayInstructionThreshold));
922   }
923 
924   if (ShouldXRayInstrumentFunction()) {
925     if (CGM.getCodeGenOpts().XRayIgnoreLoops)
926       Fn->addFnAttr("xray-ignore-loops");
927 
928     if (!CGM.getCodeGenOpts().XRayInstrumentationBundle.has(
929             XRayInstrKind::FunctionExit))
930       Fn->addFnAttr("xray-skip-exit");
931 
932     if (!CGM.getCodeGenOpts().XRayInstrumentationBundle.has(
933             XRayInstrKind::FunctionEntry))
934       Fn->addFnAttr("xray-skip-entry");
935 
936     auto FuncGroups = CGM.getCodeGenOpts().XRayTotalFunctionGroups;
937     if (FuncGroups > 1) {
938       auto FuncName = llvm::ArrayRef<uint8_t>(CurFn->getName().bytes_begin(),
939                                               CurFn->getName().bytes_end());
940       auto Group = crc32(FuncName) % FuncGroups;
941       if (Group != CGM.getCodeGenOpts().XRaySelectedFunctionGroup &&
942           !AlwaysXRayAttr)
943         Fn->addFnAttr("function-instrument", "xray-never");
944     }
945   }
946 
947   if (CGM.getCodeGenOpts().getProfileInstr() != CodeGenOptions::ProfileNone) {
948     switch (CGM.isFunctionBlockedFromProfileInstr(Fn, Loc)) {
949     case ProfileList::Skip:
950       Fn->addFnAttr(llvm::Attribute::SkipProfile);
951       break;
952     case ProfileList::Forbid:
953       Fn->addFnAttr(llvm::Attribute::NoProfile);
954       break;
955     case ProfileList::Allow:
956       break;
957     }
958   }
959 
960   unsigned Count, Offset;
961   if (const auto *Attr =
962           D ? D->getAttr<PatchableFunctionEntryAttr>() : nullptr) {
963     Count = Attr->getCount();
964     Offset = Attr->getOffset();
965   } else {
966     Count = CGM.getCodeGenOpts().PatchableFunctionEntryCount;
967     Offset = CGM.getCodeGenOpts().PatchableFunctionEntryOffset;
968   }
969   if (Count && Offset <= Count) {
970     Fn->addFnAttr("patchable-function-entry", std::to_string(Count - Offset));
971     if (Offset)
972       Fn->addFnAttr("patchable-function-prefix", std::to_string(Offset));
973   }
974   // Instruct that functions for COFF/CodeView targets should start with a
975   // patchable instruction, but only on x86/x64. Don't forward this to ARM/ARM64
976   // backends as they don't need it -- instructions on these architectures are
977   // always atomically patchable at runtime.
978   if (CGM.getCodeGenOpts().HotPatch &&
979       getContext().getTargetInfo().getTriple().isX86() &&
980       getContext().getTargetInfo().getTriple().getEnvironment() !=
981           llvm::Triple::CODE16)
982     Fn->addFnAttr("patchable-function", "prologue-short-redirect");
983 
984   // Add no-jump-tables value.
985   if (CGM.getCodeGenOpts().NoUseJumpTables)
986     Fn->addFnAttr("no-jump-tables", "true");
987 
988   // Add no-inline-line-tables value.
989   if (CGM.getCodeGenOpts().NoInlineLineTables)
990     Fn->addFnAttr("no-inline-line-tables");
991 
992   // Add profile-sample-accurate value.
993   if (CGM.getCodeGenOpts().ProfileSampleAccurate)
994     Fn->addFnAttr("profile-sample-accurate");
995 
996   if (!CGM.getCodeGenOpts().SampleProfileFile.empty())
997     Fn->addFnAttr("use-sample-profile");
998 
999   if (D && D->hasAttr<CFICanonicalJumpTableAttr>())
1000     Fn->addFnAttr("cfi-canonical-jump-table");
1001 
1002   if (D && D->hasAttr<NoProfileFunctionAttr>())
1003     Fn->addFnAttr(llvm::Attribute::NoProfile);
1004 
1005   if (D && D->hasAttr<HybridPatchableAttr>())
1006     Fn->addFnAttr(llvm::Attribute::HybridPatchable);
1007 
1008   if (D) {
1009     // Function attributes take precedence over command line flags.
1010     if (auto *A = D->getAttr<FunctionReturnThunksAttr>()) {
1011       switch (A->getThunkType()) {
1012       case FunctionReturnThunksAttr::Kind::Keep:
1013         break;
1014       case FunctionReturnThunksAttr::Kind::Extern:
1015         Fn->addFnAttr(llvm::Attribute::FnRetThunkExtern);
1016         break;
1017       }
1018     } else if (CGM.getCodeGenOpts().FunctionReturnThunks)
1019       Fn->addFnAttr(llvm::Attribute::FnRetThunkExtern);
1020   }
1021 
1022   if (FD && (getLangOpts().OpenCL ||
1023              ((getLangOpts().HIP || getLangOpts().OffloadViaLLVM) &&
1024               getLangOpts().CUDAIsDevice))) {
1025     // Add metadata for a kernel function.
1026     EmitKernelMetadata(FD, Fn);
1027   }
1028 
1029   if (FD && FD->hasAttr<ClspvLibclcBuiltinAttr>()) {
1030     Fn->setMetadata("clspv_libclc_builtin",
1031                     llvm::MDNode::get(getLLVMContext(), {}));
1032   }
1033 
1034   // If we are checking function types, emit a function type signature as
1035   // prologue data.
1036   if (FD && SanOpts.has(SanitizerKind::Function)) {
1037     if (llvm::Constant *PrologueSig = getPrologueSignature(CGM, FD)) {
1038       llvm::LLVMContext &Ctx = Fn->getContext();
1039       llvm::MDBuilder MDB(Ctx);
1040       Fn->setMetadata(
1041           llvm::LLVMContext::MD_func_sanitize,
1042           MDB.createRTTIPointerPrologue(
1043               PrologueSig, getUBSanFunctionTypeHash(FD->getType())));
1044     }
1045   }
1046 
1047   // If we're checking nullability, we need to know whether we can check the
1048   // return value. Initialize the flag to 'true' and refine it in EmitParmDecl.
1049   if (SanOpts.has(SanitizerKind::NullabilityReturn)) {
1050     auto Nullability = FnRetTy->getNullability();
1051     if (Nullability && *Nullability == NullabilityKind::NonNull &&
1052         !FnRetTy->isRecordType()) {
1053       if (!(SanOpts.has(SanitizerKind::ReturnsNonnullAttribute) &&
1054             CurCodeDecl && CurCodeDecl->getAttr<ReturnsNonNullAttr>()))
1055         RetValNullabilityPrecondition =
1056             llvm::ConstantInt::getTrue(getLLVMContext());
1057     }
1058   }
1059 
1060   // If we're in C++ mode and the function name is "main", it is guaranteed
1061   // to be norecurse by the standard (3.6.1.3 "The function main shall not be
1062   // used within a program").
1063   //
1064   // OpenCL C 2.0 v2.2-11 s6.9.i:
1065   //     Recursion is not supported.
1066   //
1067   // HLSL
1068   //     Recursion is not supported.
1069   //
1070   // SYCL v1.2.1 s3.10:
1071   //     kernels cannot include RTTI information, exception classes,
1072   //     recursive code, virtual functions or make use of C++ libraries that
1073   //     are not compiled for the device.
1074   if (FD &&
1075       ((getLangOpts().CPlusPlus && FD->isMain()) || getLangOpts().OpenCL ||
1076        getLangOpts().HLSL || getLangOpts().SYCLIsDevice ||
1077        (getLangOpts().CUDA && FD->hasAttr<CUDAGlobalAttr>())))
1078     Fn->addFnAttr(llvm::Attribute::NoRecurse);
1079 
1080   llvm::RoundingMode RM = getLangOpts().getDefaultRoundingMode();
1081   llvm::fp::ExceptionBehavior FPExceptionBehavior =
1082       ToConstrainedExceptMD(getLangOpts().getDefaultExceptionMode());
1083   Builder.setDefaultConstrainedRounding(RM);
1084   Builder.setDefaultConstrainedExcept(FPExceptionBehavior);
1085   if ((FD && (FD->UsesFPIntrin() || FD->hasAttr<StrictFPAttr>())) ||
1086       (!FD && (FPExceptionBehavior != llvm::fp::ebIgnore ||
1087                RM != llvm::RoundingMode::NearestTiesToEven))) {
1088     Builder.setIsFPConstrained(true);
1089     Fn->addFnAttr(llvm::Attribute::StrictFP);
1090   }
1091 
1092   // If a custom alignment is used, force realigning to this alignment on
1093   // any main function which certainly will need it.
1094   if (FD && ((FD->isMain() || FD->isMSVCRTEntryPoint()) &&
1095              CGM.getCodeGenOpts().StackAlignment))
1096     Fn->addFnAttr("stackrealign");
1097 
1098   // "main" doesn't need to zero out call-used registers.
1099   if (FD && FD->isMain())
1100     Fn->removeFnAttr("zero-call-used-regs");
1101 
1102   llvm::BasicBlock *EntryBB = createBasicBlock("entry", CurFn);
1103 
1104   // Create a marker to make it easy to insert allocas into the entryblock
1105   // later.  Don't create this with the builder, because we don't want it
1106   // folded.
1107   llvm::Value *Undef = llvm::UndefValue::get(Int32Ty);
1108   AllocaInsertPt = new llvm::BitCastInst(Undef, Int32Ty, "allocapt", EntryBB);
1109 
1110   ReturnBlock = getJumpDestInCurrentScope("return");
1111 
1112   Builder.SetInsertPoint(EntryBB);
1113 
1114   // If we're checking the return value, allocate space for a pointer to a
1115   // precise source location of the checked return statement.
1116   if (requiresReturnValueCheck()) {
1117     ReturnLocation = CreateDefaultAlignTempAlloca(Int8PtrTy, "return.sloc.ptr");
1118     Builder.CreateStore(llvm::ConstantPointerNull::get(Int8PtrTy),
1119                         ReturnLocation);
1120   }
1121 
1122   // Emit subprogram debug descriptor.
1123   if (CGDebugInfo *DI = getDebugInfo()) {
1124     // Reconstruct the type from the argument list so that implicit parameters,
1125     // such as 'this' and 'vtt', show up in the debug info. Preserve the calling
1126     // convention.
1127     DI->emitFunctionStart(GD, Loc, StartLoc,
1128                           DI->getFunctionType(FD, RetTy, Args), CurFn,
1129                           CurFuncIsThunk);
1130   }
1131 
1132   if (ShouldInstrumentFunction()) {
1133     if (CGM.getCodeGenOpts().InstrumentFunctions)
1134       CurFn->addFnAttr("instrument-function-entry", "__cyg_profile_func_enter");
1135     if (CGM.getCodeGenOpts().InstrumentFunctionsAfterInlining)
1136       CurFn->addFnAttr("instrument-function-entry-inlined",
1137                        "__cyg_profile_func_enter");
1138     if (CGM.getCodeGenOpts().InstrumentFunctionEntryBare)
1139       CurFn->addFnAttr("instrument-function-entry-inlined",
1140                        "__cyg_profile_func_enter_bare");
1141   }
1142 
1143   // Since emitting the mcount call here impacts optimizations such as function
1144   // inlining, we just add an attribute to insert a mcount call in backend.
1145   // The attribute "counting-function" is set to mcount function name which is
1146   // architecture dependent.
1147   if (CGM.getCodeGenOpts().InstrumentForProfiling) {
1148     // Calls to fentry/mcount should not be generated if function has
1149     // the no_instrument_function attribute.
1150     if (!CurFuncDecl || !CurFuncDecl->hasAttr<NoInstrumentFunctionAttr>()) {
1151       if (CGM.getCodeGenOpts().CallFEntry)
1152         Fn->addFnAttr("fentry-call", "true");
1153       else {
1154         Fn->addFnAttr("instrument-function-entry-inlined",
1155                       getTarget().getMCountName());
1156       }
1157       if (CGM.getCodeGenOpts().MNopMCount) {
1158         if (!CGM.getCodeGenOpts().CallFEntry)
1159           CGM.getDiags().Report(diag::err_opt_not_valid_without_opt)
1160             << "-mnop-mcount" << "-mfentry";
1161         Fn->addFnAttr("mnop-mcount");
1162       }
1163 
1164       if (CGM.getCodeGenOpts().RecordMCount) {
1165         if (!CGM.getCodeGenOpts().CallFEntry)
1166           CGM.getDiags().Report(diag::err_opt_not_valid_without_opt)
1167             << "-mrecord-mcount" << "-mfentry";
1168         Fn->addFnAttr("mrecord-mcount");
1169       }
1170     }
1171   }
1172 
1173   if (CGM.getCodeGenOpts().PackedStack) {
1174     if (getContext().getTargetInfo().getTriple().getArch() !=
1175         llvm::Triple::systemz)
1176       CGM.getDiags().Report(diag::err_opt_not_valid_on_target)
1177         << "-mpacked-stack";
1178     Fn->addFnAttr("packed-stack");
1179   }
1180 
1181   if (CGM.getCodeGenOpts().WarnStackSize != UINT_MAX &&
1182       !CGM.getDiags().isIgnored(diag::warn_fe_backend_frame_larger_than, Loc))
1183     Fn->addFnAttr("warn-stack-size",
1184                   std::to_string(CGM.getCodeGenOpts().WarnStackSize));
1185 
1186   if (RetTy->isVoidType()) {
1187     // Void type; nothing to return.
1188     ReturnValue = Address::invalid();
1189 
1190     // Count the implicit return.
1191     if (!endsWithReturn(D))
1192       ++NumReturnExprs;
1193   } else if (CurFnInfo->getReturnInfo().getKind() == ABIArgInfo::Indirect) {
1194     // Indirect return; emit returned value directly into sret slot.
1195     // This reduces code size, and affects correctness in C++.
1196     auto AI = CurFn->arg_begin();
1197     if (CurFnInfo->getReturnInfo().isSRetAfterThis())
1198       ++AI;
1199     ReturnValue = makeNaturalAddressForPointer(
1200         &*AI, RetTy, CurFnInfo->getReturnInfo().getIndirectAlign(), false,
1201         nullptr, nullptr, KnownNonNull);
1202     if (!CurFnInfo->getReturnInfo().getIndirectByVal()) {
1203       ReturnValuePointer =
1204           CreateDefaultAlignTempAlloca(ReturnValue.getType(), "result.ptr");
1205       Builder.CreateStore(ReturnValue.emitRawPointer(*this),
1206                           ReturnValuePointer);
1207     }
1208   } else if (CurFnInfo->getReturnInfo().getKind() == ABIArgInfo::InAlloca &&
1209              !hasScalarEvaluationKind(CurFnInfo->getReturnType())) {
1210     // Load the sret pointer from the argument struct and return into that.
1211     unsigned Idx = CurFnInfo->getReturnInfo().getInAllocaFieldIndex();
1212     llvm::Function::arg_iterator EI = CurFn->arg_end();
1213     --EI;
1214     llvm::Value *Addr = Builder.CreateStructGEP(
1215         CurFnInfo->getArgStruct(), &*EI, Idx);
1216     llvm::Type *Ty =
1217         cast<llvm::GetElementPtrInst>(Addr)->getResultElementType();
1218     ReturnValuePointer = Address(Addr, Ty, getPointerAlign());
1219     Addr = Builder.CreateAlignedLoad(Ty, Addr, getPointerAlign(), "agg.result");
1220     ReturnValue = Address(Addr, ConvertType(RetTy),
1221                           CGM.getNaturalTypeAlignment(RetTy), KnownNonNull);
1222   } else {
1223     ReturnValue = CreateIRTemp(RetTy, "retval");
1224 
1225     // Tell the epilog emitter to autorelease the result.  We do this
1226     // now so that various specialized functions can suppress it
1227     // during their IR-generation.
1228     if (getLangOpts().ObjCAutoRefCount &&
1229         !CurFnInfo->isReturnsRetained() &&
1230         RetTy->isObjCRetainableType())
1231       AutoreleaseResult = true;
1232   }
1233 
1234   EmitStartEHSpec(CurCodeDecl);
1235 
1236   PrologueCleanupDepth = EHStack.stable_begin();
1237 
1238   // Emit OpenMP specific initialization of the device functions.
1239   if (getLangOpts().OpenMP && CurCodeDecl)
1240     CGM.getOpenMPRuntime().emitFunctionProlog(*this, CurCodeDecl);
1241 
1242   if (FD && getLangOpts().HLSL) {
1243     // Handle emitting HLSL entry functions.
1244     if (FD->hasAttr<HLSLShaderAttr>()) {
1245       CGM.getHLSLRuntime().emitEntryFunction(FD, Fn);
1246     }
1247     CGM.getHLSLRuntime().setHLSLFunctionAttributes(FD, Fn);
1248   }
1249 
1250   EmitFunctionProlog(*CurFnInfo, CurFn, Args);
1251 
1252   if (const CXXMethodDecl *MD = dyn_cast_if_present<CXXMethodDecl>(D);
1253       MD && !MD->isStatic()) {
1254     bool IsInLambda =
1255         MD->getParent()->isLambda() && MD->getOverloadedOperator() == OO_Call;
1256     if (MD->isImplicitObjectMemberFunction())
1257       CGM.getCXXABI().EmitInstanceFunctionProlog(*this);
1258     if (IsInLambda) {
1259       // We're in a lambda; figure out the captures.
1260       MD->getParent()->getCaptureFields(LambdaCaptureFields,
1261                                         LambdaThisCaptureField);
1262       if (LambdaThisCaptureField) {
1263         // If the lambda captures the object referred to by '*this' - either by
1264         // value or by reference, make sure CXXThisValue points to the correct
1265         // object.
1266 
1267         // Get the lvalue for the field (which is a copy of the enclosing object
1268         // or contains the address of the enclosing object).
1269         LValue ThisFieldLValue = EmitLValueForLambdaField(LambdaThisCaptureField);
1270         if (!LambdaThisCaptureField->getType()->isPointerType()) {
1271           // If the enclosing object was captured by value, just use its
1272           // address. Sign this pointer.
1273           CXXThisValue = ThisFieldLValue.getPointer(*this);
1274         } else {
1275           // Load the lvalue pointed to by the field, since '*this' was captured
1276           // by reference.
1277           CXXThisValue =
1278               EmitLoadOfLValue(ThisFieldLValue, SourceLocation()).getScalarVal();
1279         }
1280       }
1281       for (auto *FD : MD->getParent()->fields()) {
1282         if (FD->hasCapturedVLAType()) {
1283           auto *ExprArg = EmitLoadOfLValue(EmitLValueForLambdaField(FD),
1284                                            SourceLocation()).getScalarVal();
1285           auto VAT = FD->getCapturedVLAType();
1286           VLASizeMap[VAT->getSizeExpr()] = ExprArg;
1287         }
1288       }
1289     } else if (MD->isImplicitObjectMemberFunction()) {
1290       // Not in a lambda; just use 'this' from the method.
1291       // FIXME: Should we generate a new load for each use of 'this'?  The
1292       // fast register allocator would be happier...
1293       CXXThisValue = CXXABIThisValue;
1294     }
1295 
1296     // Check the 'this' pointer once per function, if it's available.
1297     if (CXXABIThisValue) {
1298       SanitizerSet SkippedChecks;
1299       SkippedChecks.set(SanitizerKind::ObjectSize, true);
1300       QualType ThisTy = MD->getThisType();
1301 
1302       // If this is the call operator of a lambda with no captures, it
1303       // may have a static invoker function, which may call this operator with
1304       // a null 'this' pointer.
1305       if (isLambdaCallOperator(MD) && MD->getParent()->isCapturelessLambda())
1306         SkippedChecks.set(SanitizerKind::Null, true);
1307 
1308       EmitTypeCheck(
1309           isa<CXXConstructorDecl>(MD) ? TCK_ConstructorCall : TCK_MemberCall,
1310           Loc, CXXABIThisValue, ThisTy, CXXABIThisAlignment, SkippedChecks);
1311     }
1312   }
1313 
1314   // If any of the arguments have a variably modified type, make sure to
1315   // emit the type size, but only if the function is not naked. Naked functions
1316   // have no prolog to run this evaluation.
1317   if (!FD || !FD->hasAttr<NakedAttr>()) {
1318     for (const VarDecl *VD : Args) {
1319       // Dig out the type as written from ParmVarDecls; it's unclear whether
1320       // the standard (C99 6.9.1p10) requires this, but we're following the
1321       // precedent set by gcc.
1322       QualType Ty;
1323       if (const ParmVarDecl *PVD = dyn_cast<ParmVarDecl>(VD))
1324         Ty = PVD->getOriginalType();
1325       else
1326         Ty = VD->getType();
1327 
1328       if (Ty->isVariablyModifiedType())
1329         EmitVariablyModifiedType(Ty);
1330     }
1331   }
1332   // Emit a location at the end of the prologue.
1333   if (CGDebugInfo *DI = getDebugInfo())
1334     DI->EmitLocation(Builder, StartLoc);
1335   // TODO: Do we need to handle this in two places like we do with
1336   // target-features/target-cpu?
1337   if (CurFuncDecl)
1338     if (const auto *VecWidth = CurFuncDecl->getAttr<MinVectorWidthAttr>())
1339       LargestVectorWidth = VecWidth->getVectorWidth();
1340 
1341   if (CGM.shouldEmitConvergenceTokens())
1342     ConvergenceTokenStack.push_back(getOrEmitConvergenceEntryToken(CurFn));
1343 }
1344 
1345 void CodeGenFunction::EmitFunctionBody(const Stmt *Body) {
1346   incrementProfileCounter(Body);
1347   maybeCreateMCDCCondBitmap();
1348   if (const CompoundStmt *S = dyn_cast<CompoundStmt>(Body))
1349     EmitCompoundStmtWithoutScope(*S);
1350   else
1351     EmitStmt(Body);
1352 }
1353 
1354 /// When instrumenting to collect profile data, the counts for some blocks
1355 /// such as switch cases need to not include the fall-through counts, so
1356 /// emit a branch around the instrumentation code. When not instrumenting,
1357 /// this just calls EmitBlock().
1358 void CodeGenFunction::EmitBlockWithFallThrough(llvm::BasicBlock *BB,
1359                                                const Stmt *S) {
1360   llvm::BasicBlock *SkipCountBB = nullptr;
1361   // Do not skip over the instrumentation when single byte coverage mode is
1362   // enabled.
1363   if (HaveInsertPoint() && CGM.getCodeGenOpts().hasProfileClangInstr() &&
1364       !llvm::EnableSingleByteCoverage) {
1365     // When instrumenting for profiling, the fallthrough to certain
1366     // statements needs to skip over the instrumentation code so that we
1367     // get an accurate count.
1368     SkipCountBB = createBasicBlock("skipcount");
1369     EmitBranch(SkipCountBB);
1370   }
1371   EmitBlock(BB);
1372   uint64_t CurrentCount = getCurrentProfileCount();
1373   incrementProfileCounter(S);
1374   setCurrentProfileCount(getCurrentProfileCount() + CurrentCount);
1375   if (SkipCountBB)
1376     EmitBlock(SkipCountBB);
1377 }
1378 
1379 /// Tries to mark the given function nounwind based on the
1380 /// non-existence of any throwing calls within it.  We believe this is
1381 /// lightweight enough to do at -O0.
1382 static void TryMarkNoThrow(llvm::Function *F) {
1383   // LLVM treats 'nounwind' on a function as part of the type, so we
1384   // can't do this on functions that can be overwritten.
1385   if (F->isInterposable()) return;
1386 
1387   for (llvm::BasicBlock &BB : *F)
1388     for (llvm::Instruction &I : BB)
1389       if (I.mayThrow())
1390         return;
1391 
1392   F->setDoesNotThrow();
1393 }
1394 
1395 QualType CodeGenFunction::BuildFunctionArgList(GlobalDecl GD,
1396                                                FunctionArgList &Args) {
1397   const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
1398   QualType ResTy = FD->getReturnType();
1399 
1400   const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD);
1401   if (MD && MD->isImplicitObjectMemberFunction()) {
1402     if (CGM.getCXXABI().HasThisReturn(GD))
1403       ResTy = MD->getThisType();
1404     else if (CGM.getCXXABI().hasMostDerivedReturn(GD))
1405       ResTy = CGM.getContext().VoidPtrTy;
1406     CGM.getCXXABI().buildThisParam(*this, Args);
1407   }
1408 
1409   // The base version of an inheriting constructor whose constructed base is a
1410   // virtual base is not passed any arguments (because it doesn't actually call
1411   // the inherited constructor).
1412   bool PassedParams = true;
1413   if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(FD))
1414     if (auto Inherited = CD->getInheritedConstructor())
1415       PassedParams =
1416           getTypes().inheritingCtorHasParams(Inherited, GD.getCtorType());
1417 
1418   if (PassedParams) {
1419     for (auto *Param : FD->parameters()) {
1420       Args.push_back(Param);
1421       if (!Param->hasAttr<PassObjectSizeAttr>())
1422         continue;
1423 
1424       auto *Implicit = ImplicitParamDecl::Create(
1425           getContext(), Param->getDeclContext(), Param->getLocation(),
1426           /*Id=*/nullptr, getContext().getSizeType(), ImplicitParamKind::Other);
1427       SizeArguments[Param] = Implicit;
1428       Args.push_back(Implicit);
1429     }
1430   }
1431 
1432   if (MD && (isa<CXXConstructorDecl>(MD) || isa<CXXDestructorDecl>(MD)))
1433     CGM.getCXXABI().addImplicitStructorParams(*this, ResTy, Args);
1434 
1435   return ResTy;
1436 }
1437 
1438 void CodeGenFunction::GenerateCode(GlobalDecl GD, llvm::Function *Fn,
1439                                    const CGFunctionInfo &FnInfo) {
1440   assert(Fn && "generating code for null Function");
1441   const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
1442   CurGD = GD;
1443 
1444   FunctionArgList Args;
1445   QualType ResTy = BuildFunctionArgList(GD, Args);
1446 
1447   CGM.getTargetCodeGenInfo().checkFunctionABI(CGM, FD);
1448 
1449   if (FD->isInlineBuiltinDeclaration()) {
1450     // When generating code for a builtin with an inline declaration, use a
1451     // mangled name to hold the actual body, while keeping an external
1452     // definition in case the function pointer is referenced somewhere.
1453     std::string FDInlineName = (Fn->getName() + ".inline").str();
1454     llvm::Module *M = Fn->getParent();
1455     llvm::Function *Clone = M->getFunction(FDInlineName);
1456     if (!Clone) {
1457       Clone = llvm::Function::Create(Fn->getFunctionType(),
1458                                      llvm::GlobalValue::InternalLinkage,
1459                                      Fn->getAddressSpace(), FDInlineName, M);
1460       Clone->addFnAttr(llvm::Attribute::AlwaysInline);
1461     }
1462     Fn->setLinkage(llvm::GlobalValue::ExternalLinkage);
1463     Fn = Clone;
1464   } else {
1465     // Detect the unusual situation where an inline version is shadowed by a
1466     // non-inline version. In that case we should pick the external one
1467     // everywhere. That's GCC behavior too. Unfortunately, I cannot find a way
1468     // to detect that situation before we reach codegen, so do some late
1469     // replacement.
1470     for (const FunctionDecl *PD = FD->getPreviousDecl(); PD;
1471          PD = PD->getPreviousDecl()) {
1472       if (LLVM_UNLIKELY(PD->isInlineBuiltinDeclaration())) {
1473         std::string FDInlineName = (Fn->getName() + ".inline").str();
1474         llvm::Module *M = Fn->getParent();
1475         if (llvm::Function *Clone = M->getFunction(FDInlineName)) {
1476           Clone->replaceAllUsesWith(Fn);
1477           Clone->eraseFromParent();
1478         }
1479         break;
1480       }
1481     }
1482   }
1483 
1484   // Check if we should generate debug info for this function.
1485   if (FD->hasAttr<NoDebugAttr>()) {
1486     // Clear non-distinct debug info that was possibly attached to the function
1487     // due to an earlier declaration without the nodebug attribute
1488     Fn->setSubprogram(nullptr);
1489     // Disable debug info indefinitely for this function
1490     DebugInfo = nullptr;
1491   }
1492 
1493   // The function might not have a body if we're generating thunks for a
1494   // function declaration.
1495   SourceRange BodyRange;
1496   if (Stmt *Body = FD->getBody())
1497     BodyRange = Body->getSourceRange();
1498   else
1499     BodyRange = FD->getLocation();
1500   CurEHLocation = BodyRange.getEnd();
1501 
1502   // Use the location of the start of the function to determine where
1503   // the function definition is located. By default use the location
1504   // of the declaration as the location for the subprogram. A function
1505   // may lack a declaration in the source code if it is created by code
1506   // gen. (examples: _GLOBAL__I_a, __cxx_global_array_dtor, thunk).
1507   SourceLocation Loc = FD->getLocation();
1508 
1509   // If this is a function specialization then use the pattern body
1510   // as the location for the function.
1511   if (const FunctionDecl *SpecDecl = FD->getTemplateInstantiationPattern())
1512     if (SpecDecl->hasBody(SpecDecl))
1513       Loc = SpecDecl->getLocation();
1514 
1515   Stmt *Body = FD->getBody();
1516 
1517   if (Body) {
1518     // Coroutines always emit lifetime markers.
1519     if (isa<CoroutineBodyStmt>(Body))
1520       ShouldEmitLifetimeMarkers = true;
1521 
1522     // Initialize helper which will detect jumps which can cause invalid
1523     // lifetime markers.
1524     if (ShouldEmitLifetimeMarkers)
1525       Bypasses.Init(Body);
1526   }
1527 
1528   // Emit the standard function prologue.
1529   StartFunction(GD, ResTy, Fn, FnInfo, Args, Loc, BodyRange.getBegin());
1530 
1531   // Save parameters for coroutine function.
1532   if (Body && isa_and_nonnull<CoroutineBodyStmt>(Body))
1533     llvm::append_range(FnArgs, FD->parameters());
1534 
1535   // Ensure that the function adheres to the forward progress guarantee, which
1536   // is required by certain optimizations.
1537   // In C++11 and up, the attribute will be removed if the body contains a
1538   // trivial empty loop.
1539   if (checkIfFunctionMustProgress())
1540     CurFn->addFnAttr(llvm::Attribute::MustProgress);
1541 
1542   // Generate the body of the function.
1543   PGO.assignRegionCounters(GD, CurFn);
1544   if (isa<CXXDestructorDecl>(FD))
1545     EmitDestructorBody(Args);
1546   else if (isa<CXXConstructorDecl>(FD))
1547     EmitConstructorBody(Args);
1548   else if (getLangOpts().CUDA &&
1549            !getLangOpts().CUDAIsDevice &&
1550            FD->hasAttr<CUDAGlobalAttr>())
1551     CGM.getCUDARuntime().emitDeviceStub(*this, Args);
1552   else if (isa<CXXMethodDecl>(FD) &&
1553            cast<CXXMethodDecl>(FD)->isLambdaStaticInvoker()) {
1554     // The lambda static invoker function is special, because it forwards or
1555     // clones the body of the function call operator (but is actually static).
1556     EmitLambdaStaticInvokeBody(cast<CXXMethodDecl>(FD));
1557   } else if (isa<CXXMethodDecl>(FD) &&
1558              isLambdaCallOperator(cast<CXXMethodDecl>(FD)) &&
1559              !FnInfo.isDelegateCall() &&
1560              cast<CXXMethodDecl>(FD)->getParent()->getLambdaStaticInvoker() &&
1561              hasInAllocaArg(cast<CXXMethodDecl>(FD))) {
1562     // If emitting a lambda with static invoker on X86 Windows, change
1563     // the call operator body.
1564     // Make sure that this is a call operator with an inalloca arg and check
1565     // for delegate call to make sure this is the original call op and not the
1566     // new forwarding function for the static invoker.
1567     EmitLambdaInAllocaCallOpBody(cast<CXXMethodDecl>(FD));
1568   } else if (FD->isDefaulted() && isa<CXXMethodDecl>(FD) &&
1569              (cast<CXXMethodDecl>(FD)->isCopyAssignmentOperator() ||
1570               cast<CXXMethodDecl>(FD)->isMoveAssignmentOperator())) {
1571     // Implicit copy-assignment gets the same special treatment as implicit
1572     // copy-constructors.
1573     emitImplicitAssignmentOperatorBody(Args);
1574   } else if (Body) {
1575     EmitFunctionBody(Body);
1576   } else
1577     llvm_unreachable("no definition for emitted function");
1578 
1579   // C++11 [stmt.return]p2:
1580   //   Flowing off the end of a function [...] results in undefined behavior in
1581   //   a value-returning function.
1582   // C11 6.9.1p12:
1583   //   If the '}' that terminates a function is reached, and the value of the
1584   //   function call is used by the caller, the behavior is undefined.
1585   if (getLangOpts().CPlusPlus && !FD->hasImplicitReturnZero() && !SawAsmBlock &&
1586       !FD->getReturnType()->isVoidType() && Builder.GetInsertBlock()) {
1587     bool ShouldEmitUnreachable =
1588         CGM.getCodeGenOpts().StrictReturn ||
1589         !CGM.MayDropFunctionReturn(FD->getASTContext(), FD->getReturnType());
1590     if (SanOpts.has(SanitizerKind::Return)) {
1591       SanitizerScope SanScope(this);
1592       llvm::Value *IsFalse = Builder.getFalse();
1593       EmitCheck(std::make_pair(IsFalse, SanitizerKind::Return),
1594                 SanitizerHandler::MissingReturn,
1595                 EmitCheckSourceLocation(FD->getLocation()), std::nullopt);
1596     } else if (ShouldEmitUnreachable) {
1597       if (CGM.getCodeGenOpts().OptimizationLevel == 0)
1598         EmitTrapCall(llvm::Intrinsic::trap);
1599     }
1600     if (SanOpts.has(SanitizerKind::Return) || ShouldEmitUnreachable) {
1601       Builder.CreateUnreachable();
1602       Builder.ClearInsertionPoint();
1603     }
1604   }
1605 
1606   // Emit the standard function epilogue.
1607   FinishFunction(BodyRange.getEnd());
1608 
1609   // If we haven't marked the function nothrow through other means, do
1610   // a quick pass now to see if we can.
1611   if (!CurFn->doesNotThrow())
1612     TryMarkNoThrow(CurFn);
1613 }
1614 
1615 /// ContainsLabel - Return true if the statement contains a label in it.  If
1616 /// this statement is not executed normally, it not containing a label means
1617 /// that we can just remove the code.
1618 bool CodeGenFunction::ContainsLabel(const Stmt *S, bool IgnoreCaseStmts) {
1619   // Null statement, not a label!
1620   if (!S) return false;
1621 
1622   // If this is a label, we have to emit the code, consider something like:
1623   // if (0) {  ...  foo:  bar(); }  goto foo;
1624   //
1625   // TODO: If anyone cared, we could track __label__'s, since we know that you
1626   // can't jump to one from outside their declared region.
1627   if (isa<LabelStmt>(S))
1628     return true;
1629 
1630   // If this is a case/default statement, and we haven't seen a switch, we have
1631   // to emit the code.
1632   if (isa<SwitchCase>(S) && !IgnoreCaseStmts)
1633     return true;
1634 
1635   // If this is a switch statement, we want to ignore cases below it.
1636   if (isa<SwitchStmt>(S))
1637     IgnoreCaseStmts = true;
1638 
1639   // Scan subexpressions for verboten labels.
1640   for (const Stmt *SubStmt : S->children())
1641     if (ContainsLabel(SubStmt, IgnoreCaseStmts))
1642       return true;
1643 
1644   return false;
1645 }
1646 
1647 /// containsBreak - Return true if the statement contains a break out of it.
1648 /// If the statement (recursively) contains a switch or loop with a break
1649 /// inside of it, this is fine.
1650 bool CodeGenFunction::containsBreak(const Stmt *S) {
1651   // Null statement, not a label!
1652   if (!S) return false;
1653 
1654   // If this is a switch or loop that defines its own break scope, then we can
1655   // include it and anything inside of it.
1656   if (isa<SwitchStmt>(S) || isa<WhileStmt>(S) || isa<DoStmt>(S) ||
1657       isa<ForStmt>(S))
1658     return false;
1659 
1660   if (isa<BreakStmt>(S))
1661     return true;
1662 
1663   // Scan subexpressions for verboten breaks.
1664   for (const Stmt *SubStmt : S->children())
1665     if (containsBreak(SubStmt))
1666       return true;
1667 
1668   return false;
1669 }
1670 
1671 bool CodeGenFunction::mightAddDeclToScope(const Stmt *S) {
1672   if (!S) return false;
1673 
1674   // Some statement kinds add a scope and thus never add a decl to the current
1675   // scope. Note, this list is longer than the list of statements that might
1676   // have an unscoped decl nested within them, but this way is conservatively
1677   // correct even if more statement kinds are added.
1678   if (isa<IfStmt>(S) || isa<SwitchStmt>(S) || isa<WhileStmt>(S) ||
1679       isa<DoStmt>(S) || isa<ForStmt>(S) || isa<CompoundStmt>(S) ||
1680       isa<CXXForRangeStmt>(S) || isa<CXXTryStmt>(S) ||
1681       isa<ObjCForCollectionStmt>(S) || isa<ObjCAtTryStmt>(S))
1682     return false;
1683 
1684   if (isa<DeclStmt>(S))
1685     return true;
1686 
1687   for (const Stmt *SubStmt : S->children())
1688     if (mightAddDeclToScope(SubStmt))
1689       return true;
1690 
1691   return false;
1692 }
1693 
1694 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold
1695 /// to a constant, or if it does but contains a label, return false.  If it
1696 /// constant folds return true and set the boolean result in Result.
1697 bool CodeGenFunction::ConstantFoldsToSimpleInteger(const Expr *Cond,
1698                                                    bool &ResultBool,
1699                                                    bool AllowLabels) {
1700   // If MC/DC is enabled, disable folding so that we can instrument all
1701   // conditions to yield complete test vectors. We still keep track of
1702   // folded conditions during region mapping and visualization.
1703   if (!AllowLabels && CGM.getCodeGenOpts().hasProfileClangInstr() &&
1704       CGM.getCodeGenOpts().MCDCCoverage)
1705     return false;
1706 
1707   llvm::APSInt ResultInt;
1708   if (!ConstantFoldsToSimpleInteger(Cond, ResultInt, AllowLabels))
1709     return false;
1710 
1711   ResultBool = ResultInt.getBoolValue();
1712   return true;
1713 }
1714 
1715 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold
1716 /// to a constant, or if it does but contains a label, return false.  If it
1717 /// constant folds return true and set the folded value.
1718 bool CodeGenFunction::ConstantFoldsToSimpleInteger(const Expr *Cond,
1719                                                    llvm::APSInt &ResultInt,
1720                                                    bool AllowLabels) {
1721   // FIXME: Rename and handle conversion of other evaluatable things
1722   // to bool.
1723   Expr::EvalResult Result;
1724   if (!Cond->EvaluateAsInt(Result, getContext()))
1725     return false;  // Not foldable, not integer or not fully evaluatable.
1726 
1727   llvm::APSInt Int = Result.Val.getInt();
1728   if (!AllowLabels && CodeGenFunction::ContainsLabel(Cond))
1729     return false;  // Contains a label.
1730 
1731   ResultInt = Int;
1732   return true;
1733 }
1734 
1735 /// Strip parentheses and simplistic logical-NOT operators.
1736 const Expr *CodeGenFunction::stripCond(const Expr *C) {
1737   while (const UnaryOperator *Op = dyn_cast<UnaryOperator>(C->IgnoreParens())) {
1738     if (Op->getOpcode() != UO_LNot)
1739       break;
1740     C = Op->getSubExpr();
1741   }
1742   return C->IgnoreParens();
1743 }
1744 
1745 /// Determine whether the given condition is an instrumentable condition
1746 /// (i.e. no "&&" or "||").
1747 bool CodeGenFunction::isInstrumentedCondition(const Expr *C) {
1748   const BinaryOperator *BOp = dyn_cast<BinaryOperator>(stripCond(C));
1749   return (!BOp || !BOp->isLogicalOp());
1750 }
1751 
1752 /// EmitBranchToCounterBlock - Emit a conditional branch to a new block that
1753 /// increments a profile counter based on the semantics of the given logical
1754 /// operator opcode.  This is used to instrument branch condition coverage for
1755 /// logical operators.
1756 void CodeGenFunction::EmitBranchToCounterBlock(
1757     const Expr *Cond, BinaryOperator::Opcode LOp, llvm::BasicBlock *TrueBlock,
1758     llvm::BasicBlock *FalseBlock, uint64_t TrueCount /* = 0 */,
1759     Stmt::Likelihood LH /* =None */, const Expr *CntrIdx /* = nullptr */) {
1760   // If not instrumenting, just emit a branch.
1761   bool InstrumentRegions = CGM.getCodeGenOpts().hasProfileClangInstr();
1762   if (!InstrumentRegions || !isInstrumentedCondition(Cond))
1763     return EmitBranchOnBoolExpr(Cond, TrueBlock, FalseBlock, TrueCount, LH);
1764 
1765   const Stmt *CntrStmt = (CntrIdx ? CntrIdx : Cond);
1766 
1767   llvm::BasicBlock *ThenBlock = nullptr;
1768   llvm::BasicBlock *ElseBlock = nullptr;
1769   llvm::BasicBlock *NextBlock = nullptr;
1770 
1771   // Create the block we'll use to increment the appropriate counter.
1772   llvm::BasicBlock *CounterIncrBlock = createBasicBlock("lop.rhscnt");
1773 
1774   // Set block pointers according to Logical-AND (BO_LAnd) semantics. This
1775   // means we need to evaluate the condition and increment the counter on TRUE:
1776   //
1777   // if (Cond)
1778   //   goto CounterIncrBlock;
1779   // else
1780   //   goto FalseBlock;
1781   //
1782   // CounterIncrBlock:
1783   //   Counter++;
1784   //   goto TrueBlock;
1785 
1786   if (LOp == BO_LAnd) {
1787     ThenBlock = CounterIncrBlock;
1788     ElseBlock = FalseBlock;
1789     NextBlock = TrueBlock;
1790   }
1791 
1792   // Set block pointers according to Logical-OR (BO_LOr) semantics. This means
1793   // we need to evaluate the condition and increment the counter on FALSE:
1794   //
1795   // if (Cond)
1796   //   goto TrueBlock;
1797   // else
1798   //   goto CounterIncrBlock;
1799   //
1800   // CounterIncrBlock:
1801   //   Counter++;
1802   //   goto FalseBlock;
1803 
1804   else if (LOp == BO_LOr) {
1805     ThenBlock = TrueBlock;
1806     ElseBlock = CounterIncrBlock;
1807     NextBlock = FalseBlock;
1808   } else {
1809     llvm_unreachable("Expected Opcode must be that of a Logical Operator");
1810   }
1811 
1812   // Emit Branch based on condition.
1813   EmitBranchOnBoolExpr(Cond, ThenBlock, ElseBlock, TrueCount, LH);
1814 
1815   // Emit the block containing the counter increment(s).
1816   EmitBlock(CounterIncrBlock);
1817 
1818   // Increment corresponding counter; if index not provided, use Cond as index.
1819   incrementProfileCounter(CntrStmt);
1820 
1821   // Go to the next block.
1822   EmitBranch(NextBlock);
1823 }
1824 
1825 /// EmitBranchOnBoolExpr - Emit a branch on a boolean condition (e.g. for an if
1826 /// statement) to the specified blocks.  Based on the condition, this might try
1827 /// to simplify the codegen of the conditional based on the branch.
1828 /// \param LH The value of the likelihood attribute on the True branch.
1829 /// \param ConditionalOp Used by MC/DC code coverage to track the result of the
1830 /// ConditionalOperator (ternary) through a recursive call for the operator's
1831 /// LHS and RHS nodes.
1832 void CodeGenFunction::EmitBranchOnBoolExpr(
1833     const Expr *Cond, llvm::BasicBlock *TrueBlock, llvm::BasicBlock *FalseBlock,
1834     uint64_t TrueCount, Stmt::Likelihood LH, const Expr *ConditionalOp) {
1835   Cond = Cond->IgnoreParens();
1836 
1837   if (const BinaryOperator *CondBOp = dyn_cast<BinaryOperator>(Cond)) {
1838     // Handle X && Y in a condition.
1839     if (CondBOp->getOpcode() == BO_LAnd) {
1840       MCDCLogOpStack.push_back(CondBOp);
1841 
1842       // If we have "1 && X", simplify the code.  "0 && X" would have constant
1843       // folded if the case was simple enough.
1844       bool ConstantBool = false;
1845       if (ConstantFoldsToSimpleInteger(CondBOp->getLHS(), ConstantBool) &&
1846           ConstantBool) {
1847         // br(1 && X) -> br(X).
1848         incrementProfileCounter(CondBOp);
1849         EmitBranchToCounterBlock(CondBOp->getRHS(), BO_LAnd, TrueBlock,
1850                                  FalseBlock, TrueCount, LH);
1851         MCDCLogOpStack.pop_back();
1852         return;
1853       }
1854 
1855       // If we have "X && 1", simplify the code to use an uncond branch.
1856       // "X && 0" would have been constant folded to 0.
1857       if (ConstantFoldsToSimpleInteger(CondBOp->getRHS(), ConstantBool) &&
1858           ConstantBool) {
1859         // br(X && 1) -> br(X).
1860         EmitBranchToCounterBlock(CondBOp->getLHS(), BO_LAnd, TrueBlock,
1861                                  FalseBlock, TrueCount, LH, CondBOp);
1862         MCDCLogOpStack.pop_back();
1863         return;
1864       }
1865 
1866       // Emit the LHS as a conditional.  If the LHS conditional is false, we
1867       // want to jump to the FalseBlock.
1868       llvm::BasicBlock *LHSTrue = createBasicBlock("land.lhs.true");
1869       // The counter tells us how often we evaluate RHS, and all of TrueCount
1870       // can be propagated to that branch.
1871       uint64_t RHSCount = getProfileCount(CondBOp->getRHS());
1872 
1873       ConditionalEvaluation eval(*this);
1874       {
1875         ApplyDebugLocation DL(*this, Cond);
1876         // Propagate the likelihood attribute like __builtin_expect
1877         // __builtin_expect(X && Y, 1) -> X and Y are likely
1878         // __builtin_expect(X && Y, 0) -> only Y is unlikely
1879         EmitBranchOnBoolExpr(CondBOp->getLHS(), LHSTrue, FalseBlock, RHSCount,
1880                              LH == Stmt::LH_Unlikely ? Stmt::LH_None : LH);
1881         EmitBlock(LHSTrue);
1882       }
1883 
1884       incrementProfileCounter(CondBOp);
1885       setCurrentProfileCount(getProfileCount(CondBOp->getRHS()));
1886 
1887       // Any temporaries created here are conditional.
1888       eval.begin(*this);
1889       EmitBranchToCounterBlock(CondBOp->getRHS(), BO_LAnd, TrueBlock,
1890                                FalseBlock, TrueCount, LH);
1891       eval.end(*this);
1892       MCDCLogOpStack.pop_back();
1893       return;
1894     }
1895 
1896     if (CondBOp->getOpcode() == BO_LOr) {
1897       MCDCLogOpStack.push_back(CondBOp);
1898 
1899       // If we have "0 || X", simplify the code.  "1 || X" would have constant
1900       // folded if the case was simple enough.
1901       bool ConstantBool = false;
1902       if (ConstantFoldsToSimpleInteger(CondBOp->getLHS(), ConstantBool) &&
1903           !ConstantBool) {
1904         // br(0 || X) -> br(X).
1905         incrementProfileCounter(CondBOp);
1906         EmitBranchToCounterBlock(CondBOp->getRHS(), BO_LOr, TrueBlock,
1907                                  FalseBlock, TrueCount, LH);
1908         MCDCLogOpStack.pop_back();
1909         return;
1910       }
1911 
1912       // If we have "X || 0", simplify the code to use an uncond branch.
1913       // "X || 1" would have been constant folded to 1.
1914       if (ConstantFoldsToSimpleInteger(CondBOp->getRHS(), ConstantBool) &&
1915           !ConstantBool) {
1916         // br(X || 0) -> br(X).
1917         EmitBranchToCounterBlock(CondBOp->getLHS(), BO_LOr, TrueBlock,
1918                                  FalseBlock, TrueCount, LH, CondBOp);
1919         MCDCLogOpStack.pop_back();
1920         return;
1921       }
1922       // Emit the LHS as a conditional.  If the LHS conditional is true, we
1923       // want to jump to the TrueBlock.
1924       llvm::BasicBlock *LHSFalse = createBasicBlock("lor.lhs.false");
1925       // We have the count for entry to the RHS and for the whole expression
1926       // being true, so we can divy up True count between the short circuit and
1927       // the RHS.
1928       uint64_t LHSCount =
1929           getCurrentProfileCount() - getProfileCount(CondBOp->getRHS());
1930       uint64_t RHSCount = TrueCount - LHSCount;
1931 
1932       ConditionalEvaluation eval(*this);
1933       {
1934         // Propagate the likelihood attribute like __builtin_expect
1935         // __builtin_expect(X || Y, 1) -> only Y is likely
1936         // __builtin_expect(X || Y, 0) -> both X and Y are unlikely
1937         ApplyDebugLocation DL(*this, Cond);
1938         EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, LHSFalse, LHSCount,
1939                              LH == Stmt::LH_Likely ? Stmt::LH_None : LH);
1940         EmitBlock(LHSFalse);
1941       }
1942 
1943       incrementProfileCounter(CondBOp);
1944       setCurrentProfileCount(getProfileCount(CondBOp->getRHS()));
1945 
1946       // Any temporaries created here are conditional.
1947       eval.begin(*this);
1948       EmitBranchToCounterBlock(CondBOp->getRHS(), BO_LOr, TrueBlock, FalseBlock,
1949                                RHSCount, LH);
1950 
1951       eval.end(*this);
1952       MCDCLogOpStack.pop_back();
1953       return;
1954     }
1955   }
1956 
1957   if (const UnaryOperator *CondUOp = dyn_cast<UnaryOperator>(Cond)) {
1958     // br(!x, t, f) -> br(x, f, t)
1959     // Avoid doing this optimization when instrumenting a condition for MC/DC.
1960     // LNot is taken as part of the condition for simplicity, and changing its
1961     // sense negatively impacts test vector tracking.
1962     bool MCDCCondition = CGM.getCodeGenOpts().hasProfileClangInstr() &&
1963                          CGM.getCodeGenOpts().MCDCCoverage &&
1964                          isInstrumentedCondition(Cond);
1965     if (CondUOp->getOpcode() == UO_LNot && !MCDCCondition) {
1966       // Negate the count.
1967       uint64_t FalseCount = getCurrentProfileCount() - TrueCount;
1968       // The values of the enum are chosen to make this negation possible.
1969       LH = static_cast<Stmt::Likelihood>(-LH);
1970       // Negate the condition and swap the destination blocks.
1971       return EmitBranchOnBoolExpr(CondUOp->getSubExpr(), FalseBlock, TrueBlock,
1972                                   FalseCount, LH);
1973     }
1974   }
1975 
1976   if (const ConditionalOperator *CondOp = dyn_cast<ConditionalOperator>(Cond)) {
1977     // br(c ? x : y, t, f) -> br(c, br(x, t, f), br(y, t, f))
1978     llvm::BasicBlock *LHSBlock = createBasicBlock("cond.true");
1979     llvm::BasicBlock *RHSBlock = createBasicBlock("cond.false");
1980 
1981     // The ConditionalOperator itself has no likelihood information for its
1982     // true and false branches. This matches the behavior of __builtin_expect.
1983     ConditionalEvaluation cond(*this);
1984     EmitBranchOnBoolExpr(CondOp->getCond(), LHSBlock, RHSBlock,
1985                          getProfileCount(CondOp), Stmt::LH_None);
1986 
1987     // When computing PGO branch weights, we only know the overall count for
1988     // the true block. This code is essentially doing tail duplication of the
1989     // naive code-gen, introducing new edges for which counts are not
1990     // available. Divide the counts proportionally between the LHS and RHS of
1991     // the conditional operator.
1992     uint64_t LHSScaledTrueCount = 0;
1993     if (TrueCount) {
1994       double LHSRatio =
1995           getProfileCount(CondOp) / (double)getCurrentProfileCount();
1996       LHSScaledTrueCount = TrueCount * LHSRatio;
1997     }
1998 
1999     cond.begin(*this);
2000     EmitBlock(LHSBlock);
2001     incrementProfileCounter(CondOp);
2002     {
2003       ApplyDebugLocation DL(*this, Cond);
2004       EmitBranchOnBoolExpr(CondOp->getLHS(), TrueBlock, FalseBlock,
2005                            LHSScaledTrueCount, LH, CondOp);
2006     }
2007     cond.end(*this);
2008 
2009     cond.begin(*this);
2010     EmitBlock(RHSBlock);
2011     EmitBranchOnBoolExpr(CondOp->getRHS(), TrueBlock, FalseBlock,
2012                          TrueCount - LHSScaledTrueCount, LH, CondOp);
2013     cond.end(*this);
2014 
2015     return;
2016   }
2017 
2018   if (const CXXThrowExpr *Throw = dyn_cast<CXXThrowExpr>(Cond)) {
2019     // Conditional operator handling can give us a throw expression as a
2020     // condition for a case like:
2021     //   br(c ? throw x : y, t, f) -> br(c, br(throw x, t, f), br(y, t, f)
2022     // Fold this to:
2023     //   br(c, throw x, br(y, t, f))
2024     EmitCXXThrowExpr(Throw, /*KeepInsertionPoint*/false);
2025     return;
2026   }
2027 
2028   // Emit the code with the fully general case.
2029   llvm::Value *CondV;
2030   {
2031     ApplyDebugLocation DL(*this, Cond);
2032     CondV = EvaluateExprAsBool(Cond);
2033   }
2034 
2035   // If not at the top of the logical operator nest, update MCDC temp with the
2036   // boolean result of the evaluated condition.
2037   if (!MCDCLogOpStack.empty()) {
2038     const Expr *MCDCBaseExpr = Cond;
2039     // When a nested ConditionalOperator (ternary) is encountered in a boolean
2040     // expression, MC/DC tracks the result of the ternary, and this is tied to
2041     // the ConditionalOperator expression and not the ternary's LHS or RHS. If
2042     // this is the case, the ConditionalOperator expression is passed through
2043     // the ConditionalOp parameter and then used as the MCDC base expression.
2044     if (ConditionalOp)
2045       MCDCBaseExpr = ConditionalOp;
2046 
2047     maybeUpdateMCDCCondBitmap(MCDCBaseExpr, CondV);
2048   }
2049 
2050   llvm::MDNode *Weights = nullptr;
2051   llvm::MDNode *Unpredictable = nullptr;
2052 
2053   // If the branch has a condition wrapped by __builtin_unpredictable,
2054   // create metadata that specifies that the branch is unpredictable.
2055   // Don't bother if not optimizing because that metadata would not be used.
2056   auto *Call = dyn_cast<CallExpr>(Cond->IgnoreImpCasts());
2057   if (Call && CGM.getCodeGenOpts().OptimizationLevel != 0) {
2058     auto *FD = dyn_cast_or_null<FunctionDecl>(Call->getCalleeDecl());
2059     if (FD && FD->getBuiltinID() == Builtin::BI__builtin_unpredictable) {
2060       llvm::MDBuilder MDHelper(getLLVMContext());
2061       Unpredictable = MDHelper.createUnpredictable();
2062     }
2063   }
2064 
2065   // If there is a Likelihood knowledge for the cond, lower it.
2066   // Note that if not optimizing this won't emit anything.
2067   llvm::Value *NewCondV = emitCondLikelihoodViaExpectIntrinsic(CondV, LH);
2068   if (CondV != NewCondV)
2069     CondV = NewCondV;
2070   else {
2071     // Otherwise, lower profile counts. Note that we do this even at -O0.
2072     uint64_t CurrentCount = std::max(getCurrentProfileCount(), TrueCount);
2073     Weights = createProfileWeights(TrueCount, CurrentCount - TrueCount);
2074   }
2075 
2076   Builder.CreateCondBr(CondV, TrueBlock, FalseBlock, Weights, Unpredictable);
2077 }
2078 
2079 /// ErrorUnsupported - Print out an error that codegen doesn't support the
2080 /// specified stmt yet.
2081 void CodeGenFunction::ErrorUnsupported(const Stmt *S, const char *Type) {
2082   CGM.ErrorUnsupported(S, Type);
2083 }
2084 
2085 /// emitNonZeroVLAInit - Emit the "zero" initialization of a
2086 /// variable-length array whose elements have a non-zero bit-pattern.
2087 ///
2088 /// \param baseType the inner-most element type of the array
2089 /// \param src - a char* pointing to the bit-pattern for a single
2090 /// base element of the array
2091 /// \param sizeInChars - the total size of the VLA, in chars
2092 static void emitNonZeroVLAInit(CodeGenFunction &CGF, QualType baseType,
2093                                Address dest, Address src,
2094                                llvm::Value *sizeInChars) {
2095   CGBuilderTy &Builder = CGF.Builder;
2096 
2097   CharUnits baseSize = CGF.getContext().getTypeSizeInChars(baseType);
2098   llvm::Value *baseSizeInChars
2099     = llvm::ConstantInt::get(CGF.IntPtrTy, baseSize.getQuantity());
2100 
2101   Address begin = dest.withElementType(CGF.Int8Ty);
2102   llvm::Value *end = Builder.CreateInBoundsGEP(begin.getElementType(),
2103                                                begin.emitRawPointer(CGF),
2104                                                sizeInChars, "vla.end");
2105 
2106   llvm::BasicBlock *originBB = CGF.Builder.GetInsertBlock();
2107   llvm::BasicBlock *loopBB = CGF.createBasicBlock("vla-init.loop");
2108   llvm::BasicBlock *contBB = CGF.createBasicBlock("vla-init.cont");
2109 
2110   // Make a loop over the VLA.  C99 guarantees that the VLA element
2111   // count must be nonzero.
2112   CGF.EmitBlock(loopBB);
2113 
2114   llvm::PHINode *cur = Builder.CreatePHI(begin.getType(), 2, "vla.cur");
2115   cur->addIncoming(begin.emitRawPointer(CGF), originBB);
2116 
2117   CharUnits curAlign =
2118     dest.getAlignment().alignmentOfArrayElement(baseSize);
2119 
2120   // memcpy the individual element bit-pattern.
2121   Builder.CreateMemCpy(Address(cur, CGF.Int8Ty, curAlign), src, baseSizeInChars,
2122                        /*volatile*/ false);
2123 
2124   // Go to the next element.
2125   llvm::Value *next =
2126     Builder.CreateInBoundsGEP(CGF.Int8Ty, cur, baseSizeInChars, "vla.next");
2127 
2128   // Leave if that's the end of the VLA.
2129   llvm::Value *done = Builder.CreateICmpEQ(next, end, "vla-init.isdone");
2130   Builder.CreateCondBr(done, contBB, loopBB);
2131   cur->addIncoming(next, loopBB);
2132 
2133   CGF.EmitBlock(contBB);
2134 }
2135 
2136 void
2137 CodeGenFunction::EmitNullInitialization(Address DestPtr, QualType Ty) {
2138   // Ignore empty classes in C++.
2139   if (getLangOpts().CPlusPlus) {
2140     if (const RecordType *RT = Ty->getAs<RecordType>()) {
2141       if (cast<CXXRecordDecl>(RT->getDecl())->isEmpty())
2142         return;
2143     }
2144   }
2145 
2146   if (DestPtr.getElementType() != Int8Ty)
2147     DestPtr = DestPtr.withElementType(Int8Ty);
2148 
2149   // Get size and alignment info for this aggregate.
2150   CharUnits size = getContext().getTypeSizeInChars(Ty);
2151 
2152   llvm::Value *SizeVal;
2153   const VariableArrayType *vla;
2154 
2155   // Don't bother emitting a zero-byte memset.
2156   if (size.isZero()) {
2157     // But note that getTypeInfo returns 0 for a VLA.
2158     if (const VariableArrayType *vlaType =
2159           dyn_cast_or_null<VariableArrayType>(
2160                                           getContext().getAsArrayType(Ty))) {
2161       auto VlaSize = getVLASize(vlaType);
2162       SizeVal = VlaSize.NumElts;
2163       CharUnits eltSize = getContext().getTypeSizeInChars(VlaSize.Type);
2164       if (!eltSize.isOne())
2165         SizeVal = Builder.CreateNUWMul(SizeVal, CGM.getSize(eltSize));
2166       vla = vlaType;
2167     } else {
2168       return;
2169     }
2170   } else {
2171     SizeVal = CGM.getSize(size);
2172     vla = nullptr;
2173   }
2174 
2175   // If the type contains a pointer to data member we can't memset it to zero.
2176   // Instead, create a null constant and copy it to the destination.
2177   // TODO: there are other patterns besides zero that we can usefully memset,
2178   // like -1, which happens to be the pattern used by member-pointers.
2179   if (!CGM.getTypes().isZeroInitializable(Ty)) {
2180     // For a VLA, emit a single element, then splat that over the VLA.
2181     if (vla) Ty = getContext().getBaseElementType(vla);
2182 
2183     llvm::Constant *NullConstant = CGM.EmitNullConstant(Ty);
2184 
2185     llvm::GlobalVariable *NullVariable =
2186       new llvm::GlobalVariable(CGM.getModule(), NullConstant->getType(),
2187                                /*isConstant=*/true,
2188                                llvm::GlobalVariable::PrivateLinkage,
2189                                NullConstant, Twine());
2190     CharUnits NullAlign = DestPtr.getAlignment();
2191     NullVariable->setAlignment(NullAlign.getAsAlign());
2192     Address SrcPtr(NullVariable, Builder.getInt8Ty(), NullAlign);
2193 
2194     if (vla) return emitNonZeroVLAInit(*this, Ty, DestPtr, SrcPtr, SizeVal);
2195 
2196     // Get and call the appropriate llvm.memcpy overload.
2197     Builder.CreateMemCpy(DestPtr, SrcPtr, SizeVal, false);
2198     return;
2199   }
2200 
2201   // Otherwise, just memset the whole thing to zero.  This is legal
2202   // because in LLVM, all default initializers (other than the ones we just
2203   // handled above) are guaranteed to have a bit pattern of all zeros.
2204   Builder.CreateMemSet(DestPtr, Builder.getInt8(0), SizeVal, false);
2205 }
2206 
2207 llvm::BlockAddress *CodeGenFunction::GetAddrOfLabel(const LabelDecl *L) {
2208   // Make sure that there is a block for the indirect goto.
2209   if (!IndirectBranch)
2210     GetIndirectGotoBlock();
2211 
2212   llvm::BasicBlock *BB = getJumpDestForLabel(L).getBlock();
2213 
2214   // Make sure the indirect branch includes all of the address-taken blocks.
2215   IndirectBranch->addDestination(BB);
2216   return llvm::BlockAddress::get(CurFn, BB);
2217 }
2218 
2219 llvm::BasicBlock *CodeGenFunction::GetIndirectGotoBlock() {
2220   // If we already made the indirect branch for indirect goto, return its block.
2221   if (IndirectBranch) return IndirectBranch->getParent();
2222 
2223   CGBuilderTy TmpBuilder(*this, createBasicBlock("indirectgoto"));
2224 
2225   // Create the PHI node that indirect gotos will add entries to.
2226   llvm::Value *DestVal = TmpBuilder.CreatePHI(Int8PtrTy, 0,
2227                                               "indirect.goto.dest");
2228 
2229   // Create the indirect branch instruction.
2230   IndirectBranch = TmpBuilder.CreateIndirectBr(DestVal);
2231   return IndirectBranch->getParent();
2232 }
2233 
2234 /// Computes the length of an array in elements, as well as the base
2235 /// element type and a properly-typed first element pointer.
2236 llvm::Value *CodeGenFunction::emitArrayLength(const ArrayType *origArrayType,
2237                                               QualType &baseType,
2238                                               Address &addr) {
2239   const ArrayType *arrayType = origArrayType;
2240 
2241   // If it's a VLA, we have to load the stored size.  Note that
2242   // this is the size of the VLA in bytes, not its size in elements.
2243   llvm::Value *numVLAElements = nullptr;
2244   if (isa<VariableArrayType>(arrayType)) {
2245     numVLAElements = getVLASize(cast<VariableArrayType>(arrayType)).NumElts;
2246 
2247     // Walk into all VLAs.  This doesn't require changes to addr,
2248     // which has type T* where T is the first non-VLA element type.
2249     do {
2250       QualType elementType = arrayType->getElementType();
2251       arrayType = getContext().getAsArrayType(elementType);
2252 
2253       // If we only have VLA components, 'addr' requires no adjustment.
2254       if (!arrayType) {
2255         baseType = elementType;
2256         return numVLAElements;
2257       }
2258     } while (isa<VariableArrayType>(arrayType));
2259 
2260     // We get out here only if we find a constant array type
2261     // inside the VLA.
2262   }
2263 
2264   // We have some number of constant-length arrays, so addr should
2265   // have LLVM type [M x [N x [...]]]*.  Build a GEP that walks
2266   // down to the first element of addr.
2267   SmallVector<llvm::Value*, 8> gepIndices;
2268 
2269   // GEP down to the array type.
2270   llvm::ConstantInt *zero = Builder.getInt32(0);
2271   gepIndices.push_back(zero);
2272 
2273   uint64_t countFromCLAs = 1;
2274   QualType eltType;
2275 
2276   llvm::ArrayType *llvmArrayType =
2277     dyn_cast<llvm::ArrayType>(addr.getElementType());
2278   while (llvmArrayType) {
2279     assert(isa<ConstantArrayType>(arrayType));
2280     assert(cast<ConstantArrayType>(arrayType)->getZExtSize() ==
2281            llvmArrayType->getNumElements());
2282 
2283     gepIndices.push_back(zero);
2284     countFromCLAs *= llvmArrayType->getNumElements();
2285     eltType = arrayType->getElementType();
2286 
2287     llvmArrayType =
2288       dyn_cast<llvm::ArrayType>(llvmArrayType->getElementType());
2289     arrayType = getContext().getAsArrayType(arrayType->getElementType());
2290     assert((!llvmArrayType || arrayType) &&
2291            "LLVM and Clang types are out-of-synch");
2292   }
2293 
2294   if (arrayType) {
2295     // From this point onwards, the Clang array type has been emitted
2296     // as some other type (probably a packed struct). Compute the array
2297     // size, and just emit the 'begin' expression as a bitcast.
2298     while (arrayType) {
2299       countFromCLAs *= cast<ConstantArrayType>(arrayType)->getZExtSize();
2300       eltType = arrayType->getElementType();
2301       arrayType = getContext().getAsArrayType(eltType);
2302     }
2303 
2304     llvm::Type *baseType = ConvertType(eltType);
2305     addr = addr.withElementType(baseType);
2306   } else {
2307     // Create the actual GEP.
2308     addr = Address(Builder.CreateInBoundsGEP(addr.getElementType(),
2309                                              addr.emitRawPointer(*this),
2310                                              gepIndices, "array.begin"),
2311                    ConvertTypeForMem(eltType), addr.getAlignment());
2312   }
2313 
2314   baseType = eltType;
2315 
2316   llvm::Value *numElements
2317     = llvm::ConstantInt::get(SizeTy, countFromCLAs);
2318 
2319   // If we had any VLA dimensions, factor them in.
2320   if (numVLAElements)
2321     numElements = Builder.CreateNUWMul(numVLAElements, numElements);
2322 
2323   return numElements;
2324 }
2325 
2326 CodeGenFunction::VlaSizePair CodeGenFunction::getVLASize(QualType type) {
2327   const VariableArrayType *vla = getContext().getAsVariableArrayType(type);
2328   assert(vla && "type was not a variable array type!");
2329   return getVLASize(vla);
2330 }
2331 
2332 CodeGenFunction::VlaSizePair
2333 CodeGenFunction::getVLASize(const VariableArrayType *type) {
2334   // The number of elements so far; always size_t.
2335   llvm::Value *numElements = nullptr;
2336 
2337   QualType elementType;
2338   do {
2339     elementType = type->getElementType();
2340     llvm::Value *vlaSize = VLASizeMap[type->getSizeExpr()];
2341     assert(vlaSize && "no size for VLA!");
2342     assert(vlaSize->getType() == SizeTy);
2343 
2344     if (!numElements) {
2345       numElements = vlaSize;
2346     } else {
2347       // It's undefined behavior if this wraps around, so mark it that way.
2348       // FIXME: Teach -fsanitize=undefined to trap this.
2349       numElements = Builder.CreateNUWMul(numElements, vlaSize);
2350     }
2351   } while ((type = getContext().getAsVariableArrayType(elementType)));
2352 
2353   return { numElements, elementType };
2354 }
2355 
2356 CodeGenFunction::VlaSizePair
2357 CodeGenFunction::getVLAElements1D(QualType type) {
2358   const VariableArrayType *vla = getContext().getAsVariableArrayType(type);
2359   assert(vla && "type was not a variable array type!");
2360   return getVLAElements1D(vla);
2361 }
2362 
2363 CodeGenFunction::VlaSizePair
2364 CodeGenFunction::getVLAElements1D(const VariableArrayType *Vla) {
2365   llvm::Value *VlaSize = VLASizeMap[Vla->getSizeExpr()];
2366   assert(VlaSize && "no size for VLA!");
2367   assert(VlaSize->getType() == SizeTy);
2368   return { VlaSize, Vla->getElementType() };
2369 }
2370 
2371 void CodeGenFunction::EmitVariablyModifiedType(QualType type) {
2372   assert(type->isVariablyModifiedType() &&
2373          "Must pass variably modified type to EmitVLASizes!");
2374 
2375   EnsureInsertPoint();
2376 
2377   // We're going to walk down into the type and look for VLA
2378   // expressions.
2379   do {
2380     assert(type->isVariablyModifiedType());
2381 
2382     const Type *ty = type.getTypePtr();
2383     switch (ty->getTypeClass()) {
2384 
2385 #define TYPE(Class, Base)
2386 #define ABSTRACT_TYPE(Class, Base)
2387 #define NON_CANONICAL_TYPE(Class, Base)
2388 #define DEPENDENT_TYPE(Class, Base) case Type::Class:
2389 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base)
2390 #include "clang/AST/TypeNodes.inc"
2391       llvm_unreachable("unexpected dependent type!");
2392 
2393     // These types are never variably-modified.
2394     case Type::Builtin:
2395     case Type::Complex:
2396     case Type::Vector:
2397     case Type::ExtVector:
2398     case Type::ConstantMatrix:
2399     case Type::Record:
2400     case Type::Enum:
2401     case Type::Using:
2402     case Type::TemplateSpecialization:
2403     case Type::ObjCTypeParam:
2404     case Type::ObjCObject:
2405     case Type::ObjCInterface:
2406     case Type::ObjCObjectPointer:
2407     case Type::BitInt:
2408       llvm_unreachable("type class is never variably-modified!");
2409 
2410     case Type::Elaborated:
2411       type = cast<ElaboratedType>(ty)->getNamedType();
2412       break;
2413 
2414     case Type::Adjusted:
2415       type = cast<AdjustedType>(ty)->getAdjustedType();
2416       break;
2417 
2418     case Type::Decayed:
2419       type = cast<DecayedType>(ty)->getPointeeType();
2420       break;
2421 
2422     case Type::Pointer:
2423       type = cast<PointerType>(ty)->getPointeeType();
2424       break;
2425 
2426     case Type::BlockPointer:
2427       type = cast<BlockPointerType>(ty)->getPointeeType();
2428       break;
2429 
2430     case Type::LValueReference:
2431     case Type::RValueReference:
2432       type = cast<ReferenceType>(ty)->getPointeeType();
2433       break;
2434 
2435     case Type::MemberPointer:
2436       type = cast<MemberPointerType>(ty)->getPointeeType();
2437       break;
2438 
2439     case Type::ArrayParameter:
2440     case Type::ConstantArray:
2441     case Type::IncompleteArray:
2442       // Losing element qualification here is fine.
2443       type = cast<ArrayType>(ty)->getElementType();
2444       break;
2445 
2446     case Type::VariableArray: {
2447       // Losing element qualification here is fine.
2448       const VariableArrayType *vat = cast<VariableArrayType>(ty);
2449 
2450       // Unknown size indication requires no size computation.
2451       // Otherwise, evaluate and record it.
2452       if (const Expr *sizeExpr = vat->getSizeExpr()) {
2453         // It's possible that we might have emitted this already,
2454         // e.g. with a typedef and a pointer to it.
2455         llvm::Value *&entry = VLASizeMap[sizeExpr];
2456         if (!entry) {
2457           llvm::Value *size = EmitScalarExpr(sizeExpr);
2458 
2459           // C11 6.7.6.2p5:
2460           //   If the size is an expression that is not an integer constant
2461           //   expression [...] each time it is evaluated it shall have a value
2462           //   greater than zero.
2463           if (SanOpts.has(SanitizerKind::VLABound)) {
2464             SanitizerScope SanScope(this);
2465             llvm::Value *Zero = llvm::Constant::getNullValue(size->getType());
2466             clang::QualType SEType = sizeExpr->getType();
2467             llvm::Value *CheckCondition =
2468                 SEType->isSignedIntegerType()
2469                     ? Builder.CreateICmpSGT(size, Zero)
2470                     : Builder.CreateICmpUGT(size, Zero);
2471             llvm::Constant *StaticArgs[] = {
2472                 EmitCheckSourceLocation(sizeExpr->getBeginLoc()),
2473                 EmitCheckTypeDescriptor(SEType)};
2474             EmitCheck(std::make_pair(CheckCondition, SanitizerKind::VLABound),
2475                       SanitizerHandler::VLABoundNotPositive, StaticArgs, size);
2476           }
2477 
2478           // Always zexting here would be wrong if it weren't
2479           // undefined behavior to have a negative bound.
2480           // FIXME: What about when size's type is larger than size_t?
2481           entry = Builder.CreateIntCast(size, SizeTy, /*signed*/ false);
2482         }
2483       }
2484       type = vat->getElementType();
2485       break;
2486     }
2487 
2488     case Type::FunctionProto:
2489     case Type::FunctionNoProto:
2490       type = cast<FunctionType>(ty)->getReturnType();
2491       break;
2492 
2493     case Type::Paren:
2494     case Type::TypeOf:
2495     case Type::UnaryTransform:
2496     case Type::Attributed:
2497     case Type::BTFTagAttributed:
2498     case Type::HLSLAttributedResource:
2499     case Type::SubstTemplateTypeParm:
2500     case Type::MacroQualified:
2501     case Type::CountAttributed:
2502       // Keep walking after single level desugaring.
2503       type = type.getSingleStepDesugaredType(getContext());
2504       break;
2505 
2506     case Type::Typedef:
2507     case Type::Decltype:
2508     case Type::Auto:
2509     case Type::DeducedTemplateSpecialization:
2510     case Type::PackIndexing:
2511       // Stop walking: nothing to do.
2512       return;
2513 
2514     case Type::TypeOfExpr:
2515       // Stop walking: emit typeof expression.
2516       EmitIgnoredExpr(cast<TypeOfExprType>(ty)->getUnderlyingExpr());
2517       return;
2518 
2519     case Type::Atomic:
2520       type = cast<AtomicType>(ty)->getValueType();
2521       break;
2522 
2523     case Type::Pipe:
2524       type = cast<PipeType>(ty)->getElementType();
2525       break;
2526     }
2527   } while (type->isVariablyModifiedType());
2528 }
2529 
2530 Address CodeGenFunction::EmitVAListRef(const Expr* E) {
2531   if (getContext().getBuiltinVaListType()->isArrayType())
2532     return EmitPointerWithAlignment(E);
2533   return EmitLValue(E).getAddress();
2534 }
2535 
2536 Address CodeGenFunction::EmitMSVAListRef(const Expr *E) {
2537   return EmitLValue(E).getAddress();
2538 }
2539 
2540 void CodeGenFunction::EmitDeclRefExprDbgValue(const DeclRefExpr *E,
2541                                               const APValue &Init) {
2542   assert(Init.hasValue() && "Invalid DeclRefExpr initializer!");
2543   if (CGDebugInfo *Dbg = getDebugInfo())
2544     if (CGM.getCodeGenOpts().hasReducedDebugInfo())
2545       Dbg->EmitGlobalVariable(E->getDecl(), Init);
2546 }
2547 
2548 CodeGenFunction::PeepholeProtection
2549 CodeGenFunction::protectFromPeepholes(RValue rvalue) {
2550   // At the moment, the only aggressive peephole we do in IR gen
2551   // is trunc(zext) folding, but if we add more, we can easily
2552   // extend this protection.
2553 
2554   if (!rvalue.isScalar()) return PeepholeProtection();
2555   llvm::Value *value = rvalue.getScalarVal();
2556   if (!isa<llvm::ZExtInst>(value)) return PeepholeProtection();
2557 
2558   // Just make an extra bitcast.
2559   assert(HaveInsertPoint());
2560   llvm::Instruction *inst = new llvm::BitCastInst(value, value->getType(), "",
2561                                                   Builder.GetInsertBlock());
2562 
2563   PeepholeProtection protection;
2564   protection.Inst = inst;
2565   return protection;
2566 }
2567 
2568 void CodeGenFunction::unprotectFromPeepholes(PeepholeProtection protection) {
2569   if (!protection.Inst) return;
2570 
2571   // In theory, we could try to duplicate the peepholes now, but whatever.
2572   protection.Inst->eraseFromParent();
2573 }
2574 
2575 void CodeGenFunction::emitAlignmentAssumption(llvm::Value *PtrValue,
2576                                               QualType Ty, SourceLocation Loc,
2577                                               SourceLocation AssumptionLoc,
2578                                               llvm::Value *Alignment,
2579                                               llvm::Value *OffsetValue) {
2580   if (Alignment->getType() != IntPtrTy)
2581     Alignment =
2582         Builder.CreateIntCast(Alignment, IntPtrTy, false, "casted.align");
2583   if (OffsetValue && OffsetValue->getType() != IntPtrTy)
2584     OffsetValue =
2585         Builder.CreateIntCast(OffsetValue, IntPtrTy, true, "casted.offset");
2586   llvm::Value *TheCheck = nullptr;
2587   if (SanOpts.has(SanitizerKind::Alignment)) {
2588     llvm::Value *PtrIntValue =
2589         Builder.CreatePtrToInt(PtrValue, IntPtrTy, "ptrint");
2590 
2591     if (OffsetValue) {
2592       bool IsOffsetZero = false;
2593       if (const auto *CI = dyn_cast<llvm::ConstantInt>(OffsetValue))
2594         IsOffsetZero = CI->isZero();
2595 
2596       if (!IsOffsetZero)
2597         PtrIntValue = Builder.CreateSub(PtrIntValue, OffsetValue, "offsetptr");
2598     }
2599 
2600     llvm::Value *Zero = llvm::ConstantInt::get(IntPtrTy, 0);
2601     llvm::Value *Mask =
2602         Builder.CreateSub(Alignment, llvm::ConstantInt::get(IntPtrTy, 1));
2603     llvm::Value *MaskedPtr = Builder.CreateAnd(PtrIntValue, Mask, "maskedptr");
2604     TheCheck = Builder.CreateICmpEQ(MaskedPtr, Zero, "maskcond");
2605   }
2606   llvm::Instruction *Assumption = Builder.CreateAlignmentAssumption(
2607       CGM.getDataLayout(), PtrValue, Alignment, OffsetValue);
2608 
2609   if (!SanOpts.has(SanitizerKind::Alignment))
2610     return;
2611   emitAlignmentAssumptionCheck(PtrValue, Ty, Loc, AssumptionLoc, Alignment,
2612                                OffsetValue, TheCheck, Assumption);
2613 }
2614 
2615 void CodeGenFunction::emitAlignmentAssumption(llvm::Value *PtrValue,
2616                                               const Expr *E,
2617                                               SourceLocation AssumptionLoc,
2618                                               llvm::Value *Alignment,
2619                                               llvm::Value *OffsetValue) {
2620   QualType Ty = E->getType();
2621   SourceLocation Loc = E->getExprLoc();
2622 
2623   emitAlignmentAssumption(PtrValue, Ty, Loc, AssumptionLoc, Alignment,
2624                           OffsetValue);
2625 }
2626 
2627 llvm::Value *CodeGenFunction::EmitAnnotationCall(llvm::Function *AnnotationFn,
2628                                                  llvm::Value *AnnotatedVal,
2629                                                  StringRef AnnotationStr,
2630                                                  SourceLocation Location,
2631                                                  const AnnotateAttr *Attr) {
2632   SmallVector<llvm::Value *, 5> Args = {
2633       AnnotatedVal,
2634       CGM.EmitAnnotationString(AnnotationStr),
2635       CGM.EmitAnnotationUnit(Location),
2636       CGM.EmitAnnotationLineNo(Location),
2637   };
2638   if (Attr)
2639     Args.push_back(CGM.EmitAnnotationArgs(Attr));
2640   return Builder.CreateCall(AnnotationFn, Args);
2641 }
2642 
2643 void CodeGenFunction::EmitVarAnnotations(const VarDecl *D, llvm::Value *V) {
2644   assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute");
2645   for (const auto *I : D->specific_attrs<AnnotateAttr>())
2646     EmitAnnotationCall(CGM.getIntrinsic(llvm::Intrinsic::var_annotation,
2647                                         {V->getType(), CGM.ConstGlobalsPtrTy}),
2648                        V, I->getAnnotation(), D->getLocation(), I);
2649 }
2650 
2651 Address CodeGenFunction::EmitFieldAnnotations(const FieldDecl *D,
2652                                               Address Addr) {
2653   assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute");
2654   llvm::Value *V = Addr.emitRawPointer(*this);
2655   llvm::Type *VTy = V->getType();
2656   auto *PTy = dyn_cast<llvm::PointerType>(VTy);
2657   unsigned AS = PTy ? PTy->getAddressSpace() : 0;
2658   llvm::PointerType *IntrinTy =
2659       llvm::PointerType::get(CGM.getLLVMContext(), AS);
2660   llvm::Function *F = CGM.getIntrinsic(llvm::Intrinsic::ptr_annotation,
2661                                        {IntrinTy, CGM.ConstGlobalsPtrTy});
2662 
2663   for (const auto *I : D->specific_attrs<AnnotateAttr>()) {
2664     // FIXME Always emit the cast inst so we can differentiate between
2665     // annotation on the first field of a struct and annotation on the struct
2666     // itself.
2667     if (VTy != IntrinTy)
2668       V = Builder.CreateBitCast(V, IntrinTy);
2669     V = EmitAnnotationCall(F, V, I->getAnnotation(), D->getLocation(), I);
2670     V = Builder.CreateBitCast(V, VTy);
2671   }
2672 
2673   return Address(V, Addr.getElementType(), Addr.getAlignment());
2674 }
2675 
2676 CodeGenFunction::CGCapturedStmtInfo::~CGCapturedStmtInfo() { }
2677 
2678 CodeGenFunction::SanitizerScope::SanitizerScope(CodeGenFunction *CGF)
2679     : CGF(CGF) {
2680   assert(!CGF->IsSanitizerScope);
2681   CGF->IsSanitizerScope = true;
2682 }
2683 
2684 CodeGenFunction::SanitizerScope::~SanitizerScope() {
2685   CGF->IsSanitizerScope = false;
2686 }
2687 
2688 void CodeGenFunction::InsertHelper(llvm::Instruction *I,
2689                                    const llvm::Twine &Name,
2690                                    llvm::BasicBlock::iterator InsertPt) const {
2691   LoopStack.InsertHelper(I);
2692   if (IsSanitizerScope)
2693     I->setNoSanitizeMetadata();
2694 }
2695 
2696 void CGBuilderInserter::InsertHelper(
2697     llvm::Instruction *I, const llvm::Twine &Name,
2698     llvm::BasicBlock::iterator InsertPt) const {
2699   llvm::IRBuilderDefaultInserter::InsertHelper(I, Name, InsertPt);
2700   if (CGF)
2701     CGF->InsertHelper(I, Name, InsertPt);
2702 }
2703 
2704 // Emits an error if we don't have a valid set of target features for the
2705 // called function.
2706 void CodeGenFunction::checkTargetFeatures(const CallExpr *E,
2707                                           const FunctionDecl *TargetDecl) {
2708   // SemaChecking cannot handle below x86 builtins because they have different
2709   // parameter ranges with different TargetAttribute of caller.
2710   if (CGM.getContext().getTargetInfo().getTriple().isX86()) {
2711     unsigned BuiltinID = TargetDecl->getBuiltinID();
2712     if (BuiltinID == X86::BI__builtin_ia32_cmpps ||
2713         BuiltinID == X86::BI__builtin_ia32_cmpss ||
2714         BuiltinID == X86::BI__builtin_ia32_cmppd ||
2715         BuiltinID == X86::BI__builtin_ia32_cmpsd) {
2716       const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(CurCodeDecl);
2717       llvm::StringMap<bool> TargetFetureMap;
2718       CGM.getContext().getFunctionFeatureMap(TargetFetureMap, FD);
2719       llvm::APSInt Result =
2720           *(E->getArg(2)->getIntegerConstantExpr(CGM.getContext()));
2721       if (Result.getSExtValue() > 7 && !TargetFetureMap.lookup("avx"))
2722         CGM.getDiags().Report(E->getBeginLoc(), diag::err_builtin_needs_feature)
2723             << TargetDecl->getDeclName() << "avx";
2724     }
2725   }
2726   return checkTargetFeatures(E->getBeginLoc(), TargetDecl);
2727 }
2728 
2729 // Emits an error if we don't have a valid set of target features for the
2730 // called function.
2731 void CodeGenFunction::checkTargetFeatures(SourceLocation Loc,
2732                                           const FunctionDecl *TargetDecl) {
2733   // Early exit if this is an indirect call.
2734   if (!TargetDecl)
2735     return;
2736 
2737   // Get the current enclosing function if it exists. If it doesn't
2738   // we can't check the target features anyhow.
2739   const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(CurCodeDecl);
2740   if (!FD)
2741     return;
2742 
2743   // Grab the required features for the call. For a builtin this is listed in
2744   // the td file with the default cpu, for an always_inline function this is any
2745   // listed cpu and any listed features.
2746   unsigned BuiltinID = TargetDecl->getBuiltinID();
2747   std::string MissingFeature;
2748   llvm::StringMap<bool> CallerFeatureMap;
2749   CGM.getContext().getFunctionFeatureMap(CallerFeatureMap, FD);
2750   // When compiling in HipStdPar mode we have to be conservative in rejecting
2751   // target specific features in the FE, and defer the possible error to the
2752   // AcceleratorCodeSelection pass, wherein iff an unsupported target builtin is
2753   // referenced by an accelerator executable function, we emit an error.
2754   bool IsHipStdPar = getLangOpts().HIPStdPar && getLangOpts().CUDAIsDevice;
2755   if (BuiltinID) {
2756     StringRef FeatureList(CGM.getContext().BuiltinInfo.getRequiredFeatures(BuiltinID));
2757     if (!Builtin::evaluateRequiredTargetFeatures(
2758         FeatureList, CallerFeatureMap) && !IsHipStdPar) {
2759       CGM.getDiags().Report(Loc, diag::err_builtin_needs_feature)
2760           << TargetDecl->getDeclName()
2761           << FeatureList;
2762     }
2763   } else if (!TargetDecl->isMultiVersion() &&
2764              TargetDecl->hasAttr<TargetAttr>()) {
2765     // Get the required features for the callee.
2766 
2767     const TargetAttr *TD = TargetDecl->getAttr<TargetAttr>();
2768     ParsedTargetAttr ParsedAttr =
2769         CGM.getContext().filterFunctionTargetAttrs(TD);
2770 
2771     SmallVector<StringRef, 1> ReqFeatures;
2772     llvm::StringMap<bool> CalleeFeatureMap;
2773     CGM.getContext().getFunctionFeatureMap(CalleeFeatureMap, TargetDecl);
2774 
2775     for (const auto &F : ParsedAttr.Features) {
2776       if (F[0] == '+' && CalleeFeatureMap.lookup(F.substr(1)))
2777         ReqFeatures.push_back(StringRef(F).substr(1));
2778     }
2779 
2780     for (const auto &F : CalleeFeatureMap) {
2781       // Only positive features are "required".
2782       if (F.getValue())
2783         ReqFeatures.push_back(F.getKey());
2784     }
2785     if (!llvm::all_of(ReqFeatures, [&](StringRef Feature) {
2786       if (!CallerFeatureMap.lookup(Feature)) {
2787         MissingFeature = Feature.str();
2788         return false;
2789       }
2790       return true;
2791     }) && !IsHipStdPar)
2792       CGM.getDiags().Report(Loc, diag::err_function_needs_feature)
2793           << FD->getDeclName() << TargetDecl->getDeclName() << MissingFeature;
2794   } else if (!FD->isMultiVersion() && FD->hasAttr<TargetAttr>()) {
2795     llvm::StringMap<bool> CalleeFeatureMap;
2796     CGM.getContext().getFunctionFeatureMap(CalleeFeatureMap, TargetDecl);
2797 
2798     for (const auto &F : CalleeFeatureMap) {
2799       if (F.getValue() && (!CallerFeatureMap.lookup(F.getKey()) ||
2800                            !CallerFeatureMap.find(F.getKey())->getValue()) &&
2801           !IsHipStdPar)
2802         CGM.getDiags().Report(Loc, diag::err_function_needs_feature)
2803             << FD->getDeclName() << TargetDecl->getDeclName() << F.getKey();
2804     }
2805   }
2806 }
2807 
2808 void CodeGenFunction::EmitSanitizerStatReport(llvm::SanitizerStatKind SSK) {
2809   if (!CGM.getCodeGenOpts().SanitizeStats)
2810     return;
2811 
2812   llvm::IRBuilder<> IRB(Builder.GetInsertBlock(), Builder.GetInsertPoint());
2813   IRB.SetCurrentDebugLocation(Builder.getCurrentDebugLocation());
2814   CGM.getSanStats().create(IRB, SSK);
2815 }
2816 
2817 void CodeGenFunction::EmitKCFIOperandBundle(
2818     const CGCallee &Callee, SmallVectorImpl<llvm::OperandBundleDef> &Bundles) {
2819   const FunctionProtoType *FP =
2820       Callee.getAbstractInfo().getCalleeFunctionProtoType();
2821   if (FP)
2822     Bundles.emplace_back("kcfi", CGM.CreateKCFITypeId(FP->desugar()));
2823 }
2824 
2825 llvm::Value *CodeGenFunction::FormAArch64ResolverCondition(
2826     const MultiVersionResolverOption &RO) {
2827   llvm::SmallVector<StringRef, 8> CondFeatures;
2828   for (const StringRef &Feature : RO.Conditions.Features)
2829     CondFeatures.push_back(Feature);
2830   if (!CondFeatures.empty()) {
2831     return EmitAArch64CpuSupports(CondFeatures);
2832   }
2833   return nullptr;
2834 }
2835 
2836 llvm::Value *CodeGenFunction::FormX86ResolverCondition(
2837     const MultiVersionResolverOption &RO) {
2838   llvm::Value *Condition = nullptr;
2839 
2840   if (!RO.Conditions.Architecture.empty()) {
2841     StringRef Arch = RO.Conditions.Architecture;
2842     // If arch= specifies an x86-64 micro-architecture level, test the feature
2843     // with __builtin_cpu_supports, otherwise use __builtin_cpu_is.
2844     if (Arch.starts_with("x86-64"))
2845       Condition = EmitX86CpuSupports({Arch});
2846     else
2847       Condition = EmitX86CpuIs(Arch);
2848   }
2849 
2850   if (!RO.Conditions.Features.empty()) {
2851     llvm::Value *FeatureCond = EmitX86CpuSupports(RO.Conditions.Features);
2852     Condition =
2853         Condition ? Builder.CreateAnd(Condition, FeatureCond) : FeatureCond;
2854   }
2855   return Condition;
2856 }
2857 
2858 static void CreateMultiVersionResolverReturn(CodeGenModule &CGM,
2859                                              llvm::Function *Resolver,
2860                                              CGBuilderTy &Builder,
2861                                              llvm::Function *FuncToReturn,
2862                                              bool SupportsIFunc) {
2863   if (SupportsIFunc) {
2864     Builder.CreateRet(FuncToReturn);
2865     return;
2866   }
2867 
2868   llvm::SmallVector<llvm::Value *, 10> Args(
2869       llvm::make_pointer_range(Resolver->args()));
2870 
2871   llvm::CallInst *Result = Builder.CreateCall(FuncToReturn, Args);
2872   Result->setTailCallKind(llvm::CallInst::TCK_MustTail);
2873 
2874   if (Resolver->getReturnType()->isVoidTy())
2875     Builder.CreateRetVoid();
2876   else
2877     Builder.CreateRet(Result);
2878 }
2879 
2880 void CodeGenFunction::EmitMultiVersionResolver(
2881     llvm::Function *Resolver, ArrayRef<MultiVersionResolverOption> Options) {
2882 
2883   llvm::Triple::ArchType ArchType =
2884       getContext().getTargetInfo().getTriple().getArch();
2885 
2886   switch (ArchType) {
2887   case llvm::Triple::x86:
2888   case llvm::Triple::x86_64:
2889     EmitX86MultiVersionResolver(Resolver, Options);
2890     return;
2891   case llvm::Triple::aarch64:
2892     EmitAArch64MultiVersionResolver(Resolver, Options);
2893     return;
2894   case llvm::Triple::riscv32:
2895   case llvm::Triple::riscv64:
2896     EmitRISCVMultiVersionResolver(Resolver, Options);
2897     return;
2898 
2899   default:
2900     assert(false && "Only implemented for x86, AArch64 and RISC-V targets");
2901   }
2902 }
2903 
2904 static int getPriorityFromAttrString(StringRef AttrStr) {
2905   SmallVector<StringRef, 8> Attrs;
2906 
2907   AttrStr.split(Attrs, ';');
2908 
2909   // Default Priority is zero.
2910   int Priority = 0;
2911   for (auto Attr : Attrs) {
2912     if (Attr.consume_front("priority=")) {
2913       int Result;
2914       if (!Attr.getAsInteger(0, Result)) {
2915         Priority = Result;
2916       }
2917     }
2918   }
2919 
2920   return Priority;
2921 }
2922 
2923 void CodeGenFunction::EmitRISCVMultiVersionResolver(
2924     llvm::Function *Resolver, ArrayRef<MultiVersionResolverOption> Options) {
2925 
2926   if (getContext().getTargetInfo().getTriple().getOS() !=
2927       llvm::Triple::OSType::Linux) {
2928     CGM.getDiags().Report(diag::err_os_unsupport_riscv_fmv);
2929     return;
2930   }
2931 
2932   llvm::BasicBlock *CurBlock = createBasicBlock("resolver_entry", Resolver);
2933   Builder.SetInsertPoint(CurBlock);
2934   EmitRISCVCpuInit();
2935 
2936   bool SupportsIFunc = getContext().getTargetInfo().supportsIFunc();
2937   bool HasDefault = false;
2938   unsigned DefaultIndex = 0;
2939 
2940   SmallVector<CodeGenFunction::MultiVersionResolverOption, 10> CurrOptions(
2941       Options);
2942 
2943   llvm::stable_sort(
2944       CurrOptions, [](const CodeGenFunction::MultiVersionResolverOption &LHS,
2945                       const CodeGenFunction::MultiVersionResolverOption &RHS) {
2946         return getPriorityFromAttrString(LHS.Conditions.Features[0]) >
2947                getPriorityFromAttrString(RHS.Conditions.Features[0]);
2948       });
2949 
2950   // Check the each candidate function.
2951   for (unsigned Index = 0; Index < CurrOptions.size(); Index++) {
2952 
2953     if (CurrOptions[Index].Conditions.Features[0].starts_with("default")) {
2954       HasDefault = true;
2955       DefaultIndex = Index;
2956       continue;
2957     }
2958 
2959     Builder.SetInsertPoint(CurBlock);
2960 
2961     std::vector<std::string> TargetAttrFeats =
2962         getContext()
2963             .getTargetInfo()
2964             .parseTargetAttr(CurrOptions[Index].Conditions.Features[0])
2965             .Features;
2966 
2967     if (TargetAttrFeats.empty())
2968       continue;
2969 
2970     // FeaturesCondition: The bitmask of the required extension has been
2971     // enabled by the runtime object.
2972     // (__riscv_feature_bits.features[i] & REQUIRED_BITMASK) ==
2973     // REQUIRED_BITMASK
2974     //
2975     // When condition is met, return this version of the function.
2976     // Otherwise, try the next version.
2977     //
2978     // if (FeaturesConditionVersion1)
2979     //     return Version1;
2980     // else if (FeaturesConditionVersion2)
2981     //     return Version2;
2982     // else if (FeaturesConditionVersion3)
2983     //     return Version3;
2984     // ...
2985     // else
2986     //     return DefaultVersion;
2987 
2988     // TODO: Add a condition to check the length before accessing elements.
2989     // Without checking the length first, we may access an incorrect memory
2990     // address when using different versions.
2991     llvm::SmallVector<StringRef, 8> CurrTargetAttrFeats;
2992 
2993     for (auto &Feat : TargetAttrFeats) {
2994       StringRef CurrFeat = Feat;
2995       if (CurrFeat.starts_with('+'))
2996         CurrTargetAttrFeats.push_back(CurrFeat.substr(1));
2997     }
2998 
2999     Builder.SetInsertPoint(CurBlock);
3000     llvm::Value *FeatsCondition = EmitRISCVCpuSupports(CurrTargetAttrFeats);
3001 
3002     llvm::BasicBlock *RetBlock = createBasicBlock("resolver_return", Resolver);
3003     CGBuilderTy RetBuilder(*this, RetBlock);
3004     CreateMultiVersionResolverReturn(
3005         CGM, Resolver, RetBuilder, CurrOptions[Index].Function, SupportsIFunc);
3006     llvm::BasicBlock *ElseBlock = createBasicBlock("resolver_else", Resolver);
3007 
3008     Builder.SetInsertPoint(CurBlock);
3009     Builder.CreateCondBr(FeatsCondition, RetBlock, ElseBlock);
3010 
3011     CurBlock = ElseBlock;
3012   }
3013 
3014   // Finally, emit the default one.
3015   if (HasDefault) {
3016     Builder.SetInsertPoint(CurBlock);
3017     CreateMultiVersionResolverReturn(CGM, Resolver, Builder,
3018                                      CurrOptions[DefaultIndex].Function,
3019                                      SupportsIFunc);
3020     return;
3021   }
3022 
3023   // If no generic/default, emit an unreachable.
3024   Builder.SetInsertPoint(CurBlock);
3025   llvm::CallInst *TrapCall = EmitTrapCall(llvm::Intrinsic::trap);
3026   TrapCall->setDoesNotReturn();
3027   TrapCall->setDoesNotThrow();
3028   Builder.CreateUnreachable();
3029   Builder.ClearInsertionPoint();
3030 }
3031 
3032 void CodeGenFunction::EmitAArch64MultiVersionResolver(
3033     llvm::Function *Resolver, ArrayRef<MultiVersionResolverOption> Options) {
3034   assert(!Options.empty() && "No multiversion resolver options found");
3035   assert(Options.back().Conditions.Features.size() == 0 &&
3036          "Default case must be last");
3037   bool SupportsIFunc = getContext().getTargetInfo().supportsIFunc();
3038   assert(SupportsIFunc &&
3039          "Multiversion resolver requires target IFUNC support");
3040   bool AArch64CpuInitialized = false;
3041   llvm::BasicBlock *CurBlock = createBasicBlock("resolver_entry", Resolver);
3042 
3043   for (const MultiVersionResolverOption &RO : Options) {
3044     Builder.SetInsertPoint(CurBlock);
3045     llvm::Value *Condition = FormAArch64ResolverCondition(RO);
3046 
3047     // The 'default' or 'all features enabled' case.
3048     if (!Condition) {
3049       CreateMultiVersionResolverReturn(CGM, Resolver, Builder, RO.Function,
3050                                        SupportsIFunc);
3051       return;
3052     }
3053 
3054     if (!AArch64CpuInitialized) {
3055       Builder.SetInsertPoint(CurBlock, CurBlock->begin());
3056       EmitAArch64CpuInit();
3057       AArch64CpuInitialized = true;
3058       Builder.SetInsertPoint(CurBlock);
3059     }
3060 
3061     llvm::BasicBlock *RetBlock = createBasicBlock("resolver_return", Resolver);
3062     CGBuilderTy RetBuilder(*this, RetBlock);
3063     CreateMultiVersionResolverReturn(CGM, Resolver, RetBuilder, RO.Function,
3064                                      SupportsIFunc);
3065     CurBlock = createBasicBlock("resolver_else", Resolver);
3066     Builder.CreateCondBr(Condition, RetBlock, CurBlock);
3067   }
3068 
3069   // If no default, emit an unreachable.
3070   Builder.SetInsertPoint(CurBlock);
3071   llvm::CallInst *TrapCall = EmitTrapCall(llvm::Intrinsic::trap);
3072   TrapCall->setDoesNotReturn();
3073   TrapCall->setDoesNotThrow();
3074   Builder.CreateUnreachable();
3075   Builder.ClearInsertionPoint();
3076 }
3077 
3078 void CodeGenFunction::EmitX86MultiVersionResolver(
3079     llvm::Function *Resolver, ArrayRef<MultiVersionResolverOption> Options) {
3080 
3081   bool SupportsIFunc = getContext().getTargetInfo().supportsIFunc();
3082 
3083   // Main function's basic block.
3084   llvm::BasicBlock *CurBlock = createBasicBlock("resolver_entry", Resolver);
3085   Builder.SetInsertPoint(CurBlock);
3086   EmitX86CpuInit();
3087 
3088   for (const MultiVersionResolverOption &RO : Options) {
3089     Builder.SetInsertPoint(CurBlock);
3090     llvm::Value *Condition = FormX86ResolverCondition(RO);
3091 
3092     // The 'default' or 'generic' case.
3093     if (!Condition) {
3094       assert(&RO == Options.end() - 1 &&
3095              "Default or Generic case must be last");
3096       CreateMultiVersionResolverReturn(CGM, Resolver, Builder, RO.Function,
3097                                        SupportsIFunc);
3098       return;
3099     }
3100 
3101     llvm::BasicBlock *RetBlock = createBasicBlock("resolver_return", Resolver);
3102     CGBuilderTy RetBuilder(*this, RetBlock);
3103     CreateMultiVersionResolverReturn(CGM, Resolver, RetBuilder, RO.Function,
3104                                      SupportsIFunc);
3105     CurBlock = createBasicBlock("resolver_else", Resolver);
3106     Builder.CreateCondBr(Condition, RetBlock, CurBlock);
3107   }
3108 
3109   // If no generic/default, emit an unreachable.
3110   Builder.SetInsertPoint(CurBlock);
3111   llvm::CallInst *TrapCall = EmitTrapCall(llvm::Intrinsic::trap);
3112   TrapCall->setDoesNotReturn();
3113   TrapCall->setDoesNotThrow();
3114   Builder.CreateUnreachable();
3115   Builder.ClearInsertionPoint();
3116 }
3117 
3118 // Loc - where the diagnostic will point, where in the source code this
3119 //  alignment has failed.
3120 // SecondaryLoc - if present (will be present if sufficiently different from
3121 //  Loc), the diagnostic will additionally point a "Note:" to this location.
3122 //  It should be the location where the __attribute__((assume_aligned))
3123 //  was written e.g.
3124 void CodeGenFunction::emitAlignmentAssumptionCheck(
3125     llvm::Value *Ptr, QualType Ty, SourceLocation Loc,
3126     SourceLocation SecondaryLoc, llvm::Value *Alignment,
3127     llvm::Value *OffsetValue, llvm::Value *TheCheck,
3128     llvm::Instruction *Assumption) {
3129   assert(isa_and_nonnull<llvm::CallInst>(Assumption) &&
3130          cast<llvm::CallInst>(Assumption)->getCalledOperand() ==
3131              llvm::Intrinsic::getDeclaration(
3132                  Builder.GetInsertBlock()->getParent()->getParent(),
3133                  llvm::Intrinsic::assume) &&
3134          "Assumption should be a call to llvm.assume().");
3135   assert(&(Builder.GetInsertBlock()->back()) == Assumption &&
3136          "Assumption should be the last instruction of the basic block, "
3137          "since the basic block is still being generated.");
3138 
3139   if (!SanOpts.has(SanitizerKind::Alignment))
3140     return;
3141 
3142   // Don't check pointers to volatile data. The behavior here is implementation-
3143   // defined.
3144   if (Ty->getPointeeType().isVolatileQualified())
3145     return;
3146 
3147   // We need to temorairly remove the assumption so we can insert the
3148   // sanitizer check before it, else the check will be dropped by optimizations.
3149   Assumption->removeFromParent();
3150 
3151   {
3152     SanitizerScope SanScope(this);
3153 
3154     if (!OffsetValue)
3155       OffsetValue = Builder.getInt1(false); // no offset.
3156 
3157     llvm::Constant *StaticData[] = {EmitCheckSourceLocation(Loc),
3158                                     EmitCheckSourceLocation(SecondaryLoc),
3159                                     EmitCheckTypeDescriptor(Ty)};
3160     llvm::Value *DynamicData[] = {EmitCheckValue(Ptr),
3161                                   EmitCheckValue(Alignment),
3162                                   EmitCheckValue(OffsetValue)};
3163     EmitCheck({std::make_pair(TheCheck, SanitizerKind::Alignment)},
3164               SanitizerHandler::AlignmentAssumption, StaticData, DynamicData);
3165   }
3166 
3167   // We are now in the (new, empty) "cont" basic block.
3168   // Reintroduce the assumption.
3169   Builder.Insert(Assumption);
3170   // FIXME: Assumption still has it's original basic block as it's Parent.
3171 }
3172 
3173 llvm::DebugLoc CodeGenFunction::SourceLocToDebugLoc(SourceLocation Location) {
3174   if (CGDebugInfo *DI = getDebugInfo())
3175     return DI->SourceLocToDebugLoc(Location);
3176 
3177   return llvm::DebugLoc();
3178 }
3179 
3180 llvm::Value *
3181 CodeGenFunction::emitCondLikelihoodViaExpectIntrinsic(llvm::Value *Cond,
3182                                                       Stmt::Likelihood LH) {
3183   switch (LH) {
3184   case Stmt::LH_None:
3185     return Cond;
3186   case Stmt::LH_Likely:
3187   case Stmt::LH_Unlikely:
3188     // Don't generate llvm.expect on -O0 as the backend won't use it for
3189     // anything.
3190     if (CGM.getCodeGenOpts().OptimizationLevel == 0)
3191       return Cond;
3192     llvm::Type *CondTy = Cond->getType();
3193     assert(CondTy->isIntegerTy(1) && "expecting condition to be a boolean");
3194     llvm::Function *FnExpect =
3195         CGM.getIntrinsic(llvm::Intrinsic::expect, CondTy);
3196     llvm::Value *ExpectedValueOfCond =
3197         llvm::ConstantInt::getBool(CondTy, LH == Stmt::LH_Likely);
3198     return Builder.CreateCall(FnExpect, {Cond, ExpectedValueOfCond},
3199                               Cond->getName() + ".expval");
3200   }
3201   llvm_unreachable("Unknown Likelihood");
3202 }
3203 
3204 llvm::Value *CodeGenFunction::emitBoolVecConversion(llvm::Value *SrcVec,
3205                                                     unsigned NumElementsDst,
3206                                                     const llvm::Twine &Name) {
3207   auto *SrcTy = cast<llvm::FixedVectorType>(SrcVec->getType());
3208   unsigned NumElementsSrc = SrcTy->getNumElements();
3209   if (NumElementsSrc == NumElementsDst)
3210     return SrcVec;
3211 
3212   std::vector<int> ShuffleMask(NumElementsDst, -1);
3213   for (unsigned MaskIdx = 0;
3214        MaskIdx < std::min<>(NumElementsDst, NumElementsSrc); ++MaskIdx)
3215     ShuffleMask[MaskIdx] = MaskIdx;
3216 
3217   return Builder.CreateShuffleVector(SrcVec, ShuffleMask, Name);
3218 }
3219 
3220 void CodeGenFunction::EmitPointerAuthOperandBundle(
3221     const CGPointerAuthInfo &PointerAuth,
3222     SmallVectorImpl<llvm::OperandBundleDef> &Bundles) {
3223   if (!PointerAuth.isSigned())
3224     return;
3225 
3226   auto *Key = Builder.getInt32(PointerAuth.getKey());
3227 
3228   llvm::Value *Discriminator = PointerAuth.getDiscriminator();
3229   if (!Discriminator)
3230     Discriminator = Builder.getSize(0);
3231 
3232   llvm::Value *Args[] = {Key, Discriminator};
3233   Bundles.emplace_back("ptrauth", Args);
3234 }
3235 
3236 static llvm::Value *EmitPointerAuthCommon(CodeGenFunction &CGF,
3237                                           const CGPointerAuthInfo &PointerAuth,
3238                                           llvm::Value *Pointer,
3239                                           unsigned IntrinsicID) {
3240   if (!PointerAuth)
3241     return Pointer;
3242 
3243   auto Key = CGF.Builder.getInt32(PointerAuth.getKey());
3244 
3245   llvm::Value *Discriminator = PointerAuth.getDiscriminator();
3246   if (!Discriminator) {
3247     Discriminator = CGF.Builder.getSize(0);
3248   }
3249 
3250   // Convert the pointer to intptr_t before signing it.
3251   auto OrigType = Pointer->getType();
3252   Pointer = CGF.Builder.CreatePtrToInt(Pointer, CGF.IntPtrTy);
3253 
3254   // call i64 @llvm.ptrauth.sign.i64(i64 %pointer, i32 %key, i64 %discriminator)
3255   auto Intrinsic = CGF.CGM.getIntrinsic(IntrinsicID);
3256   Pointer = CGF.EmitRuntimeCall(Intrinsic, {Pointer, Key, Discriminator});
3257 
3258   // Convert back to the original type.
3259   Pointer = CGF.Builder.CreateIntToPtr(Pointer, OrigType);
3260   return Pointer;
3261 }
3262 
3263 llvm::Value *
3264 CodeGenFunction::EmitPointerAuthSign(const CGPointerAuthInfo &PointerAuth,
3265                                      llvm::Value *Pointer) {
3266   if (!PointerAuth.shouldSign())
3267     return Pointer;
3268   return EmitPointerAuthCommon(*this, PointerAuth, Pointer,
3269                                llvm::Intrinsic::ptrauth_sign);
3270 }
3271 
3272 static llvm::Value *EmitStrip(CodeGenFunction &CGF,
3273                               const CGPointerAuthInfo &PointerAuth,
3274                               llvm::Value *Pointer) {
3275   auto StripIntrinsic = CGF.CGM.getIntrinsic(llvm::Intrinsic::ptrauth_strip);
3276 
3277   auto Key = CGF.Builder.getInt32(PointerAuth.getKey());
3278   // Convert the pointer to intptr_t before signing it.
3279   auto OrigType = Pointer->getType();
3280   Pointer = CGF.EmitRuntimeCall(
3281       StripIntrinsic, {CGF.Builder.CreatePtrToInt(Pointer, CGF.IntPtrTy), Key});
3282   return CGF.Builder.CreateIntToPtr(Pointer, OrigType);
3283 }
3284 
3285 llvm::Value *
3286 CodeGenFunction::EmitPointerAuthAuth(const CGPointerAuthInfo &PointerAuth,
3287                                      llvm::Value *Pointer) {
3288   if (PointerAuth.shouldStrip()) {
3289     return EmitStrip(*this, PointerAuth, Pointer);
3290   }
3291   if (!PointerAuth.shouldAuth()) {
3292     return Pointer;
3293   }
3294 
3295   return EmitPointerAuthCommon(*this, PointerAuth, Pointer,
3296                                llvm::Intrinsic::ptrauth_auth);
3297 }
3298