1 //===--- CodeGenFunction.cpp - Emit LLVM Code from ASTs for a Function ----===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This coordinates the per-function state used while generating code. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "CodeGenFunction.h" 14 #include "CGBlocks.h" 15 #include "CGCUDARuntime.h" 16 #include "CGCXXABI.h" 17 #include "CGCleanup.h" 18 #include "CGDebugInfo.h" 19 #include "CGHLSLRuntime.h" 20 #include "CGOpenMPRuntime.h" 21 #include "CodeGenModule.h" 22 #include "CodeGenPGO.h" 23 #include "TargetInfo.h" 24 #include "clang/AST/ASTContext.h" 25 #include "clang/AST/ASTLambda.h" 26 #include "clang/AST/Attr.h" 27 #include "clang/AST/Decl.h" 28 #include "clang/AST/DeclCXX.h" 29 #include "clang/AST/Expr.h" 30 #include "clang/AST/StmtCXX.h" 31 #include "clang/AST/StmtObjC.h" 32 #include "clang/Basic/Builtins.h" 33 #include "clang/Basic/CodeGenOptions.h" 34 #include "clang/Basic/TargetBuiltins.h" 35 #include "clang/Basic/TargetInfo.h" 36 #include "clang/CodeGen/CGFunctionInfo.h" 37 #include "clang/Frontend/FrontendDiagnostic.h" 38 #include "llvm/ADT/ArrayRef.h" 39 #include "llvm/Frontend/OpenMP/OMPIRBuilder.h" 40 #include "llvm/IR/DataLayout.h" 41 #include "llvm/IR/Dominators.h" 42 #include "llvm/IR/FPEnv.h" 43 #include "llvm/IR/Instruction.h" 44 #include "llvm/IR/IntrinsicInst.h" 45 #include "llvm/IR/Intrinsics.h" 46 #include "llvm/IR/MDBuilder.h" 47 #include "llvm/Support/CRC.h" 48 #include "llvm/Support/xxhash.h" 49 #include "llvm/Transforms/Scalar/LowerExpectIntrinsic.h" 50 #include "llvm/Transforms/Utils/PromoteMemToReg.h" 51 #include <optional> 52 53 using namespace clang; 54 using namespace CodeGen; 55 56 namespace llvm { 57 extern cl::opt<bool> EnableSingleByteCoverage; 58 } // namespace llvm 59 60 /// shouldEmitLifetimeMarkers - Decide whether we need emit the life-time 61 /// markers. 62 static bool shouldEmitLifetimeMarkers(const CodeGenOptions &CGOpts, 63 const LangOptions &LangOpts) { 64 if (CGOpts.DisableLifetimeMarkers) 65 return false; 66 67 // Sanitizers may use markers. 68 if (CGOpts.SanitizeAddressUseAfterScope || 69 LangOpts.Sanitize.has(SanitizerKind::HWAddress) || 70 LangOpts.Sanitize.has(SanitizerKind::Memory)) 71 return true; 72 73 // For now, only in optimized builds. 74 return CGOpts.OptimizationLevel != 0; 75 } 76 77 CodeGenFunction::CodeGenFunction(CodeGenModule &cgm, bool suppressNewContext) 78 : CodeGenTypeCache(cgm), CGM(cgm), Target(cgm.getTarget()), 79 Builder(cgm, cgm.getModule().getContext(), llvm::ConstantFolder(), 80 CGBuilderInserterTy(this)), 81 SanOpts(CGM.getLangOpts().Sanitize), CurFPFeatures(CGM.getLangOpts()), 82 DebugInfo(CGM.getModuleDebugInfo()), PGO(cgm), 83 ShouldEmitLifetimeMarkers( 84 shouldEmitLifetimeMarkers(CGM.getCodeGenOpts(), CGM.getLangOpts())) { 85 if (!suppressNewContext) 86 CGM.getCXXABI().getMangleContext().startNewFunction(); 87 EHStack.setCGF(this); 88 89 SetFastMathFlags(CurFPFeatures); 90 } 91 92 CodeGenFunction::~CodeGenFunction() { 93 assert(LifetimeExtendedCleanupStack.empty() && "failed to emit a cleanup"); 94 assert(DeferredDeactivationCleanupStack.empty() && 95 "missed to deactivate a cleanup"); 96 97 if (getLangOpts().OpenMP && CurFn) 98 CGM.getOpenMPRuntime().functionFinished(*this); 99 100 // If we have an OpenMPIRBuilder we want to finalize functions (incl. 101 // outlining etc) at some point. Doing it once the function codegen is done 102 // seems to be a reasonable spot. We do it here, as opposed to the deletion 103 // time of the CodeGenModule, because we have to ensure the IR has not yet 104 // been "emitted" to the outside, thus, modifications are still sensible. 105 if (CGM.getLangOpts().OpenMPIRBuilder && CurFn) 106 CGM.getOpenMPRuntime().getOMPBuilder().finalize(CurFn); 107 } 108 109 // Map the LangOption for exception behavior into 110 // the corresponding enum in the IR. 111 llvm::fp::ExceptionBehavior 112 clang::ToConstrainedExceptMD(LangOptions::FPExceptionModeKind Kind) { 113 114 switch (Kind) { 115 case LangOptions::FPE_Ignore: return llvm::fp::ebIgnore; 116 case LangOptions::FPE_MayTrap: return llvm::fp::ebMayTrap; 117 case LangOptions::FPE_Strict: return llvm::fp::ebStrict; 118 default: 119 llvm_unreachable("Unsupported FP Exception Behavior"); 120 } 121 } 122 123 void CodeGenFunction::SetFastMathFlags(FPOptions FPFeatures) { 124 llvm::FastMathFlags FMF; 125 FMF.setAllowReassoc(FPFeatures.getAllowFPReassociate()); 126 FMF.setNoNaNs(FPFeatures.getNoHonorNaNs()); 127 FMF.setNoInfs(FPFeatures.getNoHonorInfs()); 128 FMF.setNoSignedZeros(FPFeatures.getNoSignedZero()); 129 FMF.setAllowReciprocal(FPFeatures.getAllowReciprocal()); 130 FMF.setApproxFunc(FPFeatures.getAllowApproxFunc()); 131 FMF.setAllowContract(FPFeatures.allowFPContractAcrossStatement()); 132 Builder.setFastMathFlags(FMF); 133 } 134 135 CodeGenFunction::CGFPOptionsRAII::CGFPOptionsRAII(CodeGenFunction &CGF, 136 const Expr *E) 137 : CGF(CGF) { 138 ConstructorHelper(E->getFPFeaturesInEffect(CGF.getLangOpts())); 139 } 140 141 CodeGenFunction::CGFPOptionsRAII::CGFPOptionsRAII(CodeGenFunction &CGF, 142 FPOptions FPFeatures) 143 : CGF(CGF) { 144 ConstructorHelper(FPFeatures); 145 } 146 147 void CodeGenFunction::CGFPOptionsRAII::ConstructorHelper(FPOptions FPFeatures) { 148 OldFPFeatures = CGF.CurFPFeatures; 149 CGF.CurFPFeatures = FPFeatures; 150 151 OldExcept = CGF.Builder.getDefaultConstrainedExcept(); 152 OldRounding = CGF.Builder.getDefaultConstrainedRounding(); 153 154 if (OldFPFeatures == FPFeatures) 155 return; 156 157 FMFGuard.emplace(CGF.Builder); 158 159 llvm::RoundingMode NewRoundingBehavior = FPFeatures.getRoundingMode(); 160 CGF.Builder.setDefaultConstrainedRounding(NewRoundingBehavior); 161 auto NewExceptionBehavior = 162 ToConstrainedExceptMD(static_cast<LangOptions::FPExceptionModeKind>( 163 FPFeatures.getExceptionMode())); 164 CGF.Builder.setDefaultConstrainedExcept(NewExceptionBehavior); 165 166 CGF.SetFastMathFlags(FPFeatures); 167 168 assert((CGF.CurFuncDecl == nullptr || CGF.Builder.getIsFPConstrained() || 169 isa<CXXConstructorDecl>(CGF.CurFuncDecl) || 170 isa<CXXDestructorDecl>(CGF.CurFuncDecl) || 171 (NewExceptionBehavior == llvm::fp::ebIgnore && 172 NewRoundingBehavior == llvm::RoundingMode::NearestTiesToEven)) && 173 "FPConstrained should be enabled on entire function"); 174 175 auto mergeFnAttrValue = [&](StringRef Name, bool Value) { 176 auto OldValue = 177 CGF.CurFn->getFnAttribute(Name).getValueAsBool(); 178 auto NewValue = OldValue & Value; 179 if (OldValue != NewValue) 180 CGF.CurFn->addFnAttr(Name, llvm::toStringRef(NewValue)); 181 }; 182 mergeFnAttrValue("no-infs-fp-math", FPFeatures.getNoHonorInfs()); 183 mergeFnAttrValue("no-nans-fp-math", FPFeatures.getNoHonorNaNs()); 184 mergeFnAttrValue("no-signed-zeros-fp-math", FPFeatures.getNoSignedZero()); 185 mergeFnAttrValue( 186 "unsafe-fp-math", 187 FPFeatures.getAllowFPReassociate() && FPFeatures.getAllowReciprocal() && 188 FPFeatures.getAllowApproxFunc() && FPFeatures.getNoSignedZero() && 189 FPFeatures.allowFPContractAcrossStatement()); 190 } 191 192 CodeGenFunction::CGFPOptionsRAII::~CGFPOptionsRAII() { 193 CGF.CurFPFeatures = OldFPFeatures; 194 CGF.Builder.setDefaultConstrainedExcept(OldExcept); 195 CGF.Builder.setDefaultConstrainedRounding(OldRounding); 196 } 197 198 static LValue 199 makeNaturalAlignAddrLValue(llvm::Value *V, QualType T, bool ForPointeeType, 200 bool MightBeSigned, CodeGenFunction &CGF, 201 KnownNonNull_t IsKnownNonNull = NotKnownNonNull) { 202 LValueBaseInfo BaseInfo; 203 TBAAAccessInfo TBAAInfo; 204 CharUnits Alignment = 205 CGF.CGM.getNaturalTypeAlignment(T, &BaseInfo, &TBAAInfo, ForPointeeType); 206 Address Addr = 207 MightBeSigned 208 ? CGF.makeNaturalAddressForPointer(V, T, Alignment, false, nullptr, 209 nullptr, IsKnownNonNull) 210 : Address(V, CGF.ConvertTypeForMem(T), Alignment, IsKnownNonNull); 211 return CGF.MakeAddrLValue(Addr, T, BaseInfo, TBAAInfo); 212 } 213 214 LValue 215 CodeGenFunction::MakeNaturalAlignAddrLValue(llvm::Value *V, QualType T, 216 KnownNonNull_t IsKnownNonNull) { 217 return ::makeNaturalAlignAddrLValue(V, T, /*ForPointeeType*/ false, 218 /*MightBeSigned*/ true, *this, 219 IsKnownNonNull); 220 } 221 222 LValue 223 CodeGenFunction::MakeNaturalAlignPointeeAddrLValue(llvm::Value *V, QualType T) { 224 return ::makeNaturalAlignAddrLValue(V, T, /*ForPointeeType*/ true, 225 /*MightBeSigned*/ true, *this); 226 } 227 228 LValue CodeGenFunction::MakeNaturalAlignRawAddrLValue(llvm::Value *V, 229 QualType T) { 230 return ::makeNaturalAlignAddrLValue(V, T, /*ForPointeeType*/ false, 231 /*MightBeSigned*/ false, *this); 232 } 233 234 LValue CodeGenFunction::MakeNaturalAlignPointeeRawAddrLValue(llvm::Value *V, 235 QualType T) { 236 return ::makeNaturalAlignAddrLValue(V, T, /*ForPointeeType*/ true, 237 /*MightBeSigned*/ false, *this); 238 } 239 240 llvm::Type *CodeGenFunction::ConvertTypeForMem(QualType T) { 241 return CGM.getTypes().ConvertTypeForMem(T); 242 } 243 244 llvm::Type *CodeGenFunction::ConvertType(QualType T) { 245 return CGM.getTypes().ConvertType(T); 246 } 247 248 llvm::Type *CodeGenFunction::convertTypeForLoadStore(QualType ASTTy, 249 llvm::Type *LLVMTy) { 250 return CGM.getTypes().convertTypeForLoadStore(ASTTy, LLVMTy); 251 } 252 253 TypeEvaluationKind CodeGenFunction::getEvaluationKind(QualType type) { 254 type = type.getCanonicalType(); 255 while (true) { 256 switch (type->getTypeClass()) { 257 #define TYPE(name, parent) 258 #define ABSTRACT_TYPE(name, parent) 259 #define NON_CANONICAL_TYPE(name, parent) case Type::name: 260 #define DEPENDENT_TYPE(name, parent) case Type::name: 261 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(name, parent) case Type::name: 262 #include "clang/AST/TypeNodes.inc" 263 llvm_unreachable("non-canonical or dependent type in IR-generation"); 264 265 case Type::Auto: 266 case Type::DeducedTemplateSpecialization: 267 llvm_unreachable("undeduced type in IR-generation"); 268 269 // Various scalar types. 270 case Type::Builtin: 271 case Type::Pointer: 272 case Type::BlockPointer: 273 case Type::LValueReference: 274 case Type::RValueReference: 275 case Type::MemberPointer: 276 case Type::Vector: 277 case Type::ExtVector: 278 case Type::ConstantMatrix: 279 case Type::FunctionProto: 280 case Type::FunctionNoProto: 281 case Type::Enum: 282 case Type::ObjCObjectPointer: 283 case Type::Pipe: 284 case Type::BitInt: 285 case Type::HLSLAttributedResource: 286 return TEK_Scalar; 287 288 // Complexes. 289 case Type::Complex: 290 return TEK_Complex; 291 292 // Arrays, records, and Objective-C objects. 293 case Type::ConstantArray: 294 case Type::IncompleteArray: 295 case Type::VariableArray: 296 case Type::Record: 297 case Type::ObjCObject: 298 case Type::ObjCInterface: 299 case Type::ArrayParameter: 300 return TEK_Aggregate; 301 302 // We operate on atomic values according to their underlying type. 303 case Type::Atomic: 304 type = cast<AtomicType>(type)->getValueType(); 305 continue; 306 } 307 llvm_unreachable("unknown type kind!"); 308 } 309 } 310 311 llvm::DebugLoc CodeGenFunction::EmitReturnBlock() { 312 // For cleanliness, we try to avoid emitting the return block for 313 // simple cases. 314 llvm::BasicBlock *CurBB = Builder.GetInsertBlock(); 315 316 if (CurBB) { 317 assert(!CurBB->getTerminator() && "Unexpected terminated block."); 318 319 // We have a valid insert point, reuse it if it is empty or there are no 320 // explicit jumps to the return block. 321 if (CurBB->empty() || ReturnBlock.getBlock()->use_empty()) { 322 ReturnBlock.getBlock()->replaceAllUsesWith(CurBB); 323 delete ReturnBlock.getBlock(); 324 ReturnBlock = JumpDest(); 325 } else 326 EmitBlock(ReturnBlock.getBlock()); 327 return llvm::DebugLoc(); 328 } 329 330 // Otherwise, if the return block is the target of a single direct 331 // branch then we can just put the code in that block instead. This 332 // cleans up functions which started with a unified return block. 333 if (ReturnBlock.getBlock()->hasOneUse()) { 334 llvm::BranchInst *BI = 335 dyn_cast<llvm::BranchInst>(*ReturnBlock.getBlock()->user_begin()); 336 if (BI && BI->isUnconditional() && 337 BI->getSuccessor(0) == ReturnBlock.getBlock()) { 338 // Record/return the DebugLoc of the simple 'return' expression to be used 339 // later by the actual 'ret' instruction. 340 llvm::DebugLoc Loc = BI->getDebugLoc(); 341 Builder.SetInsertPoint(BI->getParent()); 342 BI->eraseFromParent(); 343 delete ReturnBlock.getBlock(); 344 ReturnBlock = JumpDest(); 345 return Loc; 346 } 347 } 348 349 // FIXME: We are at an unreachable point, there is no reason to emit the block 350 // unless it has uses. However, we still need a place to put the debug 351 // region.end for now. 352 353 EmitBlock(ReturnBlock.getBlock()); 354 return llvm::DebugLoc(); 355 } 356 357 static void EmitIfUsed(CodeGenFunction &CGF, llvm::BasicBlock *BB) { 358 if (!BB) return; 359 if (!BB->use_empty()) { 360 CGF.CurFn->insert(CGF.CurFn->end(), BB); 361 return; 362 } 363 delete BB; 364 } 365 366 void CodeGenFunction::FinishFunction(SourceLocation EndLoc) { 367 assert(BreakContinueStack.empty() && 368 "mismatched push/pop in break/continue stack!"); 369 assert(LifetimeExtendedCleanupStack.empty() && 370 "mismatched push/pop of cleanups in EHStack!"); 371 assert(DeferredDeactivationCleanupStack.empty() && 372 "mismatched activate/deactivate of cleanups!"); 373 374 if (CGM.shouldEmitConvergenceTokens()) { 375 ConvergenceTokenStack.pop_back(); 376 assert(ConvergenceTokenStack.empty() && 377 "mismatched push/pop in convergence stack!"); 378 } 379 380 bool OnlySimpleReturnStmts = NumSimpleReturnExprs > 0 381 && NumSimpleReturnExprs == NumReturnExprs 382 && ReturnBlock.getBlock()->use_empty(); 383 // Usually the return expression is evaluated before the cleanup 384 // code. If the function contains only a simple return statement, 385 // such as a constant, the location before the cleanup code becomes 386 // the last useful breakpoint in the function, because the simple 387 // return expression will be evaluated after the cleanup code. To be 388 // safe, set the debug location for cleanup code to the location of 389 // the return statement. Otherwise the cleanup code should be at the 390 // end of the function's lexical scope. 391 // 392 // If there are multiple branches to the return block, the branch 393 // instructions will get the location of the return statements and 394 // all will be fine. 395 if (CGDebugInfo *DI = getDebugInfo()) { 396 if (OnlySimpleReturnStmts) 397 DI->EmitLocation(Builder, LastStopPoint); 398 else 399 DI->EmitLocation(Builder, EndLoc); 400 } 401 402 // Pop any cleanups that might have been associated with the 403 // parameters. Do this in whatever block we're currently in; it's 404 // important to do this before we enter the return block or return 405 // edges will be *really* confused. 406 bool HasCleanups = EHStack.stable_begin() != PrologueCleanupDepth; 407 bool HasOnlyLifetimeMarkers = 408 HasCleanups && EHStack.containsOnlyLifetimeMarkers(PrologueCleanupDepth); 409 bool EmitRetDbgLoc = !HasCleanups || HasOnlyLifetimeMarkers; 410 411 std::optional<ApplyDebugLocation> OAL; 412 if (HasCleanups) { 413 // Make sure the line table doesn't jump back into the body for 414 // the ret after it's been at EndLoc. 415 if (CGDebugInfo *DI = getDebugInfo()) { 416 if (OnlySimpleReturnStmts) 417 DI->EmitLocation(Builder, EndLoc); 418 else 419 // We may not have a valid end location. Try to apply it anyway, and 420 // fall back to an artificial location if needed. 421 OAL = ApplyDebugLocation::CreateDefaultArtificial(*this, EndLoc); 422 } 423 424 PopCleanupBlocks(PrologueCleanupDepth); 425 } 426 427 // Emit function epilog (to return). 428 llvm::DebugLoc Loc = EmitReturnBlock(); 429 430 if (ShouldInstrumentFunction()) { 431 if (CGM.getCodeGenOpts().InstrumentFunctions) 432 CurFn->addFnAttr("instrument-function-exit", "__cyg_profile_func_exit"); 433 if (CGM.getCodeGenOpts().InstrumentFunctionsAfterInlining) 434 CurFn->addFnAttr("instrument-function-exit-inlined", 435 "__cyg_profile_func_exit"); 436 } 437 438 // Emit debug descriptor for function end. 439 if (CGDebugInfo *DI = getDebugInfo()) 440 DI->EmitFunctionEnd(Builder, CurFn); 441 442 // Reset the debug location to that of the simple 'return' expression, if any 443 // rather than that of the end of the function's scope '}'. 444 ApplyDebugLocation AL(*this, Loc); 445 EmitFunctionEpilog(*CurFnInfo, EmitRetDbgLoc, EndLoc); 446 EmitEndEHSpec(CurCodeDecl); 447 448 assert(EHStack.empty() && 449 "did not remove all scopes from cleanup stack!"); 450 451 // If someone did an indirect goto, emit the indirect goto block at the end of 452 // the function. 453 if (IndirectBranch) { 454 EmitBlock(IndirectBranch->getParent()); 455 Builder.ClearInsertionPoint(); 456 } 457 458 // If some of our locals escaped, insert a call to llvm.localescape in the 459 // entry block. 460 if (!EscapedLocals.empty()) { 461 // Invert the map from local to index into a simple vector. There should be 462 // no holes. 463 SmallVector<llvm::Value *, 4> EscapeArgs; 464 EscapeArgs.resize(EscapedLocals.size()); 465 for (auto &Pair : EscapedLocals) 466 EscapeArgs[Pair.second] = Pair.first; 467 llvm::Function *FrameEscapeFn = llvm::Intrinsic::getOrInsertDeclaration( 468 &CGM.getModule(), llvm::Intrinsic::localescape); 469 CGBuilderTy(*this, AllocaInsertPt).CreateCall(FrameEscapeFn, EscapeArgs); 470 } 471 472 // Remove the AllocaInsertPt instruction, which is just a convenience for us. 473 llvm::Instruction *Ptr = AllocaInsertPt; 474 AllocaInsertPt = nullptr; 475 Ptr->eraseFromParent(); 476 477 // PostAllocaInsertPt, if created, was lazily created when it was required, 478 // remove it now since it was just created for our own convenience. 479 if (PostAllocaInsertPt) { 480 llvm::Instruction *PostPtr = PostAllocaInsertPt; 481 PostAllocaInsertPt = nullptr; 482 PostPtr->eraseFromParent(); 483 } 484 485 // If someone took the address of a label but never did an indirect goto, we 486 // made a zero entry PHI node, which is illegal, zap it now. 487 if (IndirectBranch) { 488 llvm::PHINode *PN = cast<llvm::PHINode>(IndirectBranch->getAddress()); 489 if (PN->getNumIncomingValues() == 0) { 490 PN->replaceAllUsesWith(llvm::PoisonValue::get(PN->getType())); 491 PN->eraseFromParent(); 492 } 493 } 494 495 EmitIfUsed(*this, EHResumeBlock); 496 EmitIfUsed(*this, TerminateLandingPad); 497 EmitIfUsed(*this, TerminateHandler); 498 EmitIfUsed(*this, UnreachableBlock); 499 500 for (const auto &FuncletAndParent : TerminateFunclets) 501 EmitIfUsed(*this, FuncletAndParent.second); 502 503 if (CGM.getCodeGenOpts().EmitDeclMetadata) 504 EmitDeclMetadata(); 505 506 for (const auto &R : DeferredReplacements) { 507 if (llvm::Value *Old = R.first) { 508 Old->replaceAllUsesWith(R.second); 509 cast<llvm::Instruction>(Old)->eraseFromParent(); 510 } 511 } 512 DeferredReplacements.clear(); 513 514 // Eliminate CleanupDestSlot alloca by replacing it with SSA values and 515 // PHIs if the current function is a coroutine. We don't do it for all 516 // functions as it may result in slight increase in numbers of instructions 517 // if compiled with no optimizations. We do it for coroutine as the lifetime 518 // of CleanupDestSlot alloca make correct coroutine frame building very 519 // difficult. 520 if (NormalCleanupDest.isValid() && isCoroutine()) { 521 llvm::DominatorTree DT(*CurFn); 522 llvm::PromoteMemToReg( 523 cast<llvm::AllocaInst>(NormalCleanupDest.getPointer()), DT); 524 NormalCleanupDest = Address::invalid(); 525 } 526 527 // Scan function arguments for vector width. 528 for (llvm::Argument &A : CurFn->args()) 529 if (auto *VT = dyn_cast<llvm::VectorType>(A.getType())) 530 LargestVectorWidth = 531 std::max((uint64_t)LargestVectorWidth, 532 VT->getPrimitiveSizeInBits().getKnownMinValue()); 533 534 // Update vector width based on return type. 535 if (auto *VT = dyn_cast<llvm::VectorType>(CurFn->getReturnType())) 536 LargestVectorWidth = 537 std::max((uint64_t)LargestVectorWidth, 538 VT->getPrimitiveSizeInBits().getKnownMinValue()); 539 540 if (CurFnInfo->getMaxVectorWidth() > LargestVectorWidth) 541 LargestVectorWidth = CurFnInfo->getMaxVectorWidth(); 542 543 // Add the min-legal-vector-width attribute. This contains the max width from: 544 // 1. min-vector-width attribute used in the source program. 545 // 2. Any builtins used that have a vector width specified. 546 // 3. Values passed in and out of inline assembly. 547 // 4. Width of vector arguments and return types for this function. 548 // 5. Width of vector arguments and return types for functions called by this 549 // function. 550 if (getContext().getTargetInfo().getTriple().isX86()) 551 CurFn->addFnAttr("min-legal-vector-width", 552 llvm::utostr(LargestVectorWidth)); 553 554 // Add vscale_range attribute if appropriate. 555 std::optional<std::pair<unsigned, unsigned>> VScaleRange = 556 getContext().getTargetInfo().getVScaleRange(getLangOpts()); 557 if (VScaleRange) { 558 CurFn->addFnAttr(llvm::Attribute::getWithVScaleRangeArgs( 559 getLLVMContext(), VScaleRange->first, VScaleRange->second)); 560 } 561 562 // If we generated an unreachable return block, delete it now. 563 if (ReturnBlock.isValid() && ReturnBlock.getBlock()->use_empty()) { 564 Builder.ClearInsertionPoint(); 565 ReturnBlock.getBlock()->eraseFromParent(); 566 } 567 if (ReturnValue.isValid()) { 568 auto *RetAlloca = 569 dyn_cast<llvm::AllocaInst>(ReturnValue.emitRawPointer(*this)); 570 if (RetAlloca && RetAlloca->use_empty()) { 571 RetAlloca->eraseFromParent(); 572 ReturnValue = Address::invalid(); 573 } 574 } 575 } 576 577 /// ShouldInstrumentFunction - Return true if the current function should be 578 /// instrumented with __cyg_profile_func_* calls 579 bool CodeGenFunction::ShouldInstrumentFunction() { 580 if (!CGM.getCodeGenOpts().InstrumentFunctions && 581 !CGM.getCodeGenOpts().InstrumentFunctionsAfterInlining && 582 !CGM.getCodeGenOpts().InstrumentFunctionEntryBare) 583 return false; 584 if (!CurFuncDecl || CurFuncDecl->hasAttr<NoInstrumentFunctionAttr>()) 585 return false; 586 return true; 587 } 588 589 bool CodeGenFunction::ShouldSkipSanitizerInstrumentation() { 590 if (!CurFuncDecl) 591 return false; 592 return CurFuncDecl->hasAttr<DisableSanitizerInstrumentationAttr>(); 593 } 594 595 /// ShouldXRayInstrument - Return true if the current function should be 596 /// instrumented with XRay nop sleds. 597 bool CodeGenFunction::ShouldXRayInstrumentFunction() const { 598 return CGM.getCodeGenOpts().XRayInstrumentFunctions; 599 } 600 601 /// AlwaysEmitXRayCustomEvents - Return true if we should emit IR for calls to 602 /// the __xray_customevent(...) builtin calls, when doing XRay instrumentation. 603 bool CodeGenFunction::AlwaysEmitXRayCustomEvents() const { 604 return CGM.getCodeGenOpts().XRayInstrumentFunctions && 605 (CGM.getCodeGenOpts().XRayAlwaysEmitCustomEvents || 606 CGM.getCodeGenOpts().XRayInstrumentationBundle.Mask == 607 XRayInstrKind::Custom); 608 } 609 610 bool CodeGenFunction::AlwaysEmitXRayTypedEvents() const { 611 return CGM.getCodeGenOpts().XRayInstrumentFunctions && 612 (CGM.getCodeGenOpts().XRayAlwaysEmitTypedEvents || 613 CGM.getCodeGenOpts().XRayInstrumentationBundle.Mask == 614 XRayInstrKind::Typed); 615 } 616 617 llvm::ConstantInt * 618 CodeGenFunction::getUBSanFunctionTypeHash(QualType Ty) const { 619 // Remove any (C++17) exception specifications, to allow calling e.g. a 620 // noexcept function through a non-noexcept pointer. 621 if (!Ty->isFunctionNoProtoType()) 622 Ty = getContext().getFunctionTypeWithExceptionSpec(Ty, EST_None); 623 std::string Mangled; 624 llvm::raw_string_ostream Out(Mangled); 625 CGM.getCXXABI().getMangleContext().mangleCanonicalTypeName(Ty, Out, false); 626 return llvm::ConstantInt::get( 627 CGM.Int32Ty, static_cast<uint32_t>(llvm::xxh3_64bits(Mangled))); 628 } 629 630 void CodeGenFunction::EmitKernelMetadata(const FunctionDecl *FD, 631 llvm::Function *Fn) { 632 if (!FD->hasAttr<OpenCLKernelAttr>() && !FD->hasAttr<CUDAGlobalAttr>()) 633 return; 634 635 llvm::LLVMContext &Context = getLLVMContext(); 636 637 CGM.GenKernelArgMetadata(Fn, FD, this); 638 639 if (!(getLangOpts().OpenCL || 640 (getLangOpts().CUDA && 641 getContext().getTargetInfo().getTriple().isSPIRV()))) 642 return; 643 644 if (const VecTypeHintAttr *A = FD->getAttr<VecTypeHintAttr>()) { 645 QualType HintQTy = A->getTypeHint(); 646 const ExtVectorType *HintEltQTy = HintQTy->getAs<ExtVectorType>(); 647 bool IsSignedInteger = 648 HintQTy->isSignedIntegerType() || 649 (HintEltQTy && HintEltQTy->getElementType()->isSignedIntegerType()); 650 llvm::Metadata *AttrMDArgs[] = { 651 llvm::ConstantAsMetadata::get(llvm::UndefValue::get( 652 CGM.getTypes().ConvertType(A->getTypeHint()))), 653 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 654 llvm::IntegerType::get(Context, 32), 655 llvm::APInt(32, (uint64_t)(IsSignedInteger ? 1 : 0))))}; 656 Fn->setMetadata("vec_type_hint", llvm::MDNode::get(Context, AttrMDArgs)); 657 } 658 659 if (const WorkGroupSizeHintAttr *A = FD->getAttr<WorkGroupSizeHintAttr>()) { 660 llvm::Metadata *AttrMDArgs[] = { 661 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getXDim())), 662 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getYDim())), 663 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getZDim()))}; 664 Fn->setMetadata("work_group_size_hint", llvm::MDNode::get(Context, AttrMDArgs)); 665 } 666 667 if (const ReqdWorkGroupSizeAttr *A = FD->getAttr<ReqdWorkGroupSizeAttr>()) { 668 llvm::Metadata *AttrMDArgs[] = { 669 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getXDim())), 670 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getYDim())), 671 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getZDim()))}; 672 Fn->setMetadata("reqd_work_group_size", llvm::MDNode::get(Context, AttrMDArgs)); 673 } 674 675 if (const OpenCLIntelReqdSubGroupSizeAttr *A = 676 FD->getAttr<OpenCLIntelReqdSubGroupSizeAttr>()) { 677 llvm::Metadata *AttrMDArgs[] = { 678 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getSubGroupSize()))}; 679 Fn->setMetadata("intel_reqd_sub_group_size", 680 llvm::MDNode::get(Context, AttrMDArgs)); 681 } 682 } 683 684 /// Determine whether the function F ends with a return stmt. 685 static bool endsWithReturn(const Decl* F) { 686 const Stmt *Body = nullptr; 687 if (auto *FD = dyn_cast_or_null<FunctionDecl>(F)) 688 Body = FD->getBody(); 689 else if (auto *OMD = dyn_cast_or_null<ObjCMethodDecl>(F)) 690 Body = OMD->getBody(); 691 692 if (auto *CS = dyn_cast_or_null<CompoundStmt>(Body)) { 693 auto LastStmt = CS->body_rbegin(); 694 if (LastStmt != CS->body_rend()) 695 return isa<ReturnStmt>(*LastStmt); 696 } 697 return false; 698 } 699 700 void CodeGenFunction::markAsIgnoreThreadCheckingAtRuntime(llvm::Function *Fn) { 701 if (SanOpts.has(SanitizerKind::Thread)) { 702 Fn->addFnAttr("sanitize_thread_no_checking_at_run_time"); 703 Fn->removeFnAttr(llvm::Attribute::SanitizeThread); 704 } 705 } 706 707 /// Check if the return value of this function requires sanitization. 708 bool CodeGenFunction::requiresReturnValueCheck() const { 709 return requiresReturnValueNullabilityCheck() || 710 (SanOpts.has(SanitizerKind::ReturnsNonnullAttribute) && CurCodeDecl && 711 CurCodeDecl->getAttr<ReturnsNonNullAttr>()); 712 } 713 714 static bool matchesStlAllocatorFn(const Decl *D, const ASTContext &Ctx) { 715 auto *MD = dyn_cast_or_null<CXXMethodDecl>(D); 716 if (!MD || !MD->getDeclName().getAsIdentifierInfo() || 717 !MD->getDeclName().getAsIdentifierInfo()->isStr("allocate") || 718 (MD->getNumParams() != 1 && MD->getNumParams() != 2)) 719 return false; 720 721 if (MD->parameters()[0]->getType().getCanonicalType() != Ctx.getSizeType()) 722 return false; 723 724 if (MD->getNumParams() == 2) { 725 auto *PT = MD->parameters()[1]->getType()->getAs<PointerType>(); 726 if (!PT || !PT->isVoidPointerType() || 727 !PT->getPointeeType().isConstQualified()) 728 return false; 729 } 730 731 return true; 732 } 733 734 bool CodeGenFunction::isInAllocaArgument(CGCXXABI &ABI, QualType Ty) { 735 const CXXRecordDecl *RD = Ty->getAsCXXRecordDecl(); 736 return RD && ABI.getRecordArgABI(RD) == CGCXXABI::RAA_DirectInMemory; 737 } 738 739 bool CodeGenFunction::hasInAllocaArg(const CXXMethodDecl *MD) { 740 return getTarget().getTriple().getArch() == llvm::Triple::x86 && 741 getTarget().getCXXABI().isMicrosoft() && 742 llvm::any_of(MD->parameters(), [&](ParmVarDecl *P) { 743 return isInAllocaArgument(CGM.getCXXABI(), P->getType()); 744 }); 745 } 746 747 /// Return the UBSan prologue signature for \p FD if one is available. 748 static llvm::Constant *getPrologueSignature(CodeGenModule &CGM, 749 const FunctionDecl *FD) { 750 if (const auto *MD = dyn_cast<CXXMethodDecl>(FD)) 751 if (!MD->isStatic()) 752 return nullptr; 753 return CGM.getTargetCodeGenInfo().getUBSanFunctionSignature(CGM); 754 } 755 756 void CodeGenFunction::StartFunction(GlobalDecl GD, QualType RetTy, 757 llvm::Function *Fn, 758 const CGFunctionInfo &FnInfo, 759 const FunctionArgList &Args, 760 SourceLocation Loc, 761 SourceLocation StartLoc) { 762 assert(!CurFn && 763 "Do not use a CodeGenFunction object for more than one function"); 764 765 const Decl *D = GD.getDecl(); 766 767 DidCallStackSave = false; 768 CurCodeDecl = D; 769 const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D); 770 if (FD && FD->usesSEHTry()) 771 CurSEHParent = GD; 772 CurFuncDecl = (D ? D->getNonClosureContext() : nullptr); 773 FnRetTy = RetTy; 774 CurFn = Fn; 775 CurFnInfo = &FnInfo; 776 assert(CurFn->isDeclaration() && "Function already has body?"); 777 778 // If this function is ignored for any of the enabled sanitizers, 779 // disable the sanitizer for the function. 780 do { 781 #define SANITIZER(NAME, ID) \ 782 if (SanOpts.empty()) \ 783 break; \ 784 if (SanOpts.has(SanitizerKind::ID)) \ 785 if (CGM.isInNoSanitizeList(SanitizerKind::ID, Fn, Loc)) \ 786 SanOpts.set(SanitizerKind::ID, false); 787 788 #include "clang/Basic/Sanitizers.def" 789 #undef SANITIZER 790 } while (false); 791 792 if (D) { 793 const bool SanitizeBounds = SanOpts.hasOneOf(SanitizerKind::Bounds); 794 SanitizerMask no_sanitize_mask; 795 bool NoSanitizeCoverage = false; 796 797 for (auto *Attr : D->specific_attrs<NoSanitizeAttr>()) { 798 no_sanitize_mask |= Attr->getMask(); 799 // SanitizeCoverage is not handled by SanOpts. 800 if (Attr->hasCoverage()) 801 NoSanitizeCoverage = true; 802 } 803 804 // Apply the no_sanitize* attributes to SanOpts. 805 SanOpts.Mask &= ~no_sanitize_mask; 806 if (no_sanitize_mask & SanitizerKind::Address) 807 SanOpts.set(SanitizerKind::KernelAddress, false); 808 if (no_sanitize_mask & SanitizerKind::KernelAddress) 809 SanOpts.set(SanitizerKind::Address, false); 810 if (no_sanitize_mask & SanitizerKind::HWAddress) 811 SanOpts.set(SanitizerKind::KernelHWAddress, false); 812 if (no_sanitize_mask & SanitizerKind::KernelHWAddress) 813 SanOpts.set(SanitizerKind::HWAddress, false); 814 815 if (SanitizeBounds && !SanOpts.hasOneOf(SanitizerKind::Bounds)) 816 Fn->addFnAttr(llvm::Attribute::NoSanitizeBounds); 817 818 if (NoSanitizeCoverage && CGM.getCodeGenOpts().hasSanitizeCoverage()) 819 Fn->addFnAttr(llvm::Attribute::NoSanitizeCoverage); 820 821 // Some passes need the non-negated no_sanitize attribute. Pass them on. 822 if (CGM.getCodeGenOpts().hasSanitizeBinaryMetadata()) { 823 if (no_sanitize_mask & SanitizerKind::Thread) 824 Fn->addFnAttr("no_sanitize_thread"); 825 } 826 } 827 828 if (ShouldSkipSanitizerInstrumentation()) { 829 CurFn->addFnAttr(llvm::Attribute::DisableSanitizerInstrumentation); 830 } else { 831 // Apply sanitizer attributes to the function. 832 if (SanOpts.hasOneOf(SanitizerKind::Address | SanitizerKind::KernelAddress)) 833 Fn->addFnAttr(llvm::Attribute::SanitizeAddress); 834 if (SanOpts.hasOneOf(SanitizerKind::HWAddress | 835 SanitizerKind::KernelHWAddress)) 836 Fn->addFnAttr(llvm::Attribute::SanitizeHWAddress); 837 if (SanOpts.has(SanitizerKind::MemtagStack)) 838 Fn->addFnAttr(llvm::Attribute::SanitizeMemTag); 839 if (SanOpts.has(SanitizerKind::Thread)) 840 Fn->addFnAttr(llvm::Attribute::SanitizeThread); 841 if (SanOpts.has(SanitizerKind::Type)) 842 Fn->addFnAttr(llvm::Attribute::SanitizeType); 843 if (SanOpts.has(SanitizerKind::NumericalStability)) 844 Fn->addFnAttr(llvm::Attribute::SanitizeNumericalStability); 845 if (SanOpts.hasOneOf(SanitizerKind::Memory | SanitizerKind::KernelMemory)) 846 Fn->addFnAttr(llvm::Attribute::SanitizeMemory); 847 } 848 if (SanOpts.has(SanitizerKind::SafeStack)) 849 Fn->addFnAttr(llvm::Attribute::SafeStack); 850 if (SanOpts.has(SanitizerKind::ShadowCallStack)) 851 Fn->addFnAttr(llvm::Attribute::ShadowCallStack); 852 853 if (SanOpts.has(SanitizerKind::Realtime)) 854 if (FD && FD->getASTContext().hasAnyFunctionEffects()) 855 for (const FunctionEffectWithCondition &Fe : FD->getFunctionEffects()) { 856 if (Fe.Effect.kind() == FunctionEffect::Kind::NonBlocking) 857 Fn->addFnAttr(llvm::Attribute::SanitizeRealtime); 858 else if (Fe.Effect.kind() == FunctionEffect::Kind::Blocking) 859 Fn->addFnAttr(llvm::Attribute::SanitizeRealtimeBlocking); 860 } 861 862 // Apply fuzzing attribute to the function. 863 if (SanOpts.hasOneOf(SanitizerKind::Fuzzer | SanitizerKind::FuzzerNoLink)) 864 Fn->addFnAttr(llvm::Attribute::OptForFuzzing); 865 866 // Ignore TSan memory acesses from within ObjC/ObjC++ dealloc, initialize, 867 // .cxx_destruct, __destroy_helper_block_ and all of their calees at run time. 868 if (SanOpts.has(SanitizerKind::Thread)) { 869 if (const auto *OMD = dyn_cast_or_null<ObjCMethodDecl>(D)) { 870 const IdentifierInfo *II = OMD->getSelector().getIdentifierInfoForSlot(0); 871 if (OMD->getMethodFamily() == OMF_dealloc || 872 OMD->getMethodFamily() == OMF_initialize || 873 (OMD->getSelector().isUnarySelector() && II->isStr(".cxx_destruct"))) { 874 markAsIgnoreThreadCheckingAtRuntime(Fn); 875 } 876 } 877 } 878 879 // Ignore unrelated casts in STL allocate() since the allocator must cast 880 // from void* to T* before object initialization completes. Don't match on the 881 // namespace because not all allocators are in std:: 882 if (D && SanOpts.has(SanitizerKind::CFIUnrelatedCast)) { 883 if (matchesStlAllocatorFn(D, getContext())) 884 SanOpts.Mask &= ~SanitizerKind::CFIUnrelatedCast; 885 } 886 887 // Ignore null checks in coroutine functions since the coroutines passes 888 // are not aware of how to move the extra UBSan instructions across the split 889 // coroutine boundaries. 890 if (D && SanOpts.has(SanitizerKind::Null)) 891 if (FD && FD->getBody() && 892 FD->getBody()->getStmtClass() == Stmt::CoroutineBodyStmtClass) 893 SanOpts.Mask &= ~SanitizerKind::Null; 894 895 // Add pointer authentication attributes. 896 const CodeGenOptions &CodeGenOpts = CGM.getCodeGenOpts(); 897 if (CodeGenOpts.PointerAuth.ReturnAddresses) 898 Fn->addFnAttr("ptrauth-returns"); 899 if (CodeGenOpts.PointerAuth.FunctionPointers) 900 Fn->addFnAttr("ptrauth-calls"); 901 if (CodeGenOpts.PointerAuth.AuthTraps) 902 Fn->addFnAttr("ptrauth-auth-traps"); 903 if (CodeGenOpts.PointerAuth.IndirectGotos) 904 Fn->addFnAttr("ptrauth-indirect-gotos"); 905 if (CodeGenOpts.PointerAuth.AArch64JumpTableHardening) 906 Fn->addFnAttr("aarch64-jump-table-hardening"); 907 908 // Apply xray attributes to the function (as a string, for now) 909 bool AlwaysXRayAttr = false; 910 if (const auto *XRayAttr = D ? D->getAttr<XRayInstrumentAttr>() : nullptr) { 911 if (CGM.getCodeGenOpts().XRayInstrumentationBundle.has( 912 XRayInstrKind::FunctionEntry) || 913 CGM.getCodeGenOpts().XRayInstrumentationBundle.has( 914 XRayInstrKind::FunctionExit)) { 915 if (XRayAttr->alwaysXRayInstrument() && ShouldXRayInstrumentFunction()) { 916 Fn->addFnAttr("function-instrument", "xray-always"); 917 AlwaysXRayAttr = true; 918 } 919 if (XRayAttr->neverXRayInstrument()) 920 Fn->addFnAttr("function-instrument", "xray-never"); 921 if (const auto *LogArgs = D->getAttr<XRayLogArgsAttr>()) 922 if (ShouldXRayInstrumentFunction()) 923 Fn->addFnAttr("xray-log-args", 924 llvm::utostr(LogArgs->getArgumentCount())); 925 } 926 } else { 927 if (ShouldXRayInstrumentFunction() && !CGM.imbueXRayAttrs(Fn, Loc)) 928 Fn->addFnAttr( 929 "xray-instruction-threshold", 930 llvm::itostr(CGM.getCodeGenOpts().XRayInstructionThreshold)); 931 } 932 933 if (ShouldXRayInstrumentFunction()) { 934 if (CGM.getCodeGenOpts().XRayIgnoreLoops) 935 Fn->addFnAttr("xray-ignore-loops"); 936 937 if (!CGM.getCodeGenOpts().XRayInstrumentationBundle.has( 938 XRayInstrKind::FunctionExit)) 939 Fn->addFnAttr("xray-skip-exit"); 940 941 if (!CGM.getCodeGenOpts().XRayInstrumentationBundle.has( 942 XRayInstrKind::FunctionEntry)) 943 Fn->addFnAttr("xray-skip-entry"); 944 945 auto FuncGroups = CGM.getCodeGenOpts().XRayTotalFunctionGroups; 946 if (FuncGroups > 1) { 947 auto FuncName = llvm::ArrayRef<uint8_t>(CurFn->getName().bytes_begin(), 948 CurFn->getName().bytes_end()); 949 auto Group = crc32(FuncName) % FuncGroups; 950 if (Group != CGM.getCodeGenOpts().XRaySelectedFunctionGroup && 951 !AlwaysXRayAttr) 952 Fn->addFnAttr("function-instrument", "xray-never"); 953 } 954 } 955 956 if (CGM.getCodeGenOpts().getProfileInstr() != CodeGenOptions::ProfileNone) { 957 switch (CGM.isFunctionBlockedFromProfileInstr(Fn, Loc)) { 958 case ProfileList::Skip: 959 Fn->addFnAttr(llvm::Attribute::SkipProfile); 960 break; 961 case ProfileList::Forbid: 962 Fn->addFnAttr(llvm::Attribute::NoProfile); 963 break; 964 case ProfileList::Allow: 965 break; 966 } 967 } 968 969 unsigned Count, Offset; 970 if (const auto *Attr = 971 D ? D->getAttr<PatchableFunctionEntryAttr>() : nullptr) { 972 Count = Attr->getCount(); 973 Offset = Attr->getOffset(); 974 } else { 975 Count = CGM.getCodeGenOpts().PatchableFunctionEntryCount; 976 Offset = CGM.getCodeGenOpts().PatchableFunctionEntryOffset; 977 } 978 if (Count && Offset <= Count) { 979 Fn->addFnAttr("patchable-function-entry", std::to_string(Count - Offset)); 980 if (Offset) 981 Fn->addFnAttr("patchable-function-prefix", std::to_string(Offset)); 982 } 983 // Instruct that functions for COFF/CodeView targets should start with a 984 // patchable instruction, but only on x86/x64. Don't forward this to ARM/ARM64 985 // backends as they don't need it -- instructions on these architectures are 986 // always atomically patchable at runtime. 987 if (CGM.getCodeGenOpts().HotPatch && 988 getContext().getTargetInfo().getTriple().isX86() && 989 getContext().getTargetInfo().getTriple().getEnvironment() != 990 llvm::Triple::CODE16) 991 Fn->addFnAttr("patchable-function", "prologue-short-redirect"); 992 993 // Add no-jump-tables value. 994 if (CGM.getCodeGenOpts().NoUseJumpTables) 995 Fn->addFnAttr("no-jump-tables", "true"); 996 997 // Add no-inline-line-tables value. 998 if (CGM.getCodeGenOpts().NoInlineLineTables) 999 Fn->addFnAttr("no-inline-line-tables"); 1000 1001 // Add profile-sample-accurate value. 1002 if (CGM.getCodeGenOpts().ProfileSampleAccurate) 1003 Fn->addFnAttr("profile-sample-accurate"); 1004 1005 if (!CGM.getCodeGenOpts().SampleProfileFile.empty()) 1006 Fn->addFnAttr("use-sample-profile"); 1007 1008 if (D && D->hasAttr<CFICanonicalJumpTableAttr>()) 1009 Fn->addFnAttr("cfi-canonical-jump-table"); 1010 1011 if (D && D->hasAttr<NoProfileFunctionAttr>()) 1012 Fn->addFnAttr(llvm::Attribute::NoProfile); 1013 1014 if (D && D->hasAttr<HybridPatchableAttr>()) 1015 Fn->addFnAttr(llvm::Attribute::HybridPatchable); 1016 1017 if (D) { 1018 // Function attributes take precedence over command line flags. 1019 if (auto *A = D->getAttr<FunctionReturnThunksAttr>()) { 1020 switch (A->getThunkType()) { 1021 case FunctionReturnThunksAttr::Kind::Keep: 1022 break; 1023 case FunctionReturnThunksAttr::Kind::Extern: 1024 Fn->addFnAttr(llvm::Attribute::FnRetThunkExtern); 1025 break; 1026 } 1027 } else if (CGM.getCodeGenOpts().FunctionReturnThunks) 1028 Fn->addFnAttr(llvm::Attribute::FnRetThunkExtern); 1029 } 1030 1031 if (FD && (getLangOpts().OpenCL || 1032 (getLangOpts().CUDA && 1033 getContext().getTargetInfo().getTriple().isSPIRV()) || 1034 ((getLangOpts().HIP || getLangOpts().OffloadViaLLVM) && 1035 getLangOpts().CUDAIsDevice))) { 1036 // Add metadata for a kernel function. 1037 EmitKernelMetadata(FD, Fn); 1038 } 1039 1040 if (FD && FD->hasAttr<ClspvLibclcBuiltinAttr>()) { 1041 Fn->setMetadata("clspv_libclc_builtin", 1042 llvm::MDNode::get(getLLVMContext(), {})); 1043 } 1044 1045 // If we are checking function types, emit a function type signature as 1046 // prologue data. 1047 if (FD && SanOpts.has(SanitizerKind::Function)) { 1048 if (llvm::Constant *PrologueSig = getPrologueSignature(CGM, FD)) { 1049 llvm::LLVMContext &Ctx = Fn->getContext(); 1050 llvm::MDBuilder MDB(Ctx); 1051 Fn->setMetadata( 1052 llvm::LLVMContext::MD_func_sanitize, 1053 MDB.createRTTIPointerPrologue( 1054 PrologueSig, getUBSanFunctionTypeHash(FD->getType()))); 1055 } 1056 } 1057 1058 // If we're checking nullability, we need to know whether we can check the 1059 // return value. Initialize the flag to 'true' and refine it in EmitParmDecl. 1060 if (SanOpts.has(SanitizerKind::NullabilityReturn)) { 1061 auto Nullability = FnRetTy->getNullability(); 1062 if (Nullability && *Nullability == NullabilityKind::NonNull && 1063 !FnRetTy->isRecordType()) { 1064 if (!(SanOpts.has(SanitizerKind::ReturnsNonnullAttribute) && 1065 CurCodeDecl && CurCodeDecl->getAttr<ReturnsNonNullAttr>())) 1066 RetValNullabilityPrecondition = 1067 llvm::ConstantInt::getTrue(getLLVMContext()); 1068 } 1069 } 1070 1071 // If we're in C++ mode and the function name is "main", it is guaranteed 1072 // to be norecurse by the standard (3.6.1.3 "The function main shall not be 1073 // used within a program"). 1074 // 1075 // OpenCL C 2.0 v2.2-11 s6.9.i: 1076 // Recursion is not supported. 1077 // 1078 // HLSL 1079 // Recursion is not supported. 1080 // 1081 // SYCL v1.2.1 s3.10: 1082 // kernels cannot include RTTI information, exception classes, 1083 // recursive code, virtual functions or make use of C++ libraries that 1084 // are not compiled for the device. 1085 if (FD && 1086 ((getLangOpts().CPlusPlus && FD->isMain()) || getLangOpts().OpenCL || 1087 getLangOpts().HLSL || getLangOpts().SYCLIsDevice || 1088 (getLangOpts().CUDA && FD->hasAttr<CUDAGlobalAttr>()))) 1089 Fn->addFnAttr(llvm::Attribute::NoRecurse); 1090 1091 llvm::RoundingMode RM = getLangOpts().getDefaultRoundingMode(); 1092 llvm::fp::ExceptionBehavior FPExceptionBehavior = 1093 ToConstrainedExceptMD(getLangOpts().getDefaultExceptionMode()); 1094 Builder.setDefaultConstrainedRounding(RM); 1095 Builder.setDefaultConstrainedExcept(FPExceptionBehavior); 1096 if ((FD && (FD->UsesFPIntrin() || FD->hasAttr<StrictFPAttr>())) || 1097 (!FD && (FPExceptionBehavior != llvm::fp::ebIgnore || 1098 RM != llvm::RoundingMode::NearestTiesToEven))) { 1099 Builder.setIsFPConstrained(true); 1100 Fn->addFnAttr(llvm::Attribute::StrictFP); 1101 } 1102 1103 // If a custom alignment is used, force realigning to this alignment on 1104 // any main function which certainly will need it. 1105 if (FD && ((FD->isMain() || FD->isMSVCRTEntryPoint()) && 1106 CGM.getCodeGenOpts().StackAlignment)) 1107 Fn->addFnAttr("stackrealign"); 1108 1109 // "main" doesn't need to zero out call-used registers. 1110 if (FD && FD->isMain()) 1111 Fn->removeFnAttr("zero-call-used-regs"); 1112 1113 llvm::BasicBlock *EntryBB = createBasicBlock("entry", CurFn); 1114 1115 // Create a marker to make it easy to insert allocas into the entryblock 1116 // later. Don't create this with the builder, because we don't want it 1117 // folded. 1118 llvm::Value *Poison = llvm::PoisonValue::get(Int32Ty); 1119 AllocaInsertPt = new llvm::BitCastInst(Poison, Int32Ty, "allocapt", EntryBB); 1120 1121 ReturnBlock = getJumpDestInCurrentScope("return"); 1122 1123 Builder.SetInsertPoint(EntryBB); 1124 1125 // If we're checking the return value, allocate space for a pointer to a 1126 // precise source location of the checked return statement. 1127 if (requiresReturnValueCheck()) { 1128 ReturnLocation = CreateDefaultAlignTempAlloca(Int8PtrTy, "return.sloc.ptr"); 1129 Builder.CreateStore(llvm::ConstantPointerNull::get(Int8PtrTy), 1130 ReturnLocation); 1131 } 1132 1133 // Emit subprogram debug descriptor. 1134 if (CGDebugInfo *DI = getDebugInfo()) { 1135 // Reconstruct the type from the argument list so that implicit parameters, 1136 // such as 'this' and 'vtt', show up in the debug info. Preserve the calling 1137 // convention. 1138 DI->emitFunctionStart(GD, Loc, StartLoc, 1139 DI->getFunctionType(FD, RetTy, Args), CurFn, 1140 CurFuncIsThunk); 1141 } 1142 1143 if (ShouldInstrumentFunction()) { 1144 if (CGM.getCodeGenOpts().InstrumentFunctions) 1145 CurFn->addFnAttr("instrument-function-entry", "__cyg_profile_func_enter"); 1146 if (CGM.getCodeGenOpts().InstrumentFunctionsAfterInlining) 1147 CurFn->addFnAttr("instrument-function-entry-inlined", 1148 "__cyg_profile_func_enter"); 1149 if (CGM.getCodeGenOpts().InstrumentFunctionEntryBare) 1150 CurFn->addFnAttr("instrument-function-entry-inlined", 1151 "__cyg_profile_func_enter_bare"); 1152 } 1153 1154 // Since emitting the mcount call here impacts optimizations such as function 1155 // inlining, we just add an attribute to insert a mcount call in backend. 1156 // The attribute "counting-function" is set to mcount function name which is 1157 // architecture dependent. 1158 if (CGM.getCodeGenOpts().InstrumentForProfiling) { 1159 // Calls to fentry/mcount should not be generated if function has 1160 // the no_instrument_function attribute. 1161 if (!CurFuncDecl || !CurFuncDecl->hasAttr<NoInstrumentFunctionAttr>()) { 1162 if (CGM.getCodeGenOpts().CallFEntry) 1163 Fn->addFnAttr("fentry-call", "true"); 1164 else { 1165 Fn->addFnAttr("instrument-function-entry-inlined", 1166 getTarget().getMCountName()); 1167 } 1168 if (CGM.getCodeGenOpts().MNopMCount) { 1169 if (!CGM.getCodeGenOpts().CallFEntry) 1170 CGM.getDiags().Report(diag::err_opt_not_valid_without_opt) 1171 << "-mnop-mcount" << "-mfentry"; 1172 Fn->addFnAttr("mnop-mcount"); 1173 } 1174 1175 if (CGM.getCodeGenOpts().RecordMCount) { 1176 if (!CGM.getCodeGenOpts().CallFEntry) 1177 CGM.getDiags().Report(diag::err_opt_not_valid_without_opt) 1178 << "-mrecord-mcount" << "-mfentry"; 1179 Fn->addFnAttr("mrecord-mcount"); 1180 } 1181 } 1182 } 1183 1184 if (CGM.getCodeGenOpts().PackedStack) { 1185 if (getContext().getTargetInfo().getTriple().getArch() != 1186 llvm::Triple::systemz) 1187 CGM.getDiags().Report(diag::err_opt_not_valid_on_target) 1188 << "-mpacked-stack"; 1189 Fn->addFnAttr("packed-stack"); 1190 } 1191 1192 if (CGM.getCodeGenOpts().WarnStackSize != UINT_MAX && 1193 !CGM.getDiags().isIgnored(diag::warn_fe_backend_frame_larger_than, Loc)) 1194 Fn->addFnAttr("warn-stack-size", 1195 std::to_string(CGM.getCodeGenOpts().WarnStackSize)); 1196 1197 if (RetTy->isVoidType()) { 1198 // Void type; nothing to return. 1199 ReturnValue = Address::invalid(); 1200 1201 // Count the implicit return. 1202 if (!endsWithReturn(D)) 1203 ++NumReturnExprs; 1204 } else if (CurFnInfo->getReturnInfo().getKind() == ABIArgInfo::Indirect) { 1205 // Indirect return; emit returned value directly into sret slot. 1206 // This reduces code size, and affects correctness in C++. 1207 auto AI = CurFn->arg_begin(); 1208 if (CurFnInfo->getReturnInfo().isSRetAfterThis()) 1209 ++AI; 1210 ReturnValue = makeNaturalAddressForPointer( 1211 &*AI, RetTy, CurFnInfo->getReturnInfo().getIndirectAlign(), false, 1212 nullptr, nullptr, KnownNonNull); 1213 if (!CurFnInfo->getReturnInfo().getIndirectByVal()) { 1214 ReturnValuePointer = 1215 CreateDefaultAlignTempAlloca(ReturnValue.getType(), "result.ptr"); 1216 Builder.CreateStore(ReturnValue.emitRawPointer(*this), 1217 ReturnValuePointer); 1218 } 1219 } else if (CurFnInfo->getReturnInfo().getKind() == ABIArgInfo::InAlloca && 1220 !hasScalarEvaluationKind(CurFnInfo->getReturnType())) { 1221 // Load the sret pointer from the argument struct and return into that. 1222 unsigned Idx = CurFnInfo->getReturnInfo().getInAllocaFieldIndex(); 1223 llvm::Function::arg_iterator EI = CurFn->arg_end(); 1224 --EI; 1225 llvm::Value *Addr = Builder.CreateStructGEP( 1226 CurFnInfo->getArgStruct(), &*EI, Idx); 1227 llvm::Type *Ty = 1228 cast<llvm::GetElementPtrInst>(Addr)->getResultElementType(); 1229 ReturnValuePointer = Address(Addr, Ty, getPointerAlign()); 1230 Addr = Builder.CreateAlignedLoad(Ty, Addr, getPointerAlign(), "agg.result"); 1231 ReturnValue = Address(Addr, ConvertType(RetTy), 1232 CGM.getNaturalTypeAlignment(RetTy), KnownNonNull); 1233 } else { 1234 ReturnValue = CreateIRTemp(RetTy, "retval"); 1235 1236 // Tell the epilog emitter to autorelease the result. We do this 1237 // now so that various specialized functions can suppress it 1238 // during their IR-generation. 1239 if (getLangOpts().ObjCAutoRefCount && 1240 !CurFnInfo->isReturnsRetained() && 1241 RetTy->isObjCRetainableType()) 1242 AutoreleaseResult = true; 1243 } 1244 1245 EmitStartEHSpec(CurCodeDecl); 1246 1247 PrologueCleanupDepth = EHStack.stable_begin(); 1248 1249 // Emit OpenMP specific initialization of the device functions. 1250 if (getLangOpts().OpenMP && CurCodeDecl) 1251 CGM.getOpenMPRuntime().emitFunctionProlog(*this, CurCodeDecl); 1252 1253 if (FD && getLangOpts().HLSL) { 1254 // Handle emitting HLSL entry functions. 1255 if (FD->hasAttr<HLSLShaderAttr>()) { 1256 CGM.getHLSLRuntime().emitEntryFunction(FD, Fn); 1257 } 1258 CGM.getHLSLRuntime().setHLSLFunctionAttributes(FD, Fn); 1259 } 1260 1261 EmitFunctionProlog(*CurFnInfo, CurFn, Args); 1262 1263 if (const CXXMethodDecl *MD = dyn_cast_if_present<CXXMethodDecl>(D); 1264 MD && !MD->isStatic()) { 1265 bool IsInLambda = 1266 MD->getParent()->isLambda() && MD->getOverloadedOperator() == OO_Call; 1267 if (MD->isImplicitObjectMemberFunction()) 1268 CGM.getCXXABI().EmitInstanceFunctionProlog(*this); 1269 if (IsInLambda) { 1270 // We're in a lambda; figure out the captures. 1271 MD->getParent()->getCaptureFields(LambdaCaptureFields, 1272 LambdaThisCaptureField); 1273 if (LambdaThisCaptureField) { 1274 // If the lambda captures the object referred to by '*this' - either by 1275 // value or by reference, make sure CXXThisValue points to the correct 1276 // object. 1277 1278 // Get the lvalue for the field (which is a copy of the enclosing object 1279 // or contains the address of the enclosing object). 1280 LValue ThisFieldLValue = EmitLValueForLambdaField(LambdaThisCaptureField); 1281 if (!LambdaThisCaptureField->getType()->isPointerType()) { 1282 // If the enclosing object was captured by value, just use its 1283 // address. Sign this pointer. 1284 CXXThisValue = ThisFieldLValue.getPointer(*this); 1285 } else { 1286 // Load the lvalue pointed to by the field, since '*this' was captured 1287 // by reference. 1288 CXXThisValue = 1289 EmitLoadOfLValue(ThisFieldLValue, SourceLocation()).getScalarVal(); 1290 } 1291 } 1292 for (auto *FD : MD->getParent()->fields()) { 1293 if (FD->hasCapturedVLAType()) { 1294 auto *ExprArg = EmitLoadOfLValue(EmitLValueForLambdaField(FD), 1295 SourceLocation()).getScalarVal(); 1296 auto VAT = FD->getCapturedVLAType(); 1297 VLASizeMap[VAT->getSizeExpr()] = ExprArg; 1298 } 1299 } 1300 } else if (MD->isImplicitObjectMemberFunction()) { 1301 // Not in a lambda; just use 'this' from the method. 1302 // FIXME: Should we generate a new load for each use of 'this'? The 1303 // fast register allocator would be happier... 1304 CXXThisValue = CXXABIThisValue; 1305 } 1306 1307 // Check the 'this' pointer once per function, if it's available. 1308 if (CXXABIThisValue) { 1309 SanitizerSet SkippedChecks; 1310 SkippedChecks.set(SanitizerKind::ObjectSize, true); 1311 QualType ThisTy = MD->getThisType(); 1312 1313 // If this is the call operator of a lambda with no captures, it 1314 // may have a static invoker function, which may call this operator with 1315 // a null 'this' pointer. 1316 if (isLambdaCallOperator(MD) && MD->getParent()->isCapturelessLambda()) 1317 SkippedChecks.set(SanitizerKind::Null, true); 1318 1319 EmitTypeCheck( 1320 isa<CXXConstructorDecl>(MD) ? TCK_ConstructorCall : TCK_MemberCall, 1321 Loc, CXXABIThisValue, ThisTy, CXXABIThisAlignment, SkippedChecks); 1322 } 1323 } 1324 1325 // If any of the arguments have a variably modified type, make sure to 1326 // emit the type size, but only if the function is not naked. Naked functions 1327 // have no prolog to run this evaluation. 1328 if (!FD || !FD->hasAttr<NakedAttr>()) { 1329 for (const VarDecl *VD : Args) { 1330 // Dig out the type as written from ParmVarDecls; it's unclear whether 1331 // the standard (C99 6.9.1p10) requires this, but we're following the 1332 // precedent set by gcc. 1333 QualType Ty; 1334 if (const ParmVarDecl *PVD = dyn_cast<ParmVarDecl>(VD)) 1335 Ty = PVD->getOriginalType(); 1336 else 1337 Ty = VD->getType(); 1338 1339 if (Ty->isVariablyModifiedType()) 1340 EmitVariablyModifiedType(Ty); 1341 } 1342 } 1343 // Emit a location at the end of the prologue. 1344 if (CGDebugInfo *DI = getDebugInfo()) 1345 DI->EmitLocation(Builder, StartLoc); 1346 // TODO: Do we need to handle this in two places like we do with 1347 // target-features/target-cpu? 1348 if (CurFuncDecl) 1349 if (const auto *VecWidth = CurFuncDecl->getAttr<MinVectorWidthAttr>()) 1350 LargestVectorWidth = VecWidth->getVectorWidth(); 1351 1352 if (CGM.shouldEmitConvergenceTokens()) 1353 ConvergenceTokenStack.push_back(getOrEmitConvergenceEntryToken(CurFn)); 1354 } 1355 1356 void CodeGenFunction::EmitFunctionBody(const Stmt *Body) { 1357 incrementProfileCounter(Body); 1358 maybeCreateMCDCCondBitmap(); 1359 if (const CompoundStmt *S = dyn_cast<CompoundStmt>(Body)) 1360 EmitCompoundStmtWithoutScope(*S); 1361 else 1362 EmitStmt(Body); 1363 } 1364 1365 /// When instrumenting to collect profile data, the counts for some blocks 1366 /// such as switch cases need to not include the fall-through counts, so 1367 /// emit a branch around the instrumentation code. When not instrumenting, 1368 /// this just calls EmitBlock(). 1369 void CodeGenFunction::EmitBlockWithFallThrough(llvm::BasicBlock *BB, 1370 const Stmt *S) { 1371 llvm::BasicBlock *SkipCountBB = nullptr; 1372 // Do not skip over the instrumentation when single byte coverage mode is 1373 // enabled. 1374 if (HaveInsertPoint() && CGM.getCodeGenOpts().hasProfileClangInstr() && 1375 !llvm::EnableSingleByteCoverage) { 1376 // When instrumenting for profiling, the fallthrough to certain 1377 // statements needs to skip over the instrumentation code so that we 1378 // get an accurate count. 1379 SkipCountBB = createBasicBlock("skipcount"); 1380 EmitBranch(SkipCountBB); 1381 } 1382 EmitBlock(BB); 1383 uint64_t CurrentCount = getCurrentProfileCount(); 1384 incrementProfileCounter(S); 1385 setCurrentProfileCount(getCurrentProfileCount() + CurrentCount); 1386 if (SkipCountBB) 1387 EmitBlock(SkipCountBB); 1388 } 1389 1390 /// Tries to mark the given function nounwind based on the 1391 /// non-existence of any throwing calls within it. We believe this is 1392 /// lightweight enough to do at -O0. 1393 static void TryMarkNoThrow(llvm::Function *F) { 1394 // LLVM treats 'nounwind' on a function as part of the type, so we 1395 // can't do this on functions that can be overwritten. 1396 if (F->isInterposable()) return; 1397 1398 for (llvm::BasicBlock &BB : *F) 1399 for (llvm::Instruction &I : BB) 1400 if (I.mayThrow()) 1401 return; 1402 1403 F->setDoesNotThrow(); 1404 } 1405 1406 QualType CodeGenFunction::BuildFunctionArgList(GlobalDecl GD, 1407 FunctionArgList &Args) { 1408 const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl()); 1409 QualType ResTy = FD->getReturnType(); 1410 1411 const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD); 1412 if (MD && MD->isImplicitObjectMemberFunction()) { 1413 if (CGM.getCXXABI().HasThisReturn(GD)) 1414 ResTy = MD->getThisType(); 1415 else if (CGM.getCXXABI().hasMostDerivedReturn(GD)) 1416 ResTy = CGM.getContext().VoidPtrTy; 1417 CGM.getCXXABI().buildThisParam(*this, Args); 1418 } 1419 1420 // The base version of an inheriting constructor whose constructed base is a 1421 // virtual base is not passed any arguments (because it doesn't actually call 1422 // the inherited constructor). 1423 bool PassedParams = true; 1424 if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(FD)) 1425 if (auto Inherited = CD->getInheritedConstructor()) 1426 PassedParams = 1427 getTypes().inheritingCtorHasParams(Inherited, GD.getCtorType()); 1428 1429 if (PassedParams) { 1430 for (auto *Param : FD->parameters()) { 1431 Args.push_back(Param); 1432 if (!Param->hasAttr<PassObjectSizeAttr>()) 1433 continue; 1434 1435 auto *Implicit = ImplicitParamDecl::Create( 1436 getContext(), Param->getDeclContext(), Param->getLocation(), 1437 /*Id=*/nullptr, getContext().getSizeType(), ImplicitParamKind::Other); 1438 SizeArguments[Param] = Implicit; 1439 Args.push_back(Implicit); 1440 } 1441 } 1442 1443 if (MD && (isa<CXXConstructorDecl>(MD) || isa<CXXDestructorDecl>(MD))) 1444 CGM.getCXXABI().addImplicitStructorParams(*this, ResTy, Args); 1445 1446 return ResTy; 1447 } 1448 1449 void CodeGenFunction::GenerateCode(GlobalDecl GD, llvm::Function *Fn, 1450 const CGFunctionInfo &FnInfo) { 1451 assert(Fn && "generating code for null Function"); 1452 const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl()); 1453 CurGD = GD; 1454 1455 FunctionArgList Args; 1456 QualType ResTy = BuildFunctionArgList(GD, Args); 1457 1458 CGM.getTargetCodeGenInfo().checkFunctionABI(CGM, FD); 1459 1460 if (FD->isInlineBuiltinDeclaration()) { 1461 // When generating code for a builtin with an inline declaration, use a 1462 // mangled name to hold the actual body, while keeping an external 1463 // definition in case the function pointer is referenced somewhere. 1464 std::string FDInlineName = (Fn->getName() + ".inline").str(); 1465 llvm::Module *M = Fn->getParent(); 1466 llvm::Function *Clone = M->getFunction(FDInlineName); 1467 if (!Clone) { 1468 Clone = llvm::Function::Create(Fn->getFunctionType(), 1469 llvm::GlobalValue::InternalLinkage, 1470 Fn->getAddressSpace(), FDInlineName, M); 1471 Clone->addFnAttr(llvm::Attribute::AlwaysInline); 1472 } 1473 Fn->setLinkage(llvm::GlobalValue::ExternalLinkage); 1474 Fn = Clone; 1475 } else { 1476 // Detect the unusual situation where an inline version is shadowed by a 1477 // non-inline version. In that case we should pick the external one 1478 // everywhere. That's GCC behavior too. Unfortunately, I cannot find a way 1479 // to detect that situation before we reach codegen, so do some late 1480 // replacement. 1481 for (const FunctionDecl *PD = FD->getPreviousDecl(); PD; 1482 PD = PD->getPreviousDecl()) { 1483 if (LLVM_UNLIKELY(PD->isInlineBuiltinDeclaration())) { 1484 std::string FDInlineName = (Fn->getName() + ".inline").str(); 1485 llvm::Module *M = Fn->getParent(); 1486 if (llvm::Function *Clone = M->getFunction(FDInlineName)) { 1487 Clone->replaceAllUsesWith(Fn); 1488 Clone->eraseFromParent(); 1489 } 1490 break; 1491 } 1492 } 1493 } 1494 1495 // Check if we should generate debug info for this function. 1496 if (FD->hasAttr<NoDebugAttr>()) { 1497 // Clear non-distinct debug info that was possibly attached to the function 1498 // due to an earlier declaration without the nodebug attribute 1499 Fn->setSubprogram(nullptr); 1500 // Disable debug info indefinitely for this function 1501 DebugInfo = nullptr; 1502 } 1503 1504 // The function might not have a body if we're generating thunks for a 1505 // function declaration. 1506 SourceRange BodyRange; 1507 if (Stmt *Body = FD->getBody()) 1508 BodyRange = Body->getSourceRange(); 1509 else 1510 BodyRange = FD->getLocation(); 1511 CurEHLocation = BodyRange.getEnd(); 1512 1513 // Use the location of the start of the function to determine where 1514 // the function definition is located. By default use the location 1515 // of the declaration as the location for the subprogram. A function 1516 // may lack a declaration in the source code if it is created by code 1517 // gen. (examples: _GLOBAL__I_a, __cxx_global_array_dtor, thunk). 1518 SourceLocation Loc = FD->getLocation(); 1519 1520 // If this is a function specialization then use the pattern body 1521 // as the location for the function. 1522 if (const FunctionDecl *SpecDecl = FD->getTemplateInstantiationPattern()) 1523 if (SpecDecl->hasBody(SpecDecl)) 1524 Loc = SpecDecl->getLocation(); 1525 1526 Stmt *Body = FD->getBody(); 1527 1528 if (Body) { 1529 // Coroutines always emit lifetime markers. 1530 if (isa<CoroutineBodyStmt>(Body)) 1531 ShouldEmitLifetimeMarkers = true; 1532 1533 // Initialize helper which will detect jumps which can cause invalid 1534 // lifetime markers. 1535 if (ShouldEmitLifetimeMarkers) 1536 Bypasses.Init(Body); 1537 } 1538 1539 // Emit the standard function prologue. 1540 StartFunction(GD, ResTy, Fn, FnInfo, Args, Loc, BodyRange.getBegin()); 1541 1542 // Save parameters for coroutine function. 1543 if (Body && isa_and_nonnull<CoroutineBodyStmt>(Body)) 1544 llvm::append_range(FnArgs, FD->parameters()); 1545 1546 // Ensure that the function adheres to the forward progress guarantee, which 1547 // is required by certain optimizations. 1548 // In C++11 and up, the attribute will be removed if the body contains a 1549 // trivial empty loop. 1550 if (checkIfFunctionMustProgress()) 1551 CurFn->addFnAttr(llvm::Attribute::MustProgress); 1552 1553 // Generate the body of the function. 1554 PGO.assignRegionCounters(GD, CurFn); 1555 if (isa<CXXDestructorDecl>(FD)) 1556 EmitDestructorBody(Args); 1557 else if (isa<CXXConstructorDecl>(FD)) 1558 EmitConstructorBody(Args); 1559 else if (getLangOpts().CUDA && 1560 !getLangOpts().CUDAIsDevice && 1561 FD->hasAttr<CUDAGlobalAttr>()) 1562 CGM.getCUDARuntime().emitDeviceStub(*this, Args); 1563 else if (isa<CXXMethodDecl>(FD) && 1564 cast<CXXMethodDecl>(FD)->isLambdaStaticInvoker()) { 1565 // The lambda static invoker function is special, because it forwards or 1566 // clones the body of the function call operator (but is actually static). 1567 EmitLambdaStaticInvokeBody(cast<CXXMethodDecl>(FD)); 1568 } else if (isa<CXXMethodDecl>(FD) && 1569 isLambdaCallOperator(cast<CXXMethodDecl>(FD)) && 1570 !FnInfo.isDelegateCall() && 1571 cast<CXXMethodDecl>(FD)->getParent()->getLambdaStaticInvoker() && 1572 hasInAllocaArg(cast<CXXMethodDecl>(FD))) { 1573 // If emitting a lambda with static invoker on X86 Windows, change 1574 // the call operator body. 1575 // Make sure that this is a call operator with an inalloca arg and check 1576 // for delegate call to make sure this is the original call op and not the 1577 // new forwarding function for the static invoker. 1578 EmitLambdaInAllocaCallOpBody(cast<CXXMethodDecl>(FD)); 1579 } else if (FD->isDefaulted() && isa<CXXMethodDecl>(FD) && 1580 (cast<CXXMethodDecl>(FD)->isCopyAssignmentOperator() || 1581 cast<CXXMethodDecl>(FD)->isMoveAssignmentOperator())) { 1582 // Implicit copy-assignment gets the same special treatment as implicit 1583 // copy-constructors. 1584 emitImplicitAssignmentOperatorBody(Args); 1585 } else if (Body) { 1586 EmitFunctionBody(Body); 1587 } else 1588 llvm_unreachable("no definition for emitted function"); 1589 1590 // C++11 [stmt.return]p2: 1591 // Flowing off the end of a function [...] results in undefined behavior in 1592 // a value-returning function. 1593 // C11 6.9.1p12: 1594 // If the '}' that terminates a function is reached, and the value of the 1595 // function call is used by the caller, the behavior is undefined. 1596 if (getLangOpts().CPlusPlus && !FD->hasImplicitReturnZero() && !SawAsmBlock && 1597 !FD->getReturnType()->isVoidType() && Builder.GetInsertBlock()) { 1598 bool ShouldEmitUnreachable = 1599 CGM.getCodeGenOpts().StrictReturn || 1600 !CGM.MayDropFunctionReturn(FD->getASTContext(), FD->getReturnType()); 1601 if (SanOpts.has(SanitizerKind::Return)) { 1602 SanitizerScope SanScope(this); 1603 llvm::Value *IsFalse = Builder.getFalse(); 1604 EmitCheck(std::make_pair(IsFalse, SanitizerKind::Return), 1605 SanitizerHandler::MissingReturn, 1606 EmitCheckSourceLocation(FD->getLocation()), {}); 1607 } else if (ShouldEmitUnreachable) { 1608 if (CGM.getCodeGenOpts().OptimizationLevel == 0) 1609 EmitTrapCall(llvm::Intrinsic::trap); 1610 } 1611 if (SanOpts.has(SanitizerKind::Return) || ShouldEmitUnreachable) { 1612 Builder.CreateUnreachable(); 1613 Builder.ClearInsertionPoint(); 1614 } 1615 } 1616 1617 // Emit the standard function epilogue. 1618 FinishFunction(BodyRange.getEnd()); 1619 1620 // If we haven't marked the function nothrow through other means, do 1621 // a quick pass now to see if we can. 1622 if (!CurFn->doesNotThrow()) 1623 TryMarkNoThrow(CurFn); 1624 } 1625 1626 /// ContainsLabel - Return true if the statement contains a label in it. If 1627 /// this statement is not executed normally, it not containing a label means 1628 /// that we can just remove the code. 1629 bool CodeGenFunction::ContainsLabel(const Stmt *S, bool IgnoreCaseStmts) { 1630 // Null statement, not a label! 1631 if (!S) return false; 1632 1633 // If this is a label, we have to emit the code, consider something like: 1634 // if (0) { ... foo: bar(); } goto foo; 1635 // 1636 // TODO: If anyone cared, we could track __label__'s, since we know that you 1637 // can't jump to one from outside their declared region. 1638 if (isa<LabelStmt>(S)) 1639 return true; 1640 1641 // If this is a case/default statement, and we haven't seen a switch, we have 1642 // to emit the code. 1643 if (isa<SwitchCase>(S) && !IgnoreCaseStmts) 1644 return true; 1645 1646 // If this is a switch statement, we want to ignore cases below it. 1647 if (isa<SwitchStmt>(S)) 1648 IgnoreCaseStmts = true; 1649 1650 // Scan subexpressions for verboten labels. 1651 for (const Stmt *SubStmt : S->children()) 1652 if (ContainsLabel(SubStmt, IgnoreCaseStmts)) 1653 return true; 1654 1655 return false; 1656 } 1657 1658 /// containsBreak - Return true if the statement contains a break out of it. 1659 /// If the statement (recursively) contains a switch or loop with a break 1660 /// inside of it, this is fine. 1661 bool CodeGenFunction::containsBreak(const Stmt *S) { 1662 // Null statement, not a label! 1663 if (!S) return false; 1664 1665 // If this is a switch or loop that defines its own break scope, then we can 1666 // include it and anything inside of it. 1667 if (isa<SwitchStmt>(S) || isa<WhileStmt>(S) || isa<DoStmt>(S) || 1668 isa<ForStmt>(S)) 1669 return false; 1670 1671 if (isa<BreakStmt>(S)) 1672 return true; 1673 1674 // Scan subexpressions for verboten breaks. 1675 for (const Stmt *SubStmt : S->children()) 1676 if (containsBreak(SubStmt)) 1677 return true; 1678 1679 return false; 1680 } 1681 1682 bool CodeGenFunction::mightAddDeclToScope(const Stmt *S) { 1683 if (!S) return false; 1684 1685 // Some statement kinds add a scope and thus never add a decl to the current 1686 // scope. Note, this list is longer than the list of statements that might 1687 // have an unscoped decl nested within them, but this way is conservatively 1688 // correct even if more statement kinds are added. 1689 if (isa<IfStmt>(S) || isa<SwitchStmt>(S) || isa<WhileStmt>(S) || 1690 isa<DoStmt>(S) || isa<ForStmt>(S) || isa<CompoundStmt>(S) || 1691 isa<CXXForRangeStmt>(S) || isa<CXXTryStmt>(S) || 1692 isa<ObjCForCollectionStmt>(S) || isa<ObjCAtTryStmt>(S)) 1693 return false; 1694 1695 if (isa<DeclStmt>(S)) 1696 return true; 1697 1698 for (const Stmt *SubStmt : S->children()) 1699 if (mightAddDeclToScope(SubStmt)) 1700 return true; 1701 1702 return false; 1703 } 1704 1705 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold 1706 /// to a constant, or if it does but contains a label, return false. If it 1707 /// constant folds return true and set the boolean result in Result. 1708 bool CodeGenFunction::ConstantFoldsToSimpleInteger(const Expr *Cond, 1709 bool &ResultBool, 1710 bool AllowLabels) { 1711 // If MC/DC is enabled, disable folding so that we can instrument all 1712 // conditions to yield complete test vectors. We still keep track of 1713 // folded conditions during region mapping and visualization. 1714 if (!AllowLabels && CGM.getCodeGenOpts().hasProfileClangInstr() && 1715 CGM.getCodeGenOpts().MCDCCoverage) 1716 return false; 1717 1718 llvm::APSInt ResultInt; 1719 if (!ConstantFoldsToSimpleInteger(Cond, ResultInt, AllowLabels)) 1720 return false; 1721 1722 ResultBool = ResultInt.getBoolValue(); 1723 return true; 1724 } 1725 1726 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold 1727 /// to a constant, or if it does but contains a label, return false. If it 1728 /// constant folds return true and set the folded value. 1729 bool CodeGenFunction::ConstantFoldsToSimpleInteger(const Expr *Cond, 1730 llvm::APSInt &ResultInt, 1731 bool AllowLabels) { 1732 // FIXME: Rename and handle conversion of other evaluatable things 1733 // to bool. 1734 Expr::EvalResult Result; 1735 if (!Cond->EvaluateAsInt(Result, getContext())) 1736 return false; // Not foldable, not integer or not fully evaluatable. 1737 1738 llvm::APSInt Int = Result.Val.getInt(); 1739 if (!AllowLabels && CodeGenFunction::ContainsLabel(Cond)) 1740 return false; // Contains a label. 1741 1742 ResultInt = Int; 1743 return true; 1744 } 1745 1746 /// Strip parentheses and simplistic logical-NOT operators. 1747 const Expr *CodeGenFunction::stripCond(const Expr *C) { 1748 while (const UnaryOperator *Op = dyn_cast<UnaryOperator>(C->IgnoreParens())) { 1749 if (Op->getOpcode() != UO_LNot) 1750 break; 1751 C = Op->getSubExpr(); 1752 } 1753 return C->IgnoreParens(); 1754 } 1755 1756 /// Determine whether the given condition is an instrumentable condition 1757 /// (i.e. no "&&" or "||"). 1758 bool CodeGenFunction::isInstrumentedCondition(const Expr *C) { 1759 const BinaryOperator *BOp = dyn_cast<BinaryOperator>(stripCond(C)); 1760 return (!BOp || !BOp->isLogicalOp()); 1761 } 1762 1763 /// EmitBranchToCounterBlock - Emit a conditional branch to a new block that 1764 /// increments a profile counter based on the semantics of the given logical 1765 /// operator opcode. This is used to instrument branch condition coverage for 1766 /// logical operators. 1767 void CodeGenFunction::EmitBranchToCounterBlock( 1768 const Expr *Cond, BinaryOperator::Opcode LOp, llvm::BasicBlock *TrueBlock, 1769 llvm::BasicBlock *FalseBlock, uint64_t TrueCount /* = 0 */, 1770 Stmt::Likelihood LH /* =None */, const Expr *CntrIdx /* = nullptr */) { 1771 // If not instrumenting, just emit a branch. 1772 bool InstrumentRegions = CGM.getCodeGenOpts().hasProfileClangInstr(); 1773 if (!InstrumentRegions || !isInstrumentedCondition(Cond)) 1774 return EmitBranchOnBoolExpr(Cond, TrueBlock, FalseBlock, TrueCount, LH); 1775 1776 const Stmt *CntrStmt = (CntrIdx ? CntrIdx : Cond); 1777 1778 llvm::BasicBlock *ThenBlock = nullptr; 1779 llvm::BasicBlock *ElseBlock = nullptr; 1780 llvm::BasicBlock *NextBlock = nullptr; 1781 1782 // Create the block we'll use to increment the appropriate counter. 1783 llvm::BasicBlock *CounterIncrBlock = createBasicBlock("lop.rhscnt"); 1784 1785 // Set block pointers according to Logical-AND (BO_LAnd) semantics. This 1786 // means we need to evaluate the condition and increment the counter on TRUE: 1787 // 1788 // if (Cond) 1789 // goto CounterIncrBlock; 1790 // else 1791 // goto FalseBlock; 1792 // 1793 // CounterIncrBlock: 1794 // Counter++; 1795 // goto TrueBlock; 1796 1797 if (LOp == BO_LAnd) { 1798 ThenBlock = CounterIncrBlock; 1799 ElseBlock = FalseBlock; 1800 NextBlock = TrueBlock; 1801 } 1802 1803 // Set block pointers according to Logical-OR (BO_LOr) semantics. This means 1804 // we need to evaluate the condition and increment the counter on FALSE: 1805 // 1806 // if (Cond) 1807 // goto TrueBlock; 1808 // else 1809 // goto CounterIncrBlock; 1810 // 1811 // CounterIncrBlock: 1812 // Counter++; 1813 // goto FalseBlock; 1814 1815 else if (LOp == BO_LOr) { 1816 ThenBlock = TrueBlock; 1817 ElseBlock = CounterIncrBlock; 1818 NextBlock = FalseBlock; 1819 } else { 1820 llvm_unreachable("Expected Opcode must be that of a Logical Operator"); 1821 } 1822 1823 // Emit Branch based on condition. 1824 EmitBranchOnBoolExpr(Cond, ThenBlock, ElseBlock, TrueCount, LH); 1825 1826 // Emit the block containing the counter increment(s). 1827 EmitBlock(CounterIncrBlock); 1828 1829 // Increment corresponding counter; if index not provided, use Cond as index. 1830 incrementProfileCounter(CntrStmt); 1831 1832 // Go to the next block. 1833 EmitBranch(NextBlock); 1834 } 1835 1836 /// EmitBranchOnBoolExpr - Emit a branch on a boolean condition (e.g. for an if 1837 /// statement) to the specified blocks. Based on the condition, this might try 1838 /// to simplify the codegen of the conditional based on the branch. 1839 /// \param LH The value of the likelihood attribute on the True branch. 1840 /// \param ConditionalOp Used by MC/DC code coverage to track the result of the 1841 /// ConditionalOperator (ternary) through a recursive call for the operator's 1842 /// LHS and RHS nodes. 1843 void CodeGenFunction::EmitBranchOnBoolExpr( 1844 const Expr *Cond, llvm::BasicBlock *TrueBlock, llvm::BasicBlock *FalseBlock, 1845 uint64_t TrueCount, Stmt::Likelihood LH, const Expr *ConditionalOp) { 1846 Cond = Cond->IgnoreParens(); 1847 1848 if (const BinaryOperator *CondBOp = dyn_cast<BinaryOperator>(Cond)) { 1849 // Handle X && Y in a condition. 1850 if (CondBOp->getOpcode() == BO_LAnd) { 1851 MCDCLogOpStack.push_back(CondBOp); 1852 1853 // If we have "1 && X", simplify the code. "0 && X" would have constant 1854 // folded if the case was simple enough. 1855 bool ConstantBool = false; 1856 if (ConstantFoldsToSimpleInteger(CondBOp->getLHS(), ConstantBool) && 1857 ConstantBool) { 1858 // br(1 && X) -> br(X). 1859 incrementProfileCounter(CondBOp); 1860 EmitBranchToCounterBlock(CondBOp->getRHS(), BO_LAnd, TrueBlock, 1861 FalseBlock, TrueCount, LH); 1862 MCDCLogOpStack.pop_back(); 1863 return; 1864 } 1865 1866 // If we have "X && 1", simplify the code to use an uncond branch. 1867 // "X && 0" would have been constant folded to 0. 1868 if (ConstantFoldsToSimpleInteger(CondBOp->getRHS(), ConstantBool) && 1869 ConstantBool) { 1870 // br(X && 1) -> br(X). 1871 EmitBranchToCounterBlock(CondBOp->getLHS(), BO_LAnd, TrueBlock, 1872 FalseBlock, TrueCount, LH, CondBOp); 1873 MCDCLogOpStack.pop_back(); 1874 return; 1875 } 1876 1877 // Emit the LHS as a conditional. If the LHS conditional is false, we 1878 // want to jump to the FalseBlock. 1879 llvm::BasicBlock *LHSTrue = createBasicBlock("land.lhs.true"); 1880 // The counter tells us how often we evaluate RHS, and all of TrueCount 1881 // can be propagated to that branch. 1882 uint64_t RHSCount = getProfileCount(CondBOp->getRHS()); 1883 1884 ConditionalEvaluation eval(*this); 1885 { 1886 ApplyDebugLocation DL(*this, Cond); 1887 // Propagate the likelihood attribute like __builtin_expect 1888 // __builtin_expect(X && Y, 1) -> X and Y are likely 1889 // __builtin_expect(X && Y, 0) -> only Y is unlikely 1890 EmitBranchOnBoolExpr(CondBOp->getLHS(), LHSTrue, FalseBlock, RHSCount, 1891 LH == Stmt::LH_Unlikely ? Stmt::LH_None : LH); 1892 EmitBlock(LHSTrue); 1893 } 1894 1895 incrementProfileCounter(CondBOp); 1896 setCurrentProfileCount(getProfileCount(CondBOp->getRHS())); 1897 1898 // Any temporaries created here are conditional. 1899 eval.begin(*this); 1900 EmitBranchToCounterBlock(CondBOp->getRHS(), BO_LAnd, TrueBlock, 1901 FalseBlock, TrueCount, LH); 1902 eval.end(*this); 1903 MCDCLogOpStack.pop_back(); 1904 return; 1905 } 1906 1907 if (CondBOp->getOpcode() == BO_LOr) { 1908 MCDCLogOpStack.push_back(CondBOp); 1909 1910 // If we have "0 || X", simplify the code. "1 || X" would have constant 1911 // folded if the case was simple enough. 1912 bool ConstantBool = false; 1913 if (ConstantFoldsToSimpleInteger(CondBOp->getLHS(), ConstantBool) && 1914 !ConstantBool) { 1915 // br(0 || X) -> br(X). 1916 incrementProfileCounter(CondBOp); 1917 EmitBranchToCounterBlock(CondBOp->getRHS(), BO_LOr, TrueBlock, 1918 FalseBlock, TrueCount, LH); 1919 MCDCLogOpStack.pop_back(); 1920 return; 1921 } 1922 1923 // If we have "X || 0", simplify the code to use an uncond branch. 1924 // "X || 1" would have been constant folded to 1. 1925 if (ConstantFoldsToSimpleInteger(CondBOp->getRHS(), ConstantBool) && 1926 !ConstantBool) { 1927 // br(X || 0) -> br(X). 1928 EmitBranchToCounterBlock(CondBOp->getLHS(), BO_LOr, TrueBlock, 1929 FalseBlock, TrueCount, LH, CondBOp); 1930 MCDCLogOpStack.pop_back(); 1931 return; 1932 } 1933 // Emit the LHS as a conditional. If the LHS conditional is true, we 1934 // want to jump to the TrueBlock. 1935 llvm::BasicBlock *LHSFalse = createBasicBlock("lor.lhs.false"); 1936 // We have the count for entry to the RHS and for the whole expression 1937 // being true, so we can divy up True count between the short circuit and 1938 // the RHS. 1939 uint64_t LHSCount = 1940 getCurrentProfileCount() - getProfileCount(CondBOp->getRHS()); 1941 uint64_t RHSCount = TrueCount - LHSCount; 1942 1943 ConditionalEvaluation eval(*this); 1944 { 1945 // Propagate the likelihood attribute like __builtin_expect 1946 // __builtin_expect(X || Y, 1) -> only Y is likely 1947 // __builtin_expect(X || Y, 0) -> both X and Y are unlikely 1948 ApplyDebugLocation DL(*this, Cond); 1949 EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, LHSFalse, LHSCount, 1950 LH == Stmt::LH_Likely ? Stmt::LH_None : LH); 1951 EmitBlock(LHSFalse); 1952 } 1953 1954 incrementProfileCounter(CondBOp); 1955 setCurrentProfileCount(getProfileCount(CondBOp->getRHS())); 1956 1957 // Any temporaries created here are conditional. 1958 eval.begin(*this); 1959 EmitBranchToCounterBlock(CondBOp->getRHS(), BO_LOr, TrueBlock, FalseBlock, 1960 RHSCount, LH); 1961 1962 eval.end(*this); 1963 MCDCLogOpStack.pop_back(); 1964 return; 1965 } 1966 } 1967 1968 if (const UnaryOperator *CondUOp = dyn_cast<UnaryOperator>(Cond)) { 1969 // br(!x, t, f) -> br(x, f, t) 1970 // Avoid doing this optimization when instrumenting a condition for MC/DC. 1971 // LNot is taken as part of the condition for simplicity, and changing its 1972 // sense negatively impacts test vector tracking. 1973 bool MCDCCondition = CGM.getCodeGenOpts().hasProfileClangInstr() && 1974 CGM.getCodeGenOpts().MCDCCoverage && 1975 isInstrumentedCondition(Cond); 1976 if (CondUOp->getOpcode() == UO_LNot && !MCDCCondition) { 1977 // Negate the count. 1978 uint64_t FalseCount = getCurrentProfileCount() - TrueCount; 1979 // The values of the enum are chosen to make this negation possible. 1980 LH = static_cast<Stmt::Likelihood>(-LH); 1981 // Negate the condition and swap the destination blocks. 1982 return EmitBranchOnBoolExpr(CondUOp->getSubExpr(), FalseBlock, TrueBlock, 1983 FalseCount, LH); 1984 } 1985 } 1986 1987 if (const ConditionalOperator *CondOp = dyn_cast<ConditionalOperator>(Cond)) { 1988 // br(c ? x : y, t, f) -> br(c, br(x, t, f), br(y, t, f)) 1989 llvm::BasicBlock *LHSBlock = createBasicBlock("cond.true"); 1990 llvm::BasicBlock *RHSBlock = createBasicBlock("cond.false"); 1991 1992 // The ConditionalOperator itself has no likelihood information for its 1993 // true and false branches. This matches the behavior of __builtin_expect. 1994 ConditionalEvaluation cond(*this); 1995 EmitBranchOnBoolExpr(CondOp->getCond(), LHSBlock, RHSBlock, 1996 getProfileCount(CondOp), Stmt::LH_None); 1997 1998 // When computing PGO branch weights, we only know the overall count for 1999 // the true block. This code is essentially doing tail duplication of the 2000 // naive code-gen, introducing new edges for which counts are not 2001 // available. Divide the counts proportionally between the LHS and RHS of 2002 // the conditional operator. 2003 uint64_t LHSScaledTrueCount = 0; 2004 if (TrueCount) { 2005 double LHSRatio = 2006 getProfileCount(CondOp) / (double)getCurrentProfileCount(); 2007 LHSScaledTrueCount = TrueCount * LHSRatio; 2008 } 2009 2010 cond.begin(*this); 2011 EmitBlock(LHSBlock); 2012 incrementProfileCounter(CondOp); 2013 { 2014 ApplyDebugLocation DL(*this, Cond); 2015 EmitBranchOnBoolExpr(CondOp->getLHS(), TrueBlock, FalseBlock, 2016 LHSScaledTrueCount, LH, CondOp); 2017 } 2018 cond.end(*this); 2019 2020 cond.begin(*this); 2021 EmitBlock(RHSBlock); 2022 EmitBranchOnBoolExpr(CondOp->getRHS(), TrueBlock, FalseBlock, 2023 TrueCount - LHSScaledTrueCount, LH, CondOp); 2024 cond.end(*this); 2025 2026 return; 2027 } 2028 2029 if (const CXXThrowExpr *Throw = dyn_cast<CXXThrowExpr>(Cond)) { 2030 // Conditional operator handling can give us a throw expression as a 2031 // condition for a case like: 2032 // br(c ? throw x : y, t, f) -> br(c, br(throw x, t, f), br(y, t, f) 2033 // Fold this to: 2034 // br(c, throw x, br(y, t, f)) 2035 EmitCXXThrowExpr(Throw, /*KeepInsertionPoint*/false); 2036 return; 2037 } 2038 2039 // Emit the code with the fully general case. 2040 llvm::Value *CondV; 2041 { 2042 ApplyDebugLocation DL(*this, Cond); 2043 CondV = EvaluateExprAsBool(Cond); 2044 } 2045 2046 // If not at the top of the logical operator nest, update MCDC temp with the 2047 // boolean result of the evaluated condition. 2048 if (!MCDCLogOpStack.empty()) { 2049 const Expr *MCDCBaseExpr = Cond; 2050 // When a nested ConditionalOperator (ternary) is encountered in a boolean 2051 // expression, MC/DC tracks the result of the ternary, and this is tied to 2052 // the ConditionalOperator expression and not the ternary's LHS or RHS. If 2053 // this is the case, the ConditionalOperator expression is passed through 2054 // the ConditionalOp parameter and then used as the MCDC base expression. 2055 if (ConditionalOp) 2056 MCDCBaseExpr = ConditionalOp; 2057 2058 maybeUpdateMCDCCondBitmap(MCDCBaseExpr, CondV); 2059 } 2060 2061 llvm::MDNode *Weights = nullptr; 2062 llvm::MDNode *Unpredictable = nullptr; 2063 2064 // If the branch has a condition wrapped by __builtin_unpredictable, 2065 // create metadata that specifies that the branch is unpredictable. 2066 // Don't bother if not optimizing because that metadata would not be used. 2067 auto *Call = dyn_cast<CallExpr>(Cond->IgnoreImpCasts()); 2068 if (Call && CGM.getCodeGenOpts().OptimizationLevel != 0) { 2069 auto *FD = dyn_cast_or_null<FunctionDecl>(Call->getCalleeDecl()); 2070 if (FD && FD->getBuiltinID() == Builtin::BI__builtin_unpredictable) { 2071 llvm::MDBuilder MDHelper(getLLVMContext()); 2072 Unpredictable = MDHelper.createUnpredictable(); 2073 } 2074 } 2075 2076 // If there is a Likelihood knowledge for the cond, lower it. 2077 // Note that if not optimizing this won't emit anything. 2078 llvm::Value *NewCondV = emitCondLikelihoodViaExpectIntrinsic(CondV, LH); 2079 if (CondV != NewCondV) 2080 CondV = NewCondV; 2081 else { 2082 // Otherwise, lower profile counts. Note that we do this even at -O0. 2083 uint64_t CurrentCount = std::max(getCurrentProfileCount(), TrueCount); 2084 Weights = createProfileWeights(TrueCount, CurrentCount - TrueCount); 2085 } 2086 2087 llvm::Instruction *BrInst = Builder.CreateCondBr(CondV, TrueBlock, FalseBlock, 2088 Weights, Unpredictable); 2089 switch (HLSLControlFlowAttr) { 2090 case HLSLControlFlowHintAttr::Microsoft_branch: 2091 case HLSLControlFlowHintAttr::Microsoft_flatten: { 2092 llvm::MDBuilder MDHelper(CGM.getLLVMContext()); 2093 2094 llvm::ConstantInt *BranchHintConstant = 2095 HLSLControlFlowAttr == 2096 HLSLControlFlowHintAttr::Spelling::Microsoft_branch 2097 ? llvm::ConstantInt::get(CGM.Int32Ty, 1) 2098 : llvm::ConstantInt::get(CGM.Int32Ty, 2); 2099 2100 SmallVector<llvm::Metadata *, 2> Vals( 2101 {MDHelper.createString("hlsl.controlflow.hint"), 2102 MDHelper.createConstant(BranchHintConstant)}); 2103 BrInst->setMetadata("hlsl.controlflow.hint", 2104 llvm::MDNode::get(CGM.getLLVMContext(), Vals)); 2105 break; 2106 } 2107 case HLSLControlFlowHintAttr::SpellingNotCalculated: 2108 break; 2109 } 2110 } 2111 2112 /// ErrorUnsupported - Print out an error that codegen doesn't support the 2113 /// specified stmt yet. 2114 void CodeGenFunction::ErrorUnsupported(const Stmt *S, const char *Type) { 2115 CGM.ErrorUnsupported(S, Type); 2116 } 2117 2118 /// emitNonZeroVLAInit - Emit the "zero" initialization of a 2119 /// variable-length array whose elements have a non-zero bit-pattern. 2120 /// 2121 /// \param baseType the inner-most element type of the array 2122 /// \param src - a char* pointing to the bit-pattern for a single 2123 /// base element of the array 2124 /// \param sizeInChars - the total size of the VLA, in chars 2125 static void emitNonZeroVLAInit(CodeGenFunction &CGF, QualType baseType, 2126 Address dest, Address src, 2127 llvm::Value *sizeInChars) { 2128 CGBuilderTy &Builder = CGF.Builder; 2129 2130 CharUnits baseSize = CGF.getContext().getTypeSizeInChars(baseType); 2131 llvm::Value *baseSizeInChars 2132 = llvm::ConstantInt::get(CGF.IntPtrTy, baseSize.getQuantity()); 2133 2134 Address begin = dest.withElementType(CGF.Int8Ty); 2135 llvm::Value *end = Builder.CreateInBoundsGEP(begin.getElementType(), 2136 begin.emitRawPointer(CGF), 2137 sizeInChars, "vla.end"); 2138 2139 llvm::BasicBlock *originBB = CGF.Builder.GetInsertBlock(); 2140 llvm::BasicBlock *loopBB = CGF.createBasicBlock("vla-init.loop"); 2141 llvm::BasicBlock *contBB = CGF.createBasicBlock("vla-init.cont"); 2142 2143 // Make a loop over the VLA. C99 guarantees that the VLA element 2144 // count must be nonzero. 2145 CGF.EmitBlock(loopBB); 2146 2147 llvm::PHINode *cur = Builder.CreatePHI(begin.getType(), 2, "vla.cur"); 2148 cur->addIncoming(begin.emitRawPointer(CGF), originBB); 2149 2150 CharUnits curAlign = 2151 dest.getAlignment().alignmentOfArrayElement(baseSize); 2152 2153 // memcpy the individual element bit-pattern. 2154 Builder.CreateMemCpy(Address(cur, CGF.Int8Ty, curAlign), src, baseSizeInChars, 2155 /*volatile*/ false); 2156 2157 // Go to the next element. 2158 llvm::Value *next = 2159 Builder.CreateInBoundsGEP(CGF.Int8Ty, cur, baseSizeInChars, "vla.next"); 2160 2161 // Leave if that's the end of the VLA. 2162 llvm::Value *done = Builder.CreateICmpEQ(next, end, "vla-init.isdone"); 2163 Builder.CreateCondBr(done, contBB, loopBB); 2164 cur->addIncoming(next, loopBB); 2165 2166 CGF.EmitBlock(contBB); 2167 } 2168 2169 void 2170 CodeGenFunction::EmitNullInitialization(Address DestPtr, QualType Ty) { 2171 // Ignore empty classes in C++. 2172 if (getLangOpts().CPlusPlus) { 2173 if (const RecordType *RT = Ty->getAs<RecordType>()) { 2174 if (cast<CXXRecordDecl>(RT->getDecl())->isEmpty()) 2175 return; 2176 } 2177 } 2178 2179 if (DestPtr.getElementType() != Int8Ty) 2180 DestPtr = DestPtr.withElementType(Int8Ty); 2181 2182 // Get size and alignment info for this aggregate. 2183 CharUnits size = getContext().getTypeSizeInChars(Ty); 2184 2185 llvm::Value *SizeVal; 2186 const VariableArrayType *vla; 2187 2188 // Don't bother emitting a zero-byte memset. 2189 if (size.isZero()) { 2190 // But note that getTypeInfo returns 0 for a VLA. 2191 if (const VariableArrayType *vlaType = 2192 dyn_cast_or_null<VariableArrayType>( 2193 getContext().getAsArrayType(Ty))) { 2194 auto VlaSize = getVLASize(vlaType); 2195 SizeVal = VlaSize.NumElts; 2196 CharUnits eltSize = getContext().getTypeSizeInChars(VlaSize.Type); 2197 if (!eltSize.isOne()) 2198 SizeVal = Builder.CreateNUWMul(SizeVal, CGM.getSize(eltSize)); 2199 vla = vlaType; 2200 } else { 2201 return; 2202 } 2203 } else { 2204 SizeVal = CGM.getSize(size); 2205 vla = nullptr; 2206 } 2207 2208 // If the type contains a pointer to data member we can't memset it to zero. 2209 // Instead, create a null constant and copy it to the destination. 2210 // TODO: there are other patterns besides zero that we can usefully memset, 2211 // like -1, which happens to be the pattern used by member-pointers. 2212 if (!CGM.getTypes().isZeroInitializable(Ty)) { 2213 // For a VLA, emit a single element, then splat that over the VLA. 2214 if (vla) Ty = getContext().getBaseElementType(vla); 2215 2216 llvm::Constant *NullConstant = CGM.EmitNullConstant(Ty); 2217 2218 llvm::GlobalVariable *NullVariable = 2219 new llvm::GlobalVariable(CGM.getModule(), NullConstant->getType(), 2220 /*isConstant=*/true, 2221 llvm::GlobalVariable::PrivateLinkage, 2222 NullConstant, Twine()); 2223 CharUnits NullAlign = DestPtr.getAlignment(); 2224 NullVariable->setAlignment(NullAlign.getAsAlign()); 2225 Address SrcPtr(NullVariable, Builder.getInt8Ty(), NullAlign); 2226 2227 if (vla) return emitNonZeroVLAInit(*this, Ty, DestPtr, SrcPtr, SizeVal); 2228 2229 // Get and call the appropriate llvm.memcpy overload. 2230 Builder.CreateMemCpy(DestPtr, SrcPtr, SizeVal, false); 2231 return; 2232 } 2233 2234 // Otherwise, just memset the whole thing to zero. This is legal 2235 // because in LLVM, all default initializers (other than the ones we just 2236 // handled above) are guaranteed to have a bit pattern of all zeros. 2237 Builder.CreateMemSet(DestPtr, Builder.getInt8(0), SizeVal, false); 2238 } 2239 2240 llvm::BlockAddress *CodeGenFunction::GetAddrOfLabel(const LabelDecl *L) { 2241 // Make sure that there is a block for the indirect goto. 2242 if (!IndirectBranch) 2243 GetIndirectGotoBlock(); 2244 2245 llvm::BasicBlock *BB = getJumpDestForLabel(L).getBlock(); 2246 2247 // Make sure the indirect branch includes all of the address-taken blocks. 2248 IndirectBranch->addDestination(BB); 2249 return llvm::BlockAddress::get(CurFn, BB); 2250 } 2251 2252 llvm::BasicBlock *CodeGenFunction::GetIndirectGotoBlock() { 2253 // If we already made the indirect branch for indirect goto, return its block. 2254 if (IndirectBranch) return IndirectBranch->getParent(); 2255 2256 CGBuilderTy TmpBuilder(*this, createBasicBlock("indirectgoto")); 2257 2258 // Create the PHI node that indirect gotos will add entries to. 2259 llvm::Value *DestVal = TmpBuilder.CreatePHI(Int8PtrTy, 0, 2260 "indirect.goto.dest"); 2261 2262 // Create the indirect branch instruction. 2263 IndirectBranch = TmpBuilder.CreateIndirectBr(DestVal); 2264 return IndirectBranch->getParent(); 2265 } 2266 2267 /// Computes the length of an array in elements, as well as the base 2268 /// element type and a properly-typed first element pointer. 2269 llvm::Value *CodeGenFunction::emitArrayLength(const ArrayType *origArrayType, 2270 QualType &baseType, 2271 Address &addr) { 2272 const ArrayType *arrayType = origArrayType; 2273 2274 // If it's a VLA, we have to load the stored size. Note that 2275 // this is the size of the VLA in bytes, not its size in elements. 2276 llvm::Value *numVLAElements = nullptr; 2277 if (isa<VariableArrayType>(arrayType)) { 2278 numVLAElements = getVLASize(cast<VariableArrayType>(arrayType)).NumElts; 2279 2280 // Walk into all VLAs. This doesn't require changes to addr, 2281 // which has type T* where T is the first non-VLA element type. 2282 do { 2283 QualType elementType = arrayType->getElementType(); 2284 arrayType = getContext().getAsArrayType(elementType); 2285 2286 // If we only have VLA components, 'addr' requires no adjustment. 2287 if (!arrayType) { 2288 baseType = elementType; 2289 return numVLAElements; 2290 } 2291 } while (isa<VariableArrayType>(arrayType)); 2292 2293 // We get out here only if we find a constant array type 2294 // inside the VLA. 2295 } 2296 2297 // We have some number of constant-length arrays, so addr should 2298 // have LLVM type [M x [N x [...]]]*. Build a GEP that walks 2299 // down to the first element of addr. 2300 SmallVector<llvm::Value*, 8> gepIndices; 2301 2302 // GEP down to the array type. 2303 llvm::ConstantInt *zero = Builder.getInt32(0); 2304 gepIndices.push_back(zero); 2305 2306 uint64_t countFromCLAs = 1; 2307 QualType eltType; 2308 2309 llvm::ArrayType *llvmArrayType = 2310 dyn_cast<llvm::ArrayType>(addr.getElementType()); 2311 while (llvmArrayType) { 2312 assert(isa<ConstantArrayType>(arrayType)); 2313 assert(cast<ConstantArrayType>(arrayType)->getZExtSize() == 2314 llvmArrayType->getNumElements()); 2315 2316 gepIndices.push_back(zero); 2317 countFromCLAs *= llvmArrayType->getNumElements(); 2318 eltType = arrayType->getElementType(); 2319 2320 llvmArrayType = 2321 dyn_cast<llvm::ArrayType>(llvmArrayType->getElementType()); 2322 arrayType = getContext().getAsArrayType(arrayType->getElementType()); 2323 assert((!llvmArrayType || arrayType) && 2324 "LLVM and Clang types are out-of-synch"); 2325 } 2326 2327 if (arrayType) { 2328 // From this point onwards, the Clang array type has been emitted 2329 // as some other type (probably a packed struct). Compute the array 2330 // size, and just emit the 'begin' expression as a bitcast. 2331 while (arrayType) { 2332 countFromCLAs *= cast<ConstantArrayType>(arrayType)->getZExtSize(); 2333 eltType = arrayType->getElementType(); 2334 arrayType = getContext().getAsArrayType(eltType); 2335 } 2336 2337 llvm::Type *baseType = ConvertType(eltType); 2338 addr = addr.withElementType(baseType); 2339 } else { 2340 // Create the actual GEP. 2341 addr = Address(Builder.CreateInBoundsGEP(addr.getElementType(), 2342 addr.emitRawPointer(*this), 2343 gepIndices, "array.begin"), 2344 ConvertTypeForMem(eltType), addr.getAlignment()); 2345 } 2346 2347 baseType = eltType; 2348 2349 llvm::Value *numElements 2350 = llvm::ConstantInt::get(SizeTy, countFromCLAs); 2351 2352 // If we had any VLA dimensions, factor them in. 2353 if (numVLAElements) 2354 numElements = Builder.CreateNUWMul(numVLAElements, numElements); 2355 2356 return numElements; 2357 } 2358 2359 CodeGenFunction::VlaSizePair CodeGenFunction::getVLASize(QualType type) { 2360 const VariableArrayType *vla = getContext().getAsVariableArrayType(type); 2361 assert(vla && "type was not a variable array type!"); 2362 return getVLASize(vla); 2363 } 2364 2365 CodeGenFunction::VlaSizePair 2366 CodeGenFunction::getVLASize(const VariableArrayType *type) { 2367 // The number of elements so far; always size_t. 2368 llvm::Value *numElements = nullptr; 2369 2370 QualType elementType; 2371 do { 2372 elementType = type->getElementType(); 2373 llvm::Value *vlaSize = VLASizeMap[type->getSizeExpr()]; 2374 assert(vlaSize && "no size for VLA!"); 2375 assert(vlaSize->getType() == SizeTy); 2376 2377 if (!numElements) { 2378 numElements = vlaSize; 2379 } else { 2380 // It's undefined behavior if this wraps around, so mark it that way. 2381 // FIXME: Teach -fsanitize=undefined to trap this. 2382 numElements = Builder.CreateNUWMul(numElements, vlaSize); 2383 } 2384 } while ((type = getContext().getAsVariableArrayType(elementType))); 2385 2386 return { numElements, elementType }; 2387 } 2388 2389 CodeGenFunction::VlaSizePair 2390 CodeGenFunction::getVLAElements1D(QualType type) { 2391 const VariableArrayType *vla = getContext().getAsVariableArrayType(type); 2392 assert(vla && "type was not a variable array type!"); 2393 return getVLAElements1D(vla); 2394 } 2395 2396 CodeGenFunction::VlaSizePair 2397 CodeGenFunction::getVLAElements1D(const VariableArrayType *Vla) { 2398 llvm::Value *VlaSize = VLASizeMap[Vla->getSizeExpr()]; 2399 assert(VlaSize && "no size for VLA!"); 2400 assert(VlaSize->getType() == SizeTy); 2401 return { VlaSize, Vla->getElementType() }; 2402 } 2403 2404 void CodeGenFunction::EmitVariablyModifiedType(QualType type) { 2405 assert(type->isVariablyModifiedType() && 2406 "Must pass variably modified type to EmitVLASizes!"); 2407 2408 EnsureInsertPoint(); 2409 2410 // We're going to walk down into the type and look for VLA 2411 // expressions. 2412 do { 2413 assert(type->isVariablyModifiedType()); 2414 2415 const Type *ty = type.getTypePtr(); 2416 switch (ty->getTypeClass()) { 2417 2418 #define TYPE(Class, Base) 2419 #define ABSTRACT_TYPE(Class, Base) 2420 #define NON_CANONICAL_TYPE(Class, Base) 2421 #define DEPENDENT_TYPE(Class, Base) case Type::Class: 2422 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base) 2423 #include "clang/AST/TypeNodes.inc" 2424 llvm_unreachable("unexpected dependent type!"); 2425 2426 // These types are never variably-modified. 2427 case Type::Builtin: 2428 case Type::Complex: 2429 case Type::Vector: 2430 case Type::ExtVector: 2431 case Type::ConstantMatrix: 2432 case Type::Record: 2433 case Type::Enum: 2434 case Type::Using: 2435 case Type::TemplateSpecialization: 2436 case Type::ObjCTypeParam: 2437 case Type::ObjCObject: 2438 case Type::ObjCInterface: 2439 case Type::ObjCObjectPointer: 2440 case Type::BitInt: 2441 llvm_unreachable("type class is never variably-modified!"); 2442 2443 case Type::Elaborated: 2444 type = cast<ElaboratedType>(ty)->getNamedType(); 2445 break; 2446 2447 case Type::Adjusted: 2448 type = cast<AdjustedType>(ty)->getAdjustedType(); 2449 break; 2450 2451 case Type::Decayed: 2452 type = cast<DecayedType>(ty)->getPointeeType(); 2453 break; 2454 2455 case Type::Pointer: 2456 type = cast<PointerType>(ty)->getPointeeType(); 2457 break; 2458 2459 case Type::BlockPointer: 2460 type = cast<BlockPointerType>(ty)->getPointeeType(); 2461 break; 2462 2463 case Type::LValueReference: 2464 case Type::RValueReference: 2465 type = cast<ReferenceType>(ty)->getPointeeType(); 2466 break; 2467 2468 case Type::MemberPointer: 2469 type = cast<MemberPointerType>(ty)->getPointeeType(); 2470 break; 2471 2472 case Type::ArrayParameter: 2473 case Type::ConstantArray: 2474 case Type::IncompleteArray: 2475 // Losing element qualification here is fine. 2476 type = cast<ArrayType>(ty)->getElementType(); 2477 break; 2478 2479 case Type::VariableArray: { 2480 // Losing element qualification here is fine. 2481 const VariableArrayType *vat = cast<VariableArrayType>(ty); 2482 2483 // Unknown size indication requires no size computation. 2484 // Otherwise, evaluate and record it. 2485 if (const Expr *sizeExpr = vat->getSizeExpr()) { 2486 // It's possible that we might have emitted this already, 2487 // e.g. with a typedef and a pointer to it. 2488 llvm::Value *&entry = VLASizeMap[sizeExpr]; 2489 if (!entry) { 2490 llvm::Value *size = EmitScalarExpr(sizeExpr); 2491 2492 // C11 6.7.6.2p5: 2493 // If the size is an expression that is not an integer constant 2494 // expression [...] each time it is evaluated it shall have a value 2495 // greater than zero. 2496 if (SanOpts.has(SanitizerKind::VLABound)) { 2497 SanitizerScope SanScope(this); 2498 llvm::Value *Zero = llvm::Constant::getNullValue(size->getType()); 2499 clang::QualType SEType = sizeExpr->getType(); 2500 llvm::Value *CheckCondition = 2501 SEType->isSignedIntegerType() 2502 ? Builder.CreateICmpSGT(size, Zero) 2503 : Builder.CreateICmpUGT(size, Zero); 2504 llvm::Constant *StaticArgs[] = { 2505 EmitCheckSourceLocation(sizeExpr->getBeginLoc()), 2506 EmitCheckTypeDescriptor(SEType)}; 2507 EmitCheck(std::make_pair(CheckCondition, SanitizerKind::VLABound), 2508 SanitizerHandler::VLABoundNotPositive, StaticArgs, size); 2509 } 2510 2511 // Always zexting here would be wrong if it weren't 2512 // undefined behavior to have a negative bound. 2513 // FIXME: What about when size's type is larger than size_t? 2514 entry = Builder.CreateIntCast(size, SizeTy, /*signed*/ false); 2515 } 2516 } 2517 type = vat->getElementType(); 2518 break; 2519 } 2520 2521 case Type::FunctionProto: 2522 case Type::FunctionNoProto: 2523 type = cast<FunctionType>(ty)->getReturnType(); 2524 break; 2525 2526 case Type::Paren: 2527 case Type::TypeOf: 2528 case Type::UnaryTransform: 2529 case Type::Attributed: 2530 case Type::BTFTagAttributed: 2531 case Type::HLSLAttributedResource: 2532 case Type::SubstTemplateTypeParm: 2533 case Type::MacroQualified: 2534 case Type::CountAttributed: 2535 // Keep walking after single level desugaring. 2536 type = type.getSingleStepDesugaredType(getContext()); 2537 break; 2538 2539 case Type::Typedef: 2540 case Type::Decltype: 2541 case Type::Auto: 2542 case Type::DeducedTemplateSpecialization: 2543 case Type::PackIndexing: 2544 // Stop walking: nothing to do. 2545 return; 2546 2547 case Type::TypeOfExpr: 2548 // Stop walking: emit typeof expression. 2549 EmitIgnoredExpr(cast<TypeOfExprType>(ty)->getUnderlyingExpr()); 2550 return; 2551 2552 case Type::Atomic: 2553 type = cast<AtomicType>(ty)->getValueType(); 2554 break; 2555 2556 case Type::Pipe: 2557 type = cast<PipeType>(ty)->getElementType(); 2558 break; 2559 } 2560 } while (type->isVariablyModifiedType()); 2561 } 2562 2563 Address CodeGenFunction::EmitVAListRef(const Expr* E) { 2564 if (getContext().getBuiltinVaListType()->isArrayType()) 2565 return EmitPointerWithAlignment(E); 2566 return EmitLValue(E).getAddress(); 2567 } 2568 2569 Address CodeGenFunction::EmitMSVAListRef(const Expr *E) { 2570 return EmitLValue(E).getAddress(); 2571 } 2572 2573 void CodeGenFunction::EmitDeclRefExprDbgValue(const DeclRefExpr *E, 2574 const APValue &Init) { 2575 assert(Init.hasValue() && "Invalid DeclRefExpr initializer!"); 2576 if (CGDebugInfo *Dbg = getDebugInfo()) 2577 if (CGM.getCodeGenOpts().hasReducedDebugInfo()) 2578 Dbg->EmitGlobalVariable(E->getDecl(), Init); 2579 } 2580 2581 CodeGenFunction::PeepholeProtection 2582 CodeGenFunction::protectFromPeepholes(RValue rvalue) { 2583 // At the moment, the only aggressive peephole we do in IR gen 2584 // is trunc(zext) folding, but if we add more, we can easily 2585 // extend this protection. 2586 2587 if (!rvalue.isScalar()) return PeepholeProtection(); 2588 llvm::Value *value = rvalue.getScalarVal(); 2589 if (!isa<llvm::ZExtInst>(value)) return PeepholeProtection(); 2590 2591 // Just make an extra bitcast. 2592 assert(HaveInsertPoint()); 2593 llvm::Instruction *inst = new llvm::BitCastInst(value, value->getType(), "", 2594 Builder.GetInsertBlock()); 2595 2596 PeepholeProtection protection; 2597 protection.Inst = inst; 2598 return protection; 2599 } 2600 2601 void CodeGenFunction::unprotectFromPeepholes(PeepholeProtection protection) { 2602 if (!protection.Inst) return; 2603 2604 // In theory, we could try to duplicate the peepholes now, but whatever. 2605 protection.Inst->eraseFromParent(); 2606 } 2607 2608 void CodeGenFunction::emitAlignmentAssumption(llvm::Value *PtrValue, 2609 QualType Ty, SourceLocation Loc, 2610 SourceLocation AssumptionLoc, 2611 llvm::Value *Alignment, 2612 llvm::Value *OffsetValue) { 2613 if (Alignment->getType() != IntPtrTy) 2614 Alignment = 2615 Builder.CreateIntCast(Alignment, IntPtrTy, false, "casted.align"); 2616 if (OffsetValue && OffsetValue->getType() != IntPtrTy) 2617 OffsetValue = 2618 Builder.CreateIntCast(OffsetValue, IntPtrTy, true, "casted.offset"); 2619 llvm::Value *TheCheck = nullptr; 2620 if (SanOpts.has(SanitizerKind::Alignment)) { 2621 llvm::Value *PtrIntValue = 2622 Builder.CreatePtrToInt(PtrValue, IntPtrTy, "ptrint"); 2623 2624 if (OffsetValue) { 2625 bool IsOffsetZero = false; 2626 if (const auto *CI = dyn_cast<llvm::ConstantInt>(OffsetValue)) 2627 IsOffsetZero = CI->isZero(); 2628 2629 if (!IsOffsetZero) 2630 PtrIntValue = Builder.CreateSub(PtrIntValue, OffsetValue, "offsetptr"); 2631 } 2632 2633 llvm::Value *Zero = llvm::ConstantInt::get(IntPtrTy, 0); 2634 llvm::Value *Mask = 2635 Builder.CreateSub(Alignment, llvm::ConstantInt::get(IntPtrTy, 1)); 2636 llvm::Value *MaskedPtr = Builder.CreateAnd(PtrIntValue, Mask, "maskedptr"); 2637 TheCheck = Builder.CreateICmpEQ(MaskedPtr, Zero, "maskcond"); 2638 } 2639 llvm::Instruction *Assumption = Builder.CreateAlignmentAssumption( 2640 CGM.getDataLayout(), PtrValue, Alignment, OffsetValue); 2641 2642 if (!SanOpts.has(SanitizerKind::Alignment)) 2643 return; 2644 emitAlignmentAssumptionCheck(PtrValue, Ty, Loc, AssumptionLoc, Alignment, 2645 OffsetValue, TheCheck, Assumption); 2646 } 2647 2648 void CodeGenFunction::emitAlignmentAssumption(llvm::Value *PtrValue, 2649 const Expr *E, 2650 SourceLocation AssumptionLoc, 2651 llvm::Value *Alignment, 2652 llvm::Value *OffsetValue) { 2653 QualType Ty = E->getType(); 2654 SourceLocation Loc = E->getExprLoc(); 2655 2656 emitAlignmentAssumption(PtrValue, Ty, Loc, AssumptionLoc, Alignment, 2657 OffsetValue); 2658 } 2659 2660 llvm::Value *CodeGenFunction::EmitAnnotationCall(llvm::Function *AnnotationFn, 2661 llvm::Value *AnnotatedVal, 2662 StringRef AnnotationStr, 2663 SourceLocation Location, 2664 const AnnotateAttr *Attr) { 2665 SmallVector<llvm::Value *, 5> Args = { 2666 AnnotatedVal, 2667 CGM.EmitAnnotationString(AnnotationStr), 2668 CGM.EmitAnnotationUnit(Location), 2669 CGM.EmitAnnotationLineNo(Location), 2670 }; 2671 if (Attr) 2672 Args.push_back(CGM.EmitAnnotationArgs(Attr)); 2673 return Builder.CreateCall(AnnotationFn, Args); 2674 } 2675 2676 void CodeGenFunction::EmitVarAnnotations(const VarDecl *D, llvm::Value *V) { 2677 assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute"); 2678 for (const auto *I : D->specific_attrs<AnnotateAttr>()) 2679 EmitAnnotationCall(CGM.getIntrinsic(llvm::Intrinsic::var_annotation, 2680 {V->getType(), CGM.ConstGlobalsPtrTy}), 2681 V, I->getAnnotation(), D->getLocation(), I); 2682 } 2683 2684 Address CodeGenFunction::EmitFieldAnnotations(const FieldDecl *D, 2685 Address Addr) { 2686 assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute"); 2687 llvm::Value *V = Addr.emitRawPointer(*this); 2688 llvm::Type *VTy = V->getType(); 2689 auto *PTy = dyn_cast<llvm::PointerType>(VTy); 2690 unsigned AS = PTy ? PTy->getAddressSpace() : 0; 2691 llvm::PointerType *IntrinTy = 2692 llvm::PointerType::get(CGM.getLLVMContext(), AS); 2693 llvm::Function *F = CGM.getIntrinsic(llvm::Intrinsic::ptr_annotation, 2694 {IntrinTy, CGM.ConstGlobalsPtrTy}); 2695 2696 for (const auto *I : D->specific_attrs<AnnotateAttr>()) { 2697 // FIXME Always emit the cast inst so we can differentiate between 2698 // annotation on the first field of a struct and annotation on the struct 2699 // itself. 2700 if (VTy != IntrinTy) 2701 V = Builder.CreateBitCast(V, IntrinTy); 2702 V = EmitAnnotationCall(F, V, I->getAnnotation(), D->getLocation(), I); 2703 V = Builder.CreateBitCast(V, VTy); 2704 } 2705 2706 return Address(V, Addr.getElementType(), Addr.getAlignment()); 2707 } 2708 2709 CodeGenFunction::CGCapturedStmtInfo::~CGCapturedStmtInfo() { } 2710 2711 CodeGenFunction::SanitizerScope::SanitizerScope(CodeGenFunction *CGF) 2712 : CGF(CGF) { 2713 assert(!CGF->IsSanitizerScope); 2714 CGF->IsSanitizerScope = true; 2715 } 2716 2717 CodeGenFunction::SanitizerScope::~SanitizerScope() { 2718 CGF->IsSanitizerScope = false; 2719 } 2720 2721 void CodeGenFunction::InsertHelper(llvm::Instruction *I, 2722 const llvm::Twine &Name, 2723 llvm::BasicBlock::iterator InsertPt) const { 2724 LoopStack.InsertHelper(I); 2725 if (IsSanitizerScope) 2726 I->setNoSanitizeMetadata(); 2727 } 2728 2729 void CGBuilderInserter::InsertHelper( 2730 llvm::Instruction *I, const llvm::Twine &Name, 2731 llvm::BasicBlock::iterator InsertPt) const { 2732 llvm::IRBuilderDefaultInserter::InsertHelper(I, Name, InsertPt); 2733 if (CGF) 2734 CGF->InsertHelper(I, Name, InsertPt); 2735 } 2736 2737 // Emits an error if we don't have a valid set of target features for the 2738 // called function. 2739 void CodeGenFunction::checkTargetFeatures(const CallExpr *E, 2740 const FunctionDecl *TargetDecl) { 2741 // SemaChecking cannot handle below x86 builtins because they have different 2742 // parameter ranges with different TargetAttribute of caller. 2743 if (CGM.getContext().getTargetInfo().getTriple().isX86()) { 2744 unsigned BuiltinID = TargetDecl->getBuiltinID(); 2745 if (BuiltinID == X86::BI__builtin_ia32_cmpps || 2746 BuiltinID == X86::BI__builtin_ia32_cmpss || 2747 BuiltinID == X86::BI__builtin_ia32_cmppd || 2748 BuiltinID == X86::BI__builtin_ia32_cmpsd) { 2749 const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(CurCodeDecl); 2750 llvm::StringMap<bool> TargetFetureMap; 2751 CGM.getContext().getFunctionFeatureMap(TargetFetureMap, FD); 2752 llvm::APSInt Result = 2753 *(E->getArg(2)->getIntegerConstantExpr(CGM.getContext())); 2754 if (Result.getSExtValue() > 7 && !TargetFetureMap.lookup("avx")) 2755 CGM.getDiags().Report(E->getBeginLoc(), diag::err_builtin_needs_feature) 2756 << TargetDecl->getDeclName() << "avx"; 2757 } 2758 } 2759 return checkTargetFeatures(E->getBeginLoc(), TargetDecl); 2760 } 2761 2762 // Emits an error if we don't have a valid set of target features for the 2763 // called function. 2764 void CodeGenFunction::checkTargetFeatures(SourceLocation Loc, 2765 const FunctionDecl *TargetDecl) { 2766 // Early exit if this is an indirect call. 2767 if (!TargetDecl) 2768 return; 2769 2770 // Get the current enclosing function if it exists. If it doesn't 2771 // we can't check the target features anyhow. 2772 const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(CurCodeDecl); 2773 if (!FD) 2774 return; 2775 2776 // Grab the required features for the call. For a builtin this is listed in 2777 // the td file with the default cpu, for an always_inline function this is any 2778 // listed cpu and any listed features. 2779 unsigned BuiltinID = TargetDecl->getBuiltinID(); 2780 std::string MissingFeature; 2781 llvm::StringMap<bool> CallerFeatureMap; 2782 CGM.getContext().getFunctionFeatureMap(CallerFeatureMap, FD); 2783 // When compiling in HipStdPar mode we have to be conservative in rejecting 2784 // target specific features in the FE, and defer the possible error to the 2785 // AcceleratorCodeSelection pass, wherein iff an unsupported target builtin is 2786 // referenced by an accelerator executable function, we emit an error. 2787 bool IsHipStdPar = getLangOpts().HIPStdPar && getLangOpts().CUDAIsDevice; 2788 if (BuiltinID) { 2789 StringRef FeatureList(CGM.getContext().BuiltinInfo.getRequiredFeatures(BuiltinID)); 2790 if (!Builtin::evaluateRequiredTargetFeatures( 2791 FeatureList, CallerFeatureMap) && !IsHipStdPar) { 2792 CGM.getDiags().Report(Loc, diag::err_builtin_needs_feature) 2793 << TargetDecl->getDeclName() 2794 << FeatureList; 2795 } 2796 } else if (!TargetDecl->isMultiVersion() && 2797 TargetDecl->hasAttr<TargetAttr>()) { 2798 // Get the required features for the callee. 2799 2800 const TargetAttr *TD = TargetDecl->getAttr<TargetAttr>(); 2801 ParsedTargetAttr ParsedAttr = 2802 CGM.getContext().filterFunctionTargetAttrs(TD); 2803 2804 SmallVector<StringRef, 1> ReqFeatures; 2805 llvm::StringMap<bool> CalleeFeatureMap; 2806 CGM.getContext().getFunctionFeatureMap(CalleeFeatureMap, TargetDecl); 2807 2808 for (const auto &F : ParsedAttr.Features) { 2809 if (F[0] == '+' && CalleeFeatureMap.lookup(F.substr(1))) 2810 ReqFeatures.push_back(StringRef(F).substr(1)); 2811 } 2812 2813 for (const auto &F : CalleeFeatureMap) { 2814 // Only positive features are "required". 2815 if (F.getValue()) 2816 ReqFeatures.push_back(F.getKey()); 2817 } 2818 if (!llvm::all_of(ReqFeatures, [&](StringRef Feature) { 2819 if (!CallerFeatureMap.lookup(Feature)) { 2820 MissingFeature = Feature.str(); 2821 return false; 2822 } 2823 return true; 2824 }) && !IsHipStdPar) 2825 CGM.getDiags().Report(Loc, diag::err_function_needs_feature) 2826 << FD->getDeclName() << TargetDecl->getDeclName() << MissingFeature; 2827 } else if (!FD->isMultiVersion() && FD->hasAttr<TargetAttr>()) { 2828 llvm::StringMap<bool> CalleeFeatureMap; 2829 CGM.getContext().getFunctionFeatureMap(CalleeFeatureMap, TargetDecl); 2830 2831 for (const auto &F : CalleeFeatureMap) { 2832 if (F.getValue() && (!CallerFeatureMap.lookup(F.getKey()) || 2833 !CallerFeatureMap.find(F.getKey())->getValue()) && 2834 !IsHipStdPar) 2835 CGM.getDiags().Report(Loc, diag::err_function_needs_feature) 2836 << FD->getDeclName() << TargetDecl->getDeclName() << F.getKey(); 2837 } 2838 } 2839 } 2840 2841 void CodeGenFunction::EmitSanitizerStatReport(llvm::SanitizerStatKind SSK) { 2842 if (!CGM.getCodeGenOpts().SanitizeStats) 2843 return; 2844 2845 llvm::IRBuilder<> IRB(Builder.GetInsertBlock(), Builder.GetInsertPoint()); 2846 IRB.SetCurrentDebugLocation(Builder.getCurrentDebugLocation()); 2847 CGM.getSanStats().create(IRB, SSK); 2848 } 2849 2850 void CodeGenFunction::EmitKCFIOperandBundle( 2851 const CGCallee &Callee, SmallVectorImpl<llvm::OperandBundleDef> &Bundles) { 2852 const FunctionProtoType *FP = 2853 Callee.getAbstractInfo().getCalleeFunctionProtoType(); 2854 if (FP) 2855 Bundles.emplace_back("kcfi", CGM.CreateKCFITypeId(FP->desugar())); 2856 } 2857 2858 llvm::Value * 2859 CodeGenFunction::FormAArch64ResolverCondition(const FMVResolverOption &RO) { 2860 return RO.Features.empty() ? nullptr : EmitAArch64CpuSupports(RO.Features); 2861 } 2862 2863 llvm::Value * 2864 CodeGenFunction::FormX86ResolverCondition(const FMVResolverOption &RO) { 2865 llvm::Value *Condition = nullptr; 2866 2867 if (RO.Architecture) { 2868 StringRef Arch = *RO.Architecture; 2869 // If arch= specifies an x86-64 micro-architecture level, test the feature 2870 // with __builtin_cpu_supports, otherwise use __builtin_cpu_is. 2871 if (Arch.starts_with("x86-64")) 2872 Condition = EmitX86CpuSupports({Arch}); 2873 else 2874 Condition = EmitX86CpuIs(Arch); 2875 } 2876 2877 if (!RO.Features.empty()) { 2878 llvm::Value *FeatureCond = EmitX86CpuSupports(RO.Features); 2879 Condition = 2880 Condition ? Builder.CreateAnd(Condition, FeatureCond) : FeatureCond; 2881 } 2882 return Condition; 2883 } 2884 2885 static void CreateMultiVersionResolverReturn(CodeGenModule &CGM, 2886 llvm::Function *Resolver, 2887 CGBuilderTy &Builder, 2888 llvm::Function *FuncToReturn, 2889 bool SupportsIFunc) { 2890 if (SupportsIFunc) { 2891 Builder.CreateRet(FuncToReturn); 2892 return; 2893 } 2894 2895 llvm::SmallVector<llvm::Value *, 10> Args( 2896 llvm::make_pointer_range(Resolver->args())); 2897 2898 llvm::CallInst *Result = Builder.CreateCall(FuncToReturn, Args); 2899 Result->setTailCallKind(llvm::CallInst::TCK_MustTail); 2900 2901 if (Resolver->getReturnType()->isVoidTy()) 2902 Builder.CreateRetVoid(); 2903 else 2904 Builder.CreateRet(Result); 2905 } 2906 2907 void CodeGenFunction::EmitMultiVersionResolver( 2908 llvm::Function *Resolver, ArrayRef<FMVResolverOption> Options) { 2909 2910 llvm::Triple::ArchType ArchType = 2911 getContext().getTargetInfo().getTriple().getArch(); 2912 2913 switch (ArchType) { 2914 case llvm::Triple::x86: 2915 case llvm::Triple::x86_64: 2916 EmitX86MultiVersionResolver(Resolver, Options); 2917 return; 2918 case llvm::Triple::aarch64: 2919 EmitAArch64MultiVersionResolver(Resolver, Options); 2920 return; 2921 case llvm::Triple::riscv32: 2922 case llvm::Triple::riscv64: 2923 EmitRISCVMultiVersionResolver(Resolver, Options); 2924 return; 2925 2926 default: 2927 assert(false && "Only implemented for x86, AArch64 and RISC-V targets"); 2928 } 2929 } 2930 2931 void CodeGenFunction::EmitRISCVMultiVersionResolver( 2932 llvm::Function *Resolver, ArrayRef<FMVResolverOption> Options) { 2933 2934 if (getContext().getTargetInfo().getTriple().getOS() != 2935 llvm::Triple::OSType::Linux) { 2936 CGM.getDiags().Report(diag::err_os_unsupport_riscv_fmv); 2937 return; 2938 } 2939 2940 llvm::BasicBlock *CurBlock = createBasicBlock("resolver_entry", Resolver); 2941 Builder.SetInsertPoint(CurBlock); 2942 EmitRISCVCpuInit(); 2943 2944 bool SupportsIFunc = getContext().getTargetInfo().supportsIFunc(); 2945 bool HasDefault = false; 2946 unsigned DefaultIndex = 0; 2947 2948 // Check the each candidate function. 2949 for (unsigned Index = 0; Index < Options.size(); Index++) { 2950 2951 if (Options[Index].Features.empty()) { 2952 HasDefault = true; 2953 DefaultIndex = Index; 2954 continue; 2955 } 2956 2957 Builder.SetInsertPoint(CurBlock); 2958 2959 // FeaturesCondition: The bitmask of the required extension has been 2960 // enabled by the runtime object. 2961 // (__riscv_feature_bits.features[i] & REQUIRED_BITMASK) == 2962 // REQUIRED_BITMASK 2963 // 2964 // When condition is met, return this version of the function. 2965 // Otherwise, try the next version. 2966 // 2967 // if (FeaturesConditionVersion1) 2968 // return Version1; 2969 // else if (FeaturesConditionVersion2) 2970 // return Version2; 2971 // else if (FeaturesConditionVersion3) 2972 // return Version3; 2973 // ... 2974 // else 2975 // return DefaultVersion; 2976 2977 // TODO: Add a condition to check the length before accessing elements. 2978 // Without checking the length first, we may access an incorrect memory 2979 // address when using different versions. 2980 llvm::SmallVector<StringRef, 8> CurrTargetAttrFeats; 2981 llvm::SmallVector<std::string, 8> TargetAttrFeats; 2982 2983 for (StringRef Feat : Options[Index].Features) { 2984 std::vector<std::string> FeatStr = 2985 getContext().getTargetInfo().parseTargetAttr(Feat).Features; 2986 2987 assert(FeatStr.size() == 1 && "Feature string not delimited"); 2988 2989 std::string &CurrFeat = FeatStr.front(); 2990 if (CurrFeat[0] == '+') 2991 TargetAttrFeats.push_back(CurrFeat.substr(1)); 2992 } 2993 2994 if (TargetAttrFeats.empty()) 2995 continue; 2996 2997 for (std::string &Feat : TargetAttrFeats) 2998 CurrTargetAttrFeats.push_back(Feat); 2999 3000 Builder.SetInsertPoint(CurBlock); 3001 llvm::Value *FeatsCondition = EmitRISCVCpuSupports(CurrTargetAttrFeats); 3002 3003 llvm::BasicBlock *RetBlock = createBasicBlock("resolver_return", Resolver); 3004 CGBuilderTy RetBuilder(*this, RetBlock); 3005 CreateMultiVersionResolverReturn(CGM, Resolver, RetBuilder, 3006 Options[Index].Function, SupportsIFunc); 3007 llvm::BasicBlock *ElseBlock = createBasicBlock("resolver_else", Resolver); 3008 3009 Builder.SetInsertPoint(CurBlock); 3010 Builder.CreateCondBr(FeatsCondition, RetBlock, ElseBlock); 3011 3012 CurBlock = ElseBlock; 3013 } 3014 3015 // Finally, emit the default one. 3016 if (HasDefault) { 3017 Builder.SetInsertPoint(CurBlock); 3018 CreateMultiVersionResolverReturn( 3019 CGM, Resolver, Builder, Options[DefaultIndex].Function, SupportsIFunc); 3020 return; 3021 } 3022 3023 // If no generic/default, emit an unreachable. 3024 Builder.SetInsertPoint(CurBlock); 3025 llvm::CallInst *TrapCall = EmitTrapCall(llvm::Intrinsic::trap); 3026 TrapCall->setDoesNotReturn(); 3027 TrapCall->setDoesNotThrow(); 3028 Builder.CreateUnreachable(); 3029 Builder.ClearInsertionPoint(); 3030 } 3031 3032 void CodeGenFunction::EmitAArch64MultiVersionResolver( 3033 llvm::Function *Resolver, ArrayRef<FMVResolverOption> Options) { 3034 assert(!Options.empty() && "No multiversion resolver options found"); 3035 assert(Options.back().Features.size() == 0 && "Default case must be last"); 3036 bool SupportsIFunc = getContext().getTargetInfo().supportsIFunc(); 3037 assert(SupportsIFunc && 3038 "Multiversion resolver requires target IFUNC support"); 3039 bool AArch64CpuInitialized = false; 3040 llvm::BasicBlock *CurBlock = createBasicBlock("resolver_entry", Resolver); 3041 3042 for (const FMVResolverOption &RO : Options) { 3043 Builder.SetInsertPoint(CurBlock); 3044 llvm::Value *Condition = FormAArch64ResolverCondition(RO); 3045 3046 // The 'default' or 'all features enabled' case. 3047 if (!Condition) { 3048 CreateMultiVersionResolverReturn(CGM, Resolver, Builder, RO.Function, 3049 SupportsIFunc); 3050 return; 3051 } 3052 3053 if (!AArch64CpuInitialized) { 3054 Builder.SetInsertPoint(CurBlock, CurBlock->begin()); 3055 EmitAArch64CpuInit(); 3056 AArch64CpuInitialized = true; 3057 Builder.SetInsertPoint(CurBlock); 3058 } 3059 3060 llvm::BasicBlock *RetBlock = createBasicBlock("resolver_return", Resolver); 3061 CGBuilderTy RetBuilder(*this, RetBlock); 3062 CreateMultiVersionResolverReturn(CGM, Resolver, RetBuilder, RO.Function, 3063 SupportsIFunc); 3064 CurBlock = createBasicBlock("resolver_else", Resolver); 3065 Builder.CreateCondBr(Condition, RetBlock, CurBlock); 3066 } 3067 3068 // If no default, emit an unreachable. 3069 Builder.SetInsertPoint(CurBlock); 3070 llvm::CallInst *TrapCall = EmitTrapCall(llvm::Intrinsic::trap); 3071 TrapCall->setDoesNotReturn(); 3072 TrapCall->setDoesNotThrow(); 3073 Builder.CreateUnreachable(); 3074 Builder.ClearInsertionPoint(); 3075 } 3076 3077 void CodeGenFunction::EmitX86MultiVersionResolver( 3078 llvm::Function *Resolver, ArrayRef<FMVResolverOption> Options) { 3079 3080 bool SupportsIFunc = getContext().getTargetInfo().supportsIFunc(); 3081 3082 // Main function's basic block. 3083 llvm::BasicBlock *CurBlock = createBasicBlock("resolver_entry", Resolver); 3084 Builder.SetInsertPoint(CurBlock); 3085 EmitX86CpuInit(); 3086 3087 for (const FMVResolverOption &RO : Options) { 3088 Builder.SetInsertPoint(CurBlock); 3089 llvm::Value *Condition = FormX86ResolverCondition(RO); 3090 3091 // The 'default' or 'generic' case. 3092 if (!Condition) { 3093 assert(&RO == Options.end() - 1 && 3094 "Default or Generic case must be last"); 3095 CreateMultiVersionResolverReturn(CGM, Resolver, Builder, RO.Function, 3096 SupportsIFunc); 3097 return; 3098 } 3099 3100 llvm::BasicBlock *RetBlock = createBasicBlock("resolver_return", Resolver); 3101 CGBuilderTy RetBuilder(*this, RetBlock); 3102 CreateMultiVersionResolverReturn(CGM, Resolver, RetBuilder, RO.Function, 3103 SupportsIFunc); 3104 CurBlock = createBasicBlock("resolver_else", Resolver); 3105 Builder.CreateCondBr(Condition, RetBlock, CurBlock); 3106 } 3107 3108 // If no generic/default, emit an unreachable. 3109 Builder.SetInsertPoint(CurBlock); 3110 llvm::CallInst *TrapCall = EmitTrapCall(llvm::Intrinsic::trap); 3111 TrapCall->setDoesNotReturn(); 3112 TrapCall->setDoesNotThrow(); 3113 Builder.CreateUnreachable(); 3114 Builder.ClearInsertionPoint(); 3115 } 3116 3117 // Loc - where the diagnostic will point, where in the source code this 3118 // alignment has failed. 3119 // SecondaryLoc - if present (will be present if sufficiently different from 3120 // Loc), the diagnostic will additionally point a "Note:" to this location. 3121 // It should be the location where the __attribute__((assume_aligned)) 3122 // was written e.g. 3123 void CodeGenFunction::emitAlignmentAssumptionCheck( 3124 llvm::Value *Ptr, QualType Ty, SourceLocation Loc, 3125 SourceLocation SecondaryLoc, llvm::Value *Alignment, 3126 llvm::Value *OffsetValue, llvm::Value *TheCheck, 3127 llvm::Instruction *Assumption) { 3128 assert(isa_and_nonnull<llvm::CallInst>(Assumption) && 3129 cast<llvm::CallInst>(Assumption)->getCalledOperand() == 3130 llvm::Intrinsic::getOrInsertDeclaration( 3131 Builder.GetInsertBlock()->getParent()->getParent(), 3132 llvm::Intrinsic::assume) && 3133 "Assumption should be a call to llvm.assume()."); 3134 assert(&(Builder.GetInsertBlock()->back()) == Assumption && 3135 "Assumption should be the last instruction of the basic block, " 3136 "since the basic block is still being generated."); 3137 3138 if (!SanOpts.has(SanitizerKind::Alignment)) 3139 return; 3140 3141 // Don't check pointers to volatile data. The behavior here is implementation- 3142 // defined. 3143 if (Ty->getPointeeType().isVolatileQualified()) 3144 return; 3145 3146 // We need to temorairly remove the assumption so we can insert the 3147 // sanitizer check before it, else the check will be dropped by optimizations. 3148 Assumption->removeFromParent(); 3149 3150 { 3151 SanitizerScope SanScope(this); 3152 3153 if (!OffsetValue) 3154 OffsetValue = Builder.getInt1(false); // no offset. 3155 3156 llvm::Constant *StaticData[] = {EmitCheckSourceLocation(Loc), 3157 EmitCheckSourceLocation(SecondaryLoc), 3158 EmitCheckTypeDescriptor(Ty)}; 3159 llvm::Value *DynamicData[] = {EmitCheckValue(Ptr), 3160 EmitCheckValue(Alignment), 3161 EmitCheckValue(OffsetValue)}; 3162 EmitCheck({std::make_pair(TheCheck, SanitizerKind::Alignment)}, 3163 SanitizerHandler::AlignmentAssumption, StaticData, DynamicData); 3164 } 3165 3166 // We are now in the (new, empty) "cont" basic block. 3167 // Reintroduce the assumption. 3168 Builder.Insert(Assumption); 3169 // FIXME: Assumption still has it's original basic block as it's Parent. 3170 } 3171 3172 llvm::DebugLoc CodeGenFunction::SourceLocToDebugLoc(SourceLocation Location) { 3173 if (CGDebugInfo *DI = getDebugInfo()) 3174 return DI->SourceLocToDebugLoc(Location); 3175 3176 return llvm::DebugLoc(); 3177 } 3178 3179 llvm::Value * 3180 CodeGenFunction::emitCondLikelihoodViaExpectIntrinsic(llvm::Value *Cond, 3181 Stmt::Likelihood LH) { 3182 switch (LH) { 3183 case Stmt::LH_None: 3184 return Cond; 3185 case Stmt::LH_Likely: 3186 case Stmt::LH_Unlikely: 3187 // Don't generate llvm.expect on -O0 as the backend won't use it for 3188 // anything. 3189 if (CGM.getCodeGenOpts().OptimizationLevel == 0) 3190 return Cond; 3191 llvm::Type *CondTy = Cond->getType(); 3192 assert(CondTy->isIntegerTy(1) && "expecting condition to be a boolean"); 3193 llvm::Function *FnExpect = 3194 CGM.getIntrinsic(llvm::Intrinsic::expect, CondTy); 3195 llvm::Value *ExpectedValueOfCond = 3196 llvm::ConstantInt::getBool(CondTy, LH == Stmt::LH_Likely); 3197 return Builder.CreateCall(FnExpect, {Cond, ExpectedValueOfCond}, 3198 Cond->getName() + ".expval"); 3199 } 3200 llvm_unreachable("Unknown Likelihood"); 3201 } 3202 3203 llvm::Value *CodeGenFunction::emitBoolVecConversion(llvm::Value *SrcVec, 3204 unsigned NumElementsDst, 3205 const llvm::Twine &Name) { 3206 auto *SrcTy = cast<llvm::FixedVectorType>(SrcVec->getType()); 3207 unsigned NumElementsSrc = SrcTy->getNumElements(); 3208 if (NumElementsSrc == NumElementsDst) 3209 return SrcVec; 3210 3211 std::vector<int> ShuffleMask(NumElementsDst, -1); 3212 for (unsigned MaskIdx = 0; 3213 MaskIdx < std::min<>(NumElementsDst, NumElementsSrc); ++MaskIdx) 3214 ShuffleMask[MaskIdx] = MaskIdx; 3215 3216 return Builder.CreateShuffleVector(SrcVec, ShuffleMask, Name); 3217 } 3218 3219 void CodeGenFunction::EmitPointerAuthOperandBundle( 3220 const CGPointerAuthInfo &PointerAuth, 3221 SmallVectorImpl<llvm::OperandBundleDef> &Bundles) { 3222 if (!PointerAuth.isSigned()) 3223 return; 3224 3225 auto *Key = Builder.getInt32(PointerAuth.getKey()); 3226 3227 llvm::Value *Discriminator = PointerAuth.getDiscriminator(); 3228 if (!Discriminator) 3229 Discriminator = Builder.getSize(0); 3230 3231 llvm::Value *Args[] = {Key, Discriminator}; 3232 Bundles.emplace_back("ptrauth", Args); 3233 } 3234 3235 static llvm::Value *EmitPointerAuthCommon(CodeGenFunction &CGF, 3236 const CGPointerAuthInfo &PointerAuth, 3237 llvm::Value *Pointer, 3238 unsigned IntrinsicID) { 3239 if (!PointerAuth) 3240 return Pointer; 3241 3242 auto Key = CGF.Builder.getInt32(PointerAuth.getKey()); 3243 3244 llvm::Value *Discriminator = PointerAuth.getDiscriminator(); 3245 if (!Discriminator) { 3246 Discriminator = CGF.Builder.getSize(0); 3247 } 3248 3249 // Convert the pointer to intptr_t before signing it. 3250 auto OrigType = Pointer->getType(); 3251 Pointer = CGF.Builder.CreatePtrToInt(Pointer, CGF.IntPtrTy); 3252 3253 // call i64 @llvm.ptrauth.sign.i64(i64 %pointer, i32 %key, i64 %discriminator) 3254 auto Intrinsic = CGF.CGM.getIntrinsic(IntrinsicID); 3255 Pointer = CGF.EmitRuntimeCall(Intrinsic, {Pointer, Key, Discriminator}); 3256 3257 // Convert back to the original type. 3258 Pointer = CGF.Builder.CreateIntToPtr(Pointer, OrigType); 3259 return Pointer; 3260 } 3261 3262 llvm::Value * 3263 CodeGenFunction::EmitPointerAuthSign(const CGPointerAuthInfo &PointerAuth, 3264 llvm::Value *Pointer) { 3265 if (!PointerAuth.shouldSign()) 3266 return Pointer; 3267 return EmitPointerAuthCommon(*this, PointerAuth, Pointer, 3268 llvm::Intrinsic::ptrauth_sign); 3269 } 3270 3271 static llvm::Value *EmitStrip(CodeGenFunction &CGF, 3272 const CGPointerAuthInfo &PointerAuth, 3273 llvm::Value *Pointer) { 3274 auto StripIntrinsic = CGF.CGM.getIntrinsic(llvm::Intrinsic::ptrauth_strip); 3275 3276 auto Key = CGF.Builder.getInt32(PointerAuth.getKey()); 3277 // Convert the pointer to intptr_t before signing it. 3278 auto OrigType = Pointer->getType(); 3279 Pointer = CGF.EmitRuntimeCall( 3280 StripIntrinsic, {CGF.Builder.CreatePtrToInt(Pointer, CGF.IntPtrTy), Key}); 3281 return CGF.Builder.CreateIntToPtr(Pointer, OrigType); 3282 } 3283 3284 llvm::Value * 3285 CodeGenFunction::EmitPointerAuthAuth(const CGPointerAuthInfo &PointerAuth, 3286 llvm::Value *Pointer) { 3287 if (PointerAuth.shouldStrip()) { 3288 return EmitStrip(*this, PointerAuth, Pointer); 3289 } 3290 if (!PointerAuth.shouldAuth()) { 3291 return Pointer; 3292 } 3293 3294 return EmitPointerAuthCommon(*this, PointerAuth, Pointer, 3295 llvm::Intrinsic::ptrauth_auth); 3296 } 3297