1 //===--- CodeGenFunction.cpp - Emit LLVM Code from ASTs for a Function ----===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This coordinates the per-function state used while generating code. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "CodeGenFunction.h" 14 #include "CGBlocks.h" 15 #include "CGCUDARuntime.h" 16 #include "CGCXXABI.h" 17 #include "CGCleanup.h" 18 #include "CGDebugInfo.h" 19 #include "CGOpenMPRuntime.h" 20 #include "CodeGenModule.h" 21 #include "CodeGenPGO.h" 22 #include "TargetInfo.h" 23 #include "clang/AST/ASTContext.h" 24 #include "clang/AST/ASTLambda.h" 25 #include "clang/AST/Attr.h" 26 #include "clang/AST/Decl.h" 27 #include "clang/AST/DeclCXX.h" 28 #include "clang/AST/Expr.h" 29 #include "clang/AST/StmtCXX.h" 30 #include "clang/AST/StmtObjC.h" 31 #include "clang/Basic/Builtins.h" 32 #include "clang/Basic/CodeGenOptions.h" 33 #include "clang/Basic/TargetInfo.h" 34 #include "clang/CodeGen/CGFunctionInfo.h" 35 #include "clang/Frontend/FrontendDiagnostic.h" 36 #include "llvm/ADT/ArrayRef.h" 37 #include "llvm/Frontend/OpenMP/OMPIRBuilder.h" 38 #include "llvm/IR/DataLayout.h" 39 #include "llvm/IR/Dominators.h" 40 #include "llvm/IR/FPEnv.h" 41 #include "llvm/IR/IntrinsicInst.h" 42 #include "llvm/IR/Intrinsics.h" 43 #include "llvm/IR/MDBuilder.h" 44 #include "llvm/IR/Operator.h" 45 #include "llvm/Support/CRC.h" 46 #include "llvm/Transforms/Scalar/LowerExpectIntrinsic.h" 47 #include "llvm/Transforms/Utils/PromoteMemToReg.h" 48 using namespace clang; 49 using namespace CodeGen; 50 51 /// shouldEmitLifetimeMarkers - Decide whether we need emit the life-time 52 /// markers. 53 static bool shouldEmitLifetimeMarkers(const CodeGenOptions &CGOpts, 54 const LangOptions &LangOpts) { 55 if (CGOpts.DisableLifetimeMarkers) 56 return false; 57 58 // Sanitizers may use markers. 59 if (CGOpts.SanitizeAddressUseAfterScope || 60 LangOpts.Sanitize.has(SanitizerKind::HWAddress) || 61 LangOpts.Sanitize.has(SanitizerKind::Memory)) 62 return true; 63 64 // For now, only in optimized builds. 65 return CGOpts.OptimizationLevel != 0; 66 } 67 68 CodeGenFunction::CodeGenFunction(CodeGenModule &cgm, bool suppressNewContext) 69 : CodeGenTypeCache(cgm), CGM(cgm), Target(cgm.getTarget()), 70 Builder(cgm, cgm.getModule().getContext(), llvm::ConstantFolder(), 71 CGBuilderInserterTy(this)), 72 SanOpts(CGM.getLangOpts().Sanitize), CurFPFeatures(CGM.getLangOpts()), 73 DebugInfo(CGM.getModuleDebugInfo()), PGO(cgm), 74 ShouldEmitLifetimeMarkers( 75 shouldEmitLifetimeMarkers(CGM.getCodeGenOpts(), CGM.getLangOpts())) { 76 if (!suppressNewContext) 77 CGM.getCXXABI().getMangleContext().startNewFunction(); 78 EHStack.setCGF(this); 79 80 SetFastMathFlags(CurFPFeatures); 81 SetFPModel(); 82 } 83 84 CodeGenFunction::~CodeGenFunction() { 85 assert(LifetimeExtendedCleanupStack.empty() && "failed to emit a cleanup"); 86 87 if (getLangOpts().OpenMP && CurFn) 88 CGM.getOpenMPRuntime().functionFinished(*this); 89 90 // If we have an OpenMPIRBuilder we want to finalize functions (incl. 91 // outlining etc) at some point. Doing it once the function codegen is done 92 // seems to be a reasonable spot. We do it here, as opposed to the deletion 93 // time of the CodeGenModule, because we have to ensure the IR has not yet 94 // been "emitted" to the outside, thus, modifications are still sensible. 95 if (CGM.getLangOpts().OpenMPIRBuilder && CurFn) 96 CGM.getOpenMPRuntime().getOMPBuilder().finalize(CurFn); 97 } 98 99 // Map the LangOption for exception behavior into 100 // the corresponding enum in the IR. 101 llvm::fp::ExceptionBehavior 102 clang::ToConstrainedExceptMD(LangOptions::FPExceptionModeKind Kind) { 103 104 switch (Kind) { 105 case LangOptions::FPE_Ignore: return llvm::fp::ebIgnore; 106 case LangOptions::FPE_MayTrap: return llvm::fp::ebMayTrap; 107 case LangOptions::FPE_Strict: return llvm::fp::ebStrict; 108 } 109 llvm_unreachable("Unsupported FP Exception Behavior"); 110 } 111 112 void CodeGenFunction::SetFPModel() { 113 llvm::RoundingMode RM = getLangOpts().getFPRoundingMode(); 114 auto fpExceptionBehavior = ToConstrainedExceptMD( 115 getLangOpts().getFPExceptionMode()); 116 117 Builder.setDefaultConstrainedRounding(RM); 118 Builder.setDefaultConstrainedExcept(fpExceptionBehavior); 119 Builder.setIsFPConstrained(fpExceptionBehavior != llvm::fp::ebIgnore || 120 RM != llvm::RoundingMode::NearestTiesToEven); 121 } 122 123 void CodeGenFunction::SetFastMathFlags(FPOptions FPFeatures) { 124 llvm::FastMathFlags FMF; 125 FMF.setAllowReassoc(FPFeatures.getAllowFPReassociate()); 126 FMF.setNoNaNs(FPFeatures.getNoHonorNaNs()); 127 FMF.setNoInfs(FPFeatures.getNoHonorInfs()); 128 FMF.setNoSignedZeros(FPFeatures.getNoSignedZero()); 129 FMF.setAllowReciprocal(FPFeatures.getAllowReciprocal()); 130 FMF.setApproxFunc(FPFeatures.getAllowApproxFunc()); 131 FMF.setAllowContract(FPFeatures.allowFPContractAcrossStatement()); 132 Builder.setFastMathFlags(FMF); 133 } 134 135 CodeGenFunction::CGFPOptionsRAII::CGFPOptionsRAII(CodeGenFunction &CGF, 136 const Expr *E) 137 : CGF(CGF) { 138 ConstructorHelper(E->getFPFeaturesInEffect(CGF.getLangOpts())); 139 } 140 141 CodeGenFunction::CGFPOptionsRAII::CGFPOptionsRAII(CodeGenFunction &CGF, 142 FPOptions FPFeatures) 143 : CGF(CGF) { 144 ConstructorHelper(FPFeatures); 145 } 146 147 void CodeGenFunction::CGFPOptionsRAII::ConstructorHelper(FPOptions FPFeatures) { 148 OldFPFeatures = CGF.CurFPFeatures; 149 CGF.CurFPFeatures = FPFeatures; 150 151 OldExcept = CGF.Builder.getDefaultConstrainedExcept(); 152 OldRounding = CGF.Builder.getDefaultConstrainedRounding(); 153 154 if (OldFPFeatures == FPFeatures) 155 return; 156 157 FMFGuard.emplace(CGF.Builder); 158 159 llvm::RoundingMode NewRoundingBehavior = 160 static_cast<llvm::RoundingMode>(FPFeatures.getRoundingMode()); 161 CGF.Builder.setDefaultConstrainedRounding(NewRoundingBehavior); 162 auto NewExceptionBehavior = 163 ToConstrainedExceptMD(static_cast<LangOptions::FPExceptionModeKind>( 164 FPFeatures.getFPExceptionMode())); 165 CGF.Builder.setDefaultConstrainedExcept(NewExceptionBehavior); 166 167 CGF.SetFastMathFlags(FPFeatures); 168 169 assert((CGF.CurFuncDecl == nullptr || CGF.Builder.getIsFPConstrained() || 170 isa<CXXConstructorDecl>(CGF.CurFuncDecl) || 171 isa<CXXDestructorDecl>(CGF.CurFuncDecl) || 172 (NewExceptionBehavior == llvm::fp::ebIgnore && 173 NewRoundingBehavior == llvm::RoundingMode::NearestTiesToEven)) && 174 "FPConstrained should be enabled on entire function"); 175 176 auto mergeFnAttrValue = [&](StringRef Name, bool Value) { 177 auto OldValue = 178 CGF.CurFn->getFnAttribute(Name).getValueAsBool(); 179 auto NewValue = OldValue & Value; 180 if (OldValue != NewValue) 181 CGF.CurFn->addFnAttr(Name, llvm::toStringRef(NewValue)); 182 }; 183 mergeFnAttrValue("no-infs-fp-math", FPFeatures.getNoHonorInfs()); 184 mergeFnAttrValue("no-nans-fp-math", FPFeatures.getNoHonorNaNs()); 185 mergeFnAttrValue("no-signed-zeros-fp-math", FPFeatures.getNoSignedZero()); 186 mergeFnAttrValue("unsafe-fp-math", FPFeatures.getAllowFPReassociate() && 187 FPFeatures.getAllowReciprocal() && 188 FPFeatures.getAllowApproxFunc() && 189 FPFeatures.getNoSignedZero()); 190 } 191 192 CodeGenFunction::CGFPOptionsRAII::~CGFPOptionsRAII() { 193 CGF.CurFPFeatures = OldFPFeatures; 194 CGF.Builder.setDefaultConstrainedExcept(OldExcept); 195 CGF.Builder.setDefaultConstrainedRounding(OldRounding); 196 } 197 198 LValue CodeGenFunction::MakeNaturalAlignAddrLValue(llvm::Value *V, QualType T) { 199 LValueBaseInfo BaseInfo; 200 TBAAAccessInfo TBAAInfo; 201 CharUnits Alignment = CGM.getNaturalTypeAlignment(T, &BaseInfo, &TBAAInfo); 202 return LValue::MakeAddr(Address(V, Alignment), T, getContext(), BaseInfo, 203 TBAAInfo); 204 } 205 206 /// Given a value of type T* that may not be to a complete object, 207 /// construct an l-value with the natural pointee alignment of T. 208 LValue 209 CodeGenFunction::MakeNaturalAlignPointeeAddrLValue(llvm::Value *V, QualType T) { 210 LValueBaseInfo BaseInfo; 211 TBAAAccessInfo TBAAInfo; 212 CharUnits Align = CGM.getNaturalTypeAlignment(T, &BaseInfo, &TBAAInfo, 213 /* forPointeeType= */ true); 214 return MakeAddrLValue(Address(V, Align), T, BaseInfo, TBAAInfo); 215 } 216 217 218 llvm::Type *CodeGenFunction::ConvertTypeForMem(QualType T) { 219 return CGM.getTypes().ConvertTypeForMem(T); 220 } 221 222 llvm::Type *CodeGenFunction::ConvertType(QualType T) { 223 return CGM.getTypes().ConvertType(T); 224 } 225 226 TypeEvaluationKind CodeGenFunction::getEvaluationKind(QualType type) { 227 type = type.getCanonicalType(); 228 while (true) { 229 switch (type->getTypeClass()) { 230 #define TYPE(name, parent) 231 #define ABSTRACT_TYPE(name, parent) 232 #define NON_CANONICAL_TYPE(name, parent) case Type::name: 233 #define DEPENDENT_TYPE(name, parent) case Type::name: 234 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(name, parent) case Type::name: 235 #include "clang/AST/TypeNodes.inc" 236 llvm_unreachable("non-canonical or dependent type in IR-generation"); 237 238 case Type::Auto: 239 case Type::DeducedTemplateSpecialization: 240 llvm_unreachable("undeduced type in IR-generation"); 241 242 // Various scalar types. 243 case Type::Builtin: 244 case Type::Pointer: 245 case Type::BlockPointer: 246 case Type::LValueReference: 247 case Type::RValueReference: 248 case Type::MemberPointer: 249 case Type::Vector: 250 case Type::ExtVector: 251 case Type::ConstantMatrix: 252 case Type::FunctionProto: 253 case Type::FunctionNoProto: 254 case Type::Enum: 255 case Type::ObjCObjectPointer: 256 case Type::Pipe: 257 case Type::ExtInt: 258 return TEK_Scalar; 259 260 // Complexes. 261 case Type::Complex: 262 return TEK_Complex; 263 264 // Arrays, records, and Objective-C objects. 265 case Type::ConstantArray: 266 case Type::IncompleteArray: 267 case Type::VariableArray: 268 case Type::Record: 269 case Type::ObjCObject: 270 case Type::ObjCInterface: 271 return TEK_Aggregate; 272 273 // We operate on atomic values according to their underlying type. 274 case Type::Atomic: 275 type = cast<AtomicType>(type)->getValueType(); 276 continue; 277 } 278 llvm_unreachable("unknown type kind!"); 279 } 280 } 281 282 llvm::DebugLoc CodeGenFunction::EmitReturnBlock() { 283 // For cleanliness, we try to avoid emitting the return block for 284 // simple cases. 285 llvm::BasicBlock *CurBB = Builder.GetInsertBlock(); 286 287 if (CurBB) { 288 assert(!CurBB->getTerminator() && "Unexpected terminated block."); 289 290 // We have a valid insert point, reuse it if it is empty or there are no 291 // explicit jumps to the return block. 292 if (CurBB->empty() || ReturnBlock.getBlock()->use_empty()) { 293 ReturnBlock.getBlock()->replaceAllUsesWith(CurBB); 294 delete ReturnBlock.getBlock(); 295 ReturnBlock = JumpDest(); 296 } else 297 EmitBlock(ReturnBlock.getBlock()); 298 return llvm::DebugLoc(); 299 } 300 301 // Otherwise, if the return block is the target of a single direct 302 // branch then we can just put the code in that block instead. This 303 // cleans up functions which started with a unified return block. 304 if (ReturnBlock.getBlock()->hasOneUse()) { 305 llvm::BranchInst *BI = 306 dyn_cast<llvm::BranchInst>(*ReturnBlock.getBlock()->user_begin()); 307 if (BI && BI->isUnconditional() && 308 BI->getSuccessor(0) == ReturnBlock.getBlock()) { 309 // Record/return the DebugLoc of the simple 'return' expression to be used 310 // later by the actual 'ret' instruction. 311 llvm::DebugLoc Loc = BI->getDebugLoc(); 312 Builder.SetInsertPoint(BI->getParent()); 313 BI->eraseFromParent(); 314 delete ReturnBlock.getBlock(); 315 ReturnBlock = JumpDest(); 316 return Loc; 317 } 318 } 319 320 // FIXME: We are at an unreachable point, there is no reason to emit the block 321 // unless it has uses. However, we still need a place to put the debug 322 // region.end for now. 323 324 EmitBlock(ReturnBlock.getBlock()); 325 return llvm::DebugLoc(); 326 } 327 328 static void EmitIfUsed(CodeGenFunction &CGF, llvm::BasicBlock *BB) { 329 if (!BB) return; 330 if (!BB->use_empty()) 331 return CGF.CurFn->getBasicBlockList().push_back(BB); 332 delete BB; 333 } 334 335 void CodeGenFunction::FinishFunction(SourceLocation EndLoc) { 336 assert(BreakContinueStack.empty() && 337 "mismatched push/pop in break/continue stack!"); 338 339 bool OnlySimpleReturnStmts = NumSimpleReturnExprs > 0 340 && NumSimpleReturnExprs == NumReturnExprs 341 && ReturnBlock.getBlock()->use_empty(); 342 // Usually the return expression is evaluated before the cleanup 343 // code. If the function contains only a simple return statement, 344 // such as a constant, the location before the cleanup code becomes 345 // the last useful breakpoint in the function, because the simple 346 // return expression will be evaluated after the cleanup code. To be 347 // safe, set the debug location for cleanup code to the location of 348 // the return statement. Otherwise the cleanup code should be at the 349 // end of the function's lexical scope. 350 // 351 // If there are multiple branches to the return block, the branch 352 // instructions will get the location of the return statements and 353 // all will be fine. 354 if (CGDebugInfo *DI = getDebugInfo()) { 355 if (OnlySimpleReturnStmts) 356 DI->EmitLocation(Builder, LastStopPoint); 357 else 358 DI->EmitLocation(Builder, EndLoc); 359 } 360 361 // Pop any cleanups that might have been associated with the 362 // parameters. Do this in whatever block we're currently in; it's 363 // important to do this before we enter the return block or return 364 // edges will be *really* confused. 365 bool HasCleanups = EHStack.stable_begin() != PrologueCleanupDepth; 366 bool HasOnlyLifetimeMarkers = 367 HasCleanups && EHStack.containsOnlyLifetimeMarkers(PrologueCleanupDepth); 368 bool EmitRetDbgLoc = !HasCleanups || HasOnlyLifetimeMarkers; 369 if (HasCleanups) { 370 // Make sure the line table doesn't jump back into the body for 371 // the ret after it's been at EndLoc. 372 Optional<ApplyDebugLocation> AL; 373 if (CGDebugInfo *DI = getDebugInfo()) { 374 if (OnlySimpleReturnStmts) 375 DI->EmitLocation(Builder, EndLoc); 376 else 377 // We may not have a valid end location. Try to apply it anyway, and 378 // fall back to an artificial location if needed. 379 AL = ApplyDebugLocation::CreateDefaultArtificial(*this, EndLoc); 380 } 381 382 PopCleanupBlocks(PrologueCleanupDepth); 383 } 384 385 // Emit function epilog (to return). 386 llvm::DebugLoc Loc = EmitReturnBlock(); 387 388 if (ShouldInstrumentFunction()) { 389 if (CGM.getCodeGenOpts().InstrumentFunctions) 390 CurFn->addFnAttr("instrument-function-exit", "__cyg_profile_func_exit"); 391 if (CGM.getCodeGenOpts().InstrumentFunctionsAfterInlining) 392 CurFn->addFnAttr("instrument-function-exit-inlined", 393 "__cyg_profile_func_exit"); 394 } 395 396 // Emit debug descriptor for function end. 397 if (CGDebugInfo *DI = getDebugInfo()) 398 DI->EmitFunctionEnd(Builder, CurFn); 399 400 // Reset the debug location to that of the simple 'return' expression, if any 401 // rather than that of the end of the function's scope '}'. 402 ApplyDebugLocation AL(*this, Loc); 403 EmitFunctionEpilog(*CurFnInfo, EmitRetDbgLoc, EndLoc); 404 EmitEndEHSpec(CurCodeDecl); 405 406 assert(EHStack.empty() && 407 "did not remove all scopes from cleanup stack!"); 408 409 // If someone did an indirect goto, emit the indirect goto block at the end of 410 // the function. 411 if (IndirectBranch) { 412 EmitBlock(IndirectBranch->getParent()); 413 Builder.ClearInsertionPoint(); 414 } 415 416 // If some of our locals escaped, insert a call to llvm.localescape in the 417 // entry block. 418 if (!EscapedLocals.empty()) { 419 // Invert the map from local to index into a simple vector. There should be 420 // no holes. 421 SmallVector<llvm::Value *, 4> EscapeArgs; 422 EscapeArgs.resize(EscapedLocals.size()); 423 for (auto &Pair : EscapedLocals) 424 EscapeArgs[Pair.second] = Pair.first; 425 llvm::Function *FrameEscapeFn = llvm::Intrinsic::getDeclaration( 426 &CGM.getModule(), llvm::Intrinsic::localescape); 427 CGBuilderTy(*this, AllocaInsertPt).CreateCall(FrameEscapeFn, EscapeArgs); 428 } 429 430 // Remove the AllocaInsertPt instruction, which is just a convenience for us. 431 llvm::Instruction *Ptr = AllocaInsertPt; 432 AllocaInsertPt = nullptr; 433 Ptr->eraseFromParent(); 434 435 // If someone took the address of a label but never did an indirect goto, we 436 // made a zero entry PHI node, which is illegal, zap it now. 437 if (IndirectBranch) { 438 llvm::PHINode *PN = cast<llvm::PHINode>(IndirectBranch->getAddress()); 439 if (PN->getNumIncomingValues() == 0) { 440 PN->replaceAllUsesWith(llvm::UndefValue::get(PN->getType())); 441 PN->eraseFromParent(); 442 } 443 } 444 445 EmitIfUsed(*this, EHResumeBlock); 446 EmitIfUsed(*this, TerminateLandingPad); 447 EmitIfUsed(*this, TerminateHandler); 448 EmitIfUsed(*this, UnreachableBlock); 449 450 for (const auto &FuncletAndParent : TerminateFunclets) 451 EmitIfUsed(*this, FuncletAndParent.second); 452 453 if (CGM.getCodeGenOpts().EmitDeclMetadata) 454 EmitDeclMetadata(); 455 456 for (const auto &R : DeferredReplacements) { 457 if (llvm::Value *Old = R.first) { 458 Old->replaceAllUsesWith(R.second); 459 cast<llvm::Instruction>(Old)->eraseFromParent(); 460 } 461 } 462 DeferredReplacements.clear(); 463 464 // Eliminate CleanupDestSlot alloca by replacing it with SSA values and 465 // PHIs if the current function is a coroutine. We don't do it for all 466 // functions as it may result in slight increase in numbers of instructions 467 // if compiled with no optimizations. We do it for coroutine as the lifetime 468 // of CleanupDestSlot alloca make correct coroutine frame building very 469 // difficult. 470 if (NormalCleanupDest.isValid() && isCoroutine()) { 471 llvm::DominatorTree DT(*CurFn); 472 llvm::PromoteMemToReg( 473 cast<llvm::AllocaInst>(NormalCleanupDest.getPointer()), DT); 474 NormalCleanupDest = Address::invalid(); 475 } 476 477 // Scan function arguments for vector width. 478 for (llvm::Argument &A : CurFn->args()) 479 if (auto *VT = dyn_cast<llvm::VectorType>(A.getType())) 480 LargestVectorWidth = 481 std::max((uint64_t)LargestVectorWidth, 482 VT->getPrimitiveSizeInBits().getKnownMinSize()); 483 484 // Update vector width based on return type. 485 if (auto *VT = dyn_cast<llvm::VectorType>(CurFn->getReturnType())) 486 LargestVectorWidth = 487 std::max((uint64_t)LargestVectorWidth, 488 VT->getPrimitiveSizeInBits().getKnownMinSize()); 489 490 // Add the required-vector-width attribute. This contains the max width from: 491 // 1. min-vector-width attribute used in the source program. 492 // 2. Any builtins used that have a vector width specified. 493 // 3. Values passed in and out of inline assembly. 494 // 4. Width of vector arguments and return types for this function. 495 // 5. Width of vector aguments and return types for functions called by this 496 // function. 497 CurFn->addFnAttr("min-legal-vector-width", llvm::utostr(LargestVectorWidth)); 498 499 // Add vscale attribute if appropriate. 500 if (getLangOpts().ArmSveVectorBits) { 501 unsigned VScale = getLangOpts().ArmSveVectorBits / 128; 502 CurFn->addFnAttr(llvm::Attribute::getWithVScaleRangeArgs(getLLVMContext(), 503 VScale, VScale)); 504 } 505 506 // If we generated an unreachable return block, delete it now. 507 if (ReturnBlock.isValid() && ReturnBlock.getBlock()->use_empty()) { 508 Builder.ClearInsertionPoint(); 509 ReturnBlock.getBlock()->eraseFromParent(); 510 } 511 if (ReturnValue.isValid()) { 512 auto *RetAlloca = dyn_cast<llvm::AllocaInst>(ReturnValue.getPointer()); 513 if (RetAlloca && RetAlloca->use_empty()) { 514 RetAlloca->eraseFromParent(); 515 ReturnValue = Address::invalid(); 516 } 517 } 518 } 519 520 /// ShouldInstrumentFunction - Return true if the current function should be 521 /// instrumented with __cyg_profile_func_* calls 522 bool CodeGenFunction::ShouldInstrumentFunction() { 523 if (!CGM.getCodeGenOpts().InstrumentFunctions && 524 !CGM.getCodeGenOpts().InstrumentFunctionsAfterInlining && 525 !CGM.getCodeGenOpts().InstrumentFunctionEntryBare) 526 return false; 527 if (!CurFuncDecl || CurFuncDecl->hasAttr<NoInstrumentFunctionAttr>()) 528 return false; 529 return true; 530 } 531 532 /// ShouldXRayInstrument - Return true if the current function should be 533 /// instrumented with XRay nop sleds. 534 bool CodeGenFunction::ShouldXRayInstrumentFunction() const { 535 return CGM.getCodeGenOpts().XRayInstrumentFunctions; 536 } 537 538 /// AlwaysEmitXRayCustomEvents - Return true if we should emit IR for calls to 539 /// the __xray_customevent(...) builtin calls, when doing XRay instrumentation. 540 bool CodeGenFunction::AlwaysEmitXRayCustomEvents() const { 541 return CGM.getCodeGenOpts().XRayInstrumentFunctions && 542 (CGM.getCodeGenOpts().XRayAlwaysEmitCustomEvents || 543 CGM.getCodeGenOpts().XRayInstrumentationBundle.Mask == 544 XRayInstrKind::Custom); 545 } 546 547 bool CodeGenFunction::AlwaysEmitXRayTypedEvents() const { 548 return CGM.getCodeGenOpts().XRayInstrumentFunctions && 549 (CGM.getCodeGenOpts().XRayAlwaysEmitTypedEvents || 550 CGM.getCodeGenOpts().XRayInstrumentationBundle.Mask == 551 XRayInstrKind::Typed); 552 } 553 554 llvm::Constant * 555 CodeGenFunction::EncodeAddrForUseInPrologue(llvm::Function *F, 556 llvm::Constant *Addr) { 557 // Addresses stored in prologue data can't require run-time fixups and must 558 // be PC-relative. Run-time fixups are undesirable because they necessitate 559 // writable text segments, which are unsafe. And absolute addresses are 560 // undesirable because they break PIE mode. 561 562 // Add a layer of indirection through a private global. Taking its address 563 // won't result in a run-time fixup, even if Addr has linkonce_odr linkage. 564 auto *GV = new llvm::GlobalVariable(CGM.getModule(), Addr->getType(), 565 /*isConstant=*/true, 566 llvm::GlobalValue::PrivateLinkage, Addr); 567 568 // Create a PC-relative address. 569 auto *GOTAsInt = llvm::ConstantExpr::getPtrToInt(GV, IntPtrTy); 570 auto *FuncAsInt = llvm::ConstantExpr::getPtrToInt(F, IntPtrTy); 571 auto *PCRelAsInt = llvm::ConstantExpr::getSub(GOTAsInt, FuncAsInt); 572 return (IntPtrTy == Int32Ty) 573 ? PCRelAsInt 574 : llvm::ConstantExpr::getTrunc(PCRelAsInt, Int32Ty); 575 } 576 577 llvm::Value * 578 CodeGenFunction::DecodeAddrUsedInPrologue(llvm::Value *F, 579 llvm::Value *EncodedAddr) { 580 // Reconstruct the address of the global. 581 auto *PCRelAsInt = Builder.CreateSExt(EncodedAddr, IntPtrTy); 582 auto *FuncAsInt = Builder.CreatePtrToInt(F, IntPtrTy, "func_addr.int"); 583 auto *GOTAsInt = Builder.CreateAdd(PCRelAsInt, FuncAsInt, "global_addr.int"); 584 auto *GOTAddr = Builder.CreateIntToPtr(GOTAsInt, Int8PtrPtrTy, "global_addr"); 585 586 // Load the original pointer through the global. 587 return Builder.CreateLoad(Address(GOTAddr, getPointerAlign()), 588 "decoded_addr"); 589 } 590 591 void CodeGenFunction::EmitOpenCLKernelMetadata(const FunctionDecl *FD, 592 llvm::Function *Fn) 593 { 594 if (!FD->hasAttr<OpenCLKernelAttr>()) 595 return; 596 597 llvm::LLVMContext &Context = getLLVMContext(); 598 599 CGM.GenOpenCLArgMetadata(Fn, FD, this); 600 601 if (const VecTypeHintAttr *A = FD->getAttr<VecTypeHintAttr>()) { 602 QualType HintQTy = A->getTypeHint(); 603 const ExtVectorType *HintEltQTy = HintQTy->getAs<ExtVectorType>(); 604 bool IsSignedInteger = 605 HintQTy->isSignedIntegerType() || 606 (HintEltQTy && HintEltQTy->getElementType()->isSignedIntegerType()); 607 llvm::Metadata *AttrMDArgs[] = { 608 llvm::ConstantAsMetadata::get(llvm::UndefValue::get( 609 CGM.getTypes().ConvertType(A->getTypeHint()))), 610 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 611 llvm::IntegerType::get(Context, 32), 612 llvm::APInt(32, (uint64_t)(IsSignedInteger ? 1 : 0))))}; 613 Fn->setMetadata("vec_type_hint", llvm::MDNode::get(Context, AttrMDArgs)); 614 } 615 616 if (const WorkGroupSizeHintAttr *A = FD->getAttr<WorkGroupSizeHintAttr>()) { 617 llvm::Metadata *AttrMDArgs[] = { 618 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getXDim())), 619 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getYDim())), 620 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getZDim()))}; 621 Fn->setMetadata("work_group_size_hint", llvm::MDNode::get(Context, AttrMDArgs)); 622 } 623 624 if (const ReqdWorkGroupSizeAttr *A = FD->getAttr<ReqdWorkGroupSizeAttr>()) { 625 llvm::Metadata *AttrMDArgs[] = { 626 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getXDim())), 627 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getYDim())), 628 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getZDim()))}; 629 Fn->setMetadata("reqd_work_group_size", llvm::MDNode::get(Context, AttrMDArgs)); 630 } 631 632 if (const OpenCLIntelReqdSubGroupSizeAttr *A = 633 FD->getAttr<OpenCLIntelReqdSubGroupSizeAttr>()) { 634 llvm::Metadata *AttrMDArgs[] = { 635 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getSubGroupSize()))}; 636 Fn->setMetadata("intel_reqd_sub_group_size", 637 llvm::MDNode::get(Context, AttrMDArgs)); 638 } 639 } 640 641 /// Determine whether the function F ends with a return stmt. 642 static bool endsWithReturn(const Decl* F) { 643 const Stmt *Body = nullptr; 644 if (auto *FD = dyn_cast_or_null<FunctionDecl>(F)) 645 Body = FD->getBody(); 646 else if (auto *OMD = dyn_cast_or_null<ObjCMethodDecl>(F)) 647 Body = OMD->getBody(); 648 649 if (auto *CS = dyn_cast_or_null<CompoundStmt>(Body)) { 650 auto LastStmt = CS->body_rbegin(); 651 if (LastStmt != CS->body_rend()) 652 return isa<ReturnStmt>(*LastStmt); 653 } 654 return false; 655 } 656 657 void CodeGenFunction::markAsIgnoreThreadCheckingAtRuntime(llvm::Function *Fn) { 658 if (SanOpts.has(SanitizerKind::Thread)) { 659 Fn->addFnAttr("sanitize_thread_no_checking_at_run_time"); 660 Fn->removeFnAttr(llvm::Attribute::SanitizeThread); 661 } 662 } 663 664 /// Check if the return value of this function requires sanitization. 665 bool CodeGenFunction::requiresReturnValueCheck() const { 666 return requiresReturnValueNullabilityCheck() || 667 (SanOpts.has(SanitizerKind::ReturnsNonnullAttribute) && CurCodeDecl && 668 CurCodeDecl->getAttr<ReturnsNonNullAttr>()); 669 } 670 671 static bool matchesStlAllocatorFn(const Decl *D, const ASTContext &Ctx) { 672 auto *MD = dyn_cast_or_null<CXXMethodDecl>(D); 673 if (!MD || !MD->getDeclName().getAsIdentifierInfo() || 674 !MD->getDeclName().getAsIdentifierInfo()->isStr("allocate") || 675 (MD->getNumParams() != 1 && MD->getNumParams() != 2)) 676 return false; 677 678 if (MD->parameters()[0]->getType().getCanonicalType() != Ctx.getSizeType()) 679 return false; 680 681 if (MD->getNumParams() == 2) { 682 auto *PT = MD->parameters()[1]->getType()->getAs<PointerType>(); 683 if (!PT || !PT->isVoidPointerType() || 684 !PT->getPointeeType().isConstQualified()) 685 return false; 686 } 687 688 return true; 689 } 690 691 /// Return the UBSan prologue signature for \p FD if one is available. 692 static llvm::Constant *getPrologueSignature(CodeGenModule &CGM, 693 const FunctionDecl *FD) { 694 if (const auto *MD = dyn_cast<CXXMethodDecl>(FD)) 695 if (!MD->isStatic()) 696 return nullptr; 697 return CGM.getTargetCodeGenInfo().getUBSanFunctionSignature(CGM); 698 } 699 700 void CodeGenFunction::StartFunction(GlobalDecl GD, QualType RetTy, 701 llvm::Function *Fn, 702 const CGFunctionInfo &FnInfo, 703 const FunctionArgList &Args, 704 SourceLocation Loc, 705 SourceLocation StartLoc) { 706 assert(!CurFn && 707 "Do not use a CodeGenFunction object for more than one function"); 708 709 const Decl *D = GD.getDecl(); 710 711 DidCallStackSave = false; 712 CurCodeDecl = D; 713 if (const auto *FD = dyn_cast_or_null<FunctionDecl>(D)) 714 if (FD->usesSEHTry()) 715 CurSEHParent = FD; 716 CurFuncDecl = (D ? D->getNonClosureContext() : nullptr); 717 FnRetTy = RetTy; 718 CurFn = Fn; 719 CurFnInfo = &FnInfo; 720 assert(CurFn->isDeclaration() && "Function already has body?"); 721 722 // If this function is ignored for any of the enabled sanitizers, 723 // disable the sanitizer for the function. 724 do { 725 #define SANITIZER(NAME, ID) \ 726 if (SanOpts.empty()) \ 727 break; \ 728 if (SanOpts.has(SanitizerKind::ID)) \ 729 if (CGM.isInNoSanitizeList(SanitizerKind::ID, Fn, Loc)) \ 730 SanOpts.set(SanitizerKind::ID, false); 731 732 #include "clang/Basic/Sanitizers.def" 733 #undef SANITIZER 734 } while (0); 735 736 if (D) { 737 bool NoSanitizeCoverage = false; 738 739 for (auto Attr : D->specific_attrs<NoSanitizeAttr>()) { 740 // Apply the no_sanitize* attributes to SanOpts. 741 SanitizerMask mask = Attr->getMask(); 742 SanOpts.Mask &= ~mask; 743 if (mask & SanitizerKind::Address) 744 SanOpts.set(SanitizerKind::KernelAddress, false); 745 if (mask & SanitizerKind::KernelAddress) 746 SanOpts.set(SanitizerKind::Address, false); 747 if (mask & SanitizerKind::HWAddress) 748 SanOpts.set(SanitizerKind::KernelHWAddress, false); 749 if (mask & SanitizerKind::KernelHWAddress) 750 SanOpts.set(SanitizerKind::HWAddress, false); 751 752 // SanitizeCoverage is not handled by SanOpts. 753 if (Attr->hasCoverage()) 754 NoSanitizeCoverage = true; 755 } 756 757 if (NoSanitizeCoverage && CGM.getCodeGenOpts().hasSanitizeCoverage()) 758 Fn->addFnAttr(llvm::Attribute::NoSanitizeCoverage); 759 } 760 761 // Apply sanitizer attributes to the function. 762 if (SanOpts.hasOneOf(SanitizerKind::Address | SanitizerKind::KernelAddress)) 763 Fn->addFnAttr(llvm::Attribute::SanitizeAddress); 764 if (SanOpts.hasOneOf(SanitizerKind::HWAddress | SanitizerKind::KernelHWAddress)) 765 Fn->addFnAttr(llvm::Attribute::SanitizeHWAddress); 766 if (SanOpts.has(SanitizerKind::MemTag)) 767 Fn->addFnAttr(llvm::Attribute::SanitizeMemTag); 768 if (SanOpts.has(SanitizerKind::Thread)) 769 Fn->addFnAttr(llvm::Attribute::SanitizeThread); 770 if (SanOpts.hasOneOf(SanitizerKind::Memory | SanitizerKind::KernelMemory)) 771 Fn->addFnAttr(llvm::Attribute::SanitizeMemory); 772 if (SanOpts.has(SanitizerKind::SafeStack)) 773 Fn->addFnAttr(llvm::Attribute::SafeStack); 774 if (SanOpts.has(SanitizerKind::ShadowCallStack)) 775 Fn->addFnAttr(llvm::Attribute::ShadowCallStack); 776 777 // Apply fuzzing attribute to the function. 778 if (SanOpts.hasOneOf(SanitizerKind::Fuzzer | SanitizerKind::FuzzerNoLink)) 779 Fn->addFnAttr(llvm::Attribute::OptForFuzzing); 780 781 // Ignore TSan memory acesses from within ObjC/ObjC++ dealloc, initialize, 782 // .cxx_destruct, __destroy_helper_block_ and all of their calees at run time. 783 if (SanOpts.has(SanitizerKind::Thread)) { 784 if (const auto *OMD = dyn_cast_or_null<ObjCMethodDecl>(D)) { 785 IdentifierInfo *II = OMD->getSelector().getIdentifierInfoForSlot(0); 786 if (OMD->getMethodFamily() == OMF_dealloc || 787 OMD->getMethodFamily() == OMF_initialize || 788 (OMD->getSelector().isUnarySelector() && II->isStr(".cxx_destruct"))) { 789 markAsIgnoreThreadCheckingAtRuntime(Fn); 790 } 791 } 792 } 793 794 // Ignore unrelated casts in STL allocate() since the allocator must cast 795 // from void* to T* before object initialization completes. Don't match on the 796 // namespace because not all allocators are in std:: 797 if (D && SanOpts.has(SanitizerKind::CFIUnrelatedCast)) { 798 if (matchesStlAllocatorFn(D, getContext())) 799 SanOpts.Mask &= ~SanitizerKind::CFIUnrelatedCast; 800 } 801 802 // Ignore null checks in coroutine functions since the coroutines passes 803 // are not aware of how to move the extra UBSan instructions across the split 804 // coroutine boundaries. 805 if (D && SanOpts.has(SanitizerKind::Null)) 806 if (const auto *FD = dyn_cast<FunctionDecl>(D)) 807 if (FD->getBody() && 808 FD->getBody()->getStmtClass() == Stmt::CoroutineBodyStmtClass) 809 SanOpts.Mask &= ~SanitizerKind::Null; 810 811 // Apply xray attributes to the function (as a string, for now) 812 bool AlwaysXRayAttr = false; 813 if (const auto *XRayAttr = D ? D->getAttr<XRayInstrumentAttr>() : nullptr) { 814 if (CGM.getCodeGenOpts().XRayInstrumentationBundle.has( 815 XRayInstrKind::FunctionEntry) || 816 CGM.getCodeGenOpts().XRayInstrumentationBundle.has( 817 XRayInstrKind::FunctionExit)) { 818 if (XRayAttr->alwaysXRayInstrument() && ShouldXRayInstrumentFunction()) { 819 Fn->addFnAttr("function-instrument", "xray-always"); 820 AlwaysXRayAttr = true; 821 } 822 if (XRayAttr->neverXRayInstrument()) 823 Fn->addFnAttr("function-instrument", "xray-never"); 824 if (const auto *LogArgs = D->getAttr<XRayLogArgsAttr>()) 825 if (ShouldXRayInstrumentFunction()) 826 Fn->addFnAttr("xray-log-args", 827 llvm::utostr(LogArgs->getArgumentCount())); 828 } 829 } else { 830 if (ShouldXRayInstrumentFunction() && !CGM.imbueXRayAttrs(Fn, Loc)) 831 Fn->addFnAttr( 832 "xray-instruction-threshold", 833 llvm::itostr(CGM.getCodeGenOpts().XRayInstructionThreshold)); 834 } 835 836 if (ShouldXRayInstrumentFunction()) { 837 if (CGM.getCodeGenOpts().XRayIgnoreLoops) 838 Fn->addFnAttr("xray-ignore-loops"); 839 840 if (!CGM.getCodeGenOpts().XRayInstrumentationBundle.has( 841 XRayInstrKind::FunctionExit)) 842 Fn->addFnAttr("xray-skip-exit"); 843 844 if (!CGM.getCodeGenOpts().XRayInstrumentationBundle.has( 845 XRayInstrKind::FunctionEntry)) 846 Fn->addFnAttr("xray-skip-entry"); 847 848 auto FuncGroups = CGM.getCodeGenOpts().XRayTotalFunctionGroups; 849 if (FuncGroups > 1) { 850 auto FuncName = llvm::makeArrayRef<uint8_t>( 851 CurFn->getName().bytes_begin(), CurFn->getName().bytes_end()); 852 auto Group = crc32(FuncName) % FuncGroups; 853 if (Group != CGM.getCodeGenOpts().XRaySelectedFunctionGroup && 854 !AlwaysXRayAttr) 855 Fn->addFnAttr("function-instrument", "xray-never"); 856 } 857 } 858 859 if (CGM.getCodeGenOpts().getProfileInstr() != CodeGenOptions::ProfileNone) 860 if (CGM.isProfileInstrExcluded(Fn, Loc)) 861 Fn->addFnAttr(llvm::Attribute::NoProfile); 862 863 unsigned Count, Offset; 864 if (const auto *Attr = 865 D ? D->getAttr<PatchableFunctionEntryAttr>() : nullptr) { 866 Count = Attr->getCount(); 867 Offset = Attr->getOffset(); 868 } else { 869 Count = CGM.getCodeGenOpts().PatchableFunctionEntryCount; 870 Offset = CGM.getCodeGenOpts().PatchableFunctionEntryOffset; 871 } 872 if (Count && Offset <= Count) { 873 Fn->addFnAttr("patchable-function-entry", std::to_string(Count - Offset)); 874 if (Offset) 875 Fn->addFnAttr("patchable-function-prefix", std::to_string(Offset)); 876 } 877 878 // Add no-jump-tables value. 879 if (CGM.getCodeGenOpts().NoUseJumpTables) 880 Fn->addFnAttr("no-jump-tables", "true"); 881 882 // Add no-inline-line-tables value. 883 if (CGM.getCodeGenOpts().NoInlineLineTables) 884 Fn->addFnAttr("no-inline-line-tables"); 885 886 // Add profile-sample-accurate value. 887 if (CGM.getCodeGenOpts().ProfileSampleAccurate) 888 Fn->addFnAttr("profile-sample-accurate"); 889 890 if (!CGM.getCodeGenOpts().SampleProfileFile.empty()) 891 Fn->addFnAttr("use-sample-profile"); 892 893 if (D && D->hasAttr<CFICanonicalJumpTableAttr>()) 894 Fn->addFnAttr("cfi-canonical-jump-table"); 895 896 if (D && D->hasAttr<NoProfileFunctionAttr>()) 897 Fn->addFnAttr(llvm::Attribute::NoProfile); 898 899 if (getLangOpts().OpenCL) { 900 // Add metadata for a kernel function. 901 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) 902 EmitOpenCLKernelMetadata(FD, Fn); 903 } 904 905 // If we are checking function types, emit a function type signature as 906 // prologue data. 907 if (getLangOpts().CPlusPlus && SanOpts.has(SanitizerKind::Function)) { 908 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) { 909 if (llvm::Constant *PrologueSig = getPrologueSignature(CGM, FD)) { 910 // Remove any (C++17) exception specifications, to allow calling e.g. a 911 // noexcept function through a non-noexcept pointer. 912 auto ProtoTy = 913 getContext().getFunctionTypeWithExceptionSpec(FD->getType(), 914 EST_None); 915 llvm::Constant *FTRTTIConst = 916 CGM.GetAddrOfRTTIDescriptor(ProtoTy, /*ForEH=*/true); 917 llvm::Constant *FTRTTIConstEncoded = 918 EncodeAddrForUseInPrologue(Fn, FTRTTIConst); 919 llvm::Constant *PrologueStructElems[] = {PrologueSig, 920 FTRTTIConstEncoded}; 921 llvm::Constant *PrologueStructConst = 922 llvm::ConstantStruct::getAnon(PrologueStructElems, /*Packed=*/true); 923 Fn->setPrologueData(PrologueStructConst); 924 } 925 } 926 } 927 928 // If we're checking nullability, we need to know whether we can check the 929 // return value. Initialize the flag to 'true' and refine it in EmitParmDecl. 930 if (SanOpts.has(SanitizerKind::NullabilityReturn)) { 931 auto Nullability = FnRetTy->getNullability(getContext()); 932 if (Nullability && *Nullability == NullabilityKind::NonNull) { 933 if (!(SanOpts.has(SanitizerKind::ReturnsNonnullAttribute) && 934 CurCodeDecl && CurCodeDecl->getAttr<ReturnsNonNullAttr>())) 935 RetValNullabilityPrecondition = 936 llvm::ConstantInt::getTrue(getLLVMContext()); 937 } 938 } 939 940 // If we're in C++ mode and the function name is "main", it is guaranteed 941 // to be norecurse by the standard (3.6.1.3 "The function main shall not be 942 // used within a program"). 943 // 944 // OpenCL C 2.0 v2.2-11 s6.9.i: 945 // Recursion is not supported. 946 // 947 // SYCL v1.2.1 s3.10: 948 // kernels cannot include RTTI information, exception classes, 949 // recursive code, virtual functions or make use of C++ libraries that 950 // are not compiled for the device. 951 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) { 952 if ((getLangOpts().CPlusPlus && FD->isMain()) || getLangOpts().OpenCL || 953 getLangOpts().SYCLIsDevice || 954 (getLangOpts().CUDA && FD->hasAttr<CUDAGlobalAttr>())) 955 Fn->addFnAttr(llvm::Attribute::NoRecurse); 956 } 957 958 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) { 959 Builder.setIsFPConstrained(FD->hasAttr<StrictFPAttr>()); 960 if (FD->hasAttr<StrictFPAttr>()) 961 Fn->addFnAttr(llvm::Attribute::StrictFP); 962 } 963 964 // If a custom alignment is used, force realigning to this alignment on 965 // any main function which certainly will need it. 966 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) 967 if ((FD->isMain() || FD->isMSVCRTEntryPoint()) && 968 CGM.getCodeGenOpts().StackAlignment) 969 Fn->addFnAttr("stackrealign"); 970 971 llvm::BasicBlock *EntryBB = createBasicBlock("entry", CurFn); 972 973 // Create a marker to make it easy to insert allocas into the entryblock 974 // later. Don't create this with the builder, because we don't want it 975 // folded. 976 llvm::Value *Undef = llvm::UndefValue::get(Int32Ty); 977 AllocaInsertPt = new llvm::BitCastInst(Undef, Int32Ty, "allocapt", EntryBB); 978 979 ReturnBlock = getJumpDestInCurrentScope("return"); 980 981 Builder.SetInsertPoint(EntryBB); 982 983 // If we're checking the return value, allocate space for a pointer to a 984 // precise source location of the checked return statement. 985 if (requiresReturnValueCheck()) { 986 ReturnLocation = CreateDefaultAlignTempAlloca(Int8PtrTy, "return.sloc.ptr"); 987 InitTempAlloca(ReturnLocation, llvm::ConstantPointerNull::get(Int8PtrTy)); 988 } 989 990 // Emit subprogram debug descriptor. 991 if (CGDebugInfo *DI = getDebugInfo()) { 992 // Reconstruct the type from the argument list so that implicit parameters, 993 // such as 'this' and 'vtt', show up in the debug info. Preserve the calling 994 // convention. 995 CallingConv CC = CallingConv::CC_C; 996 if (auto *FD = dyn_cast_or_null<FunctionDecl>(D)) 997 if (const auto *SrcFnTy = FD->getType()->getAs<FunctionType>()) 998 CC = SrcFnTy->getCallConv(); 999 SmallVector<QualType, 16> ArgTypes; 1000 for (const VarDecl *VD : Args) 1001 ArgTypes.push_back(VD->getType()); 1002 QualType FnType = getContext().getFunctionType( 1003 RetTy, ArgTypes, FunctionProtoType::ExtProtoInfo(CC)); 1004 DI->emitFunctionStart(GD, Loc, StartLoc, FnType, CurFn, CurFuncIsThunk); 1005 } 1006 1007 if (ShouldInstrumentFunction()) { 1008 if (CGM.getCodeGenOpts().InstrumentFunctions) 1009 CurFn->addFnAttr("instrument-function-entry", "__cyg_profile_func_enter"); 1010 if (CGM.getCodeGenOpts().InstrumentFunctionsAfterInlining) 1011 CurFn->addFnAttr("instrument-function-entry-inlined", 1012 "__cyg_profile_func_enter"); 1013 if (CGM.getCodeGenOpts().InstrumentFunctionEntryBare) 1014 CurFn->addFnAttr("instrument-function-entry-inlined", 1015 "__cyg_profile_func_enter_bare"); 1016 } 1017 1018 // Since emitting the mcount call here impacts optimizations such as function 1019 // inlining, we just add an attribute to insert a mcount call in backend. 1020 // The attribute "counting-function" is set to mcount function name which is 1021 // architecture dependent. 1022 if (CGM.getCodeGenOpts().InstrumentForProfiling) { 1023 // Calls to fentry/mcount should not be generated if function has 1024 // the no_instrument_function attribute. 1025 if (!CurFuncDecl || !CurFuncDecl->hasAttr<NoInstrumentFunctionAttr>()) { 1026 if (CGM.getCodeGenOpts().CallFEntry) 1027 Fn->addFnAttr("fentry-call", "true"); 1028 else { 1029 Fn->addFnAttr("instrument-function-entry-inlined", 1030 getTarget().getMCountName()); 1031 } 1032 if (CGM.getCodeGenOpts().MNopMCount) { 1033 if (!CGM.getCodeGenOpts().CallFEntry) 1034 CGM.getDiags().Report(diag::err_opt_not_valid_without_opt) 1035 << "-mnop-mcount" << "-mfentry"; 1036 Fn->addFnAttr("mnop-mcount"); 1037 } 1038 1039 if (CGM.getCodeGenOpts().RecordMCount) { 1040 if (!CGM.getCodeGenOpts().CallFEntry) 1041 CGM.getDiags().Report(diag::err_opt_not_valid_without_opt) 1042 << "-mrecord-mcount" << "-mfentry"; 1043 Fn->addFnAttr("mrecord-mcount"); 1044 } 1045 } 1046 } 1047 1048 if (CGM.getCodeGenOpts().PackedStack) { 1049 if (getContext().getTargetInfo().getTriple().getArch() != 1050 llvm::Triple::systemz) 1051 CGM.getDiags().Report(diag::err_opt_not_valid_on_target) 1052 << "-mpacked-stack"; 1053 Fn->addFnAttr("packed-stack"); 1054 } 1055 1056 if (RetTy->isVoidType()) { 1057 // Void type; nothing to return. 1058 ReturnValue = Address::invalid(); 1059 1060 // Count the implicit return. 1061 if (!endsWithReturn(D)) 1062 ++NumReturnExprs; 1063 } else if (CurFnInfo->getReturnInfo().getKind() == ABIArgInfo::Indirect) { 1064 // Indirect return; emit returned value directly into sret slot. 1065 // This reduces code size, and affects correctness in C++. 1066 auto AI = CurFn->arg_begin(); 1067 if (CurFnInfo->getReturnInfo().isSRetAfterThis()) 1068 ++AI; 1069 ReturnValue = Address(&*AI, CurFnInfo->getReturnInfo().getIndirectAlign()); 1070 if (!CurFnInfo->getReturnInfo().getIndirectByVal()) { 1071 ReturnValuePointer = 1072 CreateDefaultAlignTempAlloca(Int8PtrTy, "result.ptr"); 1073 Builder.CreateStore(Builder.CreatePointerBitCastOrAddrSpaceCast( 1074 ReturnValue.getPointer(), Int8PtrTy), 1075 ReturnValuePointer); 1076 } 1077 } else if (CurFnInfo->getReturnInfo().getKind() == ABIArgInfo::InAlloca && 1078 !hasScalarEvaluationKind(CurFnInfo->getReturnType())) { 1079 // Load the sret pointer from the argument struct and return into that. 1080 unsigned Idx = CurFnInfo->getReturnInfo().getInAllocaFieldIndex(); 1081 llvm::Function::arg_iterator EI = CurFn->arg_end(); 1082 --EI; 1083 llvm::Value *Addr = Builder.CreateStructGEP(nullptr, &*EI, Idx); 1084 llvm::Type *Ty = 1085 cast<llvm::GetElementPtrInst>(Addr)->getResultElementType(); 1086 ReturnValuePointer = Address(Addr, getPointerAlign()); 1087 Addr = Builder.CreateAlignedLoad(Ty, Addr, getPointerAlign(), "agg.result"); 1088 ReturnValue = Address(Addr, CGM.getNaturalTypeAlignment(RetTy)); 1089 } else { 1090 ReturnValue = CreateIRTemp(RetTy, "retval"); 1091 1092 // Tell the epilog emitter to autorelease the result. We do this 1093 // now so that various specialized functions can suppress it 1094 // during their IR-generation. 1095 if (getLangOpts().ObjCAutoRefCount && 1096 !CurFnInfo->isReturnsRetained() && 1097 RetTy->isObjCRetainableType()) 1098 AutoreleaseResult = true; 1099 } 1100 1101 EmitStartEHSpec(CurCodeDecl); 1102 1103 PrologueCleanupDepth = EHStack.stable_begin(); 1104 1105 // Emit OpenMP specific initialization of the device functions. 1106 if (getLangOpts().OpenMP && CurCodeDecl) 1107 CGM.getOpenMPRuntime().emitFunctionProlog(*this, CurCodeDecl); 1108 1109 EmitFunctionProlog(*CurFnInfo, CurFn, Args); 1110 1111 if (D && isa<CXXMethodDecl>(D) && cast<CXXMethodDecl>(D)->isInstance()) { 1112 CGM.getCXXABI().EmitInstanceFunctionProlog(*this); 1113 const CXXMethodDecl *MD = cast<CXXMethodDecl>(D); 1114 if (MD->getParent()->isLambda() && 1115 MD->getOverloadedOperator() == OO_Call) { 1116 // We're in a lambda; figure out the captures. 1117 MD->getParent()->getCaptureFields(LambdaCaptureFields, 1118 LambdaThisCaptureField); 1119 if (LambdaThisCaptureField) { 1120 // If the lambda captures the object referred to by '*this' - either by 1121 // value or by reference, make sure CXXThisValue points to the correct 1122 // object. 1123 1124 // Get the lvalue for the field (which is a copy of the enclosing object 1125 // or contains the address of the enclosing object). 1126 LValue ThisFieldLValue = EmitLValueForLambdaField(LambdaThisCaptureField); 1127 if (!LambdaThisCaptureField->getType()->isPointerType()) { 1128 // If the enclosing object was captured by value, just use its address. 1129 CXXThisValue = ThisFieldLValue.getAddress(*this).getPointer(); 1130 } else { 1131 // Load the lvalue pointed to by the field, since '*this' was captured 1132 // by reference. 1133 CXXThisValue = 1134 EmitLoadOfLValue(ThisFieldLValue, SourceLocation()).getScalarVal(); 1135 } 1136 } 1137 for (auto *FD : MD->getParent()->fields()) { 1138 if (FD->hasCapturedVLAType()) { 1139 auto *ExprArg = EmitLoadOfLValue(EmitLValueForLambdaField(FD), 1140 SourceLocation()).getScalarVal(); 1141 auto VAT = FD->getCapturedVLAType(); 1142 VLASizeMap[VAT->getSizeExpr()] = ExprArg; 1143 } 1144 } 1145 } else { 1146 // Not in a lambda; just use 'this' from the method. 1147 // FIXME: Should we generate a new load for each use of 'this'? The 1148 // fast register allocator would be happier... 1149 CXXThisValue = CXXABIThisValue; 1150 } 1151 1152 // Check the 'this' pointer once per function, if it's available. 1153 if (CXXABIThisValue) { 1154 SanitizerSet SkippedChecks; 1155 SkippedChecks.set(SanitizerKind::ObjectSize, true); 1156 QualType ThisTy = MD->getThisType(); 1157 1158 // If this is the call operator of a lambda with no capture-default, it 1159 // may have a static invoker function, which may call this operator with 1160 // a null 'this' pointer. 1161 if (isLambdaCallOperator(MD) && 1162 MD->getParent()->getLambdaCaptureDefault() == LCD_None) 1163 SkippedChecks.set(SanitizerKind::Null, true); 1164 1165 EmitTypeCheck( 1166 isa<CXXConstructorDecl>(MD) ? TCK_ConstructorCall : TCK_MemberCall, 1167 Loc, CXXABIThisValue, ThisTy, CXXABIThisAlignment, SkippedChecks); 1168 } 1169 } 1170 1171 // If any of the arguments have a variably modified type, make sure to 1172 // emit the type size. 1173 for (FunctionArgList::const_iterator i = Args.begin(), e = Args.end(); 1174 i != e; ++i) { 1175 const VarDecl *VD = *i; 1176 1177 // Dig out the type as written from ParmVarDecls; it's unclear whether 1178 // the standard (C99 6.9.1p10) requires this, but we're following the 1179 // precedent set by gcc. 1180 QualType Ty; 1181 if (const ParmVarDecl *PVD = dyn_cast<ParmVarDecl>(VD)) 1182 Ty = PVD->getOriginalType(); 1183 else 1184 Ty = VD->getType(); 1185 1186 if (Ty->isVariablyModifiedType()) 1187 EmitVariablyModifiedType(Ty); 1188 } 1189 // Emit a location at the end of the prologue. 1190 if (CGDebugInfo *DI = getDebugInfo()) 1191 DI->EmitLocation(Builder, StartLoc); 1192 1193 // TODO: Do we need to handle this in two places like we do with 1194 // target-features/target-cpu? 1195 if (CurFuncDecl) 1196 if (const auto *VecWidth = CurFuncDecl->getAttr<MinVectorWidthAttr>()) 1197 LargestVectorWidth = VecWidth->getVectorWidth(); 1198 } 1199 1200 void CodeGenFunction::EmitFunctionBody(const Stmt *Body) { 1201 incrementProfileCounter(Body); 1202 if (const CompoundStmt *S = dyn_cast<CompoundStmt>(Body)) 1203 EmitCompoundStmtWithoutScope(*S); 1204 else 1205 EmitStmt(Body); 1206 1207 // This is checked after emitting the function body so we know if there 1208 // are any permitted infinite loops. 1209 if (checkIfFunctionMustProgress()) 1210 CurFn->addFnAttr(llvm::Attribute::MustProgress); 1211 } 1212 1213 /// When instrumenting to collect profile data, the counts for some blocks 1214 /// such as switch cases need to not include the fall-through counts, so 1215 /// emit a branch around the instrumentation code. When not instrumenting, 1216 /// this just calls EmitBlock(). 1217 void CodeGenFunction::EmitBlockWithFallThrough(llvm::BasicBlock *BB, 1218 const Stmt *S) { 1219 llvm::BasicBlock *SkipCountBB = nullptr; 1220 if (HaveInsertPoint() && CGM.getCodeGenOpts().hasProfileClangInstr()) { 1221 // When instrumenting for profiling, the fallthrough to certain 1222 // statements needs to skip over the instrumentation code so that we 1223 // get an accurate count. 1224 SkipCountBB = createBasicBlock("skipcount"); 1225 EmitBranch(SkipCountBB); 1226 } 1227 EmitBlock(BB); 1228 uint64_t CurrentCount = getCurrentProfileCount(); 1229 incrementProfileCounter(S); 1230 setCurrentProfileCount(getCurrentProfileCount() + CurrentCount); 1231 if (SkipCountBB) 1232 EmitBlock(SkipCountBB); 1233 } 1234 1235 /// Tries to mark the given function nounwind based on the 1236 /// non-existence of any throwing calls within it. We believe this is 1237 /// lightweight enough to do at -O0. 1238 static void TryMarkNoThrow(llvm::Function *F) { 1239 // LLVM treats 'nounwind' on a function as part of the type, so we 1240 // can't do this on functions that can be overwritten. 1241 if (F->isInterposable()) return; 1242 1243 for (llvm::BasicBlock &BB : *F) 1244 for (llvm::Instruction &I : BB) 1245 if (I.mayThrow()) 1246 return; 1247 1248 F->setDoesNotThrow(); 1249 } 1250 1251 QualType CodeGenFunction::BuildFunctionArgList(GlobalDecl GD, 1252 FunctionArgList &Args) { 1253 const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl()); 1254 QualType ResTy = FD->getReturnType(); 1255 1256 const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD); 1257 if (MD && MD->isInstance()) { 1258 if (CGM.getCXXABI().HasThisReturn(GD)) 1259 ResTy = MD->getThisType(); 1260 else if (CGM.getCXXABI().hasMostDerivedReturn(GD)) 1261 ResTy = CGM.getContext().VoidPtrTy; 1262 CGM.getCXXABI().buildThisParam(*this, Args); 1263 } 1264 1265 // The base version of an inheriting constructor whose constructed base is a 1266 // virtual base is not passed any arguments (because it doesn't actually call 1267 // the inherited constructor). 1268 bool PassedParams = true; 1269 if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(FD)) 1270 if (auto Inherited = CD->getInheritedConstructor()) 1271 PassedParams = 1272 getTypes().inheritingCtorHasParams(Inherited, GD.getCtorType()); 1273 1274 if (PassedParams) { 1275 for (auto *Param : FD->parameters()) { 1276 Args.push_back(Param); 1277 if (!Param->hasAttr<PassObjectSizeAttr>()) 1278 continue; 1279 1280 auto *Implicit = ImplicitParamDecl::Create( 1281 getContext(), Param->getDeclContext(), Param->getLocation(), 1282 /*Id=*/nullptr, getContext().getSizeType(), ImplicitParamDecl::Other); 1283 SizeArguments[Param] = Implicit; 1284 Args.push_back(Implicit); 1285 } 1286 } 1287 1288 if (MD && (isa<CXXConstructorDecl>(MD) || isa<CXXDestructorDecl>(MD))) 1289 CGM.getCXXABI().addImplicitStructorParams(*this, ResTy, Args); 1290 1291 return ResTy; 1292 } 1293 1294 void CodeGenFunction::GenerateCode(GlobalDecl GD, llvm::Function *Fn, 1295 const CGFunctionInfo &FnInfo) { 1296 const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl()); 1297 CurGD = GD; 1298 1299 FunctionArgList Args; 1300 QualType ResTy = BuildFunctionArgList(GD, Args); 1301 1302 // Check if we should generate debug info for this function. 1303 if (FD->hasAttr<NoDebugAttr>()) 1304 DebugInfo = nullptr; // disable debug info indefinitely for this function 1305 1306 // The function might not have a body if we're generating thunks for a 1307 // function declaration. 1308 SourceRange BodyRange; 1309 if (Stmt *Body = FD->getBody()) 1310 BodyRange = Body->getSourceRange(); 1311 else 1312 BodyRange = FD->getLocation(); 1313 CurEHLocation = BodyRange.getEnd(); 1314 1315 // Use the location of the start of the function to determine where 1316 // the function definition is located. By default use the location 1317 // of the declaration as the location for the subprogram. A function 1318 // may lack a declaration in the source code if it is created by code 1319 // gen. (examples: _GLOBAL__I_a, __cxx_global_array_dtor, thunk). 1320 SourceLocation Loc = FD->getLocation(); 1321 1322 // If this is a function specialization then use the pattern body 1323 // as the location for the function. 1324 if (const FunctionDecl *SpecDecl = FD->getTemplateInstantiationPattern()) 1325 if (SpecDecl->hasBody(SpecDecl)) 1326 Loc = SpecDecl->getLocation(); 1327 1328 Stmt *Body = FD->getBody(); 1329 1330 if (Body) { 1331 // Coroutines always emit lifetime markers. 1332 if (isa<CoroutineBodyStmt>(Body)) 1333 ShouldEmitLifetimeMarkers = true; 1334 1335 // Initialize helper which will detect jumps which can cause invalid 1336 // lifetime markers. 1337 if (ShouldEmitLifetimeMarkers) 1338 Bypasses.Init(Body); 1339 } 1340 1341 // Emit the standard function prologue. 1342 StartFunction(GD, ResTy, Fn, FnInfo, Args, Loc, BodyRange.getBegin()); 1343 1344 // Save parameters for coroutine function. 1345 if (Body && isa_and_nonnull<CoroutineBodyStmt>(Body)) 1346 for (const auto *ParamDecl : FD->parameters()) 1347 FnArgs.push_back(ParamDecl); 1348 1349 // Generate the body of the function. 1350 PGO.assignRegionCounters(GD, CurFn); 1351 if (isa<CXXDestructorDecl>(FD)) 1352 EmitDestructorBody(Args); 1353 else if (isa<CXXConstructorDecl>(FD)) 1354 EmitConstructorBody(Args); 1355 else if (getLangOpts().CUDA && 1356 !getLangOpts().CUDAIsDevice && 1357 FD->hasAttr<CUDAGlobalAttr>()) 1358 CGM.getCUDARuntime().emitDeviceStub(*this, Args); 1359 else if (isa<CXXMethodDecl>(FD) && 1360 cast<CXXMethodDecl>(FD)->isLambdaStaticInvoker()) { 1361 // The lambda static invoker function is special, because it forwards or 1362 // clones the body of the function call operator (but is actually static). 1363 EmitLambdaStaticInvokeBody(cast<CXXMethodDecl>(FD)); 1364 } else if (FD->isDefaulted() && isa<CXXMethodDecl>(FD) && 1365 (cast<CXXMethodDecl>(FD)->isCopyAssignmentOperator() || 1366 cast<CXXMethodDecl>(FD)->isMoveAssignmentOperator())) { 1367 // Implicit copy-assignment gets the same special treatment as implicit 1368 // copy-constructors. 1369 emitImplicitAssignmentOperatorBody(Args); 1370 } else if (Body) { 1371 EmitFunctionBody(Body); 1372 } else 1373 llvm_unreachable("no definition for emitted function"); 1374 1375 // C++11 [stmt.return]p2: 1376 // Flowing off the end of a function [...] results in undefined behavior in 1377 // a value-returning function. 1378 // C11 6.9.1p12: 1379 // If the '}' that terminates a function is reached, and the value of the 1380 // function call is used by the caller, the behavior is undefined. 1381 if (getLangOpts().CPlusPlus && !FD->hasImplicitReturnZero() && !SawAsmBlock && 1382 !FD->getReturnType()->isVoidType() && Builder.GetInsertBlock()) { 1383 bool ShouldEmitUnreachable = 1384 CGM.getCodeGenOpts().StrictReturn || 1385 !CGM.MayDropFunctionReturn(FD->getASTContext(), FD->getReturnType()); 1386 if (SanOpts.has(SanitizerKind::Return)) { 1387 SanitizerScope SanScope(this); 1388 llvm::Value *IsFalse = Builder.getFalse(); 1389 EmitCheck(std::make_pair(IsFalse, SanitizerKind::Return), 1390 SanitizerHandler::MissingReturn, 1391 EmitCheckSourceLocation(FD->getLocation()), None); 1392 } else if (ShouldEmitUnreachable) { 1393 if (CGM.getCodeGenOpts().OptimizationLevel == 0) 1394 EmitTrapCall(llvm::Intrinsic::trap); 1395 } 1396 if (SanOpts.has(SanitizerKind::Return) || ShouldEmitUnreachable) { 1397 Builder.CreateUnreachable(); 1398 Builder.ClearInsertionPoint(); 1399 } 1400 } 1401 1402 // Emit the standard function epilogue. 1403 FinishFunction(BodyRange.getEnd()); 1404 1405 // If we haven't marked the function nothrow through other means, do 1406 // a quick pass now to see if we can. 1407 if (!CurFn->doesNotThrow()) 1408 TryMarkNoThrow(CurFn); 1409 } 1410 1411 /// ContainsLabel - Return true if the statement contains a label in it. If 1412 /// this statement is not executed normally, it not containing a label means 1413 /// that we can just remove the code. 1414 bool CodeGenFunction::ContainsLabel(const Stmt *S, bool IgnoreCaseStmts) { 1415 // Null statement, not a label! 1416 if (!S) return false; 1417 1418 // If this is a label, we have to emit the code, consider something like: 1419 // if (0) { ... foo: bar(); } goto foo; 1420 // 1421 // TODO: If anyone cared, we could track __label__'s, since we know that you 1422 // can't jump to one from outside their declared region. 1423 if (isa<LabelStmt>(S)) 1424 return true; 1425 1426 // If this is a case/default statement, and we haven't seen a switch, we have 1427 // to emit the code. 1428 if (isa<SwitchCase>(S) && !IgnoreCaseStmts) 1429 return true; 1430 1431 // If this is a switch statement, we want to ignore cases below it. 1432 if (isa<SwitchStmt>(S)) 1433 IgnoreCaseStmts = true; 1434 1435 // Scan subexpressions for verboten labels. 1436 for (const Stmt *SubStmt : S->children()) 1437 if (ContainsLabel(SubStmt, IgnoreCaseStmts)) 1438 return true; 1439 1440 return false; 1441 } 1442 1443 /// containsBreak - Return true if the statement contains a break out of it. 1444 /// If the statement (recursively) contains a switch or loop with a break 1445 /// inside of it, this is fine. 1446 bool CodeGenFunction::containsBreak(const Stmt *S) { 1447 // Null statement, not a label! 1448 if (!S) return false; 1449 1450 // If this is a switch or loop that defines its own break scope, then we can 1451 // include it and anything inside of it. 1452 if (isa<SwitchStmt>(S) || isa<WhileStmt>(S) || isa<DoStmt>(S) || 1453 isa<ForStmt>(S)) 1454 return false; 1455 1456 if (isa<BreakStmt>(S)) 1457 return true; 1458 1459 // Scan subexpressions for verboten breaks. 1460 for (const Stmt *SubStmt : S->children()) 1461 if (containsBreak(SubStmt)) 1462 return true; 1463 1464 return false; 1465 } 1466 1467 bool CodeGenFunction::mightAddDeclToScope(const Stmt *S) { 1468 if (!S) return false; 1469 1470 // Some statement kinds add a scope and thus never add a decl to the current 1471 // scope. Note, this list is longer than the list of statements that might 1472 // have an unscoped decl nested within them, but this way is conservatively 1473 // correct even if more statement kinds are added. 1474 if (isa<IfStmt>(S) || isa<SwitchStmt>(S) || isa<WhileStmt>(S) || 1475 isa<DoStmt>(S) || isa<ForStmt>(S) || isa<CompoundStmt>(S) || 1476 isa<CXXForRangeStmt>(S) || isa<CXXTryStmt>(S) || 1477 isa<ObjCForCollectionStmt>(S) || isa<ObjCAtTryStmt>(S)) 1478 return false; 1479 1480 if (isa<DeclStmt>(S)) 1481 return true; 1482 1483 for (const Stmt *SubStmt : S->children()) 1484 if (mightAddDeclToScope(SubStmt)) 1485 return true; 1486 1487 return false; 1488 } 1489 1490 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold 1491 /// to a constant, or if it does but contains a label, return false. If it 1492 /// constant folds return true and set the boolean result in Result. 1493 bool CodeGenFunction::ConstantFoldsToSimpleInteger(const Expr *Cond, 1494 bool &ResultBool, 1495 bool AllowLabels) { 1496 llvm::APSInt ResultInt; 1497 if (!ConstantFoldsToSimpleInteger(Cond, ResultInt, AllowLabels)) 1498 return false; 1499 1500 ResultBool = ResultInt.getBoolValue(); 1501 return true; 1502 } 1503 1504 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold 1505 /// to a constant, or if it does but contains a label, return false. If it 1506 /// constant folds return true and set the folded value. 1507 bool CodeGenFunction::ConstantFoldsToSimpleInteger(const Expr *Cond, 1508 llvm::APSInt &ResultInt, 1509 bool AllowLabels) { 1510 // FIXME: Rename and handle conversion of other evaluatable things 1511 // to bool. 1512 Expr::EvalResult Result; 1513 if (!Cond->EvaluateAsInt(Result, getContext())) 1514 return false; // Not foldable, not integer or not fully evaluatable. 1515 1516 llvm::APSInt Int = Result.Val.getInt(); 1517 if (!AllowLabels && CodeGenFunction::ContainsLabel(Cond)) 1518 return false; // Contains a label. 1519 1520 ResultInt = Int; 1521 return true; 1522 } 1523 1524 /// Determine whether the given condition is an instrumentable condition 1525 /// (i.e. no "&&" or "||"). 1526 bool CodeGenFunction::isInstrumentedCondition(const Expr *C) { 1527 // Bypass simplistic logical-NOT operator before determining whether the 1528 // condition contains any other logical operator. 1529 if (const UnaryOperator *UnOp = dyn_cast<UnaryOperator>(C->IgnoreParens())) 1530 if (UnOp->getOpcode() == UO_LNot) 1531 C = UnOp->getSubExpr(); 1532 1533 const BinaryOperator *BOp = dyn_cast<BinaryOperator>(C->IgnoreParens()); 1534 return (!BOp || !BOp->isLogicalOp()); 1535 } 1536 1537 /// EmitBranchToCounterBlock - Emit a conditional branch to a new block that 1538 /// increments a profile counter based on the semantics of the given logical 1539 /// operator opcode. This is used to instrument branch condition coverage for 1540 /// logical operators. 1541 void CodeGenFunction::EmitBranchToCounterBlock( 1542 const Expr *Cond, BinaryOperator::Opcode LOp, llvm::BasicBlock *TrueBlock, 1543 llvm::BasicBlock *FalseBlock, uint64_t TrueCount /* = 0 */, 1544 Stmt::Likelihood LH /* =None */, const Expr *CntrIdx /* = nullptr */) { 1545 // If not instrumenting, just emit a branch. 1546 bool InstrumentRegions = CGM.getCodeGenOpts().hasProfileClangInstr(); 1547 if (!InstrumentRegions || !isInstrumentedCondition(Cond)) 1548 return EmitBranchOnBoolExpr(Cond, TrueBlock, FalseBlock, TrueCount, LH); 1549 1550 llvm::BasicBlock *ThenBlock = NULL; 1551 llvm::BasicBlock *ElseBlock = NULL; 1552 llvm::BasicBlock *NextBlock = NULL; 1553 1554 // Create the block we'll use to increment the appropriate counter. 1555 llvm::BasicBlock *CounterIncrBlock = createBasicBlock("lop.rhscnt"); 1556 1557 // Set block pointers according to Logical-AND (BO_LAnd) semantics. This 1558 // means we need to evaluate the condition and increment the counter on TRUE: 1559 // 1560 // if (Cond) 1561 // goto CounterIncrBlock; 1562 // else 1563 // goto FalseBlock; 1564 // 1565 // CounterIncrBlock: 1566 // Counter++; 1567 // goto TrueBlock; 1568 1569 if (LOp == BO_LAnd) { 1570 ThenBlock = CounterIncrBlock; 1571 ElseBlock = FalseBlock; 1572 NextBlock = TrueBlock; 1573 } 1574 1575 // Set block pointers according to Logical-OR (BO_LOr) semantics. This means 1576 // we need to evaluate the condition and increment the counter on FALSE: 1577 // 1578 // if (Cond) 1579 // goto TrueBlock; 1580 // else 1581 // goto CounterIncrBlock; 1582 // 1583 // CounterIncrBlock: 1584 // Counter++; 1585 // goto FalseBlock; 1586 1587 else if (LOp == BO_LOr) { 1588 ThenBlock = TrueBlock; 1589 ElseBlock = CounterIncrBlock; 1590 NextBlock = FalseBlock; 1591 } else { 1592 llvm_unreachable("Expected Opcode must be that of a Logical Operator"); 1593 } 1594 1595 // Emit Branch based on condition. 1596 EmitBranchOnBoolExpr(Cond, ThenBlock, ElseBlock, TrueCount, LH); 1597 1598 // Emit the block containing the counter increment(s). 1599 EmitBlock(CounterIncrBlock); 1600 1601 // Increment corresponding counter; if index not provided, use Cond as index. 1602 incrementProfileCounter(CntrIdx ? CntrIdx : Cond); 1603 1604 // Go to the next block. 1605 EmitBranch(NextBlock); 1606 } 1607 1608 /// EmitBranchOnBoolExpr - Emit a branch on a boolean condition (e.g. for an if 1609 /// statement) to the specified blocks. Based on the condition, this might try 1610 /// to simplify the codegen of the conditional based on the branch. 1611 /// \param LH The value of the likelihood attribute on the True branch. 1612 void CodeGenFunction::EmitBranchOnBoolExpr(const Expr *Cond, 1613 llvm::BasicBlock *TrueBlock, 1614 llvm::BasicBlock *FalseBlock, 1615 uint64_t TrueCount, 1616 Stmt::Likelihood LH) { 1617 Cond = Cond->IgnoreParens(); 1618 1619 if (const BinaryOperator *CondBOp = dyn_cast<BinaryOperator>(Cond)) { 1620 1621 // Handle X && Y in a condition. 1622 if (CondBOp->getOpcode() == BO_LAnd) { 1623 // If we have "1 && X", simplify the code. "0 && X" would have constant 1624 // folded if the case was simple enough. 1625 bool ConstantBool = false; 1626 if (ConstantFoldsToSimpleInteger(CondBOp->getLHS(), ConstantBool) && 1627 ConstantBool) { 1628 // br(1 && X) -> br(X). 1629 incrementProfileCounter(CondBOp); 1630 return EmitBranchToCounterBlock(CondBOp->getRHS(), BO_LAnd, TrueBlock, 1631 FalseBlock, TrueCount, LH); 1632 } 1633 1634 // If we have "X && 1", simplify the code to use an uncond branch. 1635 // "X && 0" would have been constant folded to 0. 1636 if (ConstantFoldsToSimpleInteger(CondBOp->getRHS(), ConstantBool) && 1637 ConstantBool) { 1638 // br(X && 1) -> br(X). 1639 return EmitBranchToCounterBlock(CondBOp->getLHS(), BO_LAnd, TrueBlock, 1640 FalseBlock, TrueCount, LH, CondBOp); 1641 } 1642 1643 // Emit the LHS as a conditional. If the LHS conditional is false, we 1644 // want to jump to the FalseBlock. 1645 llvm::BasicBlock *LHSTrue = createBasicBlock("land.lhs.true"); 1646 // The counter tells us how often we evaluate RHS, and all of TrueCount 1647 // can be propagated to that branch. 1648 uint64_t RHSCount = getProfileCount(CondBOp->getRHS()); 1649 1650 ConditionalEvaluation eval(*this); 1651 { 1652 ApplyDebugLocation DL(*this, Cond); 1653 // Propagate the likelihood attribute like __builtin_expect 1654 // __builtin_expect(X && Y, 1) -> X and Y are likely 1655 // __builtin_expect(X && Y, 0) -> only Y is unlikely 1656 EmitBranchOnBoolExpr(CondBOp->getLHS(), LHSTrue, FalseBlock, RHSCount, 1657 LH == Stmt::LH_Unlikely ? Stmt::LH_None : LH); 1658 EmitBlock(LHSTrue); 1659 } 1660 1661 incrementProfileCounter(CondBOp); 1662 setCurrentProfileCount(getProfileCount(CondBOp->getRHS())); 1663 1664 // Any temporaries created here are conditional. 1665 eval.begin(*this); 1666 EmitBranchToCounterBlock(CondBOp->getRHS(), BO_LAnd, TrueBlock, 1667 FalseBlock, TrueCount, LH); 1668 eval.end(*this); 1669 1670 return; 1671 } 1672 1673 if (CondBOp->getOpcode() == BO_LOr) { 1674 // If we have "0 || X", simplify the code. "1 || X" would have constant 1675 // folded if the case was simple enough. 1676 bool ConstantBool = false; 1677 if (ConstantFoldsToSimpleInteger(CondBOp->getLHS(), ConstantBool) && 1678 !ConstantBool) { 1679 // br(0 || X) -> br(X). 1680 incrementProfileCounter(CondBOp); 1681 return EmitBranchToCounterBlock(CondBOp->getRHS(), BO_LOr, TrueBlock, 1682 FalseBlock, TrueCount, LH); 1683 } 1684 1685 // If we have "X || 0", simplify the code to use an uncond branch. 1686 // "X || 1" would have been constant folded to 1. 1687 if (ConstantFoldsToSimpleInteger(CondBOp->getRHS(), ConstantBool) && 1688 !ConstantBool) { 1689 // br(X || 0) -> br(X). 1690 return EmitBranchToCounterBlock(CondBOp->getLHS(), BO_LOr, TrueBlock, 1691 FalseBlock, TrueCount, LH, CondBOp); 1692 } 1693 1694 // Emit the LHS as a conditional. If the LHS conditional is true, we 1695 // want to jump to the TrueBlock. 1696 llvm::BasicBlock *LHSFalse = createBasicBlock("lor.lhs.false"); 1697 // We have the count for entry to the RHS and for the whole expression 1698 // being true, so we can divy up True count between the short circuit and 1699 // the RHS. 1700 uint64_t LHSCount = 1701 getCurrentProfileCount() - getProfileCount(CondBOp->getRHS()); 1702 uint64_t RHSCount = TrueCount - LHSCount; 1703 1704 ConditionalEvaluation eval(*this); 1705 { 1706 // Propagate the likelihood attribute like __builtin_expect 1707 // __builtin_expect(X || Y, 1) -> only Y is likely 1708 // __builtin_expect(X || Y, 0) -> both X and Y are unlikely 1709 ApplyDebugLocation DL(*this, Cond); 1710 EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, LHSFalse, LHSCount, 1711 LH == Stmt::LH_Likely ? Stmt::LH_None : LH); 1712 EmitBlock(LHSFalse); 1713 } 1714 1715 incrementProfileCounter(CondBOp); 1716 setCurrentProfileCount(getProfileCount(CondBOp->getRHS())); 1717 1718 // Any temporaries created here are conditional. 1719 eval.begin(*this); 1720 EmitBranchToCounterBlock(CondBOp->getRHS(), BO_LOr, TrueBlock, FalseBlock, 1721 RHSCount, LH); 1722 1723 eval.end(*this); 1724 1725 return; 1726 } 1727 } 1728 1729 if (const UnaryOperator *CondUOp = dyn_cast<UnaryOperator>(Cond)) { 1730 // br(!x, t, f) -> br(x, f, t) 1731 if (CondUOp->getOpcode() == UO_LNot) { 1732 // Negate the count. 1733 uint64_t FalseCount = getCurrentProfileCount() - TrueCount; 1734 // The values of the enum are chosen to make this negation possible. 1735 LH = static_cast<Stmt::Likelihood>(-LH); 1736 // Negate the condition and swap the destination blocks. 1737 return EmitBranchOnBoolExpr(CondUOp->getSubExpr(), FalseBlock, TrueBlock, 1738 FalseCount, LH); 1739 } 1740 } 1741 1742 if (const ConditionalOperator *CondOp = dyn_cast<ConditionalOperator>(Cond)) { 1743 // br(c ? x : y, t, f) -> br(c, br(x, t, f), br(y, t, f)) 1744 llvm::BasicBlock *LHSBlock = createBasicBlock("cond.true"); 1745 llvm::BasicBlock *RHSBlock = createBasicBlock("cond.false"); 1746 1747 // The ConditionalOperator itself has no likelihood information for its 1748 // true and false branches. This matches the behavior of __builtin_expect. 1749 ConditionalEvaluation cond(*this); 1750 EmitBranchOnBoolExpr(CondOp->getCond(), LHSBlock, RHSBlock, 1751 getProfileCount(CondOp), Stmt::LH_None); 1752 1753 // When computing PGO branch weights, we only know the overall count for 1754 // the true block. This code is essentially doing tail duplication of the 1755 // naive code-gen, introducing new edges for which counts are not 1756 // available. Divide the counts proportionally between the LHS and RHS of 1757 // the conditional operator. 1758 uint64_t LHSScaledTrueCount = 0; 1759 if (TrueCount) { 1760 double LHSRatio = 1761 getProfileCount(CondOp) / (double)getCurrentProfileCount(); 1762 LHSScaledTrueCount = TrueCount * LHSRatio; 1763 } 1764 1765 cond.begin(*this); 1766 EmitBlock(LHSBlock); 1767 incrementProfileCounter(CondOp); 1768 { 1769 ApplyDebugLocation DL(*this, Cond); 1770 EmitBranchOnBoolExpr(CondOp->getLHS(), TrueBlock, FalseBlock, 1771 LHSScaledTrueCount, LH); 1772 } 1773 cond.end(*this); 1774 1775 cond.begin(*this); 1776 EmitBlock(RHSBlock); 1777 EmitBranchOnBoolExpr(CondOp->getRHS(), TrueBlock, FalseBlock, 1778 TrueCount - LHSScaledTrueCount, LH); 1779 cond.end(*this); 1780 1781 return; 1782 } 1783 1784 if (const CXXThrowExpr *Throw = dyn_cast<CXXThrowExpr>(Cond)) { 1785 // Conditional operator handling can give us a throw expression as a 1786 // condition for a case like: 1787 // br(c ? throw x : y, t, f) -> br(c, br(throw x, t, f), br(y, t, f) 1788 // Fold this to: 1789 // br(c, throw x, br(y, t, f)) 1790 EmitCXXThrowExpr(Throw, /*KeepInsertionPoint*/false); 1791 return; 1792 } 1793 1794 // Emit the code with the fully general case. 1795 llvm::Value *CondV; 1796 { 1797 ApplyDebugLocation DL(*this, Cond); 1798 CondV = EvaluateExprAsBool(Cond); 1799 } 1800 1801 llvm::MDNode *Weights = nullptr; 1802 llvm::MDNode *Unpredictable = nullptr; 1803 1804 // If the branch has a condition wrapped by __builtin_unpredictable, 1805 // create metadata that specifies that the branch is unpredictable. 1806 // Don't bother if not optimizing because that metadata would not be used. 1807 auto *Call = dyn_cast<CallExpr>(Cond->IgnoreImpCasts()); 1808 if (Call && CGM.getCodeGenOpts().OptimizationLevel != 0) { 1809 auto *FD = dyn_cast_or_null<FunctionDecl>(Call->getCalleeDecl()); 1810 if (FD && FD->getBuiltinID() == Builtin::BI__builtin_unpredictable) { 1811 llvm::MDBuilder MDHelper(getLLVMContext()); 1812 Unpredictable = MDHelper.createUnpredictable(); 1813 } 1814 } 1815 1816 // If there is a Likelihood knowledge for the cond, lower it. 1817 // Note that if not optimizing this won't emit anything. 1818 llvm::Value *NewCondV = emitCondLikelihoodViaExpectIntrinsic(CondV, LH); 1819 if (CondV != NewCondV) 1820 CondV = NewCondV; 1821 else { 1822 // Otherwise, lower profile counts. Note that we do this even at -O0. 1823 uint64_t CurrentCount = std::max(getCurrentProfileCount(), TrueCount); 1824 Weights = createProfileWeights(TrueCount, CurrentCount - TrueCount); 1825 } 1826 1827 Builder.CreateCondBr(CondV, TrueBlock, FalseBlock, Weights, Unpredictable); 1828 } 1829 1830 /// ErrorUnsupported - Print out an error that codegen doesn't support the 1831 /// specified stmt yet. 1832 void CodeGenFunction::ErrorUnsupported(const Stmt *S, const char *Type) { 1833 CGM.ErrorUnsupported(S, Type); 1834 } 1835 1836 /// emitNonZeroVLAInit - Emit the "zero" initialization of a 1837 /// variable-length array whose elements have a non-zero bit-pattern. 1838 /// 1839 /// \param baseType the inner-most element type of the array 1840 /// \param src - a char* pointing to the bit-pattern for a single 1841 /// base element of the array 1842 /// \param sizeInChars - the total size of the VLA, in chars 1843 static void emitNonZeroVLAInit(CodeGenFunction &CGF, QualType baseType, 1844 Address dest, Address src, 1845 llvm::Value *sizeInChars) { 1846 CGBuilderTy &Builder = CGF.Builder; 1847 1848 CharUnits baseSize = CGF.getContext().getTypeSizeInChars(baseType); 1849 llvm::Value *baseSizeInChars 1850 = llvm::ConstantInt::get(CGF.IntPtrTy, baseSize.getQuantity()); 1851 1852 Address begin = 1853 Builder.CreateElementBitCast(dest, CGF.Int8Ty, "vla.begin"); 1854 llvm::Value *end = Builder.CreateInBoundsGEP( 1855 begin.getElementType(), begin.getPointer(), sizeInChars, "vla.end"); 1856 1857 llvm::BasicBlock *originBB = CGF.Builder.GetInsertBlock(); 1858 llvm::BasicBlock *loopBB = CGF.createBasicBlock("vla-init.loop"); 1859 llvm::BasicBlock *contBB = CGF.createBasicBlock("vla-init.cont"); 1860 1861 // Make a loop over the VLA. C99 guarantees that the VLA element 1862 // count must be nonzero. 1863 CGF.EmitBlock(loopBB); 1864 1865 llvm::PHINode *cur = Builder.CreatePHI(begin.getType(), 2, "vla.cur"); 1866 cur->addIncoming(begin.getPointer(), originBB); 1867 1868 CharUnits curAlign = 1869 dest.getAlignment().alignmentOfArrayElement(baseSize); 1870 1871 // memcpy the individual element bit-pattern. 1872 Builder.CreateMemCpy(Address(cur, curAlign), src, baseSizeInChars, 1873 /*volatile*/ false); 1874 1875 // Go to the next element. 1876 llvm::Value *next = 1877 Builder.CreateInBoundsGEP(CGF.Int8Ty, cur, baseSizeInChars, "vla.next"); 1878 1879 // Leave if that's the end of the VLA. 1880 llvm::Value *done = Builder.CreateICmpEQ(next, end, "vla-init.isdone"); 1881 Builder.CreateCondBr(done, contBB, loopBB); 1882 cur->addIncoming(next, loopBB); 1883 1884 CGF.EmitBlock(contBB); 1885 } 1886 1887 void 1888 CodeGenFunction::EmitNullInitialization(Address DestPtr, QualType Ty) { 1889 // Ignore empty classes in C++. 1890 if (getLangOpts().CPlusPlus) { 1891 if (const RecordType *RT = Ty->getAs<RecordType>()) { 1892 if (cast<CXXRecordDecl>(RT->getDecl())->isEmpty()) 1893 return; 1894 } 1895 } 1896 1897 // Cast the dest ptr to the appropriate i8 pointer type. 1898 if (DestPtr.getElementType() != Int8Ty) 1899 DestPtr = Builder.CreateElementBitCast(DestPtr, Int8Ty); 1900 1901 // Get size and alignment info for this aggregate. 1902 CharUnits size = getContext().getTypeSizeInChars(Ty); 1903 1904 llvm::Value *SizeVal; 1905 const VariableArrayType *vla; 1906 1907 // Don't bother emitting a zero-byte memset. 1908 if (size.isZero()) { 1909 // But note that getTypeInfo returns 0 for a VLA. 1910 if (const VariableArrayType *vlaType = 1911 dyn_cast_or_null<VariableArrayType>( 1912 getContext().getAsArrayType(Ty))) { 1913 auto VlaSize = getVLASize(vlaType); 1914 SizeVal = VlaSize.NumElts; 1915 CharUnits eltSize = getContext().getTypeSizeInChars(VlaSize.Type); 1916 if (!eltSize.isOne()) 1917 SizeVal = Builder.CreateNUWMul(SizeVal, CGM.getSize(eltSize)); 1918 vla = vlaType; 1919 } else { 1920 return; 1921 } 1922 } else { 1923 SizeVal = CGM.getSize(size); 1924 vla = nullptr; 1925 } 1926 1927 // If the type contains a pointer to data member we can't memset it to zero. 1928 // Instead, create a null constant and copy it to the destination. 1929 // TODO: there are other patterns besides zero that we can usefully memset, 1930 // like -1, which happens to be the pattern used by member-pointers. 1931 if (!CGM.getTypes().isZeroInitializable(Ty)) { 1932 // For a VLA, emit a single element, then splat that over the VLA. 1933 if (vla) Ty = getContext().getBaseElementType(vla); 1934 1935 llvm::Constant *NullConstant = CGM.EmitNullConstant(Ty); 1936 1937 llvm::GlobalVariable *NullVariable = 1938 new llvm::GlobalVariable(CGM.getModule(), NullConstant->getType(), 1939 /*isConstant=*/true, 1940 llvm::GlobalVariable::PrivateLinkage, 1941 NullConstant, Twine()); 1942 CharUnits NullAlign = DestPtr.getAlignment(); 1943 NullVariable->setAlignment(NullAlign.getAsAlign()); 1944 Address SrcPtr(Builder.CreateBitCast(NullVariable, Builder.getInt8PtrTy()), 1945 NullAlign); 1946 1947 if (vla) return emitNonZeroVLAInit(*this, Ty, DestPtr, SrcPtr, SizeVal); 1948 1949 // Get and call the appropriate llvm.memcpy overload. 1950 Builder.CreateMemCpy(DestPtr, SrcPtr, SizeVal, false); 1951 return; 1952 } 1953 1954 // Otherwise, just memset the whole thing to zero. This is legal 1955 // because in LLVM, all default initializers (other than the ones we just 1956 // handled above) are guaranteed to have a bit pattern of all zeros. 1957 Builder.CreateMemSet(DestPtr, Builder.getInt8(0), SizeVal, false); 1958 } 1959 1960 llvm::BlockAddress *CodeGenFunction::GetAddrOfLabel(const LabelDecl *L) { 1961 // Make sure that there is a block for the indirect goto. 1962 if (!IndirectBranch) 1963 GetIndirectGotoBlock(); 1964 1965 llvm::BasicBlock *BB = getJumpDestForLabel(L).getBlock(); 1966 1967 // Make sure the indirect branch includes all of the address-taken blocks. 1968 IndirectBranch->addDestination(BB); 1969 return llvm::BlockAddress::get(CurFn, BB); 1970 } 1971 1972 llvm::BasicBlock *CodeGenFunction::GetIndirectGotoBlock() { 1973 // If we already made the indirect branch for indirect goto, return its block. 1974 if (IndirectBranch) return IndirectBranch->getParent(); 1975 1976 CGBuilderTy TmpBuilder(*this, createBasicBlock("indirectgoto")); 1977 1978 // Create the PHI node that indirect gotos will add entries to. 1979 llvm::Value *DestVal = TmpBuilder.CreatePHI(Int8PtrTy, 0, 1980 "indirect.goto.dest"); 1981 1982 // Create the indirect branch instruction. 1983 IndirectBranch = TmpBuilder.CreateIndirectBr(DestVal); 1984 return IndirectBranch->getParent(); 1985 } 1986 1987 /// Computes the length of an array in elements, as well as the base 1988 /// element type and a properly-typed first element pointer. 1989 llvm::Value *CodeGenFunction::emitArrayLength(const ArrayType *origArrayType, 1990 QualType &baseType, 1991 Address &addr) { 1992 const ArrayType *arrayType = origArrayType; 1993 1994 // If it's a VLA, we have to load the stored size. Note that 1995 // this is the size of the VLA in bytes, not its size in elements. 1996 llvm::Value *numVLAElements = nullptr; 1997 if (isa<VariableArrayType>(arrayType)) { 1998 numVLAElements = getVLASize(cast<VariableArrayType>(arrayType)).NumElts; 1999 2000 // Walk into all VLAs. This doesn't require changes to addr, 2001 // which has type T* where T is the first non-VLA element type. 2002 do { 2003 QualType elementType = arrayType->getElementType(); 2004 arrayType = getContext().getAsArrayType(elementType); 2005 2006 // If we only have VLA components, 'addr' requires no adjustment. 2007 if (!arrayType) { 2008 baseType = elementType; 2009 return numVLAElements; 2010 } 2011 } while (isa<VariableArrayType>(arrayType)); 2012 2013 // We get out here only if we find a constant array type 2014 // inside the VLA. 2015 } 2016 2017 // We have some number of constant-length arrays, so addr should 2018 // have LLVM type [M x [N x [...]]]*. Build a GEP that walks 2019 // down to the first element of addr. 2020 SmallVector<llvm::Value*, 8> gepIndices; 2021 2022 // GEP down to the array type. 2023 llvm::ConstantInt *zero = Builder.getInt32(0); 2024 gepIndices.push_back(zero); 2025 2026 uint64_t countFromCLAs = 1; 2027 QualType eltType; 2028 2029 llvm::ArrayType *llvmArrayType = 2030 dyn_cast<llvm::ArrayType>(addr.getElementType()); 2031 while (llvmArrayType) { 2032 assert(isa<ConstantArrayType>(arrayType)); 2033 assert(cast<ConstantArrayType>(arrayType)->getSize().getZExtValue() 2034 == llvmArrayType->getNumElements()); 2035 2036 gepIndices.push_back(zero); 2037 countFromCLAs *= llvmArrayType->getNumElements(); 2038 eltType = arrayType->getElementType(); 2039 2040 llvmArrayType = 2041 dyn_cast<llvm::ArrayType>(llvmArrayType->getElementType()); 2042 arrayType = getContext().getAsArrayType(arrayType->getElementType()); 2043 assert((!llvmArrayType || arrayType) && 2044 "LLVM and Clang types are out-of-synch"); 2045 } 2046 2047 if (arrayType) { 2048 // From this point onwards, the Clang array type has been emitted 2049 // as some other type (probably a packed struct). Compute the array 2050 // size, and just emit the 'begin' expression as a bitcast. 2051 while (arrayType) { 2052 countFromCLAs *= 2053 cast<ConstantArrayType>(arrayType)->getSize().getZExtValue(); 2054 eltType = arrayType->getElementType(); 2055 arrayType = getContext().getAsArrayType(eltType); 2056 } 2057 2058 llvm::Type *baseType = ConvertType(eltType); 2059 addr = Builder.CreateElementBitCast(addr, baseType, "array.begin"); 2060 } else { 2061 // Create the actual GEP. 2062 addr = Address(Builder.CreateInBoundsGEP( 2063 addr.getElementType(), addr.getPointer(), gepIndices, "array.begin"), 2064 addr.getAlignment()); 2065 } 2066 2067 baseType = eltType; 2068 2069 llvm::Value *numElements 2070 = llvm::ConstantInt::get(SizeTy, countFromCLAs); 2071 2072 // If we had any VLA dimensions, factor them in. 2073 if (numVLAElements) 2074 numElements = Builder.CreateNUWMul(numVLAElements, numElements); 2075 2076 return numElements; 2077 } 2078 2079 CodeGenFunction::VlaSizePair CodeGenFunction::getVLASize(QualType type) { 2080 const VariableArrayType *vla = getContext().getAsVariableArrayType(type); 2081 assert(vla && "type was not a variable array type!"); 2082 return getVLASize(vla); 2083 } 2084 2085 CodeGenFunction::VlaSizePair 2086 CodeGenFunction::getVLASize(const VariableArrayType *type) { 2087 // The number of elements so far; always size_t. 2088 llvm::Value *numElements = nullptr; 2089 2090 QualType elementType; 2091 do { 2092 elementType = type->getElementType(); 2093 llvm::Value *vlaSize = VLASizeMap[type->getSizeExpr()]; 2094 assert(vlaSize && "no size for VLA!"); 2095 assert(vlaSize->getType() == SizeTy); 2096 2097 if (!numElements) { 2098 numElements = vlaSize; 2099 } else { 2100 // It's undefined behavior if this wraps around, so mark it that way. 2101 // FIXME: Teach -fsanitize=undefined to trap this. 2102 numElements = Builder.CreateNUWMul(numElements, vlaSize); 2103 } 2104 } while ((type = getContext().getAsVariableArrayType(elementType))); 2105 2106 return { numElements, elementType }; 2107 } 2108 2109 CodeGenFunction::VlaSizePair 2110 CodeGenFunction::getVLAElements1D(QualType type) { 2111 const VariableArrayType *vla = getContext().getAsVariableArrayType(type); 2112 assert(vla && "type was not a variable array type!"); 2113 return getVLAElements1D(vla); 2114 } 2115 2116 CodeGenFunction::VlaSizePair 2117 CodeGenFunction::getVLAElements1D(const VariableArrayType *Vla) { 2118 llvm::Value *VlaSize = VLASizeMap[Vla->getSizeExpr()]; 2119 assert(VlaSize && "no size for VLA!"); 2120 assert(VlaSize->getType() == SizeTy); 2121 return { VlaSize, Vla->getElementType() }; 2122 } 2123 2124 void CodeGenFunction::EmitVariablyModifiedType(QualType type) { 2125 assert(type->isVariablyModifiedType() && 2126 "Must pass variably modified type to EmitVLASizes!"); 2127 2128 EnsureInsertPoint(); 2129 2130 // We're going to walk down into the type and look for VLA 2131 // expressions. 2132 do { 2133 assert(type->isVariablyModifiedType()); 2134 2135 const Type *ty = type.getTypePtr(); 2136 switch (ty->getTypeClass()) { 2137 2138 #define TYPE(Class, Base) 2139 #define ABSTRACT_TYPE(Class, Base) 2140 #define NON_CANONICAL_TYPE(Class, Base) 2141 #define DEPENDENT_TYPE(Class, Base) case Type::Class: 2142 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base) 2143 #include "clang/AST/TypeNodes.inc" 2144 llvm_unreachable("unexpected dependent type!"); 2145 2146 // These types are never variably-modified. 2147 case Type::Builtin: 2148 case Type::Complex: 2149 case Type::Vector: 2150 case Type::ExtVector: 2151 case Type::ConstantMatrix: 2152 case Type::Record: 2153 case Type::Enum: 2154 case Type::Elaborated: 2155 case Type::TemplateSpecialization: 2156 case Type::ObjCTypeParam: 2157 case Type::ObjCObject: 2158 case Type::ObjCInterface: 2159 case Type::ObjCObjectPointer: 2160 case Type::ExtInt: 2161 llvm_unreachable("type class is never variably-modified!"); 2162 2163 case Type::Adjusted: 2164 type = cast<AdjustedType>(ty)->getAdjustedType(); 2165 break; 2166 2167 case Type::Decayed: 2168 type = cast<DecayedType>(ty)->getPointeeType(); 2169 break; 2170 2171 case Type::Pointer: 2172 type = cast<PointerType>(ty)->getPointeeType(); 2173 break; 2174 2175 case Type::BlockPointer: 2176 type = cast<BlockPointerType>(ty)->getPointeeType(); 2177 break; 2178 2179 case Type::LValueReference: 2180 case Type::RValueReference: 2181 type = cast<ReferenceType>(ty)->getPointeeType(); 2182 break; 2183 2184 case Type::MemberPointer: 2185 type = cast<MemberPointerType>(ty)->getPointeeType(); 2186 break; 2187 2188 case Type::ConstantArray: 2189 case Type::IncompleteArray: 2190 // Losing element qualification here is fine. 2191 type = cast<ArrayType>(ty)->getElementType(); 2192 break; 2193 2194 case Type::VariableArray: { 2195 // Losing element qualification here is fine. 2196 const VariableArrayType *vat = cast<VariableArrayType>(ty); 2197 2198 // Unknown size indication requires no size computation. 2199 // Otherwise, evaluate and record it. 2200 if (const Expr *size = vat->getSizeExpr()) { 2201 // It's possible that we might have emitted this already, 2202 // e.g. with a typedef and a pointer to it. 2203 llvm::Value *&entry = VLASizeMap[size]; 2204 if (!entry) { 2205 llvm::Value *Size = EmitScalarExpr(size); 2206 2207 // C11 6.7.6.2p5: 2208 // If the size is an expression that is not an integer constant 2209 // expression [...] each time it is evaluated it shall have a value 2210 // greater than zero. 2211 if (SanOpts.has(SanitizerKind::VLABound) && 2212 size->getType()->isSignedIntegerType()) { 2213 SanitizerScope SanScope(this); 2214 llvm::Value *Zero = llvm::Constant::getNullValue(Size->getType()); 2215 llvm::Constant *StaticArgs[] = { 2216 EmitCheckSourceLocation(size->getBeginLoc()), 2217 EmitCheckTypeDescriptor(size->getType())}; 2218 EmitCheck(std::make_pair(Builder.CreateICmpSGT(Size, Zero), 2219 SanitizerKind::VLABound), 2220 SanitizerHandler::VLABoundNotPositive, StaticArgs, Size); 2221 } 2222 2223 // Always zexting here would be wrong if it weren't 2224 // undefined behavior to have a negative bound. 2225 entry = Builder.CreateIntCast(Size, SizeTy, /*signed*/ false); 2226 } 2227 } 2228 type = vat->getElementType(); 2229 break; 2230 } 2231 2232 case Type::FunctionProto: 2233 case Type::FunctionNoProto: 2234 type = cast<FunctionType>(ty)->getReturnType(); 2235 break; 2236 2237 case Type::Paren: 2238 case Type::TypeOf: 2239 case Type::UnaryTransform: 2240 case Type::Attributed: 2241 case Type::SubstTemplateTypeParm: 2242 case Type::MacroQualified: 2243 // Keep walking after single level desugaring. 2244 type = type.getSingleStepDesugaredType(getContext()); 2245 break; 2246 2247 case Type::Typedef: 2248 case Type::Decltype: 2249 case Type::Auto: 2250 case Type::DeducedTemplateSpecialization: 2251 // Stop walking: nothing to do. 2252 return; 2253 2254 case Type::TypeOfExpr: 2255 // Stop walking: emit typeof expression. 2256 EmitIgnoredExpr(cast<TypeOfExprType>(ty)->getUnderlyingExpr()); 2257 return; 2258 2259 case Type::Atomic: 2260 type = cast<AtomicType>(ty)->getValueType(); 2261 break; 2262 2263 case Type::Pipe: 2264 type = cast<PipeType>(ty)->getElementType(); 2265 break; 2266 } 2267 } while (type->isVariablyModifiedType()); 2268 } 2269 2270 Address CodeGenFunction::EmitVAListRef(const Expr* E) { 2271 if (getContext().getBuiltinVaListType()->isArrayType()) 2272 return EmitPointerWithAlignment(E); 2273 return EmitLValue(E).getAddress(*this); 2274 } 2275 2276 Address CodeGenFunction::EmitMSVAListRef(const Expr *E) { 2277 return EmitLValue(E).getAddress(*this); 2278 } 2279 2280 void CodeGenFunction::EmitDeclRefExprDbgValue(const DeclRefExpr *E, 2281 const APValue &Init) { 2282 assert(Init.hasValue() && "Invalid DeclRefExpr initializer!"); 2283 if (CGDebugInfo *Dbg = getDebugInfo()) 2284 if (CGM.getCodeGenOpts().hasReducedDebugInfo()) 2285 Dbg->EmitGlobalVariable(E->getDecl(), Init); 2286 } 2287 2288 CodeGenFunction::PeepholeProtection 2289 CodeGenFunction::protectFromPeepholes(RValue rvalue) { 2290 // At the moment, the only aggressive peephole we do in IR gen 2291 // is trunc(zext) folding, but if we add more, we can easily 2292 // extend this protection. 2293 2294 if (!rvalue.isScalar()) return PeepholeProtection(); 2295 llvm::Value *value = rvalue.getScalarVal(); 2296 if (!isa<llvm::ZExtInst>(value)) return PeepholeProtection(); 2297 2298 // Just make an extra bitcast. 2299 assert(HaveInsertPoint()); 2300 llvm::Instruction *inst = new llvm::BitCastInst(value, value->getType(), "", 2301 Builder.GetInsertBlock()); 2302 2303 PeepholeProtection protection; 2304 protection.Inst = inst; 2305 return protection; 2306 } 2307 2308 void CodeGenFunction::unprotectFromPeepholes(PeepholeProtection protection) { 2309 if (!protection.Inst) return; 2310 2311 // In theory, we could try to duplicate the peepholes now, but whatever. 2312 protection.Inst->eraseFromParent(); 2313 } 2314 2315 void CodeGenFunction::emitAlignmentAssumption(llvm::Value *PtrValue, 2316 QualType Ty, SourceLocation Loc, 2317 SourceLocation AssumptionLoc, 2318 llvm::Value *Alignment, 2319 llvm::Value *OffsetValue) { 2320 if (Alignment->getType() != IntPtrTy) 2321 Alignment = 2322 Builder.CreateIntCast(Alignment, IntPtrTy, false, "casted.align"); 2323 if (OffsetValue && OffsetValue->getType() != IntPtrTy) 2324 OffsetValue = 2325 Builder.CreateIntCast(OffsetValue, IntPtrTy, true, "casted.offset"); 2326 llvm::Value *TheCheck = nullptr; 2327 if (SanOpts.has(SanitizerKind::Alignment)) { 2328 llvm::Value *PtrIntValue = 2329 Builder.CreatePtrToInt(PtrValue, IntPtrTy, "ptrint"); 2330 2331 if (OffsetValue) { 2332 bool IsOffsetZero = false; 2333 if (const auto *CI = dyn_cast<llvm::ConstantInt>(OffsetValue)) 2334 IsOffsetZero = CI->isZero(); 2335 2336 if (!IsOffsetZero) 2337 PtrIntValue = Builder.CreateSub(PtrIntValue, OffsetValue, "offsetptr"); 2338 } 2339 2340 llvm::Value *Zero = llvm::ConstantInt::get(IntPtrTy, 0); 2341 llvm::Value *Mask = 2342 Builder.CreateSub(Alignment, llvm::ConstantInt::get(IntPtrTy, 1)); 2343 llvm::Value *MaskedPtr = Builder.CreateAnd(PtrIntValue, Mask, "maskedptr"); 2344 TheCheck = Builder.CreateICmpEQ(MaskedPtr, Zero, "maskcond"); 2345 } 2346 llvm::Instruction *Assumption = Builder.CreateAlignmentAssumption( 2347 CGM.getDataLayout(), PtrValue, Alignment, OffsetValue); 2348 2349 if (!SanOpts.has(SanitizerKind::Alignment)) 2350 return; 2351 emitAlignmentAssumptionCheck(PtrValue, Ty, Loc, AssumptionLoc, Alignment, 2352 OffsetValue, TheCheck, Assumption); 2353 } 2354 2355 void CodeGenFunction::emitAlignmentAssumption(llvm::Value *PtrValue, 2356 const Expr *E, 2357 SourceLocation AssumptionLoc, 2358 llvm::Value *Alignment, 2359 llvm::Value *OffsetValue) { 2360 if (auto *CE = dyn_cast<CastExpr>(E)) 2361 E = CE->getSubExprAsWritten(); 2362 QualType Ty = E->getType(); 2363 SourceLocation Loc = E->getExprLoc(); 2364 2365 emitAlignmentAssumption(PtrValue, Ty, Loc, AssumptionLoc, Alignment, 2366 OffsetValue); 2367 } 2368 2369 llvm::Value *CodeGenFunction::EmitAnnotationCall(llvm::Function *AnnotationFn, 2370 llvm::Value *AnnotatedVal, 2371 StringRef AnnotationStr, 2372 SourceLocation Location, 2373 const AnnotateAttr *Attr) { 2374 SmallVector<llvm::Value *, 5> Args = { 2375 AnnotatedVal, 2376 Builder.CreateBitCast(CGM.EmitAnnotationString(AnnotationStr), Int8PtrTy), 2377 Builder.CreateBitCast(CGM.EmitAnnotationUnit(Location), Int8PtrTy), 2378 CGM.EmitAnnotationLineNo(Location), 2379 }; 2380 if (Attr) 2381 Args.push_back(CGM.EmitAnnotationArgs(Attr)); 2382 return Builder.CreateCall(AnnotationFn, Args); 2383 } 2384 2385 void CodeGenFunction::EmitVarAnnotations(const VarDecl *D, llvm::Value *V) { 2386 assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute"); 2387 // FIXME We create a new bitcast for every annotation because that's what 2388 // llvm-gcc was doing. 2389 for (const auto *I : D->specific_attrs<AnnotateAttr>()) 2390 EmitAnnotationCall(CGM.getIntrinsic(llvm::Intrinsic::var_annotation), 2391 Builder.CreateBitCast(V, CGM.Int8PtrTy, V->getName()), 2392 I->getAnnotation(), D->getLocation(), I); 2393 } 2394 2395 Address CodeGenFunction::EmitFieldAnnotations(const FieldDecl *D, 2396 Address Addr) { 2397 assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute"); 2398 llvm::Value *V = Addr.getPointer(); 2399 llvm::Type *VTy = V->getType(); 2400 llvm::Function *F = CGM.getIntrinsic(llvm::Intrinsic::ptr_annotation, 2401 CGM.Int8PtrTy); 2402 2403 for (const auto *I : D->specific_attrs<AnnotateAttr>()) { 2404 // FIXME Always emit the cast inst so we can differentiate between 2405 // annotation on the first field of a struct and annotation on the struct 2406 // itself. 2407 if (VTy != CGM.Int8PtrTy) 2408 V = Builder.CreateBitCast(V, CGM.Int8PtrTy); 2409 V = EmitAnnotationCall(F, V, I->getAnnotation(), D->getLocation(), I); 2410 V = Builder.CreateBitCast(V, VTy); 2411 } 2412 2413 return Address(V, Addr.getAlignment()); 2414 } 2415 2416 CodeGenFunction::CGCapturedStmtInfo::~CGCapturedStmtInfo() { } 2417 2418 CodeGenFunction::SanitizerScope::SanitizerScope(CodeGenFunction *CGF) 2419 : CGF(CGF) { 2420 assert(!CGF->IsSanitizerScope); 2421 CGF->IsSanitizerScope = true; 2422 } 2423 2424 CodeGenFunction::SanitizerScope::~SanitizerScope() { 2425 CGF->IsSanitizerScope = false; 2426 } 2427 2428 void CodeGenFunction::InsertHelper(llvm::Instruction *I, 2429 const llvm::Twine &Name, 2430 llvm::BasicBlock *BB, 2431 llvm::BasicBlock::iterator InsertPt) const { 2432 LoopStack.InsertHelper(I); 2433 if (IsSanitizerScope) 2434 CGM.getSanitizerMetadata()->disableSanitizerForInstruction(I); 2435 } 2436 2437 void CGBuilderInserter::InsertHelper( 2438 llvm::Instruction *I, const llvm::Twine &Name, llvm::BasicBlock *BB, 2439 llvm::BasicBlock::iterator InsertPt) const { 2440 llvm::IRBuilderDefaultInserter::InsertHelper(I, Name, BB, InsertPt); 2441 if (CGF) 2442 CGF->InsertHelper(I, Name, BB, InsertPt); 2443 } 2444 2445 // Emits an error if we don't have a valid set of target features for the 2446 // called function. 2447 void CodeGenFunction::checkTargetFeatures(const CallExpr *E, 2448 const FunctionDecl *TargetDecl) { 2449 return checkTargetFeatures(E->getBeginLoc(), TargetDecl); 2450 } 2451 2452 // Emits an error if we don't have a valid set of target features for the 2453 // called function. 2454 void CodeGenFunction::checkTargetFeatures(SourceLocation Loc, 2455 const FunctionDecl *TargetDecl) { 2456 // Early exit if this is an indirect call. 2457 if (!TargetDecl) 2458 return; 2459 2460 // Get the current enclosing function if it exists. If it doesn't 2461 // we can't check the target features anyhow. 2462 const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(CurCodeDecl); 2463 if (!FD) 2464 return; 2465 2466 // Grab the required features for the call. For a builtin this is listed in 2467 // the td file with the default cpu, for an always_inline function this is any 2468 // listed cpu and any listed features. 2469 unsigned BuiltinID = TargetDecl->getBuiltinID(); 2470 std::string MissingFeature; 2471 llvm::StringMap<bool> CallerFeatureMap; 2472 CGM.getContext().getFunctionFeatureMap(CallerFeatureMap, FD); 2473 if (BuiltinID) { 2474 StringRef FeatureList( 2475 CGM.getContext().BuiltinInfo.getRequiredFeatures(BuiltinID)); 2476 // Return if the builtin doesn't have any required features. 2477 if (FeatureList.empty()) 2478 return; 2479 assert(FeatureList.find(' ') == StringRef::npos && 2480 "Space in feature list"); 2481 TargetFeatures TF(CallerFeatureMap); 2482 if (!TF.hasRequiredFeatures(FeatureList)) 2483 CGM.getDiags().Report(Loc, diag::err_builtin_needs_feature) 2484 << TargetDecl->getDeclName() << FeatureList; 2485 } else if (!TargetDecl->isMultiVersion() && 2486 TargetDecl->hasAttr<TargetAttr>()) { 2487 // Get the required features for the callee. 2488 2489 const TargetAttr *TD = TargetDecl->getAttr<TargetAttr>(); 2490 ParsedTargetAttr ParsedAttr = 2491 CGM.getContext().filterFunctionTargetAttrs(TD); 2492 2493 SmallVector<StringRef, 1> ReqFeatures; 2494 llvm::StringMap<bool> CalleeFeatureMap; 2495 CGM.getContext().getFunctionFeatureMap(CalleeFeatureMap, TargetDecl); 2496 2497 for (const auto &F : ParsedAttr.Features) { 2498 if (F[0] == '+' && CalleeFeatureMap.lookup(F.substr(1))) 2499 ReqFeatures.push_back(StringRef(F).substr(1)); 2500 } 2501 2502 for (const auto &F : CalleeFeatureMap) { 2503 // Only positive features are "required". 2504 if (F.getValue()) 2505 ReqFeatures.push_back(F.getKey()); 2506 } 2507 if (!llvm::all_of(ReqFeatures, [&](StringRef Feature) { 2508 if (!CallerFeatureMap.lookup(Feature)) { 2509 MissingFeature = Feature.str(); 2510 return false; 2511 } 2512 return true; 2513 })) 2514 CGM.getDiags().Report(Loc, diag::err_function_needs_feature) 2515 << FD->getDeclName() << TargetDecl->getDeclName() << MissingFeature; 2516 } 2517 } 2518 2519 void CodeGenFunction::EmitSanitizerStatReport(llvm::SanitizerStatKind SSK) { 2520 if (!CGM.getCodeGenOpts().SanitizeStats) 2521 return; 2522 2523 llvm::IRBuilder<> IRB(Builder.GetInsertBlock(), Builder.GetInsertPoint()); 2524 IRB.SetCurrentDebugLocation(Builder.getCurrentDebugLocation()); 2525 CGM.getSanStats().create(IRB, SSK); 2526 } 2527 2528 llvm::Value * 2529 CodeGenFunction::FormResolverCondition(const MultiVersionResolverOption &RO) { 2530 llvm::Value *Condition = nullptr; 2531 2532 if (!RO.Conditions.Architecture.empty()) 2533 Condition = EmitX86CpuIs(RO.Conditions.Architecture); 2534 2535 if (!RO.Conditions.Features.empty()) { 2536 llvm::Value *FeatureCond = EmitX86CpuSupports(RO.Conditions.Features); 2537 Condition = 2538 Condition ? Builder.CreateAnd(Condition, FeatureCond) : FeatureCond; 2539 } 2540 return Condition; 2541 } 2542 2543 static void CreateMultiVersionResolverReturn(CodeGenModule &CGM, 2544 llvm::Function *Resolver, 2545 CGBuilderTy &Builder, 2546 llvm::Function *FuncToReturn, 2547 bool SupportsIFunc) { 2548 if (SupportsIFunc) { 2549 Builder.CreateRet(FuncToReturn); 2550 return; 2551 } 2552 2553 llvm::SmallVector<llvm::Value *, 10> Args; 2554 llvm::for_each(Resolver->args(), 2555 [&](llvm::Argument &Arg) { Args.push_back(&Arg); }); 2556 2557 llvm::CallInst *Result = Builder.CreateCall(FuncToReturn, Args); 2558 Result->setTailCallKind(llvm::CallInst::TCK_MustTail); 2559 2560 if (Resolver->getReturnType()->isVoidTy()) 2561 Builder.CreateRetVoid(); 2562 else 2563 Builder.CreateRet(Result); 2564 } 2565 2566 void CodeGenFunction::EmitMultiVersionResolver( 2567 llvm::Function *Resolver, ArrayRef<MultiVersionResolverOption> Options) { 2568 assert(getContext().getTargetInfo().getTriple().isX86() && 2569 "Only implemented for x86 targets"); 2570 2571 bool SupportsIFunc = getContext().getTargetInfo().supportsIFunc(); 2572 2573 // Main function's basic block. 2574 llvm::BasicBlock *CurBlock = createBasicBlock("resolver_entry", Resolver); 2575 Builder.SetInsertPoint(CurBlock); 2576 EmitX86CpuInit(); 2577 2578 for (const MultiVersionResolverOption &RO : Options) { 2579 Builder.SetInsertPoint(CurBlock); 2580 llvm::Value *Condition = FormResolverCondition(RO); 2581 2582 // The 'default' or 'generic' case. 2583 if (!Condition) { 2584 assert(&RO == Options.end() - 1 && 2585 "Default or Generic case must be last"); 2586 CreateMultiVersionResolverReturn(CGM, Resolver, Builder, RO.Function, 2587 SupportsIFunc); 2588 return; 2589 } 2590 2591 llvm::BasicBlock *RetBlock = createBasicBlock("resolver_return", Resolver); 2592 CGBuilderTy RetBuilder(*this, RetBlock); 2593 CreateMultiVersionResolverReturn(CGM, Resolver, RetBuilder, RO.Function, 2594 SupportsIFunc); 2595 CurBlock = createBasicBlock("resolver_else", Resolver); 2596 Builder.CreateCondBr(Condition, RetBlock, CurBlock); 2597 } 2598 2599 // If no generic/default, emit an unreachable. 2600 Builder.SetInsertPoint(CurBlock); 2601 llvm::CallInst *TrapCall = EmitTrapCall(llvm::Intrinsic::trap); 2602 TrapCall->setDoesNotReturn(); 2603 TrapCall->setDoesNotThrow(); 2604 Builder.CreateUnreachable(); 2605 Builder.ClearInsertionPoint(); 2606 } 2607 2608 // Loc - where the diagnostic will point, where in the source code this 2609 // alignment has failed. 2610 // SecondaryLoc - if present (will be present if sufficiently different from 2611 // Loc), the diagnostic will additionally point a "Note:" to this location. 2612 // It should be the location where the __attribute__((assume_aligned)) 2613 // was written e.g. 2614 void CodeGenFunction::emitAlignmentAssumptionCheck( 2615 llvm::Value *Ptr, QualType Ty, SourceLocation Loc, 2616 SourceLocation SecondaryLoc, llvm::Value *Alignment, 2617 llvm::Value *OffsetValue, llvm::Value *TheCheck, 2618 llvm::Instruction *Assumption) { 2619 assert(Assumption && isa<llvm::CallInst>(Assumption) && 2620 cast<llvm::CallInst>(Assumption)->getCalledOperand() == 2621 llvm::Intrinsic::getDeclaration( 2622 Builder.GetInsertBlock()->getParent()->getParent(), 2623 llvm::Intrinsic::assume) && 2624 "Assumption should be a call to llvm.assume()."); 2625 assert(&(Builder.GetInsertBlock()->back()) == Assumption && 2626 "Assumption should be the last instruction of the basic block, " 2627 "since the basic block is still being generated."); 2628 2629 if (!SanOpts.has(SanitizerKind::Alignment)) 2630 return; 2631 2632 // Don't check pointers to volatile data. The behavior here is implementation- 2633 // defined. 2634 if (Ty->getPointeeType().isVolatileQualified()) 2635 return; 2636 2637 // We need to temorairly remove the assumption so we can insert the 2638 // sanitizer check before it, else the check will be dropped by optimizations. 2639 Assumption->removeFromParent(); 2640 2641 { 2642 SanitizerScope SanScope(this); 2643 2644 if (!OffsetValue) 2645 OffsetValue = Builder.getInt1(0); // no offset. 2646 2647 llvm::Constant *StaticData[] = {EmitCheckSourceLocation(Loc), 2648 EmitCheckSourceLocation(SecondaryLoc), 2649 EmitCheckTypeDescriptor(Ty)}; 2650 llvm::Value *DynamicData[] = {EmitCheckValue(Ptr), 2651 EmitCheckValue(Alignment), 2652 EmitCheckValue(OffsetValue)}; 2653 EmitCheck({std::make_pair(TheCheck, SanitizerKind::Alignment)}, 2654 SanitizerHandler::AlignmentAssumption, StaticData, DynamicData); 2655 } 2656 2657 // We are now in the (new, empty) "cont" basic block. 2658 // Reintroduce the assumption. 2659 Builder.Insert(Assumption); 2660 // FIXME: Assumption still has it's original basic block as it's Parent. 2661 } 2662 2663 llvm::DebugLoc CodeGenFunction::SourceLocToDebugLoc(SourceLocation Location) { 2664 if (CGDebugInfo *DI = getDebugInfo()) 2665 return DI->SourceLocToDebugLoc(Location); 2666 2667 return llvm::DebugLoc(); 2668 } 2669 2670 llvm::Value * 2671 CodeGenFunction::emitCondLikelihoodViaExpectIntrinsic(llvm::Value *Cond, 2672 Stmt::Likelihood LH) { 2673 switch (LH) { 2674 case Stmt::LH_None: 2675 return Cond; 2676 case Stmt::LH_Likely: 2677 case Stmt::LH_Unlikely: 2678 // Don't generate llvm.expect on -O0 as the backend won't use it for 2679 // anything. 2680 if (CGM.getCodeGenOpts().OptimizationLevel == 0) 2681 return Cond; 2682 llvm::Type *CondTy = Cond->getType(); 2683 assert(CondTy->isIntegerTy(1) && "expecting condition to be a boolean"); 2684 llvm::Function *FnExpect = 2685 CGM.getIntrinsic(llvm::Intrinsic::expect, CondTy); 2686 llvm::Value *ExpectedValueOfCond = 2687 llvm::ConstantInt::getBool(CondTy, LH == Stmt::LH_Likely); 2688 return Builder.CreateCall(FnExpect, {Cond, ExpectedValueOfCond}, 2689 Cond->getName() + ".expval"); 2690 } 2691 llvm_unreachable("Unknown Likelihood"); 2692 } 2693