1 //===--- CodeGenFunction.cpp - Emit LLVM Code from ASTs for a Function ----===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This coordinates the per-function state used while generating code. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "CodeGenFunction.h" 14 #include "CGBlocks.h" 15 #include "CGCUDARuntime.h" 16 #include "CGCXXABI.h" 17 #include "CGCleanup.h" 18 #include "CGDebugInfo.h" 19 #include "CGOpenMPRuntime.h" 20 #include "CodeGenModule.h" 21 #include "CodeGenPGO.h" 22 #include "TargetInfo.h" 23 #include "clang/AST/ASTContext.h" 24 #include "clang/AST/ASTLambda.h" 25 #include "clang/AST/Attr.h" 26 #include "clang/AST/Decl.h" 27 #include "clang/AST/DeclCXX.h" 28 #include "clang/AST/Expr.h" 29 #include "clang/AST/StmtCXX.h" 30 #include "clang/AST/StmtObjC.h" 31 #include "clang/Basic/Builtins.h" 32 #include "clang/Basic/CodeGenOptions.h" 33 #include "clang/Basic/TargetInfo.h" 34 #include "clang/CodeGen/CGFunctionInfo.h" 35 #include "clang/Frontend/FrontendDiagnostic.h" 36 #include "llvm/ADT/ArrayRef.h" 37 #include "llvm/Frontend/OpenMP/OMPIRBuilder.h" 38 #include "llvm/IR/DataLayout.h" 39 #include "llvm/IR/Dominators.h" 40 #include "llvm/IR/FPEnv.h" 41 #include "llvm/IR/IntrinsicInst.h" 42 #include "llvm/IR/Intrinsics.h" 43 #include "llvm/IR/MDBuilder.h" 44 #include "llvm/IR/Operator.h" 45 #include "llvm/Support/CRC.h" 46 #include "llvm/Transforms/Scalar/LowerExpectIntrinsic.h" 47 #include "llvm/Transforms/Utils/PromoteMemToReg.h" 48 49 using namespace clang; 50 using namespace CodeGen; 51 52 /// shouldEmitLifetimeMarkers - Decide whether we need emit the life-time 53 /// markers. 54 static bool shouldEmitLifetimeMarkers(const CodeGenOptions &CGOpts, 55 const LangOptions &LangOpts) { 56 if (CGOpts.DisableLifetimeMarkers) 57 return false; 58 59 // Sanitizers may use markers. 60 if (CGOpts.SanitizeAddressUseAfterScope || 61 LangOpts.Sanitize.has(SanitizerKind::HWAddress) || 62 LangOpts.Sanitize.has(SanitizerKind::Memory)) 63 return true; 64 65 // For now, only in optimized builds. 66 return CGOpts.OptimizationLevel != 0; 67 } 68 69 CodeGenFunction::CodeGenFunction(CodeGenModule &cgm, bool suppressNewContext) 70 : CodeGenTypeCache(cgm), CGM(cgm), Target(cgm.getTarget()), 71 Builder(cgm, cgm.getModule().getContext(), llvm::ConstantFolder(), 72 CGBuilderInserterTy(this)), 73 SanOpts(CGM.getLangOpts().Sanitize), CurFPFeatures(CGM.getLangOpts()), 74 DebugInfo(CGM.getModuleDebugInfo()), PGO(cgm), 75 ShouldEmitLifetimeMarkers( 76 shouldEmitLifetimeMarkers(CGM.getCodeGenOpts(), CGM.getLangOpts())) { 77 if (!suppressNewContext) 78 CGM.getCXXABI().getMangleContext().startNewFunction(); 79 EHStack.setCGF(this); 80 81 SetFastMathFlags(CurFPFeatures); 82 } 83 84 CodeGenFunction::~CodeGenFunction() { 85 assert(LifetimeExtendedCleanupStack.empty() && "failed to emit a cleanup"); 86 87 if (getLangOpts().OpenMP && CurFn) 88 CGM.getOpenMPRuntime().functionFinished(*this); 89 90 // If we have an OpenMPIRBuilder we want to finalize functions (incl. 91 // outlining etc) at some point. Doing it once the function codegen is done 92 // seems to be a reasonable spot. We do it here, as opposed to the deletion 93 // time of the CodeGenModule, because we have to ensure the IR has not yet 94 // been "emitted" to the outside, thus, modifications are still sensible. 95 if (CGM.getLangOpts().OpenMPIRBuilder && CurFn) 96 CGM.getOpenMPRuntime().getOMPBuilder().finalize(CurFn); 97 } 98 99 // Map the LangOption for exception behavior into 100 // the corresponding enum in the IR. 101 llvm::fp::ExceptionBehavior 102 clang::ToConstrainedExceptMD(LangOptions::FPExceptionModeKind Kind) { 103 104 switch (Kind) { 105 case LangOptions::FPE_Ignore: return llvm::fp::ebIgnore; 106 case LangOptions::FPE_MayTrap: return llvm::fp::ebMayTrap; 107 case LangOptions::FPE_Strict: return llvm::fp::ebStrict; 108 } 109 llvm_unreachable("Unsupported FP Exception Behavior"); 110 } 111 112 void CodeGenFunction::SetFastMathFlags(FPOptions FPFeatures) { 113 llvm::FastMathFlags FMF; 114 FMF.setAllowReassoc(FPFeatures.getAllowFPReassociate()); 115 FMF.setNoNaNs(FPFeatures.getNoHonorNaNs()); 116 FMF.setNoInfs(FPFeatures.getNoHonorInfs()); 117 FMF.setNoSignedZeros(FPFeatures.getNoSignedZero()); 118 FMF.setAllowReciprocal(FPFeatures.getAllowReciprocal()); 119 FMF.setApproxFunc(FPFeatures.getAllowApproxFunc()); 120 FMF.setAllowContract(FPFeatures.allowFPContractAcrossStatement()); 121 Builder.setFastMathFlags(FMF); 122 } 123 124 CodeGenFunction::CGFPOptionsRAII::CGFPOptionsRAII(CodeGenFunction &CGF, 125 const Expr *E) 126 : CGF(CGF) { 127 ConstructorHelper(E->getFPFeaturesInEffect(CGF.getLangOpts())); 128 } 129 130 CodeGenFunction::CGFPOptionsRAII::CGFPOptionsRAII(CodeGenFunction &CGF, 131 FPOptions FPFeatures) 132 : CGF(CGF) { 133 ConstructorHelper(FPFeatures); 134 } 135 136 void CodeGenFunction::CGFPOptionsRAII::ConstructorHelper(FPOptions FPFeatures) { 137 OldFPFeatures = CGF.CurFPFeatures; 138 CGF.CurFPFeatures = FPFeatures; 139 140 OldExcept = CGF.Builder.getDefaultConstrainedExcept(); 141 OldRounding = CGF.Builder.getDefaultConstrainedRounding(); 142 143 if (OldFPFeatures == FPFeatures) 144 return; 145 146 FMFGuard.emplace(CGF.Builder); 147 148 llvm::RoundingMode NewRoundingBehavior = 149 static_cast<llvm::RoundingMode>(FPFeatures.getRoundingMode()); 150 CGF.Builder.setDefaultConstrainedRounding(NewRoundingBehavior); 151 auto NewExceptionBehavior = 152 ToConstrainedExceptMD(static_cast<LangOptions::FPExceptionModeKind>( 153 FPFeatures.getFPExceptionMode())); 154 CGF.Builder.setDefaultConstrainedExcept(NewExceptionBehavior); 155 156 CGF.SetFastMathFlags(FPFeatures); 157 158 assert((CGF.CurFuncDecl == nullptr || CGF.Builder.getIsFPConstrained() || 159 isa<CXXConstructorDecl>(CGF.CurFuncDecl) || 160 isa<CXXDestructorDecl>(CGF.CurFuncDecl) || 161 (NewExceptionBehavior == llvm::fp::ebIgnore && 162 NewRoundingBehavior == llvm::RoundingMode::NearestTiesToEven)) && 163 "FPConstrained should be enabled on entire function"); 164 165 auto mergeFnAttrValue = [&](StringRef Name, bool Value) { 166 auto OldValue = 167 CGF.CurFn->getFnAttribute(Name).getValueAsBool(); 168 auto NewValue = OldValue & Value; 169 if (OldValue != NewValue) 170 CGF.CurFn->addFnAttr(Name, llvm::toStringRef(NewValue)); 171 }; 172 mergeFnAttrValue("no-infs-fp-math", FPFeatures.getNoHonorInfs()); 173 mergeFnAttrValue("no-nans-fp-math", FPFeatures.getNoHonorNaNs()); 174 mergeFnAttrValue("no-signed-zeros-fp-math", FPFeatures.getNoSignedZero()); 175 mergeFnAttrValue("unsafe-fp-math", FPFeatures.getAllowFPReassociate() && 176 FPFeatures.getAllowReciprocal() && 177 FPFeatures.getAllowApproxFunc() && 178 FPFeatures.getNoSignedZero()); 179 } 180 181 CodeGenFunction::CGFPOptionsRAII::~CGFPOptionsRAII() { 182 CGF.CurFPFeatures = OldFPFeatures; 183 CGF.Builder.setDefaultConstrainedExcept(OldExcept); 184 CGF.Builder.setDefaultConstrainedRounding(OldRounding); 185 } 186 187 LValue CodeGenFunction::MakeNaturalAlignAddrLValue(llvm::Value *V, QualType T) { 188 LValueBaseInfo BaseInfo; 189 TBAAAccessInfo TBAAInfo; 190 CharUnits Alignment = CGM.getNaturalTypeAlignment(T, &BaseInfo, &TBAAInfo); 191 return LValue::MakeAddr(Address(V, Alignment), T, getContext(), BaseInfo, 192 TBAAInfo); 193 } 194 195 /// Given a value of type T* that may not be to a complete object, 196 /// construct an l-value with the natural pointee alignment of T. 197 LValue 198 CodeGenFunction::MakeNaturalAlignPointeeAddrLValue(llvm::Value *V, QualType T) { 199 LValueBaseInfo BaseInfo; 200 TBAAAccessInfo TBAAInfo; 201 CharUnits Align = CGM.getNaturalTypeAlignment(T, &BaseInfo, &TBAAInfo, 202 /* forPointeeType= */ true); 203 return MakeAddrLValue(Address(V, Align), T, BaseInfo, TBAAInfo); 204 } 205 206 207 llvm::Type *CodeGenFunction::ConvertTypeForMem(QualType T) { 208 return CGM.getTypes().ConvertTypeForMem(T); 209 } 210 211 llvm::Type *CodeGenFunction::ConvertType(QualType T) { 212 return CGM.getTypes().ConvertType(T); 213 } 214 215 TypeEvaluationKind CodeGenFunction::getEvaluationKind(QualType type) { 216 type = type.getCanonicalType(); 217 while (true) { 218 switch (type->getTypeClass()) { 219 #define TYPE(name, parent) 220 #define ABSTRACT_TYPE(name, parent) 221 #define NON_CANONICAL_TYPE(name, parent) case Type::name: 222 #define DEPENDENT_TYPE(name, parent) case Type::name: 223 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(name, parent) case Type::name: 224 #include "clang/AST/TypeNodes.inc" 225 llvm_unreachable("non-canonical or dependent type in IR-generation"); 226 227 case Type::Auto: 228 case Type::DeducedTemplateSpecialization: 229 llvm_unreachable("undeduced type in IR-generation"); 230 231 // Various scalar types. 232 case Type::Builtin: 233 case Type::Pointer: 234 case Type::BlockPointer: 235 case Type::LValueReference: 236 case Type::RValueReference: 237 case Type::MemberPointer: 238 case Type::Vector: 239 case Type::ExtVector: 240 case Type::ConstantMatrix: 241 case Type::FunctionProto: 242 case Type::FunctionNoProto: 243 case Type::Enum: 244 case Type::ObjCObjectPointer: 245 case Type::Pipe: 246 case Type::ExtInt: 247 return TEK_Scalar; 248 249 // Complexes. 250 case Type::Complex: 251 return TEK_Complex; 252 253 // Arrays, records, and Objective-C objects. 254 case Type::ConstantArray: 255 case Type::IncompleteArray: 256 case Type::VariableArray: 257 case Type::Record: 258 case Type::ObjCObject: 259 case Type::ObjCInterface: 260 return TEK_Aggregate; 261 262 // We operate on atomic values according to their underlying type. 263 case Type::Atomic: 264 type = cast<AtomicType>(type)->getValueType(); 265 continue; 266 } 267 llvm_unreachable("unknown type kind!"); 268 } 269 } 270 271 llvm::DebugLoc CodeGenFunction::EmitReturnBlock() { 272 // For cleanliness, we try to avoid emitting the return block for 273 // simple cases. 274 llvm::BasicBlock *CurBB = Builder.GetInsertBlock(); 275 276 if (CurBB) { 277 assert(!CurBB->getTerminator() && "Unexpected terminated block."); 278 279 // We have a valid insert point, reuse it if it is empty or there are no 280 // explicit jumps to the return block. 281 if (CurBB->empty() || ReturnBlock.getBlock()->use_empty()) { 282 ReturnBlock.getBlock()->replaceAllUsesWith(CurBB); 283 delete ReturnBlock.getBlock(); 284 ReturnBlock = JumpDest(); 285 } else 286 EmitBlock(ReturnBlock.getBlock()); 287 return llvm::DebugLoc(); 288 } 289 290 // Otherwise, if the return block is the target of a single direct 291 // branch then we can just put the code in that block instead. This 292 // cleans up functions which started with a unified return block. 293 if (ReturnBlock.getBlock()->hasOneUse()) { 294 llvm::BranchInst *BI = 295 dyn_cast<llvm::BranchInst>(*ReturnBlock.getBlock()->user_begin()); 296 if (BI && BI->isUnconditional() && 297 BI->getSuccessor(0) == ReturnBlock.getBlock()) { 298 // Record/return the DebugLoc of the simple 'return' expression to be used 299 // later by the actual 'ret' instruction. 300 llvm::DebugLoc Loc = BI->getDebugLoc(); 301 Builder.SetInsertPoint(BI->getParent()); 302 BI->eraseFromParent(); 303 delete ReturnBlock.getBlock(); 304 ReturnBlock = JumpDest(); 305 return Loc; 306 } 307 } 308 309 // FIXME: We are at an unreachable point, there is no reason to emit the block 310 // unless it has uses. However, we still need a place to put the debug 311 // region.end for now. 312 313 EmitBlock(ReturnBlock.getBlock()); 314 return llvm::DebugLoc(); 315 } 316 317 static void EmitIfUsed(CodeGenFunction &CGF, llvm::BasicBlock *BB) { 318 if (!BB) return; 319 if (!BB->use_empty()) 320 return CGF.CurFn->getBasicBlockList().push_back(BB); 321 delete BB; 322 } 323 324 void CodeGenFunction::FinishFunction(SourceLocation EndLoc) { 325 assert(BreakContinueStack.empty() && 326 "mismatched push/pop in break/continue stack!"); 327 328 bool OnlySimpleReturnStmts = NumSimpleReturnExprs > 0 329 && NumSimpleReturnExprs == NumReturnExprs 330 && ReturnBlock.getBlock()->use_empty(); 331 // Usually the return expression is evaluated before the cleanup 332 // code. If the function contains only a simple return statement, 333 // such as a constant, the location before the cleanup code becomes 334 // the last useful breakpoint in the function, because the simple 335 // return expression will be evaluated after the cleanup code. To be 336 // safe, set the debug location for cleanup code to the location of 337 // the return statement. Otherwise the cleanup code should be at the 338 // end of the function's lexical scope. 339 // 340 // If there are multiple branches to the return block, the branch 341 // instructions will get the location of the return statements and 342 // all will be fine. 343 if (CGDebugInfo *DI = getDebugInfo()) { 344 if (OnlySimpleReturnStmts) 345 DI->EmitLocation(Builder, LastStopPoint); 346 else 347 DI->EmitLocation(Builder, EndLoc); 348 } 349 350 // Pop any cleanups that might have been associated with the 351 // parameters. Do this in whatever block we're currently in; it's 352 // important to do this before we enter the return block or return 353 // edges will be *really* confused. 354 bool HasCleanups = EHStack.stable_begin() != PrologueCleanupDepth; 355 bool HasOnlyLifetimeMarkers = 356 HasCleanups && EHStack.containsOnlyLifetimeMarkers(PrologueCleanupDepth); 357 bool EmitRetDbgLoc = !HasCleanups || HasOnlyLifetimeMarkers; 358 if (HasCleanups) { 359 // Make sure the line table doesn't jump back into the body for 360 // the ret after it's been at EndLoc. 361 Optional<ApplyDebugLocation> AL; 362 if (CGDebugInfo *DI = getDebugInfo()) { 363 if (OnlySimpleReturnStmts) 364 DI->EmitLocation(Builder, EndLoc); 365 else 366 // We may not have a valid end location. Try to apply it anyway, and 367 // fall back to an artificial location if needed. 368 AL = ApplyDebugLocation::CreateDefaultArtificial(*this, EndLoc); 369 } 370 371 PopCleanupBlocks(PrologueCleanupDepth); 372 } 373 374 // Emit function epilog (to return). 375 llvm::DebugLoc Loc = EmitReturnBlock(); 376 377 if (ShouldInstrumentFunction()) { 378 if (CGM.getCodeGenOpts().InstrumentFunctions) 379 CurFn->addFnAttr("instrument-function-exit", "__cyg_profile_func_exit"); 380 if (CGM.getCodeGenOpts().InstrumentFunctionsAfterInlining) 381 CurFn->addFnAttr("instrument-function-exit-inlined", 382 "__cyg_profile_func_exit"); 383 } 384 385 if (ShouldSkipSanitizerInstrumentation()) 386 CurFn->addFnAttr(llvm::Attribute::DisableSanitizerInstrumentation); 387 388 // Emit debug descriptor for function end. 389 if (CGDebugInfo *DI = getDebugInfo()) 390 DI->EmitFunctionEnd(Builder, CurFn); 391 392 // Reset the debug location to that of the simple 'return' expression, if any 393 // rather than that of the end of the function's scope '}'. 394 ApplyDebugLocation AL(*this, Loc); 395 EmitFunctionEpilog(*CurFnInfo, EmitRetDbgLoc, EndLoc); 396 EmitEndEHSpec(CurCodeDecl); 397 398 assert(EHStack.empty() && 399 "did not remove all scopes from cleanup stack!"); 400 401 // If someone did an indirect goto, emit the indirect goto block at the end of 402 // the function. 403 if (IndirectBranch) { 404 EmitBlock(IndirectBranch->getParent()); 405 Builder.ClearInsertionPoint(); 406 } 407 408 // If some of our locals escaped, insert a call to llvm.localescape in the 409 // entry block. 410 if (!EscapedLocals.empty()) { 411 // Invert the map from local to index into a simple vector. There should be 412 // no holes. 413 SmallVector<llvm::Value *, 4> EscapeArgs; 414 EscapeArgs.resize(EscapedLocals.size()); 415 for (auto &Pair : EscapedLocals) 416 EscapeArgs[Pair.second] = Pair.first; 417 llvm::Function *FrameEscapeFn = llvm::Intrinsic::getDeclaration( 418 &CGM.getModule(), llvm::Intrinsic::localescape); 419 CGBuilderTy(*this, AllocaInsertPt).CreateCall(FrameEscapeFn, EscapeArgs); 420 } 421 422 // Remove the AllocaInsertPt instruction, which is just a convenience for us. 423 llvm::Instruction *Ptr = AllocaInsertPt; 424 AllocaInsertPt = nullptr; 425 Ptr->eraseFromParent(); 426 427 // If someone took the address of a label but never did an indirect goto, we 428 // made a zero entry PHI node, which is illegal, zap it now. 429 if (IndirectBranch) { 430 llvm::PHINode *PN = cast<llvm::PHINode>(IndirectBranch->getAddress()); 431 if (PN->getNumIncomingValues() == 0) { 432 PN->replaceAllUsesWith(llvm::UndefValue::get(PN->getType())); 433 PN->eraseFromParent(); 434 } 435 } 436 437 EmitIfUsed(*this, EHResumeBlock); 438 EmitIfUsed(*this, TerminateLandingPad); 439 EmitIfUsed(*this, TerminateHandler); 440 EmitIfUsed(*this, UnreachableBlock); 441 442 for (const auto &FuncletAndParent : TerminateFunclets) 443 EmitIfUsed(*this, FuncletAndParent.second); 444 445 if (CGM.getCodeGenOpts().EmitDeclMetadata) 446 EmitDeclMetadata(); 447 448 for (const auto &R : DeferredReplacements) { 449 if (llvm::Value *Old = R.first) { 450 Old->replaceAllUsesWith(R.second); 451 cast<llvm::Instruction>(Old)->eraseFromParent(); 452 } 453 } 454 DeferredReplacements.clear(); 455 456 // Eliminate CleanupDestSlot alloca by replacing it with SSA values and 457 // PHIs if the current function is a coroutine. We don't do it for all 458 // functions as it may result in slight increase in numbers of instructions 459 // if compiled with no optimizations. We do it for coroutine as the lifetime 460 // of CleanupDestSlot alloca make correct coroutine frame building very 461 // difficult. 462 if (NormalCleanupDest.isValid() && isCoroutine()) { 463 llvm::DominatorTree DT(*CurFn); 464 llvm::PromoteMemToReg( 465 cast<llvm::AllocaInst>(NormalCleanupDest.getPointer()), DT); 466 NormalCleanupDest = Address::invalid(); 467 } 468 469 // Scan function arguments for vector width. 470 for (llvm::Argument &A : CurFn->args()) 471 if (auto *VT = dyn_cast<llvm::VectorType>(A.getType())) 472 LargestVectorWidth = 473 std::max((uint64_t)LargestVectorWidth, 474 VT->getPrimitiveSizeInBits().getKnownMinSize()); 475 476 // Update vector width based on return type. 477 if (auto *VT = dyn_cast<llvm::VectorType>(CurFn->getReturnType())) 478 LargestVectorWidth = 479 std::max((uint64_t)LargestVectorWidth, 480 VT->getPrimitiveSizeInBits().getKnownMinSize()); 481 482 // Add the required-vector-width attribute. This contains the max width from: 483 // 1. min-vector-width attribute used in the source program. 484 // 2. Any builtins used that have a vector width specified. 485 // 3. Values passed in and out of inline assembly. 486 // 4. Width of vector arguments and return types for this function. 487 // 5. Width of vector aguments and return types for functions called by this 488 // function. 489 CurFn->addFnAttr("min-legal-vector-width", llvm::utostr(LargestVectorWidth)); 490 491 // Add vscale_range attribute if appropriate. 492 Optional<std::pair<unsigned, unsigned>> VScaleRange = 493 getContext().getTargetInfo().getVScaleRange(getLangOpts()); 494 if (VScaleRange) { 495 CurFn->addFnAttr(llvm::Attribute::getWithVScaleRangeArgs( 496 getLLVMContext(), VScaleRange.getValue().first, 497 VScaleRange.getValue().second)); 498 } 499 500 // If we generated an unreachable return block, delete it now. 501 if (ReturnBlock.isValid() && ReturnBlock.getBlock()->use_empty()) { 502 Builder.ClearInsertionPoint(); 503 ReturnBlock.getBlock()->eraseFromParent(); 504 } 505 if (ReturnValue.isValid()) { 506 auto *RetAlloca = dyn_cast<llvm::AllocaInst>(ReturnValue.getPointer()); 507 if (RetAlloca && RetAlloca->use_empty()) { 508 RetAlloca->eraseFromParent(); 509 ReturnValue = Address::invalid(); 510 } 511 } 512 } 513 514 /// ShouldInstrumentFunction - Return true if the current function should be 515 /// instrumented with __cyg_profile_func_* calls 516 bool CodeGenFunction::ShouldInstrumentFunction() { 517 if (!CGM.getCodeGenOpts().InstrumentFunctions && 518 !CGM.getCodeGenOpts().InstrumentFunctionsAfterInlining && 519 !CGM.getCodeGenOpts().InstrumentFunctionEntryBare) 520 return false; 521 if (!CurFuncDecl || CurFuncDecl->hasAttr<NoInstrumentFunctionAttr>()) 522 return false; 523 return true; 524 } 525 526 bool CodeGenFunction::ShouldSkipSanitizerInstrumentation() { 527 if (!CurFuncDecl) 528 return false; 529 return CurFuncDecl->hasAttr<DisableSanitizerInstrumentationAttr>(); 530 } 531 532 /// ShouldXRayInstrument - Return true if the current function should be 533 /// instrumented with XRay nop sleds. 534 bool CodeGenFunction::ShouldXRayInstrumentFunction() const { 535 return CGM.getCodeGenOpts().XRayInstrumentFunctions; 536 } 537 538 /// AlwaysEmitXRayCustomEvents - Return true if we should emit IR for calls to 539 /// the __xray_customevent(...) builtin calls, when doing XRay instrumentation. 540 bool CodeGenFunction::AlwaysEmitXRayCustomEvents() const { 541 return CGM.getCodeGenOpts().XRayInstrumentFunctions && 542 (CGM.getCodeGenOpts().XRayAlwaysEmitCustomEvents || 543 CGM.getCodeGenOpts().XRayInstrumentationBundle.Mask == 544 XRayInstrKind::Custom); 545 } 546 547 bool CodeGenFunction::AlwaysEmitXRayTypedEvents() const { 548 return CGM.getCodeGenOpts().XRayInstrumentFunctions && 549 (CGM.getCodeGenOpts().XRayAlwaysEmitTypedEvents || 550 CGM.getCodeGenOpts().XRayInstrumentationBundle.Mask == 551 XRayInstrKind::Typed); 552 } 553 554 llvm::Constant * 555 CodeGenFunction::EncodeAddrForUseInPrologue(llvm::Function *F, 556 llvm::Constant *Addr) { 557 // Addresses stored in prologue data can't require run-time fixups and must 558 // be PC-relative. Run-time fixups are undesirable because they necessitate 559 // writable text segments, which are unsafe. And absolute addresses are 560 // undesirable because they break PIE mode. 561 562 // Add a layer of indirection through a private global. Taking its address 563 // won't result in a run-time fixup, even if Addr has linkonce_odr linkage. 564 auto *GV = new llvm::GlobalVariable(CGM.getModule(), Addr->getType(), 565 /*isConstant=*/true, 566 llvm::GlobalValue::PrivateLinkage, Addr); 567 568 // Create a PC-relative address. 569 auto *GOTAsInt = llvm::ConstantExpr::getPtrToInt(GV, IntPtrTy); 570 auto *FuncAsInt = llvm::ConstantExpr::getPtrToInt(F, IntPtrTy); 571 auto *PCRelAsInt = llvm::ConstantExpr::getSub(GOTAsInt, FuncAsInt); 572 return (IntPtrTy == Int32Ty) 573 ? PCRelAsInt 574 : llvm::ConstantExpr::getTrunc(PCRelAsInt, Int32Ty); 575 } 576 577 llvm::Value * 578 CodeGenFunction::DecodeAddrUsedInPrologue(llvm::Value *F, 579 llvm::Value *EncodedAddr) { 580 // Reconstruct the address of the global. 581 auto *PCRelAsInt = Builder.CreateSExt(EncodedAddr, IntPtrTy); 582 auto *FuncAsInt = Builder.CreatePtrToInt(F, IntPtrTy, "func_addr.int"); 583 auto *GOTAsInt = Builder.CreateAdd(PCRelAsInt, FuncAsInt, "global_addr.int"); 584 auto *GOTAddr = Builder.CreateIntToPtr(GOTAsInt, Int8PtrPtrTy, "global_addr"); 585 586 // Load the original pointer through the global. 587 return Builder.CreateLoad(Address(GOTAddr, getPointerAlign()), 588 "decoded_addr"); 589 } 590 591 void CodeGenFunction::EmitOpenCLKernelMetadata(const FunctionDecl *FD, 592 llvm::Function *Fn) 593 { 594 if (!FD->hasAttr<OpenCLKernelAttr>()) 595 return; 596 597 llvm::LLVMContext &Context = getLLVMContext(); 598 599 CGM.GenOpenCLArgMetadata(Fn, FD, this); 600 601 if (const VecTypeHintAttr *A = FD->getAttr<VecTypeHintAttr>()) { 602 QualType HintQTy = A->getTypeHint(); 603 const ExtVectorType *HintEltQTy = HintQTy->getAs<ExtVectorType>(); 604 bool IsSignedInteger = 605 HintQTy->isSignedIntegerType() || 606 (HintEltQTy && HintEltQTy->getElementType()->isSignedIntegerType()); 607 llvm::Metadata *AttrMDArgs[] = { 608 llvm::ConstantAsMetadata::get(llvm::UndefValue::get( 609 CGM.getTypes().ConvertType(A->getTypeHint()))), 610 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 611 llvm::IntegerType::get(Context, 32), 612 llvm::APInt(32, (uint64_t)(IsSignedInteger ? 1 : 0))))}; 613 Fn->setMetadata("vec_type_hint", llvm::MDNode::get(Context, AttrMDArgs)); 614 } 615 616 if (const WorkGroupSizeHintAttr *A = FD->getAttr<WorkGroupSizeHintAttr>()) { 617 llvm::Metadata *AttrMDArgs[] = { 618 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getXDim())), 619 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getYDim())), 620 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getZDim()))}; 621 Fn->setMetadata("work_group_size_hint", llvm::MDNode::get(Context, AttrMDArgs)); 622 } 623 624 if (const ReqdWorkGroupSizeAttr *A = FD->getAttr<ReqdWorkGroupSizeAttr>()) { 625 llvm::Metadata *AttrMDArgs[] = { 626 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getXDim())), 627 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getYDim())), 628 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getZDim()))}; 629 Fn->setMetadata("reqd_work_group_size", llvm::MDNode::get(Context, AttrMDArgs)); 630 } 631 632 if (const OpenCLIntelReqdSubGroupSizeAttr *A = 633 FD->getAttr<OpenCLIntelReqdSubGroupSizeAttr>()) { 634 llvm::Metadata *AttrMDArgs[] = { 635 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getSubGroupSize()))}; 636 Fn->setMetadata("intel_reqd_sub_group_size", 637 llvm::MDNode::get(Context, AttrMDArgs)); 638 } 639 } 640 641 /// Determine whether the function F ends with a return stmt. 642 static bool endsWithReturn(const Decl* F) { 643 const Stmt *Body = nullptr; 644 if (auto *FD = dyn_cast_or_null<FunctionDecl>(F)) 645 Body = FD->getBody(); 646 else if (auto *OMD = dyn_cast_or_null<ObjCMethodDecl>(F)) 647 Body = OMD->getBody(); 648 649 if (auto *CS = dyn_cast_or_null<CompoundStmt>(Body)) { 650 auto LastStmt = CS->body_rbegin(); 651 if (LastStmt != CS->body_rend()) 652 return isa<ReturnStmt>(*LastStmt); 653 } 654 return false; 655 } 656 657 void CodeGenFunction::markAsIgnoreThreadCheckingAtRuntime(llvm::Function *Fn) { 658 if (SanOpts.has(SanitizerKind::Thread)) { 659 Fn->addFnAttr("sanitize_thread_no_checking_at_run_time"); 660 Fn->removeFnAttr(llvm::Attribute::SanitizeThread); 661 } 662 } 663 664 /// Check if the return value of this function requires sanitization. 665 bool CodeGenFunction::requiresReturnValueCheck() const { 666 return requiresReturnValueNullabilityCheck() || 667 (SanOpts.has(SanitizerKind::ReturnsNonnullAttribute) && CurCodeDecl && 668 CurCodeDecl->getAttr<ReturnsNonNullAttr>()); 669 } 670 671 static bool matchesStlAllocatorFn(const Decl *D, const ASTContext &Ctx) { 672 auto *MD = dyn_cast_or_null<CXXMethodDecl>(D); 673 if (!MD || !MD->getDeclName().getAsIdentifierInfo() || 674 !MD->getDeclName().getAsIdentifierInfo()->isStr("allocate") || 675 (MD->getNumParams() != 1 && MD->getNumParams() != 2)) 676 return false; 677 678 if (MD->parameters()[0]->getType().getCanonicalType() != Ctx.getSizeType()) 679 return false; 680 681 if (MD->getNumParams() == 2) { 682 auto *PT = MD->parameters()[1]->getType()->getAs<PointerType>(); 683 if (!PT || !PT->isVoidPointerType() || 684 !PT->getPointeeType().isConstQualified()) 685 return false; 686 } 687 688 return true; 689 } 690 691 /// Return the UBSan prologue signature for \p FD if one is available. 692 static llvm::Constant *getPrologueSignature(CodeGenModule &CGM, 693 const FunctionDecl *FD) { 694 if (const auto *MD = dyn_cast<CXXMethodDecl>(FD)) 695 if (!MD->isStatic()) 696 return nullptr; 697 return CGM.getTargetCodeGenInfo().getUBSanFunctionSignature(CGM); 698 } 699 700 void CodeGenFunction::StartFunction(GlobalDecl GD, QualType RetTy, 701 llvm::Function *Fn, 702 const CGFunctionInfo &FnInfo, 703 const FunctionArgList &Args, 704 SourceLocation Loc, 705 SourceLocation StartLoc) { 706 assert(!CurFn && 707 "Do not use a CodeGenFunction object for more than one function"); 708 709 const Decl *D = GD.getDecl(); 710 711 DidCallStackSave = false; 712 CurCodeDecl = D; 713 const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D); 714 if (FD && FD->usesSEHTry()) 715 CurSEHParent = FD; 716 CurFuncDecl = (D ? D->getNonClosureContext() : nullptr); 717 FnRetTy = RetTy; 718 CurFn = Fn; 719 CurFnInfo = &FnInfo; 720 assert(CurFn->isDeclaration() && "Function already has body?"); 721 722 // If this function is ignored for any of the enabled sanitizers, 723 // disable the sanitizer for the function. 724 do { 725 #define SANITIZER(NAME, ID) \ 726 if (SanOpts.empty()) \ 727 break; \ 728 if (SanOpts.has(SanitizerKind::ID)) \ 729 if (CGM.isInNoSanitizeList(SanitizerKind::ID, Fn, Loc)) \ 730 SanOpts.set(SanitizerKind::ID, false); 731 732 #include "clang/Basic/Sanitizers.def" 733 #undef SANITIZER 734 } while (0); 735 736 if (D) { 737 bool NoSanitizeCoverage = false; 738 739 for (auto Attr : D->specific_attrs<NoSanitizeAttr>()) { 740 // Apply the no_sanitize* attributes to SanOpts. 741 SanitizerMask mask = Attr->getMask(); 742 SanOpts.Mask &= ~mask; 743 if (mask & SanitizerKind::Address) 744 SanOpts.set(SanitizerKind::KernelAddress, false); 745 if (mask & SanitizerKind::KernelAddress) 746 SanOpts.set(SanitizerKind::Address, false); 747 if (mask & SanitizerKind::HWAddress) 748 SanOpts.set(SanitizerKind::KernelHWAddress, false); 749 if (mask & SanitizerKind::KernelHWAddress) 750 SanOpts.set(SanitizerKind::HWAddress, false); 751 752 // SanitizeCoverage is not handled by SanOpts. 753 if (Attr->hasCoverage()) 754 NoSanitizeCoverage = true; 755 } 756 757 if (NoSanitizeCoverage && CGM.getCodeGenOpts().hasSanitizeCoverage()) 758 Fn->addFnAttr(llvm::Attribute::NoSanitizeCoverage); 759 } 760 761 // Apply sanitizer attributes to the function. 762 if (SanOpts.hasOneOf(SanitizerKind::Address | SanitizerKind::KernelAddress)) 763 Fn->addFnAttr(llvm::Attribute::SanitizeAddress); 764 if (SanOpts.hasOneOf(SanitizerKind::HWAddress | SanitizerKind::KernelHWAddress)) 765 Fn->addFnAttr(llvm::Attribute::SanitizeHWAddress); 766 if (SanOpts.has(SanitizerKind::MemTag)) 767 Fn->addFnAttr(llvm::Attribute::SanitizeMemTag); 768 if (SanOpts.has(SanitizerKind::Thread)) 769 Fn->addFnAttr(llvm::Attribute::SanitizeThread); 770 if (SanOpts.hasOneOf(SanitizerKind::Memory | SanitizerKind::KernelMemory)) 771 Fn->addFnAttr(llvm::Attribute::SanitizeMemory); 772 if (SanOpts.has(SanitizerKind::SafeStack)) 773 Fn->addFnAttr(llvm::Attribute::SafeStack); 774 if (SanOpts.has(SanitizerKind::ShadowCallStack)) 775 Fn->addFnAttr(llvm::Attribute::ShadowCallStack); 776 777 // Apply fuzzing attribute to the function. 778 if (SanOpts.hasOneOf(SanitizerKind::Fuzzer | SanitizerKind::FuzzerNoLink)) 779 Fn->addFnAttr(llvm::Attribute::OptForFuzzing); 780 781 // Ignore TSan memory acesses from within ObjC/ObjC++ dealloc, initialize, 782 // .cxx_destruct, __destroy_helper_block_ and all of their calees at run time. 783 if (SanOpts.has(SanitizerKind::Thread)) { 784 if (const auto *OMD = dyn_cast_or_null<ObjCMethodDecl>(D)) { 785 IdentifierInfo *II = OMD->getSelector().getIdentifierInfoForSlot(0); 786 if (OMD->getMethodFamily() == OMF_dealloc || 787 OMD->getMethodFamily() == OMF_initialize || 788 (OMD->getSelector().isUnarySelector() && II->isStr(".cxx_destruct"))) { 789 markAsIgnoreThreadCheckingAtRuntime(Fn); 790 } 791 } 792 } 793 794 // Ignore unrelated casts in STL allocate() since the allocator must cast 795 // from void* to T* before object initialization completes. Don't match on the 796 // namespace because not all allocators are in std:: 797 if (D && SanOpts.has(SanitizerKind::CFIUnrelatedCast)) { 798 if (matchesStlAllocatorFn(D, getContext())) 799 SanOpts.Mask &= ~SanitizerKind::CFIUnrelatedCast; 800 } 801 802 // Ignore null checks in coroutine functions since the coroutines passes 803 // are not aware of how to move the extra UBSan instructions across the split 804 // coroutine boundaries. 805 if (D && SanOpts.has(SanitizerKind::Null)) 806 if (FD && FD->getBody() && 807 FD->getBody()->getStmtClass() == Stmt::CoroutineBodyStmtClass) 808 SanOpts.Mask &= ~SanitizerKind::Null; 809 810 // Apply xray attributes to the function (as a string, for now) 811 bool AlwaysXRayAttr = false; 812 if (const auto *XRayAttr = D ? D->getAttr<XRayInstrumentAttr>() : nullptr) { 813 if (CGM.getCodeGenOpts().XRayInstrumentationBundle.has( 814 XRayInstrKind::FunctionEntry) || 815 CGM.getCodeGenOpts().XRayInstrumentationBundle.has( 816 XRayInstrKind::FunctionExit)) { 817 if (XRayAttr->alwaysXRayInstrument() && ShouldXRayInstrumentFunction()) { 818 Fn->addFnAttr("function-instrument", "xray-always"); 819 AlwaysXRayAttr = true; 820 } 821 if (XRayAttr->neverXRayInstrument()) 822 Fn->addFnAttr("function-instrument", "xray-never"); 823 if (const auto *LogArgs = D->getAttr<XRayLogArgsAttr>()) 824 if (ShouldXRayInstrumentFunction()) 825 Fn->addFnAttr("xray-log-args", 826 llvm::utostr(LogArgs->getArgumentCount())); 827 } 828 } else { 829 if (ShouldXRayInstrumentFunction() && !CGM.imbueXRayAttrs(Fn, Loc)) 830 Fn->addFnAttr( 831 "xray-instruction-threshold", 832 llvm::itostr(CGM.getCodeGenOpts().XRayInstructionThreshold)); 833 } 834 835 if (ShouldXRayInstrumentFunction()) { 836 if (CGM.getCodeGenOpts().XRayIgnoreLoops) 837 Fn->addFnAttr("xray-ignore-loops"); 838 839 if (!CGM.getCodeGenOpts().XRayInstrumentationBundle.has( 840 XRayInstrKind::FunctionExit)) 841 Fn->addFnAttr("xray-skip-exit"); 842 843 if (!CGM.getCodeGenOpts().XRayInstrumentationBundle.has( 844 XRayInstrKind::FunctionEntry)) 845 Fn->addFnAttr("xray-skip-entry"); 846 847 auto FuncGroups = CGM.getCodeGenOpts().XRayTotalFunctionGroups; 848 if (FuncGroups > 1) { 849 auto FuncName = llvm::makeArrayRef<uint8_t>( 850 CurFn->getName().bytes_begin(), CurFn->getName().bytes_end()); 851 auto Group = crc32(FuncName) % FuncGroups; 852 if (Group != CGM.getCodeGenOpts().XRaySelectedFunctionGroup && 853 !AlwaysXRayAttr) 854 Fn->addFnAttr("function-instrument", "xray-never"); 855 } 856 } 857 858 if (CGM.getCodeGenOpts().getProfileInstr() != CodeGenOptions::ProfileNone) 859 if (CGM.isProfileInstrExcluded(Fn, Loc)) 860 Fn->addFnAttr(llvm::Attribute::NoProfile); 861 862 unsigned Count, Offset; 863 if (const auto *Attr = 864 D ? D->getAttr<PatchableFunctionEntryAttr>() : nullptr) { 865 Count = Attr->getCount(); 866 Offset = Attr->getOffset(); 867 } else { 868 Count = CGM.getCodeGenOpts().PatchableFunctionEntryCount; 869 Offset = CGM.getCodeGenOpts().PatchableFunctionEntryOffset; 870 } 871 if (Count && Offset <= Count) { 872 Fn->addFnAttr("patchable-function-entry", std::to_string(Count - Offset)); 873 if (Offset) 874 Fn->addFnAttr("patchable-function-prefix", std::to_string(Offset)); 875 } 876 877 // Add no-jump-tables value. 878 if (CGM.getCodeGenOpts().NoUseJumpTables) 879 Fn->addFnAttr("no-jump-tables", "true"); 880 881 // Add no-inline-line-tables value. 882 if (CGM.getCodeGenOpts().NoInlineLineTables) 883 Fn->addFnAttr("no-inline-line-tables"); 884 885 // Add profile-sample-accurate value. 886 if (CGM.getCodeGenOpts().ProfileSampleAccurate) 887 Fn->addFnAttr("profile-sample-accurate"); 888 889 if (!CGM.getCodeGenOpts().SampleProfileFile.empty()) 890 Fn->addFnAttr("use-sample-profile"); 891 892 if (D && D->hasAttr<CFICanonicalJumpTableAttr>()) 893 Fn->addFnAttr("cfi-canonical-jump-table"); 894 895 if (D && D->hasAttr<NoProfileFunctionAttr>()) 896 Fn->addFnAttr(llvm::Attribute::NoProfile); 897 898 if (FD && getLangOpts().OpenCL) { 899 // Add metadata for a kernel function. 900 EmitOpenCLKernelMetadata(FD, Fn); 901 } 902 903 // If we are checking function types, emit a function type signature as 904 // prologue data. 905 if (FD && getLangOpts().CPlusPlus && SanOpts.has(SanitizerKind::Function)) { 906 if (llvm::Constant *PrologueSig = getPrologueSignature(CGM, FD)) { 907 // Remove any (C++17) exception specifications, to allow calling e.g. a 908 // noexcept function through a non-noexcept pointer. 909 auto ProtoTy = getContext().getFunctionTypeWithExceptionSpec( 910 FD->getType(), EST_None); 911 llvm::Constant *FTRTTIConst = 912 CGM.GetAddrOfRTTIDescriptor(ProtoTy, /*ForEH=*/true); 913 llvm::Constant *FTRTTIConstEncoded = 914 EncodeAddrForUseInPrologue(Fn, FTRTTIConst); 915 llvm::Constant *PrologueStructElems[] = {PrologueSig, FTRTTIConstEncoded}; 916 llvm::Constant *PrologueStructConst = 917 llvm::ConstantStruct::getAnon(PrologueStructElems, /*Packed=*/true); 918 Fn->setPrologueData(PrologueStructConst); 919 } 920 } 921 922 // If we're checking nullability, we need to know whether we can check the 923 // return value. Initialize the flag to 'true' and refine it in EmitParmDecl. 924 if (SanOpts.has(SanitizerKind::NullabilityReturn)) { 925 auto Nullability = FnRetTy->getNullability(getContext()); 926 if (Nullability && *Nullability == NullabilityKind::NonNull) { 927 if (!(SanOpts.has(SanitizerKind::ReturnsNonnullAttribute) && 928 CurCodeDecl && CurCodeDecl->getAttr<ReturnsNonNullAttr>())) 929 RetValNullabilityPrecondition = 930 llvm::ConstantInt::getTrue(getLLVMContext()); 931 } 932 } 933 934 // If we're in C++ mode and the function name is "main", it is guaranteed 935 // to be norecurse by the standard (3.6.1.3 "The function main shall not be 936 // used within a program"). 937 // 938 // OpenCL C 2.0 v2.2-11 s6.9.i: 939 // Recursion is not supported. 940 // 941 // SYCL v1.2.1 s3.10: 942 // kernels cannot include RTTI information, exception classes, 943 // recursive code, virtual functions or make use of C++ libraries that 944 // are not compiled for the device. 945 if (FD && ((getLangOpts().CPlusPlus && FD->isMain()) || 946 getLangOpts().OpenCL || getLangOpts().SYCLIsDevice || 947 (getLangOpts().CUDA && FD->hasAttr<CUDAGlobalAttr>()))) 948 Fn->addFnAttr(llvm::Attribute::NoRecurse); 949 950 llvm::RoundingMode RM = getLangOpts().getFPRoundingMode(); 951 llvm::fp::ExceptionBehavior FPExceptionBehavior = 952 ToConstrainedExceptMD(getLangOpts().getFPExceptionMode()); 953 Builder.setDefaultConstrainedRounding(RM); 954 Builder.setDefaultConstrainedExcept(FPExceptionBehavior); 955 if ((FD && (FD->UsesFPIntrin() || FD->hasAttr<StrictFPAttr>())) || 956 (!FD && (FPExceptionBehavior != llvm::fp::ebIgnore || 957 RM != llvm::RoundingMode::NearestTiesToEven))) { 958 Builder.setIsFPConstrained(true); 959 Fn->addFnAttr(llvm::Attribute::StrictFP); 960 } 961 962 // If a custom alignment is used, force realigning to this alignment on 963 // any main function which certainly will need it. 964 if (FD && ((FD->isMain() || FD->isMSVCRTEntryPoint()) && 965 CGM.getCodeGenOpts().StackAlignment)) 966 Fn->addFnAttr("stackrealign"); 967 968 llvm::BasicBlock *EntryBB = createBasicBlock("entry", CurFn); 969 970 // Create a marker to make it easy to insert allocas into the entryblock 971 // later. Don't create this with the builder, because we don't want it 972 // folded. 973 llvm::Value *Undef = llvm::UndefValue::get(Int32Ty); 974 AllocaInsertPt = new llvm::BitCastInst(Undef, Int32Ty, "allocapt", EntryBB); 975 976 ReturnBlock = getJumpDestInCurrentScope("return"); 977 978 Builder.SetInsertPoint(EntryBB); 979 980 // If we're checking the return value, allocate space for a pointer to a 981 // precise source location of the checked return statement. 982 if (requiresReturnValueCheck()) { 983 ReturnLocation = CreateDefaultAlignTempAlloca(Int8PtrTy, "return.sloc.ptr"); 984 InitTempAlloca(ReturnLocation, llvm::ConstantPointerNull::get(Int8PtrTy)); 985 } 986 987 // Emit subprogram debug descriptor. 988 if (CGDebugInfo *DI = getDebugInfo()) { 989 // Reconstruct the type from the argument list so that implicit parameters, 990 // such as 'this' and 'vtt', show up in the debug info. Preserve the calling 991 // convention. 992 DI->emitFunctionStart(GD, Loc, StartLoc, 993 DI->getFunctionType(FD, RetTy, Args), CurFn, 994 CurFuncIsThunk); 995 } 996 997 if (ShouldInstrumentFunction()) { 998 if (CGM.getCodeGenOpts().InstrumentFunctions) 999 CurFn->addFnAttr("instrument-function-entry", "__cyg_profile_func_enter"); 1000 if (CGM.getCodeGenOpts().InstrumentFunctionsAfterInlining) 1001 CurFn->addFnAttr("instrument-function-entry-inlined", 1002 "__cyg_profile_func_enter"); 1003 if (CGM.getCodeGenOpts().InstrumentFunctionEntryBare) 1004 CurFn->addFnAttr("instrument-function-entry-inlined", 1005 "__cyg_profile_func_enter_bare"); 1006 } 1007 1008 // Since emitting the mcount call here impacts optimizations such as function 1009 // inlining, we just add an attribute to insert a mcount call in backend. 1010 // The attribute "counting-function" is set to mcount function name which is 1011 // architecture dependent. 1012 if (CGM.getCodeGenOpts().InstrumentForProfiling) { 1013 // Calls to fentry/mcount should not be generated if function has 1014 // the no_instrument_function attribute. 1015 if (!CurFuncDecl || !CurFuncDecl->hasAttr<NoInstrumentFunctionAttr>()) { 1016 if (CGM.getCodeGenOpts().CallFEntry) 1017 Fn->addFnAttr("fentry-call", "true"); 1018 else { 1019 Fn->addFnAttr("instrument-function-entry-inlined", 1020 getTarget().getMCountName()); 1021 } 1022 if (CGM.getCodeGenOpts().MNopMCount) { 1023 if (!CGM.getCodeGenOpts().CallFEntry) 1024 CGM.getDiags().Report(diag::err_opt_not_valid_without_opt) 1025 << "-mnop-mcount" << "-mfentry"; 1026 Fn->addFnAttr("mnop-mcount"); 1027 } 1028 1029 if (CGM.getCodeGenOpts().RecordMCount) { 1030 if (!CGM.getCodeGenOpts().CallFEntry) 1031 CGM.getDiags().Report(diag::err_opt_not_valid_without_opt) 1032 << "-mrecord-mcount" << "-mfentry"; 1033 Fn->addFnAttr("mrecord-mcount"); 1034 } 1035 } 1036 } 1037 1038 if (CGM.getCodeGenOpts().PackedStack) { 1039 if (getContext().getTargetInfo().getTriple().getArch() != 1040 llvm::Triple::systemz) 1041 CGM.getDiags().Report(diag::err_opt_not_valid_on_target) 1042 << "-mpacked-stack"; 1043 Fn->addFnAttr("packed-stack"); 1044 } 1045 1046 if (CGM.getCodeGenOpts().WarnStackSize != UINT_MAX && 1047 !CGM.getDiags().isIgnored(diag::warn_fe_backend_frame_larger_than, Loc)) 1048 Fn->addFnAttr("warn-stack-size", 1049 std::to_string(CGM.getCodeGenOpts().WarnStackSize)); 1050 1051 if (RetTy->isVoidType()) { 1052 // Void type; nothing to return. 1053 ReturnValue = Address::invalid(); 1054 1055 // Count the implicit return. 1056 if (!endsWithReturn(D)) 1057 ++NumReturnExprs; 1058 } else if (CurFnInfo->getReturnInfo().getKind() == ABIArgInfo::Indirect) { 1059 // Indirect return; emit returned value directly into sret slot. 1060 // This reduces code size, and affects correctness in C++. 1061 auto AI = CurFn->arg_begin(); 1062 if (CurFnInfo->getReturnInfo().isSRetAfterThis()) 1063 ++AI; 1064 ReturnValue = Address(&*AI, CurFnInfo->getReturnInfo().getIndirectAlign()); 1065 if (!CurFnInfo->getReturnInfo().getIndirectByVal()) { 1066 ReturnValuePointer = 1067 CreateDefaultAlignTempAlloca(Int8PtrTy, "result.ptr"); 1068 Builder.CreateStore(Builder.CreatePointerBitCastOrAddrSpaceCast( 1069 ReturnValue.getPointer(), Int8PtrTy), 1070 ReturnValuePointer); 1071 } 1072 } else if (CurFnInfo->getReturnInfo().getKind() == ABIArgInfo::InAlloca && 1073 !hasScalarEvaluationKind(CurFnInfo->getReturnType())) { 1074 // Load the sret pointer from the argument struct and return into that. 1075 unsigned Idx = CurFnInfo->getReturnInfo().getInAllocaFieldIndex(); 1076 llvm::Function::arg_iterator EI = CurFn->arg_end(); 1077 --EI; 1078 llvm::Value *Addr = Builder.CreateStructGEP( 1079 EI->getType()->getPointerElementType(), &*EI, Idx); 1080 llvm::Type *Ty = 1081 cast<llvm::GetElementPtrInst>(Addr)->getResultElementType(); 1082 ReturnValuePointer = Address(Addr, getPointerAlign()); 1083 Addr = Builder.CreateAlignedLoad(Ty, Addr, getPointerAlign(), "agg.result"); 1084 ReturnValue = Address(Addr, CGM.getNaturalTypeAlignment(RetTy)); 1085 } else { 1086 ReturnValue = CreateIRTemp(RetTy, "retval"); 1087 1088 // Tell the epilog emitter to autorelease the result. We do this 1089 // now so that various specialized functions can suppress it 1090 // during their IR-generation. 1091 if (getLangOpts().ObjCAutoRefCount && 1092 !CurFnInfo->isReturnsRetained() && 1093 RetTy->isObjCRetainableType()) 1094 AutoreleaseResult = true; 1095 } 1096 1097 EmitStartEHSpec(CurCodeDecl); 1098 1099 PrologueCleanupDepth = EHStack.stable_begin(); 1100 1101 // Emit OpenMP specific initialization of the device functions. 1102 if (getLangOpts().OpenMP && CurCodeDecl) 1103 CGM.getOpenMPRuntime().emitFunctionProlog(*this, CurCodeDecl); 1104 1105 EmitFunctionProlog(*CurFnInfo, CurFn, Args); 1106 1107 if (D && isa<CXXMethodDecl>(D) && cast<CXXMethodDecl>(D)->isInstance()) { 1108 CGM.getCXXABI().EmitInstanceFunctionProlog(*this); 1109 const CXXMethodDecl *MD = cast<CXXMethodDecl>(D); 1110 if (MD->getParent()->isLambda() && 1111 MD->getOverloadedOperator() == OO_Call) { 1112 // We're in a lambda; figure out the captures. 1113 MD->getParent()->getCaptureFields(LambdaCaptureFields, 1114 LambdaThisCaptureField); 1115 if (LambdaThisCaptureField) { 1116 // If the lambda captures the object referred to by '*this' - either by 1117 // value or by reference, make sure CXXThisValue points to the correct 1118 // object. 1119 1120 // Get the lvalue for the field (which is a copy of the enclosing object 1121 // or contains the address of the enclosing object). 1122 LValue ThisFieldLValue = EmitLValueForLambdaField(LambdaThisCaptureField); 1123 if (!LambdaThisCaptureField->getType()->isPointerType()) { 1124 // If the enclosing object was captured by value, just use its address. 1125 CXXThisValue = ThisFieldLValue.getAddress(*this).getPointer(); 1126 } else { 1127 // Load the lvalue pointed to by the field, since '*this' was captured 1128 // by reference. 1129 CXXThisValue = 1130 EmitLoadOfLValue(ThisFieldLValue, SourceLocation()).getScalarVal(); 1131 } 1132 } 1133 for (auto *FD : MD->getParent()->fields()) { 1134 if (FD->hasCapturedVLAType()) { 1135 auto *ExprArg = EmitLoadOfLValue(EmitLValueForLambdaField(FD), 1136 SourceLocation()).getScalarVal(); 1137 auto VAT = FD->getCapturedVLAType(); 1138 VLASizeMap[VAT->getSizeExpr()] = ExprArg; 1139 } 1140 } 1141 } else { 1142 // Not in a lambda; just use 'this' from the method. 1143 // FIXME: Should we generate a new load for each use of 'this'? The 1144 // fast register allocator would be happier... 1145 CXXThisValue = CXXABIThisValue; 1146 } 1147 1148 // Check the 'this' pointer once per function, if it's available. 1149 if (CXXABIThisValue) { 1150 SanitizerSet SkippedChecks; 1151 SkippedChecks.set(SanitizerKind::ObjectSize, true); 1152 QualType ThisTy = MD->getThisType(); 1153 1154 // If this is the call operator of a lambda with no capture-default, it 1155 // may have a static invoker function, which may call this operator with 1156 // a null 'this' pointer. 1157 if (isLambdaCallOperator(MD) && 1158 MD->getParent()->getLambdaCaptureDefault() == LCD_None) 1159 SkippedChecks.set(SanitizerKind::Null, true); 1160 1161 EmitTypeCheck( 1162 isa<CXXConstructorDecl>(MD) ? TCK_ConstructorCall : TCK_MemberCall, 1163 Loc, CXXABIThisValue, ThisTy, CXXABIThisAlignment, SkippedChecks); 1164 } 1165 } 1166 1167 // If any of the arguments have a variably modified type, make sure to 1168 // emit the type size. 1169 for (FunctionArgList::const_iterator i = Args.begin(), e = Args.end(); 1170 i != e; ++i) { 1171 const VarDecl *VD = *i; 1172 1173 // Dig out the type as written from ParmVarDecls; it's unclear whether 1174 // the standard (C99 6.9.1p10) requires this, but we're following the 1175 // precedent set by gcc. 1176 QualType Ty; 1177 if (const ParmVarDecl *PVD = dyn_cast<ParmVarDecl>(VD)) 1178 Ty = PVD->getOriginalType(); 1179 else 1180 Ty = VD->getType(); 1181 1182 if (Ty->isVariablyModifiedType()) 1183 EmitVariablyModifiedType(Ty); 1184 } 1185 // Emit a location at the end of the prologue. 1186 if (CGDebugInfo *DI = getDebugInfo()) 1187 DI->EmitLocation(Builder, StartLoc); 1188 1189 // TODO: Do we need to handle this in two places like we do with 1190 // target-features/target-cpu? 1191 if (CurFuncDecl) 1192 if (const auto *VecWidth = CurFuncDecl->getAttr<MinVectorWidthAttr>()) 1193 LargestVectorWidth = VecWidth->getVectorWidth(); 1194 } 1195 1196 void CodeGenFunction::EmitFunctionBody(const Stmt *Body) { 1197 incrementProfileCounter(Body); 1198 if (const CompoundStmt *S = dyn_cast<CompoundStmt>(Body)) 1199 EmitCompoundStmtWithoutScope(*S); 1200 else 1201 EmitStmt(Body); 1202 1203 // This is checked after emitting the function body so we know if there 1204 // are any permitted infinite loops. 1205 if (checkIfFunctionMustProgress()) 1206 CurFn->addFnAttr(llvm::Attribute::MustProgress); 1207 } 1208 1209 /// When instrumenting to collect profile data, the counts for some blocks 1210 /// such as switch cases need to not include the fall-through counts, so 1211 /// emit a branch around the instrumentation code. When not instrumenting, 1212 /// this just calls EmitBlock(). 1213 void CodeGenFunction::EmitBlockWithFallThrough(llvm::BasicBlock *BB, 1214 const Stmt *S) { 1215 llvm::BasicBlock *SkipCountBB = nullptr; 1216 if (HaveInsertPoint() && CGM.getCodeGenOpts().hasProfileClangInstr()) { 1217 // When instrumenting for profiling, the fallthrough to certain 1218 // statements needs to skip over the instrumentation code so that we 1219 // get an accurate count. 1220 SkipCountBB = createBasicBlock("skipcount"); 1221 EmitBranch(SkipCountBB); 1222 } 1223 EmitBlock(BB); 1224 uint64_t CurrentCount = getCurrentProfileCount(); 1225 incrementProfileCounter(S); 1226 setCurrentProfileCount(getCurrentProfileCount() + CurrentCount); 1227 if (SkipCountBB) 1228 EmitBlock(SkipCountBB); 1229 } 1230 1231 /// Tries to mark the given function nounwind based on the 1232 /// non-existence of any throwing calls within it. We believe this is 1233 /// lightweight enough to do at -O0. 1234 static void TryMarkNoThrow(llvm::Function *F) { 1235 // LLVM treats 'nounwind' on a function as part of the type, so we 1236 // can't do this on functions that can be overwritten. 1237 if (F->isInterposable()) return; 1238 1239 for (llvm::BasicBlock &BB : *F) 1240 for (llvm::Instruction &I : BB) 1241 if (I.mayThrow()) 1242 return; 1243 1244 F->setDoesNotThrow(); 1245 } 1246 1247 QualType CodeGenFunction::BuildFunctionArgList(GlobalDecl GD, 1248 FunctionArgList &Args) { 1249 const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl()); 1250 QualType ResTy = FD->getReturnType(); 1251 1252 const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD); 1253 if (MD && MD->isInstance()) { 1254 if (CGM.getCXXABI().HasThisReturn(GD)) 1255 ResTy = MD->getThisType(); 1256 else if (CGM.getCXXABI().hasMostDerivedReturn(GD)) 1257 ResTy = CGM.getContext().VoidPtrTy; 1258 CGM.getCXXABI().buildThisParam(*this, Args); 1259 } 1260 1261 // The base version of an inheriting constructor whose constructed base is a 1262 // virtual base is not passed any arguments (because it doesn't actually call 1263 // the inherited constructor). 1264 bool PassedParams = true; 1265 if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(FD)) 1266 if (auto Inherited = CD->getInheritedConstructor()) 1267 PassedParams = 1268 getTypes().inheritingCtorHasParams(Inherited, GD.getCtorType()); 1269 1270 if (PassedParams) { 1271 for (auto *Param : FD->parameters()) { 1272 Args.push_back(Param); 1273 if (!Param->hasAttr<PassObjectSizeAttr>()) 1274 continue; 1275 1276 auto *Implicit = ImplicitParamDecl::Create( 1277 getContext(), Param->getDeclContext(), Param->getLocation(), 1278 /*Id=*/nullptr, getContext().getSizeType(), ImplicitParamDecl::Other); 1279 SizeArguments[Param] = Implicit; 1280 Args.push_back(Implicit); 1281 } 1282 } 1283 1284 if (MD && (isa<CXXConstructorDecl>(MD) || isa<CXXDestructorDecl>(MD))) 1285 CGM.getCXXABI().addImplicitStructorParams(*this, ResTy, Args); 1286 1287 return ResTy; 1288 } 1289 1290 void CodeGenFunction::GenerateCode(GlobalDecl GD, llvm::Function *Fn, 1291 const CGFunctionInfo &FnInfo) { 1292 const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl()); 1293 CurGD = GD; 1294 1295 FunctionArgList Args; 1296 QualType ResTy = BuildFunctionArgList(GD, Args); 1297 1298 // When generating code for a builtin with an inline declaration, use a 1299 // mangled name to hold the actual body, while keeping an external definition 1300 // in case the function pointer is referenced somewhere. 1301 if (FD->isInlineBuiltinDeclaration() && Fn) { 1302 std::string FDInlineName = (Fn->getName() + ".inline").str(); 1303 llvm::Module *M = Fn->getParent(); 1304 llvm::Function *Clone = M->getFunction(FDInlineName); 1305 if (!Clone) { 1306 Clone = llvm::Function::Create(Fn->getFunctionType(), 1307 llvm::GlobalValue::InternalLinkage, 1308 Fn->getAddressSpace(), FDInlineName, M); 1309 Clone->addFnAttr(llvm::Attribute::AlwaysInline); 1310 } 1311 Fn->setLinkage(llvm::GlobalValue::ExternalLinkage); 1312 Fn = Clone; 1313 } 1314 1315 // Check if we should generate debug info for this function. 1316 if (FD->hasAttr<NoDebugAttr>()) { 1317 // Clear non-distinct debug info that was possibly attached to the function 1318 // due to an earlier declaration without the nodebug attribute 1319 if (Fn) 1320 Fn->setSubprogram(nullptr); 1321 // Disable debug info indefinitely for this function 1322 DebugInfo = nullptr; 1323 } 1324 1325 // The function might not have a body if we're generating thunks for a 1326 // function declaration. 1327 SourceRange BodyRange; 1328 if (Stmt *Body = FD->getBody()) 1329 BodyRange = Body->getSourceRange(); 1330 else 1331 BodyRange = FD->getLocation(); 1332 CurEHLocation = BodyRange.getEnd(); 1333 1334 // Use the location of the start of the function to determine where 1335 // the function definition is located. By default use the location 1336 // of the declaration as the location for the subprogram. A function 1337 // may lack a declaration in the source code if it is created by code 1338 // gen. (examples: _GLOBAL__I_a, __cxx_global_array_dtor, thunk). 1339 SourceLocation Loc = FD->getLocation(); 1340 1341 // If this is a function specialization then use the pattern body 1342 // as the location for the function. 1343 if (const FunctionDecl *SpecDecl = FD->getTemplateInstantiationPattern()) 1344 if (SpecDecl->hasBody(SpecDecl)) 1345 Loc = SpecDecl->getLocation(); 1346 1347 Stmt *Body = FD->getBody(); 1348 1349 if (Body) { 1350 // Coroutines always emit lifetime markers. 1351 if (isa<CoroutineBodyStmt>(Body)) 1352 ShouldEmitLifetimeMarkers = true; 1353 1354 // Initialize helper which will detect jumps which can cause invalid 1355 // lifetime markers. 1356 if (ShouldEmitLifetimeMarkers) 1357 Bypasses.Init(Body); 1358 } 1359 1360 // Emit the standard function prologue. 1361 StartFunction(GD, ResTy, Fn, FnInfo, Args, Loc, BodyRange.getBegin()); 1362 1363 // Save parameters for coroutine function. 1364 if (Body && isa_and_nonnull<CoroutineBodyStmt>(Body)) 1365 for (const auto *ParamDecl : FD->parameters()) 1366 FnArgs.push_back(ParamDecl); 1367 1368 // Generate the body of the function. 1369 PGO.assignRegionCounters(GD, CurFn); 1370 if (isa<CXXDestructorDecl>(FD)) 1371 EmitDestructorBody(Args); 1372 else if (isa<CXXConstructorDecl>(FD)) 1373 EmitConstructorBody(Args); 1374 else if (getLangOpts().CUDA && 1375 !getLangOpts().CUDAIsDevice && 1376 FD->hasAttr<CUDAGlobalAttr>()) 1377 CGM.getCUDARuntime().emitDeviceStub(*this, Args); 1378 else if (isa<CXXMethodDecl>(FD) && 1379 cast<CXXMethodDecl>(FD)->isLambdaStaticInvoker()) { 1380 // The lambda static invoker function is special, because it forwards or 1381 // clones the body of the function call operator (but is actually static). 1382 EmitLambdaStaticInvokeBody(cast<CXXMethodDecl>(FD)); 1383 } else if (FD->isDefaulted() && isa<CXXMethodDecl>(FD) && 1384 (cast<CXXMethodDecl>(FD)->isCopyAssignmentOperator() || 1385 cast<CXXMethodDecl>(FD)->isMoveAssignmentOperator())) { 1386 // Implicit copy-assignment gets the same special treatment as implicit 1387 // copy-constructors. 1388 emitImplicitAssignmentOperatorBody(Args); 1389 } else if (Body) { 1390 EmitFunctionBody(Body); 1391 } else 1392 llvm_unreachable("no definition for emitted function"); 1393 1394 // C++11 [stmt.return]p2: 1395 // Flowing off the end of a function [...] results in undefined behavior in 1396 // a value-returning function. 1397 // C11 6.9.1p12: 1398 // If the '}' that terminates a function is reached, and the value of the 1399 // function call is used by the caller, the behavior is undefined. 1400 if (getLangOpts().CPlusPlus && !FD->hasImplicitReturnZero() && !SawAsmBlock && 1401 !FD->getReturnType()->isVoidType() && Builder.GetInsertBlock()) { 1402 bool ShouldEmitUnreachable = 1403 CGM.getCodeGenOpts().StrictReturn || 1404 !CGM.MayDropFunctionReturn(FD->getASTContext(), FD->getReturnType()); 1405 if (SanOpts.has(SanitizerKind::Return)) { 1406 SanitizerScope SanScope(this); 1407 llvm::Value *IsFalse = Builder.getFalse(); 1408 EmitCheck(std::make_pair(IsFalse, SanitizerKind::Return), 1409 SanitizerHandler::MissingReturn, 1410 EmitCheckSourceLocation(FD->getLocation()), None); 1411 } else if (ShouldEmitUnreachable) { 1412 if (CGM.getCodeGenOpts().OptimizationLevel == 0) 1413 EmitTrapCall(llvm::Intrinsic::trap); 1414 } 1415 if (SanOpts.has(SanitizerKind::Return) || ShouldEmitUnreachable) { 1416 Builder.CreateUnreachable(); 1417 Builder.ClearInsertionPoint(); 1418 } 1419 } 1420 1421 // Emit the standard function epilogue. 1422 FinishFunction(BodyRange.getEnd()); 1423 1424 // If we haven't marked the function nothrow through other means, do 1425 // a quick pass now to see if we can. 1426 if (!CurFn->doesNotThrow()) 1427 TryMarkNoThrow(CurFn); 1428 } 1429 1430 /// ContainsLabel - Return true if the statement contains a label in it. If 1431 /// this statement is not executed normally, it not containing a label means 1432 /// that we can just remove the code. 1433 bool CodeGenFunction::ContainsLabel(const Stmt *S, bool IgnoreCaseStmts) { 1434 // Null statement, not a label! 1435 if (!S) return false; 1436 1437 // If this is a label, we have to emit the code, consider something like: 1438 // if (0) { ... foo: bar(); } goto foo; 1439 // 1440 // TODO: If anyone cared, we could track __label__'s, since we know that you 1441 // can't jump to one from outside their declared region. 1442 if (isa<LabelStmt>(S)) 1443 return true; 1444 1445 // If this is a case/default statement, and we haven't seen a switch, we have 1446 // to emit the code. 1447 if (isa<SwitchCase>(S) && !IgnoreCaseStmts) 1448 return true; 1449 1450 // If this is a switch statement, we want to ignore cases below it. 1451 if (isa<SwitchStmt>(S)) 1452 IgnoreCaseStmts = true; 1453 1454 // Scan subexpressions for verboten labels. 1455 for (const Stmt *SubStmt : S->children()) 1456 if (ContainsLabel(SubStmt, IgnoreCaseStmts)) 1457 return true; 1458 1459 return false; 1460 } 1461 1462 /// containsBreak - Return true if the statement contains a break out of it. 1463 /// If the statement (recursively) contains a switch or loop with a break 1464 /// inside of it, this is fine. 1465 bool CodeGenFunction::containsBreak(const Stmt *S) { 1466 // Null statement, not a label! 1467 if (!S) return false; 1468 1469 // If this is a switch or loop that defines its own break scope, then we can 1470 // include it and anything inside of it. 1471 if (isa<SwitchStmt>(S) || isa<WhileStmt>(S) || isa<DoStmt>(S) || 1472 isa<ForStmt>(S)) 1473 return false; 1474 1475 if (isa<BreakStmt>(S)) 1476 return true; 1477 1478 // Scan subexpressions for verboten breaks. 1479 for (const Stmt *SubStmt : S->children()) 1480 if (containsBreak(SubStmt)) 1481 return true; 1482 1483 return false; 1484 } 1485 1486 bool CodeGenFunction::mightAddDeclToScope(const Stmt *S) { 1487 if (!S) return false; 1488 1489 // Some statement kinds add a scope and thus never add a decl to the current 1490 // scope. Note, this list is longer than the list of statements that might 1491 // have an unscoped decl nested within them, but this way is conservatively 1492 // correct even if more statement kinds are added. 1493 if (isa<IfStmt>(S) || isa<SwitchStmt>(S) || isa<WhileStmt>(S) || 1494 isa<DoStmt>(S) || isa<ForStmt>(S) || isa<CompoundStmt>(S) || 1495 isa<CXXForRangeStmt>(S) || isa<CXXTryStmt>(S) || 1496 isa<ObjCForCollectionStmt>(S) || isa<ObjCAtTryStmt>(S)) 1497 return false; 1498 1499 if (isa<DeclStmt>(S)) 1500 return true; 1501 1502 for (const Stmt *SubStmt : S->children()) 1503 if (mightAddDeclToScope(SubStmt)) 1504 return true; 1505 1506 return false; 1507 } 1508 1509 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold 1510 /// to a constant, or if it does but contains a label, return false. If it 1511 /// constant folds return true and set the boolean result in Result. 1512 bool CodeGenFunction::ConstantFoldsToSimpleInteger(const Expr *Cond, 1513 bool &ResultBool, 1514 bool AllowLabels) { 1515 llvm::APSInt ResultInt; 1516 if (!ConstantFoldsToSimpleInteger(Cond, ResultInt, AllowLabels)) 1517 return false; 1518 1519 ResultBool = ResultInt.getBoolValue(); 1520 return true; 1521 } 1522 1523 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold 1524 /// to a constant, or if it does but contains a label, return false. If it 1525 /// constant folds return true and set the folded value. 1526 bool CodeGenFunction::ConstantFoldsToSimpleInteger(const Expr *Cond, 1527 llvm::APSInt &ResultInt, 1528 bool AllowLabels) { 1529 // FIXME: Rename and handle conversion of other evaluatable things 1530 // to bool. 1531 Expr::EvalResult Result; 1532 if (!Cond->EvaluateAsInt(Result, getContext())) 1533 return false; // Not foldable, not integer or not fully evaluatable. 1534 1535 llvm::APSInt Int = Result.Val.getInt(); 1536 if (!AllowLabels && CodeGenFunction::ContainsLabel(Cond)) 1537 return false; // Contains a label. 1538 1539 ResultInt = Int; 1540 return true; 1541 } 1542 1543 /// Determine whether the given condition is an instrumentable condition 1544 /// (i.e. no "&&" or "||"). 1545 bool CodeGenFunction::isInstrumentedCondition(const Expr *C) { 1546 // Bypass simplistic logical-NOT operator before determining whether the 1547 // condition contains any other logical operator. 1548 if (const UnaryOperator *UnOp = dyn_cast<UnaryOperator>(C->IgnoreParens())) 1549 if (UnOp->getOpcode() == UO_LNot) 1550 C = UnOp->getSubExpr(); 1551 1552 const BinaryOperator *BOp = dyn_cast<BinaryOperator>(C->IgnoreParens()); 1553 return (!BOp || !BOp->isLogicalOp()); 1554 } 1555 1556 /// EmitBranchToCounterBlock - Emit a conditional branch to a new block that 1557 /// increments a profile counter based on the semantics of the given logical 1558 /// operator opcode. This is used to instrument branch condition coverage for 1559 /// logical operators. 1560 void CodeGenFunction::EmitBranchToCounterBlock( 1561 const Expr *Cond, BinaryOperator::Opcode LOp, llvm::BasicBlock *TrueBlock, 1562 llvm::BasicBlock *FalseBlock, uint64_t TrueCount /* = 0 */, 1563 Stmt::Likelihood LH /* =None */, const Expr *CntrIdx /* = nullptr */) { 1564 // If not instrumenting, just emit a branch. 1565 bool InstrumentRegions = CGM.getCodeGenOpts().hasProfileClangInstr(); 1566 if (!InstrumentRegions || !isInstrumentedCondition(Cond)) 1567 return EmitBranchOnBoolExpr(Cond, TrueBlock, FalseBlock, TrueCount, LH); 1568 1569 llvm::BasicBlock *ThenBlock = NULL; 1570 llvm::BasicBlock *ElseBlock = NULL; 1571 llvm::BasicBlock *NextBlock = NULL; 1572 1573 // Create the block we'll use to increment the appropriate counter. 1574 llvm::BasicBlock *CounterIncrBlock = createBasicBlock("lop.rhscnt"); 1575 1576 // Set block pointers according to Logical-AND (BO_LAnd) semantics. This 1577 // means we need to evaluate the condition and increment the counter on TRUE: 1578 // 1579 // if (Cond) 1580 // goto CounterIncrBlock; 1581 // else 1582 // goto FalseBlock; 1583 // 1584 // CounterIncrBlock: 1585 // Counter++; 1586 // goto TrueBlock; 1587 1588 if (LOp == BO_LAnd) { 1589 ThenBlock = CounterIncrBlock; 1590 ElseBlock = FalseBlock; 1591 NextBlock = TrueBlock; 1592 } 1593 1594 // Set block pointers according to Logical-OR (BO_LOr) semantics. This means 1595 // we need to evaluate the condition and increment the counter on FALSE: 1596 // 1597 // if (Cond) 1598 // goto TrueBlock; 1599 // else 1600 // goto CounterIncrBlock; 1601 // 1602 // CounterIncrBlock: 1603 // Counter++; 1604 // goto FalseBlock; 1605 1606 else if (LOp == BO_LOr) { 1607 ThenBlock = TrueBlock; 1608 ElseBlock = CounterIncrBlock; 1609 NextBlock = FalseBlock; 1610 } else { 1611 llvm_unreachable("Expected Opcode must be that of a Logical Operator"); 1612 } 1613 1614 // Emit Branch based on condition. 1615 EmitBranchOnBoolExpr(Cond, ThenBlock, ElseBlock, TrueCount, LH); 1616 1617 // Emit the block containing the counter increment(s). 1618 EmitBlock(CounterIncrBlock); 1619 1620 // Increment corresponding counter; if index not provided, use Cond as index. 1621 incrementProfileCounter(CntrIdx ? CntrIdx : Cond); 1622 1623 // Go to the next block. 1624 EmitBranch(NextBlock); 1625 } 1626 1627 /// EmitBranchOnBoolExpr - Emit a branch on a boolean condition (e.g. for an if 1628 /// statement) to the specified blocks. Based on the condition, this might try 1629 /// to simplify the codegen of the conditional based on the branch. 1630 /// \param LH The value of the likelihood attribute on the True branch. 1631 void CodeGenFunction::EmitBranchOnBoolExpr(const Expr *Cond, 1632 llvm::BasicBlock *TrueBlock, 1633 llvm::BasicBlock *FalseBlock, 1634 uint64_t TrueCount, 1635 Stmt::Likelihood LH) { 1636 Cond = Cond->IgnoreParens(); 1637 1638 if (const BinaryOperator *CondBOp = dyn_cast<BinaryOperator>(Cond)) { 1639 1640 // Handle X && Y in a condition. 1641 if (CondBOp->getOpcode() == BO_LAnd) { 1642 // If we have "1 && X", simplify the code. "0 && X" would have constant 1643 // folded if the case was simple enough. 1644 bool ConstantBool = false; 1645 if (ConstantFoldsToSimpleInteger(CondBOp->getLHS(), ConstantBool) && 1646 ConstantBool) { 1647 // br(1 && X) -> br(X). 1648 incrementProfileCounter(CondBOp); 1649 return EmitBranchToCounterBlock(CondBOp->getRHS(), BO_LAnd, TrueBlock, 1650 FalseBlock, TrueCount, LH); 1651 } 1652 1653 // If we have "X && 1", simplify the code to use an uncond branch. 1654 // "X && 0" would have been constant folded to 0. 1655 if (ConstantFoldsToSimpleInteger(CondBOp->getRHS(), ConstantBool) && 1656 ConstantBool) { 1657 // br(X && 1) -> br(X). 1658 return EmitBranchToCounterBlock(CondBOp->getLHS(), BO_LAnd, TrueBlock, 1659 FalseBlock, TrueCount, LH, CondBOp); 1660 } 1661 1662 // Emit the LHS as a conditional. If the LHS conditional is false, we 1663 // want to jump to the FalseBlock. 1664 llvm::BasicBlock *LHSTrue = createBasicBlock("land.lhs.true"); 1665 // The counter tells us how often we evaluate RHS, and all of TrueCount 1666 // can be propagated to that branch. 1667 uint64_t RHSCount = getProfileCount(CondBOp->getRHS()); 1668 1669 ConditionalEvaluation eval(*this); 1670 { 1671 ApplyDebugLocation DL(*this, Cond); 1672 // Propagate the likelihood attribute like __builtin_expect 1673 // __builtin_expect(X && Y, 1) -> X and Y are likely 1674 // __builtin_expect(X && Y, 0) -> only Y is unlikely 1675 EmitBranchOnBoolExpr(CondBOp->getLHS(), LHSTrue, FalseBlock, RHSCount, 1676 LH == Stmt::LH_Unlikely ? Stmt::LH_None : LH); 1677 EmitBlock(LHSTrue); 1678 } 1679 1680 incrementProfileCounter(CondBOp); 1681 setCurrentProfileCount(getProfileCount(CondBOp->getRHS())); 1682 1683 // Any temporaries created here are conditional. 1684 eval.begin(*this); 1685 EmitBranchToCounterBlock(CondBOp->getRHS(), BO_LAnd, TrueBlock, 1686 FalseBlock, TrueCount, LH); 1687 eval.end(*this); 1688 1689 return; 1690 } 1691 1692 if (CondBOp->getOpcode() == BO_LOr) { 1693 // If we have "0 || X", simplify the code. "1 || X" would have constant 1694 // folded if the case was simple enough. 1695 bool ConstantBool = false; 1696 if (ConstantFoldsToSimpleInteger(CondBOp->getLHS(), ConstantBool) && 1697 !ConstantBool) { 1698 // br(0 || X) -> br(X). 1699 incrementProfileCounter(CondBOp); 1700 return EmitBranchToCounterBlock(CondBOp->getRHS(), BO_LOr, TrueBlock, 1701 FalseBlock, TrueCount, LH); 1702 } 1703 1704 // If we have "X || 0", simplify the code to use an uncond branch. 1705 // "X || 1" would have been constant folded to 1. 1706 if (ConstantFoldsToSimpleInteger(CondBOp->getRHS(), ConstantBool) && 1707 !ConstantBool) { 1708 // br(X || 0) -> br(X). 1709 return EmitBranchToCounterBlock(CondBOp->getLHS(), BO_LOr, TrueBlock, 1710 FalseBlock, TrueCount, LH, CondBOp); 1711 } 1712 1713 // Emit the LHS as a conditional. If the LHS conditional is true, we 1714 // want to jump to the TrueBlock. 1715 llvm::BasicBlock *LHSFalse = createBasicBlock("lor.lhs.false"); 1716 // We have the count for entry to the RHS and for the whole expression 1717 // being true, so we can divy up True count between the short circuit and 1718 // the RHS. 1719 uint64_t LHSCount = 1720 getCurrentProfileCount() - getProfileCount(CondBOp->getRHS()); 1721 uint64_t RHSCount = TrueCount - LHSCount; 1722 1723 ConditionalEvaluation eval(*this); 1724 { 1725 // Propagate the likelihood attribute like __builtin_expect 1726 // __builtin_expect(X || Y, 1) -> only Y is likely 1727 // __builtin_expect(X || Y, 0) -> both X and Y are unlikely 1728 ApplyDebugLocation DL(*this, Cond); 1729 EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, LHSFalse, LHSCount, 1730 LH == Stmt::LH_Likely ? Stmt::LH_None : LH); 1731 EmitBlock(LHSFalse); 1732 } 1733 1734 incrementProfileCounter(CondBOp); 1735 setCurrentProfileCount(getProfileCount(CondBOp->getRHS())); 1736 1737 // Any temporaries created here are conditional. 1738 eval.begin(*this); 1739 EmitBranchToCounterBlock(CondBOp->getRHS(), BO_LOr, TrueBlock, FalseBlock, 1740 RHSCount, LH); 1741 1742 eval.end(*this); 1743 1744 return; 1745 } 1746 } 1747 1748 if (const UnaryOperator *CondUOp = dyn_cast<UnaryOperator>(Cond)) { 1749 // br(!x, t, f) -> br(x, f, t) 1750 if (CondUOp->getOpcode() == UO_LNot) { 1751 // Negate the count. 1752 uint64_t FalseCount = getCurrentProfileCount() - TrueCount; 1753 // The values of the enum are chosen to make this negation possible. 1754 LH = static_cast<Stmt::Likelihood>(-LH); 1755 // Negate the condition and swap the destination blocks. 1756 return EmitBranchOnBoolExpr(CondUOp->getSubExpr(), FalseBlock, TrueBlock, 1757 FalseCount, LH); 1758 } 1759 } 1760 1761 if (const ConditionalOperator *CondOp = dyn_cast<ConditionalOperator>(Cond)) { 1762 // br(c ? x : y, t, f) -> br(c, br(x, t, f), br(y, t, f)) 1763 llvm::BasicBlock *LHSBlock = createBasicBlock("cond.true"); 1764 llvm::BasicBlock *RHSBlock = createBasicBlock("cond.false"); 1765 1766 // The ConditionalOperator itself has no likelihood information for its 1767 // true and false branches. This matches the behavior of __builtin_expect. 1768 ConditionalEvaluation cond(*this); 1769 EmitBranchOnBoolExpr(CondOp->getCond(), LHSBlock, RHSBlock, 1770 getProfileCount(CondOp), Stmt::LH_None); 1771 1772 // When computing PGO branch weights, we only know the overall count for 1773 // the true block. This code is essentially doing tail duplication of the 1774 // naive code-gen, introducing new edges for which counts are not 1775 // available. Divide the counts proportionally between the LHS and RHS of 1776 // the conditional operator. 1777 uint64_t LHSScaledTrueCount = 0; 1778 if (TrueCount) { 1779 double LHSRatio = 1780 getProfileCount(CondOp) / (double)getCurrentProfileCount(); 1781 LHSScaledTrueCount = TrueCount * LHSRatio; 1782 } 1783 1784 cond.begin(*this); 1785 EmitBlock(LHSBlock); 1786 incrementProfileCounter(CondOp); 1787 { 1788 ApplyDebugLocation DL(*this, Cond); 1789 EmitBranchOnBoolExpr(CondOp->getLHS(), TrueBlock, FalseBlock, 1790 LHSScaledTrueCount, LH); 1791 } 1792 cond.end(*this); 1793 1794 cond.begin(*this); 1795 EmitBlock(RHSBlock); 1796 EmitBranchOnBoolExpr(CondOp->getRHS(), TrueBlock, FalseBlock, 1797 TrueCount - LHSScaledTrueCount, LH); 1798 cond.end(*this); 1799 1800 return; 1801 } 1802 1803 if (const CXXThrowExpr *Throw = dyn_cast<CXXThrowExpr>(Cond)) { 1804 // Conditional operator handling can give us a throw expression as a 1805 // condition for a case like: 1806 // br(c ? throw x : y, t, f) -> br(c, br(throw x, t, f), br(y, t, f) 1807 // Fold this to: 1808 // br(c, throw x, br(y, t, f)) 1809 EmitCXXThrowExpr(Throw, /*KeepInsertionPoint*/false); 1810 return; 1811 } 1812 1813 // Emit the code with the fully general case. 1814 llvm::Value *CondV; 1815 { 1816 ApplyDebugLocation DL(*this, Cond); 1817 CondV = EvaluateExprAsBool(Cond); 1818 } 1819 1820 llvm::MDNode *Weights = nullptr; 1821 llvm::MDNode *Unpredictable = nullptr; 1822 1823 // If the branch has a condition wrapped by __builtin_unpredictable, 1824 // create metadata that specifies that the branch is unpredictable. 1825 // Don't bother if not optimizing because that metadata would not be used. 1826 auto *Call = dyn_cast<CallExpr>(Cond->IgnoreImpCasts()); 1827 if (Call && CGM.getCodeGenOpts().OptimizationLevel != 0) { 1828 auto *FD = dyn_cast_or_null<FunctionDecl>(Call->getCalleeDecl()); 1829 if (FD && FD->getBuiltinID() == Builtin::BI__builtin_unpredictable) { 1830 llvm::MDBuilder MDHelper(getLLVMContext()); 1831 Unpredictable = MDHelper.createUnpredictable(); 1832 } 1833 } 1834 1835 // If there is a Likelihood knowledge for the cond, lower it. 1836 // Note that if not optimizing this won't emit anything. 1837 llvm::Value *NewCondV = emitCondLikelihoodViaExpectIntrinsic(CondV, LH); 1838 if (CondV != NewCondV) 1839 CondV = NewCondV; 1840 else { 1841 // Otherwise, lower profile counts. Note that we do this even at -O0. 1842 uint64_t CurrentCount = std::max(getCurrentProfileCount(), TrueCount); 1843 Weights = createProfileWeights(TrueCount, CurrentCount - TrueCount); 1844 } 1845 1846 Builder.CreateCondBr(CondV, TrueBlock, FalseBlock, Weights, Unpredictable); 1847 } 1848 1849 /// ErrorUnsupported - Print out an error that codegen doesn't support the 1850 /// specified stmt yet. 1851 void CodeGenFunction::ErrorUnsupported(const Stmt *S, const char *Type) { 1852 CGM.ErrorUnsupported(S, Type); 1853 } 1854 1855 /// emitNonZeroVLAInit - Emit the "zero" initialization of a 1856 /// variable-length array whose elements have a non-zero bit-pattern. 1857 /// 1858 /// \param baseType the inner-most element type of the array 1859 /// \param src - a char* pointing to the bit-pattern for a single 1860 /// base element of the array 1861 /// \param sizeInChars - the total size of the VLA, in chars 1862 static void emitNonZeroVLAInit(CodeGenFunction &CGF, QualType baseType, 1863 Address dest, Address src, 1864 llvm::Value *sizeInChars) { 1865 CGBuilderTy &Builder = CGF.Builder; 1866 1867 CharUnits baseSize = CGF.getContext().getTypeSizeInChars(baseType); 1868 llvm::Value *baseSizeInChars 1869 = llvm::ConstantInt::get(CGF.IntPtrTy, baseSize.getQuantity()); 1870 1871 Address begin = 1872 Builder.CreateElementBitCast(dest, CGF.Int8Ty, "vla.begin"); 1873 llvm::Value *end = Builder.CreateInBoundsGEP( 1874 begin.getElementType(), begin.getPointer(), sizeInChars, "vla.end"); 1875 1876 llvm::BasicBlock *originBB = CGF.Builder.GetInsertBlock(); 1877 llvm::BasicBlock *loopBB = CGF.createBasicBlock("vla-init.loop"); 1878 llvm::BasicBlock *contBB = CGF.createBasicBlock("vla-init.cont"); 1879 1880 // Make a loop over the VLA. C99 guarantees that the VLA element 1881 // count must be nonzero. 1882 CGF.EmitBlock(loopBB); 1883 1884 llvm::PHINode *cur = Builder.CreatePHI(begin.getType(), 2, "vla.cur"); 1885 cur->addIncoming(begin.getPointer(), originBB); 1886 1887 CharUnits curAlign = 1888 dest.getAlignment().alignmentOfArrayElement(baseSize); 1889 1890 // memcpy the individual element bit-pattern. 1891 Builder.CreateMemCpy(Address(cur, curAlign), src, baseSizeInChars, 1892 /*volatile*/ false); 1893 1894 // Go to the next element. 1895 llvm::Value *next = 1896 Builder.CreateInBoundsGEP(CGF.Int8Ty, cur, baseSizeInChars, "vla.next"); 1897 1898 // Leave if that's the end of the VLA. 1899 llvm::Value *done = Builder.CreateICmpEQ(next, end, "vla-init.isdone"); 1900 Builder.CreateCondBr(done, contBB, loopBB); 1901 cur->addIncoming(next, loopBB); 1902 1903 CGF.EmitBlock(contBB); 1904 } 1905 1906 void 1907 CodeGenFunction::EmitNullInitialization(Address DestPtr, QualType Ty) { 1908 // Ignore empty classes in C++. 1909 if (getLangOpts().CPlusPlus) { 1910 if (const RecordType *RT = Ty->getAs<RecordType>()) { 1911 if (cast<CXXRecordDecl>(RT->getDecl())->isEmpty()) 1912 return; 1913 } 1914 } 1915 1916 // Cast the dest ptr to the appropriate i8 pointer type. 1917 if (DestPtr.getElementType() != Int8Ty) 1918 DestPtr = Builder.CreateElementBitCast(DestPtr, Int8Ty); 1919 1920 // Get size and alignment info for this aggregate. 1921 CharUnits size = getContext().getTypeSizeInChars(Ty); 1922 1923 llvm::Value *SizeVal; 1924 const VariableArrayType *vla; 1925 1926 // Don't bother emitting a zero-byte memset. 1927 if (size.isZero()) { 1928 // But note that getTypeInfo returns 0 for a VLA. 1929 if (const VariableArrayType *vlaType = 1930 dyn_cast_or_null<VariableArrayType>( 1931 getContext().getAsArrayType(Ty))) { 1932 auto VlaSize = getVLASize(vlaType); 1933 SizeVal = VlaSize.NumElts; 1934 CharUnits eltSize = getContext().getTypeSizeInChars(VlaSize.Type); 1935 if (!eltSize.isOne()) 1936 SizeVal = Builder.CreateNUWMul(SizeVal, CGM.getSize(eltSize)); 1937 vla = vlaType; 1938 } else { 1939 return; 1940 } 1941 } else { 1942 SizeVal = CGM.getSize(size); 1943 vla = nullptr; 1944 } 1945 1946 // If the type contains a pointer to data member we can't memset it to zero. 1947 // Instead, create a null constant and copy it to the destination. 1948 // TODO: there are other patterns besides zero that we can usefully memset, 1949 // like -1, which happens to be the pattern used by member-pointers. 1950 if (!CGM.getTypes().isZeroInitializable(Ty)) { 1951 // For a VLA, emit a single element, then splat that over the VLA. 1952 if (vla) Ty = getContext().getBaseElementType(vla); 1953 1954 llvm::Constant *NullConstant = CGM.EmitNullConstant(Ty); 1955 1956 llvm::GlobalVariable *NullVariable = 1957 new llvm::GlobalVariable(CGM.getModule(), NullConstant->getType(), 1958 /*isConstant=*/true, 1959 llvm::GlobalVariable::PrivateLinkage, 1960 NullConstant, Twine()); 1961 CharUnits NullAlign = DestPtr.getAlignment(); 1962 NullVariable->setAlignment(NullAlign.getAsAlign()); 1963 Address SrcPtr(Builder.CreateBitCast(NullVariable, Builder.getInt8PtrTy()), 1964 NullAlign); 1965 1966 if (vla) return emitNonZeroVLAInit(*this, Ty, DestPtr, SrcPtr, SizeVal); 1967 1968 // Get and call the appropriate llvm.memcpy overload. 1969 Builder.CreateMemCpy(DestPtr, SrcPtr, SizeVal, false); 1970 return; 1971 } 1972 1973 // Otherwise, just memset the whole thing to zero. This is legal 1974 // because in LLVM, all default initializers (other than the ones we just 1975 // handled above) are guaranteed to have a bit pattern of all zeros. 1976 Builder.CreateMemSet(DestPtr, Builder.getInt8(0), SizeVal, false); 1977 } 1978 1979 llvm::BlockAddress *CodeGenFunction::GetAddrOfLabel(const LabelDecl *L) { 1980 // Make sure that there is a block for the indirect goto. 1981 if (!IndirectBranch) 1982 GetIndirectGotoBlock(); 1983 1984 llvm::BasicBlock *BB = getJumpDestForLabel(L).getBlock(); 1985 1986 // Make sure the indirect branch includes all of the address-taken blocks. 1987 IndirectBranch->addDestination(BB); 1988 return llvm::BlockAddress::get(CurFn, BB); 1989 } 1990 1991 llvm::BasicBlock *CodeGenFunction::GetIndirectGotoBlock() { 1992 // If we already made the indirect branch for indirect goto, return its block. 1993 if (IndirectBranch) return IndirectBranch->getParent(); 1994 1995 CGBuilderTy TmpBuilder(*this, createBasicBlock("indirectgoto")); 1996 1997 // Create the PHI node that indirect gotos will add entries to. 1998 llvm::Value *DestVal = TmpBuilder.CreatePHI(Int8PtrTy, 0, 1999 "indirect.goto.dest"); 2000 2001 // Create the indirect branch instruction. 2002 IndirectBranch = TmpBuilder.CreateIndirectBr(DestVal); 2003 return IndirectBranch->getParent(); 2004 } 2005 2006 /// Computes the length of an array in elements, as well as the base 2007 /// element type and a properly-typed first element pointer. 2008 llvm::Value *CodeGenFunction::emitArrayLength(const ArrayType *origArrayType, 2009 QualType &baseType, 2010 Address &addr) { 2011 const ArrayType *arrayType = origArrayType; 2012 2013 // If it's a VLA, we have to load the stored size. Note that 2014 // this is the size of the VLA in bytes, not its size in elements. 2015 llvm::Value *numVLAElements = nullptr; 2016 if (isa<VariableArrayType>(arrayType)) { 2017 numVLAElements = getVLASize(cast<VariableArrayType>(arrayType)).NumElts; 2018 2019 // Walk into all VLAs. This doesn't require changes to addr, 2020 // which has type T* where T is the first non-VLA element type. 2021 do { 2022 QualType elementType = arrayType->getElementType(); 2023 arrayType = getContext().getAsArrayType(elementType); 2024 2025 // If we only have VLA components, 'addr' requires no adjustment. 2026 if (!arrayType) { 2027 baseType = elementType; 2028 return numVLAElements; 2029 } 2030 } while (isa<VariableArrayType>(arrayType)); 2031 2032 // We get out here only if we find a constant array type 2033 // inside the VLA. 2034 } 2035 2036 // We have some number of constant-length arrays, so addr should 2037 // have LLVM type [M x [N x [...]]]*. Build a GEP that walks 2038 // down to the first element of addr. 2039 SmallVector<llvm::Value*, 8> gepIndices; 2040 2041 // GEP down to the array type. 2042 llvm::ConstantInt *zero = Builder.getInt32(0); 2043 gepIndices.push_back(zero); 2044 2045 uint64_t countFromCLAs = 1; 2046 QualType eltType; 2047 2048 llvm::ArrayType *llvmArrayType = 2049 dyn_cast<llvm::ArrayType>(addr.getElementType()); 2050 while (llvmArrayType) { 2051 assert(isa<ConstantArrayType>(arrayType)); 2052 assert(cast<ConstantArrayType>(arrayType)->getSize().getZExtValue() 2053 == llvmArrayType->getNumElements()); 2054 2055 gepIndices.push_back(zero); 2056 countFromCLAs *= llvmArrayType->getNumElements(); 2057 eltType = arrayType->getElementType(); 2058 2059 llvmArrayType = 2060 dyn_cast<llvm::ArrayType>(llvmArrayType->getElementType()); 2061 arrayType = getContext().getAsArrayType(arrayType->getElementType()); 2062 assert((!llvmArrayType || arrayType) && 2063 "LLVM and Clang types are out-of-synch"); 2064 } 2065 2066 if (arrayType) { 2067 // From this point onwards, the Clang array type has been emitted 2068 // as some other type (probably a packed struct). Compute the array 2069 // size, and just emit the 'begin' expression as a bitcast. 2070 while (arrayType) { 2071 countFromCLAs *= 2072 cast<ConstantArrayType>(arrayType)->getSize().getZExtValue(); 2073 eltType = arrayType->getElementType(); 2074 arrayType = getContext().getAsArrayType(eltType); 2075 } 2076 2077 llvm::Type *baseType = ConvertType(eltType); 2078 addr = Builder.CreateElementBitCast(addr, baseType, "array.begin"); 2079 } else { 2080 // Create the actual GEP. 2081 addr = Address(Builder.CreateInBoundsGEP( 2082 addr.getElementType(), addr.getPointer(), gepIndices, "array.begin"), 2083 addr.getAlignment()); 2084 } 2085 2086 baseType = eltType; 2087 2088 llvm::Value *numElements 2089 = llvm::ConstantInt::get(SizeTy, countFromCLAs); 2090 2091 // If we had any VLA dimensions, factor them in. 2092 if (numVLAElements) 2093 numElements = Builder.CreateNUWMul(numVLAElements, numElements); 2094 2095 return numElements; 2096 } 2097 2098 CodeGenFunction::VlaSizePair CodeGenFunction::getVLASize(QualType type) { 2099 const VariableArrayType *vla = getContext().getAsVariableArrayType(type); 2100 assert(vla && "type was not a variable array type!"); 2101 return getVLASize(vla); 2102 } 2103 2104 CodeGenFunction::VlaSizePair 2105 CodeGenFunction::getVLASize(const VariableArrayType *type) { 2106 // The number of elements so far; always size_t. 2107 llvm::Value *numElements = nullptr; 2108 2109 QualType elementType; 2110 do { 2111 elementType = type->getElementType(); 2112 llvm::Value *vlaSize = VLASizeMap[type->getSizeExpr()]; 2113 assert(vlaSize && "no size for VLA!"); 2114 assert(vlaSize->getType() == SizeTy); 2115 2116 if (!numElements) { 2117 numElements = vlaSize; 2118 } else { 2119 // It's undefined behavior if this wraps around, so mark it that way. 2120 // FIXME: Teach -fsanitize=undefined to trap this. 2121 numElements = Builder.CreateNUWMul(numElements, vlaSize); 2122 } 2123 } while ((type = getContext().getAsVariableArrayType(elementType))); 2124 2125 return { numElements, elementType }; 2126 } 2127 2128 CodeGenFunction::VlaSizePair 2129 CodeGenFunction::getVLAElements1D(QualType type) { 2130 const VariableArrayType *vla = getContext().getAsVariableArrayType(type); 2131 assert(vla && "type was not a variable array type!"); 2132 return getVLAElements1D(vla); 2133 } 2134 2135 CodeGenFunction::VlaSizePair 2136 CodeGenFunction::getVLAElements1D(const VariableArrayType *Vla) { 2137 llvm::Value *VlaSize = VLASizeMap[Vla->getSizeExpr()]; 2138 assert(VlaSize && "no size for VLA!"); 2139 assert(VlaSize->getType() == SizeTy); 2140 return { VlaSize, Vla->getElementType() }; 2141 } 2142 2143 void CodeGenFunction::EmitVariablyModifiedType(QualType type) { 2144 assert(type->isVariablyModifiedType() && 2145 "Must pass variably modified type to EmitVLASizes!"); 2146 2147 EnsureInsertPoint(); 2148 2149 // We're going to walk down into the type and look for VLA 2150 // expressions. 2151 do { 2152 assert(type->isVariablyModifiedType()); 2153 2154 const Type *ty = type.getTypePtr(); 2155 switch (ty->getTypeClass()) { 2156 2157 #define TYPE(Class, Base) 2158 #define ABSTRACT_TYPE(Class, Base) 2159 #define NON_CANONICAL_TYPE(Class, Base) 2160 #define DEPENDENT_TYPE(Class, Base) case Type::Class: 2161 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base) 2162 #include "clang/AST/TypeNodes.inc" 2163 llvm_unreachable("unexpected dependent type!"); 2164 2165 // These types are never variably-modified. 2166 case Type::Builtin: 2167 case Type::Complex: 2168 case Type::Vector: 2169 case Type::ExtVector: 2170 case Type::ConstantMatrix: 2171 case Type::Record: 2172 case Type::Enum: 2173 case Type::Elaborated: 2174 case Type::TemplateSpecialization: 2175 case Type::ObjCTypeParam: 2176 case Type::ObjCObject: 2177 case Type::ObjCInterface: 2178 case Type::ObjCObjectPointer: 2179 case Type::ExtInt: 2180 llvm_unreachable("type class is never variably-modified!"); 2181 2182 case Type::Adjusted: 2183 type = cast<AdjustedType>(ty)->getAdjustedType(); 2184 break; 2185 2186 case Type::Decayed: 2187 type = cast<DecayedType>(ty)->getPointeeType(); 2188 break; 2189 2190 case Type::Pointer: 2191 type = cast<PointerType>(ty)->getPointeeType(); 2192 break; 2193 2194 case Type::BlockPointer: 2195 type = cast<BlockPointerType>(ty)->getPointeeType(); 2196 break; 2197 2198 case Type::LValueReference: 2199 case Type::RValueReference: 2200 type = cast<ReferenceType>(ty)->getPointeeType(); 2201 break; 2202 2203 case Type::MemberPointer: 2204 type = cast<MemberPointerType>(ty)->getPointeeType(); 2205 break; 2206 2207 case Type::ConstantArray: 2208 case Type::IncompleteArray: 2209 // Losing element qualification here is fine. 2210 type = cast<ArrayType>(ty)->getElementType(); 2211 break; 2212 2213 case Type::VariableArray: { 2214 // Losing element qualification here is fine. 2215 const VariableArrayType *vat = cast<VariableArrayType>(ty); 2216 2217 // Unknown size indication requires no size computation. 2218 // Otherwise, evaluate and record it. 2219 if (const Expr *size = vat->getSizeExpr()) { 2220 // It's possible that we might have emitted this already, 2221 // e.g. with a typedef and a pointer to it. 2222 llvm::Value *&entry = VLASizeMap[size]; 2223 if (!entry) { 2224 llvm::Value *Size = EmitScalarExpr(size); 2225 2226 // C11 6.7.6.2p5: 2227 // If the size is an expression that is not an integer constant 2228 // expression [...] each time it is evaluated it shall have a value 2229 // greater than zero. 2230 if (SanOpts.has(SanitizerKind::VLABound) && 2231 size->getType()->isSignedIntegerType()) { 2232 SanitizerScope SanScope(this); 2233 llvm::Value *Zero = llvm::Constant::getNullValue(Size->getType()); 2234 llvm::Constant *StaticArgs[] = { 2235 EmitCheckSourceLocation(size->getBeginLoc()), 2236 EmitCheckTypeDescriptor(size->getType())}; 2237 EmitCheck(std::make_pair(Builder.CreateICmpSGT(Size, Zero), 2238 SanitizerKind::VLABound), 2239 SanitizerHandler::VLABoundNotPositive, StaticArgs, Size); 2240 } 2241 2242 // Always zexting here would be wrong if it weren't 2243 // undefined behavior to have a negative bound. 2244 entry = Builder.CreateIntCast(Size, SizeTy, /*signed*/ false); 2245 } 2246 } 2247 type = vat->getElementType(); 2248 break; 2249 } 2250 2251 case Type::FunctionProto: 2252 case Type::FunctionNoProto: 2253 type = cast<FunctionType>(ty)->getReturnType(); 2254 break; 2255 2256 case Type::Paren: 2257 case Type::TypeOf: 2258 case Type::UnaryTransform: 2259 case Type::Attributed: 2260 case Type::SubstTemplateTypeParm: 2261 case Type::MacroQualified: 2262 // Keep walking after single level desugaring. 2263 type = type.getSingleStepDesugaredType(getContext()); 2264 break; 2265 2266 case Type::Typedef: 2267 case Type::Decltype: 2268 case Type::Auto: 2269 case Type::DeducedTemplateSpecialization: 2270 // Stop walking: nothing to do. 2271 return; 2272 2273 case Type::TypeOfExpr: 2274 // Stop walking: emit typeof expression. 2275 EmitIgnoredExpr(cast<TypeOfExprType>(ty)->getUnderlyingExpr()); 2276 return; 2277 2278 case Type::Atomic: 2279 type = cast<AtomicType>(ty)->getValueType(); 2280 break; 2281 2282 case Type::Pipe: 2283 type = cast<PipeType>(ty)->getElementType(); 2284 break; 2285 } 2286 } while (type->isVariablyModifiedType()); 2287 } 2288 2289 Address CodeGenFunction::EmitVAListRef(const Expr* E) { 2290 if (getContext().getBuiltinVaListType()->isArrayType()) 2291 return EmitPointerWithAlignment(E); 2292 return EmitLValue(E).getAddress(*this); 2293 } 2294 2295 Address CodeGenFunction::EmitMSVAListRef(const Expr *E) { 2296 return EmitLValue(E).getAddress(*this); 2297 } 2298 2299 void CodeGenFunction::EmitDeclRefExprDbgValue(const DeclRefExpr *E, 2300 const APValue &Init) { 2301 assert(Init.hasValue() && "Invalid DeclRefExpr initializer!"); 2302 if (CGDebugInfo *Dbg = getDebugInfo()) 2303 if (CGM.getCodeGenOpts().hasReducedDebugInfo()) 2304 Dbg->EmitGlobalVariable(E->getDecl(), Init); 2305 } 2306 2307 CodeGenFunction::PeepholeProtection 2308 CodeGenFunction::protectFromPeepholes(RValue rvalue) { 2309 // At the moment, the only aggressive peephole we do in IR gen 2310 // is trunc(zext) folding, but if we add more, we can easily 2311 // extend this protection. 2312 2313 if (!rvalue.isScalar()) return PeepholeProtection(); 2314 llvm::Value *value = rvalue.getScalarVal(); 2315 if (!isa<llvm::ZExtInst>(value)) return PeepholeProtection(); 2316 2317 // Just make an extra bitcast. 2318 assert(HaveInsertPoint()); 2319 llvm::Instruction *inst = new llvm::BitCastInst(value, value->getType(), "", 2320 Builder.GetInsertBlock()); 2321 2322 PeepholeProtection protection; 2323 protection.Inst = inst; 2324 return protection; 2325 } 2326 2327 void CodeGenFunction::unprotectFromPeepholes(PeepholeProtection protection) { 2328 if (!protection.Inst) return; 2329 2330 // In theory, we could try to duplicate the peepholes now, but whatever. 2331 protection.Inst->eraseFromParent(); 2332 } 2333 2334 void CodeGenFunction::emitAlignmentAssumption(llvm::Value *PtrValue, 2335 QualType Ty, SourceLocation Loc, 2336 SourceLocation AssumptionLoc, 2337 llvm::Value *Alignment, 2338 llvm::Value *OffsetValue) { 2339 if (Alignment->getType() != IntPtrTy) 2340 Alignment = 2341 Builder.CreateIntCast(Alignment, IntPtrTy, false, "casted.align"); 2342 if (OffsetValue && OffsetValue->getType() != IntPtrTy) 2343 OffsetValue = 2344 Builder.CreateIntCast(OffsetValue, IntPtrTy, true, "casted.offset"); 2345 llvm::Value *TheCheck = nullptr; 2346 if (SanOpts.has(SanitizerKind::Alignment)) { 2347 llvm::Value *PtrIntValue = 2348 Builder.CreatePtrToInt(PtrValue, IntPtrTy, "ptrint"); 2349 2350 if (OffsetValue) { 2351 bool IsOffsetZero = false; 2352 if (const auto *CI = dyn_cast<llvm::ConstantInt>(OffsetValue)) 2353 IsOffsetZero = CI->isZero(); 2354 2355 if (!IsOffsetZero) 2356 PtrIntValue = Builder.CreateSub(PtrIntValue, OffsetValue, "offsetptr"); 2357 } 2358 2359 llvm::Value *Zero = llvm::ConstantInt::get(IntPtrTy, 0); 2360 llvm::Value *Mask = 2361 Builder.CreateSub(Alignment, llvm::ConstantInt::get(IntPtrTy, 1)); 2362 llvm::Value *MaskedPtr = Builder.CreateAnd(PtrIntValue, Mask, "maskedptr"); 2363 TheCheck = Builder.CreateICmpEQ(MaskedPtr, Zero, "maskcond"); 2364 } 2365 llvm::Instruction *Assumption = Builder.CreateAlignmentAssumption( 2366 CGM.getDataLayout(), PtrValue, Alignment, OffsetValue); 2367 2368 if (!SanOpts.has(SanitizerKind::Alignment)) 2369 return; 2370 emitAlignmentAssumptionCheck(PtrValue, Ty, Loc, AssumptionLoc, Alignment, 2371 OffsetValue, TheCheck, Assumption); 2372 } 2373 2374 void CodeGenFunction::emitAlignmentAssumption(llvm::Value *PtrValue, 2375 const Expr *E, 2376 SourceLocation AssumptionLoc, 2377 llvm::Value *Alignment, 2378 llvm::Value *OffsetValue) { 2379 if (auto *CE = dyn_cast<CastExpr>(E)) 2380 E = CE->getSubExprAsWritten(); 2381 QualType Ty = E->getType(); 2382 SourceLocation Loc = E->getExprLoc(); 2383 2384 emitAlignmentAssumption(PtrValue, Ty, Loc, AssumptionLoc, Alignment, 2385 OffsetValue); 2386 } 2387 2388 llvm::Value *CodeGenFunction::EmitAnnotationCall(llvm::Function *AnnotationFn, 2389 llvm::Value *AnnotatedVal, 2390 StringRef AnnotationStr, 2391 SourceLocation Location, 2392 const AnnotateAttr *Attr) { 2393 SmallVector<llvm::Value *, 5> Args = { 2394 AnnotatedVal, 2395 Builder.CreateBitCast(CGM.EmitAnnotationString(AnnotationStr), Int8PtrTy), 2396 Builder.CreateBitCast(CGM.EmitAnnotationUnit(Location), Int8PtrTy), 2397 CGM.EmitAnnotationLineNo(Location), 2398 }; 2399 if (Attr) 2400 Args.push_back(CGM.EmitAnnotationArgs(Attr)); 2401 return Builder.CreateCall(AnnotationFn, Args); 2402 } 2403 2404 void CodeGenFunction::EmitVarAnnotations(const VarDecl *D, llvm::Value *V) { 2405 assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute"); 2406 // FIXME We create a new bitcast for every annotation because that's what 2407 // llvm-gcc was doing. 2408 for (const auto *I : D->specific_attrs<AnnotateAttr>()) 2409 EmitAnnotationCall(CGM.getIntrinsic(llvm::Intrinsic::var_annotation), 2410 Builder.CreateBitCast(V, CGM.Int8PtrTy, V->getName()), 2411 I->getAnnotation(), D->getLocation(), I); 2412 } 2413 2414 Address CodeGenFunction::EmitFieldAnnotations(const FieldDecl *D, 2415 Address Addr) { 2416 assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute"); 2417 llvm::Value *V = Addr.getPointer(); 2418 llvm::Type *VTy = V->getType(); 2419 auto *PTy = dyn_cast<llvm::PointerType>(VTy); 2420 unsigned AS = PTy ? PTy->getAddressSpace() : 0; 2421 llvm::PointerType *IntrinTy = 2422 llvm::PointerType::getWithSamePointeeType(CGM.Int8PtrTy, AS); 2423 llvm::Function *F = 2424 CGM.getIntrinsic(llvm::Intrinsic::ptr_annotation, IntrinTy); 2425 2426 for (const auto *I : D->specific_attrs<AnnotateAttr>()) { 2427 // FIXME Always emit the cast inst so we can differentiate between 2428 // annotation on the first field of a struct and annotation on the struct 2429 // itself. 2430 if (VTy != IntrinTy) 2431 V = Builder.CreateBitCast(V, IntrinTy); 2432 V = EmitAnnotationCall(F, V, I->getAnnotation(), D->getLocation(), I); 2433 V = Builder.CreateBitCast(V, VTy); 2434 } 2435 2436 return Address(V, Addr.getAlignment()); 2437 } 2438 2439 CodeGenFunction::CGCapturedStmtInfo::~CGCapturedStmtInfo() { } 2440 2441 CodeGenFunction::SanitizerScope::SanitizerScope(CodeGenFunction *CGF) 2442 : CGF(CGF) { 2443 assert(!CGF->IsSanitizerScope); 2444 CGF->IsSanitizerScope = true; 2445 } 2446 2447 CodeGenFunction::SanitizerScope::~SanitizerScope() { 2448 CGF->IsSanitizerScope = false; 2449 } 2450 2451 void CodeGenFunction::InsertHelper(llvm::Instruction *I, 2452 const llvm::Twine &Name, 2453 llvm::BasicBlock *BB, 2454 llvm::BasicBlock::iterator InsertPt) const { 2455 LoopStack.InsertHelper(I); 2456 if (IsSanitizerScope) 2457 CGM.getSanitizerMetadata()->disableSanitizerForInstruction(I); 2458 } 2459 2460 void CGBuilderInserter::InsertHelper( 2461 llvm::Instruction *I, const llvm::Twine &Name, llvm::BasicBlock *BB, 2462 llvm::BasicBlock::iterator InsertPt) const { 2463 llvm::IRBuilderDefaultInserter::InsertHelper(I, Name, BB, InsertPt); 2464 if (CGF) 2465 CGF->InsertHelper(I, Name, BB, InsertPt); 2466 } 2467 2468 // Emits an error if we don't have a valid set of target features for the 2469 // called function. 2470 void CodeGenFunction::checkTargetFeatures(const CallExpr *E, 2471 const FunctionDecl *TargetDecl) { 2472 return checkTargetFeatures(E->getBeginLoc(), TargetDecl); 2473 } 2474 2475 // Emits an error if we don't have a valid set of target features for the 2476 // called function. 2477 void CodeGenFunction::checkTargetFeatures(SourceLocation Loc, 2478 const FunctionDecl *TargetDecl) { 2479 // Early exit if this is an indirect call. 2480 if (!TargetDecl) 2481 return; 2482 2483 // Get the current enclosing function if it exists. If it doesn't 2484 // we can't check the target features anyhow. 2485 const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(CurCodeDecl); 2486 if (!FD) 2487 return; 2488 2489 // Grab the required features for the call. For a builtin this is listed in 2490 // the td file with the default cpu, for an always_inline function this is any 2491 // listed cpu and any listed features. 2492 unsigned BuiltinID = TargetDecl->getBuiltinID(); 2493 std::string MissingFeature; 2494 llvm::StringMap<bool> CallerFeatureMap; 2495 CGM.getContext().getFunctionFeatureMap(CallerFeatureMap, FD); 2496 if (BuiltinID) { 2497 StringRef FeatureList( 2498 CGM.getContext().BuiltinInfo.getRequiredFeatures(BuiltinID)); 2499 // Return if the builtin doesn't have any required features. 2500 if (FeatureList.empty()) 2501 return; 2502 assert(FeatureList.find(' ') == StringRef::npos && 2503 "Space in feature list"); 2504 TargetFeatures TF(CallerFeatureMap); 2505 if (!TF.hasRequiredFeatures(FeatureList)) 2506 CGM.getDiags().Report(Loc, diag::err_builtin_needs_feature) 2507 << TargetDecl->getDeclName() << FeatureList; 2508 } else if (!TargetDecl->isMultiVersion() && 2509 TargetDecl->hasAttr<TargetAttr>()) { 2510 // Get the required features for the callee. 2511 2512 const TargetAttr *TD = TargetDecl->getAttr<TargetAttr>(); 2513 ParsedTargetAttr ParsedAttr = 2514 CGM.getContext().filterFunctionTargetAttrs(TD); 2515 2516 SmallVector<StringRef, 1> ReqFeatures; 2517 llvm::StringMap<bool> CalleeFeatureMap; 2518 CGM.getContext().getFunctionFeatureMap(CalleeFeatureMap, TargetDecl); 2519 2520 for (const auto &F : ParsedAttr.Features) { 2521 if (F[0] == '+' && CalleeFeatureMap.lookup(F.substr(1))) 2522 ReqFeatures.push_back(StringRef(F).substr(1)); 2523 } 2524 2525 for (const auto &F : CalleeFeatureMap) { 2526 // Only positive features are "required". 2527 if (F.getValue()) 2528 ReqFeatures.push_back(F.getKey()); 2529 } 2530 if (!llvm::all_of(ReqFeatures, [&](StringRef Feature) { 2531 if (!CallerFeatureMap.lookup(Feature)) { 2532 MissingFeature = Feature.str(); 2533 return false; 2534 } 2535 return true; 2536 })) 2537 CGM.getDiags().Report(Loc, diag::err_function_needs_feature) 2538 << FD->getDeclName() << TargetDecl->getDeclName() << MissingFeature; 2539 } 2540 } 2541 2542 void CodeGenFunction::EmitSanitizerStatReport(llvm::SanitizerStatKind SSK) { 2543 if (!CGM.getCodeGenOpts().SanitizeStats) 2544 return; 2545 2546 llvm::IRBuilder<> IRB(Builder.GetInsertBlock(), Builder.GetInsertPoint()); 2547 IRB.SetCurrentDebugLocation(Builder.getCurrentDebugLocation()); 2548 CGM.getSanStats().create(IRB, SSK); 2549 } 2550 2551 llvm::Value * 2552 CodeGenFunction::FormResolverCondition(const MultiVersionResolverOption &RO) { 2553 llvm::Value *Condition = nullptr; 2554 2555 if (!RO.Conditions.Architecture.empty()) 2556 Condition = EmitX86CpuIs(RO.Conditions.Architecture); 2557 2558 if (!RO.Conditions.Features.empty()) { 2559 llvm::Value *FeatureCond = EmitX86CpuSupports(RO.Conditions.Features); 2560 Condition = 2561 Condition ? Builder.CreateAnd(Condition, FeatureCond) : FeatureCond; 2562 } 2563 return Condition; 2564 } 2565 2566 static void CreateMultiVersionResolverReturn(CodeGenModule &CGM, 2567 llvm::Function *Resolver, 2568 CGBuilderTy &Builder, 2569 llvm::Function *FuncToReturn, 2570 bool SupportsIFunc) { 2571 if (SupportsIFunc) { 2572 Builder.CreateRet(FuncToReturn); 2573 return; 2574 } 2575 2576 llvm::SmallVector<llvm::Value *, 10> Args; 2577 llvm::for_each(Resolver->args(), 2578 [&](llvm::Argument &Arg) { Args.push_back(&Arg); }); 2579 2580 llvm::CallInst *Result = Builder.CreateCall(FuncToReturn, Args); 2581 Result->setTailCallKind(llvm::CallInst::TCK_MustTail); 2582 2583 if (Resolver->getReturnType()->isVoidTy()) 2584 Builder.CreateRetVoid(); 2585 else 2586 Builder.CreateRet(Result); 2587 } 2588 2589 void CodeGenFunction::EmitMultiVersionResolver( 2590 llvm::Function *Resolver, ArrayRef<MultiVersionResolverOption> Options) { 2591 assert(getContext().getTargetInfo().getTriple().isX86() && 2592 "Only implemented for x86 targets"); 2593 2594 bool SupportsIFunc = getContext().getTargetInfo().supportsIFunc(); 2595 2596 // Main function's basic block. 2597 llvm::BasicBlock *CurBlock = createBasicBlock("resolver_entry", Resolver); 2598 Builder.SetInsertPoint(CurBlock); 2599 EmitX86CpuInit(); 2600 2601 for (const MultiVersionResolverOption &RO : Options) { 2602 Builder.SetInsertPoint(CurBlock); 2603 llvm::Value *Condition = FormResolverCondition(RO); 2604 2605 // The 'default' or 'generic' case. 2606 if (!Condition) { 2607 assert(&RO == Options.end() - 1 && 2608 "Default or Generic case must be last"); 2609 CreateMultiVersionResolverReturn(CGM, Resolver, Builder, RO.Function, 2610 SupportsIFunc); 2611 return; 2612 } 2613 2614 llvm::BasicBlock *RetBlock = createBasicBlock("resolver_return", Resolver); 2615 CGBuilderTy RetBuilder(*this, RetBlock); 2616 CreateMultiVersionResolverReturn(CGM, Resolver, RetBuilder, RO.Function, 2617 SupportsIFunc); 2618 CurBlock = createBasicBlock("resolver_else", Resolver); 2619 Builder.CreateCondBr(Condition, RetBlock, CurBlock); 2620 } 2621 2622 // If no generic/default, emit an unreachable. 2623 Builder.SetInsertPoint(CurBlock); 2624 llvm::CallInst *TrapCall = EmitTrapCall(llvm::Intrinsic::trap); 2625 TrapCall->setDoesNotReturn(); 2626 TrapCall->setDoesNotThrow(); 2627 Builder.CreateUnreachable(); 2628 Builder.ClearInsertionPoint(); 2629 } 2630 2631 // Loc - where the diagnostic will point, where in the source code this 2632 // alignment has failed. 2633 // SecondaryLoc - if present (will be present if sufficiently different from 2634 // Loc), the diagnostic will additionally point a "Note:" to this location. 2635 // It should be the location where the __attribute__((assume_aligned)) 2636 // was written e.g. 2637 void CodeGenFunction::emitAlignmentAssumptionCheck( 2638 llvm::Value *Ptr, QualType Ty, SourceLocation Loc, 2639 SourceLocation SecondaryLoc, llvm::Value *Alignment, 2640 llvm::Value *OffsetValue, llvm::Value *TheCheck, 2641 llvm::Instruction *Assumption) { 2642 assert(Assumption && isa<llvm::CallInst>(Assumption) && 2643 cast<llvm::CallInst>(Assumption)->getCalledOperand() == 2644 llvm::Intrinsic::getDeclaration( 2645 Builder.GetInsertBlock()->getParent()->getParent(), 2646 llvm::Intrinsic::assume) && 2647 "Assumption should be a call to llvm.assume()."); 2648 assert(&(Builder.GetInsertBlock()->back()) == Assumption && 2649 "Assumption should be the last instruction of the basic block, " 2650 "since the basic block is still being generated."); 2651 2652 if (!SanOpts.has(SanitizerKind::Alignment)) 2653 return; 2654 2655 // Don't check pointers to volatile data. The behavior here is implementation- 2656 // defined. 2657 if (Ty->getPointeeType().isVolatileQualified()) 2658 return; 2659 2660 // We need to temorairly remove the assumption so we can insert the 2661 // sanitizer check before it, else the check will be dropped by optimizations. 2662 Assumption->removeFromParent(); 2663 2664 { 2665 SanitizerScope SanScope(this); 2666 2667 if (!OffsetValue) 2668 OffsetValue = Builder.getInt1(0); // no offset. 2669 2670 llvm::Constant *StaticData[] = {EmitCheckSourceLocation(Loc), 2671 EmitCheckSourceLocation(SecondaryLoc), 2672 EmitCheckTypeDescriptor(Ty)}; 2673 llvm::Value *DynamicData[] = {EmitCheckValue(Ptr), 2674 EmitCheckValue(Alignment), 2675 EmitCheckValue(OffsetValue)}; 2676 EmitCheck({std::make_pair(TheCheck, SanitizerKind::Alignment)}, 2677 SanitizerHandler::AlignmentAssumption, StaticData, DynamicData); 2678 } 2679 2680 // We are now in the (new, empty) "cont" basic block. 2681 // Reintroduce the assumption. 2682 Builder.Insert(Assumption); 2683 // FIXME: Assumption still has it's original basic block as it's Parent. 2684 } 2685 2686 llvm::DebugLoc CodeGenFunction::SourceLocToDebugLoc(SourceLocation Location) { 2687 if (CGDebugInfo *DI = getDebugInfo()) 2688 return DI->SourceLocToDebugLoc(Location); 2689 2690 return llvm::DebugLoc(); 2691 } 2692 2693 llvm::Value * 2694 CodeGenFunction::emitCondLikelihoodViaExpectIntrinsic(llvm::Value *Cond, 2695 Stmt::Likelihood LH) { 2696 switch (LH) { 2697 case Stmt::LH_None: 2698 return Cond; 2699 case Stmt::LH_Likely: 2700 case Stmt::LH_Unlikely: 2701 // Don't generate llvm.expect on -O0 as the backend won't use it for 2702 // anything. 2703 if (CGM.getCodeGenOpts().OptimizationLevel == 0) 2704 return Cond; 2705 llvm::Type *CondTy = Cond->getType(); 2706 assert(CondTy->isIntegerTy(1) && "expecting condition to be a boolean"); 2707 llvm::Function *FnExpect = 2708 CGM.getIntrinsic(llvm::Intrinsic::expect, CondTy); 2709 llvm::Value *ExpectedValueOfCond = 2710 llvm::ConstantInt::getBool(CondTy, LH == Stmt::LH_Likely); 2711 return Builder.CreateCall(FnExpect, {Cond, ExpectedValueOfCond}, 2712 Cond->getName() + ".expval"); 2713 } 2714 llvm_unreachable("Unknown Likelihood"); 2715 } 2716