xref: /llvm-project/clang/lib/CodeGen/CodeGenFunction.cpp (revision 0d76d4833dd2815e0b1c786250f474d222f6a0a1)
1 //===--- CodeGenFunction.cpp - Emit LLVM Code from ASTs for a Function ----===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This coordinates the per-function state used while generating code.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "CodeGenFunction.h"
14 #include "CGBlocks.h"
15 #include "CGCUDARuntime.h"
16 #include "CGCXXABI.h"
17 #include "CGCleanup.h"
18 #include "CGDebugInfo.h"
19 #include "CGOpenMPRuntime.h"
20 #include "CodeGenModule.h"
21 #include "CodeGenPGO.h"
22 #include "TargetInfo.h"
23 #include "clang/AST/ASTContext.h"
24 #include "clang/AST/ASTLambda.h"
25 #include "clang/AST/Attr.h"
26 #include "clang/AST/Decl.h"
27 #include "clang/AST/DeclCXX.h"
28 #include "clang/AST/Expr.h"
29 #include "clang/AST/StmtCXX.h"
30 #include "clang/AST/StmtObjC.h"
31 #include "clang/Basic/Builtins.h"
32 #include "clang/Basic/CodeGenOptions.h"
33 #include "clang/Basic/TargetInfo.h"
34 #include "clang/CodeGen/CGFunctionInfo.h"
35 #include "clang/Frontend/FrontendDiagnostic.h"
36 #include "llvm/ADT/ArrayRef.h"
37 #include "llvm/Frontend/OpenMP/OMPIRBuilder.h"
38 #include "llvm/IR/DataLayout.h"
39 #include "llvm/IR/Dominators.h"
40 #include "llvm/IR/FPEnv.h"
41 #include "llvm/IR/IntrinsicInst.h"
42 #include "llvm/IR/Intrinsics.h"
43 #include "llvm/IR/MDBuilder.h"
44 #include "llvm/IR/Operator.h"
45 #include "llvm/Support/CRC.h"
46 #include "llvm/Transforms/Scalar/LowerExpectIntrinsic.h"
47 #include "llvm/Transforms/Utils/PromoteMemToReg.h"
48 using namespace clang;
49 using namespace CodeGen;
50 
51 /// shouldEmitLifetimeMarkers - Decide whether we need emit the life-time
52 /// markers.
53 static bool shouldEmitLifetimeMarkers(const CodeGenOptions &CGOpts,
54                                       const LangOptions &LangOpts) {
55   if (CGOpts.DisableLifetimeMarkers)
56     return false;
57 
58   // Sanitizers may use markers.
59   if (CGOpts.SanitizeAddressUseAfterScope ||
60       LangOpts.Sanitize.has(SanitizerKind::HWAddress) ||
61       LangOpts.Sanitize.has(SanitizerKind::Memory))
62     return true;
63 
64   // For now, only in optimized builds.
65   return CGOpts.OptimizationLevel != 0;
66 }
67 
68 CodeGenFunction::CodeGenFunction(CodeGenModule &cgm, bool suppressNewContext)
69     : CodeGenTypeCache(cgm), CGM(cgm), Target(cgm.getTarget()),
70       Builder(cgm, cgm.getModule().getContext(), llvm::ConstantFolder(),
71               CGBuilderInserterTy(this)),
72       SanOpts(CGM.getLangOpts().Sanitize), CurFPFeatures(CGM.getLangOpts()),
73       DebugInfo(CGM.getModuleDebugInfo()), PGO(cgm),
74       ShouldEmitLifetimeMarkers(
75           shouldEmitLifetimeMarkers(CGM.getCodeGenOpts(), CGM.getLangOpts())) {
76   if (!suppressNewContext)
77     CGM.getCXXABI().getMangleContext().startNewFunction();
78   EHStack.setCGF(this);
79 
80   SetFastMathFlags(CurFPFeatures);
81 }
82 
83 CodeGenFunction::~CodeGenFunction() {
84   assert(LifetimeExtendedCleanupStack.empty() && "failed to emit a cleanup");
85 
86   if (getLangOpts().OpenMP && CurFn)
87     CGM.getOpenMPRuntime().functionFinished(*this);
88 
89   // If we have an OpenMPIRBuilder we want to finalize functions (incl.
90   // outlining etc) at some point. Doing it once the function codegen is done
91   // seems to be a reasonable spot. We do it here, as opposed to the deletion
92   // time of the CodeGenModule, because we have to ensure the IR has not yet
93   // been "emitted" to the outside, thus, modifications are still sensible.
94   if (CGM.getLangOpts().OpenMPIRBuilder && CurFn)
95     CGM.getOpenMPRuntime().getOMPBuilder().finalize(CurFn);
96 }
97 
98 // Map the LangOption for exception behavior into
99 // the corresponding enum in the IR.
100 llvm::fp::ExceptionBehavior
101 clang::ToConstrainedExceptMD(LangOptions::FPExceptionModeKind Kind) {
102 
103   switch (Kind) {
104   case LangOptions::FPE_Ignore:  return llvm::fp::ebIgnore;
105   case LangOptions::FPE_MayTrap: return llvm::fp::ebMayTrap;
106   case LangOptions::FPE_Strict:  return llvm::fp::ebStrict;
107   }
108   llvm_unreachable("Unsupported FP Exception Behavior");
109 }
110 
111 void CodeGenFunction::SetFastMathFlags(FPOptions FPFeatures) {
112   llvm::FastMathFlags FMF;
113   FMF.setAllowReassoc(FPFeatures.getAllowFPReassociate());
114   FMF.setNoNaNs(FPFeatures.getNoHonorNaNs());
115   FMF.setNoInfs(FPFeatures.getNoHonorInfs());
116   FMF.setNoSignedZeros(FPFeatures.getNoSignedZero());
117   FMF.setAllowReciprocal(FPFeatures.getAllowReciprocal());
118   FMF.setApproxFunc(FPFeatures.getAllowApproxFunc());
119   FMF.setAllowContract(FPFeatures.allowFPContractAcrossStatement());
120   Builder.setFastMathFlags(FMF);
121 }
122 
123 CodeGenFunction::CGFPOptionsRAII::CGFPOptionsRAII(CodeGenFunction &CGF,
124                                                   const Expr *E)
125     : CGF(CGF) {
126   ConstructorHelper(E->getFPFeaturesInEffect(CGF.getLangOpts()));
127 }
128 
129 CodeGenFunction::CGFPOptionsRAII::CGFPOptionsRAII(CodeGenFunction &CGF,
130                                                   FPOptions FPFeatures)
131     : CGF(CGF) {
132   ConstructorHelper(FPFeatures);
133 }
134 
135 void CodeGenFunction::CGFPOptionsRAII::ConstructorHelper(FPOptions FPFeatures) {
136   OldFPFeatures = CGF.CurFPFeatures;
137   CGF.CurFPFeatures = FPFeatures;
138 
139   OldExcept = CGF.Builder.getDefaultConstrainedExcept();
140   OldRounding = CGF.Builder.getDefaultConstrainedRounding();
141 
142   if (OldFPFeatures == FPFeatures)
143     return;
144 
145   FMFGuard.emplace(CGF.Builder);
146 
147   llvm::RoundingMode NewRoundingBehavior =
148       static_cast<llvm::RoundingMode>(FPFeatures.getRoundingMode());
149   CGF.Builder.setDefaultConstrainedRounding(NewRoundingBehavior);
150   auto NewExceptionBehavior =
151       ToConstrainedExceptMD(static_cast<LangOptions::FPExceptionModeKind>(
152           FPFeatures.getFPExceptionMode()));
153   CGF.Builder.setDefaultConstrainedExcept(NewExceptionBehavior);
154 
155   CGF.SetFastMathFlags(FPFeatures);
156 
157   assert((CGF.CurFuncDecl == nullptr || CGF.Builder.getIsFPConstrained() ||
158           isa<CXXConstructorDecl>(CGF.CurFuncDecl) ||
159           isa<CXXDestructorDecl>(CGF.CurFuncDecl) ||
160           (NewExceptionBehavior == llvm::fp::ebIgnore &&
161            NewRoundingBehavior == llvm::RoundingMode::NearestTiesToEven)) &&
162          "FPConstrained should be enabled on entire function");
163 
164   auto mergeFnAttrValue = [&](StringRef Name, bool Value) {
165     auto OldValue =
166         CGF.CurFn->getFnAttribute(Name).getValueAsBool();
167     auto NewValue = OldValue & Value;
168     if (OldValue != NewValue)
169       CGF.CurFn->addFnAttr(Name, llvm::toStringRef(NewValue));
170   };
171   mergeFnAttrValue("no-infs-fp-math", FPFeatures.getNoHonorInfs());
172   mergeFnAttrValue("no-nans-fp-math", FPFeatures.getNoHonorNaNs());
173   mergeFnAttrValue("no-signed-zeros-fp-math", FPFeatures.getNoSignedZero());
174   mergeFnAttrValue("unsafe-fp-math", FPFeatures.getAllowFPReassociate() &&
175                                          FPFeatures.getAllowReciprocal() &&
176                                          FPFeatures.getAllowApproxFunc() &&
177                                          FPFeatures.getNoSignedZero());
178 }
179 
180 CodeGenFunction::CGFPOptionsRAII::~CGFPOptionsRAII() {
181   CGF.CurFPFeatures = OldFPFeatures;
182   CGF.Builder.setDefaultConstrainedExcept(OldExcept);
183   CGF.Builder.setDefaultConstrainedRounding(OldRounding);
184 }
185 
186 LValue CodeGenFunction::MakeNaturalAlignAddrLValue(llvm::Value *V, QualType T) {
187   LValueBaseInfo BaseInfo;
188   TBAAAccessInfo TBAAInfo;
189   CharUnits Alignment = CGM.getNaturalTypeAlignment(T, &BaseInfo, &TBAAInfo);
190   return LValue::MakeAddr(Address(V, Alignment), T, getContext(), BaseInfo,
191                           TBAAInfo);
192 }
193 
194 /// Given a value of type T* that may not be to a complete object,
195 /// construct an l-value with the natural pointee alignment of T.
196 LValue
197 CodeGenFunction::MakeNaturalAlignPointeeAddrLValue(llvm::Value *V, QualType T) {
198   LValueBaseInfo BaseInfo;
199   TBAAAccessInfo TBAAInfo;
200   CharUnits Align = CGM.getNaturalTypeAlignment(T, &BaseInfo, &TBAAInfo,
201                                                 /* forPointeeType= */ true);
202   return MakeAddrLValue(Address(V, Align), T, BaseInfo, TBAAInfo);
203 }
204 
205 
206 llvm::Type *CodeGenFunction::ConvertTypeForMem(QualType T) {
207   return CGM.getTypes().ConvertTypeForMem(T);
208 }
209 
210 llvm::Type *CodeGenFunction::ConvertType(QualType T) {
211   return CGM.getTypes().ConvertType(T);
212 }
213 
214 TypeEvaluationKind CodeGenFunction::getEvaluationKind(QualType type) {
215   type = type.getCanonicalType();
216   while (true) {
217     switch (type->getTypeClass()) {
218 #define TYPE(name, parent)
219 #define ABSTRACT_TYPE(name, parent)
220 #define NON_CANONICAL_TYPE(name, parent) case Type::name:
221 #define DEPENDENT_TYPE(name, parent) case Type::name:
222 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(name, parent) case Type::name:
223 #include "clang/AST/TypeNodes.inc"
224       llvm_unreachable("non-canonical or dependent type in IR-generation");
225 
226     case Type::Auto:
227     case Type::DeducedTemplateSpecialization:
228       llvm_unreachable("undeduced type in IR-generation");
229 
230     // Various scalar types.
231     case Type::Builtin:
232     case Type::Pointer:
233     case Type::BlockPointer:
234     case Type::LValueReference:
235     case Type::RValueReference:
236     case Type::MemberPointer:
237     case Type::Vector:
238     case Type::ExtVector:
239     case Type::ConstantMatrix:
240     case Type::FunctionProto:
241     case Type::FunctionNoProto:
242     case Type::Enum:
243     case Type::ObjCObjectPointer:
244     case Type::Pipe:
245     case Type::ExtInt:
246       return TEK_Scalar;
247 
248     // Complexes.
249     case Type::Complex:
250       return TEK_Complex;
251 
252     // Arrays, records, and Objective-C objects.
253     case Type::ConstantArray:
254     case Type::IncompleteArray:
255     case Type::VariableArray:
256     case Type::Record:
257     case Type::ObjCObject:
258     case Type::ObjCInterface:
259       return TEK_Aggregate;
260 
261     // We operate on atomic values according to their underlying type.
262     case Type::Atomic:
263       type = cast<AtomicType>(type)->getValueType();
264       continue;
265     }
266     llvm_unreachable("unknown type kind!");
267   }
268 }
269 
270 llvm::DebugLoc CodeGenFunction::EmitReturnBlock() {
271   // For cleanliness, we try to avoid emitting the return block for
272   // simple cases.
273   llvm::BasicBlock *CurBB = Builder.GetInsertBlock();
274 
275   if (CurBB) {
276     assert(!CurBB->getTerminator() && "Unexpected terminated block.");
277 
278     // We have a valid insert point, reuse it if it is empty or there are no
279     // explicit jumps to the return block.
280     if (CurBB->empty() || ReturnBlock.getBlock()->use_empty()) {
281       ReturnBlock.getBlock()->replaceAllUsesWith(CurBB);
282       delete ReturnBlock.getBlock();
283       ReturnBlock = JumpDest();
284     } else
285       EmitBlock(ReturnBlock.getBlock());
286     return llvm::DebugLoc();
287   }
288 
289   // Otherwise, if the return block is the target of a single direct
290   // branch then we can just put the code in that block instead. This
291   // cleans up functions which started with a unified return block.
292   if (ReturnBlock.getBlock()->hasOneUse()) {
293     llvm::BranchInst *BI =
294       dyn_cast<llvm::BranchInst>(*ReturnBlock.getBlock()->user_begin());
295     if (BI && BI->isUnconditional() &&
296         BI->getSuccessor(0) == ReturnBlock.getBlock()) {
297       // Record/return the DebugLoc of the simple 'return' expression to be used
298       // later by the actual 'ret' instruction.
299       llvm::DebugLoc Loc = BI->getDebugLoc();
300       Builder.SetInsertPoint(BI->getParent());
301       BI->eraseFromParent();
302       delete ReturnBlock.getBlock();
303       ReturnBlock = JumpDest();
304       return Loc;
305     }
306   }
307 
308   // FIXME: We are at an unreachable point, there is no reason to emit the block
309   // unless it has uses. However, we still need a place to put the debug
310   // region.end for now.
311 
312   EmitBlock(ReturnBlock.getBlock());
313   return llvm::DebugLoc();
314 }
315 
316 static void EmitIfUsed(CodeGenFunction &CGF, llvm::BasicBlock *BB) {
317   if (!BB) return;
318   if (!BB->use_empty())
319     return CGF.CurFn->getBasicBlockList().push_back(BB);
320   delete BB;
321 }
322 
323 void CodeGenFunction::FinishFunction(SourceLocation EndLoc) {
324   assert(BreakContinueStack.empty() &&
325          "mismatched push/pop in break/continue stack!");
326 
327   bool OnlySimpleReturnStmts = NumSimpleReturnExprs > 0
328     && NumSimpleReturnExprs == NumReturnExprs
329     && ReturnBlock.getBlock()->use_empty();
330   // Usually the return expression is evaluated before the cleanup
331   // code.  If the function contains only a simple return statement,
332   // such as a constant, the location before the cleanup code becomes
333   // the last useful breakpoint in the function, because the simple
334   // return expression will be evaluated after the cleanup code. To be
335   // safe, set the debug location for cleanup code to the location of
336   // the return statement.  Otherwise the cleanup code should be at the
337   // end of the function's lexical scope.
338   //
339   // If there are multiple branches to the return block, the branch
340   // instructions will get the location of the return statements and
341   // all will be fine.
342   if (CGDebugInfo *DI = getDebugInfo()) {
343     if (OnlySimpleReturnStmts)
344       DI->EmitLocation(Builder, LastStopPoint);
345     else
346       DI->EmitLocation(Builder, EndLoc);
347   }
348 
349   // Pop any cleanups that might have been associated with the
350   // parameters.  Do this in whatever block we're currently in; it's
351   // important to do this before we enter the return block or return
352   // edges will be *really* confused.
353   bool HasCleanups = EHStack.stable_begin() != PrologueCleanupDepth;
354   bool HasOnlyLifetimeMarkers =
355       HasCleanups && EHStack.containsOnlyLifetimeMarkers(PrologueCleanupDepth);
356   bool EmitRetDbgLoc = !HasCleanups || HasOnlyLifetimeMarkers;
357   if (HasCleanups) {
358     // Make sure the line table doesn't jump back into the body for
359     // the ret after it's been at EndLoc.
360     Optional<ApplyDebugLocation> AL;
361     if (CGDebugInfo *DI = getDebugInfo()) {
362       if (OnlySimpleReturnStmts)
363         DI->EmitLocation(Builder, EndLoc);
364       else
365         // We may not have a valid end location. Try to apply it anyway, and
366         // fall back to an artificial location if needed.
367         AL = ApplyDebugLocation::CreateDefaultArtificial(*this, EndLoc);
368     }
369 
370     PopCleanupBlocks(PrologueCleanupDepth);
371   }
372 
373   // Emit function epilog (to return).
374   llvm::DebugLoc Loc = EmitReturnBlock();
375 
376   if (ShouldInstrumentFunction()) {
377     if (CGM.getCodeGenOpts().InstrumentFunctions)
378       CurFn->addFnAttr("instrument-function-exit", "__cyg_profile_func_exit");
379     if (CGM.getCodeGenOpts().InstrumentFunctionsAfterInlining)
380       CurFn->addFnAttr("instrument-function-exit-inlined",
381                        "__cyg_profile_func_exit");
382   }
383 
384   if (ShouldSkipSanitizerInstrumentation())
385     CurFn->addFnAttr(llvm::Attribute::DisableSanitizerInstrumentation);
386 
387   // Emit debug descriptor for function end.
388   if (CGDebugInfo *DI = getDebugInfo())
389     DI->EmitFunctionEnd(Builder, CurFn);
390 
391   // Reset the debug location to that of the simple 'return' expression, if any
392   // rather than that of the end of the function's scope '}'.
393   ApplyDebugLocation AL(*this, Loc);
394   EmitFunctionEpilog(*CurFnInfo, EmitRetDbgLoc, EndLoc);
395   EmitEndEHSpec(CurCodeDecl);
396 
397   assert(EHStack.empty() &&
398          "did not remove all scopes from cleanup stack!");
399 
400   // If someone did an indirect goto, emit the indirect goto block at the end of
401   // the function.
402   if (IndirectBranch) {
403     EmitBlock(IndirectBranch->getParent());
404     Builder.ClearInsertionPoint();
405   }
406 
407   // If some of our locals escaped, insert a call to llvm.localescape in the
408   // entry block.
409   if (!EscapedLocals.empty()) {
410     // Invert the map from local to index into a simple vector. There should be
411     // no holes.
412     SmallVector<llvm::Value *, 4> EscapeArgs;
413     EscapeArgs.resize(EscapedLocals.size());
414     for (auto &Pair : EscapedLocals)
415       EscapeArgs[Pair.second] = Pair.first;
416     llvm::Function *FrameEscapeFn = llvm::Intrinsic::getDeclaration(
417         &CGM.getModule(), llvm::Intrinsic::localescape);
418     CGBuilderTy(*this, AllocaInsertPt).CreateCall(FrameEscapeFn, EscapeArgs);
419   }
420 
421   // Remove the AllocaInsertPt instruction, which is just a convenience for us.
422   llvm::Instruction *Ptr = AllocaInsertPt;
423   AllocaInsertPt = nullptr;
424   Ptr->eraseFromParent();
425 
426   // If someone took the address of a label but never did an indirect goto, we
427   // made a zero entry PHI node, which is illegal, zap it now.
428   if (IndirectBranch) {
429     llvm::PHINode *PN = cast<llvm::PHINode>(IndirectBranch->getAddress());
430     if (PN->getNumIncomingValues() == 0) {
431       PN->replaceAllUsesWith(llvm::UndefValue::get(PN->getType()));
432       PN->eraseFromParent();
433     }
434   }
435 
436   EmitIfUsed(*this, EHResumeBlock);
437   EmitIfUsed(*this, TerminateLandingPad);
438   EmitIfUsed(*this, TerminateHandler);
439   EmitIfUsed(*this, UnreachableBlock);
440 
441   for (const auto &FuncletAndParent : TerminateFunclets)
442     EmitIfUsed(*this, FuncletAndParent.second);
443 
444   if (CGM.getCodeGenOpts().EmitDeclMetadata)
445     EmitDeclMetadata();
446 
447   for (const auto &R : DeferredReplacements) {
448     if (llvm::Value *Old = R.first) {
449       Old->replaceAllUsesWith(R.second);
450       cast<llvm::Instruction>(Old)->eraseFromParent();
451     }
452   }
453   DeferredReplacements.clear();
454 
455   // Eliminate CleanupDestSlot alloca by replacing it with SSA values and
456   // PHIs if the current function is a coroutine. We don't do it for all
457   // functions as it may result in slight increase in numbers of instructions
458   // if compiled with no optimizations. We do it for coroutine as the lifetime
459   // of CleanupDestSlot alloca make correct coroutine frame building very
460   // difficult.
461   if (NormalCleanupDest.isValid() && isCoroutine()) {
462     llvm::DominatorTree DT(*CurFn);
463     llvm::PromoteMemToReg(
464         cast<llvm::AllocaInst>(NormalCleanupDest.getPointer()), DT);
465     NormalCleanupDest = Address::invalid();
466   }
467 
468   // Scan function arguments for vector width.
469   for (llvm::Argument &A : CurFn->args())
470     if (auto *VT = dyn_cast<llvm::VectorType>(A.getType()))
471       LargestVectorWidth =
472           std::max((uint64_t)LargestVectorWidth,
473                    VT->getPrimitiveSizeInBits().getKnownMinSize());
474 
475   // Update vector width based on return type.
476   if (auto *VT = dyn_cast<llvm::VectorType>(CurFn->getReturnType()))
477     LargestVectorWidth =
478         std::max((uint64_t)LargestVectorWidth,
479                  VT->getPrimitiveSizeInBits().getKnownMinSize());
480 
481   // Add the required-vector-width attribute. This contains the max width from:
482   // 1. min-vector-width attribute used in the source program.
483   // 2. Any builtins used that have a vector width specified.
484   // 3. Values passed in and out of inline assembly.
485   // 4. Width of vector arguments and return types for this function.
486   // 5. Width of vector aguments and return types for functions called by this
487   //    function.
488   CurFn->addFnAttr("min-legal-vector-width", llvm::utostr(LargestVectorWidth));
489 
490   // Add vscale_range attribute if appropriate.
491   Optional<std::pair<unsigned, unsigned>> VScaleRange =
492       getContext().getTargetInfo().getVScaleRange(getLangOpts());
493   if (VScaleRange) {
494     CurFn->addFnAttr(llvm::Attribute::getWithVScaleRangeArgs(
495         getLLVMContext(), VScaleRange.getValue().first,
496         VScaleRange.getValue().second));
497   }
498 
499   // If we generated an unreachable return block, delete it now.
500   if (ReturnBlock.isValid() && ReturnBlock.getBlock()->use_empty()) {
501     Builder.ClearInsertionPoint();
502     ReturnBlock.getBlock()->eraseFromParent();
503   }
504   if (ReturnValue.isValid()) {
505     auto *RetAlloca = dyn_cast<llvm::AllocaInst>(ReturnValue.getPointer());
506     if (RetAlloca && RetAlloca->use_empty()) {
507       RetAlloca->eraseFromParent();
508       ReturnValue = Address::invalid();
509     }
510   }
511 }
512 
513 /// ShouldInstrumentFunction - Return true if the current function should be
514 /// instrumented with __cyg_profile_func_* calls
515 bool CodeGenFunction::ShouldInstrumentFunction() {
516   if (!CGM.getCodeGenOpts().InstrumentFunctions &&
517       !CGM.getCodeGenOpts().InstrumentFunctionsAfterInlining &&
518       !CGM.getCodeGenOpts().InstrumentFunctionEntryBare)
519     return false;
520   if (!CurFuncDecl || CurFuncDecl->hasAttr<NoInstrumentFunctionAttr>())
521     return false;
522   return true;
523 }
524 
525 bool CodeGenFunction::ShouldSkipSanitizerInstrumentation() {
526   if (!CurFuncDecl)
527     return false;
528   return CurFuncDecl->hasAttr<DisableSanitizerInstrumentationAttr>();
529 }
530 
531 /// ShouldXRayInstrument - Return true if the current function should be
532 /// instrumented with XRay nop sleds.
533 bool CodeGenFunction::ShouldXRayInstrumentFunction() const {
534   return CGM.getCodeGenOpts().XRayInstrumentFunctions;
535 }
536 
537 /// AlwaysEmitXRayCustomEvents - Return true if we should emit IR for calls to
538 /// the __xray_customevent(...) builtin calls, when doing XRay instrumentation.
539 bool CodeGenFunction::AlwaysEmitXRayCustomEvents() const {
540   return CGM.getCodeGenOpts().XRayInstrumentFunctions &&
541          (CGM.getCodeGenOpts().XRayAlwaysEmitCustomEvents ||
542           CGM.getCodeGenOpts().XRayInstrumentationBundle.Mask ==
543               XRayInstrKind::Custom);
544 }
545 
546 bool CodeGenFunction::AlwaysEmitXRayTypedEvents() const {
547   return CGM.getCodeGenOpts().XRayInstrumentFunctions &&
548          (CGM.getCodeGenOpts().XRayAlwaysEmitTypedEvents ||
549           CGM.getCodeGenOpts().XRayInstrumentationBundle.Mask ==
550               XRayInstrKind::Typed);
551 }
552 
553 llvm::Constant *
554 CodeGenFunction::EncodeAddrForUseInPrologue(llvm::Function *F,
555                                             llvm::Constant *Addr) {
556   // Addresses stored in prologue data can't require run-time fixups and must
557   // be PC-relative. Run-time fixups are undesirable because they necessitate
558   // writable text segments, which are unsafe. And absolute addresses are
559   // undesirable because they break PIE mode.
560 
561   // Add a layer of indirection through a private global. Taking its address
562   // won't result in a run-time fixup, even if Addr has linkonce_odr linkage.
563   auto *GV = new llvm::GlobalVariable(CGM.getModule(), Addr->getType(),
564                                       /*isConstant=*/true,
565                                       llvm::GlobalValue::PrivateLinkage, Addr);
566 
567   // Create a PC-relative address.
568   auto *GOTAsInt = llvm::ConstantExpr::getPtrToInt(GV, IntPtrTy);
569   auto *FuncAsInt = llvm::ConstantExpr::getPtrToInt(F, IntPtrTy);
570   auto *PCRelAsInt = llvm::ConstantExpr::getSub(GOTAsInt, FuncAsInt);
571   return (IntPtrTy == Int32Ty)
572              ? PCRelAsInt
573              : llvm::ConstantExpr::getTrunc(PCRelAsInt, Int32Ty);
574 }
575 
576 llvm::Value *
577 CodeGenFunction::DecodeAddrUsedInPrologue(llvm::Value *F,
578                                           llvm::Value *EncodedAddr) {
579   // Reconstruct the address of the global.
580   auto *PCRelAsInt = Builder.CreateSExt(EncodedAddr, IntPtrTy);
581   auto *FuncAsInt = Builder.CreatePtrToInt(F, IntPtrTy, "func_addr.int");
582   auto *GOTAsInt = Builder.CreateAdd(PCRelAsInt, FuncAsInt, "global_addr.int");
583   auto *GOTAddr = Builder.CreateIntToPtr(GOTAsInt, Int8PtrPtrTy, "global_addr");
584 
585   // Load the original pointer through the global.
586   return Builder.CreateLoad(Address(GOTAddr, getPointerAlign()),
587                             "decoded_addr");
588 }
589 
590 void CodeGenFunction::EmitOpenCLKernelMetadata(const FunctionDecl *FD,
591                                                llvm::Function *Fn)
592 {
593   if (!FD->hasAttr<OpenCLKernelAttr>())
594     return;
595 
596   llvm::LLVMContext &Context = getLLVMContext();
597 
598   CGM.GenOpenCLArgMetadata(Fn, FD, this);
599 
600   if (const VecTypeHintAttr *A = FD->getAttr<VecTypeHintAttr>()) {
601     QualType HintQTy = A->getTypeHint();
602     const ExtVectorType *HintEltQTy = HintQTy->getAs<ExtVectorType>();
603     bool IsSignedInteger =
604         HintQTy->isSignedIntegerType() ||
605         (HintEltQTy && HintEltQTy->getElementType()->isSignedIntegerType());
606     llvm::Metadata *AttrMDArgs[] = {
607         llvm::ConstantAsMetadata::get(llvm::UndefValue::get(
608             CGM.getTypes().ConvertType(A->getTypeHint()))),
609         llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
610             llvm::IntegerType::get(Context, 32),
611             llvm::APInt(32, (uint64_t)(IsSignedInteger ? 1 : 0))))};
612     Fn->setMetadata("vec_type_hint", llvm::MDNode::get(Context, AttrMDArgs));
613   }
614 
615   if (const WorkGroupSizeHintAttr *A = FD->getAttr<WorkGroupSizeHintAttr>()) {
616     llvm::Metadata *AttrMDArgs[] = {
617         llvm::ConstantAsMetadata::get(Builder.getInt32(A->getXDim())),
618         llvm::ConstantAsMetadata::get(Builder.getInt32(A->getYDim())),
619         llvm::ConstantAsMetadata::get(Builder.getInt32(A->getZDim()))};
620     Fn->setMetadata("work_group_size_hint", llvm::MDNode::get(Context, AttrMDArgs));
621   }
622 
623   if (const ReqdWorkGroupSizeAttr *A = FD->getAttr<ReqdWorkGroupSizeAttr>()) {
624     llvm::Metadata *AttrMDArgs[] = {
625         llvm::ConstantAsMetadata::get(Builder.getInt32(A->getXDim())),
626         llvm::ConstantAsMetadata::get(Builder.getInt32(A->getYDim())),
627         llvm::ConstantAsMetadata::get(Builder.getInt32(A->getZDim()))};
628     Fn->setMetadata("reqd_work_group_size", llvm::MDNode::get(Context, AttrMDArgs));
629   }
630 
631   if (const OpenCLIntelReqdSubGroupSizeAttr *A =
632           FD->getAttr<OpenCLIntelReqdSubGroupSizeAttr>()) {
633     llvm::Metadata *AttrMDArgs[] = {
634         llvm::ConstantAsMetadata::get(Builder.getInt32(A->getSubGroupSize()))};
635     Fn->setMetadata("intel_reqd_sub_group_size",
636                     llvm::MDNode::get(Context, AttrMDArgs));
637   }
638 }
639 
640 /// Determine whether the function F ends with a return stmt.
641 static bool endsWithReturn(const Decl* F) {
642   const Stmt *Body = nullptr;
643   if (auto *FD = dyn_cast_or_null<FunctionDecl>(F))
644     Body = FD->getBody();
645   else if (auto *OMD = dyn_cast_or_null<ObjCMethodDecl>(F))
646     Body = OMD->getBody();
647 
648   if (auto *CS = dyn_cast_or_null<CompoundStmt>(Body)) {
649     auto LastStmt = CS->body_rbegin();
650     if (LastStmt != CS->body_rend())
651       return isa<ReturnStmt>(*LastStmt);
652   }
653   return false;
654 }
655 
656 void CodeGenFunction::markAsIgnoreThreadCheckingAtRuntime(llvm::Function *Fn) {
657   if (SanOpts.has(SanitizerKind::Thread)) {
658     Fn->addFnAttr("sanitize_thread_no_checking_at_run_time");
659     Fn->removeFnAttr(llvm::Attribute::SanitizeThread);
660   }
661 }
662 
663 /// Check if the return value of this function requires sanitization.
664 bool CodeGenFunction::requiresReturnValueCheck() const {
665   return requiresReturnValueNullabilityCheck() ||
666          (SanOpts.has(SanitizerKind::ReturnsNonnullAttribute) && CurCodeDecl &&
667           CurCodeDecl->getAttr<ReturnsNonNullAttr>());
668 }
669 
670 static bool matchesStlAllocatorFn(const Decl *D, const ASTContext &Ctx) {
671   auto *MD = dyn_cast_or_null<CXXMethodDecl>(D);
672   if (!MD || !MD->getDeclName().getAsIdentifierInfo() ||
673       !MD->getDeclName().getAsIdentifierInfo()->isStr("allocate") ||
674       (MD->getNumParams() != 1 && MD->getNumParams() != 2))
675     return false;
676 
677   if (MD->parameters()[0]->getType().getCanonicalType() != Ctx.getSizeType())
678     return false;
679 
680   if (MD->getNumParams() == 2) {
681     auto *PT = MD->parameters()[1]->getType()->getAs<PointerType>();
682     if (!PT || !PT->isVoidPointerType() ||
683         !PT->getPointeeType().isConstQualified())
684       return false;
685   }
686 
687   return true;
688 }
689 
690 /// Return the UBSan prologue signature for \p FD if one is available.
691 static llvm::Constant *getPrologueSignature(CodeGenModule &CGM,
692                                             const FunctionDecl *FD) {
693   if (const auto *MD = dyn_cast<CXXMethodDecl>(FD))
694     if (!MD->isStatic())
695       return nullptr;
696   return CGM.getTargetCodeGenInfo().getUBSanFunctionSignature(CGM);
697 }
698 
699 void CodeGenFunction::StartFunction(GlobalDecl GD, QualType RetTy,
700                                     llvm::Function *Fn,
701                                     const CGFunctionInfo &FnInfo,
702                                     const FunctionArgList &Args,
703                                     SourceLocation Loc,
704                                     SourceLocation StartLoc) {
705   assert(!CurFn &&
706          "Do not use a CodeGenFunction object for more than one function");
707 
708   const Decl *D = GD.getDecl();
709 
710   DidCallStackSave = false;
711   CurCodeDecl = D;
712   const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D);
713   if (FD && FD->usesSEHTry())
714     CurSEHParent = FD;
715   CurFuncDecl = (D ? D->getNonClosureContext() : nullptr);
716   FnRetTy = RetTy;
717   CurFn = Fn;
718   CurFnInfo = &FnInfo;
719   assert(CurFn->isDeclaration() && "Function already has body?");
720 
721   // If this function is ignored for any of the enabled sanitizers,
722   // disable the sanitizer for the function.
723   do {
724 #define SANITIZER(NAME, ID)                                                    \
725   if (SanOpts.empty())                                                         \
726     break;                                                                     \
727   if (SanOpts.has(SanitizerKind::ID))                                          \
728     if (CGM.isInNoSanitizeList(SanitizerKind::ID, Fn, Loc))                    \
729       SanOpts.set(SanitizerKind::ID, false);
730 
731 #include "clang/Basic/Sanitizers.def"
732 #undef SANITIZER
733   } while (0);
734 
735   if (D) {
736     bool NoSanitizeCoverage = false;
737 
738     for (auto Attr : D->specific_attrs<NoSanitizeAttr>()) {
739       // Apply the no_sanitize* attributes to SanOpts.
740       SanitizerMask mask = Attr->getMask();
741       SanOpts.Mask &= ~mask;
742       if (mask & SanitizerKind::Address)
743         SanOpts.set(SanitizerKind::KernelAddress, false);
744       if (mask & SanitizerKind::KernelAddress)
745         SanOpts.set(SanitizerKind::Address, false);
746       if (mask & SanitizerKind::HWAddress)
747         SanOpts.set(SanitizerKind::KernelHWAddress, false);
748       if (mask & SanitizerKind::KernelHWAddress)
749         SanOpts.set(SanitizerKind::HWAddress, false);
750 
751       // SanitizeCoverage is not handled by SanOpts.
752       if (Attr->hasCoverage())
753         NoSanitizeCoverage = true;
754     }
755 
756     if (NoSanitizeCoverage && CGM.getCodeGenOpts().hasSanitizeCoverage())
757       Fn->addFnAttr(llvm::Attribute::NoSanitizeCoverage);
758   }
759 
760   // Apply sanitizer attributes to the function.
761   if (SanOpts.hasOneOf(SanitizerKind::Address | SanitizerKind::KernelAddress))
762     Fn->addFnAttr(llvm::Attribute::SanitizeAddress);
763   if (SanOpts.hasOneOf(SanitizerKind::HWAddress | SanitizerKind::KernelHWAddress))
764     Fn->addFnAttr(llvm::Attribute::SanitizeHWAddress);
765   if (SanOpts.has(SanitizerKind::MemTag))
766     Fn->addFnAttr(llvm::Attribute::SanitizeMemTag);
767   if (SanOpts.has(SanitizerKind::Thread))
768     Fn->addFnAttr(llvm::Attribute::SanitizeThread);
769   if (SanOpts.hasOneOf(SanitizerKind::Memory | SanitizerKind::KernelMemory))
770     Fn->addFnAttr(llvm::Attribute::SanitizeMemory);
771   if (SanOpts.has(SanitizerKind::SafeStack))
772     Fn->addFnAttr(llvm::Attribute::SafeStack);
773   if (SanOpts.has(SanitizerKind::ShadowCallStack))
774     Fn->addFnAttr(llvm::Attribute::ShadowCallStack);
775 
776   // Apply fuzzing attribute to the function.
777   if (SanOpts.hasOneOf(SanitizerKind::Fuzzer | SanitizerKind::FuzzerNoLink))
778     Fn->addFnAttr(llvm::Attribute::OptForFuzzing);
779 
780   // Ignore TSan memory acesses from within ObjC/ObjC++ dealloc, initialize,
781   // .cxx_destruct, __destroy_helper_block_ and all of their calees at run time.
782   if (SanOpts.has(SanitizerKind::Thread)) {
783     if (const auto *OMD = dyn_cast_or_null<ObjCMethodDecl>(D)) {
784       IdentifierInfo *II = OMD->getSelector().getIdentifierInfoForSlot(0);
785       if (OMD->getMethodFamily() == OMF_dealloc ||
786           OMD->getMethodFamily() == OMF_initialize ||
787           (OMD->getSelector().isUnarySelector() && II->isStr(".cxx_destruct"))) {
788         markAsIgnoreThreadCheckingAtRuntime(Fn);
789       }
790     }
791   }
792 
793   // Ignore unrelated casts in STL allocate() since the allocator must cast
794   // from void* to T* before object initialization completes. Don't match on the
795   // namespace because not all allocators are in std::
796   if (D && SanOpts.has(SanitizerKind::CFIUnrelatedCast)) {
797     if (matchesStlAllocatorFn(D, getContext()))
798       SanOpts.Mask &= ~SanitizerKind::CFIUnrelatedCast;
799   }
800 
801   // Ignore null checks in coroutine functions since the coroutines passes
802   // are not aware of how to move the extra UBSan instructions across the split
803   // coroutine boundaries.
804   if (D && SanOpts.has(SanitizerKind::Null))
805     if (FD && FD->getBody() &&
806         FD->getBody()->getStmtClass() == Stmt::CoroutineBodyStmtClass)
807       SanOpts.Mask &= ~SanitizerKind::Null;
808 
809   // Apply xray attributes to the function (as a string, for now)
810   bool AlwaysXRayAttr = false;
811   if (const auto *XRayAttr = D ? D->getAttr<XRayInstrumentAttr>() : nullptr) {
812     if (CGM.getCodeGenOpts().XRayInstrumentationBundle.has(
813             XRayInstrKind::FunctionEntry) ||
814         CGM.getCodeGenOpts().XRayInstrumentationBundle.has(
815             XRayInstrKind::FunctionExit)) {
816       if (XRayAttr->alwaysXRayInstrument() && ShouldXRayInstrumentFunction()) {
817         Fn->addFnAttr("function-instrument", "xray-always");
818         AlwaysXRayAttr = true;
819       }
820       if (XRayAttr->neverXRayInstrument())
821         Fn->addFnAttr("function-instrument", "xray-never");
822       if (const auto *LogArgs = D->getAttr<XRayLogArgsAttr>())
823         if (ShouldXRayInstrumentFunction())
824           Fn->addFnAttr("xray-log-args",
825                         llvm::utostr(LogArgs->getArgumentCount()));
826     }
827   } else {
828     if (ShouldXRayInstrumentFunction() && !CGM.imbueXRayAttrs(Fn, Loc))
829       Fn->addFnAttr(
830           "xray-instruction-threshold",
831           llvm::itostr(CGM.getCodeGenOpts().XRayInstructionThreshold));
832   }
833 
834   if (ShouldXRayInstrumentFunction()) {
835     if (CGM.getCodeGenOpts().XRayIgnoreLoops)
836       Fn->addFnAttr("xray-ignore-loops");
837 
838     if (!CGM.getCodeGenOpts().XRayInstrumentationBundle.has(
839             XRayInstrKind::FunctionExit))
840       Fn->addFnAttr("xray-skip-exit");
841 
842     if (!CGM.getCodeGenOpts().XRayInstrumentationBundle.has(
843             XRayInstrKind::FunctionEntry))
844       Fn->addFnAttr("xray-skip-entry");
845 
846     auto FuncGroups = CGM.getCodeGenOpts().XRayTotalFunctionGroups;
847     if (FuncGroups > 1) {
848       auto FuncName = llvm::makeArrayRef<uint8_t>(
849           CurFn->getName().bytes_begin(), CurFn->getName().bytes_end());
850       auto Group = crc32(FuncName) % FuncGroups;
851       if (Group != CGM.getCodeGenOpts().XRaySelectedFunctionGroup &&
852           !AlwaysXRayAttr)
853         Fn->addFnAttr("function-instrument", "xray-never");
854     }
855   }
856 
857   if (CGM.getCodeGenOpts().getProfileInstr() != CodeGenOptions::ProfileNone)
858     if (CGM.isProfileInstrExcluded(Fn, Loc))
859       Fn->addFnAttr(llvm::Attribute::NoProfile);
860 
861   unsigned Count, Offset;
862   if (const auto *Attr =
863           D ? D->getAttr<PatchableFunctionEntryAttr>() : nullptr) {
864     Count = Attr->getCount();
865     Offset = Attr->getOffset();
866   } else {
867     Count = CGM.getCodeGenOpts().PatchableFunctionEntryCount;
868     Offset = CGM.getCodeGenOpts().PatchableFunctionEntryOffset;
869   }
870   if (Count && Offset <= Count) {
871     Fn->addFnAttr("patchable-function-entry", std::to_string(Count - Offset));
872     if (Offset)
873       Fn->addFnAttr("patchable-function-prefix", std::to_string(Offset));
874   }
875 
876   // Add no-jump-tables value.
877   if (CGM.getCodeGenOpts().NoUseJumpTables)
878     Fn->addFnAttr("no-jump-tables", "true");
879 
880   // Add no-inline-line-tables value.
881   if (CGM.getCodeGenOpts().NoInlineLineTables)
882     Fn->addFnAttr("no-inline-line-tables");
883 
884   // Add profile-sample-accurate value.
885   if (CGM.getCodeGenOpts().ProfileSampleAccurate)
886     Fn->addFnAttr("profile-sample-accurate");
887 
888   if (!CGM.getCodeGenOpts().SampleProfileFile.empty())
889     Fn->addFnAttr("use-sample-profile");
890 
891   if (D && D->hasAttr<CFICanonicalJumpTableAttr>())
892     Fn->addFnAttr("cfi-canonical-jump-table");
893 
894   if (D && D->hasAttr<NoProfileFunctionAttr>())
895     Fn->addFnAttr(llvm::Attribute::NoProfile);
896 
897   if (FD && getLangOpts().OpenCL) {
898     // Add metadata for a kernel function.
899     EmitOpenCLKernelMetadata(FD, Fn);
900   }
901 
902   // If we are checking function types, emit a function type signature as
903   // prologue data.
904   if (FD && getLangOpts().CPlusPlus && SanOpts.has(SanitizerKind::Function)) {
905     if (llvm::Constant *PrologueSig = getPrologueSignature(CGM, FD)) {
906       // Remove any (C++17) exception specifications, to allow calling e.g. a
907       // noexcept function through a non-noexcept pointer.
908       auto ProtoTy = getContext().getFunctionTypeWithExceptionSpec(
909           FD->getType(), EST_None);
910       llvm::Constant *FTRTTIConst =
911           CGM.GetAddrOfRTTIDescriptor(ProtoTy, /*ForEH=*/true);
912       llvm::Constant *FTRTTIConstEncoded =
913           EncodeAddrForUseInPrologue(Fn, FTRTTIConst);
914       llvm::Constant *PrologueStructElems[] = {PrologueSig, FTRTTIConstEncoded};
915       llvm::Constant *PrologueStructConst =
916           llvm::ConstantStruct::getAnon(PrologueStructElems, /*Packed=*/true);
917       Fn->setPrologueData(PrologueStructConst);
918     }
919   }
920 
921   // If we're checking nullability, we need to know whether we can check the
922   // return value. Initialize the flag to 'true' and refine it in EmitParmDecl.
923   if (SanOpts.has(SanitizerKind::NullabilityReturn)) {
924     auto Nullability = FnRetTy->getNullability(getContext());
925     if (Nullability && *Nullability == NullabilityKind::NonNull) {
926       if (!(SanOpts.has(SanitizerKind::ReturnsNonnullAttribute) &&
927             CurCodeDecl && CurCodeDecl->getAttr<ReturnsNonNullAttr>()))
928         RetValNullabilityPrecondition =
929             llvm::ConstantInt::getTrue(getLLVMContext());
930     }
931   }
932 
933   // If we're in C++ mode and the function name is "main", it is guaranteed
934   // to be norecurse by the standard (3.6.1.3 "The function main shall not be
935   // used within a program").
936   //
937   // OpenCL C 2.0 v2.2-11 s6.9.i:
938   //     Recursion is not supported.
939   //
940   // SYCL v1.2.1 s3.10:
941   //     kernels cannot include RTTI information, exception classes,
942   //     recursive code, virtual functions or make use of C++ libraries that
943   //     are not compiled for the device.
944   if (FD && ((getLangOpts().CPlusPlus && FD->isMain()) ||
945              getLangOpts().OpenCL || getLangOpts().SYCLIsDevice ||
946              (getLangOpts().CUDA && FD->hasAttr<CUDAGlobalAttr>())))
947     Fn->addFnAttr(llvm::Attribute::NoRecurse);
948 
949   llvm::RoundingMode RM = getLangOpts().getFPRoundingMode();
950   llvm::fp::ExceptionBehavior FPExceptionBehavior =
951       ToConstrainedExceptMD(getLangOpts().getFPExceptionMode());
952   Builder.setDefaultConstrainedRounding(RM);
953   Builder.setDefaultConstrainedExcept(FPExceptionBehavior);
954   if ((FD && (FD->UsesFPIntrin() || FD->hasAttr<StrictFPAttr>())) ||
955       (!FD && (FPExceptionBehavior != llvm::fp::ebIgnore ||
956                RM != llvm::RoundingMode::NearestTiesToEven))) {
957     Builder.setIsFPConstrained(true);
958     Fn->addFnAttr(llvm::Attribute::StrictFP);
959   }
960 
961   // If a custom alignment is used, force realigning to this alignment on
962   // any main function which certainly will need it.
963   if (FD && ((FD->isMain() || FD->isMSVCRTEntryPoint()) &&
964              CGM.getCodeGenOpts().StackAlignment))
965     Fn->addFnAttr("stackrealign");
966 
967   llvm::BasicBlock *EntryBB = createBasicBlock("entry", CurFn);
968 
969   // Create a marker to make it easy to insert allocas into the entryblock
970   // later.  Don't create this with the builder, because we don't want it
971   // folded.
972   llvm::Value *Undef = llvm::UndefValue::get(Int32Ty);
973   AllocaInsertPt = new llvm::BitCastInst(Undef, Int32Ty, "allocapt", EntryBB);
974 
975   ReturnBlock = getJumpDestInCurrentScope("return");
976 
977   Builder.SetInsertPoint(EntryBB);
978 
979   // If we're checking the return value, allocate space for a pointer to a
980   // precise source location of the checked return statement.
981   if (requiresReturnValueCheck()) {
982     ReturnLocation = CreateDefaultAlignTempAlloca(Int8PtrTy, "return.sloc.ptr");
983     InitTempAlloca(ReturnLocation, llvm::ConstantPointerNull::get(Int8PtrTy));
984   }
985 
986   // Emit subprogram debug descriptor.
987   if (CGDebugInfo *DI = getDebugInfo()) {
988     // Reconstruct the type from the argument list so that implicit parameters,
989     // such as 'this' and 'vtt', show up in the debug info. Preserve the calling
990     // convention.
991     DI->emitFunctionStart(GD, Loc, StartLoc,
992                           DI->getFunctionType(FD, RetTy, Args), CurFn,
993                           CurFuncIsThunk);
994   }
995 
996   if (ShouldInstrumentFunction()) {
997     if (CGM.getCodeGenOpts().InstrumentFunctions)
998       CurFn->addFnAttr("instrument-function-entry", "__cyg_profile_func_enter");
999     if (CGM.getCodeGenOpts().InstrumentFunctionsAfterInlining)
1000       CurFn->addFnAttr("instrument-function-entry-inlined",
1001                        "__cyg_profile_func_enter");
1002     if (CGM.getCodeGenOpts().InstrumentFunctionEntryBare)
1003       CurFn->addFnAttr("instrument-function-entry-inlined",
1004                        "__cyg_profile_func_enter_bare");
1005   }
1006 
1007   // Since emitting the mcount call here impacts optimizations such as function
1008   // inlining, we just add an attribute to insert a mcount call in backend.
1009   // The attribute "counting-function" is set to mcount function name which is
1010   // architecture dependent.
1011   if (CGM.getCodeGenOpts().InstrumentForProfiling) {
1012     // Calls to fentry/mcount should not be generated if function has
1013     // the no_instrument_function attribute.
1014     if (!CurFuncDecl || !CurFuncDecl->hasAttr<NoInstrumentFunctionAttr>()) {
1015       if (CGM.getCodeGenOpts().CallFEntry)
1016         Fn->addFnAttr("fentry-call", "true");
1017       else {
1018         Fn->addFnAttr("instrument-function-entry-inlined",
1019                       getTarget().getMCountName());
1020       }
1021       if (CGM.getCodeGenOpts().MNopMCount) {
1022         if (!CGM.getCodeGenOpts().CallFEntry)
1023           CGM.getDiags().Report(diag::err_opt_not_valid_without_opt)
1024             << "-mnop-mcount" << "-mfentry";
1025         Fn->addFnAttr("mnop-mcount");
1026       }
1027 
1028       if (CGM.getCodeGenOpts().RecordMCount) {
1029         if (!CGM.getCodeGenOpts().CallFEntry)
1030           CGM.getDiags().Report(diag::err_opt_not_valid_without_opt)
1031             << "-mrecord-mcount" << "-mfentry";
1032         Fn->addFnAttr("mrecord-mcount");
1033       }
1034     }
1035   }
1036 
1037   if (CGM.getCodeGenOpts().PackedStack) {
1038     if (getContext().getTargetInfo().getTriple().getArch() !=
1039         llvm::Triple::systemz)
1040       CGM.getDiags().Report(diag::err_opt_not_valid_on_target)
1041         << "-mpacked-stack";
1042     Fn->addFnAttr("packed-stack");
1043   }
1044 
1045   if (CGM.getCodeGenOpts().WarnStackSize != UINT_MAX &&
1046       !CGM.getDiags().isIgnored(diag::warn_fe_backend_frame_larger_than, Loc))
1047     Fn->addFnAttr("warn-stack-size",
1048                   std::to_string(CGM.getCodeGenOpts().WarnStackSize));
1049 
1050   if (RetTy->isVoidType()) {
1051     // Void type; nothing to return.
1052     ReturnValue = Address::invalid();
1053 
1054     // Count the implicit return.
1055     if (!endsWithReturn(D))
1056       ++NumReturnExprs;
1057   } else if (CurFnInfo->getReturnInfo().getKind() == ABIArgInfo::Indirect) {
1058     // Indirect return; emit returned value directly into sret slot.
1059     // This reduces code size, and affects correctness in C++.
1060     auto AI = CurFn->arg_begin();
1061     if (CurFnInfo->getReturnInfo().isSRetAfterThis())
1062       ++AI;
1063     ReturnValue = Address(&*AI, CurFnInfo->getReturnInfo().getIndirectAlign());
1064     if (!CurFnInfo->getReturnInfo().getIndirectByVal()) {
1065       ReturnValuePointer =
1066           CreateDefaultAlignTempAlloca(Int8PtrTy, "result.ptr");
1067       Builder.CreateStore(Builder.CreatePointerBitCastOrAddrSpaceCast(
1068                               ReturnValue.getPointer(), Int8PtrTy),
1069                           ReturnValuePointer);
1070     }
1071   } else if (CurFnInfo->getReturnInfo().getKind() == ABIArgInfo::InAlloca &&
1072              !hasScalarEvaluationKind(CurFnInfo->getReturnType())) {
1073     // Load the sret pointer from the argument struct and return into that.
1074     unsigned Idx = CurFnInfo->getReturnInfo().getInAllocaFieldIndex();
1075     llvm::Function::arg_iterator EI = CurFn->arg_end();
1076     --EI;
1077     llvm::Value *Addr = Builder.CreateStructGEP(
1078         EI->getType()->getPointerElementType(), &*EI, Idx);
1079     llvm::Type *Ty =
1080         cast<llvm::GetElementPtrInst>(Addr)->getResultElementType();
1081     ReturnValuePointer = Address(Addr, getPointerAlign());
1082     Addr = Builder.CreateAlignedLoad(Ty, Addr, getPointerAlign(), "agg.result");
1083     ReturnValue = Address(Addr, CGM.getNaturalTypeAlignment(RetTy));
1084   } else {
1085     ReturnValue = CreateIRTemp(RetTy, "retval");
1086 
1087     // Tell the epilog emitter to autorelease the result.  We do this
1088     // now so that various specialized functions can suppress it
1089     // during their IR-generation.
1090     if (getLangOpts().ObjCAutoRefCount &&
1091         !CurFnInfo->isReturnsRetained() &&
1092         RetTy->isObjCRetainableType())
1093       AutoreleaseResult = true;
1094   }
1095 
1096   EmitStartEHSpec(CurCodeDecl);
1097 
1098   PrologueCleanupDepth = EHStack.stable_begin();
1099 
1100   // Emit OpenMP specific initialization of the device functions.
1101   if (getLangOpts().OpenMP && CurCodeDecl)
1102     CGM.getOpenMPRuntime().emitFunctionProlog(*this, CurCodeDecl);
1103 
1104   EmitFunctionProlog(*CurFnInfo, CurFn, Args);
1105 
1106   if (D && isa<CXXMethodDecl>(D) && cast<CXXMethodDecl>(D)->isInstance()) {
1107     CGM.getCXXABI().EmitInstanceFunctionProlog(*this);
1108     const CXXMethodDecl *MD = cast<CXXMethodDecl>(D);
1109     if (MD->getParent()->isLambda() &&
1110         MD->getOverloadedOperator() == OO_Call) {
1111       // We're in a lambda; figure out the captures.
1112       MD->getParent()->getCaptureFields(LambdaCaptureFields,
1113                                         LambdaThisCaptureField);
1114       if (LambdaThisCaptureField) {
1115         // If the lambda captures the object referred to by '*this' - either by
1116         // value or by reference, make sure CXXThisValue points to the correct
1117         // object.
1118 
1119         // Get the lvalue for the field (which is a copy of the enclosing object
1120         // or contains the address of the enclosing object).
1121         LValue ThisFieldLValue = EmitLValueForLambdaField(LambdaThisCaptureField);
1122         if (!LambdaThisCaptureField->getType()->isPointerType()) {
1123           // If the enclosing object was captured by value, just use its address.
1124           CXXThisValue = ThisFieldLValue.getAddress(*this).getPointer();
1125         } else {
1126           // Load the lvalue pointed to by the field, since '*this' was captured
1127           // by reference.
1128           CXXThisValue =
1129               EmitLoadOfLValue(ThisFieldLValue, SourceLocation()).getScalarVal();
1130         }
1131       }
1132       for (auto *FD : MD->getParent()->fields()) {
1133         if (FD->hasCapturedVLAType()) {
1134           auto *ExprArg = EmitLoadOfLValue(EmitLValueForLambdaField(FD),
1135                                            SourceLocation()).getScalarVal();
1136           auto VAT = FD->getCapturedVLAType();
1137           VLASizeMap[VAT->getSizeExpr()] = ExprArg;
1138         }
1139       }
1140     } else {
1141       // Not in a lambda; just use 'this' from the method.
1142       // FIXME: Should we generate a new load for each use of 'this'?  The
1143       // fast register allocator would be happier...
1144       CXXThisValue = CXXABIThisValue;
1145     }
1146 
1147     // Check the 'this' pointer once per function, if it's available.
1148     if (CXXABIThisValue) {
1149       SanitizerSet SkippedChecks;
1150       SkippedChecks.set(SanitizerKind::ObjectSize, true);
1151       QualType ThisTy = MD->getThisType();
1152 
1153       // If this is the call operator of a lambda with no capture-default, it
1154       // may have a static invoker function, which may call this operator with
1155       // a null 'this' pointer.
1156       if (isLambdaCallOperator(MD) &&
1157           MD->getParent()->getLambdaCaptureDefault() == LCD_None)
1158         SkippedChecks.set(SanitizerKind::Null, true);
1159 
1160       EmitTypeCheck(
1161           isa<CXXConstructorDecl>(MD) ? TCK_ConstructorCall : TCK_MemberCall,
1162           Loc, CXXABIThisValue, ThisTy, CXXABIThisAlignment, SkippedChecks);
1163     }
1164   }
1165 
1166   // If any of the arguments have a variably modified type, make sure to
1167   // emit the type size.
1168   for (FunctionArgList::const_iterator i = Args.begin(), e = Args.end();
1169        i != e; ++i) {
1170     const VarDecl *VD = *i;
1171 
1172     // Dig out the type as written from ParmVarDecls; it's unclear whether
1173     // the standard (C99 6.9.1p10) requires this, but we're following the
1174     // precedent set by gcc.
1175     QualType Ty;
1176     if (const ParmVarDecl *PVD = dyn_cast<ParmVarDecl>(VD))
1177       Ty = PVD->getOriginalType();
1178     else
1179       Ty = VD->getType();
1180 
1181     if (Ty->isVariablyModifiedType())
1182       EmitVariablyModifiedType(Ty);
1183   }
1184   // Emit a location at the end of the prologue.
1185   if (CGDebugInfo *DI = getDebugInfo())
1186     DI->EmitLocation(Builder, StartLoc);
1187 
1188   // TODO: Do we need to handle this in two places like we do with
1189   // target-features/target-cpu?
1190   if (CurFuncDecl)
1191     if (const auto *VecWidth = CurFuncDecl->getAttr<MinVectorWidthAttr>())
1192       LargestVectorWidth = VecWidth->getVectorWidth();
1193 }
1194 
1195 void CodeGenFunction::EmitFunctionBody(const Stmt *Body) {
1196   incrementProfileCounter(Body);
1197   if (const CompoundStmt *S = dyn_cast<CompoundStmt>(Body))
1198     EmitCompoundStmtWithoutScope(*S);
1199   else
1200     EmitStmt(Body);
1201 
1202   // This is checked after emitting the function body so we know if there
1203   // are any permitted infinite loops.
1204   if (checkIfFunctionMustProgress())
1205     CurFn->addFnAttr(llvm::Attribute::MustProgress);
1206 }
1207 
1208 /// When instrumenting to collect profile data, the counts for some blocks
1209 /// such as switch cases need to not include the fall-through counts, so
1210 /// emit a branch around the instrumentation code. When not instrumenting,
1211 /// this just calls EmitBlock().
1212 void CodeGenFunction::EmitBlockWithFallThrough(llvm::BasicBlock *BB,
1213                                                const Stmt *S) {
1214   llvm::BasicBlock *SkipCountBB = nullptr;
1215   if (HaveInsertPoint() && CGM.getCodeGenOpts().hasProfileClangInstr()) {
1216     // When instrumenting for profiling, the fallthrough to certain
1217     // statements needs to skip over the instrumentation code so that we
1218     // get an accurate count.
1219     SkipCountBB = createBasicBlock("skipcount");
1220     EmitBranch(SkipCountBB);
1221   }
1222   EmitBlock(BB);
1223   uint64_t CurrentCount = getCurrentProfileCount();
1224   incrementProfileCounter(S);
1225   setCurrentProfileCount(getCurrentProfileCount() + CurrentCount);
1226   if (SkipCountBB)
1227     EmitBlock(SkipCountBB);
1228 }
1229 
1230 /// Tries to mark the given function nounwind based on the
1231 /// non-existence of any throwing calls within it.  We believe this is
1232 /// lightweight enough to do at -O0.
1233 static void TryMarkNoThrow(llvm::Function *F) {
1234   // LLVM treats 'nounwind' on a function as part of the type, so we
1235   // can't do this on functions that can be overwritten.
1236   if (F->isInterposable()) return;
1237 
1238   for (llvm::BasicBlock &BB : *F)
1239     for (llvm::Instruction &I : BB)
1240       if (I.mayThrow())
1241         return;
1242 
1243   F->setDoesNotThrow();
1244 }
1245 
1246 QualType CodeGenFunction::BuildFunctionArgList(GlobalDecl GD,
1247                                                FunctionArgList &Args) {
1248   const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
1249   QualType ResTy = FD->getReturnType();
1250 
1251   const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD);
1252   if (MD && MD->isInstance()) {
1253     if (CGM.getCXXABI().HasThisReturn(GD))
1254       ResTy = MD->getThisType();
1255     else if (CGM.getCXXABI().hasMostDerivedReturn(GD))
1256       ResTy = CGM.getContext().VoidPtrTy;
1257     CGM.getCXXABI().buildThisParam(*this, Args);
1258   }
1259 
1260   // The base version of an inheriting constructor whose constructed base is a
1261   // virtual base is not passed any arguments (because it doesn't actually call
1262   // the inherited constructor).
1263   bool PassedParams = true;
1264   if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(FD))
1265     if (auto Inherited = CD->getInheritedConstructor())
1266       PassedParams =
1267           getTypes().inheritingCtorHasParams(Inherited, GD.getCtorType());
1268 
1269   if (PassedParams) {
1270     for (auto *Param : FD->parameters()) {
1271       Args.push_back(Param);
1272       if (!Param->hasAttr<PassObjectSizeAttr>())
1273         continue;
1274 
1275       auto *Implicit = ImplicitParamDecl::Create(
1276           getContext(), Param->getDeclContext(), Param->getLocation(),
1277           /*Id=*/nullptr, getContext().getSizeType(), ImplicitParamDecl::Other);
1278       SizeArguments[Param] = Implicit;
1279       Args.push_back(Implicit);
1280     }
1281   }
1282 
1283   if (MD && (isa<CXXConstructorDecl>(MD) || isa<CXXDestructorDecl>(MD)))
1284     CGM.getCXXABI().addImplicitStructorParams(*this, ResTy, Args);
1285 
1286   return ResTy;
1287 }
1288 
1289 void CodeGenFunction::GenerateCode(GlobalDecl GD, llvm::Function *Fn,
1290                                    const CGFunctionInfo &FnInfo) {
1291   const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
1292   CurGD = GD;
1293 
1294   FunctionArgList Args;
1295   QualType ResTy = BuildFunctionArgList(GD, Args);
1296 
1297   // Check if we should generate debug info for this function.
1298   if (FD->hasAttr<NoDebugAttr>()) {
1299     // Clear non-distinct debug info that was possibly attached to the function
1300     // due to an earlier declaration without the nodebug attribute
1301     if (Fn)
1302       Fn->setSubprogram(nullptr);
1303     // Disable debug info indefinitely for this function
1304     DebugInfo = nullptr;
1305   }
1306 
1307   // The function might not have a body if we're generating thunks for a
1308   // function declaration.
1309   SourceRange BodyRange;
1310   if (Stmt *Body = FD->getBody())
1311     BodyRange = Body->getSourceRange();
1312   else
1313     BodyRange = FD->getLocation();
1314   CurEHLocation = BodyRange.getEnd();
1315 
1316   // Use the location of the start of the function to determine where
1317   // the function definition is located. By default use the location
1318   // of the declaration as the location for the subprogram. A function
1319   // may lack a declaration in the source code if it is created by code
1320   // gen. (examples: _GLOBAL__I_a, __cxx_global_array_dtor, thunk).
1321   SourceLocation Loc = FD->getLocation();
1322 
1323   // If this is a function specialization then use the pattern body
1324   // as the location for the function.
1325   if (const FunctionDecl *SpecDecl = FD->getTemplateInstantiationPattern())
1326     if (SpecDecl->hasBody(SpecDecl))
1327       Loc = SpecDecl->getLocation();
1328 
1329   Stmt *Body = FD->getBody();
1330 
1331   if (Body) {
1332     // Coroutines always emit lifetime markers.
1333     if (isa<CoroutineBodyStmt>(Body))
1334       ShouldEmitLifetimeMarkers = true;
1335 
1336     // Initialize helper which will detect jumps which can cause invalid
1337     // lifetime markers.
1338     if (ShouldEmitLifetimeMarkers)
1339       Bypasses.Init(Body);
1340   }
1341 
1342   // Emit the standard function prologue.
1343   StartFunction(GD, ResTy, Fn, FnInfo, Args, Loc, BodyRange.getBegin());
1344 
1345   // Save parameters for coroutine function.
1346   if (Body && isa_and_nonnull<CoroutineBodyStmt>(Body))
1347     for (const auto *ParamDecl : FD->parameters())
1348       FnArgs.push_back(ParamDecl);
1349 
1350   // Generate the body of the function.
1351   PGO.assignRegionCounters(GD, CurFn);
1352   if (isa<CXXDestructorDecl>(FD))
1353     EmitDestructorBody(Args);
1354   else if (isa<CXXConstructorDecl>(FD))
1355     EmitConstructorBody(Args);
1356   else if (getLangOpts().CUDA &&
1357            !getLangOpts().CUDAIsDevice &&
1358            FD->hasAttr<CUDAGlobalAttr>())
1359     CGM.getCUDARuntime().emitDeviceStub(*this, Args);
1360   else if (isa<CXXMethodDecl>(FD) &&
1361            cast<CXXMethodDecl>(FD)->isLambdaStaticInvoker()) {
1362     // The lambda static invoker function is special, because it forwards or
1363     // clones the body of the function call operator (but is actually static).
1364     EmitLambdaStaticInvokeBody(cast<CXXMethodDecl>(FD));
1365   } else if (FD->isDefaulted() && isa<CXXMethodDecl>(FD) &&
1366              (cast<CXXMethodDecl>(FD)->isCopyAssignmentOperator() ||
1367               cast<CXXMethodDecl>(FD)->isMoveAssignmentOperator())) {
1368     // Implicit copy-assignment gets the same special treatment as implicit
1369     // copy-constructors.
1370     emitImplicitAssignmentOperatorBody(Args);
1371   } else if (Body) {
1372     EmitFunctionBody(Body);
1373   } else
1374     llvm_unreachable("no definition for emitted function");
1375 
1376   // C++11 [stmt.return]p2:
1377   //   Flowing off the end of a function [...] results in undefined behavior in
1378   //   a value-returning function.
1379   // C11 6.9.1p12:
1380   //   If the '}' that terminates a function is reached, and the value of the
1381   //   function call is used by the caller, the behavior is undefined.
1382   if (getLangOpts().CPlusPlus && !FD->hasImplicitReturnZero() && !SawAsmBlock &&
1383       !FD->getReturnType()->isVoidType() && Builder.GetInsertBlock()) {
1384     bool ShouldEmitUnreachable =
1385         CGM.getCodeGenOpts().StrictReturn ||
1386         !CGM.MayDropFunctionReturn(FD->getASTContext(), FD->getReturnType());
1387     if (SanOpts.has(SanitizerKind::Return)) {
1388       SanitizerScope SanScope(this);
1389       llvm::Value *IsFalse = Builder.getFalse();
1390       EmitCheck(std::make_pair(IsFalse, SanitizerKind::Return),
1391                 SanitizerHandler::MissingReturn,
1392                 EmitCheckSourceLocation(FD->getLocation()), None);
1393     } else if (ShouldEmitUnreachable) {
1394       if (CGM.getCodeGenOpts().OptimizationLevel == 0)
1395         EmitTrapCall(llvm::Intrinsic::trap);
1396     }
1397     if (SanOpts.has(SanitizerKind::Return) || ShouldEmitUnreachable) {
1398       Builder.CreateUnreachable();
1399       Builder.ClearInsertionPoint();
1400     }
1401   }
1402 
1403   // Emit the standard function epilogue.
1404   FinishFunction(BodyRange.getEnd());
1405 
1406   // If we haven't marked the function nothrow through other means, do
1407   // a quick pass now to see if we can.
1408   if (!CurFn->doesNotThrow())
1409     TryMarkNoThrow(CurFn);
1410 }
1411 
1412 /// ContainsLabel - Return true if the statement contains a label in it.  If
1413 /// this statement is not executed normally, it not containing a label means
1414 /// that we can just remove the code.
1415 bool CodeGenFunction::ContainsLabel(const Stmt *S, bool IgnoreCaseStmts) {
1416   // Null statement, not a label!
1417   if (!S) return false;
1418 
1419   // If this is a label, we have to emit the code, consider something like:
1420   // if (0) {  ...  foo:  bar(); }  goto foo;
1421   //
1422   // TODO: If anyone cared, we could track __label__'s, since we know that you
1423   // can't jump to one from outside their declared region.
1424   if (isa<LabelStmt>(S))
1425     return true;
1426 
1427   // If this is a case/default statement, and we haven't seen a switch, we have
1428   // to emit the code.
1429   if (isa<SwitchCase>(S) && !IgnoreCaseStmts)
1430     return true;
1431 
1432   // If this is a switch statement, we want to ignore cases below it.
1433   if (isa<SwitchStmt>(S))
1434     IgnoreCaseStmts = true;
1435 
1436   // Scan subexpressions for verboten labels.
1437   for (const Stmt *SubStmt : S->children())
1438     if (ContainsLabel(SubStmt, IgnoreCaseStmts))
1439       return true;
1440 
1441   return false;
1442 }
1443 
1444 /// containsBreak - Return true if the statement contains a break out of it.
1445 /// If the statement (recursively) contains a switch or loop with a break
1446 /// inside of it, this is fine.
1447 bool CodeGenFunction::containsBreak(const Stmt *S) {
1448   // Null statement, not a label!
1449   if (!S) return false;
1450 
1451   // If this is a switch or loop that defines its own break scope, then we can
1452   // include it and anything inside of it.
1453   if (isa<SwitchStmt>(S) || isa<WhileStmt>(S) || isa<DoStmt>(S) ||
1454       isa<ForStmt>(S))
1455     return false;
1456 
1457   if (isa<BreakStmt>(S))
1458     return true;
1459 
1460   // Scan subexpressions for verboten breaks.
1461   for (const Stmt *SubStmt : S->children())
1462     if (containsBreak(SubStmt))
1463       return true;
1464 
1465   return false;
1466 }
1467 
1468 bool CodeGenFunction::mightAddDeclToScope(const Stmt *S) {
1469   if (!S) return false;
1470 
1471   // Some statement kinds add a scope and thus never add a decl to the current
1472   // scope. Note, this list is longer than the list of statements that might
1473   // have an unscoped decl nested within them, but this way is conservatively
1474   // correct even if more statement kinds are added.
1475   if (isa<IfStmt>(S) || isa<SwitchStmt>(S) || isa<WhileStmt>(S) ||
1476       isa<DoStmt>(S) || isa<ForStmt>(S) || isa<CompoundStmt>(S) ||
1477       isa<CXXForRangeStmt>(S) || isa<CXXTryStmt>(S) ||
1478       isa<ObjCForCollectionStmt>(S) || isa<ObjCAtTryStmt>(S))
1479     return false;
1480 
1481   if (isa<DeclStmt>(S))
1482     return true;
1483 
1484   for (const Stmt *SubStmt : S->children())
1485     if (mightAddDeclToScope(SubStmt))
1486       return true;
1487 
1488   return false;
1489 }
1490 
1491 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold
1492 /// to a constant, or if it does but contains a label, return false.  If it
1493 /// constant folds return true and set the boolean result in Result.
1494 bool CodeGenFunction::ConstantFoldsToSimpleInteger(const Expr *Cond,
1495                                                    bool &ResultBool,
1496                                                    bool AllowLabels) {
1497   llvm::APSInt ResultInt;
1498   if (!ConstantFoldsToSimpleInteger(Cond, ResultInt, AllowLabels))
1499     return false;
1500 
1501   ResultBool = ResultInt.getBoolValue();
1502   return true;
1503 }
1504 
1505 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold
1506 /// to a constant, or if it does but contains a label, return false.  If it
1507 /// constant folds return true and set the folded value.
1508 bool CodeGenFunction::ConstantFoldsToSimpleInteger(const Expr *Cond,
1509                                                    llvm::APSInt &ResultInt,
1510                                                    bool AllowLabels) {
1511   // FIXME: Rename and handle conversion of other evaluatable things
1512   // to bool.
1513   Expr::EvalResult Result;
1514   if (!Cond->EvaluateAsInt(Result, getContext()))
1515     return false;  // Not foldable, not integer or not fully evaluatable.
1516 
1517   llvm::APSInt Int = Result.Val.getInt();
1518   if (!AllowLabels && CodeGenFunction::ContainsLabel(Cond))
1519     return false;  // Contains a label.
1520 
1521   ResultInt = Int;
1522   return true;
1523 }
1524 
1525 /// Determine whether the given condition is an instrumentable condition
1526 /// (i.e. no "&&" or "||").
1527 bool CodeGenFunction::isInstrumentedCondition(const Expr *C) {
1528   // Bypass simplistic logical-NOT operator before determining whether the
1529   // condition contains any other logical operator.
1530   if (const UnaryOperator *UnOp = dyn_cast<UnaryOperator>(C->IgnoreParens()))
1531     if (UnOp->getOpcode() == UO_LNot)
1532       C = UnOp->getSubExpr();
1533 
1534   const BinaryOperator *BOp = dyn_cast<BinaryOperator>(C->IgnoreParens());
1535   return (!BOp || !BOp->isLogicalOp());
1536 }
1537 
1538 /// EmitBranchToCounterBlock - Emit a conditional branch to a new block that
1539 /// increments a profile counter based on the semantics of the given logical
1540 /// operator opcode.  This is used to instrument branch condition coverage for
1541 /// logical operators.
1542 void CodeGenFunction::EmitBranchToCounterBlock(
1543     const Expr *Cond, BinaryOperator::Opcode LOp, llvm::BasicBlock *TrueBlock,
1544     llvm::BasicBlock *FalseBlock, uint64_t TrueCount /* = 0 */,
1545     Stmt::Likelihood LH /* =None */, const Expr *CntrIdx /* = nullptr */) {
1546   // If not instrumenting, just emit a branch.
1547   bool InstrumentRegions = CGM.getCodeGenOpts().hasProfileClangInstr();
1548   if (!InstrumentRegions || !isInstrumentedCondition(Cond))
1549     return EmitBranchOnBoolExpr(Cond, TrueBlock, FalseBlock, TrueCount, LH);
1550 
1551   llvm::BasicBlock *ThenBlock = NULL;
1552   llvm::BasicBlock *ElseBlock = NULL;
1553   llvm::BasicBlock *NextBlock = NULL;
1554 
1555   // Create the block we'll use to increment the appropriate counter.
1556   llvm::BasicBlock *CounterIncrBlock = createBasicBlock("lop.rhscnt");
1557 
1558   // Set block pointers according to Logical-AND (BO_LAnd) semantics. This
1559   // means we need to evaluate the condition and increment the counter on TRUE:
1560   //
1561   // if (Cond)
1562   //   goto CounterIncrBlock;
1563   // else
1564   //   goto FalseBlock;
1565   //
1566   // CounterIncrBlock:
1567   //   Counter++;
1568   //   goto TrueBlock;
1569 
1570   if (LOp == BO_LAnd) {
1571     ThenBlock = CounterIncrBlock;
1572     ElseBlock = FalseBlock;
1573     NextBlock = TrueBlock;
1574   }
1575 
1576   // Set block pointers according to Logical-OR (BO_LOr) semantics. This means
1577   // we need to evaluate the condition and increment the counter on FALSE:
1578   //
1579   // if (Cond)
1580   //   goto TrueBlock;
1581   // else
1582   //   goto CounterIncrBlock;
1583   //
1584   // CounterIncrBlock:
1585   //   Counter++;
1586   //   goto FalseBlock;
1587 
1588   else if (LOp == BO_LOr) {
1589     ThenBlock = TrueBlock;
1590     ElseBlock = CounterIncrBlock;
1591     NextBlock = FalseBlock;
1592   } else {
1593     llvm_unreachable("Expected Opcode must be that of a Logical Operator");
1594   }
1595 
1596   // Emit Branch based on condition.
1597   EmitBranchOnBoolExpr(Cond, ThenBlock, ElseBlock, TrueCount, LH);
1598 
1599   // Emit the block containing the counter increment(s).
1600   EmitBlock(CounterIncrBlock);
1601 
1602   // Increment corresponding counter; if index not provided, use Cond as index.
1603   incrementProfileCounter(CntrIdx ? CntrIdx : Cond);
1604 
1605   // Go to the next block.
1606   EmitBranch(NextBlock);
1607 }
1608 
1609 /// EmitBranchOnBoolExpr - Emit a branch on a boolean condition (e.g. for an if
1610 /// statement) to the specified blocks.  Based on the condition, this might try
1611 /// to simplify the codegen of the conditional based on the branch.
1612 /// \param LH The value of the likelihood attribute on the True branch.
1613 void CodeGenFunction::EmitBranchOnBoolExpr(const Expr *Cond,
1614                                            llvm::BasicBlock *TrueBlock,
1615                                            llvm::BasicBlock *FalseBlock,
1616                                            uint64_t TrueCount,
1617                                            Stmt::Likelihood LH) {
1618   Cond = Cond->IgnoreParens();
1619 
1620   if (const BinaryOperator *CondBOp = dyn_cast<BinaryOperator>(Cond)) {
1621 
1622     // Handle X && Y in a condition.
1623     if (CondBOp->getOpcode() == BO_LAnd) {
1624       // If we have "1 && X", simplify the code.  "0 && X" would have constant
1625       // folded if the case was simple enough.
1626       bool ConstantBool = false;
1627       if (ConstantFoldsToSimpleInteger(CondBOp->getLHS(), ConstantBool) &&
1628           ConstantBool) {
1629         // br(1 && X) -> br(X).
1630         incrementProfileCounter(CondBOp);
1631         return EmitBranchToCounterBlock(CondBOp->getRHS(), BO_LAnd, TrueBlock,
1632                                         FalseBlock, TrueCount, LH);
1633       }
1634 
1635       // If we have "X && 1", simplify the code to use an uncond branch.
1636       // "X && 0" would have been constant folded to 0.
1637       if (ConstantFoldsToSimpleInteger(CondBOp->getRHS(), ConstantBool) &&
1638           ConstantBool) {
1639         // br(X && 1) -> br(X).
1640         return EmitBranchToCounterBlock(CondBOp->getLHS(), BO_LAnd, TrueBlock,
1641                                         FalseBlock, TrueCount, LH, CondBOp);
1642       }
1643 
1644       // Emit the LHS as a conditional.  If the LHS conditional is false, we
1645       // want to jump to the FalseBlock.
1646       llvm::BasicBlock *LHSTrue = createBasicBlock("land.lhs.true");
1647       // The counter tells us how often we evaluate RHS, and all of TrueCount
1648       // can be propagated to that branch.
1649       uint64_t RHSCount = getProfileCount(CondBOp->getRHS());
1650 
1651       ConditionalEvaluation eval(*this);
1652       {
1653         ApplyDebugLocation DL(*this, Cond);
1654         // Propagate the likelihood attribute like __builtin_expect
1655         // __builtin_expect(X && Y, 1) -> X and Y are likely
1656         // __builtin_expect(X && Y, 0) -> only Y is unlikely
1657         EmitBranchOnBoolExpr(CondBOp->getLHS(), LHSTrue, FalseBlock, RHSCount,
1658                              LH == Stmt::LH_Unlikely ? Stmt::LH_None : LH);
1659         EmitBlock(LHSTrue);
1660       }
1661 
1662       incrementProfileCounter(CondBOp);
1663       setCurrentProfileCount(getProfileCount(CondBOp->getRHS()));
1664 
1665       // Any temporaries created here are conditional.
1666       eval.begin(*this);
1667       EmitBranchToCounterBlock(CondBOp->getRHS(), BO_LAnd, TrueBlock,
1668                                FalseBlock, TrueCount, LH);
1669       eval.end(*this);
1670 
1671       return;
1672     }
1673 
1674     if (CondBOp->getOpcode() == BO_LOr) {
1675       // If we have "0 || X", simplify the code.  "1 || X" would have constant
1676       // folded if the case was simple enough.
1677       bool ConstantBool = false;
1678       if (ConstantFoldsToSimpleInteger(CondBOp->getLHS(), ConstantBool) &&
1679           !ConstantBool) {
1680         // br(0 || X) -> br(X).
1681         incrementProfileCounter(CondBOp);
1682         return EmitBranchToCounterBlock(CondBOp->getRHS(), BO_LOr, TrueBlock,
1683                                         FalseBlock, TrueCount, LH);
1684       }
1685 
1686       // If we have "X || 0", simplify the code to use an uncond branch.
1687       // "X || 1" would have been constant folded to 1.
1688       if (ConstantFoldsToSimpleInteger(CondBOp->getRHS(), ConstantBool) &&
1689           !ConstantBool) {
1690         // br(X || 0) -> br(X).
1691         return EmitBranchToCounterBlock(CondBOp->getLHS(), BO_LOr, TrueBlock,
1692                                         FalseBlock, TrueCount, LH, CondBOp);
1693       }
1694 
1695       // Emit the LHS as a conditional.  If the LHS conditional is true, we
1696       // want to jump to the TrueBlock.
1697       llvm::BasicBlock *LHSFalse = createBasicBlock("lor.lhs.false");
1698       // We have the count for entry to the RHS and for the whole expression
1699       // being true, so we can divy up True count between the short circuit and
1700       // the RHS.
1701       uint64_t LHSCount =
1702           getCurrentProfileCount() - getProfileCount(CondBOp->getRHS());
1703       uint64_t RHSCount = TrueCount - LHSCount;
1704 
1705       ConditionalEvaluation eval(*this);
1706       {
1707         // Propagate the likelihood attribute like __builtin_expect
1708         // __builtin_expect(X || Y, 1) -> only Y is likely
1709         // __builtin_expect(X || Y, 0) -> both X and Y are unlikely
1710         ApplyDebugLocation DL(*this, Cond);
1711         EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, LHSFalse, LHSCount,
1712                              LH == Stmt::LH_Likely ? Stmt::LH_None : LH);
1713         EmitBlock(LHSFalse);
1714       }
1715 
1716       incrementProfileCounter(CondBOp);
1717       setCurrentProfileCount(getProfileCount(CondBOp->getRHS()));
1718 
1719       // Any temporaries created here are conditional.
1720       eval.begin(*this);
1721       EmitBranchToCounterBlock(CondBOp->getRHS(), BO_LOr, TrueBlock, FalseBlock,
1722                                RHSCount, LH);
1723 
1724       eval.end(*this);
1725 
1726       return;
1727     }
1728   }
1729 
1730   if (const UnaryOperator *CondUOp = dyn_cast<UnaryOperator>(Cond)) {
1731     // br(!x, t, f) -> br(x, f, t)
1732     if (CondUOp->getOpcode() == UO_LNot) {
1733       // Negate the count.
1734       uint64_t FalseCount = getCurrentProfileCount() - TrueCount;
1735       // The values of the enum are chosen to make this negation possible.
1736       LH = static_cast<Stmt::Likelihood>(-LH);
1737       // Negate the condition and swap the destination blocks.
1738       return EmitBranchOnBoolExpr(CondUOp->getSubExpr(), FalseBlock, TrueBlock,
1739                                   FalseCount, LH);
1740     }
1741   }
1742 
1743   if (const ConditionalOperator *CondOp = dyn_cast<ConditionalOperator>(Cond)) {
1744     // br(c ? x : y, t, f) -> br(c, br(x, t, f), br(y, t, f))
1745     llvm::BasicBlock *LHSBlock = createBasicBlock("cond.true");
1746     llvm::BasicBlock *RHSBlock = createBasicBlock("cond.false");
1747 
1748     // The ConditionalOperator itself has no likelihood information for its
1749     // true and false branches. This matches the behavior of __builtin_expect.
1750     ConditionalEvaluation cond(*this);
1751     EmitBranchOnBoolExpr(CondOp->getCond(), LHSBlock, RHSBlock,
1752                          getProfileCount(CondOp), Stmt::LH_None);
1753 
1754     // When computing PGO branch weights, we only know the overall count for
1755     // the true block. This code is essentially doing tail duplication of the
1756     // naive code-gen, introducing new edges for which counts are not
1757     // available. Divide the counts proportionally between the LHS and RHS of
1758     // the conditional operator.
1759     uint64_t LHSScaledTrueCount = 0;
1760     if (TrueCount) {
1761       double LHSRatio =
1762           getProfileCount(CondOp) / (double)getCurrentProfileCount();
1763       LHSScaledTrueCount = TrueCount * LHSRatio;
1764     }
1765 
1766     cond.begin(*this);
1767     EmitBlock(LHSBlock);
1768     incrementProfileCounter(CondOp);
1769     {
1770       ApplyDebugLocation DL(*this, Cond);
1771       EmitBranchOnBoolExpr(CondOp->getLHS(), TrueBlock, FalseBlock,
1772                            LHSScaledTrueCount, LH);
1773     }
1774     cond.end(*this);
1775 
1776     cond.begin(*this);
1777     EmitBlock(RHSBlock);
1778     EmitBranchOnBoolExpr(CondOp->getRHS(), TrueBlock, FalseBlock,
1779                          TrueCount - LHSScaledTrueCount, LH);
1780     cond.end(*this);
1781 
1782     return;
1783   }
1784 
1785   if (const CXXThrowExpr *Throw = dyn_cast<CXXThrowExpr>(Cond)) {
1786     // Conditional operator handling can give us a throw expression as a
1787     // condition for a case like:
1788     //   br(c ? throw x : y, t, f) -> br(c, br(throw x, t, f), br(y, t, f)
1789     // Fold this to:
1790     //   br(c, throw x, br(y, t, f))
1791     EmitCXXThrowExpr(Throw, /*KeepInsertionPoint*/false);
1792     return;
1793   }
1794 
1795   // Emit the code with the fully general case.
1796   llvm::Value *CondV;
1797   {
1798     ApplyDebugLocation DL(*this, Cond);
1799     CondV = EvaluateExprAsBool(Cond);
1800   }
1801 
1802   llvm::MDNode *Weights = nullptr;
1803   llvm::MDNode *Unpredictable = nullptr;
1804 
1805   // If the branch has a condition wrapped by __builtin_unpredictable,
1806   // create metadata that specifies that the branch is unpredictable.
1807   // Don't bother if not optimizing because that metadata would not be used.
1808   auto *Call = dyn_cast<CallExpr>(Cond->IgnoreImpCasts());
1809   if (Call && CGM.getCodeGenOpts().OptimizationLevel != 0) {
1810     auto *FD = dyn_cast_or_null<FunctionDecl>(Call->getCalleeDecl());
1811     if (FD && FD->getBuiltinID() == Builtin::BI__builtin_unpredictable) {
1812       llvm::MDBuilder MDHelper(getLLVMContext());
1813       Unpredictable = MDHelper.createUnpredictable();
1814     }
1815   }
1816 
1817   // If there is a Likelihood knowledge for the cond, lower it.
1818   // Note that if not optimizing this won't emit anything.
1819   llvm::Value *NewCondV = emitCondLikelihoodViaExpectIntrinsic(CondV, LH);
1820   if (CondV != NewCondV)
1821     CondV = NewCondV;
1822   else {
1823     // Otherwise, lower profile counts. Note that we do this even at -O0.
1824     uint64_t CurrentCount = std::max(getCurrentProfileCount(), TrueCount);
1825     Weights = createProfileWeights(TrueCount, CurrentCount - TrueCount);
1826   }
1827 
1828   Builder.CreateCondBr(CondV, TrueBlock, FalseBlock, Weights, Unpredictable);
1829 }
1830 
1831 /// ErrorUnsupported - Print out an error that codegen doesn't support the
1832 /// specified stmt yet.
1833 void CodeGenFunction::ErrorUnsupported(const Stmt *S, const char *Type) {
1834   CGM.ErrorUnsupported(S, Type);
1835 }
1836 
1837 /// emitNonZeroVLAInit - Emit the "zero" initialization of a
1838 /// variable-length array whose elements have a non-zero bit-pattern.
1839 ///
1840 /// \param baseType the inner-most element type of the array
1841 /// \param src - a char* pointing to the bit-pattern for a single
1842 /// base element of the array
1843 /// \param sizeInChars - the total size of the VLA, in chars
1844 static void emitNonZeroVLAInit(CodeGenFunction &CGF, QualType baseType,
1845                                Address dest, Address src,
1846                                llvm::Value *sizeInChars) {
1847   CGBuilderTy &Builder = CGF.Builder;
1848 
1849   CharUnits baseSize = CGF.getContext().getTypeSizeInChars(baseType);
1850   llvm::Value *baseSizeInChars
1851     = llvm::ConstantInt::get(CGF.IntPtrTy, baseSize.getQuantity());
1852 
1853   Address begin =
1854     Builder.CreateElementBitCast(dest, CGF.Int8Ty, "vla.begin");
1855   llvm::Value *end = Builder.CreateInBoundsGEP(
1856       begin.getElementType(), begin.getPointer(), sizeInChars, "vla.end");
1857 
1858   llvm::BasicBlock *originBB = CGF.Builder.GetInsertBlock();
1859   llvm::BasicBlock *loopBB = CGF.createBasicBlock("vla-init.loop");
1860   llvm::BasicBlock *contBB = CGF.createBasicBlock("vla-init.cont");
1861 
1862   // Make a loop over the VLA.  C99 guarantees that the VLA element
1863   // count must be nonzero.
1864   CGF.EmitBlock(loopBB);
1865 
1866   llvm::PHINode *cur = Builder.CreatePHI(begin.getType(), 2, "vla.cur");
1867   cur->addIncoming(begin.getPointer(), originBB);
1868 
1869   CharUnits curAlign =
1870     dest.getAlignment().alignmentOfArrayElement(baseSize);
1871 
1872   // memcpy the individual element bit-pattern.
1873   Builder.CreateMemCpy(Address(cur, curAlign), src, baseSizeInChars,
1874                        /*volatile*/ false);
1875 
1876   // Go to the next element.
1877   llvm::Value *next =
1878     Builder.CreateInBoundsGEP(CGF.Int8Ty, cur, baseSizeInChars, "vla.next");
1879 
1880   // Leave if that's the end of the VLA.
1881   llvm::Value *done = Builder.CreateICmpEQ(next, end, "vla-init.isdone");
1882   Builder.CreateCondBr(done, contBB, loopBB);
1883   cur->addIncoming(next, loopBB);
1884 
1885   CGF.EmitBlock(contBB);
1886 }
1887 
1888 void
1889 CodeGenFunction::EmitNullInitialization(Address DestPtr, QualType Ty) {
1890   // Ignore empty classes in C++.
1891   if (getLangOpts().CPlusPlus) {
1892     if (const RecordType *RT = Ty->getAs<RecordType>()) {
1893       if (cast<CXXRecordDecl>(RT->getDecl())->isEmpty())
1894         return;
1895     }
1896   }
1897 
1898   // Cast the dest ptr to the appropriate i8 pointer type.
1899   if (DestPtr.getElementType() != Int8Ty)
1900     DestPtr = Builder.CreateElementBitCast(DestPtr, Int8Ty);
1901 
1902   // Get size and alignment info for this aggregate.
1903   CharUnits size = getContext().getTypeSizeInChars(Ty);
1904 
1905   llvm::Value *SizeVal;
1906   const VariableArrayType *vla;
1907 
1908   // Don't bother emitting a zero-byte memset.
1909   if (size.isZero()) {
1910     // But note that getTypeInfo returns 0 for a VLA.
1911     if (const VariableArrayType *vlaType =
1912           dyn_cast_or_null<VariableArrayType>(
1913                                           getContext().getAsArrayType(Ty))) {
1914       auto VlaSize = getVLASize(vlaType);
1915       SizeVal = VlaSize.NumElts;
1916       CharUnits eltSize = getContext().getTypeSizeInChars(VlaSize.Type);
1917       if (!eltSize.isOne())
1918         SizeVal = Builder.CreateNUWMul(SizeVal, CGM.getSize(eltSize));
1919       vla = vlaType;
1920     } else {
1921       return;
1922     }
1923   } else {
1924     SizeVal = CGM.getSize(size);
1925     vla = nullptr;
1926   }
1927 
1928   // If the type contains a pointer to data member we can't memset it to zero.
1929   // Instead, create a null constant and copy it to the destination.
1930   // TODO: there are other patterns besides zero that we can usefully memset,
1931   // like -1, which happens to be the pattern used by member-pointers.
1932   if (!CGM.getTypes().isZeroInitializable(Ty)) {
1933     // For a VLA, emit a single element, then splat that over the VLA.
1934     if (vla) Ty = getContext().getBaseElementType(vla);
1935 
1936     llvm::Constant *NullConstant = CGM.EmitNullConstant(Ty);
1937 
1938     llvm::GlobalVariable *NullVariable =
1939       new llvm::GlobalVariable(CGM.getModule(), NullConstant->getType(),
1940                                /*isConstant=*/true,
1941                                llvm::GlobalVariable::PrivateLinkage,
1942                                NullConstant, Twine());
1943     CharUnits NullAlign = DestPtr.getAlignment();
1944     NullVariable->setAlignment(NullAlign.getAsAlign());
1945     Address SrcPtr(Builder.CreateBitCast(NullVariable, Builder.getInt8PtrTy()),
1946                    NullAlign);
1947 
1948     if (vla) return emitNonZeroVLAInit(*this, Ty, DestPtr, SrcPtr, SizeVal);
1949 
1950     // Get and call the appropriate llvm.memcpy overload.
1951     Builder.CreateMemCpy(DestPtr, SrcPtr, SizeVal, false);
1952     return;
1953   }
1954 
1955   // Otherwise, just memset the whole thing to zero.  This is legal
1956   // because in LLVM, all default initializers (other than the ones we just
1957   // handled above) are guaranteed to have a bit pattern of all zeros.
1958   Builder.CreateMemSet(DestPtr, Builder.getInt8(0), SizeVal, false);
1959 }
1960 
1961 llvm::BlockAddress *CodeGenFunction::GetAddrOfLabel(const LabelDecl *L) {
1962   // Make sure that there is a block for the indirect goto.
1963   if (!IndirectBranch)
1964     GetIndirectGotoBlock();
1965 
1966   llvm::BasicBlock *BB = getJumpDestForLabel(L).getBlock();
1967 
1968   // Make sure the indirect branch includes all of the address-taken blocks.
1969   IndirectBranch->addDestination(BB);
1970   return llvm::BlockAddress::get(CurFn, BB);
1971 }
1972 
1973 llvm::BasicBlock *CodeGenFunction::GetIndirectGotoBlock() {
1974   // If we already made the indirect branch for indirect goto, return its block.
1975   if (IndirectBranch) return IndirectBranch->getParent();
1976 
1977   CGBuilderTy TmpBuilder(*this, createBasicBlock("indirectgoto"));
1978 
1979   // Create the PHI node that indirect gotos will add entries to.
1980   llvm::Value *DestVal = TmpBuilder.CreatePHI(Int8PtrTy, 0,
1981                                               "indirect.goto.dest");
1982 
1983   // Create the indirect branch instruction.
1984   IndirectBranch = TmpBuilder.CreateIndirectBr(DestVal);
1985   return IndirectBranch->getParent();
1986 }
1987 
1988 /// Computes the length of an array in elements, as well as the base
1989 /// element type and a properly-typed first element pointer.
1990 llvm::Value *CodeGenFunction::emitArrayLength(const ArrayType *origArrayType,
1991                                               QualType &baseType,
1992                                               Address &addr) {
1993   const ArrayType *arrayType = origArrayType;
1994 
1995   // If it's a VLA, we have to load the stored size.  Note that
1996   // this is the size of the VLA in bytes, not its size in elements.
1997   llvm::Value *numVLAElements = nullptr;
1998   if (isa<VariableArrayType>(arrayType)) {
1999     numVLAElements = getVLASize(cast<VariableArrayType>(arrayType)).NumElts;
2000 
2001     // Walk into all VLAs.  This doesn't require changes to addr,
2002     // which has type T* where T is the first non-VLA element type.
2003     do {
2004       QualType elementType = arrayType->getElementType();
2005       arrayType = getContext().getAsArrayType(elementType);
2006 
2007       // If we only have VLA components, 'addr' requires no adjustment.
2008       if (!arrayType) {
2009         baseType = elementType;
2010         return numVLAElements;
2011       }
2012     } while (isa<VariableArrayType>(arrayType));
2013 
2014     // We get out here only if we find a constant array type
2015     // inside the VLA.
2016   }
2017 
2018   // We have some number of constant-length arrays, so addr should
2019   // have LLVM type [M x [N x [...]]]*.  Build a GEP that walks
2020   // down to the first element of addr.
2021   SmallVector<llvm::Value*, 8> gepIndices;
2022 
2023   // GEP down to the array type.
2024   llvm::ConstantInt *zero = Builder.getInt32(0);
2025   gepIndices.push_back(zero);
2026 
2027   uint64_t countFromCLAs = 1;
2028   QualType eltType;
2029 
2030   llvm::ArrayType *llvmArrayType =
2031     dyn_cast<llvm::ArrayType>(addr.getElementType());
2032   while (llvmArrayType) {
2033     assert(isa<ConstantArrayType>(arrayType));
2034     assert(cast<ConstantArrayType>(arrayType)->getSize().getZExtValue()
2035              == llvmArrayType->getNumElements());
2036 
2037     gepIndices.push_back(zero);
2038     countFromCLAs *= llvmArrayType->getNumElements();
2039     eltType = arrayType->getElementType();
2040 
2041     llvmArrayType =
2042       dyn_cast<llvm::ArrayType>(llvmArrayType->getElementType());
2043     arrayType = getContext().getAsArrayType(arrayType->getElementType());
2044     assert((!llvmArrayType || arrayType) &&
2045            "LLVM and Clang types are out-of-synch");
2046   }
2047 
2048   if (arrayType) {
2049     // From this point onwards, the Clang array type has been emitted
2050     // as some other type (probably a packed struct). Compute the array
2051     // size, and just emit the 'begin' expression as a bitcast.
2052     while (arrayType) {
2053       countFromCLAs *=
2054           cast<ConstantArrayType>(arrayType)->getSize().getZExtValue();
2055       eltType = arrayType->getElementType();
2056       arrayType = getContext().getAsArrayType(eltType);
2057     }
2058 
2059     llvm::Type *baseType = ConvertType(eltType);
2060     addr = Builder.CreateElementBitCast(addr, baseType, "array.begin");
2061   } else {
2062     // Create the actual GEP.
2063     addr = Address(Builder.CreateInBoundsGEP(
2064         addr.getElementType(), addr.getPointer(), gepIndices, "array.begin"),
2065         addr.getAlignment());
2066   }
2067 
2068   baseType = eltType;
2069 
2070   llvm::Value *numElements
2071     = llvm::ConstantInt::get(SizeTy, countFromCLAs);
2072 
2073   // If we had any VLA dimensions, factor them in.
2074   if (numVLAElements)
2075     numElements = Builder.CreateNUWMul(numVLAElements, numElements);
2076 
2077   return numElements;
2078 }
2079 
2080 CodeGenFunction::VlaSizePair CodeGenFunction::getVLASize(QualType type) {
2081   const VariableArrayType *vla = getContext().getAsVariableArrayType(type);
2082   assert(vla && "type was not a variable array type!");
2083   return getVLASize(vla);
2084 }
2085 
2086 CodeGenFunction::VlaSizePair
2087 CodeGenFunction::getVLASize(const VariableArrayType *type) {
2088   // The number of elements so far; always size_t.
2089   llvm::Value *numElements = nullptr;
2090 
2091   QualType elementType;
2092   do {
2093     elementType = type->getElementType();
2094     llvm::Value *vlaSize = VLASizeMap[type->getSizeExpr()];
2095     assert(vlaSize && "no size for VLA!");
2096     assert(vlaSize->getType() == SizeTy);
2097 
2098     if (!numElements) {
2099       numElements = vlaSize;
2100     } else {
2101       // It's undefined behavior if this wraps around, so mark it that way.
2102       // FIXME: Teach -fsanitize=undefined to trap this.
2103       numElements = Builder.CreateNUWMul(numElements, vlaSize);
2104     }
2105   } while ((type = getContext().getAsVariableArrayType(elementType)));
2106 
2107   return { numElements, elementType };
2108 }
2109 
2110 CodeGenFunction::VlaSizePair
2111 CodeGenFunction::getVLAElements1D(QualType type) {
2112   const VariableArrayType *vla = getContext().getAsVariableArrayType(type);
2113   assert(vla && "type was not a variable array type!");
2114   return getVLAElements1D(vla);
2115 }
2116 
2117 CodeGenFunction::VlaSizePair
2118 CodeGenFunction::getVLAElements1D(const VariableArrayType *Vla) {
2119   llvm::Value *VlaSize = VLASizeMap[Vla->getSizeExpr()];
2120   assert(VlaSize && "no size for VLA!");
2121   assert(VlaSize->getType() == SizeTy);
2122   return { VlaSize, Vla->getElementType() };
2123 }
2124 
2125 void CodeGenFunction::EmitVariablyModifiedType(QualType type) {
2126   assert(type->isVariablyModifiedType() &&
2127          "Must pass variably modified type to EmitVLASizes!");
2128 
2129   EnsureInsertPoint();
2130 
2131   // We're going to walk down into the type and look for VLA
2132   // expressions.
2133   do {
2134     assert(type->isVariablyModifiedType());
2135 
2136     const Type *ty = type.getTypePtr();
2137     switch (ty->getTypeClass()) {
2138 
2139 #define TYPE(Class, Base)
2140 #define ABSTRACT_TYPE(Class, Base)
2141 #define NON_CANONICAL_TYPE(Class, Base)
2142 #define DEPENDENT_TYPE(Class, Base) case Type::Class:
2143 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base)
2144 #include "clang/AST/TypeNodes.inc"
2145       llvm_unreachable("unexpected dependent type!");
2146 
2147     // These types are never variably-modified.
2148     case Type::Builtin:
2149     case Type::Complex:
2150     case Type::Vector:
2151     case Type::ExtVector:
2152     case Type::ConstantMatrix:
2153     case Type::Record:
2154     case Type::Enum:
2155     case Type::Elaborated:
2156     case Type::TemplateSpecialization:
2157     case Type::ObjCTypeParam:
2158     case Type::ObjCObject:
2159     case Type::ObjCInterface:
2160     case Type::ObjCObjectPointer:
2161     case Type::ExtInt:
2162       llvm_unreachable("type class is never variably-modified!");
2163 
2164     case Type::Adjusted:
2165       type = cast<AdjustedType>(ty)->getAdjustedType();
2166       break;
2167 
2168     case Type::Decayed:
2169       type = cast<DecayedType>(ty)->getPointeeType();
2170       break;
2171 
2172     case Type::Pointer:
2173       type = cast<PointerType>(ty)->getPointeeType();
2174       break;
2175 
2176     case Type::BlockPointer:
2177       type = cast<BlockPointerType>(ty)->getPointeeType();
2178       break;
2179 
2180     case Type::LValueReference:
2181     case Type::RValueReference:
2182       type = cast<ReferenceType>(ty)->getPointeeType();
2183       break;
2184 
2185     case Type::MemberPointer:
2186       type = cast<MemberPointerType>(ty)->getPointeeType();
2187       break;
2188 
2189     case Type::ConstantArray:
2190     case Type::IncompleteArray:
2191       // Losing element qualification here is fine.
2192       type = cast<ArrayType>(ty)->getElementType();
2193       break;
2194 
2195     case Type::VariableArray: {
2196       // Losing element qualification here is fine.
2197       const VariableArrayType *vat = cast<VariableArrayType>(ty);
2198 
2199       // Unknown size indication requires no size computation.
2200       // Otherwise, evaluate and record it.
2201       if (const Expr *size = vat->getSizeExpr()) {
2202         // It's possible that we might have emitted this already,
2203         // e.g. with a typedef and a pointer to it.
2204         llvm::Value *&entry = VLASizeMap[size];
2205         if (!entry) {
2206           llvm::Value *Size = EmitScalarExpr(size);
2207 
2208           // C11 6.7.6.2p5:
2209           //   If the size is an expression that is not an integer constant
2210           //   expression [...] each time it is evaluated it shall have a value
2211           //   greater than zero.
2212           if (SanOpts.has(SanitizerKind::VLABound) &&
2213               size->getType()->isSignedIntegerType()) {
2214             SanitizerScope SanScope(this);
2215             llvm::Value *Zero = llvm::Constant::getNullValue(Size->getType());
2216             llvm::Constant *StaticArgs[] = {
2217                 EmitCheckSourceLocation(size->getBeginLoc()),
2218                 EmitCheckTypeDescriptor(size->getType())};
2219             EmitCheck(std::make_pair(Builder.CreateICmpSGT(Size, Zero),
2220                                      SanitizerKind::VLABound),
2221                       SanitizerHandler::VLABoundNotPositive, StaticArgs, Size);
2222           }
2223 
2224           // Always zexting here would be wrong if it weren't
2225           // undefined behavior to have a negative bound.
2226           entry = Builder.CreateIntCast(Size, SizeTy, /*signed*/ false);
2227         }
2228       }
2229       type = vat->getElementType();
2230       break;
2231     }
2232 
2233     case Type::FunctionProto:
2234     case Type::FunctionNoProto:
2235       type = cast<FunctionType>(ty)->getReturnType();
2236       break;
2237 
2238     case Type::Paren:
2239     case Type::TypeOf:
2240     case Type::UnaryTransform:
2241     case Type::Attributed:
2242     case Type::SubstTemplateTypeParm:
2243     case Type::MacroQualified:
2244       // Keep walking after single level desugaring.
2245       type = type.getSingleStepDesugaredType(getContext());
2246       break;
2247 
2248     case Type::Typedef:
2249     case Type::Decltype:
2250     case Type::Auto:
2251     case Type::DeducedTemplateSpecialization:
2252       // Stop walking: nothing to do.
2253       return;
2254 
2255     case Type::TypeOfExpr:
2256       // Stop walking: emit typeof expression.
2257       EmitIgnoredExpr(cast<TypeOfExprType>(ty)->getUnderlyingExpr());
2258       return;
2259 
2260     case Type::Atomic:
2261       type = cast<AtomicType>(ty)->getValueType();
2262       break;
2263 
2264     case Type::Pipe:
2265       type = cast<PipeType>(ty)->getElementType();
2266       break;
2267     }
2268   } while (type->isVariablyModifiedType());
2269 }
2270 
2271 Address CodeGenFunction::EmitVAListRef(const Expr* E) {
2272   if (getContext().getBuiltinVaListType()->isArrayType())
2273     return EmitPointerWithAlignment(E);
2274   return EmitLValue(E).getAddress(*this);
2275 }
2276 
2277 Address CodeGenFunction::EmitMSVAListRef(const Expr *E) {
2278   return EmitLValue(E).getAddress(*this);
2279 }
2280 
2281 void CodeGenFunction::EmitDeclRefExprDbgValue(const DeclRefExpr *E,
2282                                               const APValue &Init) {
2283   assert(Init.hasValue() && "Invalid DeclRefExpr initializer!");
2284   if (CGDebugInfo *Dbg = getDebugInfo())
2285     if (CGM.getCodeGenOpts().hasReducedDebugInfo())
2286       Dbg->EmitGlobalVariable(E->getDecl(), Init);
2287 }
2288 
2289 CodeGenFunction::PeepholeProtection
2290 CodeGenFunction::protectFromPeepholes(RValue rvalue) {
2291   // At the moment, the only aggressive peephole we do in IR gen
2292   // is trunc(zext) folding, but if we add more, we can easily
2293   // extend this protection.
2294 
2295   if (!rvalue.isScalar()) return PeepholeProtection();
2296   llvm::Value *value = rvalue.getScalarVal();
2297   if (!isa<llvm::ZExtInst>(value)) return PeepholeProtection();
2298 
2299   // Just make an extra bitcast.
2300   assert(HaveInsertPoint());
2301   llvm::Instruction *inst = new llvm::BitCastInst(value, value->getType(), "",
2302                                                   Builder.GetInsertBlock());
2303 
2304   PeepholeProtection protection;
2305   protection.Inst = inst;
2306   return protection;
2307 }
2308 
2309 void CodeGenFunction::unprotectFromPeepholes(PeepholeProtection protection) {
2310   if (!protection.Inst) return;
2311 
2312   // In theory, we could try to duplicate the peepholes now, but whatever.
2313   protection.Inst->eraseFromParent();
2314 }
2315 
2316 void CodeGenFunction::emitAlignmentAssumption(llvm::Value *PtrValue,
2317                                               QualType Ty, SourceLocation Loc,
2318                                               SourceLocation AssumptionLoc,
2319                                               llvm::Value *Alignment,
2320                                               llvm::Value *OffsetValue) {
2321   if (Alignment->getType() != IntPtrTy)
2322     Alignment =
2323         Builder.CreateIntCast(Alignment, IntPtrTy, false, "casted.align");
2324   if (OffsetValue && OffsetValue->getType() != IntPtrTy)
2325     OffsetValue =
2326         Builder.CreateIntCast(OffsetValue, IntPtrTy, true, "casted.offset");
2327   llvm::Value *TheCheck = nullptr;
2328   if (SanOpts.has(SanitizerKind::Alignment)) {
2329     llvm::Value *PtrIntValue =
2330         Builder.CreatePtrToInt(PtrValue, IntPtrTy, "ptrint");
2331 
2332     if (OffsetValue) {
2333       bool IsOffsetZero = false;
2334       if (const auto *CI = dyn_cast<llvm::ConstantInt>(OffsetValue))
2335         IsOffsetZero = CI->isZero();
2336 
2337       if (!IsOffsetZero)
2338         PtrIntValue = Builder.CreateSub(PtrIntValue, OffsetValue, "offsetptr");
2339     }
2340 
2341     llvm::Value *Zero = llvm::ConstantInt::get(IntPtrTy, 0);
2342     llvm::Value *Mask =
2343         Builder.CreateSub(Alignment, llvm::ConstantInt::get(IntPtrTy, 1));
2344     llvm::Value *MaskedPtr = Builder.CreateAnd(PtrIntValue, Mask, "maskedptr");
2345     TheCheck = Builder.CreateICmpEQ(MaskedPtr, Zero, "maskcond");
2346   }
2347   llvm::Instruction *Assumption = Builder.CreateAlignmentAssumption(
2348       CGM.getDataLayout(), PtrValue, Alignment, OffsetValue);
2349 
2350   if (!SanOpts.has(SanitizerKind::Alignment))
2351     return;
2352   emitAlignmentAssumptionCheck(PtrValue, Ty, Loc, AssumptionLoc, Alignment,
2353                                OffsetValue, TheCheck, Assumption);
2354 }
2355 
2356 void CodeGenFunction::emitAlignmentAssumption(llvm::Value *PtrValue,
2357                                               const Expr *E,
2358                                               SourceLocation AssumptionLoc,
2359                                               llvm::Value *Alignment,
2360                                               llvm::Value *OffsetValue) {
2361   if (auto *CE = dyn_cast<CastExpr>(E))
2362     E = CE->getSubExprAsWritten();
2363   QualType Ty = E->getType();
2364   SourceLocation Loc = E->getExprLoc();
2365 
2366   emitAlignmentAssumption(PtrValue, Ty, Loc, AssumptionLoc, Alignment,
2367                           OffsetValue);
2368 }
2369 
2370 llvm::Value *CodeGenFunction::EmitAnnotationCall(llvm::Function *AnnotationFn,
2371                                                  llvm::Value *AnnotatedVal,
2372                                                  StringRef AnnotationStr,
2373                                                  SourceLocation Location,
2374                                                  const AnnotateAttr *Attr) {
2375   SmallVector<llvm::Value *, 5> Args = {
2376       AnnotatedVal,
2377       Builder.CreateBitCast(CGM.EmitAnnotationString(AnnotationStr), Int8PtrTy),
2378       Builder.CreateBitCast(CGM.EmitAnnotationUnit(Location), Int8PtrTy),
2379       CGM.EmitAnnotationLineNo(Location),
2380   };
2381   if (Attr)
2382     Args.push_back(CGM.EmitAnnotationArgs(Attr));
2383   return Builder.CreateCall(AnnotationFn, Args);
2384 }
2385 
2386 void CodeGenFunction::EmitVarAnnotations(const VarDecl *D, llvm::Value *V) {
2387   assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute");
2388   // FIXME We create a new bitcast for every annotation because that's what
2389   // llvm-gcc was doing.
2390   for (const auto *I : D->specific_attrs<AnnotateAttr>())
2391     EmitAnnotationCall(CGM.getIntrinsic(llvm::Intrinsic::var_annotation),
2392                        Builder.CreateBitCast(V, CGM.Int8PtrTy, V->getName()),
2393                        I->getAnnotation(), D->getLocation(), I);
2394 }
2395 
2396 Address CodeGenFunction::EmitFieldAnnotations(const FieldDecl *D,
2397                                               Address Addr) {
2398   assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute");
2399   llvm::Value *V = Addr.getPointer();
2400   llvm::Type *VTy = V->getType();
2401   auto *PTy = dyn_cast<llvm::PointerType>(VTy);
2402   unsigned AS = PTy ? PTy->getAddressSpace() : 0;
2403   llvm::PointerType *IntrinTy =
2404       llvm::PointerType::getWithSamePointeeType(CGM.Int8PtrTy, AS);
2405   llvm::Function *F =
2406       CGM.getIntrinsic(llvm::Intrinsic::ptr_annotation, IntrinTy);
2407 
2408   for (const auto *I : D->specific_attrs<AnnotateAttr>()) {
2409     // FIXME Always emit the cast inst so we can differentiate between
2410     // annotation on the first field of a struct and annotation on the struct
2411     // itself.
2412     if (VTy != IntrinTy)
2413       V = Builder.CreateBitCast(V, IntrinTy);
2414     V = EmitAnnotationCall(F, V, I->getAnnotation(), D->getLocation(), I);
2415     V = Builder.CreateBitCast(V, VTy);
2416   }
2417 
2418   return Address(V, Addr.getAlignment());
2419 }
2420 
2421 CodeGenFunction::CGCapturedStmtInfo::~CGCapturedStmtInfo() { }
2422 
2423 CodeGenFunction::SanitizerScope::SanitizerScope(CodeGenFunction *CGF)
2424     : CGF(CGF) {
2425   assert(!CGF->IsSanitizerScope);
2426   CGF->IsSanitizerScope = true;
2427 }
2428 
2429 CodeGenFunction::SanitizerScope::~SanitizerScope() {
2430   CGF->IsSanitizerScope = false;
2431 }
2432 
2433 void CodeGenFunction::InsertHelper(llvm::Instruction *I,
2434                                    const llvm::Twine &Name,
2435                                    llvm::BasicBlock *BB,
2436                                    llvm::BasicBlock::iterator InsertPt) const {
2437   LoopStack.InsertHelper(I);
2438   if (IsSanitizerScope)
2439     CGM.getSanitizerMetadata()->disableSanitizerForInstruction(I);
2440 }
2441 
2442 void CGBuilderInserter::InsertHelper(
2443     llvm::Instruction *I, const llvm::Twine &Name, llvm::BasicBlock *BB,
2444     llvm::BasicBlock::iterator InsertPt) const {
2445   llvm::IRBuilderDefaultInserter::InsertHelper(I, Name, BB, InsertPt);
2446   if (CGF)
2447     CGF->InsertHelper(I, Name, BB, InsertPt);
2448 }
2449 
2450 // Emits an error if we don't have a valid set of target features for the
2451 // called function.
2452 void CodeGenFunction::checkTargetFeatures(const CallExpr *E,
2453                                           const FunctionDecl *TargetDecl) {
2454   return checkTargetFeatures(E->getBeginLoc(), TargetDecl);
2455 }
2456 
2457 // Emits an error if we don't have a valid set of target features for the
2458 // called function.
2459 void CodeGenFunction::checkTargetFeatures(SourceLocation Loc,
2460                                           const FunctionDecl *TargetDecl) {
2461   // Early exit if this is an indirect call.
2462   if (!TargetDecl)
2463     return;
2464 
2465   // Get the current enclosing function if it exists. If it doesn't
2466   // we can't check the target features anyhow.
2467   const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(CurCodeDecl);
2468   if (!FD)
2469     return;
2470 
2471   // Grab the required features for the call. For a builtin this is listed in
2472   // the td file with the default cpu, for an always_inline function this is any
2473   // listed cpu and any listed features.
2474   unsigned BuiltinID = TargetDecl->getBuiltinID();
2475   std::string MissingFeature;
2476   llvm::StringMap<bool> CallerFeatureMap;
2477   CGM.getContext().getFunctionFeatureMap(CallerFeatureMap, FD);
2478   if (BuiltinID) {
2479     StringRef FeatureList(
2480         CGM.getContext().BuiltinInfo.getRequiredFeatures(BuiltinID));
2481     // Return if the builtin doesn't have any required features.
2482     if (FeatureList.empty())
2483       return;
2484     assert(FeatureList.find(' ') == StringRef::npos &&
2485            "Space in feature list");
2486     TargetFeatures TF(CallerFeatureMap);
2487     if (!TF.hasRequiredFeatures(FeatureList))
2488       CGM.getDiags().Report(Loc, diag::err_builtin_needs_feature)
2489           << TargetDecl->getDeclName() << FeatureList;
2490   } else if (!TargetDecl->isMultiVersion() &&
2491              TargetDecl->hasAttr<TargetAttr>()) {
2492     // Get the required features for the callee.
2493 
2494     const TargetAttr *TD = TargetDecl->getAttr<TargetAttr>();
2495     ParsedTargetAttr ParsedAttr =
2496         CGM.getContext().filterFunctionTargetAttrs(TD);
2497 
2498     SmallVector<StringRef, 1> ReqFeatures;
2499     llvm::StringMap<bool> CalleeFeatureMap;
2500     CGM.getContext().getFunctionFeatureMap(CalleeFeatureMap, TargetDecl);
2501 
2502     for (const auto &F : ParsedAttr.Features) {
2503       if (F[0] == '+' && CalleeFeatureMap.lookup(F.substr(1)))
2504         ReqFeatures.push_back(StringRef(F).substr(1));
2505     }
2506 
2507     for (const auto &F : CalleeFeatureMap) {
2508       // Only positive features are "required".
2509       if (F.getValue())
2510         ReqFeatures.push_back(F.getKey());
2511     }
2512     if (!llvm::all_of(ReqFeatures, [&](StringRef Feature) {
2513       if (!CallerFeatureMap.lookup(Feature)) {
2514         MissingFeature = Feature.str();
2515         return false;
2516       }
2517       return true;
2518     }))
2519       CGM.getDiags().Report(Loc, diag::err_function_needs_feature)
2520           << FD->getDeclName() << TargetDecl->getDeclName() << MissingFeature;
2521   }
2522 }
2523 
2524 void CodeGenFunction::EmitSanitizerStatReport(llvm::SanitizerStatKind SSK) {
2525   if (!CGM.getCodeGenOpts().SanitizeStats)
2526     return;
2527 
2528   llvm::IRBuilder<> IRB(Builder.GetInsertBlock(), Builder.GetInsertPoint());
2529   IRB.SetCurrentDebugLocation(Builder.getCurrentDebugLocation());
2530   CGM.getSanStats().create(IRB, SSK);
2531 }
2532 
2533 llvm::Value *
2534 CodeGenFunction::FormResolverCondition(const MultiVersionResolverOption &RO) {
2535   llvm::Value *Condition = nullptr;
2536 
2537   if (!RO.Conditions.Architecture.empty())
2538     Condition = EmitX86CpuIs(RO.Conditions.Architecture);
2539 
2540   if (!RO.Conditions.Features.empty()) {
2541     llvm::Value *FeatureCond = EmitX86CpuSupports(RO.Conditions.Features);
2542     Condition =
2543         Condition ? Builder.CreateAnd(Condition, FeatureCond) : FeatureCond;
2544   }
2545   return Condition;
2546 }
2547 
2548 static void CreateMultiVersionResolverReturn(CodeGenModule &CGM,
2549                                              llvm::Function *Resolver,
2550                                              CGBuilderTy &Builder,
2551                                              llvm::Function *FuncToReturn,
2552                                              bool SupportsIFunc) {
2553   if (SupportsIFunc) {
2554     Builder.CreateRet(FuncToReturn);
2555     return;
2556   }
2557 
2558   llvm::SmallVector<llvm::Value *, 10> Args;
2559   llvm::for_each(Resolver->args(),
2560                  [&](llvm::Argument &Arg) { Args.push_back(&Arg); });
2561 
2562   llvm::CallInst *Result = Builder.CreateCall(FuncToReturn, Args);
2563   Result->setTailCallKind(llvm::CallInst::TCK_MustTail);
2564 
2565   if (Resolver->getReturnType()->isVoidTy())
2566     Builder.CreateRetVoid();
2567   else
2568     Builder.CreateRet(Result);
2569 }
2570 
2571 void CodeGenFunction::EmitMultiVersionResolver(
2572     llvm::Function *Resolver, ArrayRef<MultiVersionResolverOption> Options) {
2573   assert(getContext().getTargetInfo().getTriple().isX86() &&
2574          "Only implemented for x86 targets");
2575 
2576   bool SupportsIFunc = getContext().getTargetInfo().supportsIFunc();
2577 
2578   // Main function's basic block.
2579   llvm::BasicBlock *CurBlock = createBasicBlock("resolver_entry", Resolver);
2580   Builder.SetInsertPoint(CurBlock);
2581   EmitX86CpuInit();
2582 
2583   for (const MultiVersionResolverOption &RO : Options) {
2584     Builder.SetInsertPoint(CurBlock);
2585     llvm::Value *Condition = FormResolverCondition(RO);
2586 
2587     // The 'default' or 'generic' case.
2588     if (!Condition) {
2589       assert(&RO == Options.end() - 1 &&
2590              "Default or Generic case must be last");
2591       CreateMultiVersionResolverReturn(CGM, Resolver, Builder, RO.Function,
2592                                        SupportsIFunc);
2593       return;
2594     }
2595 
2596     llvm::BasicBlock *RetBlock = createBasicBlock("resolver_return", Resolver);
2597     CGBuilderTy RetBuilder(*this, RetBlock);
2598     CreateMultiVersionResolverReturn(CGM, Resolver, RetBuilder, RO.Function,
2599                                      SupportsIFunc);
2600     CurBlock = createBasicBlock("resolver_else", Resolver);
2601     Builder.CreateCondBr(Condition, RetBlock, CurBlock);
2602   }
2603 
2604   // If no generic/default, emit an unreachable.
2605   Builder.SetInsertPoint(CurBlock);
2606   llvm::CallInst *TrapCall = EmitTrapCall(llvm::Intrinsic::trap);
2607   TrapCall->setDoesNotReturn();
2608   TrapCall->setDoesNotThrow();
2609   Builder.CreateUnreachable();
2610   Builder.ClearInsertionPoint();
2611 }
2612 
2613 // Loc - where the diagnostic will point, where in the source code this
2614 //  alignment has failed.
2615 // SecondaryLoc - if present (will be present if sufficiently different from
2616 //  Loc), the diagnostic will additionally point a "Note:" to this location.
2617 //  It should be the location where the __attribute__((assume_aligned))
2618 //  was written e.g.
2619 void CodeGenFunction::emitAlignmentAssumptionCheck(
2620     llvm::Value *Ptr, QualType Ty, SourceLocation Loc,
2621     SourceLocation SecondaryLoc, llvm::Value *Alignment,
2622     llvm::Value *OffsetValue, llvm::Value *TheCheck,
2623     llvm::Instruction *Assumption) {
2624   assert(Assumption && isa<llvm::CallInst>(Assumption) &&
2625          cast<llvm::CallInst>(Assumption)->getCalledOperand() ==
2626              llvm::Intrinsic::getDeclaration(
2627                  Builder.GetInsertBlock()->getParent()->getParent(),
2628                  llvm::Intrinsic::assume) &&
2629          "Assumption should be a call to llvm.assume().");
2630   assert(&(Builder.GetInsertBlock()->back()) == Assumption &&
2631          "Assumption should be the last instruction of the basic block, "
2632          "since the basic block is still being generated.");
2633 
2634   if (!SanOpts.has(SanitizerKind::Alignment))
2635     return;
2636 
2637   // Don't check pointers to volatile data. The behavior here is implementation-
2638   // defined.
2639   if (Ty->getPointeeType().isVolatileQualified())
2640     return;
2641 
2642   // We need to temorairly remove the assumption so we can insert the
2643   // sanitizer check before it, else the check will be dropped by optimizations.
2644   Assumption->removeFromParent();
2645 
2646   {
2647     SanitizerScope SanScope(this);
2648 
2649     if (!OffsetValue)
2650       OffsetValue = Builder.getInt1(0); // no offset.
2651 
2652     llvm::Constant *StaticData[] = {EmitCheckSourceLocation(Loc),
2653                                     EmitCheckSourceLocation(SecondaryLoc),
2654                                     EmitCheckTypeDescriptor(Ty)};
2655     llvm::Value *DynamicData[] = {EmitCheckValue(Ptr),
2656                                   EmitCheckValue(Alignment),
2657                                   EmitCheckValue(OffsetValue)};
2658     EmitCheck({std::make_pair(TheCheck, SanitizerKind::Alignment)},
2659               SanitizerHandler::AlignmentAssumption, StaticData, DynamicData);
2660   }
2661 
2662   // We are now in the (new, empty) "cont" basic block.
2663   // Reintroduce the assumption.
2664   Builder.Insert(Assumption);
2665   // FIXME: Assumption still has it's original basic block as it's Parent.
2666 }
2667 
2668 llvm::DebugLoc CodeGenFunction::SourceLocToDebugLoc(SourceLocation Location) {
2669   if (CGDebugInfo *DI = getDebugInfo())
2670     return DI->SourceLocToDebugLoc(Location);
2671 
2672   return llvm::DebugLoc();
2673 }
2674 
2675 llvm::Value *
2676 CodeGenFunction::emitCondLikelihoodViaExpectIntrinsic(llvm::Value *Cond,
2677                                                       Stmt::Likelihood LH) {
2678   switch (LH) {
2679   case Stmt::LH_None:
2680     return Cond;
2681   case Stmt::LH_Likely:
2682   case Stmt::LH_Unlikely:
2683     // Don't generate llvm.expect on -O0 as the backend won't use it for
2684     // anything.
2685     if (CGM.getCodeGenOpts().OptimizationLevel == 0)
2686       return Cond;
2687     llvm::Type *CondTy = Cond->getType();
2688     assert(CondTy->isIntegerTy(1) && "expecting condition to be a boolean");
2689     llvm::Function *FnExpect =
2690         CGM.getIntrinsic(llvm::Intrinsic::expect, CondTy);
2691     llvm::Value *ExpectedValueOfCond =
2692         llvm::ConstantInt::getBool(CondTy, LH == Stmt::LH_Likely);
2693     return Builder.CreateCall(FnExpect, {Cond, ExpectedValueOfCond},
2694                               Cond->getName() + ".expval");
2695   }
2696   llvm_unreachable("Unknown Likelihood");
2697 }
2698