xref: /llvm-project/clang/lib/CodeGen/CodeGenFunction.cpp (revision 0d5c07285f79a2135730c919c7e7b8e2bd9118e7)
1 //===--- CodeGenFunction.cpp - Emit LLVM Code from ASTs for a Function ----===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This coordinates the per-function state used while generating code.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "CodeGenFunction.h"
14 #include "CGBlocks.h"
15 #include "CGCUDARuntime.h"
16 #include "CGCXXABI.h"
17 #include "CGCleanup.h"
18 #include "CGDebugInfo.h"
19 #include "CGHLSLRuntime.h"
20 #include "CGOpenMPRuntime.h"
21 #include "CodeGenModule.h"
22 #include "CodeGenPGO.h"
23 #include "TargetInfo.h"
24 #include "clang/AST/ASTContext.h"
25 #include "clang/AST/ASTLambda.h"
26 #include "clang/AST/Attr.h"
27 #include "clang/AST/Decl.h"
28 #include "clang/AST/DeclCXX.h"
29 #include "clang/AST/Expr.h"
30 #include "clang/AST/StmtCXX.h"
31 #include "clang/AST/StmtObjC.h"
32 #include "clang/Basic/Builtins.h"
33 #include "clang/Basic/CodeGenOptions.h"
34 #include "clang/Basic/TargetBuiltins.h"
35 #include "clang/Basic/TargetInfo.h"
36 #include "clang/CodeGen/CGFunctionInfo.h"
37 #include "clang/Frontend/FrontendDiagnostic.h"
38 #include "llvm/ADT/ArrayRef.h"
39 #include "llvm/Frontend/OpenMP/OMPIRBuilder.h"
40 #include "llvm/IR/DataLayout.h"
41 #include "llvm/IR/Dominators.h"
42 #include "llvm/IR/FPEnv.h"
43 #include "llvm/IR/Instruction.h"
44 #include "llvm/IR/IntrinsicInst.h"
45 #include "llvm/IR/Intrinsics.h"
46 #include "llvm/IR/MDBuilder.h"
47 #include "llvm/Support/CRC.h"
48 #include "llvm/Support/xxhash.h"
49 #include "llvm/Transforms/Scalar/LowerExpectIntrinsic.h"
50 #include "llvm/Transforms/Utils/PromoteMemToReg.h"
51 #include <optional>
52 
53 using namespace clang;
54 using namespace CodeGen;
55 
56 namespace llvm {
57 extern cl::opt<bool> EnableSingleByteCoverage;
58 } // namespace llvm
59 
60 /// shouldEmitLifetimeMarkers - Decide whether we need emit the life-time
61 /// markers.
62 static bool shouldEmitLifetimeMarkers(const CodeGenOptions &CGOpts,
63                                       const LangOptions &LangOpts) {
64   if (CGOpts.DisableLifetimeMarkers)
65     return false;
66 
67   // Sanitizers may use markers.
68   if (CGOpts.SanitizeAddressUseAfterScope ||
69       LangOpts.Sanitize.has(SanitizerKind::HWAddress) ||
70       LangOpts.Sanitize.has(SanitizerKind::Memory))
71     return true;
72 
73   // For now, only in optimized builds.
74   return CGOpts.OptimizationLevel != 0;
75 }
76 
77 CodeGenFunction::CodeGenFunction(CodeGenModule &cgm, bool suppressNewContext)
78     : CodeGenTypeCache(cgm), CGM(cgm), Target(cgm.getTarget()),
79       Builder(cgm, cgm.getModule().getContext(), llvm::ConstantFolder(),
80               CGBuilderInserterTy(this)),
81       SanOpts(CGM.getLangOpts().Sanitize), CurFPFeatures(CGM.getLangOpts()),
82       DebugInfo(CGM.getModuleDebugInfo()), PGO(cgm),
83       ShouldEmitLifetimeMarkers(
84           shouldEmitLifetimeMarkers(CGM.getCodeGenOpts(), CGM.getLangOpts())) {
85   if (!suppressNewContext)
86     CGM.getCXXABI().getMangleContext().startNewFunction();
87   EHStack.setCGF(this);
88 
89   SetFastMathFlags(CurFPFeatures);
90 }
91 
92 CodeGenFunction::~CodeGenFunction() {
93   assert(LifetimeExtendedCleanupStack.empty() && "failed to emit a cleanup");
94   assert(DeferredDeactivationCleanupStack.empty() &&
95          "missed to deactivate a cleanup");
96 
97   if (getLangOpts().OpenMP && CurFn)
98     CGM.getOpenMPRuntime().functionFinished(*this);
99 
100   // If we have an OpenMPIRBuilder we want to finalize functions (incl.
101   // outlining etc) at some point. Doing it once the function codegen is done
102   // seems to be a reasonable spot. We do it here, as opposed to the deletion
103   // time of the CodeGenModule, because we have to ensure the IR has not yet
104   // been "emitted" to the outside, thus, modifications are still sensible.
105   if (CGM.getLangOpts().OpenMPIRBuilder && CurFn)
106     CGM.getOpenMPRuntime().getOMPBuilder().finalize(CurFn);
107 }
108 
109 // Map the LangOption for exception behavior into
110 // the corresponding enum in the IR.
111 llvm::fp::ExceptionBehavior
112 clang::ToConstrainedExceptMD(LangOptions::FPExceptionModeKind Kind) {
113 
114   switch (Kind) {
115   case LangOptions::FPE_Ignore:  return llvm::fp::ebIgnore;
116   case LangOptions::FPE_MayTrap: return llvm::fp::ebMayTrap;
117   case LangOptions::FPE_Strict:  return llvm::fp::ebStrict;
118   default:
119     llvm_unreachable("Unsupported FP Exception Behavior");
120   }
121 }
122 
123 void CodeGenFunction::SetFastMathFlags(FPOptions FPFeatures) {
124   llvm::FastMathFlags FMF;
125   FMF.setAllowReassoc(FPFeatures.getAllowFPReassociate());
126   FMF.setNoNaNs(FPFeatures.getNoHonorNaNs());
127   FMF.setNoInfs(FPFeatures.getNoHonorInfs());
128   FMF.setNoSignedZeros(FPFeatures.getNoSignedZero());
129   FMF.setAllowReciprocal(FPFeatures.getAllowReciprocal());
130   FMF.setApproxFunc(FPFeatures.getAllowApproxFunc());
131   FMF.setAllowContract(FPFeatures.allowFPContractAcrossStatement());
132   Builder.setFastMathFlags(FMF);
133 }
134 
135 CodeGenFunction::CGFPOptionsRAII::CGFPOptionsRAII(CodeGenFunction &CGF,
136                                                   const Expr *E)
137     : CGF(CGF) {
138   ConstructorHelper(E->getFPFeaturesInEffect(CGF.getLangOpts()));
139 }
140 
141 CodeGenFunction::CGFPOptionsRAII::CGFPOptionsRAII(CodeGenFunction &CGF,
142                                                   FPOptions FPFeatures)
143     : CGF(CGF) {
144   ConstructorHelper(FPFeatures);
145 }
146 
147 void CodeGenFunction::CGFPOptionsRAII::ConstructorHelper(FPOptions FPFeatures) {
148   OldFPFeatures = CGF.CurFPFeatures;
149   CGF.CurFPFeatures = FPFeatures;
150 
151   OldExcept = CGF.Builder.getDefaultConstrainedExcept();
152   OldRounding = CGF.Builder.getDefaultConstrainedRounding();
153 
154   if (OldFPFeatures == FPFeatures)
155     return;
156 
157   FMFGuard.emplace(CGF.Builder);
158 
159   llvm::RoundingMode NewRoundingBehavior = FPFeatures.getRoundingMode();
160   CGF.Builder.setDefaultConstrainedRounding(NewRoundingBehavior);
161   auto NewExceptionBehavior =
162       ToConstrainedExceptMD(static_cast<LangOptions::FPExceptionModeKind>(
163           FPFeatures.getExceptionMode()));
164   CGF.Builder.setDefaultConstrainedExcept(NewExceptionBehavior);
165 
166   CGF.SetFastMathFlags(FPFeatures);
167 
168   assert((CGF.CurFuncDecl == nullptr || CGF.Builder.getIsFPConstrained() ||
169           isa<CXXConstructorDecl>(CGF.CurFuncDecl) ||
170           isa<CXXDestructorDecl>(CGF.CurFuncDecl) ||
171           (NewExceptionBehavior == llvm::fp::ebIgnore &&
172            NewRoundingBehavior == llvm::RoundingMode::NearestTiesToEven)) &&
173          "FPConstrained should be enabled on entire function");
174 
175   auto mergeFnAttrValue = [&](StringRef Name, bool Value) {
176     auto OldValue =
177         CGF.CurFn->getFnAttribute(Name).getValueAsBool();
178     auto NewValue = OldValue & Value;
179     if (OldValue != NewValue)
180       CGF.CurFn->addFnAttr(Name, llvm::toStringRef(NewValue));
181   };
182   mergeFnAttrValue("no-infs-fp-math", FPFeatures.getNoHonorInfs());
183   mergeFnAttrValue("no-nans-fp-math", FPFeatures.getNoHonorNaNs());
184   mergeFnAttrValue("no-signed-zeros-fp-math", FPFeatures.getNoSignedZero());
185   mergeFnAttrValue(
186       "unsafe-fp-math",
187       FPFeatures.getAllowFPReassociate() && FPFeatures.getAllowReciprocal() &&
188           FPFeatures.getAllowApproxFunc() && FPFeatures.getNoSignedZero() &&
189           FPFeatures.allowFPContractAcrossStatement());
190 }
191 
192 CodeGenFunction::CGFPOptionsRAII::~CGFPOptionsRAII() {
193   CGF.CurFPFeatures = OldFPFeatures;
194   CGF.Builder.setDefaultConstrainedExcept(OldExcept);
195   CGF.Builder.setDefaultConstrainedRounding(OldRounding);
196 }
197 
198 static LValue
199 makeNaturalAlignAddrLValue(llvm::Value *V, QualType T, bool ForPointeeType,
200                            bool MightBeSigned, CodeGenFunction &CGF,
201                            KnownNonNull_t IsKnownNonNull = NotKnownNonNull) {
202   LValueBaseInfo BaseInfo;
203   TBAAAccessInfo TBAAInfo;
204   CharUnits Alignment =
205       CGF.CGM.getNaturalTypeAlignment(T, &BaseInfo, &TBAAInfo, ForPointeeType);
206   Address Addr =
207       MightBeSigned
208           ? CGF.makeNaturalAddressForPointer(V, T, Alignment, false, nullptr,
209                                              nullptr, IsKnownNonNull)
210           : Address(V, CGF.ConvertTypeForMem(T), Alignment, IsKnownNonNull);
211   return CGF.MakeAddrLValue(Addr, T, BaseInfo, TBAAInfo);
212 }
213 
214 LValue
215 CodeGenFunction::MakeNaturalAlignAddrLValue(llvm::Value *V, QualType T,
216                                             KnownNonNull_t IsKnownNonNull) {
217   return ::makeNaturalAlignAddrLValue(V, T, /*ForPointeeType*/ false,
218                                       /*MightBeSigned*/ true, *this,
219                                       IsKnownNonNull);
220 }
221 
222 LValue
223 CodeGenFunction::MakeNaturalAlignPointeeAddrLValue(llvm::Value *V, QualType T) {
224   return ::makeNaturalAlignAddrLValue(V, T, /*ForPointeeType*/ true,
225                                       /*MightBeSigned*/ true, *this);
226 }
227 
228 LValue CodeGenFunction::MakeNaturalAlignRawAddrLValue(llvm::Value *V,
229                                                       QualType T) {
230   return ::makeNaturalAlignAddrLValue(V, T, /*ForPointeeType*/ false,
231                                       /*MightBeSigned*/ false, *this);
232 }
233 
234 LValue CodeGenFunction::MakeNaturalAlignPointeeRawAddrLValue(llvm::Value *V,
235                                                              QualType T) {
236   return ::makeNaturalAlignAddrLValue(V, T, /*ForPointeeType*/ true,
237                                       /*MightBeSigned*/ false, *this);
238 }
239 
240 llvm::Type *CodeGenFunction::ConvertTypeForMem(QualType T) {
241   return CGM.getTypes().ConvertTypeForMem(T);
242 }
243 
244 llvm::Type *CodeGenFunction::ConvertType(QualType T) {
245   return CGM.getTypes().ConvertType(T);
246 }
247 
248 llvm::Type *CodeGenFunction::convertTypeForLoadStore(QualType ASTTy,
249                                                      llvm::Type *LLVMTy) {
250   return CGM.getTypes().convertTypeForLoadStore(ASTTy, LLVMTy);
251 }
252 
253 TypeEvaluationKind CodeGenFunction::getEvaluationKind(QualType type) {
254   type = type.getCanonicalType();
255   while (true) {
256     switch (type->getTypeClass()) {
257 #define TYPE(name, parent)
258 #define ABSTRACT_TYPE(name, parent)
259 #define NON_CANONICAL_TYPE(name, parent) case Type::name:
260 #define DEPENDENT_TYPE(name, parent) case Type::name:
261 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(name, parent) case Type::name:
262 #include "clang/AST/TypeNodes.inc"
263       llvm_unreachable("non-canonical or dependent type in IR-generation");
264 
265     case Type::Auto:
266     case Type::DeducedTemplateSpecialization:
267       llvm_unreachable("undeduced type in IR-generation");
268 
269     // Various scalar types.
270     case Type::Builtin:
271     case Type::Pointer:
272     case Type::BlockPointer:
273     case Type::LValueReference:
274     case Type::RValueReference:
275     case Type::MemberPointer:
276     case Type::Vector:
277     case Type::ExtVector:
278     case Type::ConstantMatrix:
279     case Type::FunctionProto:
280     case Type::FunctionNoProto:
281     case Type::Enum:
282     case Type::ObjCObjectPointer:
283     case Type::Pipe:
284     case Type::BitInt:
285     case Type::HLSLAttributedResource:
286       return TEK_Scalar;
287 
288     // Complexes.
289     case Type::Complex:
290       return TEK_Complex;
291 
292     // Arrays, records, and Objective-C objects.
293     case Type::ConstantArray:
294     case Type::IncompleteArray:
295     case Type::VariableArray:
296     case Type::Record:
297     case Type::ObjCObject:
298     case Type::ObjCInterface:
299     case Type::ArrayParameter:
300       return TEK_Aggregate;
301 
302     // We operate on atomic values according to their underlying type.
303     case Type::Atomic:
304       type = cast<AtomicType>(type)->getValueType();
305       continue;
306     }
307     llvm_unreachable("unknown type kind!");
308   }
309 }
310 
311 llvm::DebugLoc CodeGenFunction::EmitReturnBlock() {
312   // For cleanliness, we try to avoid emitting the return block for
313   // simple cases.
314   llvm::BasicBlock *CurBB = Builder.GetInsertBlock();
315 
316   if (CurBB) {
317     assert(!CurBB->getTerminator() && "Unexpected terminated block.");
318 
319     // We have a valid insert point, reuse it if it is empty or there are no
320     // explicit jumps to the return block.
321     if (CurBB->empty() || ReturnBlock.getBlock()->use_empty()) {
322       ReturnBlock.getBlock()->replaceAllUsesWith(CurBB);
323       delete ReturnBlock.getBlock();
324       ReturnBlock = JumpDest();
325     } else
326       EmitBlock(ReturnBlock.getBlock());
327     return llvm::DebugLoc();
328   }
329 
330   // Otherwise, if the return block is the target of a single direct
331   // branch then we can just put the code in that block instead. This
332   // cleans up functions which started with a unified return block.
333   if (ReturnBlock.getBlock()->hasOneUse()) {
334     llvm::BranchInst *BI =
335       dyn_cast<llvm::BranchInst>(*ReturnBlock.getBlock()->user_begin());
336     if (BI && BI->isUnconditional() &&
337         BI->getSuccessor(0) == ReturnBlock.getBlock()) {
338       // Record/return the DebugLoc of the simple 'return' expression to be used
339       // later by the actual 'ret' instruction.
340       llvm::DebugLoc Loc = BI->getDebugLoc();
341       Builder.SetInsertPoint(BI->getParent());
342       BI->eraseFromParent();
343       delete ReturnBlock.getBlock();
344       ReturnBlock = JumpDest();
345       return Loc;
346     }
347   }
348 
349   // FIXME: We are at an unreachable point, there is no reason to emit the block
350   // unless it has uses. However, we still need a place to put the debug
351   // region.end for now.
352 
353   EmitBlock(ReturnBlock.getBlock());
354   return llvm::DebugLoc();
355 }
356 
357 static void EmitIfUsed(CodeGenFunction &CGF, llvm::BasicBlock *BB) {
358   if (!BB) return;
359   if (!BB->use_empty()) {
360     CGF.CurFn->insert(CGF.CurFn->end(), BB);
361     return;
362   }
363   delete BB;
364 }
365 
366 void CodeGenFunction::FinishFunction(SourceLocation EndLoc) {
367   assert(BreakContinueStack.empty() &&
368          "mismatched push/pop in break/continue stack!");
369   assert(LifetimeExtendedCleanupStack.empty() &&
370          "mismatched push/pop of cleanups in EHStack!");
371   assert(DeferredDeactivationCleanupStack.empty() &&
372          "mismatched activate/deactivate of cleanups!");
373 
374   if (CGM.shouldEmitConvergenceTokens()) {
375     ConvergenceTokenStack.pop_back();
376     assert(ConvergenceTokenStack.empty() &&
377            "mismatched push/pop in convergence stack!");
378   }
379 
380   bool OnlySimpleReturnStmts = NumSimpleReturnExprs > 0
381     && NumSimpleReturnExprs == NumReturnExprs
382     && ReturnBlock.getBlock()->use_empty();
383   // Usually the return expression is evaluated before the cleanup
384   // code.  If the function contains only a simple return statement,
385   // such as a constant, the location before the cleanup code becomes
386   // the last useful breakpoint in the function, because the simple
387   // return expression will be evaluated after the cleanup code. To be
388   // safe, set the debug location for cleanup code to the location of
389   // the return statement.  Otherwise the cleanup code should be at the
390   // end of the function's lexical scope.
391   //
392   // If there are multiple branches to the return block, the branch
393   // instructions will get the location of the return statements and
394   // all will be fine.
395   if (CGDebugInfo *DI = getDebugInfo()) {
396     if (OnlySimpleReturnStmts)
397       DI->EmitLocation(Builder, LastStopPoint);
398     else
399       DI->EmitLocation(Builder, EndLoc);
400   }
401 
402   // Pop any cleanups that might have been associated with the
403   // parameters.  Do this in whatever block we're currently in; it's
404   // important to do this before we enter the return block or return
405   // edges will be *really* confused.
406   bool HasCleanups = EHStack.stable_begin() != PrologueCleanupDepth;
407   bool HasOnlyLifetimeMarkers =
408       HasCleanups && EHStack.containsOnlyLifetimeMarkers(PrologueCleanupDepth);
409   bool EmitRetDbgLoc = !HasCleanups || HasOnlyLifetimeMarkers;
410 
411   std::optional<ApplyDebugLocation> OAL;
412   if (HasCleanups) {
413     // Make sure the line table doesn't jump back into the body for
414     // the ret after it's been at EndLoc.
415     if (CGDebugInfo *DI = getDebugInfo()) {
416       if (OnlySimpleReturnStmts)
417         DI->EmitLocation(Builder, EndLoc);
418       else
419         // We may not have a valid end location. Try to apply it anyway, and
420         // fall back to an artificial location if needed.
421         OAL = ApplyDebugLocation::CreateDefaultArtificial(*this, EndLoc);
422     }
423 
424     PopCleanupBlocks(PrologueCleanupDepth);
425   }
426 
427   // Emit function epilog (to return).
428   llvm::DebugLoc Loc = EmitReturnBlock();
429 
430   if (ShouldInstrumentFunction()) {
431     if (CGM.getCodeGenOpts().InstrumentFunctions)
432       CurFn->addFnAttr("instrument-function-exit", "__cyg_profile_func_exit");
433     if (CGM.getCodeGenOpts().InstrumentFunctionsAfterInlining)
434       CurFn->addFnAttr("instrument-function-exit-inlined",
435                        "__cyg_profile_func_exit");
436   }
437 
438   // Emit debug descriptor for function end.
439   if (CGDebugInfo *DI = getDebugInfo())
440     DI->EmitFunctionEnd(Builder, CurFn);
441 
442   // Reset the debug location to that of the simple 'return' expression, if any
443   // rather than that of the end of the function's scope '}'.
444   ApplyDebugLocation AL(*this, Loc);
445   EmitFunctionEpilog(*CurFnInfo, EmitRetDbgLoc, EndLoc);
446   EmitEndEHSpec(CurCodeDecl);
447 
448   assert(EHStack.empty() &&
449          "did not remove all scopes from cleanup stack!");
450 
451   // If someone did an indirect goto, emit the indirect goto block at the end of
452   // the function.
453   if (IndirectBranch) {
454     EmitBlock(IndirectBranch->getParent());
455     Builder.ClearInsertionPoint();
456   }
457 
458   // If some of our locals escaped, insert a call to llvm.localescape in the
459   // entry block.
460   if (!EscapedLocals.empty()) {
461     // Invert the map from local to index into a simple vector. There should be
462     // no holes.
463     SmallVector<llvm::Value *, 4> EscapeArgs;
464     EscapeArgs.resize(EscapedLocals.size());
465     for (auto &Pair : EscapedLocals)
466       EscapeArgs[Pair.second] = Pair.first;
467     llvm::Function *FrameEscapeFn = llvm::Intrinsic::getOrInsertDeclaration(
468         &CGM.getModule(), llvm::Intrinsic::localescape);
469     CGBuilderTy(*this, AllocaInsertPt).CreateCall(FrameEscapeFn, EscapeArgs);
470   }
471 
472   // Remove the AllocaInsertPt instruction, which is just a convenience for us.
473   llvm::Instruction *Ptr = AllocaInsertPt;
474   AllocaInsertPt = nullptr;
475   Ptr->eraseFromParent();
476 
477   // PostAllocaInsertPt, if created, was lazily created when it was required,
478   // remove it now since it was just created for our own convenience.
479   if (PostAllocaInsertPt) {
480     llvm::Instruction *PostPtr = PostAllocaInsertPt;
481     PostAllocaInsertPt = nullptr;
482     PostPtr->eraseFromParent();
483   }
484 
485   // If someone took the address of a label but never did an indirect goto, we
486   // made a zero entry PHI node, which is illegal, zap it now.
487   if (IndirectBranch) {
488     llvm::PHINode *PN = cast<llvm::PHINode>(IndirectBranch->getAddress());
489     if (PN->getNumIncomingValues() == 0) {
490       PN->replaceAllUsesWith(llvm::PoisonValue::get(PN->getType()));
491       PN->eraseFromParent();
492     }
493   }
494 
495   EmitIfUsed(*this, EHResumeBlock);
496   EmitIfUsed(*this, TerminateLandingPad);
497   EmitIfUsed(*this, TerminateHandler);
498   EmitIfUsed(*this, UnreachableBlock);
499 
500   for (const auto &FuncletAndParent : TerminateFunclets)
501     EmitIfUsed(*this, FuncletAndParent.second);
502 
503   if (CGM.getCodeGenOpts().EmitDeclMetadata)
504     EmitDeclMetadata();
505 
506   for (const auto &R : DeferredReplacements) {
507     if (llvm::Value *Old = R.first) {
508       Old->replaceAllUsesWith(R.second);
509       cast<llvm::Instruction>(Old)->eraseFromParent();
510     }
511   }
512   DeferredReplacements.clear();
513 
514   // Eliminate CleanupDestSlot alloca by replacing it with SSA values and
515   // PHIs if the current function is a coroutine. We don't do it for all
516   // functions as it may result in slight increase in numbers of instructions
517   // if compiled with no optimizations. We do it for coroutine as the lifetime
518   // of CleanupDestSlot alloca make correct coroutine frame building very
519   // difficult.
520   if (NormalCleanupDest.isValid() && isCoroutine()) {
521     llvm::DominatorTree DT(*CurFn);
522     llvm::PromoteMemToReg(
523         cast<llvm::AllocaInst>(NormalCleanupDest.getPointer()), DT);
524     NormalCleanupDest = Address::invalid();
525   }
526 
527   // Scan function arguments for vector width.
528   for (llvm::Argument &A : CurFn->args())
529     if (auto *VT = dyn_cast<llvm::VectorType>(A.getType()))
530       LargestVectorWidth =
531           std::max((uint64_t)LargestVectorWidth,
532                    VT->getPrimitiveSizeInBits().getKnownMinValue());
533 
534   // Update vector width based on return type.
535   if (auto *VT = dyn_cast<llvm::VectorType>(CurFn->getReturnType()))
536     LargestVectorWidth =
537         std::max((uint64_t)LargestVectorWidth,
538                  VT->getPrimitiveSizeInBits().getKnownMinValue());
539 
540   if (CurFnInfo->getMaxVectorWidth() > LargestVectorWidth)
541     LargestVectorWidth = CurFnInfo->getMaxVectorWidth();
542 
543   // Add the min-legal-vector-width attribute. This contains the max width from:
544   // 1. min-vector-width attribute used in the source program.
545   // 2. Any builtins used that have a vector width specified.
546   // 3. Values passed in and out of inline assembly.
547   // 4. Width of vector arguments and return types for this function.
548   // 5. Width of vector arguments and return types for functions called by this
549   //    function.
550   if (getContext().getTargetInfo().getTriple().isX86())
551     CurFn->addFnAttr("min-legal-vector-width",
552                      llvm::utostr(LargestVectorWidth));
553 
554   // Add vscale_range attribute if appropriate.
555   std::optional<std::pair<unsigned, unsigned>> VScaleRange =
556       getContext().getTargetInfo().getVScaleRange(getLangOpts());
557   if (VScaleRange) {
558     CurFn->addFnAttr(llvm::Attribute::getWithVScaleRangeArgs(
559         getLLVMContext(), VScaleRange->first, VScaleRange->second));
560   }
561 
562   // If we generated an unreachable return block, delete it now.
563   if (ReturnBlock.isValid() && ReturnBlock.getBlock()->use_empty()) {
564     Builder.ClearInsertionPoint();
565     ReturnBlock.getBlock()->eraseFromParent();
566   }
567   if (ReturnValue.isValid()) {
568     auto *RetAlloca =
569         dyn_cast<llvm::AllocaInst>(ReturnValue.emitRawPointer(*this));
570     if (RetAlloca && RetAlloca->use_empty()) {
571       RetAlloca->eraseFromParent();
572       ReturnValue = Address::invalid();
573     }
574   }
575 }
576 
577 /// ShouldInstrumentFunction - Return true if the current function should be
578 /// instrumented with __cyg_profile_func_* calls
579 bool CodeGenFunction::ShouldInstrumentFunction() {
580   if (!CGM.getCodeGenOpts().InstrumentFunctions &&
581       !CGM.getCodeGenOpts().InstrumentFunctionsAfterInlining &&
582       !CGM.getCodeGenOpts().InstrumentFunctionEntryBare)
583     return false;
584   if (!CurFuncDecl || CurFuncDecl->hasAttr<NoInstrumentFunctionAttr>())
585     return false;
586   return true;
587 }
588 
589 bool CodeGenFunction::ShouldSkipSanitizerInstrumentation() {
590   if (!CurFuncDecl)
591     return false;
592   return CurFuncDecl->hasAttr<DisableSanitizerInstrumentationAttr>();
593 }
594 
595 /// ShouldXRayInstrument - Return true if the current function should be
596 /// instrumented with XRay nop sleds.
597 bool CodeGenFunction::ShouldXRayInstrumentFunction() const {
598   return CGM.getCodeGenOpts().XRayInstrumentFunctions;
599 }
600 
601 /// AlwaysEmitXRayCustomEvents - Return true if we should emit IR for calls to
602 /// the __xray_customevent(...) builtin calls, when doing XRay instrumentation.
603 bool CodeGenFunction::AlwaysEmitXRayCustomEvents() const {
604   return CGM.getCodeGenOpts().XRayInstrumentFunctions &&
605          (CGM.getCodeGenOpts().XRayAlwaysEmitCustomEvents ||
606           CGM.getCodeGenOpts().XRayInstrumentationBundle.Mask ==
607               XRayInstrKind::Custom);
608 }
609 
610 bool CodeGenFunction::AlwaysEmitXRayTypedEvents() const {
611   return CGM.getCodeGenOpts().XRayInstrumentFunctions &&
612          (CGM.getCodeGenOpts().XRayAlwaysEmitTypedEvents ||
613           CGM.getCodeGenOpts().XRayInstrumentationBundle.Mask ==
614               XRayInstrKind::Typed);
615 }
616 
617 llvm::ConstantInt *
618 CodeGenFunction::getUBSanFunctionTypeHash(QualType Ty) const {
619   // Remove any (C++17) exception specifications, to allow calling e.g. a
620   // noexcept function through a non-noexcept pointer.
621   if (!Ty->isFunctionNoProtoType())
622     Ty = getContext().getFunctionTypeWithExceptionSpec(Ty, EST_None);
623   std::string Mangled;
624   llvm::raw_string_ostream Out(Mangled);
625   CGM.getCXXABI().getMangleContext().mangleCanonicalTypeName(Ty, Out, false);
626   return llvm::ConstantInt::get(
627       CGM.Int32Ty, static_cast<uint32_t>(llvm::xxh3_64bits(Mangled)));
628 }
629 
630 void CodeGenFunction::EmitKernelMetadata(const FunctionDecl *FD,
631                                          llvm::Function *Fn) {
632   if (!FD->hasAttr<OpenCLKernelAttr>() && !FD->hasAttr<CUDAGlobalAttr>())
633     return;
634 
635   llvm::LLVMContext &Context = getLLVMContext();
636 
637   CGM.GenKernelArgMetadata(Fn, FD, this);
638 
639   if (!(getLangOpts().OpenCL ||
640         (getLangOpts().CUDA &&
641          getContext().getTargetInfo().getTriple().isSPIRV())))
642     return;
643 
644   if (const VecTypeHintAttr *A = FD->getAttr<VecTypeHintAttr>()) {
645     QualType HintQTy = A->getTypeHint();
646     const ExtVectorType *HintEltQTy = HintQTy->getAs<ExtVectorType>();
647     bool IsSignedInteger =
648         HintQTy->isSignedIntegerType() ||
649         (HintEltQTy && HintEltQTy->getElementType()->isSignedIntegerType());
650     llvm::Metadata *AttrMDArgs[] = {
651         llvm::ConstantAsMetadata::get(llvm::UndefValue::get(
652             CGM.getTypes().ConvertType(A->getTypeHint()))),
653         llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
654             llvm::IntegerType::get(Context, 32),
655             llvm::APInt(32, (uint64_t)(IsSignedInteger ? 1 : 0))))};
656     Fn->setMetadata("vec_type_hint", llvm::MDNode::get(Context, AttrMDArgs));
657   }
658 
659   if (const WorkGroupSizeHintAttr *A = FD->getAttr<WorkGroupSizeHintAttr>()) {
660     llvm::Metadata *AttrMDArgs[] = {
661         llvm::ConstantAsMetadata::get(Builder.getInt32(A->getXDim())),
662         llvm::ConstantAsMetadata::get(Builder.getInt32(A->getYDim())),
663         llvm::ConstantAsMetadata::get(Builder.getInt32(A->getZDim()))};
664     Fn->setMetadata("work_group_size_hint", llvm::MDNode::get(Context, AttrMDArgs));
665   }
666 
667   if (const ReqdWorkGroupSizeAttr *A = FD->getAttr<ReqdWorkGroupSizeAttr>()) {
668     llvm::Metadata *AttrMDArgs[] = {
669         llvm::ConstantAsMetadata::get(Builder.getInt32(A->getXDim())),
670         llvm::ConstantAsMetadata::get(Builder.getInt32(A->getYDim())),
671         llvm::ConstantAsMetadata::get(Builder.getInt32(A->getZDim()))};
672     Fn->setMetadata("reqd_work_group_size", llvm::MDNode::get(Context, AttrMDArgs));
673   }
674 
675   if (const OpenCLIntelReqdSubGroupSizeAttr *A =
676           FD->getAttr<OpenCLIntelReqdSubGroupSizeAttr>()) {
677     llvm::Metadata *AttrMDArgs[] = {
678         llvm::ConstantAsMetadata::get(Builder.getInt32(A->getSubGroupSize()))};
679     Fn->setMetadata("intel_reqd_sub_group_size",
680                     llvm::MDNode::get(Context, AttrMDArgs));
681   }
682 }
683 
684 /// Determine whether the function F ends with a return stmt.
685 static bool endsWithReturn(const Decl* F) {
686   const Stmt *Body = nullptr;
687   if (auto *FD = dyn_cast_or_null<FunctionDecl>(F))
688     Body = FD->getBody();
689   else if (auto *OMD = dyn_cast_or_null<ObjCMethodDecl>(F))
690     Body = OMD->getBody();
691 
692   if (auto *CS = dyn_cast_or_null<CompoundStmt>(Body)) {
693     auto LastStmt = CS->body_rbegin();
694     if (LastStmt != CS->body_rend())
695       return isa<ReturnStmt>(*LastStmt);
696   }
697   return false;
698 }
699 
700 void CodeGenFunction::markAsIgnoreThreadCheckingAtRuntime(llvm::Function *Fn) {
701   if (SanOpts.has(SanitizerKind::Thread)) {
702     Fn->addFnAttr("sanitize_thread_no_checking_at_run_time");
703     Fn->removeFnAttr(llvm::Attribute::SanitizeThread);
704   }
705 }
706 
707 /// Check if the return value of this function requires sanitization.
708 bool CodeGenFunction::requiresReturnValueCheck() const {
709   return requiresReturnValueNullabilityCheck() ||
710          (SanOpts.has(SanitizerKind::ReturnsNonnullAttribute) && CurCodeDecl &&
711           CurCodeDecl->getAttr<ReturnsNonNullAttr>());
712 }
713 
714 static bool matchesStlAllocatorFn(const Decl *D, const ASTContext &Ctx) {
715   auto *MD = dyn_cast_or_null<CXXMethodDecl>(D);
716   if (!MD || !MD->getDeclName().getAsIdentifierInfo() ||
717       !MD->getDeclName().getAsIdentifierInfo()->isStr("allocate") ||
718       (MD->getNumParams() != 1 && MD->getNumParams() != 2))
719     return false;
720 
721   if (MD->parameters()[0]->getType().getCanonicalType() != Ctx.getSizeType())
722     return false;
723 
724   if (MD->getNumParams() == 2) {
725     auto *PT = MD->parameters()[1]->getType()->getAs<PointerType>();
726     if (!PT || !PT->isVoidPointerType() ||
727         !PT->getPointeeType().isConstQualified())
728       return false;
729   }
730 
731   return true;
732 }
733 
734 bool CodeGenFunction::isInAllocaArgument(CGCXXABI &ABI, QualType Ty) {
735   const CXXRecordDecl *RD = Ty->getAsCXXRecordDecl();
736   return RD && ABI.getRecordArgABI(RD) == CGCXXABI::RAA_DirectInMemory;
737 }
738 
739 bool CodeGenFunction::hasInAllocaArg(const CXXMethodDecl *MD) {
740   return getTarget().getTriple().getArch() == llvm::Triple::x86 &&
741          getTarget().getCXXABI().isMicrosoft() &&
742          llvm::any_of(MD->parameters(), [&](ParmVarDecl *P) {
743            return isInAllocaArgument(CGM.getCXXABI(), P->getType());
744          });
745 }
746 
747 /// Return the UBSan prologue signature for \p FD if one is available.
748 static llvm::Constant *getPrologueSignature(CodeGenModule &CGM,
749                                             const FunctionDecl *FD) {
750   if (const auto *MD = dyn_cast<CXXMethodDecl>(FD))
751     if (!MD->isStatic())
752       return nullptr;
753   return CGM.getTargetCodeGenInfo().getUBSanFunctionSignature(CGM);
754 }
755 
756 void CodeGenFunction::StartFunction(GlobalDecl GD, QualType RetTy,
757                                     llvm::Function *Fn,
758                                     const CGFunctionInfo &FnInfo,
759                                     const FunctionArgList &Args,
760                                     SourceLocation Loc,
761                                     SourceLocation StartLoc) {
762   assert(!CurFn &&
763          "Do not use a CodeGenFunction object for more than one function");
764 
765   const Decl *D = GD.getDecl();
766 
767   DidCallStackSave = false;
768   CurCodeDecl = D;
769   const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D);
770   if (FD && FD->usesSEHTry())
771     CurSEHParent = GD;
772   CurFuncDecl = (D ? D->getNonClosureContext() : nullptr);
773   FnRetTy = RetTy;
774   CurFn = Fn;
775   CurFnInfo = &FnInfo;
776   assert(CurFn->isDeclaration() && "Function already has body?");
777 
778   // If this function is ignored for any of the enabled sanitizers,
779   // disable the sanitizer for the function.
780   do {
781 #define SANITIZER(NAME, ID)                                                    \
782   if (SanOpts.empty())                                                         \
783     break;                                                                     \
784   if (SanOpts.has(SanitizerKind::ID))                                          \
785     if (CGM.isInNoSanitizeList(SanitizerKind::ID, Fn, Loc))                    \
786       SanOpts.set(SanitizerKind::ID, false);
787 
788 #include "clang/Basic/Sanitizers.def"
789 #undef SANITIZER
790   } while (false);
791 
792   if (D) {
793     const bool SanitizeBounds = SanOpts.hasOneOf(SanitizerKind::Bounds);
794     SanitizerMask no_sanitize_mask;
795     bool NoSanitizeCoverage = false;
796 
797     for (auto *Attr : D->specific_attrs<NoSanitizeAttr>()) {
798       no_sanitize_mask |= Attr->getMask();
799       // SanitizeCoverage is not handled by SanOpts.
800       if (Attr->hasCoverage())
801         NoSanitizeCoverage = true;
802     }
803 
804     // Apply the no_sanitize* attributes to SanOpts.
805     SanOpts.Mask &= ~no_sanitize_mask;
806     if (no_sanitize_mask & SanitizerKind::Address)
807       SanOpts.set(SanitizerKind::KernelAddress, false);
808     if (no_sanitize_mask & SanitizerKind::KernelAddress)
809       SanOpts.set(SanitizerKind::Address, false);
810     if (no_sanitize_mask & SanitizerKind::HWAddress)
811       SanOpts.set(SanitizerKind::KernelHWAddress, false);
812     if (no_sanitize_mask & SanitizerKind::KernelHWAddress)
813       SanOpts.set(SanitizerKind::HWAddress, false);
814 
815     if (SanitizeBounds && !SanOpts.hasOneOf(SanitizerKind::Bounds))
816       Fn->addFnAttr(llvm::Attribute::NoSanitizeBounds);
817 
818     if (NoSanitizeCoverage && CGM.getCodeGenOpts().hasSanitizeCoverage())
819       Fn->addFnAttr(llvm::Attribute::NoSanitizeCoverage);
820 
821     // Some passes need the non-negated no_sanitize attribute. Pass them on.
822     if (CGM.getCodeGenOpts().hasSanitizeBinaryMetadata()) {
823       if (no_sanitize_mask & SanitizerKind::Thread)
824         Fn->addFnAttr("no_sanitize_thread");
825     }
826   }
827 
828   if (ShouldSkipSanitizerInstrumentation()) {
829     CurFn->addFnAttr(llvm::Attribute::DisableSanitizerInstrumentation);
830   } else {
831     // Apply sanitizer attributes to the function.
832     if (SanOpts.hasOneOf(SanitizerKind::Address | SanitizerKind::KernelAddress))
833       Fn->addFnAttr(llvm::Attribute::SanitizeAddress);
834     if (SanOpts.hasOneOf(SanitizerKind::HWAddress |
835                          SanitizerKind::KernelHWAddress))
836       Fn->addFnAttr(llvm::Attribute::SanitizeHWAddress);
837     if (SanOpts.has(SanitizerKind::MemtagStack))
838       Fn->addFnAttr(llvm::Attribute::SanitizeMemTag);
839     if (SanOpts.has(SanitizerKind::Thread))
840       Fn->addFnAttr(llvm::Attribute::SanitizeThread);
841     if (SanOpts.has(SanitizerKind::Type))
842       Fn->addFnAttr(llvm::Attribute::SanitizeType);
843     if (SanOpts.has(SanitizerKind::NumericalStability))
844       Fn->addFnAttr(llvm::Attribute::SanitizeNumericalStability);
845     if (SanOpts.hasOneOf(SanitizerKind::Memory | SanitizerKind::KernelMemory))
846       Fn->addFnAttr(llvm::Attribute::SanitizeMemory);
847   }
848   if (SanOpts.has(SanitizerKind::SafeStack))
849     Fn->addFnAttr(llvm::Attribute::SafeStack);
850   if (SanOpts.has(SanitizerKind::ShadowCallStack))
851     Fn->addFnAttr(llvm::Attribute::ShadowCallStack);
852 
853   if (SanOpts.has(SanitizerKind::Realtime))
854     if (FD && FD->getASTContext().hasAnyFunctionEffects())
855       for (const FunctionEffectWithCondition &Fe : FD->getFunctionEffects()) {
856         if (Fe.Effect.kind() == FunctionEffect::Kind::NonBlocking)
857           Fn->addFnAttr(llvm::Attribute::SanitizeRealtime);
858         else if (Fe.Effect.kind() == FunctionEffect::Kind::Blocking)
859           Fn->addFnAttr(llvm::Attribute::SanitizeRealtimeBlocking);
860       }
861 
862   // Apply fuzzing attribute to the function.
863   if (SanOpts.hasOneOf(SanitizerKind::Fuzzer | SanitizerKind::FuzzerNoLink))
864     Fn->addFnAttr(llvm::Attribute::OptForFuzzing);
865 
866   // Ignore TSan memory acesses from within ObjC/ObjC++ dealloc, initialize,
867   // .cxx_destruct, __destroy_helper_block_ and all of their calees at run time.
868   if (SanOpts.has(SanitizerKind::Thread)) {
869     if (const auto *OMD = dyn_cast_or_null<ObjCMethodDecl>(D)) {
870       const IdentifierInfo *II = OMD->getSelector().getIdentifierInfoForSlot(0);
871       if (OMD->getMethodFamily() == OMF_dealloc ||
872           OMD->getMethodFamily() == OMF_initialize ||
873           (OMD->getSelector().isUnarySelector() && II->isStr(".cxx_destruct"))) {
874         markAsIgnoreThreadCheckingAtRuntime(Fn);
875       }
876     }
877   }
878 
879   // Ignore unrelated casts in STL allocate() since the allocator must cast
880   // from void* to T* before object initialization completes. Don't match on the
881   // namespace because not all allocators are in std::
882   if (D && SanOpts.has(SanitizerKind::CFIUnrelatedCast)) {
883     if (matchesStlAllocatorFn(D, getContext()))
884       SanOpts.Mask &= ~SanitizerKind::CFIUnrelatedCast;
885   }
886 
887   // Ignore null checks in coroutine functions since the coroutines passes
888   // are not aware of how to move the extra UBSan instructions across the split
889   // coroutine boundaries.
890   if (D && SanOpts.has(SanitizerKind::Null))
891     if (FD && FD->getBody() &&
892         FD->getBody()->getStmtClass() == Stmt::CoroutineBodyStmtClass)
893       SanOpts.Mask &= ~SanitizerKind::Null;
894 
895   // Add pointer authentication attributes.
896   const CodeGenOptions &CodeGenOpts = CGM.getCodeGenOpts();
897   if (CodeGenOpts.PointerAuth.ReturnAddresses)
898     Fn->addFnAttr("ptrauth-returns");
899   if (CodeGenOpts.PointerAuth.FunctionPointers)
900     Fn->addFnAttr("ptrauth-calls");
901   if (CodeGenOpts.PointerAuth.AuthTraps)
902     Fn->addFnAttr("ptrauth-auth-traps");
903   if (CodeGenOpts.PointerAuth.IndirectGotos)
904     Fn->addFnAttr("ptrauth-indirect-gotos");
905   if (CodeGenOpts.PointerAuth.AArch64JumpTableHardening)
906     Fn->addFnAttr("aarch64-jump-table-hardening");
907 
908   // Apply xray attributes to the function (as a string, for now)
909   bool AlwaysXRayAttr = false;
910   if (const auto *XRayAttr = D ? D->getAttr<XRayInstrumentAttr>() : nullptr) {
911     if (CGM.getCodeGenOpts().XRayInstrumentationBundle.has(
912             XRayInstrKind::FunctionEntry) ||
913         CGM.getCodeGenOpts().XRayInstrumentationBundle.has(
914             XRayInstrKind::FunctionExit)) {
915       if (XRayAttr->alwaysXRayInstrument() && ShouldXRayInstrumentFunction()) {
916         Fn->addFnAttr("function-instrument", "xray-always");
917         AlwaysXRayAttr = true;
918       }
919       if (XRayAttr->neverXRayInstrument())
920         Fn->addFnAttr("function-instrument", "xray-never");
921       if (const auto *LogArgs = D->getAttr<XRayLogArgsAttr>())
922         if (ShouldXRayInstrumentFunction())
923           Fn->addFnAttr("xray-log-args",
924                         llvm::utostr(LogArgs->getArgumentCount()));
925     }
926   } else {
927     if (ShouldXRayInstrumentFunction() && !CGM.imbueXRayAttrs(Fn, Loc))
928       Fn->addFnAttr(
929           "xray-instruction-threshold",
930           llvm::itostr(CGM.getCodeGenOpts().XRayInstructionThreshold));
931   }
932 
933   if (ShouldXRayInstrumentFunction()) {
934     if (CGM.getCodeGenOpts().XRayIgnoreLoops)
935       Fn->addFnAttr("xray-ignore-loops");
936 
937     if (!CGM.getCodeGenOpts().XRayInstrumentationBundle.has(
938             XRayInstrKind::FunctionExit))
939       Fn->addFnAttr("xray-skip-exit");
940 
941     if (!CGM.getCodeGenOpts().XRayInstrumentationBundle.has(
942             XRayInstrKind::FunctionEntry))
943       Fn->addFnAttr("xray-skip-entry");
944 
945     auto FuncGroups = CGM.getCodeGenOpts().XRayTotalFunctionGroups;
946     if (FuncGroups > 1) {
947       auto FuncName = llvm::ArrayRef<uint8_t>(CurFn->getName().bytes_begin(),
948                                               CurFn->getName().bytes_end());
949       auto Group = crc32(FuncName) % FuncGroups;
950       if (Group != CGM.getCodeGenOpts().XRaySelectedFunctionGroup &&
951           !AlwaysXRayAttr)
952         Fn->addFnAttr("function-instrument", "xray-never");
953     }
954   }
955 
956   if (CGM.getCodeGenOpts().getProfileInstr() != CodeGenOptions::ProfileNone) {
957     switch (CGM.isFunctionBlockedFromProfileInstr(Fn, Loc)) {
958     case ProfileList::Skip:
959       Fn->addFnAttr(llvm::Attribute::SkipProfile);
960       break;
961     case ProfileList::Forbid:
962       Fn->addFnAttr(llvm::Attribute::NoProfile);
963       break;
964     case ProfileList::Allow:
965       break;
966     }
967   }
968 
969   unsigned Count, Offset;
970   if (const auto *Attr =
971           D ? D->getAttr<PatchableFunctionEntryAttr>() : nullptr) {
972     Count = Attr->getCount();
973     Offset = Attr->getOffset();
974   } else {
975     Count = CGM.getCodeGenOpts().PatchableFunctionEntryCount;
976     Offset = CGM.getCodeGenOpts().PatchableFunctionEntryOffset;
977   }
978   if (Count && Offset <= Count) {
979     Fn->addFnAttr("patchable-function-entry", std::to_string(Count - Offset));
980     if (Offset)
981       Fn->addFnAttr("patchable-function-prefix", std::to_string(Offset));
982   }
983   // Instruct that functions for COFF/CodeView targets should start with a
984   // patchable instruction, but only on x86/x64. Don't forward this to ARM/ARM64
985   // backends as they don't need it -- instructions on these architectures are
986   // always atomically patchable at runtime.
987   if (CGM.getCodeGenOpts().HotPatch &&
988       getContext().getTargetInfo().getTriple().isX86() &&
989       getContext().getTargetInfo().getTriple().getEnvironment() !=
990           llvm::Triple::CODE16)
991     Fn->addFnAttr("patchable-function", "prologue-short-redirect");
992 
993   // Add no-jump-tables value.
994   if (CGM.getCodeGenOpts().NoUseJumpTables)
995     Fn->addFnAttr("no-jump-tables", "true");
996 
997   // Add no-inline-line-tables value.
998   if (CGM.getCodeGenOpts().NoInlineLineTables)
999     Fn->addFnAttr("no-inline-line-tables");
1000 
1001   // Add profile-sample-accurate value.
1002   if (CGM.getCodeGenOpts().ProfileSampleAccurate)
1003     Fn->addFnAttr("profile-sample-accurate");
1004 
1005   if (!CGM.getCodeGenOpts().SampleProfileFile.empty())
1006     Fn->addFnAttr("use-sample-profile");
1007 
1008   if (D && D->hasAttr<CFICanonicalJumpTableAttr>())
1009     Fn->addFnAttr("cfi-canonical-jump-table");
1010 
1011   if (D && D->hasAttr<NoProfileFunctionAttr>())
1012     Fn->addFnAttr(llvm::Attribute::NoProfile);
1013 
1014   if (D && D->hasAttr<HybridPatchableAttr>())
1015     Fn->addFnAttr(llvm::Attribute::HybridPatchable);
1016 
1017   if (D) {
1018     // Function attributes take precedence over command line flags.
1019     if (auto *A = D->getAttr<FunctionReturnThunksAttr>()) {
1020       switch (A->getThunkType()) {
1021       case FunctionReturnThunksAttr::Kind::Keep:
1022         break;
1023       case FunctionReturnThunksAttr::Kind::Extern:
1024         Fn->addFnAttr(llvm::Attribute::FnRetThunkExtern);
1025         break;
1026       }
1027     } else if (CGM.getCodeGenOpts().FunctionReturnThunks)
1028       Fn->addFnAttr(llvm::Attribute::FnRetThunkExtern);
1029   }
1030 
1031   if (FD && (getLangOpts().OpenCL ||
1032              (getLangOpts().CUDA &&
1033               getContext().getTargetInfo().getTriple().isSPIRV()) ||
1034              ((getLangOpts().HIP || getLangOpts().OffloadViaLLVM) &&
1035               getLangOpts().CUDAIsDevice))) {
1036     // Add metadata for a kernel function.
1037     EmitKernelMetadata(FD, Fn);
1038   }
1039 
1040   if (FD && FD->hasAttr<ClspvLibclcBuiltinAttr>()) {
1041     Fn->setMetadata("clspv_libclc_builtin",
1042                     llvm::MDNode::get(getLLVMContext(), {}));
1043   }
1044 
1045   // If we are checking function types, emit a function type signature as
1046   // prologue data.
1047   if (FD && SanOpts.has(SanitizerKind::Function)) {
1048     if (llvm::Constant *PrologueSig = getPrologueSignature(CGM, FD)) {
1049       llvm::LLVMContext &Ctx = Fn->getContext();
1050       llvm::MDBuilder MDB(Ctx);
1051       Fn->setMetadata(
1052           llvm::LLVMContext::MD_func_sanitize,
1053           MDB.createRTTIPointerPrologue(
1054               PrologueSig, getUBSanFunctionTypeHash(FD->getType())));
1055     }
1056   }
1057 
1058   // If we're checking nullability, we need to know whether we can check the
1059   // return value. Initialize the flag to 'true' and refine it in EmitParmDecl.
1060   if (SanOpts.has(SanitizerKind::NullabilityReturn)) {
1061     auto Nullability = FnRetTy->getNullability();
1062     if (Nullability && *Nullability == NullabilityKind::NonNull &&
1063         !FnRetTy->isRecordType()) {
1064       if (!(SanOpts.has(SanitizerKind::ReturnsNonnullAttribute) &&
1065             CurCodeDecl && CurCodeDecl->getAttr<ReturnsNonNullAttr>()))
1066         RetValNullabilityPrecondition =
1067             llvm::ConstantInt::getTrue(getLLVMContext());
1068     }
1069   }
1070 
1071   // If we're in C++ mode and the function name is "main", it is guaranteed
1072   // to be norecurse by the standard (3.6.1.3 "The function main shall not be
1073   // used within a program").
1074   //
1075   // OpenCL C 2.0 v2.2-11 s6.9.i:
1076   //     Recursion is not supported.
1077   //
1078   // HLSL
1079   //     Recursion is not supported.
1080   //
1081   // SYCL v1.2.1 s3.10:
1082   //     kernels cannot include RTTI information, exception classes,
1083   //     recursive code, virtual functions or make use of C++ libraries that
1084   //     are not compiled for the device.
1085   if (FD &&
1086       ((getLangOpts().CPlusPlus && FD->isMain()) || getLangOpts().OpenCL ||
1087        getLangOpts().HLSL || getLangOpts().SYCLIsDevice ||
1088        (getLangOpts().CUDA && FD->hasAttr<CUDAGlobalAttr>())))
1089     Fn->addFnAttr(llvm::Attribute::NoRecurse);
1090 
1091   llvm::RoundingMode RM = getLangOpts().getDefaultRoundingMode();
1092   llvm::fp::ExceptionBehavior FPExceptionBehavior =
1093       ToConstrainedExceptMD(getLangOpts().getDefaultExceptionMode());
1094   Builder.setDefaultConstrainedRounding(RM);
1095   Builder.setDefaultConstrainedExcept(FPExceptionBehavior);
1096   if ((FD && (FD->UsesFPIntrin() || FD->hasAttr<StrictFPAttr>())) ||
1097       (!FD && (FPExceptionBehavior != llvm::fp::ebIgnore ||
1098                RM != llvm::RoundingMode::NearestTiesToEven))) {
1099     Builder.setIsFPConstrained(true);
1100     Fn->addFnAttr(llvm::Attribute::StrictFP);
1101   }
1102 
1103   // If a custom alignment is used, force realigning to this alignment on
1104   // any main function which certainly will need it.
1105   if (FD && ((FD->isMain() || FD->isMSVCRTEntryPoint()) &&
1106              CGM.getCodeGenOpts().StackAlignment))
1107     Fn->addFnAttr("stackrealign");
1108 
1109   // "main" doesn't need to zero out call-used registers.
1110   if (FD && FD->isMain())
1111     Fn->removeFnAttr("zero-call-used-regs");
1112 
1113   llvm::BasicBlock *EntryBB = createBasicBlock("entry", CurFn);
1114 
1115   // Create a marker to make it easy to insert allocas into the entryblock
1116   // later.  Don't create this with the builder, because we don't want it
1117   // folded.
1118   llvm::Value *Poison = llvm::PoisonValue::get(Int32Ty);
1119   AllocaInsertPt = new llvm::BitCastInst(Poison, Int32Ty, "allocapt", EntryBB);
1120 
1121   ReturnBlock = getJumpDestInCurrentScope("return");
1122 
1123   Builder.SetInsertPoint(EntryBB);
1124 
1125   // If we're checking the return value, allocate space for a pointer to a
1126   // precise source location of the checked return statement.
1127   if (requiresReturnValueCheck()) {
1128     ReturnLocation = CreateDefaultAlignTempAlloca(Int8PtrTy, "return.sloc.ptr");
1129     Builder.CreateStore(llvm::ConstantPointerNull::get(Int8PtrTy),
1130                         ReturnLocation);
1131   }
1132 
1133   // Emit subprogram debug descriptor.
1134   if (CGDebugInfo *DI = getDebugInfo()) {
1135     // Reconstruct the type from the argument list so that implicit parameters,
1136     // such as 'this' and 'vtt', show up in the debug info. Preserve the calling
1137     // convention.
1138     DI->emitFunctionStart(GD, Loc, StartLoc,
1139                           DI->getFunctionType(FD, RetTy, Args), CurFn,
1140                           CurFuncIsThunk);
1141   }
1142 
1143   if (ShouldInstrumentFunction()) {
1144     if (CGM.getCodeGenOpts().InstrumentFunctions)
1145       CurFn->addFnAttr("instrument-function-entry", "__cyg_profile_func_enter");
1146     if (CGM.getCodeGenOpts().InstrumentFunctionsAfterInlining)
1147       CurFn->addFnAttr("instrument-function-entry-inlined",
1148                        "__cyg_profile_func_enter");
1149     if (CGM.getCodeGenOpts().InstrumentFunctionEntryBare)
1150       CurFn->addFnAttr("instrument-function-entry-inlined",
1151                        "__cyg_profile_func_enter_bare");
1152   }
1153 
1154   // Since emitting the mcount call here impacts optimizations such as function
1155   // inlining, we just add an attribute to insert a mcount call in backend.
1156   // The attribute "counting-function" is set to mcount function name which is
1157   // architecture dependent.
1158   if (CGM.getCodeGenOpts().InstrumentForProfiling) {
1159     // Calls to fentry/mcount should not be generated if function has
1160     // the no_instrument_function attribute.
1161     if (!CurFuncDecl || !CurFuncDecl->hasAttr<NoInstrumentFunctionAttr>()) {
1162       if (CGM.getCodeGenOpts().CallFEntry)
1163         Fn->addFnAttr("fentry-call", "true");
1164       else {
1165         Fn->addFnAttr("instrument-function-entry-inlined",
1166                       getTarget().getMCountName());
1167       }
1168       if (CGM.getCodeGenOpts().MNopMCount) {
1169         if (!CGM.getCodeGenOpts().CallFEntry)
1170           CGM.getDiags().Report(diag::err_opt_not_valid_without_opt)
1171             << "-mnop-mcount" << "-mfentry";
1172         Fn->addFnAttr("mnop-mcount");
1173       }
1174 
1175       if (CGM.getCodeGenOpts().RecordMCount) {
1176         if (!CGM.getCodeGenOpts().CallFEntry)
1177           CGM.getDiags().Report(diag::err_opt_not_valid_without_opt)
1178             << "-mrecord-mcount" << "-mfentry";
1179         Fn->addFnAttr("mrecord-mcount");
1180       }
1181     }
1182   }
1183 
1184   if (CGM.getCodeGenOpts().PackedStack) {
1185     if (getContext().getTargetInfo().getTriple().getArch() !=
1186         llvm::Triple::systemz)
1187       CGM.getDiags().Report(diag::err_opt_not_valid_on_target)
1188         << "-mpacked-stack";
1189     Fn->addFnAttr("packed-stack");
1190   }
1191 
1192   if (CGM.getCodeGenOpts().WarnStackSize != UINT_MAX &&
1193       !CGM.getDiags().isIgnored(diag::warn_fe_backend_frame_larger_than, Loc))
1194     Fn->addFnAttr("warn-stack-size",
1195                   std::to_string(CGM.getCodeGenOpts().WarnStackSize));
1196 
1197   if (RetTy->isVoidType()) {
1198     // Void type; nothing to return.
1199     ReturnValue = Address::invalid();
1200 
1201     // Count the implicit return.
1202     if (!endsWithReturn(D))
1203       ++NumReturnExprs;
1204   } else if (CurFnInfo->getReturnInfo().getKind() == ABIArgInfo::Indirect) {
1205     // Indirect return; emit returned value directly into sret slot.
1206     // This reduces code size, and affects correctness in C++.
1207     auto AI = CurFn->arg_begin();
1208     if (CurFnInfo->getReturnInfo().isSRetAfterThis())
1209       ++AI;
1210     ReturnValue = makeNaturalAddressForPointer(
1211         &*AI, RetTy, CurFnInfo->getReturnInfo().getIndirectAlign(), false,
1212         nullptr, nullptr, KnownNonNull);
1213     if (!CurFnInfo->getReturnInfo().getIndirectByVal()) {
1214       ReturnValuePointer =
1215           CreateDefaultAlignTempAlloca(ReturnValue.getType(), "result.ptr");
1216       Builder.CreateStore(ReturnValue.emitRawPointer(*this),
1217                           ReturnValuePointer);
1218     }
1219   } else if (CurFnInfo->getReturnInfo().getKind() == ABIArgInfo::InAlloca &&
1220              !hasScalarEvaluationKind(CurFnInfo->getReturnType())) {
1221     // Load the sret pointer from the argument struct and return into that.
1222     unsigned Idx = CurFnInfo->getReturnInfo().getInAllocaFieldIndex();
1223     llvm::Function::arg_iterator EI = CurFn->arg_end();
1224     --EI;
1225     llvm::Value *Addr = Builder.CreateStructGEP(
1226         CurFnInfo->getArgStruct(), &*EI, Idx);
1227     llvm::Type *Ty =
1228         cast<llvm::GetElementPtrInst>(Addr)->getResultElementType();
1229     ReturnValuePointer = Address(Addr, Ty, getPointerAlign());
1230     Addr = Builder.CreateAlignedLoad(Ty, Addr, getPointerAlign(), "agg.result");
1231     ReturnValue = Address(Addr, ConvertType(RetTy),
1232                           CGM.getNaturalTypeAlignment(RetTy), KnownNonNull);
1233   } else {
1234     ReturnValue = CreateIRTemp(RetTy, "retval");
1235 
1236     // Tell the epilog emitter to autorelease the result.  We do this
1237     // now so that various specialized functions can suppress it
1238     // during their IR-generation.
1239     if (getLangOpts().ObjCAutoRefCount &&
1240         !CurFnInfo->isReturnsRetained() &&
1241         RetTy->isObjCRetainableType())
1242       AutoreleaseResult = true;
1243   }
1244 
1245   EmitStartEHSpec(CurCodeDecl);
1246 
1247   PrologueCleanupDepth = EHStack.stable_begin();
1248 
1249   // Emit OpenMP specific initialization of the device functions.
1250   if (getLangOpts().OpenMP && CurCodeDecl)
1251     CGM.getOpenMPRuntime().emitFunctionProlog(*this, CurCodeDecl);
1252 
1253   if (FD && getLangOpts().HLSL) {
1254     // Handle emitting HLSL entry functions.
1255     if (FD->hasAttr<HLSLShaderAttr>()) {
1256       CGM.getHLSLRuntime().emitEntryFunction(FD, Fn);
1257     }
1258     CGM.getHLSLRuntime().setHLSLFunctionAttributes(FD, Fn);
1259   }
1260 
1261   EmitFunctionProlog(*CurFnInfo, CurFn, Args);
1262 
1263   if (const CXXMethodDecl *MD = dyn_cast_if_present<CXXMethodDecl>(D);
1264       MD && !MD->isStatic()) {
1265     bool IsInLambda =
1266         MD->getParent()->isLambda() && MD->getOverloadedOperator() == OO_Call;
1267     if (MD->isImplicitObjectMemberFunction())
1268       CGM.getCXXABI().EmitInstanceFunctionProlog(*this);
1269     if (IsInLambda) {
1270       // We're in a lambda; figure out the captures.
1271       MD->getParent()->getCaptureFields(LambdaCaptureFields,
1272                                         LambdaThisCaptureField);
1273       if (LambdaThisCaptureField) {
1274         // If the lambda captures the object referred to by '*this' - either by
1275         // value or by reference, make sure CXXThisValue points to the correct
1276         // object.
1277 
1278         // Get the lvalue for the field (which is a copy of the enclosing object
1279         // or contains the address of the enclosing object).
1280         LValue ThisFieldLValue = EmitLValueForLambdaField(LambdaThisCaptureField);
1281         if (!LambdaThisCaptureField->getType()->isPointerType()) {
1282           // If the enclosing object was captured by value, just use its
1283           // address. Sign this pointer.
1284           CXXThisValue = ThisFieldLValue.getPointer(*this);
1285         } else {
1286           // Load the lvalue pointed to by the field, since '*this' was captured
1287           // by reference.
1288           CXXThisValue =
1289               EmitLoadOfLValue(ThisFieldLValue, SourceLocation()).getScalarVal();
1290         }
1291       }
1292       for (auto *FD : MD->getParent()->fields()) {
1293         if (FD->hasCapturedVLAType()) {
1294           auto *ExprArg = EmitLoadOfLValue(EmitLValueForLambdaField(FD),
1295                                            SourceLocation()).getScalarVal();
1296           auto VAT = FD->getCapturedVLAType();
1297           VLASizeMap[VAT->getSizeExpr()] = ExprArg;
1298         }
1299       }
1300     } else if (MD->isImplicitObjectMemberFunction()) {
1301       // Not in a lambda; just use 'this' from the method.
1302       // FIXME: Should we generate a new load for each use of 'this'?  The
1303       // fast register allocator would be happier...
1304       CXXThisValue = CXXABIThisValue;
1305     }
1306 
1307     // Check the 'this' pointer once per function, if it's available.
1308     if (CXXABIThisValue) {
1309       SanitizerSet SkippedChecks;
1310       SkippedChecks.set(SanitizerKind::ObjectSize, true);
1311       QualType ThisTy = MD->getThisType();
1312 
1313       // If this is the call operator of a lambda with no captures, it
1314       // may have a static invoker function, which may call this operator with
1315       // a null 'this' pointer.
1316       if (isLambdaCallOperator(MD) && MD->getParent()->isCapturelessLambda())
1317         SkippedChecks.set(SanitizerKind::Null, true);
1318 
1319       EmitTypeCheck(
1320           isa<CXXConstructorDecl>(MD) ? TCK_ConstructorCall : TCK_MemberCall,
1321           Loc, CXXABIThisValue, ThisTy, CXXABIThisAlignment, SkippedChecks);
1322     }
1323   }
1324 
1325   // If any of the arguments have a variably modified type, make sure to
1326   // emit the type size, but only if the function is not naked. Naked functions
1327   // have no prolog to run this evaluation.
1328   if (!FD || !FD->hasAttr<NakedAttr>()) {
1329     for (const VarDecl *VD : Args) {
1330       // Dig out the type as written from ParmVarDecls; it's unclear whether
1331       // the standard (C99 6.9.1p10) requires this, but we're following the
1332       // precedent set by gcc.
1333       QualType Ty;
1334       if (const ParmVarDecl *PVD = dyn_cast<ParmVarDecl>(VD))
1335         Ty = PVD->getOriginalType();
1336       else
1337         Ty = VD->getType();
1338 
1339       if (Ty->isVariablyModifiedType())
1340         EmitVariablyModifiedType(Ty);
1341     }
1342   }
1343   // Emit a location at the end of the prologue.
1344   if (CGDebugInfo *DI = getDebugInfo())
1345     DI->EmitLocation(Builder, StartLoc);
1346   // TODO: Do we need to handle this in two places like we do with
1347   // target-features/target-cpu?
1348   if (CurFuncDecl)
1349     if (const auto *VecWidth = CurFuncDecl->getAttr<MinVectorWidthAttr>())
1350       LargestVectorWidth = VecWidth->getVectorWidth();
1351 
1352   if (CGM.shouldEmitConvergenceTokens())
1353     ConvergenceTokenStack.push_back(getOrEmitConvergenceEntryToken(CurFn));
1354 }
1355 
1356 void CodeGenFunction::EmitFunctionBody(const Stmt *Body) {
1357   incrementProfileCounter(Body);
1358   maybeCreateMCDCCondBitmap();
1359   if (const CompoundStmt *S = dyn_cast<CompoundStmt>(Body))
1360     EmitCompoundStmtWithoutScope(*S);
1361   else
1362     EmitStmt(Body);
1363 }
1364 
1365 /// When instrumenting to collect profile data, the counts for some blocks
1366 /// such as switch cases need to not include the fall-through counts, so
1367 /// emit a branch around the instrumentation code. When not instrumenting,
1368 /// this just calls EmitBlock().
1369 void CodeGenFunction::EmitBlockWithFallThrough(llvm::BasicBlock *BB,
1370                                                const Stmt *S) {
1371   llvm::BasicBlock *SkipCountBB = nullptr;
1372   // Do not skip over the instrumentation when single byte coverage mode is
1373   // enabled.
1374   if (HaveInsertPoint() && CGM.getCodeGenOpts().hasProfileClangInstr() &&
1375       !llvm::EnableSingleByteCoverage) {
1376     // When instrumenting for profiling, the fallthrough to certain
1377     // statements needs to skip over the instrumentation code so that we
1378     // get an accurate count.
1379     SkipCountBB = createBasicBlock("skipcount");
1380     EmitBranch(SkipCountBB);
1381   }
1382   EmitBlock(BB);
1383   uint64_t CurrentCount = getCurrentProfileCount();
1384   incrementProfileCounter(S);
1385   setCurrentProfileCount(getCurrentProfileCount() + CurrentCount);
1386   if (SkipCountBB)
1387     EmitBlock(SkipCountBB);
1388 }
1389 
1390 /// Tries to mark the given function nounwind based on the
1391 /// non-existence of any throwing calls within it.  We believe this is
1392 /// lightweight enough to do at -O0.
1393 static void TryMarkNoThrow(llvm::Function *F) {
1394   // LLVM treats 'nounwind' on a function as part of the type, so we
1395   // can't do this on functions that can be overwritten.
1396   if (F->isInterposable()) return;
1397 
1398   for (llvm::BasicBlock &BB : *F)
1399     for (llvm::Instruction &I : BB)
1400       if (I.mayThrow())
1401         return;
1402 
1403   F->setDoesNotThrow();
1404 }
1405 
1406 QualType CodeGenFunction::BuildFunctionArgList(GlobalDecl GD,
1407                                                FunctionArgList &Args) {
1408   const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
1409   QualType ResTy = FD->getReturnType();
1410 
1411   const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD);
1412   if (MD && MD->isImplicitObjectMemberFunction()) {
1413     if (CGM.getCXXABI().HasThisReturn(GD))
1414       ResTy = MD->getThisType();
1415     else if (CGM.getCXXABI().hasMostDerivedReturn(GD))
1416       ResTy = CGM.getContext().VoidPtrTy;
1417     CGM.getCXXABI().buildThisParam(*this, Args);
1418   }
1419 
1420   // The base version of an inheriting constructor whose constructed base is a
1421   // virtual base is not passed any arguments (because it doesn't actually call
1422   // the inherited constructor).
1423   bool PassedParams = true;
1424   if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(FD))
1425     if (auto Inherited = CD->getInheritedConstructor())
1426       PassedParams =
1427           getTypes().inheritingCtorHasParams(Inherited, GD.getCtorType());
1428 
1429   if (PassedParams) {
1430     for (auto *Param : FD->parameters()) {
1431       Args.push_back(Param);
1432       if (!Param->hasAttr<PassObjectSizeAttr>())
1433         continue;
1434 
1435       auto *Implicit = ImplicitParamDecl::Create(
1436           getContext(), Param->getDeclContext(), Param->getLocation(),
1437           /*Id=*/nullptr, getContext().getSizeType(), ImplicitParamKind::Other);
1438       SizeArguments[Param] = Implicit;
1439       Args.push_back(Implicit);
1440     }
1441   }
1442 
1443   if (MD && (isa<CXXConstructorDecl>(MD) || isa<CXXDestructorDecl>(MD)))
1444     CGM.getCXXABI().addImplicitStructorParams(*this, ResTy, Args);
1445 
1446   return ResTy;
1447 }
1448 
1449 void CodeGenFunction::GenerateCode(GlobalDecl GD, llvm::Function *Fn,
1450                                    const CGFunctionInfo &FnInfo) {
1451   assert(Fn && "generating code for null Function");
1452   const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
1453   CurGD = GD;
1454 
1455   FunctionArgList Args;
1456   QualType ResTy = BuildFunctionArgList(GD, Args);
1457 
1458   CGM.getTargetCodeGenInfo().checkFunctionABI(CGM, FD);
1459 
1460   if (FD->isInlineBuiltinDeclaration()) {
1461     // When generating code for a builtin with an inline declaration, use a
1462     // mangled name to hold the actual body, while keeping an external
1463     // definition in case the function pointer is referenced somewhere.
1464     std::string FDInlineName = (Fn->getName() + ".inline").str();
1465     llvm::Module *M = Fn->getParent();
1466     llvm::Function *Clone = M->getFunction(FDInlineName);
1467     if (!Clone) {
1468       Clone = llvm::Function::Create(Fn->getFunctionType(),
1469                                      llvm::GlobalValue::InternalLinkage,
1470                                      Fn->getAddressSpace(), FDInlineName, M);
1471       Clone->addFnAttr(llvm::Attribute::AlwaysInline);
1472     }
1473     Fn->setLinkage(llvm::GlobalValue::ExternalLinkage);
1474     Fn = Clone;
1475   } else {
1476     // Detect the unusual situation where an inline version is shadowed by a
1477     // non-inline version. In that case we should pick the external one
1478     // everywhere. That's GCC behavior too. Unfortunately, I cannot find a way
1479     // to detect that situation before we reach codegen, so do some late
1480     // replacement.
1481     for (const FunctionDecl *PD = FD->getPreviousDecl(); PD;
1482          PD = PD->getPreviousDecl()) {
1483       if (LLVM_UNLIKELY(PD->isInlineBuiltinDeclaration())) {
1484         std::string FDInlineName = (Fn->getName() + ".inline").str();
1485         llvm::Module *M = Fn->getParent();
1486         if (llvm::Function *Clone = M->getFunction(FDInlineName)) {
1487           Clone->replaceAllUsesWith(Fn);
1488           Clone->eraseFromParent();
1489         }
1490         break;
1491       }
1492     }
1493   }
1494 
1495   // Check if we should generate debug info for this function.
1496   if (FD->hasAttr<NoDebugAttr>()) {
1497     // Clear non-distinct debug info that was possibly attached to the function
1498     // due to an earlier declaration without the nodebug attribute
1499     Fn->setSubprogram(nullptr);
1500     // Disable debug info indefinitely for this function
1501     DebugInfo = nullptr;
1502   }
1503 
1504   // The function might not have a body if we're generating thunks for a
1505   // function declaration.
1506   SourceRange BodyRange;
1507   if (Stmt *Body = FD->getBody())
1508     BodyRange = Body->getSourceRange();
1509   else
1510     BodyRange = FD->getLocation();
1511   CurEHLocation = BodyRange.getEnd();
1512 
1513   // Use the location of the start of the function to determine where
1514   // the function definition is located. By default use the location
1515   // of the declaration as the location for the subprogram. A function
1516   // may lack a declaration in the source code if it is created by code
1517   // gen. (examples: _GLOBAL__I_a, __cxx_global_array_dtor, thunk).
1518   SourceLocation Loc = FD->getLocation();
1519 
1520   // If this is a function specialization then use the pattern body
1521   // as the location for the function.
1522   if (const FunctionDecl *SpecDecl = FD->getTemplateInstantiationPattern())
1523     if (SpecDecl->hasBody(SpecDecl))
1524       Loc = SpecDecl->getLocation();
1525 
1526   Stmt *Body = FD->getBody();
1527 
1528   if (Body) {
1529     // Coroutines always emit lifetime markers.
1530     if (isa<CoroutineBodyStmt>(Body))
1531       ShouldEmitLifetimeMarkers = true;
1532 
1533     // Initialize helper which will detect jumps which can cause invalid
1534     // lifetime markers.
1535     if (ShouldEmitLifetimeMarkers)
1536       Bypasses.Init(Body);
1537   }
1538 
1539   // Emit the standard function prologue.
1540   StartFunction(GD, ResTy, Fn, FnInfo, Args, Loc, BodyRange.getBegin());
1541 
1542   // Save parameters for coroutine function.
1543   if (Body && isa_and_nonnull<CoroutineBodyStmt>(Body))
1544     llvm::append_range(FnArgs, FD->parameters());
1545 
1546   // Ensure that the function adheres to the forward progress guarantee, which
1547   // is required by certain optimizations.
1548   // In C++11 and up, the attribute will be removed if the body contains a
1549   // trivial empty loop.
1550   if (checkIfFunctionMustProgress())
1551     CurFn->addFnAttr(llvm::Attribute::MustProgress);
1552 
1553   // Generate the body of the function.
1554   PGO.assignRegionCounters(GD, CurFn);
1555   if (isa<CXXDestructorDecl>(FD))
1556     EmitDestructorBody(Args);
1557   else if (isa<CXXConstructorDecl>(FD))
1558     EmitConstructorBody(Args);
1559   else if (getLangOpts().CUDA &&
1560            !getLangOpts().CUDAIsDevice &&
1561            FD->hasAttr<CUDAGlobalAttr>())
1562     CGM.getCUDARuntime().emitDeviceStub(*this, Args);
1563   else if (isa<CXXMethodDecl>(FD) &&
1564            cast<CXXMethodDecl>(FD)->isLambdaStaticInvoker()) {
1565     // The lambda static invoker function is special, because it forwards or
1566     // clones the body of the function call operator (but is actually static).
1567     EmitLambdaStaticInvokeBody(cast<CXXMethodDecl>(FD));
1568   } else if (isa<CXXMethodDecl>(FD) &&
1569              isLambdaCallOperator(cast<CXXMethodDecl>(FD)) &&
1570              !FnInfo.isDelegateCall() &&
1571              cast<CXXMethodDecl>(FD)->getParent()->getLambdaStaticInvoker() &&
1572              hasInAllocaArg(cast<CXXMethodDecl>(FD))) {
1573     // If emitting a lambda with static invoker on X86 Windows, change
1574     // the call operator body.
1575     // Make sure that this is a call operator with an inalloca arg and check
1576     // for delegate call to make sure this is the original call op and not the
1577     // new forwarding function for the static invoker.
1578     EmitLambdaInAllocaCallOpBody(cast<CXXMethodDecl>(FD));
1579   } else if (FD->isDefaulted() && isa<CXXMethodDecl>(FD) &&
1580              (cast<CXXMethodDecl>(FD)->isCopyAssignmentOperator() ||
1581               cast<CXXMethodDecl>(FD)->isMoveAssignmentOperator())) {
1582     // Implicit copy-assignment gets the same special treatment as implicit
1583     // copy-constructors.
1584     emitImplicitAssignmentOperatorBody(Args);
1585   } else if (Body) {
1586     EmitFunctionBody(Body);
1587   } else
1588     llvm_unreachable("no definition for emitted function");
1589 
1590   // C++11 [stmt.return]p2:
1591   //   Flowing off the end of a function [...] results in undefined behavior in
1592   //   a value-returning function.
1593   // C11 6.9.1p12:
1594   //   If the '}' that terminates a function is reached, and the value of the
1595   //   function call is used by the caller, the behavior is undefined.
1596   if (getLangOpts().CPlusPlus && !FD->hasImplicitReturnZero() && !SawAsmBlock &&
1597       !FD->getReturnType()->isVoidType() && Builder.GetInsertBlock()) {
1598     bool ShouldEmitUnreachable =
1599         CGM.getCodeGenOpts().StrictReturn ||
1600         !CGM.MayDropFunctionReturn(FD->getASTContext(), FD->getReturnType());
1601     if (SanOpts.has(SanitizerKind::Return)) {
1602       SanitizerScope SanScope(this);
1603       llvm::Value *IsFalse = Builder.getFalse();
1604       EmitCheck(std::make_pair(IsFalse, SanitizerKind::Return),
1605                 SanitizerHandler::MissingReturn,
1606                 EmitCheckSourceLocation(FD->getLocation()), {});
1607     } else if (ShouldEmitUnreachable) {
1608       if (CGM.getCodeGenOpts().OptimizationLevel == 0)
1609         EmitTrapCall(llvm::Intrinsic::trap);
1610     }
1611     if (SanOpts.has(SanitizerKind::Return) || ShouldEmitUnreachable) {
1612       Builder.CreateUnreachable();
1613       Builder.ClearInsertionPoint();
1614     }
1615   }
1616 
1617   // Emit the standard function epilogue.
1618   FinishFunction(BodyRange.getEnd());
1619 
1620   // If we haven't marked the function nothrow through other means, do
1621   // a quick pass now to see if we can.
1622   if (!CurFn->doesNotThrow())
1623     TryMarkNoThrow(CurFn);
1624 }
1625 
1626 /// ContainsLabel - Return true if the statement contains a label in it.  If
1627 /// this statement is not executed normally, it not containing a label means
1628 /// that we can just remove the code.
1629 bool CodeGenFunction::ContainsLabel(const Stmt *S, bool IgnoreCaseStmts) {
1630   // Null statement, not a label!
1631   if (!S) return false;
1632 
1633   // If this is a label, we have to emit the code, consider something like:
1634   // if (0) {  ...  foo:  bar(); }  goto foo;
1635   //
1636   // TODO: If anyone cared, we could track __label__'s, since we know that you
1637   // can't jump to one from outside their declared region.
1638   if (isa<LabelStmt>(S))
1639     return true;
1640 
1641   // If this is a case/default statement, and we haven't seen a switch, we have
1642   // to emit the code.
1643   if (isa<SwitchCase>(S) && !IgnoreCaseStmts)
1644     return true;
1645 
1646   // If this is a switch statement, we want to ignore cases below it.
1647   if (isa<SwitchStmt>(S))
1648     IgnoreCaseStmts = true;
1649 
1650   // Scan subexpressions for verboten labels.
1651   for (const Stmt *SubStmt : S->children())
1652     if (ContainsLabel(SubStmt, IgnoreCaseStmts))
1653       return true;
1654 
1655   return false;
1656 }
1657 
1658 /// containsBreak - Return true if the statement contains a break out of it.
1659 /// If the statement (recursively) contains a switch or loop with a break
1660 /// inside of it, this is fine.
1661 bool CodeGenFunction::containsBreak(const Stmt *S) {
1662   // Null statement, not a label!
1663   if (!S) return false;
1664 
1665   // If this is a switch or loop that defines its own break scope, then we can
1666   // include it and anything inside of it.
1667   if (isa<SwitchStmt>(S) || isa<WhileStmt>(S) || isa<DoStmt>(S) ||
1668       isa<ForStmt>(S))
1669     return false;
1670 
1671   if (isa<BreakStmt>(S))
1672     return true;
1673 
1674   // Scan subexpressions for verboten breaks.
1675   for (const Stmt *SubStmt : S->children())
1676     if (containsBreak(SubStmt))
1677       return true;
1678 
1679   return false;
1680 }
1681 
1682 bool CodeGenFunction::mightAddDeclToScope(const Stmt *S) {
1683   if (!S) return false;
1684 
1685   // Some statement kinds add a scope and thus never add a decl to the current
1686   // scope. Note, this list is longer than the list of statements that might
1687   // have an unscoped decl nested within them, but this way is conservatively
1688   // correct even if more statement kinds are added.
1689   if (isa<IfStmt>(S) || isa<SwitchStmt>(S) || isa<WhileStmt>(S) ||
1690       isa<DoStmt>(S) || isa<ForStmt>(S) || isa<CompoundStmt>(S) ||
1691       isa<CXXForRangeStmt>(S) || isa<CXXTryStmt>(S) ||
1692       isa<ObjCForCollectionStmt>(S) || isa<ObjCAtTryStmt>(S))
1693     return false;
1694 
1695   if (isa<DeclStmt>(S))
1696     return true;
1697 
1698   for (const Stmt *SubStmt : S->children())
1699     if (mightAddDeclToScope(SubStmt))
1700       return true;
1701 
1702   return false;
1703 }
1704 
1705 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold
1706 /// to a constant, or if it does but contains a label, return false.  If it
1707 /// constant folds return true and set the boolean result in Result.
1708 bool CodeGenFunction::ConstantFoldsToSimpleInteger(const Expr *Cond,
1709                                                    bool &ResultBool,
1710                                                    bool AllowLabels) {
1711   // If MC/DC is enabled, disable folding so that we can instrument all
1712   // conditions to yield complete test vectors. We still keep track of
1713   // folded conditions during region mapping and visualization.
1714   if (!AllowLabels && CGM.getCodeGenOpts().hasProfileClangInstr() &&
1715       CGM.getCodeGenOpts().MCDCCoverage)
1716     return false;
1717 
1718   llvm::APSInt ResultInt;
1719   if (!ConstantFoldsToSimpleInteger(Cond, ResultInt, AllowLabels))
1720     return false;
1721 
1722   ResultBool = ResultInt.getBoolValue();
1723   return true;
1724 }
1725 
1726 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold
1727 /// to a constant, or if it does but contains a label, return false.  If it
1728 /// constant folds return true and set the folded value.
1729 bool CodeGenFunction::ConstantFoldsToSimpleInteger(const Expr *Cond,
1730                                                    llvm::APSInt &ResultInt,
1731                                                    bool AllowLabels) {
1732   // FIXME: Rename and handle conversion of other evaluatable things
1733   // to bool.
1734   Expr::EvalResult Result;
1735   if (!Cond->EvaluateAsInt(Result, getContext()))
1736     return false;  // Not foldable, not integer or not fully evaluatable.
1737 
1738   llvm::APSInt Int = Result.Val.getInt();
1739   if (!AllowLabels && CodeGenFunction::ContainsLabel(Cond))
1740     return false;  // Contains a label.
1741 
1742   ResultInt = Int;
1743   return true;
1744 }
1745 
1746 /// Strip parentheses and simplistic logical-NOT operators.
1747 const Expr *CodeGenFunction::stripCond(const Expr *C) {
1748   while (const UnaryOperator *Op = dyn_cast<UnaryOperator>(C->IgnoreParens())) {
1749     if (Op->getOpcode() != UO_LNot)
1750       break;
1751     C = Op->getSubExpr();
1752   }
1753   return C->IgnoreParens();
1754 }
1755 
1756 /// Determine whether the given condition is an instrumentable condition
1757 /// (i.e. no "&&" or "||").
1758 bool CodeGenFunction::isInstrumentedCondition(const Expr *C) {
1759   const BinaryOperator *BOp = dyn_cast<BinaryOperator>(stripCond(C));
1760   return (!BOp || !BOp->isLogicalOp());
1761 }
1762 
1763 /// EmitBranchToCounterBlock - Emit a conditional branch to a new block that
1764 /// increments a profile counter based on the semantics of the given logical
1765 /// operator opcode.  This is used to instrument branch condition coverage for
1766 /// logical operators.
1767 void CodeGenFunction::EmitBranchToCounterBlock(
1768     const Expr *Cond, BinaryOperator::Opcode LOp, llvm::BasicBlock *TrueBlock,
1769     llvm::BasicBlock *FalseBlock, uint64_t TrueCount /* = 0 */,
1770     Stmt::Likelihood LH /* =None */, const Expr *CntrIdx /* = nullptr */) {
1771   // If not instrumenting, just emit a branch.
1772   bool InstrumentRegions = CGM.getCodeGenOpts().hasProfileClangInstr();
1773   if (!InstrumentRegions || !isInstrumentedCondition(Cond))
1774     return EmitBranchOnBoolExpr(Cond, TrueBlock, FalseBlock, TrueCount, LH);
1775 
1776   const Stmt *CntrStmt = (CntrIdx ? CntrIdx : Cond);
1777 
1778   llvm::BasicBlock *ThenBlock = nullptr;
1779   llvm::BasicBlock *ElseBlock = nullptr;
1780   llvm::BasicBlock *NextBlock = nullptr;
1781 
1782   // Create the block we'll use to increment the appropriate counter.
1783   llvm::BasicBlock *CounterIncrBlock = createBasicBlock("lop.rhscnt");
1784 
1785   // Set block pointers according to Logical-AND (BO_LAnd) semantics. This
1786   // means we need to evaluate the condition and increment the counter on TRUE:
1787   //
1788   // if (Cond)
1789   //   goto CounterIncrBlock;
1790   // else
1791   //   goto FalseBlock;
1792   //
1793   // CounterIncrBlock:
1794   //   Counter++;
1795   //   goto TrueBlock;
1796 
1797   if (LOp == BO_LAnd) {
1798     ThenBlock = CounterIncrBlock;
1799     ElseBlock = FalseBlock;
1800     NextBlock = TrueBlock;
1801   }
1802 
1803   // Set block pointers according to Logical-OR (BO_LOr) semantics. This means
1804   // we need to evaluate the condition and increment the counter on FALSE:
1805   //
1806   // if (Cond)
1807   //   goto TrueBlock;
1808   // else
1809   //   goto CounterIncrBlock;
1810   //
1811   // CounterIncrBlock:
1812   //   Counter++;
1813   //   goto FalseBlock;
1814 
1815   else if (LOp == BO_LOr) {
1816     ThenBlock = TrueBlock;
1817     ElseBlock = CounterIncrBlock;
1818     NextBlock = FalseBlock;
1819   } else {
1820     llvm_unreachable("Expected Opcode must be that of a Logical Operator");
1821   }
1822 
1823   // Emit Branch based on condition.
1824   EmitBranchOnBoolExpr(Cond, ThenBlock, ElseBlock, TrueCount, LH);
1825 
1826   // Emit the block containing the counter increment(s).
1827   EmitBlock(CounterIncrBlock);
1828 
1829   // Increment corresponding counter; if index not provided, use Cond as index.
1830   incrementProfileCounter(CntrStmt);
1831 
1832   // Go to the next block.
1833   EmitBranch(NextBlock);
1834 }
1835 
1836 /// EmitBranchOnBoolExpr - Emit a branch on a boolean condition (e.g. for an if
1837 /// statement) to the specified blocks.  Based on the condition, this might try
1838 /// to simplify the codegen of the conditional based on the branch.
1839 /// \param LH The value of the likelihood attribute on the True branch.
1840 /// \param ConditionalOp Used by MC/DC code coverage to track the result of the
1841 /// ConditionalOperator (ternary) through a recursive call for the operator's
1842 /// LHS and RHS nodes.
1843 void CodeGenFunction::EmitBranchOnBoolExpr(
1844     const Expr *Cond, llvm::BasicBlock *TrueBlock, llvm::BasicBlock *FalseBlock,
1845     uint64_t TrueCount, Stmt::Likelihood LH, const Expr *ConditionalOp) {
1846   Cond = Cond->IgnoreParens();
1847 
1848   if (const BinaryOperator *CondBOp = dyn_cast<BinaryOperator>(Cond)) {
1849     // Handle X && Y in a condition.
1850     if (CondBOp->getOpcode() == BO_LAnd) {
1851       MCDCLogOpStack.push_back(CondBOp);
1852 
1853       // If we have "1 && X", simplify the code.  "0 && X" would have constant
1854       // folded if the case was simple enough.
1855       bool ConstantBool = false;
1856       if (ConstantFoldsToSimpleInteger(CondBOp->getLHS(), ConstantBool) &&
1857           ConstantBool) {
1858         // br(1 && X) -> br(X).
1859         incrementProfileCounter(CondBOp);
1860         EmitBranchToCounterBlock(CondBOp->getRHS(), BO_LAnd, TrueBlock,
1861                                  FalseBlock, TrueCount, LH);
1862         MCDCLogOpStack.pop_back();
1863         return;
1864       }
1865 
1866       // If we have "X && 1", simplify the code to use an uncond branch.
1867       // "X && 0" would have been constant folded to 0.
1868       if (ConstantFoldsToSimpleInteger(CondBOp->getRHS(), ConstantBool) &&
1869           ConstantBool) {
1870         // br(X && 1) -> br(X).
1871         EmitBranchToCounterBlock(CondBOp->getLHS(), BO_LAnd, TrueBlock,
1872                                  FalseBlock, TrueCount, LH, CondBOp);
1873         MCDCLogOpStack.pop_back();
1874         return;
1875       }
1876 
1877       // Emit the LHS as a conditional.  If the LHS conditional is false, we
1878       // want to jump to the FalseBlock.
1879       llvm::BasicBlock *LHSTrue = createBasicBlock("land.lhs.true");
1880       // The counter tells us how often we evaluate RHS, and all of TrueCount
1881       // can be propagated to that branch.
1882       uint64_t RHSCount = getProfileCount(CondBOp->getRHS());
1883 
1884       ConditionalEvaluation eval(*this);
1885       {
1886         ApplyDebugLocation DL(*this, Cond);
1887         // Propagate the likelihood attribute like __builtin_expect
1888         // __builtin_expect(X && Y, 1) -> X and Y are likely
1889         // __builtin_expect(X && Y, 0) -> only Y is unlikely
1890         EmitBranchOnBoolExpr(CondBOp->getLHS(), LHSTrue, FalseBlock, RHSCount,
1891                              LH == Stmt::LH_Unlikely ? Stmt::LH_None : LH);
1892         EmitBlock(LHSTrue);
1893       }
1894 
1895       incrementProfileCounter(CondBOp);
1896       setCurrentProfileCount(getProfileCount(CondBOp->getRHS()));
1897 
1898       // Any temporaries created here are conditional.
1899       eval.begin(*this);
1900       EmitBranchToCounterBlock(CondBOp->getRHS(), BO_LAnd, TrueBlock,
1901                                FalseBlock, TrueCount, LH);
1902       eval.end(*this);
1903       MCDCLogOpStack.pop_back();
1904       return;
1905     }
1906 
1907     if (CondBOp->getOpcode() == BO_LOr) {
1908       MCDCLogOpStack.push_back(CondBOp);
1909 
1910       // If we have "0 || X", simplify the code.  "1 || X" would have constant
1911       // folded if the case was simple enough.
1912       bool ConstantBool = false;
1913       if (ConstantFoldsToSimpleInteger(CondBOp->getLHS(), ConstantBool) &&
1914           !ConstantBool) {
1915         // br(0 || X) -> br(X).
1916         incrementProfileCounter(CondBOp);
1917         EmitBranchToCounterBlock(CondBOp->getRHS(), BO_LOr, TrueBlock,
1918                                  FalseBlock, TrueCount, LH);
1919         MCDCLogOpStack.pop_back();
1920         return;
1921       }
1922 
1923       // If we have "X || 0", simplify the code to use an uncond branch.
1924       // "X || 1" would have been constant folded to 1.
1925       if (ConstantFoldsToSimpleInteger(CondBOp->getRHS(), ConstantBool) &&
1926           !ConstantBool) {
1927         // br(X || 0) -> br(X).
1928         EmitBranchToCounterBlock(CondBOp->getLHS(), BO_LOr, TrueBlock,
1929                                  FalseBlock, TrueCount, LH, CondBOp);
1930         MCDCLogOpStack.pop_back();
1931         return;
1932       }
1933       // Emit the LHS as a conditional.  If the LHS conditional is true, we
1934       // want to jump to the TrueBlock.
1935       llvm::BasicBlock *LHSFalse = createBasicBlock("lor.lhs.false");
1936       // We have the count for entry to the RHS and for the whole expression
1937       // being true, so we can divy up True count between the short circuit and
1938       // the RHS.
1939       uint64_t LHSCount =
1940           getCurrentProfileCount() - getProfileCount(CondBOp->getRHS());
1941       uint64_t RHSCount = TrueCount - LHSCount;
1942 
1943       ConditionalEvaluation eval(*this);
1944       {
1945         // Propagate the likelihood attribute like __builtin_expect
1946         // __builtin_expect(X || Y, 1) -> only Y is likely
1947         // __builtin_expect(X || Y, 0) -> both X and Y are unlikely
1948         ApplyDebugLocation DL(*this, Cond);
1949         EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, LHSFalse, LHSCount,
1950                              LH == Stmt::LH_Likely ? Stmt::LH_None : LH);
1951         EmitBlock(LHSFalse);
1952       }
1953 
1954       incrementProfileCounter(CondBOp);
1955       setCurrentProfileCount(getProfileCount(CondBOp->getRHS()));
1956 
1957       // Any temporaries created here are conditional.
1958       eval.begin(*this);
1959       EmitBranchToCounterBlock(CondBOp->getRHS(), BO_LOr, TrueBlock, FalseBlock,
1960                                RHSCount, LH);
1961 
1962       eval.end(*this);
1963       MCDCLogOpStack.pop_back();
1964       return;
1965     }
1966   }
1967 
1968   if (const UnaryOperator *CondUOp = dyn_cast<UnaryOperator>(Cond)) {
1969     // br(!x, t, f) -> br(x, f, t)
1970     // Avoid doing this optimization when instrumenting a condition for MC/DC.
1971     // LNot is taken as part of the condition for simplicity, and changing its
1972     // sense negatively impacts test vector tracking.
1973     bool MCDCCondition = CGM.getCodeGenOpts().hasProfileClangInstr() &&
1974                          CGM.getCodeGenOpts().MCDCCoverage &&
1975                          isInstrumentedCondition(Cond);
1976     if (CondUOp->getOpcode() == UO_LNot && !MCDCCondition) {
1977       // Negate the count.
1978       uint64_t FalseCount = getCurrentProfileCount() - TrueCount;
1979       // The values of the enum are chosen to make this negation possible.
1980       LH = static_cast<Stmt::Likelihood>(-LH);
1981       // Negate the condition and swap the destination blocks.
1982       return EmitBranchOnBoolExpr(CondUOp->getSubExpr(), FalseBlock, TrueBlock,
1983                                   FalseCount, LH);
1984     }
1985   }
1986 
1987   if (const ConditionalOperator *CondOp = dyn_cast<ConditionalOperator>(Cond)) {
1988     // br(c ? x : y, t, f) -> br(c, br(x, t, f), br(y, t, f))
1989     llvm::BasicBlock *LHSBlock = createBasicBlock("cond.true");
1990     llvm::BasicBlock *RHSBlock = createBasicBlock("cond.false");
1991 
1992     // The ConditionalOperator itself has no likelihood information for its
1993     // true and false branches. This matches the behavior of __builtin_expect.
1994     ConditionalEvaluation cond(*this);
1995     EmitBranchOnBoolExpr(CondOp->getCond(), LHSBlock, RHSBlock,
1996                          getProfileCount(CondOp), Stmt::LH_None);
1997 
1998     // When computing PGO branch weights, we only know the overall count for
1999     // the true block. This code is essentially doing tail duplication of the
2000     // naive code-gen, introducing new edges for which counts are not
2001     // available. Divide the counts proportionally between the LHS and RHS of
2002     // the conditional operator.
2003     uint64_t LHSScaledTrueCount = 0;
2004     if (TrueCount) {
2005       double LHSRatio =
2006           getProfileCount(CondOp) / (double)getCurrentProfileCount();
2007       LHSScaledTrueCount = TrueCount * LHSRatio;
2008     }
2009 
2010     cond.begin(*this);
2011     EmitBlock(LHSBlock);
2012     incrementProfileCounter(CondOp);
2013     {
2014       ApplyDebugLocation DL(*this, Cond);
2015       EmitBranchOnBoolExpr(CondOp->getLHS(), TrueBlock, FalseBlock,
2016                            LHSScaledTrueCount, LH, CondOp);
2017     }
2018     cond.end(*this);
2019 
2020     cond.begin(*this);
2021     EmitBlock(RHSBlock);
2022     EmitBranchOnBoolExpr(CondOp->getRHS(), TrueBlock, FalseBlock,
2023                          TrueCount - LHSScaledTrueCount, LH, CondOp);
2024     cond.end(*this);
2025 
2026     return;
2027   }
2028 
2029   if (const CXXThrowExpr *Throw = dyn_cast<CXXThrowExpr>(Cond)) {
2030     // Conditional operator handling can give us a throw expression as a
2031     // condition for a case like:
2032     //   br(c ? throw x : y, t, f) -> br(c, br(throw x, t, f), br(y, t, f)
2033     // Fold this to:
2034     //   br(c, throw x, br(y, t, f))
2035     EmitCXXThrowExpr(Throw, /*KeepInsertionPoint*/false);
2036     return;
2037   }
2038 
2039   // Emit the code with the fully general case.
2040   llvm::Value *CondV;
2041   {
2042     ApplyDebugLocation DL(*this, Cond);
2043     CondV = EvaluateExprAsBool(Cond);
2044   }
2045 
2046   // If not at the top of the logical operator nest, update MCDC temp with the
2047   // boolean result of the evaluated condition.
2048   if (!MCDCLogOpStack.empty()) {
2049     const Expr *MCDCBaseExpr = Cond;
2050     // When a nested ConditionalOperator (ternary) is encountered in a boolean
2051     // expression, MC/DC tracks the result of the ternary, and this is tied to
2052     // the ConditionalOperator expression and not the ternary's LHS or RHS. If
2053     // this is the case, the ConditionalOperator expression is passed through
2054     // the ConditionalOp parameter and then used as the MCDC base expression.
2055     if (ConditionalOp)
2056       MCDCBaseExpr = ConditionalOp;
2057 
2058     maybeUpdateMCDCCondBitmap(MCDCBaseExpr, CondV);
2059   }
2060 
2061   llvm::MDNode *Weights = nullptr;
2062   llvm::MDNode *Unpredictable = nullptr;
2063 
2064   // If the branch has a condition wrapped by __builtin_unpredictable,
2065   // create metadata that specifies that the branch is unpredictable.
2066   // Don't bother if not optimizing because that metadata would not be used.
2067   auto *Call = dyn_cast<CallExpr>(Cond->IgnoreImpCasts());
2068   if (Call && CGM.getCodeGenOpts().OptimizationLevel != 0) {
2069     auto *FD = dyn_cast_or_null<FunctionDecl>(Call->getCalleeDecl());
2070     if (FD && FD->getBuiltinID() == Builtin::BI__builtin_unpredictable) {
2071       llvm::MDBuilder MDHelper(getLLVMContext());
2072       Unpredictable = MDHelper.createUnpredictable();
2073     }
2074   }
2075 
2076   // If there is a Likelihood knowledge for the cond, lower it.
2077   // Note that if not optimizing this won't emit anything.
2078   llvm::Value *NewCondV = emitCondLikelihoodViaExpectIntrinsic(CondV, LH);
2079   if (CondV != NewCondV)
2080     CondV = NewCondV;
2081   else {
2082     // Otherwise, lower profile counts. Note that we do this even at -O0.
2083     uint64_t CurrentCount = std::max(getCurrentProfileCount(), TrueCount);
2084     Weights = createProfileWeights(TrueCount, CurrentCount - TrueCount);
2085   }
2086 
2087   llvm::Instruction *BrInst = Builder.CreateCondBr(CondV, TrueBlock, FalseBlock,
2088                                                    Weights, Unpredictable);
2089   switch (HLSLControlFlowAttr) {
2090   case HLSLControlFlowHintAttr::Microsoft_branch:
2091   case HLSLControlFlowHintAttr::Microsoft_flatten: {
2092     llvm::MDBuilder MDHelper(CGM.getLLVMContext());
2093 
2094     llvm::ConstantInt *BranchHintConstant =
2095         HLSLControlFlowAttr ==
2096                 HLSLControlFlowHintAttr::Spelling::Microsoft_branch
2097             ? llvm::ConstantInt::get(CGM.Int32Ty, 1)
2098             : llvm::ConstantInt::get(CGM.Int32Ty, 2);
2099 
2100     SmallVector<llvm::Metadata *, 2> Vals(
2101         {MDHelper.createString("hlsl.controlflow.hint"),
2102          MDHelper.createConstant(BranchHintConstant)});
2103     BrInst->setMetadata("hlsl.controlflow.hint",
2104                         llvm::MDNode::get(CGM.getLLVMContext(), Vals));
2105   } break;
2106   }
2107 }
2108 
2109 /// ErrorUnsupported - Print out an error that codegen doesn't support the
2110 /// specified stmt yet.
2111 void CodeGenFunction::ErrorUnsupported(const Stmt *S, const char *Type) {
2112   CGM.ErrorUnsupported(S, Type);
2113 }
2114 
2115 /// emitNonZeroVLAInit - Emit the "zero" initialization of a
2116 /// variable-length array whose elements have a non-zero bit-pattern.
2117 ///
2118 /// \param baseType the inner-most element type of the array
2119 /// \param src - a char* pointing to the bit-pattern for a single
2120 /// base element of the array
2121 /// \param sizeInChars - the total size of the VLA, in chars
2122 static void emitNonZeroVLAInit(CodeGenFunction &CGF, QualType baseType,
2123                                Address dest, Address src,
2124                                llvm::Value *sizeInChars) {
2125   CGBuilderTy &Builder = CGF.Builder;
2126 
2127   CharUnits baseSize = CGF.getContext().getTypeSizeInChars(baseType);
2128   llvm::Value *baseSizeInChars
2129     = llvm::ConstantInt::get(CGF.IntPtrTy, baseSize.getQuantity());
2130 
2131   Address begin = dest.withElementType(CGF.Int8Ty);
2132   llvm::Value *end = Builder.CreateInBoundsGEP(begin.getElementType(),
2133                                                begin.emitRawPointer(CGF),
2134                                                sizeInChars, "vla.end");
2135 
2136   llvm::BasicBlock *originBB = CGF.Builder.GetInsertBlock();
2137   llvm::BasicBlock *loopBB = CGF.createBasicBlock("vla-init.loop");
2138   llvm::BasicBlock *contBB = CGF.createBasicBlock("vla-init.cont");
2139 
2140   // Make a loop over the VLA.  C99 guarantees that the VLA element
2141   // count must be nonzero.
2142   CGF.EmitBlock(loopBB);
2143 
2144   llvm::PHINode *cur = Builder.CreatePHI(begin.getType(), 2, "vla.cur");
2145   cur->addIncoming(begin.emitRawPointer(CGF), originBB);
2146 
2147   CharUnits curAlign =
2148     dest.getAlignment().alignmentOfArrayElement(baseSize);
2149 
2150   // memcpy the individual element bit-pattern.
2151   Builder.CreateMemCpy(Address(cur, CGF.Int8Ty, curAlign), src, baseSizeInChars,
2152                        /*volatile*/ false);
2153 
2154   // Go to the next element.
2155   llvm::Value *next =
2156     Builder.CreateInBoundsGEP(CGF.Int8Ty, cur, baseSizeInChars, "vla.next");
2157 
2158   // Leave if that's the end of the VLA.
2159   llvm::Value *done = Builder.CreateICmpEQ(next, end, "vla-init.isdone");
2160   Builder.CreateCondBr(done, contBB, loopBB);
2161   cur->addIncoming(next, loopBB);
2162 
2163   CGF.EmitBlock(contBB);
2164 }
2165 
2166 void
2167 CodeGenFunction::EmitNullInitialization(Address DestPtr, QualType Ty) {
2168   // Ignore empty classes in C++.
2169   if (getLangOpts().CPlusPlus) {
2170     if (const RecordType *RT = Ty->getAs<RecordType>()) {
2171       if (cast<CXXRecordDecl>(RT->getDecl())->isEmpty())
2172         return;
2173     }
2174   }
2175 
2176   if (DestPtr.getElementType() != Int8Ty)
2177     DestPtr = DestPtr.withElementType(Int8Ty);
2178 
2179   // Get size and alignment info for this aggregate.
2180   CharUnits size = getContext().getTypeSizeInChars(Ty);
2181 
2182   llvm::Value *SizeVal;
2183   const VariableArrayType *vla;
2184 
2185   // Don't bother emitting a zero-byte memset.
2186   if (size.isZero()) {
2187     // But note that getTypeInfo returns 0 for a VLA.
2188     if (const VariableArrayType *vlaType =
2189           dyn_cast_or_null<VariableArrayType>(
2190                                           getContext().getAsArrayType(Ty))) {
2191       auto VlaSize = getVLASize(vlaType);
2192       SizeVal = VlaSize.NumElts;
2193       CharUnits eltSize = getContext().getTypeSizeInChars(VlaSize.Type);
2194       if (!eltSize.isOne())
2195         SizeVal = Builder.CreateNUWMul(SizeVal, CGM.getSize(eltSize));
2196       vla = vlaType;
2197     } else {
2198       return;
2199     }
2200   } else {
2201     SizeVal = CGM.getSize(size);
2202     vla = nullptr;
2203   }
2204 
2205   // If the type contains a pointer to data member we can't memset it to zero.
2206   // Instead, create a null constant and copy it to the destination.
2207   // TODO: there are other patterns besides zero that we can usefully memset,
2208   // like -1, which happens to be the pattern used by member-pointers.
2209   if (!CGM.getTypes().isZeroInitializable(Ty)) {
2210     // For a VLA, emit a single element, then splat that over the VLA.
2211     if (vla) Ty = getContext().getBaseElementType(vla);
2212 
2213     llvm::Constant *NullConstant = CGM.EmitNullConstant(Ty);
2214 
2215     llvm::GlobalVariable *NullVariable =
2216       new llvm::GlobalVariable(CGM.getModule(), NullConstant->getType(),
2217                                /*isConstant=*/true,
2218                                llvm::GlobalVariable::PrivateLinkage,
2219                                NullConstant, Twine());
2220     CharUnits NullAlign = DestPtr.getAlignment();
2221     NullVariable->setAlignment(NullAlign.getAsAlign());
2222     Address SrcPtr(NullVariable, Builder.getInt8Ty(), NullAlign);
2223 
2224     if (vla) return emitNonZeroVLAInit(*this, Ty, DestPtr, SrcPtr, SizeVal);
2225 
2226     // Get and call the appropriate llvm.memcpy overload.
2227     Builder.CreateMemCpy(DestPtr, SrcPtr, SizeVal, false);
2228     return;
2229   }
2230 
2231   // Otherwise, just memset the whole thing to zero.  This is legal
2232   // because in LLVM, all default initializers (other than the ones we just
2233   // handled above) are guaranteed to have a bit pattern of all zeros.
2234   Builder.CreateMemSet(DestPtr, Builder.getInt8(0), SizeVal, false);
2235 }
2236 
2237 llvm::BlockAddress *CodeGenFunction::GetAddrOfLabel(const LabelDecl *L) {
2238   // Make sure that there is a block for the indirect goto.
2239   if (!IndirectBranch)
2240     GetIndirectGotoBlock();
2241 
2242   llvm::BasicBlock *BB = getJumpDestForLabel(L).getBlock();
2243 
2244   // Make sure the indirect branch includes all of the address-taken blocks.
2245   IndirectBranch->addDestination(BB);
2246   return llvm::BlockAddress::get(CurFn, BB);
2247 }
2248 
2249 llvm::BasicBlock *CodeGenFunction::GetIndirectGotoBlock() {
2250   // If we already made the indirect branch for indirect goto, return its block.
2251   if (IndirectBranch) return IndirectBranch->getParent();
2252 
2253   CGBuilderTy TmpBuilder(*this, createBasicBlock("indirectgoto"));
2254 
2255   // Create the PHI node that indirect gotos will add entries to.
2256   llvm::Value *DestVal = TmpBuilder.CreatePHI(Int8PtrTy, 0,
2257                                               "indirect.goto.dest");
2258 
2259   // Create the indirect branch instruction.
2260   IndirectBranch = TmpBuilder.CreateIndirectBr(DestVal);
2261   return IndirectBranch->getParent();
2262 }
2263 
2264 /// Computes the length of an array in elements, as well as the base
2265 /// element type and a properly-typed first element pointer.
2266 llvm::Value *CodeGenFunction::emitArrayLength(const ArrayType *origArrayType,
2267                                               QualType &baseType,
2268                                               Address &addr) {
2269   const ArrayType *arrayType = origArrayType;
2270 
2271   // If it's a VLA, we have to load the stored size.  Note that
2272   // this is the size of the VLA in bytes, not its size in elements.
2273   llvm::Value *numVLAElements = nullptr;
2274   if (isa<VariableArrayType>(arrayType)) {
2275     numVLAElements = getVLASize(cast<VariableArrayType>(arrayType)).NumElts;
2276 
2277     // Walk into all VLAs.  This doesn't require changes to addr,
2278     // which has type T* where T is the first non-VLA element type.
2279     do {
2280       QualType elementType = arrayType->getElementType();
2281       arrayType = getContext().getAsArrayType(elementType);
2282 
2283       // If we only have VLA components, 'addr' requires no adjustment.
2284       if (!arrayType) {
2285         baseType = elementType;
2286         return numVLAElements;
2287       }
2288     } while (isa<VariableArrayType>(arrayType));
2289 
2290     // We get out here only if we find a constant array type
2291     // inside the VLA.
2292   }
2293 
2294   // We have some number of constant-length arrays, so addr should
2295   // have LLVM type [M x [N x [...]]]*.  Build a GEP that walks
2296   // down to the first element of addr.
2297   SmallVector<llvm::Value*, 8> gepIndices;
2298 
2299   // GEP down to the array type.
2300   llvm::ConstantInt *zero = Builder.getInt32(0);
2301   gepIndices.push_back(zero);
2302 
2303   uint64_t countFromCLAs = 1;
2304   QualType eltType;
2305 
2306   llvm::ArrayType *llvmArrayType =
2307     dyn_cast<llvm::ArrayType>(addr.getElementType());
2308   while (llvmArrayType) {
2309     assert(isa<ConstantArrayType>(arrayType));
2310     assert(cast<ConstantArrayType>(arrayType)->getZExtSize() ==
2311            llvmArrayType->getNumElements());
2312 
2313     gepIndices.push_back(zero);
2314     countFromCLAs *= llvmArrayType->getNumElements();
2315     eltType = arrayType->getElementType();
2316 
2317     llvmArrayType =
2318       dyn_cast<llvm::ArrayType>(llvmArrayType->getElementType());
2319     arrayType = getContext().getAsArrayType(arrayType->getElementType());
2320     assert((!llvmArrayType || arrayType) &&
2321            "LLVM and Clang types are out-of-synch");
2322   }
2323 
2324   if (arrayType) {
2325     // From this point onwards, the Clang array type has been emitted
2326     // as some other type (probably a packed struct). Compute the array
2327     // size, and just emit the 'begin' expression as a bitcast.
2328     while (arrayType) {
2329       countFromCLAs *= cast<ConstantArrayType>(arrayType)->getZExtSize();
2330       eltType = arrayType->getElementType();
2331       arrayType = getContext().getAsArrayType(eltType);
2332     }
2333 
2334     llvm::Type *baseType = ConvertType(eltType);
2335     addr = addr.withElementType(baseType);
2336   } else {
2337     // Create the actual GEP.
2338     addr = Address(Builder.CreateInBoundsGEP(addr.getElementType(),
2339                                              addr.emitRawPointer(*this),
2340                                              gepIndices, "array.begin"),
2341                    ConvertTypeForMem(eltType), addr.getAlignment());
2342   }
2343 
2344   baseType = eltType;
2345 
2346   llvm::Value *numElements
2347     = llvm::ConstantInt::get(SizeTy, countFromCLAs);
2348 
2349   // If we had any VLA dimensions, factor them in.
2350   if (numVLAElements)
2351     numElements = Builder.CreateNUWMul(numVLAElements, numElements);
2352 
2353   return numElements;
2354 }
2355 
2356 CodeGenFunction::VlaSizePair CodeGenFunction::getVLASize(QualType type) {
2357   const VariableArrayType *vla = getContext().getAsVariableArrayType(type);
2358   assert(vla && "type was not a variable array type!");
2359   return getVLASize(vla);
2360 }
2361 
2362 CodeGenFunction::VlaSizePair
2363 CodeGenFunction::getVLASize(const VariableArrayType *type) {
2364   // The number of elements so far; always size_t.
2365   llvm::Value *numElements = nullptr;
2366 
2367   QualType elementType;
2368   do {
2369     elementType = type->getElementType();
2370     llvm::Value *vlaSize = VLASizeMap[type->getSizeExpr()];
2371     assert(vlaSize && "no size for VLA!");
2372     assert(vlaSize->getType() == SizeTy);
2373 
2374     if (!numElements) {
2375       numElements = vlaSize;
2376     } else {
2377       // It's undefined behavior if this wraps around, so mark it that way.
2378       // FIXME: Teach -fsanitize=undefined to trap this.
2379       numElements = Builder.CreateNUWMul(numElements, vlaSize);
2380     }
2381   } while ((type = getContext().getAsVariableArrayType(elementType)));
2382 
2383   return { numElements, elementType };
2384 }
2385 
2386 CodeGenFunction::VlaSizePair
2387 CodeGenFunction::getVLAElements1D(QualType type) {
2388   const VariableArrayType *vla = getContext().getAsVariableArrayType(type);
2389   assert(vla && "type was not a variable array type!");
2390   return getVLAElements1D(vla);
2391 }
2392 
2393 CodeGenFunction::VlaSizePair
2394 CodeGenFunction::getVLAElements1D(const VariableArrayType *Vla) {
2395   llvm::Value *VlaSize = VLASizeMap[Vla->getSizeExpr()];
2396   assert(VlaSize && "no size for VLA!");
2397   assert(VlaSize->getType() == SizeTy);
2398   return { VlaSize, Vla->getElementType() };
2399 }
2400 
2401 void CodeGenFunction::EmitVariablyModifiedType(QualType type) {
2402   assert(type->isVariablyModifiedType() &&
2403          "Must pass variably modified type to EmitVLASizes!");
2404 
2405   EnsureInsertPoint();
2406 
2407   // We're going to walk down into the type and look for VLA
2408   // expressions.
2409   do {
2410     assert(type->isVariablyModifiedType());
2411 
2412     const Type *ty = type.getTypePtr();
2413     switch (ty->getTypeClass()) {
2414 
2415 #define TYPE(Class, Base)
2416 #define ABSTRACT_TYPE(Class, Base)
2417 #define NON_CANONICAL_TYPE(Class, Base)
2418 #define DEPENDENT_TYPE(Class, Base) case Type::Class:
2419 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base)
2420 #include "clang/AST/TypeNodes.inc"
2421       llvm_unreachable("unexpected dependent type!");
2422 
2423     // These types are never variably-modified.
2424     case Type::Builtin:
2425     case Type::Complex:
2426     case Type::Vector:
2427     case Type::ExtVector:
2428     case Type::ConstantMatrix:
2429     case Type::Record:
2430     case Type::Enum:
2431     case Type::Using:
2432     case Type::TemplateSpecialization:
2433     case Type::ObjCTypeParam:
2434     case Type::ObjCObject:
2435     case Type::ObjCInterface:
2436     case Type::ObjCObjectPointer:
2437     case Type::BitInt:
2438       llvm_unreachable("type class is never variably-modified!");
2439 
2440     case Type::Elaborated:
2441       type = cast<ElaboratedType>(ty)->getNamedType();
2442       break;
2443 
2444     case Type::Adjusted:
2445       type = cast<AdjustedType>(ty)->getAdjustedType();
2446       break;
2447 
2448     case Type::Decayed:
2449       type = cast<DecayedType>(ty)->getPointeeType();
2450       break;
2451 
2452     case Type::Pointer:
2453       type = cast<PointerType>(ty)->getPointeeType();
2454       break;
2455 
2456     case Type::BlockPointer:
2457       type = cast<BlockPointerType>(ty)->getPointeeType();
2458       break;
2459 
2460     case Type::LValueReference:
2461     case Type::RValueReference:
2462       type = cast<ReferenceType>(ty)->getPointeeType();
2463       break;
2464 
2465     case Type::MemberPointer:
2466       type = cast<MemberPointerType>(ty)->getPointeeType();
2467       break;
2468 
2469     case Type::ArrayParameter:
2470     case Type::ConstantArray:
2471     case Type::IncompleteArray:
2472       // Losing element qualification here is fine.
2473       type = cast<ArrayType>(ty)->getElementType();
2474       break;
2475 
2476     case Type::VariableArray: {
2477       // Losing element qualification here is fine.
2478       const VariableArrayType *vat = cast<VariableArrayType>(ty);
2479 
2480       // Unknown size indication requires no size computation.
2481       // Otherwise, evaluate and record it.
2482       if (const Expr *sizeExpr = vat->getSizeExpr()) {
2483         // It's possible that we might have emitted this already,
2484         // e.g. with a typedef and a pointer to it.
2485         llvm::Value *&entry = VLASizeMap[sizeExpr];
2486         if (!entry) {
2487           llvm::Value *size = EmitScalarExpr(sizeExpr);
2488 
2489           // C11 6.7.6.2p5:
2490           //   If the size is an expression that is not an integer constant
2491           //   expression [...] each time it is evaluated it shall have a value
2492           //   greater than zero.
2493           if (SanOpts.has(SanitizerKind::VLABound)) {
2494             SanitizerScope SanScope(this);
2495             llvm::Value *Zero = llvm::Constant::getNullValue(size->getType());
2496             clang::QualType SEType = sizeExpr->getType();
2497             llvm::Value *CheckCondition =
2498                 SEType->isSignedIntegerType()
2499                     ? Builder.CreateICmpSGT(size, Zero)
2500                     : Builder.CreateICmpUGT(size, Zero);
2501             llvm::Constant *StaticArgs[] = {
2502                 EmitCheckSourceLocation(sizeExpr->getBeginLoc()),
2503                 EmitCheckTypeDescriptor(SEType)};
2504             EmitCheck(std::make_pair(CheckCondition, SanitizerKind::VLABound),
2505                       SanitizerHandler::VLABoundNotPositive, StaticArgs, size);
2506           }
2507 
2508           // Always zexting here would be wrong if it weren't
2509           // undefined behavior to have a negative bound.
2510           // FIXME: What about when size's type is larger than size_t?
2511           entry = Builder.CreateIntCast(size, SizeTy, /*signed*/ false);
2512         }
2513       }
2514       type = vat->getElementType();
2515       break;
2516     }
2517 
2518     case Type::FunctionProto:
2519     case Type::FunctionNoProto:
2520       type = cast<FunctionType>(ty)->getReturnType();
2521       break;
2522 
2523     case Type::Paren:
2524     case Type::TypeOf:
2525     case Type::UnaryTransform:
2526     case Type::Attributed:
2527     case Type::BTFTagAttributed:
2528     case Type::HLSLAttributedResource:
2529     case Type::SubstTemplateTypeParm:
2530     case Type::MacroQualified:
2531     case Type::CountAttributed:
2532       // Keep walking after single level desugaring.
2533       type = type.getSingleStepDesugaredType(getContext());
2534       break;
2535 
2536     case Type::Typedef:
2537     case Type::Decltype:
2538     case Type::Auto:
2539     case Type::DeducedTemplateSpecialization:
2540     case Type::PackIndexing:
2541       // Stop walking: nothing to do.
2542       return;
2543 
2544     case Type::TypeOfExpr:
2545       // Stop walking: emit typeof expression.
2546       EmitIgnoredExpr(cast<TypeOfExprType>(ty)->getUnderlyingExpr());
2547       return;
2548 
2549     case Type::Atomic:
2550       type = cast<AtomicType>(ty)->getValueType();
2551       break;
2552 
2553     case Type::Pipe:
2554       type = cast<PipeType>(ty)->getElementType();
2555       break;
2556     }
2557   } while (type->isVariablyModifiedType());
2558 }
2559 
2560 Address CodeGenFunction::EmitVAListRef(const Expr* E) {
2561   if (getContext().getBuiltinVaListType()->isArrayType())
2562     return EmitPointerWithAlignment(E);
2563   return EmitLValue(E).getAddress();
2564 }
2565 
2566 Address CodeGenFunction::EmitMSVAListRef(const Expr *E) {
2567   return EmitLValue(E).getAddress();
2568 }
2569 
2570 void CodeGenFunction::EmitDeclRefExprDbgValue(const DeclRefExpr *E,
2571                                               const APValue &Init) {
2572   assert(Init.hasValue() && "Invalid DeclRefExpr initializer!");
2573   if (CGDebugInfo *Dbg = getDebugInfo())
2574     if (CGM.getCodeGenOpts().hasReducedDebugInfo())
2575       Dbg->EmitGlobalVariable(E->getDecl(), Init);
2576 }
2577 
2578 CodeGenFunction::PeepholeProtection
2579 CodeGenFunction::protectFromPeepholes(RValue rvalue) {
2580   // At the moment, the only aggressive peephole we do in IR gen
2581   // is trunc(zext) folding, but if we add more, we can easily
2582   // extend this protection.
2583 
2584   if (!rvalue.isScalar()) return PeepholeProtection();
2585   llvm::Value *value = rvalue.getScalarVal();
2586   if (!isa<llvm::ZExtInst>(value)) return PeepholeProtection();
2587 
2588   // Just make an extra bitcast.
2589   assert(HaveInsertPoint());
2590   llvm::Instruction *inst = new llvm::BitCastInst(value, value->getType(), "",
2591                                                   Builder.GetInsertBlock());
2592 
2593   PeepholeProtection protection;
2594   protection.Inst = inst;
2595   return protection;
2596 }
2597 
2598 void CodeGenFunction::unprotectFromPeepholes(PeepholeProtection protection) {
2599   if (!protection.Inst) return;
2600 
2601   // In theory, we could try to duplicate the peepholes now, but whatever.
2602   protection.Inst->eraseFromParent();
2603 }
2604 
2605 void CodeGenFunction::emitAlignmentAssumption(llvm::Value *PtrValue,
2606                                               QualType Ty, SourceLocation Loc,
2607                                               SourceLocation AssumptionLoc,
2608                                               llvm::Value *Alignment,
2609                                               llvm::Value *OffsetValue) {
2610   if (Alignment->getType() != IntPtrTy)
2611     Alignment =
2612         Builder.CreateIntCast(Alignment, IntPtrTy, false, "casted.align");
2613   if (OffsetValue && OffsetValue->getType() != IntPtrTy)
2614     OffsetValue =
2615         Builder.CreateIntCast(OffsetValue, IntPtrTy, true, "casted.offset");
2616   llvm::Value *TheCheck = nullptr;
2617   if (SanOpts.has(SanitizerKind::Alignment)) {
2618     llvm::Value *PtrIntValue =
2619         Builder.CreatePtrToInt(PtrValue, IntPtrTy, "ptrint");
2620 
2621     if (OffsetValue) {
2622       bool IsOffsetZero = false;
2623       if (const auto *CI = dyn_cast<llvm::ConstantInt>(OffsetValue))
2624         IsOffsetZero = CI->isZero();
2625 
2626       if (!IsOffsetZero)
2627         PtrIntValue = Builder.CreateSub(PtrIntValue, OffsetValue, "offsetptr");
2628     }
2629 
2630     llvm::Value *Zero = llvm::ConstantInt::get(IntPtrTy, 0);
2631     llvm::Value *Mask =
2632         Builder.CreateSub(Alignment, llvm::ConstantInt::get(IntPtrTy, 1));
2633     llvm::Value *MaskedPtr = Builder.CreateAnd(PtrIntValue, Mask, "maskedptr");
2634     TheCheck = Builder.CreateICmpEQ(MaskedPtr, Zero, "maskcond");
2635   }
2636   llvm::Instruction *Assumption = Builder.CreateAlignmentAssumption(
2637       CGM.getDataLayout(), PtrValue, Alignment, OffsetValue);
2638 
2639   if (!SanOpts.has(SanitizerKind::Alignment))
2640     return;
2641   emitAlignmentAssumptionCheck(PtrValue, Ty, Loc, AssumptionLoc, Alignment,
2642                                OffsetValue, TheCheck, Assumption);
2643 }
2644 
2645 void CodeGenFunction::emitAlignmentAssumption(llvm::Value *PtrValue,
2646                                               const Expr *E,
2647                                               SourceLocation AssumptionLoc,
2648                                               llvm::Value *Alignment,
2649                                               llvm::Value *OffsetValue) {
2650   QualType Ty = E->getType();
2651   SourceLocation Loc = E->getExprLoc();
2652 
2653   emitAlignmentAssumption(PtrValue, Ty, Loc, AssumptionLoc, Alignment,
2654                           OffsetValue);
2655 }
2656 
2657 llvm::Value *CodeGenFunction::EmitAnnotationCall(llvm::Function *AnnotationFn,
2658                                                  llvm::Value *AnnotatedVal,
2659                                                  StringRef AnnotationStr,
2660                                                  SourceLocation Location,
2661                                                  const AnnotateAttr *Attr) {
2662   SmallVector<llvm::Value *, 5> Args = {
2663       AnnotatedVal,
2664       CGM.EmitAnnotationString(AnnotationStr),
2665       CGM.EmitAnnotationUnit(Location),
2666       CGM.EmitAnnotationLineNo(Location),
2667   };
2668   if (Attr)
2669     Args.push_back(CGM.EmitAnnotationArgs(Attr));
2670   return Builder.CreateCall(AnnotationFn, Args);
2671 }
2672 
2673 void CodeGenFunction::EmitVarAnnotations(const VarDecl *D, llvm::Value *V) {
2674   assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute");
2675   for (const auto *I : D->specific_attrs<AnnotateAttr>())
2676     EmitAnnotationCall(CGM.getIntrinsic(llvm::Intrinsic::var_annotation,
2677                                         {V->getType(), CGM.ConstGlobalsPtrTy}),
2678                        V, I->getAnnotation(), D->getLocation(), I);
2679 }
2680 
2681 Address CodeGenFunction::EmitFieldAnnotations(const FieldDecl *D,
2682                                               Address Addr) {
2683   assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute");
2684   llvm::Value *V = Addr.emitRawPointer(*this);
2685   llvm::Type *VTy = V->getType();
2686   auto *PTy = dyn_cast<llvm::PointerType>(VTy);
2687   unsigned AS = PTy ? PTy->getAddressSpace() : 0;
2688   llvm::PointerType *IntrinTy =
2689       llvm::PointerType::get(CGM.getLLVMContext(), AS);
2690   llvm::Function *F = CGM.getIntrinsic(llvm::Intrinsic::ptr_annotation,
2691                                        {IntrinTy, CGM.ConstGlobalsPtrTy});
2692 
2693   for (const auto *I : D->specific_attrs<AnnotateAttr>()) {
2694     // FIXME Always emit the cast inst so we can differentiate between
2695     // annotation on the first field of a struct and annotation on the struct
2696     // itself.
2697     if (VTy != IntrinTy)
2698       V = Builder.CreateBitCast(V, IntrinTy);
2699     V = EmitAnnotationCall(F, V, I->getAnnotation(), D->getLocation(), I);
2700     V = Builder.CreateBitCast(V, VTy);
2701   }
2702 
2703   return Address(V, Addr.getElementType(), Addr.getAlignment());
2704 }
2705 
2706 CodeGenFunction::CGCapturedStmtInfo::~CGCapturedStmtInfo() { }
2707 
2708 CodeGenFunction::SanitizerScope::SanitizerScope(CodeGenFunction *CGF)
2709     : CGF(CGF) {
2710   assert(!CGF->IsSanitizerScope);
2711   CGF->IsSanitizerScope = true;
2712 }
2713 
2714 CodeGenFunction::SanitizerScope::~SanitizerScope() {
2715   CGF->IsSanitizerScope = false;
2716 }
2717 
2718 void CodeGenFunction::InsertHelper(llvm::Instruction *I,
2719                                    const llvm::Twine &Name,
2720                                    llvm::BasicBlock::iterator InsertPt) const {
2721   LoopStack.InsertHelper(I);
2722   if (IsSanitizerScope)
2723     I->setNoSanitizeMetadata();
2724 }
2725 
2726 void CGBuilderInserter::InsertHelper(
2727     llvm::Instruction *I, const llvm::Twine &Name,
2728     llvm::BasicBlock::iterator InsertPt) const {
2729   llvm::IRBuilderDefaultInserter::InsertHelper(I, Name, InsertPt);
2730   if (CGF)
2731     CGF->InsertHelper(I, Name, InsertPt);
2732 }
2733 
2734 // Emits an error if we don't have a valid set of target features for the
2735 // called function.
2736 void CodeGenFunction::checkTargetFeatures(const CallExpr *E,
2737                                           const FunctionDecl *TargetDecl) {
2738   // SemaChecking cannot handle below x86 builtins because they have different
2739   // parameter ranges with different TargetAttribute of caller.
2740   if (CGM.getContext().getTargetInfo().getTriple().isX86()) {
2741     unsigned BuiltinID = TargetDecl->getBuiltinID();
2742     if (BuiltinID == X86::BI__builtin_ia32_cmpps ||
2743         BuiltinID == X86::BI__builtin_ia32_cmpss ||
2744         BuiltinID == X86::BI__builtin_ia32_cmppd ||
2745         BuiltinID == X86::BI__builtin_ia32_cmpsd) {
2746       const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(CurCodeDecl);
2747       llvm::StringMap<bool> TargetFetureMap;
2748       CGM.getContext().getFunctionFeatureMap(TargetFetureMap, FD);
2749       llvm::APSInt Result =
2750           *(E->getArg(2)->getIntegerConstantExpr(CGM.getContext()));
2751       if (Result.getSExtValue() > 7 && !TargetFetureMap.lookup("avx"))
2752         CGM.getDiags().Report(E->getBeginLoc(), diag::err_builtin_needs_feature)
2753             << TargetDecl->getDeclName() << "avx";
2754     }
2755   }
2756   return checkTargetFeatures(E->getBeginLoc(), TargetDecl);
2757 }
2758 
2759 // Emits an error if we don't have a valid set of target features for the
2760 // called function.
2761 void CodeGenFunction::checkTargetFeatures(SourceLocation Loc,
2762                                           const FunctionDecl *TargetDecl) {
2763   // Early exit if this is an indirect call.
2764   if (!TargetDecl)
2765     return;
2766 
2767   // Get the current enclosing function if it exists. If it doesn't
2768   // we can't check the target features anyhow.
2769   const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(CurCodeDecl);
2770   if (!FD)
2771     return;
2772 
2773   // Grab the required features for the call. For a builtin this is listed in
2774   // the td file with the default cpu, for an always_inline function this is any
2775   // listed cpu and any listed features.
2776   unsigned BuiltinID = TargetDecl->getBuiltinID();
2777   std::string MissingFeature;
2778   llvm::StringMap<bool> CallerFeatureMap;
2779   CGM.getContext().getFunctionFeatureMap(CallerFeatureMap, FD);
2780   // When compiling in HipStdPar mode we have to be conservative in rejecting
2781   // target specific features in the FE, and defer the possible error to the
2782   // AcceleratorCodeSelection pass, wherein iff an unsupported target builtin is
2783   // referenced by an accelerator executable function, we emit an error.
2784   bool IsHipStdPar = getLangOpts().HIPStdPar && getLangOpts().CUDAIsDevice;
2785   if (BuiltinID) {
2786     StringRef FeatureList(CGM.getContext().BuiltinInfo.getRequiredFeatures(BuiltinID));
2787     if (!Builtin::evaluateRequiredTargetFeatures(
2788         FeatureList, CallerFeatureMap) && !IsHipStdPar) {
2789       CGM.getDiags().Report(Loc, diag::err_builtin_needs_feature)
2790           << TargetDecl->getDeclName()
2791           << FeatureList;
2792     }
2793   } else if (!TargetDecl->isMultiVersion() &&
2794              TargetDecl->hasAttr<TargetAttr>()) {
2795     // Get the required features for the callee.
2796 
2797     const TargetAttr *TD = TargetDecl->getAttr<TargetAttr>();
2798     ParsedTargetAttr ParsedAttr =
2799         CGM.getContext().filterFunctionTargetAttrs(TD);
2800 
2801     SmallVector<StringRef, 1> ReqFeatures;
2802     llvm::StringMap<bool> CalleeFeatureMap;
2803     CGM.getContext().getFunctionFeatureMap(CalleeFeatureMap, TargetDecl);
2804 
2805     for (const auto &F : ParsedAttr.Features) {
2806       if (F[0] == '+' && CalleeFeatureMap.lookup(F.substr(1)))
2807         ReqFeatures.push_back(StringRef(F).substr(1));
2808     }
2809 
2810     for (const auto &F : CalleeFeatureMap) {
2811       // Only positive features are "required".
2812       if (F.getValue())
2813         ReqFeatures.push_back(F.getKey());
2814     }
2815     if (!llvm::all_of(ReqFeatures, [&](StringRef Feature) {
2816       if (!CallerFeatureMap.lookup(Feature)) {
2817         MissingFeature = Feature.str();
2818         return false;
2819       }
2820       return true;
2821     }) && !IsHipStdPar)
2822       CGM.getDiags().Report(Loc, diag::err_function_needs_feature)
2823           << FD->getDeclName() << TargetDecl->getDeclName() << MissingFeature;
2824   } else if (!FD->isMultiVersion() && FD->hasAttr<TargetAttr>()) {
2825     llvm::StringMap<bool> CalleeFeatureMap;
2826     CGM.getContext().getFunctionFeatureMap(CalleeFeatureMap, TargetDecl);
2827 
2828     for (const auto &F : CalleeFeatureMap) {
2829       if (F.getValue() && (!CallerFeatureMap.lookup(F.getKey()) ||
2830                            !CallerFeatureMap.find(F.getKey())->getValue()) &&
2831           !IsHipStdPar)
2832         CGM.getDiags().Report(Loc, diag::err_function_needs_feature)
2833             << FD->getDeclName() << TargetDecl->getDeclName() << F.getKey();
2834     }
2835   }
2836 }
2837 
2838 void CodeGenFunction::EmitSanitizerStatReport(llvm::SanitizerStatKind SSK) {
2839   if (!CGM.getCodeGenOpts().SanitizeStats)
2840     return;
2841 
2842   llvm::IRBuilder<> IRB(Builder.GetInsertBlock(), Builder.GetInsertPoint());
2843   IRB.SetCurrentDebugLocation(Builder.getCurrentDebugLocation());
2844   CGM.getSanStats().create(IRB, SSK);
2845 }
2846 
2847 void CodeGenFunction::EmitKCFIOperandBundle(
2848     const CGCallee &Callee, SmallVectorImpl<llvm::OperandBundleDef> &Bundles) {
2849   const FunctionProtoType *FP =
2850       Callee.getAbstractInfo().getCalleeFunctionProtoType();
2851   if (FP)
2852     Bundles.emplace_back("kcfi", CGM.CreateKCFITypeId(FP->desugar()));
2853 }
2854 
2855 llvm::Value *
2856 CodeGenFunction::FormAArch64ResolverCondition(const FMVResolverOption &RO) {
2857   return RO.Features.empty() ? nullptr : EmitAArch64CpuSupports(RO.Features);
2858 }
2859 
2860 llvm::Value *
2861 CodeGenFunction::FormX86ResolverCondition(const FMVResolverOption &RO) {
2862   llvm::Value *Condition = nullptr;
2863 
2864   if (RO.Architecture) {
2865     StringRef Arch = *RO.Architecture;
2866     // If arch= specifies an x86-64 micro-architecture level, test the feature
2867     // with __builtin_cpu_supports, otherwise use __builtin_cpu_is.
2868     if (Arch.starts_with("x86-64"))
2869       Condition = EmitX86CpuSupports({Arch});
2870     else
2871       Condition = EmitX86CpuIs(Arch);
2872   }
2873 
2874   if (!RO.Features.empty()) {
2875     llvm::Value *FeatureCond = EmitX86CpuSupports(RO.Features);
2876     Condition =
2877         Condition ? Builder.CreateAnd(Condition, FeatureCond) : FeatureCond;
2878   }
2879   return Condition;
2880 }
2881 
2882 static void CreateMultiVersionResolverReturn(CodeGenModule &CGM,
2883                                              llvm::Function *Resolver,
2884                                              CGBuilderTy &Builder,
2885                                              llvm::Function *FuncToReturn,
2886                                              bool SupportsIFunc) {
2887   if (SupportsIFunc) {
2888     Builder.CreateRet(FuncToReturn);
2889     return;
2890   }
2891 
2892   llvm::SmallVector<llvm::Value *, 10> Args(
2893       llvm::make_pointer_range(Resolver->args()));
2894 
2895   llvm::CallInst *Result = Builder.CreateCall(FuncToReturn, Args);
2896   Result->setTailCallKind(llvm::CallInst::TCK_MustTail);
2897 
2898   if (Resolver->getReturnType()->isVoidTy())
2899     Builder.CreateRetVoid();
2900   else
2901     Builder.CreateRet(Result);
2902 }
2903 
2904 void CodeGenFunction::EmitMultiVersionResolver(
2905     llvm::Function *Resolver, ArrayRef<FMVResolverOption> Options) {
2906 
2907   llvm::Triple::ArchType ArchType =
2908       getContext().getTargetInfo().getTriple().getArch();
2909 
2910   switch (ArchType) {
2911   case llvm::Triple::x86:
2912   case llvm::Triple::x86_64:
2913     EmitX86MultiVersionResolver(Resolver, Options);
2914     return;
2915   case llvm::Triple::aarch64:
2916     EmitAArch64MultiVersionResolver(Resolver, Options);
2917     return;
2918   case llvm::Triple::riscv32:
2919   case llvm::Triple::riscv64:
2920     EmitRISCVMultiVersionResolver(Resolver, Options);
2921     return;
2922 
2923   default:
2924     assert(false && "Only implemented for x86, AArch64 and RISC-V targets");
2925   }
2926 }
2927 
2928 void CodeGenFunction::EmitRISCVMultiVersionResolver(
2929     llvm::Function *Resolver, ArrayRef<FMVResolverOption> Options) {
2930 
2931   if (getContext().getTargetInfo().getTriple().getOS() !=
2932       llvm::Triple::OSType::Linux) {
2933     CGM.getDiags().Report(diag::err_os_unsupport_riscv_fmv);
2934     return;
2935   }
2936 
2937   llvm::BasicBlock *CurBlock = createBasicBlock("resolver_entry", Resolver);
2938   Builder.SetInsertPoint(CurBlock);
2939   EmitRISCVCpuInit();
2940 
2941   bool SupportsIFunc = getContext().getTargetInfo().supportsIFunc();
2942   bool HasDefault = false;
2943   unsigned DefaultIndex = 0;
2944 
2945   // Check the each candidate function.
2946   for (unsigned Index = 0; Index < Options.size(); Index++) {
2947 
2948     if (Options[Index].Features.empty()) {
2949       HasDefault = true;
2950       DefaultIndex = Index;
2951       continue;
2952     }
2953 
2954     Builder.SetInsertPoint(CurBlock);
2955 
2956     // FeaturesCondition: The bitmask of the required extension has been
2957     // enabled by the runtime object.
2958     // (__riscv_feature_bits.features[i] & REQUIRED_BITMASK) ==
2959     // REQUIRED_BITMASK
2960     //
2961     // When condition is met, return this version of the function.
2962     // Otherwise, try the next version.
2963     //
2964     // if (FeaturesConditionVersion1)
2965     //     return Version1;
2966     // else if (FeaturesConditionVersion2)
2967     //     return Version2;
2968     // else if (FeaturesConditionVersion3)
2969     //     return Version3;
2970     // ...
2971     // else
2972     //     return DefaultVersion;
2973 
2974     // TODO: Add a condition to check the length before accessing elements.
2975     // Without checking the length first, we may access an incorrect memory
2976     // address when using different versions.
2977     llvm::SmallVector<StringRef, 8> CurrTargetAttrFeats;
2978     llvm::SmallVector<std::string, 8> TargetAttrFeats;
2979 
2980     for (StringRef Feat : Options[Index].Features) {
2981       std::vector<std::string> FeatStr =
2982           getContext().getTargetInfo().parseTargetAttr(Feat).Features;
2983 
2984       assert(FeatStr.size() == 1 && "Feature string not delimited");
2985 
2986       std::string &CurrFeat = FeatStr.front();
2987       if (CurrFeat[0] == '+')
2988         TargetAttrFeats.push_back(CurrFeat.substr(1));
2989     }
2990 
2991     if (TargetAttrFeats.empty())
2992       continue;
2993 
2994     for (std::string &Feat : TargetAttrFeats)
2995       CurrTargetAttrFeats.push_back(Feat);
2996 
2997     Builder.SetInsertPoint(CurBlock);
2998     llvm::Value *FeatsCondition = EmitRISCVCpuSupports(CurrTargetAttrFeats);
2999 
3000     llvm::BasicBlock *RetBlock = createBasicBlock("resolver_return", Resolver);
3001     CGBuilderTy RetBuilder(*this, RetBlock);
3002     CreateMultiVersionResolverReturn(CGM, Resolver, RetBuilder,
3003                                      Options[Index].Function, SupportsIFunc);
3004     llvm::BasicBlock *ElseBlock = createBasicBlock("resolver_else", Resolver);
3005 
3006     Builder.SetInsertPoint(CurBlock);
3007     Builder.CreateCondBr(FeatsCondition, RetBlock, ElseBlock);
3008 
3009     CurBlock = ElseBlock;
3010   }
3011 
3012   // Finally, emit the default one.
3013   if (HasDefault) {
3014     Builder.SetInsertPoint(CurBlock);
3015     CreateMultiVersionResolverReturn(
3016         CGM, Resolver, Builder, Options[DefaultIndex].Function, SupportsIFunc);
3017     return;
3018   }
3019 
3020   // If no generic/default, emit an unreachable.
3021   Builder.SetInsertPoint(CurBlock);
3022   llvm::CallInst *TrapCall = EmitTrapCall(llvm::Intrinsic::trap);
3023   TrapCall->setDoesNotReturn();
3024   TrapCall->setDoesNotThrow();
3025   Builder.CreateUnreachable();
3026   Builder.ClearInsertionPoint();
3027 }
3028 
3029 void CodeGenFunction::EmitAArch64MultiVersionResolver(
3030     llvm::Function *Resolver, ArrayRef<FMVResolverOption> Options) {
3031   assert(!Options.empty() && "No multiversion resolver options found");
3032   assert(Options.back().Features.size() == 0 && "Default case must be last");
3033   bool SupportsIFunc = getContext().getTargetInfo().supportsIFunc();
3034   assert(SupportsIFunc &&
3035          "Multiversion resolver requires target IFUNC support");
3036   bool AArch64CpuInitialized = false;
3037   llvm::BasicBlock *CurBlock = createBasicBlock("resolver_entry", Resolver);
3038 
3039   for (const FMVResolverOption &RO : Options) {
3040     Builder.SetInsertPoint(CurBlock);
3041     llvm::Value *Condition = FormAArch64ResolverCondition(RO);
3042 
3043     // The 'default' or 'all features enabled' case.
3044     if (!Condition) {
3045       CreateMultiVersionResolverReturn(CGM, Resolver, Builder, RO.Function,
3046                                        SupportsIFunc);
3047       return;
3048     }
3049 
3050     if (!AArch64CpuInitialized) {
3051       Builder.SetInsertPoint(CurBlock, CurBlock->begin());
3052       EmitAArch64CpuInit();
3053       AArch64CpuInitialized = true;
3054       Builder.SetInsertPoint(CurBlock);
3055     }
3056 
3057     llvm::BasicBlock *RetBlock = createBasicBlock("resolver_return", Resolver);
3058     CGBuilderTy RetBuilder(*this, RetBlock);
3059     CreateMultiVersionResolverReturn(CGM, Resolver, RetBuilder, RO.Function,
3060                                      SupportsIFunc);
3061     CurBlock = createBasicBlock("resolver_else", Resolver);
3062     Builder.CreateCondBr(Condition, RetBlock, CurBlock);
3063   }
3064 
3065   // If no default, emit an unreachable.
3066   Builder.SetInsertPoint(CurBlock);
3067   llvm::CallInst *TrapCall = EmitTrapCall(llvm::Intrinsic::trap);
3068   TrapCall->setDoesNotReturn();
3069   TrapCall->setDoesNotThrow();
3070   Builder.CreateUnreachable();
3071   Builder.ClearInsertionPoint();
3072 }
3073 
3074 void CodeGenFunction::EmitX86MultiVersionResolver(
3075     llvm::Function *Resolver, ArrayRef<FMVResolverOption> Options) {
3076 
3077   bool SupportsIFunc = getContext().getTargetInfo().supportsIFunc();
3078 
3079   // Main function's basic block.
3080   llvm::BasicBlock *CurBlock = createBasicBlock("resolver_entry", Resolver);
3081   Builder.SetInsertPoint(CurBlock);
3082   EmitX86CpuInit();
3083 
3084   for (const FMVResolverOption &RO : Options) {
3085     Builder.SetInsertPoint(CurBlock);
3086     llvm::Value *Condition = FormX86ResolverCondition(RO);
3087 
3088     // The 'default' or 'generic' case.
3089     if (!Condition) {
3090       assert(&RO == Options.end() - 1 &&
3091              "Default or Generic case must be last");
3092       CreateMultiVersionResolverReturn(CGM, Resolver, Builder, RO.Function,
3093                                        SupportsIFunc);
3094       return;
3095     }
3096 
3097     llvm::BasicBlock *RetBlock = createBasicBlock("resolver_return", Resolver);
3098     CGBuilderTy RetBuilder(*this, RetBlock);
3099     CreateMultiVersionResolverReturn(CGM, Resolver, RetBuilder, RO.Function,
3100                                      SupportsIFunc);
3101     CurBlock = createBasicBlock("resolver_else", Resolver);
3102     Builder.CreateCondBr(Condition, RetBlock, CurBlock);
3103   }
3104 
3105   // If no generic/default, emit an unreachable.
3106   Builder.SetInsertPoint(CurBlock);
3107   llvm::CallInst *TrapCall = EmitTrapCall(llvm::Intrinsic::trap);
3108   TrapCall->setDoesNotReturn();
3109   TrapCall->setDoesNotThrow();
3110   Builder.CreateUnreachable();
3111   Builder.ClearInsertionPoint();
3112 }
3113 
3114 // Loc - where the diagnostic will point, where in the source code this
3115 //  alignment has failed.
3116 // SecondaryLoc - if present (will be present if sufficiently different from
3117 //  Loc), the diagnostic will additionally point a "Note:" to this location.
3118 //  It should be the location where the __attribute__((assume_aligned))
3119 //  was written e.g.
3120 void CodeGenFunction::emitAlignmentAssumptionCheck(
3121     llvm::Value *Ptr, QualType Ty, SourceLocation Loc,
3122     SourceLocation SecondaryLoc, llvm::Value *Alignment,
3123     llvm::Value *OffsetValue, llvm::Value *TheCheck,
3124     llvm::Instruction *Assumption) {
3125   assert(isa_and_nonnull<llvm::CallInst>(Assumption) &&
3126          cast<llvm::CallInst>(Assumption)->getCalledOperand() ==
3127              llvm::Intrinsic::getOrInsertDeclaration(
3128                  Builder.GetInsertBlock()->getParent()->getParent(),
3129                  llvm::Intrinsic::assume) &&
3130          "Assumption should be a call to llvm.assume().");
3131   assert(&(Builder.GetInsertBlock()->back()) == Assumption &&
3132          "Assumption should be the last instruction of the basic block, "
3133          "since the basic block is still being generated.");
3134 
3135   if (!SanOpts.has(SanitizerKind::Alignment))
3136     return;
3137 
3138   // Don't check pointers to volatile data. The behavior here is implementation-
3139   // defined.
3140   if (Ty->getPointeeType().isVolatileQualified())
3141     return;
3142 
3143   // We need to temorairly remove the assumption so we can insert the
3144   // sanitizer check before it, else the check will be dropped by optimizations.
3145   Assumption->removeFromParent();
3146 
3147   {
3148     SanitizerScope SanScope(this);
3149 
3150     if (!OffsetValue)
3151       OffsetValue = Builder.getInt1(false); // no offset.
3152 
3153     llvm::Constant *StaticData[] = {EmitCheckSourceLocation(Loc),
3154                                     EmitCheckSourceLocation(SecondaryLoc),
3155                                     EmitCheckTypeDescriptor(Ty)};
3156     llvm::Value *DynamicData[] = {EmitCheckValue(Ptr),
3157                                   EmitCheckValue(Alignment),
3158                                   EmitCheckValue(OffsetValue)};
3159     EmitCheck({std::make_pair(TheCheck, SanitizerKind::Alignment)},
3160               SanitizerHandler::AlignmentAssumption, StaticData, DynamicData);
3161   }
3162 
3163   // We are now in the (new, empty) "cont" basic block.
3164   // Reintroduce the assumption.
3165   Builder.Insert(Assumption);
3166   // FIXME: Assumption still has it's original basic block as it's Parent.
3167 }
3168 
3169 llvm::DebugLoc CodeGenFunction::SourceLocToDebugLoc(SourceLocation Location) {
3170   if (CGDebugInfo *DI = getDebugInfo())
3171     return DI->SourceLocToDebugLoc(Location);
3172 
3173   return llvm::DebugLoc();
3174 }
3175 
3176 llvm::Value *
3177 CodeGenFunction::emitCondLikelihoodViaExpectIntrinsic(llvm::Value *Cond,
3178                                                       Stmt::Likelihood LH) {
3179   switch (LH) {
3180   case Stmt::LH_None:
3181     return Cond;
3182   case Stmt::LH_Likely:
3183   case Stmt::LH_Unlikely:
3184     // Don't generate llvm.expect on -O0 as the backend won't use it for
3185     // anything.
3186     if (CGM.getCodeGenOpts().OptimizationLevel == 0)
3187       return Cond;
3188     llvm::Type *CondTy = Cond->getType();
3189     assert(CondTy->isIntegerTy(1) && "expecting condition to be a boolean");
3190     llvm::Function *FnExpect =
3191         CGM.getIntrinsic(llvm::Intrinsic::expect, CondTy);
3192     llvm::Value *ExpectedValueOfCond =
3193         llvm::ConstantInt::getBool(CondTy, LH == Stmt::LH_Likely);
3194     return Builder.CreateCall(FnExpect, {Cond, ExpectedValueOfCond},
3195                               Cond->getName() + ".expval");
3196   }
3197   llvm_unreachable("Unknown Likelihood");
3198 }
3199 
3200 llvm::Value *CodeGenFunction::emitBoolVecConversion(llvm::Value *SrcVec,
3201                                                     unsigned NumElementsDst,
3202                                                     const llvm::Twine &Name) {
3203   auto *SrcTy = cast<llvm::FixedVectorType>(SrcVec->getType());
3204   unsigned NumElementsSrc = SrcTy->getNumElements();
3205   if (NumElementsSrc == NumElementsDst)
3206     return SrcVec;
3207 
3208   std::vector<int> ShuffleMask(NumElementsDst, -1);
3209   for (unsigned MaskIdx = 0;
3210        MaskIdx < std::min<>(NumElementsDst, NumElementsSrc); ++MaskIdx)
3211     ShuffleMask[MaskIdx] = MaskIdx;
3212 
3213   return Builder.CreateShuffleVector(SrcVec, ShuffleMask, Name);
3214 }
3215 
3216 void CodeGenFunction::EmitPointerAuthOperandBundle(
3217     const CGPointerAuthInfo &PointerAuth,
3218     SmallVectorImpl<llvm::OperandBundleDef> &Bundles) {
3219   if (!PointerAuth.isSigned())
3220     return;
3221 
3222   auto *Key = Builder.getInt32(PointerAuth.getKey());
3223 
3224   llvm::Value *Discriminator = PointerAuth.getDiscriminator();
3225   if (!Discriminator)
3226     Discriminator = Builder.getSize(0);
3227 
3228   llvm::Value *Args[] = {Key, Discriminator};
3229   Bundles.emplace_back("ptrauth", Args);
3230 }
3231 
3232 static llvm::Value *EmitPointerAuthCommon(CodeGenFunction &CGF,
3233                                           const CGPointerAuthInfo &PointerAuth,
3234                                           llvm::Value *Pointer,
3235                                           unsigned IntrinsicID) {
3236   if (!PointerAuth)
3237     return Pointer;
3238 
3239   auto Key = CGF.Builder.getInt32(PointerAuth.getKey());
3240 
3241   llvm::Value *Discriminator = PointerAuth.getDiscriminator();
3242   if (!Discriminator) {
3243     Discriminator = CGF.Builder.getSize(0);
3244   }
3245 
3246   // Convert the pointer to intptr_t before signing it.
3247   auto OrigType = Pointer->getType();
3248   Pointer = CGF.Builder.CreatePtrToInt(Pointer, CGF.IntPtrTy);
3249 
3250   // call i64 @llvm.ptrauth.sign.i64(i64 %pointer, i32 %key, i64 %discriminator)
3251   auto Intrinsic = CGF.CGM.getIntrinsic(IntrinsicID);
3252   Pointer = CGF.EmitRuntimeCall(Intrinsic, {Pointer, Key, Discriminator});
3253 
3254   // Convert back to the original type.
3255   Pointer = CGF.Builder.CreateIntToPtr(Pointer, OrigType);
3256   return Pointer;
3257 }
3258 
3259 llvm::Value *
3260 CodeGenFunction::EmitPointerAuthSign(const CGPointerAuthInfo &PointerAuth,
3261                                      llvm::Value *Pointer) {
3262   if (!PointerAuth.shouldSign())
3263     return Pointer;
3264   return EmitPointerAuthCommon(*this, PointerAuth, Pointer,
3265                                llvm::Intrinsic::ptrauth_sign);
3266 }
3267 
3268 static llvm::Value *EmitStrip(CodeGenFunction &CGF,
3269                               const CGPointerAuthInfo &PointerAuth,
3270                               llvm::Value *Pointer) {
3271   auto StripIntrinsic = CGF.CGM.getIntrinsic(llvm::Intrinsic::ptrauth_strip);
3272 
3273   auto Key = CGF.Builder.getInt32(PointerAuth.getKey());
3274   // Convert the pointer to intptr_t before signing it.
3275   auto OrigType = Pointer->getType();
3276   Pointer = CGF.EmitRuntimeCall(
3277       StripIntrinsic, {CGF.Builder.CreatePtrToInt(Pointer, CGF.IntPtrTy), Key});
3278   return CGF.Builder.CreateIntToPtr(Pointer, OrigType);
3279 }
3280 
3281 llvm::Value *
3282 CodeGenFunction::EmitPointerAuthAuth(const CGPointerAuthInfo &PointerAuth,
3283                                      llvm::Value *Pointer) {
3284   if (PointerAuth.shouldStrip()) {
3285     return EmitStrip(*this, PointerAuth, Pointer);
3286   }
3287   if (!PointerAuth.shouldAuth()) {
3288     return Pointer;
3289   }
3290 
3291   return EmitPointerAuthCommon(*this, PointerAuth, Pointer,
3292                                llvm::Intrinsic::ptrauth_auth);
3293 }
3294