xref: /llvm-project/clang/lib/CodeGen/CGExprConstant.cpp (revision d9a685a9dd589486e882b722e513ee7b8c84870c)
1 //===--- CGExprConstant.cpp - Emit LLVM Code from Constant Expressions ----===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This contains code to emit Constant Expr nodes as LLVM code.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "CGCXXABI.h"
14 #include "CGObjCRuntime.h"
15 #include "CGRecordLayout.h"
16 #include "CodeGenFunction.h"
17 #include "CodeGenModule.h"
18 #include "ConstantEmitter.h"
19 #include "TargetInfo.h"
20 #include "clang/AST/APValue.h"
21 #include "clang/AST/ASTContext.h"
22 #include "clang/AST/Attr.h"
23 #include "clang/AST/RecordLayout.h"
24 #include "clang/AST/StmtVisitor.h"
25 #include "clang/Basic/Builtins.h"
26 #include "llvm/ADT/STLExtras.h"
27 #include "llvm/ADT/Sequence.h"
28 #include "llvm/Analysis/ConstantFolding.h"
29 #include "llvm/IR/Constants.h"
30 #include "llvm/IR/DataLayout.h"
31 #include "llvm/IR/Function.h"
32 #include "llvm/IR/GlobalVariable.h"
33 #include <optional>
34 using namespace clang;
35 using namespace CodeGen;
36 
37 //===----------------------------------------------------------------------===//
38 //                            ConstantAggregateBuilder
39 //===----------------------------------------------------------------------===//
40 
41 namespace {
42 class ConstExprEmitter;
43 
44 struct ConstantAggregateBuilderUtils {
45   CodeGenModule &CGM;
46 
47   ConstantAggregateBuilderUtils(CodeGenModule &CGM) : CGM(CGM) {}
48 
49   CharUnits getAlignment(const llvm::Constant *C) const {
50     return CharUnits::fromQuantity(
51         CGM.getDataLayout().getABITypeAlign(C->getType()));
52   }
53 
54   CharUnits getSize(llvm::Type *Ty) const {
55     return CharUnits::fromQuantity(CGM.getDataLayout().getTypeAllocSize(Ty));
56   }
57 
58   CharUnits getSize(const llvm::Constant *C) const {
59     return getSize(C->getType());
60   }
61 
62   llvm::Constant *getPadding(CharUnits PadSize) const {
63     llvm::Type *Ty = CGM.CharTy;
64     if (PadSize > CharUnits::One())
65       Ty = llvm::ArrayType::get(Ty, PadSize.getQuantity());
66     return llvm::UndefValue::get(Ty);
67   }
68 
69   llvm::Constant *getZeroes(CharUnits ZeroSize) const {
70     llvm::Type *Ty = llvm::ArrayType::get(CGM.CharTy, ZeroSize.getQuantity());
71     return llvm::ConstantAggregateZero::get(Ty);
72   }
73 };
74 
75 /// Incremental builder for an llvm::Constant* holding a struct or array
76 /// constant.
77 class ConstantAggregateBuilder : private ConstantAggregateBuilderUtils {
78   /// The elements of the constant. These two arrays must have the same size;
79   /// Offsets[i] describes the offset of Elems[i] within the constant. The
80   /// elements are kept in increasing offset order, and we ensure that there
81   /// is no overlap: Offsets[i+1] >= Offsets[i] + getSize(Elemes[i]).
82   ///
83   /// This may contain explicit padding elements (in order to create a
84   /// natural layout), but need not. Gaps between elements are implicitly
85   /// considered to be filled with undef.
86   llvm::SmallVector<llvm::Constant*, 32> Elems;
87   llvm::SmallVector<CharUnits, 32> Offsets;
88 
89   /// The size of the constant (the maximum end offset of any added element).
90   /// May be larger than the end of Elems.back() if we split the last element
91   /// and removed some trailing undefs.
92   CharUnits Size = CharUnits::Zero();
93 
94   /// This is true only if laying out Elems in order as the elements of a
95   /// non-packed LLVM struct will give the correct layout.
96   bool NaturalLayout = true;
97 
98   bool split(size_t Index, CharUnits Hint);
99   std::optional<size_t> splitAt(CharUnits Pos);
100 
101   static llvm::Constant *buildFrom(CodeGenModule &CGM,
102                                    ArrayRef<llvm::Constant *> Elems,
103                                    ArrayRef<CharUnits> Offsets,
104                                    CharUnits StartOffset, CharUnits Size,
105                                    bool NaturalLayout, llvm::Type *DesiredTy,
106                                    bool AllowOversized);
107 
108 public:
109   ConstantAggregateBuilder(CodeGenModule &CGM)
110       : ConstantAggregateBuilderUtils(CGM) {}
111 
112   /// Update or overwrite the value starting at \p Offset with \c C.
113   ///
114   /// \param AllowOverwrite If \c true, this constant might overwrite (part of)
115   ///        a constant that has already been added. This flag is only used to
116   ///        detect bugs.
117   bool add(llvm::Constant *C, CharUnits Offset, bool AllowOverwrite);
118 
119   /// Update or overwrite the bits starting at \p OffsetInBits with \p Bits.
120   bool addBits(llvm::APInt Bits, uint64_t OffsetInBits, bool AllowOverwrite);
121 
122   /// Attempt to condense the value starting at \p Offset to a constant of type
123   /// \p DesiredTy.
124   void condense(CharUnits Offset, llvm::Type *DesiredTy);
125 
126   /// Produce a constant representing the entire accumulated value, ideally of
127   /// the specified type. If \p AllowOversized, the constant might be larger
128   /// than implied by \p DesiredTy (eg, if there is a flexible array member).
129   /// Otherwise, the constant will be of exactly the same size as \p DesiredTy
130   /// even if we can't represent it as that type.
131   llvm::Constant *build(llvm::Type *DesiredTy, bool AllowOversized) const {
132     return buildFrom(CGM, Elems, Offsets, CharUnits::Zero(), Size,
133                      NaturalLayout, DesiredTy, AllowOversized);
134   }
135 };
136 
137 template<typename Container, typename Range = std::initializer_list<
138                                  typename Container::value_type>>
139 static void replace(Container &C, size_t BeginOff, size_t EndOff, Range Vals) {
140   assert(BeginOff <= EndOff && "invalid replacement range");
141   llvm::replace(C, C.begin() + BeginOff, C.begin() + EndOff, Vals);
142 }
143 
144 bool ConstantAggregateBuilder::add(llvm::Constant *C, CharUnits Offset,
145                           bool AllowOverwrite) {
146   // Common case: appending to a layout.
147   if (Offset >= Size) {
148     CharUnits Align = getAlignment(C);
149     CharUnits AlignedSize = Size.alignTo(Align);
150     if (AlignedSize > Offset || Offset.alignTo(Align) != Offset)
151       NaturalLayout = false;
152     else if (AlignedSize < Offset) {
153       Elems.push_back(getPadding(Offset - Size));
154       Offsets.push_back(Size);
155     }
156     Elems.push_back(C);
157     Offsets.push_back(Offset);
158     Size = Offset + getSize(C);
159     return true;
160   }
161 
162   // Uncommon case: constant overlaps what we've already created.
163   std::optional<size_t> FirstElemToReplace = splitAt(Offset);
164   if (!FirstElemToReplace)
165     return false;
166 
167   CharUnits CSize = getSize(C);
168   std::optional<size_t> LastElemToReplace = splitAt(Offset + CSize);
169   if (!LastElemToReplace)
170     return false;
171 
172   assert((FirstElemToReplace == LastElemToReplace || AllowOverwrite) &&
173          "unexpectedly overwriting field");
174 
175   replace(Elems, *FirstElemToReplace, *LastElemToReplace, {C});
176   replace(Offsets, *FirstElemToReplace, *LastElemToReplace, {Offset});
177   Size = std::max(Size, Offset + CSize);
178   NaturalLayout = false;
179   return true;
180 }
181 
182 bool ConstantAggregateBuilder::addBits(llvm::APInt Bits, uint64_t OffsetInBits,
183                               bool AllowOverwrite) {
184   const ASTContext &Context = CGM.getContext();
185   const uint64_t CharWidth = CGM.getContext().getCharWidth();
186 
187   // Offset of where we want the first bit to go within the bits of the
188   // current char.
189   unsigned OffsetWithinChar = OffsetInBits % CharWidth;
190 
191   // We split bit-fields up into individual bytes. Walk over the bytes and
192   // update them.
193   for (CharUnits OffsetInChars =
194            Context.toCharUnitsFromBits(OffsetInBits - OffsetWithinChar);
195        /**/; ++OffsetInChars) {
196     // Number of bits we want to fill in this char.
197     unsigned WantedBits =
198         std::min((uint64_t)Bits.getBitWidth(), CharWidth - OffsetWithinChar);
199 
200     // Get a char containing the bits we want in the right places. The other
201     // bits have unspecified values.
202     llvm::APInt BitsThisChar = Bits;
203     if (BitsThisChar.getBitWidth() < CharWidth)
204       BitsThisChar = BitsThisChar.zext(CharWidth);
205     if (CGM.getDataLayout().isBigEndian()) {
206       // Figure out how much to shift by. We may need to left-shift if we have
207       // less than one byte of Bits left.
208       int Shift = Bits.getBitWidth() - CharWidth + OffsetWithinChar;
209       if (Shift > 0)
210         BitsThisChar.lshrInPlace(Shift);
211       else if (Shift < 0)
212         BitsThisChar = BitsThisChar.shl(-Shift);
213     } else {
214       BitsThisChar = BitsThisChar.shl(OffsetWithinChar);
215     }
216     if (BitsThisChar.getBitWidth() > CharWidth)
217       BitsThisChar = BitsThisChar.trunc(CharWidth);
218 
219     if (WantedBits == CharWidth) {
220       // Got a full byte: just add it directly.
221       add(llvm::ConstantInt::get(CGM.getLLVMContext(), BitsThisChar),
222           OffsetInChars, AllowOverwrite);
223     } else {
224       // Partial byte: update the existing integer if there is one. If we
225       // can't split out a 1-CharUnit range to update, then we can't add
226       // these bits and fail the entire constant emission.
227       std::optional<size_t> FirstElemToUpdate = splitAt(OffsetInChars);
228       if (!FirstElemToUpdate)
229         return false;
230       std::optional<size_t> LastElemToUpdate =
231           splitAt(OffsetInChars + CharUnits::One());
232       if (!LastElemToUpdate)
233         return false;
234       assert(*LastElemToUpdate - *FirstElemToUpdate < 2 &&
235              "should have at most one element covering one byte");
236 
237       // Figure out which bits we want and discard the rest.
238       llvm::APInt UpdateMask(CharWidth, 0);
239       if (CGM.getDataLayout().isBigEndian())
240         UpdateMask.setBits(CharWidth - OffsetWithinChar - WantedBits,
241                            CharWidth - OffsetWithinChar);
242       else
243         UpdateMask.setBits(OffsetWithinChar, OffsetWithinChar + WantedBits);
244       BitsThisChar &= UpdateMask;
245 
246       if (*FirstElemToUpdate == *LastElemToUpdate ||
247           Elems[*FirstElemToUpdate]->isNullValue() ||
248           isa<llvm::UndefValue>(Elems[*FirstElemToUpdate])) {
249         // All existing bits are either zero or undef.
250         add(llvm::ConstantInt::get(CGM.getLLVMContext(), BitsThisChar),
251             OffsetInChars, /*AllowOverwrite*/ true);
252       } else {
253         llvm::Constant *&ToUpdate = Elems[*FirstElemToUpdate];
254         // In order to perform a partial update, we need the existing bitwise
255         // value, which we can only extract for a constant int.
256         auto *CI = dyn_cast<llvm::ConstantInt>(ToUpdate);
257         if (!CI)
258           return false;
259         // Because this is a 1-CharUnit range, the constant occupying it must
260         // be exactly one CharUnit wide.
261         assert(CI->getBitWidth() == CharWidth && "splitAt failed");
262         assert((!(CI->getValue() & UpdateMask) || AllowOverwrite) &&
263                "unexpectedly overwriting bitfield");
264         BitsThisChar |= (CI->getValue() & ~UpdateMask);
265         ToUpdate = llvm::ConstantInt::get(CGM.getLLVMContext(), BitsThisChar);
266       }
267     }
268 
269     // Stop if we've added all the bits.
270     if (WantedBits == Bits.getBitWidth())
271       break;
272 
273     // Remove the consumed bits from Bits.
274     if (!CGM.getDataLayout().isBigEndian())
275       Bits.lshrInPlace(WantedBits);
276     Bits = Bits.trunc(Bits.getBitWidth() - WantedBits);
277 
278     // The remanining bits go at the start of the following bytes.
279     OffsetWithinChar = 0;
280   }
281 
282   return true;
283 }
284 
285 /// Returns a position within Elems and Offsets such that all elements
286 /// before the returned index end before Pos and all elements at or after
287 /// the returned index begin at or after Pos. Splits elements as necessary
288 /// to ensure this. Returns std::nullopt if we find something we can't split.
289 std::optional<size_t> ConstantAggregateBuilder::splitAt(CharUnits Pos) {
290   if (Pos >= Size)
291     return Offsets.size();
292 
293   while (true) {
294     auto FirstAfterPos = llvm::upper_bound(Offsets, Pos);
295     if (FirstAfterPos == Offsets.begin())
296       return 0;
297 
298     // If we already have an element starting at Pos, we're done.
299     size_t LastAtOrBeforePosIndex = FirstAfterPos - Offsets.begin() - 1;
300     if (Offsets[LastAtOrBeforePosIndex] == Pos)
301       return LastAtOrBeforePosIndex;
302 
303     // We found an element starting before Pos. Check for overlap.
304     if (Offsets[LastAtOrBeforePosIndex] +
305         getSize(Elems[LastAtOrBeforePosIndex]) <= Pos)
306       return LastAtOrBeforePosIndex + 1;
307 
308     // Try to decompose it into smaller constants.
309     if (!split(LastAtOrBeforePosIndex, Pos))
310       return std::nullopt;
311   }
312 }
313 
314 /// Split the constant at index Index, if possible. Return true if we did.
315 /// Hint indicates the location at which we'd like to split, but may be
316 /// ignored.
317 bool ConstantAggregateBuilder::split(size_t Index, CharUnits Hint) {
318   NaturalLayout = false;
319   llvm::Constant *C = Elems[Index];
320   CharUnits Offset = Offsets[Index];
321 
322   if (auto *CA = dyn_cast<llvm::ConstantAggregate>(C)) {
323     // Expand the sequence into its contained elements.
324     // FIXME: This assumes vector elements are byte-sized.
325     replace(Elems, Index, Index + 1,
326             llvm::map_range(llvm::seq(0u, CA->getNumOperands()),
327                             [&](unsigned Op) { return CA->getOperand(Op); }));
328     if (isa<llvm::ArrayType>(CA->getType()) ||
329         isa<llvm::VectorType>(CA->getType())) {
330       // Array or vector.
331       llvm::Type *ElemTy =
332           llvm::GetElementPtrInst::getTypeAtIndex(CA->getType(), (uint64_t)0);
333       CharUnits ElemSize = getSize(ElemTy);
334       replace(
335           Offsets, Index, Index + 1,
336           llvm::map_range(llvm::seq(0u, CA->getNumOperands()),
337                           [&](unsigned Op) { return Offset + Op * ElemSize; }));
338     } else {
339       // Must be a struct.
340       auto *ST = cast<llvm::StructType>(CA->getType());
341       const llvm::StructLayout *Layout =
342           CGM.getDataLayout().getStructLayout(ST);
343       replace(Offsets, Index, Index + 1,
344               llvm::map_range(
345                   llvm::seq(0u, CA->getNumOperands()), [&](unsigned Op) {
346                     return Offset + CharUnits::fromQuantity(
347                                         Layout->getElementOffset(Op));
348                   }));
349     }
350     return true;
351   }
352 
353   if (auto *CDS = dyn_cast<llvm::ConstantDataSequential>(C)) {
354     // Expand the sequence into its contained elements.
355     // FIXME: This assumes vector elements are byte-sized.
356     // FIXME: If possible, split into two ConstantDataSequentials at Hint.
357     CharUnits ElemSize = getSize(CDS->getElementType());
358     replace(Elems, Index, Index + 1,
359             llvm::map_range(llvm::seq(0u, CDS->getNumElements()),
360                             [&](unsigned Elem) {
361                               return CDS->getElementAsConstant(Elem);
362                             }));
363     replace(Offsets, Index, Index + 1,
364             llvm::map_range(
365                 llvm::seq(0u, CDS->getNumElements()),
366                 [&](unsigned Elem) { return Offset + Elem * ElemSize; }));
367     return true;
368   }
369 
370   if (isa<llvm::ConstantAggregateZero>(C)) {
371     // Split into two zeros at the hinted offset.
372     CharUnits ElemSize = getSize(C);
373     assert(Hint > Offset && Hint < Offset + ElemSize && "nothing to split");
374     replace(Elems, Index, Index + 1,
375             {getZeroes(Hint - Offset), getZeroes(Offset + ElemSize - Hint)});
376     replace(Offsets, Index, Index + 1, {Offset, Hint});
377     return true;
378   }
379 
380   if (isa<llvm::UndefValue>(C)) {
381     // Drop undef; it doesn't contribute to the final layout.
382     replace(Elems, Index, Index + 1, {});
383     replace(Offsets, Index, Index + 1, {});
384     return true;
385   }
386 
387   // FIXME: We could split a ConstantInt if the need ever arose.
388   // We don't need to do this to handle bit-fields because we always eagerly
389   // split them into 1-byte chunks.
390 
391   return false;
392 }
393 
394 static llvm::Constant *
395 EmitArrayConstant(CodeGenModule &CGM, llvm::ArrayType *DesiredType,
396                   llvm::Type *CommonElementType, unsigned ArrayBound,
397                   SmallVectorImpl<llvm::Constant *> &Elements,
398                   llvm::Constant *Filler);
399 
400 llvm::Constant *ConstantAggregateBuilder::buildFrom(
401     CodeGenModule &CGM, ArrayRef<llvm::Constant *> Elems,
402     ArrayRef<CharUnits> Offsets, CharUnits StartOffset, CharUnits Size,
403     bool NaturalLayout, llvm::Type *DesiredTy, bool AllowOversized) {
404   ConstantAggregateBuilderUtils Utils(CGM);
405 
406   if (Elems.empty())
407     return llvm::UndefValue::get(DesiredTy);
408 
409   auto Offset = [&](size_t I) { return Offsets[I] - StartOffset; };
410 
411   // If we want an array type, see if all the elements are the same type and
412   // appropriately spaced.
413   if (llvm::ArrayType *ATy = dyn_cast<llvm::ArrayType>(DesiredTy)) {
414     assert(!AllowOversized && "oversized array emission not supported");
415 
416     bool CanEmitArray = true;
417     llvm::Type *CommonType = Elems[0]->getType();
418     llvm::Constant *Filler = llvm::Constant::getNullValue(CommonType);
419     CharUnits ElemSize = Utils.getSize(ATy->getElementType());
420     SmallVector<llvm::Constant*, 32> ArrayElements;
421     for (size_t I = 0; I != Elems.size(); ++I) {
422       // Skip zeroes; we'll use a zero value as our array filler.
423       if (Elems[I]->isNullValue())
424         continue;
425 
426       // All remaining elements must be the same type.
427       if (Elems[I]->getType() != CommonType ||
428           Offset(I) % ElemSize != 0) {
429         CanEmitArray = false;
430         break;
431       }
432       ArrayElements.resize(Offset(I) / ElemSize + 1, Filler);
433       ArrayElements.back() = Elems[I];
434     }
435 
436     if (CanEmitArray) {
437       return EmitArrayConstant(CGM, ATy, CommonType, ATy->getNumElements(),
438                                ArrayElements, Filler);
439     }
440 
441     // Can't emit as an array, carry on to emit as a struct.
442   }
443 
444   // The size of the constant we plan to generate.  This is usually just
445   // the size of the initialized type, but in AllowOversized mode (i.e.
446   // flexible array init), it can be larger.
447   CharUnits DesiredSize = Utils.getSize(DesiredTy);
448   if (Size > DesiredSize) {
449     assert(AllowOversized && "Elems are oversized");
450     DesiredSize = Size;
451   }
452 
453   // The natural alignment of an unpacked LLVM struct with the given elements.
454   CharUnits Align = CharUnits::One();
455   for (llvm::Constant *C : Elems)
456     Align = std::max(Align, Utils.getAlignment(C));
457 
458   // The natural size of an unpacked LLVM struct with the given elements.
459   CharUnits AlignedSize = Size.alignTo(Align);
460 
461   bool Packed = false;
462   ArrayRef<llvm::Constant*> UnpackedElems = Elems;
463   llvm::SmallVector<llvm::Constant*, 32> UnpackedElemStorage;
464   if (DesiredSize < AlignedSize || DesiredSize.alignTo(Align) != DesiredSize) {
465     // The natural layout would be too big; force use of a packed layout.
466     NaturalLayout = false;
467     Packed = true;
468   } else if (DesiredSize > AlignedSize) {
469     // The natural layout would be too small. Add padding to fix it. (This
470     // is ignored if we choose a packed layout.)
471     UnpackedElemStorage.assign(Elems.begin(), Elems.end());
472     UnpackedElemStorage.push_back(Utils.getPadding(DesiredSize - Size));
473     UnpackedElems = UnpackedElemStorage;
474   }
475 
476   // If we don't have a natural layout, insert padding as necessary.
477   // As we go, double-check to see if we can actually just emit Elems
478   // as a non-packed struct and do so opportunistically if possible.
479   llvm::SmallVector<llvm::Constant*, 32> PackedElems;
480   if (!NaturalLayout) {
481     CharUnits SizeSoFar = CharUnits::Zero();
482     for (size_t I = 0; I != Elems.size(); ++I) {
483       CharUnits Align = Utils.getAlignment(Elems[I]);
484       CharUnits NaturalOffset = SizeSoFar.alignTo(Align);
485       CharUnits DesiredOffset = Offset(I);
486       assert(DesiredOffset >= SizeSoFar && "elements out of order");
487 
488       if (DesiredOffset != NaturalOffset)
489         Packed = true;
490       if (DesiredOffset != SizeSoFar)
491         PackedElems.push_back(Utils.getPadding(DesiredOffset - SizeSoFar));
492       PackedElems.push_back(Elems[I]);
493       SizeSoFar = DesiredOffset + Utils.getSize(Elems[I]);
494     }
495     // If we're using the packed layout, pad it out to the desired size if
496     // necessary.
497     if (Packed) {
498       assert(SizeSoFar <= DesiredSize &&
499              "requested size is too small for contents");
500       if (SizeSoFar < DesiredSize)
501         PackedElems.push_back(Utils.getPadding(DesiredSize - SizeSoFar));
502     }
503   }
504 
505   llvm::StructType *STy = llvm::ConstantStruct::getTypeForElements(
506       CGM.getLLVMContext(), Packed ? PackedElems : UnpackedElems, Packed);
507 
508   // Pick the type to use.  If the type is layout identical to the desired
509   // type then use it, otherwise use whatever the builder produced for us.
510   if (llvm::StructType *DesiredSTy = dyn_cast<llvm::StructType>(DesiredTy)) {
511     if (DesiredSTy->isLayoutIdentical(STy))
512       STy = DesiredSTy;
513   }
514 
515   return llvm::ConstantStruct::get(STy, Packed ? PackedElems : UnpackedElems);
516 }
517 
518 void ConstantAggregateBuilder::condense(CharUnits Offset,
519                                         llvm::Type *DesiredTy) {
520   CharUnits Size = getSize(DesiredTy);
521 
522   std::optional<size_t> FirstElemToReplace = splitAt(Offset);
523   if (!FirstElemToReplace)
524     return;
525   size_t First = *FirstElemToReplace;
526 
527   std::optional<size_t> LastElemToReplace = splitAt(Offset + Size);
528   if (!LastElemToReplace)
529     return;
530   size_t Last = *LastElemToReplace;
531 
532   size_t Length = Last - First;
533   if (Length == 0)
534     return;
535 
536   if (Length == 1 && Offsets[First] == Offset &&
537       getSize(Elems[First]) == Size) {
538     // Re-wrap single element structs if necessary. Otherwise, leave any single
539     // element constant of the right size alone even if it has the wrong type.
540     auto *STy = dyn_cast<llvm::StructType>(DesiredTy);
541     if (STy && STy->getNumElements() == 1 &&
542         STy->getElementType(0) == Elems[First]->getType())
543       Elems[First] = llvm::ConstantStruct::get(STy, Elems[First]);
544     return;
545   }
546 
547   llvm::Constant *Replacement = buildFrom(
548       CGM, ArrayRef(Elems).slice(First, Length),
549       ArrayRef(Offsets).slice(First, Length), Offset, getSize(DesiredTy),
550       /*known to have natural layout=*/false, DesiredTy, false);
551   replace(Elems, First, Last, {Replacement});
552   replace(Offsets, First, Last, {Offset});
553 }
554 
555 //===----------------------------------------------------------------------===//
556 //                            ConstStructBuilder
557 //===----------------------------------------------------------------------===//
558 
559 class ConstStructBuilder {
560   CodeGenModule &CGM;
561   ConstantEmitter &Emitter;
562   ConstantAggregateBuilder &Builder;
563   CharUnits StartOffset;
564 
565 public:
566   static llvm::Constant *BuildStruct(ConstantEmitter &Emitter,
567                                      InitListExpr *ILE, QualType StructTy);
568   static llvm::Constant *BuildStruct(ConstantEmitter &Emitter,
569                                      const APValue &Value, QualType ValTy);
570   static bool UpdateStruct(ConstantEmitter &Emitter,
571                            ConstantAggregateBuilder &Const, CharUnits Offset,
572                            InitListExpr *Updater);
573 
574 private:
575   ConstStructBuilder(ConstantEmitter &Emitter,
576                      ConstantAggregateBuilder &Builder, CharUnits StartOffset)
577       : CGM(Emitter.CGM), Emitter(Emitter), Builder(Builder),
578         StartOffset(StartOffset) {}
579 
580   bool AppendField(const FieldDecl *Field, uint64_t FieldOffset,
581                    llvm::Constant *InitExpr, bool AllowOverwrite = false);
582 
583   bool AppendBytes(CharUnits FieldOffsetInChars, llvm::Constant *InitCst,
584                    bool AllowOverwrite = false);
585 
586   bool AppendBitField(const FieldDecl *Field, uint64_t FieldOffset,
587                       llvm::ConstantInt *InitExpr, bool AllowOverwrite = false);
588 
589   bool Build(InitListExpr *ILE, bool AllowOverwrite);
590   bool Build(const APValue &Val, const RecordDecl *RD, bool IsPrimaryBase,
591              const CXXRecordDecl *VTableClass, CharUnits BaseOffset);
592   llvm::Constant *Finalize(QualType Ty);
593 };
594 
595 bool ConstStructBuilder::AppendField(
596     const FieldDecl *Field, uint64_t FieldOffset, llvm::Constant *InitCst,
597     bool AllowOverwrite) {
598   const ASTContext &Context = CGM.getContext();
599 
600   CharUnits FieldOffsetInChars = Context.toCharUnitsFromBits(FieldOffset);
601 
602   return AppendBytes(FieldOffsetInChars, InitCst, AllowOverwrite);
603 }
604 
605 bool ConstStructBuilder::AppendBytes(CharUnits FieldOffsetInChars,
606                                      llvm::Constant *InitCst,
607                                      bool AllowOverwrite) {
608   return Builder.add(InitCst, StartOffset + FieldOffsetInChars, AllowOverwrite);
609 }
610 
611 bool ConstStructBuilder::AppendBitField(
612     const FieldDecl *Field, uint64_t FieldOffset, llvm::ConstantInt *CI,
613     bool AllowOverwrite) {
614   const CGRecordLayout &RL =
615       CGM.getTypes().getCGRecordLayout(Field->getParent());
616   const CGBitFieldInfo &Info = RL.getBitFieldInfo(Field);
617   llvm::APInt FieldValue = CI->getValue();
618 
619   // Promote the size of FieldValue if necessary
620   // FIXME: This should never occur, but currently it can because initializer
621   // constants are cast to bool, and because clang is not enforcing bitfield
622   // width limits.
623   if (Info.Size > FieldValue.getBitWidth())
624     FieldValue = FieldValue.zext(Info.Size);
625 
626   // Truncate the size of FieldValue to the bit field size.
627   if (Info.Size < FieldValue.getBitWidth())
628     FieldValue = FieldValue.trunc(Info.Size);
629 
630   return Builder.addBits(FieldValue,
631                          CGM.getContext().toBits(StartOffset) + FieldOffset,
632                          AllowOverwrite);
633 }
634 
635 static bool EmitDesignatedInitUpdater(ConstantEmitter &Emitter,
636                                       ConstantAggregateBuilder &Const,
637                                       CharUnits Offset, QualType Type,
638                                       InitListExpr *Updater) {
639   if (Type->isRecordType())
640     return ConstStructBuilder::UpdateStruct(Emitter, Const, Offset, Updater);
641 
642   auto CAT = Emitter.CGM.getContext().getAsConstantArrayType(Type);
643   if (!CAT)
644     return false;
645   QualType ElemType = CAT->getElementType();
646   CharUnits ElemSize = Emitter.CGM.getContext().getTypeSizeInChars(ElemType);
647   llvm::Type *ElemTy = Emitter.CGM.getTypes().ConvertTypeForMem(ElemType);
648 
649   llvm::Constant *FillC = nullptr;
650   if (Expr *Filler = Updater->getArrayFiller()) {
651     if (!isa<NoInitExpr>(Filler)) {
652       FillC = Emitter.tryEmitAbstractForMemory(Filler, ElemType);
653       if (!FillC)
654         return false;
655     }
656   }
657 
658   unsigned NumElementsToUpdate =
659       FillC ? CAT->getZExtSize() : Updater->getNumInits();
660   for (unsigned I = 0; I != NumElementsToUpdate; ++I, Offset += ElemSize) {
661     Expr *Init = nullptr;
662     if (I < Updater->getNumInits())
663       Init = Updater->getInit(I);
664 
665     if (!Init && FillC) {
666       if (!Const.add(FillC, Offset, true))
667         return false;
668     } else if (!Init || isa<NoInitExpr>(Init)) {
669       continue;
670     } else if (InitListExpr *ChildILE = dyn_cast<InitListExpr>(Init)) {
671       if (!EmitDesignatedInitUpdater(Emitter, Const, Offset, ElemType,
672                                      ChildILE))
673         return false;
674       // Attempt to reduce the array element to a single constant if necessary.
675       Const.condense(Offset, ElemTy);
676     } else {
677       llvm::Constant *Val = Emitter.tryEmitPrivateForMemory(Init, ElemType);
678       if (!Const.add(Val, Offset, true))
679         return false;
680     }
681   }
682 
683   return true;
684 }
685 
686 bool ConstStructBuilder::Build(InitListExpr *ILE, bool AllowOverwrite) {
687   RecordDecl *RD = ILE->getType()->castAs<RecordType>()->getDecl();
688   const ASTRecordLayout &Layout = CGM.getContext().getASTRecordLayout(RD);
689 
690   unsigned FieldNo = -1;
691   unsigned ElementNo = 0;
692 
693   // Bail out if we have base classes. We could support these, but they only
694   // arise in C++1z where we will have already constant folded most interesting
695   // cases. FIXME: There are still a few more cases we can handle this way.
696   if (auto *CXXRD = dyn_cast<CXXRecordDecl>(RD))
697     if (CXXRD->getNumBases())
698       return false;
699 
700   for (FieldDecl *Field : RD->fields()) {
701     ++FieldNo;
702 
703     // If this is a union, skip all the fields that aren't being initialized.
704     if (RD->isUnion() &&
705         !declaresSameEntity(ILE->getInitializedFieldInUnion(), Field))
706       continue;
707 
708     // Don't emit anonymous bitfields.
709     if (Field->isUnnamedBitfield())
710       continue;
711 
712     // Get the initializer.  A struct can include fields without initializers,
713     // we just use explicit null values for them.
714     Expr *Init = nullptr;
715     if (ElementNo < ILE->getNumInits())
716       Init = ILE->getInit(ElementNo++);
717     if (Init && isa<NoInitExpr>(Init))
718       continue;
719 
720     // Zero-sized fields are not emitted, but their initializers may still
721     // prevent emission of this struct as a constant.
722     if (Field->isZeroSize(CGM.getContext())) {
723       if (Init->HasSideEffects(CGM.getContext()))
724         return false;
725       continue;
726     }
727 
728     // When emitting a DesignatedInitUpdateExpr, a nested InitListExpr
729     // represents additional overwriting of our current constant value, and not
730     // a new constant to emit independently.
731     if (AllowOverwrite &&
732         (Field->getType()->isArrayType() || Field->getType()->isRecordType())) {
733       if (auto *SubILE = dyn_cast<InitListExpr>(Init)) {
734         CharUnits Offset = CGM.getContext().toCharUnitsFromBits(
735             Layout.getFieldOffset(FieldNo));
736         if (!EmitDesignatedInitUpdater(Emitter, Builder, StartOffset + Offset,
737                                        Field->getType(), SubILE))
738           return false;
739         // If we split apart the field's value, try to collapse it down to a
740         // single value now.
741         Builder.condense(StartOffset + Offset,
742                          CGM.getTypes().ConvertTypeForMem(Field->getType()));
743         continue;
744       }
745     }
746 
747     llvm::Constant *EltInit =
748         Init ? Emitter.tryEmitPrivateForMemory(Init, Field->getType())
749              : Emitter.emitNullForMemory(Field->getType());
750     if (!EltInit)
751       return false;
752 
753     if (!Field->isBitField()) {
754       // Handle non-bitfield members.
755       if (!AppendField(Field, Layout.getFieldOffset(FieldNo), EltInit,
756                        AllowOverwrite))
757         return false;
758       // After emitting a non-empty field with [[no_unique_address]], we may
759       // need to overwrite its tail padding.
760       if (Field->hasAttr<NoUniqueAddressAttr>())
761         AllowOverwrite = true;
762     } else {
763       // Otherwise we have a bitfield.
764       if (auto *CI = dyn_cast<llvm::ConstantInt>(EltInit)) {
765         if (!AppendBitField(Field, Layout.getFieldOffset(FieldNo), CI,
766                             AllowOverwrite))
767           return false;
768       } else {
769         // We are trying to initialize a bitfield with a non-trivial constant,
770         // this must require run-time code.
771         return false;
772       }
773     }
774   }
775 
776   return true;
777 }
778 
779 namespace {
780 struct BaseInfo {
781   BaseInfo(const CXXRecordDecl *Decl, CharUnits Offset, unsigned Index)
782     : Decl(Decl), Offset(Offset), Index(Index) {
783   }
784 
785   const CXXRecordDecl *Decl;
786   CharUnits Offset;
787   unsigned Index;
788 
789   bool operator<(const BaseInfo &O) const { return Offset < O.Offset; }
790 };
791 }
792 
793 bool ConstStructBuilder::Build(const APValue &Val, const RecordDecl *RD,
794                                bool IsPrimaryBase,
795                                const CXXRecordDecl *VTableClass,
796                                CharUnits Offset) {
797   const ASTRecordLayout &Layout = CGM.getContext().getASTRecordLayout(RD);
798 
799   if (const CXXRecordDecl *CD = dyn_cast<CXXRecordDecl>(RD)) {
800     // Add a vtable pointer, if we need one and it hasn't already been added.
801     if (Layout.hasOwnVFPtr()) {
802       llvm::Constant *VTableAddressPoint =
803           CGM.getCXXABI().getVTableAddressPoint(BaseSubobject(CD, Offset),
804                                                 VTableClass);
805       if (!AppendBytes(Offset, VTableAddressPoint))
806         return false;
807     }
808 
809     // Accumulate and sort bases, in order to visit them in address order, which
810     // may not be the same as declaration order.
811     SmallVector<BaseInfo, 8> Bases;
812     Bases.reserve(CD->getNumBases());
813     unsigned BaseNo = 0;
814     for (CXXRecordDecl::base_class_const_iterator Base = CD->bases_begin(),
815          BaseEnd = CD->bases_end(); Base != BaseEnd; ++Base, ++BaseNo) {
816       assert(!Base->isVirtual() && "should not have virtual bases here");
817       const CXXRecordDecl *BD = Base->getType()->getAsCXXRecordDecl();
818       CharUnits BaseOffset = Layout.getBaseClassOffset(BD);
819       Bases.push_back(BaseInfo(BD, BaseOffset, BaseNo));
820     }
821     llvm::stable_sort(Bases);
822 
823     for (unsigned I = 0, N = Bases.size(); I != N; ++I) {
824       BaseInfo &Base = Bases[I];
825 
826       bool IsPrimaryBase = Layout.getPrimaryBase() == Base.Decl;
827       Build(Val.getStructBase(Base.Index), Base.Decl, IsPrimaryBase,
828             VTableClass, Offset + Base.Offset);
829     }
830   }
831 
832   unsigned FieldNo = 0;
833   uint64_t OffsetBits = CGM.getContext().toBits(Offset);
834 
835   bool AllowOverwrite = false;
836   for (RecordDecl::field_iterator Field = RD->field_begin(),
837        FieldEnd = RD->field_end(); Field != FieldEnd; ++Field, ++FieldNo) {
838     // If this is a union, skip all the fields that aren't being initialized.
839     if (RD->isUnion() && !declaresSameEntity(Val.getUnionField(), *Field))
840       continue;
841 
842     // Don't emit anonymous bitfields or zero-sized fields.
843     if (Field->isUnnamedBitfield() || Field->isZeroSize(CGM.getContext()))
844       continue;
845 
846     // Emit the value of the initializer.
847     const APValue &FieldValue =
848       RD->isUnion() ? Val.getUnionValue() : Val.getStructField(FieldNo);
849     llvm::Constant *EltInit =
850       Emitter.tryEmitPrivateForMemory(FieldValue, Field->getType());
851     if (!EltInit)
852       return false;
853 
854     if (!Field->isBitField()) {
855       // Handle non-bitfield members.
856       if (!AppendField(*Field, Layout.getFieldOffset(FieldNo) + OffsetBits,
857                        EltInit, AllowOverwrite))
858         return false;
859       // After emitting a non-empty field with [[no_unique_address]], we may
860       // need to overwrite its tail padding.
861       if (Field->hasAttr<NoUniqueAddressAttr>())
862         AllowOverwrite = true;
863     } else {
864       // Otherwise we have a bitfield.
865       if (!AppendBitField(*Field, Layout.getFieldOffset(FieldNo) + OffsetBits,
866                           cast<llvm::ConstantInt>(EltInit), AllowOverwrite))
867         return false;
868     }
869   }
870 
871   return true;
872 }
873 
874 llvm::Constant *ConstStructBuilder::Finalize(QualType Type) {
875   Type = Type.getNonReferenceType();
876   RecordDecl *RD = Type->castAs<RecordType>()->getDecl();
877   llvm::Type *ValTy = CGM.getTypes().ConvertType(Type);
878   return Builder.build(ValTy, RD->hasFlexibleArrayMember());
879 }
880 
881 llvm::Constant *ConstStructBuilder::BuildStruct(ConstantEmitter &Emitter,
882                                                 InitListExpr *ILE,
883                                                 QualType ValTy) {
884   ConstantAggregateBuilder Const(Emitter.CGM);
885   ConstStructBuilder Builder(Emitter, Const, CharUnits::Zero());
886 
887   if (!Builder.Build(ILE, /*AllowOverwrite*/false))
888     return nullptr;
889 
890   return Builder.Finalize(ValTy);
891 }
892 
893 llvm::Constant *ConstStructBuilder::BuildStruct(ConstantEmitter &Emitter,
894                                                 const APValue &Val,
895                                                 QualType ValTy) {
896   ConstantAggregateBuilder Const(Emitter.CGM);
897   ConstStructBuilder Builder(Emitter, Const, CharUnits::Zero());
898 
899   const RecordDecl *RD = ValTy->castAs<RecordType>()->getDecl();
900   const CXXRecordDecl *CD = dyn_cast<CXXRecordDecl>(RD);
901   if (!Builder.Build(Val, RD, false, CD, CharUnits::Zero()))
902     return nullptr;
903 
904   return Builder.Finalize(ValTy);
905 }
906 
907 bool ConstStructBuilder::UpdateStruct(ConstantEmitter &Emitter,
908                                       ConstantAggregateBuilder &Const,
909                                       CharUnits Offset, InitListExpr *Updater) {
910   return ConstStructBuilder(Emitter, Const, Offset)
911       .Build(Updater, /*AllowOverwrite*/ true);
912 }
913 
914 //===----------------------------------------------------------------------===//
915 //                             ConstExprEmitter
916 //===----------------------------------------------------------------------===//
917 
918 static ConstantAddress
919 tryEmitGlobalCompoundLiteral(ConstantEmitter &emitter,
920                              const CompoundLiteralExpr *E) {
921   CodeGenModule &CGM = emitter.CGM;
922   CharUnits Align = CGM.getContext().getTypeAlignInChars(E->getType());
923   if (llvm::GlobalVariable *Addr =
924           CGM.getAddrOfConstantCompoundLiteralIfEmitted(E))
925     return ConstantAddress(Addr, Addr->getValueType(), Align);
926 
927   LangAS addressSpace = E->getType().getAddressSpace();
928   llvm::Constant *C = emitter.tryEmitForInitializer(E->getInitializer(),
929                                                     addressSpace, E->getType());
930   if (!C) {
931     assert(!E->isFileScope() &&
932            "file-scope compound literal did not have constant initializer!");
933     return ConstantAddress::invalid();
934   }
935 
936   auto GV = new llvm::GlobalVariable(
937       CGM.getModule(), C->getType(),
938       E->getType().isConstantStorage(CGM.getContext(), true, false),
939       llvm::GlobalValue::InternalLinkage, C, ".compoundliteral", nullptr,
940       llvm::GlobalVariable::NotThreadLocal,
941       CGM.getContext().getTargetAddressSpace(addressSpace));
942   emitter.finalize(GV);
943   GV->setAlignment(Align.getAsAlign());
944   CGM.setAddrOfConstantCompoundLiteral(E, GV);
945   return ConstantAddress(GV, GV->getValueType(), Align);
946 }
947 
948 static llvm::Constant *
949 EmitArrayConstant(CodeGenModule &CGM, llvm::ArrayType *DesiredType,
950                   llvm::Type *CommonElementType, unsigned ArrayBound,
951                   SmallVectorImpl<llvm::Constant *> &Elements,
952                   llvm::Constant *Filler) {
953   // Figure out how long the initial prefix of non-zero elements is.
954   unsigned NonzeroLength = ArrayBound;
955   if (Elements.size() < NonzeroLength && Filler->isNullValue())
956     NonzeroLength = Elements.size();
957   if (NonzeroLength == Elements.size()) {
958     while (NonzeroLength > 0 && Elements[NonzeroLength - 1]->isNullValue())
959       --NonzeroLength;
960   }
961 
962   if (NonzeroLength == 0)
963     return llvm::ConstantAggregateZero::get(DesiredType);
964 
965   // Add a zeroinitializer array filler if we have lots of trailing zeroes.
966   unsigned TrailingZeroes = ArrayBound - NonzeroLength;
967   if (TrailingZeroes >= 8) {
968     assert(Elements.size() >= NonzeroLength &&
969            "missing initializer for non-zero element");
970 
971     // If all the elements had the same type up to the trailing zeroes, emit a
972     // struct of two arrays (the nonzero data and the zeroinitializer).
973     if (CommonElementType && NonzeroLength >= 8) {
974       llvm::Constant *Initial = llvm::ConstantArray::get(
975           llvm::ArrayType::get(CommonElementType, NonzeroLength),
976           ArrayRef(Elements).take_front(NonzeroLength));
977       Elements.resize(2);
978       Elements[0] = Initial;
979     } else {
980       Elements.resize(NonzeroLength + 1);
981     }
982 
983     auto *FillerType =
984         CommonElementType ? CommonElementType : DesiredType->getElementType();
985     FillerType = llvm::ArrayType::get(FillerType, TrailingZeroes);
986     Elements.back() = llvm::ConstantAggregateZero::get(FillerType);
987     CommonElementType = nullptr;
988   } else if (Elements.size() != ArrayBound) {
989     // Otherwise pad to the right size with the filler if necessary.
990     Elements.resize(ArrayBound, Filler);
991     if (Filler->getType() != CommonElementType)
992       CommonElementType = nullptr;
993   }
994 
995   // If all elements have the same type, just emit an array constant.
996   if (CommonElementType)
997     return llvm::ConstantArray::get(
998         llvm::ArrayType::get(CommonElementType, ArrayBound), Elements);
999 
1000   // We have mixed types. Use a packed struct.
1001   llvm::SmallVector<llvm::Type *, 16> Types;
1002   Types.reserve(Elements.size());
1003   for (llvm::Constant *Elt : Elements)
1004     Types.push_back(Elt->getType());
1005   llvm::StructType *SType =
1006       llvm::StructType::get(CGM.getLLVMContext(), Types, true);
1007   return llvm::ConstantStruct::get(SType, Elements);
1008 }
1009 
1010 // This class only needs to handle arrays, structs and unions. Outside C++11
1011 // mode, we don't currently constant fold those types.  All other types are
1012 // handled by constant folding.
1013 //
1014 // Constant folding is currently missing support for a few features supported
1015 // here: CK_ToUnion, CK_ReinterpretMemberPointer, and DesignatedInitUpdateExpr.
1016 class ConstExprEmitter :
1017   public StmtVisitor<ConstExprEmitter, llvm::Constant*, QualType> {
1018   CodeGenModule &CGM;
1019   ConstantEmitter &Emitter;
1020   llvm::LLVMContext &VMContext;
1021 public:
1022   ConstExprEmitter(ConstantEmitter &emitter)
1023     : CGM(emitter.CGM), Emitter(emitter), VMContext(CGM.getLLVMContext()) {
1024   }
1025 
1026   //===--------------------------------------------------------------------===//
1027   //                            Visitor Methods
1028   //===--------------------------------------------------------------------===//
1029 
1030   llvm::Constant *VisitStmt(Stmt *S, QualType T) {
1031     return nullptr;
1032   }
1033 
1034   llvm::Constant *VisitConstantExpr(ConstantExpr *CE, QualType T) {
1035     if (llvm::Constant *Result = Emitter.tryEmitConstantExpr(CE))
1036       return Result;
1037     return Visit(CE->getSubExpr(), T);
1038   }
1039 
1040   llvm::Constant *VisitParenExpr(ParenExpr *PE, QualType T) {
1041     return Visit(PE->getSubExpr(), T);
1042   }
1043 
1044   llvm::Constant *
1045   VisitSubstNonTypeTemplateParmExpr(SubstNonTypeTemplateParmExpr *PE,
1046                                     QualType T) {
1047     return Visit(PE->getReplacement(), T);
1048   }
1049 
1050   llvm::Constant *VisitGenericSelectionExpr(GenericSelectionExpr *GE,
1051                                             QualType T) {
1052     return Visit(GE->getResultExpr(), T);
1053   }
1054 
1055   llvm::Constant *VisitChooseExpr(ChooseExpr *CE, QualType T) {
1056     return Visit(CE->getChosenSubExpr(), T);
1057   }
1058 
1059   llvm::Constant *VisitCompoundLiteralExpr(CompoundLiteralExpr *E, QualType T) {
1060     return Visit(E->getInitializer(), T);
1061   }
1062 
1063   llvm::Constant *VisitCastExpr(CastExpr *E, QualType destType) {
1064     if (const auto *ECE = dyn_cast<ExplicitCastExpr>(E))
1065       CGM.EmitExplicitCastExprType(ECE, Emitter.CGF);
1066     Expr *subExpr = E->getSubExpr();
1067 
1068     switch (E->getCastKind()) {
1069     case CK_ToUnion: {
1070       // GCC cast to union extension
1071       assert(E->getType()->isUnionType() &&
1072              "Destination type is not union type!");
1073 
1074       auto field = E->getTargetUnionField();
1075 
1076       auto C = Emitter.tryEmitPrivateForMemory(subExpr, field->getType());
1077       if (!C) return nullptr;
1078 
1079       auto destTy = ConvertType(destType);
1080       if (C->getType() == destTy) return C;
1081 
1082       // Build a struct with the union sub-element as the first member,
1083       // and padded to the appropriate size.
1084       SmallVector<llvm::Constant*, 2> Elts;
1085       SmallVector<llvm::Type*, 2> Types;
1086       Elts.push_back(C);
1087       Types.push_back(C->getType());
1088       unsigned CurSize = CGM.getDataLayout().getTypeAllocSize(C->getType());
1089       unsigned TotalSize = CGM.getDataLayout().getTypeAllocSize(destTy);
1090 
1091       assert(CurSize <= TotalSize && "Union size mismatch!");
1092       if (unsigned NumPadBytes = TotalSize - CurSize) {
1093         llvm::Type *Ty = CGM.CharTy;
1094         if (NumPadBytes > 1)
1095           Ty = llvm::ArrayType::get(Ty, NumPadBytes);
1096 
1097         Elts.push_back(llvm::UndefValue::get(Ty));
1098         Types.push_back(Ty);
1099       }
1100 
1101       llvm::StructType *STy = llvm::StructType::get(VMContext, Types, false);
1102       return llvm::ConstantStruct::get(STy, Elts);
1103     }
1104 
1105     case CK_AddressSpaceConversion: {
1106       auto C = Emitter.tryEmitPrivate(subExpr, subExpr->getType());
1107       if (!C) return nullptr;
1108       LangAS destAS = E->getType()->getPointeeType().getAddressSpace();
1109       LangAS srcAS = subExpr->getType()->getPointeeType().getAddressSpace();
1110       llvm::Type *destTy = ConvertType(E->getType());
1111       return CGM.getTargetCodeGenInfo().performAddrSpaceCast(CGM, C, srcAS,
1112                                                              destAS, destTy);
1113     }
1114 
1115     case CK_LValueToRValue: {
1116       // We don't really support doing lvalue-to-rvalue conversions here; any
1117       // interesting conversions should be done in Evaluate().  But as a
1118       // special case, allow compound literals to support the gcc extension
1119       // allowing "struct x {int x;} x = (struct x) {};".
1120       if (auto *E = dyn_cast<CompoundLiteralExpr>(subExpr->IgnoreParens()))
1121         return Visit(E->getInitializer(), destType);
1122       return nullptr;
1123     }
1124 
1125     case CK_AtomicToNonAtomic:
1126     case CK_NonAtomicToAtomic:
1127     case CK_NoOp:
1128     case CK_ConstructorConversion:
1129       return Visit(subExpr, destType);
1130 
1131     case CK_ArrayToPointerDecay:
1132       if (const auto *S = dyn_cast<StringLiteral>(subExpr))
1133         return CGM.GetAddrOfConstantStringFromLiteral(S).getPointer();
1134       return nullptr;
1135     case CK_NullToPointer:
1136       if (Visit(subExpr, destType))
1137         return CGM.EmitNullConstant(destType);
1138       return nullptr;
1139 
1140     case CK_IntToOCLSampler:
1141       llvm_unreachable("global sampler variables are not generated");
1142 
1143     case CK_IntegralCast: {
1144       QualType FromType = subExpr->getType();
1145       // See also HandleIntToIntCast in ExprConstant.cpp
1146       if (FromType->isIntegerType())
1147         if (llvm::Constant *C = Visit(subExpr, FromType))
1148           if (auto *CI = dyn_cast<llvm::ConstantInt>(C)) {
1149             unsigned SrcWidth = CGM.getContext().getIntWidth(FromType);
1150             unsigned DstWidth = CGM.getContext().getIntWidth(destType);
1151             if (DstWidth == SrcWidth)
1152               return CI;
1153             llvm::APInt A = FromType->isSignedIntegerType()
1154                                 ? CI->getValue().sextOrTrunc(DstWidth)
1155                                 : CI->getValue().zextOrTrunc(DstWidth);
1156             return llvm::ConstantInt::get(CGM.getLLVMContext(), A);
1157           }
1158       return nullptr;
1159     }
1160 
1161     case CK_Dependent: llvm_unreachable("saw dependent cast!");
1162 
1163     case CK_BuiltinFnToFnPtr:
1164       llvm_unreachable("builtin functions are handled elsewhere");
1165 
1166     case CK_ReinterpretMemberPointer:
1167     case CK_DerivedToBaseMemberPointer:
1168     case CK_BaseToDerivedMemberPointer: {
1169       auto C = Emitter.tryEmitPrivate(subExpr, subExpr->getType());
1170       if (!C) return nullptr;
1171       return CGM.getCXXABI().EmitMemberPointerConversion(E, C);
1172     }
1173 
1174     // These will never be supported.
1175     case CK_ObjCObjectLValueCast:
1176     case CK_ARCProduceObject:
1177     case CK_ARCConsumeObject:
1178     case CK_ARCReclaimReturnedObject:
1179     case CK_ARCExtendBlockObject:
1180     case CK_CopyAndAutoreleaseBlockObject:
1181       return nullptr;
1182 
1183     // These don't need to be handled here because Evaluate knows how to
1184     // evaluate them in the cases where they can be folded.
1185     case CK_BitCast:
1186     case CK_ToVoid:
1187     case CK_Dynamic:
1188     case CK_LValueBitCast:
1189     case CK_LValueToRValueBitCast:
1190     case CK_NullToMemberPointer:
1191     case CK_UserDefinedConversion:
1192     case CK_CPointerToObjCPointerCast:
1193     case CK_BlockPointerToObjCPointerCast:
1194     case CK_AnyPointerToBlockPointerCast:
1195     case CK_FunctionToPointerDecay:
1196     case CK_BaseToDerived:
1197     case CK_DerivedToBase:
1198     case CK_UncheckedDerivedToBase:
1199     case CK_MemberPointerToBoolean:
1200     case CK_VectorSplat:
1201     case CK_FloatingRealToComplex:
1202     case CK_FloatingComplexToReal:
1203     case CK_FloatingComplexToBoolean:
1204     case CK_FloatingComplexCast:
1205     case CK_FloatingComplexToIntegralComplex:
1206     case CK_IntegralRealToComplex:
1207     case CK_IntegralComplexToReal:
1208     case CK_IntegralComplexToBoolean:
1209     case CK_IntegralComplexCast:
1210     case CK_IntegralComplexToFloatingComplex:
1211     case CK_PointerToIntegral:
1212     case CK_PointerToBoolean:
1213     case CK_BooleanToSignedIntegral:
1214     case CK_IntegralToPointer:
1215     case CK_IntegralToBoolean:
1216     case CK_IntegralToFloating:
1217     case CK_FloatingToIntegral:
1218     case CK_FloatingToBoolean:
1219     case CK_FloatingCast:
1220     case CK_FloatingToFixedPoint:
1221     case CK_FixedPointToFloating:
1222     case CK_FixedPointCast:
1223     case CK_FixedPointToBoolean:
1224     case CK_FixedPointToIntegral:
1225     case CK_IntegralToFixedPoint:
1226     case CK_ZeroToOCLOpaqueType:
1227     case CK_MatrixCast:
1228     case CK_HLSLVectorTruncation:
1229       return nullptr;
1230     }
1231     llvm_unreachable("Invalid CastKind");
1232   }
1233 
1234   llvm::Constant *VisitCXXDefaultInitExpr(CXXDefaultInitExpr *DIE, QualType T) {
1235     // No need for a DefaultInitExprScope: we don't handle 'this' in a
1236     // constant expression.
1237     return Visit(DIE->getExpr(), T);
1238   }
1239 
1240   llvm::Constant *VisitExprWithCleanups(ExprWithCleanups *E, QualType T) {
1241     return Visit(E->getSubExpr(), T);
1242   }
1243 
1244   llvm::Constant *VisitIntegerLiteral(IntegerLiteral *I, QualType T) {
1245     return llvm::ConstantInt::get(CGM.getLLVMContext(), I->getValue());
1246   }
1247 
1248   llvm::Constant *EmitArrayInitialization(InitListExpr *ILE, QualType T) {
1249     auto *CAT = CGM.getContext().getAsConstantArrayType(ILE->getType());
1250     assert(CAT && "can't emit array init for non-constant-bound array");
1251     unsigned NumInitElements = ILE->getNumInits();
1252     unsigned NumElements = CAT->getZExtSize();
1253 
1254     // Initialising an array requires us to automatically
1255     // initialise any elements that have not been initialised explicitly
1256     unsigned NumInitableElts = std::min(NumInitElements, NumElements);
1257 
1258     QualType EltType = CAT->getElementType();
1259 
1260     // Initialize remaining array elements.
1261     llvm::Constant *fillC = nullptr;
1262     if (Expr *filler = ILE->getArrayFiller()) {
1263       fillC = Emitter.tryEmitAbstractForMemory(filler, EltType);
1264       if (!fillC)
1265         return nullptr;
1266     }
1267 
1268     // Copy initializer elements.
1269     SmallVector<llvm::Constant*, 16> Elts;
1270     if (fillC && fillC->isNullValue())
1271       Elts.reserve(NumInitableElts + 1);
1272     else
1273       Elts.reserve(NumElements);
1274 
1275     llvm::Type *CommonElementType = nullptr;
1276     for (unsigned i = 0; i < NumInitableElts; ++i) {
1277       Expr *Init = ILE->getInit(i);
1278       llvm::Constant *C = Emitter.tryEmitPrivateForMemory(Init, EltType);
1279       if (!C)
1280         return nullptr;
1281       if (i == 0)
1282         CommonElementType = C->getType();
1283       else if (C->getType() != CommonElementType)
1284         CommonElementType = nullptr;
1285       Elts.push_back(C);
1286     }
1287 
1288     llvm::ArrayType *Desired =
1289         cast<llvm::ArrayType>(CGM.getTypes().ConvertType(ILE->getType()));
1290     return EmitArrayConstant(CGM, Desired, CommonElementType, NumElements, Elts,
1291                              fillC);
1292   }
1293 
1294   llvm::Constant *EmitRecordInitialization(InitListExpr *ILE, QualType T) {
1295     return ConstStructBuilder::BuildStruct(Emitter, ILE, T);
1296   }
1297 
1298   llvm::Constant *VisitImplicitValueInitExpr(ImplicitValueInitExpr* E,
1299                                              QualType T) {
1300     return CGM.EmitNullConstant(T);
1301   }
1302 
1303   llvm::Constant *VisitInitListExpr(InitListExpr *ILE, QualType T) {
1304     if (ILE->isTransparent())
1305       return Visit(ILE->getInit(0), T);
1306 
1307     if (ILE->getType()->isArrayType())
1308       return EmitArrayInitialization(ILE, T);
1309 
1310     if (ILE->getType()->isRecordType())
1311       return EmitRecordInitialization(ILE, T);
1312 
1313     return nullptr;
1314   }
1315 
1316   llvm::Constant *VisitDesignatedInitUpdateExpr(DesignatedInitUpdateExpr *E,
1317                                                 QualType destType) {
1318     auto C = Visit(E->getBase(), destType);
1319     if (!C)
1320       return nullptr;
1321 
1322     ConstantAggregateBuilder Const(CGM);
1323     Const.add(C, CharUnits::Zero(), false);
1324 
1325     if (!EmitDesignatedInitUpdater(Emitter, Const, CharUnits::Zero(), destType,
1326                                    E->getUpdater()))
1327       return nullptr;
1328 
1329     llvm::Type *ValTy = CGM.getTypes().ConvertType(destType);
1330     bool HasFlexibleArray = false;
1331     if (auto *RT = destType->getAs<RecordType>())
1332       HasFlexibleArray = RT->getDecl()->hasFlexibleArrayMember();
1333     return Const.build(ValTy, HasFlexibleArray);
1334   }
1335 
1336   llvm::Constant *VisitCXXConstructExpr(CXXConstructExpr *E, QualType Ty) {
1337     if (!E->getConstructor()->isTrivial())
1338       return nullptr;
1339 
1340     // Only default and copy/move constructors can be trivial.
1341     if (E->getNumArgs()) {
1342       assert(E->getNumArgs() == 1 && "trivial ctor with > 1 argument");
1343       assert(E->getConstructor()->isCopyOrMoveConstructor() &&
1344              "trivial ctor has argument but isn't a copy/move ctor");
1345 
1346       Expr *Arg = E->getArg(0);
1347       assert(CGM.getContext().hasSameUnqualifiedType(Ty, Arg->getType()) &&
1348              "argument to copy ctor is of wrong type");
1349 
1350       // Look through the temporary; it's just converting the value to an
1351       // lvalue to pass it to the constructor.
1352       if (auto *MTE = dyn_cast<MaterializeTemporaryExpr>(Arg))
1353         return Visit(MTE->getSubExpr(), Ty);
1354       // Don't try to support arbitrary lvalue-to-rvalue conversions for now.
1355       return nullptr;
1356     }
1357 
1358     return CGM.EmitNullConstant(Ty);
1359   }
1360 
1361   llvm::Constant *VisitStringLiteral(StringLiteral *E, QualType T) {
1362     // This is a string literal initializing an array in an initializer.
1363     return CGM.GetConstantArrayFromStringLiteral(E);
1364   }
1365 
1366   llvm::Constant *VisitObjCEncodeExpr(ObjCEncodeExpr *E, QualType T) {
1367     // This must be an @encode initializing an array in a static initializer.
1368     // Don't emit it as the address of the string, emit the string data itself
1369     // as an inline array.
1370     std::string Str;
1371     CGM.getContext().getObjCEncodingForType(E->getEncodedType(), Str);
1372     const ConstantArrayType *CAT = CGM.getContext().getAsConstantArrayType(T);
1373     assert(CAT && "String data not of constant array type!");
1374 
1375     // Resize the string to the right size, adding zeros at the end, or
1376     // truncating as needed.
1377     Str.resize(CAT->getZExtSize(), '\0');
1378     return llvm::ConstantDataArray::getString(VMContext, Str, false);
1379   }
1380 
1381   llvm::Constant *VisitUnaryExtension(const UnaryOperator *E, QualType T) {
1382     return Visit(E->getSubExpr(), T);
1383   }
1384 
1385   llvm::Constant *VisitUnaryMinus(UnaryOperator *U, QualType T) {
1386     if (llvm::Constant *C = Visit(U->getSubExpr(), T))
1387       if (auto *CI = dyn_cast<llvm::ConstantInt>(C))
1388         return llvm::ConstantInt::get(CGM.getLLVMContext(), -CI->getValue());
1389     return nullptr;
1390   }
1391 
1392   llvm::Constant *VisitPackIndexingExpr(PackIndexingExpr *E, QualType T) {
1393     return Visit(E->getSelectedExpr(), T);
1394   }
1395 
1396   // Utility methods
1397   llvm::Type *ConvertType(QualType T) {
1398     return CGM.getTypes().ConvertType(T);
1399   }
1400 };
1401 
1402 }  // end anonymous namespace.
1403 
1404 llvm::Constant *ConstantEmitter::validateAndPopAbstract(llvm::Constant *C,
1405                                                         AbstractState saved) {
1406   Abstract = saved.OldValue;
1407 
1408   assert(saved.OldPlaceholdersSize == PlaceholderAddresses.size() &&
1409          "created a placeholder while doing an abstract emission?");
1410 
1411   // No validation necessary for now.
1412   // No cleanup to do for now.
1413   return C;
1414 }
1415 
1416 llvm::Constant *
1417 ConstantEmitter::tryEmitAbstractForInitializer(const VarDecl &D) {
1418   auto state = pushAbstract();
1419   auto C = tryEmitPrivateForVarInit(D);
1420   return validateAndPopAbstract(C, state);
1421 }
1422 
1423 llvm::Constant *
1424 ConstantEmitter::tryEmitAbstract(const Expr *E, QualType destType) {
1425   auto state = pushAbstract();
1426   auto C = tryEmitPrivate(E, destType);
1427   return validateAndPopAbstract(C, state);
1428 }
1429 
1430 llvm::Constant *
1431 ConstantEmitter::tryEmitAbstract(const APValue &value, QualType destType) {
1432   auto state = pushAbstract();
1433   auto C = tryEmitPrivate(value, destType);
1434   return validateAndPopAbstract(C, state);
1435 }
1436 
1437 llvm::Constant *ConstantEmitter::tryEmitConstantExpr(const ConstantExpr *CE) {
1438   if (!CE->hasAPValueResult())
1439     return nullptr;
1440 
1441   QualType RetType = CE->getType();
1442   if (CE->isGLValue())
1443     RetType = CGM.getContext().getLValueReferenceType(RetType);
1444 
1445   return emitAbstract(CE->getBeginLoc(), CE->getAPValueResult(), RetType);
1446 }
1447 
1448 llvm::Constant *
1449 ConstantEmitter::emitAbstract(const Expr *E, QualType destType) {
1450   auto state = pushAbstract();
1451   auto C = tryEmitPrivate(E, destType);
1452   C = validateAndPopAbstract(C, state);
1453   if (!C) {
1454     CGM.Error(E->getExprLoc(),
1455               "internal error: could not emit constant value \"abstractly\"");
1456     C = CGM.EmitNullConstant(destType);
1457   }
1458   return C;
1459 }
1460 
1461 llvm::Constant *
1462 ConstantEmitter::emitAbstract(SourceLocation loc, const APValue &value,
1463                               QualType destType) {
1464   auto state = pushAbstract();
1465   auto C = tryEmitPrivate(value, destType);
1466   C = validateAndPopAbstract(C, state);
1467   if (!C) {
1468     CGM.Error(loc,
1469               "internal error: could not emit constant value \"abstractly\"");
1470     C = CGM.EmitNullConstant(destType);
1471   }
1472   return C;
1473 }
1474 
1475 llvm::Constant *ConstantEmitter::tryEmitForInitializer(const VarDecl &D) {
1476   initializeNonAbstract(D.getType().getAddressSpace());
1477   return markIfFailed(tryEmitPrivateForVarInit(D));
1478 }
1479 
1480 llvm::Constant *ConstantEmitter::tryEmitForInitializer(const Expr *E,
1481                                                        LangAS destAddrSpace,
1482                                                        QualType destType) {
1483   initializeNonAbstract(destAddrSpace);
1484   return markIfFailed(tryEmitPrivateForMemory(E, destType));
1485 }
1486 
1487 llvm::Constant *ConstantEmitter::emitForInitializer(const APValue &value,
1488                                                     LangAS destAddrSpace,
1489                                                     QualType destType) {
1490   initializeNonAbstract(destAddrSpace);
1491   auto C = tryEmitPrivateForMemory(value, destType);
1492   assert(C && "couldn't emit constant value non-abstractly?");
1493   return C;
1494 }
1495 
1496 llvm::GlobalValue *ConstantEmitter::getCurrentAddrPrivate() {
1497   assert(!Abstract && "cannot get current address for abstract constant");
1498 
1499 
1500 
1501   // Make an obviously ill-formed global that should blow up compilation
1502   // if it survives.
1503   auto global = new llvm::GlobalVariable(CGM.getModule(), CGM.Int8Ty, true,
1504                                          llvm::GlobalValue::PrivateLinkage,
1505                                          /*init*/ nullptr,
1506                                          /*name*/ "",
1507                                          /*before*/ nullptr,
1508                                          llvm::GlobalVariable::NotThreadLocal,
1509                                          CGM.getContext().getTargetAddressSpace(DestAddressSpace));
1510 
1511   PlaceholderAddresses.push_back(std::make_pair(nullptr, global));
1512 
1513   return global;
1514 }
1515 
1516 void ConstantEmitter::registerCurrentAddrPrivate(llvm::Constant *signal,
1517                                            llvm::GlobalValue *placeholder) {
1518   assert(!PlaceholderAddresses.empty());
1519   assert(PlaceholderAddresses.back().first == nullptr);
1520   assert(PlaceholderAddresses.back().second == placeholder);
1521   PlaceholderAddresses.back().first = signal;
1522 }
1523 
1524 namespace {
1525   struct ReplacePlaceholders {
1526     CodeGenModule &CGM;
1527 
1528     /// The base address of the global.
1529     llvm::Constant *Base;
1530     llvm::Type *BaseValueTy = nullptr;
1531 
1532     /// The placeholder addresses that were registered during emission.
1533     llvm::DenseMap<llvm::Constant*, llvm::GlobalVariable*> PlaceholderAddresses;
1534 
1535     /// The locations of the placeholder signals.
1536     llvm::DenseMap<llvm::GlobalVariable*, llvm::Constant*> Locations;
1537 
1538     /// The current index stack.  We use a simple unsigned stack because
1539     /// we assume that placeholders will be relatively sparse in the
1540     /// initializer, but we cache the index values we find just in case.
1541     llvm::SmallVector<unsigned, 8> Indices;
1542     llvm::SmallVector<llvm::Constant*, 8> IndexValues;
1543 
1544     ReplacePlaceholders(CodeGenModule &CGM, llvm::Constant *base,
1545                         ArrayRef<std::pair<llvm::Constant*,
1546                                            llvm::GlobalVariable*>> addresses)
1547         : CGM(CGM), Base(base),
1548           PlaceholderAddresses(addresses.begin(), addresses.end()) {
1549     }
1550 
1551     void replaceInInitializer(llvm::Constant *init) {
1552       // Remember the type of the top-most initializer.
1553       BaseValueTy = init->getType();
1554 
1555       // Initialize the stack.
1556       Indices.push_back(0);
1557       IndexValues.push_back(nullptr);
1558 
1559       // Recurse into the initializer.
1560       findLocations(init);
1561 
1562       // Check invariants.
1563       assert(IndexValues.size() == Indices.size() && "mismatch");
1564       assert(Indices.size() == 1 && "didn't pop all indices");
1565 
1566       // Do the replacement; this basically invalidates 'init'.
1567       assert(Locations.size() == PlaceholderAddresses.size() &&
1568              "missed a placeholder?");
1569 
1570       // We're iterating over a hashtable, so this would be a source of
1571       // non-determinism in compiler output *except* that we're just
1572       // messing around with llvm::Constant structures, which never itself
1573       // does anything that should be visible in compiler output.
1574       for (auto &entry : Locations) {
1575         assert(entry.first->getParent() == nullptr && "not a placeholder!");
1576         entry.first->replaceAllUsesWith(entry.second);
1577         entry.first->eraseFromParent();
1578       }
1579     }
1580 
1581   private:
1582     void findLocations(llvm::Constant *init) {
1583       // Recurse into aggregates.
1584       if (auto agg = dyn_cast<llvm::ConstantAggregate>(init)) {
1585         for (unsigned i = 0, e = agg->getNumOperands(); i != e; ++i) {
1586           Indices.push_back(i);
1587           IndexValues.push_back(nullptr);
1588 
1589           findLocations(agg->getOperand(i));
1590 
1591           IndexValues.pop_back();
1592           Indices.pop_back();
1593         }
1594         return;
1595       }
1596 
1597       // Otherwise, check for registered constants.
1598       while (true) {
1599         auto it = PlaceholderAddresses.find(init);
1600         if (it != PlaceholderAddresses.end()) {
1601           setLocation(it->second);
1602           break;
1603         }
1604 
1605         // Look through bitcasts or other expressions.
1606         if (auto expr = dyn_cast<llvm::ConstantExpr>(init)) {
1607           init = expr->getOperand(0);
1608         } else {
1609           break;
1610         }
1611       }
1612     }
1613 
1614     void setLocation(llvm::GlobalVariable *placeholder) {
1615       assert(!Locations.contains(placeholder) &&
1616              "already found location for placeholder!");
1617 
1618       // Lazily fill in IndexValues with the values from Indices.
1619       // We do this in reverse because we should always have a strict
1620       // prefix of indices from the start.
1621       assert(Indices.size() == IndexValues.size());
1622       for (size_t i = Indices.size() - 1; i != size_t(-1); --i) {
1623         if (IndexValues[i]) {
1624 #ifndef NDEBUG
1625           for (size_t j = 0; j != i + 1; ++j) {
1626             assert(IndexValues[j] &&
1627                    isa<llvm::ConstantInt>(IndexValues[j]) &&
1628                    cast<llvm::ConstantInt>(IndexValues[j])->getZExtValue()
1629                      == Indices[j]);
1630           }
1631 #endif
1632           break;
1633         }
1634 
1635         IndexValues[i] = llvm::ConstantInt::get(CGM.Int32Ty, Indices[i]);
1636       }
1637 
1638       llvm::Constant *location = llvm::ConstantExpr::getInBoundsGetElementPtr(
1639           BaseValueTy, Base, IndexValues);
1640 
1641       Locations.insert({placeholder, location});
1642     }
1643   };
1644 }
1645 
1646 void ConstantEmitter::finalize(llvm::GlobalVariable *global) {
1647   assert(InitializedNonAbstract &&
1648          "finalizing emitter that was used for abstract emission?");
1649   assert(!Finalized && "finalizing emitter multiple times");
1650   assert(global->getInitializer());
1651 
1652   // Note that we might also be Failed.
1653   Finalized = true;
1654 
1655   if (!PlaceholderAddresses.empty()) {
1656     ReplacePlaceholders(CGM, global, PlaceholderAddresses)
1657       .replaceInInitializer(global->getInitializer());
1658     PlaceholderAddresses.clear(); // satisfy
1659   }
1660 }
1661 
1662 ConstantEmitter::~ConstantEmitter() {
1663   assert((!InitializedNonAbstract || Finalized || Failed) &&
1664          "not finalized after being initialized for non-abstract emission");
1665   assert(PlaceholderAddresses.empty() && "unhandled placeholders");
1666 }
1667 
1668 static QualType getNonMemoryType(CodeGenModule &CGM, QualType type) {
1669   if (auto AT = type->getAs<AtomicType>()) {
1670     return CGM.getContext().getQualifiedType(AT->getValueType(),
1671                                              type.getQualifiers());
1672   }
1673   return type;
1674 }
1675 
1676 llvm::Constant *ConstantEmitter::tryEmitPrivateForVarInit(const VarDecl &D) {
1677   // Make a quick check if variable can be default NULL initialized
1678   // and avoid going through rest of code which may do, for c++11,
1679   // initialization of memory to all NULLs.
1680   if (!D.hasLocalStorage()) {
1681     QualType Ty = CGM.getContext().getBaseElementType(D.getType());
1682     if (Ty->isRecordType())
1683       if (const CXXConstructExpr *E =
1684           dyn_cast_or_null<CXXConstructExpr>(D.getInit())) {
1685         const CXXConstructorDecl *CD = E->getConstructor();
1686         if (CD->isTrivial() && CD->isDefaultConstructor())
1687           return CGM.EmitNullConstant(D.getType());
1688       }
1689   }
1690   InConstantContext = D.hasConstantInitialization();
1691 
1692   QualType destType = D.getType();
1693   const Expr *E = D.getInit();
1694   assert(E && "No initializer to emit");
1695 
1696   if (!destType->isReferenceType()) {
1697     QualType nonMemoryDestType = getNonMemoryType(CGM, destType);
1698     if (llvm::Constant *C = ConstExprEmitter(*this).Visit(const_cast<Expr *>(E),
1699                                                           nonMemoryDestType))
1700       return emitForMemory(C, destType);
1701   }
1702 
1703   // Try to emit the initializer.  Note that this can allow some things that
1704   // are not allowed by tryEmitPrivateForMemory alone.
1705   if (APValue *value = D.evaluateValue())
1706     return tryEmitPrivateForMemory(*value, destType);
1707 
1708   return nullptr;
1709 }
1710 
1711 llvm::Constant *
1712 ConstantEmitter::tryEmitAbstractForMemory(const Expr *E, QualType destType) {
1713   auto nonMemoryDestType = getNonMemoryType(CGM, destType);
1714   auto C = tryEmitAbstract(E, nonMemoryDestType);
1715   return (C ? emitForMemory(C, destType) : nullptr);
1716 }
1717 
1718 llvm::Constant *
1719 ConstantEmitter::tryEmitAbstractForMemory(const APValue &value,
1720                                           QualType destType) {
1721   auto nonMemoryDestType = getNonMemoryType(CGM, destType);
1722   auto C = tryEmitAbstract(value, nonMemoryDestType);
1723   return (C ? emitForMemory(C, destType) : nullptr);
1724 }
1725 
1726 llvm::Constant *ConstantEmitter::tryEmitPrivateForMemory(const Expr *E,
1727                                                          QualType destType) {
1728   auto nonMemoryDestType = getNonMemoryType(CGM, destType);
1729   llvm::Constant *C = tryEmitPrivate(E, nonMemoryDestType);
1730   return (C ? emitForMemory(C, destType) : nullptr);
1731 }
1732 
1733 llvm::Constant *ConstantEmitter::tryEmitPrivateForMemory(const APValue &value,
1734                                                          QualType destType) {
1735   auto nonMemoryDestType = getNonMemoryType(CGM, destType);
1736   auto C = tryEmitPrivate(value, nonMemoryDestType);
1737   return (C ? emitForMemory(C, destType) : nullptr);
1738 }
1739 
1740 llvm::Constant *ConstantEmitter::emitForMemory(CodeGenModule &CGM,
1741                                                llvm::Constant *C,
1742                                                QualType destType) {
1743   // For an _Atomic-qualified constant, we may need to add tail padding.
1744   if (auto AT = destType->getAs<AtomicType>()) {
1745     QualType destValueType = AT->getValueType();
1746     C = emitForMemory(CGM, C, destValueType);
1747 
1748     uint64_t innerSize = CGM.getContext().getTypeSize(destValueType);
1749     uint64_t outerSize = CGM.getContext().getTypeSize(destType);
1750     if (innerSize == outerSize)
1751       return C;
1752 
1753     assert(innerSize < outerSize && "emitted over-large constant for atomic");
1754     llvm::Constant *elts[] = {
1755       C,
1756       llvm::ConstantAggregateZero::get(
1757           llvm::ArrayType::get(CGM.Int8Ty, (outerSize - innerSize) / 8))
1758     };
1759     return llvm::ConstantStruct::getAnon(elts);
1760   }
1761 
1762   // Zero-extend bool.
1763   if (C->getType()->isIntegerTy(1) && !destType->isBitIntType()) {
1764     llvm::Type *boolTy = CGM.getTypes().ConvertTypeForMem(destType);
1765     llvm::Constant *Res = llvm::ConstantFoldCastOperand(
1766         llvm::Instruction::ZExt, C, boolTy, CGM.getDataLayout());
1767     assert(Res && "Constant folding must succeed");
1768     return Res;
1769   }
1770 
1771   return C;
1772 }
1773 
1774 llvm::Constant *ConstantEmitter::tryEmitPrivate(const Expr *E,
1775                                                 QualType destType) {
1776   assert(!destType->isVoidType() && "can't emit a void constant");
1777 
1778   if (!destType->isReferenceType())
1779     if (llvm::Constant *C =
1780             ConstExprEmitter(*this).Visit(const_cast<Expr *>(E), destType))
1781       return C;
1782 
1783   Expr::EvalResult Result;
1784 
1785   bool Success = false;
1786 
1787   if (destType->isReferenceType())
1788     Success = E->EvaluateAsLValue(Result, CGM.getContext());
1789   else
1790     Success = E->EvaluateAsRValue(Result, CGM.getContext(), InConstantContext);
1791 
1792   if (Success && !Result.HasSideEffects)
1793     return tryEmitPrivate(Result.Val, destType);
1794 
1795   return nullptr;
1796 }
1797 
1798 llvm::Constant *CodeGenModule::getNullPointer(llvm::PointerType *T, QualType QT) {
1799   return getTargetCodeGenInfo().getNullPointer(*this, T, QT);
1800 }
1801 
1802 namespace {
1803 /// A struct which can be used to peephole certain kinds of finalization
1804 /// that normally happen during l-value emission.
1805 struct ConstantLValue {
1806   llvm::Constant *Value;
1807   bool HasOffsetApplied;
1808 
1809   /*implicit*/ ConstantLValue(llvm::Constant *value,
1810                               bool hasOffsetApplied = false)
1811     : Value(value), HasOffsetApplied(hasOffsetApplied) {}
1812 
1813   /*implicit*/ ConstantLValue(ConstantAddress address)
1814     : ConstantLValue(address.getPointer()) {}
1815 };
1816 
1817 /// A helper class for emitting constant l-values.
1818 class ConstantLValueEmitter : public ConstStmtVisitor<ConstantLValueEmitter,
1819                                                       ConstantLValue> {
1820   CodeGenModule &CGM;
1821   ConstantEmitter &Emitter;
1822   const APValue &Value;
1823   QualType DestType;
1824 
1825   // Befriend StmtVisitorBase so that we don't have to expose Visit*.
1826   friend StmtVisitorBase;
1827 
1828 public:
1829   ConstantLValueEmitter(ConstantEmitter &emitter, const APValue &value,
1830                         QualType destType)
1831     : CGM(emitter.CGM), Emitter(emitter), Value(value), DestType(destType) {}
1832 
1833   llvm::Constant *tryEmit();
1834 
1835 private:
1836   llvm::Constant *tryEmitAbsolute(llvm::Type *destTy);
1837   ConstantLValue tryEmitBase(const APValue::LValueBase &base);
1838 
1839   ConstantLValue VisitStmt(const Stmt *S) { return nullptr; }
1840   ConstantLValue VisitConstantExpr(const ConstantExpr *E);
1841   ConstantLValue VisitCompoundLiteralExpr(const CompoundLiteralExpr *E);
1842   ConstantLValue VisitStringLiteral(const StringLiteral *E);
1843   ConstantLValue VisitObjCBoxedExpr(const ObjCBoxedExpr *E);
1844   ConstantLValue VisitObjCEncodeExpr(const ObjCEncodeExpr *E);
1845   ConstantLValue VisitObjCStringLiteral(const ObjCStringLiteral *E);
1846   ConstantLValue VisitPredefinedExpr(const PredefinedExpr *E);
1847   ConstantLValue VisitAddrLabelExpr(const AddrLabelExpr *E);
1848   ConstantLValue VisitCallExpr(const CallExpr *E);
1849   ConstantLValue VisitBlockExpr(const BlockExpr *E);
1850   ConstantLValue VisitCXXTypeidExpr(const CXXTypeidExpr *E);
1851   ConstantLValue VisitMaterializeTemporaryExpr(
1852                                          const MaterializeTemporaryExpr *E);
1853 
1854   bool hasNonZeroOffset() const {
1855     return !Value.getLValueOffset().isZero();
1856   }
1857 
1858   /// Return the value offset.
1859   llvm::Constant *getOffset() {
1860     return llvm::ConstantInt::get(CGM.Int64Ty,
1861                                   Value.getLValueOffset().getQuantity());
1862   }
1863 
1864   /// Apply the value offset to the given constant.
1865   llvm::Constant *applyOffset(llvm::Constant *C) {
1866     if (!hasNonZeroOffset())
1867       return C;
1868 
1869     return llvm::ConstantExpr::getGetElementPtr(CGM.Int8Ty, C, getOffset());
1870   }
1871 };
1872 
1873 }
1874 
1875 llvm::Constant *ConstantLValueEmitter::tryEmit() {
1876   const APValue::LValueBase &base = Value.getLValueBase();
1877 
1878   // The destination type should be a pointer or reference
1879   // type, but it might also be a cast thereof.
1880   //
1881   // FIXME: the chain of casts required should be reflected in the APValue.
1882   // We need this in order to correctly handle things like a ptrtoint of a
1883   // non-zero null pointer and addrspace casts that aren't trivially
1884   // represented in LLVM IR.
1885   auto destTy = CGM.getTypes().ConvertTypeForMem(DestType);
1886   assert(isa<llvm::IntegerType>(destTy) || isa<llvm::PointerType>(destTy));
1887 
1888   // If there's no base at all, this is a null or absolute pointer,
1889   // possibly cast back to an integer type.
1890   if (!base) {
1891     return tryEmitAbsolute(destTy);
1892   }
1893 
1894   // Otherwise, try to emit the base.
1895   ConstantLValue result = tryEmitBase(base);
1896 
1897   // If that failed, we're done.
1898   llvm::Constant *value = result.Value;
1899   if (!value) return nullptr;
1900 
1901   // Apply the offset if necessary and not already done.
1902   if (!result.HasOffsetApplied) {
1903     value = applyOffset(value);
1904   }
1905 
1906   // Convert to the appropriate type; this could be an lvalue for
1907   // an integer.  FIXME: performAddrSpaceCast
1908   if (isa<llvm::PointerType>(destTy))
1909     return llvm::ConstantExpr::getPointerCast(value, destTy);
1910 
1911   return llvm::ConstantExpr::getPtrToInt(value, destTy);
1912 }
1913 
1914 /// Try to emit an absolute l-value, such as a null pointer or an integer
1915 /// bitcast to pointer type.
1916 llvm::Constant *
1917 ConstantLValueEmitter::tryEmitAbsolute(llvm::Type *destTy) {
1918   // If we're producing a pointer, this is easy.
1919   auto destPtrTy = cast<llvm::PointerType>(destTy);
1920   if (Value.isNullPointer()) {
1921     // FIXME: integer offsets from non-zero null pointers.
1922     return CGM.getNullPointer(destPtrTy, DestType);
1923   }
1924 
1925   // Convert the integer to a pointer-sized integer before converting it
1926   // to a pointer.
1927   // FIXME: signedness depends on the original integer type.
1928   auto intptrTy = CGM.getDataLayout().getIntPtrType(destPtrTy);
1929   llvm::Constant *C;
1930   C = llvm::ConstantFoldIntegerCast(getOffset(), intptrTy, /*isSigned*/ false,
1931                                     CGM.getDataLayout());
1932   assert(C && "Must have folded, as Offset is a ConstantInt");
1933   C = llvm::ConstantExpr::getIntToPtr(C, destPtrTy);
1934   return C;
1935 }
1936 
1937 ConstantLValue
1938 ConstantLValueEmitter::tryEmitBase(const APValue::LValueBase &base) {
1939   // Handle values.
1940   if (const ValueDecl *D = base.dyn_cast<const ValueDecl*>()) {
1941     // The constant always points to the canonical declaration. We want to look
1942     // at properties of the most recent declaration at the point of emission.
1943     D = cast<ValueDecl>(D->getMostRecentDecl());
1944 
1945     if (D->hasAttr<WeakRefAttr>())
1946       return CGM.GetWeakRefReference(D).getPointer();
1947 
1948     if (auto FD = dyn_cast<FunctionDecl>(D))
1949       return CGM.GetAddrOfFunction(FD);
1950 
1951     if (auto VD = dyn_cast<VarDecl>(D)) {
1952       // We can never refer to a variable with local storage.
1953       if (!VD->hasLocalStorage()) {
1954         if (VD->isFileVarDecl() || VD->hasExternalStorage())
1955           return CGM.GetAddrOfGlobalVar(VD);
1956 
1957         if (VD->isLocalVarDecl()) {
1958           return CGM.getOrCreateStaticVarDecl(
1959               *VD, CGM.getLLVMLinkageVarDefinition(VD));
1960         }
1961       }
1962     }
1963 
1964     if (auto *GD = dyn_cast<MSGuidDecl>(D))
1965       return CGM.GetAddrOfMSGuidDecl(GD);
1966 
1967     if (auto *GCD = dyn_cast<UnnamedGlobalConstantDecl>(D))
1968       return CGM.GetAddrOfUnnamedGlobalConstantDecl(GCD);
1969 
1970     if (auto *TPO = dyn_cast<TemplateParamObjectDecl>(D))
1971       return CGM.GetAddrOfTemplateParamObject(TPO);
1972 
1973     return nullptr;
1974   }
1975 
1976   // Handle typeid(T).
1977   if (TypeInfoLValue TI = base.dyn_cast<TypeInfoLValue>())
1978     return CGM.GetAddrOfRTTIDescriptor(QualType(TI.getType(), 0));
1979 
1980   // Otherwise, it must be an expression.
1981   return Visit(base.get<const Expr*>());
1982 }
1983 
1984 ConstantLValue
1985 ConstantLValueEmitter::VisitConstantExpr(const ConstantExpr *E) {
1986   if (llvm::Constant *Result = Emitter.tryEmitConstantExpr(E))
1987     return Result;
1988   return Visit(E->getSubExpr());
1989 }
1990 
1991 ConstantLValue
1992 ConstantLValueEmitter::VisitCompoundLiteralExpr(const CompoundLiteralExpr *E) {
1993   ConstantEmitter CompoundLiteralEmitter(CGM, Emitter.CGF);
1994   CompoundLiteralEmitter.setInConstantContext(Emitter.isInConstantContext());
1995   return tryEmitGlobalCompoundLiteral(CompoundLiteralEmitter, E);
1996 }
1997 
1998 ConstantLValue
1999 ConstantLValueEmitter::VisitStringLiteral(const StringLiteral *E) {
2000   return CGM.GetAddrOfConstantStringFromLiteral(E);
2001 }
2002 
2003 ConstantLValue
2004 ConstantLValueEmitter::VisitObjCEncodeExpr(const ObjCEncodeExpr *E) {
2005   return CGM.GetAddrOfConstantStringFromObjCEncode(E);
2006 }
2007 
2008 static ConstantLValue emitConstantObjCStringLiteral(const StringLiteral *S,
2009                                                     QualType T,
2010                                                     CodeGenModule &CGM) {
2011   auto C = CGM.getObjCRuntime().GenerateConstantString(S);
2012   return C.withElementType(CGM.getTypes().ConvertTypeForMem(T));
2013 }
2014 
2015 ConstantLValue
2016 ConstantLValueEmitter::VisitObjCStringLiteral(const ObjCStringLiteral *E) {
2017   return emitConstantObjCStringLiteral(E->getString(), E->getType(), CGM);
2018 }
2019 
2020 ConstantLValue
2021 ConstantLValueEmitter::VisitObjCBoxedExpr(const ObjCBoxedExpr *E) {
2022   assert(E->isExpressibleAsConstantInitializer() &&
2023          "this boxed expression can't be emitted as a compile-time constant");
2024   auto *SL = cast<StringLiteral>(E->getSubExpr()->IgnoreParenCasts());
2025   return emitConstantObjCStringLiteral(SL, E->getType(), CGM);
2026 }
2027 
2028 ConstantLValue
2029 ConstantLValueEmitter::VisitPredefinedExpr(const PredefinedExpr *E) {
2030   return CGM.GetAddrOfConstantStringFromLiteral(E->getFunctionName());
2031 }
2032 
2033 ConstantLValue
2034 ConstantLValueEmitter::VisitAddrLabelExpr(const AddrLabelExpr *E) {
2035   assert(Emitter.CGF && "Invalid address of label expression outside function");
2036   llvm::Constant *Ptr = Emitter.CGF->GetAddrOfLabel(E->getLabel());
2037   return Ptr;
2038 }
2039 
2040 ConstantLValue
2041 ConstantLValueEmitter::VisitCallExpr(const CallExpr *E) {
2042   unsigned builtin = E->getBuiltinCallee();
2043   if (builtin == Builtin::BI__builtin_function_start)
2044     return CGM.GetFunctionStart(
2045         E->getArg(0)->getAsBuiltinConstantDeclRef(CGM.getContext()));
2046   if (builtin != Builtin::BI__builtin___CFStringMakeConstantString &&
2047       builtin != Builtin::BI__builtin___NSStringMakeConstantString)
2048     return nullptr;
2049 
2050   auto literal = cast<StringLiteral>(E->getArg(0)->IgnoreParenCasts());
2051   if (builtin == Builtin::BI__builtin___NSStringMakeConstantString) {
2052     return CGM.getObjCRuntime().GenerateConstantString(literal);
2053   } else {
2054     // FIXME: need to deal with UCN conversion issues.
2055     return CGM.GetAddrOfConstantCFString(literal);
2056   }
2057 }
2058 
2059 ConstantLValue
2060 ConstantLValueEmitter::VisitBlockExpr(const BlockExpr *E) {
2061   StringRef functionName;
2062   if (auto CGF = Emitter.CGF)
2063     functionName = CGF->CurFn->getName();
2064   else
2065     functionName = "global";
2066 
2067   return CGM.GetAddrOfGlobalBlock(E, functionName);
2068 }
2069 
2070 ConstantLValue
2071 ConstantLValueEmitter::VisitCXXTypeidExpr(const CXXTypeidExpr *E) {
2072   QualType T;
2073   if (E->isTypeOperand())
2074     T = E->getTypeOperand(CGM.getContext());
2075   else
2076     T = E->getExprOperand()->getType();
2077   return CGM.GetAddrOfRTTIDescriptor(T);
2078 }
2079 
2080 ConstantLValue
2081 ConstantLValueEmitter::VisitMaterializeTemporaryExpr(
2082                                             const MaterializeTemporaryExpr *E) {
2083   assert(E->getStorageDuration() == SD_Static);
2084   const Expr *Inner = E->getSubExpr()->skipRValueSubobjectAdjustments();
2085   return CGM.GetAddrOfGlobalTemporary(E, Inner);
2086 }
2087 
2088 llvm::Constant *ConstantEmitter::tryEmitPrivate(const APValue &Value,
2089                                                 QualType DestType) {
2090   switch (Value.getKind()) {
2091   case APValue::None:
2092   case APValue::Indeterminate:
2093     // Out-of-lifetime and indeterminate values can be modeled as 'undef'.
2094     return llvm::UndefValue::get(CGM.getTypes().ConvertType(DestType));
2095   case APValue::LValue:
2096     return ConstantLValueEmitter(*this, Value, DestType).tryEmit();
2097   case APValue::Int:
2098     return llvm::ConstantInt::get(CGM.getLLVMContext(), Value.getInt());
2099   case APValue::FixedPoint:
2100     return llvm::ConstantInt::get(CGM.getLLVMContext(),
2101                                   Value.getFixedPoint().getValue());
2102   case APValue::ComplexInt: {
2103     llvm::Constant *Complex[2];
2104 
2105     Complex[0] = llvm::ConstantInt::get(CGM.getLLVMContext(),
2106                                         Value.getComplexIntReal());
2107     Complex[1] = llvm::ConstantInt::get(CGM.getLLVMContext(),
2108                                         Value.getComplexIntImag());
2109 
2110     // FIXME: the target may want to specify that this is packed.
2111     llvm::StructType *STy =
2112         llvm::StructType::get(Complex[0]->getType(), Complex[1]->getType());
2113     return llvm::ConstantStruct::get(STy, Complex);
2114   }
2115   case APValue::Float: {
2116     const llvm::APFloat &Init = Value.getFloat();
2117     if (&Init.getSemantics() == &llvm::APFloat::IEEEhalf() &&
2118         !CGM.getContext().getLangOpts().NativeHalfType &&
2119         CGM.getContext().getTargetInfo().useFP16ConversionIntrinsics())
2120       return llvm::ConstantInt::get(CGM.getLLVMContext(),
2121                                     Init.bitcastToAPInt());
2122     else
2123       return llvm::ConstantFP::get(CGM.getLLVMContext(), Init);
2124   }
2125   case APValue::ComplexFloat: {
2126     llvm::Constant *Complex[2];
2127 
2128     Complex[0] = llvm::ConstantFP::get(CGM.getLLVMContext(),
2129                                        Value.getComplexFloatReal());
2130     Complex[1] = llvm::ConstantFP::get(CGM.getLLVMContext(),
2131                                        Value.getComplexFloatImag());
2132 
2133     // FIXME: the target may want to specify that this is packed.
2134     llvm::StructType *STy =
2135         llvm::StructType::get(Complex[0]->getType(), Complex[1]->getType());
2136     return llvm::ConstantStruct::get(STy, Complex);
2137   }
2138   case APValue::Vector: {
2139     unsigned NumElts = Value.getVectorLength();
2140     SmallVector<llvm::Constant *, 4> Inits(NumElts);
2141 
2142     for (unsigned I = 0; I != NumElts; ++I) {
2143       const APValue &Elt = Value.getVectorElt(I);
2144       if (Elt.isInt())
2145         Inits[I] = llvm::ConstantInt::get(CGM.getLLVMContext(), Elt.getInt());
2146       else if (Elt.isFloat())
2147         Inits[I] = llvm::ConstantFP::get(CGM.getLLVMContext(), Elt.getFloat());
2148       else if (Elt.isIndeterminate())
2149         Inits[I] = llvm::UndefValue::get(CGM.getTypes().ConvertType(
2150             DestType->castAs<VectorType>()->getElementType()));
2151       else
2152         llvm_unreachable("unsupported vector element type");
2153     }
2154     return llvm::ConstantVector::get(Inits);
2155   }
2156   case APValue::AddrLabelDiff: {
2157     const AddrLabelExpr *LHSExpr = Value.getAddrLabelDiffLHS();
2158     const AddrLabelExpr *RHSExpr = Value.getAddrLabelDiffRHS();
2159     llvm::Constant *LHS = tryEmitPrivate(LHSExpr, LHSExpr->getType());
2160     llvm::Constant *RHS = tryEmitPrivate(RHSExpr, RHSExpr->getType());
2161     if (!LHS || !RHS) return nullptr;
2162 
2163     // Compute difference
2164     llvm::Type *ResultType = CGM.getTypes().ConvertType(DestType);
2165     LHS = llvm::ConstantExpr::getPtrToInt(LHS, CGM.IntPtrTy);
2166     RHS = llvm::ConstantExpr::getPtrToInt(RHS, CGM.IntPtrTy);
2167     llvm::Constant *AddrLabelDiff = llvm::ConstantExpr::getSub(LHS, RHS);
2168 
2169     // LLVM is a bit sensitive about the exact format of the
2170     // address-of-label difference; make sure to truncate after
2171     // the subtraction.
2172     return llvm::ConstantExpr::getTruncOrBitCast(AddrLabelDiff, ResultType);
2173   }
2174   case APValue::Struct:
2175   case APValue::Union:
2176     return ConstStructBuilder::BuildStruct(*this, Value, DestType);
2177   case APValue::Array: {
2178     const ArrayType *ArrayTy = CGM.getContext().getAsArrayType(DestType);
2179     unsigned NumElements = Value.getArraySize();
2180     unsigned NumInitElts = Value.getArrayInitializedElts();
2181 
2182     // Emit array filler, if there is one.
2183     llvm::Constant *Filler = nullptr;
2184     if (Value.hasArrayFiller()) {
2185       Filler = tryEmitAbstractForMemory(Value.getArrayFiller(),
2186                                         ArrayTy->getElementType());
2187       if (!Filler)
2188         return nullptr;
2189     }
2190 
2191     // Emit initializer elements.
2192     SmallVector<llvm::Constant*, 16> Elts;
2193     if (Filler && Filler->isNullValue())
2194       Elts.reserve(NumInitElts + 1);
2195     else
2196       Elts.reserve(NumElements);
2197 
2198     llvm::Type *CommonElementType = nullptr;
2199     for (unsigned I = 0; I < NumInitElts; ++I) {
2200       llvm::Constant *C = tryEmitPrivateForMemory(
2201           Value.getArrayInitializedElt(I), ArrayTy->getElementType());
2202       if (!C) return nullptr;
2203 
2204       if (I == 0)
2205         CommonElementType = C->getType();
2206       else if (C->getType() != CommonElementType)
2207         CommonElementType = nullptr;
2208       Elts.push_back(C);
2209     }
2210 
2211     llvm::ArrayType *Desired =
2212         cast<llvm::ArrayType>(CGM.getTypes().ConvertType(DestType));
2213 
2214     // Fix the type of incomplete arrays if the initializer isn't empty.
2215     if (DestType->isIncompleteArrayType() && !Elts.empty())
2216       Desired = llvm::ArrayType::get(Desired->getElementType(), Elts.size());
2217 
2218     return EmitArrayConstant(CGM, Desired, CommonElementType, NumElements, Elts,
2219                              Filler);
2220   }
2221   case APValue::MemberPointer:
2222     return CGM.getCXXABI().EmitMemberPointer(Value, DestType);
2223   }
2224   llvm_unreachable("Unknown APValue kind");
2225 }
2226 
2227 llvm::GlobalVariable *CodeGenModule::getAddrOfConstantCompoundLiteralIfEmitted(
2228     const CompoundLiteralExpr *E) {
2229   return EmittedCompoundLiterals.lookup(E);
2230 }
2231 
2232 void CodeGenModule::setAddrOfConstantCompoundLiteral(
2233     const CompoundLiteralExpr *CLE, llvm::GlobalVariable *GV) {
2234   bool Ok = EmittedCompoundLiterals.insert(std::make_pair(CLE, GV)).second;
2235   (void)Ok;
2236   assert(Ok && "CLE has already been emitted!");
2237 }
2238 
2239 ConstantAddress
2240 CodeGenModule::GetAddrOfConstantCompoundLiteral(const CompoundLiteralExpr *E) {
2241   assert(E->isFileScope() && "not a file-scope compound literal expr");
2242   ConstantEmitter emitter(*this);
2243   return tryEmitGlobalCompoundLiteral(emitter, E);
2244 }
2245 
2246 llvm::Constant *
2247 CodeGenModule::getMemberPointerConstant(const UnaryOperator *uo) {
2248   // Member pointer constants always have a very particular form.
2249   const MemberPointerType *type = cast<MemberPointerType>(uo->getType());
2250   const ValueDecl *decl = cast<DeclRefExpr>(uo->getSubExpr())->getDecl();
2251 
2252   // A member function pointer.
2253   if (const CXXMethodDecl *method = dyn_cast<CXXMethodDecl>(decl))
2254     return getCXXABI().EmitMemberFunctionPointer(method);
2255 
2256   // Otherwise, a member data pointer.
2257   uint64_t fieldOffset = getContext().getFieldOffset(decl);
2258   CharUnits chars = getContext().toCharUnitsFromBits((int64_t) fieldOffset);
2259   return getCXXABI().EmitMemberDataPointer(type, chars);
2260 }
2261 
2262 static llvm::Constant *EmitNullConstantForBase(CodeGenModule &CGM,
2263                                                llvm::Type *baseType,
2264                                                const CXXRecordDecl *base);
2265 
2266 static llvm::Constant *EmitNullConstant(CodeGenModule &CGM,
2267                                         const RecordDecl *record,
2268                                         bool asCompleteObject) {
2269   const CGRecordLayout &layout = CGM.getTypes().getCGRecordLayout(record);
2270   llvm::StructType *structure =
2271     (asCompleteObject ? layout.getLLVMType()
2272                       : layout.getBaseSubobjectLLVMType());
2273 
2274   unsigned numElements = structure->getNumElements();
2275   std::vector<llvm::Constant *> elements(numElements);
2276 
2277   auto CXXR = dyn_cast<CXXRecordDecl>(record);
2278   // Fill in all the bases.
2279   if (CXXR) {
2280     for (const auto &I : CXXR->bases()) {
2281       if (I.isVirtual()) {
2282         // Ignore virtual bases; if we're laying out for a complete
2283         // object, we'll lay these out later.
2284         continue;
2285       }
2286 
2287       const CXXRecordDecl *base =
2288         cast<CXXRecordDecl>(I.getType()->castAs<RecordType>()->getDecl());
2289 
2290       // Ignore empty bases.
2291       if (base->isEmpty() ||
2292           CGM.getContext().getASTRecordLayout(base).getNonVirtualSize()
2293               .isZero())
2294         continue;
2295 
2296       unsigned fieldIndex = layout.getNonVirtualBaseLLVMFieldNo(base);
2297       llvm::Type *baseType = structure->getElementType(fieldIndex);
2298       elements[fieldIndex] = EmitNullConstantForBase(CGM, baseType, base);
2299     }
2300   }
2301 
2302   // Fill in all the fields.
2303   for (const auto *Field : record->fields()) {
2304     // Fill in non-bitfields. (Bitfields always use a zero pattern, which we
2305     // will fill in later.)
2306     if (!Field->isBitField() && !Field->isZeroSize(CGM.getContext())) {
2307       unsigned fieldIndex = layout.getLLVMFieldNo(Field);
2308       elements[fieldIndex] = CGM.EmitNullConstant(Field->getType());
2309     }
2310 
2311     // For unions, stop after the first named field.
2312     if (record->isUnion()) {
2313       if (Field->getIdentifier())
2314         break;
2315       if (const auto *FieldRD = Field->getType()->getAsRecordDecl())
2316         if (FieldRD->findFirstNamedDataMember())
2317           break;
2318     }
2319   }
2320 
2321   // Fill in the virtual bases, if we're working with the complete object.
2322   if (CXXR && asCompleteObject) {
2323     for (const auto &I : CXXR->vbases()) {
2324       const CXXRecordDecl *base =
2325         cast<CXXRecordDecl>(I.getType()->castAs<RecordType>()->getDecl());
2326 
2327       // Ignore empty bases.
2328       if (base->isEmpty())
2329         continue;
2330 
2331       unsigned fieldIndex = layout.getVirtualBaseIndex(base);
2332 
2333       // We might have already laid this field out.
2334       if (elements[fieldIndex]) continue;
2335 
2336       llvm::Type *baseType = structure->getElementType(fieldIndex);
2337       elements[fieldIndex] = EmitNullConstantForBase(CGM, baseType, base);
2338     }
2339   }
2340 
2341   // Now go through all other fields and zero them out.
2342   for (unsigned i = 0; i != numElements; ++i) {
2343     if (!elements[i])
2344       elements[i] = llvm::Constant::getNullValue(structure->getElementType(i));
2345   }
2346 
2347   return llvm::ConstantStruct::get(structure, elements);
2348 }
2349 
2350 /// Emit the null constant for a base subobject.
2351 static llvm::Constant *EmitNullConstantForBase(CodeGenModule &CGM,
2352                                                llvm::Type *baseType,
2353                                                const CXXRecordDecl *base) {
2354   const CGRecordLayout &baseLayout = CGM.getTypes().getCGRecordLayout(base);
2355 
2356   // Just zero out bases that don't have any pointer to data members.
2357   if (baseLayout.isZeroInitializableAsBase())
2358     return llvm::Constant::getNullValue(baseType);
2359 
2360   // Otherwise, we can just use its null constant.
2361   return EmitNullConstant(CGM, base, /*asCompleteObject=*/false);
2362 }
2363 
2364 llvm::Constant *ConstantEmitter::emitNullForMemory(CodeGenModule &CGM,
2365                                                    QualType T) {
2366   return emitForMemory(CGM, CGM.EmitNullConstant(T), T);
2367 }
2368 
2369 llvm::Constant *CodeGenModule::EmitNullConstant(QualType T) {
2370   if (T->getAs<PointerType>())
2371     return getNullPointer(
2372         cast<llvm::PointerType>(getTypes().ConvertTypeForMem(T)), T);
2373 
2374   if (getTypes().isZeroInitializable(T))
2375     return llvm::Constant::getNullValue(getTypes().ConvertTypeForMem(T));
2376 
2377   if (const ConstantArrayType *CAT = Context.getAsConstantArrayType(T)) {
2378     llvm::ArrayType *ATy =
2379       cast<llvm::ArrayType>(getTypes().ConvertTypeForMem(T));
2380 
2381     QualType ElementTy = CAT->getElementType();
2382 
2383     llvm::Constant *Element =
2384       ConstantEmitter::emitNullForMemory(*this, ElementTy);
2385     unsigned NumElements = CAT->getZExtSize();
2386     SmallVector<llvm::Constant *, 8> Array(NumElements, Element);
2387     return llvm::ConstantArray::get(ATy, Array);
2388   }
2389 
2390   if (const RecordType *RT = T->getAs<RecordType>())
2391     return ::EmitNullConstant(*this, RT->getDecl(), /*complete object*/ true);
2392 
2393   assert(T->isMemberDataPointerType() &&
2394          "Should only see pointers to data members here!");
2395 
2396   return getCXXABI().EmitNullMemberPointer(T->castAs<MemberPointerType>());
2397 }
2398 
2399 llvm::Constant *
2400 CodeGenModule::EmitNullConstantForBase(const CXXRecordDecl *Record) {
2401   return ::EmitNullConstant(*this, Record, false);
2402 }
2403