1 //===--- BackendUtil.cpp - LLVM Backend Utilities -------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "clang/CodeGen/BackendUtil.h" 10 #include "BackendConsumer.h" 11 #include "LinkInModulesPass.h" 12 #include "clang/Basic/CodeGenOptions.h" 13 #include "clang/Basic/Diagnostic.h" 14 #include "clang/Basic/LangOptions.h" 15 #include "clang/Basic/TargetOptions.h" 16 #include "clang/Frontend/FrontendDiagnostic.h" 17 #include "clang/Frontend/Utils.h" 18 #include "clang/Lex/HeaderSearchOptions.h" 19 #include "llvm/ADT/ScopeExit.h" 20 #include "llvm/ADT/StringExtras.h" 21 #include "llvm/ADT/StringSwitch.h" 22 #include "llvm/Analysis/GlobalsModRef.h" 23 #include "llvm/Analysis/TargetLibraryInfo.h" 24 #include "llvm/Analysis/TargetTransformInfo.h" 25 #include "llvm/Bitcode/BitcodeReader.h" 26 #include "llvm/Bitcode/BitcodeWriter.h" 27 #include "llvm/Bitcode/BitcodeWriterPass.h" 28 #include "llvm/CodeGen/TargetSubtargetInfo.h" 29 #include "llvm/Frontend/Driver/CodeGenOptions.h" 30 #include "llvm/IR/DataLayout.h" 31 #include "llvm/IR/DebugInfo.h" 32 #include "llvm/IR/LegacyPassManager.h" 33 #include "llvm/IR/Module.h" 34 #include "llvm/IR/ModuleSummaryIndex.h" 35 #include "llvm/IR/PassManager.h" 36 #include "llvm/IR/Verifier.h" 37 #include "llvm/IRPrinter/IRPrintingPasses.h" 38 #include "llvm/LTO/LTOBackend.h" 39 #include "llvm/MC/TargetRegistry.h" 40 #include "llvm/Object/OffloadBinary.h" 41 #include "llvm/Passes/PassBuilder.h" 42 #include "llvm/Passes/PassPlugin.h" 43 #include "llvm/Passes/StandardInstrumentations.h" 44 #include "llvm/ProfileData/InstrProfCorrelator.h" 45 #include "llvm/Support/BuryPointer.h" 46 #include "llvm/Support/CommandLine.h" 47 #include "llvm/Support/MemoryBuffer.h" 48 #include "llvm/Support/PrettyStackTrace.h" 49 #include "llvm/Support/Program.h" 50 #include "llvm/Support/TimeProfiler.h" 51 #include "llvm/Support/Timer.h" 52 #include "llvm/Support/ToolOutputFile.h" 53 #include "llvm/Support/VirtualFileSystem.h" 54 #include "llvm/Support/raw_ostream.h" 55 #include "llvm/Target/TargetMachine.h" 56 #include "llvm/Target/TargetOptions.h" 57 #include "llvm/TargetParser/SubtargetFeature.h" 58 #include "llvm/TargetParser/Triple.h" 59 #include "llvm/Transforms/HipStdPar/HipStdPar.h" 60 #include "llvm/Transforms/IPO/EmbedBitcodePass.h" 61 #include "llvm/Transforms/IPO/LowerTypeTests.h" 62 #include "llvm/Transforms/IPO/ThinLTOBitcodeWriter.h" 63 #include "llvm/Transforms/InstCombine/InstCombine.h" 64 #include "llvm/Transforms/Instrumentation/AddressSanitizer.h" 65 #include "llvm/Transforms/Instrumentation/AddressSanitizerOptions.h" 66 #include "llvm/Transforms/Instrumentation/BoundsChecking.h" 67 #include "llvm/Transforms/Instrumentation/DataFlowSanitizer.h" 68 #include "llvm/Transforms/Instrumentation/GCOVProfiler.h" 69 #include "llvm/Transforms/Instrumentation/HWAddressSanitizer.h" 70 #include "llvm/Transforms/Instrumentation/InstrProfiling.h" 71 #include "llvm/Transforms/Instrumentation/KCFI.h" 72 #include "llvm/Transforms/Instrumentation/LowerAllowCheckPass.h" 73 #include "llvm/Transforms/Instrumentation/MemProfiler.h" 74 #include "llvm/Transforms/Instrumentation/MemorySanitizer.h" 75 #include "llvm/Transforms/Instrumentation/NumericalStabilitySanitizer.h" 76 #include "llvm/Transforms/Instrumentation/PGOInstrumentation.h" 77 #include "llvm/Transforms/Instrumentation/RealtimeSanitizer.h" 78 #include "llvm/Transforms/Instrumentation/SanitizerBinaryMetadata.h" 79 #include "llvm/Transforms/Instrumentation/SanitizerCoverage.h" 80 #include "llvm/Transforms/Instrumentation/ThreadSanitizer.h" 81 #include "llvm/Transforms/Instrumentation/TypeSanitizer.h" 82 #include "llvm/Transforms/ObjCARC.h" 83 #include "llvm/Transforms/Scalar/EarlyCSE.h" 84 #include "llvm/Transforms/Scalar/GVN.h" 85 #include "llvm/Transforms/Scalar/JumpThreading.h" 86 #include "llvm/Transforms/Utils/Debugify.h" 87 #include "llvm/Transforms/Utils/ModuleUtils.h" 88 #include <limits> 89 #include <memory> 90 #include <optional> 91 using namespace clang; 92 using namespace llvm; 93 94 #define HANDLE_EXTENSION(Ext) \ 95 llvm::PassPluginLibraryInfo get##Ext##PluginInfo(); 96 #include "llvm/Support/Extension.def" 97 98 namespace llvm { 99 extern cl::opt<bool> PrintPipelinePasses; 100 101 // Experiment to move sanitizers earlier. 102 static cl::opt<bool> ClSanitizeOnOptimizerEarlyEP( 103 "sanitizer-early-opt-ep", cl::Optional, 104 cl::desc("Insert sanitizers on OptimizerEarlyEP.")); 105 106 // Experiment to mark cold functions as optsize/minsize/optnone. 107 // TODO: remove once this is exposed as a proper driver flag. 108 static cl::opt<PGOOptions::ColdFuncOpt> ClPGOColdFuncAttr( 109 "pgo-cold-func-opt", cl::init(PGOOptions::ColdFuncOpt::Default), cl::Hidden, 110 cl::desc( 111 "Function attribute to apply to cold functions as determined by PGO"), 112 cl::values(clEnumValN(PGOOptions::ColdFuncOpt::Default, "default", 113 "Default (no attribute)"), 114 clEnumValN(PGOOptions::ColdFuncOpt::OptSize, "optsize", 115 "Mark cold functions with optsize."), 116 clEnumValN(PGOOptions::ColdFuncOpt::MinSize, "minsize", 117 "Mark cold functions with minsize."), 118 clEnumValN(PGOOptions::ColdFuncOpt::OptNone, "optnone", 119 "Mark cold functions with optnone."))); 120 121 extern cl::opt<InstrProfCorrelator::ProfCorrelatorKind> ProfileCorrelate; 122 } // namespace llvm 123 namespace clang { 124 extern llvm::cl::opt<bool> ClSanitizeGuardChecks; 125 } 126 127 namespace { 128 129 // Default filename used for profile generation. 130 std::string getDefaultProfileGenName() { 131 return DebugInfoCorrelate || ProfileCorrelate != InstrProfCorrelator::NONE 132 ? "default_%m.proflite" 133 : "default_%m.profraw"; 134 } 135 136 class EmitAssemblyHelper { 137 CompilerInstance &CI; 138 DiagnosticsEngine &Diags; 139 const CodeGenOptions &CodeGenOpts; 140 const clang::TargetOptions &TargetOpts; 141 const LangOptions &LangOpts; 142 llvm::Module *TheModule; 143 IntrusiveRefCntPtr<llvm::vfs::FileSystem> VFS; 144 145 std::unique_ptr<raw_pwrite_stream> OS; 146 147 Triple TargetTriple; 148 149 TargetIRAnalysis getTargetIRAnalysis() const { 150 if (TM) 151 return TM->getTargetIRAnalysis(); 152 153 return TargetIRAnalysis(); 154 } 155 156 /// Generates the TargetMachine. 157 /// Leaves TM unchanged if it is unable to create the target machine. 158 /// Some of our clang tests specify triples which are not built 159 /// into clang. This is okay because these tests check the generated 160 /// IR, and they require DataLayout which depends on the triple. 161 /// In this case, we allow this method to fail and not report an error. 162 /// When MustCreateTM is used, we print an error if we are unable to load 163 /// the requested target. 164 void CreateTargetMachine(bool MustCreateTM); 165 166 /// Add passes necessary to emit assembly or LLVM IR. 167 /// 168 /// \return True on success. 169 bool AddEmitPasses(legacy::PassManager &CodeGenPasses, BackendAction Action, 170 raw_pwrite_stream &OS, raw_pwrite_stream *DwoOS); 171 172 std::unique_ptr<llvm::ToolOutputFile> openOutputFile(StringRef Path) { 173 std::error_code EC; 174 auto F = std::make_unique<llvm::ToolOutputFile>(Path, EC, 175 llvm::sys::fs::OF_None); 176 if (EC) { 177 Diags.Report(diag::err_fe_unable_to_open_output) << Path << EC.message(); 178 F.reset(); 179 } 180 return F; 181 } 182 183 void RunOptimizationPipeline( 184 BackendAction Action, std::unique_ptr<raw_pwrite_stream> &OS, 185 std::unique_ptr<llvm::ToolOutputFile> &ThinLinkOS, BackendConsumer *BC); 186 void RunCodegenPipeline(BackendAction Action, 187 std::unique_ptr<raw_pwrite_stream> &OS, 188 std::unique_ptr<llvm::ToolOutputFile> &DwoOS); 189 190 /// Check whether we should emit a module summary for regular LTO. 191 /// The module summary should be emitted by default for regular LTO 192 /// except for ld64 targets. 193 /// 194 /// \return True if the module summary should be emitted. 195 bool shouldEmitRegularLTOSummary() const { 196 return CodeGenOpts.PrepareForLTO && !CodeGenOpts.DisableLLVMPasses && 197 TargetTriple.getVendor() != llvm::Triple::Apple; 198 } 199 200 /// Check whether we should emit a flag for UnifiedLTO. 201 /// The UnifiedLTO module flag should be set when UnifiedLTO is enabled for 202 /// ThinLTO or Full LTO with module summaries. 203 bool shouldEmitUnifiedLTOModueFlag() const { 204 return CodeGenOpts.UnifiedLTO && 205 (CodeGenOpts.PrepareForThinLTO || shouldEmitRegularLTOSummary()); 206 } 207 208 public: 209 EmitAssemblyHelper(CompilerInstance &CI, llvm::Module *M, 210 IntrusiveRefCntPtr<llvm::vfs::FileSystem> VFS) 211 : CI(CI), Diags(CI.getDiagnostics()), CodeGenOpts(CI.getCodeGenOpts()), 212 TargetOpts(CI.getTargetOpts()), LangOpts(CI.getLangOpts()), 213 TheModule(M), VFS(std::move(VFS)), 214 TargetTriple(TheModule->getTargetTriple()) {} 215 216 ~EmitAssemblyHelper() { 217 if (CodeGenOpts.DisableFree) 218 BuryPointer(std::move(TM)); 219 } 220 221 std::unique_ptr<TargetMachine> TM; 222 223 // Emit output using the new pass manager for the optimization pipeline. 224 void emitAssembly(BackendAction Action, std::unique_ptr<raw_pwrite_stream> OS, 225 BackendConsumer *BC); 226 }; 227 } // namespace 228 229 static SanitizerCoverageOptions 230 getSancovOptsFromCGOpts(const CodeGenOptions &CGOpts) { 231 SanitizerCoverageOptions Opts; 232 Opts.CoverageType = 233 static_cast<SanitizerCoverageOptions::Type>(CGOpts.SanitizeCoverageType); 234 Opts.IndirectCalls = CGOpts.SanitizeCoverageIndirectCalls; 235 Opts.TraceBB = CGOpts.SanitizeCoverageTraceBB; 236 Opts.TraceCmp = CGOpts.SanitizeCoverageTraceCmp; 237 Opts.TraceDiv = CGOpts.SanitizeCoverageTraceDiv; 238 Opts.TraceGep = CGOpts.SanitizeCoverageTraceGep; 239 Opts.Use8bitCounters = CGOpts.SanitizeCoverage8bitCounters; 240 Opts.TracePC = CGOpts.SanitizeCoverageTracePC; 241 Opts.TracePCGuard = CGOpts.SanitizeCoverageTracePCGuard; 242 Opts.NoPrune = CGOpts.SanitizeCoverageNoPrune; 243 Opts.Inline8bitCounters = CGOpts.SanitizeCoverageInline8bitCounters; 244 Opts.InlineBoolFlag = CGOpts.SanitizeCoverageInlineBoolFlag; 245 Opts.PCTable = CGOpts.SanitizeCoveragePCTable; 246 Opts.StackDepth = CGOpts.SanitizeCoverageStackDepth; 247 Opts.TraceLoads = CGOpts.SanitizeCoverageTraceLoads; 248 Opts.TraceStores = CGOpts.SanitizeCoverageTraceStores; 249 Opts.CollectControlFlow = CGOpts.SanitizeCoverageControlFlow; 250 return Opts; 251 } 252 253 static SanitizerBinaryMetadataOptions 254 getSanitizerBinaryMetadataOptions(const CodeGenOptions &CGOpts) { 255 SanitizerBinaryMetadataOptions Opts; 256 Opts.Covered = CGOpts.SanitizeBinaryMetadataCovered; 257 Opts.Atomics = CGOpts.SanitizeBinaryMetadataAtomics; 258 Opts.UAR = CGOpts.SanitizeBinaryMetadataUAR; 259 return Opts; 260 } 261 262 // Check if ASan should use GC-friendly instrumentation for globals. 263 // First of all, there is no point if -fdata-sections is off (expect for MachO, 264 // where this is not a factor). Also, on ELF this feature requires an assembler 265 // extension that only works with -integrated-as at the moment. 266 static bool asanUseGlobalsGC(const Triple &T, const CodeGenOptions &CGOpts) { 267 if (!CGOpts.SanitizeAddressGlobalsDeadStripping) 268 return false; 269 switch (T.getObjectFormat()) { 270 case Triple::MachO: 271 case Triple::COFF: 272 return true; 273 case Triple::ELF: 274 return !CGOpts.DisableIntegratedAS; 275 case Triple::GOFF: 276 llvm::report_fatal_error("ASan not implemented for GOFF"); 277 case Triple::XCOFF: 278 llvm::report_fatal_error("ASan not implemented for XCOFF."); 279 case Triple::Wasm: 280 case Triple::DXContainer: 281 case Triple::SPIRV: 282 case Triple::UnknownObjectFormat: 283 break; 284 } 285 return false; 286 } 287 288 static std::optional<llvm::CodeModel::Model> 289 getCodeModel(const CodeGenOptions &CodeGenOpts) { 290 unsigned CodeModel = llvm::StringSwitch<unsigned>(CodeGenOpts.CodeModel) 291 .Case("tiny", llvm::CodeModel::Tiny) 292 .Case("small", llvm::CodeModel::Small) 293 .Case("kernel", llvm::CodeModel::Kernel) 294 .Case("medium", llvm::CodeModel::Medium) 295 .Case("large", llvm::CodeModel::Large) 296 .Case("default", ~1u) 297 .Default(~0u); 298 assert(CodeModel != ~0u && "invalid code model!"); 299 if (CodeModel == ~1u) 300 return std::nullopt; 301 return static_cast<llvm::CodeModel::Model>(CodeModel); 302 } 303 304 static CodeGenFileType getCodeGenFileType(BackendAction Action) { 305 if (Action == Backend_EmitObj) 306 return CodeGenFileType::ObjectFile; 307 else if (Action == Backend_EmitMCNull) 308 return CodeGenFileType::Null; 309 else { 310 assert(Action == Backend_EmitAssembly && "Invalid action!"); 311 return CodeGenFileType::AssemblyFile; 312 } 313 } 314 315 static bool actionRequiresCodeGen(BackendAction Action) { 316 return Action != Backend_EmitNothing && Action != Backend_EmitBC && 317 Action != Backend_EmitLL; 318 } 319 320 static std::string flattenClangCommandLine(ArrayRef<std::string> Args, 321 StringRef MainFilename) { 322 if (Args.empty()) 323 return std::string{}; 324 325 std::string FlatCmdLine; 326 raw_string_ostream OS(FlatCmdLine); 327 bool PrintedOneArg = false; 328 if (!StringRef(Args[0]).contains("-cc1")) { 329 llvm::sys::printArg(OS, "-cc1", /*Quote=*/true); 330 PrintedOneArg = true; 331 } 332 for (unsigned i = 0; i < Args.size(); i++) { 333 StringRef Arg = Args[i]; 334 if (Arg.empty()) 335 continue; 336 if (Arg == "-main-file-name" || Arg == "-o") { 337 i++; // Skip this argument and next one. 338 continue; 339 } 340 if (Arg.starts_with("-object-file-name") || Arg == MainFilename) 341 continue; 342 // Skip fmessage-length for reproducibility. 343 if (Arg.starts_with("-fmessage-length")) 344 continue; 345 if (PrintedOneArg) 346 OS << " "; 347 llvm::sys::printArg(OS, Arg, /*Quote=*/true); 348 PrintedOneArg = true; 349 } 350 return FlatCmdLine; 351 } 352 353 static bool initTargetOptions(const CompilerInstance &CI, 354 DiagnosticsEngine &Diags, 355 llvm::TargetOptions &Options) { 356 const auto &CodeGenOpts = CI.getCodeGenOpts(); 357 const auto &TargetOpts = CI.getTargetOpts(); 358 const auto &LangOpts = CI.getLangOpts(); 359 const auto &HSOpts = CI.getHeaderSearchOpts(); 360 switch (LangOpts.getThreadModel()) { 361 case LangOptions::ThreadModelKind::POSIX: 362 Options.ThreadModel = llvm::ThreadModel::POSIX; 363 break; 364 case LangOptions::ThreadModelKind::Single: 365 Options.ThreadModel = llvm::ThreadModel::Single; 366 break; 367 } 368 369 // Set float ABI type. 370 assert((CodeGenOpts.FloatABI == "soft" || CodeGenOpts.FloatABI == "softfp" || 371 CodeGenOpts.FloatABI == "hard" || CodeGenOpts.FloatABI.empty()) && 372 "Invalid Floating Point ABI!"); 373 Options.FloatABIType = 374 llvm::StringSwitch<llvm::FloatABI::ABIType>(CodeGenOpts.FloatABI) 375 .Case("soft", llvm::FloatABI::Soft) 376 .Case("softfp", llvm::FloatABI::Soft) 377 .Case("hard", llvm::FloatABI::Hard) 378 .Default(llvm::FloatABI::Default); 379 380 // Set FP fusion mode. 381 switch (LangOpts.getDefaultFPContractMode()) { 382 case LangOptions::FPM_Off: 383 // Preserve any contraction performed by the front-end. (Strict performs 384 // splitting of the muladd intrinsic in the backend.) 385 Options.AllowFPOpFusion = llvm::FPOpFusion::Standard; 386 break; 387 case LangOptions::FPM_On: 388 case LangOptions::FPM_FastHonorPragmas: 389 Options.AllowFPOpFusion = llvm::FPOpFusion::Standard; 390 break; 391 case LangOptions::FPM_Fast: 392 Options.AllowFPOpFusion = llvm::FPOpFusion::Fast; 393 break; 394 } 395 396 Options.BinutilsVersion = 397 llvm::TargetMachine::parseBinutilsVersion(CodeGenOpts.BinutilsVersion); 398 Options.UseInitArray = CodeGenOpts.UseInitArray; 399 Options.DisableIntegratedAS = CodeGenOpts.DisableIntegratedAS; 400 401 // Set EABI version. 402 Options.EABIVersion = TargetOpts.EABIVersion; 403 404 if (LangOpts.hasSjLjExceptions()) 405 Options.ExceptionModel = llvm::ExceptionHandling::SjLj; 406 if (LangOpts.hasSEHExceptions()) 407 Options.ExceptionModel = llvm::ExceptionHandling::WinEH; 408 if (LangOpts.hasDWARFExceptions()) 409 Options.ExceptionModel = llvm::ExceptionHandling::DwarfCFI; 410 if (LangOpts.hasWasmExceptions()) 411 Options.ExceptionModel = llvm::ExceptionHandling::Wasm; 412 413 Options.NoInfsFPMath = LangOpts.NoHonorInfs; 414 Options.NoNaNsFPMath = LangOpts.NoHonorNaNs; 415 Options.NoZerosInBSS = CodeGenOpts.NoZeroInitializedInBSS; 416 Options.UnsafeFPMath = LangOpts.AllowFPReassoc && LangOpts.AllowRecip && 417 LangOpts.NoSignedZero && LangOpts.ApproxFunc && 418 (LangOpts.getDefaultFPContractMode() == 419 LangOptions::FPModeKind::FPM_Fast || 420 LangOpts.getDefaultFPContractMode() == 421 LangOptions::FPModeKind::FPM_FastHonorPragmas); 422 Options.ApproxFuncFPMath = LangOpts.ApproxFunc; 423 424 Options.BBAddrMap = CodeGenOpts.BBAddrMap; 425 Options.BBSections = 426 llvm::StringSwitch<llvm::BasicBlockSection>(CodeGenOpts.BBSections) 427 .Case("all", llvm::BasicBlockSection::All) 428 .StartsWith("list=", llvm::BasicBlockSection::List) 429 .Case("none", llvm::BasicBlockSection::None) 430 .Default(llvm::BasicBlockSection::None); 431 432 if (Options.BBSections == llvm::BasicBlockSection::List) { 433 ErrorOr<std::unique_ptr<MemoryBuffer>> MBOrErr = 434 MemoryBuffer::getFile(CodeGenOpts.BBSections.substr(5)); 435 if (!MBOrErr) { 436 Diags.Report(diag::err_fe_unable_to_load_basic_block_sections_file) 437 << MBOrErr.getError().message(); 438 return false; 439 } 440 Options.BBSectionsFuncListBuf = std::move(*MBOrErr); 441 } 442 443 Options.EnableMachineFunctionSplitter = CodeGenOpts.SplitMachineFunctions; 444 Options.FunctionSections = CodeGenOpts.FunctionSections; 445 Options.DataSections = CodeGenOpts.DataSections; 446 Options.IgnoreXCOFFVisibility = LangOpts.IgnoreXCOFFVisibility; 447 Options.UniqueSectionNames = CodeGenOpts.UniqueSectionNames; 448 Options.UniqueBasicBlockSectionNames = 449 CodeGenOpts.UniqueBasicBlockSectionNames; 450 Options.SeparateNamedSections = CodeGenOpts.SeparateNamedSections; 451 Options.TLSSize = CodeGenOpts.TLSSize; 452 Options.EnableTLSDESC = CodeGenOpts.EnableTLSDESC; 453 Options.EmulatedTLS = CodeGenOpts.EmulatedTLS; 454 Options.DebuggerTuning = CodeGenOpts.getDebuggerTuning(); 455 Options.EmitStackSizeSection = CodeGenOpts.StackSizeSection; 456 Options.StackUsageOutput = CodeGenOpts.StackUsageOutput; 457 Options.EmitAddrsig = CodeGenOpts.Addrsig; 458 Options.ForceDwarfFrameSection = CodeGenOpts.ForceDwarfFrameSection; 459 Options.EmitCallSiteInfo = CodeGenOpts.EmitCallSiteInfo; 460 Options.EnableAIXExtendedAltivecABI = LangOpts.EnableAIXExtendedAltivecABI; 461 Options.XRayFunctionIndex = CodeGenOpts.XRayFunctionIndex; 462 Options.LoopAlignment = CodeGenOpts.LoopAlignment; 463 Options.DebugStrictDwarf = CodeGenOpts.DebugStrictDwarf; 464 Options.ObjectFilenameForDebug = CodeGenOpts.ObjectFilenameForDebug; 465 Options.Hotpatch = CodeGenOpts.HotPatch; 466 Options.JMCInstrument = CodeGenOpts.JMCInstrument; 467 Options.XCOFFReadOnlyPointers = CodeGenOpts.XCOFFReadOnlyPointers; 468 469 switch (CodeGenOpts.getSwiftAsyncFramePointer()) { 470 case CodeGenOptions::SwiftAsyncFramePointerKind::Auto: 471 Options.SwiftAsyncFramePointer = 472 SwiftAsyncFramePointerMode::DeploymentBased; 473 break; 474 475 case CodeGenOptions::SwiftAsyncFramePointerKind::Always: 476 Options.SwiftAsyncFramePointer = SwiftAsyncFramePointerMode::Always; 477 break; 478 479 case CodeGenOptions::SwiftAsyncFramePointerKind::Never: 480 Options.SwiftAsyncFramePointer = SwiftAsyncFramePointerMode::Never; 481 break; 482 } 483 484 Options.MCOptions.SplitDwarfFile = CodeGenOpts.SplitDwarfFile; 485 Options.MCOptions.EmitDwarfUnwind = CodeGenOpts.getEmitDwarfUnwind(); 486 Options.MCOptions.EmitCompactUnwindNonCanonical = 487 CodeGenOpts.EmitCompactUnwindNonCanonical; 488 Options.MCOptions.MCRelaxAll = CodeGenOpts.RelaxAll; 489 Options.MCOptions.MCSaveTempLabels = CodeGenOpts.SaveTempLabels; 490 Options.MCOptions.MCUseDwarfDirectory = 491 CodeGenOpts.NoDwarfDirectoryAsm 492 ? llvm::MCTargetOptions::DisableDwarfDirectory 493 : llvm::MCTargetOptions::EnableDwarfDirectory; 494 Options.MCOptions.MCNoExecStack = CodeGenOpts.NoExecStack; 495 Options.MCOptions.MCIncrementalLinkerCompatible = 496 CodeGenOpts.IncrementalLinkerCompatible; 497 Options.MCOptions.MCFatalWarnings = CodeGenOpts.FatalWarnings; 498 Options.MCOptions.MCNoWarn = CodeGenOpts.NoWarn; 499 Options.MCOptions.AsmVerbose = CodeGenOpts.AsmVerbose; 500 Options.MCOptions.Dwarf64 = CodeGenOpts.Dwarf64; 501 Options.MCOptions.PreserveAsmComments = CodeGenOpts.PreserveAsmComments; 502 Options.MCOptions.Crel = CodeGenOpts.Crel; 503 Options.MCOptions.ImplicitMapSyms = CodeGenOpts.ImplicitMapSyms; 504 Options.MCOptions.X86RelaxRelocations = CodeGenOpts.X86RelaxRelocations; 505 Options.MCOptions.CompressDebugSections = 506 CodeGenOpts.getCompressDebugSections(); 507 if (CodeGenOpts.OutputAsmVariant != 3) // 3 (default): not specified 508 Options.MCOptions.OutputAsmVariant = CodeGenOpts.OutputAsmVariant; 509 Options.MCOptions.ABIName = TargetOpts.ABI; 510 for (const auto &Entry : HSOpts.UserEntries) 511 if (!Entry.IsFramework && 512 (Entry.Group == frontend::IncludeDirGroup::Quoted || 513 Entry.Group == frontend::IncludeDirGroup::Angled || 514 Entry.Group == frontend::IncludeDirGroup::System)) 515 Options.MCOptions.IASSearchPaths.push_back( 516 Entry.IgnoreSysRoot ? Entry.Path : HSOpts.Sysroot + Entry.Path); 517 Options.MCOptions.Argv0 = CodeGenOpts.Argv0 ? CodeGenOpts.Argv0 : ""; 518 Options.MCOptions.CommandlineArgs = flattenClangCommandLine( 519 CodeGenOpts.CommandLineArgs, CodeGenOpts.MainFileName); 520 Options.MCOptions.AsSecureLogFile = CodeGenOpts.AsSecureLogFile; 521 Options.MCOptions.PPCUseFullRegisterNames = 522 CodeGenOpts.PPCUseFullRegisterNames; 523 Options.MisExpect = CodeGenOpts.MisExpect; 524 525 return true; 526 } 527 528 static std::optional<GCOVOptions> 529 getGCOVOptions(const CodeGenOptions &CodeGenOpts, const LangOptions &LangOpts) { 530 if (CodeGenOpts.CoverageNotesFile.empty() && 531 CodeGenOpts.CoverageDataFile.empty()) 532 return std::nullopt; 533 // Not using 'GCOVOptions::getDefault' allows us to avoid exiting if 534 // LLVM's -default-gcov-version flag is set to something invalid. 535 GCOVOptions Options; 536 Options.EmitNotes = !CodeGenOpts.CoverageNotesFile.empty(); 537 Options.EmitData = !CodeGenOpts.CoverageDataFile.empty(); 538 llvm::copy(CodeGenOpts.CoverageVersion, std::begin(Options.Version)); 539 Options.NoRedZone = CodeGenOpts.DisableRedZone; 540 Options.Filter = CodeGenOpts.ProfileFilterFiles; 541 Options.Exclude = CodeGenOpts.ProfileExcludeFiles; 542 Options.Atomic = CodeGenOpts.AtomicProfileUpdate; 543 return Options; 544 } 545 546 static std::optional<InstrProfOptions> 547 getInstrProfOptions(const CodeGenOptions &CodeGenOpts, 548 const LangOptions &LangOpts) { 549 if (!CodeGenOpts.hasProfileClangInstr()) 550 return std::nullopt; 551 InstrProfOptions Options; 552 Options.NoRedZone = CodeGenOpts.DisableRedZone; 553 Options.InstrProfileOutput = CodeGenOpts.InstrProfileOutput; 554 Options.Atomic = CodeGenOpts.AtomicProfileUpdate; 555 return Options; 556 } 557 558 static void setCommandLineOpts(const CodeGenOptions &CodeGenOpts) { 559 SmallVector<const char *, 16> BackendArgs; 560 BackendArgs.push_back("clang"); // Fake program name. 561 if (!CodeGenOpts.DebugPass.empty()) { 562 BackendArgs.push_back("-debug-pass"); 563 BackendArgs.push_back(CodeGenOpts.DebugPass.c_str()); 564 } 565 if (!CodeGenOpts.LimitFloatPrecision.empty()) { 566 BackendArgs.push_back("-limit-float-precision"); 567 BackendArgs.push_back(CodeGenOpts.LimitFloatPrecision.c_str()); 568 } 569 // Check for the default "clang" invocation that won't set any cl::opt values. 570 // Skip trying to parse the command line invocation to avoid the issues 571 // described below. 572 if (BackendArgs.size() == 1) 573 return; 574 BackendArgs.push_back(nullptr); 575 // FIXME: The command line parser below is not thread-safe and shares a global 576 // state, so this call might crash or overwrite the options of another Clang 577 // instance in the same process. 578 llvm::cl::ParseCommandLineOptions(BackendArgs.size() - 1, 579 BackendArgs.data()); 580 } 581 582 void EmitAssemblyHelper::CreateTargetMachine(bool MustCreateTM) { 583 // Create the TargetMachine for generating code. 584 std::string Error; 585 std::string Triple = TheModule->getTargetTriple(); 586 const llvm::Target *TheTarget = TargetRegistry::lookupTarget(Triple, Error); 587 if (!TheTarget) { 588 if (MustCreateTM) 589 Diags.Report(diag::err_fe_unable_to_create_target) << Error; 590 return; 591 } 592 593 std::optional<llvm::CodeModel::Model> CM = getCodeModel(CodeGenOpts); 594 std::string FeaturesStr = 595 llvm::join(TargetOpts.Features.begin(), TargetOpts.Features.end(), ","); 596 llvm::Reloc::Model RM = CodeGenOpts.RelocationModel; 597 std::optional<CodeGenOptLevel> OptLevelOrNone = 598 CodeGenOpt::getLevel(CodeGenOpts.OptimizationLevel); 599 assert(OptLevelOrNone && "Invalid optimization level!"); 600 CodeGenOptLevel OptLevel = *OptLevelOrNone; 601 602 llvm::TargetOptions Options; 603 if (!initTargetOptions(CI, Diags, Options)) 604 return; 605 TM.reset(TheTarget->createTargetMachine(Triple, TargetOpts.CPU, FeaturesStr, 606 Options, RM, CM, OptLevel)); 607 TM->setLargeDataThreshold(CodeGenOpts.LargeDataThreshold); 608 } 609 610 bool EmitAssemblyHelper::AddEmitPasses(legacy::PassManager &CodeGenPasses, 611 BackendAction Action, 612 raw_pwrite_stream &OS, 613 raw_pwrite_stream *DwoOS) { 614 // Add LibraryInfo. 615 std::unique_ptr<TargetLibraryInfoImpl> TLII( 616 llvm::driver::createTLII(TargetTriple, CodeGenOpts.getVecLib())); 617 CodeGenPasses.add(new TargetLibraryInfoWrapperPass(*TLII)); 618 619 // Normal mode, emit a .s or .o file by running the code generator. Note, 620 // this also adds codegenerator level optimization passes. 621 CodeGenFileType CGFT = getCodeGenFileType(Action); 622 623 if (TM->addPassesToEmitFile(CodeGenPasses, OS, DwoOS, CGFT, 624 /*DisableVerify=*/!CodeGenOpts.VerifyModule)) { 625 Diags.Report(diag::err_fe_unable_to_interface_with_target); 626 return false; 627 } 628 629 return true; 630 } 631 632 static OptimizationLevel mapToLevel(const CodeGenOptions &Opts) { 633 switch (Opts.OptimizationLevel) { 634 default: 635 llvm_unreachable("Invalid optimization level!"); 636 637 case 0: 638 return OptimizationLevel::O0; 639 640 case 1: 641 return OptimizationLevel::O1; 642 643 case 2: 644 switch (Opts.OptimizeSize) { 645 default: 646 llvm_unreachable("Invalid optimization level for size!"); 647 648 case 0: 649 return OptimizationLevel::O2; 650 651 case 1: 652 return OptimizationLevel::Os; 653 654 case 2: 655 return OptimizationLevel::Oz; 656 } 657 658 case 3: 659 return OptimizationLevel::O3; 660 } 661 } 662 663 static void addKCFIPass(const Triple &TargetTriple, const LangOptions &LangOpts, 664 PassBuilder &PB) { 665 // If the back-end supports KCFI operand bundle lowering, skip KCFIPass. 666 if (TargetTriple.getArch() == llvm::Triple::x86_64 || 667 TargetTriple.isAArch64(64) || TargetTriple.isRISCV()) 668 return; 669 670 // Ensure we lower KCFI operand bundles with -O0. 671 PB.registerOptimizerLastEPCallback( 672 [&](ModulePassManager &MPM, OptimizationLevel Level, ThinOrFullLTOPhase) { 673 if (Level == OptimizationLevel::O0 && 674 LangOpts.Sanitize.has(SanitizerKind::KCFI)) 675 MPM.addPass(createModuleToFunctionPassAdaptor(KCFIPass())); 676 }); 677 678 // When optimizations are requested, run KCIFPass after InstCombine to 679 // avoid unnecessary checks. 680 PB.registerPeepholeEPCallback( 681 [&](FunctionPassManager &FPM, OptimizationLevel Level) { 682 if (Level != OptimizationLevel::O0 && 683 LangOpts.Sanitize.has(SanitizerKind::KCFI)) 684 FPM.addPass(KCFIPass()); 685 }); 686 } 687 688 static void addSanitizers(const Triple &TargetTriple, 689 const CodeGenOptions &CodeGenOpts, 690 const LangOptions &LangOpts, PassBuilder &PB) { 691 auto SanitizersCallback = [&](ModulePassManager &MPM, OptimizationLevel Level, 692 ThinOrFullLTOPhase) { 693 if (CodeGenOpts.hasSanitizeCoverage()) { 694 auto SancovOpts = getSancovOptsFromCGOpts(CodeGenOpts); 695 MPM.addPass(SanitizerCoveragePass( 696 SancovOpts, CodeGenOpts.SanitizeCoverageAllowlistFiles, 697 CodeGenOpts.SanitizeCoverageIgnorelistFiles)); 698 } 699 700 if (CodeGenOpts.hasSanitizeBinaryMetadata()) { 701 MPM.addPass(SanitizerBinaryMetadataPass( 702 getSanitizerBinaryMetadataOptions(CodeGenOpts), 703 CodeGenOpts.SanitizeMetadataIgnorelistFiles)); 704 } 705 706 auto MSanPass = [&](SanitizerMask Mask, bool CompileKernel) { 707 if (LangOpts.Sanitize.has(Mask)) { 708 int TrackOrigins = CodeGenOpts.SanitizeMemoryTrackOrigins; 709 bool Recover = CodeGenOpts.SanitizeRecover.has(Mask); 710 711 MemorySanitizerOptions options(TrackOrigins, Recover, CompileKernel, 712 CodeGenOpts.SanitizeMemoryParamRetval); 713 MPM.addPass(MemorySanitizerPass(options)); 714 if (Level != OptimizationLevel::O0) { 715 // MemorySanitizer inserts complex instrumentation that mostly follows 716 // the logic of the original code, but operates on "shadow" values. It 717 // can benefit from re-running some general purpose optimization 718 // passes. 719 MPM.addPass(RequireAnalysisPass<GlobalsAA, llvm::Module>()); 720 FunctionPassManager FPM; 721 FPM.addPass(EarlyCSEPass(true /* Enable mem-ssa. */)); 722 FPM.addPass(InstCombinePass()); 723 FPM.addPass(JumpThreadingPass()); 724 FPM.addPass(GVNPass()); 725 FPM.addPass(InstCombinePass()); 726 MPM.addPass(createModuleToFunctionPassAdaptor(std::move(FPM))); 727 } 728 } 729 }; 730 MSanPass(SanitizerKind::Memory, false); 731 MSanPass(SanitizerKind::KernelMemory, true); 732 733 if (LangOpts.Sanitize.has(SanitizerKind::Thread)) { 734 MPM.addPass(ModuleThreadSanitizerPass()); 735 MPM.addPass(createModuleToFunctionPassAdaptor(ThreadSanitizerPass())); 736 } 737 738 if (LangOpts.Sanitize.has(SanitizerKind::Type)) 739 MPM.addPass(TypeSanitizerPass()); 740 741 if (LangOpts.Sanitize.has(SanitizerKind::NumericalStability)) 742 MPM.addPass(NumericalStabilitySanitizerPass()); 743 744 if (LangOpts.Sanitize.has(SanitizerKind::Realtime)) 745 MPM.addPass(RealtimeSanitizerPass()); 746 747 auto ASanPass = [&](SanitizerMask Mask, bool CompileKernel) { 748 if (LangOpts.Sanitize.has(Mask)) { 749 bool UseGlobalGC = asanUseGlobalsGC(TargetTriple, CodeGenOpts); 750 bool UseOdrIndicator = CodeGenOpts.SanitizeAddressUseOdrIndicator; 751 llvm::AsanDtorKind DestructorKind = 752 CodeGenOpts.getSanitizeAddressDtor(); 753 AddressSanitizerOptions Opts; 754 Opts.CompileKernel = CompileKernel; 755 Opts.Recover = CodeGenOpts.SanitizeRecover.has(Mask); 756 Opts.UseAfterScope = CodeGenOpts.SanitizeAddressUseAfterScope; 757 Opts.UseAfterReturn = CodeGenOpts.getSanitizeAddressUseAfterReturn(); 758 MPM.addPass(AddressSanitizerPass(Opts, UseGlobalGC, UseOdrIndicator, 759 DestructorKind)); 760 } 761 }; 762 ASanPass(SanitizerKind::Address, false); 763 ASanPass(SanitizerKind::KernelAddress, true); 764 765 auto HWASanPass = [&](SanitizerMask Mask, bool CompileKernel) { 766 if (LangOpts.Sanitize.has(Mask)) { 767 bool Recover = CodeGenOpts.SanitizeRecover.has(Mask); 768 MPM.addPass(HWAddressSanitizerPass( 769 {CompileKernel, Recover, 770 /*DisableOptimization=*/CodeGenOpts.OptimizationLevel == 0})); 771 } 772 }; 773 HWASanPass(SanitizerKind::HWAddress, false); 774 HWASanPass(SanitizerKind::KernelHWAddress, true); 775 776 if (LangOpts.Sanitize.has(SanitizerKind::DataFlow)) { 777 MPM.addPass(DataFlowSanitizerPass(LangOpts.NoSanitizeFiles)); 778 } 779 }; 780 if (ClSanitizeOnOptimizerEarlyEP) { 781 PB.registerOptimizerEarlyEPCallback( 782 [SanitizersCallback](ModulePassManager &MPM, OptimizationLevel Level, 783 ThinOrFullLTOPhase Phase) { 784 ModulePassManager NewMPM; 785 SanitizersCallback(NewMPM, Level, Phase); 786 if (!NewMPM.isEmpty()) { 787 // Sanitizers can abandon<GlobalsAA>. 788 NewMPM.addPass(RequireAnalysisPass<GlobalsAA, llvm::Module>()); 789 MPM.addPass(std::move(NewMPM)); 790 } 791 }); 792 } else { 793 // LastEP does not need GlobalsAA. 794 PB.registerOptimizerLastEPCallback(SanitizersCallback); 795 } 796 797 if (LowerAllowCheckPass::IsRequested()) { 798 LowerAllowCheckPass::Options Opts; 799 // We want to call it after inline, which is about OptimizerEarlyEPCallback. 800 PB.registerOptimizerEarlyEPCallback([&Opts](ModulePassManager &MPM, 801 OptimizationLevel Level, 802 ThinOrFullLTOPhase Phase) { 803 MPM.addPass(createModuleToFunctionPassAdaptor(LowerAllowCheckPass(Opts))); 804 }); 805 } 806 } 807 808 void EmitAssemblyHelper::RunOptimizationPipeline( 809 BackendAction Action, std::unique_ptr<raw_pwrite_stream> &OS, 810 std::unique_ptr<llvm::ToolOutputFile> &ThinLinkOS, BackendConsumer *BC) { 811 std::optional<PGOOptions> PGOOpt; 812 813 if (CodeGenOpts.hasProfileIRInstr()) 814 // -fprofile-generate. 815 PGOOpt = PGOOptions( 816 CodeGenOpts.InstrProfileOutput.empty() ? getDefaultProfileGenName() 817 : CodeGenOpts.InstrProfileOutput, 818 "", "", CodeGenOpts.MemoryProfileUsePath, nullptr, PGOOptions::IRInstr, 819 PGOOptions::NoCSAction, ClPGOColdFuncAttr, 820 CodeGenOpts.DebugInfoForProfiling, 821 /*PseudoProbeForProfiling=*/false, CodeGenOpts.AtomicProfileUpdate); 822 else if (CodeGenOpts.hasProfileIRUse()) { 823 // -fprofile-use. 824 auto CSAction = CodeGenOpts.hasProfileCSIRUse() ? PGOOptions::CSIRUse 825 : PGOOptions::NoCSAction; 826 PGOOpt = PGOOptions(CodeGenOpts.ProfileInstrumentUsePath, "", 827 CodeGenOpts.ProfileRemappingFile, 828 CodeGenOpts.MemoryProfileUsePath, VFS, 829 PGOOptions::IRUse, CSAction, ClPGOColdFuncAttr, 830 CodeGenOpts.DebugInfoForProfiling); 831 } else if (!CodeGenOpts.SampleProfileFile.empty()) 832 // -fprofile-sample-use 833 PGOOpt = PGOOptions( 834 CodeGenOpts.SampleProfileFile, "", CodeGenOpts.ProfileRemappingFile, 835 CodeGenOpts.MemoryProfileUsePath, VFS, PGOOptions::SampleUse, 836 PGOOptions::NoCSAction, ClPGOColdFuncAttr, 837 CodeGenOpts.DebugInfoForProfiling, CodeGenOpts.PseudoProbeForProfiling); 838 else if (!CodeGenOpts.MemoryProfileUsePath.empty()) 839 // -fmemory-profile-use (without any of the above options) 840 PGOOpt = PGOOptions("", "", "", CodeGenOpts.MemoryProfileUsePath, VFS, 841 PGOOptions::NoAction, PGOOptions::NoCSAction, 842 ClPGOColdFuncAttr, CodeGenOpts.DebugInfoForProfiling); 843 else if (CodeGenOpts.PseudoProbeForProfiling) 844 // -fpseudo-probe-for-profiling 845 PGOOpt = 846 PGOOptions("", "", "", /*MemoryProfile=*/"", nullptr, 847 PGOOptions::NoAction, PGOOptions::NoCSAction, 848 ClPGOColdFuncAttr, CodeGenOpts.DebugInfoForProfiling, true); 849 else if (CodeGenOpts.DebugInfoForProfiling) 850 // -fdebug-info-for-profiling 851 PGOOpt = PGOOptions("", "", "", /*MemoryProfile=*/"", nullptr, 852 PGOOptions::NoAction, PGOOptions::NoCSAction, 853 ClPGOColdFuncAttr, true); 854 855 // Check to see if we want to generate a CS profile. 856 if (CodeGenOpts.hasProfileCSIRInstr()) { 857 assert(!CodeGenOpts.hasProfileCSIRUse() && 858 "Cannot have both CSProfileUse pass and CSProfileGen pass at " 859 "the same time"); 860 if (PGOOpt) { 861 assert(PGOOpt->Action != PGOOptions::IRInstr && 862 PGOOpt->Action != PGOOptions::SampleUse && 863 "Cannot run CSProfileGen pass with ProfileGen or SampleUse " 864 " pass"); 865 PGOOpt->CSProfileGenFile = CodeGenOpts.InstrProfileOutput.empty() 866 ? getDefaultProfileGenName() 867 : CodeGenOpts.InstrProfileOutput; 868 PGOOpt->CSAction = PGOOptions::CSIRInstr; 869 } else 870 PGOOpt = PGOOptions("", 871 CodeGenOpts.InstrProfileOutput.empty() 872 ? getDefaultProfileGenName() 873 : CodeGenOpts.InstrProfileOutput, 874 "", /*MemoryProfile=*/"", nullptr, 875 PGOOptions::NoAction, PGOOptions::CSIRInstr, 876 ClPGOColdFuncAttr, CodeGenOpts.DebugInfoForProfiling); 877 } 878 if (TM) 879 TM->setPGOOption(PGOOpt); 880 881 PipelineTuningOptions PTO; 882 PTO.LoopUnrolling = CodeGenOpts.UnrollLoops; 883 // For historical reasons, loop interleaving is set to mirror setting for loop 884 // unrolling. 885 PTO.LoopInterleaving = CodeGenOpts.UnrollLoops; 886 PTO.LoopVectorization = CodeGenOpts.VectorizeLoop; 887 PTO.SLPVectorization = CodeGenOpts.VectorizeSLP; 888 PTO.MergeFunctions = CodeGenOpts.MergeFunctions; 889 // Only enable CGProfilePass when using integrated assembler, since 890 // non-integrated assemblers don't recognize .cgprofile section. 891 PTO.CallGraphProfile = !CodeGenOpts.DisableIntegratedAS; 892 PTO.UnifiedLTO = CodeGenOpts.UnifiedLTO; 893 894 LoopAnalysisManager LAM; 895 FunctionAnalysisManager FAM; 896 CGSCCAnalysisManager CGAM; 897 ModuleAnalysisManager MAM; 898 899 bool DebugPassStructure = CodeGenOpts.DebugPass == "Structure"; 900 PassInstrumentationCallbacks PIC; 901 PrintPassOptions PrintPassOpts; 902 PrintPassOpts.Indent = DebugPassStructure; 903 PrintPassOpts.SkipAnalyses = DebugPassStructure; 904 StandardInstrumentations SI( 905 TheModule->getContext(), 906 (CodeGenOpts.DebugPassManager || DebugPassStructure), 907 CodeGenOpts.VerifyEach, PrintPassOpts); 908 SI.registerCallbacks(PIC, &MAM); 909 PassBuilder PB(TM.get(), PTO, PGOOpt, &PIC); 910 911 // Handle the assignment tracking feature options. 912 switch (CodeGenOpts.getAssignmentTrackingMode()) { 913 case CodeGenOptions::AssignmentTrackingOpts::Forced: 914 PB.registerPipelineStartEPCallback( 915 [&](ModulePassManager &MPM, OptimizationLevel Level) { 916 MPM.addPass(AssignmentTrackingPass()); 917 }); 918 break; 919 case CodeGenOptions::AssignmentTrackingOpts::Enabled: 920 // Disable assignment tracking in LTO builds for now as the performance 921 // cost is too high. Disable for LLDB tuning due to llvm.org/PR43126. 922 if (!CodeGenOpts.PrepareForThinLTO && !CodeGenOpts.PrepareForLTO && 923 CodeGenOpts.getDebuggerTuning() != llvm::DebuggerKind::LLDB) { 924 PB.registerPipelineStartEPCallback( 925 [&](ModulePassManager &MPM, OptimizationLevel Level) { 926 // Only use assignment tracking if optimisations are enabled. 927 if (Level != OptimizationLevel::O0) 928 MPM.addPass(AssignmentTrackingPass()); 929 }); 930 } 931 break; 932 case CodeGenOptions::AssignmentTrackingOpts::Disabled: 933 break; 934 } 935 936 // Enable verify-debuginfo-preserve-each for new PM. 937 DebugifyEachInstrumentation Debugify; 938 DebugInfoPerPass DebugInfoBeforePass; 939 if (CodeGenOpts.EnableDIPreservationVerify) { 940 Debugify.setDebugifyMode(DebugifyMode::OriginalDebugInfo); 941 Debugify.setDebugInfoBeforePass(DebugInfoBeforePass); 942 943 if (!CodeGenOpts.DIBugsReportFilePath.empty()) 944 Debugify.setOrigDIVerifyBugsReportFilePath( 945 CodeGenOpts.DIBugsReportFilePath); 946 Debugify.registerCallbacks(PIC, MAM); 947 } 948 // Attempt to load pass plugins and register their callbacks with PB. 949 for (auto &PluginFN : CodeGenOpts.PassPlugins) { 950 auto PassPlugin = PassPlugin::Load(PluginFN); 951 if (PassPlugin) { 952 PassPlugin->registerPassBuilderCallbacks(PB); 953 } else { 954 Diags.Report(diag::err_fe_unable_to_load_plugin) 955 << PluginFN << toString(PassPlugin.takeError()); 956 } 957 } 958 for (const auto &PassCallback : CodeGenOpts.PassBuilderCallbacks) 959 PassCallback(PB); 960 #define HANDLE_EXTENSION(Ext) \ 961 get##Ext##PluginInfo().RegisterPassBuilderCallbacks(PB); 962 #include "llvm/Support/Extension.def" 963 964 // Register the target library analysis directly and give it a customized 965 // preset TLI. 966 std::unique_ptr<TargetLibraryInfoImpl> TLII( 967 llvm::driver::createTLII(TargetTriple, CodeGenOpts.getVecLib())); 968 FAM.registerPass([&] { return TargetLibraryAnalysis(*TLII); }); 969 970 // Register all the basic analyses with the managers. 971 PB.registerModuleAnalyses(MAM); 972 PB.registerCGSCCAnalyses(CGAM); 973 PB.registerFunctionAnalyses(FAM); 974 PB.registerLoopAnalyses(LAM); 975 PB.crossRegisterProxies(LAM, FAM, CGAM, MAM); 976 977 ModulePassManager MPM; 978 // Add a verifier pass, before any other passes, to catch CodeGen issues. 979 if (CodeGenOpts.VerifyModule) 980 MPM.addPass(VerifierPass()); 981 982 if (!CodeGenOpts.DisableLLVMPasses) { 983 // Map our optimization levels into one of the distinct levels used to 984 // configure the pipeline. 985 OptimizationLevel Level = mapToLevel(CodeGenOpts); 986 987 const bool PrepareForThinLTO = CodeGenOpts.PrepareForThinLTO; 988 const bool PrepareForLTO = CodeGenOpts.PrepareForLTO; 989 990 if (LangOpts.ObjCAutoRefCount) { 991 PB.registerPipelineStartEPCallback( 992 [](ModulePassManager &MPM, OptimizationLevel Level) { 993 if (Level != OptimizationLevel::O0) 994 MPM.addPass( 995 createModuleToFunctionPassAdaptor(ObjCARCExpandPass())); 996 }); 997 PB.registerPipelineEarlySimplificationEPCallback( 998 [](ModulePassManager &MPM, OptimizationLevel Level, 999 ThinOrFullLTOPhase) { 1000 if (Level != OptimizationLevel::O0) 1001 MPM.addPass(ObjCARCAPElimPass()); 1002 }); 1003 PB.registerScalarOptimizerLateEPCallback( 1004 [](FunctionPassManager &FPM, OptimizationLevel Level) { 1005 if (Level != OptimizationLevel::O0) 1006 FPM.addPass(ObjCARCOptPass()); 1007 }); 1008 } 1009 1010 // If we reached here with a non-empty index file name, then the index 1011 // file was empty and we are not performing ThinLTO backend compilation 1012 // (used in testing in a distributed build environment). 1013 bool IsThinLTOPostLink = !CodeGenOpts.ThinLTOIndexFile.empty(); 1014 // If so drop any the type test assume sequences inserted for whole program 1015 // vtables so that codegen doesn't complain. 1016 if (IsThinLTOPostLink) 1017 PB.registerPipelineStartEPCallback( 1018 [](ModulePassManager &MPM, OptimizationLevel Level) { 1019 MPM.addPass(LowerTypeTestsPass( 1020 /*ExportSummary=*/nullptr, 1021 /*ImportSummary=*/nullptr, 1022 /*DropTypeTests=*/lowertypetests::DropTestKind::Assume)); 1023 }); 1024 1025 // Register callbacks to schedule sanitizer passes at the appropriate part 1026 // of the pipeline. 1027 if (LangOpts.Sanitize.has(SanitizerKind::LocalBounds)) 1028 PB.registerScalarOptimizerLateEPCallback([this](FunctionPassManager &FPM, 1029 OptimizationLevel Level) { 1030 BoundsCheckingPass::Options Options; 1031 if (CodeGenOpts.SanitizeSkipHotCutoffs[SanitizerKind::SO_LocalBounds] || 1032 ClSanitizeGuardChecks) { 1033 static_assert(SanitizerKind::SO_LocalBounds <= 1034 std::numeric_limits< 1035 decltype(Options.GuardKind)::value_type>::max(), 1036 "Update type of llvm.allow.ubsan.check."); 1037 Options.GuardKind = SanitizerKind::SO_LocalBounds; 1038 } 1039 Options.Merge = 1040 CodeGenOpts.SanitizeMergeHandlers.has(SanitizerKind::LocalBounds); 1041 if (!CodeGenOpts.SanitizeTrap.has(SanitizerKind::LocalBounds)) { 1042 Options.Rt = { 1043 /*MinRuntime=*/static_cast<bool>( 1044 CodeGenOpts.SanitizeMinimalRuntime), 1045 /*MayReturn=*/ 1046 CodeGenOpts.SanitizeRecover.has(SanitizerKind::LocalBounds), 1047 }; 1048 } 1049 FPM.addPass(BoundsCheckingPass(Options)); 1050 }); 1051 1052 // Don't add sanitizers if we are here from ThinLTO PostLink. That already 1053 // done on PreLink stage. 1054 if (!IsThinLTOPostLink) { 1055 addSanitizers(TargetTriple, CodeGenOpts, LangOpts, PB); 1056 addKCFIPass(TargetTriple, LangOpts, PB); 1057 } 1058 1059 if (std::optional<GCOVOptions> Options = 1060 getGCOVOptions(CodeGenOpts, LangOpts)) 1061 PB.registerPipelineStartEPCallback( 1062 [Options](ModulePassManager &MPM, OptimizationLevel Level) { 1063 MPM.addPass(GCOVProfilerPass(*Options)); 1064 }); 1065 if (std::optional<InstrProfOptions> Options = 1066 getInstrProfOptions(CodeGenOpts, LangOpts)) 1067 PB.registerPipelineStartEPCallback( 1068 [Options](ModulePassManager &MPM, OptimizationLevel Level) { 1069 MPM.addPass(InstrProfilingLoweringPass(*Options, false)); 1070 }); 1071 1072 // TODO: Consider passing the MemoryProfileOutput to the pass builder via 1073 // the PGOOptions, and set this up there. 1074 if (!CodeGenOpts.MemoryProfileOutput.empty()) { 1075 PB.registerOptimizerLastEPCallback([](ModulePassManager &MPM, 1076 OptimizationLevel Level, 1077 ThinOrFullLTOPhase) { 1078 MPM.addPass(createModuleToFunctionPassAdaptor(MemProfilerPass())); 1079 MPM.addPass(ModuleMemProfilerPass()); 1080 }); 1081 } 1082 1083 if (CodeGenOpts.FatLTO) { 1084 MPM.addPass(PB.buildFatLTODefaultPipeline( 1085 Level, PrepareForThinLTO, 1086 PrepareForThinLTO || shouldEmitRegularLTOSummary())); 1087 } else if (PrepareForThinLTO) { 1088 MPM.addPass(PB.buildThinLTOPreLinkDefaultPipeline(Level)); 1089 } else if (PrepareForLTO) { 1090 MPM.addPass(PB.buildLTOPreLinkDefaultPipeline(Level)); 1091 } else { 1092 MPM.addPass(PB.buildPerModuleDefaultPipeline(Level)); 1093 } 1094 } 1095 1096 // Link against bitcodes supplied via the -mlink-builtin-bitcode option 1097 if (CodeGenOpts.LinkBitcodePostopt) 1098 MPM.addPass(LinkInModulesPass(BC)); 1099 1100 // Add a verifier pass if requested. We don't have to do this if the action 1101 // requires code generation because there will already be a verifier pass in 1102 // the code-generation pipeline. 1103 // Since we already added a verifier pass above, this 1104 // might even not run the analysis, if previous passes caused no changes. 1105 if (!actionRequiresCodeGen(Action) && CodeGenOpts.VerifyModule) 1106 MPM.addPass(VerifierPass()); 1107 1108 if (Action == Backend_EmitBC || Action == Backend_EmitLL || 1109 CodeGenOpts.FatLTO) { 1110 if (CodeGenOpts.PrepareForThinLTO && !CodeGenOpts.DisableLLVMPasses) { 1111 if (!TheModule->getModuleFlag("EnableSplitLTOUnit")) 1112 TheModule->addModuleFlag(llvm::Module::Error, "EnableSplitLTOUnit", 1113 CodeGenOpts.EnableSplitLTOUnit); 1114 if (Action == Backend_EmitBC) { 1115 if (!CodeGenOpts.ThinLinkBitcodeFile.empty()) { 1116 ThinLinkOS = openOutputFile(CodeGenOpts.ThinLinkBitcodeFile); 1117 if (!ThinLinkOS) 1118 return; 1119 } 1120 MPM.addPass(ThinLTOBitcodeWriterPass( 1121 *OS, ThinLinkOS ? &ThinLinkOS->os() : nullptr)); 1122 } else if (Action == Backend_EmitLL) { 1123 MPM.addPass(PrintModulePass(*OS, "", CodeGenOpts.EmitLLVMUseLists, 1124 /*EmitLTOSummary=*/true)); 1125 } 1126 } else { 1127 // Emit a module summary by default for Regular LTO except for ld64 1128 // targets 1129 bool EmitLTOSummary = shouldEmitRegularLTOSummary(); 1130 if (EmitLTOSummary) { 1131 if (!TheModule->getModuleFlag("ThinLTO") && !CodeGenOpts.UnifiedLTO) 1132 TheModule->addModuleFlag(llvm::Module::Error, "ThinLTO", uint32_t(0)); 1133 if (!TheModule->getModuleFlag("EnableSplitLTOUnit")) 1134 TheModule->addModuleFlag(llvm::Module::Error, "EnableSplitLTOUnit", 1135 uint32_t(1)); 1136 } 1137 if (Action == Backend_EmitBC) { 1138 MPM.addPass(BitcodeWriterPass(*OS, CodeGenOpts.EmitLLVMUseLists, 1139 EmitLTOSummary)); 1140 } else if (Action == Backend_EmitLL) { 1141 MPM.addPass(PrintModulePass(*OS, "", CodeGenOpts.EmitLLVMUseLists, 1142 EmitLTOSummary)); 1143 } 1144 } 1145 1146 if (shouldEmitUnifiedLTOModueFlag()) 1147 TheModule->addModuleFlag(llvm::Module::Error, "UnifiedLTO", uint32_t(1)); 1148 } 1149 1150 // FIXME: This should eventually be replaced by a first-class driver option. 1151 // This should be done for both clang and flang simultaneously. 1152 // Print a textual, '-passes=' compatible, representation of pipeline if 1153 // requested. 1154 if (PrintPipelinePasses) { 1155 MPM.printPipeline(outs(), [&PIC](StringRef ClassName) { 1156 auto PassName = PIC.getPassNameForClassName(ClassName); 1157 return PassName.empty() ? ClassName : PassName; 1158 }); 1159 outs() << "\n"; 1160 return; 1161 } 1162 1163 if (LangOpts.HIPStdPar && !LangOpts.CUDAIsDevice && 1164 LangOpts.HIPStdParInterposeAlloc) 1165 MPM.addPass(HipStdParAllocationInterpositionPass()); 1166 1167 // Now that we have all of the passes ready, run them. 1168 { 1169 PrettyStackTraceString CrashInfo("Optimizer"); 1170 llvm::TimeTraceScope TimeScope("Optimizer"); 1171 Timer timer; 1172 if (CI.getCodeGenOpts().TimePasses) { 1173 timer.init("optimizer", "Optimizer", CI.getTimerGroup()); 1174 CI.getFrontendTimer().yieldTo(timer); 1175 } 1176 MPM.run(*TheModule, MAM); 1177 if (CI.getCodeGenOpts().TimePasses) 1178 timer.yieldTo(CI.getFrontendTimer()); 1179 } 1180 } 1181 1182 void EmitAssemblyHelper::RunCodegenPipeline( 1183 BackendAction Action, std::unique_ptr<raw_pwrite_stream> &OS, 1184 std::unique_ptr<llvm::ToolOutputFile> &DwoOS) { 1185 // We still use the legacy PM to run the codegen pipeline since the new PM 1186 // does not work with the codegen pipeline. 1187 // FIXME: make the new PM work with the codegen pipeline. 1188 legacy::PassManager CodeGenPasses; 1189 1190 // Append any output we need to the pass manager. 1191 switch (Action) { 1192 case Backend_EmitAssembly: 1193 case Backend_EmitMCNull: 1194 case Backend_EmitObj: 1195 CodeGenPasses.add( 1196 createTargetTransformInfoWrapperPass(getTargetIRAnalysis())); 1197 if (!CodeGenOpts.SplitDwarfOutput.empty()) { 1198 DwoOS = openOutputFile(CodeGenOpts.SplitDwarfOutput); 1199 if (!DwoOS) 1200 return; 1201 } 1202 if (!AddEmitPasses(CodeGenPasses, Action, *OS, 1203 DwoOS ? &DwoOS->os() : nullptr)) 1204 // FIXME: Should we handle this error differently? 1205 return; 1206 break; 1207 default: 1208 return; 1209 } 1210 1211 // If -print-pipeline-passes is requested, don't run the legacy pass manager. 1212 // FIXME: when codegen is switched to use the new pass manager, it should also 1213 // emit pass names here. 1214 if (PrintPipelinePasses) { 1215 return; 1216 } 1217 1218 { 1219 PrettyStackTraceString CrashInfo("Code generation"); 1220 llvm::TimeTraceScope TimeScope("CodeGenPasses"); 1221 Timer timer; 1222 if (CI.getCodeGenOpts().TimePasses) { 1223 timer.init("codegen", "Machine code generation", CI.getTimerGroup()); 1224 CI.getFrontendTimer().yieldTo(timer); 1225 } 1226 CodeGenPasses.run(*TheModule); 1227 if (CI.getCodeGenOpts().TimePasses) 1228 timer.yieldTo(CI.getFrontendTimer()); 1229 } 1230 } 1231 1232 void EmitAssemblyHelper::emitAssembly(BackendAction Action, 1233 std::unique_ptr<raw_pwrite_stream> OS, 1234 BackendConsumer *BC) { 1235 setCommandLineOpts(CodeGenOpts); 1236 1237 bool RequiresCodeGen = actionRequiresCodeGen(Action); 1238 CreateTargetMachine(RequiresCodeGen); 1239 1240 if (RequiresCodeGen && !TM) 1241 return; 1242 if (TM) 1243 TheModule->setDataLayout(TM->createDataLayout()); 1244 1245 // Before executing passes, print the final values of the LLVM options. 1246 cl::PrintOptionValues(); 1247 1248 std::unique_ptr<llvm::ToolOutputFile> ThinLinkOS, DwoOS; 1249 RunOptimizationPipeline(Action, OS, ThinLinkOS, BC); 1250 RunCodegenPipeline(Action, OS, DwoOS); 1251 1252 if (ThinLinkOS) 1253 ThinLinkOS->keep(); 1254 if (DwoOS) 1255 DwoOS->keep(); 1256 } 1257 1258 static void 1259 runThinLTOBackend(CompilerInstance &CI, ModuleSummaryIndex *CombinedIndex, 1260 llvm::Module *M, std::unique_ptr<raw_pwrite_stream> OS, 1261 std::string SampleProfile, std::string ProfileRemapping, 1262 BackendAction Action) { 1263 DiagnosticsEngine &Diags = CI.getDiagnostics(); 1264 const auto &CGOpts = CI.getCodeGenOpts(); 1265 const auto &TOpts = CI.getTargetOpts(); 1266 DenseMap<StringRef, DenseMap<GlobalValue::GUID, GlobalValueSummary *>> 1267 ModuleToDefinedGVSummaries; 1268 CombinedIndex->collectDefinedGVSummariesPerModule(ModuleToDefinedGVSummaries); 1269 1270 setCommandLineOpts(CGOpts); 1271 1272 // We can simply import the values mentioned in the combined index, since 1273 // we should only invoke this using the individual indexes written out 1274 // via a WriteIndexesThinBackend. 1275 FunctionImporter::ImportIDTable ImportIDs; 1276 FunctionImporter::ImportMapTy ImportList(ImportIDs); 1277 if (!lto::initImportList(*M, *CombinedIndex, ImportList)) 1278 return; 1279 1280 auto AddStream = [&](size_t Task, const Twine &ModuleName) { 1281 return std::make_unique<CachedFileStream>(std::move(OS), 1282 CGOpts.ObjectFilenameForDebug); 1283 }; 1284 lto::Config Conf; 1285 if (CGOpts.SaveTempsFilePrefix != "") { 1286 if (Error E = Conf.addSaveTemps(CGOpts.SaveTempsFilePrefix + ".", 1287 /* UseInputModulePath */ false)) { 1288 handleAllErrors(std::move(E), [&](ErrorInfoBase &EIB) { 1289 errs() << "Error setting up ThinLTO save-temps: " << EIB.message() 1290 << '\n'; 1291 }); 1292 } 1293 } 1294 Conf.CPU = TOpts.CPU; 1295 Conf.CodeModel = getCodeModel(CGOpts); 1296 Conf.MAttrs = TOpts.Features; 1297 Conf.RelocModel = CGOpts.RelocationModel; 1298 std::optional<CodeGenOptLevel> OptLevelOrNone = 1299 CodeGenOpt::getLevel(CGOpts.OptimizationLevel); 1300 assert(OptLevelOrNone && "Invalid optimization level!"); 1301 Conf.CGOptLevel = *OptLevelOrNone; 1302 Conf.OptLevel = CGOpts.OptimizationLevel; 1303 initTargetOptions(CI, Diags, Conf.Options); 1304 Conf.SampleProfile = std::move(SampleProfile); 1305 Conf.PTO.LoopUnrolling = CGOpts.UnrollLoops; 1306 // For historical reasons, loop interleaving is set to mirror setting for loop 1307 // unrolling. 1308 Conf.PTO.LoopInterleaving = CGOpts.UnrollLoops; 1309 Conf.PTO.LoopVectorization = CGOpts.VectorizeLoop; 1310 Conf.PTO.SLPVectorization = CGOpts.VectorizeSLP; 1311 // Only enable CGProfilePass when using integrated assembler, since 1312 // non-integrated assemblers don't recognize .cgprofile section. 1313 Conf.PTO.CallGraphProfile = !CGOpts.DisableIntegratedAS; 1314 1315 // Context sensitive profile. 1316 if (CGOpts.hasProfileCSIRInstr()) { 1317 Conf.RunCSIRInstr = true; 1318 Conf.CSIRProfile = std::move(CGOpts.InstrProfileOutput); 1319 } else if (CGOpts.hasProfileCSIRUse()) { 1320 Conf.RunCSIRInstr = false; 1321 Conf.CSIRProfile = std::move(CGOpts.ProfileInstrumentUsePath); 1322 } 1323 1324 Conf.ProfileRemapping = std::move(ProfileRemapping); 1325 Conf.DebugPassManager = CGOpts.DebugPassManager; 1326 Conf.VerifyEach = CGOpts.VerifyEach; 1327 Conf.RemarksWithHotness = CGOpts.DiagnosticsWithHotness; 1328 Conf.RemarksFilename = CGOpts.OptRecordFile; 1329 Conf.RemarksPasses = CGOpts.OptRecordPasses; 1330 Conf.RemarksFormat = CGOpts.OptRecordFormat; 1331 Conf.SplitDwarfFile = CGOpts.SplitDwarfFile; 1332 Conf.SplitDwarfOutput = CGOpts.SplitDwarfOutput; 1333 switch (Action) { 1334 case Backend_EmitNothing: 1335 Conf.PreCodeGenModuleHook = [](size_t Task, const llvm::Module &Mod) { 1336 return false; 1337 }; 1338 break; 1339 case Backend_EmitLL: 1340 Conf.PreCodeGenModuleHook = [&](size_t Task, const llvm::Module &Mod) { 1341 M->print(*OS, nullptr, CGOpts.EmitLLVMUseLists); 1342 return false; 1343 }; 1344 break; 1345 case Backend_EmitBC: 1346 Conf.PreCodeGenModuleHook = [&](size_t Task, const llvm::Module &Mod) { 1347 WriteBitcodeToFile(*M, *OS, CGOpts.EmitLLVMUseLists); 1348 return false; 1349 }; 1350 break; 1351 default: 1352 Conf.CGFileType = getCodeGenFileType(Action); 1353 break; 1354 } 1355 if (Error E = 1356 thinBackend(Conf, -1, AddStream, *M, *CombinedIndex, ImportList, 1357 ModuleToDefinedGVSummaries[M->getModuleIdentifier()], 1358 /*ModuleMap=*/nullptr, Conf.CodeGenOnly, 1359 /*IRAddStream=*/nullptr, CGOpts.CmdArgs)) { 1360 handleAllErrors(std::move(E), [&](ErrorInfoBase &EIB) { 1361 errs() << "Error running ThinLTO backend: " << EIB.message() << '\n'; 1362 }); 1363 } 1364 } 1365 1366 void clang::emitBackendOutput(CompilerInstance &CI, StringRef TDesc, 1367 llvm::Module *M, BackendAction Action, 1368 IntrusiveRefCntPtr<llvm::vfs::FileSystem> VFS, 1369 std::unique_ptr<raw_pwrite_stream> OS, 1370 BackendConsumer *BC) { 1371 llvm::TimeTraceScope TimeScope("Backend"); 1372 DiagnosticsEngine &Diags = CI.getDiagnostics(); 1373 const auto &CGOpts = CI.getCodeGenOpts(); 1374 1375 std::unique_ptr<llvm::Module> EmptyModule; 1376 if (!CGOpts.ThinLTOIndexFile.empty()) { 1377 // If we are performing a ThinLTO importing compile, load the function index 1378 // into memory and pass it into runThinLTOBackend, which will run the 1379 // function importer and invoke LTO passes. 1380 std::unique_ptr<ModuleSummaryIndex> CombinedIndex; 1381 if (Error E = llvm::getModuleSummaryIndexForFile( 1382 CGOpts.ThinLTOIndexFile, 1383 /*IgnoreEmptyThinLTOIndexFile*/ true) 1384 .moveInto(CombinedIndex)) { 1385 logAllUnhandledErrors(std::move(E), errs(), 1386 "Error loading index file '" + 1387 CGOpts.ThinLTOIndexFile + "': "); 1388 return; 1389 } 1390 1391 // A null CombinedIndex means we should skip ThinLTO compilation 1392 // (LLVM will optionally ignore empty index files, returning null instead 1393 // of an error). 1394 if (CombinedIndex) { 1395 if (!CombinedIndex->skipModuleByDistributedBackend()) { 1396 runThinLTOBackend(CI, CombinedIndex.get(), M, std::move(OS), 1397 CGOpts.SampleProfileFile, CGOpts.ProfileRemappingFile, 1398 Action); 1399 return; 1400 } 1401 // Distributed indexing detected that nothing from the module is needed 1402 // for the final linking. So we can skip the compilation. We sill need to 1403 // output an empty object file to make sure that a linker does not fail 1404 // trying to read it. Also for some features, like CFI, we must skip 1405 // the compilation as CombinedIndex does not contain all required 1406 // information. 1407 EmptyModule = std::make_unique<llvm::Module>("empty", M->getContext()); 1408 EmptyModule->setTargetTriple(M->getTargetTriple()); 1409 M = EmptyModule.get(); 1410 } 1411 } 1412 1413 EmitAssemblyHelper AsmHelper(CI, M, VFS); 1414 AsmHelper.emitAssembly(Action, std::move(OS), BC); 1415 1416 // Verify clang's TargetInfo DataLayout against the LLVM TargetMachine's 1417 // DataLayout. 1418 if (AsmHelper.TM) { 1419 std::string DLDesc = M->getDataLayout().getStringRepresentation(); 1420 if (DLDesc != TDesc) { 1421 unsigned DiagID = Diags.getCustomDiagID( 1422 DiagnosticsEngine::Error, "backend data layout '%0' does not match " 1423 "expected target description '%1'"); 1424 Diags.Report(DiagID) << DLDesc << TDesc; 1425 } 1426 } 1427 } 1428 1429 // With -fembed-bitcode, save a copy of the llvm IR as data in the 1430 // __LLVM,__bitcode section. 1431 void clang::EmbedBitcode(llvm::Module *M, const CodeGenOptions &CGOpts, 1432 llvm::MemoryBufferRef Buf) { 1433 if (CGOpts.getEmbedBitcode() == CodeGenOptions::Embed_Off) 1434 return; 1435 llvm::embedBitcodeInModule( 1436 *M, Buf, CGOpts.getEmbedBitcode() != CodeGenOptions::Embed_Marker, 1437 CGOpts.getEmbedBitcode() != CodeGenOptions::Embed_Bitcode, 1438 CGOpts.CmdArgs); 1439 } 1440 1441 void clang::EmbedObject(llvm::Module *M, const CodeGenOptions &CGOpts, 1442 DiagnosticsEngine &Diags) { 1443 if (CGOpts.OffloadObjects.empty()) 1444 return; 1445 1446 for (StringRef OffloadObject : CGOpts.OffloadObjects) { 1447 llvm::ErrorOr<std::unique_ptr<llvm::MemoryBuffer>> ObjectOrErr = 1448 llvm::MemoryBuffer::getFileOrSTDIN(OffloadObject); 1449 if (ObjectOrErr.getError()) { 1450 auto DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error, 1451 "could not open '%0' for embedding"); 1452 Diags.Report(DiagID) << OffloadObject; 1453 return; 1454 } 1455 1456 llvm::embedBufferInModule(*M, **ObjectOrErr, ".llvm.offloading", 1457 Align(object::OffloadBinary::getAlignment())); 1458 } 1459 } 1460