1 //===--- BackendUtil.cpp - LLVM Backend Utilities -------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "clang/CodeGen/BackendUtil.h" 10 #include "BackendConsumer.h" 11 #include "LinkInModulesPass.h" 12 #include "clang/Basic/CodeGenOptions.h" 13 #include "clang/Basic/Diagnostic.h" 14 #include "clang/Basic/LangOptions.h" 15 #include "clang/Basic/TargetOptions.h" 16 #include "clang/Frontend/FrontendDiagnostic.h" 17 #include "clang/Frontend/Utils.h" 18 #include "clang/Lex/HeaderSearchOptions.h" 19 #include "llvm/ADT/StringExtras.h" 20 #include "llvm/ADT/StringSwitch.h" 21 #include "llvm/Analysis/GlobalsModRef.h" 22 #include "llvm/Analysis/TargetLibraryInfo.h" 23 #include "llvm/Analysis/TargetTransformInfo.h" 24 #include "llvm/Bitcode/BitcodeReader.h" 25 #include "llvm/Bitcode/BitcodeWriter.h" 26 #include "llvm/Bitcode/BitcodeWriterPass.h" 27 #include "llvm/CodeGen/TargetSubtargetInfo.h" 28 #include "llvm/Frontend/Driver/CodeGenOptions.h" 29 #include "llvm/IR/DataLayout.h" 30 #include "llvm/IR/DebugInfo.h" 31 #include "llvm/IR/LegacyPassManager.h" 32 #include "llvm/IR/Module.h" 33 #include "llvm/IR/ModuleSummaryIndex.h" 34 #include "llvm/IR/PassManager.h" 35 #include "llvm/IR/Verifier.h" 36 #include "llvm/IRPrinter/IRPrintingPasses.h" 37 #include "llvm/LTO/LTOBackend.h" 38 #include "llvm/MC/TargetRegistry.h" 39 #include "llvm/Object/OffloadBinary.h" 40 #include "llvm/Passes/PassBuilder.h" 41 #include "llvm/Passes/PassPlugin.h" 42 #include "llvm/Passes/StandardInstrumentations.h" 43 #include "llvm/ProfileData/InstrProfCorrelator.h" 44 #include "llvm/Support/BuryPointer.h" 45 #include "llvm/Support/CommandLine.h" 46 #include "llvm/Support/MemoryBuffer.h" 47 #include "llvm/Support/PrettyStackTrace.h" 48 #include "llvm/Support/Program.h" 49 #include "llvm/Support/TimeProfiler.h" 50 #include "llvm/Support/Timer.h" 51 #include "llvm/Support/ToolOutputFile.h" 52 #include "llvm/Support/VirtualFileSystem.h" 53 #include "llvm/Support/raw_ostream.h" 54 #include "llvm/Target/TargetMachine.h" 55 #include "llvm/Target/TargetOptions.h" 56 #include "llvm/TargetParser/SubtargetFeature.h" 57 #include "llvm/TargetParser/Triple.h" 58 #include "llvm/Transforms/HipStdPar/HipStdPar.h" 59 #include "llvm/Transforms/IPO/EmbedBitcodePass.h" 60 #include "llvm/Transforms/IPO/LowerTypeTests.h" 61 #include "llvm/Transforms/IPO/ThinLTOBitcodeWriter.h" 62 #include "llvm/Transforms/InstCombine/InstCombine.h" 63 #include "llvm/Transforms/Instrumentation/AddressSanitizer.h" 64 #include "llvm/Transforms/Instrumentation/AddressSanitizerOptions.h" 65 #include "llvm/Transforms/Instrumentation/BoundsChecking.h" 66 #include "llvm/Transforms/Instrumentation/DataFlowSanitizer.h" 67 #include "llvm/Transforms/Instrumentation/GCOVProfiler.h" 68 #include "llvm/Transforms/Instrumentation/HWAddressSanitizer.h" 69 #include "llvm/Transforms/Instrumentation/InstrProfiling.h" 70 #include "llvm/Transforms/Instrumentation/KCFI.h" 71 #include "llvm/Transforms/Instrumentation/LowerAllowCheckPass.h" 72 #include "llvm/Transforms/Instrumentation/MemProfiler.h" 73 #include "llvm/Transforms/Instrumentation/MemorySanitizer.h" 74 #include "llvm/Transforms/Instrumentation/NumericalStabilitySanitizer.h" 75 #include "llvm/Transforms/Instrumentation/PGOInstrumentation.h" 76 #include "llvm/Transforms/Instrumentation/RealtimeSanitizer.h" 77 #include "llvm/Transforms/Instrumentation/SanitizerBinaryMetadata.h" 78 #include "llvm/Transforms/Instrumentation/SanitizerCoverage.h" 79 #include "llvm/Transforms/Instrumentation/ThreadSanitizer.h" 80 #include "llvm/Transforms/Instrumentation/TypeSanitizer.h" 81 #include "llvm/Transforms/ObjCARC.h" 82 #include "llvm/Transforms/Scalar/EarlyCSE.h" 83 #include "llvm/Transforms/Scalar/GVN.h" 84 #include "llvm/Transforms/Scalar/JumpThreading.h" 85 #include "llvm/Transforms/Utils/Debugify.h" 86 #include "llvm/Transforms/Utils/ModuleUtils.h" 87 #include <memory> 88 #include <optional> 89 using namespace clang; 90 using namespace llvm; 91 92 #define HANDLE_EXTENSION(Ext) \ 93 llvm::PassPluginLibraryInfo get##Ext##PluginInfo(); 94 #include "llvm/Support/Extension.def" 95 96 namespace llvm { 97 extern cl::opt<bool> PrintPipelinePasses; 98 99 // Experiment to move sanitizers earlier. 100 static cl::opt<bool> ClSanitizeOnOptimizerEarlyEP( 101 "sanitizer-early-opt-ep", cl::Optional, 102 cl::desc("Insert sanitizers on OptimizerEarlyEP.")); 103 104 // Experiment to mark cold functions as optsize/minsize/optnone. 105 // TODO: remove once this is exposed as a proper driver flag. 106 static cl::opt<PGOOptions::ColdFuncOpt> ClPGOColdFuncAttr( 107 "pgo-cold-func-opt", cl::init(PGOOptions::ColdFuncOpt::Default), cl::Hidden, 108 cl::desc( 109 "Function attribute to apply to cold functions as determined by PGO"), 110 cl::values(clEnumValN(PGOOptions::ColdFuncOpt::Default, "default", 111 "Default (no attribute)"), 112 clEnumValN(PGOOptions::ColdFuncOpt::OptSize, "optsize", 113 "Mark cold functions with optsize."), 114 clEnumValN(PGOOptions::ColdFuncOpt::MinSize, "minsize", 115 "Mark cold functions with minsize."), 116 clEnumValN(PGOOptions::ColdFuncOpt::OptNone, "optnone", 117 "Mark cold functions with optnone."))); 118 119 extern cl::opt<InstrProfCorrelator::ProfCorrelatorKind> ProfileCorrelate; 120 } // namespace llvm 121 122 namespace { 123 124 // Default filename used for profile generation. 125 std::string getDefaultProfileGenName() { 126 return DebugInfoCorrelate || ProfileCorrelate != InstrProfCorrelator::NONE 127 ? "default_%m.proflite" 128 : "default_%m.profraw"; 129 } 130 131 class EmitAssemblyHelper { 132 CompilerInstance &CI; 133 DiagnosticsEngine &Diags; 134 const CodeGenOptions &CodeGenOpts; 135 const clang::TargetOptions &TargetOpts; 136 const LangOptions &LangOpts; 137 llvm::Module *TheModule; 138 IntrusiveRefCntPtr<llvm::vfs::FileSystem> VFS; 139 140 Timer CodeGenerationTime; 141 142 std::unique_ptr<raw_pwrite_stream> OS; 143 144 Triple TargetTriple; 145 146 TargetIRAnalysis getTargetIRAnalysis() const { 147 if (TM) 148 return TM->getTargetIRAnalysis(); 149 150 return TargetIRAnalysis(); 151 } 152 153 /// Generates the TargetMachine. 154 /// Leaves TM unchanged if it is unable to create the target machine. 155 /// Some of our clang tests specify triples which are not built 156 /// into clang. This is okay because these tests check the generated 157 /// IR, and they require DataLayout which depends on the triple. 158 /// In this case, we allow this method to fail and not report an error. 159 /// When MustCreateTM is used, we print an error if we are unable to load 160 /// the requested target. 161 void CreateTargetMachine(bool MustCreateTM); 162 163 /// Add passes necessary to emit assembly or LLVM IR. 164 /// 165 /// \return True on success. 166 bool AddEmitPasses(legacy::PassManager &CodeGenPasses, BackendAction Action, 167 raw_pwrite_stream &OS, raw_pwrite_stream *DwoOS); 168 169 std::unique_ptr<llvm::ToolOutputFile> openOutputFile(StringRef Path) { 170 std::error_code EC; 171 auto F = std::make_unique<llvm::ToolOutputFile>(Path, EC, 172 llvm::sys::fs::OF_None); 173 if (EC) { 174 Diags.Report(diag::err_fe_unable_to_open_output) << Path << EC.message(); 175 F.reset(); 176 } 177 return F; 178 } 179 180 void RunOptimizationPipeline( 181 BackendAction Action, std::unique_ptr<raw_pwrite_stream> &OS, 182 std::unique_ptr<llvm::ToolOutputFile> &ThinLinkOS, BackendConsumer *BC); 183 void RunCodegenPipeline(BackendAction Action, 184 std::unique_ptr<raw_pwrite_stream> &OS, 185 std::unique_ptr<llvm::ToolOutputFile> &DwoOS); 186 187 /// Check whether we should emit a module summary for regular LTO. 188 /// The module summary should be emitted by default for regular LTO 189 /// except for ld64 targets. 190 /// 191 /// \return True if the module summary should be emitted. 192 bool shouldEmitRegularLTOSummary() const { 193 return CodeGenOpts.PrepareForLTO && !CodeGenOpts.DisableLLVMPasses && 194 TargetTriple.getVendor() != llvm::Triple::Apple; 195 } 196 197 /// Check whether we should emit a flag for UnifiedLTO. 198 /// The UnifiedLTO module flag should be set when UnifiedLTO is enabled for 199 /// ThinLTO or Full LTO with module summaries. 200 bool shouldEmitUnifiedLTOModueFlag() const { 201 return CodeGenOpts.UnifiedLTO && 202 (CodeGenOpts.PrepareForThinLTO || shouldEmitRegularLTOSummary()); 203 } 204 205 public: 206 EmitAssemblyHelper(CompilerInstance &CI, llvm::Module *M, 207 IntrusiveRefCntPtr<llvm::vfs::FileSystem> VFS) 208 : CI(CI), Diags(CI.getDiagnostics()), CodeGenOpts(CI.getCodeGenOpts()), 209 TargetOpts(CI.getTargetOpts()), LangOpts(CI.getLangOpts()), 210 TheModule(M), VFS(std::move(VFS)), 211 TargetTriple(TheModule->getTargetTriple()) {} 212 213 ~EmitAssemblyHelper() { 214 if (CodeGenOpts.DisableFree) 215 BuryPointer(std::move(TM)); 216 } 217 218 std::unique_ptr<TargetMachine> TM; 219 220 // Emit output using the new pass manager for the optimization pipeline. 221 void emitAssembly(BackendAction Action, std::unique_ptr<raw_pwrite_stream> OS, 222 BackendConsumer *BC); 223 }; 224 } // namespace 225 226 static SanitizerCoverageOptions 227 getSancovOptsFromCGOpts(const CodeGenOptions &CGOpts) { 228 SanitizerCoverageOptions Opts; 229 Opts.CoverageType = 230 static_cast<SanitizerCoverageOptions::Type>(CGOpts.SanitizeCoverageType); 231 Opts.IndirectCalls = CGOpts.SanitizeCoverageIndirectCalls; 232 Opts.TraceBB = CGOpts.SanitizeCoverageTraceBB; 233 Opts.TraceCmp = CGOpts.SanitizeCoverageTraceCmp; 234 Opts.TraceDiv = CGOpts.SanitizeCoverageTraceDiv; 235 Opts.TraceGep = CGOpts.SanitizeCoverageTraceGep; 236 Opts.Use8bitCounters = CGOpts.SanitizeCoverage8bitCounters; 237 Opts.TracePC = CGOpts.SanitizeCoverageTracePC; 238 Opts.TracePCGuard = CGOpts.SanitizeCoverageTracePCGuard; 239 Opts.NoPrune = CGOpts.SanitizeCoverageNoPrune; 240 Opts.Inline8bitCounters = CGOpts.SanitizeCoverageInline8bitCounters; 241 Opts.InlineBoolFlag = CGOpts.SanitizeCoverageInlineBoolFlag; 242 Opts.PCTable = CGOpts.SanitizeCoveragePCTable; 243 Opts.StackDepth = CGOpts.SanitizeCoverageStackDepth; 244 Opts.TraceLoads = CGOpts.SanitizeCoverageTraceLoads; 245 Opts.TraceStores = CGOpts.SanitizeCoverageTraceStores; 246 Opts.CollectControlFlow = CGOpts.SanitizeCoverageControlFlow; 247 return Opts; 248 } 249 250 static SanitizerBinaryMetadataOptions 251 getSanitizerBinaryMetadataOptions(const CodeGenOptions &CGOpts) { 252 SanitizerBinaryMetadataOptions Opts; 253 Opts.Covered = CGOpts.SanitizeBinaryMetadataCovered; 254 Opts.Atomics = CGOpts.SanitizeBinaryMetadataAtomics; 255 Opts.UAR = CGOpts.SanitizeBinaryMetadataUAR; 256 return Opts; 257 } 258 259 // Check if ASan should use GC-friendly instrumentation for globals. 260 // First of all, there is no point if -fdata-sections is off (expect for MachO, 261 // where this is not a factor). Also, on ELF this feature requires an assembler 262 // extension that only works with -integrated-as at the moment. 263 static bool asanUseGlobalsGC(const Triple &T, const CodeGenOptions &CGOpts) { 264 if (!CGOpts.SanitizeAddressGlobalsDeadStripping) 265 return false; 266 switch (T.getObjectFormat()) { 267 case Triple::MachO: 268 case Triple::COFF: 269 return true; 270 case Triple::ELF: 271 return !CGOpts.DisableIntegratedAS; 272 case Triple::GOFF: 273 llvm::report_fatal_error("ASan not implemented for GOFF"); 274 case Triple::XCOFF: 275 llvm::report_fatal_error("ASan not implemented for XCOFF."); 276 case Triple::Wasm: 277 case Triple::DXContainer: 278 case Triple::SPIRV: 279 case Triple::UnknownObjectFormat: 280 break; 281 } 282 return false; 283 } 284 285 static std::optional<llvm::CodeModel::Model> 286 getCodeModel(const CodeGenOptions &CodeGenOpts) { 287 unsigned CodeModel = llvm::StringSwitch<unsigned>(CodeGenOpts.CodeModel) 288 .Case("tiny", llvm::CodeModel::Tiny) 289 .Case("small", llvm::CodeModel::Small) 290 .Case("kernel", llvm::CodeModel::Kernel) 291 .Case("medium", llvm::CodeModel::Medium) 292 .Case("large", llvm::CodeModel::Large) 293 .Case("default", ~1u) 294 .Default(~0u); 295 assert(CodeModel != ~0u && "invalid code model!"); 296 if (CodeModel == ~1u) 297 return std::nullopt; 298 return static_cast<llvm::CodeModel::Model>(CodeModel); 299 } 300 301 static CodeGenFileType getCodeGenFileType(BackendAction Action) { 302 if (Action == Backend_EmitObj) 303 return CodeGenFileType::ObjectFile; 304 else if (Action == Backend_EmitMCNull) 305 return CodeGenFileType::Null; 306 else { 307 assert(Action == Backend_EmitAssembly && "Invalid action!"); 308 return CodeGenFileType::AssemblyFile; 309 } 310 } 311 312 static bool actionRequiresCodeGen(BackendAction Action) { 313 return Action != Backend_EmitNothing && Action != Backend_EmitBC && 314 Action != Backend_EmitLL; 315 } 316 317 static std::string flattenClangCommandLine(ArrayRef<std::string> Args, 318 StringRef MainFilename) { 319 if (Args.empty()) 320 return std::string{}; 321 322 std::string FlatCmdLine; 323 raw_string_ostream OS(FlatCmdLine); 324 bool PrintedOneArg = false; 325 if (!StringRef(Args[0]).contains("-cc1")) { 326 llvm::sys::printArg(OS, "-cc1", /*Quote=*/true); 327 PrintedOneArg = true; 328 } 329 for (unsigned i = 0; i < Args.size(); i++) { 330 StringRef Arg = Args[i]; 331 if (Arg.empty()) 332 continue; 333 if (Arg == "-main-file-name" || Arg == "-o") { 334 i++; // Skip this argument and next one. 335 continue; 336 } 337 if (Arg.starts_with("-object-file-name") || Arg == MainFilename) 338 continue; 339 // Skip fmessage-length for reproducibility. 340 if (Arg.starts_with("-fmessage-length")) 341 continue; 342 if (PrintedOneArg) 343 OS << " "; 344 llvm::sys::printArg(OS, Arg, /*Quote=*/true); 345 PrintedOneArg = true; 346 } 347 return FlatCmdLine; 348 } 349 350 static bool initTargetOptions(const CompilerInstance &CI, 351 DiagnosticsEngine &Diags, 352 llvm::TargetOptions &Options) { 353 const auto &CodeGenOpts = CI.getCodeGenOpts(); 354 const auto &TargetOpts = CI.getTargetOpts(); 355 const auto &LangOpts = CI.getLangOpts(); 356 const auto &HSOpts = CI.getHeaderSearchOpts(); 357 switch (LangOpts.getThreadModel()) { 358 case LangOptions::ThreadModelKind::POSIX: 359 Options.ThreadModel = llvm::ThreadModel::POSIX; 360 break; 361 case LangOptions::ThreadModelKind::Single: 362 Options.ThreadModel = llvm::ThreadModel::Single; 363 break; 364 } 365 366 // Set float ABI type. 367 assert((CodeGenOpts.FloatABI == "soft" || CodeGenOpts.FloatABI == "softfp" || 368 CodeGenOpts.FloatABI == "hard" || CodeGenOpts.FloatABI.empty()) && 369 "Invalid Floating Point ABI!"); 370 Options.FloatABIType = 371 llvm::StringSwitch<llvm::FloatABI::ABIType>(CodeGenOpts.FloatABI) 372 .Case("soft", llvm::FloatABI::Soft) 373 .Case("softfp", llvm::FloatABI::Soft) 374 .Case("hard", llvm::FloatABI::Hard) 375 .Default(llvm::FloatABI::Default); 376 377 // Set FP fusion mode. 378 switch (LangOpts.getDefaultFPContractMode()) { 379 case LangOptions::FPM_Off: 380 // Preserve any contraction performed by the front-end. (Strict performs 381 // splitting of the muladd intrinsic in the backend.) 382 Options.AllowFPOpFusion = llvm::FPOpFusion::Standard; 383 break; 384 case LangOptions::FPM_On: 385 case LangOptions::FPM_FastHonorPragmas: 386 Options.AllowFPOpFusion = llvm::FPOpFusion::Standard; 387 break; 388 case LangOptions::FPM_Fast: 389 Options.AllowFPOpFusion = llvm::FPOpFusion::Fast; 390 break; 391 } 392 393 Options.BinutilsVersion = 394 llvm::TargetMachine::parseBinutilsVersion(CodeGenOpts.BinutilsVersion); 395 Options.UseInitArray = CodeGenOpts.UseInitArray; 396 Options.DisableIntegratedAS = CodeGenOpts.DisableIntegratedAS; 397 398 // Set EABI version. 399 Options.EABIVersion = TargetOpts.EABIVersion; 400 401 if (LangOpts.hasSjLjExceptions()) 402 Options.ExceptionModel = llvm::ExceptionHandling::SjLj; 403 if (LangOpts.hasSEHExceptions()) 404 Options.ExceptionModel = llvm::ExceptionHandling::WinEH; 405 if (LangOpts.hasDWARFExceptions()) 406 Options.ExceptionModel = llvm::ExceptionHandling::DwarfCFI; 407 if (LangOpts.hasWasmExceptions()) 408 Options.ExceptionModel = llvm::ExceptionHandling::Wasm; 409 410 Options.NoInfsFPMath = LangOpts.NoHonorInfs; 411 Options.NoNaNsFPMath = LangOpts.NoHonorNaNs; 412 Options.NoZerosInBSS = CodeGenOpts.NoZeroInitializedInBSS; 413 Options.UnsafeFPMath = LangOpts.AllowFPReassoc && LangOpts.AllowRecip && 414 LangOpts.NoSignedZero && LangOpts.ApproxFunc && 415 (LangOpts.getDefaultFPContractMode() == 416 LangOptions::FPModeKind::FPM_Fast || 417 LangOpts.getDefaultFPContractMode() == 418 LangOptions::FPModeKind::FPM_FastHonorPragmas); 419 Options.ApproxFuncFPMath = LangOpts.ApproxFunc; 420 421 Options.BBAddrMap = CodeGenOpts.BBAddrMap; 422 Options.BBSections = 423 llvm::StringSwitch<llvm::BasicBlockSection>(CodeGenOpts.BBSections) 424 .Case("all", llvm::BasicBlockSection::All) 425 .StartsWith("list=", llvm::BasicBlockSection::List) 426 .Case("none", llvm::BasicBlockSection::None) 427 .Default(llvm::BasicBlockSection::None); 428 429 if (Options.BBSections == llvm::BasicBlockSection::List) { 430 ErrorOr<std::unique_ptr<MemoryBuffer>> MBOrErr = 431 MemoryBuffer::getFile(CodeGenOpts.BBSections.substr(5)); 432 if (!MBOrErr) { 433 Diags.Report(diag::err_fe_unable_to_load_basic_block_sections_file) 434 << MBOrErr.getError().message(); 435 return false; 436 } 437 Options.BBSectionsFuncListBuf = std::move(*MBOrErr); 438 } 439 440 Options.EnableMachineFunctionSplitter = CodeGenOpts.SplitMachineFunctions; 441 Options.FunctionSections = CodeGenOpts.FunctionSections; 442 Options.DataSections = CodeGenOpts.DataSections; 443 Options.IgnoreXCOFFVisibility = LangOpts.IgnoreXCOFFVisibility; 444 Options.UniqueSectionNames = CodeGenOpts.UniqueSectionNames; 445 Options.UniqueBasicBlockSectionNames = 446 CodeGenOpts.UniqueBasicBlockSectionNames; 447 Options.SeparateNamedSections = CodeGenOpts.SeparateNamedSections; 448 Options.TLSSize = CodeGenOpts.TLSSize; 449 Options.EnableTLSDESC = CodeGenOpts.EnableTLSDESC; 450 Options.EmulatedTLS = CodeGenOpts.EmulatedTLS; 451 Options.DebuggerTuning = CodeGenOpts.getDebuggerTuning(); 452 Options.EmitStackSizeSection = CodeGenOpts.StackSizeSection; 453 Options.StackUsageOutput = CodeGenOpts.StackUsageOutput; 454 Options.EmitAddrsig = CodeGenOpts.Addrsig; 455 Options.ForceDwarfFrameSection = CodeGenOpts.ForceDwarfFrameSection; 456 Options.EmitCallSiteInfo = CodeGenOpts.EmitCallSiteInfo; 457 Options.EnableAIXExtendedAltivecABI = LangOpts.EnableAIXExtendedAltivecABI; 458 Options.XRayFunctionIndex = CodeGenOpts.XRayFunctionIndex; 459 Options.LoopAlignment = CodeGenOpts.LoopAlignment; 460 Options.DebugStrictDwarf = CodeGenOpts.DebugStrictDwarf; 461 Options.ObjectFilenameForDebug = CodeGenOpts.ObjectFilenameForDebug; 462 Options.Hotpatch = CodeGenOpts.HotPatch; 463 Options.JMCInstrument = CodeGenOpts.JMCInstrument; 464 Options.XCOFFReadOnlyPointers = CodeGenOpts.XCOFFReadOnlyPointers; 465 466 switch (CodeGenOpts.getSwiftAsyncFramePointer()) { 467 case CodeGenOptions::SwiftAsyncFramePointerKind::Auto: 468 Options.SwiftAsyncFramePointer = 469 SwiftAsyncFramePointerMode::DeploymentBased; 470 break; 471 472 case CodeGenOptions::SwiftAsyncFramePointerKind::Always: 473 Options.SwiftAsyncFramePointer = SwiftAsyncFramePointerMode::Always; 474 break; 475 476 case CodeGenOptions::SwiftAsyncFramePointerKind::Never: 477 Options.SwiftAsyncFramePointer = SwiftAsyncFramePointerMode::Never; 478 break; 479 } 480 481 Options.MCOptions.SplitDwarfFile = CodeGenOpts.SplitDwarfFile; 482 Options.MCOptions.EmitDwarfUnwind = CodeGenOpts.getEmitDwarfUnwind(); 483 Options.MCOptions.EmitCompactUnwindNonCanonical = 484 CodeGenOpts.EmitCompactUnwindNonCanonical; 485 Options.MCOptions.MCRelaxAll = CodeGenOpts.RelaxAll; 486 Options.MCOptions.MCSaveTempLabels = CodeGenOpts.SaveTempLabels; 487 Options.MCOptions.MCUseDwarfDirectory = 488 CodeGenOpts.NoDwarfDirectoryAsm 489 ? llvm::MCTargetOptions::DisableDwarfDirectory 490 : llvm::MCTargetOptions::EnableDwarfDirectory; 491 Options.MCOptions.MCNoExecStack = CodeGenOpts.NoExecStack; 492 Options.MCOptions.MCIncrementalLinkerCompatible = 493 CodeGenOpts.IncrementalLinkerCompatible; 494 Options.MCOptions.MCFatalWarnings = CodeGenOpts.FatalWarnings; 495 Options.MCOptions.MCNoWarn = CodeGenOpts.NoWarn; 496 Options.MCOptions.AsmVerbose = CodeGenOpts.AsmVerbose; 497 Options.MCOptions.Dwarf64 = CodeGenOpts.Dwarf64; 498 Options.MCOptions.PreserveAsmComments = CodeGenOpts.PreserveAsmComments; 499 Options.MCOptions.Crel = CodeGenOpts.Crel; 500 Options.MCOptions.ImplicitMapSyms = CodeGenOpts.ImplicitMapSyms; 501 Options.MCOptions.X86RelaxRelocations = CodeGenOpts.X86RelaxRelocations; 502 Options.MCOptions.CompressDebugSections = 503 CodeGenOpts.getCompressDebugSections(); 504 if (CodeGenOpts.OutputAsmVariant != 3) // 3 (default): not specified 505 Options.MCOptions.OutputAsmVariant = CodeGenOpts.OutputAsmVariant; 506 Options.MCOptions.ABIName = TargetOpts.ABI; 507 for (const auto &Entry : HSOpts.UserEntries) 508 if (!Entry.IsFramework && 509 (Entry.Group == frontend::IncludeDirGroup::Quoted || 510 Entry.Group == frontend::IncludeDirGroup::Angled || 511 Entry.Group == frontend::IncludeDirGroup::System)) 512 Options.MCOptions.IASSearchPaths.push_back( 513 Entry.IgnoreSysRoot ? Entry.Path : HSOpts.Sysroot + Entry.Path); 514 Options.MCOptions.Argv0 = CodeGenOpts.Argv0 ? CodeGenOpts.Argv0 : ""; 515 Options.MCOptions.CommandlineArgs = flattenClangCommandLine( 516 CodeGenOpts.CommandLineArgs, CodeGenOpts.MainFileName); 517 Options.MCOptions.AsSecureLogFile = CodeGenOpts.AsSecureLogFile; 518 Options.MCOptions.PPCUseFullRegisterNames = 519 CodeGenOpts.PPCUseFullRegisterNames; 520 Options.MisExpect = CodeGenOpts.MisExpect; 521 522 return true; 523 } 524 525 static std::optional<GCOVOptions> 526 getGCOVOptions(const CodeGenOptions &CodeGenOpts, const LangOptions &LangOpts) { 527 if (CodeGenOpts.CoverageNotesFile.empty() && 528 CodeGenOpts.CoverageDataFile.empty()) 529 return std::nullopt; 530 // Not using 'GCOVOptions::getDefault' allows us to avoid exiting if 531 // LLVM's -default-gcov-version flag is set to something invalid. 532 GCOVOptions Options; 533 Options.EmitNotes = !CodeGenOpts.CoverageNotesFile.empty(); 534 Options.EmitData = !CodeGenOpts.CoverageDataFile.empty(); 535 llvm::copy(CodeGenOpts.CoverageVersion, std::begin(Options.Version)); 536 Options.NoRedZone = CodeGenOpts.DisableRedZone; 537 Options.Filter = CodeGenOpts.ProfileFilterFiles; 538 Options.Exclude = CodeGenOpts.ProfileExcludeFiles; 539 Options.Atomic = CodeGenOpts.AtomicProfileUpdate; 540 return Options; 541 } 542 543 static std::optional<InstrProfOptions> 544 getInstrProfOptions(const CodeGenOptions &CodeGenOpts, 545 const LangOptions &LangOpts) { 546 if (!CodeGenOpts.hasProfileClangInstr()) 547 return std::nullopt; 548 InstrProfOptions Options; 549 Options.NoRedZone = CodeGenOpts.DisableRedZone; 550 Options.InstrProfileOutput = CodeGenOpts.InstrProfileOutput; 551 Options.Atomic = CodeGenOpts.AtomicProfileUpdate; 552 return Options; 553 } 554 555 static void setCommandLineOpts(const CodeGenOptions &CodeGenOpts) { 556 SmallVector<const char *, 16> BackendArgs; 557 BackendArgs.push_back("clang"); // Fake program name. 558 if (!CodeGenOpts.DebugPass.empty()) { 559 BackendArgs.push_back("-debug-pass"); 560 BackendArgs.push_back(CodeGenOpts.DebugPass.c_str()); 561 } 562 if (!CodeGenOpts.LimitFloatPrecision.empty()) { 563 BackendArgs.push_back("-limit-float-precision"); 564 BackendArgs.push_back(CodeGenOpts.LimitFloatPrecision.c_str()); 565 } 566 // Check for the default "clang" invocation that won't set any cl::opt values. 567 // Skip trying to parse the command line invocation to avoid the issues 568 // described below. 569 if (BackendArgs.size() == 1) 570 return; 571 BackendArgs.push_back(nullptr); 572 // FIXME: The command line parser below is not thread-safe and shares a global 573 // state, so this call might crash or overwrite the options of another Clang 574 // instance in the same process. 575 llvm::cl::ParseCommandLineOptions(BackendArgs.size() - 1, 576 BackendArgs.data()); 577 } 578 579 void EmitAssemblyHelper::CreateTargetMachine(bool MustCreateTM) { 580 // Create the TargetMachine for generating code. 581 std::string Error; 582 std::string Triple = TheModule->getTargetTriple(); 583 const llvm::Target *TheTarget = TargetRegistry::lookupTarget(Triple, Error); 584 if (!TheTarget) { 585 if (MustCreateTM) 586 Diags.Report(diag::err_fe_unable_to_create_target) << Error; 587 return; 588 } 589 590 std::optional<llvm::CodeModel::Model> CM = getCodeModel(CodeGenOpts); 591 std::string FeaturesStr = 592 llvm::join(TargetOpts.Features.begin(), TargetOpts.Features.end(), ","); 593 llvm::Reloc::Model RM = CodeGenOpts.RelocationModel; 594 std::optional<CodeGenOptLevel> OptLevelOrNone = 595 CodeGenOpt::getLevel(CodeGenOpts.OptimizationLevel); 596 assert(OptLevelOrNone && "Invalid optimization level!"); 597 CodeGenOptLevel OptLevel = *OptLevelOrNone; 598 599 llvm::TargetOptions Options; 600 if (!initTargetOptions(CI, Diags, Options)) 601 return; 602 TM.reset(TheTarget->createTargetMachine(Triple, TargetOpts.CPU, FeaturesStr, 603 Options, RM, CM, OptLevel)); 604 TM->setLargeDataThreshold(CodeGenOpts.LargeDataThreshold); 605 } 606 607 bool EmitAssemblyHelper::AddEmitPasses(legacy::PassManager &CodeGenPasses, 608 BackendAction Action, 609 raw_pwrite_stream &OS, 610 raw_pwrite_stream *DwoOS) { 611 // Add LibraryInfo. 612 std::unique_ptr<TargetLibraryInfoImpl> TLII( 613 llvm::driver::createTLII(TargetTriple, CodeGenOpts.getVecLib())); 614 CodeGenPasses.add(new TargetLibraryInfoWrapperPass(*TLII)); 615 616 // Normal mode, emit a .s or .o file by running the code generator. Note, 617 // this also adds codegenerator level optimization passes. 618 CodeGenFileType CGFT = getCodeGenFileType(Action); 619 620 if (TM->addPassesToEmitFile(CodeGenPasses, OS, DwoOS, CGFT, 621 /*DisableVerify=*/!CodeGenOpts.VerifyModule)) { 622 Diags.Report(diag::err_fe_unable_to_interface_with_target); 623 return false; 624 } 625 626 return true; 627 } 628 629 static OptimizationLevel mapToLevel(const CodeGenOptions &Opts) { 630 switch (Opts.OptimizationLevel) { 631 default: 632 llvm_unreachable("Invalid optimization level!"); 633 634 case 0: 635 return OptimizationLevel::O0; 636 637 case 1: 638 return OptimizationLevel::O1; 639 640 case 2: 641 switch (Opts.OptimizeSize) { 642 default: 643 llvm_unreachable("Invalid optimization level for size!"); 644 645 case 0: 646 return OptimizationLevel::O2; 647 648 case 1: 649 return OptimizationLevel::Os; 650 651 case 2: 652 return OptimizationLevel::Oz; 653 } 654 655 case 3: 656 return OptimizationLevel::O3; 657 } 658 } 659 660 static void addKCFIPass(const Triple &TargetTriple, const LangOptions &LangOpts, 661 PassBuilder &PB) { 662 // If the back-end supports KCFI operand bundle lowering, skip KCFIPass. 663 if (TargetTriple.getArch() == llvm::Triple::x86_64 || 664 TargetTriple.isAArch64(64) || TargetTriple.isRISCV()) 665 return; 666 667 // Ensure we lower KCFI operand bundles with -O0. 668 PB.registerOptimizerLastEPCallback( 669 [&](ModulePassManager &MPM, OptimizationLevel Level, ThinOrFullLTOPhase) { 670 if (Level == OptimizationLevel::O0 && 671 LangOpts.Sanitize.has(SanitizerKind::KCFI)) 672 MPM.addPass(createModuleToFunctionPassAdaptor(KCFIPass())); 673 }); 674 675 // When optimizations are requested, run KCIFPass after InstCombine to 676 // avoid unnecessary checks. 677 PB.registerPeepholeEPCallback( 678 [&](FunctionPassManager &FPM, OptimizationLevel Level) { 679 if (Level != OptimizationLevel::O0 && 680 LangOpts.Sanitize.has(SanitizerKind::KCFI)) 681 FPM.addPass(KCFIPass()); 682 }); 683 } 684 685 static void addSanitizers(const Triple &TargetTriple, 686 const CodeGenOptions &CodeGenOpts, 687 const LangOptions &LangOpts, PassBuilder &PB) { 688 auto SanitizersCallback = [&](ModulePassManager &MPM, OptimizationLevel Level, 689 ThinOrFullLTOPhase) { 690 if (CodeGenOpts.hasSanitizeCoverage()) { 691 auto SancovOpts = getSancovOptsFromCGOpts(CodeGenOpts); 692 MPM.addPass(SanitizerCoveragePass( 693 SancovOpts, CodeGenOpts.SanitizeCoverageAllowlistFiles, 694 CodeGenOpts.SanitizeCoverageIgnorelistFiles)); 695 } 696 697 if (CodeGenOpts.hasSanitizeBinaryMetadata()) { 698 MPM.addPass(SanitizerBinaryMetadataPass( 699 getSanitizerBinaryMetadataOptions(CodeGenOpts), 700 CodeGenOpts.SanitizeMetadataIgnorelistFiles)); 701 } 702 703 auto MSanPass = [&](SanitizerMask Mask, bool CompileKernel) { 704 if (LangOpts.Sanitize.has(Mask)) { 705 int TrackOrigins = CodeGenOpts.SanitizeMemoryTrackOrigins; 706 bool Recover = CodeGenOpts.SanitizeRecover.has(Mask); 707 708 MemorySanitizerOptions options(TrackOrigins, Recover, CompileKernel, 709 CodeGenOpts.SanitizeMemoryParamRetval); 710 MPM.addPass(MemorySanitizerPass(options)); 711 if (Level != OptimizationLevel::O0) { 712 // MemorySanitizer inserts complex instrumentation that mostly follows 713 // the logic of the original code, but operates on "shadow" values. It 714 // can benefit from re-running some general purpose optimization 715 // passes. 716 MPM.addPass(RequireAnalysisPass<GlobalsAA, llvm::Module>()); 717 FunctionPassManager FPM; 718 FPM.addPass(EarlyCSEPass(true /* Enable mem-ssa. */)); 719 FPM.addPass(InstCombinePass()); 720 FPM.addPass(JumpThreadingPass()); 721 FPM.addPass(GVNPass()); 722 FPM.addPass(InstCombinePass()); 723 MPM.addPass(createModuleToFunctionPassAdaptor(std::move(FPM))); 724 } 725 } 726 }; 727 MSanPass(SanitizerKind::Memory, false); 728 MSanPass(SanitizerKind::KernelMemory, true); 729 730 if (LangOpts.Sanitize.has(SanitizerKind::Thread)) { 731 MPM.addPass(ModuleThreadSanitizerPass()); 732 MPM.addPass(createModuleToFunctionPassAdaptor(ThreadSanitizerPass())); 733 } 734 735 if (LangOpts.Sanitize.has(SanitizerKind::Type)) 736 MPM.addPass(TypeSanitizerPass()); 737 738 if (LangOpts.Sanitize.has(SanitizerKind::NumericalStability)) 739 MPM.addPass(NumericalStabilitySanitizerPass()); 740 741 if (LangOpts.Sanitize.has(SanitizerKind::Realtime)) 742 MPM.addPass(RealtimeSanitizerPass()); 743 744 auto ASanPass = [&](SanitizerMask Mask, bool CompileKernel) { 745 if (LangOpts.Sanitize.has(Mask)) { 746 bool UseGlobalGC = asanUseGlobalsGC(TargetTriple, CodeGenOpts); 747 bool UseOdrIndicator = CodeGenOpts.SanitizeAddressUseOdrIndicator; 748 llvm::AsanDtorKind DestructorKind = 749 CodeGenOpts.getSanitizeAddressDtor(); 750 AddressSanitizerOptions Opts; 751 Opts.CompileKernel = CompileKernel; 752 Opts.Recover = CodeGenOpts.SanitizeRecover.has(Mask); 753 Opts.UseAfterScope = CodeGenOpts.SanitizeAddressUseAfterScope; 754 Opts.UseAfterReturn = CodeGenOpts.getSanitizeAddressUseAfterReturn(); 755 MPM.addPass(AddressSanitizerPass(Opts, UseGlobalGC, UseOdrIndicator, 756 DestructorKind)); 757 } 758 }; 759 ASanPass(SanitizerKind::Address, false); 760 ASanPass(SanitizerKind::KernelAddress, true); 761 762 auto HWASanPass = [&](SanitizerMask Mask, bool CompileKernel) { 763 if (LangOpts.Sanitize.has(Mask)) { 764 bool Recover = CodeGenOpts.SanitizeRecover.has(Mask); 765 MPM.addPass(HWAddressSanitizerPass( 766 {CompileKernel, Recover, 767 /*DisableOptimization=*/CodeGenOpts.OptimizationLevel == 0})); 768 } 769 }; 770 HWASanPass(SanitizerKind::HWAddress, false); 771 HWASanPass(SanitizerKind::KernelHWAddress, true); 772 773 if (LangOpts.Sanitize.has(SanitizerKind::DataFlow)) { 774 MPM.addPass(DataFlowSanitizerPass(LangOpts.NoSanitizeFiles)); 775 } 776 }; 777 if (ClSanitizeOnOptimizerEarlyEP) { 778 PB.registerOptimizerEarlyEPCallback( 779 [SanitizersCallback](ModulePassManager &MPM, OptimizationLevel Level, 780 ThinOrFullLTOPhase Phase) { 781 ModulePassManager NewMPM; 782 SanitizersCallback(NewMPM, Level, Phase); 783 if (!NewMPM.isEmpty()) { 784 // Sanitizers can abandon<GlobalsAA>. 785 NewMPM.addPass(RequireAnalysisPass<GlobalsAA, llvm::Module>()); 786 MPM.addPass(std::move(NewMPM)); 787 } 788 }); 789 } else { 790 // LastEP does not need GlobalsAA. 791 PB.registerOptimizerLastEPCallback(SanitizersCallback); 792 } 793 794 if (LowerAllowCheckPass::IsRequested()) { 795 // We want to call it after inline, which is about OptimizerEarlyEPCallback. 796 PB.registerOptimizerEarlyEPCallback([](ModulePassManager &MPM, 797 OptimizationLevel Level, 798 ThinOrFullLTOPhase Phase) { 799 MPM.addPass(createModuleToFunctionPassAdaptor(LowerAllowCheckPass())); 800 }); 801 } 802 } 803 804 void EmitAssemblyHelper::RunOptimizationPipeline( 805 BackendAction Action, std::unique_ptr<raw_pwrite_stream> &OS, 806 std::unique_ptr<llvm::ToolOutputFile> &ThinLinkOS, BackendConsumer *BC) { 807 std::optional<PGOOptions> PGOOpt; 808 809 if (CodeGenOpts.hasProfileIRInstr()) 810 // -fprofile-generate. 811 PGOOpt = PGOOptions( 812 CodeGenOpts.InstrProfileOutput.empty() ? getDefaultProfileGenName() 813 : CodeGenOpts.InstrProfileOutput, 814 "", "", CodeGenOpts.MemoryProfileUsePath, nullptr, PGOOptions::IRInstr, 815 PGOOptions::NoCSAction, ClPGOColdFuncAttr, 816 CodeGenOpts.DebugInfoForProfiling, 817 /*PseudoProbeForProfiling=*/false, CodeGenOpts.AtomicProfileUpdate); 818 else if (CodeGenOpts.hasProfileIRUse()) { 819 // -fprofile-use. 820 auto CSAction = CodeGenOpts.hasProfileCSIRUse() ? PGOOptions::CSIRUse 821 : PGOOptions::NoCSAction; 822 PGOOpt = PGOOptions(CodeGenOpts.ProfileInstrumentUsePath, "", 823 CodeGenOpts.ProfileRemappingFile, 824 CodeGenOpts.MemoryProfileUsePath, VFS, 825 PGOOptions::IRUse, CSAction, ClPGOColdFuncAttr, 826 CodeGenOpts.DebugInfoForProfiling); 827 } else if (!CodeGenOpts.SampleProfileFile.empty()) 828 // -fprofile-sample-use 829 PGOOpt = PGOOptions( 830 CodeGenOpts.SampleProfileFile, "", CodeGenOpts.ProfileRemappingFile, 831 CodeGenOpts.MemoryProfileUsePath, VFS, PGOOptions::SampleUse, 832 PGOOptions::NoCSAction, ClPGOColdFuncAttr, 833 CodeGenOpts.DebugInfoForProfiling, CodeGenOpts.PseudoProbeForProfiling); 834 else if (!CodeGenOpts.MemoryProfileUsePath.empty()) 835 // -fmemory-profile-use (without any of the above options) 836 PGOOpt = PGOOptions("", "", "", CodeGenOpts.MemoryProfileUsePath, VFS, 837 PGOOptions::NoAction, PGOOptions::NoCSAction, 838 ClPGOColdFuncAttr, CodeGenOpts.DebugInfoForProfiling); 839 else if (CodeGenOpts.PseudoProbeForProfiling) 840 // -fpseudo-probe-for-profiling 841 PGOOpt = 842 PGOOptions("", "", "", /*MemoryProfile=*/"", nullptr, 843 PGOOptions::NoAction, PGOOptions::NoCSAction, 844 ClPGOColdFuncAttr, CodeGenOpts.DebugInfoForProfiling, true); 845 else if (CodeGenOpts.DebugInfoForProfiling) 846 // -fdebug-info-for-profiling 847 PGOOpt = PGOOptions("", "", "", /*MemoryProfile=*/"", nullptr, 848 PGOOptions::NoAction, PGOOptions::NoCSAction, 849 ClPGOColdFuncAttr, true); 850 851 // Check to see if we want to generate a CS profile. 852 if (CodeGenOpts.hasProfileCSIRInstr()) { 853 assert(!CodeGenOpts.hasProfileCSIRUse() && 854 "Cannot have both CSProfileUse pass and CSProfileGen pass at " 855 "the same time"); 856 if (PGOOpt) { 857 assert(PGOOpt->Action != PGOOptions::IRInstr && 858 PGOOpt->Action != PGOOptions::SampleUse && 859 "Cannot run CSProfileGen pass with ProfileGen or SampleUse " 860 " pass"); 861 PGOOpt->CSProfileGenFile = CodeGenOpts.InstrProfileOutput.empty() 862 ? getDefaultProfileGenName() 863 : CodeGenOpts.InstrProfileOutput; 864 PGOOpt->CSAction = PGOOptions::CSIRInstr; 865 } else 866 PGOOpt = PGOOptions("", 867 CodeGenOpts.InstrProfileOutput.empty() 868 ? getDefaultProfileGenName() 869 : CodeGenOpts.InstrProfileOutput, 870 "", /*MemoryProfile=*/"", nullptr, 871 PGOOptions::NoAction, PGOOptions::CSIRInstr, 872 ClPGOColdFuncAttr, CodeGenOpts.DebugInfoForProfiling); 873 } 874 if (TM) 875 TM->setPGOOption(PGOOpt); 876 877 PipelineTuningOptions PTO; 878 PTO.LoopUnrolling = CodeGenOpts.UnrollLoops; 879 // For historical reasons, loop interleaving is set to mirror setting for loop 880 // unrolling. 881 PTO.LoopInterleaving = CodeGenOpts.UnrollLoops; 882 PTO.LoopVectorization = CodeGenOpts.VectorizeLoop; 883 PTO.SLPVectorization = CodeGenOpts.VectorizeSLP; 884 PTO.MergeFunctions = CodeGenOpts.MergeFunctions; 885 // Only enable CGProfilePass when using integrated assembler, since 886 // non-integrated assemblers don't recognize .cgprofile section. 887 PTO.CallGraphProfile = !CodeGenOpts.DisableIntegratedAS; 888 PTO.UnifiedLTO = CodeGenOpts.UnifiedLTO; 889 890 LoopAnalysisManager LAM; 891 FunctionAnalysisManager FAM; 892 CGSCCAnalysisManager CGAM; 893 ModuleAnalysisManager MAM; 894 895 bool DebugPassStructure = CodeGenOpts.DebugPass == "Structure"; 896 PassInstrumentationCallbacks PIC; 897 PrintPassOptions PrintPassOpts; 898 PrintPassOpts.Indent = DebugPassStructure; 899 PrintPassOpts.SkipAnalyses = DebugPassStructure; 900 StandardInstrumentations SI( 901 TheModule->getContext(), 902 (CodeGenOpts.DebugPassManager || DebugPassStructure), 903 CodeGenOpts.VerifyEach, PrintPassOpts); 904 SI.registerCallbacks(PIC, &MAM); 905 PassBuilder PB(TM.get(), PTO, PGOOpt, &PIC); 906 907 // Handle the assignment tracking feature options. 908 switch (CodeGenOpts.getAssignmentTrackingMode()) { 909 case CodeGenOptions::AssignmentTrackingOpts::Forced: 910 PB.registerPipelineStartEPCallback( 911 [&](ModulePassManager &MPM, OptimizationLevel Level) { 912 MPM.addPass(AssignmentTrackingPass()); 913 }); 914 break; 915 case CodeGenOptions::AssignmentTrackingOpts::Enabled: 916 // Disable assignment tracking in LTO builds for now as the performance 917 // cost is too high. Disable for LLDB tuning due to llvm.org/PR43126. 918 if (!CodeGenOpts.PrepareForThinLTO && !CodeGenOpts.PrepareForLTO && 919 CodeGenOpts.getDebuggerTuning() != llvm::DebuggerKind::LLDB) { 920 PB.registerPipelineStartEPCallback( 921 [&](ModulePassManager &MPM, OptimizationLevel Level) { 922 // Only use assignment tracking if optimisations are enabled. 923 if (Level != OptimizationLevel::O0) 924 MPM.addPass(AssignmentTrackingPass()); 925 }); 926 } 927 break; 928 case CodeGenOptions::AssignmentTrackingOpts::Disabled: 929 break; 930 } 931 932 // Enable verify-debuginfo-preserve-each for new PM. 933 DebugifyEachInstrumentation Debugify; 934 DebugInfoPerPass DebugInfoBeforePass; 935 if (CodeGenOpts.EnableDIPreservationVerify) { 936 Debugify.setDebugifyMode(DebugifyMode::OriginalDebugInfo); 937 Debugify.setDebugInfoBeforePass(DebugInfoBeforePass); 938 939 if (!CodeGenOpts.DIBugsReportFilePath.empty()) 940 Debugify.setOrigDIVerifyBugsReportFilePath( 941 CodeGenOpts.DIBugsReportFilePath); 942 Debugify.registerCallbacks(PIC, MAM); 943 } 944 // Attempt to load pass plugins and register their callbacks with PB. 945 for (auto &PluginFN : CodeGenOpts.PassPlugins) { 946 auto PassPlugin = PassPlugin::Load(PluginFN); 947 if (PassPlugin) { 948 PassPlugin->registerPassBuilderCallbacks(PB); 949 } else { 950 Diags.Report(diag::err_fe_unable_to_load_plugin) 951 << PluginFN << toString(PassPlugin.takeError()); 952 } 953 } 954 for (const auto &PassCallback : CodeGenOpts.PassBuilderCallbacks) 955 PassCallback(PB); 956 #define HANDLE_EXTENSION(Ext) \ 957 get##Ext##PluginInfo().RegisterPassBuilderCallbacks(PB); 958 #include "llvm/Support/Extension.def" 959 960 // Register the target library analysis directly and give it a customized 961 // preset TLI. 962 std::unique_ptr<TargetLibraryInfoImpl> TLII( 963 llvm::driver::createTLII(TargetTriple, CodeGenOpts.getVecLib())); 964 FAM.registerPass([&] { return TargetLibraryAnalysis(*TLII); }); 965 966 // Register all the basic analyses with the managers. 967 PB.registerModuleAnalyses(MAM); 968 PB.registerCGSCCAnalyses(CGAM); 969 PB.registerFunctionAnalyses(FAM); 970 PB.registerLoopAnalyses(LAM); 971 PB.crossRegisterProxies(LAM, FAM, CGAM, MAM); 972 973 ModulePassManager MPM; 974 // Add a verifier pass, before any other passes, to catch CodeGen issues. 975 if (CodeGenOpts.VerifyModule) 976 MPM.addPass(VerifierPass()); 977 978 if (!CodeGenOpts.DisableLLVMPasses) { 979 // Map our optimization levels into one of the distinct levels used to 980 // configure the pipeline. 981 OptimizationLevel Level = mapToLevel(CodeGenOpts); 982 983 const bool PrepareForThinLTO = CodeGenOpts.PrepareForThinLTO; 984 const bool PrepareForLTO = CodeGenOpts.PrepareForLTO; 985 986 if (LangOpts.ObjCAutoRefCount) { 987 PB.registerPipelineStartEPCallback( 988 [](ModulePassManager &MPM, OptimizationLevel Level) { 989 if (Level != OptimizationLevel::O0) 990 MPM.addPass( 991 createModuleToFunctionPassAdaptor(ObjCARCExpandPass())); 992 }); 993 PB.registerPipelineEarlySimplificationEPCallback( 994 [](ModulePassManager &MPM, OptimizationLevel Level, 995 ThinOrFullLTOPhase) { 996 if (Level != OptimizationLevel::O0) 997 MPM.addPass(ObjCARCAPElimPass()); 998 }); 999 PB.registerScalarOptimizerLateEPCallback( 1000 [](FunctionPassManager &FPM, OptimizationLevel Level) { 1001 if (Level != OptimizationLevel::O0) 1002 FPM.addPass(ObjCARCOptPass()); 1003 }); 1004 } 1005 1006 // If we reached here with a non-empty index file name, then the index 1007 // file was empty and we are not performing ThinLTO backend compilation 1008 // (used in testing in a distributed build environment). 1009 bool IsThinLTOPostLink = !CodeGenOpts.ThinLTOIndexFile.empty(); 1010 // If so drop any the type test assume sequences inserted for whole program 1011 // vtables so that codegen doesn't complain. 1012 if (IsThinLTOPostLink) 1013 PB.registerPipelineStartEPCallback( 1014 [](ModulePassManager &MPM, OptimizationLevel Level) { 1015 MPM.addPass(LowerTypeTestsPass( 1016 /*ExportSummary=*/nullptr, 1017 /*ImportSummary=*/nullptr, 1018 /*DropTypeTests=*/lowertypetests::DropTestKind::Assume)); 1019 }); 1020 1021 // Register callbacks to schedule sanitizer passes at the appropriate part 1022 // of the pipeline. 1023 if (LangOpts.Sanitize.has(SanitizerKind::LocalBounds)) 1024 PB.registerScalarOptimizerLateEPCallback([this](FunctionPassManager &FPM, 1025 OptimizationLevel Level) { 1026 BoundsCheckingPass::Options Options; 1027 Options.Merge = 1028 CodeGenOpts.SanitizeMergeHandlers.has(SanitizerKind::LocalBounds); 1029 if (!CodeGenOpts.SanitizeTrap.has(SanitizerKind::LocalBounds)) { 1030 Options.Rt = { 1031 /*MinRuntime=*/static_cast<bool>( 1032 CodeGenOpts.SanitizeMinimalRuntime), 1033 /*MayReturn=*/ 1034 CodeGenOpts.SanitizeRecover.has(SanitizerKind::LocalBounds), 1035 }; 1036 } 1037 FPM.addPass(BoundsCheckingPass(Options)); 1038 }); 1039 1040 // Don't add sanitizers if we are here from ThinLTO PostLink. That already 1041 // done on PreLink stage. 1042 if (!IsThinLTOPostLink) { 1043 addSanitizers(TargetTriple, CodeGenOpts, LangOpts, PB); 1044 addKCFIPass(TargetTriple, LangOpts, PB); 1045 } 1046 1047 if (std::optional<GCOVOptions> Options = 1048 getGCOVOptions(CodeGenOpts, LangOpts)) 1049 PB.registerPipelineStartEPCallback( 1050 [Options](ModulePassManager &MPM, OptimizationLevel Level) { 1051 MPM.addPass(GCOVProfilerPass(*Options)); 1052 }); 1053 if (std::optional<InstrProfOptions> Options = 1054 getInstrProfOptions(CodeGenOpts, LangOpts)) 1055 PB.registerPipelineStartEPCallback( 1056 [Options](ModulePassManager &MPM, OptimizationLevel Level) { 1057 MPM.addPass(InstrProfilingLoweringPass(*Options, false)); 1058 }); 1059 1060 // TODO: Consider passing the MemoryProfileOutput to the pass builder via 1061 // the PGOOptions, and set this up there. 1062 if (!CodeGenOpts.MemoryProfileOutput.empty()) { 1063 PB.registerOptimizerLastEPCallback([](ModulePassManager &MPM, 1064 OptimizationLevel Level, 1065 ThinOrFullLTOPhase) { 1066 MPM.addPass(createModuleToFunctionPassAdaptor(MemProfilerPass())); 1067 MPM.addPass(ModuleMemProfilerPass()); 1068 }); 1069 } 1070 1071 if (CodeGenOpts.FatLTO) { 1072 MPM.addPass(PB.buildFatLTODefaultPipeline( 1073 Level, PrepareForThinLTO, 1074 PrepareForThinLTO || shouldEmitRegularLTOSummary())); 1075 } else if (PrepareForThinLTO) { 1076 MPM.addPass(PB.buildThinLTOPreLinkDefaultPipeline(Level)); 1077 } else if (PrepareForLTO) { 1078 MPM.addPass(PB.buildLTOPreLinkDefaultPipeline(Level)); 1079 } else { 1080 MPM.addPass(PB.buildPerModuleDefaultPipeline(Level)); 1081 } 1082 } 1083 1084 // Link against bitcodes supplied via the -mlink-builtin-bitcode option 1085 if (CodeGenOpts.LinkBitcodePostopt) 1086 MPM.addPass(LinkInModulesPass(BC)); 1087 1088 // Add a verifier pass if requested. We don't have to do this if the action 1089 // requires code generation because there will already be a verifier pass in 1090 // the code-generation pipeline. 1091 // Since we already added a verifier pass above, this 1092 // might even not run the analysis, if previous passes caused no changes. 1093 if (!actionRequiresCodeGen(Action) && CodeGenOpts.VerifyModule) 1094 MPM.addPass(VerifierPass()); 1095 1096 if (Action == Backend_EmitBC || Action == Backend_EmitLL || 1097 CodeGenOpts.FatLTO) { 1098 if (CodeGenOpts.PrepareForThinLTO && !CodeGenOpts.DisableLLVMPasses) { 1099 if (!TheModule->getModuleFlag("EnableSplitLTOUnit")) 1100 TheModule->addModuleFlag(llvm::Module::Error, "EnableSplitLTOUnit", 1101 CodeGenOpts.EnableSplitLTOUnit); 1102 if (Action == Backend_EmitBC) { 1103 if (!CodeGenOpts.ThinLinkBitcodeFile.empty()) { 1104 ThinLinkOS = openOutputFile(CodeGenOpts.ThinLinkBitcodeFile); 1105 if (!ThinLinkOS) 1106 return; 1107 } 1108 MPM.addPass(ThinLTOBitcodeWriterPass( 1109 *OS, ThinLinkOS ? &ThinLinkOS->os() : nullptr)); 1110 } else if (Action == Backend_EmitLL) { 1111 MPM.addPass(PrintModulePass(*OS, "", CodeGenOpts.EmitLLVMUseLists, 1112 /*EmitLTOSummary=*/true)); 1113 } 1114 } else { 1115 // Emit a module summary by default for Regular LTO except for ld64 1116 // targets 1117 bool EmitLTOSummary = shouldEmitRegularLTOSummary(); 1118 if (EmitLTOSummary) { 1119 if (!TheModule->getModuleFlag("ThinLTO") && !CodeGenOpts.UnifiedLTO) 1120 TheModule->addModuleFlag(llvm::Module::Error, "ThinLTO", uint32_t(0)); 1121 if (!TheModule->getModuleFlag("EnableSplitLTOUnit")) 1122 TheModule->addModuleFlag(llvm::Module::Error, "EnableSplitLTOUnit", 1123 uint32_t(1)); 1124 } 1125 if (Action == Backend_EmitBC) { 1126 MPM.addPass(BitcodeWriterPass(*OS, CodeGenOpts.EmitLLVMUseLists, 1127 EmitLTOSummary)); 1128 } else if (Action == Backend_EmitLL) { 1129 MPM.addPass(PrintModulePass(*OS, "", CodeGenOpts.EmitLLVMUseLists, 1130 EmitLTOSummary)); 1131 } 1132 } 1133 1134 if (shouldEmitUnifiedLTOModueFlag()) 1135 TheModule->addModuleFlag(llvm::Module::Error, "UnifiedLTO", uint32_t(1)); 1136 } 1137 1138 // FIXME: This should eventually be replaced by a first-class driver option. 1139 // This should be done for both clang and flang simultaneously. 1140 // Print a textual, '-passes=' compatible, representation of pipeline if 1141 // requested. 1142 if (PrintPipelinePasses) { 1143 MPM.printPipeline(outs(), [&PIC](StringRef ClassName) { 1144 auto PassName = PIC.getPassNameForClassName(ClassName); 1145 return PassName.empty() ? ClassName : PassName; 1146 }); 1147 outs() << "\n"; 1148 return; 1149 } 1150 1151 if (LangOpts.HIPStdPar && !LangOpts.CUDAIsDevice && 1152 LangOpts.HIPStdParInterposeAlloc) 1153 MPM.addPass(HipStdParAllocationInterpositionPass()); 1154 1155 // Now that we have all of the passes ready, run them. 1156 { 1157 PrettyStackTraceString CrashInfo("Optimizer"); 1158 llvm::TimeTraceScope TimeScope("Optimizer"); 1159 MPM.run(*TheModule, MAM); 1160 } 1161 } 1162 1163 void EmitAssemblyHelper::RunCodegenPipeline( 1164 BackendAction Action, std::unique_ptr<raw_pwrite_stream> &OS, 1165 std::unique_ptr<llvm::ToolOutputFile> &DwoOS) { 1166 // We still use the legacy PM to run the codegen pipeline since the new PM 1167 // does not work with the codegen pipeline. 1168 // FIXME: make the new PM work with the codegen pipeline. 1169 legacy::PassManager CodeGenPasses; 1170 1171 // Append any output we need to the pass manager. 1172 switch (Action) { 1173 case Backend_EmitAssembly: 1174 case Backend_EmitMCNull: 1175 case Backend_EmitObj: 1176 CodeGenPasses.add( 1177 createTargetTransformInfoWrapperPass(getTargetIRAnalysis())); 1178 if (!CodeGenOpts.SplitDwarfOutput.empty()) { 1179 DwoOS = openOutputFile(CodeGenOpts.SplitDwarfOutput); 1180 if (!DwoOS) 1181 return; 1182 } 1183 if (!AddEmitPasses(CodeGenPasses, Action, *OS, 1184 DwoOS ? &DwoOS->os() : nullptr)) 1185 // FIXME: Should we handle this error differently? 1186 return; 1187 break; 1188 default: 1189 return; 1190 } 1191 1192 // If -print-pipeline-passes is requested, don't run the legacy pass manager. 1193 // FIXME: when codegen is switched to use the new pass manager, it should also 1194 // emit pass names here. 1195 if (PrintPipelinePasses) { 1196 return; 1197 } 1198 1199 { 1200 PrettyStackTraceString CrashInfo("Code generation"); 1201 llvm::TimeTraceScope TimeScope("CodeGenPasses"); 1202 CodeGenPasses.run(*TheModule); 1203 } 1204 } 1205 1206 void EmitAssemblyHelper::emitAssembly(BackendAction Action, 1207 std::unique_ptr<raw_pwrite_stream> OS, 1208 BackendConsumer *BC) { 1209 TimeRegion Region(CodeGenOpts.TimePasses ? &CodeGenerationTime : nullptr); 1210 setCommandLineOpts(CodeGenOpts); 1211 1212 bool RequiresCodeGen = actionRequiresCodeGen(Action); 1213 CreateTargetMachine(RequiresCodeGen); 1214 1215 if (RequiresCodeGen && !TM) 1216 return; 1217 if (TM) 1218 TheModule->setDataLayout(TM->createDataLayout()); 1219 1220 // Before executing passes, print the final values of the LLVM options. 1221 cl::PrintOptionValues(); 1222 1223 std::unique_ptr<llvm::ToolOutputFile> ThinLinkOS, DwoOS; 1224 RunOptimizationPipeline(Action, OS, ThinLinkOS, BC); 1225 RunCodegenPipeline(Action, OS, DwoOS); 1226 1227 if (ThinLinkOS) 1228 ThinLinkOS->keep(); 1229 if (DwoOS) 1230 DwoOS->keep(); 1231 } 1232 1233 static void 1234 runThinLTOBackend(CompilerInstance &CI, ModuleSummaryIndex *CombinedIndex, 1235 llvm::Module *M, std::unique_ptr<raw_pwrite_stream> OS, 1236 std::string SampleProfile, std::string ProfileRemapping, 1237 BackendAction Action) { 1238 DiagnosticsEngine &Diags = CI.getDiagnostics(); 1239 const auto &CGOpts = CI.getCodeGenOpts(); 1240 const auto &TOpts = CI.getTargetOpts(); 1241 DenseMap<StringRef, DenseMap<GlobalValue::GUID, GlobalValueSummary *>> 1242 ModuleToDefinedGVSummaries; 1243 CombinedIndex->collectDefinedGVSummariesPerModule(ModuleToDefinedGVSummaries); 1244 1245 setCommandLineOpts(CGOpts); 1246 1247 // We can simply import the values mentioned in the combined index, since 1248 // we should only invoke this using the individual indexes written out 1249 // via a WriteIndexesThinBackend. 1250 FunctionImporter::ImportIDTable ImportIDs; 1251 FunctionImporter::ImportMapTy ImportList(ImportIDs); 1252 if (!lto::initImportList(*M, *CombinedIndex, ImportList)) 1253 return; 1254 1255 auto AddStream = [&](size_t Task, const Twine &ModuleName) { 1256 return std::make_unique<CachedFileStream>(std::move(OS), 1257 CGOpts.ObjectFilenameForDebug); 1258 }; 1259 lto::Config Conf; 1260 if (CGOpts.SaveTempsFilePrefix != "") { 1261 if (Error E = Conf.addSaveTemps(CGOpts.SaveTempsFilePrefix + ".", 1262 /* UseInputModulePath */ false)) { 1263 handleAllErrors(std::move(E), [&](ErrorInfoBase &EIB) { 1264 errs() << "Error setting up ThinLTO save-temps: " << EIB.message() 1265 << '\n'; 1266 }); 1267 } 1268 } 1269 Conf.CPU = TOpts.CPU; 1270 Conf.CodeModel = getCodeModel(CGOpts); 1271 Conf.MAttrs = TOpts.Features; 1272 Conf.RelocModel = CGOpts.RelocationModel; 1273 std::optional<CodeGenOptLevel> OptLevelOrNone = 1274 CodeGenOpt::getLevel(CGOpts.OptimizationLevel); 1275 assert(OptLevelOrNone && "Invalid optimization level!"); 1276 Conf.CGOptLevel = *OptLevelOrNone; 1277 Conf.OptLevel = CGOpts.OptimizationLevel; 1278 initTargetOptions(CI, Diags, Conf.Options); 1279 Conf.SampleProfile = std::move(SampleProfile); 1280 Conf.PTO.LoopUnrolling = CGOpts.UnrollLoops; 1281 // For historical reasons, loop interleaving is set to mirror setting for loop 1282 // unrolling. 1283 Conf.PTO.LoopInterleaving = CGOpts.UnrollLoops; 1284 Conf.PTO.LoopVectorization = CGOpts.VectorizeLoop; 1285 Conf.PTO.SLPVectorization = CGOpts.VectorizeSLP; 1286 // Only enable CGProfilePass when using integrated assembler, since 1287 // non-integrated assemblers don't recognize .cgprofile section. 1288 Conf.PTO.CallGraphProfile = !CGOpts.DisableIntegratedAS; 1289 1290 // Context sensitive profile. 1291 if (CGOpts.hasProfileCSIRInstr()) { 1292 Conf.RunCSIRInstr = true; 1293 Conf.CSIRProfile = std::move(CGOpts.InstrProfileOutput); 1294 } else if (CGOpts.hasProfileCSIRUse()) { 1295 Conf.RunCSIRInstr = false; 1296 Conf.CSIRProfile = std::move(CGOpts.ProfileInstrumentUsePath); 1297 } 1298 1299 Conf.ProfileRemapping = std::move(ProfileRemapping); 1300 Conf.DebugPassManager = CGOpts.DebugPassManager; 1301 Conf.VerifyEach = CGOpts.VerifyEach; 1302 Conf.RemarksWithHotness = CGOpts.DiagnosticsWithHotness; 1303 Conf.RemarksFilename = CGOpts.OptRecordFile; 1304 Conf.RemarksPasses = CGOpts.OptRecordPasses; 1305 Conf.RemarksFormat = CGOpts.OptRecordFormat; 1306 Conf.SplitDwarfFile = CGOpts.SplitDwarfFile; 1307 Conf.SplitDwarfOutput = CGOpts.SplitDwarfOutput; 1308 switch (Action) { 1309 case Backend_EmitNothing: 1310 Conf.PreCodeGenModuleHook = [](size_t Task, const llvm::Module &Mod) { 1311 return false; 1312 }; 1313 break; 1314 case Backend_EmitLL: 1315 Conf.PreCodeGenModuleHook = [&](size_t Task, const llvm::Module &Mod) { 1316 M->print(*OS, nullptr, CGOpts.EmitLLVMUseLists); 1317 return false; 1318 }; 1319 break; 1320 case Backend_EmitBC: 1321 Conf.PreCodeGenModuleHook = [&](size_t Task, const llvm::Module &Mod) { 1322 WriteBitcodeToFile(*M, *OS, CGOpts.EmitLLVMUseLists); 1323 return false; 1324 }; 1325 break; 1326 default: 1327 Conf.CGFileType = getCodeGenFileType(Action); 1328 break; 1329 } 1330 if (Error E = 1331 thinBackend(Conf, -1, AddStream, *M, *CombinedIndex, ImportList, 1332 ModuleToDefinedGVSummaries[M->getModuleIdentifier()], 1333 /*ModuleMap=*/nullptr, Conf.CodeGenOnly, 1334 /*IRAddStream=*/nullptr, CGOpts.CmdArgs)) { 1335 handleAllErrors(std::move(E), [&](ErrorInfoBase &EIB) { 1336 errs() << "Error running ThinLTO backend: " << EIB.message() << '\n'; 1337 }); 1338 } 1339 } 1340 1341 void clang::emitBackendOutput(CompilerInstance &CI, StringRef TDesc, 1342 llvm::Module *M, BackendAction Action, 1343 IntrusiveRefCntPtr<llvm::vfs::FileSystem> VFS, 1344 std::unique_ptr<raw_pwrite_stream> OS, 1345 BackendConsumer *BC) { 1346 llvm::TimeTraceScope TimeScope("Backend"); 1347 DiagnosticsEngine &Diags = CI.getDiagnostics(); 1348 const auto &CGOpts = CI.getCodeGenOpts(); 1349 1350 std::unique_ptr<llvm::Module> EmptyModule; 1351 if (!CGOpts.ThinLTOIndexFile.empty()) { 1352 // If we are performing a ThinLTO importing compile, load the function index 1353 // into memory and pass it into runThinLTOBackend, which will run the 1354 // function importer and invoke LTO passes. 1355 std::unique_ptr<ModuleSummaryIndex> CombinedIndex; 1356 if (Error E = llvm::getModuleSummaryIndexForFile( 1357 CGOpts.ThinLTOIndexFile, 1358 /*IgnoreEmptyThinLTOIndexFile*/ true) 1359 .moveInto(CombinedIndex)) { 1360 logAllUnhandledErrors(std::move(E), errs(), 1361 "Error loading index file '" + 1362 CGOpts.ThinLTOIndexFile + "': "); 1363 return; 1364 } 1365 1366 // A null CombinedIndex means we should skip ThinLTO compilation 1367 // (LLVM will optionally ignore empty index files, returning null instead 1368 // of an error). 1369 if (CombinedIndex) { 1370 if (!CombinedIndex->skipModuleByDistributedBackend()) { 1371 runThinLTOBackend(CI, CombinedIndex.get(), M, std::move(OS), 1372 CGOpts.SampleProfileFile, CGOpts.ProfileRemappingFile, 1373 Action); 1374 return; 1375 } 1376 // Distributed indexing detected that nothing from the module is needed 1377 // for the final linking. So we can skip the compilation. We sill need to 1378 // output an empty object file to make sure that a linker does not fail 1379 // trying to read it. Also for some features, like CFI, we must skip 1380 // the compilation as CombinedIndex does not contain all required 1381 // information. 1382 EmptyModule = std::make_unique<llvm::Module>("empty", M->getContext()); 1383 EmptyModule->setTargetTriple(M->getTargetTriple()); 1384 M = EmptyModule.get(); 1385 } 1386 } 1387 1388 EmitAssemblyHelper AsmHelper(CI, M, VFS); 1389 AsmHelper.emitAssembly(Action, std::move(OS), BC); 1390 1391 // Verify clang's TargetInfo DataLayout against the LLVM TargetMachine's 1392 // DataLayout. 1393 if (AsmHelper.TM) { 1394 std::string DLDesc = M->getDataLayout().getStringRepresentation(); 1395 if (DLDesc != TDesc) { 1396 unsigned DiagID = Diags.getCustomDiagID( 1397 DiagnosticsEngine::Error, "backend data layout '%0' does not match " 1398 "expected target description '%1'"); 1399 Diags.Report(DiagID) << DLDesc << TDesc; 1400 } 1401 } 1402 } 1403 1404 // With -fembed-bitcode, save a copy of the llvm IR as data in the 1405 // __LLVM,__bitcode section. 1406 void clang::EmbedBitcode(llvm::Module *M, const CodeGenOptions &CGOpts, 1407 llvm::MemoryBufferRef Buf) { 1408 if (CGOpts.getEmbedBitcode() == CodeGenOptions::Embed_Off) 1409 return; 1410 llvm::embedBitcodeInModule( 1411 *M, Buf, CGOpts.getEmbedBitcode() != CodeGenOptions::Embed_Marker, 1412 CGOpts.getEmbedBitcode() != CodeGenOptions::Embed_Bitcode, 1413 CGOpts.CmdArgs); 1414 } 1415 1416 void clang::EmbedObject(llvm::Module *M, const CodeGenOptions &CGOpts, 1417 DiagnosticsEngine &Diags) { 1418 if (CGOpts.OffloadObjects.empty()) 1419 return; 1420 1421 for (StringRef OffloadObject : CGOpts.OffloadObjects) { 1422 llvm::ErrorOr<std::unique_ptr<llvm::MemoryBuffer>> ObjectOrErr = 1423 llvm::MemoryBuffer::getFileOrSTDIN(OffloadObject); 1424 if (ObjectOrErr.getError()) { 1425 auto DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error, 1426 "could not open '%0' for embedding"); 1427 Diags.Report(DiagID) << OffloadObject; 1428 return; 1429 } 1430 1431 llvm::embedBufferInModule(*M, **ObjectOrErr, ".llvm.offloading", 1432 Align(object::OffloadBinary::getAlignment())); 1433 } 1434 } 1435