1 //===--- BackendUtil.cpp - LLVM Backend Utilities -------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "clang/CodeGen/BackendUtil.h" 10 #include "BackendConsumer.h" 11 #include "LinkInModulesPass.h" 12 #include "clang/Basic/CodeGenOptions.h" 13 #include "clang/Basic/Diagnostic.h" 14 #include "clang/Basic/LangOptions.h" 15 #include "clang/Basic/TargetOptions.h" 16 #include "clang/Frontend/FrontendDiagnostic.h" 17 #include "clang/Frontend/Utils.h" 18 #include "clang/Lex/HeaderSearchOptions.h" 19 #include "llvm/ADT/ScopeExit.h" 20 #include "llvm/ADT/StringExtras.h" 21 #include "llvm/ADT/StringSwitch.h" 22 #include "llvm/Analysis/GlobalsModRef.h" 23 #include "llvm/Analysis/TargetLibraryInfo.h" 24 #include "llvm/Analysis/TargetTransformInfo.h" 25 #include "llvm/Bitcode/BitcodeReader.h" 26 #include "llvm/Bitcode/BitcodeWriter.h" 27 #include "llvm/Bitcode/BitcodeWriterPass.h" 28 #include "llvm/CodeGen/TargetSubtargetInfo.h" 29 #include "llvm/Frontend/Driver/CodeGenOptions.h" 30 #include "llvm/IR/DataLayout.h" 31 #include "llvm/IR/DebugInfo.h" 32 #include "llvm/IR/LegacyPassManager.h" 33 #include "llvm/IR/Module.h" 34 #include "llvm/IR/ModuleSummaryIndex.h" 35 #include "llvm/IR/PassManager.h" 36 #include "llvm/IR/Verifier.h" 37 #include "llvm/IRPrinter/IRPrintingPasses.h" 38 #include "llvm/LTO/LTOBackend.h" 39 #include "llvm/MC/TargetRegistry.h" 40 #include "llvm/Object/OffloadBinary.h" 41 #include "llvm/Passes/PassBuilder.h" 42 #include "llvm/Passes/PassPlugin.h" 43 #include "llvm/Passes/StandardInstrumentations.h" 44 #include "llvm/ProfileData/InstrProfCorrelator.h" 45 #include "llvm/Support/BuryPointer.h" 46 #include "llvm/Support/CommandLine.h" 47 #include "llvm/Support/MemoryBuffer.h" 48 #include "llvm/Support/PrettyStackTrace.h" 49 #include "llvm/Support/Program.h" 50 #include "llvm/Support/TimeProfiler.h" 51 #include "llvm/Support/Timer.h" 52 #include "llvm/Support/ToolOutputFile.h" 53 #include "llvm/Support/VirtualFileSystem.h" 54 #include "llvm/Support/raw_ostream.h" 55 #include "llvm/Target/TargetMachine.h" 56 #include "llvm/Target/TargetOptions.h" 57 #include "llvm/TargetParser/SubtargetFeature.h" 58 #include "llvm/TargetParser/Triple.h" 59 #include "llvm/Transforms/HipStdPar/HipStdPar.h" 60 #include "llvm/Transforms/IPO/EmbedBitcodePass.h" 61 #include "llvm/Transforms/IPO/LowerTypeTests.h" 62 #include "llvm/Transforms/IPO/ThinLTOBitcodeWriter.h" 63 #include "llvm/Transforms/InstCombine/InstCombine.h" 64 #include "llvm/Transforms/Instrumentation/AddressSanitizer.h" 65 #include "llvm/Transforms/Instrumentation/AddressSanitizerOptions.h" 66 #include "llvm/Transforms/Instrumentation/BoundsChecking.h" 67 #include "llvm/Transforms/Instrumentation/DataFlowSanitizer.h" 68 #include "llvm/Transforms/Instrumentation/GCOVProfiler.h" 69 #include "llvm/Transforms/Instrumentation/HWAddressSanitizer.h" 70 #include "llvm/Transforms/Instrumentation/InstrProfiling.h" 71 #include "llvm/Transforms/Instrumentation/KCFI.h" 72 #include "llvm/Transforms/Instrumentation/LowerAllowCheckPass.h" 73 #include "llvm/Transforms/Instrumentation/MemProfiler.h" 74 #include "llvm/Transforms/Instrumentation/MemorySanitizer.h" 75 #include "llvm/Transforms/Instrumentation/NumericalStabilitySanitizer.h" 76 #include "llvm/Transforms/Instrumentation/PGOInstrumentation.h" 77 #include "llvm/Transforms/Instrumentation/RealtimeSanitizer.h" 78 #include "llvm/Transforms/Instrumentation/SanitizerBinaryMetadata.h" 79 #include "llvm/Transforms/Instrumentation/SanitizerCoverage.h" 80 #include "llvm/Transforms/Instrumentation/ThreadSanitizer.h" 81 #include "llvm/Transforms/Instrumentation/TypeSanitizer.h" 82 #include "llvm/Transforms/ObjCARC.h" 83 #include "llvm/Transforms/Scalar/EarlyCSE.h" 84 #include "llvm/Transforms/Scalar/GVN.h" 85 #include "llvm/Transforms/Scalar/JumpThreading.h" 86 #include "llvm/Transforms/Utils/Debugify.h" 87 #include "llvm/Transforms/Utils/ModuleUtils.h" 88 #include <limits> 89 #include <memory> 90 #include <optional> 91 using namespace clang; 92 using namespace llvm; 93 94 #define HANDLE_EXTENSION(Ext) \ 95 llvm::PassPluginLibraryInfo get##Ext##PluginInfo(); 96 #include "llvm/Support/Extension.def" 97 98 namespace llvm { 99 extern cl::opt<bool> PrintPipelinePasses; 100 101 // Experiment to move sanitizers earlier. 102 static cl::opt<bool> ClSanitizeOnOptimizerEarlyEP( 103 "sanitizer-early-opt-ep", cl::Optional, 104 cl::desc("Insert sanitizers on OptimizerEarlyEP.")); 105 106 // Experiment to mark cold functions as optsize/minsize/optnone. 107 // TODO: remove once this is exposed as a proper driver flag. 108 static cl::opt<PGOOptions::ColdFuncOpt> ClPGOColdFuncAttr( 109 "pgo-cold-func-opt", cl::init(PGOOptions::ColdFuncOpt::Default), cl::Hidden, 110 cl::desc( 111 "Function attribute to apply to cold functions as determined by PGO"), 112 cl::values(clEnumValN(PGOOptions::ColdFuncOpt::Default, "default", 113 "Default (no attribute)"), 114 clEnumValN(PGOOptions::ColdFuncOpt::OptSize, "optsize", 115 "Mark cold functions with optsize."), 116 clEnumValN(PGOOptions::ColdFuncOpt::MinSize, "minsize", 117 "Mark cold functions with minsize."), 118 clEnumValN(PGOOptions::ColdFuncOpt::OptNone, "optnone", 119 "Mark cold functions with optnone."))); 120 121 extern cl::opt<InstrProfCorrelator::ProfCorrelatorKind> ProfileCorrelate; 122 } // namespace llvm 123 namespace clang { 124 extern llvm::cl::opt<bool> ClSanitizeGuardChecks; 125 } 126 127 namespace { 128 129 // Default filename used for profile generation. 130 std::string getDefaultProfileGenName() { 131 return DebugInfoCorrelate || ProfileCorrelate != InstrProfCorrelator::NONE 132 ? "default_%m.proflite" 133 : "default_%m.profraw"; 134 } 135 136 class EmitAssemblyHelper { 137 CompilerInstance &CI; 138 DiagnosticsEngine &Diags; 139 const CodeGenOptions &CodeGenOpts; 140 const clang::TargetOptions &TargetOpts; 141 const LangOptions &LangOpts; 142 llvm::Module *TheModule; 143 IntrusiveRefCntPtr<llvm::vfs::FileSystem> VFS; 144 145 std::unique_ptr<raw_pwrite_stream> OS; 146 147 Triple TargetTriple; 148 149 TargetIRAnalysis getTargetIRAnalysis() const { 150 if (TM) 151 return TM->getTargetIRAnalysis(); 152 153 return TargetIRAnalysis(); 154 } 155 156 /// Generates the TargetMachine. 157 /// Leaves TM unchanged if it is unable to create the target machine. 158 /// Some of our clang tests specify triples which are not built 159 /// into clang. This is okay because these tests check the generated 160 /// IR, and they require DataLayout which depends on the triple. 161 /// In this case, we allow this method to fail and not report an error. 162 /// When MustCreateTM is used, we print an error if we are unable to load 163 /// the requested target. 164 void CreateTargetMachine(bool MustCreateTM); 165 166 /// Add passes necessary to emit assembly or LLVM IR. 167 /// 168 /// \return True on success. 169 bool AddEmitPasses(legacy::PassManager &CodeGenPasses, BackendAction Action, 170 raw_pwrite_stream &OS, raw_pwrite_stream *DwoOS); 171 172 std::unique_ptr<llvm::ToolOutputFile> openOutputFile(StringRef Path) { 173 std::error_code EC; 174 auto F = std::make_unique<llvm::ToolOutputFile>(Path, EC, 175 llvm::sys::fs::OF_None); 176 if (EC) { 177 Diags.Report(diag::err_fe_unable_to_open_output) << Path << EC.message(); 178 F.reset(); 179 } 180 return F; 181 } 182 183 void RunOptimizationPipeline( 184 BackendAction Action, std::unique_ptr<raw_pwrite_stream> &OS, 185 std::unique_ptr<llvm::ToolOutputFile> &ThinLinkOS, BackendConsumer *BC); 186 void RunCodegenPipeline(BackendAction Action, 187 std::unique_ptr<raw_pwrite_stream> &OS, 188 std::unique_ptr<llvm::ToolOutputFile> &DwoOS); 189 190 /// Check whether we should emit a module summary for regular LTO. 191 /// The module summary should be emitted by default for regular LTO 192 /// except for ld64 targets. 193 /// 194 /// \return True if the module summary should be emitted. 195 bool shouldEmitRegularLTOSummary() const { 196 return CodeGenOpts.PrepareForLTO && !CodeGenOpts.DisableLLVMPasses && 197 TargetTriple.getVendor() != llvm::Triple::Apple; 198 } 199 200 /// Check whether we should emit a flag for UnifiedLTO. 201 /// The UnifiedLTO module flag should be set when UnifiedLTO is enabled for 202 /// ThinLTO or Full LTO with module summaries. 203 bool shouldEmitUnifiedLTOModueFlag() const { 204 return CodeGenOpts.UnifiedLTO && 205 (CodeGenOpts.PrepareForThinLTO || shouldEmitRegularLTOSummary()); 206 } 207 208 public: 209 EmitAssemblyHelper(CompilerInstance &CI, llvm::Module *M, 210 IntrusiveRefCntPtr<llvm::vfs::FileSystem> VFS) 211 : CI(CI), Diags(CI.getDiagnostics()), CodeGenOpts(CI.getCodeGenOpts()), 212 TargetOpts(CI.getTargetOpts()), LangOpts(CI.getLangOpts()), 213 TheModule(M), VFS(std::move(VFS)), 214 TargetTriple(TheModule->getTargetTriple()) {} 215 216 ~EmitAssemblyHelper() { 217 if (CodeGenOpts.DisableFree) 218 BuryPointer(std::move(TM)); 219 } 220 221 std::unique_ptr<TargetMachine> TM; 222 223 // Emit output using the new pass manager for the optimization pipeline. 224 void emitAssembly(BackendAction Action, std::unique_ptr<raw_pwrite_stream> OS, 225 BackendConsumer *BC); 226 }; 227 } // namespace 228 229 static SanitizerCoverageOptions 230 getSancovOptsFromCGOpts(const CodeGenOptions &CGOpts) { 231 SanitizerCoverageOptions Opts; 232 Opts.CoverageType = 233 static_cast<SanitizerCoverageOptions::Type>(CGOpts.SanitizeCoverageType); 234 Opts.IndirectCalls = CGOpts.SanitizeCoverageIndirectCalls; 235 Opts.TraceBB = CGOpts.SanitizeCoverageTraceBB; 236 Opts.TraceCmp = CGOpts.SanitizeCoverageTraceCmp; 237 Opts.TraceDiv = CGOpts.SanitizeCoverageTraceDiv; 238 Opts.TraceGep = CGOpts.SanitizeCoverageTraceGep; 239 Opts.Use8bitCounters = CGOpts.SanitizeCoverage8bitCounters; 240 Opts.TracePC = CGOpts.SanitizeCoverageTracePC; 241 Opts.TracePCGuard = CGOpts.SanitizeCoverageTracePCGuard; 242 Opts.NoPrune = CGOpts.SanitizeCoverageNoPrune; 243 Opts.Inline8bitCounters = CGOpts.SanitizeCoverageInline8bitCounters; 244 Opts.InlineBoolFlag = CGOpts.SanitizeCoverageInlineBoolFlag; 245 Opts.PCTable = CGOpts.SanitizeCoveragePCTable; 246 Opts.StackDepth = CGOpts.SanitizeCoverageStackDepth; 247 Opts.TraceLoads = CGOpts.SanitizeCoverageTraceLoads; 248 Opts.TraceStores = CGOpts.SanitizeCoverageTraceStores; 249 Opts.CollectControlFlow = CGOpts.SanitizeCoverageControlFlow; 250 return Opts; 251 } 252 253 static SanitizerBinaryMetadataOptions 254 getSanitizerBinaryMetadataOptions(const CodeGenOptions &CGOpts) { 255 SanitizerBinaryMetadataOptions Opts; 256 Opts.Covered = CGOpts.SanitizeBinaryMetadataCovered; 257 Opts.Atomics = CGOpts.SanitizeBinaryMetadataAtomics; 258 Opts.UAR = CGOpts.SanitizeBinaryMetadataUAR; 259 return Opts; 260 } 261 262 // Check if ASan should use GC-friendly instrumentation for globals. 263 // First of all, there is no point if -fdata-sections is off (expect for MachO, 264 // where this is not a factor). Also, on ELF this feature requires an assembler 265 // extension that only works with -integrated-as at the moment. 266 static bool asanUseGlobalsGC(const Triple &T, const CodeGenOptions &CGOpts) { 267 if (!CGOpts.SanitizeAddressGlobalsDeadStripping) 268 return false; 269 switch (T.getObjectFormat()) { 270 case Triple::MachO: 271 case Triple::COFF: 272 return true; 273 case Triple::ELF: 274 return !CGOpts.DisableIntegratedAS; 275 case Triple::GOFF: 276 llvm::report_fatal_error("ASan not implemented for GOFF"); 277 case Triple::XCOFF: 278 llvm::report_fatal_error("ASan not implemented for XCOFF."); 279 case Triple::Wasm: 280 case Triple::DXContainer: 281 case Triple::SPIRV: 282 case Triple::UnknownObjectFormat: 283 break; 284 } 285 return false; 286 } 287 288 static std::optional<llvm::CodeModel::Model> 289 getCodeModel(const CodeGenOptions &CodeGenOpts) { 290 unsigned CodeModel = llvm::StringSwitch<unsigned>(CodeGenOpts.CodeModel) 291 .Case("tiny", llvm::CodeModel::Tiny) 292 .Case("small", llvm::CodeModel::Small) 293 .Case("kernel", llvm::CodeModel::Kernel) 294 .Case("medium", llvm::CodeModel::Medium) 295 .Case("large", llvm::CodeModel::Large) 296 .Case("default", ~1u) 297 .Default(~0u); 298 assert(CodeModel != ~0u && "invalid code model!"); 299 if (CodeModel == ~1u) 300 return std::nullopt; 301 return static_cast<llvm::CodeModel::Model>(CodeModel); 302 } 303 304 static CodeGenFileType getCodeGenFileType(BackendAction Action) { 305 if (Action == Backend_EmitObj) 306 return CodeGenFileType::ObjectFile; 307 else if (Action == Backend_EmitMCNull) 308 return CodeGenFileType::Null; 309 else { 310 assert(Action == Backend_EmitAssembly && "Invalid action!"); 311 return CodeGenFileType::AssemblyFile; 312 } 313 } 314 315 static bool actionRequiresCodeGen(BackendAction Action) { 316 return Action != Backend_EmitNothing && Action != Backend_EmitBC && 317 Action != Backend_EmitLL; 318 } 319 320 static std::string flattenClangCommandLine(ArrayRef<std::string> Args, 321 StringRef MainFilename) { 322 if (Args.empty()) 323 return std::string{}; 324 325 std::string FlatCmdLine; 326 raw_string_ostream OS(FlatCmdLine); 327 bool PrintedOneArg = false; 328 if (!StringRef(Args[0]).contains("-cc1")) { 329 llvm::sys::printArg(OS, "-cc1", /*Quote=*/true); 330 PrintedOneArg = true; 331 } 332 for (unsigned i = 0; i < Args.size(); i++) { 333 StringRef Arg = Args[i]; 334 if (Arg.empty()) 335 continue; 336 if (Arg == "-main-file-name" || Arg == "-o") { 337 i++; // Skip this argument and next one. 338 continue; 339 } 340 if (Arg.starts_with("-object-file-name") || Arg == MainFilename) 341 continue; 342 // Skip fmessage-length for reproducibility. 343 if (Arg.starts_with("-fmessage-length")) 344 continue; 345 if (PrintedOneArg) 346 OS << " "; 347 llvm::sys::printArg(OS, Arg, /*Quote=*/true); 348 PrintedOneArg = true; 349 } 350 return FlatCmdLine; 351 } 352 353 static bool initTargetOptions(const CompilerInstance &CI, 354 DiagnosticsEngine &Diags, 355 llvm::TargetOptions &Options) { 356 const auto &CodeGenOpts = CI.getCodeGenOpts(); 357 const auto &TargetOpts = CI.getTargetOpts(); 358 const auto &LangOpts = CI.getLangOpts(); 359 const auto &HSOpts = CI.getHeaderSearchOpts(); 360 switch (LangOpts.getThreadModel()) { 361 case LangOptions::ThreadModelKind::POSIX: 362 Options.ThreadModel = llvm::ThreadModel::POSIX; 363 break; 364 case LangOptions::ThreadModelKind::Single: 365 Options.ThreadModel = llvm::ThreadModel::Single; 366 break; 367 } 368 369 // Set float ABI type. 370 assert((CodeGenOpts.FloatABI == "soft" || CodeGenOpts.FloatABI == "softfp" || 371 CodeGenOpts.FloatABI == "hard" || CodeGenOpts.FloatABI.empty()) && 372 "Invalid Floating Point ABI!"); 373 Options.FloatABIType = 374 llvm::StringSwitch<llvm::FloatABI::ABIType>(CodeGenOpts.FloatABI) 375 .Case("soft", llvm::FloatABI::Soft) 376 .Case("softfp", llvm::FloatABI::Soft) 377 .Case("hard", llvm::FloatABI::Hard) 378 .Default(llvm::FloatABI::Default); 379 380 // Set FP fusion mode. 381 switch (LangOpts.getDefaultFPContractMode()) { 382 case LangOptions::FPM_Off: 383 // Preserve any contraction performed by the front-end. (Strict performs 384 // splitting of the muladd intrinsic in the backend.) 385 Options.AllowFPOpFusion = llvm::FPOpFusion::Standard; 386 break; 387 case LangOptions::FPM_On: 388 case LangOptions::FPM_FastHonorPragmas: 389 Options.AllowFPOpFusion = llvm::FPOpFusion::Standard; 390 break; 391 case LangOptions::FPM_Fast: 392 Options.AllowFPOpFusion = llvm::FPOpFusion::Fast; 393 break; 394 } 395 396 Options.BinutilsVersion = 397 llvm::TargetMachine::parseBinutilsVersion(CodeGenOpts.BinutilsVersion); 398 Options.UseInitArray = CodeGenOpts.UseInitArray; 399 Options.DisableIntegratedAS = CodeGenOpts.DisableIntegratedAS; 400 401 // Set EABI version. 402 Options.EABIVersion = TargetOpts.EABIVersion; 403 404 if (LangOpts.hasSjLjExceptions()) 405 Options.ExceptionModel = llvm::ExceptionHandling::SjLj; 406 if (LangOpts.hasSEHExceptions()) 407 Options.ExceptionModel = llvm::ExceptionHandling::WinEH; 408 if (LangOpts.hasDWARFExceptions()) 409 Options.ExceptionModel = llvm::ExceptionHandling::DwarfCFI; 410 if (LangOpts.hasWasmExceptions()) 411 Options.ExceptionModel = llvm::ExceptionHandling::Wasm; 412 413 Options.NoInfsFPMath = LangOpts.NoHonorInfs; 414 Options.NoNaNsFPMath = LangOpts.NoHonorNaNs; 415 Options.NoZerosInBSS = CodeGenOpts.NoZeroInitializedInBSS; 416 Options.UnsafeFPMath = LangOpts.AllowFPReassoc && LangOpts.AllowRecip && 417 LangOpts.NoSignedZero && LangOpts.ApproxFunc && 418 (LangOpts.getDefaultFPContractMode() == 419 LangOptions::FPModeKind::FPM_Fast || 420 LangOpts.getDefaultFPContractMode() == 421 LangOptions::FPModeKind::FPM_FastHonorPragmas); 422 Options.ApproxFuncFPMath = LangOpts.ApproxFunc; 423 424 Options.BBAddrMap = CodeGenOpts.BBAddrMap; 425 Options.BBSections = 426 llvm::StringSwitch<llvm::BasicBlockSection>(CodeGenOpts.BBSections) 427 .Case("all", llvm::BasicBlockSection::All) 428 .StartsWith("list=", llvm::BasicBlockSection::List) 429 .Case("none", llvm::BasicBlockSection::None) 430 .Default(llvm::BasicBlockSection::None); 431 432 if (Options.BBSections == llvm::BasicBlockSection::List) { 433 ErrorOr<std::unique_ptr<MemoryBuffer>> MBOrErr = 434 MemoryBuffer::getFile(CodeGenOpts.BBSections.substr(5)); 435 if (!MBOrErr) { 436 Diags.Report(diag::err_fe_unable_to_load_basic_block_sections_file) 437 << MBOrErr.getError().message(); 438 return false; 439 } 440 Options.BBSectionsFuncListBuf = std::move(*MBOrErr); 441 } 442 443 Options.EnableMachineFunctionSplitter = CodeGenOpts.SplitMachineFunctions; 444 Options.FunctionSections = CodeGenOpts.FunctionSections; 445 Options.DataSections = CodeGenOpts.DataSections; 446 Options.IgnoreXCOFFVisibility = LangOpts.IgnoreXCOFFVisibility; 447 Options.UniqueSectionNames = CodeGenOpts.UniqueSectionNames; 448 Options.UniqueBasicBlockSectionNames = 449 CodeGenOpts.UniqueBasicBlockSectionNames; 450 Options.SeparateNamedSections = CodeGenOpts.SeparateNamedSections; 451 Options.TLSSize = CodeGenOpts.TLSSize; 452 Options.EnableTLSDESC = CodeGenOpts.EnableTLSDESC; 453 Options.EmulatedTLS = CodeGenOpts.EmulatedTLS; 454 Options.DebuggerTuning = CodeGenOpts.getDebuggerTuning(); 455 Options.EmitStackSizeSection = CodeGenOpts.StackSizeSection; 456 Options.StackUsageOutput = CodeGenOpts.StackUsageOutput; 457 Options.EmitAddrsig = CodeGenOpts.Addrsig; 458 Options.ForceDwarfFrameSection = CodeGenOpts.ForceDwarfFrameSection; 459 Options.EmitCallSiteInfo = CodeGenOpts.EmitCallSiteInfo; 460 Options.EnableAIXExtendedAltivecABI = LangOpts.EnableAIXExtendedAltivecABI; 461 Options.XRayFunctionIndex = CodeGenOpts.XRayFunctionIndex; 462 Options.LoopAlignment = CodeGenOpts.LoopAlignment; 463 Options.DebugStrictDwarf = CodeGenOpts.DebugStrictDwarf; 464 Options.ObjectFilenameForDebug = CodeGenOpts.ObjectFilenameForDebug; 465 Options.Hotpatch = CodeGenOpts.HotPatch; 466 Options.JMCInstrument = CodeGenOpts.JMCInstrument; 467 Options.XCOFFReadOnlyPointers = CodeGenOpts.XCOFFReadOnlyPointers; 468 469 switch (CodeGenOpts.getSwiftAsyncFramePointer()) { 470 case CodeGenOptions::SwiftAsyncFramePointerKind::Auto: 471 Options.SwiftAsyncFramePointer = 472 SwiftAsyncFramePointerMode::DeploymentBased; 473 break; 474 475 case CodeGenOptions::SwiftAsyncFramePointerKind::Always: 476 Options.SwiftAsyncFramePointer = SwiftAsyncFramePointerMode::Always; 477 break; 478 479 case CodeGenOptions::SwiftAsyncFramePointerKind::Never: 480 Options.SwiftAsyncFramePointer = SwiftAsyncFramePointerMode::Never; 481 break; 482 } 483 484 Options.MCOptions.SplitDwarfFile = CodeGenOpts.SplitDwarfFile; 485 Options.MCOptions.EmitDwarfUnwind = CodeGenOpts.getEmitDwarfUnwind(); 486 Options.MCOptions.EmitCompactUnwindNonCanonical = 487 CodeGenOpts.EmitCompactUnwindNonCanonical; 488 Options.MCOptions.MCRelaxAll = CodeGenOpts.RelaxAll; 489 Options.MCOptions.MCSaveTempLabels = CodeGenOpts.SaveTempLabels; 490 Options.MCOptions.MCUseDwarfDirectory = 491 CodeGenOpts.NoDwarfDirectoryAsm 492 ? llvm::MCTargetOptions::DisableDwarfDirectory 493 : llvm::MCTargetOptions::EnableDwarfDirectory; 494 Options.MCOptions.MCNoExecStack = CodeGenOpts.NoExecStack; 495 Options.MCOptions.MCIncrementalLinkerCompatible = 496 CodeGenOpts.IncrementalLinkerCompatible; 497 Options.MCOptions.MCFatalWarnings = CodeGenOpts.FatalWarnings; 498 Options.MCOptions.MCNoWarn = CodeGenOpts.NoWarn; 499 Options.MCOptions.AsmVerbose = CodeGenOpts.AsmVerbose; 500 Options.MCOptions.Dwarf64 = CodeGenOpts.Dwarf64; 501 Options.MCOptions.PreserveAsmComments = CodeGenOpts.PreserveAsmComments; 502 Options.MCOptions.Crel = CodeGenOpts.Crel; 503 Options.MCOptions.ImplicitMapSyms = CodeGenOpts.ImplicitMapSyms; 504 Options.MCOptions.X86RelaxRelocations = CodeGenOpts.X86RelaxRelocations; 505 Options.MCOptions.CompressDebugSections = 506 CodeGenOpts.getCompressDebugSections(); 507 if (CodeGenOpts.OutputAsmVariant != 3) // 3 (default): not specified 508 Options.MCOptions.OutputAsmVariant = CodeGenOpts.OutputAsmVariant; 509 Options.MCOptions.ABIName = TargetOpts.ABI; 510 for (const auto &Entry : HSOpts.UserEntries) 511 if (!Entry.IsFramework && 512 (Entry.Group == frontend::IncludeDirGroup::Quoted || 513 Entry.Group == frontend::IncludeDirGroup::Angled || 514 Entry.Group == frontend::IncludeDirGroup::System)) 515 Options.MCOptions.IASSearchPaths.push_back( 516 Entry.IgnoreSysRoot ? Entry.Path : HSOpts.Sysroot + Entry.Path); 517 Options.MCOptions.Argv0 = CodeGenOpts.Argv0 ? CodeGenOpts.Argv0 : ""; 518 Options.MCOptions.CommandlineArgs = flattenClangCommandLine( 519 CodeGenOpts.CommandLineArgs, CodeGenOpts.MainFileName); 520 Options.MCOptions.AsSecureLogFile = CodeGenOpts.AsSecureLogFile; 521 Options.MCOptions.PPCUseFullRegisterNames = 522 CodeGenOpts.PPCUseFullRegisterNames; 523 Options.MisExpect = CodeGenOpts.MisExpect; 524 525 return true; 526 } 527 528 static std::optional<GCOVOptions> 529 getGCOVOptions(const CodeGenOptions &CodeGenOpts, const LangOptions &LangOpts) { 530 if (CodeGenOpts.CoverageNotesFile.empty() && 531 CodeGenOpts.CoverageDataFile.empty()) 532 return std::nullopt; 533 // Not using 'GCOVOptions::getDefault' allows us to avoid exiting if 534 // LLVM's -default-gcov-version flag is set to something invalid. 535 GCOVOptions Options; 536 Options.EmitNotes = !CodeGenOpts.CoverageNotesFile.empty(); 537 Options.EmitData = !CodeGenOpts.CoverageDataFile.empty(); 538 llvm::copy(CodeGenOpts.CoverageVersion, std::begin(Options.Version)); 539 Options.NoRedZone = CodeGenOpts.DisableRedZone; 540 Options.Filter = CodeGenOpts.ProfileFilterFiles; 541 Options.Exclude = CodeGenOpts.ProfileExcludeFiles; 542 Options.Atomic = CodeGenOpts.AtomicProfileUpdate; 543 return Options; 544 } 545 546 static std::optional<InstrProfOptions> 547 getInstrProfOptions(const CodeGenOptions &CodeGenOpts, 548 const LangOptions &LangOpts) { 549 if (!CodeGenOpts.hasProfileClangInstr()) 550 return std::nullopt; 551 InstrProfOptions Options; 552 Options.NoRedZone = CodeGenOpts.DisableRedZone; 553 Options.InstrProfileOutput = CodeGenOpts.InstrProfileOutput; 554 Options.Atomic = CodeGenOpts.AtomicProfileUpdate; 555 return Options; 556 } 557 558 static void setCommandLineOpts(const CodeGenOptions &CodeGenOpts) { 559 SmallVector<const char *, 16> BackendArgs; 560 BackendArgs.push_back("clang"); // Fake program name. 561 if (!CodeGenOpts.DebugPass.empty()) { 562 BackendArgs.push_back("-debug-pass"); 563 BackendArgs.push_back(CodeGenOpts.DebugPass.c_str()); 564 } 565 if (!CodeGenOpts.LimitFloatPrecision.empty()) { 566 BackendArgs.push_back("-limit-float-precision"); 567 BackendArgs.push_back(CodeGenOpts.LimitFloatPrecision.c_str()); 568 } 569 // Check for the default "clang" invocation that won't set any cl::opt values. 570 // Skip trying to parse the command line invocation to avoid the issues 571 // described below. 572 if (BackendArgs.size() == 1) 573 return; 574 BackendArgs.push_back(nullptr); 575 // FIXME: The command line parser below is not thread-safe and shares a global 576 // state, so this call might crash or overwrite the options of another Clang 577 // instance in the same process. 578 llvm::cl::ParseCommandLineOptions(BackendArgs.size() - 1, 579 BackendArgs.data()); 580 } 581 582 void EmitAssemblyHelper::CreateTargetMachine(bool MustCreateTM) { 583 // Create the TargetMachine for generating code. 584 std::string Error; 585 std::string Triple = TheModule->getTargetTriple(); 586 const llvm::Target *TheTarget = TargetRegistry::lookupTarget(Triple, Error); 587 if (!TheTarget) { 588 if (MustCreateTM) 589 Diags.Report(diag::err_fe_unable_to_create_target) << Error; 590 return; 591 } 592 593 std::optional<llvm::CodeModel::Model> CM = getCodeModel(CodeGenOpts); 594 std::string FeaturesStr = 595 llvm::join(TargetOpts.Features.begin(), TargetOpts.Features.end(), ","); 596 llvm::Reloc::Model RM = CodeGenOpts.RelocationModel; 597 std::optional<CodeGenOptLevel> OptLevelOrNone = 598 CodeGenOpt::getLevel(CodeGenOpts.OptimizationLevel); 599 assert(OptLevelOrNone && "Invalid optimization level!"); 600 CodeGenOptLevel OptLevel = *OptLevelOrNone; 601 602 llvm::TargetOptions Options; 603 if (!initTargetOptions(CI, Diags, Options)) 604 return; 605 TM.reset(TheTarget->createTargetMachine(Triple, TargetOpts.CPU, FeaturesStr, 606 Options, RM, CM, OptLevel)); 607 TM->setLargeDataThreshold(CodeGenOpts.LargeDataThreshold); 608 } 609 610 bool EmitAssemblyHelper::AddEmitPasses(legacy::PassManager &CodeGenPasses, 611 BackendAction Action, 612 raw_pwrite_stream &OS, 613 raw_pwrite_stream *DwoOS) { 614 // Add LibraryInfo. 615 std::unique_ptr<TargetLibraryInfoImpl> TLII( 616 llvm::driver::createTLII(TargetTriple, CodeGenOpts.getVecLib())); 617 CodeGenPasses.add(new TargetLibraryInfoWrapperPass(*TLII)); 618 619 // Normal mode, emit a .s or .o file by running the code generator. Note, 620 // this also adds codegenerator level optimization passes. 621 CodeGenFileType CGFT = getCodeGenFileType(Action); 622 623 if (TM->addPassesToEmitFile(CodeGenPasses, OS, DwoOS, CGFT, 624 /*DisableVerify=*/!CodeGenOpts.VerifyModule)) { 625 Diags.Report(diag::err_fe_unable_to_interface_with_target); 626 return false; 627 } 628 629 return true; 630 } 631 632 static OptimizationLevel mapToLevel(const CodeGenOptions &Opts) { 633 switch (Opts.OptimizationLevel) { 634 default: 635 llvm_unreachable("Invalid optimization level!"); 636 637 case 0: 638 return OptimizationLevel::O0; 639 640 case 1: 641 return OptimizationLevel::O1; 642 643 case 2: 644 switch (Opts.OptimizeSize) { 645 default: 646 llvm_unreachable("Invalid optimization level for size!"); 647 648 case 0: 649 return OptimizationLevel::O2; 650 651 case 1: 652 return OptimizationLevel::Os; 653 654 case 2: 655 return OptimizationLevel::Oz; 656 } 657 658 case 3: 659 return OptimizationLevel::O3; 660 } 661 } 662 663 static void addKCFIPass(const Triple &TargetTriple, const LangOptions &LangOpts, 664 PassBuilder &PB) { 665 // If the back-end supports KCFI operand bundle lowering, skip KCFIPass. 666 if (TargetTriple.getArch() == llvm::Triple::x86_64 || 667 TargetTriple.isAArch64(64) || TargetTriple.isRISCV()) 668 return; 669 670 // Ensure we lower KCFI operand bundles with -O0. 671 PB.registerOptimizerLastEPCallback( 672 [&](ModulePassManager &MPM, OptimizationLevel Level, ThinOrFullLTOPhase) { 673 if (Level == OptimizationLevel::O0 && 674 LangOpts.Sanitize.has(SanitizerKind::KCFI)) 675 MPM.addPass(createModuleToFunctionPassAdaptor(KCFIPass())); 676 }); 677 678 // When optimizations are requested, run KCIFPass after InstCombine to 679 // avoid unnecessary checks. 680 PB.registerPeepholeEPCallback( 681 [&](FunctionPassManager &FPM, OptimizationLevel Level) { 682 if (Level != OptimizationLevel::O0 && 683 LangOpts.Sanitize.has(SanitizerKind::KCFI)) 684 FPM.addPass(KCFIPass()); 685 }); 686 } 687 688 static void addSanitizers(const Triple &TargetTriple, 689 const CodeGenOptions &CodeGenOpts, 690 const LangOptions &LangOpts, PassBuilder &PB) { 691 auto SanitizersCallback = [&](ModulePassManager &MPM, OptimizationLevel Level, 692 ThinOrFullLTOPhase) { 693 if (CodeGenOpts.hasSanitizeCoverage()) { 694 auto SancovOpts = getSancovOptsFromCGOpts(CodeGenOpts); 695 MPM.addPass(SanitizerCoveragePass( 696 SancovOpts, CodeGenOpts.SanitizeCoverageAllowlistFiles, 697 CodeGenOpts.SanitizeCoverageIgnorelistFiles)); 698 } 699 700 if (CodeGenOpts.hasSanitizeBinaryMetadata()) { 701 MPM.addPass(SanitizerBinaryMetadataPass( 702 getSanitizerBinaryMetadataOptions(CodeGenOpts), 703 CodeGenOpts.SanitizeMetadataIgnorelistFiles)); 704 } 705 706 auto MSanPass = [&](SanitizerMask Mask, bool CompileKernel) { 707 if (LangOpts.Sanitize.has(Mask)) { 708 int TrackOrigins = CodeGenOpts.SanitizeMemoryTrackOrigins; 709 bool Recover = CodeGenOpts.SanitizeRecover.has(Mask); 710 711 MemorySanitizerOptions options(TrackOrigins, Recover, CompileKernel, 712 CodeGenOpts.SanitizeMemoryParamRetval); 713 MPM.addPass(MemorySanitizerPass(options)); 714 if (Level != OptimizationLevel::O0) { 715 // MemorySanitizer inserts complex instrumentation that mostly follows 716 // the logic of the original code, but operates on "shadow" values. It 717 // can benefit from re-running some general purpose optimization 718 // passes. 719 MPM.addPass(RequireAnalysisPass<GlobalsAA, llvm::Module>()); 720 FunctionPassManager FPM; 721 FPM.addPass(EarlyCSEPass(true /* Enable mem-ssa. */)); 722 FPM.addPass(InstCombinePass()); 723 FPM.addPass(JumpThreadingPass()); 724 FPM.addPass(GVNPass()); 725 FPM.addPass(InstCombinePass()); 726 MPM.addPass(createModuleToFunctionPassAdaptor(std::move(FPM))); 727 } 728 } 729 }; 730 MSanPass(SanitizerKind::Memory, false); 731 MSanPass(SanitizerKind::KernelMemory, true); 732 733 if (LangOpts.Sanitize.has(SanitizerKind::Thread)) { 734 MPM.addPass(ModuleThreadSanitizerPass()); 735 MPM.addPass(createModuleToFunctionPassAdaptor(ThreadSanitizerPass())); 736 } 737 738 if (LangOpts.Sanitize.has(SanitizerKind::Type)) 739 MPM.addPass(TypeSanitizerPass()); 740 741 if (LangOpts.Sanitize.has(SanitizerKind::NumericalStability)) 742 MPM.addPass(NumericalStabilitySanitizerPass()); 743 744 if (LangOpts.Sanitize.has(SanitizerKind::Realtime)) 745 MPM.addPass(RealtimeSanitizerPass()); 746 747 auto ASanPass = [&](SanitizerMask Mask, bool CompileKernel) { 748 if (LangOpts.Sanitize.has(Mask)) { 749 bool UseGlobalGC = asanUseGlobalsGC(TargetTriple, CodeGenOpts); 750 bool UseOdrIndicator = CodeGenOpts.SanitizeAddressUseOdrIndicator; 751 llvm::AsanDtorKind DestructorKind = 752 CodeGenOpts.getSanitizeAddressDtor(); 753 AddressSanitizerOptions Opts; 754 Opts.CompileKernel = CompileKernel; 755 Opts.Recover = CodeGenOpts.SanitizeRecover.has(Mask); 756 Opts.UseAfterScope = CodeGenOpts.SanitizeAddressUseAfterScope; 757 Opts.UseAfterReturn = CodeGenOpts.getSanitizeAddressUseAfterReturn(); 758 MPM.addPass(AddressSanitizerPass(Opts, UseGlobalGC, UseOdrIndicator, 759 DestructorKind)); 760 } 761 }; 762 ASanPass(SanitizerKind::Address, false); 763 ASanPass(SanitizerKind::KernelAddress, true); 764 765 auto HWASanPass = [&](SanitizerMask Mask, bool CompileKernel) { 766 if (LangOpts.Sanitize.has(Mask)) { 767 bool Recover = CodeGenOpts.SanitizeRecover.has(Mask); 768 MPM.addPass(HWAddressSanitizerPass( 769 {CompileKernel, Recover, 770 /*DisableOptimization=*/CodeGenOpts.OptimizationLevel == 0})); 771 } 772 }; 773 HWASanPass(SanitizerKind::HWAddress, false); 774 HWASanPass(SanitizerKind::KernelHWAddress, true); 775 776 if (LangOpts.Sanitize.has(SanitizerKind::DataFlow)) { 777 MPM.addPass(DataFlowSanitizerPass(LangOpts.NoSanitizeFiles)); 778 } 779 }; 780 if (ClSanitizeOnOptimizerEarlyEP) { 781 PB.registerOptimizerEarlyEPCallback( 782 [SanitizersCallback](ModulePassManager &MPM, OptimizationLevel Level, 783 ThinOrFullLTOPhase Phase) { 784 ModulePassManager NewMPM; 785 SanitizersCallback(NewMPM, Level, Phase); 786 if (!NewMPM.isEmpty()) { 787 // Sanitizers can abandon<GlobalsAA>. 788 NewMPM.addPass(RequireAnalysisPass<GlobalsAA, llvm::Module>()); 789 MPM.addPass(std::move(NewMPM)); 790 } 791 }); 792 } else { 793 // LastEP does not need GlobalsAA. 794 PB.registerOptimizerLastEPCallback(SanitizersCallback); 795 } 796 797 if (LowerAllowCheckPass::IsRequested()) { 798 // We want to call it after inline, which is about OptimizerEarlyEPCallback. 799 PB.registerOptimizerEarlyEPCallback([](ModulePassManager &MPM, 800 OptimizationLevel Level, 801 ThinOrFullLTOPhase Phase) { 802 MPM.addPass(createModuleToFunctionPassAdaptor(LowerAllowCheckPass())); 803 }); 804 } 805 } 806 807 void EmitAssemblyHelper::RunOptimizationPipeline( 808 BackendAction Action, std::unique_ptr<raw_pwrite_stream> &OS, 809 std::unique_ptr<llvm::ToolOutputFile> &ThinLinkOS, BackendConsumer *BC) { 810 std::optional<PGOOptions> PGOOpt; 811 812 if (CodeGenOpts.hasProfileIRInstr()) 813 // -fprofile-generate. 814 PGOOpt = PGOOptions( 815 CodeGenOpts.InstrProfileOutput.empty() ? getDefaultProfileGenName() 816 : CodeGenOpts.InstrProfileOutput, 817 "", "", CodeGenOpts.MemoryProfileUsePath, nullptr, PGOOptions::IRInstr, 818 PGOOptions::NoCSAction, ClPGOColdFuncAttr, 819 CodeGenOpts.DebugInfoForProfiling, 820 /*PseudoProbeForProfiling=*/false, CodeGenOpts.AtomicProfileUpdate); 821 else if (CodeGenOpts.hasProfileIRUse()) { 822 // -fprofile-use. 823 auto CSAction = CodeGenOpts.hasProfileCSIRUse() ? PGOOptions::CSIRUse 824 : PGOOptions::NoCSAction; 825 PGOOpt = PGOOptions(CodeGenOpts.ProfileInstrumentUsePath, "", 826 CodeGenOpts.ProfileRemappingFile, 827 CodeGenOpts.MemoryProfileUsePath, VFS, 828 PGOOptions::IRUse, CSAction, ClPGOColdFuncAttr, 829 CodeGenOpts.DebugInfoForProfiling); 830 } else if (!CodeGenOpts.SampleProfileFile.empty()) 831 // -fprofile-sample-use 832 PGOOpt = PGOOptions( 833 CodeGenOpts.SampleProfileFile, "", CodeGenOpts.ProfileRemappingFile, 834 CodeGenOpts.MemoryProfileUsePath, VFS, PGOOptions::SampleUse, 835 PGOOptions::NoCSAction, ClPGOColdFuncAttr, 836 CodeGenOpts.DebugInfoForProfiling, CodeGenOpts.PseudoProbeForProfiling); 837 else if (!CodeGenOpts.MemoryProfileUsePath.empty()) 838 // -fmemory-profile-use (without any of the above options) 839 PGOOpt = PGOOptions("", "", "", CodeGenOpts.MemoryProfileUsePath, VFS, 840 PGOOptions::NoAction, PGOOptions::NoCSAction, 841 ClPGOColdFuncAttr, CodeGenOpts.DebugInfoForProfiling); 842 else if (CodeGenOpts.PseudoProbeForProfiling) 843 // -fpseudo-probe-for-profiling 844 PGOOpt = 845 PGOOptions("", "", "", /*MemoryProfile=*/"", nullptr, 846 PGOOptions::NoAction, PGOOptions::NoCSAction, 847 ClPGOColdFuncAttr, CodeGenOpts.DebugInfoForProfiling, true); 848 else if (CodeGenOpts.DebugInfoForProfiling) 849 // -fdebug-info-for-profiling 850 PGOOpt = PGOOptions("", "", "", /*MemoryProfile=*/"", nullptr, 851 PGOOptions::NoAction, PGOOptions::NoCSAction, 852 ClPGOColdFuncAttr, true); 853 854 // Check to see if we want to generate a CS profile. 855 if (CodeGenOpts.hasProfileCSIRInstr()) { 856 assert(!CodeGenOpts.hasProfileCSIRUse() && 857 "Cannot have both CSProfileUse pass and CSProfileGen pass at " 858 "the same time"); 859 if (PGOOpt) { 860 assert(PGOOpt->Action != PGOOptions::IRInstr && 861 PGOOpt->Action != PGOOptions::SampleUse && 862 "Cannot run CSProfileGen pass with ProfileGen or SampleUse " 863 " pass"); 864 PGOOpt->CSProfileGenFile = CodeGenOpts.InstrProfileOutput.empty() 865 ? getDefaultProfileGenName() 866 : CodeGenOpts.InstrProfileOutput; 867 PGOOpt->CSAction = PGOOptions::CSIRInstr; 868 } else 869 PGOOpt = PGOOptions("", 870 CodeGenOpts.InstrProfileOutput.empty() 871 ? getDefaultProfileGenName() 872 : CodeGenOpts.InstrProfileOutput, 873 "", /*MemoryProfile=*/"", nullptr, 874 PGOOptions::NoAction, PGOOptions::CSIRInstr, 875 ClPGOColdFuncAttr, CodeGenOpts.DebugInfoForProfiling); 876 } 877 if (TM) 878 TM->setPGOOption(PGOOpt); 879 880 PipelineTuningOptions PTO; 881 PTO.LoopUnrolling = CodeGenOpts.UnrollLoops; 882 // For historical reasons, loop interleaving is set to mirror setting for loop 883 // unrolling. 884 PTO.LoopInterleaving = CodeGenOpts.UnrollLoops; 885 PTO.LoopVectorization = CodeGenOpts.VectorizeLoop; 886 PTO.SLPVectorization = CodeGenOpts.VectorizeSLP; 887 PTO.MergeFunctions = CodeGenOpts.MergeFunctions; 888 // Only enable CGProfilePass when using integrated assembler, since 889 // non-integrated assemblers don't recognize .cgprofile section. 890 PTO.CallGraphProfile = !CodeGenOpts.DisableIntegratedAS; 891 PTO.UnifiedLTO = CodeGenOpts.UnifiedLTO; 892 893 LoopAnalysisManager LAM; 894 FunctionAnalysisManager FAM; 895 CGSCCAnalysisManager CGAM; 896 ModuleAnalysisManager MAM; 897 898 bool DebugPassStructure = CodeGenOpts.DebugPass == "Structure"; 899 PassInstrumentationCallbacks PIC; 900 PrintPassOptions PrintPassOpts; 901 PrintPassOpts.Indent = DebugPassStructure; 902 PrintPassOpts.SkipAnalyses = DebugPassStructure; 903 StandardInstrumentations SI( 904 TheModule->getContext(), 905 (CodeGenOpts.DebugPassManager || DebugPassStructure), 906 CodeGenOpts.VerifyEach, PrintPassOpts); 907 SI.registerCallbacks(PIC, &MAM); 908 PassBuilder PB(TM.get(), PTO, PGOOpt, &PIC); 909 910 // Handle the assignment tracking feature options. 911 switch (CodeGenOpts.getAssignmentTrackingMode()) { 912 case CodeGenOptions::AssignmentTrackingOpts::Forced: 913 PB.registerPipelineStartEPCallback( 914 [&](ModulePassManager &MPM, OptimizationLevel Level) { 915 MPM.addPass(AssignmentTrackingPass()); 916 }); 917 break; 918 case CodeGenOptions::AssignmentTrackingOpts::Enabled: 919 // Disable assignment tracking in LTO builds for now as the performance 920 // cost is too high. Disable for LLDB tuning due to llvm.org/PR43126. 921 if (!CodeGenOpts.PrepareForThinLTO && !CodeGenOpts.PrepareForLTO && 922 CodeGenOpts.getDebuggerTuning() != llvm::DebuggerKind::LLDB) { 923 PB.registerPipelineStartEPCallback( 924 [&](ModulePassManager &MPM, OptimizationLevel Level) { 925 // Only use assignment tracking if optimisations are enabled. 926 if (Level != OptimizationLevel::O0) 927 MPM.addPass(AssignmentTrackingPass()); 928 }); 929 } 930 break; 931 case CodeGenOptions::AssignmentTrackingOpts::Disabled: 932 break; 933 } 934 935 // Enable verify-debuginfo-preserve-each for new PM. 936 DebugifyEachInstrumentation Debugify; 937 DebugInfoPerPass DebugInfoBeforePass; 938 if (CodeGenOpts.EnableDIPreservationVerify) { 939 Debugify.setDebugifyMode(DebugifyMode::OriginalDebugInfo); 940 Debugify.setDebugInfoBeforePass(DebugInfoBeforePass); 941 942 if (!CodeGenOpts.DIBugsReportFilePath.empty()) 943 Debugify.setOrigDIVerifyBugsReportFilePath( 944 CodeGenOpts.DIBugsReportFilePath); 945 Debugify.registerCallbacks(PIC, MAM); 946 } 947 // Attempt to load pass plugins and register their callbacks with PB. 948 for (auto &PluginFN : CodeGenOpts.PassPlugins) { 949 auto PassPlugin = PassPlugin::Load(PluginFN); 950 if (PassPlugin) { 951 PassPlugin->registerPassBuilderCallbacks(PB); 952 } else { 953 Diags.Report(diag::err_fe_unable_to_load_plugin) 954 << PluginFN << toString(PassPlugin.takeError()); 955 } 956 } 957 for (const auto &PassCallback : CodeGenOpts.PassBuilderCallbacks) 958 PassCallback(PB); 959 #define HANDLE_EXTENSION(Ext) \ 960 get##Ext##PluginInfo().RegisterPassBuilderCallbacks(PB); 961 #include "llvm/Support/Extension.def" 962 963 // Register the target library analysis directly and give it a customized 964 // preset TLI. 965 std::unique_ptr<TargetLibraryInfoImpl> TLII( 966 llvm::driver::createTLII(TargetTriple, CodeGenOpts.getVecLib())); 967 FAM.registerPass([&] { return TargetLibraryAnalysis(*TLII); }); 968 969 // Register all the basic analyses with the managers. 970 PB.registerModuleAnalyses(MAM); 971 PB.registerCGSCCAnalyses(CGAM); 972 PB.registerFunctionAnalyses(FAM); 973 PB.registerLoopAnalyses(LAM); 974 PB.crossRegisterProxies(LAM, FAM, CGAM, MAM); 975 976 ModulePassManager MPM; 977 // Add a verifier pass, before any other passes, to catch CodeGen issues. 978 if (CodeGenOpts.VerifyModule) 979 MPM.addPass(VerifierPass()); 980 981 if (!CodeGenOpts.DisableLLVMPasses) { 982 // Map our optimization levels into one of the distinct levels used to 983 // configure the pipeline. 984 OptimizationLevel Level = mapToLevel(CodeGenOpts); 985 986 const bool PrepareForThinLTO = CodeGenOpts.PrepareForThinLTO; 987 const bool PrepareForLTO = CodeGenOpts.PrepareForLTO; 988 989 if (LangOpts.ObjCAutoRefCount) { 990 PB.registerPipelineStartEPCallback( 991 [](ModulePassManager &MPM, OptimizationLevel Level) { 992 if (Level != OptimizationLevel::O0) 993 MPM.addPass( 994 createModuleToFunctionPassAdaptor(ObjCARCExpandPass())); 995 }); 996 PB.registerPipelineEarlySimplificationEPCallback( 997 [](ModulePassManager &MPM, OptimizationLevel Level, 998 ThinOrFullLTOPhase) { 999 if (Level != OptimizationLevel::O0) 1000 MPM.addPass(ObjCARCAPElimPass()); 1001 }); 1002 PB.registerScalarOptimizerLateEPCallback( 1003 [](FunctionPassManager &FPM, OptimizationLevel Level) { 1004 if (Level != OptimizationLevel::O0) 1005 FPM.addPass(ObjCARCOptPass()); 1006 }); 1007 } 1008 1009 // If we reached here with a non-empty index file name, then the index 1010 // file was empty and we are not performing ThinLTO backend compilation 1011 // (used in testing in a distributed build environment). 1012 bool IsThinLTOPostLink = !CodeGenOpts.ThinLTOIndexFile.empty(); 1013 // If so drop any the type test assume sequences inserted for whole program 1014 // vtables so that codegen doesn't complain. 1015 if (IsThinLTOPostLink) 1016 PB.registerPipelineStartEPCallback( 1017 [](ModulePassManager &MPM, OptimizationLevel Level) { 1018 MPM.addPass(LowerTypeTestsPass( 1019 /*ExportSummary=*/nullptr, 1020 /*ImportSummary=*/nullptr, 1021 /*DropTypeTests=*/lowertypetests::DropTestKind::Assume)); 1022 }); 1023 1024 // Register callbacks to schedule sanitizer passes at the appropriate part 1025 // of the pipeline. 1026 if (LangOpts.Sanitize.has(SanitizerKind::LocalBounds)) 1027 PB.registerScalarOptimizerLateEPCallback([this](FunctionPassManager &FPM, 1028 OptimizationLevel Level) { 1029 BoundsCheckingPass::Options Options; 1030 if (CodeGenOpts.SanitizeSkipHotCutoffs[SanitizerKind::SO_LocalBounds] || 1031 ClSanitizeGuardChecks) { 1032 static_assert(SanitizerKind::SO_LocalBounds <= 1033 std::numeric_limits< 1034 decltype(Options.GuardKind)::value_type>::max(), 1035 "Update type of llvm.allow.ubsan.check."); 1036 Options.GuardKind = SanitizerKind::SO_LocalBounds; 1037 } 1038 Options.Merge = 1039 CodeGenOpts.SanitizeMergeHandlers.has(SanitizerKind::LocalBounds); 1040 if (!CodeGenOpts.SanitizeTrap.has(SanitizerKind::LocalBounds)) { 1041 Options.Rt = { 1042 /*MinRuntime=*/static_cast<bool>( 1043 CodeGenOpts.SanitizeMinimalRuntime), 1044 /*MayReturn=*/ 1045 CodeGenOpts.SanitizeRecover.has(SanitizerKind::LocalBounds), 1046 }; 1047 } 1048 FPM.addPass(BoundsCheckingPass(Options)); 1049 }); 1050 1051 // Don't add sanitizers if we are here from ThinLTO PostLink. That already 1052 // done on PreLink stage. 1053 if (!IsThinLTOPostLink) { 1054 addSanitizers(TargetTriple, CodeGenOpts, LangOpts, PB); 1055 addKCFIPass(TargetTriple, LangOpts, PB); 1056 } 1057 1058 if (std::optional<GCOVOptions> Options = 1059 getGCOVOptions(CodeGenOpts, LangOpts)) 1060 PB.registerPipelineStartEPCallback( 1061 [Options](ModulePassManager &MPM, OptimizationLevel Level) { 1062 MPM.addPass(GCOVProfilerPass(*Options)); 1063 }); 1064 if (std::optional<InstrProfOptions> Options = 1065 getInstrProfOptions(CodeGenOpts, LangOpts)) 1066 PB.registerPipelineStartEPCallback( 1067 [Options](ModulePassManager &MPM, OptimizationLevel Level) { 1068 MPM.addPass(InstrProfilingLoweringPass(*Options, false)); 1069 }); 1070 1071 // TODO: Consider passing the MemoryProfileOutput to the pass builder via 1072 // the PGOOptions, and set this up there. 1073 if (!CodeGenOpts.MemoryProfileOutput.empty()) { 1074 PB.registerOptimizerLastEPCallback([](ModulePassManager &MPM, 1075 OptimizationLevel Level, 1076 ThinOrFullLTOPhase) { 1077 MPM.addPass(createModuleToFunctionPassAdaptor(MemProfilerPass())); 1078 MPM.addPass(ModuleMemProfilerPass()); 1079 }); 1080 } 1081 1082 if (CodeGenOpts.FatLTO) { 1083 MPM.addPass(PB.buildFatLTODefaultPipeline( 1084 Level, PrepareForThinLTO, 1085 PrepareForThinLTO || shouldEmitRegularLTOSummary())); 1086 } else if (PrepareForThinLTO) { 1087 MPM.addPass(PB.buildThinLTOPreLinkDefaultPipeline(Level)); 1088 } else if (PrepareForLTO) { 1089 MPM.addPass(PB.buildLTOPreLinkDefaultPipeline(Level)); 1090 } else { 1091 MPM.addPass(PB.buildPerModuleDefaultPipeline(Level)); 1092 } 1093 } 1094 1095 // Link against bitcodes supplied via the -mlink-builtin-bitcode option 1096 if (CodeGenOpts.LinkBitcodePostopt) 1097 MPM.addPass(LinkInModulesPass(BC)); 1098 1099 // Add a verifier pass if requested. We don't have to do this if the action 1100 // requires code generation because there will already be a verifier pass in 1101 // the code-generation pipeline. 1102 // Since we already added a verifier pass above, this 1103 // might even not run the analysis, if previous passes caused no changes. 1104 if (!actionRequiresCodeGen(Action) && CodeGenOpts.VerifyModule) 1105 MPM.addPass(VerifierPass()); 1106 1107 if (Action == Backend_EmitBC || Action == Backend_EmitLL || 1108 CodeGenOpts.FatLTO) { 1109 if (CodeGenOpts.PrepareForThinLTO && !CodeGenOpts.DisableLLVMPasses) { 1110 if (!TheModule->getModuleFlag("EnableSplitLTOUnit")) 1111 TheModule->addModuleFlag(llvm::Module::Error, "EnableSplitLTOUnit", 1112 CodeGenOpts.EnableSplitLTOUnit); 1113 if (Action == Backend_EmitBC) { 1114 if (!CodeGenOpts.ThinLinkBitcodeFile.empty()) { 1115 ThinLinkOS = openOutputFile(CodeGenOpts.ThinLinkBitcodeFile); 1116 if (!ThinLinkOS) 1117 return; 1118 } 1119 MPM.addPass(ThinLTOBitcodeWriterPass( 1120 *OS, ThinLinkOS ? &ThinLinkOS->os() : nullptr)); 1121 } else if (Action == Backend_EmitLL) { 1122 MPM.addPass(PrintModulePass(*OS, "", CodeGenOpts.EmitLLVMUseLists, 1123 /*EmitLTOSummary=*/true)); 1124 } 1125 } else { 1126 // Emit a module summary by default for Regular LTO except for ld64 1127 // targets 1128 bool EmitLTOSummary = shouldEmitRegularLTOSummary(); 1129 if (EmitLTOSummary) { 1130 if (!TheModule->getModuleFlag("ThinLTO") && !CodeGenOpts.UnifiedLTO) 1131 TheModule->addModuleFlag(llvm::Module::Error, "ThinLTO", uint32_t(0)); 1132 if (!TheModule->getModuleFlag("EnableSplitLTOUnit")) 1133 TheModule->addModuleFlag(llvm::Module::Error, "EnableSplitLTOUnit", 1134 uint32_t(1)); 1135 } 1136 if (Action == Backend_EmitBC) { 1137 MPM.addPass(BitcodeWriterPass(*OS, CodeGenOpts.EmitLLVMUseLists, 1138 EmitLTOSummary)); 1139 } else if (Action == Backend_EmitLL) { 1140 MPM.addPass(PrintModulePass(*OS, "", CodeGenOpts.EmitLLVMUseLists, 1141 EmitLTOSummary)); 1142 } 1143 } 1144 1145 if (shouldEmitUnifiedLTOModueFlag()) 1146 TheModule->addModuleFlag(llvm::Module::Error, "UnifiedLTO", uint32_t(1)); 1147 } 1148 1149 // FIXME: This should eventually be replaced by a first-class driver option. 1150 // This should be done for both clang and flang simultaneously. 1151 // Print a textual, '-passes=' compatible, representation of pipeline if 1152 // requested. 1153 if (PrintPipelinePasses) { 1154 MPM.printPipeline(outs(), [&PIC](StringRef ClassName) { 1155 auto PassName = PIC.getPassNameForClassName(ClassName); 1156 return PassName.empty() ? ClassName : PassName; 1157 }); 1158 outs() << "\n"; 1159 return; 1160 } 1161 1162 if (LangOpts.HIPStdPar && !LangOpts.CUDAIsDevice && 1163 LangOpts.HIPStdParInterposeAlloc) 1164 MPM.addPass(HipStdParAllocationInterpositionPass()); 1165 1166 // Now that we have all of the passes ready, run them. 1167 { 1168 PrettyStackTraceString CrashInfo("Optimizer"); 1169 llvm::TimeTraceScope TimeScope("Optimizer"); 1170 Timer timer; 1171 if (CI.getCodeGenOpts().TimePasses) { 1172 timer.init("optimizer", "Optimizer", CI.getTimerGroup()); 1173 CI.getFrontendTimer().yieldTo(timer); 1174 } 1175 MPM.run(*TheModule, MAM); 1176 if (CI.getCodeGenOpts().TimePasses) 1177 timer.yieldTo(CI.getFrontendTimer()); 1178 } 1179 } 1180 1181 void EmitAssemblyHelper::RunCodegenPipeline( 1182 BackendAction Action, std::unique_ptr<raw_pwrite_stream> &OS, 1183 std::unique_ptr<llvm::ToolOutputFile> &DwoOS) { 1184 // We still use the legacy PM to run the codegen pipeline since the new PM 1185 // does not work with the codegen pipeline. 1186 // FIXME: make the new PM work with the codegen pipeline. 1187 legacy::PassManager CodeGenPasses; 1188 1189 // Append any output we need to the pass manager. 1190 switch (Action) { 1191 case Backend_EmitAssembly: 1192 case Backend_EmitMCNull: 1193 case Backend_EmitObj: 1194 CodeGenPasses.add( 1195 createTargetTransformInfoWrapperPass(getTargetIRAnalysis())); 1196 if (!CodeGenOpts.SplitDwarfOutput.empty()) { 1197 DwoOS = openOutputFile(CodeGenOpts.SplitDwarfOutput); 1198 if (!DwoOS) 1199 return; 1200 } 1201 if (!AddEmitPasses(CodeGenPasses, Action, *OS, 1202 DwoOS ? &DwoOS->os() : nullptr)) 1203 // FIXME: Should we handle this error differently? 1204 return; 1205 break; 1206 default: 1207 return; 1208 } 1209 1210 // If -print-pipeline-passes is requested, don't run the legacy pass manager. 1211 // FIXME: when codegen is switched to use the new pass manager, it should also 1212 // emit pass names here. 1213 if (PrintPipelinePasses) { 1214 return; 1215 } 1216 1217 { 1218 PrettyStackTraceString CrashInfo("Code generation"); 1219 llvm::TimeTraceScope TimeScope("CodeGenPasses"); 1220 Timer timer; 1221 if (CI.getCodeGenOpts().TimePasses) { 1222 timer.init("codegen", "Machine code generation", CI.getTimerGroup()); 1223 CI.getFrontendTimer().yieldTo(timer); 1224 } 1225 CodeGenPasses.run(*TheModule); 1226 if (CI.getCodeGenOpts().TimePasses) 1227 timer.yieldTo(CI.getFrontendTimer()); 1228 } 1229 } 1230 1231 void EmitAssemblyHelper::emitAssembly(BackendAction Action, 1232 std::unique_ptr<raw_pwrite_stream> OS, 1233 BackendConsumer *BC) { 1234 setCommandLineOpts(CodeGenOpts); 1235 1236 bool RequiresCodeGen = actionRequiresCodeGen(Action); 1237 CreateTargetMachine(RequiresCodeGen); 1238 1239 if (RequiresCodeGen && !TM) 1240 return; 1241 if (TM) 1242 TheModule->setDataLayout(TM->createDataLayout()); 1243 1244 // Before executing passes, print the final values of the LLVM options. 1245 cl::PrintOptionValues(); 1246 1247 std::unique_ptr<llvm::ToolOutputFile> ThinLinkOS, DwoOS; 1248 RunOptimizationPipeline(Action, OS, ThinLinkOS, BC); 1249 RunCodegenPipeline(Action, OS, DwoOS); 1250 1251 if (ThinLinkOS) 1252 ThinLinkOS->keep(); 1253 if (DwoOS) 1254 DwoOS->keep(); 1255 } 1256 1257 static void 1258 runThinLTOBackend(CompilerInstance &CI, ModuleSummaryIndex *CombinedIndex, 1259 llvm::Module *M, std::unique_ptr<raw_pwrite_stream> OS, 1260 std::string SampleProfile, std::string ProfileRemapping, 1261 BackendAction Action) { 1262 DiagnosticsEngine &Diags = CI.getDiagnostics(); 1263 const auto &CGOpts = CI.getCodeGenOpts(); 1264 const auto &TOpts = CI.getTargetOpts(); 1265 DenseMap<StringRef, DenseMap<GlobalValue::GUID, GlobalValueSummary *>> 1266 ModuleToDefinedGVSummaries; 1267 CombinedIndex->collectDefinedGVSummariesPerModule(ModuleToDefinedGVSummaries); 1268 1269 setCommandLineOpts(CGOpts); 1270 1271 // We can simply import the values mentioned in the combined index, since 1272 // we should only invoke this using the individual indexes written out 1273 // via a WriteIndexesThinBackend. 1274 FunctionImporter::ImportIDTable ImportIDs; 1275 FunctionImporter::ImportMapTy ImportList(ImportIDs); 1276 if (!lto::initImportList(*M, *CombinedIndex, ImportList)) 1277 return; 1278 1279 auto AddStream = [&](size_t Task, const Twine &ModuleName) { 1280 return std::make_unique<CachedFileStream>(std::move(OS), 1281 CGOpts.ObjectFilenameForDebug); 1282 }; 1283 lto::Config Conf; 1284 if (CGOpts.SaveTempsFilePrefix != "") { 1285 if (Error E = Conf.addSaveTemps(CGOpts.SaveTempsFilePrefix + ".", 1286 /* UseInputModulePath */ false)) { 1287 handleAllErrors(std::move(E), [&](ErrorInfoBase &EIB) { 1288 errs() << "Error setting up ThinLTO save-temps: " << EIB.message() 1289 << '\n'; 1290 }); 1291 } 1292 } 1293 Conf.CPU = TOpts.CPU; 1294 Conf.CodeModel = getCodeModel(CGOpts); 1295 Conf.MAttrs = TOpts.Features; 1296 Conf.RelocModel = CGOpts.RelocationModel; 1297 std::optional<CodeGenOptLevel> OptLevelOrNone = 1298 CodeGenOpt::getLevel(CGOpts.OptimizationLevel); 1299 assert(OptLevelOrNone && "Invalid optimization level!"); 1300 Conf.CGOptLevel = *OptLevelOrNone; 1301 Conf.OptLevel = CGOpts.OptimizationLevel; 1302 initTargetOptions(CI, Diags, Conf.Options); 1303 Conf.SampleProfile = std::move(SampleProfile); 1304 Conf.PTO.LoopUnrolling = CGOpts.UnrollLoops; 1305 // For historical reasons, loop interleaving is set to mirror setting for loop 1306 // unrolling. 1307 Conf.PTO.LoopInterleaving = CGOpts.UnrollLoops; 1308 Conf.PTO.LoopVectorization = CGOpts.VectorizeLoop; 1309 Conf.PTO.SLPVectorization = CGOpts.VectorizeSLP; 1310 // Only enable CGProfilePass when using integrated assembler, since 1311 // non-integrated assemblers don't recognize .cgprofile section. 1312 Conf.PTO.CallGraphProfile = !CGOpts.DisableIntegratedAS; 1313 1314 // Context sensitive profile. 1315 if (CGOpts.hasProfileCSIRInstr()) { 1316 Conf.RunCSIRInstr = true; 1317 Conf.CSIRProfile = std::move(CGOpts.InstrProfileOutput); 1318 } else if (CGOpts.hasProfileCSIRUse()) { 1319 Conf.RunCSIRInstr = false; 1320 Conf.CSIRProfile = std::move(CGOpts.ProfileInstrumentUsePath); 1321 } 1322 1323 Conf.ProfileRemapping = std::move(ProfileRemapping); 1324 Conf.DebugPassManager = CGOpts.DebugPassManager; 1325 Conf.VerifyEach = CGOpts.VerifyEach; 1326 Conf.RemarksWithHotness = CGOpts.DiagnosticsWithHotness; 1327 Conf.RemarksFilename = CGOpts.OptRecordFile; 1328 Conf.RemarksPasses = CGOpts.OptRecordPasses; 1329 Conf.RemarksFormat = CGOpts.OptRecordFormat; 1330 Conf.SplitDwarfFile = CGOpts.SplitDwarfFile; 1331 Conf.SplitDwarfOutput = CGOpts.SplitDwarfOutput; 1332 switch (Action) { 1333 case Backend_EmitNothing: 1334 Conf.PreCodeGenModuleHook = [](size_t Task, const llvm::Module &Mod) { 1335 return false; 1336 }; 1337 break; 1338 case Backend_EmitLL: 1339 Conf.PreCodeGenModuleHook = [&](size_t Task, const llvm::Module &Mod) { 1340 M->print(*OS, nullptr, CGOpts.EmitLLVMUseLists); 1341 return false; 1342 }; 1343 break; 1344 case Backend_EmitBC: 1345 Conf.PreCodeGenModuleHook = [&](size_t Task, const llvm::Module &Mod) { 1346 WriteBitcodeToFile(*M, *OS, CGOpts.EmitLLVMUseLists); 1347 return false; 1348 }; 1349 break; 1350 default: 1351 Conf.CGFileType = getCodeGenFileType(Action); 1352 break; 1353 } 1354 if (Error E = 1355 thinBackend(Conf, -1, AddStream, *M, *CombinedIndex, ImportList, 1356 ModuleToDefinedGVSummaries[M->getModuleIdentifier()], 1357 /*ModuleMap=*/nullptr, Conf.CodeGenOnly, 1358 /*IRAddStream=*/nullptr, CGOpts.CmdArgs)) { 1359 handleAllErrors(std::move(E), [&](ErrorInfoBase &EIB) { 1360 errs() << "Error running ThinLTO backend: " << EIB.message() << '\n'; 1361 }); 1362 } 1363 } 1364 1365 void clang::emitBackendOutput(CompilerInstance &CI, StringRef TDesc, 1366 llvm::Module *M, BackendAction Action, 1367 IntrusiveRefCntPtr<llvm::vfs::FileSystem> VFS, 1368 std::unique_ptr<raw_pwrite_stream> OS, 1369 BackendConsumer *BC) { 1370 llvm::TimeTraceScope TimeScope("Backend"); 1371 DiagnosticsEngine &Diags = CI.getDiagnostics(); 1372 const auto &CGOpts = CI.getCodeGenOpts(); 1373 1374 std::unique_ptr<llvm::Module> EmptyModule; 1375 if (!CGOpts.ThinLTOIndexFile.empty()) { 1376 // If we are performing a ThinLTO importing compile, load the function index 1377 // into memory and pass it into runThinLTOBackend, which will run the 1378 // function importer and invoke LTO passes. 1379 std::unique_ptr<ModuleSummaryIndex> CombinedIndex; 1380 if (Error E = llvm::getModuleSummaryIndexForFile( 1381 CGOpts.ThinLTOIndexFile, 1382 /*IgnoreEmptyThinLTOIndexFile*/ true) 1383 .moveInto(CombinedIndex)) { 1384 logAllUnhandledErrors(std::move(E), errs(), 1385 "Error loading index file '" + 1386 CGOpts.ThinLTOIndexFile + "': "); 1387 return; 1388 } 1389 1390 // A null CombinedIndex means we should skip ThinLTO compilation 1391 // (LLVM will optionally ignore empty index files, returning null instead 1392 // of an error). 1393 if (CombinedIndex) { 1394 if (!CombinedIndex->skipModuleByDistributedBackend()) { 1395 runThinLTOBackend(CI, CombinedIndex.get(), M, std::move(OS), 1396 CGOpts.SampleProfileFile, CGOpts.ProfileRemappingFile, 1397 Action); 1398 return; 1399 } 1400 // Distributed indexing detected that nothing from the module is needed 1401 // for the final linking. So we can skip the compilation. We sill need to 1402 // output an empty object file to make sure that a linker does not fail 1403 // trying to read it. Also for some features, like CFI, we must skip 1404 // the compilation as CombinedIndex does not contain all required 1405 // information. 1406 EmptyModule = std::make_unique<llvm::Module>("empty", M->getContext()); 1407 EmptyModule->setTargetTriple(M->getTargetTriple()); 1408 M = EmptyModule.get(); 1409 } 1410 } 1411 1412 EmitAssemblyHelper AsmHelper(CI, M, VFS); 1413 AsmHelper.emitAssembly(Action, std::move(OS), BC); 1414 1415 // Verify clang's TargetInfo DataLayout against the LLVM TargetMachine's 1416 // DataLayout. 1417 if (AsmHelper.TM) { 1418 std::string DLDesc = M->getDataLayout().getStringRepresentation(); 1419 if (DLDesc != TDesc) { 1420 unsigned DiagID = Diags.getCustomDiagID( 1421 DiagnosticsEngine::Error, "backend data layout '%0' does not match " 1422 "expected target description '%1'"); 1423 Diags.Report(DiagID) << DLDesc << TDesc; 1424 } 1425 } 1426 } 1427 1428 // With -fembed-bitcode, save a copy of the llvm IR as data in the 1429 // __LLVM,__bitcode section. 1430 void clang::EmbedBitcode(llvm::Module *M, const CodeGenOptions &CGOpts, 1431 llvm::MemoryBufferRef Buf) { 1432 if (CGOpts.getEmbedBitcode() == CodeGenOptions::Embed_Off) 1433 return; 1434 llvm::embedBitcodeInModule( 1435 *M, Buf, CGOpts.getEmbedBitcode() != CodeGenOptions::Embed_Marker, 1436 CGOpts.getEmbedBitcode() != CodeGenOptions::Embed_Bitcode, 1437 CGOpts.CmdArgs); 1438 } 1439 1440 void clang::EmbedObject(llvm::Module *M, const CodeGenOptions &CGOpts, 1441 DiagnosticsEngine &Diags) { 1442 if (CGOpts.OffloadObjects.empty()) 1443 return; 1444 1445 for (StringRef OffloadObject : CGOpts.OffloadObjects) { 1446 llvm::ErrorOr<std::unique_ptr<llvm::MemoryBuffer>> ObjectOrErr = 1447 llvm::MemoryBuffer::getFileOrSTDIN(OffloadObject); 1448 if (ObjectOrErr.getError()) { 1449 auto DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error, 1450 "could not open '%0' for embedding"); 1451 Diags.Report(DiagID) << OffloadObject; 1452 return; 1453 } 1454 1455 llvm::embedBufferInModule(*M, **ObjectOrErr, ".llvm.offloading", 1456 Align(object::OffloadBinary::getAlignment())); 1457 } 1458 } 1459