xref: /llvm-project/clang/lib/Analysis/UninitializedValues.cpp (revision 6ad0788c332bb2043142954d300c49ac3e537f34)
1 //===- UninitializedValues.cpp - Find Uninitialized Values ----------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements uninitialized values analysis for source-level CFGs.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "clang/Analysis/Analyses/UninitializedValues.h"
14 #include "clang/AST/Attr.h"
15 #include "clang/AST/Decl.h"
16 #include "clang/AST/DeclBase.h"
17 #include "clang/AST/Expr.h"
18 #include "clang/AST/OperationKinds.h"
19 #include "clang/AST/Stmt.h"
20 #include "clang/AST/StmtObjC.h"
21 #include "clang/AST/StmtVisitor.h"
22 #include "clang/AST/Type.h"
23 #include "clang/Analysis/Analyses/PostOrderCFGView.h"
24 #include "clang/Analysis/AnalysisDeclContext.h"
25 #include "clang/Analysis/CFG.h"
26 #include "clang/Analysis/DomainSpecific/ObjCNoReturn.h"
27 #include "clang/Analysis/FlowSensitive/DataflowWorklist.h"
28 #include "clang/Basic/LLVM.h"
29 #include "llvm/ADT/BitVector.h"
30 #include "llvm/ADT/DenseMap.h"
31 #include "llvm/ADT/Optional.h"
32 #include "llvm/ADT/PackedVector.h"
33 #include "llvm/ADT/SmallBitVector.h"
34 #include "llvm/ADT/SmallVector.h"
35 #include "llvm/Support/Casting.h"
36 #include <algorithm>
37 #include <cassert>
38 #include <optional>
39 
40 using namespace clang;
41 
42 #define DEBUG_LOGGING 0
43 
44 static bool isTrackedVar(const VarDecl *vd, const DeclContext *dc) {
45   if (vd->isLocalVarDecl() && !vd->hasGlobalStorage() &&
46       !vd->isExceptionVariable() && !vd->isInitCapture() &&
47       !vd->isImplicit() && vd->getDeclContext() == dc) {
48     QualType ty = vd->getType();
49     return ty->isScalarType() || ty->isVectorType() || ty->isRecordType() ||
50            ty->isRVVType();
51   }
52   return false;
53 }
54 
55 //------------------------------------------------------------------------====//
56 // DeclToIndex: a mapping from Decls we track to value indices.
57 //====------------------------------------------------------------------------//
58 
59 namespace {
60 
61 class DeclToIndex {
62   llvm::DenseMap<const VarDecl *, unsigned> map;
63 
64 public:
65   DeclToIndex() = default;
66 
67   /// Compute the actual mapping from declarations to bits.
68   void computeMap(const DeclContext &dc);
69 
70   /// Return the number of declarations in the map.
71   unsigned size() const { return map.size(); }
72 
73   /// Returns the bit vector index for a given declaration.
74   std::optional<unsigned> getValueIndex(const VarDecl *d) const;
75 };
76 
77 } // namespace
78 
79 void DeclToIndex::computeMap(const DeclContext &dc) {
80   unsigned count = 0;
81   DeclContext::specific_decl_iterator<VarDecl> I(dc.decls_begin()),
82                                                E(dc.decls_end());
83   for ( ; I != E; ++I) {
84     const VarDecl *vd = *I;
85     if (isTrackedVar(vd, &dc))
86       map[vd] = count++;
87   }
88 }
89 
90 std::optional<unsigned> DeclToIndex::getValueIndex(const VarDecl *d) const {
91   llvm::DenseMap<const VarDecl *, unsigned>::const_iterator I = map.find(d);
92   if (I == map.end())
93     return std::nullopt;
94   return I->second;
95 }
96 
97 //------------------------------------------------------------------------====//
98 // CFGBlockValues: dataflow values for CFG blocks.
99 //====------------------------------------------------------------------------//
100 
101 // These values are defined in such a way that a merge can be done using
102 // a bitwise OR.
103 enum Value { Unknown = 0x0,         /* 00 */
104              Initialized = 0x1,     /* 01 */
105              Uninitialized = 0x2,   /* 10 */
106              MayUninitialized = 0x3 /* 11 */ };
107 
108 static bool isUninitialized(const Value v) {
109   return v >= Uninitialized;
110 }
111 
112 static bool isAlwaysUninit(const Value v) {
113   return v == Uninitialized;
114 }
115 
116 namespace {
117 
118 using ValueVector = llvm::PackedVector<Value, 2, llvm::SmallBitVector>;
119 
120 class CFGBlockValues {
121   const CFG &cfg;
122   SmallVector<ValueVector, 8> vals;
123   ValueVector scratch;
124   DeclToIndex declToIndex;
125 
126 public:
127   CFGBlockValues(const CFG &cfg);
128 
129   unsigned getNumEntries() const { return declToIndex.size(); }
130 
131   void computeSetOfDeclarations(const DeclContext &dc);
132 
133   ValueVector &getValueVector(const CFGBlock *block) {
134     return vals[block->getBlockID()];
135   }
136 
137   void setAllScratchValues(Value V);
138   void mergeIntoScratch(ValueVector const &source, bool isFirst);
139   bool updateValueVectorWithScratch(const CFGBlock *block);
140 
141   bool hasNoDeclarations() const {
142     return declToIndex.size() == 0;
143   }
144 
145   void resetScratch();
146 
147   ValueVector::reference operator[](const VarDecl *vd);
148 
149   Value getValue(const CFGBlock *block, const CFGBlock *dstBlock,
150                  const VarDecl *vd) {
151     std::optional<unsigned> idx = declToIndex.getValueIndex(vd);
152     return getValueVector(block)[*idx];
153   }
154 };
155 
156 } // namespace
157 
158 CFGBlockValues::CFGBlockValues(const CFG &c) : cfg(c), vals(0) {}
159 
160 void CFGBlockValues::computeSetOfDeclarations(const DeclContext &dc) {
161   declToIndex.computeMap(dc);
162   unsigned decls = declToIndex.size();
163   scratch.resize(decls);
164   unsigned n = cfg.getNumBlockIDs();
165   if (!n)
166     return;
167   vals.resize(n);
168   for (auto &val : vals)
169     val.resize(decls);
170 }
171 
172 #if DEBUG_LOGGING
173 static void printVector(const CFGBlock *block, ValueVector &bv,
174                         unsigned num) {
175   llvm::errs() << block->getBlockID() << " :";
176   for (const auto &i : bv)
177     llvm::errs() << ' ' << i;
178   llvm::errs() << " : " << num << '\n';
179 }
180 #endif
181 
182 void CFGBlockValues::setAllScratchValues(Value V) {
183   for (unsigned I = 0, E = scratch.size(); I != E; ++I)
184     scratch[I] = V;
185 }
186 
187 void CFGBlockValues::mergeIntoScratch(ValueVector const &source,
188                                       bool isFirst) {
189   if (isFirst)
190     scratch = source;
191   else
192     scratch |= source;
193 }
194 
195 bool CFGBlockValues::updateValueVectorWithScratch(const CFGBlock *block) {
196   ValueVector &dst = getValueVector(block);
197   bool changed = (dst != scratch);
198   if (changed)
199     dst = scratch;
200 #if DEBUG_LOGGING
201   printVector(block, scratch, 0);
202 #endif
203   return changed;
204 }
205 
206 void CFGBlockValues::resetScratch() {
207   scratch.reset();
208 }
209 
210 ValueVector::reference CFGBlockValues::operator[](const VarDecl *vd) {
211   return scratch[*declToIndex.getValueIndex(vd)];
212 }
213 
214 //------------------------------------------------------------------------====//
215 // Classification of DeclRefExprs as use or initialization.
216 //====------------------------------------------------------------------------//
217 
218 namespace {
219 
220 class FindVarResult {
221   const VarDecl *vd;
222   const DeclRefExpr *dr;
223 
224 public:
225   FindVarResult(const VarDecl *vd, const DeclRefExpr *dr) : vd(vd), dr(dr) {}
226 
227   const DeclRefExpr *getDeclRefExpr() const { return dr; }
228   const VarDecl *getDecl() const { return vd; }
229 };
230 
231 } // namespace
232 
233 static const Expr *stripCasts(ASTContext &C, const Expr *Ex) {
234   while (Ex) {
235     Ex = Ex->IgnoreParenNoopCasts(C);
236     if (const auto *CE = dyn_cast<CastExpr>(Ex)) {
237       if (CE->getCastKind() == CK_LValueBitCast) {
238         Ex = CE->getSubExpr();
239         continue;
240       }
241     }
242     break;
243   }
244   return Ex;
245 }
246 
247 /// If E is an expression comprising a reference to a single variable, find that
248 /// variable.
249 static FindVarResult findVar(const Expr *E, const DeclContext *DC) {
250   if (const auto *DRE =
251           dyn_cast<DeclRefExpr>(stripCasts(DC->getParentASTContext(), E)))
252     if (const auto *VD = dyn_cast<VarDecl>(DRE->getDecl()))
253       if (isTrackedVar(VD, DC))
254         return FindVarResult(VD, DRE);
255   return FindVarResult(nullptr, nullptr);
256 }
257 
258 namespace {
259 
260 /// Classify each DeclRefExpr as an initialization or a use. Any
261 /// DeclRefExpr which isn't explicitly classified will be assumed to have
262 /// escaped the analysis and will be treated as an initialization.
263 class ClassifyRefs : public StmtVisitor<ClassifyRefs> {
264 public:
265   enum Class {
266     Init,
267     Use,
268     SelfInit,
269     ConstRefUse,
270     Ignore
271   };
272 
273 private:
274   const DeclContext *DC;
275   llvm::DenseMap<const DeclRefExpr *, Class> Classification;
276 
277   bool isTrackedVar(const VarDecl *VD) const {
278     return ::isTrackedVar(VD, DC);
279   }
280 
281   void classify(const Expr *E, Class C);
282 
283 public:
284   ClassifyRefs(AnalysisDeclContext &AC) : DC(cast<DeclContext>(AC.getDecl())) {}
285 
286   void VisitDeclStmt(DeclStmt *DS);
287   void VisitUnaryOperator(UnaryOperator *UO);
288   void VisitBinaryOperator(BinaryOperator *BO);
289   void VisitCallExpr(CallExpr *CE);
290   void VisitCastExpr(CastExpr *CE);
291   void VisitOMPExecutableDirective(OMPExecutableDirective *ED);
292 
293   void operator()(Stmt *S) { Visit(S); }
294 
295   Class get(const DeclRefExpr *DRE) const {
296     llvm::DenseMap<const DeclRefExpr*, Class>::const_iterator I
297         = Classification.find(DRE);
298     if (I != Classification.end())
299       return I->second;
300 
301     const auto *VD = dyn_cast<VarDecl>(DRE->getDecl());
302     if (!VD || !isTrackedVar(VD))
303       return Ignore;
304 
305     return Init;
306   }
307 };
308 
309 } // namespace
310 
311 static const DeclRefExpr *getSelfInitExpr(VarDecl *VD) {
312   if (VD->getType()->isRecordType())
313     return nullptr;
314   if (Expr *Init = VD->getInit()) {
315     const auto *DRE =
316         dyn_cast<DeclRefExpr>(stripCasts(VD->getASTContext(), Init));
317     if (DRE && DRE->getDecl() == VD)
318       return DRE;
319   }
320   return nullptr;
321 }
322 
323 void ClassifyRefs::classify(const Expr *E, Class C) {
324   // The result of a ?: could also be an lvalue.
325   E = E->IgnoreParens();
326   if (const auto *CO = dyn_cast<ConditionalOperator>(E)) {
327     classify(CO->getTrueExpr(), C);
328     classify(CO->getFalseExpr(), C);
329     return;
330   }
331 
332   if (const auto *BCO = dyn_cast<BinaryConditionalOperator>(E)) {
333     classify(BCO->getFalseExpr(), C);
334     return;
335   }
336 
337   if (const auto *OVE = dyn_cast<OpaqueValueExpr>(E)) {
338     classify(OVE->getSourceExpr(), C);
339     return;
340   }
341 
342   if (const auto *ME = dyn_cast<MemberExpr>(E)) {
343     if (const auto *VD = dyn_cast<VarDecl>(ME->getMemberDecl())) {
344       if (!VD->isStaticDataMember())
345         classify(ME->getBase(), C);
346     }
347     return;
348   }
349 
350   if (const auto *BO = dyn_cast<BinaryOperator>(E)) {
351     switch (BO->getOpcode()) {
352     case BO_PtrMemD:
353     case BO_PtrMemI:
354       classify(BO->getLHS(), C);
355       return;
356     case BO_Comma:
357       classify(BO->getRHS(), C);
358       return;
359     default:
360       return;
361     }
362   }
363 
364   FindVarResult Var = findVar(E, DC);
365   if (const DeclRefExpr *DRE = Var.getDeclRefExpr())
366     Classification[DRE] = std::max(Classification[DRE], C);
367 }
368 
369 void ClassifyRefs::VisitDeclStmt(DeclStmt *DS) {
370   for (auto *DI : DS->decls()) {
371     auto *VD = dyn_cast<VarDecl>(DI);
372     if (VD && isTrackedVar(VD))
373       if (const DeclRefExpr *DRE = getSelfInitExpr(VD))
374         Classification[DRE] = SelfInit;
375   }
376 }
377 
378 void ClassifyRefs::VisitBinaryOperator(BinaryOperator *BO) {
379   // Ignore the evaluation of a DeclRefExpr on the LHS of an assignment. If this
380   // is not a compound-assignment, we will treat it as initializing the variable
381   // when TransferFunctions visits it. A compound-assignment does not affect
382   // whether a variable is uninitialized, and there's no point counting it as a
383   // use.
384   if (BO->isCompoundAssignmentOp())
385     classify(BO->getLHS(), Use);
386   else if (BO->getOpcode() == BO_Assign || BO->getOpcode() == BO_Comma)
387     classify(BO->getLHS(), Ignore);
388 }
389 
390 void ClassifyRefs::VisitUnaryOperator(UnaryOperator *UO) {
391   // Increment and decrement are uses despite there being no lvalue-to-rvalue
392   // conversion.
393   if (UO->isIncrementDecrementOp())
394     classify(UO->getSubExpr(), Use);
395 }
396 
397 void ClassifyRefs::VisitOMPExecutableDirective(OMPExecutableDirective *ED) {
398   for (Stmt *S : OMPExecutableDirective::used_clauses_children(ED->clauses()))
399     classify(cast<Expr>(S), Use);
400 }
401 
402 static bool isPointerToConst(const QualType &QT) {
403   return QT->isAnyPointerType() && QT->getPointeeType().isConstQualified();
404 }
405 
406 static bool hasTrivialBody(CallExpr *CE) {
407   if (FunctionDecl *FD = CE->getDirectCallee()) {
408     if (FunctionTemplateDecl *FTD = FD->getPrimaryTemplate())
409       return FTD->getTemplatedDecl()->hasTrivialBody();
410     return FD->hasTrivialBody();
411   }
412   return false;
413 }
414 
415 void ClassifyRefs::VisitCallExpr(CallExpr *CE) {
416   // Classify arguments to std::move as used.
417   if (CE->isCallToStdMove()) {
418     // RecordTypes are handled in SemaDeclCXX.cpp.
419     if (!CE->getArg(0)->getType()->isRecordType())
420       classify(CE->getArg(0), Use);
421     return;
422   }
423   bool isTrivialBody = hasTrivialBody(CE);
424   // If a value is passed by const pointer to a function,
425   // we should not assume that it is initialized by the call, and we
426   // conservatively do not assume that it is used.
427   // If a value is passed by const reference to a function,
428   // it should already be initialized.
429   for (CallExpr::arg_iterator I = CE->arg_begin(), E = CE->arg_end();
430        I != E; ++I) {
431     if ((*I)->isGLValue()) {
432       if ((*I)->getType().isConstQualified())
433         classify((*I), isTrivialBody ? Ignore : ConstRefUse);
434     } else if (isPointerToConst((*I)->getType())) {
435       const Expr *Ex = stripCasts(DC->getParentASTContext(), *I);
436       const auto *UO = dyn_cast<UnaryOperator>(Ex);
437       if (UO && UO->getOpcode() == UO_AddrOf)
438         Ex = UO->getSubExpr();
439       classify(Ex, Ignore);
440     }
441   }
442 }
443 
444 void ClassifyRefs::VisitCastExpr(CastExpr *CE) {
445   if (CE->getCastKind() == CK_LValueToRValue)
446     classify(CE->getSubExpr(), Use);
447   else if (const auto *CSE = dyn_cast<CStyleCastExpr>(CE)) {
448     if (CSE->getType()->isVoidType()) {
449       // Squelch any detected load of an uninitialized value if
450       // we cast it to void.
451       // e.g. (void) x;
452       classify(CSE->getSubExpr(), Ignore);
453     }
454   }
455 }
456 
457 //------------------------------------------------------------------------====//
458 // Transfer function for uninitialized values analysis.
459 //====------------------------------------------------------------------------//
460 
461 namespace {
462 
463 class TransferFunctions : public StmtVisitor<TransferFunctions> {
464   CFGBlockValues &vals;
465   const CFG &cfg;
466   const CFGBlock *block;
467   AnalysisDeclContext &ac;
468   const ClassifyRefs &classification;
469   ObjCNoReturn objCNoRet;
470   UninitVariablesHandler &handler;
471 
472 public:
473   TransferFunctions(CFGBlockValues &vals, const CFG &cfg,
474                     const CFGBlock *block, AnalysisDeclContext &ac,
475                     const ClassifyRefs &classification,
476                     UninitVariablesHandler &handler)
477       : vals(vals), cfg(cfg), block(block), ac(ac),
478         classification(classification), objCNoRet(ac.getASTContext()),
479         handler(handler) {}
480 
481   void reportUse(const Expr *ex, const VarDecl *vd);
482   void reportConstRefUse(const Expr *ex, const VarDecl *vd);
483 
484   void VisitBinaryOperator(BinaryOperator *bo);
485   void VisitBlockExpr(BlockExpr *be);
486   void VisitCallExpr(CallExpr *ce);
487   void VisitDeclRefExpr(DeclRefExpr *dr);
488   void VisitDeclStmt(DeclStmt *ds);
489   void VisitGCCAsmStmt(GCCAsmStmt *as);
490   void VisitObjCForCollectionStmt(ObjCForCollectionStmt *FS);
491   void VisitObjCMessageExpr(ObjCMessageExpr *ME);
492   void VisitOMPExecutableDirective(OMPExecutableDirective *ED);
493 
494   bool isTrackedVar(const VarDecl *vd) {
495     return ::isTrackedVar(vd, cast<DeclContext>(ac.getDecl()));
496   }
497 
498   FindVarResult findVar(const Expr *ex) {
499     return ::findVar(ex, cast<DeclContext>(ac.getDecl()));
500   }
501 
502   UninitUse getUninitUse(const Expr *ex, const VarDecl *vd, Value v) {
503     UninitUse Use(ex, isAlwaysUninit(v));
504 
505     assert(isUninitialized(v));
506     if (Use.getKind() == UninitUse::Always)
507       return Use;
508 
509     // If an edge which leads unconditionally to this use did not initialize
510     // the variable, we can say something stronger than 'may be uninitialized':
511     // we can say 'either it's used uninitialized or you have dead code'.
512     //
513     // We track the number of successors of a node which have been visited, and
514     // visit a node once we have visited all of its successors. Only edges where
515     // the variable might still be uninitialized are followed. Since a variable
516     // can't transfer from being initialized to being uninitialized, this will
517     // trace out the subgraph which inevitably leads to the use and does not
518     // initialize the variable. We do not want to skip past loops, since their
519     // non-termination might be correlated with the initialization condition.
520     //
521     // For example:
522     //
523     //         void f(bool a, bool b) {
524     // block1:   int n;
525     //           if (a) {
526     // block2:     if (b)
527     // block3:       n = 1;
528     // block4:   } else if (b) {
529     // block5:     while (!a) {
530     // block6:       do_work(&a);
531     //               n = 2;
532     //             }
533     //           }
534     // block7:   if (a)
535     // block8:     g();
536     // block9:   return n;
537     //         }
538     //
539     // Starting from the maybe-uninitialized use in block 9:
540     //  * Block 7 is not visited because we have only visited one of its two
541     //    successors.
542     //  * Block 8 is visited because we've visited its only successor.
543     // From block 8:
544     //  * Block 7 is visited because we've now visited both of its successors.
545     // From block 7:
546     //  * Blocks 1, 2, 4, 5, and 6 are not visited because we didn't visit all
547     //    of their successors (we didn't visit 4, 3, 5, 6, and 5, respectively).
548     //  * Block 3 is not visited because it initializes 'n'.
549     // Now the algorithm terminates, having visited blocks 7 and 8, and having
550     // found the frontier is blocks 2, 4, and 5.
551     //
552     // 'n' is definitely uninitialized for two edges into block 7 (from blocks 2
553     // and 4), so we report that any time either of those edges is taken (in
554     // each case when 'b == false'), 'n' is used uninitialized.
555     SmallVector<const CFGBlock*, 32> Queue;
556     SmallVector<unsigned, 32> SuccsVisited(cfg.getNumBlockIDs(), 0);
557     Queue.push_back(block);
558     // Specify that we've already visited all successors of the starting block.
559     // This has the dual purpose of ensuring we never add it to the queue, and
560     // of marking it as not being a candidate element of the frontier.
561     SuccsVisited[block->getBlockID()] = block->succ_size();
562     while (!Queue.empty()) {
563       const CFGBlock *B = Queue.pop_back_val();
564 
565       // If the use is always reached from the entry block, make a note of that.
566       if (B == &cfg.getEntry())
567         Use.setUninitAfterCall();
568 
569       for (CFGBlock::const_pred_iterator I = B->pred_begin(), E = B->pred_end();
570            I != E; ++I) {
571         const CFGBlock *Pred = *I;
572         if (!Pred)
573           continue;
574 
575         Value AtPredExit = vals.getValue(Pred, B, vd);
576         if (AtPredExit == Initialized)
577           // This block initializes the variable.
578           continue;
579         if (AtPredExit == MayUninitialized &&
580             vals.getValue(B, nullptr, vd) == Uninitialized) {
581           // This block declares the variable (uninitialized), and is reachable
582           // from a block that initializes the variable. We can't guarantee to
583           // give an earlier location for the diagnostic (and it appears that
584           // this code is intended to be reachable) so give a diagnostic here
585           // and go no further down this path.
586           Use.setUninitAfterDecl();
587           continue;
588         }
589 
590         if (AtPredExit == MayUninitialized) {
591           // If the predecessor's terminator is an "asm goto" that initializes
592           // the variable, then don't count it as "initialized" on the indirect
593           // paths.
594           CFGTerminator term = Pred->getTerminator();
595           if (const auto *as = dyn_cast_or_null<GCCAsmStmt>(term.getStmt())) {
596             const CFGBlock *fallthrough = *Pred->succ_begin();
597             if (as->isAsmGoto() &&
598                 llvm::any_of(as->outputs(), [&](const Expr *output) {
599                     return vd == findVar(output).getDecl() &&
600                         llvm::any_of(as->labels(),
601                                      [&](const AddrLabelExpr *label) {
602                           return label->getLabel()->getStmt() == B->Label &&
603                               B != fallthrough;
604                         });
605                 })) {
606               Use.setUninitAfterDecl();
607               continue;
608             }
609           }
610         }
611 
612         unsigned &SV = SuccsVisited[Pred->getBlockID()];
613         if (!SV) {
614           // When visiting the first successor of a block, mark all NULL
615           // successors as having been visited.
616           for (CFGBlock::const_succ_iterator SI = Pred->succ_begin(),
617                                              SE = Pred->succ_end();
618                SI != SE; ++SI)
619             if (!*SI)
620               ++SV;
621         }
622 
623         if (++SV == Pred->succ_size())
624           // All paths from this block lead to the use and don't initialize the
625           // variable.
626           Queue.push_back(Pred);
627       }
628     }
629 
630     // Scan the frontier, looking for blocks where the variable was
631     // uninitialized.
632     for (const auto *Block : cfg) {
633       unsigned BlockID = Block->getBlockID();
634       const Stmt *Term = Block->getTerminatorStmt();
635       if (SuccsVisited[BlockID] && SuccsVisited[BlockID] < Block->succ_size() &&
636           Term) {
637         // This block inevitably leads to the use. If we have an edge from here
638         // to a post-dominator block, and the variable is uninitialized on that
639         // edge, we have found a bug.
640         for (CFGBlock::const_succ_iterator I = Block->succ_begin(),
641              E = Block->succ_end(); I != E; ++I) {
642           const CFGBlock *Succ = *I;
643           if (Succ && SuccsVisited[Succ->getBlockID()] >= Succ->succ_size() &&
644               vals.getValue(Block, Succ, vd) == Uninitialized) {
645             // Switch cases are a special case: report the label to the caller
646             // as the 'terminator', not the switch statement itself. Suppress
647             // situations where no label matched: we can't be sure that's
648             // possible.
649             if (isa<SwitchStmt>(Term)) {
650               const Stmt *Label = Succ->getLabel();
651               if (!Label || !isa<SwitchCase>(Label))
652                 // Might not be possible.
653                 continue;
654               UninitUse::Branch Branch;
655               Branch.Terminator = Label;
656               Branch.Output = 0; // Ignored.
657               Use.addUninitBranch(Branch);
658             } else {
659               UninitUse::Branch Branch;
660               Branch.Terminator = Term;
661               Branch.Output = I - Block->succ_begin();
662               Use.addUninitBranch(Branch);
663             }
664           }
665         }
666       }
667     }
668 
669     return Use;
670   }
671 };
672 
673 } // namespace
674 
675 void TransferFunctions::reportUse(const Expr *ex, const VarDecl *vd) {
676   Value v = vals[vd];
677   if (isUninitialized(v))
678     handler.handleUseOfUninitVariable(vd, getUninitUse(ex, vd, v));
679 }
680 
681 void TransferFunctions::reportConstRefUse(const Expr *ex, const VarDecl *vd) {
682   Value v = vals[vd];
683   if (isAlwaysUninit(v))
684     handler.handleConstRefUseOfUninitVariable(vd, getUninitUse(ex, vd, v));
685 }
686 
687 void TransferFunctions::VisitObjCForCollectionStmt(ObjCForCollectionStmt *FS) {
688   // This represents an initialization of the 'element' value.
689   if (const auto *DS = dyn_cast<DeclStmt>(FS->getElement())) {
690     const auto *VD = cast<VarDecl>(DS->getSingleDecl());
691     if (isTrackedVar(VD))
692       vals[VD] = Initialized;
693   }
694 }
695 
696 void TransferFunctions::VisitOMPExecutableDirective(
697     OMPExecutableDirective *ED) {
698   for (Stmt *S : OMPExecutableDirective::used_clauses_children(ED->clauses())) {
699     assert(S && "Expected non-null used-in-clause child.");
700     Visit(S);
701   }
702   if (!ED->isStandaloneDirective())
703     Visit(ED->getStructuredBlock());
704 }
705 
706 void TransferFunctions::VisitBlockExpr(BlockExpr *be) {
707   const BlockDecl *bd = be->getBlockDecl();
708   for (const auto &I : bd->captures()) {
709     const VarDecl *vd = I.getVariable();
710     if (!isTrackedVar(vd))
711       continue;
712     if (I.isByRef()) {
713       vals[vd] = Initialized;
714       continue;
715     }
716     reportUse(be, vd);
717   }
718 }
719 
720 void TransferFunctions::VisitCallExpr(CallExpr *ce) {
721   if (Decl *Callee = ce->getCalleeDecl()) {
722     if (Callee->hasAttr<ReturnsTwiceAttr>()) {
723       // After a call to a function like setjmp or vfork, any variable which is
724       // initialized anywhere within this function may now be initialized. For
725       // now, just assume such a call initializes all variables.  FIXME: Only
726       // mark variables as initialized if they have an initializer which is
727       // reachable from here.
728       vals.setAllScratchValues(Initialized);
729     }
730     else if (Callee->hasAttr<AnalyzerNoReturnAttr>()) {
731       // Functions labeled like "analyzer_noreturn" are often used to denote
732       // "panic" functions that in special debug situations can still return,
733       // but for the most part should not be treated as returning.  This is a
734       // useful annotation borrowed from the static analyzer that is useful for
735       // suppressing branch-specific false positives when we call one of these
736       // functions but keep pretending the path continues (when in reality the
737       // user doesn't care).
738       vals.setAllScratchValues(Unknown);
739     }
740   }
741 }
742 
743 void TransferFunctions::VisitDeclRefExpr(DeclRefExpr *dr) {
744   switch (classification.get(dr)) {
745   case ClassifyRefs::Ignore:
746     break;
747   case ClassifyRefs::Use:
748     reportUse(dr, cast<VarDecl>(dr->getDecl()));
749     break;
750   case ClassifyRefs::Init:
751     vals[cast<VarDecl>(dr->getDecl())] = Initialized;
752     break;
753   case ClassifyRefs::SelfInit:
754     handler.handleSelfInit(cast<VarDecl>(dr->getDecl()));
755     break;
756   case ClassifyRefs::ConstRefUse:
757     reportConstRefUse(dr, cast<VarDecl>(dr->getDecl()));
758     break;
759   }
760 }
761 
762 void TransferFunctions::VisitBinaryOperator(BinaryOperator *BO) {
763   if (BO->getOpcode() == BO_Assign) {
764     FindVarResult Var = findVar(BO->getLHS());
765     if (const VarDecl *VD = Var.getDecl())
766       vals[VD] = Initialized;
767   }
768 }
769 
770 void TransferFunctions::VisitDeclStmt(DeclStmt *DS) {
771   for (auto *DI : DS->decls()) {
772     auto *VD = dyn_cast<VarDecl>(DI);
773     if (VD && isTrackedVar(VD)) {
774       if (getSelfInitExpr(VD)) {
775         // If the initializer consists solely of a reference to itself, we
776         // explicitly mark the variable as uninitialized. This allows code
777         // like the following:
778         //
779         //   int x = x;
780         //
781         // to deliberately leave a variable uninitialized. Different analysis
782         // clients can detect this pattern and adjust their reporting
783         // appropriately, but we need to continue to analyze subsequent uses
784         // of the variable.
785         vals[VD] = Uninitialized;
786       } else if (VD->getInit()) {
787         // Treat the new variable as initialized.
788         vals[VD] = Initialized;
789       } else {
790         // No initializer: the variable is now uninitialized. This matters
791         // for cases like:
792         //   while (...) {
793         //     int n;
794         //     use(n);
795         //     n = 0;
796         //   }
797         // FIXME: Mark the variable as uninitialized whenever its scope is
798         // left, since its scope could be re-entered by a jump over the
799         // declaration.
800         vals[VD] = Uninitialized;
801       }
802     }
803   }
804 }
805 
806 void TransferFunctions::VisitGCCAsmStmt(GCCAsmStmt *as) {
807   // An "asm goto" statement is a terminator that may initialize some variables.
808   if (!as->isAsmGoto())
809     return;
810 
811   ASTContext &C = ac.getASTContext();
812   for (const Expr *O : as->outputs()) {
813     const Expr *Ex = stripCasts(C, O);
814 
815     // Strip away any unary operators. Invalid l-values are reported by other
816     // semantic analysis passes.
817     while (const auto *UO = dyn_cast<UnaryOperator>(Ex))
818       Ex = stripCasts(C, UO->getSubExpr());
819 
820     // Mark the variable as potentially uninitialized for those cases where
821     // it's used on an indirect path, where it's not guaranteed to be
822     // defined.
823     if (const VarDecl *VD = findVar(Ex).getDecl())
824       vals[VD] = MayUninitialized;
825   }
826 }
827 
828 void TransferFunctions::VisitObjCMessageExpr(ObjCMessageExpr *ME) {
829   // If the Objective-C message expression is an implicit no-return that
830   // is not modeled in the CFG, set the tracked dataflow values to Unknown.
831   if (objCNoRet.isImplicitNoReturn(ME)) {
832     vals.setAllScratchValues(Unknown);
833   }
834 }
835 
836 //------------------------------------------------------------------------====//
837 // High-level "driver" logic for uninitialized values analysis.
838 //====------------------------------------------------------------------------//
839 
840 static bool runOnBlock(const CFGBlock *block, const CFG &cfg,
841                        AnalysisDeclContext &ac, CFGBlockValues &vals,
842                        const ClassifyRefs &classification,
843                        llvm::BitVector &wasAnalyzed,
844                        UninitVariablesHandler &handler) {
845   wasAnalyzed[block->getBlockID()] = true;
846   vals.resetScratch();
847   // Merge in values of predecessor blocks.
848   bool isFirst = true;
849   for (CFGBlock::const_pred_iterator I = block->pred_begin(),
850        E = block->pred_end(); I != E; ++I) {
851     const CFGBlock *pred = *I;
852     if (!pred)
853       continue;
854     if (wasAnalyzed[pred->getBlockID()]) {
855       vals.mergeIntoScratch(vals.getValueVector(pred), isFirst);
856       isFirst = false;
857     }
858   }
859   // Apply the transfer function.
860   TransferFunctions tf(vals, cfg, block, ac, classification, handler);
861   for (const auto &I : *block) {
862     if (std::optional<CFGStmt> cs = I.getAs<CFGStmt>())
863       tf.Visit(const_cast<Stmt *>(cs->getStmt()));
864   }
865   CFGTerminator terminator = block->getTerminator();
866   if (auto *as = dyn_cast_or_null<GCCAsmStmt>(terminator.getStmt()))
867     if (as->isAsmGoto())
868       tf.Visit(as);
869   return vals.updateValueVectorWithScratch(block);
870 }
871 
872 namespace {
873 
874 /// PruneBlocksHandler is a special UninitVariablesHandler that is used
875 /// to detect when a CFGBlock has any *potential* use of an uninitialized
876 /// variable.  It is mainly used to prune out work during the final
877 /// reporting pass.
878 struct PruneBlocksHandler : public UninitVariablesHandler {
879   /// Records if a CFGBlock had a potential use of an uninitialized variable.
880   llvm::BitVector hadUse;
881 
882   /// Records if any CFGBlock had a potential use of an uninitialized variable.
883   bool hadAnyUse = false;
884 
885   /// The current block to scribble use information.
886   unsigned currentBlock = 0;
887 
888   PruneBlocksHandler(unsigned numBlocks) : hadUse(numBlocks, false) {}
889 
890   ~PruneBlocksHandler() override = default;
891 
892   void handleUseOfUninitVariable(const VarDecl *vd,
893                                  const UninitUse &use) override {
894     hadUse[currentBlock] = true;
895     hadAnyUse = true;
896   }
897 
898   void handleConstRefUseOfUninitVariable(const VarDecl *vd,
899                                          const UninitUse &use) override {
900     hadUse[currentBlock] = true;
901     hadAnyUse = true;
902   }
903 
904   /// Called when the uninitialized variable analysis detects the
905   /// idiom 'int x = x'.  All other uses of 'x' within the initializer
906   /// are handled by handleUseOfUninitVariable.
907   void handleSelfInit(const VarDecl *vd) override {
908     hadUse[currentBlock] = true;
909     hadAnyUse = true;
910   }
911 };
912 
913 } // namespace
914 
915 void clang::runUninitializedVariablesAnalysis(
916     const DeclContext &dc,
917     const CFG &cfg,
918     AnalysisDeclContext &ac,
919     UninitVariablesHandler &handler,
920     UninitVariablesAnalysisStats &stats) {
921   CFGBlockValues vals(cfg);
922   vals.computeSetOfDeclarations(dc);
923   if (vals.hasNoDeclarations())
924     return;
925 
926   stats.NumVariablesAnalyzed = vals.getNumEntries();
927 
928   // Precompute which expressions are uses and which are initializations.
929   ClassifyRefs classification(ac);
930   cfg.VisitBlockStmts(classification);
931 
932   // Mark all variables uninitialized at the entry.
933   const CFGBlock &entry = cfg.getEntry();
934   ValueVector &vec = vals.getValueVector(&entry);
935   const unsigned n = vals.getNumEntries();
936   for (unsigned j = 0; j < n; ++j) {
937     vec[j] = Uninitialized;
938   }
939 
940   // Proceed with the workist.
941   ForwardDataflowWorklist worklist(cfg, ac);
942   llvm::BitVector previouslyVisited(cfg.getNumBlockIDs());
943   worklist.enqueueSuccessors(&cfg.getEntry());
944   llvm::BitVector wasAnalyzed(cfg.getNumBlockIDs(), false);
945   wasAnalyzed[cfg.getEntry().getBlockID()] = true;
946   PruneBlocksHandler PBH(cfg.getNumBlockIDs());
947 
948   while (const CFGBlock *block = worklist.dequeue()) {
949     PBH.currentBlock = block->getBlockID();
950 
951     // Did the block change?
952     bool changed = runOnBlock(block, cfg, ac, vals,
953                               classification, wasAnalyzed, PBH);
954     ++stats.NumBlockVisits;
955     if (changed || !previouslyVisited[block->getBlockID()])
956       worklist.enqueueSuccessors(block);
957     previouslyVisited[block->getBlockID()] = true;
958   }
959 
960   if (!PBH.hadAnyUse)
961     return;
962 
963   // Run through the blocks one more time, and report uninitialized variables.
964   for (const auto *block : cfg)
965     if (PBH.hadUse[block->getBlockID()]) {
966       runOnBlock(block, cfg, ac, vals, classification, wasAnalyzed, handler);
967       ++stats.NumBlockVisits;
968     }
969 }
970 
971 UninitVariablesHandler::~UninitVariablesHandler() = default;
972