xref: /llvm-project/clang/lib/Analysis/UninitializedValues.cpp (revision 34e0d0579a3a6617b9b3212f2bc63d959c8f56c6)
1 //===- UninitializedValues.cpp - Find Uninitialized Values ----------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements uninitialized values analysis for source-level CFGs.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "clang/Analysis/Analyses/UninitializedValues.h"
14 #include "clang/AST/Attr.h"
15 #include "clang/AST/Decl.h"
16 #include "clang/AST/DeclBase.h"
17 #include "clang/AST/Expr.h"
18 #include "clang/AST/OperationKinds.h"
19 #include "clang/AST/Stmt.h"
20 #include "clang/AST/StmtObjC.h"
21 #include "clang/AST/StmtVisitor.h"
22 #include "clang/AST/Type.h"
23 #include "clang/Analysis/Analyses/PostOrderCFGView.h"
24 #include "clang/Analysis/AnalysisDeclContext.h"
25 #include "clang/Analysis/CFG.h"
26 #include "clang/Analysis/DomainSpecific/ObjCNoReturn.h"
27 #include "clang/Analysis/FlowSensitive/DataflowWorklist.h"
28 #include "clang/Basic/LLVM.h"
29 #include "llvm/ADT/BitVector.h"
30 #include "llvm/ADT/DenseMap.h"
31 #include "llvm/ADT/None.h"
32 #include "llvm/ADT/Optional.h"
33 #include "llvm/ADT/PackedVector.h"
34 #include "llvm/ADT/SmallBitVector.h"
35 #include "llvm/ADT/SmallVector.h"
36 #include "llvm/Support/Casting.h"
37 #include <algorithm>
38 #include <cassert>
39 
40 using namespace clang;
41 
42 #define DEBUG_LOGGING 0
43 
44 static bool isTrackedVar(const VarDecl *vd, const DeclContext *dc) {
45   if (vd->isLocalVarDecl() && !vd->hasGlobalStorage() &&
46       !vd->isExceptionVariable() && !vd->isInitCapture() &&
47       !vd->isImplicit() && vd->getDeclContext() == dc) {
48     QualType ty = vd->getType();
49     return ty->isScalarType() || ty->isVectorType() || ty->isRecordType() ||
50            ty->isRVVType();
51   }
52   return false;
53 }
54 
55 //------------------------------------------------------------------------====//
56 // DeclToIndex: a mapping from Decls we track to value indices.
57 //====------------------------------------------------------------------------//
58 
59 namespace {
60 
61 class DeclToIndex {
62   llvm::DenseMap<const VarDecl *, unsigned> map;
63 
64 public:
65   DeclToIndex() = default;
66 
67   /// Compute the actual mapping from declarations to bits.
68   void computeMap(const DeclContext &dc);
69 
70   /// Return the number of declarations in the map.
71   unsigned size() const { return map.size(); }
72 
73   /// Returns the bit vector index for a given declaration.
74   Optional<unsigned> getValueIndex(const VarDecl *d) const;
75 };
76 
77 } // namespace
78 
79 void DeclToIndex::computeMap(const DeclContext &dc) {
80   unsigned count = 0;
81   DeclContext::specific_decl_iterator<VarDecl> I(dc.decls_begin()),
82                                                E(dc.decls_end());
83   for ( ; I != E; ++I) {
84     const VarDecl *vd = *I;
85     if (isTrackedVar(vd, &dc))
86       map[vd] = count++;
87   }
88 }
89 
90 Optional<unsigned> DeclToIndex::getValueIndex(const VarDecl *d) const {
91   llvm::DenseMap<const VarDecl *, unsigned>::const_iterator I = map.find(d);
92   if (I == map.end())
93     return std::nullopt;
94   return I->second;
95 }
96 
97 //------------------------------------------------------------------------====//
98 // CFGBlockValues: dataflow values for CFG blocks.
99 //====------------------------------------------------------------------------//
100 
101 // These values are defined in such a way that a merge can be done using
102 // a bitwise OR.
103 enum Value { Unknown = 0x0,         /* 00 */
104              Initialized = 0x1,     /* 01 */
105              Uninitialized = 0x2,   /* 10 */
106              MayUninitialized = 0x3 /* 11 */ };
107 
108 static bool isUninitialized(const Value v) {
109   return v >= Uninitialized;
110 }
111 
112 static bool isAlwaysUninit(const Value v) {
113   return v == Uninitialized;
114 }
115 
116 namespace {
117 
118 using ValueVector = llvm::PackedVector<Value, 2, llvm::SmallBitVector>;
119 
120 class CFGBlockValues {
121   const CFG &cfg;
122   SmallVector<ValueVector, 8> vals;
123   ValueVector scratch;
124   DeclToIndex declToIndex;
125 
126 public:
127   CFGBlockValues(const CFG &cfg);
128 
129   unsigned getNumEntries() const { return declToIndex.size(); }
130 
131   void computeSetOfDeclarations(const DeclContext &dc);
132 
133   ValueVector &getValueVector(const CFGBlock *block) {
134     return vals[block->getBlockID()];
135   }
136 
137   void setAllScratchValues(Value V);
138   void mergeIntoScratch(ValueVector const &source, bool isFirst);
139   bool updateValueVectorWithScratch(const CFGBlock *block);
140 
141   bool hasNoDeclarations() const {
142     return declToIndex.size() == 0;
143   }
144 
145   void resetScratch();
146 
147   ValueVector::reference operator[](const VarDecl *vd);
148 
149   Value getValue(const CFGBlock *block, const CFGBlock *dstBlock,
150                  const VarDecl *vd) {
151     const Optional<unsigned> &idx = declToIndex.getValueIndex(vd);
152     assert(idx);
153     return getValueVector(block)[idx.value()];
154   }
155 };
156 
157 } // namespace
158 
159 CFGBlockValues::CFGBlockValues(const CFG &c) : cfg(c), vals(0) {}
160 
161 void CFGBlockValues::computeSetOfDeclarations(const DeclContext &dc) {
162   declToIndex.computeMap(dc);
163   unsigned decls = declToIndex.size();
164   scratch.resize(decls);
165   unsigned n = cfg.getNumBlockIDs();
166   if (!n)
167     return;
168   vals.resize(n);
169   for (auto &val : vals)
170     val.resize(decls);
171 }
172 
173 #if DEBUG_LOGGING
174 static void printVector(const CFGBlock *block, ValueVector &bv,
175                         unsigned num) {
176   llvm::errs() << block->getBlockID() << " :";
177   for (const auto &i : bv)
178     llvm::errs() << ' ' << i;
179   llvm::errs() << " : " << num << '\n';
180 }
181 #endif
182 
183 void CFGBlockValues::setAllScratchValues(Value V) {
184   for (unsigned I = 0, E = scratch.size(); I != E; ++I)
185     scratch[I] = V;
186 }
187 
188 void CFGBlockValues::mergeIntoScratch(ValueVector const &source,
189                                       bool isFirst) {
190   if (isFirst)
191     scratch = source;
192   else
193     scratch |= source;
194 }
195 
196 bool CFGBlockValues::updateValueVectorWithScratch(const CFGBlock *block) {
197   ValueVector &dst = getValueVector(block);
198   bool changed = (dst != scratch);
199   if (changed)
200     dst = scratch;
201 #if DEBUG_LOGGING
202   printVector(block, scratch, 0);
203 #endif
204   return changed;
205 }
206 
207 void CFGBlockValues::resetScratch() {
208   scratch.reset();
209 }
210 
211 ValueVector::reference CFGBlockValues::operator[](const VarDecl *vd) {
212   const Optional<unsigned> &idx = declToIndex.getValueIndex(vd);
213   assert(idx);
214   return scratch[idx.value()];
215 }
216 
217 //------------------------------------------------------------------------====//
218 // Classification of DeclRefExprs as use or initialization.
219 //====------------------------------------------------------------------------//
220 
221 namespace {
222 
223 class FindVarResult {
224   const VarDecl *vd;
225   const DeclRefExpr *dr;
226 
227 public:
228   FindVarResult(const VarDecl *vd, const DeclRefExpr *dr) : vd(vd), dr(dr) {}
229 
230   const DeclRefExpr *getDeclRefExpr() const { return dr; }
231   const VarDecl *getDecl() const { return vd; }
232 };
233 
234 } // namespace
235 
236 static const Expr *stripCasts(ASTContext &C, const Expr *Ex) {
237   while (Ex) {
238     Ex = Ex->IgnoreParenNoopCasts(C);
239     if (const auto *CE = dyn_cast<CastExpr>(Ex)) {
240       if (CE->getCastKind() == CK_LValueBitCast) {
241         Ex = CE->getSubExpr();
242         continue;
243       }
244     }
245     break;
246   }
247   return Ex;
248 }
249 
250 /// If E is an expression comprising a reference to a single variable, find that
251 /// variable.
252 static FindVarResult findVar(const Expr *E, const DeclContext *DC) {
253   if (const auto *DRE =
254           dyn_cast<DeclRefExpr>(stripCasts(DC->getParentASTContext(), E)))
255     if (const auto *VD = dyn_cast<VarDecl>(DRE->getDecl()))
256       if (isTrackedVar(VD, DC))
257         return FindVarResult(VD, DRE);
258   return FindVarResult(nullptr, nullptr);
259 }
260 
261 namespace {
262 
263 /// Classify each DeclRefExpr as an initialization or a use. Any
264 /// DeclRefExpr which isn't explicitly classified will be assumed to have
265 /// escaped the analysis and will be treated as an initialization.
266 class ClassifyRefs : public StmtVisitor<ClassifyRefs> {
267 public:
268   enum Class {
269     Init,
270     Use,
271     SelfInit,
272     ConstRefUse,
273     Ignore
274   };
275 
276 private:
277   const DeclContext *DC;
278   llvm::DenseMap<const DeclRefExpr *, Class> Classification;
279 
280   bool isTrackedVar(const VarDecl *VD) const {
281     return ::isTrackedVar(VD, DC);
282   }
283 
284   void classify(const Expr *E, Class C);
285 
286 public:
287   ClassifyRefs(AnalysisDeclContext &AC) : DC(cast<DeclContext>(AC.getDecl())) {}
288 
289   void VisitDeclStmt(DeclStmt *DS);
290   void VisitUnaryOperator(UnaryOperator *UO);
291   void VisitBinaryOperator(BinaryOperator *BO);
292   void VisitCallExpr(CallExpr *CE);
293   void VisitCastExpr(CastExpr *CE);
294   void VisitOMPExecutableDirective(OMPExecutableDirective *ED);
295 
296   void operator()(Stmt *S) { Visit(S); }
297 
298   Class get(const DeclRefExpr *DRE) const {
299     llvm::DenseMap<const DeclRefExpr*, Class>::const_iterator I
300         = Classification.find(DRE);
301     if (I != Classification.end())
302       return I->second;
303 
304     const auto *VD = dyn_cast<VarDecl>(DRE->getDecl());
305     if (!VD || !isTrackedVar(VD))
306       return Ignore;
307 
308     return Init;
309   }
310 };
311 
312 } // namespace
313 
314 static const DeclRefExpr *getSelfInitExpr(VarDecl *VD) {
315   if (VD->getType()->isRecordType())
316     return nullptr;
317   if (Expr *Init = VD->getInit()) {
318     const auto *DRE =
319         dyn_cast<DeclRefExpr>(stripCasts(VD->getASTContext(), Init));
320     if (DRE && DRE->getDecl() == VD)
321       return DRE;
322   }
323   return nullptr;
324 }
325 
326 void ClassifyRefs::classify(const Expr *E, Class C) {
327   // The result of a ?: could also be an lvalue.
328   E = E->IgnoreParens();
329   if (const auto *CO = dyn_cast<ConditionalOperator>(E)) {
330     classify(CO->getTrueExpr(), C);
331     classify(CO->getFalseExpr(), C);
332     return;
333   }
334 
335   if (const auto *BCO = dyn_cast<BinaryConditionalOperator>(E)) {
336     classify(BCO->getFalseExpr(), C);
337     return;
338   }
339 
340   if (const auto *OVE = dyn_cast<OpaqueValueExpr>(E)) {
341     classify(OVE->getSourceExpr(), C);
342     return;
343   }
344 
345   if (const auto *ME = dyn_cast<MemberExpr>(E)) {
346     if (const auto *VD = dyn_cast<VarDecl>(ME->getMemberDecl())) {
347       if (!VD->isStaticDataMember())
348         classify(ME->getBase(), C);
349     }
350     return;
351   }
352 
353   if (const auto *BO = dyn_cast<BinaryOperator>(E)) {
354     switch (BO->getOpcode()) {
355     case BO_PtrMemD:
356     case BO_PtrMemI:
357       classify(BO->getLHS(), C);
358       return;
359     case BO_Comma:
360       classify(BO->getRHS(), C);
361       return;
362     default:
363       return;
364     }
365   }
366 
367   FindVarResult Var = findVar(E, DC);
368   if (const DeclRefExpr *DRE = Var.getDeclRefExpr())
369     Classification[DRE] = std::max(Classification[DRE], C);
370 }
371 
372 void ClassifyRefs::VisitDeclStmt(DeclStmt *DS) {
373   for (auto *DI : DS->decls()) {
374     auto *VD = dyn_cast<VarDecl>(DI);
375     if (VD && isTrackedVar(VD))
376       if (const DeclRefExpr *DRE = getSelfInitExpr(VD))
377         Classification[DRE] = SelfInit;
378   }
379 }
380 
381 void ClassifyRefs::VisitBinaryOperator(BinaryOperator *BO) {
382   // Ignore the evaluation of a DeclRefExpr on the LHS of an assignment. If this
383   // is not a compound-assignment, we will treat it as initializing the variable
384   // when TransferFunctions visits it. A compound-assignment does not affect
385   // whether a variable is uninitialized, and there's no point counting it as a
386   // use.
387   if (BO->isCompoundAssignmentOp())
388     classify(BO->getLHS(), Use);
389   else if (BO->getOpcode() == BO_Assign || BO->getOpcode() == BO_Comma)
390     classify(BO->getLHS(), Ignore);
391 }
392 
393 void ClassifyRefs::VisitUnaryOperator(UnaryOperator *UO) {
394   // Increment and decrement are uses despite there being no lvalue-to-rvalue
395   // conversion.
396   if (UO->isIncrementDecrementOp())
397     classify(UO->getSubExpr(), Use);
398 }
399 
400 void ClassifyRefs::VisitOMPExecutableDirective(OMPExecutableDirective *ED) {
401   for (Stmt *S : OMPExecutableDirective::used_clauses_children(ED->clauses()))
402     classify(cast<Expr>(S), Use);
403 }
404 
405 static bool isPointerToConst(const QualType &QT) {
406   return QT->isAnyPointerType() && QT->getPointeeType().isConstQualified();
407 }
408 
409 static bool hasTrivialBody(CallExpr *CE) {
410   if (FunctionDecl *FD = CE->getDirectCallee()) {
411     if (FunctionTemplateDecl *FTD = FD->getPrimaryTemplate())
412       return FTD->getTemplatedDecl()->hasTrivialBody();
413     return FD->hasTrivialBody();
414   }
415   return false;
416 }
417 
418 void ClassifyRefs::VisitCallExpr(CallExpr *CE) {
419   // Classify arguments to std::move as used.
420   if (CE->isCallToStdMove()) {
421     // RecordTypes are handled in SemaDeclCXX.cpp.
422     if (!CE->getArg(0)->getType()->isRecordType())
423       classify(CE->getArg(0), Use);
424     return;
425   }
426   bool isTrivialBody = hasTrivialBody(CE);
427   // If a value is passed by const pointer to a function,
428   // we should not assume that it is initialized by the call, and we
429   // conservatively do not assume that it is used.
430   // If a value is passed by const reference to a function,
431   // it should already be initialized.
432   for (CallExpr::arg_iterator I = CE->arg_begin(), E = CE->arg_end();
433        I != E; ++I) {
434     if ((*I)->isGLValue()) {
435       if ((*I)->getType().isConstQualified())
436         classify((*I), isTrivialBody ? Ignore : ConstRefUse);
437     } else if (isPointerToConst((*I)->getType())) {
438       const Expr *Ex = stripCasts(DC->getParentASTContext(), *I);
439       const auto *UO = dyn_cast<UnaryOperator>(Ex);
440       if (UO && UO->getOpcode() == UO_AddrOf)
441         Ex = UO->getSubExpr();
442       classify(Ex, Ignore);
443     }
444   }
445 }
446 
447 void ClassifyRefs::VisitCastExpr(CastExpr *CE) {
448   if (CE->getCastKind() == CK_LValueToRValue)
449     classify(CE->getSubExpr(), Use);
450   else if (const auto *CSE = dyn_cast<CStyleCastExpr>(CE)) {
451     if (CSE->getType()->isVoidType()) {
452       // Squelch any detected load of an uninitialized value if
453       // we cast it to void.
454       // e.g. (void) x;
455       classify(CSE->getSubExpr(), Ignore);
456     }
457   }
458 }
459 
460 //------------------------------------------------------------------------====//
461 // Transfer function for uninitialized values analysis.
462 //====------------------------------------------------------------------------//
463 
464 namespace {
465 
466 class TransferFunctions : public StmtVisitor<TransferFunctions> {
467   CFGBlockValues &vals;
468   const CFG &cfg;
469   const CFGBlock *block;
470   AnalysisDeclContext &ac;
471   const ClassifyRefs &classification;
472   ObjCNoReturn objCNoRet;
473   UninitVariablesHandler &handler;
474 
475 public:
476   TransferFunctions(CFGBlockValues &vals, const CFG &cfg,
477                     const CFGBlock *block, AnalysisDeclContext &ac,
478                     const ClassifyRefs &classification,
479                     UninitVariablesHandler &handler)
480       : vals(vals), cfg(cfg), block(block), ac(ac),
481         classification(classification), objCNoRet(ac.getASTContext()),
482         handler(handler) {}
483 
484   void reportUse(const Expr *ex, const VarDecl *vd);
485   void reportConstRefUse(const Expr *ex, const VarDecl *vd);
486 
487   void VisitBinaryOperator(BinaryOperator *bo);
488   void VisitBlockExpr(BlockExpr *be);
489   void VisitCallExpr(CallExpr *ce);
490   void VisitDeclRefExpr(DeclRefExpr *dr);
491   void VisitDeclStmt(DeclStmt *ds);
492   void VisitGCCAsmStmt(GCCAsmStmt *as);
493   void VisitObjCForCollectionStmt(ObjCForCollectionStmt *FS);
494   void VisitObjCMessageExpr(ObjCMessageExpr *ME);
495   void VisitOMPExecutableDirective(OMPExecutableDirective *ED);
496 
497   bool isTrackedVar(const VarDecl *vd) {
498     return ::isTrackedVar(vd, cast<DeclContext>(ac.getDecl()));
499   }
500 
501   FindVarResult findVar(const Expr *ex) {
502     return ::findVar(ex, cast<DeclContext>(ac.getDecl()));
503   }
504 
505   UninitUse getUninitUse(const Expr *ex, const VarDecl *vd, Value v) {
506     UninitUse Use(ex, isAlwaysUninit(v));
507 
508     assert(isUninitialized(v));
509     if (Use.getKind() == UninitUse::Always)
510       return Use;
511 
512     // If an edge which leads unconditionally to this use did not initialize
513     // the variable, we can say something stronger than 'may be uninitialized':
514     // we can say 'either it's used uninitialized or you have dead code'.
515     //
516     // We track the number of successors of a node which have been visited, and
517     // visit a node once we have visited all of its successors. Only edges where
518     // the variable might still be uninitialized are followed. Since a variable
519     // can't transfer from being initialized to being uninitialized, this will
520     // trace out the subgraph which inevitably leads to the use and does not
521     // initialize the variable. We do not want to skip past loops, since their
522     // non-termination might be correlated with the initialization condition.
523     //
524     // For example:
525     //
526     //         void f(bool a, bool b) {
527     // block1:   int n;
528     //           if (a) {
529     // block2:     if (b)
530     // block3:       n = 1;
531     // block4:   } else if (b) {
532     // block5:     while (!a) {
533     // block6:       do_work(&a);
534     //               n = 2;
535     //             }
536     //           }
537     // block7:   if (a)
538     // block8:     g();
539     // block9:   return n;
540     //         }
541     //
542     // Starting from the maybe-uninitialized use in block 9:
543     //  * Block 7 is not visited because we have only visited one of its two
544     //    successors.
545     //  * Block 8 is visited because we've visited its only successor.
546     // From block 8:
547     //  * Block 7 is visited because we've now visited both of its successors.
548     // From block 7:
549     //  * Blocks 1, 2, 4, 5, and 6 are not visited because we didn't visit all
550     //    of their successors (we didn't visit 4, 3, 5, 6, and 5, respectively).
551     //  * Block 3 is not visited because it initializes 'n'.
552     // Now the algorithm terminates, having visited blocks 7 and 8, and having
553     // found the frontier is blocks 2, 4, and 5.
554     //
555     // 'n' is definitely uninitialized for two edges into block 7 (from blocks 2
556     // and 4), so we report that any time either of those edges is taken (in
557     // each case when 'b == false'), 'n' is used uninitialized.
558     SmallVector<const CFGBlock*, 32> Queue;
559     SmallVector<unsigned, 32> SuccsVisited(cfg.getNumBlockIDs(), 0);
560     Queue.push_back(block);
561     // Specify that we've already visited all successors of the starting block.
562     // This has the dual purpose of ensuring we never add it to the queue, and
563     // of marking it as not being a candidate element of the frontier.
564     SuccsVisited[block->getBlockID()] = block->succ_size();
565     while (!Queue.empty()) {
566       const CFGBlock *B = Queue.pop_back_val();
567 
568       // If the use is always reached from the entry block, make a note of that.
569       if (B == &cfg.getEntry())
570         Use.setUninitAfterCall();
571 
572       for (CFGBlock::const_pred_iterator I = B->pred_begin(), E = B->pred_end();
573            I != E; ++I) {
574         const CFGBlock *Pred = *I;
575         if (!Pred)
576           continue;
577 
578         Value AtPredExit = vals.getValue(Pred, B, vd);
579         if (AtPredExit == Initialized)
580           // This block initializes the variable.
581           continue;
582         if (AtPredExit == MayUninitialized &&
583             vals.getValue(B, nullptr, vd) == Uninitialized) {
584           // This block declares the variable (uninitialized), and is reachable
585           // from a block that initializes the variable. We can't guarantee to
586           // give an earlier location for the diagnostic (and it appears that
587           // this code is intended to be reachable) so give a diagnostic here
588           // and go no further down this path.
589           Use.setUninitAfterDecl();
590           continue;
591         }
592 
593         if (AtPredExit == MayUninitialized) {
594           // If the predecessor's terminator is an "asm goto" that initializes
595           // the variable, then don't count it as "initialized" on the indirect
596           // paths.
597           CFGTerminator term = Pred->getTerminator();
598           if (const auto *as = dyn_cast_or_null<GCCAsmStmt>(term.getStmt())) {
599             const CFGBlock *fallthrough = *Pred->succ_begin();
600             if (as->isAsmGoto() &&
601                 llvm::any_of(as->outputs(), [&](const Expr *output) {
602                     return vd == findVar(output).getDecl() &&
603                         llvm::any_of(as->labels(),
604                                      [&](const AddrLabelExpr *label) {
605                           return label->getLabel()->getStmt() == B->Label &&
606                               B != fallthrough;
607                         });
608                 })) {
609               Use.setUninitAfterDecl();
610               continue;
611             }
612           }
613         }
614 
615         unsigned &SV = SuccsVisited[Pred->getBlockID()];
616         if (!SV) {
617           // When visiting the first successor of a block, mark all NULL
618           // successors as having been visited.
619           for (CFGBlock::const_succ_iterator SI = Pred->succ_begin(),
620                                              SE = Pred->succ_end();
621                SI != SE; ++SI)
622             if (!*SI)
623               ++SV;
624         }
625 
626         if (++SV == Pred->succ_size())
627           // All paths from this block lead to the use and don't initialize the
628           // variable.
629           Queue.push_back(Pred);
630       }
631     }
632 
633     // Scan the frontier, looking for blocks where the variable was
634     // uninitialized.
635     for (const auto *Block : cfg) {
636       unsigned BlockID = Block->getBlockID();
637       const Stmt *Term = Block->getTerminatorStmt();
638       if (SuccsVisited[BlockID] && SuccsVisited[BlockID] < Block->succ_size() &&
639           Term) {
640         // This block inevitably leads to the use. If we have an edge from here
641         // to a post-dominator block, and the variable is uninitialized on that
642         // edge, we have found a bug.
643         for (CFGBlock::const_succ_iterator I = Block->succ_begin(),
644              E = Block->succ_end(); I != E; ++I) {
645           const CFGBlock *Succ = *I;
646           if (Succ && SuccsVisited[Succ->getBlockID()] >= Succ->succ_size() &&
647               vals.getValue(Block, Succ, vd) == Uninitialized) {
648             // Switch cases are a special case: report the label to the caller
649             // as the 'terminator', not the switch statement itself. Suppress
650             // situations where no label matched: we can't be sure that's
651             // possible.
652             if (isa<SwitchStmt>(Term)) {
653               const Stmt *Label = Succ->getLabel();
654               if (!Label || !isa<SwitchCase>(Label))
655                 // Might not be possible.
656                 continue;
657               UninitUse::Branch Branch;
658               Branch.Terminator = Label;
659               Branch.Output = 0; // Ignored.
660               Use.addUninitBranch(Branch);
661             } else {
662               UninitUse::Branch Branch;
663               Branch.Terminator = Term;
664               Branch.Output = I - Block->succ_begin();
665               Use.addUninitBranch(Branch);
666             }
667           }
668         }
669       }
670     }
671 
672     return Use;
673   }
674 };
675 
676 } // namespace
677 
678 void TransferFunctions::reportUse(const Expr *ex, const VarDecl *vd) {
679   Value v = vals[vd];
680   if (isUninitialized(v))
681     handler.handleUseOfUninitVariable(vd, getUninitUse(ex, vd, v));
682 }
683 
684 void TransferFunctions::reportConstRefUse(const Expr *ex, const VarDecl *vd) {
685   Value v = vals[vd];
686   if (isAlwaysUninit(v))
687     handler.handleConstRefUseOfUninitVariable(vd, getUninitUse(ex, vd, v));
688 }
689 
690 void TransferFunctions::VisitObjCForCollectionStmt(ObjCForCollectionStmt *FS) {
691   // This represents an initialization of the 'element' value.
692   if (const auto *DS = dyn_cast<DeclStmt>(FS->getElement())) {
693     const auto *VD = cast<VarDecl>(DS->getSingleDecl());
694     if (isTrackedVar(VD))
695       vals[VD] = Initialized;
696   }
697 }
698 
699 void TransferFunctions::VisitOMPExecutableDirective(
700     OMPExecutableDirective *ED) {
701   for (Stmt *S : OMPExecutableDirective::used_clauses_children(ED->clauses())) {
702     assert(S && "Expected non-null used-in-clause child.");
703     Visit(S);
704   }
705   if (!ED->isStandaloneDirective())
706     Visit(ED->getStructuredBlock());
707 }
708 
709 void TransferFunctions::VisitBlockExpr(BlockExpr *be) {
710   const BlockDecl *bd = be->getBlockDecl();
711   for (const auto &I : bd->captures()) {
712     const VarDecl *vd = I.getVariable();
713     if (!isTrackedVar(vd))
714       continue;
715     if (I.isByRef()) {
716       vals[vd] = Initialized;
717       continue;
718     }
719     reportUse(be, vd);
720   }
721 }
722 
723 void TransferFunctions::VisitCallExpr(CallExpr *ce) {
724   if (Decl *Callee = ce->getCalleeDecl()) {
725     if (Callee->hasAttr<ReturnsTwiceAttr>()) {
726       // After a call to a function like setjmp or vfork, any variable which is
727       // initialized anywhere within this function may now be initialized. For
728       // now, just assume such a call initializes all variables.  FIXME: Only
729       // mark variables as initialized if they have an initializer which is
730       // reachable from here.
731       vals.setAllScratchValues(Initialized);
732     }
733     else if (Callee->hasAttr<AnalyzerNoReturnAttr>()) {
734       // Functions labeled like "analyzer_noreturn" are often used to denote
735       // "panic" functions that in special debug situations can still return,
736       // but for the most part should not be treated as returning.  This is a
737       // useful annotation borrowed from the static analyzer that is useful for
738       // suppressing branch-specific false positives when we call one of these
739       // functions but keep pretending the path continues (when in reality the
740       // user doesn't care).
741       vals.setAllScratchValues(Unknown);
742     }
743   }
744 }
745 
746 void TransferFunctions::VisitDeclRefExpr(DeclRefExpr *dr) {
747   switch (classification.get(dr)) {
748   case ClassifyRefs::Ignore:
749     break;
750   case ClassifyRefs::Use:
751     reportUse(dr, cast<VarDecl>(dr->getDecl()));
752     break;
753   case ClassifyRefs::Init:
754     vals[cast<VarDecl>(dr->getDecl())] = Initialized;
755     break;
756   case ClassifyRefs::SelfInit:
757     handler.handleSelfInit(cast<VarDecl>(dr->getDecl()));
758     break;
759   case ClassifyRefs::ConstRefUse:
760     reportConstRefUse(dr, cast<VarDecl>(dr->getDecl()));
761     break;
762   }
763 }
764 
765 void TransferFunctions::VisitBinaryOperator(BinaryOperator *BO) {
766   if (BO->getOpcode() == BO_Assign) {
767     FindVarResult Var = findVar(BO->getLHS());
768     if (const VarDecl *VD = Var.getDecl())
769       vals[VD] = Initialized;
770   }
771 }
772 
773 void TransferFunctions::VisitDeclStmt(DeclStmt *DS) {
774   for (auto *DI : DS->decls()) {
775     auto *VD = dyn_cast<VarDecl>(DI);
776     if (VD && isTrackedVar(VD)) {
777       if (getSelfInitExpr(VD)) {
778         // If the initializer consists solely of a reference to itself, we
779         // explicitly mark the variable as uninitialized. This allows code
780         // like the following:
781         //
782         //   int x = x;
783         //
784         // to deliberately leave a variable uninitialized. Different analysis
785         // clients can detect this pattern and adjust their reporting
786         // appropriately, but we need to continue to analyze subsequent uses
787         // of the variable.
788         vals[VD] = Uninitialized;
789       } else if (VD->getInit()) {
790         // Treat the new variable as initialized.
791         vals[VD] = Initialized;
792       } else {
793         // No initializer: the variable is now uninitialized. This matters
794         // for cases like:
795         //   while (...) {
796         //     int n;
797         //     use(n);
798         //     n = 0;
799         //   }
800         // FIXME: Mark the variable as uninitialized whenever its scope is
801         // left, since its scope could be re-entered by a jump over the
802         // declaration.
803         vals[VD] = Uninitialized;
804       }
805     }
806   }
807 }
808 
809 void TransferFunctions::VisitGCCAsmStmt(GCCAsmStmt *as) {
810   // An "asm goto" statement is a terminator that may initialize some variables.
811   if (!as->isAsmGoto())
812     return;
813 
814   ASTContext &C = ac.getASTContext();
815   for (const Expr *O : as->outputs()) {
816     const Expr *Ex = stripCasts(C, O);
817 
818     // Strip away any unary operators. Invalid l-values are reported by other
819     // semantic analysis passes.
820     while (const auto *UO = dyn_cast<UnaryOperator>(Ex))
821       Ex = stripCasts(C, UO->getSubExpr());
822 
823     // Mark the variable as potentially uninitialized for those cases where
824     // it's used on an indirect path, where it's not guaranteed to be
825     // defined.
826     if (const VarDecl *VD = findVar(Ex).getDecl())
827       vals[VD] = MayUninitialized;
828   }
829 }
830 
831 void TransferFunctions::VisitObjCMessageExpr(ObjCMessageExpr *ME) {
832   // If the Objective-C message expression is an implicit no-return that
833   // is not modeled in the CFG, set the tracked dataflow values to Unknown.
834   if (objCNoRet.isImplicitNoReturn(ME)) {
835     vals.setAllScratchValues(Unknown);
836   }
837 }
838 
839 //------------------------------------------------------------------------====//
840 // High-level "driver" logic for uninitialized values analysis.
841 //====------------------------------------------------------------------------//
842 
843 static bool runOnBlock(const CFGBlock *block, const CFG &cfg,
844                        AnalysisDeclContext &ac, CFGBlockValues &vals,
845                        const ClassifyRefs &classification,
846                        llvm::BitVector &wasAnalyzed,
847                        UninitVariablesHandler &handler) {
848   wasAnalyzed[block->getBlockID()] = true;
849   vals.resetScratch();
850   // Merge in values of predecessor blocks.
851   bool isFirst = true;
852   for (CFGBlock::const_pred_iterator I = block->pred_begin(),
853        E = block->pred_end(); I != E; ++I) {
854     const CFGBlock *pred = *I;
855     if (!pred)
856       continue;
857     if (wasAnalyzed[pred->getBlockID()]) {
858       vals.mergeIntoScratch(vals.getValueVector(pred), isFirst);
859       isFirst = false;
860     }
861   }
862   // Apply the transfer function.
863   TransferFunctions tf(vals, cfg, block, ac, classification, handler);
864   for (const auto &I : *block) {
865     if (Optional<CFGStmt> cs = I.getAs<CFGStmt>())
866       tf.Visit(const_cast<Stmt *>(cs->getStmt()));
867   }
868   CFGTerminator terminator = block->getTerminator();
869   if (auto *as = dyn_cast_or_null<GCCAsmStmt>(terminator.getStmt()))
870     if (as->isAsmGoto())
871       tf.Visit(as);
872   return vals.updateValueVectorWithScratch(block);
873 }
874 
875 namespace {
876 
877 /// PruneBlocksHandler is a special UninitVariablesHandler that is used
878 /// to detect when a CFGBlock has any *potential* use of an uninitialized
879 /// variable.  It is mainly used to prune out work during the final
880 /// reporting pass.
881 struct PruneBlocksHandler : public UninitVariablesHandler {
882   /// Records if a CFGBlock had a potential use of an uninitialized variable.
883   llvm::BitVector hadUse;
884 
885   /// Records if any CFGBlock had a potential use of an uninitialized variable.
886   bool hadAnyUse = false;
887 
888   /// The current block to scribble use information.
889   unsigned currentBlock = 0;
890 
891   PruneBlocksHandler(unsigned numBlocks) : hadUse(numBlocks, false) {}
892 
893   ~PruneBlocksHandler() override = default;
894 
895   void handleUseOfUninitVariable(const VarDecl *vd,
896                                  const UninitUse &use) override {
897     hadUse[currentBlock] = true;
898     hadAnyUse = true;
899   }
900 
901   void handleConstRefUseOfUninitVariable(const VarDecl *vd,
902                                          const UninitUse &use) override {
903     hadUse[currentBlock] = true;
904     hadAnyUse = true;
905   }
906 
907   /// Called when the uninitialized variable analysis detects the
908   /// idiom 'int x = x'.  All other uses of 'x' within the initializer
909   /// are handled by handleUseOfUninitVariable.
910   void handleSelfInit(const VarDecl *vd) override {
911     hadUse[currentBlock] = true;
912     hadAnyUse = true;
913   }
914 };
915 
916 } // namespace
917 
918 void clang::runUninitializedVariablesAnalysis(
919     const DeclContext &dc,
920     const CFG &cfg,
921     AnalysisDeclContext &ac,
922     UninitVariablesHandler &handler,
923     UninitVariablesAnalysisStats &stats) {
924   CFGBlockValues vals(cfg);
925   vals.computeSetOfDeclarations(dc);
926   if (vals.hasNoDeclarations())
927     return;
928 
929   stats.NumVariablesAnalyzed = vals.getNumEntries();
930 
931   // Precompute which expressions are uses and which are initializations.
932   ClassifyRefs classification(ac);
933   cfg.VisitBlockStmts(classification);
934 
935   // Mark all variables uninitialized at the entry.
936   const CFGBlock &entry = cfg.getEntry();
937   ValueVector &vec = vals.getValueVector(&entry);
938   const unsigned n = vals.getNumEntries();
939   for (unsigned j = 0; j < n; ++j) {
940     vec[j] = Uninitialized;
941   }
942 
943   // Proceed with the workist.
944   ForwardDataflowWorklist worklist(cfg, ac);
945   llvm::BitVector previouslyVisited(cfg.getNumBlockIDs());
946   worklist.enqueueSuccessors(&cfg.getEntry());
947   llvm::BitVector wasAnalyzed(cfg.getNumBlockIDs(), false);
948   wasAnalyzed[cfg.getEntry().getBlockID()] = true;
949   PruneBlocksHandler PBH(cfg.getNumBlockIDs());
950 
951   while (const CFGBlock *block = worklist.dequeue()) {
952     PBH.currentBlock = block->getBlockID();
953 
954     // Did the block change?
955     bool changed = runOnBlock(block, cfg, ac, vals,
956                               classification, wasAnalyzed, PBH);
957     ++stats.NumBlockVisits;
958     if (changed || !previouslyVisited[block->getBlockID()])
959       worklist.enqueueSuccessors(block);
960     previouslyVisited[block->getBlockID()] = true;
961   }
962 
963   if (!PBH.hadAnyUse)
964     return;
965 
966   // Run through the blocks one more time, and report uninitialized variables.
967   for (const auto *block : cfg)
968     if (PBH.hadUse[block->getBlockID()]) {
969       runOnBlock(block, cfg, ac, vals, classification, wasAnalyzed, handler);
970       ++stats.NumBlockVisits;
971     }
972 }
973 
974 UninitVariablesHandler::~UninitVariablesHandler() = default;
975