1 //===- ThreadSafetyTIL.cpp ------------------------------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT in the llvm repository for details. 7 // 8 //===----------------------------------------------------------------------===// 9 10 #include "clang/Analysis/Analyses/ThreadSafetyTIL.h" 11 #include "clang/Basic/LLVM.h" 12 #include "llvm/Support/Casting.h" 13 #include <cassert> 14 #include <cstddef> 15 16 using namespace clang; 17 using namespace threadSafety; 18 using namespace til; 19 20 StringRef til::getUnaryOpcodeString(TIL_UnaryOpcode Op) { 21 switch (Op) { 22 case UOP_Minus: return "-"; 23 case UOP_BitNot: return "~"; 24 case UOP_LogicNot: return "!"; 25 } 26 return {}; 27 } 28 29 StringRef til::getBinaryOpcodeString(TIL_BinaryOpcode Op) { 30 switch (Op) { 31 case BOP_Mul: return "*"; 32 case BOP_Div: return "/"; 33 case BOP_Rem: return "%"; 34 case BOP_Add: return "+"; 35 case BOP_Sub: return "-"; 36 case BOP_Shl: return "<<"; 37 case BOP_Shr: return ">>"; 38 case BOP_BitAnd: return "&"; 39 case BOP_BitXor: return "^"; 40 case BOP_BitOr: return "|"; 41 case BOP_Eq: return "=="; 42 case BOP_Neq: return "!="; 43 case BOP_Lt: return "<"; 44 case BOP_Leq: return "<="; 45 case BOP_Cmp: return "<=>"; 46 case BOP_LogicAnd: return "&&"; 47 case BOP_LogicOr: return "||"; 48 } 49 return {}; 50 } 51 52 SExpr* Future::force() { 53 Status = FS_evaluating; 54 Result = compute(); 55 Status = FS_done; 56 return Result; 57 } 58 59 unsigned BasicBlock::addPredecessor(BasicBlock *Pred) { 60 unsigned Idx = Predecessors.size(); 61 Predecessors.reserveCheck(1, Arena); 62 Predecessors.push_back(Pred); 63 for (auto *E : Args) { 64 if (auto *Ph = dyn_cast<Phi>(E)) { 65 Ph->values().reserveCheck(1, Arena); 66 Ph->values().push_back(nullptr); 67 } 68 } 69 return Idx; 70 } 71 72 void BasicBlock::reservePredecessors(unsigned NumPreds) { 73 Predecessors.reserve(NumPreds, Arena); 74 for (auto *E : Args) { 75 if (auto *Ph = dyn_cast<Phi>(E)) { 76 Ph->values().reserve(NumPreds, Arena); 77 } 78 } 79 } 80 81 // If E is a variable, then trace back through any aliases or redundant 82 // Phi nodes to find the canonical definition. 83 const SExpr *til::getCanonicalVal(const SExpr *E) { 84 while (true) { 85 if (const auto *V = dyn_cast<Variable>(E)) { 86 if (V->kind() == Variable::VK_Let) { 87 E = V->definition(); 88 continue; 89 } 90 } 91 if (const auto *Ph = dyn_cast<Phi>(E)) { 92 if (Ph->status() == Phi::PH_SingleVal) { 93 E = Ph->values()[0]; 94 continue; 95 } 96 } 97 break; 98 } 99 return E; 100 } 101 102 // If E is a variable, then trace back through any aliases or redundant 103 // Phi nodes to find the canonical definition. 104 // The non-const version will simplify incomplete Phi nodes. 105 SExpr *til::simplifyToCanonicalVal(SExpr *E) { 106 while (true) { 107 if (auto *V = dyn_cast<Variable>(E)) { 108 if (V->kind() != Variable::VK_Let) 109 return V; 110 // Eliminate redundant variables, e.g. x = y, or x = 5, 111 // but keep anything more complicated. 112 if (til::ThreadSafetyTIL::isTrivial(V->definition())) { 113 E = V->definition(); 114 continue; 115 } 116 return V; 117 } 118 if (auto *Ph = dyn_cast<Phi>(E)) { 119 if (Ph->status() == Phi::PH_Incomplete) 120 simplifyIncompleteArg(Ph); 121 // Eliminate redundant Phi nodes. 122 if (Ph->status() == Phi::PH_SingleVal) { 123 E = Ph->values()[0]; 124 continue; 125 } 126 } 127 return E; 128 } 129 } 130 131 // Trace the arguments of an incomplete Phi node to see if they have the same 132 // canonical definition. If so, mark the Phi node as redundant. 133 // getCanonicalVal() will recursively call simplifyIncompletePhi(). 134 void til::simplifyIncompleteArg(til::Phi *Ph) { 135 assert(Ph && Ph->status() == Phi::PH_Incomplete); 136 137 // eliminate infinite recursion -- assume that this node is not redundant. 138 Ph->setStatus(Phi::PH_MultiVal); 139 140 SExpr *E0 = simplifyToCanonicalVal(Ph->values()[0]); 141 for (unsigned i = 1, n = Ph->values().size(); i < n; ++i) { 142 SExpr *Ei = simplifyToCanonicalVal(Ph->values()[i]); 143 if (Ei == Ph) 144 continue; // Recursive reference to itself. Don't count. 145 if (Ei != E0) { 146 return; // Status is already set to MultiVal. 147 } 148 } 149 Ph->setStatus(Phi::PH_SingleVal); 150 } 151 152 // Renumbers the arguments and instructions to have unique, sequential IDs. 153 int BasicBlock::renumberInstrs(int ID) { 154 for (auto *Arg : Args) 155 Arg->setID(this, ID++); 156 for (auto *Instr : Instrs) 157 Instr->setID(this, ID++); 158 TermInstr->setID(this, ID++); 159 return ID; 160 } 161 162 // Sorts the CFGs blocks using a reverse post-order depth-first traversal. 163 // Each block will be written into the Blocks array in order, and its BlockID 164 // will be set to the index in the array. Sorting should start from the entry 165 // block, and ID should be the total number of blocks. 166 int BasicBlock::topologicalSort(SimpleArray<BasicBlock *> &Blocks, int ID) { 167 if (Visited) return ID; 168 Visited = true; 169 for (auto *Block : successors()) 170 ID = Block->topologicalSort(Blocks, ID); 171 // set ID and update block array in place. 172 // We may lose pointers to unreachable blocks. 173 assert(ID > 0); 174 BlockID = --ID; 175 Blocks[BlockID] = this; 176 return ID; 177 } 178 179 // Performs a reverse topological traversal, starting from the exit block and 180 // following back-edges. The dominator is serialized before any predecessors, 181 // which guarantees that all blocks are serialized after their dominator and 182 // before their post-dominator (because it's a reverse topological traversal). 183 // ID should be initially set to 0. 184 // 185 // This sort assumes that (1) dominators have been computed, (2) there are no 186 // critical edges, and (3) the entry block is reachable from the exit block 187 // and no blocks are accessible via traversal of back-edges from the exit that 188 // weren't accessible via forward edges from the entry. 189 int BasicBlock::topologicalFinalSort(SimpleArray<BasicBlock*>& Blocks, int ID) { 190 // Visited is assumed to have been set by the topologicalSort. This pass 191 // assumes !Visited means that we've visited this node before. 192 if (!Visited) return ID; 193 Visited = false; 194 if (DominatorNode.Parent) 195 ID = DominatorNode.Parent->topologicalFinalSort(Blocks, ID); 196 for (auto *Pred : Predecessors) 197 ID = Pred->topologicalFinalSort(Blocks, ID); 198 assert(static_cast<size_t>(ID) < Blocks.size()); 199 BlockID = ID++; 200 Blocks[BlockID] = this; 201 return ID; 202 } 203 204 // Computes the immediate dominator of the current block. Assumes that all of 205 // its predecessors have already computed their dominators. This is achieved 206 // by visiting the nodes in topological order. 207 void BasicBlock::computeDominator() { 208 BasicBlock *Candidate = nullptr; 209 // Walk backwards from each predecessor to find the common dominator node. 210 for (auto *Pred : Predecessors) { 211 // Skip back-edges 212 if (Pred->BlockID >= BlockID) continue; 213 // If we don't yet have a candidate for dominator yet, take this one. 214 if (Candidate == nullptr) { 215 Candidate = Pred; 216 continue; 217 } 218 // Walk the alternate and current candidate back to find a common ancestor. 219 auto *Alternate = Pred; 220 while (Alternate != Candidate) { 221 if (Candidate->BlockID > Alternate->BlockID) 222 Candidate = Candidate->DominatorNode.Parent; 223 else 224 Alternate = Alternate->DominatorNode.Parent; 225 } 226 } 227 DominatorNode.Parent = Candidate; 228 DominatorNode.SizeOfSubTree = 1; 229 } 230 231 // Computes the immediate post-dominator of the current block. Assumes that all 232 // of its successors have already computed their post-dominators. This is 233 // achieved visiting the nodes in reverse topological order. 234 void BasicBlock::computePostDominator() { 235 BasicBlock *Candidate = nullptr; 236 // Walk back from each predecessor to find the common post-dominator node. 237 for (auto *Succ : successors()) { 238 // Skip back-edges 239 if (Succ->BlockID <= BlockID) continue; 240 // If we don't yet have a candidate for post-dominator yet, take this one. 241 if (Candidate == nullptr) { 242 Candidate = Succ; 243 continue; 244 } 245 // Walk the alternate and current candidate back to find a common ancestor. 246 auto *Alternate = Succ; 247 while (Alternate != Candidate) { 248 if (Candidate->BlockID < Alternate->BlockID) 249 Candidate = Candidate->PostDominatorNode.Parent; 250 else 251 Alternate = Alternate->PostDominatorNode.Parent; 252 } 253 } 254 PostDominatorNode.Parent = Candidate; 255 PostDominatorNode.SizeOfSubTree = 1; 256 } 257 258 // Renumber instructions in all blocks 259 void SCFG::renumberInstrs() { 260 int InstrID = 0; 261 for (auto *Block : Blocks) 262 InstrID = Block->renumberInstrs(InstrID); 263 } 264 265 static inline void computeNodeSize(BasicBlock *B, 266 BasicBlock::TopologyNode BasicBlock::*TN) { 267 BasicBlock::TopologyNode *N = &(B->*TN); 268 if (N->Parent) { 269 BasicBlock::TopologyNode *P = &(N->Parent->*TN); 270 // Initially set ID relative to the (as yet uncomputed) parent ID 271 N->NodeID = P->SizeOfSubTree; 272 P->SizeOfSubTree += N->SizeOfSubTree; 273 } 274 } 275 276 static inline void computeNodeID(BasicBlock *B, 277 BasicBlock::TopologyNode BasicBlock::*TN) { 278 BasicBlock::TopologyNode *N = &(B->*TN); 279 if (N->Parent) { 280 BasicBlock::TopologyNode *P = &(N->Parent->*TN); 281 N->NodeID += P->NodeID; // Fix NodeIDs relative to starting node. 282 } 283 } 284 285 // Normalizes a CFG. Normalization has a few major components: 286 // 1) Removing unreachable blocks. 287 // 2) Computing dominators and post-dominators 288 // 3) Topologically sorting the blocks into the "Blocks" array. 289 void SCFG::computeNormalForm() { 290 // Topologically sort the blocks starting from the entry block. 291 int NumUnreachableBlocks = Entry->topologicalSort(Blocks, Blocks.size()); 292 if (NumUnreachableBlocks > 0) { 293 // If there were unreachable blocks shift everything down, and delete them. 294 for (size_t I = NumUnreachableBlocks, E = Blocks.size(); I < E; ++I) { 295 size_t NI = I - NumUnreachableBlocks; 296 Blocks[NI] = Blocks[I]; 297 Blocks[NI]->BlockID = NI; 298 // FIXME: clean up predecessor pointers to unreachable blocks? 299 } 300 Blocks.drop(NumUnreachableBlocks); 301 } 302 303 // Compute dominators. 304 for (auto *Block : Blocks) 305 Block->computeDominator(); 306 307 // Once dominators have been computed, the final sort may be performed. 308 int NumBlocks = Exit->topologicalFinalSort(Blocks, 0); 309 assert(static_cast<size_t>(NumBlocks) == Blocks.size()); 310 (void) NumBlocks; 311 312 // Renumber the instructions now that we have a final sort. 313 renumberInstrs(); 314 315 // Compute post-dominators and compute the sizes of each node in the 316 // dominator tree. 317 for (auto *Block : Blocks.reverse()) { 318 Block->computePostDominator(); 319 computeNodeSize(Block, &BasicBlock::DominatorNode); 320 } 321 // Compute the sizes of each node in the post-dominator tree and assign IDs in 322 // the dominator tree. 323 for (auto *Block : Blocks) { 324 computeNodeID(Block, &BasicBlock::DominatorNode); 325 computeNodeSize(Block, &BasicBlock::PostDominatorNode); 326 } 327 // Assign IDs in the post-dominator tree. 328 for (auto *Block : Blocks.reverse()) { 329 computeNodeID(Block, &BasicBlock::PostDominatorNode); 330 } 331 } 332