1 //===- ThreadSafety.cpp ---------------------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // A intra-procedural analysis for thread safety (e.g. deadlocks and race 10 // conditions), based off of an annotation system. 11 // 12 // See http://clang.llvm.org/docs/ThreadSafetyAnalysis.html 13 // for more information. 14 // 15 //===----------------------------------------------------------------------===// 16 17 #include "clang/Analysis/Analyses/ThreadSafety.h" 18 #include "clang/AST/Attr.h" 19 #include "clang/AST/Decl.h" 20 #include "clang/AST/DeclCXX.h" 21 #include "clang/AST/DeclGroup.h" 22 #include "clang/AST/Expr.h" 23 #include "clang/AST/ExprCXX.h" 24 #include "clang/AST/OperationKinds.h" 25 #include "clang/AST/Stmt.h" 26 #include "clang/AST/StmtVisitor.h" 27 #include "clang/AST/Type.h" 28 #include "clang/Analysis/Analyses/PostOrderCFGView.h" 29 #include "clang/Analysis/Analyses/ThreadSafetyCommon.h" 30 #include "clang/Analysis/Analyses/ThreadSafetyTIL.h" 31 #include "clang/Analysis/Analyses/ThreadSafetyTraverse.h" 32 #include "clang/Analysis/Analyses/ThreadSafetyUtil.h" 33 #include "clang/Analysis/AnalysisDeclContext.h" 34 #include "clang/Analysis/CFG.h" 35 #include "clang/Basic/Builtins.h" 36 #include "clang/Basic/LLVM.h" 37 #include "clang/Basic/OperatorKinds.h" 38 #include "clang/Basic/SourceLocation.h" 39 #include "clang/Basic/Specifiers.h" 40 #include "llvm/ADT/ArrayRef.h" 41 #include "llvm/ADT/DenseMap.h" 42 #include "llvm/ADT/ImmutableMap.h" 43 #include "llvm/ADT/STLExtras.h" 44 #include "llvm/ADT/SmallVector.h" 45 #include "llvm/ADT/StringRef.h" 46 #include "llvm/Support/Allocator.h" 47 #include "llvm/Support/Casting.h" 48 #include "llvm/Support/ErrorHandling.h" 49 #include "llvm/Support/raw_ostream.h" 50 #include <algorithm> 51 #include <cassert> 52 #include <functional> 53 #include <iterator> 54 #include <memory> 55 #include <optional> 56 #include <string> 57 #include <type_traits> 58 #include <utility> 59 #include <vector> 60 61 using namespace clang; 62 using namespace threadSafety; 63 64 // Key method definition 65 ThreadSafetyHandler::~ThreadSafetyHandler() = default; 66 67 /// Issue a warning about an invalid lock expression 68 static void warnInvalidLock(ThreadSafetyHandler &Handler, 69 const Expr *MutexExp, const NamedDecl *D, 70 const Expr *DeclExp, StringRef Kind) { 71 SourceLocation Loc; 72 if (DeclExp) 73 Loc = DeclExp->getExprLoc(); 74 75 // FIXME: add a note about the attribute location in MutexExp or D 76 if (Loc.isValid()) 77 Handler.handleInvalidLockExp(Loc); 78 } 79 80 namespace { 81 82 /// A set of CapabilityExpr objects, which are compiled from thread safety 83 /// attributes on a function. 84 class CapExprSet : public SmallVector<CapabilityExpr, 4> { 85 public: 86 /// Push M onto list, but discard duplicates. 87 void push_back_nodup(const CapabilityExpr &CapE) { 88 if (llvm::none_of(*this, [=](const CapabilityExpr &CapE2) { 89 return CapE.equals(CapE2); 90 })) 91 push_back(CapE); 92 } 93 }; 94 95 class FactManager; 96 class FactSet; 97 98 /// This is a helper class that stores a fact that is known at a 99 /// particular point in program execution. Currently, a fact is a capability, 100 /// along with additional information, such as where it was acquired, whether 101 /// it is exclusive or shared, etc. 102 /// 103 /// FIXME: this analysis does not currently support re-entrant locking. 104 class FactEntry : public CapabilityExpr { 105 public: 106 /// Where a fact comes from. 107 enum SourceKind { 108 Acquired, ///< The fact has been directly acquired. 109 Asserted, ///< The fact has been asserted to be held. 110 Declared, ///< The fact is assumed to be held by callers. 111 Managed, ///< The fact has been acquired through a scoped capability. 112 }; 113 114 private: 115 /// Exclusive or shared. 116 LockKind LKind : 8; 117 118 // How it was acquired. 119 SourceKind Source : 8; 120 121 /// Where it was acquired. 122 SourceLocation AcquireLoc; 123 124 public: 125 FactEntry(const CapabilityExpr &CE, LockKind LK, SourceLocation Loc, 126 SourceKind Src) 127 : CapabilityExpr(CE), LKind(LK), Source(Src), AcquireLoc(Loc) {} 128 virtual ~FactEntry() = default; 129 130 LockKind kind() const { return LKind; } 131 SourceLocation loc() const { return AcquireLoc; } 132 133 bool asserted() const { return Source == Asserted; } 134 bool declared() const { return Source == Declared; } 135 bool managed() const { return Source == Managed; } 136 137 virtual void 138 handleRemovalFromIntersection(const FactSet &FSet, FactManager &FactMan, 139 SourceLocation JoinLoc, LockErrorKind LEK, 140 ThreadSafetyHandler &Handler) const = 0; 141 virtual void handleLock(FactSet &FSet, FactManager &FactMan, 142 const FactEntry &entry, 143 ThreadSafetyHandler &Handler) const = 0; 144 virtual void handleUnlock(FactSet &FSet, FactManager &FactMan, 145 const CapabilityExpr &Cp, SourceLocation UnlockLoc, 146 bool FullyRemove, 147 ThreadSafetyHandler &Handler) const = 0; 148 149 // Return true if LKind >= LK, where exclusive > shared 150 bool isAtLeast(LockKind LK) const { 151 return (LKind == LK_Exclusive) || (LK == LK_Shared); 152 } 153 }; 154 155 using FactID = unsigned short; 156 157 /// FactManager manages the memory for all facts that are created during 158 /// the analysis of a single routine. 159 class FactManager { 160 private: 161 std::vector<std::unique_ptr<const FactEntry>> Facts; 162 163 public: 164 FactID newFact(std::unique_ptr<FactEntry> Entry) { 165 Facts.push_back(std::move(Entry)); 166 return static_cast<unsigned short>(Facts.size() - 1); 167 } 168 169 const FactEntry &operator[](FactID F) const { return *Facts[F]; } 170 }; 171 172 /// A FactSet is the set of facts that are known to be true at a 173 /// particular program point. FactSets must be small, because they are 174 /// frequently copied, and are thus implemented as a set of indices into a 175 /// table maintained by a FactManager. A typical FactSet only holds 1 or 2 176 /// locks, so we can get away with doing a linear search for lookup. Note 177 /// that a hashtable or map is inappropriate in this case, because lookups 178 /// may involve partial pattern matches, rather than exact matches. 179 class FactSet { 180 private: 181 using FactVec = SmallVector<FactID, 4>; 182 183 FactVec FactIDs; 184 185 public: 186 using iterator = FactVec::iterator; 187 using const_iterator = FactVec::const_iterator; 188 189 iterator begin() { return FactIDs.begin(); } 190 const_iterator begin() const { return FactIDs.begin(); } 191 192 iterator end() { return FactIDs.end(); } 193 const_iterator end() const { return FactIDs.end(); } 194 195 bool isEmpty() const { return FactIDs.size() == 0; } 196 197 // Return true if the set contains only negative facts 198 bool isEmpty(FactManager &FactMan) const { 199 for (const auto FID : *this) { 200 if (!FactMan[FID].negative()) 201 return false; 202 } 203 return true; 204 } 205 206 void addLockByID(FactID ID) { FactIDs.push_back(ID); } 207 208 FactID addLock(FactManager &FM, std::unique_ptr<FactEntry> Entry) { 209 FactID F = FM.newFact(std::move(Entry)); 210 FactIDs.push_back(F); 211 return F; 212 } 213 214 bool removeLock(FactManager& FM, const CapabilityExpr &CapE) { 215 unsigned n = FactIDs.size(); 216 if (n == 0) 217 return false; 218 219 for (unsigned i = 0; i < n-1; ++i) { 220 if (FM[FactIDs[i]].matches(CapE)) { 221 FactIDs[i] = FactIDs[n-1]; 222 FactIDs.pop_back(); 223 return true; 224 } 225 } 226 if (FM[FactIDs[n-1]].matches(CapE)) { 227 FactIDs.pop_back(); 228 return true; 229 } 230 return false; 231 } 232 233 iterator findLockIter(FactManager &FM, const CapabilityExpr &CapE) { 234 return std::find_if(begin(), end(), [&](FactID ID) { 235 return FM[ID].matches(CapE); 236 }); 237 } 238 239 const FactEntry *findLock(FactManager &FM, const CapabilityExpr &CapE) const { 240 auto I = std::find_if(begin(), end(), [&](FactID ID) { 241 return FM[ID].matches(CapE); 242 }); 243 return I != end() ? &FM[*I] : nullptr; 244 } 245 246 const FactEntry *findLockUniv(FactManager &FM, 247 const CapabilityExpr &CapE) const { 248 auto I = std::find_if(begin(), end(), [&](FactID ID) -> bool { 249 return FM[ID].matchesUniv(CapE); 250 }); 251 return I != end() ? &FM[*I] : nullptr; 252 } 253 254 const FactEntry *findPartialMatch(FactManager &FM, 255 const CapabilityExpr &CapE) const { 256 auto I = std::find_if(begin(), end(), [&](FactID ID) -> bool { 257 return FM[ID].partiallyMatches(CapE); 258 }); 259 return I != end() ? &FM[*I] : nullptr; 260 } 261 262 bool containsMutexDecl(FactManager &FM, const ValueDecl* Vd) const { 263 auto I = std::find_if(begin(), end(), [&](FactID ID) -> bool { 264 return FM[ID].valueDecl() == Vd; 265 }); 266 return I != end(); 267 } 268 }; 269 270 class ThreadSafetyAnalyzer; 271 272 } // namespace 273 274 namespace clang { 275 namespace threadSafety { 276 277 class BeforeSet { 278 private: 279 using BeforeVect = SmallVector<const ValueDecl *, 4>; 280 281 struct BeforeInfo { 282 BeforeVect Vect; 283 int Visited = 0; 284 285 BeforeInfo() = default; 286 BeforeInfo(BeforeInfo &&) = default; 287 }; 288 289 using BeforeMap = 290 llvm::DenseMap<const ValueDecl *, std::unique_ptr<BeforeInfo>>; 291 using CycleMap = llvm::DenseMap<const ValueDecl *, bool>; 292 293 public: 294 BeforeSet() = default; 295 296 BeforeInfo* insertAttrExprs(const ValueDecl* Vd, 297 ThreadSafetyAnalyzer& Analyzer); 298 299 BeforeInfo *getBeforeInfoForDecl(const ValueDecl *Vd, 300 ThreadSafetyAnalyzer &Analyzer); 301 302 void checkBeforeAfter(const ValueDecl* Vd, 303 const FactSet& FSet, 304 ThreadSafetyAnalyzer& Analyzer, 305 SourceLocation Loc, StringRef CapKind); 306 307 private: 308 BeforeMap BMap; 309 CycleMap CycMap; 310 }; 311 312 } // namespace threadSafety 313 } // namespace clang 314 315 namespace { 316 317 class LocalVariableMap; 318 319 using LocalVarContext = llvm::ImmutableMap<const NamedDecl *, unsigned>; 320 321 /// A side (entry or exit) of a CFG node. 322 enum CFGBlockSide { CBS_Entry, CBS_Exit }; 323 324 /// CFGBlockInfo is a struct which contains all the information that is 325 /// maintained for each block in the CFG. See LocalVariableMap for more 326 /// information about the contexts. 327 struct CFGBlockInfo { 328 // Lockset held at entry to block 329 FactSet EntrySet; 330 331 // Lockset held at exit from block 332 FactSet ExitSet; 333 334 // Context held at entry to block 335 LocalVarContext EntryContext; 336 337 // Context held at exit from block 338 LocalVarContext ExitContext; 339 340 // Location of first statement in block 341 SourceLocation EntryLoc; 342 343 // Location of last statement in block. 344 SourceLocation ExitLoc; 345 346 // Used to replay contexts later 347 unsigned EntryIndex; 348 349 // Is this block reachable? 350 bool Reachable = false; 351 352 const FactSet &getSet(CFGBlockSide Side) const { 353 return Side == CBS_Entry ? EntrySet : ExitSet; 354 } 355 356 SourceLocation getLocation(CFGBlockSide Side) const { 357 return Side == CBS_Entry ? EntryLoc : ExitLoc; 358 } 359 360 private: 361 CFGBlockInfo(LocalVarContext EmptyCtx) 362 : EntryContext(EmptyCtx), ExitContext(EmptyCtx) {} 363 364 public: 365 static CFGBlockInfo getEmptyBlockInfo(LocalVariableMap &M); 366 }; 367 368 // A LocalVariableMap maintains a map from local variables to their currently 369 // valid definitions. It provides SSA-like functionality when traversing the 370 // CFG. Like SSA, each definition or assignment to a variable is assigned a 371 // unique name (an integer), which acts as the SSA name for that definition. 372 // The total set of names is shared among all CFG basic blocks. 373 // Unlike SSA, we do not rewrite expressions to replace local variables declrefs 374 // with their SSA-names. Instead, we compute a Context for each point in the 375 // code, which maps local variables to the appropriate SSA-name. This map 376 // changes with each assignment. 377 // 378 // The map is computed in a single pass over the CFG. Subsequent analyses can 379 // then query the map to find the appropriate Context for a statement, and use 380 // that Context to look up the definitions of variables. 381 class LocalVariableMap { 382 public: 383 using Context = LocalVarContext; 384 385 /// A VarDefinition consists of an expression, representing the value of the 386 /// variable, along with the context in which that expression should be 387 /// interpreted. A reference VarDefinition does not itself contain this 388 /// information, but instead contains a pointer to a previous VarDefinition. 389 struct VarDefinition { 390 public: 391 friend class LocalVariableMap; 392 393 // The original declaration for this variable. 394 const NamedDecl *Dec; 395 396 // The expression for this variable, OR 397 const Expr *Exp = nullptr; 398 399 // Reference to another VarDefinition 400 unsigned Ref = 0; 401 402 // The map with which Exp should be interpreted. 403 Context Ctx; 404 405 bool isReference() const { return !Exp; } 406 407 private: 408 // Create ordinary variable definition 409 VarDefinition(const NamedDecl *D, const Expr *E, Context C) 410 : Dec(D), Exp(E), Ctx(C) {} 411 412 // Create reference to previous definition 413 VarDefinition(const NamedDecl *D, unsigned R, Context C) 414 : Dec(D), Ref(R), Ctx(C) {} 415 }; 416 417 private: 418 Context::Factory ContextFactory; 419 std::vector<VarDefinition> VarDefinitions; 420 std::vector<std::pair<const Stmt *, Context>> SavedContexts; 421 422 public: 423 LocalVariableMap() { 424 // index 0 is a placeholder for undefined variables (aka phi-nodes). 425 VarDefinitions.push_back(VarDefinition(nullptr, 0u, getEmptyContext())); 426 } 427 428 /// Look up a definition, within the given context. 429 const VarDefinition* lookup(const NamedDecl *D, Context Ctx) { 430 const unsigned *i = Ctx.lookup(D); 431 if (!i) 432 return nullptr; 433 assert(*i < VarDefinitions.size()); 434 return &VarDefinitions[*i]; 435 } 436 437 /// Look up the definition for D within the given context. Returns 438 /// NULL if the expression is not statically known. If successful, also 439 /// modifies Ctx to hold the context of the return Expr. 440 const Expr* lookupExpr(const NamedDecl *D, Context &Ctx) { 441 const unsigned *P = Ctx.lookup(D); 442 if (!P) 443 return nullptr; 444 445 unsigned i = *P; 446 while (i > 0) { 447 if (VarDefinitions[i].Exp) { 448 Ctx = VarDefinitions[i].Ctx; 449 return VarDefinitions[i].Exp; 450 } 451 i = VarDefinitions[i].Ref; 452 } 453 return nullptr; 454 } 455 456 Context getEmptyContext() { return ContextFactory.getEmptyMap(); } 457 458 /// Return the next context after processing S. This function is used by 459 /// clients of the class to get the appropriate context when traversing the 460 /// CFG. It must be called for every assignment or DeclStmt. 461 Context getNextContext(unsigned &CtxIndex, const Stmt *S, Context C) { 462 if (SavedContexts[CtxIndex+1].first == S) { 463 CtxIndex++; 464 Context Result = SavedContexts[CtxIndex].second; 465 return Result; 466 } 467 return C; 468 } 469 470 void dumpVarDefinitionName(unsigned i) { 471 if (i == 0) { 472 llvm::errs() << "Undefined"; 473 return; 474 } 475 const NamedDecl *Dec = VarDefinitions[i].Dec; 476 if (!Dec) { 477 llvm::errs() << "<<NULL>>"; 478 return; 479 } 480 Dec->printName(llvm::errs()); 481 llvm::errs() << "." << i << " " << ((const void*) Dec); 482 } 483 484 /// Dumps an ASCII representation of the variable map to llvm::errs() 485 void dump() { 486 for (unsigned i = 1, e = VarDefinitions.size(); i < e; ++i) { 487 const Expr *Exp = VarDefinitions[i].Exp; 488 unsigned Ref = VarDefinitions[i].Ref; 489 490 dumpVarDefinitionName(i); 491 llvm::errs() << " = "; 492 if (Exp) Exp->dump(); 493 else { 494 dumpVarDefinitionName(Ref); 495 llvm::errs() << "\n"; 496 } 497 } 498 } 499 500 /// Dumps an ASCII representation of a Context to llvm::errs() 501 void dumpContext(Context C) { 502 for (Context::iterator I = C.begin(), E = C.end(); I != E; ++I) { 503 const NamedDecl *D = I.getKey(); 504 D->printName(llvm::errs()); 505 llvm::errs() << " -> "; 506 dumpVarDefinitionName(I.getData()); 507 llvm::errs() << "\n"; 508 } 509 } 510 511 /// Builds the variable map. 512 void traverseCFG(CFG *CFGraph, const PostOrderCFGView *SortedGraph, 513 std::vector<CFGBlockInfo> &BlockInfo); 514 515 protected: 516 friend class VarMapBuilder; 517 518 // Get the current context index 519 unsigned getContextIndex() { return SavedContexts.size()-1; } 520 521 // Save the current context for later replay 522 void saveContext(const Stmt *S, Context C) { 523 SavedContexts.push_back(std::make_pair(S, C)); 524 } 525 526 // Adds a new definition to the given context, and returns a new context. 527 // This method should be called when declaring a new variable. 528 Context addDefinition(const NamedDecl *D, const Expr *Exp, Context Ctx) { 529 assert(!Ctx.contains(D)); 530 unsigned newID = VarDefinitions.size(); 531 Context NewCtx = ContextFactory.add(Ctx, D, newID); 532 VarDefinitions.push_back(VarDefinition(D, Exp, Ctx)); 533 return NewCtx; 534 } 535 536 // Add a new reference to an existing definition. 537 Context addReference(const NamedDecl *D, unsigned i, Context Ctx) { 538 unsigned newID = VarDefinitions.size(); 539 Context NewCtx = ContextFactory.add(Ctx, D, newID); 540 VarDefinitions.push_back(VarDefinition(D, i, Ctx)); 541 return NewCtx; 542 } 543 544 // Updates a definition only if that definition is already in the map. 545 // This method should be called when assigning to an existing variable. 546 Context updateDefinition(const NamedDecl *D, Expr *Exp, Context Ctx) { 547 if (Ctx.contains(D)) { 548 unsigned newID = VarDefinitions.size(); 549 Context NewCtx = ContextFactory.remove(Ctx, D); 550 NewCtx = ContextFactory.add(NewCtx, D, newID); 551 VarDefinitions.push_back(VarDefinition(D, Exp, Ctx)); 552 return NewCtx; 553 } 554 return Ctx; 555 } 556 557 // Removes a definition from the context, but keeps the variable name 558 // as a valid variable. The index 0 is a placeholder for cleared definitions. 559 Context clearDefinition(const NamedDecl *D, Context Ctx) { 560 Context NewCtx = Ctx; 561 if (NewCtx.contains(D)) { 562 NewCtx = ContextFactory.remove(NewCtx, D); 563 NewCtx = ContextFactory.add(NewCtx, D, 0); 564 } 565 return NewCtx; 566 } 567 568 // Remove a definition entirely frmo the context. 569 Context removeDefinition(const NamedDecl *D, Context Ctx) { 570 Context NewCtx = Ctx; 571 if (NewCtx.contains(D)) { 572 NewCtx = ContextFactory.remove(NewCtx, D); 573 } 574 return NewCtx; 575 } 576 577 Context intersectContexts(Context C1, Context C2); 578 Context createReferenceContext(Context C); 579 void intersectBackEdge(Context C1, Context C2); 580 }; 581 582 } // namespace 583 584 // This has to be defined after LocalVariableMap. 585 CFGBlockInfo CFGBlockInfo::getEmptyBlockInfo(LocalVariableMap &M) { 586 return CFGBlockInfo(M.getEmptyContext()); 587 } 588 589 namespace { 590 591 /// Visitor which builds a LocalVariableMap 592 class VarMapBuilder : public ConstStmtVisitor<VarMapBuilder> { 593 public: 594 LocalVariableMap* VMap; 595 LocalVariableMap::Context Ctx; 596 597 VarMapBuilder(LocalVariableMap *VM, LocalVariableMap::Context C) 598 : VMap(VM), Ctx(C) {} 599 600 void VisitDeclStmt(const DeclStmt *S); 601 void VisitBinaryOperator(const BinaryOperator *BO); 602 }; 603 604 } // namespace 605 606 // Add new local variables to the variable map 607 void VarMapBuilder::VisitDeclStmt(const DeclStmt *S) { 608 bool modifiedCtx = false; 609 const DeclGroupRef DGrp = S->getDeclGroup(); 610 for (const auto *D : DGrp) { 611 if (const auto *VD = dyn_cast_or_null<VarDecl>(D)) { 612 const Expr *E = VD->getInit(); 613 614 // Add local variables with trivial type to the variable map 615 QualType T = VD->getType(); 616 if (T.isTrivialType(VD->getASTContext())) { 617 Ctx = VMap->addDefinition(VD, E, Ctx); 618 modifiedCtx = true; 619 } 620 } 621 } 622 if (modifiedCtx) 623 VMap->saveContext(S, Ctx); 624 } 625 626 // Update local variable definitions in variable map 627 void VarMapBuilder::VisitBinaryOperator(const BinaryOperator *BO) { 628 if (!BO->isAssignmentOp()) 629 return; 630 631 Expr *LHSExp = BO->getLHS()->IgnoreParenCasts(); 632 633 // Update the variable map and current context. 634 if (const auto *DRE = dyn_cast<DeclRefExpr>(LHSExp)) { 635 const ValueDecl *VDec = DRE->getDecl(); 636 if (Ctx.lookup(VDec)) { 637 if (BO->getOpcode() == BO_Assign) 638 Ctx = VMap->updateDefinition(VDec, BO->getRHS(), Ctx); 639 else 640 // FIXME -- handle compound assignment operators 641 Ctx = VMap->clearDefinition(VDec, Ctx); 642 VMap->saveContext(BO, Ctx); 643 } 644 } 645 } 646 647 // Computes the intersection of two contexts. The intersection is the 648 // set of variables which have the same definition in both contexts; 649 // variables with different definitions are discarded. 650 LocalVariableMap::Context 651 LocalVariableMap::intersectContexts(Context C1, Context C2) { 652 Context Result = C1; 653 for (const auto &P : C1) { 654 const NamedDecl *Dec = P.first; 655 const unsigned *i2 = C2.lookup(Dec); 656 if (!i2) // variable doesn't exist on second path 657 Result = removeDefinition(Dec, Result); 658 else if (*i2 != P.second) // variable exists, but has different definition 659 Result = clearDefinition(Dec, Result); 660 } 661 return Result; 662 } 663 664 // For every variable in C, create a new variable that refers to the 665 // definition in C. Return a new context that contains these new variables. 666 // (We use this for a naive implementation of SSA on loop back-edges.) 667 LocalVariableMap::Context LocalVariableMap::createReferenceContext(Context C) { 668 Context Result = getEmptyContext(); 669 for (const auto &P : C) 670 Result = addReference(P.first, P.second, Result); 671 return Result; 672 } 673 674 // This routine also takes the intersection of C1 and C2, but it does so by 675 // altering the VarDefinitions. C1 must be the result of an earlier call to 676 // createReferenceContext. 677 void LocalVariableMap::intersectBackEdge(Context C1, Context C2) { 678 for (const auto &P : C1) { 679 unsigned i1 = P.second; 680 VarDefinition *VDef = &VarDefinitions[i1]; 681 assert(VDef->isReference()); 682 683 const unsigned *i2 = C2.lookup(P.first); 684 if (!i2 || (*i2 != i1)) 685 VDef->Ref = 0; // Mark this variable as undefined 686 } 687 } 688 689 // Traverse the CFG in topological order, so all predecessors of a block 690 // (excluding back-edges) are visited before the block itself. At 691 // each point in the code, we calculate a Context, which holds the set of 692 // variable definitions which are visible at that point in execution. 693 // Visible variables are mapped to their definitions using an array that 694 // contains all definitions. 695 // 696 // At join points in the CFG, the set is computed as the intersection of 697 // the incoming sets along each edge, E.g. 698 // 699 // { Context | VarDefinitions } 700 // int x = 0; { x -> x1 | x1 = 0 } 701 // int y = 0; { x -> x1, y -> y1 | y1 = 0, x1 = 0 } 702 // if (b) x = 1; { x -> x2, y -> y1 | x2 = 1, y1 = 0, ... } 703 // else x = 2; { x -> x3, y -> y1 | x3 = 2, x2 = 1, ... } 704 // ... { y -> y1 (x is unknown) | x3 = 2, x2 = 1, ... } 705 // 706 // This is essentially a simpler and more naive version of the standard SSA 707 // algorithm. Those definitions that remain in the intersection are from blocks 708 // that strictly dominate the current block. We do not bother to insert proper 709 // phi nodes, because they are not used in our analysis; instead, wherever 710 // a phi node would be required, we simply remove that definition from the 711 // context (E.g. x above). 712 // 713 // The initial traversal does not capture back-edges, so those need to be 714 // handled on a separate pass. Whenever the first pass encounters an 715 // incoming back edge, it duplicates the context, creating new definitions 716 // that refer back to the originals. (These correspond to places where SSA 717 // might have to insert a phi node.) On the second pass, these definitions are 718 // set to NULL if the variable has changed on the back-edge (i.e. a phi 719 // node was actually required.) E.g. 720 // 721 // { Context | VarDefinitions } 722 // int x = 0, y = 0; { x -> x1, y -> y1 | y1 = 0, x1 = 0 } 723 // while (b) { x -> x2, y -> y1 | [1st:] x2=x1; [2nd:] x2=NULL; } 724 // x = x+1; { x -> x3, y -> y1 | x3 = x2 + 1, ... } 725 // ... { y -> y1 | x3 = 2, x2 = 1, ... } 726 void LocalVariableMap::traverseCFG(CFG *CFGraph, 727 const PostOrderCFGView *SortedGraph, 728 std::vector<CFGBlockInfo> &BlockInfo) { 729 PostOrderCFGView::CFGBlockSet VisitedBlocks(CFGraph); 730 731 for (const auto *CurrBlock : *SortedGraph) { 732 unsigned CurrBlockID = CurrBlock->getBlockID(); 733 CFGBlockInfo *CurrBlockInfo = &BlockInfo[CurrBlockID]; 734 735 VisitedBlocks.insert(CurrBlock); 736 737 // Calculate the entry context for the current block 738 bool HasBackEdges = false; 739 bool CtxInit = true; 740 for (CFGBlock::const_pred_iterator PI = CurrBlock->pred_begin(), 741 PE = CurrBlock->pred_end(); PI != PE; ++PI) { 742 // if *PI -> CurrBlock is a back edge, so skip it 743 if (*PI == nullptr || !VisitedBlocks.alreadySet(*PI)) { 744 HasBackEdges = true; 745 continue; 746 } 747 748 unsigned PrevBlockID = (*PI)->getBlockID(); 749 CFGBlockInfo *PrevBlockInfo = &BlockInfo[PrevBlockID]; 750 751 if (CtxInit) { 752 CurrBlockInfo->EntryContext = PrevBlockInfo->ExitContext; 753 CtxInit = false; 754 } 755 else { 756 CurrBlockInfo->EntryContext = 757 intersectContexts(CurrBlockInfo->EntryContext, 758 PrevBlockInfo->ExitContext); 759 } 760 } 761 762 // Duplicate the context if we have back-edges, so we can call 763 // intersectBackEdges later. 764 if (HasBackEdges) 765 CurrBlockInfo->EntryContext = 766 createReferenceContext(CurrBlockInfo->EntryContext); 767 768 // Create a starting context index for the current block 769 saveContext(nullptr, CurrBlockInfo->EntryContext); 770 CurrBlockInfo->EntryIndex = getContextIndex(); 771 772 // Visit all the statements in the basic block. 773 VarMapBuilder VMapBuilder(this, CurrBlockInfo->EntryContext); 774 for (const auto &BI : *CurrBlock) { 775 switch (BI.getKind()) { 776 case CFGElement::Statement: { 777 CFGStmt CS = BI.castAs<CFGStmt>(); 778 VMapBuilder.Visit(CS.getStmt()); 779 break; 780 } 781 default: 782 break; 783 } 784 } 785 CurrBlockInfo->ExitContext = VMapBuilder.Ctx; 786 787 // Mark variables on back edges as "unknown" if they've been changed. 788 for (CFGBlock::const_succ_iterator SI = CurrBlock->succ_begin(), 789 SE = CurrBlock->succ_end(); SI != SE; ++SI) { 790 // if CurrBlock -> *SI is *not* a back edge 791 if (*SI == nullptr || !VisitedBlocks.alreadySet(*SI)) 792 continue; 793 794 CFGBlock *FirstLoopBlock = *SI; 795 Context LoopBegin = BlockInfo[FirstLoopBlock->getBlockID()].EntryContext; 796 Context LoopEnd = CurrBlockInfo->ExitContext; 797 intersectBackEdge(LoopBegin, LoopEnd); 798 } 799 } 800 801 // Put an extra entry at the end of the indexed context array 802 unsigned exitID = CFGraph->getExit().getBlockID(); 803 saveContext(nullptr, BlockInfo[exitID].ExitContext); 804 } 805 806 /// Find the appropriate source locations to use when producing diagnostics for 807 /// each block in the CFG. 808 static void findBlockLocations(CFG *CFGraph, 809 const PostOrderCFGView *SortedGraph, 810 std::vector<CFGBlockInfo> &BlockInfo) { 811 for (const auto *CurrBlock : *SortedGraph) { 812 CFGBlockInfo *CurrBlockInfo = &BlockInfo[CurrBlock->getBlockID()]; 813 814 // Find the source location of the last statement in the block, if the 815 // block is not empty. 816 if (const Stmt *S = CurrBlock->getTerminatorStmt()) { 817 CurrBlockInfo->EntryLoc = CurrBlockInfo->ExitLoc = S->getBeginLoc(); 818 } else { 819 for (CFGBlock::const_reverse_iterator BI = CurrBlock->rbegin(), 820 BE = CurrBlock->rend(); BI != BE; ++BI) { 821 // FIXME: Handle other CFGElement kinds. 822 if (std::optional<CFGStmt> CS = BI->getAs<CFGStmt>()) { 823 CurrBlockInfo->ExitLoc = CS->getStmt()->getBeginLoc(); 824 break; 825 } 826 } 827 } 828 829 if (CurrBlockInfo->ExitLoc.isValid()) { 830 // This block contains at least one statement. Find the source location 831 // of the first statement in the block. 832 for (const auto &BI : *CurrBlock) { 833 // FIXME: Handle other CFGElement kinds. 834 if (std::optional<CFGStmt> CS = BI.getAs<CFGStmt>()) { 835 CurrBlockInfo->EntryLoc = CS->getStmt()->getBeginLoc(); 836 break; 837 } 838 } 839 } else if (CurrBlock->pred_size() == 1 && *CurrBlock->pred_begin() && 840 CurrBlock != &CFGraph->getExit()) { 841 // The block is empty, and has a single predecessor. Use its exit 842 // location. 843 CurrBlockInfo->EntryLoc = CurrBlockInfo->ExitLoc = 844 BlockInfo[(*CurrBlock->pred_begin())->getBlockID()].ExitLoc; 845 } else if (CurrBlock->succ_size() == 1 && *CurrBlock->succ_begin()) { 846 // The block is empty, and has a single successor. Use its entry 847 // location. 848 CurrBlockInfo->EntryLoc = CurrBlockInfo->ExitLoc = 849 BlockInfo[(*CurrBlock->succ_begin())->getBlockID()].EntryLoc; 850 } 851 } 852 } 853 854 namespace { 855 856 class LockableFactEntry : public FactEntry { 857 public: 858 LockableFactEntry(const CapabilityExpr &CE, LockKind LK, SourceLocation Loc, 859 SourceKind Src = Acquired) 860 : FactEntry(CE, LK, Loc, Src) {} 861 862 void 863 handleRemovalFromIntersection(const FactSet &FSet, FactManager &FactMan, 864 SourceLocation JoinLoc, LockErrorKind LEK, 865 ThreadSafetyHandler &Handler) const override { 866 if (!asserted() && !negative() && !isUniversal()) { 867 Handler.handleMutexHeldEndOfScope(getKind(), toString(), loc(), JoinLoc, 868 LEK); 869 } 870 } 871 872 void handleLock(FactSet &FSet, FactManager &FactMan, const FactEntry &entry, 873 ThreadSafetyHandler &Handler) const override { 874 Handler.handleDoubleLock(entry.getKind(), entry.toString(), loc(), 875 entry.loc()); 876 } 877 878 void handleUnlock(FactSet &FSet, FactManager &FactMan, 879 const CapabilityExpr &Cp, SourceLocation UnlockLoc, 880 bool FullyRemove, 881 ThreadSafetyHandler &Handler) const override { 882 FSet.removeLock(FactMan, Cp); 883 if (!Cp.negative()) { 884 FSet.addLock(FactMan, std::make_unique<LockableFactEntry>( 885 !Cp, LK_Exclusive, UnlockLoc)); 886 } 887 } 888 }; 889 890 class ScopedLockableFactEntry : public FactEntry { 891 private: 892 enum UnderlyingCapabilityKind { 893 UCK_Acquired, ///< Any kind of acquired capability. 894 UCK_ReleasedShared, ///< Shared capability that was released. 895 UCK_ReleasedExclusive, ///< Exclusive capability that was released. 896 }; 897 898 struct UnderlyingCapability { 899 CapabilityExpr Cap; 900 UnderlyingCapabilityKind Kind; 901 }; 902 903 SmallVector<UnderlyingCapability, 2> UnderlyingMutexes; 904 905 public: 906 ScopedLockableFactEntry(const CapabilityExpr &CE, SourceLocation Loc) 907 : FactEntry(CE, LK_Exclusive, Loc, Acquired) {} 908 909 void addLock(const CapabilityExpr &M) { 910 UnderlyingMutexes.push_back(UnderlyingCapability{M, UCK_Acquired}); 911 } 912 913 void addExclusiveUnlock(const CapabilityExpr &M) { 914 UnderlyingMutexes.push_back(UnderlyingCapability{M, UCK_ReleasedExclusive}); 915 } 916 917 void addSharedUnlock(const CapabilityExpr &M) { 918 UnderlyingMutexes.push_back(UnderlyingCapability{M, UCK_ReleasedShared}); 919 } 920 921 void 922 handleRemovalFromIntersection(const FactSet &FSet, FactManager &FactMan, 923 SourceLocation JoinLoc, LockErrorKind LEK, 924 ThreadSafetyHandler &Handler) const override { 925 if (LEK == LEK_LockedAtEndOfFunction || LEK == LEK_NotLockedAtEndOfFunction) 926 return; 927 928 for (const auto &UnderlyingMutex : UnderlyingMutexes) { 929 const auto *Entry = FSet.findLock(FactMan, UnderlyingMutex.Cap); 930 if ((UnderlyingMutex.Kind == UCK_Acquired && Entry) || 931 (UnderlyingMutex.Kind != UCK_Acquired && !Entry)) { 932 // If this scoped lock manages another mutex, and if the underlying 933 // mutex is still/not held, then warn about the underlying mutex. 934 Handler.handleMutexHeldEndOfScope(UnderlyingMutex.Cap.getKind(), 935 UnderlyingMutex.Cap.toString(), loc(), 936 JoinLoc, LEK); 937 } 938 } 939 } 940 941 void handleLock(FactSet &FSet, FactManager &FactMan, const FactEntry &entry, 942 ThreadSafetyHandler &Handler) const override { 943 for (const auto &UnderlyingMutex : UnderlyingMutexes) { 944 if (UnderlyingMutex.Kind == UCK_Acquired) 945 lock(FSet, FactMan, UnderlyingMutex.Cap, entry.kind(), entry.loc(), 946 &Handler); 947 else 948 unlock(FSet, FactMan, UnderlyingMutex.Cap, entry.loc(), &Handler); 949 } 950 } 951 952 void handleUnlock(FactSet &FSet, FactManager &FactMan, 953 const CapabilityExpr &Cp, SourceLocation UnlockLoc, 954 bool FullyRemove, 955 ThreadSafetyHandler &Handler) const override { 956 assert(!Cp.negative() && "Managing object cannot be negative."); 957 for (const auto &UnderlyingMutex : UnderlyingMutexes) { 958 // Remove/lock the underlying mutex if it exists/is still unlocked; warn 959 // on double unlocking/locking if we're not destroying the scoped object. 960 ThreadSafetyHandler *TSHandler = FullyRemove ? nullptr : &Handler; 961 if (UnderlyingMutex.Kind == UCK_Acquired) { 962 unlock(FSet, FactMan, UnderlyingMutex.Cap, UnlockLoc, TSHandler); 963 } else { 964 LockKind kind = UnderlyingMutex.Kind == UCK_ReleasedShared 965 ? LK_Shared 966 : LK_Exclusive; 967 lock(FSet, FactMan, UnderlyingMutex.Cap, kind, UnlockLoc, TSHandler); 968 } 969 } 970 if (FullyRemove) 971 FSet.removeLock(FactMan, Cp); 972 } 973 974 private: 975 void lock(FactSet &FSet, FactManager &FactMan, const CapabilityExpr &Cp, 976 LockKind kind, SourceLocation loc, 977 ThreadSafetyHandler *Handler) const { 978 if (const FactEntry *Fact = FSet.findLock(FactMan, Cp)) { 979 if (Handler) 980 Handler->handleDoubleLock(Cp.getKind(), Cp.toString(), Fact->loc(), 981 loc); 982 } else { 983 FSet.removeLock(FactMan, !Cp); 984 FSet.addLock(FactMan, 985 std::make_unique<LockableFactEntry>(Cp, kind, loc, Managed)); 986 } 987 } 988 989 void unlock(FactSet &FSet, FactManager &FactMan, const CapabilityExpr &Cp, 990 SourceLocation loc, ThreadSafetyHandler *Handler) const { 991 if (FSet.findLock(FactMan, Cp)) { 992 FSet.removeLock(FactMan, Cp); 993 FSet.addLock(FactMan, std::make_unique<LockableFactEntry>( 994 !Cp, LK_Exclusive, loc)); 995 } else if (Handler) { 996 SourceLocation PrevLoc; 997 if (const FactEntry *Neg = FSet.findLock(FactMan, !Cp)) 998 PrevLoc = Neg->loc(); 999 Handler->handleUnmatchedUnlock(Cp.getKind(), Cp.toString(), loc, PrevLoc); 1000 } 1001 } 1002 }; 1003 1004 /// Class which implements the core thread safety analysis routines. 1005 class ThreadSafetyAnalyzer { 1006 friend class BuildLockset; 1007 friend class threadSafety::BeforeSet; 1008 1009 llvm::BumpPtrAllocator Bpa; 1010 threadSafety::til::MemRegionRef Arena; 1011 threadSafety::SExprBuilder SxBuilder; 1012 1013 ThreadSafetyHandler &Handler; 1014 const FunctionDecl *CurrentFunction; 1015 LocalVariableMap LocalVarMap; 1016 // Maps constructed objects to `this` placeholder prior to initialization. 1017 llvm::SmallDenseMap<const Expr *, til::LiteralPtr *> ConstructedObjects; 1018 FactManager FactMan; 1019 std::vector<CFGBlockInfo> BlockInfo; 1020 1021 BeforeSet *GlobalBeforeSet; 1022 1023 public: 1024 ThreadSafetyAnalyzer(ThreadSafetyHandler &H, BeforeSet* Bset) 1025 : Arena(&Bpa), SxBuilder(Arena), Handler(H), GlobalBeforeSet(Bset) {} 1026 1027 bool inCurrentScope(const CapabilityExpr &CapE); 1028 1029 void addLock(FactSet &FSet, std::unique_ptr<FactEntry> Entry, 1030 bool ReqAttr = false); 1031 void removeLock(FactSet &FSet, const CapabilityExpr &CapE, 1032 SourceLocation UnlockLoc, bool FullyRemove, LockKind Kind); 1033 1034 template <typename AttrType> 1035 void getMutexIDs(CapExprSet &Mtxs, AttrType *Attr, const Expr *Exp, 1036 const NamedDecl *D, til::SExpr *Self = nullptr); 1037 1038 template <class AttrType> 1039 void getMutexIDs(CapExprSet &Mtxs, AttrType *Attr, const Expr *Exp, 1040 const NamedDecl *D, 1041 const CFGBlock *PredBlock, const CFGBlock *CurrBlock, 1042 Expr *BrE, bool Neg); 1043 1044 const CallExpr* getTrylockCallExpr(const Stmt *Cond, LocalVarContext C, 1045 bool &Negate); 1046 1047 void getEdgeLockset(FactSet &Result, const FactSet &ExitSet, 1048 const CFGBlock* PredBlock, 1049 const CFGBlock *CurrBlock); 1050 1051 bool join(const FactEntry &a, const FactEntry &b, bool CanModify); 1052 1053 void intersectAndWarn(FactSet &EntrySet, const FactSet &ExitSet, 1054 SourceLocation JoinLoc, LockErrorKind EntryLEK, 1055 LockErrorKind ExitLEK); 1056 1057 void intersectAndWarn(FactSet &EntrySet, const FactSet &ExitSet, 1058 SourceLocation JoinLoc, LockErrorKind LEK) { 1059 intersectAndWarn(EntrySet, ExitSet, JoinLoc, LEK, LEK); 1060 } 1061 1062 void runAnalysis(AnalysisDeclContext &AC); 1063 1064 void warnIfMutexNotHeld(const FactSet &FSet, const NamedDecl *D, 1065 const Expr *Exp, AccessKind AK, Expr *MutexExp, 1066 ProtectedOperationKind POK, til::LiteralPtr *Self, 1067 SourceLocation Loc); 1068 void warnIfMutexHeld(const FactSet &FSet, const NamedDecl *D, const Expr *Exp, 1069 Expr *MutexExp, til::LiteralPtr *Self, 1070 SourceLocation Loc); 1071 1072 void checkAccess(const FactSet &FSet, const Expr *Exp, AccessKind AK, 1073 ProtectedOperationKind POK); 1074 void checkPtAccess(const FactSet &FSet, const Expr *Exp, AccessKind AK, 1075 ProtectedOperationKind POK); 1076 }; 1077 1078 } // namespace 1079 1080 /// Process acquired_before and acquired_after attributes on Vd. 1081 BeforeSet::BeforeInfo* BeforeSet::insertAttrExprs(const ValueDecl* Vd, 1082 ThreadSafetyAnalyzer& Analyzer) { 1083 // Create a new entry for Vd. 1084 BeforeInfo *Info = nullptr; 1085 { 1086 // Keep InfoPtr in its own scope in case BMap is modified later and the 1087 // reference becomes invalid. 1088 std::unique_ptr<BeforeInfo> &InfoPtr = BMap[Vd]; 1089 if (!InfoPtr) 1090 InfoPtr.reset(new BeforeInfo()); 1091 Info = InfoPtr.get(); 1092 } 1093 1094 for (const auto *At : Vd->attrs()) { 1095 switch (At->getKind()) { 1096 case attr::AcquiredBefore: { 1097 const auto *A = cast<AcquiredBeforeAttr>(At); 1098 1099 // Read exprs from the attribute, and add them to BeforeVect. 1100 for (const auto *Arg : A->args()) { 1101 CapabilityExpr Cp = 1102 Analyzer.SxBuilder.translateAttrExpr(Arg, nullptr); 1103 if (const ValueDecl *Cpvd = Cp.valueDecl()) { 1104 Info->Vect.push_back(Cpvd); 1105 const auto It = BMap.find(Cpvd); 1106 if (It == BMap.end()) 1107 insertAttrExprs(Cpvd, Analyzer); 1108 } 1109 } 1110 break; 1111 } 1112 case attr::AcquiredAfter: { 1113 const auto *A = cast<AcquiredAfterAttr>(At); 1114 1115 // Read exprs from the attribute, and add them to BeforeVect. 1116 for (const auto *Arg : A->args()) { 1117 CapabilityExpr Cp = 1118 Analyzer.SxBuilder.translateAttrExpr(Arg, nullptr); 1119 if (const ValueDecl *ArgVd = Cp.valueDecl()) { 1120 // Get entry for mutex listed in attribute 1121 BeforeInfo *ArgInfo = getBeforeInfoForDecl(ArgVd, Analyzer); 1122 ArgInfo->Vect.push_back(Vd); 1123 } 1124 } 1125 break; 1126 } 1127 default: 1128 break; 1129 } 1130 } 1131 1132 return Info; 1133 } 1134 1135 BeforeSet::BeforeInfo * 1136 BeforeSet::getBeforeInfoForDecl(const ValueDecl *Vd, 1137 ThreadSafetyAnalyzer &Analyzer) { 1138 auto It = BMap.find(Vd); 1139 BeforeInfo *Info = nullptr; 1140 if (It == BMap.end()) 1141 Info = insertAttrExprs(Vd, Analyzer); 1142 else 1143 Info = It->second.get(); 1144 assert(Info && "BMap contained nullptr?"); 1145 return Info; 1146 } 1147 1148 /// Return true if any mutexes in FSet are in the acquired_before set of Vd. 1149 void BeforeSet::checkBeforeAfter(const ValueDecl* StartVd, 1150 const FactSet& FSet, 1151 ThreadSafetyAnalyzer& Analyzer, 1152 SourceLocation Loc, StringRef CapKind) { 1153 SmallVector<BeforeInfo*, 8> InfoVect; 1154 1155 // Do a depth-first traversal of Vd. 1156 // Return true if there are cycles. 1157 std::function<bool (const ValueDecl*)> traverse = [&](const ValueDecl* Vd) { 1158 if (!Vd) 1159 return false; 1160 1161 BeforeSet::BeforeInfo *Info = getBeforeInfoForDecl(Vd, Analyzer); 1162 1163 if (Info->Visited == 1) 1164 return true; 1165 1166 if (Info->Visited == 2) 1167 return false; 1168 1169 if (Info->Vect.empty()) 1170 return false; 1171 1172 InfoVect.push_back(Info); 1173 Info->Visited = 1; 1174 for (const auto *Vdb : Info->Vect) { 1175 // Exclude mutexes in our immediate before set. 1176 if (FSet.containsMutexDecl(Analyzer.FactMan, Vdb)) { 1177 StringRef L1 = StartVd->getName(); 1178 StringRef L2 = Vdb->getName(); 1179 Analyzer.Handler.handleLockAcquiredBefore(CapKind, L1, L2, Loc); 1180 } 1181 // Transitively search other before sets, and warn on cycles. 1182 if (traverse(Vdb)) { 1183 if (!CycMap.contains(Vd)) { 1184 CycMap.insert(std::make_pair(Vd, true)); 1185 StringRef L1 = Vd->getName(); 1186 Analyzer.Handler.handleBeforeAfterCycle(L1, Vd->getLocation()); 1187 } 1188 } 1189 } 1190 Info->Visited = 2; 1191 return false; 1192 }; 1193 1194 traverse(StartVd); 1195 1196 for (auto *Info : InfoVect) 1197 Info->Visited = 0; 1198 } 1199 1200 /// Gets the value decl pointer from DeclRefExprs or MemberExprs. 1201 static const ValueDecl *getValueDecl(const Expr *Exp) { 1202 if (const auto *CE = dyn_cast<ImplicitCastExpr>(Exp)) 1203 return getValueDecl(CE->getSubExpr()); 1204 1205 if (const auto *DR = dyn_cast<DeclRefExpr>(Exp)) 1206 return DR->getDecl(); 1207 1208 if (const auto *ME = dyn_cast<MemberExpr>(Exp)) 1209 return ME->getMemberDecl(); 1210 1211 return nullptr; 1212 } 1213 1214 namespace { 1215 1216 template <typename Ty> 1217 class has_arg_iterator_range { 1218 using yes = char[1]; 1219 using no = char[2]; 1220 1221 template <typename Inner> 1222 static yes& test(Inner *I, decltype(I->args()) * = nullptr); 1223 1224 template <typename> 1225 static no& test(...); 1226 1227 public: 1228 static const bool value = sizeof(test<Ty>(nullptr)) == sizeof(yes); 1229 }; 1230 1231 } // namespace 1232 1233 bool ThreadSafetyAnalyzer::inCurrentScope(const CapabilityExpr &CapE) { 1234 const threadSafety::til::SExpr *SExp = CapE.sexpr(); 1235 assert(SExp && "Null expressions should be ignored"); 1236 1237 if (const auto *LP = dyn_cast<til::LiteralPtr>(SExp)) { 1238 const ValueDecl *VD = LP->clangDecl(); 1239 // Variables defined in a function are always inaccessible. 1240 if (!VD || !VD->isDefinedOutsideFunctionOrMethod()) 1241 return false; 1242 // For now we consider static class members to be inaccessible. 1243 if (isa<CXXRecordDecl>(VD->getDeclContext())) 1244 return false; 1245 // Global variables are always in scope. 1246 return true; 1247 } 1248 1249 // Members are in scope from methods of the same class. 1250 if (const auto *P = dyn_cast<til::Project>(SExp)) { 1251 if (!isa_and_nonnull<CXXMethodDecl>(CurrentFunction)) 1252 return false; 1253 const ValueDecl *VD = P->clangDecl(); 1254 return VD->getDeclContext() == CurrentFunction->getDeclContext(); 1255 } 1256 1257 return false; 1258 } 1259 1260 /// Add a new lock to the lockset, warning if the lock is already there. 1261 /// \param ReqAttr -- true if this is part of an initial Requires attribute. 1262 void ThreadSafetyAnalyzer::addLock(FactSet &FSet, 1263 std::unique_ptr<FactEntry> Entry, 1264 bool ReqAttr) { 1265 if (Entry->shouldIgnore()) 1266 return; 1267 1268 if (!ReqAttr && !Entry->negative()) { 1269 // look for the negative capability, and remove it from the fact set. 1270 CapabilityExpr NegC = !*Entry; 1271 const FactEntry *Nen = FSet.findLock(FactMan, NegC); 1272 if (Nen) { 1273 FSet.removeLock(FactMan, NegC); 1274 } 1275 else { 1276 if (inCurrentScope(*Entry) && !Entry->asserted()) 1277 Handler.handleNegativeNotHeld(Entry->getKind(), Entry->toString(), 1278 NegC.toString(), Entry->loc()); 1279 } 1280 } 1281 1282 // Check before/after constraints 1283 if (Handler.issueBetaWarnings() && 1284 !Entry->asserted() && !Entry->declared()) { 1285 GlobalBeforeSet->checkBeforeAfter(Entry->valueDecl(), FSet, *this, 1286 Entry->loc(), Entry->getKind()); 1287 } 1288 1289 // FIXME: Don't always warn when we have support for reentrant locks. 1290 if (const FactEntry *Cp = FSet.findLock(FactMan, *Entry)) { 1291 if (!Entry->asserted()) 1292 Cp->handleLock(FSet, FactMan, *Entry, Handler); 1293 } else { 1294 FSet.addLock(FactMan, std::move(Entry)); 1295 } 1296 } 1297 1298 /// Remove a lock from the lockset, warning if the lock is not there. 1299 /// \param UnlockLoc The source location of the unlock (only used in error msg) 1300 void ThreadSafetyAnalyzer::removeLock(FactSet &FSet, const CapabilityExpr &Cp, 1301 SourceLocation UnlockLoc, 1302 bool FullyRemove, LockKind ReceivedKind) { 1303 if (Cp.shouldIgnore()) 1304 return; 1305 1306 const FactEntry *LDat = FSet.findLock(FactMan, Cp); 1307 if (!LDat) { 1308 SourceLocation PrevLoc; 1309 if (const FactEntry *Neg = FSet.findLock(FactMan, !Cp)) 1310 PrevLoc = Neg->loc(); 1311 Handler.handleUnmatchedUnlock(Cp.getKind(), Cp.toString(), UnlockLoc, 1312 PrevLoc); 1313 return; 1314 } 1315 1316 // Generic lock removal doesn't care about lock kind mismatches, but 1317 // otherwise diagnose when the lock kinds are mismatched. 1318 if (ReceivedKind != LK_Generic && LDat->kind() != ReceivedKind) { 1319 Handler.handleIncorrectUnlockKind(Cp.getKind(), Cp.toString(), LDat->kind(), 1320 ReceivedKind, LDat->loc(), UnlockLoc); 1321 } 1322 1323 LDat->handleUnlock(FSet, FactMan, Cp, UnlockLoc, FullyRemove, Handler); 1324 } 1325 1326 /// Extract the list of mutexIDs from the attribute on an expression, 1327 /// and push them onto Mtxs, discarding any duplicates. 1328 template <typename AttrType> 1329 void ThreadSafetyAnalyzer::getMutexIDs(CapExprSet &Mtxs, AttrType *Attr, 1330 const Expr *Exp, const NamedDecl *D, 1331 til::SExpr *Self) { 1332 if (Attr->args_size() == 0) { 1333 // The mutex held is the "this" object. 1334 CapabilityExpr Cp = SxBuilder.translateAttrExpr(nullptr, D, Exp, Self); 1335 if (Cp.isInvalid()) { 1336 warnInvalidLock(Handler, nullptr, D, Exp, Cp.getKind()); 1337 return; 1338 } 1339 //else 1340 if (!Cp.shouldIgnore()) 1341 Mtxs.push_back_nodup(Cp); 1342 return; 1343 } 1344 1345 for (const auto *Arg : Attr->args()) { 1346 CapabilityExpr Cp = SxBuilder.translateAttrExpr(Arg, D, Exp, Self); 1347 if (Cp.isInvalid()) { 1348 warnInvalidLock(Handler, nullptr, D, Exp, Cp.getKind()); 1349 continue; 1350 } 1351 //else 1352 if (!Cp.shouldIgnore()) 1353 Mtxs.push_back_nodup(Cp); 1354 } 1355 } 1356 1357 /// Extract the list of mutexIDs from a trylock attribute. If the 1358 /// trylock applies to the given edge, then push them onto Mtxs, discarding 1359 /// any duplicates. 1360 template <class AttrType> 1361 void ThreadSafetyAnalyzer::getMutexIDs(CapExprSet &Mtxs, AttrType *Attr, 1362 const Expr *Exp, const NamedDecl *D, 1363 const CFGBlock *PredBlock, 1364 const CFGBlock *CurrBlock, 1365 Expr *BrE, bool Neg) { 1366 // Find out which branch has the lock 1367 bool branch = false; 1368 if (const auto *BLE = dyn_cast_or_null<CXXBoolLiteralExpr>(BrE)) 1369 branch = BLE->getValue(); 1370 else if (const auto *ILE = dyn_cast_or_null<IntegerLiteral>(BrE)) 1371 branch = ILE->getValue().getBoolValue(); 1372 1373 int branchnum = branch ? 0 : 1; 1374 if (Neg) 1375 branchnum = !branchnum; 1376 1377 // If we've taken the trylock branch, then add the lock 1378 int i = 0; 1379 for (CFGBlock::const_succ_iterator SI = PredBlock->succ_begin(), 1380 SE = PredBlock->succ_end(); SI != SE && i < 2; ++SI, ++i) { 1381 if (*SI == CurrBlock && i == branchnum) 1382 getMutexIDs(Mtxs, Attr, Exp, D); 1383 } 1384 } 1385 1386 static bool getStaticBooleanValue(Expr *E, bool &TCond) { 1387 if (isa<CXXNullPtrLiteralExpr>(E) || isa<GNUNullExpr>(E)) { 1388 TCond = false; 1389 return true; 1390 } else if (const auto *BLE = dyn_cast<CXXBoolLiteralExpr>(E)) { 1391 TCond = BLE->getValue(); 1392 return true; 1393 } else if (const auto *ILE = dyn_cast<IntegerLiteral>(E)) { 1394 TCond = ILE->getValue().getBoolValue(); 1395 return true; 1396 } else if (auto *CE = dyn_cast<ImplicitCastExpr>(E)) 1397 return getStaticBooleanValue(CE->getSubExpr(), TCond); 1398 return false; 1399 } 1400 1401 // If Cond can be traced back to a function call, return the call expression. 1402 // The negate variable should be called with false, and will be set to true 1403 // if the function call is negated, e.g. if (!mu.tryLock(...)) 1404 const CallExpr* ThreadSafetyAnalyzer::getTrylockCallExpr(const Stmt *Cond, 1405 LocalVarContext C, 1406 bool &Negate) { 1407 if (!Cond) 1408 return nullptr; 1409 1410 if (const auto *CallExp = dyn_cast<CallExpr>(Cond)) { 1411 if (CallExp->getBuiltinCallee() == Builtin::BI__builtin_expect) 1412 return getTrylockCallExpr(CallExp->getArg(0), C, Negate); 1413 return CallExp; 1414 } 1415 else if (const auto *PE = dyn_cast<ParenExpr>(Cond)) 1416 return getTrylockCallExpr(PE->getSubExpr(), C, Negate); 1417 else if (const auto *CE = dyn_cast<ImplicitCastExpr>(Cond)) 1418 return getTrylockCallExpr(CE->getSubExpr(), C, Negate); 1419 else if (const auto *FE = dyn_cast<FullExpr>(Cond)) 1420 return getTrylockCallExpr(FE->getSubExpr(), C, Negate); 1421 else if (const auto *DRE = dyn_cast<DeclRefExpr>(Cond)) { 1422 const Expr *E = LocalVarMap.lookupExpr(DRE->getDecl(), C); 1423 return getTrylockCallExpr(E, C, Negate); 1424 } 1425 else if (const auto *UOP = dyn_cast<UnaryOperator>(Cond)) { 1426 if (UOP->getOpcode() == UO_LNot) { 1427 Negate = !Negate; 1428 return getTrylockCallExpr(UOP->getSubExpr(), C, Negate); 1429 } 1430 return nullptr; 1431 } 1432 else if (const auto *BOP = dyn_cast<BinaryOperator>(Cond)) { 1433 if (BOP->getOpcode() == BO_EQ || BOP->getOpcode() == BO_NE) { 1434 if (BOP->getOpcode() == BO_NE) 1435 Negate = !Negate; 1436 1437 bool TCond = false; 1438 if (getStaticBooleanValue(BOP->getRHS(), TCond)) { 1439 if (!TCond) Negate = !Negate; 1440 return getTrylockCallExpr(BOP->getLHS(), C, Negate); 1441 } 1442 TCond = false; 1443 if (getStaticBooleanValue(BOP->getLHS(), TCond)) { 1444 if (!TCond) Negate = !Negate; 1445 return getTrylockCallExpr(BOP->getRHS(), C, Negate); 1446 } 1447 return nullptr; 1448 } 1449 if (BOP->getOpcode() == BO_LAnd) { 1450 // LHS must have been evaluated in a different block. 1451 return getTrylockCallExpr(BOP->getRHS(), C, Negate); 1452 } 1453 if (BOP->getOpcode() == BO_LOr) 1454 return getTrylockCallExpr(BOP->getRHS(), C, Negate); 1455 return nullptr; 1456 } else if (const auto *COP = dyn_cast<ConditionalOperator>(Cond)) { 1457 bool TCond, FCond; 1458 if (getStaticBooleanValue(COP->getTrueExpr(), TCond) && 1459 getStaticBooleanValue(COP->getFalseExpr(), FCond)) { 1460 if (TCond && !FCond) 1461 return getTrylockCallExpr(COP->getCond(), C, Negate); 1462 if (!TCond && FCond) { 1463 Negate = !Negate; 1464 return getTrylockCallExpr(COP->getCond(), C, Negate); 1465 } 1466 } 1467 } 1468 return nullptr; 1469 } 1470 1471 /// Find the lockset that holds on the edge between PredBlock 1472 /// and CurrBlock. The edge set is the exit set of PredBlock (passed 1473 /// as the ExitSet parameter) plus any trylocks, which are conditionally held. 1474 void ThreadSafetyAnalyzer::getEdgeLockset(FactSet& Result, 1475 const FactSet &ExitSet, 1476 const CFGBlock *PredBlock, 1477 const CFGBlock *CurrBlock) { 1478 Result = ExitSet; 1479 1480 const Stmt *Cond = PredBlock->getTerminatorCondition(); 1481 // We don't acquire try-locks on ?: branches, only when its result is used. 1482 if (!Cond || isa<ConditionalOperator>(PredBlock->getTerminatorStmt())) 1483 return; 1484 1485 bool Negate = false; 1486 const CFGBlockInfo *PredBlockInfo = &BlockInfo[PredBlock->getBlockID()]; 1487 const LocalVarContext &LVarCtx = PredBlockInfo->ExitContext; 1488 1489 const auto *Exp = getTrylockCallExpr(Cond, LVarCtx, Negate); 1490 if (!Exp) 1491 return; 1492 1493 auto *FunDecl = dyn_cast_or_null<NamedDecl>(Exp->getCalleeDecl()); 1494 if(!FunDecl || !FunDecl->hasAttrs()) 1495 return; 1496 1497 CapExprSet ExclusiveLocksToAdd; 1498 CapExprSet SharedLocksToAdd; 1499 1500 // If the condition is a call to a Trylock function, then grab the attributes 1501 for (const auto *Attr : FunDecl->attrs()) { 1502 switch (Attr->getKind()) { 1503 case attr::TryAcquireCapability: { 1504 auto *A = cast<TryAcquireCapabilityAttr>(Attr); 1505 getMutexIDs(A->isShared() ? SharedLocksToAdd : ExclusiveLocksToAdd, A, 1506 Exp, FunDecl, PredBlock, CurrBlock, A->getSuccessValue(), 1507 Negate); 1508 break; 1509 }; 1510 case attr::ExclusiveTrylockFunction: { 1511 const auto *A = cast<ExclusiveTrylockFunctionAttr>(Attr); 1512 getMutexIDs(ExclusiveLocksToAdd, A, Exp, FunDecl, PredBlock, CurrBlock, 1513 A->getSuccessValue(), Negate); 1514 break; 1515 } 1516 case attr::SharedTrylockFunction: { 1517 const auto *A = cast<SharedTrylockFunctionAttr>(Attr); 1518 getMutexIDs(SharedLocksToAdd, A, Exp, FunDecl, PredBlock, CurrBlock, 1519 A->getSuccessValue(), Negate); 1520 break; 1521 } 1522 default: 1523 break; 1524 } 1525 } 1526 1527 // Add and remove locks. 1528 SourceLocation Loc = Exp->getExprLoc(); 1529 for (const auto &ExclusiveLockToAdd : ExclusiveLocksToAdd) 1530 addLock(Result, std::make_unique<LockableFactEntry>(ExclusiveLockToAdd, 1531 LK_Exclusive, Loc)); 1532 for (const auto &SharedLockToAdd : SharedLocksToAdd) 1533 addLock(Result, std::make_unique<LockableFactEntry>(SharedLockToAdd, 1534 LK_Shared, Loc)); 1535 } 1536 1537 namespace { 1538 1539 /// We use this class to visit different types of expressions in 1540 /// CFGBlocks, and build up the lockset. 1541 /// An expression may cause us to add or remove locks from the lockset, or else 1542 /// output error messages related to missing locks. 1543 /// FIXME: In future, we may be able to not inherit from a visitor. 1544 class BuildLockset : public ConstStmtVisitor<BuildLockset> { 1545 friend class ThreadSafetyAnalyzer; 1546 1547 ThreadSafetyAnalyzer *Analyzer; 1548 FactSet FSet; 1549 // The fact set for the function on exit. 1550 const FactSet &FunctionExitFSet; 1551 LocalVariableMap::Context LVarCtx; 1552 unsigned CtxIndex; 1553 1554 // helper functions 1555 1556 void checkAccess(const Expr *Exp, AccessKind AK, 1557 ProtectedOperationKind POK = POK_VarAccess) { 1558 Analyzer->checkAccess(FSet, Exp, AK, POK); 1559 } 1560 void checkPtAccess(const Expr *Exp, AccessKind AK, 1561 ProtectedOperationKind POK = POK_VarAccess) { 1562 Analyzer->checkPtAccess(FSet, Exp, AK, POK); 1563 } 1564 1565 void handleCall(const Expr *Exp, const NamedDecl *D, 1566 til::LiteralPtr *Self = nullptr, 1567 SourceLocation Loc = SourceLocation()); 1568 void examineArguments(const FunctionDecl *FD, 1569 CallExpr::const_arg_iterator ArgBegin, 1570 CallExpr::const_arg_iterator ArgEnd, 1571 bool SkipFirstParam = false); 1572 1573 public: 1574 BuildLockset(ThreadSafetyAnalyzer *Anlzr, CFGBlockInfo &Info, 1575 const FactSet &FunctionExitFSet) 1576 : ConstStmtVisitor<BuildLockset>(), Analyzer(Anlzr), FSet(Info.EntrySet), 1577 FunctionExitFSet(FunctionExitFSet), LVarCtx(Info.EntryContext), 1578 CtxIndex(Info.EntryIndex) {} 1579 1580 void VisitUnaryOperator(const UnaryOperator *UO); 1581 void VisitBinaryOperator(const BinaryOperator *BO); 1582 void VisitCastExpr(const CastExpr *CE); 1583 void VisitCallExpr(const CallExpr *Exp); 1584 void VisitCXXConstructExpr(const CXXConstructExpr *Exp); 1585 void VisitDeclStmt(const DeclStmt *S); 1586 void VisitMaterializeTemporaryExpr(const MaterializeTemporaryExpr *Exp); 1587 void VisitReturnStmt(const ReturnStmt *S); 1588 }; 1589 1590 } // namespace 1591 1592 /// Warn if the LSet does not contain a lock sufficient to protect access 1593 /// of at least the passed in AccessKind. 1594 void ThreadSafetyAnalyzer::warnIfMutexNotHeld( 1595 const FactSet &FSet, const NamedDecl *D, const Expr *Exp, AccessKind AK, 1596 Expr *MutexExp, ProtectedOperationKind POK, til::LiteralPtr *Self, 1597 SourceLocation Loc) { 1598 LockKind LK = getLockKindFromAccessKind(AK); 1599 CapabilityExpr Cp = SxBuilder.translateAttrExpr(MutexExp, D, Exp, Self); 1600 if (Cp.isInvalid()) { 1601 warnInvalidLock(Handler, MutexExp, D, Exp, Cp.getKind()); 1602 return; 1603 } else if (Cp.shouldIgnore()) { 1604 return; 1605 } 1606 1607 if (Cp.negative()) { 1608 // Negative capabilities act like locks excluded 1609 const FactEntry *LDat = FSet.findLock(FactMan, !Cp); 1610 if (LDat) { 1611 Handler.handleFunExcludesLock(Cp.getKind(), D->getNameAsString(), 1612 (!Cp).toString(), Loc); 1613 return; 1614 } 1615 1616 // If this does not refer to a negative capability in the same class, 1617 // then stop here. 1618 if (!inCurrentScope(Cp)) 1619 return; 1620 1621 // Otherwise the negative requirement must be propagated to the caller. 1622 LDat = FSet.findLock(FactMan, Cp); 1623 if (!LDat) { 1624 Handler.handleNegativeNotHeld(D, Cp.toString(), Loc); 1625 } 1626 return; 1627 } 1628 1629 const FactEntry *LDat = FSet.findLockUniv(FactMan, Cp); 1630 bool NoError = true; 1631 if (!LDat) { 1632 // No exact match found. Look for a partial match. 1633 LDat = FSet.findPartialMatch(FactMan, Cp); 1634 if (LDat) { 1635 // Warn that there's no precise match. 1636 std::string PartMatchStr = LDat->toString(); 1637 StringRef PartMatchName(PartMatchStr); 1638 Handler.handleMutexNotHeld(Cp.getKind(), D, POK, Cp.toString(), LK, Loc, 1639 &PartMatchName); 1640 } else { 1641 // Warn that there's no match at all. 1642 Handler.handleMutexNotHeld(Cp.getKind(), D, POK, Cp.toString(), LK, Loc); 1643 } 1644 NoError = false; 1645 } 1646 // Make sure the mutex we found is the right kind. 1647 if (NoError && LDat && !LDat->isAtLeast(LK)) { 1648 Handler.handleMutexNotHeld(Cp.getKind(), D, POK, Cp.toString(), LK, Loc); 1649 } 1650 } 1651 1652 /// Warn if the LSet contains the given lock. 1653 void ThreadSafetyAnalyzer::warnIfMutexHeld(const FactSet &FSet, 1654 const NamedDecl *D, const Expr *Exp, 1655 Expr *MutexExp, 1656 til::LiteralPtr *Self, 1657 SourceLocation Loc) { 1658 CapabilityExpr Cp = SxBuilder.translateAttrExpr(MutexExp, D, Exp, Self); 1659 if (Cp.isInvalid()) { 1660 warnInvalidLock(Handler, MutexExp, D, Exp, Cp.getKind()); 1661 return; 1662 } else if (Cp.shouldIgnore()) { 1663 return; 1664 } 1665 1666 const FactEntry *LDat = FSet.findLock(FactMan, Cp); 1667 if (LDat) { 1668 Handler.handleFunExcludesLock(Cp.getKind(), D->getNameAsString(), 1669 Cp.toString(), Loc); 1670 } 1671 } 1672 1673 /// Checks guarded_by and pt_guarded_by attributes. 1674 /// Whenever we identify an access (read or write) to a DeclRefExpr that is 1675 /// marked with guarded_by, we must ensure the appropriate mutexes are held. 1676 /// Similarly, we check if the access is to an expression that dereferences 1677 /// a pointer marked with pt_guarded_by. 1678 void ThreadSafetyAnalyzer::checkAccess(const FactSet &FSet, const Expr *Exp, 1679 AccessKind AK, 1680 ProtectedOperationKind POK) { 1681 Exp = Exp->IgnoreImplicit()->IgnoreParenCasts(); 1682 1683 SourceLocation Loc = Exp->getExprLoc(); 1684 1685 // Local variables of reference type cannot be re-assigned; 1686 // map them to their initializer. 1687 while (const auto *DRE = dyn_cast<DeclRefExpr>(Exp)) { 1688 const auto *VD = dyn_cast<VarDecl>(DRE->getDecl()->getCanonicalDecl()); 1689 if (VD && VD->isLocalVarDecl() && VD->getType()->isReferenceType()) { 1690 if (const auto *E = VD->getInit()) { 1691 // Guard against self-initialization. e.g., int &i = i; 1692 if (E == Exp) 1693 break; 1694 Exp = E; 1695 continue; 1696 } 1697 } 1698 break; 1699 } 1700 1701 if (const auto *UO = dyn_cast<UnaryOperator>(Exp)) { 1702 // For dereferences 1703 if (UO->getOpcode() == UO_Deref) 1704 checkPtAccess(FSet, UO->getSubExpr(), AK, POK); 1705 return; 1706 } 1707 1708 if (const auto *BO = dyn_cast<BinaryOperator>(Exp)) { 1709 switch (BO->getOpcode()) { 1710 case BO_PtrMemD: // .* 1711 return checkAccess(FSet, BO->getLHS(), AK, POK); 1712 case BO_PtrMemI: // ->* 1713 return checkPtAccess(FSet, BO->getLHS(), AK, POK); 1714 default: 1715 return; 1716 } 1717 } 1718 1719 if (const auto *AE = dyn_cast<ArraySubscriptExpr>(Exp)) { 1720 checkPtAccess(FSet, AE->getLHS(), AK, POK); 1721 return; 1722 } 1723 1724 if (const auto *ME = dyn_cast<MemberExpr>(Exp)) { 1725 if (ME->isArrow()) 1726 checkPtAccess(FSet, ME->getBase(), AK, POK); 1727 else 1728 checkAccess(FSet, ME->getBase(), AK, POK); 1729 } 1730 1731 const ValueDecl *D = getValueDecl(Exp); 1732 if (!D || !D->hasAttrs()) 1733 return; 1734 1735 if (D->hasAttr<GuardedVarAttr>() && FSet.isEmpty(FactMan)) { 1736 Handler.handleNoMutexHeld(D, POK, AK, Loc); 1737 } 1738 1739 for (const auto *I : D->specific_attrs<GuardedByAttr>()) 1740 warnIfMutexNotHeld(FSet, D, Exp, AK, I->getArg(), POK, nullptr, Loc); 1741 } 1742 1743 /// Checks pt_guarded_by and pt_guarded_var attributes. 1744 /// POK is the same operationKind that was passed to checkAccess. 1745 void ThreadSafetyAnalyzer::checkPtAccess(const FactSet &FSet, const Expr *Exp, 1746 AccessKind AK, 1747 ProtectedOperationKind POK) { 1748 while (true) { 1749 if (const auto *PE = dyn_cast<ParenExpr>(Exp)) { 1750 Exp = PE->getSubExpr(); 1751 continue; 1752 } 1753 if (const auto *CE = dyn_cast<CastExpr>(Exp)) { 1754 if (CE->getCastKind() == CK_ArrayToPointerDecay) { 1755 // If it's an actual array, and not a pointer, then it's elements 1756 // are protected by GUARDED_BY, not PT_GUARDED_BY; 1757 checkAccess(FSet, CE->getSubExpr(), AK, POK); 1758 return; 1759 } 1760 Exp = CE->getSubExpr(); 1761 continue; 1762 } 1763 break; 1764 } 1765 1766 // Pass by reference warnings are under a different flag. 1767 ProtectedOperationKind PtPOK = POK_VarDereference; 1768 if (POK == POK_PassByRef) PtPOK = POK_PtPassByRef; 1769 if (POK == POK_ReturnByRef) 1770 PtPOK = POK_PtReturnByRef; 1771 1772 const ValueDecl *D = getValueDecl(Exp); 1773 if (!D || !D->hasAttrs()) 1774 return; 1775 1776 if (D->hasAttr<PtGuardedVarAttr>() && FSet.isEmpty(FactMan)) 1777 Handler.handleNoMutexHeld(D, PtPOK, AK, Exp->getExprLoc()); 1778 1779 for (auto const *I : D->specific_attrs<PtGuardedByAttr>()) 1780 warnIfMutexNotHeld(FSet, D, Exp, AK, I->getArg(), PtPOK, nullptr, 1781 Exp->getExprLoc()); 1782 } 1783 1784 /// Process a function call, method call, constructor call, 1785 /// or destructor call. This involves looking at the attributes on the 1786 /// corresponding function/method/constructor/destructor, issuing warnings, 1787 /// and updating the locksets accordingly. 1788 /// 1789 /// FIXME: For classes annotated with one of the guarded annotations, we need 1790 /// to treat const method calls as reads and non-const method calls as writes, 1791 /// and check that the appropriate locks are held. Non-const method calls with 1792 /// the same signature as const method calls can be also treated as reads. 1793 /// 1794 /// \param Exp The call expression. 1795 /// \param D The callee declaration. 1796 /// \param Self If \p Exp = nullptr, the implicit this argument or the argument 1797 /// of an implicitly called cleanup function. 1798 /// \param Loc If \p Exp = nullptr, the location. 1799 void BuildLockset::handleCall(const Expr *Exp, const NamedDecl *D, 1800 til::LiteralPtr *Self, SourceLocation Loc) { 1801 CapExprSet ExclusiveLocksToAdd, SharedLocksToAdd; 1802 CapExprSet ExclusiveLocksToRemove, SharedLocksToRemove, GenericLocksToRemove; 1803 CapExprSet ScopedReqsAndExcludes; 1804 1805 // Figure out if we're constructing an object of scoped lockable class 1806 CapabilityExpr Scp; 1807 if (Exp) { 1808 assert(!Self); 1809 const auto *TagT = Exp->getType()->getAs<TagType>(); 1810 if (TagT && Exp->isPRValue()) { 1811 std::pair<til::LiteralPtr *, StringRef> Placeholder = 1812 Analyzer->SxBuilder.createThisPlaceholder(Exp); 1813 [[maybe_unused]] auto inserted = 1814 Analyzer->ConstructedObjects.insert({Exp, Placeholder.first}); 1815 assert(inserted.second && "Are we visiting the same expression again?"); 1816 if (isa<CXXConstructExpr>(Exp)) 1817 Self = Placeholder.first; 1818 if (TagT->getDecl()->hasAttr<ScopedLockableAttr>()) 1819 Scp = CapabilityExpr(Placeholder.first, Placeholder.second, false); 1820 } 1821 1822 assert(Loc.isInvalid()); 1823 Loc = Exp->getExprLoc(); 1824 } 1825 1826 for(const Attr *At : D->attrs()) { 1827 switch (At->getKind()) { 1828 // When we encounter a lock function, we need to add the lock to our 1829 // lockset. 1830 case attr::AcquireCapability: { 1831 const auto *A = cast<AcquireCapabilityAttr>(At); 1832 Analyzer->getMutexIDs(A->isShared() ? SharedLocksToAdd 1833 : ExclusiveLocksToAdd, 1834 A, Exp, D, Self); 1835 break; 1836 } 1837 1838 // An assert will add a lock to the lockset, but will not generate 1839 // a warning if it is already there, and will not generate a warning 1840 // if it is not removed. 1841 case attr::AssertExclusiveLock: { 1842 const auto *A = cast<AssertExclusiveLockAttr>(At); 1843 1844 CapExprSet AssertLocks; 1845 Analyzer->getMutexIDs(AssertLocks, A, Exp, D, Self); 1846 for (const auto &AssertLock : AssertLocks) 1847 Analyzer->addLock( 1848 FSet, std::make_unique<LockableFactEntry>( 1849 AssertLock, LK_Exclusive, Loc, FactEntry::Asserted)); 1850 break; 1851 } 1852 case attr::AssertSharedLock: { 1853 const auto *A = cast<AssertSharedLockAttr>(At); 1854 1855 CapExprSet AssertLocks; 1856 Analyzer->getMutexIDs(AssertLocks, A, Exp, D, Self); 1857 for (const auto &AssertLock : AssertLocks) 1858 Analyzer->addLock( 1859 FSet, std::make_unique<LockableFactEntry>( 1860 AssertLock, LK_Shared, Loc, FactEntry::Asserted)); 1861 break; 1862 } 1863 1864 case attr::AssertCapability: { 1865 const auto *A = cast<AssertCapabilityAttr>(At); 1866 CapExprSet AssertLocks; 1867 Analyzer->getMutexIDs(AssertLocks, A, Exp, D, Self); 1868 for (const auto &AssertLock : AssertLocks) 1869 Analyzer->addLock(FSet, std::make_unique<LockableFactEntry>( 1870 AssertLock, 1871 A->isShared() ? LK_Shared : LK_Exclusive, 1872 Loc, FactEntry::Asserted)); 1873 break; 1874 } 1875 1876 // When we encounter an unlock function, we need to remove unlocked 1877 // mutexes from the lockset, and flag a warning if they are not there. 1878 case attr::ReleaseCapability: { 1879 const auto *A = cast<ReleaseCapabilityAttr>(At); 1880 if (A->isGeneric()) 1881 Analyzer->getMutexIDs(GenericLocksToRemove, A, Exp, D, Self); 1882 else if (A->isShared()) 1883 Analyzer->getMutexIDs(SharedLocksToRemove, A, Exp, D, Self); 1884 else 1885 Analyzer->getMutexIDs(ExclusiveLocksToRemove, A, Exp, D, Self); 1886 break; 1887 } 1888 1889 case attr::RequiresCapability: { 1890 const auto *A = cast<RequiresCapabilityAttr>(At); 1891 for (auto *Arg : A->args()) { 1892 Analyzer->warnIfMutexNotHeld(FSet, D, Exp, 1893 A->isShared() ? AK_Read : AK_Written, 1894 Arg, POK_FunctionCall, Self, Loc); 1895 // use for adopting a lock 1896 if (!Scp.shouldIgnore()) 1897 Analyzer->getMutexIDs(ScopedReqsAndExcludes, A, Exp, D, Self); 1898 } 1899 break; 1900 } 1901 1902 case attr::LocksExcluded: { 1903 const auto *A = cast<LocksExcludedAttr>(At); 1904 for (auto *Arg : A->args()) { 1905 Analyzer->warnIfMutexHeld(FSet, D, Exp, Arg, Self, Loc); 1906 // use for deferring a lock 1907 if (!Scp.shouldIgnore()) 1908 Analyzer->getMutexIDs(ScopedReqsAndExcludes, A, Exp, D, Self); 1909 } 1910 break; 1911 } 1912 1913 // Ignore attributes unrelated to thread-safety 1914 default: 1915 break; 1916 } 1917 } 1918 1919 // Remove locks first to allow lock upgrading/downgrading. 1920 // FIXME -- should only fully remove if the attribute refers to 'this'. 1921 bool Dtor = isa<CXXDestructorDecl>(D); 1922 for (const auto &M : ExclusiveLocksToRemove) 1923 Analyzer->removeLock(FSet, M, Loc, Dtor, LK_Exclusive); 1924 for (const auto &M : SharedLocksToRemove) 1925 Analyzer->removeLock(FSet, M, Loc, Dtor, LK_Shared); 1926 for (const auto &M : GenericLocksToRemove) 1927 Analyzer->removeLock(FSet, M, Loc, Dtor, LK_Generic); 1928 1929 // Add locks. 1930 FactEntry::SourceKind Source = 1931 !Scp.shouldIgnore() ? FactEntry::Managed : FactEntry::Acquired; 1932 for (const auto &M : ExclusiveLocksToAdd) 1933 Analyzer->addLock(FSet, std::make_unique<LockableFactEntry>(M, LK_Exclusive, 1934 Loc, Source)); 1935 for (const auto &M : SharedLocksToAdd) 1936 Analyzer->addLock( 1937 FSet, std::make_unique<LockableFactEntry>(M, LK_Shared, Loc, Source)); 1938 1939 if (!Scp.shouldIgnore()) { 1940 // Add the managing object as a dummy mutex, mapped to the underlying mutex. 1941 auto ScopedEntry = std::make_unique<ScopedLockableFactEntry>(Scp, Loc); 1942 for (const auto &M : ExclusiveLocksToAdd) 1943 ScopedEntry->addLock(M); 1944 for (const auto &M : SharedLocksToAdd) 1945 ScopedEntry->addLock(M); 1946 for (const auto &M : ScopedReqsAndExcludes) 1947 ScopedEntry->addLock(M); 1948 for (const auto &M : ExclusiveLocksToRemove) 1949 ScopedEntry->addExclusiveUnlock(M); 1950 for (const auto &M : SharedLocksToRemove) 1951 ScopedEntry->addSharedUnlock(M); 1952 Analyzer->addLock(FSet, std::move(ScopedEntry)); 1953 } 1954 } 1955 1956 /// For unary operations which read and write a variable, we need to 1957 /// check whether we hold any required mutexes. Reads are checked in 1958 /// VisitCastExpr. 1959 void BuildLockset::VisitUnaryOperator(const UnaryOperator *UO) { 1960 switch (UO->getOpcode()) { 1961 case UO_PostDec: 1962 case UO_PostInc: 1963 case UO_PreDec: 1964 case UO_PreInc: 1965 checkAccess(UO->getSubExpr(), AK_Written); 1966 break; 1967 default: 1968 break; 1969 } 1970 } 1971 1972 /// For binary operations which assign to a variable (writes), we need to check 1973 /// whether we hold any required mutexes. 1974 /// FIXME: Deal with non-primitive types. 1975 void BuildLockset::VisitBinaryOperator(const BinaryOperator *BO) { 1976 if (!BO->isAssignmentOp()) 1977 return; 1978 1979 // adjust the context 1980 LVarCtx = Analyzer->LocalVarMap.getNextContext(CtxIndex, BO, LVarCtx); 1981 1982 checkAccess(BO->getLHS(), AK_Written); 1983 } 1984 1985 /// Whenever we do an LValue to Rvalue cast, we are reading a variable and 1986 /// need to ensure we hold any required mutexes. 1987 /// FIXME: Deal with non-primitive types. 1988 void BuildLockset::VisitCastExpr(const CastExpr *CE) { 1989 if (CE->getCastKind() != CK_LValueToRValue) 1990 return; 1991 checkAccess(CE->getSubExpr(), AK_Read); 1992 } 1993 1994 void BuildLockset::examineArguments(const FunctionDecl *FD, 1995 CallExpr::const_arg_iterator ArgBegin, 1996 CallExpr::const_arg_iterator ArgEnd, 1997 bool SkipFirstParam) { 1998 // Currently we can't do anything if we don't know the function declaration. 1999 if (!FD) 2000 return; 2001 2002 // NO_THREAD_SAFETY_ANALYSIS does double duty here. Normally it 2003 // only turns off checking within the body of a function, but we also 2004 // use it to turn off checking in arguments to the function. This 2005 // could result in some false negatives, but the alternative is to 2006 // create yet another attribute. 2007 if (FD->hasAttr<NoThreadSafetyAnalysisAttr>()) 2008 return; 2009 2010 const ArrayRef<ParmVarDecl *> Params = FD->parameters(); 2011 auto Param = Params.begin(); 2012 if (SkipFirstParam) 2013 ++Param; 2014 2015 // There can be default arguments, so we stop when one iterator is at end(). 2016 for (auto Arg = ArgBegin; Param != Params.end() && Arg != ArgEnd; 2017 ++Param, ++Arg) { 2018 QualType Qt = (*Param)->getType(); 2019 if (Qt->isReferenceType()) 2020 checkAccess(*Arg, AK_Read, POK_PassByRef); 2021 } 2022 } 2023 2024 void BuildLockset::VisitCallExpr(const CallExpr *Exp) { 2025 if (const auto *CE = dyn_cast<CXXMemberCallExpr>(Exp)) { 2026 const auto *ME = dyn_cast<MemberExpr>(CE->getCallee()); 2027 // ME can be null when calling a method pointer 2028 const CXXMethodDecl *MD = CE->getMethodDecl(); 2029 2030 if (ME && MD) { 2031 if (ME->isArrow()) { 2032 // Should perhaps be AK_Written if !MD->isConst(). 2033 checkPtAccess(CE->getImplicitObjectArgument(), AK_Read); 2034 } else { 2035 // Should perhaps be AK_Written if !MD->isConst(). 2036 checkAccess(CE->getImplicitObjectArgument(), AK_Read); 2037 } 2038 } 2039 2040 examineArguments(CE->getDirectCallee(), CE->arg_begin(), CE->arg_end()); 2041 } else if (const auto *OE = dyn_cast<CXXOperatorCallExpr>(Exp)) { 2042 OverloadedOperatorKind OEop = OE->getOperator(); 2043 switch (OEop) { 2044 case OO_Equal: 2045 case OO_PlusEqual: 2046 case OO_MinusEqual: 2047 case OO_StarEqual: 2048 case OO_SlashEqual: 2049 case OO_PercentEqual: 2050 case OO_CaretEqual: 2051 case OO_AmpEqual: 2052 case OO_PipeEqual: 2053 case OO_LessLessEqual: 2054 case OO_GreaterGreaterEqual: 2055 checkAccess(OE->getArg(1), AK_Read); 2056 [[fallthrough]]; 2057 case OO_PlusPlus: 2058 case OO_MinusMinus: 2059 checkAccess(OE->getArg(0), AK_Written); 2060 break; 2061 case OO_Star: 2062 case OO_ArrowStar: 2063 case OO_Arrow: 2064 case OO_Subscript: 2065 if (!(OEop == OO_Star && OE->getNumArgs() > 1)) { 2066 // Grrr. operator* can be multiplication... 2067 checkPtAccess(OE->getArg(0), AK_Read); 2068 } 2069 [[fallthrough]]; 2070 default: { 2071 // TODO: get rid of this, and rely on pass-by-ref instead. 2072 const Expr *Obj = OE->getArg(0); 2073 checkAccess(Obj, AK_Read); 2074 // Check the remaining arguments. For method operators, the first 2075 // argument is the implicit self argument, and doesn't appear in the 2076 // FunctionDecl, but for non-methods it does. 2077 const FunctionDecl *FD = OE->getDirectCallee(); 2078 examineArguments(FD, std::next(OE->arg_begin()), OE->arg_end(), 2079 /*SkipFirstParam*/ !isa<CXXMethodDecl>(FD)); 2080 break; 2081 } 2082 } 2083 } else { 2084 examineArguments(Exp->getDirectCallee(), Exp->arg_begin(), Exp->arg_end()); 2085 } 2086 2087 auto *D = dyn_cast_or_null<NamedDecl>(Exp->getCalleeDecl()); 2088 if(!D || !D->hasAttrs()) 2089 return; 2090 handleCall(Exp, D); 2091 } 2092 2093 void BuildLockset::VisitCXXConstructExpr(const CXXConstructExpr *Exp) { 2094 const CXXConstructorDecl *D = Exp->getConstructor(); 2095 if (D && D->isCopyConstructor()) { 2096 const Expr* Source = Exp->getArg(0); 2097 checkAccess(Source, AK_Read); 2098 } else { 2099 examineArguments(D, Exp->arg_begin(), Exp->arg_end()); 2100 } 2101 if (D && D->hasAttrs()) 2102 handleCall(Exp, D); 2103 } 2104 2105 static const Expr *UnpackConstruction(const Expr *E) { 2106 if (auto *CE = dyn_cast<CastExpr>(E)) 2107 if (CE->getCastKind() == CK_NoOp) 2108 E = CE->getSubExpr()->IgnoreParens(); 2109 if (auto *CE = dyn_cast<CastExpr>(E)) 2110 if (CE->getCastKind() == CK_ConstructorConversion || 2111 CE->getCastKind() == CK_UserDefinedConversion) 2112 E = CE->getSubExpr(); 2113 if (auto *BTE = dyn_cast<CXXBindTemporaryExpr>(E)) 2114 E = BTE->getSubExpr(); 2115 return E; 2116 } 2117 2118 void BuildLockset::VisitDeclStmt(const DeclStmt *S) { 2119 // adjust the context 2120 LVarCtx = Analyzer->LocalVarMap.getNextContext(CtxIndex, S, LVarCtx); 2121 2122 for (auto *D : S->getDeclGroup()) { 2123 if (auto *VD = dyn_cast_or_null<VarDecl>(D)) { 2124 const Expr *E = VD->getInit(); 2125 if (!E) 2126 continue; 2127 E = E->IgnoreParens(); 2128 2129 // handle constructors that involve temporaries 2130 if (auto *EWC = dyn_cast<ExprWithCleanups>(E)) 2131 E = EWC->getSubExpr()->IgnoreParens(); 2132 E = UnpackConstruction(E); 2133 2134 if (auto Object = Analyzer->ConstructedObjects.find(E); 2135 Object != Analyzer->ConstructedObjects.end()) { 2136 Object->second->setClangDecl(VD); 2137 Analyzer->ConstructedObjects.erase(Object); 2138 } 2139 } 2140 } 2141 } 2142 2143 void BuildLockset::VisitMaterializeTemporaryExpr( 2144 const MaterializeTemporaryExpr *Exp) { 2145 if (const ValueDecl *ExtD = Exp->getExtendingDecl()) { 2146 if (auto Object = Analyzer->ConstructedObjects.find( 2147 UnpackConstruction(Exp->getSubExpr())); 2148 Object != Analyzer->ConstructedObjects.end()) { 2149 Object->second->setClangDecl(ExtD); 2150 Analyzer->ConstructedObjects.erase(Object); 2151 } 2152 } 2153 } 2154 2155 void BuildLockset::VisitReturnStmt(const ReturnStmt *S) { 2156 if (Analyzer->CurrentFunction == nullptr) 2157 return; 2158 const Expr *RetVal = S->getRetValue(); 2159 if (!RetVal) 2160 return; 2161 2162 // If returning by reference, check that the function requires the appropriate 2163 // capabilities. 2164 const QualType ReturnType = 2165 Analyzer->CurrentFunction->getReturnType().getCanonicalType(); 2166 if (ReturnType->isLValueReferenceType()) { 2167 Analyzer->checkAccess( 2168 FunctionExitFSet, RetVal, 2169 ReturnType->getPointeeType().isConstQualified() ? AK_Read : AK_Written, 2170 POK_ReturnByRef); 2171 } 2172 } 2173 2174 /// Given two facts merging on a join point, possibly warn and decide whether to 2175 /// keep or replace. 2176 /// 2177 /// \param CanModify Whether we can replace \p A by \p B. 2178 /// \return false if we should keep \p A, true if we should take \p B. 2179 bool ThreadSafetyAnalyzer::join(const FactEntry &A, const FactEntry &B, 2180 bool CanModify) { 2181 if (A.kind() != B.kind()) { 2182 // For managed capabilities, the destructor should unlock in the right mode 2183 // anyway. For asserted capabilities no unlocking is needed. 2184 if ((A.managed() || A.asserted()) && (B.managed() || B.asserted())) { 2185 // The shared capability subsumes the exclusive capability, if possible. 2186 bool ShouldTakeB = B.kind() == LK_Shared; 2187 if (CanModify || !ShouldTakeB) 2188 return ShouldTakeB; 2189 } 2190 Handler.handleExclusiveAndShared(B.getKind(), B.toString(), B.loc(), 2191 A.loc()); 2192 // Take the exclusive capability to reduce further warnings. 2193 return CanModify && B.kind() == LK_Exclusive; 2194 } else { 2195 // The non-asserted capability is the one we want to track. 2196 return CanModify && A.asserted() && !B.asserted(); 2197 } 2198 } 2199 2200 /// Compute the intersection of two locksets and issue warnings for any 2201 /// locks in the symmetric difference. 2202 /// 2203 /// This function is used at a merge point in the CFG when comparing the lockset 2204 /// of each branch being merged. For example, given the following sequence: 2205 /// A; if () then B; else C; D; we need to check that the lockset after B and C 2206 /// are the same. In the event of a difference, we use the intersection of these 2207 /// two locksets at the start of D. 2208 /// 2209 /// \param EntrySet A lockset for entry into a (possibly new) block. 2210 /// \param ExitSet The lockset on exiting a preceding block. 2211 /// \param JoinLoc The location of the join point for error reporting 2212 /// \param EntryLEK The warning if a mutex is missing from \p EntrySet. 2213 /// \param ExitLEK The warning if a mutex is missing from \p ExitSet. 2214 void ThreadSafetyAnalyzer::intersectAndWarn(FactSet &EntrySet, 2215 const FactSet &ExitSet, 2216 SourceLocation JoinLoc, 2217 LockErrorKind EntryLEK, 2218 LockErrorKind ExitLEK) { 2219 FactSet EntrySetOrig = EntrySet; 2220 2221 // Find locks in ExitSet that conflict or are not in EntrySet, and warn. 2222 for (const auto &Fact : ExitSet) { 2223 const FactEntry &ExitFact = FactMan[Fact]; 2224 2225 FactSet::iterator EntryIt = EntrySet.findLockIter(FactMan, ExitFact); 2226 if (EntryIt != EntrySet.end()) { 2227 if (join(FactMan[*EntryIt], ExitFact, 2228 EntryLEK != LEK_LockedSomeLoopIterations)) 2229 *EntryIt = Fact; 2230 } else if (!ExitFact.managed() || EntryLEK == LEK_LockedAtEndOfFunction) { 2231 ExitFact.handleRemovalFromIntersection(ExitSet, FactMan, JoinLoc, 2232 EntryLEK, Handler); 2233 } 2234 } 2235 2236 // Find locks in EntrySet that are not in ExitSet, and remove them. 2237 for (const auto &Fact : EntrySetOrig) { 2238 const FactEntry *EntryFact = &FactMan[Fact]; 2239 const FactEntry *ExitFact = ExitSet.findLock(FactMan, *EntryFact); 2240 2241 if (!ExitFact) { 2242 if (!EntryFact->managed() || ExitLEK == LEK_LockedSomeLoopIterations || 2243 ExitLEK == LEK_NotLockedAtEndOfFunction) 2244 EntryFact->handleRemovalFromIntersection(EntrySetOrig, FactMan, JoinLoc, 2245 ExitLEK, Handler); 2246 if (ExitLEK == LEK_LockedSomePredecessors) 2247 EntrySet.removeLock(FactMan, *EntryFact); 2248 } 2249 } 2250 } 2251 2252 // Return true if block B never continues to its successors. 2253 static bool neverReturns(const CFGBlock *B) { 2254 if (B->hasNoReturnElement()) 2255 return true; 2256 if (B->empty()) 2257 return false; 2258 2259 CFGElement Last = B->back(); 2260 if (std::optional<CFGStmt> S = Last.getAs<CFGStmt>()) { 2261 if (isa<CXXThrowExpr>(S->getStmt())) 2262 return true; 2263 } 2264 return false; 2265 } 2266 2267 /// Check a function's CFG for thread-safety violations. 2268 /// 2269 /// We traverse the blocks in the CFG, compute the set of mutexes that are held 2270 /// at the end of each block, and issue warnings for thread safety violations. 2271 /// Each block in the CFG is traversed exactly once. 2272 void ThreadSafetyAnalyzer::runAnalysis(AnalysisDeclContext &AC) { 2273 // TODO: this whole function needs be rewritten as a visitor for CFGWalker. 2274 // For now, we just use the walker to set things up. 2275 threadSafety::CFGWalker walker; 2276 if (!walker.init(AC)) 2277 return; 2278 2279 // AC.dumpCFG(true); 2280 // threadSafety::printSCFG(walker); 2281 2282 CFG *CFGraph = walker.getGraph(); 2283 const NamedDecl *D = walker.getDecl(); 2284 CurrentFunction = dyn_cast<FunctionDecl>(D); 2285 2286 if (D->hasAttr<NoThreadSafetyAnalysisAttr>()) 2287 return; 2288 2289 // FIXME: Do something a bit more intelligent inside constructor and 2290 // destructor code. Constructors and destructors must assume unique access 2291 // to 'this', so checks on member variable access is disabled, but we should 2292 // still enable checks on other objects. 2293 if (isa<CXXConstructorDecl>(D)) 2294 return; // Don't check inside constructors. 2295 if (isa<CXXDestructorDecl>(D)) 2296 return; // Don't check inside destructors. 2297 2298 Handler.enterFunction(CurrentFunction); 2299 2300 BlockInfo.resize(CFGraph->getNumBlockIDs(), 2301 CFGBlockInfo::getEmptyBlockInfo(LocalVarMap)); 2302 2303 // We need to explore the CFG via a "topological" ordering. 2304 // That way, we will be guaranteed to have information about required 2305 // predecessor locksets when exploring a new block. 2306 const PostOrderCFGView *SortedGraph = walker.getSortedGraph(); 2307 PostOrderCFGView::CFGBlockSet VisitedBlocks(CFGraph); 2308 2309 CFGBlockInfo &Initial = BlockInfo[CFGraph->getEntry().getBlockID()]; 2310 CFGBlockInfo &Final = BlockInfo[CFGraph->getExit().getBlockID()]; 2311 2312 // Mark entry block as reachable 2313 Initial.Reachable = true; 2314 2315 // Compute SSA names for local variables 2316 LocalVarMap.traverseCFG(CFGraph, SortedGraph, BlockInfo); 2317 2318 // Fill in source locations for all CFGBlocks. 2319 findBlockLocations(CFGraph, SortedGraph, BlockInfo); 2320 2321 CapExprSet ExclusiveLocksAcquired; 2322 CapExprSet SharedLocksAcquired; 2323 CapExprSet LocksReleased; 2324 2325 // Add locks from exclusive_locks_required and shared_locks_required 2326 // to initial lockset. Also turn off checking for lock and unlock functions. 2327 // FIXME: is there a more intelligent way to check lock/unlock functions? 2328 if (!SortedGraph->empty() && D->hasAttrs()) { 2329 assert(*SortedGraph->begin() == &CFGraph->getEntry()); 2330 FactSet &InitialLockset = Initial.EntrySet; 2331 2332 CapExprSet ExclusiveLocksToAdd; 2333 CapExprSet SharedLocksToAdd; 2334 2335 SourceLocation Loc = D->getLocation(); 2336 for (const auto *Attr : D->attrs()) { 2337 Loc = Attr->getLocation(); 2338 if (const auto *A = dyn_cast<RequiresCapabilityAttr>(Attr)) { 2339 getMutexIDs(A->isShared() ? SharedLocksToAdd : ExclusiveLocksToAdd, A, 2340 nullptr, D); 2341 } else if (const auto *A = dyn_cast<ReleaseCapabilityAttr>(Attr)) { 2342 // UNLOCK_FUNCTION() is used to hide the underlying lock implementation. 2343 // We must ignore such methods. 2344 if (A->args_size() == 0) 2345 return; 2346 getMutexIDs(A->isShared() ? SharedLocksToAdd : ExclusiveLocksToAdd, A, 2347 nullptr, D); 2348 getMutexIDs(LocksReleased, A, nullptr, D); 2349 } else if (const auto *A = dyn_cast<AcquireCapabilityAttr>(Attr)) { 2350 if (A->args_size() == 0) 2351 return; 2352 getMutexIDs(A->isShared() ? SharedLocksAcquired 2353 : ExclusiveLocksAcquired, 2354 A, nullptr, D); 2355 } else if (isa<ExclusiveTrylockFunctionAttr>(Attr)) { 2356 // Don't try to check trylock functions for now. 2357 return; 2358 } else if (isa<SharedTrylockFunctionAttr>(Attr)) { 2359 // Don't try to check trylock functions for now. 2360 return; 2361 } else if (isa<TryAcquireCapabilityAttr>(Attr)) { 2362 // Don't try to check trylock functions for now. 2363 return; 2364 } 2365 } 2366 2367 // FIXME -- Loc can be wrong here. 2368 for (const auto &Mu : ExclusiveLocksToAdd) { 2369 auto Entry = std::make_unique<LockableFactEntry>(Mu, LK_Exclusive, Loc, 2370 FactEntry::Declared); 2371 addLock(InitialLockset, std::move(Entry), true); 2372 } 2373 for (const auto &Mu : SharedLocksToAdd) { 2374 auto Entry = std::make_unique<LockableFactEntry>(Mu, LK_Shared, Loc, 2375 FactEntry::Declared); 2376 addLock(InitialLockset, std::move(Entry), true); 2377 } 2378 } 2379 2380 // Compute the expected exit set. 2381 // By default, we expect all locks held on entry to be held on exit. 2382 FactSet ExpectedFunctionExitSet = Initial.EntrySet; 2383 2384 // Adjust the expected exit set by adding or removing locks, as declared 2385 // by *-LOCK_FUNCTION and UNLOCK_FUNCTION. The intersect below will then 2386 // issue the appropriate warning. 2387 // FIXME: the location here is not quite right. 2388 for (const auto &Lock : ExclusiveLocksAcquired) 2389 ExpectedFunctionExitSet.addLock( 2390 FactMan, std::make_unique<LockableFactEntry>(Lock, LK_Exclusive, 2391 D->getLocation())); 2392 for (const auto &Lock : SharedLocksAcquired) 2393 ExpectedFunctionExitSet.addLock( 2394 FactMan, 2395 std::make_unique<LockableFactEntry>(Lock, LK_Shared, D->getLocation())); 2396 for (const auto &Lock : LocksReleased) 2397 ExpectedFunctionExitSet.removeLock(FactMan, Lock); 2398 2399 for (const auto *CurrBlock : *SortedGraph) { 2400 unsigned CurrBlockID = CurrBlock->getBlockID(); 2401 CFGBlockInfo *CurrBlockInfo = &BlockInfo[CurrBlockID]; 2402 2403 // Use the default initial lockset in case there are no predecessors. 2404 VisitedBlocks.insert(CurrBlock); 2405 2406 // Iterate through the predecessor blocks and warn if the lockset for all 2407 // predecessors is not the same. We take the entry lockset of the current 2408 // block to be the intersection of all previous locksets. 2409 // FIXME: By keeping the intersection, we may output more errors in future 2410 // for a lock which is not in the intersection, but was in the union. We 2411 // may want to also keep the union in future. As an example, let's say 2412 // the intersection contains Mutex L, and the union contains L and M. 2413 // Later we unlock M. At this point, we would output an error because we 2414 // never locked M; although the real error is probably that we forgot to 2415 // lock M on all code paths. Conversely, let's say that later we lock M. 2416 // In this case, we should compare against the intersection instead of the 2417 // union because the real error is probably that we forgot to unlock M on 2418 // all code paths. 2419 bool LocksetInitialized = false; 2420 for (CFGBlock::const_pred_iterator PI = CurrBlock->pred_begin(), 2421 PE = CurrBlock->pred_end(); PI != PE; ++PI) { 2422 // if *PI -> CurrBlock is a back edge 2423 if (*PI == nullptr || !VisitedBlocks.alreadySet(*PI)) 2424 continue; 2425 2426 unsigned PrevBlockID = (*PI)->getBlockID(); 2427 CFGBlockInfo *PrevBlockInfo = &BlockInfo[PrevBlockID]; 2428 2429 // Ignore edges from blocks that can't return. 2430 if (neverReturns(*PI) || !PrevBlockInfo->Reachable) 2431 continue; 2432 2433 // Okay, we can reach this block from the entry. 2434 CurrBlockInfo->Reachable = true; 2435 2436 FactSet PrevLockset; 2437 getEdgeLockset(PrevLockset, PrevBlockInfo->ExitSet, *PI, CurrBlock); 2438 2439 if (!LocksetInitialized) { 2440 CurrBlockInfo->EntrySet = PrevLockset; 2441 LocksetInitialized = true; 2442 } else { 2443 // Surprisingly 'continue' doesn't always produce back edges, because 2444 // the CFG has empty "transition" blocks where they meet with the end 2445 // of the regular loop body. We still want to diagnose them as loop. 2446 intersectAndWarn( 2447 CurrBlockInfo->EntrySet, PrevLockset, CurrBlockInfo->EntryLoc, 2448 isa_and_nonnull<ContinueStmt>((*PI)->getTerminatorStmt()) 2449 ? LEK_LockedSomeLoopIterations 2450 : LEK_LockedSomePredecessors); 2451 } 2452 } 2453 2454 // Skip rest of block if it's not reachable. 2455 if (!CurrBlockInfo->Reachable) 2456 continue; 2457 2458 BuildLockset LocksetBuilder(this, *CurrBlockInfo, ExpectedFunctionExitSet); 2459 2460 // Visit all the statements in the basic block. 2461 for (const auto &BI : *CurrBlock) { 2462 switch (BI.getKind()) { 2463 case CFGElement::Statement: { 2464 CFGStmt CS = BI.castAs<CFGStmt>(); 2465 LocksetBuilder.Visit(CS.getStmt()); 2466 break; 2467 } 2468 // Ignore BaseDtor and MemberDtor for now. 2469 case CFGElement::AutomaticObjectDtor: { 2470 CFGAutomaticObjDtor AD = BI.castAs<CFGAutomaticObjDtor>(); 2471 const auto *DD = AD.getDestructorDecl(AC.getASTContext()); 2472 if (!DD->hasAttrs()) 2473 break; 2474 2475 LocksetBuilder.handleCall(nullptr, DD, 2476 SxBuilder.createVariable(AD.getVarDecl()), 2477 AD.getTriggerStmt()->getEndLoc()); 2478 break; 2479 } 2480 2481 case CFGElement::CleanupFunction: { 2482 const CFGCleanupFunction &CF = BI.castAs<CFGCleanupFunction>(); 2483 LocksetBuilder.handleCall(/*Exp=*/nullptr, CF.getFunctionDecl(), 2484 SxBuilder.createVariable(CF.getVarDecl()), 2485 CF.getVarDecl()->getLocation()); 2486 break; 2487 } 2488 2489 case CFGElement::TemporaryDtor: { 2490 auto TD = BI.castAs<CFGTemporaryDtor>(); 2491 2492 // Clean up constructed object even if there are no attributes to 2493 // keep the number of objects in limbo as small as possible. 2494 if (auto Object = ConstructedObjects.find( 2495 TD.getBindTemporaryExpr()->getSubExpr()); 2496 Object != ConstructedObjects.end()) { 2497 const auto *DD = TD.getDestructorDecl(AC.getASTContext()); 2498 if (DD->hasAttrs()) 2499 // TODO: the location here isn't quite correct. 2500 LocksetBuilder.handleCall(nullptr, DD, Object->second, 2501 TD.getBindTemporaryExpr()->getEndLoc()); 2502 ConstructedObjects.erase(Object); 2503 } 2504 break; 2505 } 2506 default: 2507 break; 2508 } 2509 } 2510 CurrBlockInfo->ExitSet = LocksetBuilder.FSet; 2511 2512 // For every back edge from CurrBlock (the end of the loop) to another block 2513 // (FirstLoopBlock) we need to check that the Lockset of Block is equal to 2514 // the one held at the beginning of FirstLoopBlock. We can look up the 2515 // Lockset held at the beginning of FirstLoopBlock in the EntryLockSets map. 2516 for (CFGBlock::const_succ_iterator SI = CurrBlock->succ_begin(), 2517 SE = CurrBlock->succ_end(); SI != SE; ++SI) { 2518 // if CurrBlock -> *SI is *not* a back edge 2519 if (*SI == nullptr || !VisitedBlocks.alreadySet(*SI)) 2520 continue; 2521 2522 CFGBlock *FirstLoopBlock = *SI; 2523 CFGBlockInfo *PreLoop = &BlockInfo[FirstLoopBlock->getBlockID()]; 2524 CFGBlockInfo *LoopEnd = &BlockInfo[CurrBlockID]; 2525 intersectAndWarn(PreLoop->EntrySet, LoopEnd->ExitSet, PreLoop->EntryLoc, 2526 LEK_LockedSomeLoopIterations); 2527 } 2528 } 2529 2530 // Skip the final check if the exit block is unreachable. 2531 if (!Final.Reachable) 2532 return; 2533 2534 // FIXME: Should we call this function for all blocks which exit the function? 2535 intersectAndWarn(ExpectedFunctionExitSet, Final.ExitSet, Final.ExitLoc, 2536 LEK_LockedAtEndOfFunction, LEK_NotLockedAtEndOfFunction); 2537 2538 Handler.leaveFunction(CurrentFunction); 2539 } 2540 2541 /// Check a function's CFG for thread-safety violations. 2542 /// 2543 /// We traverse the blocks in the CFG, compute the set of mutexes that are held 2544 /// at the end of each block, and issue warnings for thread safety violations. 2545 /// Each block in the CFG is traversed exactly once. 2546 void threadSafety::runThreadSafetyAnalysis(AnalysisDeclContext &AC, 2547 ThreadSafetyHandler &Handler, 2548 BeforeSet **BSet) { 2549 if (!*BSet) 2550 *BSet = new BeforeSet; 2551 ThreadSafetyAnalyzer Analyzer(Handler, *BSet); 2552 Analyzer.runAnalysis(AC); 2553 } 2554 2555 void threadSafety::threadSafetyCleanup(BeforeSet *Cache) { delete Cache; } 2556 2557 /// Helper function that returns a LockKind required for the given level 2558 /// of access. 2559 LockKind threadSafety::getLockKindFromAccessKind(AccessKind AK) { 2560 switch (AK) { 2561 case AK_Read : 2562 return LK_Shared; 2563 case AK_Written : 2564 return LK_Exclusive; 2565 } 2566 llvm_unreachable("Unknown AccessKind"); 2567 } 2568