1 //===- ThreadSafety.cpp ---------------------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // A intra-procedural analysis for thread safety (e.g. deadlocks and race 10 // conditions), based off of an annotation system. 11 // 12 // See http://clang.llvm.org/docs/ThreadSafetyAnalysis.html 13 // for more information. 14 // 15 //===----------------------------------------------------------------------===// 16 17 #include "clang/Analysis/Analyses/ThreadSafety.h" 18 #include "clang/AST/Attr.h" 19 #include "clang/AST/Decl.h" 20 #include "clang/AST/DeclCXX.h" 21 #include "clang/AST/DeclGroup.h" 22 #include "clang/AST/Expr.h" 23 #include "clang/AST/ExprCXX.h" 24 #include "clang/AST/OperationKinds.h" 25 #include "clang/AST/Stmt.h" 26 #include "clang/AST/StmtVisitor.h" 27 #include "clang/AST/Type.h" 28 #include "clang/Analysis/Analyses/PostOrderCFGView.h" 29 #include "clang/Analysis/Analyses/ThreadSafetyCommon.h" 30 #include "clang/Analysis/Analyses/ThreadSafetyTIL.h" 31 #include "clang/Analysis/Analyses/ThreadSafetyTraverse.h" 32 #include "clang/Analysis/Analyses/ThreadSafetyUtil.h" 33 #include "clang/Analysis/AnalysisDeclContext.h" 34 #include "clang/Analysis/CFG.h" 35 #include "clang/Basic/Builtins.h" 36 #include "clang/Basic/LLVM.h" 37 #include "clang/Basic/OperatorKinds.h" 38 #include "clang/Basic/SourceLocation.h" 39 #include "clang/Basic/Specifiers.h" 40 #include "llvm/ADT/ArrayRef.h" 41 #include "llvm/ADT/DenseMap.h" 42 #include "llvm/ADT/ImmutableMap.h" 43 #include "llvm/ADT/Optional.h" 44 #include "llvm/ADT/STLExtras.h" 45 #include "llvm/ADT/SmallVector.h" 46 #include "llvm/ADT/StringRef.h" 47 #include "llvm/Support/Allocator.h" 48 #include "llvm/Support/Casting.h" 49 #include "llvm/Support/ErrorHandling.h" 50 #include "llvm/Support/raw_ostream.h" 51 #include <algorithm> 52 #include <cassert> 53 #include <functional> 54 #include <iterator> 55 #include <memory> 56 #include <optional> 57 #include <string> 58 #include <type_traits> 59 #include <utility> 60 #include <vector> 61 62 using namespace clang; 63 using namespace threadSafety; 64 65 // Key method definition 66 ThreadSafetyHandler::~ThreadSafetyHandler() = default; 67 68 /// Issue a warning about an invalid lock expression 69 static void warnInvalidLock(ThreadSafetyHandler &Handler, 70 const Expr *MutexExp, const NamedDecl *D, 71 const Expr *DeclExp, StringRef Kind) { 72 SourceLocation Loc; 73 if (DeclExp) 74 Loc = DeclExp->getExprLoc(); 75 76 // FIXME: add a note about the attribute location in MutexExp or D 77 if (Loc.isValid()) 78 Handler.handleInvalidLockExp(Loc); 79 } 80 81 namespace { 82 83 /// A set of CapabilityExpr objects, which are compiled from thread safety 84 /// attributes on a function. 85 class CapExprSet : public SmallVector<CapabilityExpr, 4> { 86 public: 87 /// Push M onto list, but discard duplicates. 88 void push_back_nodup(const CapabilityExpr &CapE) { 89 if (llvm::none_of(*this, [=](const CapabilityExpr &CapE2) { 90 return CapE.equals(CapE2); 91 })) 92 push_back(CapE); 93 } 94 }; 95 96 class FactManager; 97 class FactSet; 98 99 /// This is a helper class that stores a fact that is known at a 100 /// particular point in program execution. Currently, a fact is a capability, 101 /// along with additional information, such as where it was acquired, whether 102 /// it is exclusive or shared, etc. 103 /// 104 /// FIXME: this analysis does not currently support re-entrant locking. 105 class FactEntry : public CapabilityExpr { 106 public: 107 /// Where a fact comes from. 108 enum SourceKind { 109 Acquired, ///< The fact has been directly acquired. 110 Asserted, ///< The fact has been asserted to be held. 111 Declared, ///< The fact is assumed to be held by callers. 112 Managed, ///< The fact has been acquired through a scoped capability. 113 }; 114 115 private: 116 /// Exclusive or shared. 117 LockKind LKind : 8; 118 119 // How it was acquired. 120 SourceKind Source : 8; 121 122 /// Where it was acquired. 123 SourceLocation AcquireLoc; 124 125 public: 126 FactEntry(const CapabilityExpr &CE, LockKind LK, SourceLocation Loc, 127 SourceKind Src) 128 : CapabilityExpr(CE), LKind(LK), Source(Src), AcquireLoc(Loc) {} 129 virtual ~FactEntry() = default; 130 131 LockKind kind() const { return LKind; } 132 SourceLocation loc() const { return AcquireLoc; } 133 134 bool asserted() const { return Source == Asserted; } 135 bool declared() const { return Source == Declared; } 136 bool managed() const { return Source == Managed; } 137 138 virtual void 139 handleRemovalFromIntersection(const FactSet &FSet, FactManager &FactMan, 140 SourceLocation JoinLoc, LockErrorKind LEK, 141 ThreadSafetyHandler &Handler) const = 0; 142 virtual void handleLock(FactSet &FSet, FactManager &FactMan, 143 const FactEntry &entry, 144 ThreadSafetyHandler &Handler) const = 0; 145 virtual void handleUnlock(FactSet &FSet, FactManager &FactMan, 146 const CapabilityExpr &Cp, SourceLocation UnlockLoc, 147 bool FullyRemove, 148 ThreadSafetyHandler &Handler) const = 0; 149 150 // Return true if LKind >= LK, where exclusive > shared 151 bool isAtLeast(LockKind LK) const { 152 return (LKind == LK_Exclusive) || (LK == LK_Shared); 153 } 154 }; 155 156 using FactID = unsigned short; 157 158 /// FactManager manages the memory for all facts that are created during 159 /// the analysis of a single routine. 160 class FactManager { 161 private: 162 std::vector<std::unique_ptr<const FactEntry>> Facts; 163 164 public: 165 FactID newFact(std::unique_ptr<FactEntry> Entry) { 166 Facts.push_back(std::move(Entry)); 167 return static_cast<unsigned short>(Facts.size() - 1); 168 } 169 170 const FactEntry &operator[](FactID F) const { return *Facts[F]; } 171 }; 172 173 /// A FactSet is the set of facts that are known to be true at a 174 /// particular program point. FactSets must be small, because they are 175 /// frequently copied, and are thus implemented as a set of indices into a 176 /// table maintained by a FactManager. A typical FactSet only holds 1 or 2 177 /// locks, so we can get away with doing a linear search for lookup. Note 178 /// that a hashtable or map is inappropriate in this case, because lookups 179 /// may involve partial pattern matches, rather than exact matches. 180 class FactSet { 181 private: 182 using FactVec = SmallVector<FactID, 4>; 183 184 FactVec FactIDs; 185 186 public: 187 using iterator = FactVec::iterator; 188 using const_iterator = FactVec::const_iterator; 189 190 iterator begin() { return FactIDs.begin(); } 191 const_iterator begin() const { return FactIDs.begin(); } 192 193 iterator end() { return FactIDs.end(); } 194 const_iterator end() const { return FactIDs.end(); } 195 196 bool isEmpty() const { return FactIDs.size() == 0; } 197 198 // Return true if the set contains only negative facts 199 bool isEmpty(FactManager &FactMan) const { 200 for (const auto FID : *this) { 201 if (!FactMan[FID].negative()) 202 return false; 203 } 204 return true; 205 } 206 207 void addLockByID(FactID ID) { FactIDs.push_back(ID); } 208 209 FactID addLock(FactManager &FM, std::unique_ptr<FactEntry> Entry) { 210 FactID F = FM.newFact(std::move(Entry)); 211 FactIDs.push_back(F); 212 return F; 213 } 214 215 bool removeLock(FactManager& FM, const CapabilityExpr &CapE) { 216 unsigned n = FactIDs.size(); 217 if (n == 0) 218 return false; 219 220 for (unsigned i = 0; i < n-1; ++i) { 221 if (FM[FactIDs[i]].matches(CapE)) { 222 FactIDs[i] = FactIDs[n-1]; 223 FactIDs.pop_back(); 224 return true; 225 } 226 } 227 if (FM[FactIDs[n-1]].matches(CapE)) { 228 FactIDs.pop_back(); 229 return true; 230 } 231 return false; 232 } 233 234 iterator findLockIter(FactManager &FM, const CapabilityExpr &CapE) { 235 return std::find_if(begin(), end(), [&](FactID ID) { 236 return FM[ID].matches(CapE); 237 }); 238 } 239 240 const FactEntry *findLock(FactManager &FM, const CapabilityExpr &CapE) const { 241 auto I = std::find_if(begin(), end(), [&](FactID ID) { 242 return FM[ID].matches(CapE); 243 }); 244 return I != end() ? &FM[*I] : nullptr; 245 } 246 247 const FactEntry *findLockUniv(FactManager &FM, 248 const CapabilityExpr &CapE) const { 249 auto I = std::find_if(begin(), end(), [&](FactID ID) -> bool { 250 return FM[ID].matchesUniv(CapE); 251 }); 252 return I != end() ? &FM[*I] : nullptr; 253 } 254 255 const FactEntry *findPartialMatch(FactManager &FM, 256 const CapabilityExpr &CapE) const { 257 auto I = std::find_if(begin(), end(), [&](FactID ID) -> bool { 258 return FM[ID].partiallyMatches(CapE); 259 }); 260 return I != end() ? &FM[*I] : nullptr; 261 } 262 263 bool containsMutexDecl(FactManager &FM, const ValueDecl* Vd) const { 264 auto I = std::find_if(begin(), end(), [&](FactID ID) -> bool { 265 return FM[ID].valueDecl() == Vd; 266 }); 267 return I != end(); 268 } 269 }; 270 271 class ThreadSafetyAnalyzer; 272 273 } // namespace 274 275 namespace clang { 276 namespace threadSafety { 277 278 class BeforeSet { 279 private: 280 using BeforeVect = SmallVector<const ValueDecl *, 4>; 281 282 struct BeforeInfo { 283 BeforeVect Vect; 284 int Visited = 0; 285 286 BeforeInfo() = default; 287 BeforeInfo(BeforeInfo &&) = default; 288 }; 289 290 using BeforeMap = 291 llvm::DenseMap<const ValueDecl *, std::unique_ptr<BeforeInfo>>; 292 using CycleMap = llvm::DenseMap<const ValueDecl *, bool>; 293 294 public: 295 BeforeSet() = default; 296 297 BeforeInfo* insertAttrExprs(const ValueDecl* Vd, 298 ThreadSafetyAnalyzer& Analyzer); 299 300 BeforeInfo *getBeforeInfoForDecl(const ValueDecl *Vd, 301 ThreadSafetyAnalyzer &Analyzer); 302 303 void checkBeforeAfter(const ValueDecl* Vd, 304 const FactSet& FSet, 305 ThreadSafetyAnalyzer& Analyzer, 306 SourceLocation Loc, StringRef CapKind); 307 308 private: 309 BeforeMap BMap; 310 CycleMap CycMap; 311 }; 312 313 } // namespace threadSafety 314 } // namespace clang 315 316 namespace { 317 318 class LocalVariableMap; 319 320 using LocalVarContext = llvm::ImmutableMap<const NamedDecl *, unsigned>; 321 322 /// A side (entry or exit) of a CFG node. 323 enum CFGBlockSide { CBS_Entry, CBS_Exit }; 324 325 /// CFGBlockInfo is a struct which contains all the information that is 326 /// maintained for each block in the CFG. See LocalVariableMap for more 327 /// information about the contexts. 328 struct CFGBlockInfo { 329 // Lockset held at entry to block 330 FactSet EntrySet; 331 332 // Lockset held at exit from block 333 FactSet ExitSet; 334 335 // Context held at entry to block 336 LocalVarContext EntryContext; 337 338 // Context held at exit from block 339 LocalVarContext ExitContext; 340 341 // Location of first statement in block 342 SourceLocation EntryLoc; 343 344 // Location of last statement in block. 345 SourceLocation ExitLoc; 346 347 // Used to replay contexts later 348 unsigned EntryIndex; 349 350 // Is this block reachable? 351 bool Reachable = false; 352 353 const FactSet &getSet(CFGBlockSide Side) const { 354 return Side == CBS_Entry ? EntrySet : ExitSet; 355 } 356 357 SourceLocation getLocation(CFGBlockSide Side) const { 358 return Side == CBS_Entry ? EntryLoc : ExitLoc; 359 } 360 361 private: 362 CFGBlockInfo(LocalVarContext EmptyCtx) 363 : EntryContext(EmptyCtx), ExitContext(EmptyCtx) {} 364 365 public: 366 static CFGBlockInfo getEmptyBlockInfo(LocalVariableMap &M); 367 }; 368 369 // A LocalVariableMap maintains a map from local variables to their currently 370 // valid definitions. It provides SSA-like functionality when traversing the 371 // CFG. Like SSA, each definition or assignment to a variable is assigned a 372 // unique name (an integer), which acts as the SSA name for that definition. 373 // The total set of names is shared among all CFG basic blocks. 374 // Unlike SSA, we do not rewrite expressions to replace local variables declrefs 375 // with their SSA-names. Instead, we compute a Context for each point in the 376 // code, which maps local variables to the appropriate SSA-name. This map 377 // changes with each assignment. 378 // 379 // The map is computed in a single pass over the CFG. Subsequent analyses can 380 // then query the map to find the appropriate Context for a statement, and use 381 // that Context to look up the definitions of variables. 382 class LocalVariableMap { 383 public: 384 using Context = LocalVarContext; 385 386 /// A VarDefinition consists of an expression, representing the value of the 387 /// variable, along with the context in which that expression should be 388 /// interpreted. A reference VarDefinition does not itself contain this 389 /// information, but instead contains a pointer to a previous VarDefinition. 390 struct VarDefinition { 391 public: 392 friend class LocalVariableMap; 393 394 // The original declaration for this variable. 395 const NamedDecl *Dec; 396 397 // The expression for this variable, OR 398 const Expr *Exp = nullptr; 399 400 // Reference to another VarDefinition 401 unsigned Ref = 0; 402 403 // The map with which Exp should be interpreted. 404 Context Ctx; 405 406 bool isReference() { return !Exp; } 407 408 private: 409 // Create ordinary variable definition 410 VarDefinition(const NamedDecl *D, const Expr *E, Context C) 411 : Dec(D), Exp(E), Ctx(C) {} 412 413 // Create reference to previous definition 414 VarDefinition(const NamedDecl *D, unsigned R, Context C) 415 : Dec(D), Ref(R), Ctx(C) {} 416 }; 417 418 private: 419 Context::Factory ContextFactory; 420 std::vector<VarDefinition> VarDefinitions; 421 std::vector<std::pair<const Stmt *, Context>> SavedContexts; 422 423 public: 424 LocalVariableMap() { 425 // index 0 is a placeholder for undefined variables (aka phi-nodes). 426 VarDefinitions.push_back(VarDefinition(nullptr, 0u, getEmptyContext())); 427 } 428 429 /// Look up a definition, within the given context. 430 const VarDefinition* lookup(const NamedDecl *D, Context Ctx) { 431 const unsigned *i = Ctx.lookup(D); 432 if (!i) 433 return nullptr; 434 assert(*i < VarDefinitions.size()); 435 return &VarDefinitions[*i]; 436 } 437 438 /// Look up the definition for D within the given context. Returns 439 /// NULL if the expression is not statically known. If successful, also 440 /// modifies Ctx to hold the context of the return Expr. 441 const Expr* lookupExpr(const NamedDecl *D, Context &Ctx) { 442 const unsigned *P = Ctx.lookup(D); 443 if (!P) 444 return nullptr; 445 446 unsigned i = *P; 447 while (i > 0) { 448 if (VarDefinitions[i].Exp) { 449 Ctx = VarDefinitions[i].Ctx; 450 return VarDefinitions[i].Exp; 451 } 452 i = VarDefinitions[i].Ref; 453 } 454 return nullptr; 455 } 456 457 Context getEmptyContext() { return ContextFactory.getEmptyMap(); } 458 459 /// Return the next context after processing S. This function is used by 460 /// clients of the class to get the appropriate context when traversing the 461 /// CFG. It must be called for every assignment or DeclStmt. 462 Context getNextContext(unsigned &CtxIndex, const Stmt *S, Context C) { 463 if (SavedContexts[CtxIndex+1].first == S) { 464 CtxIndex++; 465 Context Result = SavedContexts[CtxIndex].second; 466 return Result; 467 } 468 return C; 469 } 470 471 void dumpVarDefinitionName(unsigned i) { 472 if (i == 0) { 473 llvm::errs() << "Undefined"; 474 return; 475 } 476 const NamedDecl *Dec = VarDefinitions[i].Dec; 477 if (!Dec) { 478 llvm::errs() << "<<NULL>>"; 479 return; 480 } 481 Dec->printName(llvm::errs()); 482 llvm::errs() << "." << i << " " << ((const void*) Dec); 483 } 484 485 /// Dumps an ASCII representation of the variable map to llvm::errs() 486 void dump() { 487 for (unsigned i = 1, e = VarDefinitions.size(); i < e; ++i) { 488 const Expr *Exp = VarDefinitions[i].Exp; 489 unsigned Ref = VarDefinitions[i].Ref; 490 491 dumpVarDefinitionName(i); 492 llvm::errs() << " = "; 493 if (Exp) Exp->dump(); 494 else { 495 dumpVarDefinitionName(Ref); 496 llvm::errs() << "\n"; 497 } 498 } 499 } 500 501 /// Dumps an ASCII representation of a Context to llvm::errs() 502 void dumpContext(Context C) { 503 for (Context::iterator I = C.begin(), E = C.end(); I != E; ++I) { 504 const NamedDecl *D = I.getKey(); 505 D->printName(llvm::errs()); 506 const unsigned *i = C.lookup(D); 507 llvm::errs() << " -> "; 508 dumpVarDefinitionName(*i); 509 llvm::errs() << "\n"; 510 } 511 } 512 513 /// Builds the variable map. 514 void traverseCFG(CFG *CFGraph, const PostOrderCFGView *SortedGraph, 515 std::vector<CFGBlockInfo> &BlockInfo); 516 517 protected: 518 friend class VarMapBuilder; 519 520 // Get the current context index 521 unsigned getContextIndex() { return SavedContexts.size()-1; } 522 523 // Save the current context for later replay 524 void saveContext(const Stmt *S, Context C) { 525 SavedContexts.push_back(std::make_pair(S, C)); 526 } 527 528 // Adds a new definition to the given context, and returns a new context. 529 // This method should be called when declaring a new variable. 530 Context addDefinition(const NamedDecl *D, const Expr *Exp, Context Ctx) { 531 assert(!Ctx.contains(D)); 532 unsigned newID = VarDefinitions.size(); 533 Context NewCtx = ContextFactory.add(Ctx, D, newID); 534 VarDefinitions.push_back(VarDefinition(D, Exp, Ctx)); 535 return NewCtx; 536 } 537 538 // Add a new reference to an existing definition. 539 Context addReference(const NamedDecl *D, unsigned i, Context Ctx) { 540 unsigned newID = VarDefinitions.size(); 541 Context NewCtx = ContextFactory.add(Ctx, D, newID); 542 VarDefinitions.push_back(VarDefinition(D, i, Ctx)); 543 return NewCtx; 544 } 545 546 // Updates a definition only if that definition is already in the map. 547 // This method should be called when assigning to an existing variable. 548 Context updateDefinition(const NamedDecl *D, Expr *Exp, Context Ctx) { 549 if (Ctx.contains(D)) { 550 unsigned newID = VarDefinitions.size(); 551 Context NewCtx = ContextFactory.remove(Ctx, D); 552 NewCtx = ContextFactory.add(NewCtx, D, newID); 553 VarDefinitions.push_back(VarDefinition(D, Exp, Ctx)); 554 return NewCtx; 555 } 556 return Ctx; 557 } 558 559 // Removes a definition from the context, but keeps the variable name 560 // as a valid variable. The index 0 is a placeholder for cleared definitions. 561 Context clearDefinition(const NamedDecl *D, Context Ctx) { 562 Context NewCtx = Ctx; 563 if (NewCtx.contains(D)) { 564 NewCtx = ContextFactory.remove(NewCtx, D); 565 NewCtx = ContextFactory.add(NewCtx, D, 0); 566 } 567 return NewCtx; 568 } 569 570 // Remove a definition entirely frmo the context. 571 Context removeDefinition(const NamedDecl *D, Context Ctx) { 572 Context NewCtx = Ctx; 573 if (NewCtx.contains(D)) { 574 NewCtx = ContextFactory.remove(NewCtx, D); 575 } 576 return NewCtx; 577 } 578 579 Context intersectContexts(Context C1, Context C2); 580 Context createReferenceContext(Context C); 581 void intersectBackEdge(Context C1, Context C2); 582 }; 583 584 } // namespace 585 586 // This has to be defined after LocalVariableMap. 587 CFGBlockInfo CFGBlockInfo::getEmptyBlockInfo(LocalVariableMap &M) { 588 return CFGBlockInfo(M.getEmptyContext()); 589 } 590 591 namespace { 592 593 /// Visitor which builds a LocalVariableMap 594 class VarMapBuilder : public ConstStmtVisitor<VarMapBuilder> { 595 public: 596 LocalVariableMap* VMap; 597 LocalVariableMap::Context Ctx; 598 599 VarMapBuilder(LocalVariableMap *VM, LocalVariableMap::Context C) 600 : VMap(VM), Ctx(C) {} 601 602 void VisitDeclStmt(const DeclStmt *S); 603 void VisitBinaryOperator(const BinaryOperator *BO); 604 }; 605 606 } // namespace 607 608 // Add new local variables to the variable map 609 void VarMapBuilder::VisitDeclStmt(const DeclStmt *S) { 610 bool modifiedCtx = false; 611 const DeclGroupRef DGrp = S->getDeclGroup(); 612 for (const auto *D : DGrp) { 613 if (const auto *VD = dyn_cast_or_null<VarDecl>(D)) { 614 const Expr *E = VD->getInit(); 615 616 // Add local variables with trivial type to the variable map 617 QualType T = VD->getType(); 618 if (T.isTrivialType(VD->getASTContext())) { 619 Ctx = VMap->addDefinition(VD, E, Ctx); 620 modifiedCtx = true; 621 } 622 } 623 } 624 if (modifiedCtx) 625 VMap->saveContext(S, Ctx); 626 } 627 628 // Update local variable definitions in variable map 629 void VarMapBuilder::VisitBinaryOperator(const BinaryOperator *BO) { 630 if (!BO->isAssignmentOp()) 631 return; 632 633 Expr *LHSExp = BO->getLHS()->IgnoreParenCasts(); 634 635 // Update the variable map and current context. 636 if (const auto *DRE = dyn_cast<DeclRefExpr>(LHSExp)) { 637 const ValueDecl *VDec = DRE->getDecl(); 638 if (Ctx.lookup(VDec)) { 639 if (BO->getOpcode() == BO_Assign) 640 Ctx = VMap->updateDefinition(VDec, BO->getRHS(), Ctx); 641 else 642 // FIXME -- handle compound assignment operators 643 Ctx = VMap->clearDefinition(VDec, Ctx); 644 VMap->saveContext(BO, Ctx); 645 } 646 } 647 } 648 649 // Computes the intersection of two contexts. The intersection is the 650 // set of variables which have the same definition in both contexts; 651 // variables with different definitions are discarded. 652 LocalVariableMap::Context 653 LocalVariableMap::intersectContexts(Context C1, Context C2) { 654 Context Result = C1; 655 for (const auto &P : C1) { 656 const NamedDecl *Dec = P.first; 657 const unsigned *i2 = C2.lookup(Dec); 658 if (!i2) // variable doesn't exist on second path 659 Result = removeDefinition(Dec, Result); 660 else if (*i2 != P.second) // variable exists, but has different definition 661 Result = clearDefinition(Dec, Result); 662 } 663 return Result; 664 } 665 666 // For every variable in C, create a new variable that refers to the 667 // definition in C. Return a new context that contains these new variables. 668 // (We use this for a naive implementation of SSA on loop back-edges.) 669 LocalVariableMap::Context LocalVariableMap::createReferenceContext(Context C) { 670 Context Result = getEmptyContext(); 671 for (const auto &P : C) 672 Result = addReference(P.first, P.second, Result); 673 return Result; 674 } 675 676 // This routine also takes the intersection of C1 and C2, but it does so by 677 // altering the VarDefinitions. C1 must be the result of an earlier call to 678 // createReferenceContext. 679 void LocalVariableMap::intersectBackEdge(Context C1, Context C2) { 680 for (const auto &P : C1) { 681 unsigned i1 = P.second; 682 VarDefinition *VDef = &VarDefinitions[i1]; 683 assert(VDef->isReference()); 684 685 const unsigned *i2 = C2.lookup(P.first); 686 if (!i2 || (*i2 != i1)) 687 VDef->Ref = 0; // Mark this variable as undefined 688 } 689 } 690 691 // Traverse the CFG in topological order, so all predecessors of a block 692 // (excluding back-edges) are visited before the block itself. At 693 // each point in the code, we calculate a Context, which holds the set of 694 // variable definitions which are visible at that point in execution. 695 // Visible variables are mapped to their definitions using an array that 696 // contains all definitions. 697 // 698 // At join points in the CFG, the set is computed as the intersection of 699 // the incoming sets along each edge, E.g. 700 // 701 // { Context | VarDefinitions } 702 // int x = 0; { x -> x1 | x1 = 0 } 703 // int y = 0; { x -> x1, y -> y1 | y1 = 0, x1 = 0 } 704 // if (b) x = 1; { x -> x2, y -> y1 | x2 = 1, y1 = 0, ... } 705 // else x = 2; { x -> x3, y -> y1 | x3 = 2, x2 = 1, ... } 706 // ... { y -> y1 (x is unknown) | x3 = 2, x2 = 1, ... } 707 // 708 // This is essentially a simpler and more naive version of the standard SSA 709 // algorithm. Those definitions that remain in the intersection are from blocks 710 // that strictly dominate the current block. We do not bother to insert proper 711 // phi nodes, because they are not used in our analysis; instead, wherever 712 // a phi node would be required, we simply remove that definition from the 713 // context (E.g. x above). 714 // 715 // The initial traversal does not capture back-edges, so those need to be 716 // handled on a separate pass. Whenever the first pass encounters an 717 // incoming back edge, it duplicates the context, creating new definitions 718 // that refer back to the originals. (These correspond to places where SSA 719 // might have to insert a phi node.) On the second pass, these definitions are 720 // set to NULL if the variable has changed on the back-edge (i.e. a phi 721 // node was actually required.) E.g. 722 // 723 // { Context | VarDefinitions } 724 // int x = 0, y = 0; { x -> x1, y -> y1 | y1 = 0, x1 = 0 } 725 // while (b) { x -> x2, y -> y1 | [1st:] x2=x1; [2nd:] x2=NULL; } 726 // x = x+1; { x -> x3, y -> y1 | x3 = x2 + 1, ... } 727 // ... { y -> y1 | x3 = 2, x2 = 1, ... } 728 void LocalVariableMap::traverseCFG(CFG *CFGraph, 729 const PostOrderCFGView *SortedGraph, 730 std::vector<CFGBlockInfo> &BlockInfo) { 731 PostOrderCFGView::CFGBlockSet VisitedBlocks(CFGraph); 732 733 for (const auto *CurrBlock : *SortedGraph) { 734 unsigned CurrBlockID = CurrBlock->getBlockID(); 735 CFGBlockInfo *CurrBlockInfo = &BlockInfo[CurrBlockID]; 736 737 VisitedBlocks.insert(CurrBlock); 738 739 // Calculate the entry context for the current block 740 bool HasBackEdges = false; 741 bool CtxInit = true; 742 for (CFGBlock::const_pred_iterator PI = CurrBlock->pred_begin(), 743 PE = CurrBlock->pred_end(); PI != PE; ++PI) { 744 // if *PI -> CurrBlock is a back edge, so skip it 745 if (*PI == nullptr || !VisitedBlocks.alreadySet(*PI)) { 746 HasBackEdges = true; 747 continue; 748 } 749 750 unsigned PrevBlockID = (*PI)->getBlockID(); 751 CFGBlockInfo *PrevBlockInfo = &BlockInfo[PrevBlockID]; 752 753 if (CtxInit) { 754 CurrBlockInfo->EntryContext = PrevBlockInfo->ExitContext; 755 CtxInit = false; 756 } 757 else { 758 CurrBlockInfo->EntryContext = 759 intersectContexts(CurrBlockInfo->EntryContext, 760 PrevBlockInfo->ExitContext); 761 } 762 } 763 764 // Duplicate the context if we have back-edges, so we can call 765 // intersectBackEdges later. 766 if (HasBackEdges) 767 CurrBlockInfo->EntryContext = 768 createReferenceContext(CurrBlockInfo->EntryContext); 769 770 // Create a starting context index for the current block 771 saveContext(nullptr, CurrBlockInfo->EntryContext); 772 CurrBlockInfo->EntryIndex = getContextIndex(); 773 774 // Visit all the statements in the basic block. 775 VarMapBuilder VMapBuilder(this, CurrBlockInfo->EntryContext); 776 for (const auto &BI : *CurrBlock) { 777 switch (BI.getKind()) { 778 case CFGElement::Statement: { 779 CFGStmt CS = BI.castAs<CFGStmt>(); 780 VMapBuilder.Visit(CS.getStmt()); 781 break; 782 } 783 default: 784 break; 785 } 786 } 787 CurrBlockInfo->ExitContext = VMapBuilder.Ctx; 788 789 // Mark variables on back edges as "unknown" if they've been changed. 790 for (CFGBlock::const_succ_iterator SI = CurrBlock->succ_begin(), 791 SE = CurrBlock->succ_end(); SI != SE; ++SI) { 792 // if CurrBlock -> *SI is *not* a back edge 793 if (*SI == nullptr || !VisitedBlocks.alreadySet(*SI)) 794 continue; 795 796 CFGBlock *FirstLoopBlock = *SI; 797 Context LoopBegin = BlockInfo[FirstLoopBlock->getBlockID()].EntryContext; 798 Context LoopEnd = CurrBlockInfo->ExitContext; 799 intersectBackEdge(LoopBegin, LoopEnd); 800 } 801 } 802 803 // Put an extra entry at the end of the indexed context array 804 unsigned exitID = CFGraph->getExit().getBlockID(); 805 saveContext(nullptr, BlockInfo[exitID].ExitContext); 806 } 807 808 /// Find the appropriate source locations to use when producing diagnostics for 809 /// each block in the CFG. 810 static void findBlockLocations(CFG *CFGraph, 811 const PostOrderCFGView *SortedGraph, 812 std::vector<CFGBlockInfo> &BlockInfo) { 813 for (const auto *CurrBlock : *SortedGraph) { 814 CFGBlockInfo *CurrBlockInfo = &BlockInfo[CurrBlock->getBlockID()]; 815 816 // Find the source location of the last statement in the block, if the 817 // block is not empty. 818 if (const Stmt *S = CurrBlock->getTerminatorStmt()) { 819 CurrBlockInfo->EntryLoc = CurrBlockInfo->ExitLoc = S->getBeginLoc(); 820 } else { 821 for (CFGBlock::const_reverse_iterator BI = CurrBlock->rbegin(), 822 BE = CurrBlock->rend(); BI != BE; ++BI) { 823 // FIXME: Handle other CFGElement kinds. 824 if (Optional<CFGStmt> CS = BI->getAs<CFGStmt>()) { 825 CurrBlockInfo->ExitLoc = CS->getStmt()->getBeginLoc(); 826 break; 827 } 828 } 829 } 830 831 if (CurrBlockInfo->ExitLoc.isValid()) { 832 // This block contains at least one statement. Find the source location 833 // of the first statement in the block. 834 for (const auto &BI : *CurrBlock) { 835 // FIXME: Handle other CFGElement kinds. 836 if (Optional<CFGStmt> CS = BI.getAs<CFGStmt>()) { 837 CurrBlockInfo->EntryLoc = CS->getStmt()->getBeginLoc(); 838 break; 839 } 840 } 841 } else if (CurrBlock->pred_size() == 1 && *CurrBlock->pred_begin() && 842 CurrBlock != &CFGraph->getExit()) { 843 // The block is empty, and has a single predecessor. Use its exit 844 // location. 845 CurrBlockInfo->EntryLoc = CurrBlockInfo->ExitLoc = 846 BlockInfo[(*CurrBlock->pred_begin())->getBlockID()].ExitLoc; 847 } else if (CurrBlock->succ_size() == 1 && *CurrBlock->succ_begin()) { 848 // The block is empty, and has a single successor. Use its entry 849 // location. 850 CurrBlockInfo->EntryLoc = CurrBlockInfo->ExitLoc = 851 BlockInfo[(*CurrBlock->succ_begin())->getBlockID()].EntryLoc; 852 } 853 } 854 } 855 856 namespace { 857 858 class LockableFactEntry : public FactEntry { 859 public: 860 LockableFactEntry(const CapabilityExpr &CE, LockKind LK, SourceLocation Loc, 861 SourceKind Src = Acquired) 862 : FactEntry(CE, LK, Loc, Src) {} 863 864 void 865 handleRemovalFromIntersection(const FactSet &FSet, FactManager &FactMan, 866 SourceLocation JoinLoc, LockErrorKind LEK, 867 ThreadSafetyHandler &Handler) const override { 868 if (!asserted() && !negative() && !isUniversal()) { 869 Handler.handleMutexHeldEndOfScope(getKind(), toString(), loc(), JoinLoc, 870 LEK); 871 } 872 } 873 874 void handleLock(FactSet &FSet, FactManager &FactMan, const FactEntry &entry, 875 ThreadSafetyHandler &Handler) const override { 876 Handler.handleDoubleLock(entry.getKind(), entry.toString(), loc(), 877 entry.loc()); 878 } 879 880 void handleUnlock(FactSet &FSet, FactManager &FactMan, 881 const CapabilityExpr &Cp, SourceLocation UnlockLoc, 882 bool FullyRemove, 883 ThreadSafetyHandler &Handler) const override { 884 FSet.removeLock(FactMan, Cp); 885 if (!Cp.negative()) { 886 FSet.addLock(FactMan, std::make_unique<LockableFactEntry>( 887 !Cp, LK_Exclusive, UnlockLoc)); 888 } 889 } 890 }; 891 892 class ScopedLockableFactEntry : public FactEntry { 893 private: 894 enum UnderlyingCapabilityKind { 895 UCK_Acquired, ///< Any kind of acquired capability. 896 UCK_ReleasedShared, ///< Shared capability that was released. 897 UCK_ReleasedExclusive, ///< Exclusive capability that was released. 898 }; 899 900 struct UnderlyingCapability { 901 CapabilityExpr Cap; 902 UnderlyingCapabilityKind Kind; 903 }; 904 905 SmallVector<UnderlyingCapability, 2> UnderlyingMutexes; 906 907 public: 908 ScopedLockableFactEntry(const CapabilityExpr &CE, SourceLocation Loc) 909 : FactEntry(CE, LK_Exclusive, Loc, Acquired) {} 910 911 void addLock(const CapabilityExpr &M) { 912 UnderlyingMutexes.push_back(UnderlyingCapability{M, UCK_Acquired}); 913 } 914 915 void addExclusiveUnlock(const CapabilityExpr &M) { 916 UnderlyingMutexes.push_back(UnderlyingCapability{M, UCK_ReleasedExclusive}); 917 } 918 919 void addSharedUnlock(const CapabilityExpr &M) { 920 UnderlyingMutexes.push_back(UnderlyingCapability{M, UCK_ReleasedShared}); 921 } 922 923 void 924 handleRemovalFromIntersection(const FactSet &FSet, FactManager &FactMan, 925 SourceLocation JoinLoc, LockErrorKind LEK, 926 ThreadSafetyHandler &Handler) const override { 927 for (const auto &UnderlyingMutex : UnderlyingMutexes) { 928 const auto *Entry = FSet.findLock(FactMan, UnderlyingMutex.Cap); 929 if ((UnderlyingMutex.Kind == UCK_Acquired && Entry) || 930 (UnderlyingMutex.Kind != UCK_Acquired && !Entry)) { 931 // If this scoped lock manages another mutex, and if the underlying 932 // mutex is still/not held, then warn about the underlying mutex. 933 Handler.handleMutexHeldEndOfScope(UnderlyingMutex.Cap.getKind(), 934 UnderlyingMutex.Cap.toString(), loc(), 935 JoinLoc, LEK); 936 } 937 } 938 } 939 940 void handleLock(FactSet &FSet, FactManager &FactMan, const FactEntry &entry, 941 ThreadSafetyHandler &Handler) const override { 942 for (const auto &UnderlyingMutex : UnderlyingMutexes) { 943 if (UnderlyingMutex.Kind == UCK_Acquired) 944 lock(FSet, FactMan, UnderlyingMutex.Cap, entry.kind(), entry.loc(), 945 &Handler); 946 else 947 unlock(FSet, FactMan, UnderlyingMutex.Cap, entry.loc(), &Handler); 948 } 949 } 950 951 void handleUnlock(FactSet &FSet, FactManager &FactMan, 952 const CapabilityExpr &Cp, SourceLocation UnlockLoc, 953 bool FullyRemove, 954 ThreadSafetyHandler &Handler) const override { 955 assert(!Cp.negative() && "Managing object cannot be negative."); 956 for (const auto &UnderlyingMutex : UnderlyingMutexes) { 957 // Remove/lock the underlying mutex if it exists/is still unlocked; warn 958 // on double unlocking/locking if we're not destroying the scoped object. 959 ThreadSafetyHandler *TSHandler = FullyRemove ? nullptr : &Handler; 960 if (UnderlyingMutex.Kind == UCK_Acquired) { 961 unlock(FSet, FactMan, UnderlyingMutex.Cap, UnlockLoc, TSHandler); 962 } else { 963 LockKind kind = UnderlyingMutex.Kind == UCK_ReleasedShared 964 ? LK_Shared 965 : LK_Exclusive; 966 lock(FSet, FactMan, UnderlyingMutex.Cap, kind, UnlockLoc, TSHandler); 967 } 968 } 969 if (FullyRemove) 970 FSet.removeLock(FactMan, Cp); 971 } 972 973 private: 974 void lock(FactSet &FSet, FactManager &FactMan, const CapabilityExpr &Cp, 975 LockKind kind, SourceLocation loc, 976 ThreadSafetyHandler *Handler) const { 977 if (const FactEntry *Fact = FSet.findLock(FactMan, Cp)) { 978 if (Handler) 979 Handler->handleDoubleLock(Cp.getKind(), Cp.toString(), Fact->loc(), 980 loc); 981 } else { 982 FSet.removeLock(FactMan, !Cp); 983 FSet.addLock(FactMan, 984 std::make_unique<LockableFactEntry>(Cp, kind, loc, Managed)); 985 } 986 } 987 988 void unlock(FactSet &FSet, FactManager &FactMan, const CapabilityExpr &Cp, 989 SourceLocation loc, ThreadSafetyHandler *Handler) const { 990 if (FSet.findLock(FactMan, Cp)) { 991 FSet.removeLock(FactMan, Cp); 992 FSet.addLock(FactMan, std::make_unique<LockableFactEntry>( 993 !Cp, LK_Exclusive, loc)); 994 } else if (Handler) { 995 SourceLocation PrevLoc; 996 if (const FactEntry *Neg = FSet.findLock(FactMan, !Cp)) 997 PrevLoc = Neg->loc(); 998 Handler->handleUnmatchedUnlock(Cp.getKind(), Cp.toString(), loc, PrevLoc); 999 } 1000 } 1001 }; 1002 1003 /// Class which implements the core thread safety analysis routines. 1004 class ThreadSafetyAnalyzer { 1005 friend class BuildLockset; 1006 friend class threadSafety::BeforeSet; 1007 1008 llvm::BumpPtrAllocator Bpa; 1009 threadSafety::til::MemRegionRef Arena; 1010 threadSafety::SExprBuilder SxBuilder; 1011 1012 ThreadSafetyHandler &Handler; 1013 const CXXMethodDecl *CurrentMethod; 1014 LocalVariableMap LocalVarMap; 1015 FactManager FactMan; 1016 std::vector<CFGBlockInfo> BlockInfo; 1017 1018 BeforeSet *GlobalBeforeSet; 1019 1020 public: 1021 ThreadSafetyAnalyzer(ThreadSafetyHandler &H, BeforeSet* Bset) 1022 : Arena(&Bpa), SxBuilder(Arena), Handler(H), GlobalBeforeSet(Bset) {} 1023 1024 bool inCurrentScope(const CapabilityExpr &CapE); 1025 1026 void addLock(FactSet &FSet, std::unique_ptr<FactEntry> Entry, 1027 bool ReqAttr = false); 1028 void removeLock(FactSet &FSet, const CapabilityExpr &CapE, 1029 SourceLocation UnlockLoc, bool FullyRemove, LockKind Kind); 1030 1031 template <typename AttrType> 1032 void getMutexIDs(CapExprSet &Mtxs, AttrType *Attr, const Expr *Exp, 1033 const NamedDecl *D, til::SExpr *Self = nullptr); 1034 1035 template <class AttrType> 1036 void getMutexIDs(CapExprSet &Mtxs, AttrType *Attr, const Expr *Exp, 1037 const NamedDecl *D, 1038 const CFGBlock *PredBlock, const CFGBlock *CurrBlock, 1039 Expr *BrE, bool Neg); 1040 1041 const CallExpr* getTrylockCallExpr(const Stmt *Cond, LocalVarContext C, 1042 bool &Negate); 1043 1044 void getEdgeLockset(FactSet &Result, const FactSet &ExitSet, 1045 const CFGBlock* PredBlock, 1046 const CFGBlock *CurrBlock); 1047 1048 bool join(const FactEntry &a, const FactEntry &b, bool CanModify); 1049 1050 void intersectAndWarn(FactSet &EntrySet, const FactSet &ExitSet, 1051 SourceLocation JoinLoc, LockErrorKind EntryLEK, 1052 LockErrorKind ExitLEK); 1053 1054 void intersectAndWarn(FactSet &EntrySet, const FactSet &ExitSet, 1055 SourceLocation JoinLoc, LockErrorKind LEK) { 1056 intersectAndWarn(EntrySet, ExitSet, JoinLoc, LEK, LEK); 1057 } 1058 1059 void runAnalysis(AnalysisDeclContext &AC); 1060 }; 1061 1062 } // namespace 1063 1064 /// Process acquired_before and acquired_after attributes on Vd. 1065 BeforeSet::BeforeInfo* BeforeSet::insertAttrExprs(const ValueDecl* Vd, 1066 ThreadSafetyAnalyzer& Analyzer) { 1067 // Create a new entry for Vd. 1068 BeforeInfo *Info = nullptr; 1069 { 1070 // Keep InfoPtr in its own scope in case BMap is modified later and the 1071 // reference becomes invalid. 1072 std::unique_ptr<BeforeInfo> &InfoPtr = BMap[Vd]; 1073 if (!InfoPtr) 1074 InfoPtr.reset(new BeforeInfo()); 1075 Info = InfoPtr.get(); 1076 } 1077 1078 for (const auto *At : Vd->attrs()) { 1079 switch (At->getKind()) { 1080 case attr::AcquiredBefore: { 1081 const auto *A = cast<AcquiredBeforeAttr>(At); 1082 1083 // Read exprs from the attribute, and add them to BeforeVect. 1084 for (const auto *Arg : A->args()) { 1085 CapabilityExpr Cp = 1086 Analyzer.SxBuilder.translateAttrExpr(Arg, nullptr); 1087 if (const ValueDecl *Cpvd = Cp.valueDecl()) { 1088 Info->Vect.push_back(Cpvd); 1089 const auto It = BMap.find(Cpvd); 1090 if (It == BMap.end()) 1091 insertAttrExprs(Cpvd, Analyzer); 1092 } 1093 } 1094 break; 1095 } 1096 case attr::AcquiredAfter: { 1097 const auto *A = cast<AcquiredAfterAttr>(At); 1098 1099 // Read exprs from the attribute, and add them to BeforeVect. 1100 for (const auto *Arg : A->args()) { 1101 CapabilityExpr Cp = 1102 Analyzer.SxBuilder.translateAttrExpr(Arg, nullptr); 1103 if (const ValueDecl *ArgVd = Cp.valueDecl()) { 1104 // Get entry for mutex listed in attribute 1105 BeforeInfo *ArgInfo = getBeforeInfoForDecl(ArgVd, Analyzer); 1106 ArgInfo->Vect.push_back(Vd); 1107 } 1108 } 1109 break; 1110 } 1111 default: 1112 break; 1113 } 1114 } 1115 1116 return Info; 1117 } 1118 1119 BeforeSet::BeforeInfo * 1120 BeforeSet::getBeforeInfoForDecl(const ValueDecl *Vd, 1121 ThreadSafetyAnalyzer &Analyzer) { 1122 auto It = BMap.find(Vd); 1123 BeforeInfo *Info = nullptr; 1124 if (It == BMap.end()) 1125 Info = insertAttrExprs(Vd, Analyzer); 1126 else 1127 Info = It->second.get(); 1128 assert(Info && "BMap contained nullptr?"); 1129 return Info; 1130 } 1131 1132 /// Return true if any mutexes in FSet are in the acquired_before set of Vd. 1133 void BeforeSet::checkBeforeAfter(const ValueDecl* StartVd, 1134 const FactSet& FSet, 1135 ThreadSafetyAnalyzer& Analyzer, 1136 SourceLocation Loc, StringRef CapKind) { 1137 SmallVector<BeforeInfo*, 8> InfoVect; 1138 1139 // Do a depth-first traversal of Vd. 1140 // Return true if there are cycles. 1141 std::function<bool (const ValueDecl*)> traverse = [&](const ValueDecl* Vd) { 1142 if (!Vd) 1143 return false; 1144 1145 BeforeSet::BeforeInfo *Info = getBeforeInfoForDecl(Vd, Analyzer); 1146 1147 if (Info->Visited == 1) 1148 return true; 1149 1150 if (Info->Visited == 2) 1151 return false; 1152 1153 if (Info->Vect.empty()) 1154 return false; 1155 1156 InfoVect.push_back(Info); 1157 Info->Visited = 1; 1158 for (const auto *Vdb : Info->Vect) { 1159 // Exclude mutexes in our immediate before set. 1160 if (FSet.containsMutexDecl(Analyzer.FactMan, Vdb)) { 1161 StringRef L1 = StartVd->getName(); 1162 StringRef L2 = Vdb->getName(); 1163 Analyzer.Handler.handleLockAcquiredBefore(CapKind, L1, L2, Loc); 1164 } 1165 // Transitively search other before sets, and warn on cycles. 1166 if (traverse(Vdb)) { 1167 if (CycMap.find(Vd) == CycMap.end()) { 1168 CycMap.insert(std::make_pair(Vd, true)); 1169 StringRef L1 = Vd->getName(); 1170 Analyzer.Handler.handleBeforeAfterCycle(L1, Vd->getLocation()); 1171 } 1172 } 1173 } 1174 Info->Visited = 2; 1175 return false; 1176 }; 1177 1178 traverse(StartVd); 1179 1180 for (auto *Info : InfoVect) 1181 Info->Visited = 0; 1182 } 1183 1184 /// Gets the value decl pointer from DeclRefExprs or MemberExprs. 1185 static const ValueDecl *getValueDecl(const Expr *Exp) { 1186 if (const auto *CE = dyn_cast<ImplicitCastExpr>(Exp)) 1187 return getValueDecl(CE->getSubExpr()); 1188 1189 if (const auto *DR = dyn_cast<DeclRefExpr>(Exp)) 1190 return DR->getDecl(); 1191 1192 if (const auto *ME = dyn_cast<MemberExpr>(Exp)) 1193 return ME->getMemberDecl(); 1194 1195 return nullptr; 1196 } 1197 1198 namespace { 1199 1200 template <typename Ty> 1201 class has_arg_iterator_range { 1202 using yes = char[1]; 1203 using no = char[2]; 1204 1205 template <typename Inner> 1206 static yes& test(Inner *I, decltype(I->args()) * = nullptr); 1207 1208 template <typename> 1209 static no& test(...); 1210 1211 public: 1212 static const bool value = sizeof(test<Ty>(nullptr)) == sizeof(yes); 1213 }; 1214 1215 } // namespace 1216 1217 bool ThreadSafetyAnalyzer::inCurrentScope(const CapabilityExpr &CapE) { 1218 const threadSafety::til::SExpr *SExp = CapE.sexpr(); 1219 assert(SExp && "Null expressions should be ignored"); 1220 1221 if (const auto *LP = dyn_cast<til::LiteralPtr>(SExp)) { 1222 const ValueDecl *VD = LP->clangDecl(); 1223 // Variables defined in a function are always inaccessible. 1224 if (!VD || !VD->isDefinedOutsideFunctionOrMethod()) 1225 return false; 1226 // For now we consider static class members to be inaccessible. 1227 if (isa<CXXRecordDecl>(VD->getDeclContext())) 1228 return false; 1229 // Global variables are always in scope. 1230 return true; 1231 } 1232 1233 // Members are in scope from methods of the same class. 1234 if (const auto *P = dyn_cast<til::Project>(SExp)) { 1235 if (!CurrentMethod) 1236 return false; 1237 const ValueDecl *VD = P->clangDecl(); 1238 return VD->getDeclContext() == CurrentMethod->getDeclContext(); 1239 } 1240 1241 return false; 1242 } 1243 1244 /// Add a new lock to the lockset, warning if the lock is already there. 1245 /// \param ReqAttr -- true if this is part of an initial Requires attribute. 1246 void ThreadSafetyAnalyzer::addLock(FactSet &FSet, 1247 std::unique_ptr<FactEntry> Entry, 1248 bool ReqAttr) { 1249 if (Entry->shouldIgnore()) 1250 return; 1251 1252 if (!ReqAttr && !Entry->negative()) { 1253 // look for the negative capability, and remove it from the fact set. 1254 CapabilityExpr NegC = !*Entry; 1255 const FactEntry *Nen = FSet.findLock(FactMan, NegC); 1256 if (Nen) { 1257 FSet.removeLock(FactMan, NegC); 1258 } 1259 else { 1260 if (inCurrentScope(*Entry) && !Entry->asserted()) 1261 Handler.handleNegativeNotHeld(Entry->getKind(), Entry->toString(), 1262 NegC.toString(), Entry->loc()); 1263 } 1264 } 1265 1266 // Check before/after constraints 1267 if (Handler.issueBetaWarnings() && 1268 !Entry->asserted() && !Entry->declared()) { 1269 GlobalBeforeSet->checkBeforeAfter(Entry->valueDecl(), FSet, *this, 1270 Entry->loc(), Entry->getKind()); 1271 } 1272 1273 // FIXME: Don't always warn when we have support for reentrant locks. 1274 if (const FactEntry *Cp = FSet.findLock(FactMan, *Entry)) { 1275 if (!Entry->asserted()) 1276 Cp->handleLock(FSet, FactMan, *Entry, Handler); 1277 } else { 1278 FSet.addLock(FactMan, std::move(Entry)); 1279 } 1280 } 1281 1282 /// Remove a lock from the lockset, warning if the lock is not there. 1283 /// \param UnlockLoc The source location of the unlock (only used in error msg) 1284 void ThreadSafetyAnalyzer::removeLock(FactSet &FSet, const CapabilityExpr &Cp, 1285 SourceLocation UnlockLoc, 1286 bool FullyRemove, LockKind ReceivedKind) { 1287 if (Cp.shouldIgnore()) 1288 return; 1289 1290 const FactEntry *LDat = FSet.findLock(FactMan, Cp); 1291 if (!LDat) { 1292 SourceLocation PrevLoc; 1293 if (const FactEntry *Neg = FSet.findLock(FactMan, !Cp)) 1294 PrevLoc = Neg->loc(); 1295 Handler.handleUnmatchedUnlock(Cp.getKind(), Cp.toString(), UnlockLoc, 1296 PrevLoc); 1297 return; 1298 } 1299 1300 // Generic lock removal doesn't care about lock kind mismatches, but 1301 // otherwise diagnose when the lock kinds are mismatched. 1302 if (ReceivedKind != LK_Generic && LDat->kind() != ReceivedKind) { 1303 Handler.handleIncorrectUnlockKind(Cp.getKind(), Cp.toString(), LDat->kind(), 1304 ReceivedKind, LDat->loc(), UnlockLoc); 1305 } 1306 1307 LDat->handleUnlock(FSet, FactMan, Cp, UnlockLoc, FullyRemove, Handler); 1308 } 1309 1310 /// Extract the list of mutexIDs from the attribute on an expression, 1311 /// and push them onto Mtxs, discarding any duplicates. 1312 template <typename AttrType> 1313 void ThreadSafetyAnalyzer::getMutexIDs(CapExprSet &Mtxs, AttrType *Attr, 1314 const Expr *Exp, const NamedDecl *D, 1315 til::SExpr *Self) { 1316 if (Attr->args_size() == 0) { 1317 // The mutex held is the "this" object. 1318 CapabilityExpr Cp = SxBuilder.translateAttrExpr(nullptr, D, Exp, Self); 1319 if (Cp.isInvalid()) { 1320 warnInvalidLock(Handler, nullptr, D, Exp, Cp.getKind()); 1321 return; 1322 } 1323 //else 1324 if (!Cp.shouldIgnore()) 1325 Mtxs.push_back_nodup(Cp); 1326 return; 1327 } 1328 1329 for (const auto *Arg : Attr->args()) { 1330 CapabilityExpr Cp = SxBuilder.translateAttrExpr(Arg, D, Exp, Self); 1331 if (Cp.isInvalid()) { 1332 warnInvalidLock(Handler, nullptr, D, Exp, Cp.getKind()); 1333 continue; 1334 } 1335 //else 1336 if (!Cp.shouldIgnore()) 1337 Mtxs.push_back_nodup(Cp); 1338 } 1339 } 1340 1341 /// Extract the list of mutexIDs from a trylock attribute. If the 1342 /// trylock applies to the given edge, then push them onto Mtxs, discarding 1343 /// any duplicates. 1344 template <class AttrType> 1345 void ThreadSafetyAnalyzer::getMutexIDs(CapExprSet &Mtxs, AttrType *Attr, 1346 const Expr *Exp, const NamedDecl *D, 1347 const CFGBlock *PredBlock, 1348 const CFGBlock *CurrBlock, 1349 Expr *BrE, bool Neg) { 1350 // Find out which branch has the lock 1351 bool branch = false; 1352 if (const auto *BLE = dyn_cast_or_null<CXXBoolLiteralExpr>(BrE)) 1353 branch = BLE->getValue(); 1354 else if (const auto *ILE = dyn_cast_or_null<IntegerLiteral>(BrE)) 1355 branch = ILE->getValue().getBoolValue(); 1356 1357 int branchnum = branch ? 0 : 1; 1358 if (Neg) 1359 branchnum = !branchnum; 1360 1361 // If we've taken the trylock branch, then add the lock 1362 int i = 0; 1363 for (CFGBlock::const_succ_iterator SI = PredBlock->succ_begin(), 1364 SE = PredBlock->succ_end(); SI != SE && i < 2; ++SI, ++i) { 1365 if (*SI == CurrBlock && i == branchnum) 1366 getMutexIDs(Mtxs, Attr, Exp, D); 1367 } 1368 } 1369 1370 static bool getStaticBooleanValue(Expr *E, bool &TCond) { 1371 if (isa<CXXNullPtrLiteralExpr>(E) || isa<GNUNullExpr>(E)) { 1372 TCond = false; 1373 return true; 1374 } else if (const auto *BLE = dyn_cast<CXXBoolLiteralExpr>(E)) { 1375 TCond = BLE->getValue(); 1376 return true; 1377 } else if (const auto *ILE = dyn_cast<IntegerLiteral>(E)) { 1378 TCond = ILE->getValue().getBoolValue(); 1379 return true; 1380 } else if (auto *CE = dyn_cast<ImplicitCastExpr>(E)) 1381 return getStaticBooleanValue(CE->getSubExpr(), TCond); 1382 return false; 1383 } 1384 1385 // If Cond can be traced back to a function call, return the call expression. 1386 // The negate variable should be called with false, and will be set to true 1387 // if the function call is negated, e.g. if (!mu.tryLock(...)) 1388 const CallExpr* ThreadSafetyAnalyzer::getTrylockCallExpr(const Stmt *Cond, 1389 LocalVarContext C, 1390 bool &Negate) { 1391 if (!Cond) 1392 return nullptr; 1393 1394 if (const auto *CallExp = dyn_cast<CallExpr>(Cond)) { 1395 if (CallExp->getBuiltinCallee() == Builtin::BI__builtin_expect) 1396 return getTrylockCallExpr(CallExp->getArg(0), C, Negate); 1397 return CallExp; 1398 } 1399 else if (const auto *PE = dyn_cast<ParenExpr>(Cond)) 1400 return getTrylockCallExpr(PE->getSubExpr(), C, Negate); 1401 else if (const auto *CE = dyn_cast<ImplicitCastExpr>(Cond)) 1402 return getTrylockCallExpr(CE->getSubExpr(), C, Negate); 1403 else if (const auto *FE = dyn_cast<FullExpr>(Cond)) 1404 return getTrylockCallExpr(FE->getSubExpr(), C, Negate); 1405 else if (const auto *DRE = dyn_cast<DeclRefExpr>(Cond)) { 1406 const Expr *E = LocalVarMap.lookupExpr(DRE->getDecl(), C); 1407 return getTrylockCallExpr(E, C, Negate); 1408 } 1409 else if (const auto *UOP = dyn_cast<UnaryOperator>(Cond)) { 1410 if (UOP->getOpcode() == UO_LNot) { 1411 Negate = !Negate; 1412 return getTrylockCallExpr(UOP->getSubExpr(), C, Negate); 1413 } 1414 return nullptr; 1415 } 1416 else if (const auto *BOP = dyn_cast<BinaryOperator>(Cond)) { 1417 if (BOP->getOpcode() == BO_EQ || BOP->getOpcode() == BO_NE) { 1418 if (BOP->getOpcode() == BO_NE) 1419 Negate = !Negate; 1420 1421 bool TCond = false; 1422 if (getStaticBooleanValue(BOP->getRHS(), TCond)) { 1423 if (!TCond) Negate = !Negate; 1424 return getTrylockCallExpr(BOP->getLHS(), C, Negate); 1425 } 1426 TCond = false; 1427 if (getStaticBooleanValue(BOP->getLHS(), TCond)) { 1428 if (!TCond) Negate = !Negate; 1429 return getTrylockCallExpr(BOP->getRHS(), C, Negate); 1430 } 1431 return nullptr; 1432 } 1433 if (BOP->getOpcode() == BO_LAnd) { 1434 // LHS must have been evaluated in a different block. 1435 return getTrylockCallExpr(BOP->getRHS(), C, Negate); 1436 } 1437 if (BOP->getOpcode() == BO_LOr) 1438 return getTrylockCallExpr(BOP->getRHS(), C, Negate); 1439 return nullptr; 1440 } else if (const auto *COP = dyn_cast<ConditionalOperator>(Cond)) { 1441 bool TCond, FCond; 1442 if (getStaticBooleanValue(COP->getTrueExpr(), TCond) && 1443 getStaticBooleanValue(COP->getFalseExpr(), FCond)) { 1444 if (TCond && !FCond) 1445 return getTrylockCallExpr(COP->getCond(), C, Negate); 1446 if (!TCond && FCond) { 1447 Negate = !Negate; 1448 return getTrylockCallExpr(COP->getCond(), C, Negate); 1449 } 1450 } 1451 } 1452 return nullptr; 1453 } 1454 1455 /// Find the lockset that holds on the edge between PredBlock 1456 /// and CurrBlock. The edge set is the exit set of PredBlock (passed 1457 /// as the ExitSet parameter) plus any trylocks, which are conditionally held. 1458 void ThreadSafetyAnalyzer::getEdgeLockset(FactSet& Result, 1459 const FactSet &ExitSet, 1460 const CFGBlock *PredBlock, 1461 const CFGBlock *CurrBlock) { 1462 Result = ExitSet; 1463 1464 const Stmt *Cond = PredBlock->getTerminatorCondition(); 1465 // We don't acquire try-locks on ?: branches, only when its result is used. 1466 if (!Cond || isa<ConditionalOperator>(PredBlock->getTerminatorStmt())) 1467 return; 1468 1469 bool Negate = false; 1470 const CFGBlockInfo *PredBlockInfo = &BlockInfo[PredBlock->getBlockID()]; 1471 const LocalVarContext &LVarCtx = PredBlockInfo->ExitContext; 1472 1473 const auto *Exp = getTrylockCallExpr(Cond, LVarCtx, Negate); 1474 if (!Exp) 1475 return; 1476 1477 auto *FunDecl = dyn_cast_or_null<NamedDecl>(Exp->getCalleeDecl()); 1478 if(!FunDecl || !FunDecl->hasAttrs()) 1479 return; 1480 1481 CapExprSet ExclusiveLocksToAdd; 1482 CapExprSet SharedLocksToAdd; 1483 1484 // If the condition is a call to a Trylock function, then grab the attributes 1485 for (const auto *Attr : FunDecl->attrs()) { 1486 switch (Attr->getKind()) { 1487 case attr::TryAcquireCapability: { 1488 auto *A = cast<TryAcquireCapabilityAttr>(Attr); 1489 getMutexIDs(A->isShared() ? SharedLocksToAdd : ExclusiveLocksToAdd, A, 1490 Exp, FunDecl, PredBlock, CurrBlock, A->getSuccessValue(), 1491 Negate); 1492 break; 1493 }; 1494 case attr::ExclusiveTrylockFunction: { 1495 const auto *A = cast<ExclusiveTrylockFunctionAttr>(Attr); 1496 getMutexIDs(ExclusiveLocksToAdd, A, Exp, FunDecl, PredBlock, CurrBlock, 1497 A->getSuccessValue(), Negate); 1498 break; 1499 } 1500 case attr::SharedTrylockFunction: { 1501 const auto *A = cast<SharedTrylockFunctionAttr>(Attr); 1502 getMutexIDs(SharedLocksToAdd, A, Exp, FunDecl, PredBlock, CurrBlock, 1503 A->getSuccessValue(), Negate); 1504 break; 1505 } 1506 default: 1507 break; 1508 } 1509 } 1510 1511 // Add and remove locks. 1512 SourceLocation Loc = Exp->getExprLoc(); 1513 for (const auto &ExclusiveLockToAdd : ExclusiveLocksToAdd) 1514 addLock(Result, std::make_unique<LockableFactEntry>(ExclusiveLockToAdd, 1515 LK_Exclusive, Loc)); 1516 for (const auto &SharedLockToAdd : SharedLocksToAdd) 1517 addLock(Result, std::make_unique<LockableFactEntry>(SharedLockToAdd, 1518 LK_Shared, Loc)); 1519 } 1520 1521 namespace { 1522 1523 /// We use this class to visit different types of expressions in 1524 /// CFGBlocks, and build up the lockset. 1525 /// An expression may cause us to add or remove locks from the lockset, or else 1526 /// output error messages related to missing locks. 1527 /// FIXME: In future, we may be able to not inherit from a visitor. 1528 class BuildLockset : public ConstStmtVisitor<BuildLockset> { 1529 friend class ThreadSafetyAnalyzer; 1530 1531 ThreadSafetyAnalyzer *Analyzer; 1532 FactSet FSet; 1533 /// Maps constructed objects to `this` placeholder prior to initialization. 1534 llvm::SmallDenseMap<const Expr *, til::LiteralPtr *> ConstructedObjects; 1535 LocalVariableMap::Context LVarCtx; 1536 unsigned CtxIndex; 1537 1538 // helper functions 1539 void warnIfMutexNotHeld(const NamedDecl *D, const Expr *Exp, AccessKind AK, 1540 Expr *MutexExp, ProtectedOperationKind POK, 1541 til::LiteralPtr *Self, SourceLocation Loc); 1542 void warnIfMutexHeld(const NamedDecl *D, const Expr *Exp, Expr *MutexExp, 1543 til::LiteralPtr *Self, SourceLocation Loc); 1544 1545 void checkAccess(const Expr *Exp, AccessKind AK, 1546 ProtectedOperationKind POK = POK_VarAccess); 1547 void checkPtAccess(const Expr *Exp, AccessKind AK, 1548 ProtectedOperationKind POK = POK_VarAccess); 1549 1550 void handleCall(const Expr *Exp, const NamedDecl *D, 1551 til::LiteralPtr *Self = nullptr, 1552 SourceLocation Loc = SourceLocation()); 1553 void examineArguments(const FunctionDecl *FD, 1554 CallExpr::const_arg_iterator ArgBegin, 1555 CallExpr::const_arg_iterator ArgEnd, 1556 bool SkipFirstParam = false); 1557 1558 public: 1559 BuildLockset(ThreadSafetyAnalyzer *Anlzr, CFGBlockInfo &Info) 1560 : ConstStmtVisitor<BuildLockset>(), Analyzer(Anlzr), FSet(Info.EntrySet), 1561 LVarCtx(Info.EntryContext), CtxIndex(Info.EntryIndex) {} 1562 1563 void VisitUnaryOperator(const UnaryOperator *UO); 1564 void VisitBinaryOperator(const BinaryOperator *BO); 1565 void VisitCastExpr(const CastExpr *CE); 1566 void VisitCallExpr(const CallExpr *Exp); 1567 void VisitCXXConstructExpr(const CXXConstructExpr *Exp); 1568 void VisitDeclStmt(const DeclStmt *S); 1569 void VisitMaterializeTemporaryExpr(const MaterializeTemporaryExpr *Exp); 1570 }; 1571 1572 } // namespace 1573 1574 /// Warn if the LSet does not contain a lock sufficient to protect access 1575 /// of at least the passed in AccessKind. 1576 void BuildLockset::warnIfMutexNotHeld(const NamedDecl *D, const Expr *Exp, 1577 AccessKind AK, Expr *MutexExp, 1578 ProtectedOperationKind POK, 1579 til::LiteralPtr *Self, 1580 SourceLocation Loc) { 1581 LockKind LK = getLockKindFromAccessKind(AK); 1582 1583 CapabilityExpr Cp = 1584 Analyzer->SxBuilder.translateAttrExpr(MutexExp, D, Exp, Self); 1585 if (Cp.isInvalid()) { 1586 warnInvalidLock(Analyzer->Handler, MutexExp, D, Exp, Cp.getKind()); 1587 return; 1588 } else if (Cp.shouldIgnore()) { 1589 return; 1590 } 1591 1592 if (Cp.negative()) { 1593 // Negative capabilities act like locks excluded 1594 const FactEntry *LDat = FSet.findLock(Analyzer->FactMan, !Cp); 1595 if (LDat) { 1596 Analyzer->Handler.handleFunExcludesLock( 1597 Cp.getKind(), D->getNameAsString(), (!Cp).toString(), Loc); 1598 return; 1599 } 1600 1601 // If this does not refer to a negative capability in the same class, 1602 // then stop here. 1603 if (!Analyzer->inCurrentScope(Cp)) 1604 return; 1605 1606 // Otherwise the negative requirement must be propagated to the caller. 1607 LDat = FSet.findLock(Analyzer->FactMan, Cp); 1608 if (!LDat) { 1609 Analyzer->Handler.handleNegativeNotHeld(D, Cp.toString(), Loc); 1610 } 1611 return; 1612 } 1613 1614 const FactEntry *LDat = FSet.findLockUniv(Analyzer->FactMan, Cp); 1615 bool NoError = true; 1616 if (!LDat) { 1617 // No exact match found. Look for a partial match. 1618 LDat = FSet.findPartialMatch(Analyzer->FactMan, Cp); 1619 if (LDat) { 1620 // Warn that there's no precise match. 1621 std::string PartMatchStr = LDat->toString(); 1622 StringRef PartMatchName(PartMatchStr); 1623 Analyzer->Handler.handleMutexNotHeld(Cp.getKind(), D, POK, Cp.toString(), 1624 LK, Loc, &PartMatchName); 1625 } else { 1626 // Warn that there's no match at all. 1627 Analyzer->Handler.handleMutexNotHeld(Cp.getKind(), D, POK, Cp.toString(), 1628 LK, Loc); 1629 } 1630 NoError = false; 1631 } 1632 // Make sure the mutex we found is the right kind. 1633 if (NoError && LDat && !LDat->isAtLeast(LK)) { 1634 Analyzer->Handler.handleMutexNotHeld(Cp.getKind(), D, POK, Cp.toString(), 1635 LK, Loc); 1636 } 1637 } 1638 1639 /// Warn if the LSet contains the given lock. 1640 void BuildLockset::warnIfMutexHeld(const NamedDecl *D, const Expr *Exp, 1641 Expr *MutexExp, til::LiteralPtr *Self, 1642 SourceLocation Loc) { 1643 CapabilityExpr Cp = 1644 Analyzer->SxBuilder.translateAttrExpr(MutexExp, D, Exp, Self); 1645 if (Cp.isInvalid()) { 1646 warnInvalidLock(Analyzer->Handler, MutexExp, D, Exp, Cp.getKind()); 1647 return; 1648 } else if (Cp.shouldIgnore()) { 1649 return; 1650 } 1651 1652 const FactEntry *LDat = FSet.findLock(Analyzer->FactMan, Cp); 1653 if (LDat) { 1654 Analyzer->Handler.handleFunExcludesLock(Cp.getKind(), D->getNameAsString(), 1655 Cp.toString(), Loc); 1656 } 1657 } 1658 1659 /// Checks guarded_by and pt_guarded_by attributes. 1660 /// Whenever we identify an access (read or write) to a DeclRefExpr that is 1661 /// marked with guarded_by, we must ensure the appropriate mutexes are held. 1662 /// Similarly, we check if the access is to an expression that dereferences 1663 /// a pointer marked with pt_guarded_by. 1664 void BuildLockset::checkAccess(const Expr *Exp, AccessKind AK, 1665 ProtectedOperationKind POK) { 1666 Exp = Exp->IgnoreImplicit()->IgnoreParenCasts(); 1667 1668 SourceLocation Loc = Exp->getExprLoc(); 1669 1670 // Local variables of reference type cannot be re-assigned; 1671 // map them to their initializer. 1672 while (const auto *DRE = dyn_cast<DeclRefExpr>(Exp)) { 1673 const auto *VD = dyn_cast<VarDecl>(DRE->getDecl()->getCanonicalDecl()); 1674 if (VD && VD->isLocalVarDecl() && VD->getType()->isReferenceType()) { 1675 if (const auto *E = VD->getInit()) { 1676 // Guard against self-initialization. e.g., int &i = i; 1677 if (E == Exp) 1678 break; 1679 Exp = E; 1680 continue; 1681 } 1682 } 1683 break; 1684 } 1685 1686 if (const auto *UO = dyn_cast<UnaryOperator>(Exp)) { 1687 // For dereferences 1688 if (UO->getOpcode() == UO_Deref) 1689 checkPtAccess(UO->getSubExpr(), AK, POK); 1690 return; 1691 } 1692 1693 if (const auto *BO = dyn_cast<BinaryOperator>(Exp)) { 1694 switch (BO->getOpcode()) { 1695 case BO_PtrMemD: // .* 1696 return checkAccess(BO->getLHS(), AK, POK); 1697 case BO_PtrMemI: // ->* 1698 return checkPtAccess(BO->getLHS(), AK, POK); 1699 default: 1700 return; 1701 } 1702 } 1703 1704 if (const auto *AE = dyn_cast<ArraySubscriptExpr>(Exp)) { 1705 checkPtAccess(AE->getLHS(), AK, POK); 1706 return; 1707 } 1708 1709 if (const auto *ME = dyn_cast<MemberExpr>(Exp)) { 1710 if (ME->isArrow()) 1711 checkPtAccess(ME->getBase(), AK, POK); 1712 else 1713 checkAccess(ME->getBase(), AK, POK); 1714 } 1715 1716 const ValueDecl *D = getValueDecl(Exp); 1717 if (!D || !D->hasAttrs()) 1718 return; 1719 1720 if (D->hasAttr<GuardedVarAttr>() && FSet.isEmpty(Analyzer->FactMan)) { 1721 Analyzer->Handler.handleNoMutexHeld(D, POK, AK, Loc); 1722 } 1723 1724 for (const auto *I : D->specific_attrs<GuardedByAttr>()) 1725 warnIfMutexNotHeld(D, Exp, AK, I->getArg(), POK, nullptr, Loc); 1726 } 1727 1728 /// Checks pt_guarded_by and pt_guarded_var attributes. 1729 /// POK is the same operationKind that was passed to checkAccess. 1730 void BuildLockset::checkPtAccess(const Expr *Exp, AccessKind AK, 1731 ProtectedOperationKind POK) { 1732 while (true) { 1733 if (const auto *PE = dyn_cast<ParenExpr>(Exp)) { 1734 Exp = PE->getSubExpr(); 1735 continue; 1736 } 1737 if (const auto *CE = dyn_cast<CastExpr>(Exp)) { 1738 if (CE->getCastKind() == CK_ArrayToPointerDecay) { 1739 // If it's an actual array, and not a pointer, then it's elements 1740 // are protected by GUARDED_BY, not PT_GUARDED_BY; 1741 checkAccess(CE->getSubExpr(), AK, POK); 1742 return; 1743 } 1744 Exp = CE->getSubExpr(); 1745 continue; 1746 } 1747 break; 1748 } 1749 1750 // Pass by reference warnings are under a different flag. 1751 ProtectedOperationKind PtPOK = POK_VarDereference; 1752 if (POK == POK_PassByRef) PtPOK = POK_PtPassByRef; 1753 1754 const ValueDecl *D = getValueDecl(Exp); 1755 if (!D || !D->hasAttrs()) 1756 return; 1757 1758 if (D->hasAttr<PtGuardedVarAttr>() && FSet.isEmpty(Analyzer->FactMan)) 1759 Analyzer->Handler.handleNoMutexHeld(D, PtPOK, AK, Exp->getExprLoc()); 1760 1761 for (auto const *I : D->specific_attrs<PtGuardedByAttr>()) 1762 warnIfMutexNotHeld(D, Exp, AK, I->getArg(), PtPOK, nullptr, 1763 Exp->getExprLoc()); 1764 } 1765 1766 /// Process a function call, method call, constructor call, 1767 /// or destructor call. This involves looking at the attributes on the 1768 /// corresponding function/method/constructor/destructor, issuing warnings, 1769 /// and updating the locksets accordingly. 1770 /// 1771 /// FIXME: For classes annotated with one of the guarded annotations, we need 1772 /// to treat const method calls as reads and non-const method calls as writes, 1773 /// and check that the appropriate locks are held. Non-const method calls with 1774 /// the same signature as const method calls can be also treated as reads. 1775 /// 1776 /// \param Exp The call expression. 1777 /// \param D The callee declaration. 1778 /// \param Self If \p Exp = nullptr, the implicit this argument. 1779 /// \param Loc If \p Exp = nullptr, the location. 1780 void BuildLockset::handleCall(const Expr *Exp, const NamedDecl *D, 1781 til::LiteralPtr *Self, SourceLocation Loc) { 1782 CapExprSet ExclusiveLocksToAdd, SharedLocksToAdd; 1783 CapExprSet ExclusiveLocksToRemove, SharedLocksToRemove, GenericLocksToRemove; 1784 CapExprSet ScopedReqsAndExcludes; 1785 1786 // Figure out if we're constructing an object of scoped lockable class 1787 CapabilityExpr Scp; 1788 if (Exp) { 1789 assert(!Self); 1790 const auto *TagT = Exp->getType()->getAs<TagType>(); 1791 if (TagT && Exp->isPRValue()) { 1792 std::pair<til::LiteralPtr *, StringRef> Placeholder = 1793 Analyzer->SxBuilder.createThisPlaceholder(Exp); 1794 [[maybe_unused]] auto inserted = 1795 ConstructedObjects.insert({Exp, Placeholder.first}); 1796 assert(inserted.second && "Are we visiting the same expression again?"); 1797 if (isa<CXXConstructExpr>(Exp)) 1798 Self = Placeholder.first; 1799 if (TagT->getDecl()->hasAttr<ScopedLockableAttr>()) 1800 Scp = CapabilityExpr(Placeholder.first, Placeholder.second, false); 1801 } 1802 1803 assert(Loc.isInvalid()); 1804 Loc = Exp->getExprLoc(); 1805 } 1806 1807 for(const Attr *At : D->attrs()) { 1808 switch (At->getKind()) { 1809 // When we encounter a lock function, we need to add the lock to our 1810 // lockset. 1811 case attr::AcquireCapability: { 1812 const auto *A = cast<AcquireCapabilityAttr>(At); 1813 Analyzer->getMutexIDs(A->isShared() ? SharedLocksToAdd 1814 : ExclusiveLocksToAdd, 1815 A, Exp, D, Self); 1816 break; 1817 } 1818 1819 // An assert will add a lock to the lockset, but will not generate 1820 // a warning if it is already there, and will not generate a warning 1821 // if it is not removed. 1822 case attr::AssertExclusiveLock: { 1823 const auto *A = cast<AssertExclusiveLockAttr>(At); 1824 1825 CapExprSet AssertLocks; 1826 Analyzer->getMutexIDs(AssertLocks, A, Exp, D, Self); 1827 for (const auto &AssertLock : AssertLocks) 1828 Analyzer->addLock( 1829 FSet, std::make_unique<LockableFactEntry>( 1830 AssertLock, LK_Exclusive, Loc, FactEntry::Asserted)); 1831 break; 1832 } 1833 case attr::AssertSharedLock: { 1834 const auto *A = cast<AssertSharedLockAttr>(At); 1835 1836 CapExprSet AssertLocks; 1837 Analyzer->getMutexIDs(AssertLocks, A, Exp, D, Self); 1838 for (const auto &AssertLock : AssertLocks) 1839 Analyzer->addLock( 1840 FSet, std::make_unique<LockableFactEntry>( 1841 AssertLock, LK_Shared, Loc, FactEntry::Asserted)); 1842 break; 1843 } 1844 1845 case attr::AssertCapability: { 1846 const auto *A = cast<AssertCapabilityAttr>(At); 1847 CapExprSet AssertLocks; 1848 Analyzer->getMutexIDs(AssertLocks, A, Exp, D, Self); 1849 for (const auto &AssertLock : AssertLocks) 1850 Analyzer->addLock(FSet, std::make_unique<LockableFactEntry>( 1851 AssertLock, 1852 A->isShared() ? LK_Shared : LK_Exclusive, 1853 Loc, FactEntry::Asserted)); 1854 break; 1855 } 1856 1857 // When we encounter an unlock function, we need to remove unlocked 1858 // mutexes from the lockset, and flag a warning if they are not there. 1859 case attr::ReleaseCapability: { 1860 const auto *A = cast<ReleaseCapabilityAttr>(At); 1861 if (A->isGeneric()) 1862 Analyzer->getMutexIDs(GenericLocksToRemove, A, Exp, D, Self); 1863 else if (A->isShared()) 1864 Analyzer->getMutexIDs(SharedLocksToRemove, A, Exp, D, Self); 1865 else 1866 Analyzer->getMutexIDs(ExclusiveLocksToRemove, A, Exp, D, Self); 1867 break; 1868 } 1869 1870 case attr::RequiresCapability: { 1871 const auto *A = cast<RequiresCapabilityAttr>(At); 1872 for (auto *Arg : A->args()) { 1873 warnIfMutexNotHeld(D, Exp, A->isShared() ? AK_Read : AK_Written, Arg, 1874 POK_FunctionCall, Self, Loc); 1875 // use for adopting a lock 1876 if (!Scp.shouldIgnore()) 1877 Analyzer->getMutexIDs(ScopedReqsAndExcludes, A, Exp, D, Self); 1878 } 1879 break; 1880 } 1881 1882 case attr::LocksExcluded: { 1883 const auto *A = cast<LocksExcludedAttr>(At); 1884 for (auto *Arg : A->args()) { 1885 warnIfMutexHeld(D, Exp, Arg, Self, Loc); 1886 // use for deferring a lock 1887 if (!Scp.shouldIgnore()) 1888 Analyzer->getMutexIDs(ScopedReqsAndExcludes, A, Exp, D, Self); 1889 } 1890 break; 1891 } 1892 1893 // Ignore attributes unrelated to thread-safety 1894 default: 1895 break; 1896 } 1897 } 1898 1899 // Remove locks first to allow lock upgrading/downgrading. 1900 // FIXME -- should only fully remove if the attribute refers to 'this'. 1901 bool Dtor = isa<CXXDestructorDecl>(D); 1902 for (const auto &M : ExclusiveLocksToRemove) 1903 Analyzer->removeLock(FSet, M, Loc, Dtor, LK_Exclusive); 1904 for (const auto &M : SharedLocksToRemove) 1905 Analyzer->removeLock(FSet, M, Loc, Dtor, LK_Shared); 1906 for (const auto &M : GenericLocksToRemove) 1907 Analyzer->removeLock(FSet, M, Loc, Dtor, LK_Generic); 1908 1909 // Add locks. 1910 FactEntry::SourceKind Source = 1911 !Scp.shouldIgnore() ? FactEntry::Managed : FactEntry::Acquired; 1912 for (const auto &M : ExclusiveLocksToAdd) 1913 Analyzer->addLock(FSet, std::make_unique<LockableFactEntry>(M, LK_Exclusive, 1914 Loc, Source)); 1915 for (const auto &M : SharedLocksToAdd) 1916 Analyzer->addLock( 1917 FSet, std::make_unique<LockableFactEntry>(M, LK_Shared, Loc, Source)); 1918 1919 if (!Scp.shouldIgnore()) { 1920 // Add the managing object as a dummy mutex, mapped to the underlying mutex. 1921 auto ScopedEntry = std::make_unique<ScopedLockableFactEntry>(Scp, Loc); 1922 for (const auto &M : ExclusiveLocksToAdd) 1923 ScopedEntry->addLock(M); 1924 for (const auto &M : SharedLocksToAdd) 1925 ScopedEntry->addLock(M); 1926 for (const auto &M : ScopedReqsAndExcludes) 1927 ScopedEntry->addLock(M); 1928 for (const auto &M : ExclusiveLocksToRemove) 1929 ScopedEntry->addExclusiveUnlock(M); 1930 for (const auto &M : SharedLocksToRemove) 1931 ScopedEntry->addSharedUnlock(M); 1932 Analyzer->addLock(FSet, std::move(ScopedEntry)); 1933 } 1934 } 1935 1936 /// For unary operations which read and write a variable, we need to 1937 /// check whether we hold any required mutexes. Reads are checked in 1938 /// VisitCastExpr. 1939 void BuildLockset::VisitUnaryOperator(const UnaryOperator *UO) { 1940 switch (UO->getOpcode()) { 1941 case UO_PostDec: 1942 case UO_PostInc: 1943 case UO_PreDec: 1944 case UO_PreInc: 1945 checkAccess(UO->getSubExpr(), AK_Written); 1946 break; 1947 default: 1948 break; 1949 } 1950 } 1951 1952 /// For binary operations which assign to a variable (writes), we need to check 1953 /// whether we hold any required mutexes. 1954 /// FIXME: Deal with non-primitive types. 1955 void BuildLockset::VisitBinaryOperator(const BinaryOperator *BO) { 1956 if (!BO->isAssignmentOp()) 1957 return; 1958 1959 // adjust the context 1960 LVarCtx = Analyzer->LocalVarMap.getNextContext(CtxIndex, BO, LVarCtx); 1961 1962 checkAccess(BO->getLHS(), AK_Written); 1963 } 1964 1965 /// Whenever we do an LValue to Rvalue cast, we are reading a variable and 1966 /// need to ensure we hold any required mutexes. 1967 /// FIXME: Deal with non-primitive types. 1968 void BuildLockset::VisitCastExpr(const CastExpr *CE) { 1969 if (CE->getCastKind() != CK_LValueToRValue) 1970 return; 1971 checkAccess(CE->getSubExpr(), AK_Read); 1972 } 1973 1974 void BuildLockset::examineArguments(const FunctionDecl *FD, 1975 CallExpr::const_arg_iterator ArgBegin, 1976 CallExpr::const_arg_iterator ArgEnd, 1977 bool SkipFirstParam) { 1978 // Currently we can't do anything if we don't know the function declaration. 1979 if (!FD) 1980 return; 1981 1982 // NO_THREAD_SAFETY_ANALYSIS does double duty here. Normally it 1983 // only turns off checking within the body of a function, but we also 1984 // use it to turn off checking in arguments to the function. This 1985 // could result in some false negatives, but the alternative is to 1986 // create yet another attribute. 1987 if (FD->hasAttr<NoThreadSafetyAnalysisAttr>()) 1988 return; 1989 1990 const ArrayRef<ParmVarDecl *> Params = FD->parameters(); 1991 auto Param = Params.begin(); 1992 if (SkipFirstParam) 1993 ++Param; 1994 1995 // There can be default arguments, so we stop when one iterator is at end(). 1996 for (auto Arg = ArgBegin; Param != Params.end() && Arg != ArgEnd; 1997 ++Param, ++Arg) { 1998 QualType Qt = (*Param)->getType(); 1999 if (Qt->isReferenceType()) 2000 checkAccess(*Arg, AK_Read, POK_PassByRef); 2001 } 2002 } 2003 2004 void BuildLockset::VisitCallExpr(const CallExpr *Exp) { 2005 if (const auto *CE = dyn_cast<CXXMemberCallExpr>(Exp)) { 2006 const auto *ME = dyn_cast<MemberExpr>(CE->getCallee()); 2007 // ME can be null when calling a method pointer 2008 const CXXMethodDecl *MD = CE->getMethodDecl(); 2009 2010 if (ME && MD) { 2011 if (ME->isArrow()) { 2012 // Should perhaps be AK_Written if !MD->isConst(). 2013 checkPtAccess(CE->getImplicitObjectArgument(), AK_Read); 2014 } else { 2015 // Should perhaps be AK_Written if !MD->isConst(). 2016 checkAccess(CE->getImplicitObjectArgument(), AK_Read); 2017 } 2018 } 2019 2020 examineArguments(CE->getDirectCallee(), CE->arg_begin(), CE->arg_end()); 2021 } else if (const auto *OE = dyn_cast<CXXOperatorCallExpr>(Exp)) { 2022 OverloadedOperatorKind OEop = OE->getOperator(); 2023 switch (OEop) { 2024 case OO_Equal: 2025 case OO_PlusEqual: 2026 case OO_MinusEqual: 2027 case OO_StarEqual: 2028 case OO_SlashEqual: 2029 case OO_PercentEqual: 2030 case OO_CaretEqual: 2031 case OO_AmpEqual: 2032 case OO_PipeEqual: 2033 case OO_LessLessEqual: 2034 case OO_GreaterGreaterEqual: 2035 checkAccess(OE->getArg(1), AK_Read); 2036 [[fallthrough]]; 2037 case OO_PlusPlus: 2038 case OO_MinusMinus: 2039 checkAccess(OE->getArg(0), AK_Written); 2040 break; 2041 case OO_Star: 2042 case OO_ArrowStar: 2043 case OO_Arrow: 2044 case OO_Subscript: 2045 if (!(OEop == OO_Star && OE->getNumArgs() > 1)) { 2046 // Grrr. operator* can be multiplication... 2047 checkPtAccess(OE->getArg(0), AK_Read); 2048 } 2049 [[fallthrough]]; 2050 default: { 2051 // TODO: get rid of this, and rely on pass-by-ref instead. 2052 const Expr *Obj = OE->getArg(0); 2053 checkAccess(Obj, AK_Read); 2054 // Check the remaining arguments. For method operators, the first 2055 // argument is the implicit self argument, and doesn't appear in the 2056 // FunctionDecl, but for non-methods it does. 2057 const FunctionDecl *FD = OE->getDirectCallee(); 2058 examineArguments(FD, std::next(OE->arg_begin()), OE->arg_end(), 2059 /*SkipFirstParam*/ !isa<CXXMethodDecl>(FD)); 2060 break; 2061 } 2062 } 2063 } else { 2064 examineArguments(Exp->getDirectCallee(), Exp->arg_begin(), Exp->arg_end()); 2065 } 2066 2067 auto *D = dyn_cast_or_null<NamedDecl>(Exp->getCalleeDecl()); 2068 if(!D || !D->hasAttrs()) 2069 return; 2070 handleCall(Exp, D); 2071 } 2072 2073 void BuildLockset::VisitCXXConstructExpr(const CXXConstructExpr *Exp) { 2074 const CXXConstructorDecl *D = Exp->getConstructor(); 2075 if (D && D->isCopyConstructor()) { 2076 const Expr* Source = Exp->getArg(0); 2077 checkAccess(Source, AK_Read); 2078 } else { 2079 examineArguments(D, Exp->arg_begin(), Exp->arg_end()); 2080 } 2081 if (D && D->hasAttrs()) 2082 handleCall(Exp, D); 2083 } 2084 2085 static const Expr *UnpackConstruction(const Expr *E) { 2086 if (auto *CE = dyn_cast<CastExpr>(E)) 2087 if (CE->getCastKind() == CK_NoOp) 2088 E = CE->getSubExpr()->IgnoreParens(); 2089 if (auto *CE = dyn_cast<CastExpr>(E)) 2090 if (CE->getCastKind() == CK_ConstructorConversion || 2091 CE->getCastKind() == CK_UserDefinedConversion) 2092 E = CE->getSubExpr(); 2093 if (auto *BTE = dyn_cast<CXXBindTemporaryExpr>(E)) 2094 E = BTE->getSubExpr(); 2095 return E; 2096 } 2097 2098 void BuildLockset::VisitDeclStmt(const DeclStmt *S) { 2099 // adjust the context 2100 LVarCtx = Analyzer->LocalVarMap.getNextContext(CtxIndex, S, LVarCtx); 2101 2102 for (auto *D : S->getDeclGroup()) { 2103 if (auto *VD = dyn_cast_or_null<VarDecl>(D)) { 2104 const Expr *E = VD->getInit(); 2105 if (!E) 2106 continue; 2107 E = E->IgnoreParens(); 2108 2109 // handle constructors that involve temporaries 2110 if (auto *EWC = dyn_cast<ExprWithCleanups>(E)) 2111 E = EWC->getSubExpr()->IgnoreParens(); 2112 E = UnpackConstruction(E); 2113 2114 if (auto Object = ConstructedObjects.find(E); 2115 Object != ConstructedObjects.end()) { 2116 Object->second->setClangDecl(VD); 2117 ConstructedObjects.erase(Object); 2118 } 2119 } 2120 } 2121 } 2122 2123 void BuildLockset::VisitMaterializeTemporaryExpr( 2124 const MaterializeTemporaryExpr *Exp) { 2125 if (const ValueDecl *ExtD = Exp->getExtendingDecl()) { 2126 if (auto Object = 2127 ConstructedObjects.find(UnpackConstruction(Exp->getSubExpr())); 2128 Object != ConstructedObjects.end()) { 2129 Object->second->setClangDecl(ExtD); 2130 ConstructedObjects.erase(Object); 2131 } 2132 } 2133 } 2134 2135 /// Given two facts merging on a join point, possibly warn and decide whether to 2136 /// keep or replace. 2137 /// 2138 /// \param CanModify Whether we can replace \p A by \p B. 2139 /// \return false if we should keep \p A, true if we should take \p B. 2140 bool ThreadSafetyAnalyzer::join(const FactEntry &A, const FactEntry &B, 2141 bool CanModify) { 2142 if (A.kind() != B.kind()) { 2143 // For managed capabilities, the destructor should unlock in the right mode 2144 // anyway. For asserted capabilities no unlocking is needed. 2145 if ((A.managed() || A.asserted()) && (B.managed() || B.asserted())) { 2146 // The shared capability subsumes the exclusive capability, if possible. 2147 bool ShouldTakeB = B.kind() == LK_Shared; 2148 if (CanModify || !ShouldTakeB) 2149 return ShouldTakeB; 2150 } 2151 Handler.handleExclusiveAndShared(B.getKind(), B.toString(), B.loc(), 2152 A.loc()); 2153 // Take the exclusive capability to reduce further warnings. 2154 return CanModify && B.kind() == LK_Exclusive; 2155 } else { 2156 // The non-asserted capability is the one we want to track. 2157 return CanModify && A.asserted() && !B.asserted(); 2158 } 2159 } 2160 2161 /// Compute the intersection of two locksets and issue warnings for any 2162 /// locks in the symmetric difference. 2163 /// 2164 /// This function is used at a merge point in the CFG when comparing the lockset 2165 /// of each branch being merged. For example, given the following sequence: 2166 /// A; if () then B; else C; D; we need to check that the lockset after B and C 2167 /// are the same. In the event of a difference, we use the intersection of these 2168 /// two locksets at the start of D. 2169 /// 2170 /// \param EntrySet A lockset for entry into a (possibly new) block. 2171 /// \param ExitSet The lockset on exiting a preceding block. 2172 /// \param JoinLoc The location of the join point for error reporting 2173 /// \param EntryLEK The warning if a mutex is missing from \p EntrySet. 2174 /// \param ExitLEK The warning if a mutex is missing from \p ExitSet. 2175 void ThreadSafetyAnalyzer::intersectAndWarn(FactSet &EntrySet, 2176 const FactSet &ExitSet, 2177 SourceLocation JoinLoc, 2178 LockErrorKind EntryLEK, 2179 LockErrorKind ExitLEK) { 2180 FactSet EntrySetOrig = EntrySet; 2181 2182 // Find locks in ExitSet that conflict or are not in EntrySet, and warn. 2183 for (const auto &Fact : ExitSet) { 2184 const FactEntry &ExitFact = FactMan[Fact]; 2185 2186 FactSet::iterator EntryIt = EntrySet.findLockIter(FactMan, ExitFact); 2187 if (EntryIt != EntrySet.end()) { 2188 if (join(FactMan[*EntryIt], ExitFact, 2189 EntryLEK != LEK_LockedSomeLoopIterations)) 2190 *EntryIt = Fact; 2191 } else if (!ExitFact.managed()) { 2192 ExitFact.handleRemovalFromIntersection(ExitSet, FactMan, JoinLoc, 2193 EntryLEK, Handler); 2194 } 2195 } 2196 2197 // Find locks in EntrySet that are not in ExitSet, and remove them. 2198 for (const auto &Fact : EntrySetOrig) { 2199 const FactEntry *EntryFact = &FactMan[Fact]; 2200 const FactEntry *ExitFact = ExitSet.findLock(FactMan, *EntryFact); 2201 2202 if (!ExitFact) { 2203 if (!EntryFact->managed() || ExitLEK == LEK_LockedSomeLoopIterations) 2204 EntryFact->handleRemovalFromIntersection(EntrySetOrig, FactMan, JoinLoc, 2205 ExitLEK, Handler); 2206 if (ExitLEK == LEK_LockedSomePredecessors) 2207 EntrySet.removeLock(FactMan, *EntryFact); 2208 } 2209 } 2210 } 2211 2212 // Return true if block B never continues to its successors. 2213 static bool neverReturns(const CFGBlock *B) { 2214 if (B->hasNoReturnElement()) 2215 return true; 2216 if (B->empty()) 2217 return false; 2218 2219 CFGElement Last = B->back(); 2220 if (Optional<CFGStmt> S = Last.getAs<CFGStmt>()) { 2221 if (isa<CXXThrowExpr>(S->getStmt())) 2222 return true; 2223 } 2224 return false; 2225 } 2226 2227 /// Check a function's CFG for thread-safety violations. 2228 /// 2229 /// We traverse the blocks in the CFG, compute the set of mutexes that are held 2230 /// at the end of each block, and issue warnings for thread safety violations. 2231 /// Each block in the CFG is traversed exactly once. 2232 void ThreadSafetyAnalyzer::runAnalysis(AnalysisDeclContext &AC) { 2233 // TODO: this whole function needs be rewritten as a visitor for CFGWalker. 2234 // For now, we just use the walker to set things up. 2235 threadSafety::CFGWalker walker; 2236 if (!walker.init(AC)) 2237 return; 2238 2239 // AC.dumpCFG(true); 2240 // threadSafety::printSCFG(walker); 2241 2242 CFG *CFGraph = walker.getGraph(); 2243 const NamedDecl *D = walker.getDecl(); 2244 const auto *CurrentFunction = dyn_cast<FunctionDecl>(D); 2245 CurrentMethod = dyn_cast<CXXMethodDecl>(D); 2246 2247 if (D->hasAttr<NoThreadSafetyAnalysisAttr>()) 2248 return; 2249 2250 // FIXME: Do something a bit more intelligent inside constructor and 2251 // destructor code. Constructors and destructors must assume unique access 2252 // to 'this', so checks on member variable access is disabled, but we should 2253 // still enable checks on other objects. 2254 if (isa<CXXConstructorDecl>(D)) 2255 return; // Don't check inside constructors. 2256 if (isa<CXXDestructorDecl>(D)) 2257 return; // Don't check inside destructors. 2258 2259 Handler.enterFunction(CurrentFunction); 2260 2261 BlockInfo.resize(CFGraph->getNumBlockIDs(), 2262 CFGBlockInfo::getEmptyBlockInfo(LocalVarMap)); 2263 2264 // We need to explore the CFG via a "topological" ordering. 2265 // That way, we will be guaranteed to have information about required 2266 // predecessor locksets when exploring a new block. 2267 const PostOrderCFGView *SortedGraph = walker.getSortedGraph(); 2268 PostOrderCFGView::CFGBlockSet VisitedBlocks(CFGraph); 2269 2270 // Mark entry block as reachable 2271 BlockInfo[CFGraph->getEntry().getBlockID()].Reachable = true; 2272 2273 // Compute SSA names for local variables 2274 LocalVarMap.traverseCFG(CFGraph, SortedGraph, BlockInfo); 2275 2276 // Fill in source locations for all CFGBlocks. 2277 findBlockLocations(CFGraph, SortedGraph, BlockInfo); 2278 2279 CapExprSet ExclusiveLocksAcquired; 2280 CapExprSet SharedLocksAcquired; 2281 CapExprSet LocksReleased; 2282 2283 // Add locks from exclusive_locks_required and shared_locks_required 2284 // to initial lockset. Also turn off checking for lock and unlock functions. 2285 // FIXME: is there a more intelligent way to check lock/unlock functions? 2286 if (!SortedGraph->empty() && D->hasAttrs()) { 2287 const CFGBlock *FirstBlock = *SortedGraph->begin(); 2288 FactSet &InitialLockset = BlockInfo[FirstBlock->getBlockID()].EntrySet; 2289 2290 CapExprSet ExclusiveLocksToAdd; 2291 CapExprSet SharedLocksToAdd; 2292 2293 SourceLocation Loc = D->getLocation(); 2294 for (const auto *Attr : D->attrs()) { 2295 Loc = Attr->getLocation(); 2296 if (const auto *A = dyn_cast<RequiresCapabilityAttr>(Attr)) { 2297 getMutexIDs(A->isShared() ? SharedLocksToAdd : ExclusiveLocksToAdd, A, 2298 nullptr, D); 2299 } else if (const auto *A = dyn_cast<ReleaseCapabilityAttr>(Attr)) { 2300 // UNLOCK_FUNCTION() is used to hide the underlying lock implementation. 2301 // We must ignore such methods. 2302 if (A->args_size() == 0) 2303 return; 2304 getMutexIDs(A->isShared() ? SharedLocksToAdd : ExclusiveLocksToAdd, A, 2305 nullptr, D); 2306 getMutexIDs(LocksReleased, A, nullptr, D); 2307 } else if (const auto *A = dyn_cast<AcquireCapabilityAttr>(Attr)) { 2308 if (A->args_size() == 0) 2309 return; 2310 getMutexIDs(A->isShared() ? SharedLocksAcquired 2311 : ExclusiveLocksAcquired, 2312 A, nullptr, D); 2313 } else if (isa<ExclusiveTrylockFunctionAttr>(Attr)) { 2314 // Don't try to check trylock functions for now. 2315 return; 2316 } else if (isa<SharedTrylockFunctionAttr>(Attr)) { 2317 // Don't try to check trylock functions for now. 2318 return; 2319 } else if (isa<TryAcquireCapabilityAttr>(Attr)) { 2320 // Don't try to check trylock functions for now. 2321 return; 2322 } 2323 } 2324 2325 // FIXME -- Loc can be wrong here. 2326 for (const auto &Mu : ExclusiveLocksToAdd) { 2327 auto Entry = std::make_unique<LockableFactEntry>(Mu, LK_Exclusive, Loc, 2328 FactEntry::Declared); 2329 addLock(InitialLockset, std::move(Entry), true); 2330 } 2331 for (const auto &Mu : SharedLocksToAdd) { 2332 auto Entry = std::make_unique<LockableFactEntry>(Mu, LK_Shared, Loc, 2333 FactEntry::Declared); 2334 addLock(InitialLockset, std::move(Entry), true); 2335 } 2336 } 2337 2338 for (const auto *CurrBlock : *SortedGraph) { 2339 unsigned CurrBlockID = CurrBlock->getBlockID(); 2340 CFGBlockInfo *CurrBlockInfo = &BlockInfo[CurrBlockID]; 2341 2342 // Use the default initial lockset in case there are no predecessors. 2343 VisitedBlocks.insert(CurrBlock); 2344 2345 // Iterate through the predecessor blocks and warn if the lockset for all 2346 // predecessors is not the same. We take the entry lockset of the current 2347 // block to be the intersection of all previous locksets. 2348 // FIXME: By keeping the intersection, we may output more errors in future 2349 // for a lock which is not in the intersection, but was in the union. We 2350 // may want to also keep the union in future. As an example, let's say 2351 // the intersection contains Mutex L, and the union contains L and M. 2352 // Later we unlock M. At this point, we would output an error because we 2353 // never locked M; although the real error is probably that we forgot to 2354 // lock M on all code paths. Conversely, let's say that later we lock M. 2355 // In this case, we should compare against the intersection instead of the 2356 // union because the real error is probably that we forgot to unlock M on 2357 // all code paths. 2358 bool LocksetInitialized = false; 2359 for (CFGBlock::const_pred_iterator PI = CurrBlock->pred_begin(), 2360 PE = CurrBlock->pred_end(); PI != PE; ++PI) { 2361 // if *PI -> CurrBlock is a back edge 2362 if (*PI == nullptr || !VisitedBlocks.alreadySet(*PI)) 2363 continue; 2364 2365 unsigned PrevBlockID = (*PI)->getBlockID(); 2366 CFGBlockInfo *PrevBlockInfo = &BlockInfo[PrevBlockID]; 2367 2368 // Ignore edges from blocks that can't return. 2369 if (neverReturns(*PI) || !PrevBlockInfo->Reachable) 2370 continue; 2371 2372 // Okay, we can reach this block from the entry. 2373 CurrBlockInfo->Reachable = true; 2374 2375 FactSet PrevLockset; 2376 getEdgeLockset(PrevLockset, PrevBlockInfo->ExitSet, *PI, CurrBlock); 2377 2378 if (!LocksetInitialized) { 2379 CurrBlockInfo->EntrySet = PrevLockset; 2380 LocksetInitialized = true; 2381 } else { 2382 // Surprisingly 'continue' doesn't always produce back edges, because 2383 // the CFG has empty "transition" blocks where they meet with the end 2384 // of the regular loop body. We still want to diagnose them as loop. 2385 intersectAndWarn( 2386 CurrBlockInfo->EntrySet, PrevLockset, CurrBlockInfo->EntryLoc, 2387 isa_and_nonnull<ContinueStmt>((*PI)->getTerminatorStmt()) 2388 ? LEK_LockedSomeLoopIterations 2389 : LEK_LockedSomePredecessors); 2390 } 2391 } 2392 2393 // Skip rest of block if it's not reachable. 2394 if (!CurrBlockInfo->Reachable) 2395 continue; 2396 2397 BuildLockset LocksetBuilder(this, *CurrBlockInfo); 2398 2399 // Visit all the statements in the basic block. 2400 for (const auto &BI : *CurrBlock) { 2401 switch (BI.getKind()) { 2402 case CFGElement::Statement: { 2403 CFGStmt CS = BI.castAs<CFGStmt>(); 2404 LocksetBuilder.Visit(CS.getStmt()); 2405 break; 2406 } 2407 // Ignore BaseDtor and MemberDtor for now. 2408 case CFGElement::AutomaticObjectDtor: { 2409 CFGAutomaticObjDtor AD = BI.castAs<CFGAutomaticObjDtor>(); 2410 const auto *DD = AD.getDestructorDecl(AC.getASTContext()); 2411 if (!DD->hasAttrs()) 2412 break; 2413 2414 LocksetBuilder.handleCall(nullptr, DD, 2415 SxBuilder.createVariable(AD.getVarDecl()), 2416 AD.getTriggerStmt()->getEndLoc()); 2417 break; 2418 } 2419 case CFGElement::TemporaryDtor: { 2420 auto TD = BI.castAs<CFGTemporaryDtor>(); 2421 2422 // Clean up constructed object even if there are no attributes to 2423 // keep the number of objects in limbo as small as possible. 2424 if (auto Object = LocksetBuilder.ConstructedObjects.find( 2425 TD.getBindTemporaryExpr()->getSubExpr()); 2426 Object != LocksetBuilder.ConstructedObjects.end()) { 2427 const auto *DD = TD.getDestructorDecl(AC.getASTContext()); 2428 if (DD->hasAttrs()) 2429 // TODO: the location here isn't quite correct. 2430 LocksetBuilder.handleCall(nullptr, DD, Object->second, 2431 TD.getBindTemporaryExpr()->getEndLoc()); 2432 LocksetBuilder.ConstructedObjects.erase(Object); 2433 } 2434 break; 2435 } 2436 default: 2437 break; 2438 } 2439 } 2440 CurrBlockInfo->ExitSet = LocksetBuilder.FSet; 2441 2442 // For every back edge from CurrBlock (the end of the loop) to another block 2443 // (FirstLoopBlock) we need to check that the Lockset of Block is equal to 2444 // the one held at the beginning of FirstLoopBlock. We can look up the 2445 // Lockset held at the beginning of FirstLoopBlock in the EntryLockSets map. 2446 for (CFGBlock::const_succ_iterator SI = CurrBlock->succ_begin(), 2447 SE = CurrBlock->succ_end(); SI != SE; ++SI) { 2448 // if CurrBlock -> *SI is *not* a back edge 2449 if (*SI == nullptr || !VisitedBlocks.alreadySet(*SI)) 2450 continue; 2451 2452 CFGBlock *FirstLoopBlock = *SI; 2453 CFGBlockInfo *PreLoop = &BlockInfo[FirstLoopBlock->getBlockID()]; 2454 CFGBlockInfo *LoopEnd = &BlockInfo[CurrBlockID]; 2455 intersectAndWarn(PreLoop->EntrySet, LoopEnd->ExitSet, PreLoop->EntryLoc, 2456 LEK_LockedSomeLoopIterations); 2457 } 2458 } 2459 2460 CFGBlockInfo *Initial = &BlockInfo[CFGraph->getEntry().getBlockID()]; 2461 CFGBlockInfo *Final = &BlockInfo[CFGraph->getExit().getBlockID()]; 2462 2463 // Skip the final check if the exit block is unreachable. 2464 if (!Final->Reachable) 2465 return; 2466 2467 // By default, we expect all locks held on entry to be held on exit. 2468 FactSet ExpectedExitSet = Initial->EntrySet; 2469 2470 // Adjust the expected exit set by adding or removing locks, as declared 2471 // by *-LOCK_FUNCTION and UNLOCK_FUNCTION. The intersect below will then 2472 // issue the appropriate warning. 2473 // FIXME: the location here is not quite right. 2474 for (const auto &Lock : ExclusiveLocksAcquired) 2475 ExpectedExitSet.addLock(FactMan, std::make_unique<LockableFactEntry>( 2476 Lock, LK_Exclusive, D->getLocation())); 2477 for (const auto &Lock : SharedLocksAcquired) 2478 ExpectedExitSet.addLock(FactMan, std::make_unique<LockableFactEntry>( 2479 Lock, LK_Shared, D->getLocation())); 2480 for (const auto &Lock : LocksReleased) 2481 ExpectedExitSet.removeLock(FactMan, Lock); 2482 2483 // FIXME: Should we call this function for all blocks which exit the function? 2484 intersectAndWarn(ExpectedExitSet, Final->ExitSet, Final->ExitLoc, 2485 LEK_LockedAtEndOfFunction, LEK_NotLockedAtEndOfFunction); 2486 2487 Handler.leaveFunction(CurrentFunction); 2488 } 2489 2490 /// Check a function's CFG for thread-safety violations. 2491 /// 2492 /// We traverse the blocks in the CFG, compute the set of mutexes that are held 2493 /// at the end of each block, and issue warnings for thread safety violations. 2494 /// Each block in the CFG is traversed exactly once. 2495 void threadSafety::runThreadSafetyAnalysis(AnalysisDeclContext &AC, 2496 ThreadSafetyHandler &Handler, 2497 BeforeSet **BSet) { 2498 if (!*BSet) 2499 *BSet = new BeforeSet; 2500 ThreadSafetyAnalyzer Analyzer(Handler, *BSet); 2501 Analyzer.runAnalysis(AC); 2502 } 2503 2504 void threadSafety::threadSafetyCleanup(BeforeSet *Cache) { delete Cache; } 2505 2506 /// Helper function that returns a LockKind required for the given level 2507 /// of access. 2508 LockKind threadSafety::getLockKindFromAccessKind(AccessKind AK) { 2509 switch (AK) { 2510 case AK_Read : 2511 return LK_Shared; 2512 case AK_Written : 2513 return LK_Exclusive; 2514 } 2515 llvm_unreachable("Unknown AccessKind"); 2516 } 2517