1 //===- ThreadSafety.cpp ---------------------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // A intra-procedural analysis for thread safety (e.g. deadlocks and race 10 // conditions), based off of an annotation system. 11 // 12 // See http://clang.llvm.org/docs/ThreadSafetyAnalysis.html 13 // for more information. 14 // 15 //===----------------------------------------------------------------------===// 16 17 #include "clang/Analysis/Analyses/ThreadSafety.h" 18 #include "clang/AST/Attr.h" 19 #include "clang/AST/Decl.h" 20 #include "clang/AST/DeclCXX.h" 21 #include "clang/AST/DeclGroup.h" 22 #include "clang/AST/Expr.h" 23 #include "clang/AST/ExprCXX.h" 24 #include "clang/AST/OperationKinds.h" 25 #include "clang/AST/Stmt.h" 26 #include "clang/AST/StmtVisitor.h" 27 #include "clang/AST/Type.h" 28 #include "clang/Analysis/Analyses/PostOrderCFGView.h" 29 #include "clang/Analysis/Analyses/ThreadSafetyCommon.h" 30 #include "clang/Analysis/Analyses/ThreadSafetyTIL.h" 31 #include "clang/Analysis/Analyses/ThreadSafetyTraverse.h" 32 #include "clang/Analysis/Analyses/ThreadSafetyUtil.h" 33 #include "clang/Analysis/AnalysisDeclContext.h" 34 #include "clang/Analysis/CFG.h" 35 #include "clang/Basic/Builtins.h" 36 #include "clang/Basic/LLVM.h" 37 #include "clang/Basic/OperatorKinds.h" 38 #include "clang/Basic/SourceLocation.h" 39 #include "clang/Basic/Specifiers.h" 40 #include "llvm/ADT/ArrayRef.h" 41 #include "llvm/ADT/DenseMap.h" 42 #include "llvm/ADT/ImmutableMap.h" 43 #include "llvm/ADT/STLExtras.h" 44 #include "llvm/ADT/SmallVector.h" 45 #include "llvm/ADT/StringRef.h" 46 #include "llvm/Support/Allocator.h" 47 #include "llvm/Support/Casting.h" 48 #include "llvm/Support/ErrorHandling.h" 49 #include "llvm/Support/raw_ostream.h" 50 #include <algorithm> 51 #include <cassert> 52 #include <functional> 53 #include <iterator> 54 #include <memory> 55 #include <optional> 56 #include <string> 57 #include <type_traits> 58 #include <utility> 59 #include <vector> 60 61 using namespace clang; 62 using namespace threadSafety; 63 64 // Key method definition 65 ThreadSafetyHandler::~ThreadSafetyHandler() = default; 66 67 /// Issue a warning about an invalid lock expression 68 static void warnInvalidLock(ThreadSafetyHandler &Handler, 69 const Expr *MutexExp, const NamedDecl *D, 70 const Expr *DeclExp, StringRef Kind) { 71 SourceLocation Loc; 72 if (DeclExp) 73 Loc = DeclExp->getExprLoc(); 74 75 // FIXME: add a note about the attribute location in MutexExp or D 76 if (Loc.isValid()) 77 Handler.handleInvalidLockExp(Loc); 78 } 79 80 namespace { 81 82 /// A set of CapabilityExpr objects, which are compiled from thread safety 83 /// attributes on a function. 84 class CapExprSet : public SmallVector<CapabilityExpr, 4> { 85 public: 86 /// Push M onto list, but discard duplicates. 87 void push_back_nodup(const CapabilityExpr &CapE) { 88 if (llvm::none_of(*this, [=](const CapabilityExpr &CapE2) { 89 return CapE.equals(CapE2); 90 })) 91 push_back(CapE); 92 } 93 }; 94 95 class FactManager; 96 class FactSet; 97 98 /// This is a helper class that stores a fact that is known at a 99 /// particular point in program execution. Currently, a fact is a capability, 100 /// along with additional information, such as where it was acquired, whether 101 /// it is exclusive or shared, etc. 102 /// 103 /// FIXME: this analysis does not currently support re-entrant locking. 104 class FactEntry : public CapabilityExpr { 105 public: 106 /// Where a fact comes from. 107 enum SourceKind { 108 Acquired, ///< The fact has been directly acquired. 109 Asserted, ///< The fact has been asserted to be held. 110 Declared, ///< The fact is assumed to be held by callers. 111 Managed, ///< The fact has been acquired through a scoped capability. 112 }; 113 114 private: 115 /// Exclusive or shared. 116 LockKind LKind : 8; 117 118 // How it was acquired. 119 SourceKind Source : 8; 120 121 /// Where it was acquired. 122 SourceLocation AcquireLoc; 123 124 public: 125 FactEntry(const CapabilityExpr &CE, LockKind LK, SourceLocation Loc, 126 SourceKind Src) 127 : CapabilityExpr(CE), LKind(LK), Source(Src), AcquireLoc(Loc) {} 128 virtual ~FactEntry() = default; 129 130 LockKind kind() const { return LKind; } 131 SourceLocation loc() const { return AcquireLoc; } 132 133 bool asserted() const { return Source == Asserted; } 134 bool declared() const { return Source == Declared; } 135 bool managed() const { return Source == Managed; } 136 137 virtual void 138 handleRemovalFromIntersection(const FactSet &FSet, FactManager &FactMan, 139 SourceLocation JoinLoc, LockErrorKind LEK, 140 ThreadSafetyHandler &Handler) const = 0; 141 virtual void handleLock(FactSet &FSet, FactManager &FactMan, 142 const FactEntry &entry, 143 ThreadSafetyHandler &Handler) const = 0; 144 virtual void handleUnlock(FactSet &FSet, FactManager &FactMan, 145 const CapabilityExpr &Cp, SourceLocation UnlockLoc, 146 bool FullyRemove, 147 ThreadSafetyHandler &Handler) const = 0; 148 149 // Return true if LKind >= LK, where exclusive > shared 150 bool isAtLeast(LockKind LK) const { 151 return (LKind == LK_Exclusive) || (LK == LK_Shared); 152 } 153 }; 154 155 using FactID = unsigned short; 156 157 /// FactManager manages the memory for all facts that are created during 158 /// the analysis of a single routine. 159 class FactManager { 160 private: 161 std::vector<std::unique_ptr<const FactEntry>> Facts; 162 163 public: 164 FactID newFact(std::unique_ptr<FactEntry> Entry) { 165 Facts.push_back(std::move(Entry)); 166 return static_cast<unsigned short>(Facts.size() - 1); 167 } 168 169 const FactEntry &operator[](FactID F) const { return *Facts[F]; } 170 }; 171 172 /// A FactSet is the set of facts that are known to be true at a 173 /// particular program point. FactSets must be small, because they are 174 /// frequently copied, and are thus implemented as a set of indices into a 175 /// table maintained by a FactManager. A typical FactSet only holds 1 or 2 176 /// locks, so we can get away with doing a linear search for lookup. Note 177 /// that a hashtable or map is inappropriate in this case, because lookups 178 /// may involve partial pattern matches, rather than exact matches. 179 class FactSet { 180 private: 181 using FactVec = SmallVector<FactID, 4>; 182 183 FactVec FactIDs; 184 185 public: 186 using iterator = FactVec::iterator; 187 using const_iterator = FactVec::const_iterator; 188 189 iterator begin() { return FactIDs.begin(); } 190 const_iterator begin() const { return FactIDs.begin(); } 191 192 iterator end() { return FactIDs.end(); } 193 const_iterator end() const { return FactIDs.end(); } 194 195 bool isEmpty() const { return FactIDs.size() == 0; } 196 197 // Return true if the set contains only negative facts 198 bool isEmpty(FactManager &FactMan) const { 199 for (const auto FID : *this) { 200 if (!FactMan[FID].negative()) 201 return false; 202 } 203 return true; 204 } 205 206 void addLockByID(FactID ID) { FactIDs.push_back(ID); } 207 208 FactID addLock(FactManager &FM, std::unique_ptr<FactEntry> Entry) { 209 FactID F = FM.newFact(std::move(Entry)); 210 FactIDs.push_back(F); 211 return F; 212 } 213 214 bool removeLock(FactManager& FM, const CapabilityExpr &CapE) { 215 unsigned n = FactIDs.size(); 216 if (n == 0) 217 return false; 218 219 for (unsigned i = 0; i < n-1; ++i) { 220 if (FM[FactIDs[i]].matches(CapE)) { 221 FactIDs[i] = FactIDs[n-1]; 222 FactIDs.pop_back(); 223 return true; 224 } 225 } 226 if (FM[FactIDs[n-1]].matches(CapE)) { 227 FactIDs.pop_back(); 228 return true; 229 } 230 return false; 231 } 232 233 iterator findLockIter(FactManager &FM, const CapabilityExpr &CapE) { 234 return std::find_if(begin(), end(), [&](FactID ID) { 235 return FM[ID].matches(CapE); 236 }); 237 } 238 239 const FactEntry *findLock(FactManager &FM, const CapabilityExpr &CapE) const { 240 auto I = std::find_if(begin(), end(), [&](FactID ID) { 241 return FM[ID].matches(CapE); 242 }); 243 return I != end() ? &FM[*I] : nullptr; 244 } 245 246 const FactEntry *findLockUniv(FactManager &FM, 247 const CapabilityExpr &CapE) const { 248 auto I = std::find_if(begin(), end(), [&](FactID ID) -> bool { 249 return FM[ID].matchesUniv(CapE); 250 }); 251 return I != end() ? &FM[*I] : nullptr; 252 } 253 254 const FactEntry *findPartialMatch(FactManager &FM, 255 const CapabilityExpr &CapE) const { 256 auto I = std::find_if(begin(), end(), [&](FactID ID) -> bool { 257 return FM[ID].partiallyMatches(CapE); 258 }); 259 return I != end() ? &FM[*I] : nullptr; 260 } 261 262 bool containsMutexDecl(FactManager &FM, const ValueDecl* Vd) const { 263 auto I = std::find_if(begin(), end(), [&](FactID ID) -> bool { 264 return FM[ID].valueDecl() == Vd; 265 }); 266 return I != end(); 267 } 268 }; 269 270 class ThreadSafetyAnalyzer; 271 272 } // namespace 273 274 namespace clang { 275 namespace threadSafety { 276 277 class BeforeSet { 278 private: 279 using BeforeVect = SmallVector<const ValueDecl *, 4>; 280 281 struct BeforeInfo { 282 BeforeVect Vect; 283 int Visited = 0; 284 285 BeforeInfo() = default; 286 BeforeInfo(BeforeInfo &&) = default; 287 }; 288 289 using BeforeMap = 290 llvm::DenseMap<const ValueDecl *, std::unique_ptr<BeforeInfo>>; 291 using CycleMap = llvm::DenseMap<const ValueDecl *, bool>; 292 293 public: 294 BeforeSet() = default; 295 296 BeforeInfo* insertAttrExprs(const ValueDecl* Vd, 297 ThreadSafetyAnalyzer& Analyzer); 298 299 BeforeInfo *getBeforeInfoForDecl(const ValueDecl *Vd, 300 ThreadSafetyAnalyzer &Analyzer); 301 302 void checkBeforeAfter(const ValueDecl* Vd, 303 const FactSet& FSet, 304 ThreadSafetyAnalyzer& Analyzer, 305 SourceLocation Loc, StringRef CapKind); 306 307 private: 308 BeforeMap BMap; 309 CycleMap CycMap; 310 }; 311 312 } // namespace threadSafety 313 } // namespace clang 314 315 namespace { 316 317 class LocalVariableMap; 318 319 using LocalVarContext = llvm::ImmutableMap<const NamedDecl *, unsigned>; 320 321 /// A side (entry or exit) of a CFG node. 322 enum CFGBlockSide { CBS_Entry, CBS_Exit }; 323 324 /// CFGBlockInfo is a struct which contains all the information that is 325 /// maintained for each block in the CFG. See LocalVariableMap for more 326 /// information about the contexts. 327 struct CFGBlockInfo { 328 // Lockset held at entry to block 329 FactSet EntrySet; 330 331 // Lockset held at exit from block 332 FactSet ExitSet; 333 334 // Context held at entry to block 335 LocalVarContext EntryContext; 336 337 // Context held at exit from block 338 LocalVarContext ExitContext; 339 340 // Location of first statement in block 341 SourceLocation EntryLoc; 342 343 // Location of last statement in block. 344 SourceLocation ExitLoc; 345 346 // Used to replay contexts later 347 unsigned EntryIndex; 348 349 // Is this block reachable? 350 bool Reachable = false; 351 352 const FactSet &getSet(CFGBlockSide Side) const { 353 return Side == CBS_Entry ? EntrySet : ExitSet; 354 } 355 356 SourceLocation getLocation(CFGBlockSide Side) const { 357 return Side == CBS_Entry ? EntryLoc : ExitLoc; 358 } 359 360 private: 361 CFGBlockInfo(LocalVarContext EmptyCtx) 362 : EntryContext(EmptyCtx), ExitContext(EmptyCtx) {} 363 364 public: 365 static CFGBlockInfo getEmptyBlockInfo(LocalVariableMap &M); 366 }; 367 368 // A LocalVariableMap maintains a map from local variables to their currently 369 // valid definitions. It provides SSA-like functionality when traversing the 370 // CFG. Like SSA, each definition or assignment to a variable is assigned a 371 // unique name (an integer), which acts as the SSA name for that definition. 372 // The total set of names is shared among all CFG basic blocks. 373 // Unlike SSA, we do not rewrite expressions to replace local variables declrefs 374 // with their SSA-names. Instead, we compute a Context for each point in the 375 // code, which maps local variables to the appropriate SSA-name. This map 376 // changes with each assignment. 377 // 378 // The map is computed in a single pass over the CFG. Subsequent analyses can 379 // then query the map to find the appropriate Context for a statement, and use 380 // that Context to look up the definitions of variables. 381 class LocalVariableMap { 382 public: 383 using Context = LocalVarContext; 384 385 /// A VarDefinition consists of an expression, representing the value of the 386 /// variable, along with the context in which that expression should be 387 /// interpreted. A reference VarDefinition does not itself contain this 388 /// information, but instead contains a pointer to a previous VarDefinition. 389 struct VarDefinition { 390 public: 391 friend class LocalVariableMap; 392 393 // The original declaration for this variable. 394 const NamedDecl *Dec; 395 396 // The expression for this variable, OR 397 const Expr *Exp = nullptr; 398 399 // Reference to another VarDefinition 400 unsigned Ref = 0; 401 402 // The map with which Exp should be interpreted. 403 Context Ctx; 404 405 bool isReference() const { return !Exp; } 406 407 private: 408 // Create ordinary variable definition 409 VarDefinition(const NamedDecl *D, const Expr *E, Context C) 410 : Dec(D), Exp(E), Ctx(C) {} 411 412 // Create reference to previous definition 413 VarDefinition(const NamedDecl *D, unsigned R, Context C) 414 : Dec(D), Ref(R), Ctx(C) {} 415 }; 416 417 private: 418 Context::Factory ContextFactory; 419 std::vector<VarDefinition> VarDefinitions; 420 std::vector<std::pair<const Stmt *, Context>> SavedContexts; 421 422 public: 423 LocalVariableMap() { 424 // index 0 is a placeholder for undefined variables (aka phi-nodes). 425 VarDefinitions.push_back(VarDefinition(nullptr, 0u, getEmptyContext())); 426 } 427 428 /// Look up a definition, within the given context. 429 const VarDefinition* lookup(const NamedDecl *D, Context Ctx) { 430 const unsigned *i = Ctx.lookup(D); 431 if (!i) 432 return nullptr; 433 assert(*i < VarDefinitions.size()); 434 return &VarDefinitions[*i]; 435 } 436 437 /// Look up the definition for D within the given context. Returns 438 /// NULL if the expression is not statically known. If successful, also 439 /// modifies Ctx to hold the context of the return Expr. 440 const Expr* lookupExpr(const NamedDecl *D, Context &Ctx) { 441 const unsigned *P = Ctx.lookup(D); 442 if (!P) 443 return nullptr; 444 445 unsigned i = *P; 446 while (i > 0) { 447 if (VarDefinitions[i].Exp) { 448 Ctx = VarDefinitions[i].Ctx; 449 return VarDefinitions[i].Exp; 450 } 451 i = VarDefinitions[i].Ref; 452 } 453 return nullptr; 454 } 455 456 Context getEmptyContext() { return ContextFactory.getEmptyMap(); } 457 458 /// Return the next context after processing S. This function is used by 459 /// clients of the class to get the appropriate context when traversing the 460 /// CFG. It must be called for every assignment or DeclStmt. 461 Context getNextContext(unsigned &CtxIndex, const Stmt *S, Context C) { 462 if (SavedContexts[CtxIndex+1].first == S) { 463 CtxIndex++; 464 Context Result = SavedContexts[CtxIndex].second; 465 return Result; 466 } 467 return C; 468 } 469 470 void dumpVarDefinitionName(unsigned i) { 471 if (i == 0) { 472 llvm::errs() << "Undefined"; 473 return; 474 } 475 const NamedDecl *Dec = VarDefinitions[i].Dec; 476 if (!Dec) { 477 llvm::errs() << "<<NULL>>"; 478 return; 479 } 480 Dec->printName(llvm::errs()); 481 llvm::errs() << "." << i << " " << ((const void*) Dec); 482 } 483 484 /// Dumps an ASCII representation of the variable map to llvm::errs() 485 void dump() { 486 for (unsigned i = 1, e = VarDefinitions.size(); i < e; ++i) { 487 const Expr *Exp = VarDefinitions[i].Exp; 488 unsigned Ref = VarDefinitions[i].Ref; 489 490 dumpVarDefinitionName(i); 491 llvm::errs() << " = "; 492 if (Exp) Exp->dump(); 493 else { 494 dumpVarDefinitionName(Ref); 495 llvm::errs() << "\n"; 496 } 497 } 498 } 499 500 /// Dumps an ASCII representation of a Context to llvm::errs() 501 void dumpContext(Context C) { 502 for (Context::iterator I = C.begin(), E = C.end(); I != E; ++I) { 503 const NamedDecl *D = I.getKey(); 504 D->printName(llvm::errs()); 505 llvm::errs() << " -> "; 506 dumpVarDefinitionName(I.getData()); 507 llvm::errs() << "\n"; 508 } 509 } 510 511 /// Builds the variable map. 512 void traverseCFG(CFG *CFGraph, const PostOrderCFGView *SortedGraph, 513 std::vector<CFGBlockInfo> &BlockInfo); 514 515 protected: 516 friend class VarMapBuilder; 517 518 // Get the current context index 519 unsigned getContextIndex() { return SavedContexts.size()-1; } 520 521 // Save the current context for later replay 522 void saveContext(const Stmt *S, Context C) { 523 SavedContexts.push_back(std::make_pair(S, C)); 524 } 525 526 // Adds a new definition to the given context, and returns a new context. 527 // This method should be called when declaring a new variable. 528 Context addDefinition(const NamedDecl *D, const Expr *Exp, Context Ctx) { 529 assert(!Ctx.contains(D)); 530 unsigned newID = VarDefinitions.size(); 531 Context NewCtx = ContextFactory.add(Ctx, D, newID); 532 VarDefinitions.push_back(VarDefinition(D, Exp, Ctx)); 533 return NewCtx; 534 } 535 536 // Add a new reference to an existing definition. 537 Context addReference(const NamedDecl *D, unsigned i, Context Ctx) { 538 unsigned newID = VarDefinitions.size(); 539 Context NewCtx = ContextFactory.add(Ctx, D, newID); 540 VarDefinitions.push_back(VarDefinition(D, i, Ctx)); 541 return NewCtx; 542 } 543 544 // Updates a definition only if that definition is already in the map. 545 // This method should be called when assigning to an existing variable. 546 Context updateDefinition(const NamedDecl *D, Expr *Exp, Context Ctx) { 547 if (Ctx.contains(D)) { 548 unsigned newID = VarDefinitions.size(); 549 Context NewCtx = ContextFactory.remove(Ctx, D); 550 NewCtx = ContextFactory.add(NewCtx, D, newID); 551 VarDefinitions.push_back(VarDefinition(D, Exp, Ctx)); 552 return NewCtx; 553 } 554 return Ctx; 555 } 556 557 // Removes a definition from the context, but keeps the variable name 558 // as a valid variable. The index 0 is a placeholder for cleared definitions. 559 Context clearDefinition(const NamedDecl *D, Context Ctx) { 560 Context NewCtx = Ctx; 561 if (NewCtx.contains(D)) { 562 NewCtx = ContextFactory.remove(NewCtx, D); 563 NewCtx = ContextFactory.add(NewCtx, D, 0); 564 } 565 return NewCtx; 566 } 567 568 // Remove a definition entirely frmo the context. 569 Context removeDefinition(const NamedDecl *D, Context Ctx) { 570 Context NewCtx = Ctx; 571 if (NewCtx.contains(D)) { 572 NewCtx = ContextFactory.remove(NewCtx, D); 573 } 574 return NewCtx; 575 } 576 577 Context intersectContexts(Context C1, Context C2); 578 Context createReferenceContext(Context C); 579 void intersectBackEdge(Context C1, Context C2); 580 }; 581 582 } // namespace 583 584 // This has to be defined after LocalVariableMap. 585 CFGBlockInfo CFGBlockInfo::getEmptyBlockInfo(LocalVariableMap &M) { 586 return CFGBlockInfo(M.getEmptyContext()); 587 } 588 589 namespace { 590 591 /// Visitor which builds a LocalVariableMap 592 class VarMapBuilder : public ConstStmtVisitor<VarMapBuilder> { 593 public: 594 LocalVariableMap* VMap; 595 LocalVariableMap::Context Ctx; 596 597 VarMapBuilder(LocalVariableMap *VM, LocalVariableMap::Context C) 598 : VMap(VM), Ctx(C) {} 599 600 void VisitDeclStmt(const DeclStmt *S); 601 void VisitBinaryOperator(const BinaryOperator *BO); 602 }; 603 604 } // namespace 605 606 // Add new local variables to the variable map 607 void VarMapBuilder::VisitDeclStmt(const DeclStmt *S) { 608 bool modifiedCtx = false; 609 const DeclGroupRef DGrp = S->getDeclGroup(); 610 for (const auto *D : DGrp) { 611 if (const auto *VD = dyn_cast_or_null<VarDecl>(D)) { 612 const Expr *E = VD->getInit(); 613 614 // Add local variables with trivial type to the variable map 615 QualType T = VD->getType(); 616 if (T.isTrivialType(VD->getASTContext())) { 617 Ctx = VMap->addDefinition(VD, E, Ctx); 618 modifiedCtx = true; 619 } 620 } 621 } 622 if (modifiedCtx) 623 VMap->saveContext(S, Ctx); 624 } 625 626 // Update local variable definitions in variable map 627 void VarMapBuilder::VisitBinaryOperator(const BinaryOperator *BO) { 628 if (!BO->isAssignmentOp()) 629 return; 630 631 Expr *LHSExp = BO->getLHS()->IgnoreParenCasts(); 632 633 // Update the variable map and current context. 634 if (const auto *DRE = dyn_cast<DeclRefExpr>(LHSExp)) { 635 const ValueDecl *VDec = DRE->getDecl(); 636 if (Ctx.lookup(VDec)) { 637 if (BO->getOpcode() == BO_Assign) 638 Ctx = VMap->updateDefinition(VDec, BO->getRHS(), Ctx); 639 else 640 // FIXME -- handle compound assignment operators 641 Ctx = VMap->clearDefinition(VDec, Ctx); 642 VMap->saveContext(BO, Ctx); 643 } 644 } 645 } 646 647 // Computes the intersection of two contexts. The intersection is the 648 // set of variables which have the same definition in both contexts; 649 // variables with different definitions are discarded. 650 LocalVariableMap::Context 651 LocalVariableMap::intersectContexts(Context C1, Context C2) { 652 Context Result = C1; 653 for (const auto &P : C1) { 654 const NamedDecl *Dec = P.first; 655 const unsigned *i2 = C2.lookup(Dec); 656 if (!i2) // variable doesn't exist on second path 657 Result = removeDefinition(Dec, Result); 658 else if (*i2 != P.second) // variable exists, but has different definition 659 Result = clearDefinition(Dec, Result); 660 } 661 return Result; 662 } 663 664 // For every variable in C, create a new variable that refers to the 665 // definition in C. Return a new context that contains these new variables. 666 // (We use this for a naive implementation of SSA on loop back-edges.) 667 LocalVariableMap::Context LocalVariableMap::createReferenceContext(Context C) { 668 Context Result = getEmptyContext(); 669 for (const auto &P : C) 670 Result = addReference(P.first, P.second, Result); 671 return Result; 672 } 673 674 // This routine also takes the intersection of C1 and C2, but it does so by 675 // altering the VarDefinitions. C1 must be the result of an earlier call to 676 // createReferenceContext. 677 void LocalVariableMap::intersectBackEdge(Context C1, Context C2) { 678 for (const auto &P : C1) { 679 unsigned i1 = P.second; 680 VarDefinition *VDef = &VarDefinitions[i1]; 681 assert(VDef->isReference()); 682 683 const unsigned *i2 = C2.lookup(P.first); 684 if (!i2 || (*i2 != i1)) 685 VDef->Ref = 0; // Mark this variable as undefined 686 } 687 } 688 689 // Traverse the CFG in topological order, so all predecessors of a block 690 // (excluding back-edges) are visited before the block itself. At 691 // each point in the code, we calculate a Context, which holds the set of 692 // variable definitions which are visible at that point in execution. 693 // Visible variables are mapped to their definitions using an array that 694 // contains all definitions. 695 // 696 // At join points in the CFG, the set is computed as the intersection of 697 // the incoming sets along each edge, E.g. 698 // 699 // { Context | VarDefinitions } 700 // int x = 0; { x -> x1 | x1 = 0 } 701 // int y = 0; { x -> x1, y -> y1 | y1 = 0, x1 = 0 } 702 // if (b) x = 1; { x -> x2, y -> y1 | x2 = 1, y1 = 0, ... } 703 // else x = 2; { x -> x3, y -> y1 | x3 = 2, x2 = 1, ... } 704 // ... { y -> y1 (x is unknown) | x3 = 2, x2 = 1, ... } 705 // 706 // This is essentially a simpler and more naive version of the standard SSA 707 // algorithm. Those definitions that remain in the intersection are from blocks 708 // that strictly dominate the current block. We do not bother to insert proper 709 // phi nodes, because they are not used in our analysis; instead, wherever 710 // a phi node would be required, we simply remove that definition from the 711 // context (E.g. x above). 712 // 713 // The initial traversal does not capture back-edges, so those need to be 714 // handled on a separate pass. Whenever the first pass encounters an 715 // incoming back edge, it duplicates the context, creating new definitions 716 // that refer back to the originals. (These correspond to places where SSA 717 // might have to insert a phi node.) On the second pass, these definitions are 718 // set to NULL if the variable has changed on the back-edge (i.e. a phi 719 // node was actually required.) E.g. 720 // 721 // { Context | VarDefinitions } 722 // int x = 0, y = 0; { x -> x1, y -> y1 | y1 = 0, x1 = 0 } 723 // while (b) { x -> x2, y -> y1 | [1st:] x2=x1; [2nd:] x2=NULL; } 724 // x = x+1; { x -> x3, y -> y1 | x3 = x2 + 1, ... } 725 // ... { y -> y1 | x3 = 2, x2 = 1, ... } 726 void LocalVariableMap::traverseCFG(CFG *CFGraph, 727 const PostOrderCFGView *SortedGraph, 728 std::vector<CFGBlockInfo> &BlockInfo) { 729 PostOrderCFGView::CFGBlockSet VisitedBlocks(CFGraph); 730 731 for (const auto *CurrBlock : *SortedGraph) { 732 unsigned CurrBlockID = CurrBlock->getBlockID(); 733 CFGBlockInfo *CurrBlockInfo = &BlockInfo[CurrBlockID]; 734 735 VisitedBlocks.insert(CurrBlock); 736 737 // Calculate the entry context for the current block 738 bool HasBackEdges = false; 739 bool CtxInit = true; 740 for (CFGBlock::const_pred_iterator PI = CurrBlock->pred_begin(), 741 PE = CurrBlock->pred_end(); PI != PE; ++PI) { 742 // if *PI -> CurrBlock is a back edge, so skip it 743 if (*PI == nullptr || !VisitedBlocks.alreadySet(*PI)) { 744 HasBackEdges = true; 745 continue; 746 } 747 748 unsigned PrevBlockID = (*PI)->getBlockID(); 749 CFGBlockInfo *PrevBlockInfo = &BlockInfo[PrevBlockID]; 750 751 if (CtxInit) { 752 CurrBlockInfo->EntryContext = PrevBlockInfo->ExitContext; 753 CtxInit = false; 754 } 755 else { 756 CurrBlockInfo->EntryContext = 757 intersectContexts(CurrBlockInfo->EntryContext, 758 PrevBlockInfo->ExitContext); 759 } 760 } 761 762 // Duplicate the context if we have back-edges, so we can call 763 // intersectBackEdges later. 764 if (HasBackEdges) 765 CurrBlockInfo->EntryContext = 766 createReferenceContext(CurrBlockInfo->EntryContext); 767 768 // Create a starting context index for the current block 769 saveContext(nullptr, CurrBlockInfo->EntryContext); 770 CurrBlockInfo->EntryIndex = getContextIndex(); 771 772 // Visit all the statements in the basic block. 773 VarMapBuilder VMapBuilder(this, CurrBlockInfo->EntryContext); 774 for (const auto &BI : *CurrBlock) { 775 switch (BI.getKind()) { 776 case CFGElement::Statement: { 777 CFGStmt CS = BI.castAs<CFGStmt>(); 778 VMapBuilder.Visit(CS.getStmt()); 779 break; 780 } 781 default: 782 break; 783 } 784 } 785 CurrBlockInfo->ExitContext = VMapBuilder.Ctx; 786 787 // Mark variables on back edges as "unknown" if they've been changed. 788 for (CFGBlock::const_succ_iterator SI = CurrBlock->succ_begin(), 789 SE = CurrBlock->succ_end(); SI != SE; ++SI) { 790 // if CurrBlock -> *SI is *not* a back edge 791 if (*SI == nullptr || !VisitedBlocks.alreadySet(*SI)) 792 continue; 793 794 CFGBlock *FirstLoopBlock = *SI; 795 Context LoopBegin = BlockInfo[FirstLoopBlock->getBlockID()].EntryContext; 796 Context LoopEnd = CurrBlockInfo->ExitContext; 797 intersectBackEdge(LoopBegin, LoopEnd); 798 } 799 } 800 801 // Put an extra entry at the end of the indexed context array 802 unsigned exitID = CFGraph->getExit().getBlockID(); 803 saveContext(nullptr, BlockInfo[exitID].ExitContext); 804 } 805 806 /// Find the appropriate source locations to use when producing diagnostics for 807 /// each block in the CFG. 808 static void findBlockLocations(CFG *CFGraph, 809 const PostOrderCFGView *SortedGraph, 810 std::vector<CFGBlockInfo> &BlockInfo) { 811 for (const auto *CurrBlock : *SortedGraph) { 812 CFGBlockInfo *CurrBlockInfo = &BlockInfo[CurrBlock->getBlockID()]; 813 814 // Find the source location of the last statement in the block, if the 815 // block is not empty. 816 if (const Stmt *S = CurrBlock->getTerminatorStmt()) { 817 CurrBlockInfo->EntryLoc = CurrBlockInfo->ExitLoc = S->getBeginLoc(); 818 } else { 819 for (CFGBlock::const_reverse_iterator BI = CurrBlock->rbegin(), 820 BE = CurrBlock->rend(); BI != BE; ++BI) { 821 // FIXME: Handle other CFGElement kinds. 822 if (std::optional<CFGStmt> CS = BI->getAs<CFGStmt>()) { 823 CurrBlockInfo->ExitLoc = CS->getStmt()->getBeginLoc(); 824 break; 825 } 826 } 827 } 828 829 if (CurrBlockInfo->ExitLoc.isValid()) { 830 // This block contains at least one statement. Find the source location 831 // of the first statement in the block. 832 for (const auto &BI : *CurrBlock) { 833 // FIXME: Handle other CFGElement kinds. 834 if (std::optional<CFGStmt> CS = BI.getAs<CFGStmt>()) { 835 CurrBlockInfo->EntryLoc = CS->getStmt()->getBeginLoc(); 836 break; 837 } 838 } 839 } else if (CurrBlock->pred_size() == 1 && *CurrBlock->pred_begin() && 840 CurrBlock != &CFGraph->getExit()) { 841 // The block is empty, and has a single predecessor. Use its exit 842 // location. 843 CurrBlockInfo->EntryLoc = CurrBlockInfo->ExitLoc = 844 BlockInfo[(*CurrBlock->pred_begin())->getBlockID()].ExitLoc; 845 } else if (CurrBlock->succ_size() == 1 && *CurrBlock->succ_begin()) { 846 // The block is empty, and has a single successor. Use its entry 847 // location. 848 CurrBlockInfo->EntryLoc = CurrBlockInfo->ExitLoc = 849 BlockInfo[(*CurrBlock->succ_begin())->getBlockID()].EntryLoc; 850 } 851 } 852 } 853 854 namespace { 855 856 class LockableFactEntry : public FactEntry { 857 public: 858 LockableFactEntry(const CapabilityExpr &CE, LockKind LK, SourceLocation Loc, 859 SourceKind Src = Acquired) 860 : FactEntry(CE, LK, Loc, Src) {} 861 862 void 863 handleRemovalFromIntersection(const FactSet &FSet, FactManager &FactMan, 864 SourceLocation JoinLoc, LockErrorKind LEK, 865 ThreadSafetyHandler &Handler) const override { 866 if (!asserted() && !negative() && !isUniversal()) { 867 Handler.handleMutexHeldEndOfScope(getKind(), toString(), loc(), JoinLoc, 868 LEK); 869 } 870 } 871 872 void handleLock(FactSet &FSet, FactManager &FactMan, const FactEntry &entry, 873 ThreadSafetyHandler &Handler) const override { 874 Handler.handleDoubleLock(entry.getKind(), entry.toString(), loc(), 875 entry.loc()); 876 } 877 878 void handleUnlock(FactSet &FSet, FactManager &FactMan, 879 const CapabilityExpr &Cp, SourceLocation UnlockLoc, 880 bool FullyRemove, 881 ThreadSafetyHandler &Handler) const override { 882 FSet.removeLock(FactMan, Cp); 883 if (!Cp.negative()) { 884 FSet.addLock(FactMan, std::make_unique<LockableFactEntry>( 885 !Cp, LK_Exclusive, UnlockLoc)); 886 } 887 } 888 }; 889 890 class ScopedLockableFactEntry : public FactEntry { 891 private: 892 enum UnderlyingCapabilityKind { 893 UCK_Acquired, ///< Any kind of acquired capability. 894 UCK_ReleasedShared, ///< Shared capability that was released. 895 UCK_ReleasedExclusive, ///< Exclusive capability that was released. 896 }; 897 898 struct UnderlyingCapability { 899 CapabilityExpr Cap; 900 UnderlyingCapabilityKind Kind; 901 }; 902 903 SmallVector<UnderlyingCapability, 2> UnderlyingMutexes; 904 905 public: 906 ScopedLockableFactEntry(const CapabilityExpr &CE, SourceLocation Loc) 907 : FactEntry(CE, LK_Exclusive, Loc, Acquired) {} 908 909 void addLock(const CapabilityExpr &M) { 910 UnderlyingMutexes.push_back(UnderlyingCapability{M, UCK_Acquired}); 911 } 912 913 void addExclusiveUnlock(const CapabilityExpr &M) { 914 UnderlyingMutexes.push_back(UnderlyingCapability{M, UCK_ReleasedExclusive}); 915 } 916 917 void addSharedUnlock(const CapabilityExpr &M) { 918 UnderlyingMutexes.push_back(UnderlyingCapability{M, UCK_ReleasedShared}); 919 } 920 921 void 922 handleRemovalFromIntersection(const FactSet &FSet, FactManager &FactMan, 923 SourceLocation JoinLoc, LockErrorKind LEK, 924 ThreadSafetyHandler &Handler) const override { 925 for (const auto &UnderlyingMutex : UnderlyingMutexes) { 926 const auto *Entry = FSet.findLock(FactMan, UnderlyingMutex.Cap); 927 if ((UnderlyingMutex.Kind == UCK_Acquired && Entry) || 928 (UnderlyingMutex.Kind != UCK_Acquired && !Entry)) { 929 // If this scoped lock manages another mutex, and if the underlying 930 // mutex is still/not held, then warn about the underlying mutex. 931 Handler.handleMutexHeldEndOfScope(UnderlyingMutex.Cap.getKind(), 932 UnderlyingMutex.Cap.toString(), loc(), 933 JoinLoc, LEK); 934 } 935 } 936 } 937 938 void handleLock(FactSet &FSet, FactManager &FactMan, const FactEntry &entry, 939 ThreadSafetyHandler &Handler) const override { 940 for (const auto &UnderlyingMutex : UnderlyingMutexes) { 941 if (UnderlyingMutex.Kind == UCK_Acquired) 942 lock(FSet, FactMan, UnderlyingMutex.Cap, entry.kind(), entry.loc(), 943 &Handler); 944 else 945 unlock(FSet, FactMan, UnderlyingMutex.Cap, entry.loc(), &Handler); 946 } 947 } 948 949 void handleUnlock(FactSet &FSet, FactManager &FactMan, 950 const CapabilityExpr &Cp, SourceLocation UnlockLoc, 951 bool FullyRemove, 952 ThreadSafetyHandler &Handler) const override { 953 assert(!Cp.negative() && "Managing object cannot be negative."); 954 for (const auto &UnderlyingMutex : UnderlyingMutexes) { 955 // Remove/lock the underlying mutex if it exists/is still unlocked; warn 956 // on double unlocking/locking if we're not destroying the scoped object. 957 ThreadSafetyHandler *TSHandler = FullyRemove ? nullptr : &Handler; 958 if (UnderlyingMutex.Kind == UCK_Acquired) { 959 unlock(FSet, FactMan, UnderlyingMutex.Cap, UnlockLoc, TSHandler); 960 } else { 961 LockKind kind = UnderlyingMutex.Kind == UCK_ReleasedShared 962 ? LK_Shared 963 : LK_Exclusive; 964 lock(FSet, FactMan, UnderlyingMutex.Cap, kind, UnlockLoc, TSHandler); 965 } 966 } 967 if (FullyRemove) 968 FSet.removeLock(FactMan, Cp); 969 } 970 971 private: 972 void lock(FactSet &FSet, FactManager &FactMan, const CapabilityExpr &Cp, 973 LockKind kind, SourceLocation loc, 974 ThreadSafetyHandler *Handler) const { 975 if (const FactEntry *Fact = FSet.findLock(FactMan, Cp)) { 976 if (Handler) 977 Handler->handleDoubleLock(Cp.getKind(), Cp.toString(), Fact->loc(), 978 loc); 979 } else { 980 FSet.removeLock(FactMan, !Cp); 981 FSet.addLock(FactMan, 982 std::make_unique<LockableFactEntry>(Cp, kind, loc, Managed)); 983 } 984 } 985 986 void unlock(FactSet &FSet, FactManager &FactMan, const CapabilityExpr &Cp, 987 SourceLocation loc, ThreadSafetyHandler *Handler) const { 988 if (FSet.findLock(FactMan, Cp)) { 989 FSet.removeLock(FactMan, Cp); 990 FSet.addLock(FactMan, std::make_unique<LockableFactEntry>( 991 !Cp, LK_Exclusive, loc)); 992 } else if (Handler) { 993 SourceLocation PrevLoc; 994 if (const FactEntry *Neg = FSet.findLock(FactMan, !Cp)) 995 PrevLoc = Neg->loc(); 996 Handler->handleUnmatchedUnlock(Cp.getKind(), Cp.toString(), loc, PrevLoc); 997 } 998 } 999 }; 1000 1001 /// Class which implements the core thread safety analysis routines. 1002 class ThreadSafetyAnalyzer { 1003 friend class BuildLockset; 1004 friend class threadSafety::BeforeSet; 1005 1006 llvm::BumpPtrAllocator Bpa; 1007 threadSafety::til::MemRegionRef Arena; 1008 threadSafety::SExprBuilder SxBuilder; 1009 1010 ThreadSafetyHandler &Handler; 1011 const CXXMethodDecl *CurrentMethod = nullptr; 1012 LocalVariableMap LocalVarMap; 1013 FactManager FactMan; 1014 std::vector<CFGBlockInfo> BlockInfo; 1015 1016 BeforeSet *GlobalBeforeSet; 1017 1018 public: 1019 ThreadSafetyAnalyzer(ThreadSafetyHandler &H, BeforeSet* Bset) 1020 : Arena(&Bpa), SxBuilder(Arena), Handler(H), GlobalBeforeSet(Bset) {} 1021 1022 bool inCurrentScope(const CapabilityExpr &CapE); 1023 1024 void addLock(FactSet &FSet, std::unique_ptr<FactEntry> Entry, 1025 bool ReqAttr = false); 1026 void removeLock(FactSet &FSet, const CapabilityExpr &CapE, 1027 SourceLocation UnlockLoc, bool FullyRemove, LockKind Kind); 1028 1029 template <typename AttrType> 1030 void getMutexIDs(CapExprSet &Mtxs, AttrType *Attr, const Expr *Exp, 1031 const NamedDecl *D, til::SExpr *Self = nullptr); 1032 1033 template <class AttrType> 1034 void getMutexIDs(CapExprSet &Mtxs, AttrType *Attr, const Expr *Exp, 1035 const NamedDecl *D, 1036 const CFGBlock *PredBlock, const CFGBlock *CurrBlock, 1037 Expr *BrE, bool Neg); 1038 1039 const CallExpr* getTrylockCallExpr(const Stmt *Cond, LocalVarContext C, 1040 bool &Negate); 1041 1042 void getEdgeLockset(FactSet &Result, const FactSet &ExitSet, 1043 const CFGBlock* PredBlock, 1044 const CFGBlock *CurrBlock); 1045 1046 bool join(const FactEntry &a, const FactEntry &b, bool CanModify); 1047 1048 void intersectAndWarn(FactSet &EntrySet, const FactSet &ExitSet, 1049 SourceLocation JoinLoc, LockErrorKind EntryLEK, 1050 LockErrorKind ExitLEK); 1051 1052 void intersectAndWarn(FactSet &EntrySet, const FactSet &ExitSet, 1053 SourceLocation JoinLoc, LockErrorKind LEK) { 1054 intersectAndWarn(EntrySet, ExitSet, JoinLoc, LEK, LEK); 1055 } 1056 1057 void runAnalysis(AnalysisDeclContext &AC); 1058 1059 void warnIfMutexNotHeld(const FactSet &FSet, const NamedDecl *D, 1060 const Expr *Exp, AccessKind AK, Expr *MutexExp, 1061 ProtectedOperationKind POK, til::LiteralPtr *Self, 1062 SourceLocation Loc); 1063 void warnIfMutexHeld(const FactSet &FSet, const NamedDecl *D, const Expr *Exp, 1064 Expr *MutexExp, til::LiteralPtr *Self, 1065 SourceLocation Loc); 1066 1067 void checkAccess(const FactSet &FSet, const Expr *Exp, AccessKind AK, 1068 ProtectedOperationKind POK); 1069 void checkPtAccess(const FactSet &FSet, const Expr *Exp, AccessKind AK, 1070 ProtectedOperationKind POK); 1071 }; 1072 1073 } // namespace 1074 1075 /// Process acquired_before and acquired_after attributes on Vd. 1076 BeforeSet::BeforeInfo* BeforeSet::insertAttrExprs(const ValueDecl* Vd, 1077 ThreadSafetyAnalyzer& Analyzer) { 1078 // Create a new entry for Vd. 1079 BeforeInfo *Info = nullptr; 1080 { 1081 // Keep InfoPtr in its own scope in case BMap is modified later and the 1082 // reference becomes invalid. 1083 std::unique_ptr<BeforeInfo> &InfoPtr = BMap[Vd]; 1084 if (!InfoPtr) 1085 InfoPtr.reset(new BeforeInfo()); 1086 Info = InfoPtr.get(); 1087 } 1088 1089 for (const auto *At : Vd->attrs()) { 1090 switch (At->getKind()) { 1091 case attr::AcquiredBefore: { 1092 const auto *A = cast<AcquiredBeforeAttr>(At); 1093 1094 // Read exprs from the attribute, and add them to BeforeVect. 1095 for (const auto *Arg : A->args()) { 1096 CapabilityExpr Cp = 1097 Analyzer.SxBuilder.translateAttrExpr(Arg, nullptr); 1098 if (const ValueDecl *Cpvd = Cp.valueDecl()) { 1099 Info->Vect.push_back(Cpvd); 1100 const auto It = BMap.find(Cpvd); 1101 if (It == BMap.end()) 1102 insertAttrExprs(Cpvd, Analyzer); 1103 } 1104 } 1105 break; 1106 } 1107 case attr::AcquiredAfter: { 1108 const auto *A = cast<AcquiredAfterAttr>(At); 1109 1110 // Read exprs from the attribute, and add them to BeforeVect. 1111 for (const auto *Arg : A->args()) { 1112 CapabilityExpr Cp = 1113 Analyzer.SxBuilder.translateAttrExpr(Arg, nullptr); 1114 if (const ValueDecl *ArgVd = Cp.valueDecl()) { 1115 // Get entry for mutex listed in attribute 1116 BeforeInfo *ArgInfo = getBeforeInfoForDecl(ArgVd, Analyzer); 1117 ArgInfo->Vect.push_back(Vd); 1118 } 1119 } 1120 break; 1121 } 1122 default: 1123 break; 1124 } 1125 } 1126 1127 return Info; 1128 } 1129 1130 BeforeSet::BeforeInfo * 1131 BeforeSet::getBeforeInfoForDecl(const ValueDecl *Vd, 1132 ThreadSafetyAnalyzer &Analyzer) { 1133 auto It = BMap.find(Vd); 1134 BeforeInfo *Info = nullptr; 1135 if (It == BMap.end()) 1136 Info = insertAttrExprs(Vd, Analyzer); 1137 else 1138 Info = It->second.get(); 1139 assert(Info && "BMap contained nullptr?"); 1140 return Info; 1141 } 1142 1143 /// Return true if any mutexes in FSet are in the acquired_before set of Vd. 1144 void BeforeSet::checkBeforeAfter(const ValueDecl* StartVd, 1145 const FactSet& FSet, 1146 ThreadSafetyAnalyzer& Analyzer, 1147 SourceLocation Loc, StringRef CapKind) { 1148 SmallVector<BeforeInfo*, 8> InfoVect; 1149 1150 // Do a depth-first traversal of Vd. 1151 // Return true if there are cycles. 1152 std::function<bool (const ValueDecl*)> traverse = [&](const ValueDecl* Vd) { 1153 if (!Vd) 1154 return false; 1155 1156 BeforeSet::BeforeInfo *Info = getBeforeInfoForDecl(Vd, Analyzer); 1157 1158 if (Info->Visited == 1) 1159 return true; 1160 1161 if (Info->Visited == 2) 1162 return false; 1163 1164 if (Info->Vect.empty()) 1165 return false; 1166 1167 InfoVect.push_back(Info); 1168 Info->Visited = 1; 1169 for (const auto *Vdb : Info->Vect) { 1170 // Exclude mutexes in our immediate before set. 1171 if (FSet.containsMutexDecl(Analyzer.FactMan, Vdb)) { 1172 StringRef L1 = StartVd->getName(); 1173 StringRef L2 = Vdb->getName(); 1174 Analyzer.Handler.handleLockAcquiredBefore(CapKind, L1, L2, Loc); 1175 } 1176 // Transitively search other before sets, and warn on cycles. 1177 if (traverse(Vdb)) { 1178 if (!CycMap.contains(Vd)) { 1179 CycMap.insert(std::make_pair(Vd, true)); 1180 StringRef L1 = Vd->getName(); 1181 Analyzer.Handler.handleBeforeAfterCycle(L1, Vd->getLocation()); 1182 } 1183 } 1184 } 1185 Info->Visited = 2; 1186 return false; 1187 }; 1188 1189 traverse(StartVd); 1190 1191 for (auto *Info : InfoVect) 1192 Info->Visited = 0; 1193 } 1194 1195 /// Gets the value decl pointer from DeclRefExprs or MemberExprs. 1196 static const ValueDecl *getValueDecl(const Expr *Exp) { 1197 if (const auto *CE = dyn_cast<ImplicitCastExpr>(Exp)) 1198 return getValueDecl(CE->getSubExpr()); 1199 1200 if (const auto *DR = dyn_cast<DeclRefExpr>(Exp)) 1201 return DR->getDecl(); 1202 1203 if (const auto *ME = dyn_cast<MemberExpr>(Exp)) 1204 return ME->getMemberDecl(); 1205 1206 return nullptr; 1207 } 1208 1209 namespace { 1210 1211 template <typename Ty> 1212 class has_arg_iterator_range { 1213 using yes = char[1]; 1214 using no = char[2]; 1215 1216 template <typename Inner> 1217 static yes& test(Inner *I, decltype(I->args()) * = nullptr); 1218 1219 template <typename> 1220 static no& test(...); 1221 1222 public: 1223 static const bool value = sizeof(test<Ty>(nullptr)) == sizeof(yes); 1224 }; 1225 1226 } // namespace 1227 1228 bool ThreadSafetyAnalyzer::inCurrentScope(const CapabilityExpr &CapE) { 1229 const threadSafety::til::SExpr *SExp = CapE.sexpr(); 1230 assert(SExp && "Null expressions should be ignored"); 1231 1232 if (const auto *LP = dyn_cast<til::LiteralPtr>(SExp)) { 1233 const ValueDecl *VD = LP->clangDecl(); 1234 // Variables defined in a function are always inaccessible. 1235 if (!VD || !VD->isDefinedOutsideFunctionOrMethod()) 1236 return false; 1237 // For now we consider static class members to be inaccessible. 1238 if (isa<CXXRecordDecl>(VD->getDeclContext())) 1239 return false; 1240 // Global variables are always in scope. 1241 return true; 1242 } 1243 1244 // Members are in scope from methods of the same class. 1245 if (const auto *P = dyn_cast<til::Project>(SExp)) { 1246 if (!CurrentMethod) 1247 return false; 1248 const ValueDecl *VD = P->clangDecl(); 1249 return VD->getDeclContext() == CurrentMethod->getDeclContext(); 1250 } 1251 1252 return false; 1253 } 1254 1255 /// Add a new lock to the lockset, warning if the lock is already there. 1256 /// \param ReqAttr -- true if this is part of an initial Requires attribute. 1257 void ThreadSafetyAnalyzer::addLock(FactSet &FSet, 1258 std::unique_ptr<FactEntry> Entry, 1259 bool ReqAttr) { 1260 if (Entry->shouldIgnore()) 1261 return; 1262 1263 if (!ReqAttr && !Entry->negative()) { 1264 // look for the negative capability, and remove it from the fact set. 1265 CapabilityExpr NegC = !*Entry; 1266 const FactEntry *Nen = FSet.findLock(FactMan, NegC); 1267 if (Nen) { 1268 FSet.removeLock(FactMan, NegC); 1269 } 1270 else { 1271 if (inCurrentScope(*Entry) && !Entry->asserted()) 1272 Handler.handleNegativeNotHeld(Entry->getKind(), Entry->toString(), 1273 NegC.toString(), Entry->loc()); 1274 } 1275 } 1276 1277 // Check before/after constraints 1278 if (Handler.issueBetaWarnings() && 1279 !Entry->asserted() && !Entry->declared()) { 1280 GlobalBeforeSet->checkBeforeAfter(Entry->valueDecl(), FSet, *this, 1281 Entry->loc(), Entry->getKind()); 1282 } 1283 1284 // FIXME: Don't always warn when we have support for reentrant locks. 1285 if (const FactEntry *Cp = FSet.findLock(FactMan, *Entry)) { 1286 if (!Entry->asserted()) 1287 Cp->handleLock(FSet, FactMan, *Entry, Handler); 1288 } else { 1289 FSet.addLock(FactMan, std::move(Entry)); 1290 } 1291 } 1292 1293 /// Remove a lock from the lockset, warning if the lock is not there. 1294 /// \param UnlockLoc The source location of the unlock (only used in error msg) 1295 void ThreadSafetyAnalyzer::removeLock(FactSet &FSet, const CapabilityExpr &Cp, 1296 SourceLocation UnlockLoc, 1297 bool FullyRemove, LockKind ReceivedKind) { 1298 if (Cp.shouldIgnore()) 1299 return; 1300 1301 const FactEntry *LDat = FSet.findLock(FactMan, Cp); 1302 if (!LDat) { 1303 SourceLocation PrevLoc; 1304 if (const FactEntry *Neg = FSet.findLock(FactMan, !Cp)) 1305 PrevLoc = Neg->loc(); 1306 Handler.handleUnmatchedUnlock(Cp.getKind(), Cp.toString(), UnlockLoc, 1307 PrevLoc); 1308 return; 1309 } 1310 1311 // Generic lock removal doesn't care about lock kind mismatches, but 1312 // otherwise diagnose when the lock kinds are mismatched. 1313 if (ReceivedKind != LK_Generic && LDat->kind() != ReceivedKind) { 1314 Handler.handleIncorrectUnlockKind(Cp.getKind(), Cp.toString(), LDat->kind(), 1315 ReceivedKind, LDat->loc(), UnlockLoc); 1316 } 1317 1318 LDat->handleUnlock(FSet, FactMan, Cp, UnlockLoc, FullyRemove, Handler); 1319 } 1320 1321 /// Extract the list of mutexIDs from the attribute on an expression, 1322 /// and push them onto Mtxs, discarding any duplicates. 1323 template <typename AttrType> 1324 void ThreadSafetyAnalyzer::getMutexIDs(CapExprSet &Mtxs, AttrType *Attr, 1325 const Expr *Exp, const NamedDecl *D, 1326 til::SExpr *Self) { 1327 if (Attr->args_size() == 0) { 1328 // The mutex held is the "this" object. 1329 CapabilityExpr Cp = SxBuilder.translateAttrExpr(nullptr, D, Exp, Self); 1330 if (Cp.isInvalid()) { 1331 warnInvalidLock(Handler, nullptr, D, Exp, Cp.getKind()); 1332 return; 1333 } 1334 //else 1335 if (!Cp.shouldIgnore()) 1336 Mtxs.push_back_nodup(Cp); 1337 return; 1338 } 1339 1340 for (const auto *Arg : Attr->args()) { 1341 CapabilityExpr Cp = SxBuilder.translateAttrExpr(Arg, D, Exp, Self); 1342 if (Cp.isInvalid()) { 1343 warnInvalidLock(Handler, nullptr, D, Exp, Cp.getKind()); 1344 continue; 1345 } 1346 //else 1347 if (!Cp.shouldIgnore()) 1348 Mtxs.push_back_nodup(Cp); 1349 } 1350 } 1351 1352 /// Extract the list of mutexIDs from a trylock attribute. If the 1353 /// trylock applies to the given edge, then push them onto Mtxs, discarding 1354 /// any duplicates. 1355 template <class AttrType> 1356 void ThreadSafetyAnalyzer::getMutexIDs(CapExprSet &Mtxs, AttrType *Attr, 1357 const Expr *Exp, const NamedDecl *D, 1358 const CFGBlock *PredBlock, 1359 const CFGBlock *CurrBlock, 1360 Expr *BrE, bool Neg) { 1361 // Find out which branch has the lock 1362 bool branch = false; 1363 if (const auto *BLE = dyn_cast_or_null<CXXBoolLiteralExpr>(BrE)) 1364 branch = BLE->getValue(); 1365 else if (const auto *ILE = dyn_cast_or_null<IntegerLiteral>(BrE)) 1366 branch = ILE->getValue().getBoolValue(); 1367 1368 int branchnum = branch ? 0 : 1; 1369 if (Neg) 1370 branchnum = !branchnum; 1371 1372 // If we've taken the trylock branch, then add the lock 1373 int i = 0; 1374 for (CFGBlock::const_succ_iterator SI = PredBlock->succ_begin(), 1375 SE = PredBlock->succ_end(); SI != SE && i < 2; ++SI, ++i) { 1376 if (*SI == CurrBlock && i == branchnum) 1377 getMutexIDs(Mtxs, Attr, Exp, D); 1378 } 1379 } 1380 1381 static bool getStaticBooleanValue(Expr *E, bool &TCond) { 1382 if (isa<CXXNullPtrLiteralExpr>(E) || isa<GNUNullExpr>(E)) { 1383 TCond = false; 1384 return true; 1385 } else if (const auto *BLE = dyn_cast<CXXBoolLiteralExpr>(E)) { 1386 TCond = BLE->getValue(); 1387 return true; 1388 } else if (const auto *ILE = dyn_cast<IntegerLiteral>(E)) { 1389 TCond = ILE->getValue().getBoolValue(); 1390 return true; 1391 } else if (auto *CE = dyn_cast<ImplicitCastExpr>(E)) 1392 return getStaticBooleanValue(CE->getSubExpr(), TCond); 1393 return false; 1394 } 1395 1396 // If Cond can be traced back to a function call, return the call expression. 1397 // The negate variable should be called with false, and will be set to true 1398 // if the function call is negated, e.g. if (!mu.tryLock(...)) 1399 const CallExpr* ThreadSafetyAnalyzer::getTrylockCallExpr(const Stmt *Cond, 1400 LocalVarContext C, 1401 bool &Negate) { 1402 if (!Cond) 1403 return nullptr; 1404 1405 if (const auto *CallExp = dyn_cast<CallExpr>(Cond)) { 1406 if (CallExp->getBuiltinCallee() == Builtin::BI__builtin_expect) 1407 return getTrylockCallExpr(CallExp->getArg(0), C, Negate); 1408 return CallExp; 1409 } 1410 else if (const auto *PE = dyn_cast<ParenExpr>(Cond)) 1411 return getTrylockCallExpr(PE->getSubExpr(), C, Negate); 1412 else if (const auto *CE = dyn_cast<ImplicitCastExpr>(Cond)) 1413 return getTrylockCallExpr(CE->getSubExpr(), C, Negate); 1414 else if (const auto *FE = dyn_cast<FullExpr>(Cond)) 1415 return getTrylockCallExpr(FE->getSubExpr(), C, Negate); 1416 else if (const auto *DRE = dyn_cast<DeclRefExpr>(Cond)) { 1417 const Expr *E = LocalVarMap.lookupExpr(DRE->getDecl(), C); 1418 return getTrylockCallExpr(E, C, Negate); 1419 } 1420 else if (const auto *UOP = dyn_cast<UnaryOperator>(Cond)) { 1421 if (UOP->getOpcode() == UO_LNot) { 1422 Negate = !Negate; 1423 return getTrylockCallExpr(UOP->getSubExpr(), C, Negate); 1424 } 1425 return nullptr; 1426 } 1427 else if (const auto *BOP = dyn_cast<BinaryOperator>(Cond)) { 1428 if (BOP->getOpcode() == BO_EQ || BOP->getOpcode() == BO_NE) { 1429 if (BOP->getOpcode() == BO_NE) 1430 Negate = !Negate; 1431 1432 bool TCond = false; 1433 if (getStaticBooleanValue(BOP->getRHS(), TCond)) { 1434 if (!TCond) Negate = !Negate; 1435 return getTrylockCallExpr(BOP->getLHS(), C, Negate); 1436 } 1437 TCond = false; 1438 if (getStaticBooleanValue(BOP->getLHS(), TCond)) { 1439 if (!TCond) Negate = !Negate; 1440 return getTrylockCallExpr(BOP->getRHS(), C, Negate); 1441 } 1442 return nullptr; 1443 } 1444 if (BOP->getOpcode() == BO_LAnd) { 1445 // LHS must have been evaluated in a different block. 1446 return getTrylockCallExpr(BOP->getRHS(), C, Negate); 1447 } 1448 if (BOP->getOpcode() == BO_LOr) 1449 return getTrylockCallExpr(BOP->getRHS(), C, Negate); 1450 return nullptr; 1451 } else if (const auto *COP = dyn_cast<ConditionalOperator>(Cond)) { 1452 bool TCond, FCond; 1453 if (getStaticBooleanValue(COP->getTrueExpr(), TCond) && 1454 getStaticBooleanValue(COP->getFalseExpr(), FCond)) { 1455 if (TCond && !FCond) 1456 return getTrylockCallExpr(COP->getCond(), C, Negate); 1457 if (!TCond && FCond) { 1458 Negate = !Negate; 1459 return getTrylockCallExpr(COP->getCond(), C, Negate); 1460 } 1461 } 1462 } 1463 return nullptr; 1464 } 1465 1466 /// Find the lockset that holds on the edge between PredBlock 1467 /// and CurrBlock. The edge set is the exit set of PredBlock (passed 1468 /// as the ExitSet parameter) plus any trylocks, which are conditionally held. 1469 void ThreadSafetyAnalyzer::getEdgeLockset(FactSet& Result, 1470 const FactSet &ExitSet, 1471 const CFGBlock *PredBlock, 1472 const CFGBlock *CurrBlock) { 1473 Result = ExitSet; 1474 1475 const Stmt *Cond = PredBlock->getTerminatorCondition(); 1476 // We don't acquire try-locks on ?: branches, only when its result is used. 1477 if (!Cond || isa<ConditionalOperator>(PredBlock->getTerminatorStmt())) 1478 return; 1479 1480 bool Negate = false; 1481 const CFGBlockInfo *PredBlockInfo = &BlockInfo[PredBlock->getBlockID()]; 1482 const LocalVarContext &LVarCtx = PredBlockInfo->ExitContext; 1483 1484 const auto *Exp = getTrylockCallExpr(Cond, LVarCtx, Negate); 1485 if (!Exp) 1486 return; 1487 1488 auto *FunDecl = dyn_cast_or_null<NamedDecl>(Exp->getCalleeDecl()); 1489 if(!FunDecl || !FunDecl->hasAttrs()) 1490 return; 1491 1492 CapExprSet ExclusiveLocksToAdd; 1493 CapExprSet SharedLocksToAdd; 1494 1495 // If the condition is a call to a Trylock function, then grab the attributes 1496 for (const auto *Attr : FunDecl->attrs()) { 1497 switch (Attr->getKind()) { 1498 case attr::TryAcquireCapability: { 1499 auto *A = cast<TryAcquireCapabilityAttr>(Attr); 1500 getMutexIDs(A->isShared() ? SharedLocksToAdd : ExclusiveLocksToAdd, A, 1501 Exp, FunDecl, PredBlock, CurrBlock, A->getSuccessValue(), 1502 Negate); 1503 break; 1504 }; 1505 case attr::ExclusiveTrylockFunction: { 1506 const auto *A = cast<ExclusiveTrylockFunctionAttr>(Attr); 1507 getMutexIDs(ExclusiveLocksToAdd, A, Exp, FunDecl, PredBlock, CurrBlock, 1508 A->getSuccessValue(), Negate); 1509 break; 1510 } 1511 case attr::SharedTrylockFunction: { 1512 const auto *A = cast<SharedTrylockFunctionAttr>(Attr); 1513 getMutexIDs(SharedLocksToAdd, A, Exp, FunDecl, PredBlock, CurrBlock, 1514 A->getSuccessValue(), Negate); 1515 break; 1516 } 1517 default: 1518 break; 1519 } 1520 } 1521 1522 // Add and remove locks. 1523 SourceLocation Loc = Exp->getExprLoc(); 1524 for (const auto &ExclusiveLockToAdd : ExclusiveLocksToAdd) 1525 addLock(Result, std::make_unique<LockableFactEntry>(ExclusiveLockToAdd, 1526 LK_Exclusive, Loc)); 1527 for (const auto &SharedLockToAdd : SharedLocksToAdd) 1528 addLock(Result, std::make_unique<LockableFactEntry>(SharedLockToAdd, 1529 LK_Shared, Loc)); 1530 } 1531 1532 namespace { 1533 1534 /// We use this class to visit different types of expressions in 1535 /// CFGBlocks, and build up the lockset. 1536 /// An expression may cause us to add or remove locks from the lockset, or else 1537 /// output error messages related to missing locks. 1538 /// FIXME: In future, we may be able to not inherit from a visitor. 1539 class BuildLockset : public ConstStmtVisitor<BuildLockset> { 1540 friend class ThreadSafetyAnalyzer; 1541 1542 ThreadSafetyAnalyzer *Analyzer; 1543 FactSet FSet; 1544 /// Maps constructed objects to `this` placeholder prior to initialization. 1545 llvm::SmallDenseMap<const Expr *, til::LiteralPtr *> ConstructedObjects; 1546 LocalVariableMap::Context LVarCtx; 1547 unsigned CtxIndex; 1548 1549 // helper functions 1550 1551 void checkAccess(const Expr *Exp, AccessKind AK, 1552 ProtectedOperationKind POK = POK_VarAccess) { 1553 Analyzer->checkAccess(FSet, Exp, AK, POK); 1554 } 1555 void checkPtAccess(const Expr *Exp, AccessKind AK, 1556 ProtectedOperationKind POK = POK_VarAccess) { 1557 Analyzer->checkPtAccess(FSet, Exp, AK, POK); 1558 } 1559 1560 void handleCall(const Expr *Exp, const NamedDecl *D, 1561 til::LiteralPtr *Self = nullptr, 1562 SourceLocation Loc = SourceLocation()); 1563 void examineArguments(const FunctionDecl *FD, 1564 CallExpr::const_arg_iterator ArgBegin, 1565 CallExpr::const_arg_iterator ArgEnd, 1566 bool SkipFirstParam = false); 1567 1568 public: 1569 BuildLockset(ThreadSafetyAnalyzer *Anlzr, CFGBlockInfo &Info) 1570 : ConstStmtVisitor<BuildLockset>(), Analyzer(Anlzr), FSet(Info.EntrySet), 1571 LVarCtx(Info.EntryContext), CtxIndex(Info.EntryIndex) {} 1572 1573 void VisitUnaryOperator(const UnaryOperator *UO); 1574 void VisitBinaryOperator(const BinaryOperator *BO); 1575 void VisitCastExpr(const CastExpr *CE); 1576 void VisitCallExpr(const CallExpr *Exp); 1577 void VisitCXXConstructExpr(const CXXConstructExpr *Exp); 1578 void VisitDeclStmt(const DeclStmt *S); 1579 void VisitMaterializeTemporaryExpr(const MaterializeTemporaryExpr *Exp); 1580 }; 1581 1582 } // namespace 1583 1584 /// Warn if the LSet does not contain a lock sufficient to protect access 1585 /// of at least the passed in AccessKind. 1586 void ThreadSafetyAnalyzer::warnIfMutexNotHeld( 1587 const FactSet &FSet, const NamedDecl *D, const Expr *Exp, AccessKind AK, 1588 Expr *MutexExp, ProtectedOperationKind POK, til::LiteralPtr *Self, 1589 SourceLocation Loc) { 1590 LockKind LK = getLockKindFromAccessKind(AK); 1591 CapabilityExpr Cp = SxBuilder.translateAttrExpr(MutexExp, D, Exp, Self); 1592 if (Cp.isInvalid()) { 1593 warnInvalidLock(Handler, MutexExp, D, Exp, Cp.getKind()); 1594 return; 1595 } else if (Cp.shouldIgnore()) { 1596 return; 1597 } 1598 1599 if (Cp.negative()) { 1600 // Negative capabilities act like locks excluded 1601 const FactEntry *LDat = FSet.findLock(FactMan, !Cp); 1602 if (LDat) { 1603 Handler.handleFunExcludesLock(Cp.getKind(), D->getNameAsString(), 1604 (!Cp).toString(), Loc); 1605 return; 1606 } 1607 1608 // If this does not refer to a negative capability in the same class, 1609 // then stop here. 1610 if (!inCurrentScope(Cp)) 1611 return; 1612 1613 // Otherwise the negative requirement must be propagated to the caller. 1614 LDat = FSet.findLock(FactMan, Cp); 1615 if (!LDat) { 1616 Handler.handleNegativeNotHeld(D, Cp.toString(), Loc); 1617 } 1618 return; 1619 } 1620 1621 const FactEntry *LDat = FSet.findLockUniv(FactMan, Cp); 1622 bool NoError = true; 1623 if (!LDat) { 1624 // No exact match found. Look for a partial match. 1625 LDat = FSet.findPartialMatch(FactMan, Cp); 1626 if (LDat) { 1627 // Warn that there's no precise match. 1628 std::string PartMatchStr = LDat->toString(); 1629 StringRef PartMatchName(PartMatchStr); 1630 Handler.handleMutexNotHeld(Cp.getKind(), D, POK, Cp.toString(), LK, Loc, 1631 &PartMatchName); 1632 } else { 1633 // Warn that there's no match at all. 1634 Handler.handleMutexNotHeld(Cp.getKind(), D, POK, Cp.toString(), LK, Loc); 1635 } 1636 NoError = false; 1637 } 1638 // Make sure the mutex we found is the right kind. 1639 if (NoError && LDat && !LDat->isAtLeast(LK)) { 1640 Handler.handleMutexNotHeld(Cp.getKind(), D, POK, Cp.toString(), LK, Loc); 1641 } 1642 } 1643 1644 /// Warn if the LSet contains the given lock. 1645 void ThreadSafetyAnalyzer::warnIfMutexHeld(const FactSet &FSet, 1646 const NamedDecl *D, const Expr *Exp, 1647 Expr *MutexExp, 1648 til::LiteralPtr *Self, 1649 SourceLocation Loc) { 1650 CapabilityExpr Cp = SxBuilder.translateAttrExpr(MutexExp, D, Exp, Self); 1651 if (Cp.isInvalid()) { 1652 warnInvalidLock(Handler, MutexExp, D, Exp, Cp.getKind()); 1653 return; 1654 } else if (Cp.shouldIgnore()) { 1655 return; 1656 } 1657 1658 const FactEntry *LDat = FSet.findLock(FactMan, Cp); 1659 if (LDat) { 1660 Handler.handleFunExcludesLock(Cp.getKind(), D->getNameAsString(), 1661 Cp.toString(), Loc); 1662 } 1663 } 1664 1665 /// Checks guarded_by and pt_guarded_by attributes. 1666 /// Whenever we identify an access (read or write) to a DeclRefExpr that is 1667 /// marked with guarded_by, we must ensure the appropriate mutexes are held. 1668 /// Similarly, we check if the access is to an expression that dereferences 1669 /// a pointer marked with pt_guarded_by. 1670 void ThreadSafetyAnalyzer::checkAccess(const FactSet &FSet, const Expr *Exp, 1671 AccessKind AK, 1672 ProtectedOperationKind POK) { 1673 Exp = Exp->IgnoreImplicit()->IgnoreParenCasts(); 1674 1675 SourceLocation Loc = Exp->getExprLoc(); 1676 1677 // Local variables of reference type cannot be re-assigned; 1678 // map them to their initializer. 1679 while (const auto *DRE = dyn_cast<DeclRefExpr>(Exp)) { 1680 const auto *VD = dyn_cast<VarDecl>(DRE->getDecl()->getCanonicalDecl()); 1681 if (VD && VD->isLocalVarDecl() && VD->getType()->isReferenceType()) { 1682 if (const auto *E = VD->getInit()) { 1683 // Guard against self-initialization. e.g., int &i = i; 1684 if (E == Exp) 1685 break; 1686 Exp = E; 1687 continue; 1688 } 1689 } 1690 break; 1691 } 1692 1693 if (const auto *UO = dyn_cast<UnaryOperator>(Exp)) { 1694 // For dereferences 1695 if (UO->getOpcode() == UO_Deref) 1696 checkPtAccess(FSet, UO->getSubExpr(), AK, POK); 1697 return; 1698 } 1699 1700 if (const auto *BO = dyn_cast<BinaryOperator>(Exp)) { 1701 switch (BO->getOpcode()) { 1702 case BO_PtrMemD: // .* 1703 return checkAccess(FSet, BO->getLHS(), AK, POK); 1704 case BO_PtrMemI: // ->* 1705 return checkPtAccess(FSet, BO->getLHS(), AK, POK); 1706 default: 1707 return; 1708 } 1709 } 1710 1711 if (const auto *AE = dyn_cast<ArraySubscriptExpr>(Exp)) { 1712 checkPtAccess(FSet, AE->getLHS(), AK, POK); 1713 return; 1714 } 1715 1716 if (const auto *ME = dyn_cast<MemberExpr>(Exp)) { 1717 if (ME->isArrow()) 1718 checkPtAccess(FSet, ME->getBase(), AK, POK); 1719 else 1720 checkAccess(FSet, ME->getBase(), AK, POK); 1721 } 1722 1723 const ValueDecl *D = getValueDecl(Exp); 1724 if (!D || !D->hasAttrs()) 1725 return; 1726 1727 if (D->hasAttr<GuardedVarAttr>() && FSet.isEmpty(FactMan)) { 1728 Handler.handleNoMutexHeld(D, POK, AK, Loc); 1729 } 1730 1731 for (const auto *I : D->specific_attrs<GuardedByAttr>()) 1732 warnIfMutexNotHeld(FSet, D, Exp, AK, I->getArg(), POK, nullptr, Loc); 1733 } 1734 1735 /// Checks pt_guarded_by and pt_guarded_var attributes. 1736 /// POK is the same operationKind that was passed to checkAccess. 1737 void ThreadSafetyAnalyzer::checkPtAccess(const FactSet &FSet, const Expr *Exp, 1738 AccessKind AK, 1739 ProtectedOperationKind POK) { 1740 while (true) { 1741 if (const auto *PE = dyn_cast<ParenExpr>(Exp)) { 1742 Exp = PE->getSubExpr(); 1743 continue; 1744 } 1745 if (const auto *CE = dyn_cast<CastExpr>(Exp)) { 1746 if (CE->getCastKind() == CK_ArrayToPointerDecay) { 1747 // If it's an actual array, and not a pointer, then it's elements 1748 // are protected by GUARDED_BY, not PT_GUARDED_BY; 1749 checkAccess(FSet, CE->getSubExpr(), AK, POK); 1750 return; 1751 } 1752 Exp = CE->getSubExpr(); 1753 continue; 1754 } 1755 break; 1756 } 1757 1758 // Pass by reference warnings are under a different flag. 1759 ProtectedOperationKind PtPOK = POK_VarDereference; 1760 if (POK == POK_PassByRef) PtPOK = POK_PtPassByRef; 1761 1762 const ValueDecl *D = getValueDecl(Exp); 1763 if (!D || !D->hasAttrs()) 1764 return; 1765 1766 if (D->hasAttr<PtGuardedVarAttr>() && FSet.isEmpty(FactMan)) 1767 Handler.handleNoMutexHeld(D, PtPOK, AK, Exp->getExprLoc()); 1768 1769 for (auto const *I : D->specific_attrs<PtGuardedByAttr>()) 1770 warnIfMutexNotHeld(FSet, D, Exp, AK, I->getArg(), PtPOK, nullptr, 1771 Exp->getExprLoc()); 1772 } 1773 1774 /// Process a function call, method call, constructor call, 1775 /// or destructor call. This involves looking at the attributes on the 1776 /// corresponding function/method/constructor/destructor, issuing warnings, 1777 /// and updating the locksets accordingly. 1778 /// 1779 /// FIXME: For classes annotated with one of the guarded annotations, we need 1780 /// to treat const method calls as reads and non-const method calls as writes, 1781 /// and check that the appropriate locks are held. Non-const method calls with 1782 /// the same signature as const method calls can be also treated as reads. 1783 /// 1784 /// \param Exp The call expression. 1785 /// \param D The callee declaration. 1786 /// \param Self If \p Exp = nullptr, the implicit this argument or the argument 1787 /// of an implicitly called cleanup function. 1788 /// \param Loc If \p Exp = nullptr, the location. 1789 void BuildLockset::handleCall(const Expr *Exp, const NamedDecl *D, 1790 til::LiteralPtr *Self, SourceLocation Loc) { 1791 CapExprSet ExclusiveLocksToAdd, SharedLocksToAdd; 1792 CapExprSet ExclusiveLocksToRemove, SharedLocksToRemove, GenericLocksToRemove; 1793 CapExprSet ScopedReqsAndExcludes; 1794 1795 // Figure out if we're constructing an object of scoped lockable class 1796 CapabilityExpr Scp; 1797 if (Exp) { 1798 assert(!Self); 1799 const auto *TagT = Exp->getType()->getAs<TagType>(); 1800 if (TagT && Exp->isPRValue()) { 1801 std::pair<til::LiteralPtr *, StringRef> Placeholder = 1802 Analyzer->SxBuilder.createThisPlaceholder(Exp); 1803 [[maybe_unused]] auto inserted = 1804 ConstructedObjects.insert({Exp, Placeholder.first}); 1805 assert(inserted.second && "Are we visiting the same expression again?"); 1806 if (isa<CXXConstructExpr>(Exp)) 1807 Self = Placeholder.first; 1808 if (TagT->getDecl()->hasAttr<ScopedLockableAttr>()) 1809 Scp = CapabilityExpr(Placeholder.first, Placeholder.second, false); 1810 } 1811 1812 assert(Loc.isInvalid()); 1813 Loc = Exp->getExprLoc(); 1814 } 1815 1816 for(const Attr *At : D->attrs()) { 1817 switch (At->getKind()) { 1818 // When we encounter a lock function, we need to add the lock to our 1819 // lockset. 1820 case attr::AcquireCapability: { 1821 const auto *A = cast<AcquireCapabilityAttr>(At); 1822 Analyzer->getMutexIDs(A->isShared() ? SharedLocksToAdd 1823 : ExclusiveLocksToAdd, 1824 A, Exp, D, Self); 1825 break; 1826 } 1827 1828 // An assert will add a lock to the lockset, but will not generate 1829 // a warning if it is already there, and will not generate a warning 1830 // if it is not removed. 1831 case attr::AssertExclusiveLock: { 1832 const auto *A = cast<AssertExclusiveLockAttr>(At); 1833 1834 CapExprSet AssertLocks; 1835 Analyzer->getMutexIDs(AssertLocks, A, Exp, D, Self); 1836 for (const auto &AssertLock : AssertLocks) 1837 Analyzer->addLock( 1838 FSet, std::make_unique<LockableFactEntry>( 1839 AssertLock, LK_Exclusive, Loc, FactEntry::Asserted)); 1840 break; 1841 } 1842 case attr::AssertSharedLock: { 1843 const auto *A = cast<AssertSharedLockAttr>(At); 1844 1845 CapExprSet AssertLocks; 1846 Analyzer->getMutexIDs(AssertLocks, A, Exp, D, Self); 1847 for (const auto &AssertLock : AssertLocks) 1848 Analyzer->addLock( 1849 FSet, std::make_unique<LockableFactEntry>( 1850 AssertLock, LK_Shared, Loc, FactEntry::Asserted)); 1851 break; 1852 } 1853 1854 case attr::AssertCapability: { 1855 const auto *A = cast<AssertCapabilityAttr>(At); 1856 CapExprSet AssertLocks; 1857 Analyzer->getMutexIDs(AssertLocks, A, Exp, D, Self); 1858 for (const auto &AssertLock : AssertLocks) 1859 Analyzer->addLock(FSet, std::make_unique<LockableFactEntry>( 1860 AssertLock, 1861 A->isShared() ? LK_Shared : LK_Exclusive, 1862 Loc, FactEntry::Asserted)); 1863 break; 1864 } 1865 1866 // When we encounter an unlock function, we need to remove unlocked 1867 // mutexes from the lockset, and flag a warning if they are not there. 1868 case attr::ReleaseCapability: { 1869 const auto *A = cast<ReleaseCapabilityAttr>(At); 1870 if (A->isGeneric()) 1871 Analyzer->getMutexIDs(GenericLocksToRemove, A, Exp, D, Self); 1872 else if (A->isShared()) 1873 Analyzer->getMutexIDs(SharedLocksToRemove, A, Exp, D, Self); 1874 else 1875 Analyzer->getMutexIDs(ExclusiveLocksToRemove, A, Exp, D, Self); 1876 break; 1877 } 1878 1879 case attr::RequiresCapability: { 1880 const auto *A = cast<RequiresCapabilityAttr>(At); 1881 for (auto *Arg : A->args()) { 1882 Analyzer->warnIfMutexNotHeld(FSet, D, Exp, 1883 A->isShared() ? AK_Read : AK_Written, 1884 Arg, POK_FunctionCall, Self, Loc); 1885 // use for adopting a lock 1886 if (!Scp.shouldIgnore()) 1887 Analyzer->getMutexIDs(ScopedReqsAndExcludes, A, Exp, D, Self); 1888 } 1889 break; 1890 } 1891 1892 case attr::LocksExcluded: { 1893 const auto *A = cast<LocksExcludedAttr>(At); 1894 for (auto *Arg : A->args()) { 1895 Analyzer->warnIfMutexHeld(FSet, D, Exp, Arg, Self, Loc); 1896 // use for deferring a lock 1897 if (!Scp.shouldIgnore()) 1898 Analyzer->getMutexIDs(ScopedReqsAndExcludes, A, Exp, D, Self); 1899 } 1900 break; 1901 } 1902 1903 // Ignore attributes unrelated to thread-safety 1904 default: 1905 break; 1906 } 1907 } 1908 1909 // Remove locks first to allow lock upgrading/downgrading. 1910 // FIXME -- should only fully remove if the attribute refers to 'this'. 1911 bool Dtor = isa<CXXDestructorDecl>(D); 1912 for (const auto &M : ExclusiveLocksToRemove) 1913 Analyzer->removeLock(FSet, M, Loc, Dtor, LK_Exclusive); 1914 for (const auto &M : SharedLocksToRemove) 1915 Analyzer->removeLock(FSet, M, Loc, Dtor, LK_Shared); 1916 for (const auto &M : GenericLocksToRemove) 1917 Analyzer->removeLock(FSet, M, Loc, Dtor, LK_Generic); 1918 1919 // Add locks. 1920 FactEntry::SourceKind Source = 1921 !Scp.shouldIgnore() ? FactEntry::Managed : FactEntry::Acquired; 1922 for (const auto &M : ExclusiveLocksToAdd) 1923 Analyzer->addLock(FSet, std::make_unique<LockableFactEntry>(M, LK_Exclusive, 1924 Loc, Source)); 1925 for (const auto &M : SharedLocksToAdd) 1926 Analyzer->addLock( 1927 FSet, std::make_unique<LockableFactEntry>(M, LK_Shared, Loc, Source)); 1928 1929 if (!Scp.shouldIgnore()) { 1930 // Add the managing object as a dummy mutex, mapped to the underlying mutex. 1931 auto ScopedEntry = std::make_unique<ScopedLockableFactEntry>(Scp, Loc); 1932 for (const auto &M : ExclusiveLocksToAdd) 1933 ScopedEntry->addLock(M); 1934 for (const auto &M : SharedLocksToAdd) 1935 ScopedEntry->addLock(M); 1936 for (const auto &M : ScopedReqsAndExcludes) 1937 ScopedEntry->addLock(M); 1938 for (const auto &M : ExclusiveLocksToRemove) 1939 ScopedEntry->addExclusiveUnlock(M); 1940 for (const auto &M : SharedLocksToRemove) 1941 ScopedEntry->addSharedUnlock(M); 1942 Analyzer->addLock(FSet, std::move(ScopedEntry)); 1943 } 1944 } 1945 1946 /// For unary operations which read and write a variable, we need to 1947 /// check whether we hold any required mutexes. Reads are checked in 1948 /// VisitCastExpr. 1949 void BuildLockset::VisitUnaryOperator(const UnaryOperator *UO) { 1950 switch (UO->getOpcode()) { 1951 case UO_PostDec: 1952 case UO_PostInc: 1953 case UO_PreDec: 1954 case UO_PreInc: 1955 checkAccess(UO->getSubExpr(), AK_Written); 1956 break; 1957 default: 1958 break; 1959 } 1960 } 1961 1962 /// For binary operations which assign to a variable (writes), we need to check 1963 /// whether we hold any required mutexes. 1964 /// FIXME: Deal with non-primitive types. 1965 void BuildLockset::VisitBinaryOperator(const BinaryOperator *BO) { 1966 if (!BO->isAssignmentOp()) 1967 return; 1968 1969 // adjust the context 1970 LVarCtx = Analyzer->LocalVarMap.getNextContext(CtxIndex, BO, LVarCtx); 1971 1972 checkAccess(BO->getLHS(), AK_Written); 1973 } 1974 1975 /// Whenever we do an LValue to Rvalue cast, we are reading a variable and 1976 /// need to ensure we hold any required mutexes. 1977 /// FIXME: Deal with non-primitive types. 1978 void BuildLockset::VisitCastExpr(const CastExpr *CE) { 1979 if (CE->getCastKind() != CK_LValueToRValue) 1980 return; 1981 checkAccess(CE->getSubExpr(), AK_Read); 1982 } 1983 1984 void BuildLockset::examineArguments(const FunctionDecl *FD, 1985 CallExpr::const_arg_iterator ArgBegin, 1986 CallExpr::const_arg_iterator ArgEnd, 1987 bool SkipFirstParam) { 1988 // Currently we can't do anything if we don't know the function declaration. 1989 if (!FD) 1990 return; 1991 1992 // NO_THREAD_SAFETY_ANALYSIS does double duty here. Normally it 1993 // only turns off checking within the body of a function, but we also 1994 // use it to turn off checking in arguments to the function. This 1995 // could result in some false negatives, but the alternative is to 1996 // create yet another attribute. 1997 if (FD->hasAttr<NoThreadSafetyAnalysisAttr>()) 1998 return; 1999 2000 const ArrayRef<ParmVarDecl *> Params = FD->parameters(); 2001 auto Param = Params.begin(); 2002 if (SkipFirstParam) 2003 ++Param; 2004 2005 // There can be default arguments, so we stop when one iterator is at end(). 2006 for (auto Arg = ArgBegin; Param != Params.end() && Arg != ArgEnd; 2007 ++Param, ++Arg) { 2008 QualType Qt = (*Param)->getType(); 2009 if (Qt->isReferenceType()) 2010 checkAccess(*Arg, AK_Read, POK_PassByRef); 2011 } 2012 } 2013 2014 void BuildLockset::VisitCallExpr(const CallExpr *Exp) { 2015 if (const auto *CE = dyn_cast<CXXMemberCallExpr>(Exp)) { 2016 const auto *ME = dyn_cast<MemberExpr>(CE->getCallee()); 2017 // ME can be null when calling a method pointer 2018 const CXXMethodDecl *MD = CE->getMethodDecl(); 2019 2020 if (ME && MD) { 2021 if (ME->isArrow()) { 2022 // Should perhaps be AK_Written if !MD->isConst(). 2023 checkPtAccess(CE->getImplicitObjectArgument(), AK_Read); 2024 } else { 2025 // Should perhaps be AK_Written if !MD->isConst(). 2026 checkAccess(CE->getImplicitObjectArgument(), AK_Read); 2027 } 2028 } 2029 2030 examineArguments(CE->getDirectCallee(), CE->arg_begin(), CE->arg_end()); 2031 } else if (const auto *OE = dyn_cast<CXXOperatorCallExpr>(Exp)) { 2032 OverloadedOperatorKind OEop = OE->getOperator(); 2033 switch (OEop) { 2034 case OO_Equal: 2035 case OO_PlusEqual: 2036 case OO_MinusEqual: 2037 case OO_StarEqual: 2038 case OO_SlashEqual: 2039 case OO_PercentEqual: 2040 case OO_CaretEqual: 2041 case OO_AmpEqual: 2042 case OO_PipeEqual: 2043 case OO_LessLessEqual: 2044 case OO_GreaterGreaterEqual: 2045 checkAccess(OE->getArg(1), AK_Read); 2046 [[fallthrough]]; 2047 case OO_PlusPlus: 2048 case OO_MinusMinus: 2049 checkAccess(OE->getArg(0), AK_Written); 2050 break; 2051 case OO_Star: 2052 case OO_ArrowStar: 2053 case OO_Arrow: 2054 case OO_Subscript: 2055 if (!(OEop == OO_Star && OE->getNumArgs() > 1)) { 2056 // Grrr. operator* can be multiplication... 2057 checkPtAccess(OE->getArg(0), AK_Read); 2058 } 2059 [[fallthrough]]; 2060 default: { 2061 // TODO: get rid of this, and rely on pass-by-ref instead. 2062 const Expr *Obj = OE->getArg(0); 2063 checkAccess(Obj, AK_Read); 2064 // Check the remaining arguments. For method operators, the first 2065 // argument is the implicit self argument, and doesn't appear in the 2066 // FunctionDecl, but for non-methods it does. 2067 const FunctionDecl *FD = OE->getDirectCallee(); 2068 examineArguments(FD, std::next(OE->arg_begin()), OE->arg_end(), 2069 /*SkipFirstParam*/ !isa<CXXMethodDecl>(FD)); 2070 break; 2071 } 2072 } 2073 } else { 2074 examineArguments(Exp->getDirectCallee(), Exp->arg_begin(), Exp->arg_end()); 2075 } 2076 2077 auto *D = dyn_cast_or_null<NamedDecl>(Exp->getCalleeDecl()); 2078 if(!D || !D->hasAttrs()) 2079 return; 2080 handleCall(Exp, D); 2081 } 2082 2083 void BuildLockset::VisitCXXConstructExpr(const CXXConstructExpr *Exp) { 2084 const CXXConstructorDecl *D = Exp->getConstructor(); 2085 if (D && D->isCopyConstructor()) { 2086 const Expr* Source = Exp->getArg(0); 2087 checkAccess(Source, AK_Read); 2088 } else { 2089 examineArguments(D, Exp->arg_begin(), Exp->arg_end()); 2090 } 2091 if (D && D->hasAttrs()) 2092 handleCall(Exp, D); 2093 } 2094 2095 static const Expr *UnpackConstruction(const Expr *E) { 2096 if (auto *CE = dyn_cast<CastExpr>(E)) 2097 if (CE->getCastKind() == CK_NoOp) 2098 E = CE->getSubExpr()->IgnoreParens(); 2099 if (auto *CE = dyn_cast<CastExpr>(E)) 2100 if (CE->getCastKind() == CK_ConstructorConversion || 2101 CE->getCastKind() == CK_UserDefinedConversion) 2102 E = CE->getSubExpr(); 2103 if (auto *BTE = dyn_cast<CXXBindTemporaryExpr>(E)) 2104 E = BTE->getSubExpr(); 2105 return E; 2106 } 2107 2108 void BuildLockset::VisitDeclStmt(const DeclStmt *S) { 2109 // adjust the context 2110 LVarCtx = Analyzer->LocalVarMap.getNextContext(CtxIndex, S, LVarCtx); 2111 2112 for (auto *D : S->getDeclGroup()) { 2113 if (auto *VD = dyn_cast_or_null<VarDecl>(D)) { 2114 const Expr *E = VD->getInit(); 2115 if (!E) 2116 continue; 2117 E = E->IgnoreParens(); 2118 2119 // handle constructors that involve temporaries 2120 if (auto *EWC = dyn_cast<ExprWithCleanups>(E)) 2121 E = EWC->getSubExpr()->IgnoreParens(); 2122 E = UnpackConstruction(E); 2123 2124 if (auto Object = ConstructedObjects.find(E); 2125 Object != ConstructedObjects.end()) { 2126 Object->second->setClangDecl(VD); 2127 ConstructedObjects.erase(Object); 2128 } 2129 } 2130 } 2131 } 2132 2133 void BuildLockset::VisitMaterializeTemporaryExpr( 2134 const MaterializeTemporaryExpr *Exp) { 2135 if (const ValueDecl *ExtD = Exp->getExtendingDecl()) { 2136 if (auto Object = 2137 ConstructedObjects.find(UnpackConstruction(Exp->getSubExpr())); 2138 Object != ConstructedObjects.end()) { 2139 Object->second->setClangDecl(ExtD); 2140 ConstructedObjects.erase(Object); 2141 } 2142 } 2143 } 2144 2145 /// Given two facts merging on a join point, possibly warn and decide whether to 2146 /// keep or replace. 2147 /// 2148 /// \param CanModify Whether we can replace \p A by \p B. 2149 /// \return false if we should keep \p A, true if we should take \p B. 2150 bool ThreadSafetyAnalyzer::join(const FactEntry &A, const FactEntry &B, 2151 bool CanModify) { 2152 if (A.kind() != B.kind()) { 2153 // For managed capabilities, the destructor should unlock in the right mode 2154 // anyway. For asserted capabilities no unlocking is needed. 2155 if ((A.managed() || A.asserted()) && (B.managed() || B.asserted())) { 2156 // The shared capability subsumes the exclusive capability, if possible. 2157 bool ShouldTakeB = B.kind() == LK_Shared; 2158 if (CanModify || !ShouldTakeB) 2159 return ShouldTakeB; 2160 } 2161 Handler.handleExclusiveAndShared(B.getKind(), B.toString(), B.loc(), 2162 A.loc()); 2163 // Take the exclusive capability to reduce further warnings. 2164 return CanModify && B.kind() == LK_Exclusive; 2165 } else { 2166 // The non-asserted capability is the one we want to track. 2167 return CanModify && A.asserted() && !B.asserted(); 2168 } 2169 } 2170 2171 /// Compute the intersection of two locksets and issue warnings for any 2172 /// locks in the symmetric difference. 2173 /// 2174 /// This function is used at a merge point in the CFG when comparing the lockset 2175 /// of each branch being merged. For example, given the following sequence: 2176 /// A; if () then B; else C; D; we need to check that the lockset after B and C 2177 /// are the same. In the event of a difference, we use the intersection of these 2178 /// two locksets at the start of D. 2179 /// 2180 /// \param EntrySet A lockset for entry into a (possibly new) block. 2181 /// \param ExitSet The lockset on exiting a preceding block. 2182 /// \param JoinLoc The location of the join point for error reporting 2183 /// \param EntryLEK The warning if a mutex is missing from \p EntrySet. 2184 /// \param ExitLEK The warning if a mutex is missing from \p ExitSet. 2185 void ThreadSafetyAnalyzer::intersectAndWarn(FactSet &EntrySet, 2186 const FactSet &ExitSet, 2187 SourceLocation JoinLoc, 2188 LockErrorKind EntryLEK, 2189 LockErrorKind ExitLEK) { 2190 FactSet EntrySetOrig = EntrySet; 2191 2192 // Find locks in ExitSet that conflict or are not in EntrySet, and warn. 2193 for (const auto &Fact : ExitSet) { 2194 const FactEntry &ExitFact = FactMan[Fact]; 2195 2196 FactSet::iterator EntryIt = EntrySet.findLockIter(FactMan, ExitFact); 2197 if (EntryIt != EntrySet.end()) { 2198 if (join(FactMan[*EntryIt], ExitFact, 2199 EntryLEK != LEK_LockedSomeLoopIterations)) 2200 *EntryIt = Fact; 2201 } else if (!ExitFact.managed()) { 2202 ExitFact.handleRemovalFromIntersection(ExitSet, FactMan, JoinLoc, 2203 EntryLEK, Handler); 2204 } 2205 } 2206 2207 // Find locks in EntrySet that are not in ExitSet, and remove them. 2208 for (const auto &Fact : EntrySetOrig) { 2209 const FactEntry *EntryFact = &FactMan[Fact]; 2210 const FactEntry *ExitFact = ExitSet.findLock(FactMan, *EntryFact); 2211 2212 if (!ExitFact) { 2213 if (!EntryFact->managed() || ExitLEK == LEK_LockedSomeLoopIterations) 2214 EntryFact->handleRemovalFromIntersection(EntrySetOrig, FactMan, JoinLoc, 2215 ExitLEK, Handler); 2216 if (ExitLEK == LEK_LockedSomePredecessors) 2217 EntrySet.removeLock(FactMan, *EntryFact); 2218 } 2219 } 2220 } 2221 2222 // Return true if block B never continues to its successors. 2223 static bool neverReturns(const CFGBlock *B) { 2224 if (B->hasNoReturnElement()) 2225 return true; 2226 if (B->empty()) 2227 return false; 2228 2229 CFGElement Last = B->back(); 2230 if (std::optional<CFGStmt> S = Last.getAs<CFGStmt>()) { 2231 if (isa<CXXThrowExpr>(S->getStmt())) 2232 return true; 2233 } 2234 return false; 2235 } 2236 2237 /// Check a function's CFG for thread-safety violations. 2238 /// 2239 /// We traverse the blocks in the CFG, compute the set of mutexes that are held 2240 /// at the end of each block, and issue warnings for thread safety violations. 2241 /// Each block in the CFG is traversed exactly once. 2242 void ThreadSafetyAnalyzer::runAnalysis(AnalysisDeclContext &AC) { 2243 // TODO: this whole function needs be rewritten as a visitor for CFGWalker. 2244 // For now, we just use the walker to set things up. 2245 threadSafety::CFGWalker walker; 2246 if (!walker.init(AC)) 2247 return; 2248 2249 // AC.dumpCFG(true); 2250 // threadSafety::printSCFG(walker); 2251 2252 CFG *CFGraph = walker.getGraph(); 2253 const NamedDecl *D = walker.getDecl(); 2254 const auto *CurrentFunction = dyn_cast<FunctionDecl>(D); 2255 CurrentMethod = dyn_cast<CXXMethodDecl>(D); 2256 2257 if (D->hasAttr<NoThreadSafetyAnalysisAttr>()) 2258 return; 2259 2260 // FIXME: Do something a bit more intelligent inside constructor and 2261 // destructor code. Constructors and destructors must assume unique access 2262 // to 'this', so checks on member variable access is disabled, but we should 2263 // still enable checks on other objects. 2264 if (isa<CXXConstructorDecl>(D)) 2265 return; // Don't check inside constructors. 2266 if (isa<CXXDestructorDecl>(D)) 2267 return; // Don't check inside destructors. 2268 2269 Handler.enterFunction(CurrentFunction); 2270 2271 BlockInfo.resize(CFGraph->getNumBlockIDs(), 2272 CFGBlockInfo::getEmptyBlockInfo(LocalVarMap)); 2273 2274 // We need to explore the CFG via a "topological" ordering. 2275 // That way, we will be guaranteed to have information about required 2276 // predecessor locksets when exploring a new block. 2277 const PostOrderCFGView *SortedGraph = walker.getSortedGraph(); 2278 PostOrderCFGView::CFGBlockSet VisitedBlocks(CFGraph); 2279 2280 CFGBlockInfo &Initial = BlockInfo[CFGraph->getEntry().getBlockID()]; 2281 CFGBlockInfo &Final = BlockInfo[CFGraph->getExit().getBlockID()]; 2282 2283 // Mark entry block as reachable 2284 Initial.Reachable = true; 2285 2286 // Compute SSA names for local variables 2287 LocalVarMap.traverseCFG(CFGraph, SortedGraph, BlockInfo); 2288 2289 // Fill in source locations for all CFGBlocks. 2290 findBlockLocations(CFGraph, SortedGraph, BlockInfo); 2291 2292 CapExprSet ExclusiveLocksAcquired; 2293 CapExprSet SharedLocksAcquired; 2294 CapExprSet LocksReleased; 2295 2296 // Add locks from exclusive_locks_required and shared_locks_required 2297 // to initial lockset. Also turn off checking for lock and unlock functions. 2298 // FIXME: is there a more intelligent way to check lock/unlock functions? 2299 if (!SortedGraph->empty() && D->hasAttrs()) { 2300 assert(*SortedGraph->begin() == &CFGraph->getEntry()); 2301 FactSet &InitialLockset = Initial.EntrySet; 2302 2303 CapExprSet ExclusiveLocksToAdd; 2304 CapExprSet SharedLocksToAdd; 2305 2306 SourceLocation Loc = D->getLocation(); 2307 for (const auto *Attr : D->attrs()) { 2308 Loc = Attr->getLocation(); 2309 if (const auto *A = dyn_cast<RequiresCapabilityAttr>(Attr)) { 2310 getMutexIDs(A->isShared() ? SharedLocksToAdd : ExclusiveLocksToAdd, A, 2311 nullptr, D); 2312 } else if (const auto *A = dyn_cast<ReleaseCapabilityAttr>(Attr)) { 2313 // UNLOCK_FUNCTION() is used to hide the underlying lock implementation. 2314 // We must ignore such methods. 2315 if (A->args_size() == 0) 2316 return; 2317 getMutexIDs(A->isShared() ? SharedLocksToAdd : ExclusiveLocksToAdd, A, 2318 nullptr, D); 2319 getMutexIDs(LocksReleased, A, nullptr, D); 2320 } else if (const auto *A = dyn_cast<AcquireCapabilityAttr>(Attr)) { 2321 if (A->args_size() == 0) 2322 return; 2323 getMutexIDs(A->isShared() ? SharedLocksAcquired 2324 : ExclusiveLocksAcquired, 2325 A, nullptr, D); 2326 } else if (isa<ExclusiveTrylockFunctionAttr>(Attr)) { 2327 // Don't try to check trylock functions for now. 2328 return; 2329 } else if (isa<SharedTrylockFunctionAttr>(Attr)) { 2330 // Don't try to check trylock functions for now. 2331 return; 2332 } else if (isa<TryAcquireCapabilityAttr>(Attr)) { 2333 // Don't try to check trylock functions for now. 2334 return; 2335 } 2336 } 2337 2338 // FIXME -- Loc can be wrong here. 2339 for (const auto &Mu : ExclusiveLocksToAdd) { 2340 auto Entry = std::make_unique<LockableFactEntry>(Mu, LK_Exclusive, Loc, 2341 FactEntry::Declared); 2342 addLock(InitialLockset, std::move(Entry), true); 2343 } 2344 for (const auto &Mu : SharedLocksToAdd) { 2345 auto Entry = std::make_unique<LockableFactEntry>(Mu, LK_Shared, Loc, 2346 FactEntry::Declared); 2347 addLock(InitialLockset, std::move(Entry), true); 2348 } 2349 } 2350 2351 for (const auto *CurrBlock : *SortedGraph) { 2352 unsigned CurrBlockID = CurrBlock->getBlockID(); 2353 CFGBlockInfo *CurrBlockInfo = &BlockInfo[CurrBlockID]; 2354 2355 // Use the default initial lockset in case there are no predecessors. 2356 VisitedBlocks.insert(CurrBlock); 2357 2358 // Iterate through the predecessor blocks and warn if the lockset for all 2359 // predecessors is not the same. We take the entry lockset of the current 2360 // block to be the intersection of all previous locksets. 2361 // FIXME: By keeping the intersection, we may output more errors in future 2362 // for a lock which is not in the intersection, but was in the union. We 2363 // may want to also keep the union in future. As an example, let's say 2364 // the intersection contains Mutex L, and the union contains L and M. 2365 // Later we unlock M. At this point, we would output an error because we 2366 // never locked M; although the real error is probably that we forgot to 2367 // lock M on all code paths. Conversely, let's say that later we lock M. 2368 // In this case, we should compare against the intersection instead of the 2369 // union because the real error is probably that we forgot to unlock M on 2370 // all code paths. 2371 bool LocksetInitialized = false; 2372 for (CFGBlock::const_pred_iterator PI = CurrBlock->pred_begin(), 2373 PE = CurrBlock->pred_end(); PI != PE; ++PI) { 2374 // if *PI -> CurrBlock is a back edge 2375 if (*PI == nullptr || !VisitedBlocks.alreadySet(*PI)) 2376 continue; 2377 2378 unsigned PrevBlockID = (*PI)->getBlockID(); 2379 CFGBlockInfo *PrevBlockInfo = &BlockInfo[PrevBlockID]; 2380 2381 // Ignore edges from blocks that can't return. 2382 if (neverReturns(*PI) || !PrevBlockInfo->Reachable) 2383 continue; 2384 2385 // Okay, we can reach this block from the entry. 2386 CurrBlockInfo->Reachable = true; 2387 2388 FactSet PrevLockset; 2389 getEdgeLockset(PrevLockset, PrevBlockInfo->ExitSet, *PI, CurrBlock); 2390 2391 if (!LocksetInitialized) { 2392 CurrBlockInfo->EntrySet = PrevLockset; 2393 LocksetInitialized = true; 2394 } else { 2395 // Surprisingly 'continue' doesn't always produce back edges, because 2396 // the CFG has empty "transition" blocks where they meet with the end 2397 // of the regular loop body. We still want to diagnose them as loop. 2398 intersectAndWarn( 2399 CurrBlockInfo->EntrySet, PrevLockset, CurrBlockInfo->EntryLoc, 2400 isa_and_nonnull<ContinueStmt>((*PI)->getTerminatorStmt()) 2401 ? LEK_LockedSomeLoopIterations 2402 : LEK_LockedSomePredecessors); 2403 } 2404 } 2405 2406 // Skip rest of block if it's not reachable. 2407 if (!CurrBlockInfo->Reachable) 2408 continue; 2409 2410 BuildLockset LocksetBuilder(this, *CurrBlockInfo); 2411 2412 // Visit all the statements in the basic block. 2413 for (const auto &BI : *CurrBlock) { 2414 switch (BI.getKind()) { 2415 case CFGElement::Statement: { 2416 CFGStmt CS = BI.castAs<CFGStmt>(); 2417 LocksetBuilder.Visit(CS.getStmt()); 2418 break; 2419 } 2420 // Ignore BaseDtor and MemberDtor for now. 2421 case CFGElement::AutomaticObjectDtor: { 2422 CFGAutomaticObjDtor AD = BI.castAs<CFGAutomaticObjDtor>(); 2423 const auto *DD = AD.getDestructorDecl(AC.getASTContext()); 2424 if (!DD->hasAttrs()) 2425 break; 2426 2427 LocksetBuilder.handleCall(nullptr, DD, 2428 SxBuilder.createVariable(AD.getVarDecl()), 2429 AD.getTriggerStmt()->getEndLoc()); 2430 break; 2431 } 2432 2433 case CFGElement::CleanupFunction: { 2434 const CFGCleanupFunction &CF = BI.castAs<CFGCleanupFunction>(); 2435 LocksetBuilder.handleCall(/*Exp=*/nullptr, CF.getFunctionDecl(), 2436 SxBuilder.createVariable(CF.getVarDecl()), 2437 CF.getVarDecl()->getLocation()); 2438 break; 2439 } 2440 2441 case CFGElement::TemporaryDtor: { 2442 auto TD = BI.castAs<CFGTemporaryDtor>(); 2443 2444 // Clean up constructed object even if there are no attributes to 2445 // keep the number of objects in limbo as small as possible. 2446 if (auto Object = LocksetBuilder.ConstructedObjects.find( 2447 TD.getBindTemporaryExpr()->getSubExpr()); 2448 Object != LocksetBuilder.ConstructedObjects.end()) { 2449 const auto *DD = TD.getDestructorDecl(AC.getASTContext()); 2450 if (DD->hasAttrs()) 2451 // TODO: the location here isn't quite correct. 2452 LocksetBuilder.handleCall(nullptr, DD, Object->second, 2453 TD.getBindTemporaryExpr()->getEndLoc()); 2454 LocksetBuilder.ConstructedObjects.erase(Object); 2455 } 2456 break; 2457 } 2458 default: 2459 break; 2460 } 2461 } 2462 CurrBlockInfo->ExitSet = LocksetBuilder.FSet; 2463 2464 // For every back edge from CurrBlock (the end of the loop) to another block 2465 // (FirstLoopBlock) we need to check that the Lockset of Block is equal to 2466 // the one held at the beginning of FirstLoopBlock. We can look up the 2467 // Lockset held at the beginning of FirstLoopBlock in the EntryLockSets map. 2468 for (CFGBlock::const_succ_iterator SI = CurrBlock->succ_begin(), 2469 SE = CurrBlock->succ_end(); SI != SE; ++SI) { 2470 // if CurrBlock -> *SI is *not* a back edge 2471 if (*SI == nullptr || !VisitedBlocks.alreadySet(*SI)) 2472 continue; 2473 2474 CFGBlock *FirstLoopBlock = *SI; 2475 CFGBlockInfo *PreLoop = &BlockInfo[FirstLoopBlock->getBlockID()]; 2476 CFGBlockInfo *LoopEnd = &BlockInfo[CurrBlockID]; 2477 intersectAndWarn(PreLoop->EntrySet, LoopEnd->ExitSet, PreLoop->EntryLoc, 2478 LEK_LockedSomeLoopIterations); 2479 } 2480 } 2481 2482 // Skip the final check if the exit block is unreachable. 2483 if (!Final.Reachable) 2484 return; 2485 2486 // By default, we expect all locks held on entry to be held on exit. 2487 FactSet ExpectedExitSet = Initial.EntrySet; 2488 2489 // Adjust the expected exit set by adding or removing locks, as declared 2490 // by *-LOCK_FUNCTION and UNLOCK_FUNCTION. The intersect below will then 2491 // issue the appropriate warning. 2492 // FIXME: the location here is not quite right. 2493 for (const auto &Lock : ExclusiveLocksAcquired) 2494 ExpectedExitSet.addLock(FactMan, std::make_unique<LockableFactEntry>( 2495 Lock, LK_Exclusive, D->getLocation())); 2496 for (const auto &Lock : SharedLocksAcquired) 2497 ExpectedExitSet.addLock(FactMan, std::make_unique<LockableFactEntry>( 2498 Lock, LK_Shared, D->getLocation())); 2499 for (const auto &Lock : LocksReleased) 2500 ExpectedExitSet.removeLock(FactMan, Lock); 2501 2502 // FIXME: Should we call this function for all blocks which exit the function? 2503 intersectAndWarn(ExpectedExitSet, Final.ExitSet, Final.ExitLoc, 2504 LEK_LockedAtEndOfFunction, LEK_NotLockedAtEndOfFunction); 2505 2506 Handler.leaveFunction(CurrentFunction); 2507 } 2508 2509 /// Check a function's CFG for thread-safety violations. 2510 /// 2511 /// We traverse the blocks in the CFG, compute the set of mutexes that are held 2512 /// at the end of each block, and issue warnings for thread safety violations. 2513 /// Each block in the CFG is traversed exactly once. 2514 void threadSafety::runThreadSafetyAnalysis(AnalysisDeclContext &AC, 2515 ThreadSafetyHandler &Handler, 2516 BeforeSet **BSet) { 2517 if (!*BSet) 2518 *BSet = new BeforeSet; 2519 ThreadSafetyAnalyzer Analyzer(Handler, *BSet); 2520 Analyzer.runAnalysis(AC); 2521 } 2522 2523 void threadSafety::threadSafetyCleanup(BeforeSet *Cache) { delete Cache; } 2524 2525 /// Helper function that returns a LockKind required for the given level 2526 /// of access. 2527 LockKind threadSafety::getLockKindFromAccessKind(AccessKind AK) { 2528 switch (AK) { 2529 case AK_Read : 2530 return LK_Shared; 2531 case AK_Written : 2532 return LK_Exclusive; 2533 } 2534 llvm_unreachable("Unknown AccessKind"); 2535 } 2536