1 //===-- Transfer.cpp --------------------------------------------*- C++ -*-===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file defines transfer functions that evaluate program statements and 10 // update an environment accordingly. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "clang/Analysis/FlowSensitive/Transfer.h" 15 #include "clang/AST/Decl.h" 16 #include "clang/AST/DeclBase.h" 17 #include "clang/AST/DeclCXX.h" 18 #include "clang/AST/Expr.h" 19 #include "clang/AST/ExprCXX.h" 20 #include "clang/AST/OperationKinds.h" 21 #include "clang/AST/Stmt.h" 22 #include "clang/AST/StmtVisitor.h" 23 #include "clang/Analysis/FlowSensitive/ASTOps.h" 24 #include "clang/Analysis/FlowSensitive/AdornedCFG.h" 25 #include "clang/Analysis/FlowSensitive/DataflowAnalysisContext.h" 26 #include "clang/Analysis/FlowSensitive/DataflowEnvironment.h" 27 #include "clang/Analysis/FlowSensitive/NoopAnalysis.h" 28 #include "clang/Analysis/FlowSensitive/RecordOps.h" 29 #include "clang/Analysis/FlowSensitive/Value.h" 30 #include "clang/Basic/Builtins.h" 31 #include "clang/Basic/OperatorKinds.h" 32 #include "llvm/Support/Casting.h" 33 #include "llvm/Support/Debug.h" 34 #include <assert.h> 35 #include <cassert> 36 37 #define DEBUG_TYPE "dataflow" 38 39 namespace clang { 40 namespace dataflow { 41 42 const Environment *StmtToEnvMap::getEnvironment(const Stmt &S) const { 43 auto BlockIt = ACFG.getStmtToBlock().find(&ignoreCFGOmittedNodes(S)); 44 if (BlockIt == ACFG.getStmtToBlock().end()) { 45 assert(false); 46 // Return null to avoid dereferencing the end iterator in non-assert builds. 47 return nullptr; 48 } 49 if (!ACFG.isBlockReachable(*BlockIt->getSecond())) 50 return nullptr; 51 if (BlockIt->getSecond()->getBlockID() == CurBlockID) 52 return &CurState.Env; 53 const auto &State = BlockToState[BlockIt->getSecond()->getBlockID()]; 54 if (!(State)) 55 return nullptr; 56 return &State->Env; 57 } 58 59 static BoolValue &evaluateBooleanEquality(const Expr &LHS, const Expr &RHS, 60 Environment &Env) { 61 Value *LHSValue = Env.getValue(LHS); 62 Value *RHSValue = Env.getValue(RHS); 63 64 if (LHSValue == RHSValue) 65 return Env.getBoolLiteralValue(true); 66 67 if (auto *LHSBool = dyn_cast_or_null<BoolValue>(LHSValue)) 68 if (auto *RHSBool = dyn_cast_or_null<BoolValue>(RHSValue)) 69 return Env.makeIff(*LHSBool, *RHSBool); 70 71 if (auto *LHSPtr = dyn_cast_or_null<PointerValue>(LHSValue)) 72 if (auto *RHSPtr = dyn_cast_or_null<PointerValue>(RHSValue)) 73 // If the storage locations are the same, the pointers definitely compare 74 // the same. If the storage locations are different, they may still alias, 75 // so we fall through to the case below that returns an atom. 76 if (&LHSPtr->getPointeeLoc() == &RHSPtr->getPointeeLoc()) 77 return Env.getBoolLiteralValue(true); 78 79 return Env.makeAtomicBoolValue(); 80 } 81 82 static BoolValue &unpackValue(BoolValue &V, Environment &Env) { 83 if (auto *Top = llvm::dyn_cast<TopBoolValue>(&V)) { 84 auto &A = Env.getDataflowAnalysisContext().arena(); 85 return A.makeBoolValue(A.makeAtomRef(Top->getAtom())); 86 } 87 return V; 88 } 89 90 // Unpacks the value (if any) associated with `E` and updates `E` to the new 91 // value, if any unpacking occured. Also, does the lvalue-to-rvalue conversion, 92 // by skipping past the reference. 93 static Value *maybeUnpackLValueExpr(const Expr &E, Environment &Env) { 94 auto *Loc = Env.getStorageLocation(E); 95 if (Loc == nullptr) 96 return nullptr; 97 auto *Val = Env.getValue(*Loc); 98 99 auto *B = dyn_cast_or_null<BoolValue>(Val); 100 if (B == nullptr) 101 return Val; 102 103 auto &UnpackedVal = unpackValue(*B, Env); 104 if (&UnpackedVal == Val) 105 return Val; 106 Env.setValue(*Loc, UnpackedVal); 107 return &UnpackedVal; 108 } 109 110 static void propagateValue(const Expr &From, const Expr &To, Environment &Env) { 111 if (From.getType()->isRecordType()) 112 return; 113 if (auto *Val = Env.getValue(From)) 114 Env.setValue(To, *Val); 115 } 116 117 static void propagateStorageLocation(const Expr &From, const Expr &To, 118 Environment &Env) { 119 if (auto *Loc = Env.getStorageLocation(From)) 120 Env.setStorageLocation(To, *Loc); 121 } 122 123 // Propagates the value or storage location of `From` to `To` in cases where 124 // `From` may be either a glvalue or a prvalue. `To` must be a glvalue iff 125 // `From` is a glvalue. 126 static void propagateValueOrStorageLocation(const Expr &From, const Expr &To, 127 Environment &Env) { 128 assert(From.isGLValue() == To.isGLValue()); 129 if (From.isGLValue()) 130 propagateStorageLocation(From, To, Env); 131 else 132 propagateValue(From, To, Env); 133 } 134 135 namespace { 136 137 class TransferVisitor : public ConstStmtVisitor<TransferVisitor> { 138 public: 139 TransferVisitor(const StmtToEnvMap &StmtToEnv, Environment &Env, 140 Environment::ValueModel &Model) 141 : StmtToEnv(StmtToEnv), Env(Env), Model(Model) {} 142 143 void VisitBinaryOperator(const BinaryOperator *S) { 144 const Expr *LHS = S->getLHS(); 145 assert(LHS != nullptr); 146 147 const Expr *RHS = S->getRHS(); 148 assert(RHS != nullptr); 149 150 switch (S->getOpcode()) { 151 case BO_Assign: { 152 auto *LHSLoc = Env.getStorageLocation(*LHS); 153 if (LHSLoc == nullptr) 154 break; 155 156 auto *RHSVal = Env.getValue(*RHS); 157 if (RHSVal == nullptr) 158 break; 159 160 // Assign a value to the storage location of the left-hand side. 161 Env.setValue(*LHSLoc, *RHSVal); 162 163 // Assign a storage location for the whole expression. 164 Env.setStorageLocation(*S, *LHSLoc); 165 break; 166 } 167 case BO_LAnd: 168 case BO_LOr: { 169 BoolValue &LHSVal = getLogicOperatorSubExprValue(*LHS); 170 BoolValue &RHSVal = getLogicOperatorSubExprValue(*RHS); 171 172 if (S->getOpcode() == BO_LAnd) 173 Env.setValue(*S, Env.makeAnd(LHSVal, RHSVal)); 174 else 175 Env.setValue(*S, Env.makeOr(LHSVal, RHSVal)); 176 break; 177 } 178 case BO_NE: 179 case BO_EQ: { 180 auto &LHSEqRHSValue = evaluateBooleanEquality(*LHS, *RHS, Env); 181 Env.setValue(*S, S->getOpcode() == BO_EQ ? LHSEqRHSValue 182 : Env.makeNot(LHSEqRHSValue)); 183 break; 184 } 185 case BO_Comma: { 186 propagateValueOrStorageLocation(*RHS, *S, Env); 187 break; 188 } 189 default: 190 break; 191 } 192 } 193 194 void VisitDeclRefExpr(const DeclRefExpr *S) { 195 const ValueDecl *VD = S->getDecl(); 196 assert(VD != nullptr); 197 198 // Some `DeclRefExpr`s aren't glvalues, so we can't associate them with a 199 // `StorageLocation`, and there's also no sensible `Value` that we can 200 // assign to them. Examples: 201 // - Non-static member variables 202 // - Non static member functions 203 // Note: Member operators are an exception to this, but apparently only 204 // if the `DeclRefExpr` is used within the callee of a 205 // `CXXOperatorCallExpr`. In other cases, for example when applying the 206 // address-of operator, the `DeclRefExpr` is a prvalue. 207 if (!S->isGLValue()) 208 return; 209 210 auto *DeclLoc = Env.getStorageLocation(*VD); 211 if (DeclLoc == nullptr) 212 return; 213 214 Env.setStorageLocation(*S, *DeclLoc); 215 } 216 217 void VisitDeclStmt(const DeclStmt *S) { 218 // Group decls are converted into single decls in the CFG so the cast below 219 // is safe. 220 const auto &D = *cast<VarDecl>(S->getSingleDecl()); 221 222 ProcessVarDecl(D); 223 } 224 225 void ProcessVarDecl(const VarDecl &D) { 226 // Static local vars are already initialized in `Environment`. 227 if (D.hasGlobalStorage()) 228 return; 229 230 // If this is the holding variable for a `BindingDecl`, we may already 231 // have a storage location set up -- so check. (See also explanation below 232 // where we process the `BindingDecl`.) 233 if (D.getType()->isReferenceType() && Env.getStorageLocation(D) != nullptr) 234 return; 235 236 assert(Env.getStorageLocation(D) == nullptr); 237 238 Env.setStorageLocation(D, Env.createObject(D)); 239 240 // `DecompositionDecl` must be handled after we've interpreted the loc 241 // itself, because the binding expression refers back to the 242 // `DecompositionDecl` (even though it has no written name). 243 if (const auto *Decomp = dyn_cast<DecompositionDecl>(&D)) { 244 // If VarDecl is a DecompositionDecl, evaluate each of its bindings. This 245 // needs to be evaluated after initializing the values in the storage for 246 // VarDecl, as the bindings refer to them. 247 // FIXME: Add support for ArraySubscriptExpr. 248 // FIXME: Consider adding AST nodes used in BindingDecls to the CFG. 249 for (const auto *B : Decomp->bindings()) { 250 if (auto *ME = dyn_cast_or_null<MemberExpr>(B->getBinding())) { 251 auto *DE = dyn_cast_or_null<DeclRefExpr>(ME->getBase()); 252 if (DE == nullptr) 253 continue; 254 255 // ME and its base haven't been visited because they aren't included 256 // in the statements of the CFG basic block. 257 VisitDeclRefExpr(DE); 258 VisitMemberExpr(ME); 259 260 if (auto *Loc = Env.getStorageLocation(*ME)) 261 Env.setStorageLocation(*B, *Loc); 262 } else if (auto *VD = B->getHoldingVar()) { 263 // Holding vars are used to back the `BindingDecl`s of tuple-like 264 // types. The holding var declarations appear after the 265 // `DecompositionDecl`, so we have to explicitly process them here 266 // to know their storage location. They will be processed a second 267 // time when we visit their `VarDecl`s, so we have code that protects 268 // against this above. 269 ProcessVarDecl(*VD); 270 auto *VDLoc = Env.getStorageLocation(*VD); 271 assert(VDLoc != nullptr); 272 Env.setStorageLocation(*B, *VDLoc); 273 } 274 } 275 } 276 } 277 278 void VisitImplicitCastExpr(const ImplicitCastExpr *S) { 279 const Expr *SubExpr = S->getSubExpr(); 280 assert(SubExpr != nullptr); 281 282 switch (S->getCastKind()) { 283 case CK_IntegralToBoolean: { 284 // This cast creates a new, boolean value from the integral value. We 285 // model that with a fresh value in the environment, unless it's already a 286 // boolean. 287 if (auto *SubExprVal = 288 dyn_cast_or_null<BoolValue>(Env.getValue(*SubExpr))) 289 Env.setValue(*S, *SubExprVal); 290 else 291 // FIXME: If integer modeling is added, then update this code to create 292 // the boolean based on the integer model. 293 Env.setValue(*S, Env.makeAtomicBoolValue()); 294 break; 295 } 296 297 case CK_LValueToRValue: { 298 // When an L-value is used as an R-value, it may result in sharing, so we 299 // need to unpack any nested `Top`s. 300 auto *SubExprVal = maybeUnpackLValueExpr(*SubExpr, Env); 301 if (SubExprVal == nullptr) 302 break; 303 304 Env.setValue(*S, *SubExprVal); 305 break; 306 } 307 308 case CK_IntegralCast: 309 // FIXME: This cast creates a new integral value from the 310 // subexpression. But, because we don't model integers, we don't 311 // distinguish between this new value and the underlying one. If integer 312 // modeling is added, then update this code to create a fresh location and 313 // value. 314 case CK_UncheckedDerivedToBase: 315 case CK_ConstructorConversion: 316 case CK_UserDefinedConversion: 317 // FIXME: Add tests that excercise CK_UncheckedDerivedToBase, 318 // CK_ConstructorConversion, and CK_UserDefinedConversion. 319 case CK_NoOp: { 320 // FIXME: Consider making `Environment::getStorageLocation` skip noop 321 // expressions (this and other similar expressions in the file) instead 322 // of assigning them storage locations. 323 propagateValueOrStorageLocation(*SubExpr, *S, Env); 324 break; 325 } 326 case CK_NullToPointer: { 327 auto &NullPointerVal = 328 Env.getOrCreateNullPointerValue(S->getType()->getPointeeType()); 329 Env.setValue(*S, NullPointerVal); 330 break; 331 } 332 case CK_NullToMemberPointer: 333 // FIXME: Implement pointers to members. For now, don't associate a value 334 // with this expression. 335 break; 336 case CK_FunctionToPointerDecay: { 337 StorageLocation *PointeeLoc = Env.getStorageLocation(*SubExpr); 338 if (PointeeLoc == nullptr) 339 break; 340 341 Env.setValue(*S, Env.create<PointerValue>(*PointeeLoc)); 342 break; 343 } 344 case CK_BuiltinFnToFnPtr: 345 // Despite its name, the result type of `BuiltinFnToFnPtr` is a function, 346 // not a function pointer. In addition, builtin functions can only be 347 // called directly; it is not legal to take their address. We therefore 348 // don't need to create a value or storage location for them. 349 break; 350 default: 351 break; 352 } 353 } 354 355 void VisitUnaryOperator(const UnaryOperator *S) { 356 const Expr *SubExpr = S->getSubExpr(); 357 assert(SubExpr != nullptr); 358 359 switch (S->getOpcode()) { 360 case UO_Deref: { 361 const auto *SubExprVal = Env.get<PointerValue>(*SubExpr); 362 if (SubExprVal == nullptr) 363 break; 364 365 Env.setStorageLocation(*S, SubExprVal->getPointeeLoc()); 366 break; 367 } 368 case UO_AddrOf: { 369 // FIXME: Model pointers to members. 370 if (S->getType()->isMemberPointerType()) 371 break; 372 373 if (StorageLocation *PointeeLoc = Env.getStorageLocation(*SubExpr)) 374 Env.setValue(*S, Env.create<PointerValue>(*PointeeLoc)); 375 break; 376 } 377 case UO_LNot: { 378 auto *SubExprVal = dyn_cast_or_null<BoolValue>(Env.getValue(*SubExpr)); 379 if (SubExprVal == nullptr) 380 break; 381 382 Env.setValue(*S, Env.makeNot(*SubExprVal)); 383 break; 384 } 385 default: 386 break; 387 } 388 } 389 390 void VisitCXXThisExpr(const CXXThisExpr *S) { 391 auto *ThisPointeeLoc = Env.getThisPointeeStorageLocation(); 392 if (ThisPointeeLoc == nullptr) 393 // Unions are not supported yet, and will not have a location for the 394 // `this` expression's pointee. 395 return; 396 397 Env.setValue(*S, Env.create<PointerValue>(*ThisPointeeLoc)); 398 } 399 400 void VisitCXXNewExpr(const CXXNewExpr *S) { 401 if (Value *Val = Env.createValue(S->getType())) 402 Env.setValue(*S, *Val); 403 } 404 405 void VisitCXXDeleteExpr(const CXXDeleteExpr *S) { 406 // Empty method. 407 // We consciously don't do anything on deletes. Diagnosing double deletes 408 // (for example) should be done by a specific analysis, not by the 409 // framework. 410 } 411 412 void VisitReturnStmt(const ReturnStmt *S) { 413 if (!Env.getDataflowAnalysisContext().getOptions().ContextSensitiveOpts) 414 return; 415 416 auto *Ret = S->getRetValue(); 417 if (Ret == nullptr) 418 return; 419 420 if (Ret->isPRValue()) { 421 if (Ret->getType()->isRecordType()) 422 return; 423 424 auto *Val = Env.getValue(*Ret); 425 if (Val == nullptr) 426 return; 427 428 // FIXME: Model NRVO. 429 Env.setReturnValue(Val); 430 } else { 431 auto *Loc = Env.getStorageLocation(*Ret); 432 if (Loc == nullptr) 433 return; 434 435 // FIXME: Model NRVO. 436 Env.setReturnStorageLocation(Loc); 437 } 438 } 439 440 void VisitMemberExpr(const MemberExpr *S) { 441 ValueDecl *Member = S->getMemberDecl(); 442 assert(Member != nullptr); 443 444 // FIXME: Consider assigning pointer values to function member expressions. 445 if (Member->isFunctionOrFunctionTemplate()) 446 return; 447 448 // FIXME: if/when we add support for modeling enums, use that support here. 449 if (isa<EnumConstantDecl>(Member)) 450 return; 451 452 if (auto *D = dyn_cast<VarDecl>(Member)) { 453 if (D->hasGlobalStorage()) { 454 auto *VarDeclLoc = Env.getStorageLocation(*D); 455 if (VarDeclLoc == nullptr) 456 return; 457 458 Env.setStorageLocation(*S, *VarDeclLoc); 459 return; 460 } 461 } 462 463 RecordStorageLocation *BaseLoc = getBaseObjectLocation(*S, Env); 464 if (BaseLoc == nullptr) 465 return; 466 467 auto *MemberLoc = BaseLoc->getChild(*Member); 468 if (MemberLoc == nullptr) 469 return; 470 Env.setStorageLocation(*S, *MemberLoc); 471 } 472 473 void VisitCXXDefaultArgExpr(const CXXDefaultArgExpr *S) { 474 const Expr *ArgExpr = S->getExpr(); 475 assert(ArgExpr != nullptr); 476 propagateValueOrStorageLocation(*ArgExpr, *S, Env); 477 478 if (S->isPRValue() && S->getType()->isRecordType()) { 479 auto &Loc = Env.getResultObjectLocation(*S); 480 Env.initializeFieldsWithValues(Loc); 481 } 482 } 483 484 void VisitCXXDefaultInitExpr(const CXXDefaultInitExpr *S) { 485 const Expr *InitExpr = S->getExpr(); 486 assert(InitExpr != nullptr); 487 488 // If this is a prvalue of record type, the handler for `*InitExpr` (if one 489 // exists) will initialize the result object; there is no value to propgate 490 // here. 491 if (S->getType()->isRecordType() && S->isPRValue()) 492 return; 493 494 propagateValueOrStorageLocation(*InitExpr, *S, Env); 495 } 496 497 void VisitCXXConstructExpr(const CXXConstructExpr *S) { 498 const CXXConstructorDecl *ConstructorDecl = S->getConstructor(); 499 assert(ConstructorDecl != nullptr); 500 501 // `CXXConstructExpr` can have array type if default-initializing an array 502 // of records. We don't handle this specifically beyond potentially inlining 503 // the call. 504 if (!S->getType()->isRecordType()) { 505 transferInlineCall(S, ConstructorDecl); 506 return; 507 } 508 509 RecordStorageLocation &Loc = Env.getResultObjectLocation(*S); 510 511 if (ConstructorDecl->isCopyOrMoveConstructor()) { 512 // It is permissible for a copy/move constructor to have additional 513 // parameters as long as they have default arguments defined for them. 514 assert(S->getNumArgs() != 0); 515 516 const Expr *Arg = S->getArg(0); 517 assert(Arg != nullptr); 518 519 auto *ArgLoc = Env.get<RecordStorageLocation>(*Arg); 520 if (ArgLoc == nullptr) 521 return; 522 523 // Even if the copy/move constructor call is elidable, we choose to copy 524 // the record in all cases (which isn't wrong, just potentially not 525 // optimal). 526 copyRecord(*ArgLoc, Loc, Env); 527 return; 528 } 529 530 Env.initializeFieldsWithValues(Loc, S->getType()); 531 532 transferInlineCall(S, ConstructorDecl); 533 } 534 535 void VisitCXXOperatorCallExpr(const CXXOperatorCallExpr *S) { 536 if (S->getOperator() == OO_Equal) { 537 assert(S->getNumArgs() == 2); 538 539 const Expr *Arg0 = S->getArg(0); 540 assert(Arg0 != nullptr); 541 542 const Expr *Arg1 = S->getArg(1); 543 assert(Arg1 != nullptr); 544 545 // Evaluate only copy and move assignment operators. 546 const auto *Method = 547 dyn_cast_or_null<CXXMethodDecl>(S->getDirectCallee()); 548 if (!Method) 549 return; 550 if (!Method->isCopyAssignmentOperator() && 551 !Method->isMoveAssignmentOperator()) 552 return; 553 554 RecordStorageLocation *LocSrc = nullptr; 555 if (Arg1->isPRValue()) { 556 LocSrc = &Env.getResultObjectLocation(*Arg1); 557 } else { 558 LocSrc = Env.get<RecordStorageLocation>(*Arg1); 559 } 560 auto *LocDst = Env.get<RecordStorageLocation>(*Arg0); 561 562 if (LocSrc == nullptr || LocDst == nullptr) 563 return; 564 565 copyRecord(*LocSrc, *LocDst, Env); 566 567 // The assignment operator can have an arbitrary return type. We model the 568 // return value only if the return type is the same as or a base class of 569 // the destination type. 570 if (S->getType().getCanonicalType().getUnqualifiedType() != 571 LocDst->getType().getCanonicalType().getUnqualifiedType()) { 572 auto ReturnDecl = S->getType()->getAsCXXRecordDecl(); 573 auto DstDecl = LocDst->getType()->getAsCXXRecordDecl(); 574 if (ReturnDecl == nullptr || DstDecl == nullptr) 575 return; 576 if (!DstDecl->isDerivedFrom(ReturnDecl)) 577 return; 578 } 579 580 if (S->isGLValue()) 581 Env.setStorageLocation(*S, *LocDst); 582 else 583 copyRecord(*LocDst, Env.getResultObjectLocation(*S), Env); 584 585 return; 586 } 587 588 // `CXXOperatorCallExpr` can be a prvalue. Call `VisitCallExpr`() to 589 // initialize the prvalue's fields with values. 590 VisitCallExpr(S); 591 } 592 593 void VisitCXXRewrittenBinaryOperator(const CXXRewrittenBinaryOperator *RBO) { 594 propagateValue(*RBO->getSemanticForm(), *RBO, Env); 595 } 596 597 void VisitCallExpr(const CallExpr *S) { 598 // Of clang's builtins, only `__builtin_expect` is handled explicitly, since 599 // others (like trap, debugtrap, and unreachable) are handled by CFG 600 // construction. 601 if (S->isCallToStdMove()) { 602 assert(S->getNumArgs() == 1); 603 604 const Expr *Arg = S->getArg(0); 605 assert(Arg != nullptr); 606 607 auto *ArgLoc = Env.getStorageLocation(*Arg); 608 if (ArgLoc == nullptr) 609 return; 610 611 Env.setStorageLocation(*S, *ArgLoc); 612 } else if (S->getDirectCallee() != nullptr && 613 S->getDirectCallee()->getBuiltinID() == 614 Builtin::BI__builtin_expect) { 615 assert(S->getNumArgs() > 0); 616 assert(S->getArg(0) != nullptr); 617 auto *ArgVal = Env.getValue(*S->getArg(0)); 618 if (ArgVal == nullptr) 619 return; 620 Env.setValue(*S, *ArgVal); 621 } else if (const FunctionDecl *F = S->getDirectCallee()) { 622 transferInlineCall(S, F); 623 624 // If this call produces a prvalue of record type, initialize its fields 625 // with values. 626 if (S->getType()->isRecordType() && S->isPRValue()) { 627 RecordStorageLocation &Loc = Env.getResultObjectLocation(*S); 628 Env.initializeFieldsWithValues(Loc); 629 } 630 } 631 } 632 633 void VisitMaterializeTemporaryExpr(const MaterializeTemporaryExpr *S) { 634 const Expr *SubExpr = S->getSubExpr(); 635 assert(SubExpr != nullptr); 636 637 StorageLocation &Loc = Env.createStorageLocation(*S); 638 Env.setStorageLocation(*S, Loc); 639 640 if (SubExpr->getType()->isRecordType()) 641 // Nothing else left to do -- we initialized the record when transferring 642 // `SubExpr`. 643 return; 644 645 if (Value *SubExprVal = Env.getValue(*SubExpr)) 646 Env.setValue(Loc, *SubExprVal); 647 } 648 649 void VisitCXXBindTemporaryExpr(const CXXBindTemporaryExpr *S) { 650 const Expr *SubExpr = S->getSubExpr(); 651 assert(SubExpr != nullptr); 652 653 propagateValue(*SubExpr, *S, Env); 654 } 655 656 void VisitCXXStaticCastExpr(const CXXStaticCastExpr *S) { 657 if (S->getCastKind() == CK_NoOp) { 658 const Expr *SubExpr = S->getSubExpr(); 659 assert(SubExpr != nullptr); 660 661 propagateValueOrStorageLocation(*SubExpr, *S, Env); 662 } 663 } 664 665 void VisitConditionalOperator(const ConditionalOperator *S) { 666 const Environment *TrueEnv = StmtToEnv.getEnvironment(*S->getTrueExpr()); 667 const Environment *FalseEnv = StmtToEnv.getEnvironment(*S->getFalseExpr()); 668 669 if (TrueEnv == nullptr || FalseEnv == nullptr) { 670 // If the true or false branch is dead, we may not have an environment for 671 // it. We could handle this specifically by forwarding the value or 672 // location of the live branch, but this case is rare enough that this 673 // probably isn't worth the additional complexity. 674 return; 675 } 676 677 if (S->isGLValue()) { 678 StorageLocation *TrueLoc = TrueEnv->getStorageLocation(*S->getTrueExpr()); 679 StorageLocation *FalseLoc = 680 FalseEnv->getStorageLocation(*S->getFalseExpr()); 681 if (TrueLoc == FalseLoc && TrueLoc != nullptr) 682 Env.setStorageLocation(*S, *TrueLoc); 683 } else if (!S->getType()->isRecordType()) { 684 // The conditional operator can evaluate to either of the values of the 685 // two branches. To model this, join these two values together to yield 686 // the result of the conditional operator. 687 // Note: Most joins happen in `computeBlockInputState()`, but this case is 688 // different: 689 // - `computeBlockInputState()` (which in turn calls `Environment::join()` 690 // joins values associated with the _same_ expression or storage 691 // location, then associates the joined value with that expression or 692 // storage location. This join has nothing to do with transfer -- 693 // instead, it joins together the results of performing transfer on two 694 // different blocks. 695 // - Here, we join values associated with _different_ expressions (the 696 // true and false branch), then associate the joined value with a third 697 // expression (the conditional operator itself). This join is what it 698 // means to perform transfer on the conditional operator. 699 if (Value *Val = Environment::joinValues( 700 S->getType(), TrueEnv->getValue(*S->getTrueExpr()), *TrueEnv, 701 FalseEnv->getValue(*S->getFalseExpr()), *FalseEnv, Env, Model)) 702 Env.setValue(*S, *Val); 703 } 704 } 705 706 void VisitInitListExpr(const InitListExpr *S) { 707 QualType Type = S->getType(); 708 709 if (!Type->isRecordType()) { 710 // Until array initialization is implemented, we skip arrays and don't 711 // need to care about cases where `getNumInits() > 1`. 712 if (!Type->isArrayType() && S->getNumInits() == 1) 713 propagateValueOrStorageLocation(*S->getInit(0), *S, Env); 714 return; 715 } 716 717 // If the initializer list is transparent, there's nothing to do. 718 if (S->isSemanticForm() && S->isTransparent()) 719 return; 720 721 RecordStorageLocation &Loc = Env.getResultObjectLocation(*S); 722 723 // Initialization of base classes and fields of record type happens when we 724 // visit the nested `CXXConstructExpr` or `InitListExpr` for that base class 725 // or field. We therefore only need to deal with fields of non-record type 726 // here. 727 728 RecordInitListHelper InitListHelper(S); 729 730 for (auto [Field, Init] : InitListHelper.field_inits()) { 731 if (Field->getType()->isRecordType()) 732 continue; 733 if (Field->getType()->isReferenceType()) { 734 assert(Field->getType().getCanonicalType()->getPointeeType() == 735 Init->getType().getCanonicalType()); 736 Loc.setChild(*Field, &Env.createObject(Field->getType(), Init)); 737 continue; 738 } 739 assert(Field->getType().getCanonicalType().getUnqualifiedType() == 740 Init->getType().getCanonicalType().getUnqualifiedType()); 741 StorageLocation *FieldLoc = Loc.getChild(*Field); 742 // Locations for non-reference fields must always be non-null. 743 assert(FieldLoc != nullptr); 744 Value *Val = Env.getValue(*Init); 745 if (Val == nullptr && isa<ImplicitValueInitExpr>(Init) && 746 Init->getType()->isPointerType()) 747 Val = 748 &Env.getOrCreateNullPointerValue(Init->getType()->getPointeeType()); 749 if (Val == nullptr) 750 Val = Env.createValue(Field->getType()); 751 if (Val != nullptr) 752 Env.setValue(*FieldLoc, *Val); 753 } 754 755 for (const auto &[FieldName, FieldLoc] : Loc.synthetic_fields()) { 756 QualType FieldType = FieldLoc->getType(); 757 if (FieldType->isRecordType()) { 758 Env.initializeFieldsWithValues(*cast<RecordStorageLocation>(FieldLoc)); 759 } else { 760 if (Value *Val = Env.createValue(FieldType)) 761 Env.setValue(*FieldLoc, *Val); 762 } 763 } 764 765 // FIXME: Implement array initialization. 766 } 767 768 void VisitCXXBoolLiteralExpr(const CXXBoolLiteralExpr *S) { 769 Env.setValue(*S, Env.getBoolLiteralValue(S->getValue())); 770 } 771 772 void VisitIntegerLiteral(const IntegerLiteral *S) { 773 Env.setValue(*S, Env.getIntLiteralValue(S->getValue())); 774 } 775 776 void VisitParenExpr(const ParenExpr *S) { 777 // The CFG does not contain `ParenExpr` as top-level statements in basic 778 // blocks, however manual traversal to sub-expressions may encounter them. 779 // Redirect to the sub-expression. 780 auto *SubExpr = S->getSubExpr(); 781 assert(SubExpr != nullptr); 782 Visit(SubExpr); 783 } 784 785 void VisitExprWithCleanups(const ExprWithCleanups *S) { 786 // The CFG does not contain `ExprWithCleanups` as top-level statements in 787 // basic blocks, however manual traversal to sub-expressions may encounter 788 // them. Redirect to the sub-expression. 789 auto *SubExpr = S->getSubExpr(); 790 assert(SubExpr != nullptr); 791 Visit(SubExpr); 792 } 793 794 private: 795 /// Returns the value for the sub-expression `SubExpr` of a logic operator. 796 BoolValue &getLogicOperatorSubExprValue(const Expr &SubExpr) { 797 // `SubExpr` and its parent logic operator might be part of different basic 798 // blocks. We try to access the value that is assigned to `SubExpr` in the 799 // corresponding environment. 800 if (const Environment *SubExprEnv = StmtToEnv.getEnvironment(SubExpr)) 801 if (auto *Val = 802 dyn_cast_or_null<BoolValue>(SubExprEnv->getValue(SubExpr))) 803 return *Val; 804 805 // The sub-expression may lie within a basic block that isn't reachable, 806 // even if we need it to evaluate the current (reachable) expression 807 // (see https://discourse.llvm.org/t/70775). In this case, visit `SubExpr` 808 // within the current environment and then try to get the value that gets 809 // assigned to it. 810 if (Env.getValue(SubExpr) == nullptr) 811 Visit(&SubExpr); 812 if (auto *Val = dyn_cast_or_null<BoolValue>(Env.getValue(SubExpr))) 813 return *Val; 814 815 // If the value of `SubExpr` is still unknown, we create a fresh symbolic 816 // boolean value for it. 817 return Env.makeAtomicBoolValue(); 818 } 819 820 // If context sensitivity is enabled, try to analyze the body of the callee 821 // `F` of `S`. The type `E` must be either `CallExpr` or `CXXConstructExpr`. 822 template <typename E> 823 void transferInlineCall(const E *S, const FunctionDecl *F) { 824 const auto &Options = Env.getDataflowAnalysisContext().getOptions(); 825 if (!(Options.ContextSensitiveOpts && 826 Env.canDescend(Options.ContextSensitiveOpts->Depth, F))) 827 return; 828 829 const AdornedCFG *ACFG = Env.getDataflowAnalysisContext().getAdornedCFG(F); 830 if (!ACFG) 831 return; 832 833 // FIXME: We don't support context-sensitive analysis of recursion, so 834 // we should return early here if `F` is the same as the `FunctionDecl` 835 // holding `S` itself. 836 837 auto ExitBlock = ACFG->getCFG().getExit().getBlockID(); 838 839 auto CalleeEnv = Env.pushCall(S); 840 841 // FIXME: Use the same analysis as the caller for the callee. Note, 842 // though, that doing so would require support for changing the analysis's 843 // ASTContext. 844 auto Analysis = NoopAnalysis(ACFG->getDecl().getASTContext(), 845 DataflowAnalysisOptions{Options}); 846 847 auto BlockToOutputState = 848 dataflow::runDataflowAnalysis(*ACFG, Analysis, CalleeEnv); 849 assert(BlockToOutputState); 850 assert(ExitBlock < BlockToOutputState->size()); 851 852 auto &ExitState = (*BlockToOutputState)[ExitBlock]; 853 assert(ExitState); 854 855 Env.popCall(S, ExitState->Env); 856 } 857 858 const StmtToEnvMap &StmtToEnv; 859 Environment &Env; 860 Environment::ValueModel &Model; 861 }; 862 863 } // namespace 864 865 void transfer(const StmtToEnvMap &StmtToEnv, const Stmt &S, Environment &Env, 866 Environment::ValueModel &Model) { 867 TransferVisitor(StmtToEnv, Env, Model).Visit(&S); 868 } 869 870 } // namespace dataflow 871 } // namespace clang 872