1 //===-- Transfer.cpp --------------------------------------------*- C++ -*-===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file defines transfer functions that evaluate program statements and 10 // update an environment accordingly. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "clang/Analysis/FlowSensitive/Transfer.h" 15 #include "clang/AST/Decl.h" 16 #include "clang/AST/DeclBase.h" 17 #include "clang/AST/DeclCXX.h" 18 #include "clang/AST/Expr.h" 19 #include "clang/AST/ExprCXX.h" 20 #include "clang/AST/OperationKinds.h" 21 #include "clang/AST/Stmt.h" 22 #include "clang/AST/StmtVisitor.h" 23 #include "clang/Analysis/FlowSensitive/ASTOps.h" 24 #include "clang/Analysis/FlowSensitive/AdornedCFG.h" 25 #include "clang/Analysis/FlowSensitive/DataflowAnalysisContext.h" 26 #include "clang/Analysis/FlowSensitive/DataflowEnvironment.h" 27 #include "clang/Analysis/FlowSensitive/NoopAnalysis.h" 28 #include "clang/Analysis/FlowSensitive/RecordOps.h" 29 #include "clang/Analysis/FlowSensitive/Value.h" 30 #include "clang/Basic/Builtins.h" 31 #include "clang/Basic/OperatorKinds.h" 32 #include "llvm/Support/Casting.h" 33 #include "llvm/Support/Debug.h" 34 #include <assert.h> 35 #include <cassert> 36 37 #define DEBUG_TYPE "dataflow" 38 39 namespace clang { 40 namespace dataflow { 41 42 const Environment *StmtToEnvMap::getEnvironment(const Stmt &S) const { 43 auto BlockIt = ACFG.getStmtToBlock().find(&ignoreCFGOmittedNodes(S)); 44 if (BlockIt == ACFG.getStmtToBlock().end()) { 45 assert(false); 46 // Return null to avoid dereferencing the end iterator in non-assert builds. 47 return nullptr; 48 } 49 if (!ACFG.isBlockReachable(*BlockIt->getSecond())) 50 return nullptr; 51 if (BlockIt->getSecond()->getBlockID() == CurBlockID) 52 return &CurState.Env; 53 const auto &State = BlockToState[BlockIt->getSecond()->getBlockID()]; 54 if (!(State)) 55 return nullptr; 56 return &State->Env; 57 } 58 59 static BoolValue &evaluateBooleanEquality(const Expr &LHS, const Expr &RHS, 60 Environment &Env) { 61 Value *LHSValue = Env.getValue(LHS); 62 Value *RHSValue = Env.getValue(RHS); 63 64 if (LHSValue == RHSValue) 65 return Env.getBoolLiteralValue(true); 66 67 if (auto *LHSBool = dyn_cast_or_null<BoolValue>(LHSValue)) 68 if (auto *RHSBool = dyn_cast_or_null<BoolValue>(RHSValue)) 69 return Env.makeIff(*LHSBool, *RHSBool); 70 71 if (auto *LHSPtr = dyn_cast_or_null<PointerValue>(LHSValue)) 72 if (auto *RHSPtr = dyn_cast_or_null<PointerValue>(RHSValue)) 73 // If the storage locations are the same, the pointers definitely compare 74 // the same. If the storage locations are different, they may still alias, 75 // so we fall through to the case below that returns an atom. 76 if (&LHSPtr->getPointeeLoc() == &RHSPtr->getPointeeLoc()) 77 return Env.getBoolLiteralValue(true); 78 79 return Env.makeAtomicBoolValue(); 80 } 81 82 static BoolValue &unpackValue(BoolValue &V, Environment &Env) { 83 if (auto *Top = llvm::dyn_cast<TopBoolValue>(&V)) { 84 auto &A = Env.getDataflowAnalysisContext().arena(); 85 return A.makeBoolValue(A.makeAtomRef(Top->getAtom())); 86 } 87 return V; 88 } 89 90 // Unpacks the value (if any) associated with `E` and updates `E` to the new 91 // value, if any unpacking occured. Also, does the lvalue-to-rvalue conversion, 92 // by skipping past the reference. 93 static Value *maybeUnpackLValueExpr(const Expr &E, Environment &Env) { 94 auto *Loc = Env.getStorageLocation(E); 95 if (Loc == nullptr) 96 return nullptr; 97 auto *Val = Env.getValue(*Loc); 98 99 auto *B = dyn_cast_or_null<BoolValue>(Val); 100 if (B == nullptr) 101 return Val; 102 103 auto &UnpackedVal = unpackValue(*B, Env); 104 if (&UnpackedVal == Val) 105 return Val; 106 Env.setValue(*Loc, UnpackedVal); 107 return &UnpackedVal; 108 } 109 110 static void propagateValue(const Expr &From, const Expr &To, Environment &Env) { 111 if (From.getType()->isRecordType()) 112 return; 113 if (auto *Val = Env.getValue(From)) 114 Env.setValue(To, *Val); 115 } 116 117 static void propagateStorageLocation(const Expr &From, const Expr &To, 118 Environment &Env) { 119 if (auto *Loc = Env.getStorageLocation(From)) 120 Env.setStorageLocation(To, *Loc); 121 } 122 123 // Propagates the value or storage location of `From` to `To` in cases where 124 // `From` may be either a glvalue or a prvalue. `To` must be a glvalue iff 125 // `From` is a glvalue. 126 static void propagateValueOrStorageLocation(const Expr &From, const Expr &To, 127 Environment &Env) { 128 assert(From.isGLValue() == To.isGLValue()); 129 if (From.isGLValue()) 130 propagateStorageLocation(From, To, Env); 131 else 132 propagateValue(From, To, Env); 133 } 134 135 namespace { 136 137 class TransferVisitor : public ConstStmtVisitor<TransferVisitor> { 138 public: 139 TransferVisitor(const StmtToEnvMap &StmtToEnv, Environment &Env, 140 Environment::ValueModel &Model) 141 : StmtToEnv(StmtToEnv), Env(Env), Model(Model) {} 142 143 void VisitBinaryOperator(const BinaryOperator *S) { 144 const Expr *LHS = S->getLHS(); 145 assert(LHS != nullptr); 146 147 const Expr *RHS = S->getRHS(); 148 assert(RHS != nullptr); 149 150 switch (S->getOpcode()) { 151 case BO_Assign: { 152 auto *LHSLoc = Env.getStorageLocation(*LHS); 153 if (LHSLoc == nullptr) 154 break; 155 156 auto *RHSVal = Env.getValue(*RHS); 157 if (RHSVal == nullptr) 158 break; 159 160 // Assign a value to the storage location of the left-hand side. 161 Env.setValue(*LHSLoc, *RHSVal); 162 163 // Assign a storage location for the whole expression. 164 Env.setStorageLocation(*S, *LHSLoc); 165 break; 166 } 167 case BO_LAnd: 168 case BO_LOr: { 169 BoolValue &LHSVal = getLogicOperatorSubExprValue(*LHS); 170 BoolValue &RHSVal = getLogicOperatorSubExprValue(*RHS); 171 172 if (S->getOpcode() == BO_LAnd) 173 Env.setValue(*S, Env.makeAnd(LHSVal, RHSVal)); 174 else 175 Env.setValue(*S, Env.makeOr(LHSVal, RHSVal)); 176 break; 177 } 178 case BO_NE: 179 case BO_EQ: { 180 auto &LHSEqRHSValue = evaluateBooleanEquality(*LHS, *RHS, Env); 181 Env.setValue(*S, S->getOpcode() == BO_EQ ? LHSEqRHSValue 182 : Env.makeNot(LHSEqRHSValue)); 183 break; 184 } 185 case BO_Comma: { 186 propagateValueOrStorageLocation(*RHS, *S, Env); 187 break; 188 } 189 default: 190 break; 191 } 192 } 193 194 void VisitDeclRefExpr(const DeclRefExpr *S) { 195 const ValueDecl *VD = S->getDecl(); 196 assert(VD != nullptr); 197 198 // Some `DeclRefExpr`s aren't glvalues, so we can't associate them with a 199 // `StorageLocation`, and there's also no sensible `Value` that we can 200 // assign to them. Examples: 201 // - Non-static member variables 202 // - Non static member functions 203 // Note: Member operators are an exception to this, but apparently only 204 // if the `DeclRefExpr` is used within the callee of a 205 // `CXXOperatorCallExpr`. In other cases, for example when applying the 206 // address-of operator, the `DeclRefExpr` is a prvalue. 207 if (!S->isGLValue()) 208 return; 209 210 auto *DeclLoc = Env.getStorageLocation(*VD); 211 if (DeclLoc == nullptr) 212 return; 213 214 Env.setStorageLocation(*S, *DeclLoc); 215 } 216 217 void VisitDeclStmt(const DeclStmt *S) { 218 // Group decls are converted into single decls in the CFG so the cast below 219 // is safe. 220 const auto &D = *cast<VarDecl>(S->getSingleDecl()); 221 222 ProcessVarDecl(D); 223 } 224 225 void ProcessVarDecl(const VarDecl &D) { 226 // Static local vars are already initialized in `Environment`. 227 if (D.hasGlobalStorage()) 228 return; 229 230 // If this is the holding variable for a `BindingDecl`, we may already 231 // have a storage location set up -- so check. (See also explanation below 232 // where we process the `BindingDecl`.) 233 if (D.getType()->isReferenceType() && Env.getStorageLocation(D) != nullptr) 234 return; 235 236 assert(Env.getStorageLocation(D) == nullptr); 237 238 Env.setStorageLocation(D, Env.createObject(D)); 239 240 // `DecompositionDecl` must be handled after we've interpreted the loc 241 // itself, because the binding expression refers back to the 242 // `DecompositionDecl` (even though it has no written name). 243 if (const auto *Decomp = dyn_cast<DecompositionDecl>(&D)) { 244 // If VarDecl is a DecompositionDecl, evaluate each of its bindings. This 245 // needs to be evaluated after initializing the values in the storage for 246 // VarDecl, as the bindings refer to them. 247 // FIXME: Add support for ArraySubscriptExpr. 248 // FIXME: Consider adding AST nodes used in BindingDecls to the CFG. 249 for (const auto *B : Decomp->bindings()) { 250 if (auto *ME = dyn_cast_or_null<MemberExpr>(B->getBinding())) { 251 auto *DE = dyn_cast_or_null<DeclRefExpr>(ME->getBase()); 252 if (DE == nullptr) 253 continue; 254 255 // ME and its base haven't been visited because they aren't included 256 // in the statements of the CFG basic block. 257 VisitDeclRefExpr(DE); 258 VisitMemberExpr(ME); 259 260 if (auto *Loc = Env.getStorageLocation(*ME)) 261 Env.setStorageLocation(*B, *Loc); 262 } else if (auto *VD = B->getHoldingVar()) { 263 // Holding vars are used to back the `BindingDecl`s of tuple-like 264 // types. The holding var declarations appear after the 265 // `DecompositionDecl`, so we have to explicitly process them here 266 // to know their storage location. They will be processed a second 267 // time when we visit their `VarDecl`s, so we have code that protects 268 // against this above. 269 ProcessVarDecl(*VD); 270 auto *VDLoc = Env.getStorageLocation(*VD); 271 assert(VDLoc != nullptr); 272 Env.setStorageLocation(*B, *VDLoc); 273 } 274 } 275 } 276 } 277 278 void VisitImplicitCastExpr(const ImplicitCastExpr *S) { 279 const Expr *SubExpr = S->getSubExpr(); 280 assert(SubExpr != nullptr); 281 282 switch (S->getCastKind()) { 283 case CK_IntegralToBoolean: { 284 // This cast creates a new, boolean value from the integral value. We 285 // model that with a fresh value in the environment, unless it's already a 286 // boolean. 287 if (auto *SubExprVal = 288 dyn_cast_or_null<BoolValue>(Env.getValue(*SubExpr))) 289 Env.setValue(*S, *SubExprVal); 290 else 291 // FIXME: If integer modeling is added, then update this code to create 292 // the boolean based on the integer model. 293 Env.setValue(*S, Env.makeAtomicBoolValue()); 294 break; 295 } 296 297 case CK_LValueToRValue: { 298 // When an L-value is used as an R-value, it may result in sharing, so we 299 // need to unpack any nested `Top`s. 300 auto *SubExprVal = maybeUnpackLValueExpr(*SubExpr, Env); 301 if (SubExprVal == nullptr) 302 break; 303 304 Env.setValue(*S, *SubExprVal); 305 break; 306 } 307 308 case CK_IntegralCast: 309 // FIXME: This cast creates a new integral value from the 310 // subexpression. But, because we don't model integers, we don't 311 // distinguish between this new value and the underlying one. If integer 312 // modeling is added, then update this code to create a fresh location and 313 // value. 314 case CK_UncheckedDerivedToBase: 315 case CK_ConstructorConversion: 316 case CK_UserDefinedConversion: 317 // FIXME: Add tests that excercise CK_UncheckedDerivedToBase, 318 // CK_ConstructorConversion, and CK_UserDefinedConversion. 319 case CK_NoOp: { 320 // FIXME: Consider making `Environment::getStorageLocation` skip noop 321 // expressions (this and other similar expressions in the file) instead 322 // of assigning them storage locations. 323 propagateValueOrStorageLocation(*SubExpr, *S, Env); 324 break; 325 } 326 case CK_NullToPointer: { 327 auto &NullPointerVal = 328 Env.getOrCreateNullPointerValue(S->getType()->getPointeeType()); 329 Env.setValue(*S, NullPointerVal); 330 break; 331 } 332 case CK_NullToMemberPointer: 333 // FIXME: Implement pointers to members. For now, don't associate a value 334 // with this expression. 335 break; 336 case CK_FunctionToPointerDecay: { 337 StorageLocation *PointeeLoc = Env.getStorageLocation(*SubExpr); 338 if (PointeeLoc == nullptr) 339 break; 340 341 Env.setValue(*S, Env.create<PointerValue>(*PointeeLoc)); 342 break; 343 } 344 case CK_BuiltinFnToFnPtr: 345 // Despite its name, the result type of `BuiltinFnToFnPtr` is a function, 346 // not a function pointer. In addition, builtin functions can only be 347 // called directly; it is not legal to take their address. We therefore 348 // don't need to create a value or storage location for them. 349 break; 350 default: 351 break; 352 } 353 } 354 355 void VisitUnaryOperator(const UnaryOperator *S) { 356 const Expr *SubExpr = S->getSubExpr(); 357 assert(SubExpr != nullptr); 358 359 switch (S->getOpcode()) { 360 case UO_Deref: { 361 const auto *SubExprVal = Env.get<PointerValue>(*SubExpr); 362 if (SubExprVal == nullptr) 363 break; 364 365 Env.setStorageLocation(*S, SubExprVal->getPointeeLoc()); 366 break; 367 } 368 case UO_AddrOf: { 369 // FIXME: Model pointers to members. 370 if (S->getType()->isMemberPointerType()) 371 break; 372 373 if (StorageLocation *PointeeLoc = Env.getStorageLocation(*SubExpr)) 374 Env.setValue(*S, Env.create<PointerValue>(*PointeeLoc)); 375 break; 376 } 377 case UO_LNot: { 378 auto *SubExprVal = dyn_cast_or_null<BoolValue>(Env.getValue(*SubExpr)); 379 if (SubExprVal == nullptr) 380 break; 381 382 Env.setValue(*S, Env.makeNot(*SubExprVal)); 383 break; 384 } 385 case UO_PreInc: 386 case UO_PreDec: 387 // Propagate the storage location, but don't create a new value; to 388 // avoid generating unnecessary values, we leave it to the specific 389 // analysis to do this if desired. 390 propagateStorageLocation(*S->getSubExpr(), *S, Env); 391 break; 392 case UO_PostInc: 393 case UO_PostDec: 394 // Propagate the old value, but don't create a new value; to avoid 395 // generating unnecessary values, we leave it to the specific analysis 396 // to do this if desired. 397 propagateValue(*S->getSubExpr(), *S, Env); 398 break; 399 default: 400 break; 401 } 402 } 403 404 void VisitCXXThisExpr(const CXXThisExpr *S) { 405 auto *ThisPointeeLoc = Env.getThisPointeeStorageLocation(); 406 if (ThisPointeeLoc == nullptr) 407 // Unions are not supported yet, and will not have a location for the 408 // `this` expression's pointee. 409 return; 410 411 Env.setValue(*S, Env.create<PointerValue>(*ThisPointeeLoc)); 412 } 413 414 void VisitCXXNewExpr(const CXXNewExpr *S) { 415 if (Value *Val = Env.createValue(S->getType())) 416 Env.setValue(*S, *Val); 417 } 418 419 void VisitCXXDeleteExpr(const CXXDeleteExpr *S) { 420 // Empty method. 421 // We consciously don't do anything on deletes. Diagnosing double deletes 422 // (for example) should be done by a specific analysis, not by the 423 // framework. 424 } 425 426 void VisitReturnStmt(const ReturnStmt *S) { 427 if (!Env.getDataflowAnalysisContext().getOptions().ContextSensitiveOpts) 428 return; 429 430 auto *Ret = S->getRetValue(); 431 if (Ret == nullptr) 432 return; 433 434 if (Ret->isPRValue()) { 435 if (Ret->getType()->isRecordType()) 436 return; 437 438 auto *Val = Env.getValue(*Ret); 439 if (Val == nullptr) 440 return; 441 442 // FIXME: Model NRVO. 443 Env.setReturnValue(Val); 444 } else { 445 auto *Loc = Env.getStorageLocation(*Ret); 446 if (Loc == nullptr) 447 return; 448 449 // FIXME: Model NRVO. 450 Env.setReturnStorageLocation(Loc); 451 } 452 } 453 454 void VisitMemberExpr(const MemberExpr *S) { 455 ValueDecl *Member = S->getMemberDecl(); 456 assert(Member != nullptr); 457 458 // FIXME: Consider assigning pointer values to function member expressions. 459 if (Member->isFunctionOrFunctionTemplate()) 460 return; 461 462 // FIXME: if/when we add support for modeling enums, use that support here. 463 if (isa<EnumConstantDecl>(Member)) 464 return; 465 466 if (auto *D = dyn_cast<VarDecl>(Member)) { 467 if (D->hasGlobalStorage()) { 468 auto *VarDeclLoc = Env.getStorageLocation(*D); 469 if (VarDeclLoc == nullptr) 470 return; 471 472 Env.setStorageLocation(*S, *VarDeclLoc); 473 return; 474 } 475 } 476 477 RecordStorageLocation *BaseLoc = getBaseObjectLocation(*S, Env); 478 if (BaseLoc == nullptr) 479 return; 480 481 auto *MemberLoc = BaseLoc->getChild(*Member); 482 if (MemberLoc == nullptr) 483 return; 484 Env.setStorageLocation(*S, *MemberLoc); 485 } 486 487 void VisitCXXDefaultArgExpr(const CXXDefaultArgExpr *S) { 488 const Expr *ArgExpr = S->getExpr(); 489 assert(ArgExpr != nullptr); 490 propagateValueOrStorageLocation(*ArgExpr, *S, Env); 491 492 if (S->isPRValue() && S->getType()->isRecordType()) { 493 auto &Loc = Env.getResultObjectLocation(*S); 494 Env.initializeFieldsWithValues(Loc); 495 } 496 } 497 498 void VisitCXXDefaultInitExpr(const CXXDefaultInitExpr *S) { 499 const Expr *InitExpr = S->getExpr(); 500 assert(InitExpr != nullptr); 501 502 // If this is a prvalue of record type, the handler for `*InitExpr` (if one 503 // exists) will initialize the result object; there is no value to propgate 504 // here. 505 if (S->getType()->isRecordType() && S->isPRValue()) 506 return; 507 508 propagateValueOrStorageLocation(*InitExpr, *S, Env); 509 } 510 511 void VisitCXXConstructExpr(const CXXConstructExpr *S) { 512 const CXXConstructorDecl *ConstructorDecl = S->getConstructor(); 513 assert(ConstructorDecl != nullptr); 514 515 // `CXXConstructExpr` can have array type if default-initializing an array 516 // of records. We don't handle this specifically beyond potentially inlining 517 // the call. 518 if (!S->getType()->isRecordType()) { 519 transferInlineCall(S, ConstructorDecl); 520 return; 521 } 522 523 RecordStorageLocation &Loc = Env.getResultObjectLocation(*S); 524 525 if (ConstructorDecl->isCopyOrMoveConstructor()) { 526 // It is permissible for a copy/move constructor to have additional 527 // parameters as long as they have default arguments defined for them. 528 assert(S->getNumArgs() != 0); 529 530 const Expr *Arg = S->getArg(0); 531 assert(Arg != nullptr); 532 533 auto *ArgLoc = Env.get<RecordStorageLocation>(*Arg); 534 if (ArgLoc == nullptr) 535 return; 536 537 // Even if the copy/move constructor call is elidable, we choose to copy 538 // the record in all cases (which isn't wrong, just potentially not 539 // optimal). 540 copyRecord(*ArgLoc, Loc, Env); 541 return; 542 } 543 544 Env.initializeFieldsWithValues(Loc, S->getType()); 545 546 transferInlineCall(S, ConstructorDecl); 547 } 548 549 void VisitCXXOperatorCallExpr(const CXXOperatorCallExpr *S) { 550 if (S->getOperator() == OO_Equal) { 551 assert(S->getNumArgs() == 2); 552 553 const Expr *Arg0 = S->getArg(0); 554 assert(Arg0 != nullptr); 555 556 const Expr *Arg1 = S->getArg(1); 557 assert(Arg1 != nullptr); 558 559 // Evaluate only copy and move assignment operators. 560 const auto *Method = 561 dyn_cast_or_null<CXXMethodDecl>(S->getDirectCallee()); 562 if (!Method) 563 return; 564 if (!Method->isCopyAssignmentOperator() && 565 !Method->isMoveAssignmentOperator()) 566 return; 567 568 RecordStorageLocation *LocSrc = nullptr; 569 if (Arg1->isPRValue()) { 570 LocSrc = &Env.getResultObjectLocation(*Arg1); 571 } else { 572 LocSrc = Env.get<RecordStorageLocation>(*Arg1); 573 } 574 auto *LocDst = Env.get<RecordStorageLocation>(*Arg0); 575 576 if (LocSrc == nullptr || LocDst == nullptr) 577 return; 578 579 copyRecord(*LocSrc, *LocDst, Env); 580 581 // The assignment operator can have an arbitrary return type. We model the 582 // return value only if the return type is the same as or a base class of 583 // the destination type. 584 if (S->getType().getCanonicalType().getUnqualifiedType() != 585 LocDst->getType().getCanonicalType().getUnqualifiedType()) { 586 auto ReturnDecl = S->getType()->getAsCXXRecordDecl(); 587 auto DstDecl = LocDst->getType()->getAsCXXRecordDecl(); 588 if (ReturnDecl == nullptr || DstDecl == nullptr) 589 return; 590 if (!DstDecl->isDerivedFrom(ReturnDecl)) 591 return; 592 } 593 594 if (S->isGLValue()) 595 Env.setStorageLocation(*S, *LocDst); 596 else 597 copyRecord(*LocDst, Env.getResultObjectLocation(*S), Env); 598 599 return; 600 } 601 602 // `CXXOperatorCallExpr` can be a prvalue. Call `VisitCallExpr`() to 603 // initialize the prvalue's fields with values. 604 VisitCallExpr(S); 605 } 606 607 void VisitCXXRewrittenBinaryOperator(const CXXRewrittenBinaryOperator *RBO) { 608 propagateValue(*RBO->getSemanticForm(), *RBO, Env); 609 } 610 611 void VisitCallExpr(const CallExpr *S) { 612 // Of clang's builtins, only `__builtin_expect` is handled explicitly, since 613 // others (like trap, debugtrap, and unreachable) are handled by CFG 614 // construction. 615 if (S->isCallToStdMove()) { 616 assert(S->getNumArgs() == 1); 617 618 const Expr *Arg = S->getArg(0); 619 assert(Arg != nullptr); 620 621 auto *ArgLoc = Env.getStorageLocation(*Arg); 622 if (ArgLoc == nullptr) 623 return; 624 625 Env.setStorageLocation(*S, *ArgLoc); 626 } else if (S->getDirectCallee() != nullptr && 627 S->getDirectCallee()->getBuiltinID() == 628 Builtin::BI__builtin_expect) { 629 assert(S->getNumArgs() > 0); 630 assert(S->getArg(0) != nullptr); 631 auto *ArgVal = Env.getValue(*S->getArg(0)); 632 if (ArgVal == nullptr) 633 return; 634 Env.setValue(*S, *ArgVal); 635 } else if (const FunctionDecl *F = S->getDirectCallee()) { 636 transferInlineCall(S, F); 637 638 // If this call produces a prvalue of record type, initialize its fields 639 // with values. 640 if (S->getType()->isRecordType() && S->isPRValue()) { 641 RecordStorageLocation &Loc = Env.getResultObjectLocation(*S); 642 Env.initializeFieldsWithValues(Loc); 643 } 644 } 645 } 646 647 void VisitMaterializeTemporaryExpr(const MaterializeTemporaryExpr *S) { 648 const Expr *SubExpr = S->getSubExpr(); 649 assert(SubExpr != nullptr); 650 651 StorageLocation &Loc = Env.createStorageLocation(*S); 652 Env.setStorageLocation(*S, Loc); 653 654 if (SubExpr->getType()->isRecordType()) 655 // Nothing else left to do -- we initialized the record when transferring 656 // `SubExpr`. 657 return; 658 659 if (Value *SubExprVal = Env.getValue(*SubExpr)) 660 Env.setValue(Loc, *SubExprVal); 661 } 662 663 void VisitCXXBindTemporaryExpr(const CXXBindTemporaryExpr *S) { 664 const Expr *SubExpr = S->getSubExpr(); 665 assert(SubExpr != nullptr); 666 667 propagateValue(*SubExpr, *S, Env); 668 } 669 670 void VisitCXXStaticCastExpr(const CXXStaticCastExpr *S) { 671 if (S->getCastKind() == CK_NoOp) { 672 const Expr *SubExpr = S->getSubExpr(); 673 assert(SubExpr != nullptr); 674 675 propagateValueOrStorageLocation(*SubExpr, *S, Env); 676 } 677 } 678 679 void VisitConditionalOperator(const ConditionalOperator *S) { 680 const Environment *TrueEnv = StmtToEnv.getEnvironment(*S->getTrueExpr()); 681 const Environment *FalseEnv = StmtToEnv.getEnvironment(*S->getFalseExpr()); 682 683 if (TrueEnv == nullptr || FalseEnv == nullptr) { 684 // If the true or false branch is dead, we may not have an environment for 685 // it. We could handle this specifically by forwarding the value or 686 // location of the live branch, but this case is rare enough that this 687 // probably isn't worth the additional complexity. 688 return; 689 } 690 691 if (S->isGLValue()) { 692 StorageLocation *TrueLoc = TrueEnv->getStorageLocation(*S->getTrueExpr()); 693 StorageLocation *FalseLoc = 694 FalseEnv->getStorageLocation(*S->getFalseExpr()); 695 if (TrueLoc == FalseLoc && TrueLoc != nullptr) 696 Env.setStorageLocation(*S, *TrueLoc); 697 } else if (!S->getType()->isRecordType()) { 698 // The conditional operator can evaluate to either of the values of the 699 // two branches. To model this, join these two values together to yield 700 // the result of the conditional operator. 701 // Note: Most joins happen in `computeBlockInputState()`, but this case is 702 // different: 703 // - `computeBlockInputState()` (which in turn calls `Environment::join()` 704 // joins values associated with the _same_ expression or storage 705 // location, then associates the joined value with that expression or 706 // storage location. This join has nothing to do with transfer -- 707 // instead, it joins together the results of performing transfer on two 708 // different blocks. 709 // - Here, we join values associated with _different_ expressions (the 710 // true and false branch), then associate the joined value with a third 711 // expression (the conditional operator itself). This join is what it 712 // means to perform transfer on the conditional operator. 713 if (Value *Val = Environment::joinValues( 714 S->getType(), TrueEnv->getValue(*S->getTrueExpr()), *TrueEnv, 715 FalseEnv->getValue(*S->getFalseExpr()), *FalseEnv, Env, Model)) 716 Env.setValue(*S, *Val); 717 } 718 } 719 720 void VisitInitListExpr(const InitListExpr *S) { 721 QualType Type = S->getType(); 722 723 if (!Type->isRecordType()) { 724 // Until array initialization is implemented, we skip arrays and don't 725 // need to care about cases where `getNumInits() > 1`. 726 if (!Type->isArrayType() && S->getNumInits() == 1) 727 propagateValueOrStorageLocation(*S->getInit(0), *S, Env); 728 return; 729 } 730 731 // If the initializer list is transparent, there's nothing to do. 732 if (S->isSemanticForm() && S->isTransparent()) 733 return; 734 735 RecordStorageLocation &Loc = Env.getResultObjectLocation(*S); 736 737 // Initialization of base classes and fields of record type happens when we 738 // visit the nested `CXXConstructExpr` or `InitListExpr` for that base class 739 // or field. We therefore only need to deal with fields of non-record type 740 // here. 741 742 RecordInitListHelper InitListHelper(S); 743 744 for (auto [Field, Init] : InitListHelper.field_inits()) { 745 if (Field->getType()->isRecordType()) 746 continue; 747 if (Field->getType()->isReferenceType()) { 748 assert(Field->getType().getCanonicalType()->getPointeeType() == 749 Init->getType().getCanonicalType()); 750 Loc.setChild(*Field, &Env.createObject(Field->getType(), Init)); 751 continue; 752 } 753 assert(Field->getType().getCanonicalType().getUnqualifiedType() == 754 Init->getType().getCanonicalType().getUnqualifiedType()); 755 StorageLocation *FieldLoc = Loc.getChild(*Field); 756 // Locations for non-reference fields must always be non-null. 757 assert(FieldLoc != nullptr); 758 Value *Val = Env.getValue(*Init); 759 if (Val == nullptr && isa<ImplicitValueInitExpr>(Init) && 760 Init->getType()->isPointerType()) 761 Val = 762 &Env.getOrCreateNullPointerValue(Init->getType()->getPointeeType()); 763 if (Val == nullptr) 764 Val = Env.createValue(Field->getType()); 765 if (Val != nullptr) 766 Env.setValue(*FieldLoc, *Val); 767 } 768 769 for (const auto &[FieldName, FieldLoc] : Loc.synthetic_fields()) { 770 QualType FieldType = FieldLoc->getType(); 771 if (FieldType->isRecordType()) { 772 Env.initializeFieldsWithValues(*cast<RecordStorageLocation>(FieldLoc)); 773 } else { 774 if (Value *Val = Env.createValue(FieldType)) 775 Env.setValue(*FieldLoc, *Val); 776 } 777 } 778 779 // FIXME: Implement array initialization. 780 } 781 782 void VisitCXXBoolLiteralExpr(const CXXBoolLiteralExpr *S) { 783 Env.setValue(*S, Env.getBoolLiteralValue(S->getValue())); 784 } 785 786 void VisitIntegerLiteral(const IntegerLiteral *S) { 787 Env.setValue(*S, Env.getIntLiteralValue(S->getValue())); 788 } 789 790 void VisitParenExpr(const ParenExpr *S) { 791 // The CFG does not contain `ParenExpr` as top-level statements in basic 792 // blocks, however manual traversal to sub-expressions may encounter them. 793 // Redirect to the sub-expression. 794 auto *SubExpr = S->getSubExpr(); 795 assert(SubExpr != nullptr); 796 Visit(SubExpr); 797 } 798 799 void VisitExprWithCleanups(const ExprWithCleanups *S) { 800 // The CFG does not contain `ExprWithCleanups` as top-level statements in 801 // basic blocks, however manual traversal to sub-expressions may encounter 802 // them. Redirect to the sub-expression. 803 auto *SubExpr = S->getSubExpr(); 804 assert(SubExpr != nullptr); 805 Visit(SubExpr); 806 } 807 808 private: 809 /// Returns the value for the sub-expression `SubExpr` of a logic operator. 810 BoolValue &getLogicOperatorSubExprValue(const Expr &SubExpr) { 811 // `SubExpr` and its parent logic operator might be part of different basic 812 // blocks. We try to access the value that is assigned to `SubExpr` in the 813 // corresponding environment. 814 if (const Environment *SubExprEnv = StmtToEnv.getEnvironment(SubExpr)) 815 if (auto *Val = 816 dyn_cast_or_null<BoolValue>(SubExprEnv->getValue(SubExpr))) 817 return *Val; 818 819 // The sub-expression may lie within a basic block that isn't reachable, 820 // even if we need it to evaluate the current (reachable) expression 821 // (see https://discourse.llvm.org/t/70775). In this case, visit `SubExpr` 822 // within the current environment and then try to get the value that gets 823 // assigned to it. 824 if (Env.getValue(SubExpr) == nullptr) 825 Visit(&SubExpr); 826 if (auto *Val = dyn_cast_or_null<BoolValue>(Env.getValue(SubExpr))) 827 return *Val; 828 829 // If the value of `SubExpr` is still unknown, we create a fresh symbolic 830 // boolean value for it. 831 return Env.makeAtomicBoolValue(); 832 } 833 834 // If context sensitivity is enabled, try to analyze the body of the callee 835 // `F` of `S`. The type `E` must be either `CallExpr` or `CXXConstructExpr`. 836 template <typename E> 837 void transferInlineCall(const E *S, const FunctionDecl *F) { 838 const auto &Options = Env.getDataflowAnalysisContext().getOptions(); 839 if (!(Options.ContextSensitiveOpts && 840 Env.canDescend(Options.ContextSensitiveOpts->Depth, F))) 841 return; 842 843 const AdornedCFG *ACFG = Env.getDataflowAnalysisContext().getAdornedCFG(F); 844 if (!ACFG) 845 return; 846 847 // FIXME: We don't support context-sensitive analysis of recursion, so 848 // we should return early here if `F` is the same as the `FunctionDecl` 849 // holding `S` itself. 850 851 auto ExitBlock = ACFG->getCFG().getExit().getBlockID(); 852 853 auto CalleeEnv = Env.pushCall(S); 854 855 // FIXME: Use the same analysis as the caller for the callee. Note, 856 // though, that doing so would require support for changing the analysis's 857 // ASTContext. 858 auto Analysis = NoopAnalysis(ACFG->getDecl().getASTContext(), 859 DataflowAnalysisOptions{Options}); 860 861 auto BlockToOutputState = 862 dataflow::runDataflowAnalysis(*ACFG, Analysis, CalleeEnv); 863 assert(BlockToOutputState); 864 assert(ExitBlock < BlockToOutputState->size()); 865 866 auto &ExitState = (*BlockToOutputState)[ExitBlock]; 867 assert(ExitState); 868 869 Env.popCall(S, ExitState->Env); 870 } 871 872 const StmtToEnvMap &StmtToEnv; 873 Environment &Env; 874 Environment::ValueModel &Model; 875 }; 876 877 } // namespace 878 879 void transfer(const StmtToEnvMap &StmtToEnv, const Stmt &S, Environment &Env, 880 Environment::ValueModel &Model) { 881 TransferVisitor(StmtToEnv, Env, Model).Visit(&S); 882 } 883 884 } // namespace dataflow 885 } // namespace clang 886