xref: /llvm-project/clang/lib/Analysis/FlowSensitive/DataflowEnvironment.cpp (revision da579ad807bd55c686e1c1c52e0a4bcc259347b4)
1 //===-- DataflowEnvironment.cpp ---------------------------------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 //  This file defines an Environment class that is used by dataflow analyses
10 //  that run over Control-Flow Graphs (CFGs) to keep track of the state of the
11 //  program at given program points.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "clang/Analysis/FlowSensitive/DataflowEnvironment.h"
16 #include "clang/AST/Decl.h"
17 #include "clang/AST/DeclCXX.h"
18 #include "clang/AST/RecursiveASTVisitor.h"
19 #include "clang/AST/Type.h"
20 #include "clang/Analysis/FlowSensitive/ASTOps.h"
21 #include "clang/Analysis/FlowSensitive/DataflowLattice.h"
22 #include "clang/Analysis/FlowSensitive/Value.h"
23 #include "llvm/ADT/DenseMap.h"
24 #include "llvm/ADT/DenseSet.h"
25 #include "llvm/ADT/MapVector.h"
26 #include "llvm/ADT/STLExtras.h"
27 #include "llvm/Support/ErrorHandling.h"
28 #include <cassert>
29 #include <utility>
30 
31 #define DEBUG_TYPE "dataflow"
32 
33 namespace clang {
34 namespace dataflow {
35 
36 // FIXME: convert these to parameters of the analysis or environment. Current
37 // settings have been experimentaly validated, but only for a particular
38 // analysis.
39 static constexpr int MaxCompositeValueDepth = 3;
40 static constexpr int MaxCompositeValueSize = 1000;
41 
42 /// Returns a map consisting of key-value entries that are present in both maps.
43 static llvm::DenseMap<const ValueDecl *, StorageLocation *> intersectDeclToLoc(
44     const llvm::DenseMap<const ValueDecl *, StorageLocation *> &DeclToLoc1,
45     const llvm::DenseMap<const ValueDecl *, StorageLocation *> &DeclToLoc2) {
46   llvm::DenseMap<const ValueDecl *, StorageLocation *> Result;
47   for (auto &Entry : DeclToLoc1) {
48     auto It = DeclToLoc2.find(Entry.first);
49     if (It != DeclToLoc2.end() && Entry.second == It->second)
50       Result.insert({Entry.first, Entry.second});
51   }
52   return Result;
53 }
54 
55 // Performs a join on either `ExprToLoc` or `ExprToVal`.
56 // The maps must be consistent in the sense that any entries for the same
57 // expression must map to the same location / value. This is the case if we are
58 // performing a join for control flow within a full-expression (which is the
59 // only case when this function should be used).
60 template <typename MapT> MapT joinExprMaps(const MapT &Map1, const MapT &Map2) {
61   MapT Result = Map1;
62 
63   for (const auto &Entry : Map2) {
64     [[maybe_unused]] auto [It, Inserted] = Result.insert(Entry);
65     // If there was an existing entry, its value should be the same as for the
66     // entry we were trying to insert.
67     assert(It->second == Entry.second);
68   }
69 
70   return Result;
71 }
72 
73 // Whether to consider equivalent two values with an unknown relation.
74 //
75 // FIXME: this function is a hack enabling unsoundness to support
76 // convergence. Once we have widening support for the reference/pointer and
77 // struct built-in models, this should be unconditionally `false` (and inlined
78 // as such at its call sites).
79 static bool equateUnknownValues(Value::Kind K) {
80   switch (K) {
81   case Value::Kind::Integer:
82   case Value::Kind::Pointer:
83   case Value::Kind::Record:
84     return true;
85   default:
86     return false;
87   }
88 }
89 
90 static bool compareDistinctValues(QualType Type, Value &Val1,
91                                   const Environment &Env1, Value &Val2,
92                                   const Environment &Env2,
93                                   Environment::ValueModel &Model) {
94   // Note: Potentially costly, but, for booleans, we could check whether both
95   // can be proven equivalent in their respective environments.
96 
97   // FIXME: move the reference/pointers logic from `areEquivalentValues` to here
98   // and implement separate, join/widen specific handling for
99   // reference/pointers.
100   switch (Model.compare(Type, Val1, Env1, Val2, Env2)) {
101   case ComparisonResult::Same:
102     return true;
103   case ComparisonResult::Different:
104     return false;
105   case ComparisonResult::Unknown:
106     return equateUnknownValues(Val1.getKind());
107   }
108   llvm_unreachable("All cases covered in switch");
109 }
110 
111 /// Attempts to join distinct values `Val1` and `Val2` in `Env1` and `Env2`,
112 /// respectively, of the same type `Type`. Joining generally produces a single
113 /// value that (soundly) approximates the two inputs, although the actual
114 /// meaning depends on `Model`.
115 static Value *joinDistinctValues(QualType Type, Value &Val1,
116                                  const Environment &Env1, Value &Val2,
117                                  const Environment &Env2,
118                                  Environment &JoinedEnv,
119                                  Environment::ValueModel &Model) {
120   // Join distinct boolean values preserving information about the constraints
121   // in the respective path conditions.
122   if (isa<BoolValue>(&Val1) && isa<BoolValue>(&Val2)) {
123     // FIXME: Checking both values should be unnecessary, since they should have
124     // a consistent shape.  However, right now we can end up with BoolValue's in
125     // integer-typed variables due to our incorrect handling of
126     // boolean-to-integer casts (we just propagate the BoolValue to the result
127     // of the cast). So, a join can encounter an integer in one branch but a
128     // bool in the other.
129     // For example:
130     // ```
131     // std::optional<bool> o;
132     // int x;
133     // if (o.has_value())
134     //   x = o.value();
135     // ```
136     auto &Expr1 = cast<BoolValue>(Val1).formula();
137     auto &Expr2 = cast<BoolValue>(Val2).formula();
138     auto &A = JoinedEnv.arena();
139     auto &JoinedVal = A.makeAtomRef(A.makeAtom());
140     JoinedEnv.assume(
141         A.makeOr(A.makeAnd(A.makeAtomRef(Env1.getFlowConditionToken()),
142                            A.makeEquals(JoinedVal, Expr1)),
143                  A.makeAnd(A.makeAtomRef(Env2.getFlowConditionToken()),
144                            A.makeEquals(JoinedVal, Expr2))));
145     return &A.makeBoolValue(JoinedVal);
146   }
147 
148   Value *JoinedVal = nullptr;
149   if (auto *RecordVal1 = dyn_cast<RecordValue>(&Val1)) {
150     auto *RecordVal2 = cast<RecordValue>(&Val2);
151 
152     if (&RecordVal1->getLoc() == &RecordVal2->getLoc())
153       // `RecordVal1` and `RecordVal2` may have different properties associated
154       // with them. Create a new `RecordValue` with the same location but
155       // without any properties so that we soundly approximate both values. If a
156       // particular analysis needs to join properties, it should do so in
157       // `DataflowAnalysis::join()`.
158       JoinedVal = &JoinedEnv.create<RecordValue>(RecordVal1->getLoc());
159     else
160       // If the locations for the two records are different, need to create a
161       // completely new value.
162       JoinedVal = JoinedEnv.createValue(Type);
163   } else {
164     JoinedVal = JoinedEnv.createValue(Type);
165   }
166 
167   if (JoinedVal)
168     Model.join(Type, Val1, Env1, Val2, Env2, *JoinedVal, JoinedEnv);
169 
170   return JoinedVal;
171 }
172 
173 static WidenResult widenDistinctValues(QualType Type, Value &Prev,
174                                        const Environment &PrevEnv,
175                                        Value &Current, Environment &CurrentEnv,
176                                        Environment::ValueModel &Model) {
177   // Boolean-model widening.
178   if (auto *PrevBool = dyn_cast<BoolValue>(&Prev)) {
179     if (isa<TopBoolValue>(Prev))
180       // Safe to return `Prev` here, because Top is never dependent on the
181       // environment.
182       return {&Prev, LatticeEffect::Unchanged};
183 
184     // We may need to widen to Top, but before we do so, check whether both
185     // values are implied to be either true or false in the current environment.
186     // In that case, we can simply return a literal instead.
187     auto &CurBool = cast<BoolValue>(Current);
188     bool TruePrev = PrevEnv.proves(PrevBool->formula());
189     bool TrueCur = CurrentEnv.proves(CurBool.formula());
190     if (TruePrev && TrueCur)
191       return {&CurrentEnv.getBoolLiteralValue(true), LatticeEffect::Unchanged};
192     if (!TruePrev && !TrueCur &&
193         PrevEnv.proves(PrevEnv.arena().makeNot(PrevBool->formula())) &&
194         CurrentEnv.proves(CurrentEnv.arena().makeNot(CurBool.formula())))
195       return {&CurrentEnv.getBoolLiteralValue(false), LatticeEffect::Unchanged};
196 
197     return {&CurrentEnv.makeTopBoolValue(), LatticeEffect::Changed};
198   }
199 
200   // FIXME: Add other built-in model widening.
201 
202   // Custom-model widening.
203   if (auto Result = Model.widen(Type, Prev, PrevEnv, Current, CurrentEnv))
204     return *Result;
205 
206   return {&Current, equateUnknownValues(Prev.getKind())
207                         ? LatticeEffect::Unchanged
208                         : LatticeEffect::Changed};
209 }
210 
211 // Returns whether the values in `Map1` and `Map2` compare equal for those
212 // keys that `Map1` and `Map2` have in common.
213 template <typename Key>
214 bool compareKeyToValueMaps(const llvm::MapVector<Key, Value *> &Map1,
215                            const llvm::MapVector<Key, Value *> &Map2,
216                            const Environment &Env1, const Environment &Env2,
217                            Environment::ValueModel &Model) {
218   for (auto &Entry : Map1) {
219     Key K = Entry.first;
220     assert(K != nullptr);
221 
222     Value *Val = Entry.second;
223     assert(Val != nullptr);
224 
225     auto It = Map2.find(K);
226     if (It == Map2.end())
227       continue;
228     assert(It->second != nullptr);
229 
230     if (!areEquivalentValues(*Val, *It->second) &&
231         !compareDistinctValues(K->getType(), *Val, Env1, *It->second, Env2,
232                                Model))
233       return false;
234   }
235 
236   return true;
237 }
238 
239 // Perform a join on two `LocToVal` maps.
240 static llvm::MapVector<const StorageLocation *, Value *>
241 joinLocToVal(const llvm::MapVector<const StorageLocation *, Value *> &LocToVal,
242              const llvm::MapVector<const StorageLocation *, Value *> &LocToVal2,
243              const Environment &Env1, const Environment &Env2,
244              Environment &JoinedEnv, Environment::ValueModel &Model) {
245   llvm::MapVector<const StorageLocation *, Value *> Result;
246   for (auto &Entry : LocToVal) {
247     const StorageLocation *Loc = Entry.first;
248     assert(Loc != nullptr);
249 
250     Value *Val = Entry.second;
251     assert(Val != nullptr);
252 
253     auto It = LocToVal2.find(Loc);
254     if (It == LocToVal2.end())
255       continue;
256     assert(It->second != nullptr);
257 
258     if (areEquivalentValues(*Val, *It->second)) {
259       Result.insert({Loc, Val});
260       continue;
261     }
262 
263     if (Value *JoinedVal = joinDistinctValues(
264             Loc->getType(), *Val, Env1, *It->second, Env2, JoinedEnv, Model)) {
265       Result.insert({Loc, JoinedVal});
266     }
267   }
268 
269   return Result;
270 }
271 
272 // Perform widening on either `LocToVal` or `ExprToVal`. `Key` must be either
273 // `const StorageLocation *` or `const Expr *`.
274 template <typename Key>
275 llvm::MapVector<Key, Value *>
276 widenKeyToValueMap(const llvm::MapVector<Key, Value *> &CurMap,
277                    const llvm::MapVector<Key, Value *> &PrevMap,
278                    Environment &CurEnv, const Environment &PrevEnv,
279                    Environment::ValueModel &Model, LatticeEffect &Effect) {
280   llvm::MapVector<Key, Value *> WidenedMap;
281   for (auto &Entry : CurMap) {
282     Key K = Entry.first;
283     assert(K != nullptr);
284 
285     Value *Val = Entry.second;
286     assert(Val != nullptr);
287 
288     auto PrevIt = PrevMap.find(K);
289     if (PrevIt == PrevMap.end())
290       continue;
291     assert(PrevIt->second != nullptr);
292 
293     if (areEquivalentValues(*Val, *PrevIt->second)) {
294       WidenedMap.insert({K, Val});
295       continue;
296     }
297 
298     auto [WidenedVal, ValEffect] = widenDistinctValues(
299         K->getType(), *PrevIt->second, PrevEnv, *Val, CurEnv, Model);
300     WidenedMap.insert({K, WidenedVal});
301     if (ValEffect == LatticeEffect::Changed)
302       Effect = LatticeEffect::Changed;
303   }
304 
305   return WidenedMap;
306 }
307 
308 namespace {
309 
310 // Visitor that builds a map from record prvalues to result objects.
311 // This traverses the body of the function to be analyzed; for each result
312 // object that it encounters, it propagates the storage location of the result
313 // object to all record prvalues that can initialize it.
314 class ResultObjectVisitor : public RecursiveASTVisitor<ResultObjectVisitor> {
315 public:
316   // `ResultObjectMap` will be filled with a map from record prvalues to result
317   // object. If the function being analyzed returns a record by value,
318   // `LocForRecordReturnVal` is the location to which this record should be
319   // written; otherwise, it is null.
320   explicit ResultObjectVisitor(
321       llvm::DenseMap<const Expr *, RecordStorageLocation *> &ResultObjectMap,
322       RecordStorageLocation *LocForRecordReturnVal,
323       DataflowAnalysisContext &DACtx)
324       : ResultObjectMap(ResultObjectMap),
325         LocForRecordReturnVal(LocForRecordReturnVal), DACtx(DACtx) {}
326 
327   bool shouldVisitImplicitCode() { return true; }
328 
329   bool shouldVisitLambdaBody() const { return false; }
330 
331   // Traverse all member and base initializers of `Ctor`. This function is not
332   // called by `RecursiveASTVisitor`; it should be called manually if we are
333   // analyzing a constructor. `ThisPointeeLoc` is the storage location that
334   // `this` points to.
335   void TraverseConstructorInits(const CXXConstructorDecl *Ctor,
336                                 RecordStorageLocation *ThisPointeeLoc) {
337     assert(ThisPointeeLoc != nullptr);
338     for (const CXXCtorInitializer *Init : Ctor->inits()) {
339       Expr *InitExpr = Init->getInit();
340       if (FieldDecl *Field = Init->getMember();
341           Field != nullptr && Field->getType()->isRecordType()) {
342         PropagateResultObject(InitExpr, cast<RecordStorageLocation>(
343                                             ThisPointeeLoc->getChild(*Field)));
344       } else if (Init->getBaseClass()) {
345         PropagateResultObject(InitExpr, ThisPointeeLoc);
346       }
347 
348       // Ensure that any result objects within `InitExpr` (e.g. temporaries)
349       // are also propagated to the prvalues that initialize them.
350       TraverseStmt(InitExpr);
351 
352       // If this is a `CXXDefaultInitExpr`, also propagate any result objects
353       // within the default expression.
354       if (auto *DefaultInit = dyn_cast<CXXDefaultInitExpr>(InitExpr))
355         TraverseStmt(DefaultInit->getExpr());
356     }
357   }
358 
359   bool TraverseBindingDecl(BindingDecl *BD) {
360     // `RecursiveASTVisitor` doesn't traverse holding variables for
361     // `BindingDecl`s by itself, so we need to tell it to.
362     if (VarDecl *HoldingVar = BD->getHoldingVar())
363       TraverseDecl(HoldingVar);
364     return RecursiveASTVisitor<ResultObjectVisitor>::TraverseBindingDecl(BD);
365   }
366 
367   bool VisitVarDecl(VarDecl *VD) {
368     if (VD->getType()->isRecordType() && VD->hasInit())
369       PropagateResultObject(
370           VD->getInit(),
371           &cast<RecordStorageLocation>(DACtx.getStableStorageLocation(*VD)));
372     return true;
373   }
374 
375   bool VisitMaterializeTemporaryExpr(MaterializeTemporaryExpr *MTE) {
376     if (MTE->getType()->isRecordType())
377       PropagateResultObject(
378           MTE->getSubExpr(),
379           &cast<RecordStorageLocation>(DACtx.getStableStorageLocation(*MTE)));
380     return true;
381   }
382 
383   bool VisitReturnStmt(ReturnStmt *Return) {
384     Expr *RetValue = Return->getRetValue();
385     if (RetValue != nullptr && RetValue->getType()->isRecordType() &&
386         RetValue->isPRValue())
387       PropagateResultObject(RetValue, LocForRecordReturnVal);
388     return true;
389   }
390 
391   bool VisitExpr(Expr *E) {
392     // Clang's AST can have record-type prvalues without a result object -- for
393     // example as full-expressions contained in a compound statement or as
394     // arguments of call expressions. We notice this if we get here and a
395     // storage location has not yet been associated with `E`. In this case,
396     // treat this as if it was a `MaterializeTemporaryExpr`.
397     if (E->isPRValue() && E->getType()->isRecordType() &&
398         !ResultObjectMap.contains(E))
399       PropagateResultObject(
400           E, &cast<RecordStorageLocation>(DACtx.getStableStorageLocation(*E)));
401     return true;
402   }
403 
404   // Assigns `Loc` as the result object location of `E`, then propagates the
405   // location to all lower-level prvalues that initialize the same object as
406   // `E` (or one of its base classes or member variables).
407   void PropagateResultObject(Expr *E, RecordStorageLocation *Loc) {
408     if (!E->isPRValue() || !E->getType()->isRecordType()) {
409       assert(false);
410       // Ensure we don't propagate the result object if we hit this in a
411       // release build.
412       return;
413     }
414 
415     ResultObjectMap[E] = Loc;
416 
417     switch (E->getStmtClass()) {
418     // The following AST node kinds are "original initializers": They are the
419     // lowest-level AST node that initializes a given object, and nothing
420     // below them can initialize the same object (or part of it).
421     case Stmt::CXXConstructExprClass:
422     case Stmt::CallExprClass:
423     case Stmt::LambdaExprClass:
424     case Stmt::CXXDefaultArgExprClass:
425     case Stmt::CXXDefaultInitExprClass:
426     case Stmt::CXXStdInitializerListExprClass:
427     // We treat `BuiltinBitCastExpr` as an "original initializer" too as it may
428     // not even be casting from a record type -- and even if it is, the two
429     // objects are in general of unrelated type.
430     case Stmt::BuiltinBitCastExprClass:
431       return;
432     case Stmt::BinaryOperatorClass: {
433       auto *Op = cast<BinaryOperator>(E);
434       if (Op->getOpcode() == BO_Cmp) {
435         // Builtin `<=>` returns a `std::strong_ordering` object. We
436         // consider this to be an "original" initializer too (see above).
437         return;
438       }
439       if (Op->isCommaOp()) {
440         PropagateResultObject(Op->getRHS(), Loc);
441         return;
442       }
443       // We don't expect any other binary operators to produce a record
444       // prvalue, so if we get here, we've hit some case we don't know
445       // about.
446       assert(false);
447       return;
448     }
449     case Stmt::BinaryConditionalOperatorClass:
450     case Stmt::ConditionalOperatorClass: {
451       auto *Cond = cast<AbstractConditionalOperator>(E);
452       PropagateResultObject(Cond->getTrueExpr(), Loc);
453       PropagateResultObject(Cond->getFalseExpr(), Loc);
454       return;
455     }
456     case Stmt::StmtExprClass: {
457       auto *SE = cast<StmtExpr>(E);
458       PropagateResultObject(cast<Expr>(SE->getSubStmt()->body_back()), Loc);
459       return;
460     }
461     case Stmt::InitListExprClass: {
462       auto *InitList = cast<InitListExpr>(E);
463       if (!InitList->isSemanticForm())
464         return;
465       if (InitList->isTransparent()) {
466         PropagateResultObject(InitList->getInit(0), Loc);
467         return;
468       }
469 
470       RecordInitListHelper InitListHelper(InitList);
471 
472       for (auto [Base, Init] : InitListHelper.base_inits()) {
473         assert(Base->getType().getCanonicalType() ==
474                Init->getType().getCanonicalType());
475 
476         // Storage location for the base class is the same as that of the
477         // derived class because we "flatten" the object hierarchy and put all
478         // fields in `RecordStorageLocation` of the derived class.
479         PropagateResultObject(Init, Loc);
480       }
481 
482       for (auto [Field, Init] : InitListHelper.field_inits()) {
483         // Fields of non-record type are handled in
484         // `TransferVisitor::VisitInitListExpr()`.
485         if (!Field->getType()->isRecordType())
486           continue;
487         PropagateResultObject(
488             Init, cast<RecordStorageLocation>(Loc->getChild(*Field)));
489       }
490       return;
491     }
492     default: {
493       // All other expression nodes that propagate a record prvalue should
494       // have exactly one child.
495       SmallVector<Stmt *, 1> Children(E->child_begin(), E->child_end());
496       LLVM_DEBUG({
497         if (Children.size() != 1)
498           E->dump();
499       });
500       assert(Children.size() == 1);
501       for (Stmt *S : Children)
502         PropagateResultObject(cast<Expr>(S), Loc);
503       return;
504     }
505     }
506   }
507 
508 private:
509   llvm::DenseMap<const Expr *, RecordStorageLocation *> &ResultObjectMap;
510   RecordStorageLocation *LocForRecordReturnVal;
511   DataflowAnalysisContext &DACtx;
512 };
513 
514 } // namespace
515 
516 Environment::Environment(DataflowAnalysisContext &DACtx)
517     : DACtx(&DACtx),
518       FlowConditionToken(DACtx.arena().makeFlowConditionToken()) {}
519 
520 Environment::Environment(DataflowAnalysisContext &DACtx,
521                          const DeclContext &DeclCtx)
522     : Environment(DACtx) {
523   CallStack.push_back(&DeclCtx);
524 }
525 
526 void Environment::initialize() {
527   const DeclContext *DeclCtx = getDeclCtx();
528   if (DeclCtx == nullptr)
529     return;
530 
531   const auto *FuncDecl = dyn_cast<FunctionDecl>(DeclCtx);
532   if (FuncDecl == nullptr)
533     return;
534 
535   assert(FuncDecl->doesThisDeclarationHaveABody());
536 
537   initFieldsGlobalsAndFuncs(FuncDecl);
538 
539   for (const auto *ParamDecl : FuncDecl->parameters()) {
540     assert(ParamDecl != nullptr);
541     setStorageLocation(*ParamDecl, createObject(*ParamDecl, nullptr));
542   }
543 
544   if (FuncDecl->getReturnType()->isRecordType())
545     LocForRecordReturnVal = &cast<RecordStorageLocation>(
546         createStorageLocation(FuncDecl->getReturnType()));
547 
548   if (const auto *MethodDecl = dyn_cast<CXXMethodDecl>(DeclCtx)) {
549     auto *Parent = MethodDecl->getParent();
550     assert(Parent != nullptr);
551 
552     if (Parent->isLambda()) {
553       for (const auto &Capture : Parent->captures()) {
554         if (Capture.capturesVariable()) {
555           const auto *VarDecl = Capture.getCapturedVar();
556           assert(VarDecl != nullptr);
557           setStorageLocation(*VarDecl, createObject(*VarDecl, nullptr));
558         } else if (Capture.capturesThis()) {
559           const auto *SurroundingMethodDecl =
560               cast<CXXMethodDecl>(DeclCtx->getNonClosureAncestor());
561           QualType ThisPointeeType =
562               SurroundingMethodDecl->getFunctionObjectParameterType();
563           setThisPointeeStorageLocation(
564               cast<RecordStorageLocation>(createObject(ThisPointeeType)));
565         }
566       }
567     } else if (MethodDecl->isImplicitObjectMemberFunction()) {
568       QualType ThisPointeeType = MethodDecl->getFunctionObjectParameterType();
569       auto &ThisLoc =
570           cast<RecordStorageLocation>(createStorageLocation(ThisPointeeType));
571       setThisPointeeStorageLocation(ThisLoc);
572       refreshRecordValue(ThisLoc, *this);
573       // Initialize fields of `*this` with values, but only if we're not
574       // analyzing a constructor; after all, it's the constructor's job to do
575       // this (and we want to be able to test that).
576       if (!isa<CXXConstructorDecl>(MethodDecl))
577         initializeFieldsWithValues(ThisLoc);
578     }
579   }
580 
581   // We do this below the handling of `CXXMethodDecl` above so that we can
582   // be sure that the storage location for `this` has been set.
583   ResultObjectMap = std::make_shared<PrValueToResultObject>(
584       buildResultObjectMap(DACtx, FuncDecl, getThisPointeeStorageLocation(),
585                            LocForRecordReturnVal));
586 }
587 
588 // FIXME: Add support for resetting globals after function calls to enable
589 // the implementation of sound analyses.
590 void Environment::initFieldsGlobalsAndFuncs(const FunctionDecl *FuncDecl) {
591   assert(FuncDecl->doesThisDeclarationHaveABody());
592 
593   ReferencedDecls Referenced = getReferencedDecls(*FuncDecl);
594 
595   // These have to be added before the lines that follow to ensure that
596   // `create*` work correctly for structs.
597   DACtx->addModeledFields(Referenced.Fields);
598 
599   for (const VarDecl *D : Referenced.Globals) {
600     if (getStorageLocation(*D) != nullptr)
601       continue;
602 
603     // We don't run transfer functions on the initializers of global variables,
604     // so they won't be associated with a value or storage location. We
605     // therefore intentionally don't pass an initializer to `createObject()`;
606     // in particular, this ensures that `createObject()` will initialize the
607     // fields of record-type variables with values.
608     setStorageLocation(*D, createObject(*D, nullptr));
609   }
610 
611   for (const FunctionDecl *FD : Referenced.Functions) {
612     if (getStorageLocation(*FD) != nullptr)
613       continue;
614     auto &Loc = createStorageLocation(*FD);
615     setStorageLocation(*FD, Loc);
616   }
617 }
618 
619 Environment Environment::fork() const {
620   Environment Copy(*this);
621   Copy.FlowConditionToken = DACtx->forkFlowCondition(FlowConditionToken);
622   return Copy;
623 }
624 
625 bool Environment::canDescend(unsigned MaxDepth,
626                              const DeclContext *Callee) const {
627   return CallStack.size() <= MaxDepth && !llvm::is_contained(CallStack, Callee);
628 }
629 
630 Environment Environment::pushCall(const CallExpr *Call) const {
631   Environment Env(*this);
632 
633   if (const auto *MethodCall = dyn_cast<CXXMemberCallExpr>(Call)) {
634     if (const Expr *Arg = MethodCall->getImplicitObjectArgument()) {
635       if (!isa<CXXThisExpr>(Arg))
636           Env.ThisPointeeLoc =
637               cast<RecordStorageLocation>(getStorageLocation(*Arg));
638       // Otherwise (when the argument is `this`), retain the current
639       // environment's `ThisPointeeLoc`.
640     }
641   }
642 
643   if (Call->getType()->isRecordType() && Call->isPRValue())
644     Env.LocForRecordReturnVal = &Env.getResultObjectLocation(*Call);
645 
646   Env.pushCallInternal(Call->getDirectCallee(),
647                        llvm::ArrayRef(Call->getArgs(), Call->getNumArgs()));
648 
649   return Env;
650 }
651 
652 Environment Environment::pushCall(const CXXConstructExpr *Call) const {
653   Environment Env(*this);
654 
655   Env.ThisPointeeLoc = &Env.getResultObjectLocation(*Call);
656   Env.LocForRecordReturnVal = &Env.getResultObjectLocation(*Call);
657 
658   Env.pushCallInternal(Call->getConstructor(),
659                        llvm::ArrayRef(Call->getArgs(), Call->getNumArgs()));
660 
661   return Env;
662 }
663 
664 void Environment::pushCallInternal(const FunctionDecl *FuncDecl,
665                                    ArrayRef<const Expr *> Args) {
666   // Canonicalize to the definition of the function. This ensures that we're
667   // putting arguments into the same `ParamVarDecl`s` that the callee will later
668   // be retrieving them from.
669   assert(FuncDecl->getDefinition() != nullptr);
670   FuncDecl = FuncDecl->getDefinition();
671 
672   CallStack.push_back(FuncDecl);
673 
674   initFieldsGlobalsAndFuncs(FuncDecl);
675 
676   const auto *ParamIt = FuncDecl->param_begin();
677 
678   // FIXME: Parameters don't always map to arguments 1:1; examples include
679   // overloaded operators implemented as member functions, and parameter packs.
680   for (unsigned ArgIndex = 0; ArgIndex < Args.size(); ++ParamIt, ++ArgIndex) {
681     assert(ParamIt != FuncDecl->param_end());
682     const VarDecl *Param = *ParamIt;
683     setStorageLocation(*Param, createObject(*Param, Args[ArgIndex]));
684   }
685 
686   ResultObjectMap = std::make_shared<PrValueToResultObject>(
687       buildResultObjectMap(DACtx, FuncDecl, getThisPointeeStorageLocation(),
688                            LocForRecordReturnVal));
689 }
690 
691 void Environment::popCall(const CallExpr *Call, const Environment &CalleeEnv) {
692   // We ignore some entries of `CalleeEnv`:
693   // - `DACtx` because is already the same in both
694   // - We don't want the callee's `DeclCtx`, `ReturnVal`, `ReturnLoc` or
695   //   `ThisPointeeLoc` because they don't apply to us.
696   // - `DeclToLoc`, `ExprToLoc`, and `ExprToVal` capture information from the
697   //   callee's local scope, so when popping that scope, we do not propagate
698   //   the maps.
699   this->LocToVal = std::move(CalleeEnv.LocToVal);
700   this->FlowConditionToken = std::move(CalleeEnv.FlowConditionToken);
701 
702   if (Call->isGLValue()) {
703     if (CalleeEnv.ReturnLoc != nullptr)
704       setStorageLocation(*Call, *CalleeEnv.ReturnLoc);
705   } else if (!Call->getType()->isVoidType()) {
706     if (CalleeEnv.ReturnVal != nullptr)
707       setValue(*Call, *CalleeEnv.ReturnVal);
708   }
709 }
710 
711 void Environment::popCall(const CXXConstructExpr *Call,
712                           const Environment &CalleeEnv) {
713   // See also comment in `popCall(const CallExpr *, const Environment &)` above.
714   this->LocToVal = std::move(CalleeEnv.LocToVal);
715   this->FlowConditionToken = std::move(CalleeEnv.FlowConditionToken);
716 
717   if (Value *Val = CalleeEnv.getValue(*CalleeEnv.ThisPointeeLoc)) {
718     setValue(*Call, *Val);
719   }
720 }
721 
722 bool Environment::equivalentTo(const Environment &Other,
723                                Environment::ValueModel &Model) const {
724   assert(DACtx == Other.DACtx);
725 
726   if (ReturnVal != Other.ReturnVal)
727     return false;
728 
729   if (ReturnLoc != Other.ReturnLoc)
730     return false;
731 
732   if (LocForRecordReturnVal != Other.LocForRecordReturnVal)
733     return false;
734 
735   if (ThisPointeeLoc != Other.ThisPointeeLoc)
736     return false;
737 
738   if (DeclToLoc != Other.DeclToLoc)
739     return false;
740 
741   if (ExprToLoc != Other.ExprToLoc)
742     return false;
743 
744   if (!compareKeyToValueMaps(ExprToVal, Other.ExprToVal, *this, Other, Model))
745     return false;
746 
747   if (!compareKeyToValueMaps(LocToVal, Other.LocToVal, *this, Other, Model))
748     return false;
749 
750   return true;
751 }
752 
753 LatticeEffect Environment::widen(const Environment &PrevEnv,
754                                  Environment::ValueModel &Model) {
755   assert(DACtx == PrevEnv.DACtx);
756   assert(ReturnVal == PrevEnv.ReturnVal);
757   assert(ReturnLoc == PrevEnv.ReturnLoc);
758   assert(LocForRecordReturnVal == PrevEnv.LocForRecordReturnVal);
759   assert(ThisPointeeLoc == PrevEnv.ThisPointeeLoc);
760   assert(CallStack == PrevEnv.CallStack);
761   assert(ResultObjectMap == PrevEnv.ResultObjectMap);
762 
763   auto Effect = LatticeEffect::Unchanged;
764 
765   // By the API, `PrevEnv` is a previous version of the environment for the same
766   // block, so we have some guarantees about its shape. In particular, it will
767   // be the result of a join or widen operation on previous values for this
768   // block. For `DeclToLoc`, `ExprToVal`, and `ExprToLoc`, join guarantees that
769   // these maps are subsets of the maps in `PrevEnv`. So, as long as we maintain
770   // this property here, we don't need change their current values to widen.
771   assert(DeclToLoc.size() <= PrevEnv.DeclToLoc.size());
772   assert(ExprToVal.size() <= PrevEnv.ExprToVal.size());
773   assert(ExprToLoc.size() <= PrevEnv.ExprToLoc.size());
774 
775   ExprToVal = widenKeyToValueMap(ExprToVal, PrevEnv.ExprToVal, *this, PrevEnv,
776                                  Model, Effect);
777 
778   LocToVal = widenKeyToValueMap(LocToVal, PrevEnv.LocToVal, *this, PrevEnv,
779                                 Model, Effect);
780   if (DeclToLoc.size() != PrevEnv.DeclToLoc.size() ||
781       ExprToLoc.size() != PrevEnv.ExprToLoc.size() ||
782       ExprToVal.size() != PrevEnv.ExprToVal.size() ||
783       LocToVal.size() != PrevEnv.LocToVal.size())
784     Effect = LatticeEffect::Changed;
785 
786   return Effect;
787 }
788 
789 Environment Environment::join(const Environment &EnvA, const Environment &EnvB,
790                               Environment::ValueModel &Model,
791                               ExprJoinBehavior ExprBehavior) {
792   assert(EnvA.DACtx == EnvB.DACtx);
793   assert(EnvA.LocForRecordReturnVal == EnvB.LocForRecordReturnVal);
794   assert(EnvA.ThisPointeeLoc == EnvB.ThisPointeeLoc);
795   assert(EnvA.CallStack == EnvB.CallStack);
796   assert(EnvA.ResultObjectMap == EnvB.ResultObjectMap);
797 
798   Environment JoinedEnv(*EnvA.DACtx);
799 
800   JoinedEnv.CallStack = EnvA.CallStack;
801   JoinedEnv.ResultObjectMap = EnvA.ResultObjectMap;
802   JoinedEnv.LocForRecordReturnVal = EnvA.LocForRecordReturnVal;
803   JoinedEnv.ThisPointeeLoc = EnvA.ThisPointeeLoc;
804 
805   if (EnvA.ReturnVal == nullptr || EnvB.ReturnVal == nullptr) {
806     // `ReturnVal` might not always get set -- for example if we have a return
807     // statement of the form `return some_other_func()` and we decide not to
808     // analyze `some_other_func()`.
809     // In this case, we can't say anything about the joined return value -- we
810     // don't simply want to propagate the return value that we do have, because
811     // it might not be the correct one.
812     // This occurs for example in the test `ContextSensitiveMutualRecursion`.
813     JoinedEnv.ReturnVal = nullptr;
814   } else if (areEquivalentValues(*EnvA.ReturnVal, *EnvB.ReturnVal)) {
815     JoinedEnv.ReturnVal = EnvA.ReturnVal;
816   } else {
817     assert(!EnvA.CallStack.empty());
818     // FIXME: Make `CallStack` a vector of `FunctionDecl` so we don't need this
819     // cast.
820     auto *Func = dyn_cast<FunctionDecl>(EnvA.CallStack.back());
821     assert(Func != nullptr);
822     if (Value *JoinedVal =
823             joinDistinctValues(Func->getReturnType(), *EnvA.ReturnVal, EnvA,
824                                *EnvB.ReturnVal, EnvB, JoinedEnv, Model))
825       JoinedEnv.ReturnVal = JoinedVal;
826   }
827 
828   if (EnvA.ReturnLoc == EnvB.ReturnLoc)
829     JoinedEnv.ReturnLoc = EnvA.ReturnLoc;
830   else
831     JoinedEnv.ReturnLoc = nullptr;
832 
833   JoinedEnv.DeclToLoc = intersectDeclToLoc(EnvA.DeclToLoc, EnvB.DeclToLoc);
834 
835   // FIXME: update join to detect backedges and simplify the flow condition
836   // accordingly.
837   JoinedEnv.FlowConditionToken = EnvA.DACtx->joinFlowConditions(
838       EnvA.FlowConditionToken, EnvB.FlowConditionToken);
839 
840   JoinedEnv.LocToVal =
841       joinLocToVal(EnvA.LocToVal, EnvB.LocToVal, EnvA, EnvB, JoinedEnv, Model);
842 
843   if (ExprBehavior == KeepExprState) {
844     JoinedEnv.ExprToVal = joinExprMaps(EnvA.ExprToVal, EnvB.ExprToVal);
845     JoinedEnv.ExprToLoc = joinExprMaps(EnvA.ExprToLoc, EnvB.ExprToLoc);
846   }
847 
848   return JoinedEnv;
849 }
850 
851 StorageLocation &Environment::createStorageLocation(QualType Type) {
852   return DACtx->createStorageLocation(Type);
853 }
854 
855 StorageLocation &Environment::createStorageLocation(const ValueDecl &D) {
856   // Evaluated declarations are always assigned the same storage locations to
857   // ensure that the environment stabilizes across loop iterations. Storage
858   // locations for evaluated declarations are stored in the analysis context.
859   return DACtx->getStableStorageLocation(D);
860 }
861 
862 StorageLocation &Environment::createStorageLocation(const Expr &E) {
863   // Evaluated expressions are always assigned the same storage locations to
864   // ensure that the environment stabilizes across loop iterations. Storage
865   // locations for evaluated expressions are stored in the analysis context.
866   return DACtx->getStableStorageLocation(E);
867 }
868 
869 void Environment::setStorageLocation(const ValueDecl &D, StorageLocation &Loc) {
870   assert(!DeclToLoc.contains(&D));
871   // The only kinds of declarations that may have a "variable" storage location
872   // are declarations of reference type and `BindingDecl`. For all other
873   // declaration, the storage location should be the stable storage location
874   // returned by `createStorageLocation()`.
875   assert(D.getType()->isReferenceType() || isa<BindingDecl>(D) ||
876          &Loc == &createStorageLocation(D));
877   DeclToLoc[&D] = &Loc;
878 }
879 
880 StorageLocation *Environment::getStorageLocation(const ValueDecl &D) const {
881   auto It = DeclToLoc.find(&D);
882   if (It == DeclToLoc.end())
883     return nullptr;
884 
885   StorageLocation *Loc = It->second;
886 
887   return Loc;
888 }
889 
890 void Environment::removeDecl(const ValueDecl &D) { DeclToLoc.erase(&D); }
891 
892 void Environment::setStorageLocation(const Expr &E, StorageLocation &Loc) {
893   // `DeclRefExpr`s to builtin function types aren't glvalues, for some reason,
894   // but we still want to be able to associate a `StorageLocation` with them,
895   // so allow these as an exception.
896   assert(E.isGLValue() ||
897          E.getType()->isSpecificBuiltinType(BuiltinType::BuiltinFn));
898   const Expr &CanonE = ignoreCFGOmittedNodes(E);
899   assert(!ExprToLoc.contains(&CanonE));
900   ExprToLoc[&CanonE] = &Loc;
901 }
902 
903 StorageLocation *Environment::getStorageLocation(const Expr &E) const {
904   // See comment in `setStorageLocation()`.
905   assert(E.isGLValue() ||
906          E.getType()->isSpecificBuiltinType(BuiltinType::BuiltinFn));
907   auto It = ExprToLoc.find(&ignoreCFGOmittedNodes(E));
908   return It == ExprToLoc.end() ? nullptr : &*It->second;
909 }
910 
911 RecordStorageLocation &
912 Environment::getResultObjectLocation(const Expr &RecordPRValue) const {
913   assert(RecordPRValue.getType()->isRecordType());
914   assert(RecordPRValue.isPRValue());
915 
916   assert(ResultObjectMap != nullptr);
917   RecordStorageLocation *Loc = ResultObjectMap->lookup(&RecordPRValue);
918   assert(Loc != nullptr);
919   // In release builds, use the "stable" storage location if the map lookup
920   // failed.
921   if (Loc == nullptr)
922     return cast<RecordStorageLocation>(
923         DACtx->getStableStorageLocation(RecordPRValue));
924   return *Loc;
925 }
926 
927 PointerValue &Environment::getOrCreateNullPointerValue(QualType PointeeType) {
928   return DACtx->getOrCreateNullPointerValue(PointeeType);
929 }
930 
931 void Environment::initializeFieldsWithValues(RecordStorageLocation &Loc,
932                                              QualType Type) {
933   llvm::DenseSet<QualType> Visited;
934   int CreatedValuesCount = 0;
935   initializeFieldsWithValues(Loc, Type, Visited, 0, CreatedValuesCount);
936   if (CreatedValuesCount > MaxCompositeValueSize) {
937     llvm::errs() << "Attempting to initialize a huge value of type: " << Type
938                  << '\n';
939   }
940 }
941 
942 void Environment::setValue(const StorageLocation &Loc, Value &Val) {
943   assert(!isa<RecordValue>(&Val) || &cast<RecordValue>(&Val)->getLoc() == &Loc);
944 
945   LocToVal[&Loc] = &Val;
946 }
947 
948 void Environment::setValue(const Expr &E, Value &Val) {
949   const Expr &CanonE = ignoreCFGOmittedNodes(E);
950 
951   if (auto *RecordVal = dyn_cast<RecordValue>(&Val)) {
952     assert(&RecordVal->getLoc() == &getResultObjectLocation(CanonE));
953     (void)RecordVal;
954   }
955 
956   assert(CanonE.isPRValue());
957   ExprToVal[&CanonE] = &Val;
958 }
959 
960 Value *Environment::getValue(const StorageLocation &Loc) const {
961   return LocToVal.lookup(&Loc);
962 }
963 
964 Value *Environment::getValue(const ValueDecl &D) const {
965   auto *Loc = getStorageLocation(D);
966   if (Loc == nullptr)
967     return nullptr;
968   return getValue(*Loc);
969 }
970 
971 Value *Environment::getValue(const Expr &E) const {
972   if (E.isPRValue()) {
973     auto It = ExprToVal.find(&ignoreCFGOmittedNodes(E));
974     return It == ExprToVal.end() ? nullptr : It->second;
975   }
976 
977   auto It = ExprToLoc.find(&ignoreCFGOmittedNodes(E));
978   if (It == ExprToLoc.end())
979     return nullptr;
980   return getValue(*It->second);
981 }
982 
983 Value *Environment::createValue(QualType Type) {
984   llvm::DenseSet<QualType> Visited;
985   int CreatedValuesCount = 0;
986   Value *Val = createValueUnlessSelfReferential(Type, Visited, /*Depth=*/0,
987                                                 CreatedValuesCount);
988   if (CreatedValuesCount > MaxCompositeValueSize) {
989     llvm::errs() << "Attempting to initialize a huge value of type: " << Type
990                  << '\n';
991   }
992   return Val;
993 }
994 
995 Value *Environment::createValueUnlessSelfReferential(
996     QualType Type, llvm::DenseSet<QualType> &Visited, int Depth,
997     int &CreatedValuesCount) {
998   assert(!Type.isNull());
999   assert(!Type->isReferenceType());
1000 
1001   // Allow unlimited fields at depth 1; only cap at deeper nesting levels.
1002   if ((Depth > 1 && CreatedValuesCount > MaxCompositeValueSize) ||
1003       Depth > MaxCompositeValueDepth)
1004     return nullptr;
1005 
1006   if (Type->isBooleanType()) {
1007     CreatedValuesCount++;
1008     return &makeAtomicBoolValue();
1009   }
1010 
1011   if (Type->isIntegerType()) {
1012     // FIXME: consider instead `return nullptr`, given that we do nothing useful
1013     // with integers, and so distinguishing them serves no purpose, but could
1014     // prevent convergence.
1015     CreatedValuesCount++;
1016     return &arena().create<IntegerValue>();
1017   }
1018 
1019   if (Type->isPointerType()) {
1020     CreatedValuesCount++;
1021     QualType PointeeType = Type->getPointeeType();
1022     StorageLocation &PointeeLoc =
1023         createLocAndMaybeValue(PointeeType, Visited, Depth, CreatedValuesCount);
1024 
1025     return &arena().create<PointerValue>(PointeeLoc);
1026   }
1027 
1028   if (Type->isRecordType()) {
1029     CreatedValuesCount++;
1030     auto &Loc = cast<RecordStorageLocation>(createStorageLocation(Type));
1031     initializeFieldsWithValues(Loc, Loc.getType(), Visited, Depth,
1032                                CreatedValuesCount);
1033 
1034     return &refreshRecordValue(Loc, *this);
1035   }
1036 
1037   return nullptr;
1038 }
1039 
1040 StorageLocation &
1041 Environment::createLocAndMaybeValue(QualType Ty,
1042                                     llvm::DenseSet<QualType> &Visited,
1043                                     int Depth, int &CreatedValuesCount) {
1044   if (!Visited.insert(Ty.getCanonicalType()).second)
1045     return createStorageLocation(Ty.getNonReferenceType());
1046   Value *Val = createValueUnlessSelfReferential(
1047       Ty.getNonReferenceType(), Visited, Depth, CreatedValuesCount);
1048   Visited.erase(Ty.getCanonicalType());
1049 
1050   Ty = Ty.getNonReferenceType();
1051 
1052   if (Val == nullptr)
1053     return createStorageLocation(Ty);
1054 
1055   if (Ty->isRecordType())
1056     return cast<RecordValue>(Val)->getLoc();
1057 
1058   StorageLocation &Loc = createStorageLocation(Ty);
1059   setValue(Loc, *Val);
1060   return Loc;
1061 }
1062 
1063 void Environment::initializeFieldsWithValues(RecordStorageLocation &Loc,
1064                                              QualType Type,
1065                                              llvm::DenseSet<QualType> &Visited,
1066                                              int Depth,
1067                                              int &CreatedValuesCount) {
1068   auto initField = [&](QualType FieldType, StorageLocation &FieldLoc) {
1069     if (FieldType->isRecordType()) {
1070       auto &FieldRecordLoc = cast<RecordStorageLocation>(FieldLoc);
1071       setValue(FieldRecordLoc, create<RecordValue>(FieldRecordLoc));
1072       initializeFieldsWithValues(FieldRecordLoc, FieldRecordLoc.getType(),
1073                                  Visited, Depth + 1, CreatedValuesCount);
1074     } else {
1075       if (!Visited.insert(FieldType.getCanonicalType()).second)
1076         return;
1077       if (Value *Val = createValueUnlessSelfReferential(
1078               FieldType, Visited, Depth + 1, CreatedValuesCount))
1079         setValue(FieldLoc, *Val);
1080       Visited.erase(FieldType.getCanonicalType());
1081     }
1082   };
1083 
1084   for (const FieldDecl *Field : DACtx->getModeledFields(Type)) {
1085     assert(Field != nullptr);
1086     QualType FieldType = Field->getType();
1087 
1088     if (FieldType->isReferenceType()) {
1089       Loc.setChild(*Field,
1090                    &createLocAndMaybeValue(FieldType, Visited, Depth + 1,
1091                                            CreatedValuesCount));
1092     } else {
1093       StorageLocation *FieldLoc = Loc.getChild(*Field);
1094       assert(FieldLoc != nullptr);
1095       initField(FieldType, *FieldLoc);
1096     }
1097   }
1098   for (const auto &[FieldName, FieldType] : DACtx->getSyntheticFields(Type)) {
1099     // Synthetic fields cannot have reference type, so we don't need to deal
1100     // with this case.
1101     assert(!FieldType->isReferenceType());
1102     initField(FieldType, Loc.getSyntheticField(FieldName));
1103   }
1104 }
1105 
1106 StorageLocation &Environment::createObjectInternal(const ValueDecl *D,
1107                                                    QualType Ty,
1108                                                    const Expr *InitExpr) {
1109   if (Ty->isReferenceType()) {
1110     // Although variables of reference type always need to be initialized, it
1111     // can happen that we can't see the initializer, so `InitExpr` may still
1112     // be null.
1113     if (InitExpr) {
1114       if (auto *InitExprLoc = getStorageLocation(*InitExpr))
1115           return *InitExprLoc;
1116     }
1117 
1118     // Even though we have an initializer, we might not get an
1119     // InitExprLoc, for example if the InitExpr is a CallExpr for which we
1120     // don't have a function body. In this case, we just invent a storage
1121     // location and value -- it's the best we can do.
1122     return createObjectInternal(D, Ty.getNonReferenceType(), nullptr);
1123   }
1124 
1125   StorageLocation &Loc =
1126       D ? createStorageLocation(*D) : createStorageLocation(Ty);
1127 
1128   if (Ty->isRecordType()) {
1129     auto &RecordLoc = cast<RecordStorageLocation>(Loc);
1130     if (!InitExpr)
1131       initializeFieldsWithValues(RecordLoc);
1132     refreshRecordValue(RecordLoc, *this);
1133   } else {
1134     Value *Val = nullptr;
1135     if (InitExpr)
1136       // In the (few) cases where an expression is intentionally
1137       // "uninterpreted", `InitExpr` is not associated with a value.  There are
1138       // two ways to handle this situation: propagate the status, so that
1139       // uninterpreted initializers result in uninterpreted variables, or
1140       // provide a default value. We choose the latter so that later refinements
1141       // of the variable can be used for reasoning about the surrounding code.
1142       // For this reason, we let this case be handled by the `createValue()`
1143       // call below.
1144       //
1145       // FIXME. If and when we interpret all language cases, change this to
1146       // assert that `InitExpr` is interpreted, rather than supplying a
1147       // default value (assuming we don't update the environment API to return
1148       // references).
1149       Val = getValue(*InitExpr);
1150     if (!Val)
1151       Val = createValue(Ty);
1152     if (Val)
1153       setValue(Loc, *Val);
1154   }
1155 
1156   return Loc;
1157 }
1158 
1159 void Environment::assume(const Formula &F) {
1160   DACtx->addFlowConditionConstraint(FlowConditionToken, F);
1161 }
1162 
1163 bool Environment::proves(const Formula &F) const {
1164   return DACtx->flowConditionImplies(FlowConditionToken, F);
1165 }
1166 
1167 bool Environment::allows(const Formula &F) const {
1168   return DACtx->flowConditionAllows(FlowConditionToken, F);
1169 }
1170 
1171 void Environment::dump(raw_ostream &OS) const {
1172   llvm::DenseMap<const StorageLocation *, std::string> LocToName;
1173   if (LocForRecordReturnVal != nullptr)
1174     LocToName[LocForRecordReturnVal] = "(returned record)";
1175   if (ThisPointeeLoc != nullptr)
1176     LocToName[ThisPointeeLoc] = "this";
1177 
1178   OS << "DeclToLoc:\n";
1179   for (auto [D, L] : DeclToLoc) {
1180     auto Iter = LocToName.insert({L, D->getNameAsString()}).first;
1181     OS << "  [" << Iter->second << ", " << L << "]\n";
1182   }
1183   OS << "ExprToLoc:\n";
1184   for (auto [E, L] : ExprToLoc)
1185     OS << "  [" << E << ", " << L << "]\n";
1186 
1187   OS << "ExprToVal:\n";
1188   for (auto [E, V] : ExprToVal)
1189     OS << "  [" << E << ", " << V << ": " << *V << "]\n";
1190 
1191   OS << "LocToVal:\n";
1192   for (auto [L, V] : LocToVal) {
1193     OS << "  [" << L;
1194     if (auto Iter = LocToName.find(L); Iter != LocToName.end())
1195       OS << " (" << Iter->second << ")";
1196     OS << ", " << V << ": " << *V << "]\n";
1197   }
1198 
1199   if (const FunctionDecl *Func = getCurrentFunc()) {
1200     if (Func->getReturnType()->isReferenceType()) {
1201       OS << "ReturnLoc: " << ReturnLoc;
1202       if (auto Iter = LocToName.find(ReturnLoc); Iter != LocToName.end())
1203         OS << " (" << Iter->second << ")";
1204       OS << "\n";
1205     } else if (Func->getReturnType()->isRecordType() ||
1206                isa<CXXConstructorDecl>(Func)) {
1207       OS << "LocForRecordReturnVal: " << LocForRecordReturnVal << "\n";
1208     } else if (!Func->getReturnType()->isVoidType()) {
1209       if (ReturnVal == nullptr)
1210         OS << "ReturnVal: nullptr\n";
1211       else
1212         OS << "ReturnVal: " << *ReturnVal << "\n";
1213     }
1214 
1215     if (isa<CXXMethodDecl>(Func)) {
1216       OS << "ThisPointeeLoc: " << ThisPointeeLoc << "\n";
1217     }
1218   }
1219 
1220   OS << "\n";
1221   DACtx->dumpFlowCondition(FlowConditionToken, OS);
1222 }
1223 
1224 void Environment::dump() const {
1225   dump(llvm::dbgs());
1226 }
1227 
1228 Environment::PrValueToResultObject Environment::buildResultObjectMap(
1229     DataflowAnalysisContext *DACtx, const FunctionDecl *FuncDecl,
1230     RecordStorageLocation *ThisPointeeLoc,
1231     RecordStorageLocation *LocForRecordReturnVal) {
1232   assert(FuncDecl->doesThisDeclarationHaveABody());
1233 
1234   PrValueToResultObject Map;
1235 
1236   ResultObjectVisitor Visitor(Map, LocForRecordReturnVal, *DACtx);
1237   if (const auto *Ctor = dyn_cast<CXXConstructorDecl>(FuncDecl))
1238     Visitor.TraverseConstructorInits(Ctor, ThisPointeeLoc);
1239   Visitor.TraverseStmt(FuncDecl->getBody());
1240 
1241   return Map;
1242 }
1243 
1244 RecordStorageLocation *getImplicitObjectLocation(const CXXMemberCallExpr &MCE,
1245                                                  const Environment &Env) {
1246   Expr *ImplicitObject = MCE.getImplicitObjectArgument();
1247   if (ImplicitObject == nullptr)
1248     return nullptr;
1249   if (ImplicitObject->getType()->isPointerType()) {
1250     if (auto *Val = Env.get<PointerValue>(*ImplicitObject))
1251       return &cast<RecordStorageLocation>(Val->getPointeeLoc());
1252     return nullptr;
1253   }
1254   return cast_or_null<RecordStorageLocation>(
1255       Env.getStorageLocation(*ImplicitObject));
1256 }
1257 
1258 RecordStorageLocation *getBaseObjectLocation(const MemberExpr &ME,
1259                                              const Environment &Env) {
1260   Expr *Base = ME.getBase();
1261   if (Base == nullptr)
1262     return nullptr;
1263   if (ME.isArrow()) {
1264     if (auto *Val = Env.get<PointerValue>(*Base))
1265       return &cast<RecordStorageLocation>(Val->getPointeeLoc());
1266     return nullptr;
1267   }
1268   return Env.get<RecordStorageLocation>(*Base);
1269 }
1270 
1271 RecordValue &refreshRecordValue(RecordStorageLocation &Loc, Environment &Env) {
1272   auto &NewVal = Env.create<RecordValue>(Loc);
1273   Env.setValue(Loc, NewVal);
1274   return NewVal;
1275 }
1276 
1277 RecordValue &refreshRecordValue(const Expr &Expr, Environment &Env) {
1278   assert(Expr.getType()->isRecordType());
1279 
1280   if (Expr.isPRValue())
1281     refreshRecordValue(Env.getResultObjectLocation(Expr), Env);
1282 
1283   if (auto *Loc = Env.get<RecordStorageLocation>(Expr))
1284     refreshRecordValue(*Loc, Env);
1285 
1286   auto &NewVal = *cast<RecordValue>(Env.createValue(Expr.getType()));
1287   Env.setStorageLocation(Expr, NewVal.getLoc());
1288   return NewVal;
1289 }
1290 
1291 } // namespace dataflow
1292 } // namespace clang
1293