xref: /llvm-project/clang/lib/Analysis/FlowSensitive/DataflowEnvironment.cpp (revision 9ba6961ce05b17a70c22354f0b54a963ed1ab49c)
1 //===-- DataflowEnvironment.cpp ---------------------------------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 //  This file defines an Environment class that is used by dataflow analyses
10 //  that run over Control-Flow Graphs (CFGs) to keep track of the state of the
11 //  program at given program points.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "clang/Analysis/FlowSensitive/DataflowEnvironment.h"
16 #include "clang/AST/Decl.h"
17 #include "clang/AST/DeclCXX.h"
18 #include "clang/AST/RecursiveASTVisitor.h"
19 #include "clang/AST/Type.h"
20 #include "clang/Analysis/FlowSensitive/ASTOps.h"
21 #include "clang/Analysis/FlowSensitive/DataflowLattice.h"
22 #include "clang/Analysis/FlowSensitive/Value.h"
23 #include "llvm/ADT/DenseMap.h"
24 #include "llvm/ADT/DenseSet.h"
25 #include "llvm/ADT/MapVector.h"
26 #include "llvm/ADT/STLExtras.h"
27 #include "llvm/ADT/ScopeExit.h"
28 #include "llvm/Support/ErrorHandling.h"
29 #include <cassert>
30 #include <utility>
31 
32 #define DEBUG_TYPE "dataflow"
33 
34 namespace clang {
35 namespace dataflow {
36 
37 // FIXME: convert these to parameters of the analysis or environment. Current
38 // settings have been experimentaly validated, but only for a particular
39 // analysis.
40 static constexpr int MaxCompositeValueDepth = 3;
41 static constexpr int MaxCompositeValueSize = 1000;
42 
43 /// Returns a map consisting of key-value entries that are present in both maps.
44 static llvm::DenseMap<const ValueDecl *, StorageLocation *> intersectDeclToLoc(
45     const llvm::DenseMap<const ValueDecl *, StorageLocation *> &DeclToLoc1,
46     const llvm::DenseMap<const ValueDecl *, StorageLocation *> &DeclToLoc2) {
47   llvm::DenseMap<const ValueDecl *, StorageLocation *> Result;
48   for (auto &Entry : DeclToLoc1) {
49     auto It = DeclToLoc2.find(Entry.first);
50     if (It != DeclToLoc2.end() && Entry.second == It->second)
51       Result.insert({Entry.first, Entry.second});
52   }
53   return Result;
54 }
55 
56 // Performs a join on either `ExprToLoc` or `ExprToVal`.
57 // The maps must be consistent in the sense that any entries for the same
58 // expression must map to the same location / value. This is the case if we are
59 // performing a join for control flow within a full-expression (which is the
60 // only case when this function should be used).
61 template <typename MapT> MapT joinExprMaps(const MapT &Map1, const MapT &Map2) {
62   MapT Result = Map1;
63 
64   for (const auto &Entry : Map2) {
65     [[maybe_unused]] auto [It, Inserted] = Result.insert(Entry);
66     // If there was an existing entry, its value should be the same as for the
67     // entry we were trying to insert.
68     assert(It->second == Entry.second);
69   }
70 
71   return Result;
72 }
73 
74 // Whether to consider equivalent two values with an unknown relation.
75 //
76 // FIXME: this function is a hack enabling unsoundness to support
77 // convergence. Once we have widening support for the reference/pointer and
78 // struct built-in models, this should be unconditionally `false` (and inlined
79 // as such at its call sites).
80 static bool equateUnknownValues(Value::Kind K) {
81   switch (K) {
82   case Value::Kind::Integer:
83   case Value::Kind::Pointer:
84     return true;
85   default:
86     return false;
87   }
88 }
89 
90 static bool compareDistinctValues(QualType Type, Value &Val1,
91                                   const Environment &Env1, Value &Val2,
92                                   const Environment &Env2,
93                                   Environment::ValueModel &Model) {
94   // Note: Potentially costly, but, for booleans, we could check whether both
95   // can be proven equivalent in their respective environments.
96 
97   // FIXME: move the reference/pointers logic from `areEquivalentValues` to here
98   // and implement separate, join/widen specific handling for
99   // reference/pointers.
100   switch (Model.compare(Type, Val1, Env1, Val2, Env2)) {
101   case ComparisonResult::Same:
102     return true;
103   case ComparisonResult::Different:
104     return false;
105   case ComparisonResult::Unknown:
106     return equateUnknownValues(Val1.getKind());
107   }
108   llvm_unreachable("All cases covered in switch");
109 }
110 
111 /// Attempts to join distinct values `Val1` and `Val2` in `Env1` and `Env2`,
112 /// respectively, of the same type `Type`. Joining generally produces a single
113 /// value that (soundly) approximates the two inputs, although the actual
114 /// meaning depends on `Model`.
115 static Value *joinDistinctValues(QualType Type, Value &Val1,
116                                  const Environment &Env1, Value &Val2,
117                                  const Environment &Env2,
118                                  Environment &JoinedEnv,
119                                  Environment::ValueModel &Model) {
120   // Join distinct boolean values preserving information about the constraints
121   // in the respective path conditions.
122   if (isa<BoolValue>(&Val1) && isa<BoolValue>(&Val2)) {
123     // FIXME: Checking both values should be unnecessary, since they should have
124     // a consistent shape.  However, right now we can end up with BoolValue's in
125     // integer-typed variables due to our incorrect handling of
126     // boolean-to-integer casts (we just propagate the BoolValue to the result
127     // of the cast). So, a join can encounter an integer in one branch but a
128     // bool in the other.
129     // For example:
130     // ```
131     // std::optional<bool> o;
132     // int x;
133     // if (o.has_value())
134     //   x = o.value();
135     // ```
136     auto &Expr1 = cast<BoolValue>(Val1).formula();
137     auto &Expr2 = cast<BoolValue>(Val2).formula();
138     auto &A = JoinedEnv.arena();
139     auto &JoinedVal = A.makeAtomRef(A.makeAtom());
140     JoinedEnv.assume(
141         A.makeOr(A.makeAnd(A.makeAtomRef(Env1.getFlowConditionToken()),
142                            A.makeEquals(JoinedVal, Expr1)),
143                  A.makeAnd(A.makeAtomRef(Env2.getFlowConditionToken()),
144                            A.makeEquals(JoinedVal, Expr2))));
145     return &A.makeBoolValue(JoinedVal);
146   }
147 
148   Value *JoinedVal = JoinedEnv.createValue(Type);
149   if (JoinedVal)
150     Model.join(Type, Val1, Env1, Val2, Env2, *JoinedVal, JoinedEnv);
151 
152   return JoinedVal;
153 }
154 
155 static WidenResult widenDistinctValues(QualType Type, Value &Prev,
156                                        const Environment &PrevEnv,
157                                        Value &Current, Environment &CurrentEnv,
158                                        Environment::ValueModel &Model) {
159   // Boolean-model widening.
160   if (auto *PrevBool = dyn_cast<BoolValue>(&Prev)) {
161     if (isa<TopBoolValue>(Prev))
162       // Safe to return `Prev` here, because Top is never dependent on the
163       // environment.
164       return {&Prev, LatticeEffect::Unchanged};
165 
166     // We may need to widen to Top, but before we do so, check whether both
167     // values are implied to be either true or false in the current environment.
168     // In that case, we can simply return a literal instead.
169     auto &CurBool = cast<BoolValue>(Current);
170     bool TruePrev = PrevEnv.proves(PrevBool->formula());
171     bool TrueCur = CurrentEnv.proves(CurBool.formula());
172     if (TruePrev && TrueCur)
173       return {&CurrentEnv.getBoolLiteralValue(true), LatticeEffect::Unchanged};
174     if (!TruePrev && !TrueCur &&
175         PrevEnv.proves(PrevEnv.arena().makeNot(PrevBool->formula())) &&
176         CurrentEnv.proves(CurrentEnv.arena().makeNot(CurBool.formula())))
177       return {&CurrentEnv.getBoolLiteralValue(false), LatticeEffect::Unchanged};
178 
179     return {&CurrentEnv.makeTopBoolValue(), LatticeEffect::Changed};
180   }
181 
182   // FIXME: Add other built-in model widening.
183 
184   // Custom-model widening.
185   if (auto Result = Model.widen(Type, Prev, PrevEnv, Current, CurrentEnv))
186     return *Result;
187 
188   return {&Current, equateUnknownValues(Prev.getKind())
189                         ? LatticeEffect::Unchanged
190                         : LatticeEffect::Changed};
191 }
192 
193 // Returns whether the values in `Map1` and `Map2` compare equal for those
194 // keys that `Map1` and `Map2` have in common.
195 template <typename Key>
196 bool compareKeyToValueMaps(const llvm::MapVector<Key, Value *> &Map1,
197                            const llvm::MapVector<Key, Value *> &Map2,
198                            const Environment &Env1, const Environment &Env2,
199                            Environment::ValueModel &Model) {
200   for (auto &Entry : Map1) {
201     Key K = Entry.first;
202     assert(K != nullptr);
203 
204     Value *Val = Entry.second;
205     assert(Val != nullptr);
206 
207     auto It = Map2.find(K);
208     if (It == Map2.end())
209       continue;
210     assert(It->second != nullptr);
211 
212     if (!areEquivalentValues(*Val, *It->second) &&
213         !compareDistinctValues(K->getType(), *Val, Env1, *It->second, Env2,
214                                Model))
215       return false;
216   }
217 
218   return true;
219 }
220 
221 // Perform a join on two `LocToVal` maps.
222 static llvm::MapVector<const StorageLocation *, Value *>
223 joinLocToVal(const llvm::MapVector<const StorageLocation *, Value *> &LocToVal,
224              const llvm::MapVector<const StorageLocation *, Value *> &LocToVal2,
225              const Environment &Env1, const Environment &Env2,
226              Environment &JoinedEnv, Environment::ValueModel &Model) {
227   llvm::MapVector<const StorageLocation *, Value *> Result;
228   for (auto &Entry : LocToVal) {
229     const StorageLocation *Loc = Entry.first;
230     assert(Loc != nullptr);
231 
232     Value *Val = Entry.second;
233     assert(Val != nullptr);
234 
235     auto It = LocToVal2.find(Loc);
236     if (It == LocToVal2.end())
237       continue;
238     assert(It->second != nullptr);
239 
240     if (Value *JoinedVal = Environment::joinValues(
241             Loc->getType(), Val, Env1, It->second, Env2, JoinedEnv, Model)) {
242       Result.insert({Loc, JoinedVal});
243     }
244   }
245 
246   return Result;
247 }
248 
249 // Perform widening on either `LocToVal` or `ExprToVal`. `Key` must be either
250 // `const StorageLocation *` or `const Expr *`.
251 template <typename Key>
252 llvm::MapVector<Key, Value *>
253 widenKeyToValueMap(const llvm::MapVector<Key, Value *> &CurMap,
254                    const llvm::MapVector<Key, Value *> &PrevMap,
255                    Environment &CurEnv, const Environment &PrevEnv,
256                    Environment::ValueModel &Model, LatticeEffect &Effect) {
257   llvm::MapVector<Key, Value *> WidenedMap;
258   for (auto &Entry : CurMap) {
259     Key K = Entry.first;
260     assert(K != nullptr);
261 
262     Value *Val = Entry.second;
263     assert(Val != nullptr);
264 
265     auto PrevIt = PrevMap.find(K);
266     if (PrevIt == PrevMap.end())
267       continue;
268     assert(PrevIt->second != nullptr);
269 
270     if (areEquivalentValues(*Val, *PrevIt->second)) {
271       WidenedMap.insert({K, Val});
272       continue;
273     }
274 
275     auto [WidenedVal, ValEffect] = widenDistinctValues(
276         K->getType(), *PrevIt->second, PrevEnv, *Val, CurEnv, Model);
277     WidenedMap.insert({K, WidenedVal});
278     if (ValEffect == LatticeEffect::Changed)
279       Effect = LatticeEffect::Changed;
280   }
281 
282   return WidenedMap;
283 }
284 
285 namespace {
286 
287 // Visitor that builds a map from record prvalues to result objects.
288 // This traverses the body of the function to be analyzed; for each result
289 // object that it encounters, it propagates the storage location of the result
290 // object to all record prvalues that can initialize it.
291 class ResultObjectVisitor : public RecursiveASTVisitor<ResultObjectVisitor> {
292 public:
293   // `ResultObjectMap` will be filled with a map from record prvalues to result
294   // object. If the function being analyzed returns a record by value,
295   // `LocForRecordReturnVal` is the location to which this record should be
296   // written; otherwise, it is null.
297   explicit ResultObjectVisitor(
298       llvm::DenseMap<const Expr *, RecordStorageLocation *> &ResultObjectMap,
299       RecordStorageLocation *LocForRecordReturnVal,
300       DataflowAnalysisContext &DACtx)
301       : ResultObjectMap(ResultObjectMap),
302         LocForRecordReturnVal(LocForRecordReturnVal), DACtx(DACtx) {}
303 
304   bool shouldVisitImplicitCode() { return true; }
305 
306   bool shouldVisitLambdaBody() const { return false; }
307 
308   // Traverse all member and base initializers of `Ctor`. This function is not
309   // called by `RecursiveASTVisitor`; it should be called manually if we are
310   // analyzing a constructor. `ThisPointeeLoc` is the storage location that
311   // `this` points to.
312   void TraverseConstructorInits(const CXXConstructorDecl *Ctor,
313                                 RecordStorageLocation *ThisPointeeLoc) {
314     assert(ThisPointeeLoc != nullptr);
315     for (const CXXCtorInitializer *Init : Ctor->inits()) {
316       Expr *InitExpr = Init->getInit();
317       if (FieldDecl *Field = Init->getMember();
318           Field != nullptr && Field->getType()->isRecordType()) {
319         PropagateResultObject(InitExpr, cast<RecordStorageLocation>(
320                                             ThisPointeeLoc->getChild(*Field)));
321       } else if (Init->getBaseClass()) {
322         PropagateResultObject(InitExpr, ThisPointeeLoc);
323       }
324 
325       // Ensure that any result objects within `InitExpr` (e.g. temporaries)
326       // are also propagated to the prvalues that initialize them.
327       TraverseStmt(InitExpr);
328 
329       // If this is a `CXXDefaultInitExpr`, also propagate any result objects
330       // within the default expression.
331       if (auto *DefaultInit = dyn_cast<CXXDefaultInitExpr>(InitExpr))
332         TraverseStmt(DefaultInit->getExpr());
333     }
334   }
335 
336   bool TraverseBindingDecl(BindingDecl *BD) {
337     // `RecursiveASTVisitor` doesn't traverse holding variables for
338     // `BindingDecl`s by itself, so we need to tell it to.
339     if (VarDecl *HoldingVar = BD->getHoldingVar())
340       TraverseDecl(HoldingVar);
341     return RecursiveASTVisitor<ResultObjectVisitor>::TraverseBindingDecl(BD);
342   }
343 
344   bool VisitVarDecl(VarDecl *VD) {
345     if (VD->getType()->isRecordType() && VD->hasInit())
346       PropagateResultObject(
347           VD->getInit(),
348           &cast<RecordStorageLocation>(DACtx.getStableStorageLocation(*VD)));
349     return true;
350   }
351 
352   bool VisitMaterializeTemporaryExpr(MaterializeTemporaryExpr *MTE) {
353     if (MTE->getType()->isRecordType())
354       PropagateResultObject(
355           MTE->getSubExpr(),
356           &cast<RecordStorageLocation>(DACtx.getStableStorageLocation(*MTE)));
357     return true;
358   }
359 
360   bool VisitReturnStmt(ReturnStmt *Return) {
361     Expr *RetValue = Return->getRetValue();
362     if (RetValue != nullptr && RetValue->getType()->isRecordType() &&
363         RetValue->isPRValue())
364       PropagateResultObject(RetValue, LocForRecordReturnVal);
365     return true;
366   }
367 
368   bool VisitExpr(Expr *E) {
369     // Clang's AST can have record-type prvalues without a result object -- for
370     // example as full-expressions contained in a compound statement or as
371     // arguments of call expressions. We notice this if we get here and a
372     // storage location has not yet been associated with `E`. In this case,
373     // treat this as if it was a `MaterializeTemporaryExpr`.
374     if (E->isPRValue() && E->getType()->isRecordType() &&
375         !ResultObjectMap.contains(E))
376       PropagateResultObject(
377           E, &cast<RecordStorageLocation>(DACtx.getStableStorageLocation(*E)));
378     return true;
379   }
380 
381   void
382   PropagateResultObjectToRecordInitList(const RecordInitListHelper &InitList,
383                                         RecordStorageLocation *Loc) {
384     for (auto [Base, Init] : InitList.base_inits()) {
385       assert(Base->getType().getCanonicalType() ==
386              Init->getType().getCanonicalType());
387 
388       // Storage location for the base class is the same as that of the
389       // derived class because we "flatten" the object hierarchy and put all
390       // fields in `RecordStorageLocation` of the derived class.
391       PropagateResultObject(Init, Loc);
392     }
393 
394     for (auto [Field, Init] : InitList.field_inits()) {
395       // Fields of non-record type are handled in
396       // `TransferVisitor::VisitInitListExpr()`.
397       if (Field->getType()->isRecordType())
398         PropagateResultObject(
399             Init, cast<RecordStorageLocation>(Loc->getChild(*Field)));
400     }
401   }
402 
403   // Assigns `Loc` as the result object location of `E`, then propagates the
404   // location to all lower-level prvalues that initialize the same object as
405   // `E` (or one of its base classes or member variables).
406   void PropagateResultObject(Expr *E, RecordStorageLocation *Loc) {
407     if (!E->isPRValue() || !E->getType()->isRecordType()) {
408       assert(false);
409       // Ensure we don't propagate the result object if we hit this in a
410       // release build.
411       return;
412     }
413 
414     ResultObjectMap[E] = Loc;
415 
416     // The following AST node kinds are "original initializers": They are the
417     // lowest-level AST node that initializes a given object, and nothing
418     // below them can initialize the same object (or part of it).
419     if (isa<CXXConstructExpr>(E) || isa<CallExpr>(E) || isa<LambdaExpr>(E) ||
420         isa<CXXDefaultArgExpr>(E) || isa<CXXDefaultInitExpr>(E) ||
421         isa<CXXStdInitializerListExpr>(E) ||
422         // We treat `BuiltinBitCastExpr` as an "original initializer" too as
423         // it may not even be casting from a record type -- and even if it is,
424         // the two objects are in general of unrelated type.
425         isa<BuiltinBitCastExpr>(E)) {
426       return;
427     }
428     if (auto *Op = dyn_cast<BinaryOperator>(E);
429         Op && Op->getOpcode() == BO_Cmp) {
430       // Builtin `<=>` returns a `std::strong_ordering` object.
431       return;
432     }
433 
434     if (auto *InitList = dyn_cast<InitListExpr>(E)) {
435       if (!InitList->isSemanticForm())
436         return;
437       if (InitList->isTransparent()) {
438         PropagateResultObject(InitList->getInit(0), Loc);
439         return;
440       }
441 
442       PropagateResultObjectToRecordInitList(RecordInitListHelper(InitList),
443                                             Loc);
444       return;
445     }
446 
447     if (auto *ParenInitList = dyn_cast<CXXParenListInitExpr>(E)) {
448       PropagateResultObjectToRecordInitList(RecordInitListHelper(ParenInitList),
449                                             Loc);
450       return;
451     }
452 
453     if (auto *Op = dyn_cast<BinaryOperator>(E); Op && Op->isCommaOp()) {
454       PropagateResultObject(Op->getRHS(), Loc);
455       return;
456     }
457 
458     if (auto *Cond = dyn_cast<AbstractConditionalOperator>(E)) {
459       PropagateResultObject(Cond->getTrueExpr(), Loc);
460       PropagateResultObject(Cond->getFalseExpr(), Loc);
461       return;
462     }
463 
464     if (auto *SE = dyn_cast<StmtExpr>(E)) {
465       PropagateResultObject(cast<Expr>(SE->getSubStmt()->body_back()), Loc);
466       return;
467     }
468 
469     // All other expression nodes that propagate a record prvalue should have
470     // exactly one child.
471     SmallVector<Stmt *, 1> Children(E->child_begin(), E->child_end());
472     LLVM_DEBUG({
473       if (Children.size() != 1)
474         E->dump();
475     });
476     assert(Children.size() == 1);
477     for (Stmt *S : Children)
478       PropagateResultObject(cast<Expr>(S), Loc);
479   }
480 
481 private:
482   llvm::DenseMap<const Expr *, RecordStorageLocation *> &ResultObjectMap;
483   RecordStorageLocation *LocForRecordReturnVal;
484   DataflowAnalysisContext &DACtx;
485 };
486 
487 } // namespace
488 
489 Environment::Environment(DataflowAnalysisContext &DACtx)
490     : DACtx(&DACtx),
491       FlowConditionToken(DACtx.arena().makeFlowConditionToken()) {}
492 
493 Environment::Environment(DataflowAnalysisContext &DACtx,
494                          const DeclContext &DeclCtx)
495     : Environment(DACtx) {
496   CallStack.push_back(&DeclCtx);
497 }
498 
499 void Environment::initialize() {
500   const DeclContext *DeclCtx = getDeclCtx();
501   if (DeclCtx == nullptr)
502     return;
503 
504   const auto *FuncDecl = dyn_cast<FunctionDecl>(DeclCtx);
505   if (FuncDecl == nullptr)
506     return;
507 
508   assert(FuncDecl->doesThisDeclarationHaveABody());
509 
510   initFieldsGlobalsAndFuncs(FuncDecl);
511 
512   for (const auto *ParamDecl : FuncDecl->parameters()) {
513     assert(ParamDecl != nullptr);
514     setStorageLocation(*ParamDecl, createObject(*ParamDecl, nullptr));
515   }
516 
517   if (FuncDecl->getReturnType()->isRecordType())
518     LocForRecordReturnVal = &cast<RecordStorageLocation>(
519         createStorageLocation(FuncDecl->getReturnType()));
520 
521   if (const auto *MethodDecl = dyn_cast<CXXMethodDecl>(DeclCtx)) {
522     auto *Parent = MethodDecl->getParent();
523     assert(Parent != nullptr);
524 
525     if (Parent->isLambda()) {
526       for (const auto &Capture : Parent->captures()) {
527         if (Capture.capturesVariable()) {
528           const auto *VarDecl = Capture.getCapturedVar();
529           assert(VarDecl != nullptr);
530           setStorageLocation(*VarDecl, createObject(*VarDecl, nullptr));
531         } else if (Capture.capturesThis()) {
532           const auto *SurroundingMethodDecl =
533               cast<CXXMethodDecl>(DeclCtx->getNonClosureAncestor());
534           QualType ThisPointeeType =
535               SurroundingMethodDecl->getFunctionObjectParameterType();
536           setThisPointeeStorageLocation(
537               cast<RecordStorageLocation>(createObject(ThisPointeeType)));
538         }
539       }
540     } else if (MethodDecl->isImplicitObjectMemberFunction()) {
541       QualType ThisPointeeType = MethodDecl->getFunctionObjectParameterType();
542       auto &ThisLoc =
543           cast<RecordStorageLocation>(createStorageLocation(ThisPointeeType));
544       setThisPointeeStorageLocation(ThisLoc);
545       // Initialize fields of `*this` with values, but only if we're not
546       // analyzing a constructor; after all, it's the constructor's job to do
547       // this (and we want to be able to test that).
548       if (!isa<CXXConstructorDecl>(MethodDecl))
549         initializeFieldsWithValues(ThisLoc);
550     }
551   }
552 
553   // We do this below the handling of `CXXMethodDecl` above so that we can
554   // be sure that the storage location for `this` has been set.
555   ResultObjectMap = std::make_shared<PrValueToResultObject>(
556       buildResultObjectMap(DACtx, FuncDecl, getThisPointeeStorageLocation(),
557                            LocForRecordReturnVal));
558 }
559 
560 // FIXME: Add support for resetting globals after function calls to enable
561 // the implementation of sound analyses.
562 void Environment::initFieldsGlobalsAndFuncs(const FunctionDecl *FuncDecl) {
563   assert(FuncDecl->doesThisDeclarationHaveABody());
564 
565   ReferencedDecls Referenced = getReferencedDecls(*FuncDecl);
566 
567   // These have to be added before the lines that follow to ensure that
568   // `create*` work correctly for structs.
569   DACtx->addModeledFields(Referenced.Fields);
570 
571   for (const VarDecl *D : Referenced.Globals) {
572     if (getStorageLocation(*D) != nullptr)
573       continue;
574 
575     // We don't run transfer functions on the initializers of global variables,
576     // so they won't be associated with a value or storage location. We
577     // therefore intentionally don't pass an initializer to `createObject()`;
578     // in particular, this ensures that `createObject()` will initialize the
579     // fields of record-type variables with values.
580     setStorageLocation(*D, createObject(*D, nullptr));
581   }
582 
583   for (const FunctionDecl *FD : Referenced.Functions) {
584     if (getStorageLocation(*FD) != nullptr)
585       continue;
586     auto &Loc = createStorageLocation(*FD);
587     setStorageLocation(*FD, Loc);
588   }
589 }
590 
591 Environment Environment::fork() const {
592   Environment Copy(*this);
593   Copy.FlowConditionToken = DACtx->forkFlowCondition(FlowConditionToken);
594   return Copy;
595 }
596 
597 bool Environment::canDescend(unsigned MaxDepth,
598                              const DeclContext *Callee) const {
599   return CallStack.size() <= MaxDepth && !llvm::is_contained(CallStack, Callee);
600 }
601 
602 Environment Environment::pushCall(const CallExpr *Call) const {
603   Environment Env(*this);
604 
605   if (const auto *MethodCall = dyn_cast<CXXMemberCallExpr>(Call)) {
606     if (const Expr *Arg = MethodCall->getImplicitObjectArgument()) {
607       if (!isa<CXXThisExpr>(Arg))
608         Env.ThisPointeeLoc =
609             cast<RecordStorageLocation>(getStorageLocation(*Arg));
610       // Otherwise (when the argument is `this`), retain the current
611       // environment's `ThisPointeeLoc`.
612     }
613   }
614 
615   if (Call->getType()->isRecordType() && Call->isPRValue())
616     Env.LocForRecordReturnVal = &Env.getResultObjectLocation(*Call);
617 
618   Env.pushCallInternal(Call->getDirectCallee(),
619                        llvm::ArrayRef(Call->getArgs(), Call->getNumArgs()));
620 
621   return Env;
622 }
623 
624 Environment Environment::pushCall(const CXXConstructExpr *Call) const {
625   Environment Env(*this);
626 
627   Env.ThisPointeeLoc = &Env.getResultObjectLocation(*Call);
628   Env.LocForRecordReturnVal = &Env.getResultObjectLocation(*Call);
629 
630   Env.pushCallInternal(Call->getConstructor(),
631                        llvm::ArrayRef(Call->getArgs(), Call->getNumArgs()));
632 
633   return Env;
634 }
635 
636 void Environment::pushCallInternal(const FunctionDecl *FuncDecl,
637                                    ArrayRef<const Expr *> Args) {
638   // Canonicalize to the definition of the function. This ensures that we're
639   // putting arguments into the same `ParamVarDecl`s` that the callee will later
640   // be retrieving them from.
641   assert(FuncDecl->getDefinition() != nullptr);
642   FuncDecl = FuncDecl->getDefinition();
643 
644   CallStack.push_back(FuncDecl);
645 
646   initFieldsGlobalsAndFuncs(FuncDecl);
647 
648   const auto *ParamIt = FuncDecl->param_begin();
649 
650   // FIXME: Parameters don't always map to arguments 1:1; examples include
651   // overloaded operators implemented as member functions, and parameter packs.
652   for (unsigned ArgIndex = 0; ArgIndex < Args.size(); ++ParamIt, ++ArgIndex) {
653     assert(ParamIt != FuncDecl->param_end());
654     const VarDecl *Param = *ParamIt;
655     setStorageLocation(*Param, createObject(*Param, Args[ArgIndex]));
656   }
657 
658   ResultObjectMap = std::make_shared<PrValueToResultObject>(
659       buildResultObjectMap(DACtx, FuncDecl, getThisPointeeStorageLocation(),
660                            LocForRecordReturnVal));
661 }
662 
663 void Environment::popCall(const CallExpr *Call, const Environment &CalleeEnv) {
664   // We ignore some entries of `CalleeEnv`:
665   // - `DACtx` because is already the same in both
666   // - We don't want the callee's `DeclCtx`, `ReturnVal`, `ReturnLoc` or
667   //   `ThisPointeeLoc` because they don't apply to us.
668   // - `DeclToLoc`, `ExprToLoc`, and `ExprToVal` capture information from the
669   //   callee's local scope, so when popping that scope, we do not propagate
670   //   the maps.
671   this->LocToVal = std::move(CalleeEnv.LocToVal);
672   this->FlowConditionToken = std::move(CalleeEnv.FlowConditionToken);
673 
674   if (Call->isGLValue()) {
675     if (CalleeEnv.ReturnLoc != nullptr)
676       setStorageLocation(*Call, *CalleeEnv.ReturnLoc);
677   } else if (!Call->getType()->isVoidType()) {
678     if (CalleeEnv.ReturnVal != nullptr)
679       setValue(*Call, *CalleeEnv.ReturnVal);
680   }
681 }
682 
683 void Environment::popCall(const CXXConstructExpr *Call,
684                           const Environment &CalleeEnv) {
685   // See also comment in `popCall(const CallExpr *, const Environment &)` above.
686   this->LocToVal = std::move(CalleeEnv.LocToVal);
687   this->FlowConditionToken = std::move(CalleeEnv.FlowConditionToken);
688 }
689 
690 bool Environment::equivalentTo(const Environment &Other,
691                                Environment::ValueModel &Model) const {
692   assert(DACtx == Other.DACtx);
693 
694   if (ReturnVal != Other.ReturnVal)
695     return false;
696 
697   if (ReturnLoc != Other.ReturnLoc)
698     return false;
699 
700   if (LocForRecordReturnVal != Other.LocForRecordReturnVal)
701     return false;
702 
703   if (ThisPointeeLoc != Other.ThisPointeeLoc)
704     return false;
705 
706   if (DeclToLoc != Other.DeclToLoc)
707     return false;
708 
709   if (ExprToLoc != Other.ExprToLoc)
710     return false;
711 
712   if (!compareKeyToValueMaps(ExprToVal, Other.ExprToVal, *this, Other, Model))
713     return false;
714 
715   if (!compareKeyToValueMaps(LocToVal, Other.LocToVal, *this, Other, Model))
716     return false;
717 
718   return true;
719 }
720 
721 LatticeEffect Environment::widen(const Environment &PrevEnv,
722                                  Environment::ValueModel &Model) {
723   assert(DACtx == PrevEnv.DACtx);
724   assert(ReturnVal == PrevEnv.ReturnVal);
725   assert(ReturnLoc == PrevEnv.ReturnLoc);
726   assert(LocForRecordReturnVal == PrevEnv.LocForRecordReturnVal);
727   assert(ThisPointeeLoc == PrevEnv.ThisPointeeLoc);
728   assert(CallStack == PrevEnv.CallStack);
729   assert(ResultObjectMap == PrevEnv.ResultObjectMap);
730 
731   auto Effect = LatticeEffect::Unchanged;
732 
733   // By the API, `PrevEnv` is a previous version of the environment for the same
734   // block, so we have some guarantees about its shape. In particular, it will
735   // be the result of a join or widen operation on previous values for this
736   // block. For `DeclToLoc`, `ExprToVal`, and `ExprToLoc`, join guarantees that
737   // these maps are subsets of the maps in `PrevEnv`. So, as long as we maintain
738   // this property here, we don't need change their current values to widen.
739   assert(DeclToLoc.size() <= PrevEnv.DeclToLoc.size());
740   assert(ExprToVal.size() <= PrevEnv.ExprToVal.size());
741   assert(ExprToLoc.size() <= PrevEnv.ExprToLoc.size());
742 
743   ExprToVal = widenKeyToValueMap(ExprToVal, PrevEnv.ExprToVal, *this, PrevEnv,
744                                  Model, Effect);
745 
746   LocToVal = widenKeyToValueMap(LocToVal, PrevEnv.LocToVal, *this, PrevEnv,
747                                 Model, Effect);
748   if (DeclToLoc.size() != PrevEnv.DeclToLoc.size() ||
749       ExprToLoc.size() != PrevEnv.ExprToLoc.size() ||
750       ExprToVal.size() != PrevEnv.ExprToVal.size() ||
751       LocToVal.size() != PrevEnv.LocToVal.size())
752     Effect = LatticeEffect::Changed;
753 
754   return Effect;
755 }
756 
757 Environment Environment::join(const Environment &EnvA, const Environment &EnvB,
758                               Environment::ValueModel &Model,
759                               ExprJoinBehavior ExprBehavior) {
760   assert(EnvA.DACtx == EnvB.DACtx);
761   assert(EnvA.LocForRecordReturnVal == EnvB.LocForRecordReturnVal);
762   assert(EnvA.ThisPointeeLoc == EnvB.ThisPointeeLoc);
763   assert(EnvA.CallStack == EnvB.CallStack);
764   assert(EnvA.ResultObjectMap == EnvB.ResultObjectMap);
765 
766   Environment JoinedEnv(*EnvA.DACtx);
767 
768   JoinedEnv.CallStack = EnvA.CallStack;
769   JoinedEnv.ResultObjectMap = EnvA.ResultObjectMap;
770   JoinedEnv.LocForRecordReturnVal = EnvA.LocForRecordReturnVal;
771   JoinedEnv.ThisPointeeLoc = EnvA.ThisPointeeLoc;
772 
773   if (EnvA.CallStack.empty()) {
774     JoinedEnv.ReturnVal = nullptr;
775   } else {
776     // FIXME: Make `CallStack` a vector of `FunctionDecl` so we don't need this
777     // cast.
778     auto *Func = dyn_cast<FunctionDecl>(EnvA.CallStack.back());
779     assert(Func != nullptr);
780     JoinedEnv.ReturnVal =
781         joinValues(Func->getReturnType(), EnvA.ReturnVal, EnvA, EnvB.ReturnVal,
782                    EnvB, JoinedEnv, Model);
783   }
784 
785   if (EnvA.ReturnLoc == EnvB.ReturnLoc)
786     JoinedEnv.ReturnLoc = EnvA.ReturnLoc;
787   else
788     JoinedEnv.ReturnLoc = nullptr;
789 
790   JoinedEnv.DeclToLoc = intersectDeclToLoc(EnvA.DeclToLoc, EnvB.DeclToLoc);
791 
792   // FIXME: update join to detect backedges and simplify the flow condition
793   // accordingly.
794   JoinedEnv.FlowConditionToken = EnvA.DACtx->joinFlowConditions(
795       EnvA.FlowConditionToken, EnvB.FlowConditionToken);
796 
797   JoinedEnv.LocToVal =
798       joinLocToVal(EnvA.LocToVal, EnvB.LocToVal, EnvA, EnvB, JoinedEnv, Model);
799 
800   if (ExprBehavior == KeepExprState) {
801     JoinedEnv.ExprToVal = joinExprMaps(EnvA.ExprToVal, EnvB.ExprToVal);
802     JoinedEnv.ExprToLoc = joinExprMaps(EnvA.ExprToLoc, EnvB.ExprToLoc);
803   }
804 
805   return JoinedEnv;
806 }
807 
808 Value *Environment::joinValues(QualType Ty, Value *Val1,
809                                const Environment &Env1, Value *Val2,
810                                const Environment &Env2, Environment &JoinedEnv,
811                                Environment::ValueModel &Model) {
812   if (Val1 == nullptr || Val2 == nullptr)
813     // We can't say anything about the joined value -- even if one of the values
814     // is non-null, we don't want to simply propagate it, because it would be
815     // too specific: Because the other value is null, that means we have no
816     // information at all about the value (i.e. the value is unconstrained).
817     return nullptr;
818 
819   if (areEquivalentValues(*Val1, *Val2))
820     // Arbitrarily return one of the two values.
821     return Val1;
822 
823   return joinDistinctValues(Ty, *Val1, Env1, *Val2, Env2, JoinedEnv, Model);
824 }
825 
826 StorageLocation &Environment::createStorageLocation(QualType Type) {
827   return DACtx->createStorageLocation(Type);
828 }
829 
830 StorageLocation &Environment::createStorageLocation(const ValueDecl &D) {
831   // Evaluated declarations are always assigned the same storage locations to
832   // ensure that the environment stabilizes across loop iterations. Storage
833   // locations for evaluated declarations are stored in the analysis context.
834   return DACtx->getStableStorageLocation(D);
835 }
836 
837 StorageLocation &Environment::createStorageLocation(const Expr &E) {
838   // Evaluated expressions are always assigned the same storage locations to
839   // ensure that the environment stabilizes across loop iterations. Storage
840   // locations for evaluated expressions are stored in the analysis context.
841   return DACtx->getStableStorageLocation(E);
842 }
843 
844 void Environment::setStorageLocation(const ValueDecl &D, StorageLocation &Loc) {
845   assert(!DeclToLoc.contains(&D));
846   // The only kinds of declarations that may have a "variable" storage location
847   // are declarations of reference type and `BindingDecl`. For all other
848   // declaration, the storage location should be the stable storage location
849   // returned by `createStorageLocation()`.
850   assert(D.getType()->isReferenceType() || isa<BindingDecl>(D) ||
851          &Loc == &createStorageLocation(D));
852   DeclToLoc[&D] = &Loc;
853 }
854 
855 StorageLocation *Environment::getStorageLocation(const ValueDecl &D) const {
856   auto It = DeclToLoc.find(&D);
857   if (It == DeclToLoc.end())
858     return nullptr;
859 
860   StorageLocation *Loc = It->second;
861 
862   return Loc;
863 }
864 
865 void Environment::removeDecl(const ValueDecl &D) { DeclToLoc.erase(&D); }
866 
867 void Environment::setStorageLocation(const Expr &E, StorageLocation &Loc) {
868   // `DeclRefExpr`s to builtin function types aren't glvalues, for some reason,
869   // but we still want to be able to associate a `StorageLocation` with them,
870   // so allow these as an exception.
871   assert(E.isGLValue() ||
872          E.getType()->isSpecificBuiltinType(BuiltinType::BuiltinFn));
873   const Expr &CanonE = ignoreCFGOmittedNodes(E);
874   assert(!ExprToLoc.contains(&CanonE));
875   ExprToLoc[&CanonE] = &Loc;
876 }
877 
878 StorageLocation *Environment::getStorageLocation(const Expr &E) const {
879   // See comment in `setStorageLocation()`.
880   assert(E.isGLValue() ||
881          E.getType()->isSpecificBuiltinType(BuiltinType::BuiltinFn));
882   auto It = ExprToLoc.find(&ignoreCFGOmittedNodes(E));
883   return It == ExprToLoc.end() ? nullptr : &*It->second;
884 }
885 
886 RecordStorageLocation &
887 Environment::getResultObjectLocation(const Expr &RecordPRValue) const {
888   assert(RecordPRValue.getType()->isRecordType());
889   assert(RecordPRValue.isPRValue());
890 
891   assert(ResultObjectMap != nullptr);
892   RecordStorageLocation *Loc = ResultObjectMap->lookup(&RecordPRValue);
893   assert(Loc != nullptr);
894   // In release builds, use the "stable" storage location if the map lookup
895   // failed.
896   if (Loc == nullptr)
897     return cast<RecordStorageLocation>(
898         DACtx->getStableStorageLocation(RecordPRValue));
899   return *Loc;
900 }
901 
902 PointerValue &Environment::getOrCreateNullPointerValue(QualType PointeeType) {
903   return DACtx->getOrCreateNullPointerValue(PointeeType);
904 }
905 
906 void Environment::initializeFieldsWithValues(RecordStorageLocation &Loc,
907                                              QualType Type) {
908   llvm::DenseSet<QualType> Visited;
909   int CreatedValuesCount = 0;
910   initializeFieldsWithValues(Loc, Type, Visited, 0, CreatedValuesCount);
911   if (CreatedValuesCount > MaxCompositeValueSize) {
912     llvm::errs() << "Attempting to initialize a huge value of type: " << Type
913                  << '\n';
914   }
915 }
916 
917 void Environment::setValue(const StorageLocation &Loc, Value &Val) {
918   // Records should not be associated with values.
919   assert(!isa<RecordStorageLocation>(Loc));
920   LocToVal[&Loc] = &Val;
921 }
922 
923 void Environment::setValue(const Expr &E, Value &Val) {
924   const Expr &CanonE = ignoreCFGOmittedNodes(E);
925 
926   assert(CanonE.isPRValue());
927   // Records should not be associated with values.
928   assert(!CanonE.getType()->isRecordType());
929   ExprToVal[&CanonE] = &Val;
930 }
931 
932 Value *Environment::getValue(const StorageLocation &Loc) const {
933   // Records should not be associated with values.
934   assert(!isa<RecordStorageLocation>(Loc));
935   return LocToVal.lookup(&Loc);
936 }
937 
938 Value *Environment::getValue(const ValueDecl &D) const {
939   auto *Loc = getStorageLocation(D);
940   if (Loc == nullptr)
941     return nullptr;
942   return getValue(*Loc);
943 }
944 
945 Value *Environment::getValue(const Expr &E) const {
946   // Records should not be associated with values.
947   assert(!E.getType()->isRecordType());
948 
949   if (E.isPRValue()) {
950     auto It = ExprToVal.find(&ignoreCFGOmittedNodes(E));
951     return It == ExprToVal.end() ? nullptr : It->second;
952   }
953 
954   auto It = ExprToLoc.find(&ignoreCFGOmittedNodes(E));
955   if (It == ExprToLoc.end())
956     return nullptr;
957   return getValue(*It->second);
958 }
959 
960 Value *Environment::createValue(QualType Type) {
961   llvm::DenseSet<QualType> Visited;
962   int CreatedValuesCount = 0;
963   Value *Val = createValueUnlessSelfReferential(Type, Visited, /*Depth=*/0,
964                                                 CreatedValuesCount);
965   if (CreatedValuesCount > MaxCompositeValueSize) {
966     llvm::errs() << "Attempting to initialize a huge value of type: " << Type
967                  << '\n';
968   }
969   return Val;
970 }
971 
972 Value *Environment::createValueUnlessSelfReferential(
973     QualType Type, llvm::DenseSet<QualType> &Visited, int Depth,
974     int &CreatedValuesCount) {
975   assert(!Type.isNull());
976   assert(!Type->isReferenceType());
977   assert(!Type->isRecordType());
978 
979   // Allow unlimited fields at depth 1; only cap at deeper nesting levels.
980   if ((Depth > 1 && CreatedValuesCount > MaxCompositeValueSize) ||
981       Depth > MaxCompositeValueDepth)
982     return nullptr;
983 
984   if (Type->isBooleanType()) {
985     CreatedValuesCount++;
986     return &makeAtomicBoolValue();
987   }
988 
989   if (Type->isIntegerType()) {
990     // FIXME: consider instead `return nullptr`, given that we do nothing useful
991     // with integers, and so distinguishing them serves no purpose, but could
992     // prevent convergence.
993     CreatedValuesCount++;
994     return &arena().create<IntegerValue>();
995   }
996 
997   if (Type->isPointerType()) {
998     CreatedValuesCount++;
999     QualType PointeeType = Type->getPointeeType();
1000     StorageLocation &PointeeLoc =
1001         createLocAndMaybeValue(PointeeType, Visited, Depth, CreatedValuesCount);
1002 
1003     return &arena().create<PointerValue>(PointeeLoc);
1004   }
1005 
1006   return nullptr;
1007 }
1008 
1009 StorageLocation &
1010 Environment::createLocAndMaybeValue(QualType Ty,
1011                                     llvm::DenseSet<QualType> &Visited,
1012                                     int Depth, int &CreatedValuesCount) {
1013   if (!Visited.insert(Ty.getCanonicalType()).second)
1014     return createStorageLocation(Ty.getNonReferenceType());
1015   auto EraseVisited = llvm::make_scope_exit(
1016       [&Visited, Ty] { Visited.erase(Ty.getCanonicalType()); });
1017 
1018   Ty = Ty.getNonReferenceType();
1019 
1020   if (Ty->isRecordType()) {
1021     auto &Loc = cast<RecordStorageLocation>(createStorageLocation(Ty));
1022     initializeFieldsWithValues(Loc, Ty, Visited, Depth, CreatedValuesCount);
1023     return Loc;
1024   }
1025 
1026   StorageLocation &Loc = createStorageLocation(Ty);
1027 
1028   if (Value *Val = createValueUnlessSelfReferential(Ty, Visited, Depth,
1029                                                     CreatedValuesCount))
1030     setValue(Loc, *Val);
1031 
1032   return Loc;
1033 }
1034 
1035 void Environment::initializeFieldsWithValues(RecordStorageLocation &Loc,
1036                                              QualType Type,
1037                                              llvm::DenseSet<QualType> &Visited,
1038                                              int Depth,
1039                                              int &CreatedValuesCount) {
1040   auto initField = [&](QualType FieldType, StorageLocation &FieldLoc) {
1041     if (FieldType->isRecordType()) {
1042       auto &FieldRecordLoc = cast<RecordStorageLocation>(FieldLoc);
1043       initializeFieldsWithValues(FieldRecordLoc, FieldRecordLoc.getType(),
1044                                  Visited, Depth + 1, CreatedValuesCount);
1045     } else {
1046       if (getValue(FieldLoc) != nullptr)
1047         return;
1048       if (!Visited.insert(FieldType.getCanonicalType()).second)
1049         return;
1050       if (Value *Val = createValueUnlessSelfReferential(
1051               FieldType, Visited, Depth + 1, CreatedValuesCount))
1052         setValue(FieldLoc, *Val);
1053       Visited.erase(FieldType.getCanonicalType());
1054     }
1055   };
1056 
1057   for (const FieldDecl *Field : DACtx->getModeledFields(Type)) {
1058     assert(Field != nullptr);
1059     QualType FieldType = Field->getType();
1060 
1061     if (FieldType->isReferenceType()) {
1062       Loc.setChild(*Field,
1063                    &createLocAndMaybeValue(FieldType, Visited, Depth + 1,
1064                                            CreatedValuesCount));
1065     } else {
1066       StorageLocation *FieldLoc = Loc.getChild(*Field);
1067       assert(FieldLoc != nullptr);
1068       initField(FieldType, *FieldLoc);
1069     }
1070   }
1071   for (const auto &[FieldName, FieldType] : DACtx->getSyntheticFields(Type)) {
1072     // Synthetic fields cannot have reference type, so we don't need to deal
1073     // with this case.
1074     assert(!FieldType->isReferenceType());
1075     initField(FieldType, Loc.getSyntheticField(FieldName));
1076   }
1077 }
1078 
1079 StorageLocation &Environment::createObjectInternal(const ValueDecl *D,
1080                                                    QualType Ty,
1081                                                    const Expr *InitExpr) {
1082   if (Ty->isReferenceType()) {
1083     // Although variables of reference type always need to be initialized, it
1084     // can happen that we can't see the initializer, so `InitExpr` may still
1085     // be null.
1086     if (InitExpr) {
1087       if (auto *InitExprLoc = getStorageLocation(*InitExpr))
1088         return *InitExprLoc;
1089     }
1090 
1091     // Even though we have an initializer, we might not get an
1092     // InitExprLoc, for example if the InitExpr is a CallExpr for which we
1093     // don't have a function body. In this case, we just invent a storage
1094     // location and value -- it's the best we can do.
1095     return createObjectInternal(D, Ty.getNonReferenceType(), nullptr);
1096   }
1097 
1098   StorageLocation &Loc =
1099       D ? createStorageLocation(*D) : createStorageLocation(Ty);
1100 
1101   if (Ty->isRecordType()) {
1102     auto &RecordLoc = cast<RecordStorageLocation>(Loc);
1103     if (!InitExpr)
1104       initializeFieldsWithValues(RecordLoc);
1105   } else {
1106     Value *Val = nullptr;
1107     if (InitExpr)
1108       // In the (few) cases where an expression is intentionally
1109       // "uninterpreted", `InitExpr` is not associated with a value.  There are
1110       // two ways to handle this situation: propagate the status, so that
1111       // uninterpreted initializers result in uninterpreted variables, or
1112       // provide a default value. We choose the latter so that later refinements
1113       // of the variable can be used for reasoning about the surrounding code.
1114       // For this reason, we let this case be handled by the `createValue()`
1115       // call below.
1116       //
1117       // FIXME. If and when we interpret all language cases, change this to
1118       // assert that `InitExpr` is interpreted, rather than supplying a
1119       // default value (assuming we don't update the environment API to return
1120       // references).
1121       Val = getValue(*InitExpr);
1122     if (!Val)
1123       Val = createValue(Ty);
1124     if (Val)
1125       setValue(Loc, *Val);
1126   }
1127 
1128   return Loc;
1129 }
1130 
1131 void Environment::assume(const Formula &F) {
1132   DACtx->addFlowConditionConstraint(FlowConditionToken, F);
1133 }
1134 
1135 bool Environment::proves(const Formula &F) const {
1136   return DACtx->flowConditionImplies(FlowConditionToken, F);
1137 }
1138 
1139 bool Environment::allows(const Formula &F) const {
1140   return DACtx->flowConditionAllows(FlowConditionToken, F);
1141 }
1142 
1143 void Environment::dump(raw_ostream &OS) const {
1144   llvm::DenseMap<const StorageLocation *, std::string> LocToName;
1145   if (LocForRecordReturnVal != nullptr)
1146     LocToName[LocForRecordReturnVal] = "(returned record)";
1147   if (ThisPointeeLoc != nullptr)
1148     LocToName[ThisPointeeLoc] = "this";
1149 
1150   OS << "DeclToLoc:\n";
1151   for (auto [D, L] : DeclToLoc) {
1152     auto Iter = LocToName.insert({L, D->getNameAsString()}).first;
1153     OS << "  [" << Iter->second << ", " << L << "]\n";
1154   }
1155   OS << "ExprToLoc:\n";
1156   for (auto [E, L] : ExprToLoc)
1157     OS << "  [" << E << ", " << L << "]\n";
1158 
1159   OS << "ExprToVal:\n";
1160   for (auto [E, V] : ExprToVal)
1161     OS << "  [" << E << ", " << V << ": " << *V << "]\n";
1162 
1163   OS << "LocToVal:\n";
1164   for (auto [L, V] : LocToVal) {
1165     OS << "  [" << L;
1166     if (auto Iter = LocToName.find(L); Iter != LocToName.end())
1167       OS << " (" << Iter->second << ")";
1168     OS << ", " << V << ": " << *V << "]\n";
1169   }
1170 
1171   if (const FunctionDecl *Func = getCurrentFunc()) {
1172     if (Func->getReturnType()->isReferenceType()) {
1173       OS << "ReturnLoc: " << ReturnLoc;
1174       if (auto Iter = LocToName.find(ReturnLoc); Iter != LocToName.end())
1175         OS << " (" << Iter->second << ")";
1176       OS << "\n";
1177     } else if (Func->getReturnType()->isRecordType() ||
1178                isa<CXXConstructorDecl>(Func)) {
1179       OS << "LocForRecordReturnVal: " << LocForRecordReturnVal << "\n";
1180     } else if (!Func->getReturnType()->isVoidType()) {
1181       if (ReturnVal == nullptr)
1182         OS << "ReturnVal: nullptr\n";
1183       else
1184         OS << "ReturnVal: " << *ReturnVal << "\n";
1185     }
1186 
1187     if (isa<CXXMethodDecl>(Func)) {
1188       OS << "ThisPointeeLoc: " << ThisPointeeLoc << "\n";
1189     }
1190   }
1191 
1192   OS << "\n";
1193   DACtx->dumpFlowCondition(FlowConditionToken, OS);
1194 }
1195 
1196 void Environment::dump() const { dump(llvm::dbgs()); }
1197 
1198 Environment::PrValueToResultObject Environment::buildResultObjectMap(
1199     DataflowAnalysisContext *DACtx, const FunctionDecl *FuncDecl,
1200     RecordStorageLocation *ThisPointeeLoc,
1201     RecordStorageLocation *LocForRecordReturnVal) {
1202   assert(FuncDecl->doesThisDeclarationHaveABody());
1203 
1204   PrValueToResultObject Map;
1205 
1206   ResultObjectVisitor Visitor(Map, LocForRecordReturnVal, *DACtx);
1207   if (const auto *Ctor = dyn_cast<CXXConstructorDecl>(FuncDecl))
1208     Visitor.TraverseConstructorInits(Ctor, ThisPointeeLoc);
1209   Visitor.TraverseStmt(FuncDecl->getBody());
1210 
1211   return Map;
1212 }
1213 
1214 RecordStorageLocation *getImplicitObjectLocation(const CXXMemberCallExpr &MCE,
1215                                                  const Environment &Env) {
1216   Expr *ImplicitObject = MCE.getImplicitObjectArgument();
1217   if (ImplicitObject == nullptr)
1218     return nullptr;
1219   if (ImplicitObject->getType()->isPointerType()) {
1220     if (auto *Val = Env.get<PointerValue>(*ImplicitObject))
1221       return &cast<RecordStorageLocation>(Val->getPointeeLoc());
1222     return nullptr;
1223   }
1224   return cast_or_null<RecordStorageLocation>(
1225       Env.getStorageLocation(*ImplicitObject));
1226 }
1227 
1228 RecordStorageLocation *getBaseObjectLocation(const MemberExpr &ME,
1229                                              const Environment &Env) {
1230   Expr *Base = ME.getBase();
1231   if (Base == nullptr)
1232     return nullptr;
1233   if (ME.isArrow()) {
1234     if (auto *Val = Env.get<PointerValue>(*Base))
1235       return &cast<RecordStorageLocation>(Val->getPointeeLoc());
1236     return nullptr;
1237   }
1238   return Env.get<RecordStorageLocation>(*Base);
1239 }
1240 
1241 } // namespace dataflow
1242 } // namespace clang
1243