1 //===-- DataflowEnvironment.cpp ---------------------------------*- C++ -*-===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file defines an Environment class that is used by dataflow analyses 10 // that run over Control-Flow Graphs (CFGs) to keep track of the state of the 11 // program at given program points. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "clang/Analysis/FlowSensitive/DataflowEnvironment.h" 16 #include "clang/AST/Decl.h" 17 #include "clang/AST/DeclCXX.h" 18 #include "clang/AST/RecursiveASTVisitor.h" 19 #include "clang/AST/Type.h" 20 #include "clang/Analysis/FlowSensitive/ASTOps.h" 21 #include "clang/Analysis/FlowSensitive/DataflowLattice.h" 22 #include "clang/Analysis/FlowSensitive/Value.h" 23 #include "llvm/ADT/DenseMap.h" 24 #include "llvm/ADT/DenseSet.h" 25 #include "llvm/ADT/MapVector.h" 26 #include "llvm/ADT/STLExtras.h" 27 #include "llvm/ADT/ScopeExit.h" 28 #include "llvm/Support/ErrorHandling.h" 29 #include <cassert> 30 #include <utility> 31 32 #define DEBUG_TYPE "dataflow" 33 34 namespace clang { 35 namespace dataflow { 36 37 // FIXME: convert these to parameters of the analysis or environment. Current 38 // settings have been experimentaly validated, but only for a particular 39 // analysis. 40 static constexpr int MaxCompositeValueDepth = 3; 41 static constexpr int MaxCompositeValueSize = 1000; 42 43 /// Returns a map consisting of key-value entries that are present in both maps. 44 static llvm::DenseMap<const ValueDecl *, StorageLocation *> intersectDeclToLoc( 45 const llvm::DenseMap<const ValueDecl *, StorageLocation *> &DeclToLoc1, 46 const llvm::DenseMap<const ValueDecl *, StorageLocation *> &DeclToLoc2) { 47 llvm::DenseMap<const ValueDecl *, StorageLocation *> Result; 48 for (auto &Entry : DeclToLoc1) { 49 auto It = DeclToLoc2.find(Entry.first); 50 if (It != DeclToLoc2.end() && Entry.second == It->second) 51 Result.insert({Entry.first, Entry.second}); 52 } 53 return Result; 54 } 55 56 // Performs a join on either `ExprToLoc` or `ExprToVal`. 57 // The maps must be consistent in the sense that any entries for the same 58 // expression must map to the same location / value. This is the case if we are 59 // performing a join for control flow within a full-expression (which is the 60 // only case when this function should be used). 61 template <typename MapT> MapT joinExprMaps(const MapT &Map1, const MapT &Map2) { 62 MapT Result = Map1; 63 64 for (const auto &Entry : Map2) { 65 [[maybe_unused]] auto [It, Inserted] = Result.insert(Entry); 66 // If there was an existing entry, its value should be the same as for the 67 // entry we were trying to insert. 68 assert(It->second == Entry.second); 69 } 70 71 return Result; 72 } 73 74 // Whether to consider equivalent two values with an unknown relation. 75 // 76 // FIXME: this function is a hack enabling unsoundness to support 77 // convergence. Once we have widening support for the reference/pointer and 78 // struct built-in models, this should be unconditionally `false` (and inlined 79 // as such at its call sites). 80 static bool equateUnknownValues(Value::Kind K) { 81 switch (K) { 82 case Value::Kind::Integer: 83 case Value::Kind::Pointer: 84 return true; 85 default: 86 return false; 87 } 88 } 89 90 static bool compareDistinctValues(QualType Type, Value &Val1, 91 const Environment &Env1, Value &Val2, 92 const Environment &Env2, 93 Environment::ValueModel &Model) { 94 // Note: Potentially costly, but, for booleans, we could check whether both 95 // can be proven equivalent in their respective environments. 96 97 // FIXME: move the reference/pointers logic from `areEquivalentValues` to here 98 // and implement separate, join/widen specific handling for 99 // reference/pointers. 100 switch (Model.compare(Type, Val1, Env1, Val2, Env2)) { 101 case ComparisonResult::Same: 102 return true; 103 case ComparisonResult::Different: 104 return false; 105 case ComparisonResult::Unknown: 106 return equateUnknownValues(Val1.getKind()); 107 } 108 llvm_unreachable("All cases covered in switch"); 109 } 110 111 /// Attempts to join distinct values `Val1` and `Val2` in `Env1` and `Env2`, 112 /// respectively, of the same type `Type`. Joining generally produces a single 113 /// value that (soundly) approximates the two inputs, although the actual 114 /// meaning depends on `Model`. 115 static Value *joinDistinctValues(QualType Type, Value &Val1, 116 const Environment &Env1, Value &Val2, 117 const Environment &Env2, 118 Environment &JoinedEnv, 119 Environment::ValueModel &Model) { 120 // Join distinct boolean values preserving information about the constraints 121 // in the respective path conditions. 122 if (isa<BoolValue>(&Val1) && isa<BoolValue>(&Val2)) { 123 // FIXME: Checking both values should be unnecessary, since they should have 124 // a consistent shape. However, right now we can end up with BoolValue's in 125 // integer-typed variables due to our incorrect handling of 126 // boolean-to-integer casts (we just propagate the BoolValue to the result 127 // of the cast). So, a join can encounter an integer in one branch but a 128 // bool in the other. 129 // For example: 130 // ``` 131 // std::optional<bool> o; 132 // int x; 133 // if (o.has_value()) 134 // x = o.value(); 135 // ``` 136 auto &Expr1 = cast<BoolValue>(Val1).formula(); 137 auto &Expr2 = cast<BoolValue>(Val2).formula(); 138 auto &A = JoinedEnv.arena(); 139 auto &JoinedVal = A.makeAtomRef(A.makeAtom()); 140 JoinedEnv.assume( 141 A.makeOr(A.makeAnd(A.makeAtomRef(Env1.getFlowConditionToken()), 142 A.makeEquals(JoinedVal, Expr1)), 143 A.makeAnd(A.makeAtomRef(Env2.getFlowConditionToken()), 144 A.makeEquals(JoinedVal, Expr2)))); 145 return &A.makeBoolValue(JoinedVal); 146 } 147 148 Value *JoinedVal = JoinedEnv.createValue(Type); 149 if (JoinedVal) 150 Model.join(Type, Val1, Env1, Val2, Env2, *JoinedVal, JoinedEnv); 151 152 return JoinedVal; 153 } 154 155 static WidenResult widenDistinctValues(QualType Type, Value &Prev, 156 const Environment &PrevEnv, 157 Value &Current, Environment &CurrentEnv, 158 Environment::ValueModel &Model) { 159 // Boolean-model widening. 160 if (auto *PrevBool = dyn_cast<BoolValue>(&Prev)) { 161 if (isa<TopBoolValue>(Prev)) 162 // Safe to return `Prev` here, because Top is never dependent on the 163 // environment. 164 return {&Prev, LatticeEffect::Unchanged}; 165 166 // We may need to widen to Top, but before we do so, check whether both 167 // values are implied to be either true or false in the current environment. 168 // In that case, we can simply return a literal instead. 169 auto &CurBool = cast<BoolValue>(Current); 170 bool TruePrev = PrevEnv.proves(PrevBool->formula()); 171 bool TrueCur = CurrentEnv.proves(CurBool.formula()); 172 if (TruePrev && TrueCur) 173 return {&CurrentEnv.getBoolLiteralValue(true), LatticeEffect::Unchanged}; 174 if (!TruePrev && !TrueCur && 175 PrevEnv.proves(PrevEnv.arena().makeNot(PrevBool->formula())) && 176 CurrentEnv.proves(CurrentEnv.arena().makeNot(CurBool.formula()))) 177 return {&CurrentEnv.getBoolLiteralValue(false), LatticeEffect::Unchanged}; 178 179 return {&CurrentEnv.makeTopBoolValue(), LatticeEffect::Changed}; 180 } 181 182 // FIXME: Add other built-in model widening. 183 184 // Custom-model widening. 185 if (auto Result = Model.widen(Type, Prev, PrevEnv, Current, CurrentEnv)) 186 return *Result; 187 188 return {&Current, equateUnknownValues(Prev.getKind()) 189 ? LatticeEffect::Unchanged 190 : LatticeEffect::Changed}; 191 } 192 193 // Returns whether the values in `Map1` and `Map2` compare equal for those 194 // keys that `Map1` and `Map2` have in common. 195 template <typename Key> 196 bool compareKeyToValueMaps(const llvm::MapVector<Key, Value *> &Map1, 197 const llvm::MapVector<Key, Value *> &Map2, 198 const Environment &Env1, const Environment &Env2, 199 Environment::ValueModel &Model) { 200 for (auto &Entry : Map1) { 201 Key K = Entry.first; 202 assert(K != nullptr); 203 204 Value *Val = Entry.second; 205 assert(Val != nullptr); 206 207 auto It = Map2.find(K); 208 if (It == Map2.end()) 209 continue; 210 assert(It->second != nullptr); 211 212 if (!areEquivalentValues(*Val, *It->second) && 213 !compareDistinctValues(K->getType(), *Val, Env1, *It->second, Env2, 214 Model)) 215 return false; 216 } 217 218 return true; 219 } 220 221 // Perform a join on two `LocToVal` maps. 222 static llvm::MapVector<const StorageLocation *, Value *> 223 joinLocToVal(const llvm::MapVector<const StorageLocation *, Value *> &LocToVal, 224 const llvm::MapVector<const StorageLocation *, Value *> &LocToVal2, 225 const Environment &Env1, const Environment &Env2, 226 Environment &JoinedEnv, Environment::ValueModel &Model) { 227 llvm::MapVector<const StorageLocation *, Value *> Result; 228 for (auto &Entry : LocToVal) { 229 const StorageLocation *Loc = Entry.first; 230 assert(Loc != nullptr); 231 232 Value *Val = Entry.second; 233 assert(Val != nullptr); 234 235 auto It = LocToVal2.find(Loc); 236 if (It == LocToVal2.end()) 237 continue; 238 assert(It->second != nullptr); 239 240 if (Value *JoinedVal = Environment::joinValues( 241 Loc->getType(), Val, Env1, It->second, Env2, JoinedEnv, Model)) { 242 Result.insert({Loc, JoinedVal}); 243 } 244 } 245 246 return Result; 247 } 248 249 // Perform widening on either `LocToVal` or `ExprToVal`. `Key` must be either 250 // `const StorageLocation *` or `const Expr *`. 251 template <typename Key> 252 llvm::MapVector<Key, Value *> 253 widenKeyToValueMap(const llvm::MapVector<Key, Value *> &CurMap, 254 const llvm::MapVector<Key, Value *> &PrevMap, 255 Environment &CurEnv, const Environment &PrevEnv, 256 Environment::ValueModel &Model, LatticeEffect &Effect) { 257 llvm::MapVector<Key, Value *> WidenedMap; 258 for (auto &Entry : CurMap) { 259 Key K = Entry.first; 260 assert(K != nullptr); 261 262 Value *Val = Entry.second; 263 assert(Val != nullptr); 264 265 auto PrevIt = PrevMap.find(K); 266 if (PrevIt == PrevMap.end()) 267 continue; 268 assert(PrevIt->second != nullptr); 269 270 if (areEquivalentValues(*Val, *PrevIt->second)) { 271 WidenedMap.insert({K, Val}); 272 continue; 273 } 274 275 auto [WidenedVal, ValEffect] = widenDistinctValues( 276 K->getType(), *PrevIt->second, PrevEnv, *Val, CurEnv, Model); 277 WidenedMap.insert({K, WidenedVal}); 278 if (ValEffect == LatticeEffect::Changed) 279 Effect = LatticeEffect::Changed; 280 } 281 282 return WidenedMap; 283 } 284 285 namespace { 286 287 // Visitor that builds a map from record prvalues to result objects. 288 // This traverses the body of the function to be analyzed; for each result 289 // object that it encounters, it propagates the storage location of the result 290 // object to all record prvalues that can initialize it. 291 class ResultObjectVisitor : public RecursiveASTVisitor<ResultObjectVisitor> { 292 public: 293 // `ResultObjectMap` will be filled with a map from record prvalues to result 294 // object. If the function being analyzed returns a record by value, 295 // `LocForRecordReturnVal` is the location to which this record should be 296 // written; otherwise, it is null. 297 explicit ResultObjectVisitor( 298 llvm::DenseMap<const Expr *, RecordStorageLocation *> &ResultObjectMap, 299 RecordStorageLocation *LocForRecordReturnVal, 300 DataflowAnalysisContext &DACtx) 301 : ResultObjectMap(ResultObjectMap), 302 LocForRecordReturnVal(LocForRecordReturnVal), DACtx(DACtx) {} 303 304 bool shouldVisitImplicitCode() { return true; } 305 306 bool shouldVisitLambdaBody() const { return false; } 307 308 // Traverse all member and base initializers of `Ctor`. This function is not 309 // called by `RecursiveASTVisitor`; it should be called manually if we are 310 // analyzing a constructor. `ThisPointeeLoc` is the storage location that 311 // `this` points to. 312 void TraverseConstructorInits(const CXXConstructorDecl *Ctor, 313 RecordStorageLocation *ThisPointeeLoc) { 314 assert(ThisPointeeLoc != nullptr); 315 for (const CXXCtorInitializer *Init : Ctor->inits()) { 316 Expr *InitExpr = Init->getInit(); 317 if (FieldDecl *Field = Init->getMember(); 318 Field != nullptr && Field->getType()->isRecordType()) { 319 PropagateResultObject(InitExpr, cast<RecordStorageLocation>( 320 ThisPointeeLoc->getChild(*Field))); 321 } else if (Init->getBaseClass()) { 322 PropagateResultObject(InitExpr, ThisPointeeLoc); 323 } 324 325 // Ensure that any result objects within `InitExpr` (e.g. temporaries) 326 // are also propagated to the prvalues that initialize them. 327 TraverseStmt(InitExpr); 328 329 // If this is a `CXXDefaultInitExpr`, also propagate any result objects 330 // within the default expression. 331 if (auto *DefaultInit = dyn_cast<CXXDefaultInitExpr>(InitExpr)) 332 TraverseStmt(DefaultInit->getExpr()); 333 } 334 } 335 336 bool TraverseDecl(Decl *D) { 337 // Don't traverse nested record or function declarations. 338 // - We won't be analyzing code contained in these anyway 339 // - We don't model fields that are used only in these nested declaration, 340 // so trying to propagate a result object to initializers of such fields 341 // would cause an error. 342 if (isa_and_nonnull<RecordDecl>(D) || isa_and_nonnull<FunctionDecl>(D)) 343 return true; 344 345 return RecursiveASTVisitor<ResultObjectVisitor>::TraverseDecl(D); 346 } 347 348 bool TraverseBindingDecl(BindingDecl *BD) { 349 // `RecursiveASTVisitor` doesn't traverse holding variables for 350 // `BindingDecl`s by itself, so we need to tell it to. 351 if (VarDecl *HoldingVar = BD->getHoldingVar()) 352 TraverseDecl(HoldingVar); 353 return RecursiveASTVisitor<ResultObjectVisitor>::TraverseBindingDecl(BD); 354 } 355 356 bool VisitVarDecl(VarDecl *VD) { 357 if (VD->getType()->isRecordType() && VD->hasInit()) 358 PropagateResultObject( 359 VD->getInit(), 360 &cast<RecordStorageLocation>(DACtx.getStableStorageLocation(*VD))); 361 return true; 362 } 363 364 bool VisitMaterializeTemporaryExpr(MaterializeTemporaryExpr *MTE) { 365 if (MTE->getType()->isRecordType()) 366 PropagateResultObject( 367 MTE->getSubExpr(), 368 &cast<RecordStorageLocation>(DACtx.getStableStorageLocation(*MTE))); 369 return true; 370 } 371 372 bool VisitReturnStmt(ReturnStmt *Return) { 373 Expr *RetValue = Return->getRetValue(); 374 if (RetValue != nullptr && RetValue->getType()->isRecordType() && 375 RetValue->isPRValue()) 376 PropagateResultObject(RetValue, LocForRecordReturnVal); 377 return true; 378 } 379 380 bool VisitExpr(Expr *E) { 381 // Clang's AST can have record-type prvalues without a result object -- for 382 // example as full-expressions contained in a compound statement or as 383 // arguments of call expressions. We notice this if we get here and a 384 // storage location has not yet been associated with `E`. In this case, 385 // treat this as if it was a `MaterializeTemporaryExpr`. 386 if (E->isPRValue() && E->getType()->isRecordType() && 387 !ResultObjectMap.contains(E)) 388 PropagateResultObject( 389 E, &cast<RecordStorageLocation>(DACtx.getStableStorageLocation(*E))); 390 return true; 391 } 392 393 void 394 PropagateResultObjectToRecordInitList(const RecordInitListHelper &InitList, 395 RecordStorageLocation *Loc) { 396 for (auto [Base, Init] : InitList.base_inits()) { 397 assert(Base->getType().getCanonicalType() == 398 Init->getType().getCanonicalType()); 399 400 // Storage location for the base class is the same as that of the 401 // derived class because we "flatten" the object hierarchy and put all 402 // fields in `RecordStorageLocation` of the derived class. 403 PropagateResultObject(Init, Loc); 404 } 405 406 for (auto [Field, Init] : InitList.field_inits()) { 407 // Fields of non-record type are handled in 408 // `TransferVisitor::VisitInitListExpr()`. 409 if (Field->getType()->isRecordType()) 410 PropagateResultObject( 411 Init, cast<RecordStorageLocation>(Loc->getChild(*Field))); 412 } 413 } 414 415 // Assigns `Loc` as the result object location of `E`, then propagates the 416 // location to all lower-level prvalues that initialize the same object as 417 // `E` (or one of its base classes or member variables). 418 void PropagateResultObject(Expr *E, RecordStorageLocation *Loc) { 419 if (!E->isPRValue() || !E->getType()->isRecordType()) { 420 assert(false); 421 // Ensure we don't propagate the result object if we hit this in a 422 // release build. 423 return; 424 } 425 426 ResultObjectMap[E] = Loc; 427 428 // The following AST node kinds are "original initializers": They are the 429 // lowest-level AST node that initializes a given object, and nothing 430 // below them can initialize the same object (or part of it). 431 if (isa<CXXConstructExpr>(E) || isa<CallExpr>(E) || isa<LambdaExpr>(E) || 432 isa<CXXDefaultArgExpr>(E) || isa<CXXDefaultInitExpr>(E) || 433 isa<CXXStdInitializerListExpr>(E) || 434 // We treat `BuiltinBitCastExpr` as an "original initializer" too as 435 // it may not even be casting from a record type -- and even if it is, 436 // the two objects are in general of unrelated type. 437 isa<BuiltinBitCastExpr>(E)) { 438 return; 439 } 440 if (auto *Op = dyn_cast<BinaryOperator>(E); 441 Op && Op->getOpcode() == BO_Cmp) { 442 // Builtin `<=>` returns a `std::strong_ordering` object. 443 return; 444 } 445 446 if (auto *InitList = dyn_cast<InitListExpr>(E)) { 447 if (!InitList->isSemanticForm()) 448 return; 449 if (InitList->isTransparent()) { 450 PropagateResultObject(InitList->getInit(0), Loc); 451 return; 452 } 453 454 PropagateResultObjectToRecordInitList(RecordInitListHelper(InitList), 455 Loc); 456 return; 457 } 458 459 if (auto *ParenInitList = dyn_cast<CXXParenListInitExpr>(E)) { 460 PropagateResultObjectToRecordInitList(RecordInitListHelper(ParenInitList), 461 Loc); 462 return; 463 } 464 465 if (auto *Op = dyn_cast<BinaryOperator>(E); Op && Op->isCommaOp()) { 466 PropagateResultObject(Op->getRHS(), Loc); 467 return; 468 } 469 470 if (auto *Cond = dyn_cast<AbstractConditionalOperator>(E)) { 471 PropagateResultObject(Cond->getTrueExpr(), Loc); 472 PropagateResultObject(Cond->getFalseExpr(), Loc); 473 return; 474 } 475 476 if (auto *SE = dyn_cast<StmtExpr>(E)) { 477 PropagateResultObject(cast<Expr>(SE->getSubStmt()->body_back()), Loc); 478 return; 479 } 480 481 // All other expression nodes that propagate a record prvalue should have 482 // exactly one child. 483 SmallVector<Stmt *, 1> Children(E->child_begin(), E->child_end()); 484 LLVM_DEBUG({ 485 if (Children.size() != 1) 486 E->dump(); 487 }); 488 assert(Children.size() == 1); 489 for (Stmt *S : Children) 490 PropagateResultObject(cast<Expr>(S), Loc); 491 } 492 493 private: 494 llvm::DenseMap<const Expr *, RecordStorageLocation *> &ResultObjectMap; 495 RecordStorageLocation *LocForRecordReturnVal; 496 DataflowAnalysisContext &DACtx; 497 }; 498 499 } // namespace 500 501 Environment::Environment(DataflowAnalysisContext &DACtx) 502 : DACtx(&DACtx), 503 FlowConditionToken(DACtx.arena().makeFlowConditionToken()) {} 504 505 Environment::Environment(DataflowAnalysisContext &DACtx, 506 const DeclContext &DeclCtx) 507 : Environment(DACtx) { 508 CallStack.push_back(&DeclCtx); 509 } 510 511 void Environment::initialize() { 512 const DeclContext *DeclCtx = getDeclCtx(); 513 if (DeclCtx == nullptr) 514 return; 515 516 const auto *FuncDecl = dyn_cast<FunctionDecl>(DeclCtx); 517 if (FuncDecl == nullptr) 518 return; 519 520 assert(FuncDecl->doesThisDeclarationHaveABody()); 521 522 initFieldsGlobalsAndFuncs(FuncDecl); 523 524 for (const auto *ParamDecl : FuncDecl->parameters()) { 525 assert(ParamDecl != nullptr); 526 setStorageLocation(*ParamDecl, createObject(*ParamDecl, nullptr)); 527 } 528 529 if (FuncDecl->getReturnType()->isRecordType()) 530 LocForRecordReturnVal = &cast<RecordStorageLocation>( 531 createStorageLocation(FuncDecl->getReturnType())); 532 533 if (const auto *MethodDecl = dyn_cast<CXXMethodDecl>(DeclCtx)) { 534 auto *Parent = MethodDecl->getParent(); 535 assert(Parent != nullptr); 536 537 if (Parent->isLambda()) { 538 for (const auto &Capture : Parent->captures()) { 539 if (Capture.capturesVariable()) { 540 const auto *VarDecl = Capture.getCapturedVar(); 541 assert(VarDecl != nullptr); 542 setStorageLocation(*VarDecl, createObject(*VarDecl, nullptr)); 543 } else if (Capture.capturesThis()) { 544 const auto *SurroundingMethodDecl = 545 cast<CXXMethodDecl>(DeclCtx->getNonClosureAncestor()); 546 QualType ThisPointeeType = 547 SurroundingMethodDecl->getFunctionObjectParameterType(); 548 setThisPointeeStorageLocation( 549 cast<RecordStorageLocation>(createObject(ThisPointeeType))); 550 } 551 } 552 } else if (MethodDecl->isImplicitObjectMemberFunction()) { 553 QualType ThisPointeeType = MethodDecl->getFunctionObjectParameterType(); 554 auto &ThisLoc = 555 cast<RecordStorageLocation>(createStorageLocation(ThisPointeeType)); 556 setThisPointeeStorageLocation(ThisLoc); 557 // Initialize fields of `*this` with values, but only if we're not 558 // analyzing a constructor; after all, it's the constructor's job to do 559 // this (and we want to be able to test that). 560 if (!isa<CXXConstructorDecl>(MethodDecl)) 561 initializeFieldsWithValues(ThisLoc); 562 } 563 } 564 565 // We do this below the handling of `CXXMethodDecl` above so that we can 566 // be sure that the storage location for `this` has been set. 567 ResultObjectMap = std::make_shared<PrValueToResultObject>( 568 buildResultObjectMap(DACtx, FuncDecl, getThisPointeeStorageLocation(), 569 LocForRecordReturnVal)); 570 } 571 572 // FIXME: Add support for resetting globals after function calls to enable 573 // the implementation of sound analyses. 574 void Environment::initFieldsGlobalsAndFuncs(const FunctionDecl *FuncDecl) { 575 assert(FuncDecl->doesThisDeclarationHaveABody()); 576 577 ReferencedDecls Referenced = getReferencedDecls(*FuncDecl); 578 579 // These have to be added before the lines that follow to ensure that 580 // `create*` work correctly for structs. 581 DACtx->addModeledFields(Referenced.Fields); 582 583 for (const VarDecl *D : Referenced.Globals) { 584 if (getStorageLocation(*D) != nullptr) 585 continue; 586 587 // We don't run transfer functions on the initializers of global variables, 588 // so they won't be associated with a value or storage location. We 589 // therefore intentionally don't pass an initializer to `createObject()`; 590 // in particular, this ensures that `createObject()` will initialize the 591 // fields of record-type variables with values. 592 setStorageLocation(*D, createObject(*D, nullptr)); 593 } 594 595 for (const FunctionDecl *FD : Referenced.Functions) { 596 if (getStorageLocation(*FD) != nullptr) 597 continue; 598 auto &Loc = createStorageLocation(*FD); 599 setStorageLocation(*FD, Loc); 600 } 601 } 602 603 Environment Environment::fork() const { 604 Environment Copy(*this); 605 Copy.FlowConditionToken = DACtx->forkFlowCondition(FlowConditionToken); 606 return Copy; 607 } 608 609 bool Environment::canDescend(unsigned MaxDepth, 610 const DeclContext *Callee) const { 611 return CallStack.size() <= MaxDepth && !llvm::is_contained(CallStack, Callee); 612 } 613 614 Environment Environment::pushCall(const CallExpr *Call) const { 615 Environment Env(*this); 616 617 if (const auto *MethodCall = dyn_cast<CXXMemberCallExpr>(Call)) { 618 if (const Expr *Arg = MethodCall->getImplicitObjectArgument()) { 619 if (!isa<CXXThisExpr>(Arg)) 620 Env.ThisPointeeLoc = 621 cast<RecordStorageLocation>(getStorageLocation(*Arg)); 622 // Otherwise (when the argument is `this`), retain the current 623 // environment's `ThisPointeeLoc`. 624 } 625 } 626 627 if (Call->getType()->isRecordType() && Call->isPRValue()) 628 Env.LocForRecordReturnVal = &Env.getResultObjectLocation(*Call); 629 630 Env.pushCallInternal(Call->getDirectCallee(), 631 llvm::ArrayRef(Call->getArgs(), Call->getNumArgs())); 632 633 return Env; 634 } 635 636 Environment Environment::pushCall(const CXXConstructExpr *Call) const { 637 Environment Env(*this); 638 639 Env.ThisPointeeLoc = &Env.getResultObjectLocation(*Call); 640 Env.LocForRecordReturnVal = &Env.getResultObjectLocation(*Call); 641 642 Env.pushCallInternal(Call->getConstructor(), 643 llvm::ArrayRef(Call->getArgs(), Call->getNumArgs())); 644 645 return Env; 646 } 647 648 void Environment::pushCallInternal(const FunctionDecl *FuncDecl, 649 ArrayRef<const Expr *> Args) { 650 // Canonicalize to the definition of the function. This ensures that we're 651 // putting arguments into the same `ParamVarDecl`s` that the callee will later 652 // be retrieving them from. 653 assert(FuncDecl->getDefinition() != nullptr); 654 FuncDecl = FuncDecl->getDefinition(); 655 656 CallStack.push_back(FuncDecl); 657 658 initFieldsGlobalsAndFuncs(FuncDecl); 659 660 const auto *ParamIt = FuncDecl->param_begin(); 661 662 // FIXME: Parameters don't always map to arguments 1:1; examples include 663 // overloaded operators implemented as member functions, and parameter packs. 664 for (unsigned ArgIndex = 0; ArgIndex < Args.size(); ++ParamIt, ++ArgIndex) { 665 assert(ParamIt != FuncDecl->param_end()); 666 const VarDecl *Param = *ParamIt; 667 setStorageLocation(*Param, createObject(*Param, Args[ArgIndex])); 668 } 669 670 ResultObjectMap = std::make_shared<PrValueToResultObject>( 671 buildResultObjectMap(DACtx, FuncDecl, getThisPointeeStorageLocation(), 672 LocForRecordReturnVal)); 673 } 674 675 void Environment::popCall(const CallExpr *Call, const Environment &CalleeEnv) { 676 // We ignore some entries of `CalleeEnv`: 677 // - `DACtx` because is already the same in both 678 // - We don't want the callee's `DeclCtx`, `ReturnVal`, `ReturnLoc` or 679 // `ThisPointeeLoc` because they don't apply to us. 680 // - `DeclToLoc`, `ExprToLoc`, and `ExprToVal` capture information from the 681 // callee's local scope, so when popping that scope, we do not propagate 682 // the maps. 683 this->LocToVal = std::move(CalleeEnv.LocToVal); 684 this->FlowConditionToken = std::move(CalleeEnv.FlowConditionToken); 685 686 if (Call->isGLValue()) { 687 if (CalleeEnv.ReturnLoc != nullptr) 688 setStorageLocation(*Call, *CalleeEnv.ReturnLoc); 689 } else if (!Call->getType()->isVoidType()) { 690 if (CalleeEnv.ReturnVal != nullptr) 691 setValue(*Call, *CalleeEnv.ReturnVal); 692 } 693 } 694 695 void Environment::popCall(const CXXConstructExpr *Call, 696 const Environment &CalleeEnv) { 697 // See also comment in `popCall(const CallExpr *, const Environment &)` above. 698 this->LocToVal = std::move(CalleeEnv.LocToVal); 699 this->FlowConditionToken = std::move(CalleeEnv.FlowConditionToken); 700 } 701 702 bool Environment::equivalentTo(const Environment &Other, 703 Environment::ValueModel &Model) const { 704 assert(DACtx == Other.DACtx); 705 706 if (ReturnVal != Other.ReturnVal) 707 return false; 708 709 if (ReturnLoc != Other.ReturnLoc) 710 return false; 711 712 if (LocForRecordReturnVal != Other.LocForRecordReturnVal) 713 return false; 714 715 if (ThisPointeeLoc != Other.ThisPointeeLoc) 716 return false; 717 718 if (DeclToLoc != Other.DeclToLoc) 719 return false; 720 721 if (ExprToLoc != Other.ExprToLoc) 722 return false; 723 724 if (!compareKeyToValueMaps(ExprToVal, Other.ExprToVal, *this, Other, Model)) 725 return false; 726 727 if (!compareKeyToValueMaps(LocToVal, Other.LocToVal, *this, Other, Model)) 728 return false; 729 730 return true; 731 } 732 733 LatticeEffect Environment::widen(const Environment &PrevEnv, 734 Environment::ValueModel &Model) { 735 assert(DACtx == PrevEnv.DACtx); 736 assert(ReturnVal == PrevEnv.ReturnVal); 737 assert(ReturnLoc == PrevEnv.ReturnLoc); 738 assert(LocForRecordReturnVal == PrevEnv.LocForRecordReturnVal); 739 assert(ThisPointeeLoc == PrevEnv.ThisPointeeLoc); 740 assert(CallStack == PrevEnv.CallStack); 741 assert(ResultObjectMap == PrevEnv.ResultObjectMap); 742 743 auto Effect = LatticeEffect::Unchanged; 744 745 // By the API, `PrevEnv` is a previous version of the environment for the same 746 // block, so we have some guarantees about its shape. In particular, it will 747 // be the result of a join or widen operation on previous values for this 748 // block. For `DeclToLoc`, `ExprToVal`, and `ExprToLoc`, join guarantees that 749 // these maps are subsets of the maps in `PrevEnv`. So, as long as we maintain 750 // this property here, we don't need change their current values to widen. 751 assert(DeclToLoc.size() <= PrevEnv.DeclToLoc.size()); 752 assert(ExprToVal.size() <= PrevEnv.ExprToVal.size()); 753 assert(ExprToLoc.size() <= PrevEnv.ExprToLoc.size()); 754 755 ExprToVal = widenKeyToValueMap(ExprToVal, PrevEnv.ExprToVal, *this, PrevEnv, 756 Model, Effect); 757 758 LocToVal = widenKeyToValueMap(LocToVal, PrevEnv.LocToVal, *this, PrevEnv, 759 Model, Effect); 760 if (DeclToLoc.size() != PrevEnv.DeclToLoc.size() || 761 ExprToLoc.size() != PrevEnv.ExprToLoc.size() || 762 ExprToVal.size() != PrevEnv.ExprToVal.size() || 763 LocToVal.size() != PrevEnv.LocToVal.size()) 764 Effect = LatticeEffect::Changed; 765 766 return Effect; 767 } 768 769 Environment Environment::join(const Environment &EnvA, const Environment &EnvB, 770 Environment::ValueModel &Model, 771 ExprJoinBehavior ExprBehavior) { 772 assert(EnvA.DACtx == EnvB.DACtx); 773 assert(EnvA.LocForRecordReturnVal == EnvB.LocForRecordReturnVal); 774 assert(EnvA.ThisPointeeLoc == EnvB.ThisPointeeLoc); 775 assert(EnvA.CallStack == EnvB.CallStack); 776 assert(EnvA.ResultObjectMap == EnvB.ResultObjectMap); 777 778 Environment JoinedEnv(*EnvA.DACtx); 779 780 JoinedEnv.CallStack = EnvA.CallStack; 781 JoinedEnv.ResultObjectMap = EnvA.ResultObjectMap; 782 JoinedEnv.LocForRecordReturnVal = EnvA.LocForRecordReturnVal; 783 JoinedEnv.ThisPointeeLoc = EnvA.ThisPointeeLoc; 784 785 if (EnvA.CallStack.empty()) { 786 JoinedEnv.ReturnVal = nullptr; 787 } else { 788 // FIXME: Make `CallStack` a vector of `FunctionDecl` so we don't need this 789 // cast. 790 auto *Func = dyn_cast<FunctionDecl>(EnvA.CallStack.back()); 791 assert(Func != nullptr); 792 JoinedEnv.ReturnVal = 793 joinValues(Func->getReturnType(), EnvA.ReturnVal, EnvA, EnvB.ReturnVal, 794 EnvB, JoinedEnv, Model); 795 } 796 797 if (EnvA.ReturnLoc == EnvB.ReturnLoc) 798 JoinedEnv.ReturnLoc = EnvA.ReturnLoc; 799 else 800 JoinedEnv.ReturnLoc = nullptr; 801 802 JoinedEnv.DeclToLoc = intersectDeclToLoc(EnvA.DeclToLoc, EnvB.DeclToLoc); 803 804 // FIXME: update join to detect backedges and simplify the flow condition 805 // accordingly. 806 JoinedEnv.FlowConditionToken = EnvA.DACtx->joinFlowConditions( 807 EnvA.FlowConditionToken, EnvB.FlowConditionToken); 808 809 JoinedEnv.LocToVal = 810 joinLocToVal(EnvA.LocToVal, EnvB.LocToVal, EnvA, EnvB, JoinedEnv, Model); 811 812 if (ExprBehavior == KeepExprState) { 813 JoinedEnv.ExprToVal = joinExprMaps(EnvA.ExprToVal, EnvB.ExprToVal); 814 JoinedEnv.ExprToLoc = joinExprMaps(EnvA.ExprToLoc, EnvB.ExprToLoc); 815 } 816 817 return JoinedEnv; 818 } 819 820 Value *Environment::joinValues(QualType Ty, Value *Val1, 821 const Environment &Env1, Value *Val2, 822 const Environment &Env2, Environment &JoinedEnv, 823 Environment::ValueModel &Model) { 824 if (Val1 == nullptr || Val2 == nullptr) 825 // We can't say anything about the joined value -- even if one of the values 826 // is non-null, we don't want to simply propagate it, because it would be 827 // too specific: Because the other value is null, that means we have no 828 // information at all about the value (i.e. the value is unconstrained). 829 return nullptr; 830 831 if (areEquivalentValues(*Val1, *Val2)) 832 // Arbitrarily return one of the two values. 833 return Val1; 834 835 return joinDistinctValues(Ty, *Val1, Env1, *Val2, Env2, JoinedEnv, Model); 836 } 837 838 StorageLocation &Environment::createStorageLocation(QualType Type) { 839 return DACtx->createStorageLocation(Type); 840 } 841 842 StorageLocation &Environment::createStorageLocation(const ValueDecl &D) { 843 // Evaluated declarations are always assigned the same storage locations to 844 // ensure that the environment stabilizes across loop iterations. Storage 845 // locations for evaluated declarations are stored in the analysis context. 846 return DACtx->getStableStorageLocation(D); 847 } 848 849 StorageLocation &Environment::createStorageLocation(const Expr &E) { 850 // Evaluated expressions are always assigned the same storage locations to 851 // ensure that the environment stabilizes across loop iterations. Storage 852 // locations for evaluated expressions are stored in the analysis context. 853 return DACtx->getStableStorageLocation(E); 854 } 855 856 void Environment::setStorageLocation(const ValueDecl &D, StorageLocation &Loc) { 857 assert(!DeclToLoc.contains(&D)); 858 // The only kinds of declarations that may have a "variable" storage location 859 // are declarations of reference type and `BindingDecl`. For all other 860 // declaration, the storage location should be the stable storage location 861 // returned by `createStorageLocation()`. 862 assert(D.getType()->isReferenceType() || isa<BindingDecl>(D) || 863 &Loc == &createStorageLocation(D)); 864 DeclToLoc[&D] = &Loc; 865 } 866 867 StorageLocation *Environment::getStorageLocation(const ValueDecl &D) const { 868 auto It = DeclToLoc.find(&D); 869 if (It == DeclToLoc.end()) 870 return nullptr; 871 872 StorageLocation *Loc = It->second; 873 874 return Loc; 875 } 876 877 void Environment::removeDecl(const ValueDecl &D) { DeclToLoc.erase(&D); } 878 879 void Environment::setStorageLocation(const Expr &E, StorageLocation &Loc) { 880 // `DeclRefExpr`s to builtin function types aren't glvalues, for some reason, 881 // but we still want to be able to associate a `StorageLocation` with them, 882 // so allow these as an exception. 883 assert(E.isGLValue() || 884 E.getType()->isSpecificBuiltinType(BuiltinType::BuiltinFn)); 885 const Expr &CanonE = ignoreCFGOmittedNodes(E); 886 assert(!ExprToLoc.contains(&CanonE)); 887 ExprToLoc[&CanonE] = &Loc; 888 } 889 890 StorageLocation *Environment::getStorageLocation(const Expr &E) const { 891 // See comment in `setStorageLocation()`. 892 assert(E.isGLValue() || 893 E.getType()->isSpecificBuiltinType(BuiltinType::BuiltinFn)); 894 auto It = ExprToLoc.find(&ignoreCFGOmittedNodes(E)); 895 return It == ExprToLoc.end() ? nullptr : &*It->second; 896 } 897 898 RecordStorageLocation & 899 Environment::getResultObjectLocation(const Expr &RecordPRValue) const { 900 assert(RecordPRValue.getType()->isRecordType()); 901 assert(RecordPRValue.isPRValue()); 902 903 assert(ResultObjectMap != nullptr); 904 RecordStorageLocation *Loc = ResultObjectMap->lookup(&RecordPRValue); 905 assert(Loc != nullptr); 906 // In release builds, use the "stable" storage location if the map lookup 907 // failed. 908 if (Loc == nullptr) 909 return cast<RecordStorageLocation>( 910 DACtx->getStableStorageLocation(RecordPRValue)); 911 return *Loc; 912 } 913 914 PointerValue &Environment::getOrCreateNullPointerValue(QualType PointeeType) { 915 return DACtx->getOrCreateNullPointerValue(PointeeType); 916 } 917 918 void Environment::initializeFieldsWithValues(RecordStorageLocation &Loc, 919 QualType Type) { 920 llvm::DenseSet<QualType> Visited; 921 int CreatedValuesCount = 0; 922 initializeFieldsWithValues(Loc, Type, Visited, 0, CreatedValuesCount); 923 if (CreatedValuesCount > MaxCompositeValueSize) { 924 llvm::errs() << "Attempting to initialize a huge value of type: " << Type 925 << '\n'; 926 } 927 } 928 929 void Environment::setValue(const StorageLocation &Loc, Value &Val) { 930 // Records should not be associated with values. 931 assert(!isa<RecordStorageLocation>(Loc)); 932 LocToVal[&Loc] = &Val; 933 } 934 935 void Environment::setValue(const Expr &E, Value &Val) { 936 const Expr &CanonE = ignoreCFGOmittedNodes(E); 937 938 assert(CanonE.isPRValue()); 939 // Records should not be associated with values. 940 assert(!CanonE.getType()->isRecordType()); 941 ExprToVal[&CanonE] = &Val; 942 } 943 944 Value *Environment::getValue(const StorageLocation &Loc) const { 945 // Records should not be associated with values. 946 assert(!isa<RecordStorageLocation>(Loc)); 947 return LocToVal.lookup(&Loc); 948 } 949 950 Value *Environment::getValue(const ValueDecl &D) const { 951 auto *Loc = getStorageLocation(D); 952 if (Loc == nullptr) 953 return nullptr; 954 return getValue(*Loc); 955 } 956 957 Value *Environment::getValue(const Expr &E) const { 958 // Records should not be associated with values. 959 assert(!E.getType()->isRecordType()); 960 961 if (E.isPRValue()) { 962 auto It = ExprToVal.find(&ignoreCFGOmittedNodes(E)); 963 return It == ExprToVal.end() ? nullptr : It->second; 964 } 965 966 auto It = ExprToLoc.find(&ignoreCFGOmittedNodes(E)); 967 if (It == ExprToLoc.end()) 968 return nullptr; 969 return getValue(*It->second); 970 } 971 972 Value *Environment::createValue(QualType Type) { 973 llvm::DenseSet<QualType> Visited; 974 int CreatedValuesCount = 0; 975 Value *Val = createValueUnlessSelfReferential(Type, Visited, /*Depth=*/0, 976 CreatedValuesCount); 977 if (CreatedValuesCount > MaxCompositeValueSize) { 978 llvm::errs() << "Attempting to initialize a huge value of type: " << Type 979 << '\n'; 980 } 981 return Val; 982 } 983 984 Value *Environment::createValueUnlessSelfReferential( 985 QualType Type, llvm::DenseSet<QualType> &Visited, int Depth, 986 int &CreatedValuesCount) { 987 assert(!Type.isNull()); 988 assert(!Type->isReferenceType()); 989 assert(!Type->isRecordType()); 990 991 // Allow unlimited fields at depth 1; only cap at deeper nesting levels. 992 if ((Depth > 1 && CreatedValuesCount > MaxCompositeValueSize) || 993 Depth > MaxCompositeValueDepth) 994 return nullptr; 995 996 if (Type->isBooleanType()) { 997 CreatedValuesCount++; 998 return &makeAtomicBoolValue(); 999 } 1000 1001 if (Type->isIntegerType()) { 1002 // FIXME: consider instead `return nullptr`, given that we do nothing useful 1003 // with integers, and so distinguishing them serves no purpose, but could 1004 // prevent convergence. 1005 CreatedValuesCount++; 1006 return &arena().create<IntegerValue>(); 1007 } 1008 1009 if (Type->isPointerType()) { 1010 CreatedValuesCount++; 1011 QualType PointeeType = Type->getPointeeType(); 1012 StorageLocation &PointeeLoc = 1013 createLocAndMaybeValue(PointeeType, Visited, Depth, CreatedValuesCount); 1014 1015 return &arena().create<PointerValue>(PointeeLoc); 1016 } 1017 1018 return nullptr; 1019 } 1020 1021 StorageLocation & 1022 Environment::createLocAndMaybeValue(QualType Ty, 1023 llvm::DenseSet<QualType> &Visited, 1024 int Depth, int &CreatedValuesCount) { 1025 if (!Visited.insert(Ty.getCanonicalType()).second) 1026 return createStorageLocation(Ty.getNonReferenceType()); 1027 auto EraseVisited = llvm::make_scope_exit( 1028 [&Visited, Ty] { Visited.erase(Ty.getCanonicalType()); }); 1029 1030 Ty = Ty.getNonReferenceType(); 1031 1032 if (Ty->isRecordType()) { 1033 auto &Loc = cast<RecordStorageLocation>(createStorageLocation(Ty)); 1034 initializeFieldsWithValues(Loc, Ty, Visited, Depth, CreatedValuesCount); 1035 return Loc; 1036 } 1037 1038 StorageLocation &Loc = createStorageLocation(Ty); 1039 1040 if (Value *Val = createValueUnlessSelfReferential(Ty, Visited, Depth, 1041 CreatedValuesCount)) 1042 setValue(Loc, *Val); 1043 1044 return Loc; 1045 } 1046 1047 void Environment::initializeFieldsWithValues(RecordStorageLocation &Loc, 1048 QualType Type, 1049 llvm::DenseSet<QualType> &Visited, 1050 int Depth, 1051 int &CreatedValuesCount) { 1052 auto initField = [&](QualType FieldType, StorageLocation &FieldLoc) { 1053 if (FieldType->isRecordType()) { 1054 auto &FieldRecordLoc = cast<RecordStorageLocation>(FieldLoc); 1055 initializeFieldsWithValues(FieldRecordLoc, FieldRecordLoc.getType(), 1056 Visited, Depth + 1, CreatedValuesCount); 1057 } else { 1058 if (getValue(FieldLoc) != nullptr) 1059 return; 1060 if (!Visited.insert(FieldType.getCanonicalType()).second) 1061 return; 1062 if (Value *Val = createValueUnlessSelfReferential( 1063 FieldType, Visited, Depth + 1, CreatedValuesCount)) 1064 setValue(FieldLoc, *Val); 1065 Visited.erase(FieldType.getCanonicalType()); 1066 } 1067 }; 1068 1069 for (const FieldDecl *Field : DACtx->getModeledFields(Type)) { 1070 assert(Field != nullptr); 1071 QualType FieldType = Field->getType(); 1072 1073 if (FieldType->isReferenceType()) { 1074 Loc.setChild(*Field, 1075 &createLocAndMaybeValue(FieldType, Visited, Depth + 1, 1076 CreatedValuesCount)); 1077 } else { 1078 StorageLocation *FieldLoc = Loc.getChild(*Field); 1079 assert(FieldLoc != nullptr); 1080 initField(FieldType, *FieldLoc); 1081 } 1082 } 1083 for (const auto &[FieldName, FieldType] : DACtx->getSyntheticFields(Type)) { 1084 // Synthetic fields cannot have reference type, so we don't need to deal 1085 // with this case. 1086 assert(!FieldType->isReferenceType()); 1087 initField(FieldType, Loc.getSyntheticField(FieldName)); 1088 } 1089 } 1090 1091 StorageLocation &Environment::createObjectInternal(const ValueDecl *D, 1092 QualType Ty, 1093 const Expr *InitExpr) { 1094 if (Ty->isReferenceType()) { 1095 // Although variables of reference type always need to be initialized, it 1096 // can happen that we can't see the initializer, so `InitExpr` may still 1097 // be null. 1098 if (InitExpr) { 1099 if (auto *InitExprLoc = getStorageLocation(*InitExpr)) 1100 return *InitExprLoc; 1101 } 1102 1103 // Even though we have an initializer, we might not get an 1104 // InitExprLoc, for example if the InitExpr is a CallExpr for which we 1105 // don't have a function body. In this case, we just invent a storage 1106 // location and value -- it's the best we can do. 1107 return createObjectInternal(D, Ty.getNonReferenceType(), nullptr); 1108 } 1109 1110 StorageLocation &Loc = 1111 D ? createStorageLocation(*D) : createStorageLocation(Ty); 1112 1113 if (Ty->isRecordType()) { 1114 auto &RecordLoc = cast<RecordStorageLocation>(Loc); 1115 if (!InitExpr) 1116 initializeFieldsWithValues(RecordLoc); 1117 } else { 1118 Value *Val = nullptr; 1119 if (InitExpr) 1120 // In the (few) cases where an expression is intentionally 1121 // "uninterpreted", `InitExpr` is not associated with a value. There are 1122 // two ways to handle this situation: propagate the status, so that 1123 // uninterpreted initializers result in uninterpreted variables, or 1124 // provide a default value. We choose the latter so that later refinements 1125 // of the variable can be used for reasoning about the surrounding code. 1126 // For this reason, we let this case be handled by the `createValue()` 1127 // call below. 1128 // 1129 // FIXME. If and when we interpret all language cases, change this to 1130 // assert that `InitExpr` is interpreted, rather than supplying a 1131 // default value (assuming we don't update the environment API to return 1132 // references). 1133 Val = getValue(*InitExpr); 1134 if (!Val) 1135 Val = createValue(Ty); 1136 if (Val) 1137 setValue(Loc, *Val); 1138 } 1139 1140 return Loc; 1141 } 1142 1143 void Environment::assume(const Formula &F) { 1144 DACtx->addFlowConditionConstraint(FlowConditionToken, F); 1145 } 1146 1147 bool Environment::proves(const Formula &F) const { 1148 return DACtx->flowConditionImplies(FlowConditionToken, F); 1149 } 1150 1151 bool Environment::allows(const Formula &F) const { 1152 return DACtx->flowConditionAllows(FlowConditionToken, F); 1153 } 1154 1155 void Environment::dump(raw_ostream &OS) const { 1156 llvm::DenseMap<const StorageLocation *, std::string> LocToName; 1157 if (LocForRecordReturnVal != nullptr) 1158 LocToName[LocForRecordReturnVal] = "(returned record)"; 1159 if (ThisPointeeLoc != nullptr) 1160 LocToName[ThisPointeeLoc] = "this"; 1161 1162 OS << "DeclToLoc:\n"; 1163 for (auto [D, L] : DeclToLoc) { 1164 auto Iter = LocToName.insert({L, D->getNameAsString()}).first; 1165 OS << " [" << Iter->second << ", " << L << "]\n"; 1166 } 1167 OS << "ExprToLoc:\n"; 1168 for (auto [E, L] : ExprToLoc) 1169 OS << " [" << E << ", " << L << "]\n"; 1170 1171 OS << "ExprToVal:\n"; 1172 for (auto [E, V] : ExprToVal) 1173 OS << " [" << E << ", " << V << ": " << *V << "]\n"; 1174 1175 OS << "LocToVal:\n"; 1176 for (auto [L, V] : LocToVal) { 1177 OS << " [" << L; 1178 if (auto Iter = LocToName.find(L); Iter != LocToName.end()) 1179 OS << " (" << Iter->second << ")"; 1180 OS << ", " << V << ": " << *V << "]\n"; 1181 } 1182 1183 if (const FunctionDecl *Func = getCurrentFunc()) { 1184 if (Func->getReturnType()->isReferenceType()) { 1185 OS << "ReturnLoc: " << ReturnLoc; 1186 if (auto Iter = LocToName.find(ReturnLoc); Iter != LocToName.end()) 1187 OS << " (" << Iter->second << ")"; 1188 OS << "\n"; 1189 } else if (Func->getReturnType()->isRecordType() || 1190 isa<CXXConstructorDecl>(Func)) { 1191 OS << "LocForRecordReturnVal: " << LocForRecordReturnVal << "\n"; 1192 } else if (!Func->getReturnType()->isVoidType()) { 1193 if (ReturnVal == nullptr) 1194 OS << "ReturnVal: nullptr\n"; 1195 else 1196 OS << "ReturnVal: " << *ReturnVal << "\n"; 1197 } 1198 1199 if (isa<CXXMethodDecl>(Func)) { 1200 OS << "ThisPointeeLoc: " << ThisPointeeLoc << "\n"; 1201 } 1202 } 1203 1204 OS << "\n"; 1205 DACtx->dumpFlowCondition(FlowConditionToken, OS); 1206 } 1207 1208 void Environment::dump() const { dump(llvm::dbgs()); } 1209 1210 Environment::PrValueToResultObject Environment::buildResultObjectMap( 1211 DataflowAnalysisContext *DACtx, const FunctionDecl *FuncDecl, 1212 RecordStorageLocation *ThisPointeeLoc, 1213 RecordStorageLocation *LocForRecordReturnVal) { 1214 assert(FuncDecl->doesThisDeclarationHaveABody()); 1215 1216 PrValueToResultObject Map; 1217 1218 ResultObjectVisitor Visitor(Map, LocForRecordReturnVal, *DACtx); 1219 if (const auto *Ctor = dyn_cast<CXXConstructorDecl>(FuncDecl)) 1220 Visitor.TraverseConstructorInits(Ctor, ThisPointeeLoc); 1221 Visitor.TraverseStmt(FuncDecl->getBody()); 1222 1223 return Map; 1224 } 1225 1226 RecordStorageLocation *getImplicitObjectLocation(const CXXMemberCallExpr &MCE, 1227 const Environment &Env) { 1228 Expr *ImplicitObject = MCE.getImplicitObjectArgument(); 1229 if (ImplicitObject == nullptr) 1230 return nullptr; 1231 if (ImplicitObject->getType()->isPointerType()) { 1232 if (auto *Val = Env.get<PointerValue>(*ImplicitObject)) 1233 return &cast<RecordStorageLocation>(Val->getPointeeLoc()); 1234 return nullptr; 1235 } 1236 return cast_or_null<RecordStorageLocation>( 1237 Env.getStorageLocation(*ImplicitObject)); 1238 } 1239 1240 RecordStorageLocation *getBaseObjectLocation(const MemberExpr &ME, 1241 const Environment &Env) { 1242 Expr *Base = ME.getBase(); 1243 if (Base == nullptr) 1244 return nullptr; 1245 if (ME.isArrow()) { 1246 if (auto *Val = Env.get<PointerValue>(*Base)) 1247 return &cast<RecordStorageLocation>(Val->getPointeeLoc()); 1248 return nullptr; 1249 } 1250 return Env.get<RecordStorageLocation>(*Base); 1251 } 1252 1253 } // namespace dataflow 1254 } // namespace clang 1255