xref: /llvm-project/clang/lib/Analysis/FlowSensitive/DataflowEnvironment.cpp (revision 1bccbe1f49abc39b9f980cf3f1b171da5541d1a4)
1 //===-- DataflowEnvironment.cpp ---------------------------------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 //  This file defines an Environment class that is used by dataflow analyses
10 //  that run over Control-Flow Graphs (CFGs) to keep track of the state of the
11 //  program at given program points.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "clang/Analysis/FlowSensitive/DataflowEnvironment.h"
16 #include "clang/AST/Decl.h"
17 #include "clang/AST/DeclCXX.h"
18 #include "clang/AST/RecursiveASTVisitor.h"
19 #include "clang/AST/Type.h"
20 #include "clang/Analysis/FlowSensitive/ASTOps.h"
21 #include "clang/Analysis/FlowSensitive/DataflowLattice.h"
22 #include "clang/Analysis/FlowSensitive/Value.h"
23 #include "llvm/ADT/DenseMap.h"
24 #include "llvm/ADT/DenseSet.h"
25 #include "llvm/ADT/MapVector.h"
26 #include "llvm/ADT/STLExtras.h"
27 #include "llvm/Support/ErrorHandling.h"
28 #include <cassert>
29 #include <utility>
30 
31 #define DEBUG_TYPE "dataflow"
32 
33 namespace clang {
34 namespace dataflow {
35 
36 // FIXME: convert these to parameters of the analysis or environment. Current
37 // settings have been experimentaly validated, but only for a particular
38 // analysis.
39 static constexpr int MaxCompositeValueDepth = 3;
40 static constexpr int MaxCompositeValueSize = 1000;
41 
42 /// Returns a map consisting of key-value entries that are present in both maps.
43 static llvm::DenseMap<const ValueDecl *, StorageLocation *> intersectDeclToLoc(
44     const llvm::DenseMap<const ValueDecl *, StorageLocation *> &DeclToLoc1,
45     const llvm::DenseMap<const ValueDecl *, StorageLocation *> &DeclToLoc2) {
46   llvm::DenseMap<const ValueDecl *, StorageLocation *> Result;
47   for (auto &Entry : DeclToLoc1) {
48     auto It = DeclToLoc2.find(Entry.first);
49     if (It != DeclToLoc2.end() && Entry.second == It->second)
50       Result.insert({Entry.first, Entry.second});
51   }
52   return Result;
53 }
54 
55 // Performs a join on either `ExprToLoc` or `ExprToVal`.
56 // The maps must be consistent in the sense that any entries for the same
57 // expression must map to the same location / value. This is the case if we are
58 // performing a join for control flow within a full-expression (which is the
59 // only case when this function should be used).
60 template <typename MapT> MapT joinExprMaps(const MapT &Map1, const MapT &Map2) {
61   MapT Result = Map1;
62 
63   for (const auto &Entry : Map2) {
64     [[maybe_unused]] auto [It, Inserted] = Result.insert(Entry);
65     // If there was an existing entry, its value should be the same as for the
66     // entry we were trying to insert.
67     assert(It->second == Entry.second);
68   }
69 
70   return Result;
71 }
72 
73 // Whether to consider equivalent two values with an unknown relation.
74 //
75 // FIXME: this function is a hack enabling unsoundness to support
76 // convergence. Once we have widening support for the reference/pointer and
77 // struct built-in models, this should be unconditionally `false` (and inlined
78 // as such at its call sites).
79 static bool equateUnknownValues(Value::Kind K) {
80   switch (K) {
81   case Value::Kind::Integer:
82   case Value::Kind::Pointer:
83   case Value::Kind::Record:
84     return true;
85   default:
86     return false;
87   }
88 }
89 
90 static bool compareDistinctValues(QualType Type, Value &Val1,
91                                   const Environment &Env1, Value &Val2,
92                                   const Environment &Env2,
93                                   Environment::ValueModel &Model) {
94   // Note: Potentially costly, but, for booleans, we could check whether both
95   // can be proven equivalent in their respective environments.
96 
97   // FIXME: move the reference/pointers logic from `areEquivalentValues` to here
98   // and implement separate, join/widen specific handling for
99   // reference/pointers.
100   switch (Model.compare(Type, Val1, Env1, Val2, Env2)) {
101   case ComparisonResult::Same:
102     return true;
103   case ComparisonResult::Different:
104     return false;
105   case ComparisonResult::Unknown:
106     return equateUnknownValues(Val1.getKind());
107   }
108   llvm_unreachable("All cases covered in switch");
109 }
110 
111 /// Attempts to join distinct values `Val1` and `Val2` in `Env1` and `Env2`,
112 /// respectively, of the same type `Type`. Joining generally produces a single
113 /// value that (soundly) approximates the two inputs, although the actual
114 /// meaning depends on `Model`.
115 static Value *joinDistinctValues(QualType Type, Value &Val1,
116                                  const Environment &Env1, Value &Val2,
117                                  const Environment &Env2,
118                                  Environment &JoinedEnv,
119                                  Environment::ValueModel &Model) {
120   // Join distinct boolean values preserving information about the constraints
121   // in the respective path conditions.
122   if (isa<BoolValue>(&Val1) && isa<BoolValue>(&Val2)) {
123     // FIXME: Checking both values should be unnecessary, since they should have
124     // a consistent shape.  However, right now we can end up with BoolValue's in
125     // integer-typed variables due to our incorrect handling of
126     // boolean-to-integer casts (we just propagate the BoolValue to the result
127     // of the cast). So, a join can encounter an integer in one branch but a
128     // bool in the other.
129     // For example:
130     // ```
131     // std::optional<bool> o;
132     // int x;
133     // if (o.has_value())
134     //   x = o.value();
135     // ```
136     auto &Expr1 = cast<BoolValue>(Val1).formula();
137     auto &Expr2 = cast<BoolValue>(Val2).formula();
138     auto &A = JoinedEnv.arena();
139     auto &JoinedVal = A.makeAtomRef(A.makeAtom());
140     JoinedEnv.assume(
141         A.makeOr(A.makeAnd(A.makeAtomRef(Env1.getFlowConditionToken()),
142                            A.makeEquals(JoinedVal, Expr1)),
143                  A.makeAnd(A.makeAtomRef(Env2.getFlowConditionToken()),
144                            A.makeEquals(JoinedVal, Expr2))));
145     return &A.makeBoolValue(JoinedVal);
146   }
147 
148   Value *JoinedVal = nullptr;
149   if (auto *RecordVal1 = dyn_cast<RecordValue>(&Val1)) {
150     auto *RecordVal2 = cast<RecordValue>(&Val2);
151 
152     if (&RecordVal1->getLoc() == &RecordVal2->getLoc())
153       // `RecordVal1` and `RecordVal2` may have different properties associated
154       // with them. Create a new `RecordValue` with the same location but
155       // without any properties so that we soundly approximate both values. If a
156       // particular analysis needs to join properties, it should do so in
157       // `DataflowAnalysis::join()`.
158       JoinedVal = &JoinedEnv.create<RecordValue>(RecordVal1->getLoc());
159     else
160       // If the locations for the two records are different, need to create a
161       // completely new value.
162       JoinedVal = JoinedEnv.createValue(Type);
163   } else {
164     JoinedVal = JoinedEnv.createValue(Type);
165   }
166 
167   if (JoinedVal)
168     Model.join(Type, Val1, Env1, Val2, Env2, *JoinedVal, JoinedEnv);
169 
170   return JoinedVal;
171 }
172 
173 static WidenResult widenDistinctValues(QualType Type, Value &Prev,
174                                        const Environment &PrevEnv,
175                                        Value &Current, Environment &CurrentEnv,
176                                        Environment::ValueModel &Model) {
177   // Boolean-model widening.
178   if (auto *PrevBool = dyn_cast<BoolValue>(&Prev)) {
179     if (isa<TopBoolValue>(Prev))
180       // Safe to return `Prev` here, because Top is never dependent on the
181       // environment.
182       return {&Prev, LatticeEffect::Unchanged};
183 
184     // We may need to widen to Top, but before we do so, check whether both
185     // values are implied to be either true or false in the current environment.
186     // In that case, we can simply return a literal instead.
187     auto &CurBool = cast<BoolValue>(Current);
188     bool TruePrev = PrevEnv.proves(PrevBool->formula());
189     bool TrueCur = CurrentEnv.proves(CurBool.formula());
190     if (TruePrev && TrueCur)
191       return {&CurrentEnv.getBoolLiteralValue(true), LatticeEffect::Unchanged};
192     if (!TruePrev && !TrueCur &&
193         PrevEnv.proves(PrevEnv.arena().makeNot(PrevBool->formula())) &&
194         CurrentEnv.proves(CurrentEnv.arena().makeNot(CurBool.formula())))
195       return {&CurrentEnv.getBoolLiteralValue(false), LatticeEffect::Unchanged};
196 
197     return {&CurrentEnv.makeTopBoolValue(), LatticeEffect::Changed};
198   }
199 
200   // FIXME: Add other built-in model widening.
201 
202   // Custom-model widening.
203   if (auto Result = Model.widen(Type, Prev, PrevEnv, Current, CurrentEnv))
204     return *Result;
205 
206   return {&Current, equateUnknownValues(Prev.getKind())
207                         ? LatticeEffect::Unchanged
208                         : LatticeEffect::Changed};
209 }
210 
211 // Returns whether the values in `Map1` and `Map2` compare equal for those
212 // keys that `Map1` and `Map2` have in common.
213 template <typename Key>
214 bool compareKeyToValueMaps(const llvm::MapVector<Key, Value *> &Map1,
215                            const llvm::MapVector<Key, Value *> &Map2,
216                            const Environment &Env1, const Environment &Env2,
217                            Environment::ValueModel &Model) {
218   for (auto &Entry : Map1) {
219     Key K = Entry.first;
220     assert(K != nullptr);
221 
222     Value *Val = Entry.second;
223     assert(Val != nullptr);
224 
225     auto It = Map2.find(K);
226     if (It == Map2.end())
227       continue;
228     assert(It->second != nullptr);
229 
230     if (!areEquivalentValues(*Val, *It->second) &&
231         !compareDistinctValues(K->getType(), *Val, Env1, *It->second, Env2,
232                                Model))
233       return false;
234   }
235 
236   return true;
237 }
238 
239 // Perform a join on two `LocToVal` maps.
240 static llvm::MapVector<const StorageLocation *, Value *>
241 joinLocToVal(const llvm::MapVector<const StorageLocation *, Value *> &LocToVal,
242              const llvm::MapVector<const StorageLocation *, Value *> &LocToVal2,
243              const Environment &Env1, const Environment &Env2,
244              Environment &JoinedEnv, Environment::ValueModel &Model) {
245   llvm::MapVector<const StorageLocation *, Value *> Result;
246   for (auto &Entry : LocToVal) {
247     const StorageLocation *Loc = Entry.first;
248     assert(Loc != nullptr);
249 
250     Value *Val = Entry.second;
251     assert(Val != nullptr);
252 
253     auto It = LocToVal2.find(Loc);
254     if (It == LocToVal2.end())
255       continue;
256     assert(It->second != nullptr);
257 
258     if (areEquivalentValues(*Val, *It->second)) {
259       Result.insert({Loc, Val});
260       continue;
261     }
262 
263     if (Value *JoinedVal = joinDistinctValues(
264             Loc->getType(), *Val, Env1, *It->second, Env2, JoinedEnv, Model)) {
265       Result.insert({Loc, JoinedVal});
266     }
267   }
268 
269   return Result;
270 }
271 
272 // Perform widening on either `LocToVal` or `ExprToVal`. `Key` must be either
273 // `const StorageLocation *` or `const Expr *`.
274 template <typename Key>
275 llvm::MapVector<Key, Value *>
276 widenKeyToValueMap(const llvm::MapVector<Key, Value *> &CurMap,
277                    const llvm::MapVector<Key, Value *> &PrevMap,
278                    Environment &CurEnv, const Environment &PrevEnv,
279                    Environment::ValueModel &Model, LatticeEffect &Effect) {
280   llvm::MapVector<Key, Value *> WidenedMap;
281   for (auto &Entry : CurMap) {
282     Key K = Entry.first;
283     assert(K != nullptr);
284 
285     Value *Val = Entry.second;
286     assert(Val != nullptr);
287 
288     auto PrevIt = PrevMap.find(K);
289     if (PrevIt == PrevMap.end())
290       continue;
291     assert(PrevIt->second != nullptr);
292 
293     if (areEquivalentValues(*Val, *PrevIt->second)) {
294       WidenedMap.insert({K, Val});
295       continue;
296     }
297 
298     auto [WidenedVal, ValEffect] = widenDistinctValues(
299         K->getType(), *PrevIt->second, PrevEnv, *Val, CurEnv, Model);
300     WidenedMap.insert({K, WidenedVal});
301     if (ValEffect == LatticeEffect::Changed)
302       Effect = LatticeEffect::Changed;
303   }
304 
305   return WidenedMap;
306 }
307 
308 namespace {
309 
310 // Visitor that builds a map from record prvalues to result objects.
311 // This traverses the body of the function to be analyzed; for each result
312 // object that it encounters, it propagates the storage location of the result
313 // object to all record prvalues that can initialize it.
314 class ResultObjectVisitor : public RecursiveASTVisitor<ResultObjectVisitor> {
315 public:
316   // `ResultObjectMap` will be filled with a map from record prvalues to result
317   // object. If the function being analyzed returns a record by value,
318   // `LocForRecordReturnVal` is the location to which this record should be
319   // written; otherwise, it is null.
320   explicit ResultObjectVisitor(
321       llvm::DenseMap<const Expr *, RecordStorageLocation *> &ResultObjectMap,
322       RecordStorageLocation *LocForRecordReturnVal,
323       DataflowAnalysisContext &DACtx)
324       : ResultObjectMap(ResultObjectMap),
325         LocForRecordReturnVal(LocForRecordReturnVal), DACtx(DACtx) {}
326 
327   bool shouldVisitImplicitCode() { return true; }
328 
329   bool shouldVisitLambdaBody() const { return false; }
330 
331   // Traverse all member and base initializers of `Ctor`. This function is not
332   // called by `RecursiveASTVisitor`; it should be called manually if we are
333   // analyzing a constructor. `ThisPointeeLoc` is the storage location that
334   // `this` points to.
335   void TraverseConstructorInits(const CXXConstructorDecl *Ctor,
336                                 RecordStorageLocation *ThisPointeeLoc) {
337     assert(ThisPointeeLoc != nullptr);
338     for (const CXXCtorInitializer *Init : Ctor->inits()) {
339       Expr *InitExpr = Init->getInit();
340       if (FieldDecl *Field = Init->getMember();
341           Field != nullptr && Field->getType()->isRecordType()) {
342         PropagateResultObject(InitExpr, cast<RecordStorageLocation>(
343                                             ThisPointeeLoc->getChild(*Field)));
344       } else if (Init->getBaseClass()) {
345         PropagateResultObject(InitExpr, ThisPointeeLoc);
346       }
347 
348       // Ensure that any result objects within `InitExpr` (e.g. temporaries)
349       // are also propagated to the prvalues that initialize them.
350       TraverseStmt(InitExpr);
351 
352       // If this is a `CXXDefaultInitExpr`, also propagate any result objects
353       // within the default expression.
354       if (auto *DefaultInit = dyn_cast<CXXDefaultInitExpr>(InitExpr))
355         TraverseStmt(DefaultInit->getExpr());
356     }
357   }
358 
359   bool TraverseBindingDecl(BindingDecl *BD) {
360     // `RecursiveASTVisitor` doesn't traverse holding variables for
361     // `BindingDecl`s by itself, so we need to tell it to.
362     if (VarDecl *HoldingVar = BD->getHoldingVar())
363       TraverseDecl(HoldingVar);
364     return RecursiveASTVisitor<ResultObjectVisitor>::TraverseBindingDecl(BD);
365   }
366 
367   bool VisitVarDecl(VarDecl *VD) {
368     if (VD->getType()->isRecordType() && VD->hasInit())
369       PropagateResultObject(
370           VD->getInit(),
371           &cast<RecordStorageLocation>(DACtx.getStableStorageLocation(*VD)));
372     return true;
373   }
374 
375   bool VisitMaterializeTemporaryExpr(MaterializeTemporaryExpr *MTE) {
376     if (MTE->getType()->isRecordType())
377       PropagateResultObject(
378           MTE->getSubExpr(),
379           &cast<RecordStorageLocation>(DACtx.getStableStorageLocation(*MTE)));
380     return true;
381   }
382 
383   bool VisitReturnStmt(ReturnStmt *Return) {
384     Expr *RetValue = Return->getRetValue();
385     if (RetValue != nullptr && RetValue->getType()->isRecordType() &&
386         RetValue->isPRValue())
387       PropagateResultObject(RetValue, LocForRecordReturnVal);
388     return true;
389   }
390 
391   bool VisitExpr(Expr *E) {
392     // Clang's AST can have record-type prvalues without a result object -- for
393     // example as full-expressions contained in a compound statement or as
394     // arguments of call expressions. We notice this if we get here and a
395     // storage location has not yet been associated with `E`. In this case,
396     // treat this as if it was a `MaterializeTemporaryExpr`.
397     if (E->isPRValue() && E->getType()->isRecordType() &&
398         !ResultObjectMap.contains(E))
399       PropagateResultObject(
400           E, &cast<RecordStorageLocation>(DACtx.getStableStorageLocation(*E)));
401     return true;
402   }
403 
404   // Assigns `Loc` as the result object location of `E`, then propagates the
405   // location to all lower-level prvalues that initialize the same object as
406   // `E` (or one of its base classes or member variables).
407   void PropagateResultObject(Expr *E, RecordStorageLocation *Loc) {
408     if (!E->isPRValue() || !E->getType()->isRecordType()) {
409       assert(false);
410       // Ensure we don't propagate the result object if we hit this in a
411       // release build.
412       return;
413     }
414 
415     ResultObjectMap[E] = Loc;
416 
417     // The following AST node kinds are "original initializers": They are the
418     // lowest-level AST node that initializes a given object, and nothing
419     // below them can initialize the same object (or part of it).
420     if (isa<CXXConstructExpr>(E) || isa<CallExpr>(E) || isa<LambdaExpr>(E) ||
421         isa<CXXDefaultArgExpr>(E) || isa<CXXDefaultInitExpr>(E) ||
422         isa<CXXStdInitializerListExpr>(E) ||
423         // We treat `BuiltinBitCastExpr` as an "original initializer" too as
424         // it may not even be casting from a record type -- and even if it is,
425         // the two objects are in general of unrelated type.
426         isa<BuiltinBitCastExpr>(E)) {
427       return;
428     }
429     if (auto *Op = dyn_cast<BinaryOperator>(E);
430         Op && Op->getOpcode() == BO_Cmp) {
431       // Builtin `<=>` returns a `std::strong_ordering` object.
432       return;
433     }
434 
435     if (auto *InitList = dyn_cast<InitListExpr>(E)) {
436       if (!InitList->isSemanticForm())
437         return;
438       if (InitList->isTransparent()) {
439         PropagateResultObject(InitList->getInit(0), Loc);
440         return;
441       }
442 
443       RecordInitListHelper InitListHelper(InitList);
444 
445       for (auto [Base, Init] : InitListHelper.base_inits()) {
446         assert(Base->getType().getCanonicalType() ==
447                Init->getType().getCanonicalType());
448 
449         // Storage location for the base class is the same as that of the
450         // derived class because we "flatten" the object hierarchy and put all
451         // fields in `RecordStorageLocation` of the derived class.
452         PropagateResultObject(Init, Loc);
453       }
454 
455       for (auto [Field, Init] : InitListHelper.field_inits()) {
456         // Fields of non-record type are handled in
457         // `TransferVisitor::VisitInitListExpr()`.
458         if (!Field->getType()->isRecordType())
459           continue;
460         PropagateResultObject(
461             Init, cast<RecordStorageLocation>(Loc->getChild(*Field)));
462       }
463       return;
464     }
465 
466     if (auto *Op = dyn_cast<BinaryOperator>(E); Op && Op->isCommaOp()) {
467       PropagateResultObject(Op->getRHS(), Loc);
468       return;
469     }
470 
471     if (auto *Cond = dyn_cast<AbstractConditionalOperator>(E)) {
472       PropagateResultObject(Cond->getTrueExpr(), Loc);
473       PropagateResultObject(Cond->getFalseExpr(), Loc);
474       return;
475     }
476 
477     if (auto *SE = dyn_cast<StmtExpr>(E)) {
478       PropagateResultObject(cast<Expr>(SE->getSubStmt()->body_back()), Loc);
479       return;
480     }
481 
482     // All other expression nodes that propagate a record prvalue should have
483     // exactly one child.
484     SmallVector<Stmt *, 1> Children(E->child_begin(), E->child_end());
485     LLVM_DEBUG({
486       if (Children.size() != 1)
487         E->dump();
488     });
489     assert(Children.size() == 1);
490     for (Stmt *S : Children)
491       PropagateResultObject(cast<Expr>(S), Loc);
492   }
493 
494 private:
495   llvm::DenseMap<const Expr *, RecordStorageLocation *> &ResultObjectMap;
496   RecordStorageLocation *LocForRecordReturnVal;
497   DataflowAnalysisContext &DACtx;
498 };
499 
500 } // namespace
501 
502 Environment::Environment(DataflowAnalysisContext &DACtx)
503     : DACtx(&DACtx),
504       FlowConditionToken(DACtx.arena().makeFlowConditionToken()) {}
505 
506 Environment::Environment(DataflowAnalysisContext &DACtx,
507                          const DeclContext &DeclCtx)
508     : Environment(DACtx) {
509   CallStack.push_back(&DeclCtx);
510 }
511 
512 void Environment::initialize() {
513   const DeclContext *DeclCtx = getDeclCtx();
514   if (DeclCtx == nullptr)
515     return;
516 
517   const auto *FuncDecl = dyn_cast<FunctionDecl>(DeclCtx);
518   if (FuncDecl == nullptr)
519     return;
520 
521   assert(FuncDecl->doesThisDeclarationHaveABody());
522 
523   initFieldsGlobalsAndFuncs(FuncDecl);
524 
525   for (const auto *ParamDecl : FuncDecl->parameters()) {
526     assert(ParamDecl != nullptr);
527     setStorageLocation(*ParamDecl, createObject(*ParamDecl, nullptr));
528   }
529 
530   if (FuncDecl->getReturnType()->isRecordType())
531     LocForRecordReturnVal = &cast<RecordStorageLocation>(
532         createStorageLocation(FuncDecl->getReturnType()));
533 
534   if (const auto *MethodDecl = dyn_cast<CXXMethodDecl>(DeclCtx)) {
535     auto *Parent = MethodDecl->getParent();
536     assert(Parent != nullptr);
537 
538     if (Parent->isLambda()) {
539       for (const auto &Capture : Parent->captures()) {
540         if (Capture.capturesVariable()) {
541           const auto *VarDecl = Capture.getCapturedVar();
542           assert(VarDecl != nullptr);
543           setStorageLocation(*VarDecl, createObject(*VarDecl, nullptr));
544         } else if (Capture.capturesThis()) {
545           const auto *SurroundingMethodDecl =
546               cast<CXXMethodDecl>(DeclCtx->getNonClosureAncestor());
547           QualType ThisPointeeType =
548               SurroundingMethodDecl->getFunctionObjectParameterType();
549           setThisPointeeStorageLocation(
550               cast<RecordStorageLocation>(createObject(ThisPointeeType)));
551         }
552       }
553     } else if (MethodDecl->isImplicitObjectMemberFunction()) {
554       QualType ThisPointeeType = MethodDecl->getFunctionObjectParameterType();
555       auto &ThisLoc =
556           cast<RecordStorageLocation>(createStorageLocation(ThisPointeeType));
557       setThisPointeeStorageLocation(ThisLoc);
558       refreshRecordValue(ThisLoc, *this);
559       // Initialize fields of `*this` with values, but only if we're not
560       // analyzing a constructor; after all, it's the constructor's job to do
561       // this (and we want to be able to test that).
562       if (!isa<CXXConstructorDecl>(MethodDecl))
563         initializeFieldsWithValues(ThisLoc);
564     }
565   }
566 
567   // We do this below the handling of `CXXMethodDecl` above so that we can
568   // be sure that the storage location for `this` has been set.
569   ResultObjectMap = std::make_shared<PrValueToResultObject>(
570       buildResultObjectMap(DACtx, FuncDecl, getThisPointeeStorageLocation(),
571                            LocForRecordReturnVal));
572 }
573 
574 // FIXME: Add support for resetting globals after function calls to enable
575 // the implementation of sound analyses.
576 void Environment::initFieldsGlobalsAndFuncs(const FunctionDecl *FuncDecl) {
577   assert(FuncDecl->doesThisDeclarationHaveABody());
578 
579   ReferencedDecls Referenced = getReferencedDecls(*FuncDecl);
580 
581   // These have to be added before the lines that follow to ensure that
582   // `create*` work correctly for structs.
583   DACtx->addModeledFields(Referenced.Fields);
584 
585   for (const VarDecl *D : Referenced.Globals) {
586     if (getStorageLocation(*D) != nullptr)
587       continue;
588 
589     // We don't run transfer functions on the initializers of global variables,
590     // so they won't be associated with a value or storage location. We
591     // therefore intentionally don't pass an initializer to `createObject()`;
592     // in particular, this ensures that `createObject()` will initialize the
593     // fields of record-type variables with values.
594     setStorageLocation(*D, createObject(*D, nullptr));
595   }
596 
597   for (const FunctionDecl *FD : Referenced.Functions) {
598     if (getStorageLocation(*FD) != nullptr)
599       continue;
600     auto &Loc = createStorageLocation(*FD);
601     setStorageLocation(*FD, Loc);
602   }
603 }
604 
605 Environment Environment::fork() const {
606   Environment Copy(*this);
607   Copy.FlowConditionToken = DACtx->forkFlowCondition(FlowConditionToken);
608   return Copy;
609 }
610 
611 bool Environment::canDescend(unsigned MaxDepth,
612                              const DeclContext *Callee) const {
613   return CallStack.size() <= MaxDepth && !llvm::is_contained(CallStack, Callee);
614 }
615 
616 Environment Environment::pushCall(const CallExpr *Call) const {
617   Environment Env(*this);
618 
619   if (const auto *MethodCall = dyn_cast<CXXMemberCallExpr>(Call)) {
620     if (const Expr *Arg = MethodCall->getImplicitObjectArgument()) {
621       if (!isa<CXXThisExpr>(Arg))
622           Env.ThisPointeeLoc =
623               cast<RecordStorageLocation>(getStorageLocation(*Arg));
624       // Otherwise (when the argument is `this`), retain the current
625       // environment's `ThisPointeeLoc`.
626     }
627   }
628 
629   if (Call->getType()->isRecordType() && Call->isPRValue())
630     Env.LocForRecordReturnVal = &Env.getResultObjectLocation(*Call);
631 
632   Env.pushCallInternal(Call->getDirectCallee(),
633                        llvm::ArrayRef(Call->getArgs(), Call->getNumArgs()));
634 
635   return Env;
636 }
637 
638 Environment Environment::pushCall(const CXXConstructExpr *Call) const {
639   Environment Env(*this);
640 
641   Env.ThisPointeeLoc = &Env.getResultObjectLocation(*Call);
642   Env.LocForRecordReturnVal = &Env.getResultObjectLocation(*Call);
643 
644   Env.pushCallInternal(Call->getConstructor(),
645                        llvm::ArrayRef(Call->getArgs(), Call->getNumArgs()));
646 
647   return Env;
648 }
649 
650 void Environment::pushCallInternal(const FunctionDecl *FuncDecl,
651                                    ArrayRef<const Expr *> Args) {
652   // Canonicalize to the definition of the function. This ensures that we're
653   // putting arguments into the same `ParamVarDecl`s` that the callee will later
654   // be retrieving them from.
655   assert(FuncDecl->getDefinition() != nullptr);
656   FuncDecl = FuncDecl->getDefinition();
657 
658   CallStack.push_back(FuncDecl);
659 
660   initFieldsGlobalsAndFuncs(FuncDecl);
661 
662   const auto *ParamIt = FuncDecl->param_begin();
663 
664   // FIXME: Parameters don't always map to arguments 1:1; examples include
665   // overloaded operators implemented as member functions, and parameter packs.
666   for (unsigned ArgIndex = 0; ArgIndex < Args.size(); ++ParamIt, ++ArgIndex) {
667     assert(ParamIt != FuncDecl->param_end());
668     const VarDecl *Param = *ParamIt;
669     setStorageLocation(*Param, createObject(*Param, Args[ArgIndex]));
670   }
671 
672   ResultObjectMap = std::make_shared<PrValueToResultObject>(
673       buildResultObjectMap(DACtx, FuncDecl, getThisPointeeStorageLocation(),
674                            LocForRecordReturnVal));
675 }
676 
677 void Environment::popCall(const CallExpr *Call, const Environment &CalleeEnv) {
678   // We ignore some entries of `CalleeEnv`:
679   // - `DACtx` because is already the same in both
680   // - We don't want the callee's `DeclCtx`, `ReturnVal`, `ReturnLoc` or
681   //   `ThisPointeeLoc` because they don't apply to us.
682   // - `DeclToLoc`, `ExprToLoc`, and `ExprToVal` capture information from the
683   //   callee's local scope, so when popping that scope, we do not propagate
684   //   the maps.
685   this->LocToVal = std::move(CalleeEnv.LocToVal);
686   this->FlowConditionToken = std::move(CalleeEnv.FlowConditionToken);
687 
688   if (Call->isGLValue()) {
689     if (CalleeEnv.ReturnLoc != nullptr)
690       setStorageLocation(*Call, *CalleeEnv.ReturnLoc);
691   } else if (!Call->getType()->isVoidType()) {
692     if (CalleeEnv.ReturnVal != nullptr)
693       setValue(*Call, *CalleeEnv.ReturnVal);
694   }
695 }
696 
697 void Environment::popCall(const CXXConstructExpr *Call,
698                           const Environment &CalleeEnv) {
699   // See also comment in `popCall(const CallExpr *, const Environment &)` above.
700   this->LocToVal = std::move(CalleeEnv.LocToVal);
701   this->FlowConditionToken = std::move(CalleeEnv.FlowConditionToken);
702 
703   if (Value *Val = CalleeEnv.getValue(*CalleeEnv.ThisPointeeLoc)) {
704     setValue(*Call, *Val);
705   }
706 }
707 
708 bool Environment::equivalentTo(const Environment &Other,
709                                Environment::ValueModel &Model) const {
710   assert(DACtx == Other.DACtx);
711 
712   if (ReturnVal != Other.ReturnVal)
713     return false;
714 
715   if (ReturnLoc != Other.ReturnLoc)
716     return false;
717 
718   if (LocForRecordReturnVal != Other.LocForRecordReturnVal)
719     return false;
720 
721   if (ThisPointeeLoc != Other.ThisPointeeLoc)
722     return false;
723 
724   if (DeclToLoc != Other.DeclToLoc)
725     return false;
726 
727   if (ExprToLoc != Other.ExprToLoc)
728     return false;
729 
730   if (!compareKeyToValueMaps(ExprToVal, Other.ExprToVal, *this, Other, Model))
731     return false;
732 
733   if (!compareKeyToValueMaps(LocToVal, Other.LocToVal, *this, Other, Model))
734     return false;
735 
736   return true;
737 }
738 
739 LatticeEffect Environment::widen(const Environment &PrevEnv,
740                                  Environment::ValueModel &Model) {
741   assert(DACtx == PrevEnv.DACtx);
742   assert(ReturnVal == PrevEnv.ReturnVal);
743   assert(ReturnLoc == PrevEnv.ReturnLoc);
744   assert(LocForRecordReturnVal == PrevEnv.LocForRecordReturnVal);
745   assert(ThisPointeeLoc == PrevEnv.ThisPointeeLoc);
746   assert(CallStack == PrevEnv.CallStack);
747   assert(ResultObjectMap == PrevEnv.ResultObjectMap);
748 
749   auto Effect = LatticeEffect::Unchanged;
750 
751   // By the API, `PrevEnv` is a previous version of the environment for the same
752   // block, so we have some guarantees about its shape. In particular, it will
753   // be the result of a join or widen operation on previous values for this
754   // block. For `DeclToLoc`, `ExprToVal`, and `ExprToLoc`, join guarantees that
755   // these maps are subsets of the maps in `PrevEnv`. So, as long as we maintain
756   // this property here, we don't need change their current values to widen.
757   assert(DeclToLoc.size() <= PrevEnv.DeclToLoc.size());
758   assert(ExprToVal.size() <= PrevEnv.ExprToVal.size());
759   assert(ExprToLoc.size() <= PrevEnv.ExprToLoc.size());
760 
761   ExprToVal = widenKeyToValueMap(ExprToVal, PrevEnv.ExprToVal, *this, PrevEnv,
762                                  Model, Effect);
763 
764   LocToVal = widenKeyToValueMap(LocToVal, PrevEnv.LocToVal, *this, PrevEnv,
765                                 Model, Effect);
766   if (DeclToLoc.size() != PrevEnv.DeclToLoc.size() ||
767       ExprToLoc.size() != PrevEnv.ExprToLoc.size() ||
768       ExprToVal.size() != PrevEnv.ExprToVal.size() ||
769       LocToVal.size() != PrevEnv.LocToVal.size())
770     Effect = LatticeEffect::Changed;
771 
772   return Effect;
773 }
774 
775 Environment Environment::join(const Environment &EnvA, const Environment &EnvB,
776                               Environment::ValueModel &Model,
777                               ExprJoinBehavior ExprBehavior) {
778   assert(EnvA.DACtx == EnvB.DACtx);
779   assert(EnvA.LocForRecordReturnVal == EnvB.LocForRecordReturnVal);
780   assert(EnvA.ThisPointeeLoc == EnvB.ThisPointeeLoc);
781   assert(EnvA.CallStack == EnvB.CallStack);
782   assert(EnvA.ResultObjectMap == EnvB.ResultObjectMap);
783 
784   Environment JoinedEnv(*EnvA.DACtx);
785 
786   JoinedEnv.CallStack = EnvA.CallStack;
787   JoinedEnv.ResultObjectMap = EnvA.ResultObjectMap;
788   JoinedEnv.LocForRecordReturnVal = EnvA.LocForRecordReturnVal;
789   JoinedEnv.ThisPointeeLoc = EnvA.ThisPointeeLoc;
790 
791   if (EnvA.ReturnVal == nullptr || EnvB.ReturnVal == nullptr) {
792     // `ReturnVal` might not always get set -- for example if we have a return
793     // statement of the form `return some_other_func()` and we decide not to
794     // analyze `some_other_func()`.
795     // In this case, we can't say anything about the joined return value -- we
796     // don't simply want to propagate the return value that we do have, because
797     // it might not be the correct one.
798     // This occurs for example in the test `ContextSensitiveMutualRecursion`.
799     JoinedEnv.ReturnVal = nullptr;
800   } else if (areEquivalentValues(*EnvA.ReturnVal, *EnvB.ReturnVal)) {
801     JoinedEnv.ReturnVal = EnvA.ReturnVal;
802   } else {
803     assert(!EnvA.CallStack.empty());
804     // FIXME: Make `CallStack` a vector of `FunctionDecl` so we don't need this
805     // cast.
806     auto *Func = dyn_cast<FunctionDecl>(EnvA.CallStack.back());
807     assert(Func != nullptr);
808     if (Value *JoinedVal =
809             joinDistinctValues(Func->getReturnType(), *EnvA.ReturnVal, EnvA,
810                                *EnvB.ReturnVal, EnvB, JoinedEnv, Model))
811       JoinedEnv.ReturnVal = JoinedVal;
812   }
813 
814   if (EnvA.ReturnLoc == EnvB.ReturnLoc)
815     JoinedEnv.ReturnLoc = EnvA.ReturnLoc;
816   else
817     JoinedEnv.ReturnLoc = nullptr;
818 
819   JoinedEnv.DeclToLoc = intersectDeclToLoc(EnvA.DeclToLoc, EnvB.DeclToLoc);
820 
821   // FIXME: update join to detect backedges and simplify the flow condition
822   // accordingly.
823   JoinedEnv.FlowConditionToken = EnvA.DACtx->joinFlowConditions(
824       EnvA.FlowConditionToken, EnvB.FlowConditionToken);
825 
826   JoinedEnv.LocToVal =
827       joinLocToVal(EnvA.LocToVal, EnvB.LocToVal, EnvA, EnvB, JoinedEnv, Model);
828 
829   if (ExprBehavior == KeepExprState) {
830     JoinedEnv.ExprToVal = joinExprMaps(EnvA.ExprToVal, EnvB.ExprToVal);
831     JoinedEnv.ExprToLoc = joinExprMaps(EnvA.ExprToLoc, EnvB.ExprToLoc);
832   }
833 
834   return JoinedEnv;
835 }
836 
837 StorageLocation &Environment::createStorageLocation(QualType Type) {
838   return DACtx->createStorageLocation(Type);
839 }
840 
841 StorageLocation &Environment::createStorageLocation(const ValueDecl &D) {
842   // Evaluated declarations are always assigned the same storage locations to
843   // ensure that the environment stabilizes across loop iterations. Storage
844   // locations for evaluated declarations are stored in the analysis context.
845   return DACtx->getStableStorageLocation(D);
846 }
847 
848 StorageLocation &Environment::createStorageLocation(const Expr &E) {
849   // Evaluated expressions are always assigned the same storage locations to
850   // ensure that the environment stabilizes across loop iterations. Storage
851   // locations for evaluated expressions are stored in the analysis context.
852   return DACtx->getStableStorageLocation(E);
853 }
854 
855 void Environment::setStorageLocation(const ValueDecl &D, StorageLocation &Loc) {
856   assert(!DeclToLoc.contains(&D));
857   // The only kinds of declarations that may have a "variable" storage location
858   // are declarations of reference type and `BindingDecl`. For all other
859   // declaration, the storage location should be the stable storage location
860   // returned by `createStorageLocation()`.
861   assert(D.getType()->isReferenceType() || isa<BindingDecl>(D) ||
862          &Loc == &createStorageLocation(D));
863   DeclToLoc[&D] = &Loc;
864 }
865 
866 StorageLocation *Environment::getStorageLocation(const ValueDecl &D) const {
867   auto It = DeclToLoc.find(&D);
868   if (It == DeclToLoc.end())
869     return nullptr;
870 
871   StorageLocation *Loc = It->second;
872 
873   return Loc;
874 }
875 
876 void Environment::removeDecl(const ValueDecl &D) { DeclToLoc.erase(&D); }
877 
878 void Environment::setStorageLocation(const Expr &E, StorageLocation &Loc) {
879   // `DeclRefExpr`s to builtin function types aren't glvalues, for some reason,
880   // but we still want to be able to associate a `StorageLocation` with them,
881   // so allow these as an exception.
882   assert(E.isGLValue() ||
883          E.getType()->isSpecificBuiltinType(BuiltinType::BuiltinFn));
884   const Expr &CanonE = ignoreCFGOmittedNodes(E);
885   assert(!ExprToLoc.contains(&CanonE));
886   ExprToLoc[&CanonE] = &Loc;
887 }
888 
889 StorageLocation *Environment::getStorageLocation(const Expr &E) const {
890   // See comment in `setStorageLocation()`.
891   assert(E.isGLValue() ||
892          E.getType()->isSpecificBuiltinType(BuiltinType::BuiltinFn));
893   auto It = ExprToLoc.find(&ignoreCFGOmittedNodes(E));
894   return It == ExprToLoc.end() ? nullptr : &*It->second;
895 }
896 
897 RecordStorageLocation &
898 Environment::getResultObjectLocation(const Expr &RecordPRValue) const {
899   assert(RecordPRValue.getType()->isRecordType());
900   assert(RecordPRValue.isPRValue());
901 
902   assert(ResultObjectMap != nullptr);
903   RecordStorageLocation *Loc = ResultObjectMap->lookup(&RecordPRValue);
904   assert(Loc != nullptr);
905   // In release builds, use the "stable" storage location if the map lookup
906   // failed.
907   if (Loc == nullptr)
908     return cast<RecordStorageLocation>(
909         DACtx->getStableStorageLocation(RecordPRValue));
910   return *Loc;
911 }
912 
913 PointerValue &Environment::getOrCreateNullPointerValue(QualType PointeeType) {
914   return DACtx->getOrCreateNullPointerValue(PointeeType);
915 }
916 
917 void Environment::initializeFieldsWithValues(RecordStorageLocation &Loc,
918                                              QualType Type) {
919   llvm::DenseSet<QualType> Visited;
920   int CreatedValuesCount = 0;
921   initializeFieldsWithValues(Loc, Type, Visited, 0, CreatedValuesCount);
922   if (CreatedValuesCount > MaxCompositeValueSize) {
923     llvm::errs() << "Attempting to initialize a huge value of type: " << Type
924                  << '\n';
925   }
926 }
927 
928 void Environment::setValue(const StorageLocation &Loc, Value &Val) {
929   assert(!isa<RecordValue>(&Val) || &cast<RecordValue>(&Val)->getLoc() == &Loc);
930 
931   LocToVal[&Loc] = &Val;
932 }
933 
934 void Environment::setValue(const Expr &E, Value &Val) {
935   const Expr &CanonE = ignoreCFGOmittedNodes(E);
936 
937   if (auto *RecordVal = dyn_cast<RecordValue>(&Val)) {
938     assert(&RecordVal->getLoc() == &getResultObjectLocation(CanonE));
939     (void)RecordVal;
940   }
941 
942   assert(CanonE.isPRValue());
943   ExprToVal[&CanonE] = &Val;
944 }
945 
946 Value *Environment::getValue(const StorageLocation &Loc) const {
947   return LocToVal.lookup(&Loc);
948 }
949 
950 Value *Environment::getValue(const ValueDecl &D) const {
951   auto *Loc = getStorageLocation(D);
952   if (Loc == nullptr)
953     return nullptr;
954   return getValue(*Loc);
955 }
956 
957 Value *Environment::getValue(const Expr &E) const {
958   if (E.isPRValue()) {
959     auto It = ExprToVal.find(&ignoreCFGOmittedNodes(E));
960     return It == ExprToVal.end() ? nullptr : It->second;
961   }
962 
963   auto It = ExprToLoc.find(&ignoreCFGOmittedNodes(E));
964   if (It == ExprToLoc.end())
965     return nullptr;
966   return getValue(*It->second);
967 }
968 
969 Value *Environment::createValue(QualType Type) {
970   llvm::DenseSet<QualType> Visited;
971   int CreatedValuesCount = 0;
972   Value *Val = createValueUnlessSelfReferential(Type, Visited, /*Depth=*/0,
973                                                 CreatedValuesCount);
974   if (CreatedValuesCount > MaxCompositeValueSize) {
975     llvm::errs() << "Attempting to initialize a huge value of type: " << Type
976                  << '\n';
977   }
978   return Val;
979 }
980 
981 Value *Environment::createValueUnlessSelfReferential(
982     QualType Type, llvm::DenseSet<QualType> &Visited, int Depth,
983     int &CreatedValuesCount) {
984   assert(!Type.isNull());
985   assert(!Type->isReferenceType());
986 
987   // Allow unlimited fields at depth 1; only cap at deeper nesting levels.
988   if ((Depth > 1 && CreatedValuesCount > MaxCompositeValueSize) ||
989       Depth > MaxCompositeValueDepth)
990     return nullptr;
991 
992   if (Type->isBooleanType()) {
993     CreatedValuesCount++;
994     return &makeAtomicBoolValue();
995   }
996 
997   if (Type->isIntegerType()) {
998     // FIXME: consider instead `return nullptr`, given that we do nothing useful
999     // with integers, and so distinguishing them serves no purpose, but could
1000     // prevent convergence.
1001     CreatedValuesCount++;
1002     return &arena().create<IntegerValue>();
1003   }
1004 
1005   if (Type->isPointerType()) {
1006     CreatedValuesCount++;
1007     QualType PointeeType = Type->getPointeeType();
1008     StorageLocation &PointeeLoc =
1009         createLocAndMaybeValue(PointeeType, Visited, Depth, CreatedValuesCount);
1010 
1011     return &arena().create<PointerValue>(PointeeLoc);
1012   }
1013 
1014   if (Type->isRecordType()) {
1015     CreatedValuesCount++;
1016     auto &Loc = cast<RecordStorageLocation>(createStorageLocation(Type));
1017     initializeFieldsWithValues(Loc, Loc.getType(), Visited, Depth,
1018                                CreatedValuesCount);
1019 
1020     return &refreshRecordValue(Loc, *this);
1021   }
1022 
1023   return nullptr;
1024 }
1025 
1026 StorageLocation &
1027 Environment::createLocAndMaybeValue(QualType Ty,
1028                                     llvm::DenseSet<QualType> &Visited,
1029                                     int Depth, int &CreatedValuesCount) {
1030   if (!Visited.insert(Ty.getCanonicalType()).second)
1031     return createStorageLocation(Ty.getNonReferenceType());
1032   Value *Val = createValueUnlessSelfReferential(
1033       Ty.getNonReferenceType(), Visited, Depth, CreatedValuesCount);
1034   Visited.erase(Ty.getCanonicalType());
1035 
1036   Ty = Ty.getNonReferenceType();
1037 
1038   if (Val == nullptr)
1039     return createStorageLocation(Ty);
1040 
1041   if (Ty->isRecordType())
1042     return cast<RecordValue>(Val)->getLoc();
1043 
1044   StorageLocation &Loc = createStorageLocation(Ty);
1045   setValue(Loc, *Val);
1046   return Loc;
1047 }
1048 
1049 void Environment::initializeFieldsWithValues(RecordStorageLocation &Loc,
1050                                              QualType Type,
1051                                              llvm::DenseSet<QualType> &Visited,
1052                                              int Depth,
1053                                              int &CreatedValuesCount) {
1054   auto initField = [&](QualType FieldType, StorageLocation &FieldLoc) {
1055     if (FieldType->isRecordType()) {
1056       auto &FieldRecordLoc = cast<RecordStorageLocation>(FieldLoc);
1057       setValue(FieldRecordLoc, create<RecordValue>(FieldRecordLoc));
1058       initializeFieldsWithValues(FieldRecordLoc, FieldRecordLoc.getType(),
1059                                  Visited, Depth + 1, CreatedValuesCount);
1060     } else {
1061       if (!Visited.insert(FieldType.getCanonicalType()).second)
1062         return;
1063       if (Value *Val = createValueUnlessSelfReferential(
1064               FieldType, Visited, Depth + 1, CreatedValuesCount))
1065         setValue(FieldLoc, *Val);
1066       Visited.erase(FieldType.getCanonicalType());
1067     }
1068   };
1069 
1070   for (const FieldDecl *Field : DACtx->getModeledFields(Type)) {
1071     assert(Field != nullptr);
1072     QualType FieldType = Field->getType();
1073 
1074     if (FieldType->isReferenceType()) {
1075       Loc.setChild(*Field,
1076                    &createLocAndMaybeValue(FieldType, Visited, Depth + 1,
1077                                            CreatedValuesCount));
1078     } else {
1079       StorageLocation *FieldLoc = Loc.getChild(*Field);
1080       assert(FieldLoc != nullptr);
1081       initField(FieldType, *FieldLoc);
1082     }
1083   }
1084   for (const auto &[FieldName, FieldType] : DACtx->getSyntheticFields(Type)) {
1085     // Synthetic fields cannot have reference type, so we don't need to deal
1086     // with this case.
1087     assert(!FieldType->isReferenceType());
1088     initField(FieldType, Loc.getSyntheticField(FieldName));
1089   }
1090 }
1091 
1092 StorageLocation &Environment::createObjectInternal(const ValueDecl *D,
1093                                                    QualType Ty,
1094                                                    const Expr *InitExpr) {
1095   if (Ty->isReferenceType()) {
1096     // Although variables of reference type always need to be initialized, it
1097     // can happen that we can't see the initializer, so `InitExpr` may still
1098     // be null.
1099     if (InitExpr) {
1100       if (auto *InitExprLoc = getStorageLocation(*InitExpr))
1101           return *InitExprLoc;
1102     }
1103 
1104     // Even though we have an initializer, we might not get an
1105     // InitExprLoc, for example if the InitExpr is a CallExpr for which we
1106     // don't have a function body. In this case, we just invent a storage
1107     // location and value -- it's the best we can do.
1108     return createObjectInternal(D, Ty.getNonReferenceType(), nullptr);
1109   }
1110 
1111   StorageLocation &Loc =
1112       D ? createStorageLocation(*D) : createStorageLocation(Ty);
1113 
1114   if (Ty->isRecordType()) {
1115     auto &RecordLoc = cast<RecordStorageLocation>(Loc);
1116     if (!InitExpr)
1117       initializeFieldsWithValues(RecordLoc);
1118     refreshRecordValue(RecordLoc, *this);
1119   } else {
1120     Value *Val = nullptr;
1121     if (InitExpr)
1122       // In the (few) cases where an expression is intentionally
1123       // "uninterpreted", `InitExpr` is not associated with a value.  There are
1124       // two ways to handle this situation: propagate the status, so that
1125       // uninterpreted initializers result in uninterpreted variables, or
1126       // provide a default value. We choose the latter so that later refinements
1127       // of the variable can be used for reasoning about the surrounding code.
1128       // For this reason, we let this case be handled by the `createValue()`
1129       // call below.
1130       //
1131       // FIXME. If and when we interpret all language cases, change this to
1132       // assert that `InitExpr` is interpreted, rather than supplying a
1133       // default value (assuming we don't update the environment API to return
1134       // references).
1135       Val = getValue(*InitExpr);
1136     if (!Val)
1137       Val = createValue(Ty);
1138     if (Val)
1139       setValue(Loc, *Val);
1140   }
1141 
1142   return Loc;
1143 }
1144 
1145 void Environment::assume(const Formula &F) {
1146   DACtx->addFlowConditionConstraint(FlowConditionToken, F);
1147 }
1148 
1149 bool Environment::proves(const Formula &F) const {
1150   return DACtx->flowConditionImplies(FlowConditionToken, F);
1151 }
1152 
1153 bool Environment::allows(const Formula &F) const {
1154   return DACtx->flowConditionAllows(FlowConditionToken, F);
1155 }
1156 
1157 void Environment::dump(raw_ostream &OS) const {
1158   llvm::DenseMap<const StorageLocation *, std::string> LocToName;
1159   if (LocForRecordReturnVal != nullptr)
1160     LocToName[LocForRecordReturnVal] = "(returned record)";
1161   if (ThisPointeeLoc != nullptr)
1162     LocToName[ThisPointeeLoc] = "this";
1163 
1164   OS << "DeclToLoc:\n";
1165   for (auto [D, L] : DeclToLoc) {
1166     auto Iter = LocToName.insert({L, D->getNameAsString()}).first;
1167     OS << "  [" << Iter->second << ", " << L << "]\n";
1168   }
1169   OS << "ExprToLoc:\n";
1170   for (auto [E, L] : ExprToLoc)
1171     OS << "  [" << E << ", " << L << "]\n";
1172 
1173   OS << "ExprToVal:\n";
1174   for (auto [E, V] : ExprToVal)
1175     OS << "  [" << E << ", " << V << ": " << *V << "]\n";
1176 
1177   OS << "LocToVal:\n";
1178   for (auto [L, V] : LocToVal) {
1179     OS << "  [" << L;
1180     if (auto Iter = LocToName.find(L); Iter != LocToName.end())
1181       OS << " (" << Iter->second << ")";
1182     OS << ", " << V << ": " << *V << "]\n";
1183   }
1184 
1185   if (const FunctionDecl *Func = getCurrentFunc()) {
1186     if (Func->getReturnType()->isReferenceType()) {
1187       OS << "ReturnLoc: " << ReturnLoc;
1188       if (auto Iter = LocToName.find(ReturnLoc); Iter != LocToName.end())
1189         OS << " (" << Iter->second << ")";
1190       OS << "\n";
1191     } else if (Func->getReturnType()->isRecordType() ||
1192                isa<CXXConstructorDecl>(Func)) {
1193       OS << "LocForRecordReturnVal: " << LocForRecordReturnVal << "\n";
1194     } else if (!Func->getReturnType()->isVoidType()) {
1195       if (ReturnVal == nullptr)
1196         OS << "ReturnVal: nullptr\n";
1197       else
1198         OS << "ReturnVal: " << *ReturnVal << "\n";
1199     }
1200 
1201     if (isa<CXXMethodDecl>(Func)) {
1202       OS << "ThisPointeeLoc: " << ThisPointeeLoc << "\n";
1203     }
1204   }
1205 
1206   OS << "\n";
1207   DACtx->dumpFlowCondition(FlowConditionToken, OS);
1208 }
1209 
1210 void Environment::dump() const {
1211   dump(llvm::dbgs());
1212 }
1213 
1214 Environment::PrValueToResultObject Environment::buildResultObjectMap(
1215     DataflowAnalysisContext *DACtx, const FunctionDecl *FuncDecl,
1216     RecordStorageLocation *ThisPointeeLoc,
1217     RecordStorageLocation *LocForRecordReturnVal) {
1218   assert(FuncDecl->doesThisDeclarationHaveABody());
1219 
1220   PrValueToResultObject Map;
1221 
1222   ResultObjectVisitor Visitor(Map, LocForRecordReturnVal, *DACtx);
1223   if (const auto *Ctor = dyn_cast<CXXConstructorDecl>(FuncDecl))
1224     Visitor.TraverseConstructorInits(Ctor, ThisPointeeLoc);
1225   Visitor.TraverseStmt(FuncDecl->getBody());
1226 
1227   return Map;
1228 }
1229 
1230 RecordStorageLocation *getImplicitObjectLocation(const CXXMemberCallExpr &MCE,
1231                                                  const Environment &Env) {
1232   Expr *ImplicitObject = MCE.getImplicitObjectArgument();
1233   if (ImplicitObject == nullptr)
1234     return nullptr;
1235   if (ImplicitObject->getType()->isPointerType()) {
1236     if (auto *Val = Env.get<PointerValue>(*ImplicitObject))
1237       return &cast<RecordStorageLocation>(Val->getPointeeLoc());
1238     return nullptr;
1239   }
1240   return cast_or_null<RecordStorageLocation>(
1241       Env.getStorageLocation(*ImplicitObject));
1242 }
1243 
1244 RecordStorageLocation *getBaseObjectLocation(const MemberExpr &ME,
1245                                              const Environment &Env) {
1246   Expr *Base = ME.getBase();
1247   if (Base == nullptr)
1248     return nullptr;
1249   if (ME.isArrow()) {
1250     if (auto *Val = Env.get<PointerValue>(*Base))
1251       return &cast<RecordStorageLocation>(Val->getPointeeLoc());
1252     return nullptr;
1253   }
1254   return Env.get<RecordStorageLocation>(*Base);
1255 }
1256 
1257 RecordValue &refreshRecordValue(RecordStorageLocation &Loc, Environment &Env) {
1258   auto &NewVal = Env.create<RecordValue>(Loc);
1259   Env.setValue(Loc, NewVal);
1260   return NewVal;
1261 }
1262 
1263 RecordValue &refreshRecordValue(const Expr &Expr, Environment &Env) {
1264   assert(Expr.getType()->isRecordType());
1265 
1266   if (Expr.isPRValue())
1267     refreshRecordValue(Env.getResultObjectLocation(Expr), Env);
1268 
1269   if (auto *Loc = Env.get<RecordStorageLocation>(Expr))
1270     refreshRecordValue(*Loc, Env);
1271 
1272   auto &NewVal = *cast<RecordValue>(Env.createValue(Expr.getType()));
1273   Env.setStorageLocation(Expr, NewVal.getLoc());
1274   return NewVal;
1275 }
1276 
1277 } // namespace dataflow
1278 } // namespace clang
1279