1 //===-- DataflowEnvironment.cpp ---------------------------------*- C++ -*-===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file defines an Environment class that is used by dataflow analyses 10 // that run over Control-Flow Graphs (CFGs) to keep track of the state of the 11 // program at given program points. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "clang/Analysis/FlowSensitive/DataflowEnvironment.h" 16 #include "clang/AST/Decl.h" 17 #include "clang/AST/DeclCXX.h" 18 #include "clang/AST/RecursiveASTVisitor.h" 19 #include "clang/AST/Type.h" 20 #include "clang/Analysis/FlowSensitive/ASTOps.h" 21 #include "clang/Analysis/FlowSensitive/DataflowLattice.h" 22 #include "clang/Analysis/FlowSensitive/Value.h" 23 #include "llvm/ADT/DenseMap.h" 24 #include "llvm/ADT/DenseSet.h" 25 #include "llvm/ADT/MapVector.h" 26 #include "llvm/ADT/STLExtras.h" 27 #include "llvm/ADT/ScopeExit.h" 28 #include "llvm/Support/ErrorHandling.h" 29 #include <cassert> 30 #include <utility> 31 32 #define DEBUG_TYPE "dataflow" 33 34 namespace clang { 35 namespace dataflow { 36 37 // FIXME: convert these to parameters of the analysis or environment. Current 38 // settings have been experimentaly validated, but only for a particular 39 // analysis. 40 static constexpr int MaxCompositeValueDepth = 3; 41 static constexpr int MaxCompositeValueSize = 1000; 42 43 /// Returns a map consisting of key-value entries that are present in both maps. 44 static llvm::DenseMap<const ValueDecl *, StorageLocation *> intersectDeclToLoc( 45 const llvm::DenseMap<const ValueDecl *, StorageLocation *> &DeclToLoc1, 46 const llvm::DenseMap<const ValueDecl *, StorageLocation *> &DeclToLoc2) { 47 llvm::DenseMap<const ValueDecl *, StorageLocation *> Result; 48 for (auto &Entry : DeclToLoc1) { 49 auto It = DeclToLoc2.find(Entry.first); 50 if (It != DeclToLoc2.end() && Entry.second == It->second) 51 Result.insert({Entry.first, Entry.second}); 52 } 53 return Result; 54 } 55 56 // Performs a join on either `ExprToLoc` or `ExprToVal`. 57 // The maps must be consistent in the sense that any entries for the same 58 // expression must map to the same location / value. This is the case if we are 59 // performing a join for control flow within a full-expression (which is the 60 // only case when this function should be used). 61 template <typename MapT> MapT joinExprMaps(const MapT &Map1, const MapT &Map2) { 62 MapT Result = Map1; 63 64 for (const auto &Entry : Map2) { 65 [[maybe_unused]] auto [It, Inserted] = Result.insert(Entry); 66 // If there was an existing entry, its value should be the same as for the 67 // entry we were trying to insert. 68 assert(It->second == Entry.second); 69 } 70 71 return Result; 72 } 73 74 // Whether to consider equivalent two values with an unknown relation. 75 // 76 // FIXME: this function is a hack enabling unsoundness to support 77 // convergence. Once we have widening support for the reference/pointer and 78 // struct built-in models, this should be unconditionally `false` (and inlined 79 // as such at its call sites). 80 static bool equateUnknownValues(Value::Kind K) { 81 switch (K) { 82 case Value::Kind::Integer: 83 case Value::Kind::Pointer: 84 return true; 85 default: 86 return false; 87 } 88 } 89 90 static bool compareDistinctValues(QualType Type, Value &Val1, 91 const Environment &Env1, Value &Val2, 92 const Environment &Env2, 93 Environment::ValueModel &Model) { 94 // Note: Potentially costly, but, for booleans, we could check whether both 95 // can be proven equivalent in their respective environments. 96 97 // FIXME: move the reference/pointers logic from `areEquivalentValues` to here 98 // and implement separate, join/widen specific handling for 99 // reference/pointers. 100 switch (Model.compare(Type, Val1, Env1, Val2, Env2)) { 101 case ComparisonResult::Same: 102 return true; 103 case ComparisonResult::Different: 104 return false; 105 case ComparisonResult::Unknown: 106 return equateUnknownValues(Val1.getKind()); 107 } 108 llvm_unreachable("All cases covered in switch"); 109 } 110 111 /// Attempts to join distinct values `Val1` and `Val2` in `Env1` and `Env2`, 112 /// respectively, of the same type `Type`. Joining generally produces a single 113 /// value that (soundly) approximates the two inputs, although the actual 114 /// meaning depends on `Model`. 115 static Value *joinDistinctValues(QualType Type, Value &Val1, 116 const Environment &Env1, Value &Val2, 117 const Environment &Env2, 118 Environment &JoinedEnv, 119 Environment::ValueModel &Model) { 120 // Join distinct boolean values preserving information about the constraints 121 // in the respective path conditions. 122 if (isa<BoolValue>(&Val1) && isa<BoolValue>(&Val2)) { 123 // FIXME: Checking both values should be unnecessary, since they should have 124 // a consistent shape. However, right now we can end up with BoolValue's in 125 // integer-typed variables due to our incorrect handling of 126 // boolean-to-integer casts (we just propagate the BoolValue to the result 127 // of the cast). So, a join can encounter an integer in one branch but a 128 // bool in the other. 129 // For example: 130 // ``` 131 // std::optional<bool> o; 132 // int x; 133 // if (o.has_value()) 134 // x = o.value(); 135 // ``` 136 auto &Expr1 = cast<BoolValue>(Val1).formula(); 137 auto &Expr2 = cast<BoolValue>(Val2).formula(); 138 auto &A = JoinedEnv.arena(); 139 auto &JoinedVal = A.makeAtomRef(A.makeAtom()); 140 JoinedEnv.assume( 141 A.makeOr(A.makeAnd(A.makeAtomRef(Env1.getFlowConditionToken()), 142 A.makeEquals(JoinedVal, Expr1)), 143 A.makeAnd(A.makeAtomRef(Env2.getFlowConditionToken()), 144 A.makeEquals(JoinedVal, Expr2)))); 145 return &A.makeBoolValue(JoinedVal); 146 } 147 148 Value *JoinedVal = JoinedEnv.createValue(Type); 149 if (JoinedVal) 150 Model.join(Type, Val1, Env1, Val2, Env2, *JoinedVal, JoinedEnv); 151 152 return JoinedVal; 153 } 154 155 static WidenResult widenDistinctValues(QualType Type, Value &Prev, 156 const Environment &PrevEnv, 157 Value &Current, Environment &CurrentEnv, 158 Environment::ValueModel &Model) { 159 // Boolean-model widening. 160 if (auto *PrevBool = dyn_cast<BoolValue>(&Prev)) { 161 if (isa<TopBoolValue>(Prev)) 162 // Safe to return `Prev` here, because Top is never dependent on the 163 // environment. 164 return {&Prev, LatticeEffect::Unchanged}; 165 166 // We may need to widen to Top, but before we do so, check whether both 167 // values are implied to be either true or false in the current environment. 168 // In that case, we can simply return a literal instead. 169 auto &CurBool = cast<BoolValue>(Current); 170 bool TruePrev = PrevEnv.proves(PrevBool->formula()); 171 bool TrueCur = CurrentEnv.proves(CurBool.formula()); 172 if (TruePrev && TrueCur) 173 return {&CurrentEnv.getBoolLiteralValue(true), LatticeEffect::Unchanged}; 174 if (!TruePrev && !TrueCur && 175 PrevEnv.proves(PrevEnv.arena().makeNot(PrevBool->formula())) && 176 CurrentEnv.proves(CurrentEnv.arena().makeNot(CurBool.formula()))) 177 return {&CurrentEnv.getBoolLiteralValue(false), LatticeEffect::Unchanged}; 178 179 return {&CurrentEnv.makeTopBoolValue(), LatticeEffect::Changed}; 180 } 181 182 // FIXME: Add other built-in model widening. 183 184 // Custom-model widening. 185 if (auto Result = Model.widen(Type, Prev, PrevEnv, Current, CurrentEnv)) 186 return *Result; 187 188 return {&Current, equateUnknownValues(Prev.getKind()) 189 ? LatticeEffect::Unchanged 190 : LatticeEffect::Changed}; 191 } 192 193 // Returns whether the values in `Map1` and `Map2` compare equal for those 194 // keys that `Map1` and `Map2` have in common. 195 template <typename Key> 196 bool compareKeyToValueMaps(const llvm::MapVector<Key, Value *> &Map1, 197 const llvm::MapVector<Key, Value *> &Map2, 198 const Environment &Env1, const Environment &Env2, 199 Environment::ValueModel &Model) { 200 for (auto &Entry : Map1) { 201 Key K = Entry.first; 202 assert(K != nullptr); 203 204 Value *Val = Entry.second; 205 assert(Val != nullptr); 206 207 auto It = Map2.find(K); 208 if (It == Map2.end()) 209 continue; 210 assert(It->second != nullptr); 211 212 if (!areEquivalentValues(*Val, *It->second) && 213 !compareDistinctValues(K->getType(), *Val, Env1, *It->second, Env2, 214 Model)) 215 return false; 216 } 217 218 return true; 219 } 220 221 // Perform a join on two `LocToVal` maps. 222 static llvm::MapVector<const StorageLocation *, Value *> 223 joinLocToVal(const llvm::MapVector<const StorageLocation *, Value *> &LocToVal, 224 const llvm::MapVector<const StorageLocation *, Value *> &LocToVal2, 225 const Environment &Env1, const Environment &Env2, 226 Environment &JoinedEnv, Environment::ValueModel &Model) { 227 llvm::MapVector<const StorageLocation *, Value *> Result; 228 for (auto &Entry : LocToVal) { 229 const StorageLocation *Loc = Entry.first; 230 assert(Loc != nullptr); 231 232 Value *Val = Entry.second; 233 assert(Val != nullptr); 234 235 auto It = LocToVal2.find(Loc); 236 if (It == LocToVal2.end()) 237 continue; 238 assert(It->second != nullptr); 239 240 if (areEquivalentValues(*Val, *It->second)) { 241 Result.insert({Loc, Val}); 242 continue; 243 } 244 245 if (Value *JoinedVal = joinDistinctValues( 246 Loc->getType(), *Val, Env1, *It->second, Env2, JoinedEnv, Model)) { 247 Result.insert({Loc, JoinedVal}); 248 } 249 } 250 251 return Result; 252 } 253 254 // Perform widening on either `LocToVal` or `ExprToVal`. `Key` must be either 255 // `const StorageLocation *` or `const Expr *`. 256 template <typename Key> 257 llvm::MapVector<Key, Value *> 258 widenKeyToValueMap(const llvm::MapVector<Key, Value *> &CurMap, 259 const llvm::MapVector<Key, Value *> &PrevMap, 260 Environment &CurEnv, const Environment &PrevEnv, 261 Environment::ValueModel &Model, LatticeEffect &Effect) { 262 llvm::MapVector<Key, Value *> WidenedMap; 263 for (auto &Entry : CurMap) { 264 Key K = Entry.first; 265 assert(K != nullptr); 266 267 Value *Val = Entry.second; 268 assert(Val != nullptr); 269 270 auto PrevIt = PrevMap.find(K); 271 if (PrevIt == PrevMap.end()) 272 continue; 273 assert(PrevIt->second != nullptr); 274 275 if (areEquivalentValues(*Val, *PrevIt->second)) { 276 WidenedMap.insert({K, Val}); 277 continue; 278 } 279 280 auto [WidenedVal, ValEffect] = widenDistinctValues( 281 K->getType(), *PrevIt->second, PrevEnv, *Val, CurEnv, Model); 282 WidenedMap.insert({K, WidenedVal}); 283 if (ValEffect == LatticeEffect::Changed) 284 Effect = LatticeEffect::Changed; 285 } 286 287 return WidenedMap; 288 } 289 290 namespace { 291 292 // Visitor that builds a map from record prvalues to result objects. 293 // This traverses the body of the function to be analyzed; for each result 294 // object that it encounters, it propagates the storage location of the result 295 // object to all record prvalues that can initialize it. 296 class ResultObjectVisitor : public RecursiveASTVisitor<ResultObjectVisitor> { 297 public: 298 // `ResultObjectMap` will be filled with a map from record prvalues to result 299 // object. If the function being analyzed returns a record by value, 300 // `LocForRecordReturnVal` is the location to which this record should be 301 // written; otherwise, it is null. 302 explicit ResultObjectVisitor( 303 llvm::DenseMap<const Expr *, RecordStorageLocation *> &ResultObjectMap, 304 RecordStorageLocation *LocForRecordReturnVal, 305 DataflowAnalysisContext &DACtx) 306 : ResultObjectMap(ResultObjectMap), 307 LocForRecordReturnVal(LocForRecordReturnVal), DACtx(DACtx) {} 308 309 bool shouldVisitImplicitCode() { return true; } 310 311 bool shouldVisitLambdaBody() const { return false; } 312 313 // Traverse all member and base initializers of `Ctor`. This function is not 314 // called by `RecursiveASTVisitor`; it should be called manually if we are 315 // analyzing a constructor. `ThisPointeeLoc` is the storage location that 316 // `this` points to. 317 void TraverseConstructorInits(const CXXConstructorDecl *Ctor, 318 RecordStorageLocation *ThisPointeeLoc) { 319 assert(ThisPointeeLoc != nullptr); 320 for (const CXXCtorInitializer *Init : Ctor->inits()) { 321 Expr *InitExpr = Init->getInit(); 322 if (FieldDecl *Field = Init->getMember(); 323 Field != nullptr && Field->getType()->isRecordType()) { 324 PropagateResultObject(InitExpr, cast<RecordStorageLocation>( 325 ThisPointeeLoc->getChild(*Field))); 326 } else if (Init->getBaseClass()) { 327 PropagateResultObject(InitExpr, ThisPointeeLoc); 328 } 329 330 // Ensure that any result objects within `InitExpr` (e.g. temporaries) 331 // are also propagated to the prvalues that initialize them. 332 TraverseStmt(InitExpr); 333 334 // If this is a `CXXDefaultInitExpr`, also propagate any result objects 335 // within the default expression. 336 if (auto *DefaultInit = dyn_cast<CXXDefaultInitExpr>(InitExpr)) 337 TraverseStmt(DefaultInit->getExpr()); 338 } 339 } 340 341 bool TraverseBindingDecl(BindingDecl *BD) { 342 // `RecursiveASTVisitor` doesn't traverse holding variables for 343 // `BindingDecl`s by itself, so we need to tell it to. 344 if (VarDecl *HoldingVar = BD->getHoldingVar()) 345 TraverseDecl(HoldingVar); 346 return RecursiveASTVisitor<ResultObjectVisitor>::TraverseBindingDecl(BD); 347 } 348 349 bool VisitVarDecl(VarDecl *VD) { 350 if (VD->getType()->isRecordType() && VD->hasInit()) 351 PropagateResultObject( 352 VD->getInit(), 353 &cast<RecordStorageLocation>(DACtx.getStableStorageLocation(*VD))); 354 return true; 355 } 356 357 bool VisitMaterializeTemporaryExpr(MaterializeTemporaryExpr *MTE) { 358 if (MTE->getType()->isRecordType()) 359 PropagateResultObject( 360 MTE->getSubExpr(), 361 &cast<RecordStorageLocation>(DACtx.getStableStorageLocation(*MTE))); 362 return true; 363 } 364 365 bool VisitReturnStmt(ReturnStmt *Return) { 366 Expr *RetValue = Return->getRetValue(); 367 if (RetValue != nullptr && RetValue->getType()->isRecordType() && 368 RetValue->isPRValue()) 369 PropagateResultObject(RetValue, LocForRecordReturnVal); 370 return true; 371 } 372 373 bool VisitExpr(Expr *E) { 374 // Clang's AST can have record-type prvalues without a result object -- for 375 // example as full-expressions contained in a compound statement or as 376 // arguments of call expressions. We notice this if we get here and a 377 // storage location has not yet been associated with `E`. In this case, 378 // treat this as if it was a `MaterializeTemporaryExpr`. 379 if (E->isPRValue() && E->getType()->isRecordType() && 380 !ResultObjectMap.contains(E)) 381 PropagateResultObject( 382 E, &cast<RecordStorageLocation>(DACtx.getStableStorageLocation(*E))); 383 return true; 384 } 385 386 void 387 PropagateResultObjectToRecordInitList(const RecordInitListHelper &InitList, 388 RecordStorageLocation *Loc) { 389 for (auto [Base, Init] : InitList.base_inits()) { 390 assert(Base->getType().getCanonicalType() == 391 Init->getType().getCanonicalType()); 392 393 // Storage location for the base class is the same as that of the 394 // derived class because we "flatten" the object hierarchy and put all 395 // fields in `RecordStorageLocation` of the derived class. 396 PropagateResultObject(Init, Loc); 397 } 398 399 for (auto [Field, Init] : InitList.field_inits()) { 400 // Fields of non-record type are handled in 401 // `TransferVisitor::VisitInitListExpr()`. 402 if (Field->getType()->isRecordType()) 403 PropagateResultObject( 404 Init, cast<RecordStorageLocation>(Loc->getChild(*Field))); 405 } 406 } 407 408 // Assigns `Loc` as the result object location of `E`, then propagates the 409 // location to all lower-level prvalues that initialize the same object as 410 // `E` (or one of its base classes or member variables). 411 void PropagateResultObject(Expr *E, RecordStorageLocation *Loc) { 412 if (!E->isPRValue() || !E->getType()->isRecordType()) { 413 assert(false); 414 // Ensure we don't propagate the result object if we hit this in a 415 // release build. 416 return; 417 } 418 419 ResultObjectMap[E] = Loc; 420 421 // The following AST node kinds are "original initializers": They are the 422 // lowest-level AST node that initializes a given object, and nothing 423 // below them can initialize the same object (or part of it). 424 if (isa<CXXConstructExpr>(E) || isa<CallExpr>(E) || isa<LambdaExpr>(E) || 425 isa<CXXDefaultArgExpr>(E) || isa<CXXDefaultInitExpr>(E) || 426 isa<CXXStdInitializerListExpr>(E) || 427 // We treat `BuiltinBitCastExpr` as an "original initializer" too as 428 // it may not even be casting from a record type -- and even if it is, 429 // the two objects are in general of unrelated type. 430 isa<BuiltinBitCastExpr>(E)) { 431 return; 432 } 433 if (auto *Op = dyn_cast<BinaryOperator>(E); 434 Op && Op->getOpcode() == BO_Cmp) { 435 // Builtin `<=>` returns a `std::strong_ordering` object. 436 return; 437 } 438 439 if (auto *InitList = dyn_cast<InitListExpr>(E)) { 440 if (!InitList->isSemanticForm()) 441 return; 442 if (InitList->isTransparent()) { 443 PropagateResultObject(InitList->getInit(0), Loc); 444 return; 445 } 446 447 PropagateResultObjectToRecordInitList(RecordInitListHelper(InitList), 448 Loc); 449 return; 450 } 451 452 if (auto *ParenInitList = dyn_cast<CXXParenListInitExpr>(E)) { 453 PropagateResultObjectToRecordInitList(RecordInitListHelper(ParenInitList), 454 Loc); 455 return; 456 } 457 458 if (auto *Op = dyn_cast<BinaryOperator>(E); Op && Op->isCommaOp()) { 459 PropagateResultObject(Op->getRHS(), Loc); 460 return; 461 } 462 463 if (auto *Cond = dyn_cast<AbstractConditionalOperator>(E)) { 464 PropagateResultObject(Cond->getTrueExpr(), Loc); 465 PropagateResultObject(Cond->getFalseExpr(), Loc); 466 return; 467 } 468 469 if (auto *SE = dyn_cast<StmtExpr>(E)) { 470 PropagateResultObject(cast<Expr>(SE->getSubStmt()->body_back()), Loc); 471 return; 472 } 473 474 // All other expression nodes that propagate a record prvalue should have 475 // exactly one child. 476 SmallVector<Stmt *, 1> Children(E->child_begin(), E->child_end()); 477 LLVM_DEBUG({ 478 if (Children.size() != 1) 479 E->dump(); 480 }); 481 assert(Children.size() == 1); 482 for (Stmt *S : Children) 483 PropagateResultObject(cast<Expr>(S), Loc); 484 } 485 486 private: 487 llvm::DenseMap<const Expr *, RecordStorageLocation *> &ResultObjectMap; 488 RecordStorageLocation *LocForRecordReturnVal; 489 DataflowAnalysisContext &DACtx; 490 }; 491 492 } // namespace 493 494 Environment::Environment(DataflowAnalysisContext &DACtx) 495 : DACtx(&DACtx), 496 FlowConditionToken(DACtx.arena().makeFlowConditionToken()) {} 497 498 Environment::Environment(DataflowAnalysisContext &DACtx, 499 const DeclContext &DeclCtx) 500 : Environment(DACtx) { 501 CallStack.push_back(&DeclCtx); 502 } 503 504 void Environment::initialize() { 505 const DeclContext *DeclCtx = getDeclCtx(); 506 if (DeclCtx == nullptr) 507 return; 508 509 const auto *FuncDecl = dyn_cast<FunctionDecl>(DeclCtx); 510 if (FuncDecl == nullptr) 511 return; 512 513 assert(FuncDecl->doesThisDeclarationHaveABody()); 514 515 initFieldsGlobalsAndFuncs(FuncDecl); 516 517 for (const auto *ParamDecl : FuncDecl->parameters()) { 518 assert(ParamDecl != nullptr); 519 setStorageLocation(*ParamDecl, createObject(*ParamDecl, nullptr)); 520 } 521 522 if (FuncDecl->getReturnType()->isRecordType()) 523 LocForRecordReturnVal = &cast<RecordStorageLocation>( 524 createStorageLocation(FuncDecl->getReturnType())); 525 526 if (const auto *MethodDecl = dyn_cast<CXXMethodDecl>(DeclCtx)) { 527 auto *Parent = MethodDecl->getParent(); 528 assert(Parent != nullptr); 529 530 if (Parent->isLambda()) { 531 for (const auto &Capture : Parent->captures()) { 532 if (Capture.capturesVariable()) { 533 const auto *VarDecl = Capture.getCapturedVar(); 534 assert(VarDecl != nullptr); 535 setStorageLocation(*VarDecl, createObject(*VarDecl, nullptr)); 536 } else if (Capture.capturesThis()) { 537 const auto *SurroundingMethodDecl = 538 cast<CXXMethodDecl>(DeclCtx->getNonClosureAncestor()); 539 QualType ThisPointeeType = 540 SurroundingMethodDecl->getFunctionObjectParameterType(); 541 setThisPointeeStorageLocation( 542 cast<RecordStorageLocation>(createObject(ThisPointeeType))); 543 } 544 } 545 } else if (MethodDecl->isImplicitObjectMemberFunction()) { 546 QualType ThisPointeeType = MethodDecl->getFunctionObjectParameterType(); 547 auto &ThisLoc = 548 cast<RecordStorageLocation>(createStorageLocation(ThisPointeeType)); 549 setThisPointeeStorageLocation(ThisLoc); 550 // Initialize fields of `*this` with values, but only if we're not 551 // analyzing a constructor; after all, it's the constructor's job to do 552 // this (and we want to be able to test that). 553 if (!isa<CXXConstructorDecl>(MethodDecl)) 554 initializeFieldsWithValues(ThisLoc); 555 } 556 } 557 558 // We do this below the handling of `CXXMethodDecl` above so that we can 559 // be sure that the storage location for `this` has been set. 560 ResultObjectMap = std::make_shared<PrValueToResultObject>( 561 buildResultObjectMap(DACtx, FuncDecl, getThisPointeeStorageLocation(), 562 LocForRecordReturnVal)); 563 } 564 565 // FIXME: Add support for resetting globals after function calls to enable 566 // the implementation of sound analyses. 567 void Environment::initFieldsGlobalsAndFuncs(const FunctionDecl *FuncDecl) { 568 assert(FuncDecl->doesThisDeclarationHaveABody()); 569 570 ReferencedDecls Referenced = getReferencedDecls(*FuncDecl); 571 572 // These have to be added before the lines that follow to ensure that 573 // `create*` work correctly for structs. 574 DACtx->addModeledFields(Referenced.Fields); 575 576 for (const VarDecl *D : Referenced.Globals) { 577 if (getStorageLocation(*D) != nullptr) 578 continue; 579 580 // We don't run transfer functions on the initializers of global variables, 581 // so they won't be associated with a value or storage location. We 582 // therefore intentionally don't pass an initializer to `createObject()`; 583 // in particular, this ensures that `createObject()` will initialize the 584 // fields of record-type variables with values. 585 setStorageLocation(*D, createObject(*D, nullptr)); 586 } 587 588 for (const FunctionDecl *FD : Referenced.Functions) { 589 if (getStorageLocation(*FD) != nullptr) 590 continue; 591 auto &Loc = createStorageLocation(*FD); 592 setStorageLocation(*FD, Loc); 593 } 594 } 595 596 Environment Environment::fork() const { 597 Environment Copy(*this); 598 Copy.FlowConditionToken = DACtx->forkFlowCondition(FlowConditionToken); 599 return Copy; 600 } 601 602 bool Environment::canDescend(unsigned MaxDepth, 603 const DeclContext *Callee) const { 604 return CallStack.size() <= MaxDepth && !llvm::is_contained(CallStack, Callee); 605 } 606 607 Environment Environment::pushCall(const CallExpr *Call) const { 608 Environment Env(*this); 609 610 if (const auto *MethodCall = dyn_cast<CXXMemberCallExpr>(Call)) { 611 if (const Expr *Arg = MethodCall->getImplicitObjectArgument()) { 612 if (!isa<CXXThisExpr>(Arg)) 613 Env.ThisPointeeLoc = 614 cast<RecordStorageLocation>(getStorageLocation(*Arg)); 615 // Otherwise (when the argument is `this`), retain the current 616 // environment's `ThisPointeeLoc`. 617 } 618 } 619 620 if (Call->getType()->isRecordType() && Call->isPRValue()) 621 Env.LocForRecordReturnVal = &Env.getResultObjectLocation(*Call); 622 623 Env.pushCallInternal(Call->getDirectCallee(), 624 llvm::ArrayRef(Call->getArgs(), Call->getNumArgs())); 625 626 return Env; 627 } 628 629 Environment Environment::pushCall(const CXXConstructExpr *Call) const { 630 Environment Env(*this); 631 632 Env.ThisPointeeLoc = &Env.getResultObjectLocation(*Call); 633 Env.LocForRecordReturnVal = &Env.getResultObjectLocation(*Call); 634 635 Env.pushCallInternal(Call->getConstructor(), 636 llvm::ArrayRef(Call->getArgs(), Call->getNumArgs())); 637 638 return Env; 639 } 640 641 void Environment::pushCallInternal(const FunctionDecl *FuncDecl, 642 ArrayRef<const Expr *> Args) { 643 // Canonicalize to the definition of the function. This ensures that we're 644 // putting arguments into the same `ParamVarDecl`s` that the callee will later 645 // be retrieving them from. 646 assert(FuncDecl->getDefinition() != nullptr); 647 FuncDecl = FuncDecl->getDefinition(); 648 649 CallStack.push_back(FuncDecl); 650 651 initFieldsGlobalsAndFuncs(FuncDecl); 652 653 const auto *ParamIt = FuncDecl->param_begin(); 654 655 // FIXME: Parameters don't always map to arguments 1:1; examples include 656 // overloaded operators implemented as member functions, and parameter packs. 657 for (unsigned ArgIndex = 0; ArgIndex < Args.size(); ++ParamIt, ++ArgIndex) { 658 assert(ParamIt != FuncDecl->param_end()); 659 const VarDecl *Param = *ParamIt; 660 setStorageLocation(*Param, createObject(*Param, Args[ArgIndex])); 661 } 662 663 ResultObjectMap = std::make_shared<PrValueToResultObject>( 664 buildResultObjectMap(DACtx, FuncDecl, getThisPointeeStorageLocation(), 665 LocForRecordReturnVal)); 666 } 667 668 void Environment::popCall(const CallExpr *Call, const Environment &CalleeEnv) { 669 // We ignore some entries of `CalleeEnv`: 670 // - `DACtx` because is already the same in both 671 // - We don't want the callee's `DeclCtx`, `ReturnVal`, `ReturnLoc` or 672 // `ThisPointeeLoc` because they don't apply to us. 673 // - `DeclToLoc`, `ExprToLoc`, and `ExprToVal` capture information from the 674 // callee's local scope, so when popping that scope, we do not propagate 675 // the maps. 676 this->LocToVal = std::move(CalleeEnv.LocToVal); 677 this->FlowConditionToken = std::move(CalleeEnv.FlowConditionToken); 678 679 if (Call->isGLValue()) { 680 if (CalleeEnv.ReturnLoc != nullptr) 681 setStorageLocation(*Call, *CalleeEnv.ReturnLoc); 682 } else if (!Call->getType()->isVoidType()) { 683 if (CalleeEnv.ReturnVal != nullptr) 684 setValue(*Call, *CalleeEnv.ReturnVal); 685 } 686 } 687 688 void Environment::popCall(const CXXConstructExpr *Call, 689 const Environment &CalleeEnv) { 690 // See also comment in `popCall(const CallExpr *, const Environment &)` above. 691 this->LocToVal = std::move(CalleeEnv.LocToVal); 692 this->FlowConditionToken = std::move(CalleeEnv.FlowConditionToken); 693 } 694 695 bool Environment::equivalentTo(const Environment &Other, 696 Environment::ValueModel &Model) const { 697 assert(DACtx == Other.DACtx); 698 699 if (ReturnVal != Other.ReturnVal) 700 return false; 701 702 if (ReturnLoc != Other.ReturnLoc) 703 return false; 704 705 if (LocForRecordReturnVal != Other.LocForRecordReturnVal) 706 return false; 707 708 if (ThisPointeeLoc != Other.ThisPointeeLoc) 709 return false; 710 711 if (DeclToLoc != Other.DeclToLoc) 712 return false; 713 714 if (ExprToLoc != Other.ExprToLoc) 715 return false; 716 717 if (!compareKeyToValueMaps(ExprToVal, Other.ExprToVal, *this, Other, Model)) 718 return false; 719 720 if (!compareKeyToValueMaps(LocToVal, Other.LocToVal, *this, Other, Model)) 721 return false; 722 723 return true; 724 } 725 726 LatticeEffect Environment::widen(const Environment &PrevEnv, 727 Environment::ValueModel &Model) { 728 assert(DACtx == PrevEnv.DACtx); 729 assert(ReturnVal == PrevEnv.ReturnVal); 730 assert(ReturnLoc == PrevEnv.ReturnLoc); 731 assert(LocForRecordReturnVal == PrevEnv.LocForRecordReturnVal); 732 assert(ThisPointeeLoc == PrevEnv.ThisPointeeLoc); 733 assert(CallStack == PrevEnv.CallStack); 734 assert(ResultObjectMap == PrevEnv.ResultObjectMap); 735 736 auto Effect = LatticeEffect::Unchanged; 737 738 // By the API, `PrevEnv` is a previous version of the environment for the same 739 // block, so we have some guarantees about its shape. In particular, it will 740 // be the result of a join or widen operation on previous values for this 741 // block. For `DeclToLoc`, `ExprToVal`, and `ExprToLoc`, join guarantees that 742 // these maps are subsets of the maps in `PrevEnv`. So, as long as we maintain 743 // this property here, we don't need change their current values to widen. 744 assert(DeclToLoc.size() <= PrevEnv.DeclToLoc.size()); 745 assert(ExprToVal.size() <= PrevEnv.ExprToVal.size()); 746 assert(ExprToLoc.size() <= PrevEnv.ExprToLoc.size()); 747 748 ExprToVal = widenKeyToValueMap(ExprToVal, PrevEnv.ExprToVal, *this, PrevEnv, 749 Model, Effect); 750 751 LocToVal = widenKeyToValueMap(LocToVal, PrevEnv.LocToVal, *this, PrevEnv, 752 Model, Effect); 753 if (DeclToLoc.size() != PrevEnv.DeclToLoc.size() || 754 ExprToLoc.size() != PrevEnv.ExprToLoc.size() || 755 ExprToVal.size() != PrevEnv.ExprToVal.size() || 756 LocToVal.size() != PrevEnv.LocToVal.size()) 757 Effect = LatticeEffect::Changed; 758 759 return Effect; 760 } 761 762 Environment Environment::join(const Environment &EnvA, const Environment &EnvB, 763 Environment::ValueModel &Model, 764 ExprJoinBehavior ExprBehavior) { 765 assert(EnvA.DACtx == EnvB.DACtx); 766 assert(EnvA.LocForRecordReturnVal == EnvB.LocForRecordReturnVal); 767 assert(EnvA.ThisPointeeLoc == EnvB.ThisPointeeLoc); 768 assert(EnvA.CallStack == EnvB.CallStack); 769 assert(EnvA.ResultObjectMap == EnvB.ResultObjectMap); 770 771 Environment JoinedEnv(*EnvA.DACtx); 772 773 JoinedEnv.CallStack = EnvA.CallStack; 774 JoinedEnv.ResultObjectMap = EnvA.ResultObjectMap; 775 JoinedEnv.LocForRecordReturnVal = EnvA.LocForRecordReturnVal; 776 JoinedEnv.ThisPointeeLoc = EnvA.ThisPointeeLoc; 777 778 if (EnvA.ReturnVal == nullptr || EnvB.ReturnVal == nullptr) { 779 // `ReturnVal` might not always get set -- for example if we have a return 780 // statement of the form `return some_other_func()` and we decide not to 781 // analyze `some_other_func()`. 782 // In this case, we can't say anything about the joined return value -- we 783 // don't simply want to propagate the return value that we do have, because 784 // it might not be the correct one. 785 // This occurs for example in the test `ContextSensitiveMutualRecursion`. 786 JoinedEnv.ReturnVal = nullptr; 787 } else if (areEquivalentValues(*EnvA.ReturnVal, *EnvB.ReturnVal)) { 788 JoinedEnv.ReturnVal = EnvA.ReturnVal; 789 } else { 790 assert(!EnvA.CallStack.empty()); 791 // FIXME: Make `CallStack` a vector of `FunctionDecl` so we don't need this 792 // cast. 793 auto *Func = dyn_cast<FunctionDecl>(EnvA.CallStack.back()); 794 assert(Func != nullptr); 795 if (Value *JoinedVal = 796 joinDistinctValues(Func->getReturnType(), *EnvA.ReturnVal, EnvA, 797 *EnvB.ReturnVal, EnvB, JoinedEnv, Model)) 798 JoinedEnv.ReturnVal = JoinedVal; 799 } 800 801 if (EnvA.ReturnLoc == EnvB.ReturnLoc) 802 JoinedEnv.ReturnLoc = EnvA.ReturnLoc; 803 else 804 JoinedEnv.ReturnLoc = nullptr; 805 806 JoinedEnv.DeclToLoc = intersectDeclToLoc(EnvA.DeclToLoc, EnvB.DeclToLoc); 807 808 // FIXME: update join to detect backedges and simplify the flow condition 809 // accordingly. 810 JoinedEnv.FlowConditionToken = EnvA.DACtx->joinFlowConditions( 811 EnvA.FlowConditionToken, EnvB.FlowConditionToken); 812 813 JoinedEnv.LocToVal = 814 joinLocToVal(EnvA.LocToVal, EnvB.LocToVal, EnvA, EnvB, JoinedEnv, Model); 815 816 if (ExprBehavior == KeepExprState) { 817 JoinedEnv.ExprToVal = joinExprMaps(EnvA.ExprToVal, EnvB.ExprToVal); 818 JoinedEnv.ExprToLoc = joinExprMaps(EnvA.ExprToLoc, EnvB.ExprToLoc); 819 } 820 821 return JoinedEnv; 822 } 823 824 StorageLocation &Environment::createStorageLocation(QualType Type) { 825 return DACtx->createStorageLocation(Type); 826 } 827 828 StorageLocation &Environment::createStorageLocation(const ValueDecl &D) { 829 // Evaluated declarations are always assigned the same storage locations to 830 // ensure that the environment stabilizes across loop iterations. Storage 831 // locations for evaluated declarations are stored in the analysis context. 832 return DACtx->getStableStorageLocation(D); 833 } 834 835 StorageLocation &Environment::createStorageLocation(const Expr &E) { 836 // Evaluated expressions are always assigned the same storage locations to 837 // ensure that the environment stabilizes across loop iterations. Storage 838 // locations for evaluated expressions are stored in the analysis context. 839 return DACtx->getStableStorageLocation(E); 840 } 841 842 void Environment::setStorageLocation(const ValueDecl &D, StorageLocation &Loc) { 843 assert(!DeclToLoc.contains(&D)); 844 // The only kinds of declarations that may have a "variable" storage location 845 // are declarations of reference type and `BindingDecl`. For all other 846 // declaration, the storage location should be the stable storage location 847 // returned by `createStorageLocation()`. 848 assert(D.getType()->isReferenceType() || isa<BindingDecl>(D) || 849 &Loc == &createStorageLocation(D)); 850 DeclToLoc[&D] = &Loc; 851 } 852 853 StorageLocation *Environment::getStorageLocation(const ValueDecl &D) const { 854 auto It = DeclToLoc.find(&D); 855 if (It == DeclToLoc.end()) 856 return nullptr; 857 858 StorageLocation *Loc = It->second; 859 860 return Loc; 861 } 862 863 void Environment::removeDecl(const ValueDecl &D) { DeclToLoc.erase(&D); } 864 865 void Environment::setStorageLocation(const Expr &E, StorageLocation &Loc) { 866 // `DeclRefExpr`s to builtin function types aren't glvalues, for some reason, 867 // but we still want to be able to associate a `StorageLocation` with them, 868 // so allow these as an exception. 869 assert(E.isGLValue() || 870 E.getType()->isSpecificBuiltinType(BuiltinType::BuiltinFn)); 871 const Expr &CanonE = ignoreCFGOmittedNodes(E); 872 assert(!ExprToLoc.contains(&CanonE)); 873 ExprToLoc[&CanonE] = &Loc; 874 } 875 876 StorageLocation *Environment::getStorageLocation(const Expr &E) const { 877 // See comment in `setStorageLocation()`. 878 assert(E.isGLValue() || 879 E.getType()->isSpecificBuiltinType(BuiltinType::BuiltinFn)); 880 auto It = ExprToLoc.find(&ignoreCFGOmittedNodes(E)); 881 return It == ExprToLoc.end() ? nullptr : &*It->second; 882 } 883 884 RecordStorageLocation & 885 Environment::getResultObjectLocation(const Expr &RecordPRValue) const { 886 assert(RecordPRValue.getType()->isRecordType()); 887 assert(RecordPRValue.isPRValue()); 888 889 assert(ResultObjectMap != nullptr); 890 RecordStorageLocation *Loc = ResultObjectMap->lookup(&RecordPRValue); 891 assert(Loc != nullptr); 892 // In release builds, use the "stable" storage location if the map lookup 893 // failed. 894 if (Loc == nullptr) 895 return cast<RecordStorageLocation>( 896 DACtx->getStableStorageLocation(RecordPRValue)); 897 return *Loc; 898 } 899 900 PointerValue &Environment::getOrCreateNullPointerValue(QualType PointeeType) { 901 return DACtx->getOrCreateNullPointerValue(PointeeType); 902 } 903 904 void Environment::initializeFieldsWithValues(RecordStorageLocation &Loc, 905 QualType Type) { 906 llvm::DenseSet<QualType> Visited; 907 int CreatedValuesCount = 0; 908 initializeFieldsWithValues(Loc, Type, Visited, 0, CreatedValuesCount); 909 if (CreatedValuesCount > MaxCompositeValueSize) { 910 llvm::errs() << "Attempting to initialize a huge value of type: " << Type 911 << '\n'; 912 } 913 } 914 915 void Environment::setValue(const StorageLocation &Loc, Value &Val) { 916 // Records should not be associated with values. 917 assert(!isa<RecordStorageLocation>(Loc)); 918 LocToVal[&Loc] = &Val; 919 } 920 921 void Environment::setValue(const Expr &E, Value &Val) { 922 const Expr &CanonE = ignoreCFGOmittedNodes(E); 923 924 assert(CanonE.isPRValue()); 925 // Records should not be associated with values. 926 assert(!CanonE.getType()->isRecordType()); 927 ExprToVal[&CanonE] = &Val; 928 } 929 930 Value *Environment::getValue(const StorageLocation &Loc) const { 931 // Records should not be associated with values. 932 assert(!isa<RecordStorageLocation>(Loc)); 933 return LocToVal.lookup(&Loc); 934 } 935 936 Value *Environment::getValue(const ValueDecl &D) const { 937 auto *Loc = getStorageLocation(D); 938 if (Loc == nullptr) 939 return nullptr; 940 return getValue(*Loc); 941 } 942 943 Value *Environment::getValue(const Expr &E) const { 944 // Records should not be associated with values. 945 assert(!E.getType()->isRecordType()); 946 947 if (E.isPRValue()) { 948 auto It = ExprToVal.find(&ignoreCFGOmittedNodes(E)); 949 return It == ExprToVal.end() ? nullptr : It->second; 950 } 951 952 auto It = ExprToLoc.find(&ignoreCFGOmittedNodes(E)); 953 if (It == ExprToLoc.end()) 954 return nullptr; 955 return getValue(*It->second); 956 } 957 958 Value *Environment::createValue(QualType Type) { 959 llvm::DenseSet<QualType> Visited; 960 int CreatedValuesCount = 0; 961 Value *Val = createValueUnlessSelfReferential(Type, Visited, /*Depth=*/0, 962 CreatedValuesCount); 963 if (CreatedValuesCount > MaxCompositeValueSize) { 964 llvm::errs() << "Attempting to initialize a huge value of type: " << Type 965 << '\n'; 966 } 967 return Val; 968 } 969 970 Value *Environment::createValueUnlessSelfReferential( 971 QualType Type, llvm::DenseSet<QualType> &Visited, int Depth, 972 int &CreatedValuesCount) { 973 assert(!Type.isNull()); 974 assert(!Type->isReferenceType()); 975 assert(!Type->isRecordType()); 976 977 // Allow unlimited fields at depth 1; only cap at deeper nesting levels. 978 if ((Depth > 1 && CreatedValuesCount > MaxCompositeValueSize) || 979 Depth > MaxCompositeValueDepth) 980 return nullptr; 981 982 if (Type->isBooleanType()) { 983 CreatedValuesCount++; 984 return &makeAtomicBoolValue(); 985 } 986 987 if (Type->isIntegerType()) { 988 // FIXME: consider instead `return nullptr`, given that we do nothing useful 989 // with integers, and so distinguishing them serves no purpose, but could 990 // prevent convergence. 991 CreatedValuesCount++; 992 return &arena().create<IntegerValue>(); 993 } 994 995 if (Type->isPointerType()) { 996 CreatedValuesCount++; 997 QualType PointeeType = Type->getPointeeType(); 998 StorageLocation &PointeeLoc = 999 createLocAndMaybeValue(PointeeType, Visited, Depth, CreatedValuesCount); 1000 1001 return &arena().create<PointerValue>(PointeeLoc); 1002 } 1003 1004 return nullptr; 1005 } 1006 1007 StorageLocation & 1008 Environment::createLocAndMaybeValue(QualType Ty, 1009 llvm::DenseSet<QualType> &Visited, 1010 int Depth, int &CreatedValuesCount) { 1011 if (!Visited.insert(Ty.getCanonicalType()).second) 1012 return createStorageLocation(Ty.getNonReferenceType()); 1013 auto EraseVisited = llvm::make_scope_exit( 1014 [&Visited, Ty] { Visited.erase(Ty.getCanonicalType()); }); 1015 1016 Ty = Ty.getNonReferenceType(); 1017 1018 if (Ty->isRecordType()) { 1019 auto &Loc = cast<RecordStorageLocation>(createStorageLocation(Ty)); 1020 initializeFieldsWithValues(Loc, Ty, Visited, Depth, CreatedValuesCount); 1021 return Loc; 1022 } 1023 1024 StorageLocation &Loc = createStorageLocation(Ty); 1025 1026 if (Value *Val = createValueUnlessSelfReferential(Ty, Visited, Depth, 1027 CreatedValuesCount)) 1028 setValue(Loc, *Val); 1029 1030 return Loc; 1031 } 1032 1033 void Environment::initializeFieldsWithValues(RecordStorageLocation &Loc, 1034 QualType Type, 1035 llvm::DenseSet<QualType> &Visited, 1036 int Depth, 1037 int &CreatedValuesCount) { 1038 auto initField = [&](QualType FieldType, StorageLocation &FieldLoc) { 1039 if (FieldType->isRecordType()) { 1040 auto &FieldRecordLoc = cast<RecordStorageLocation>(FieldLoc); 1041 initializeFieldsWithValues(FieldRecordLoc, FieldRecordLoc.getType(), 1042 Visited, Depth + 1, CreatedValuesCount); 1043 } else { 1044 if (getValue(FieldLoc) != nullptr) 1045 return; 1046 if (!Visited.insert(FieldType.getCanonicalType()).second) 1047 return; 1048 if (Value *Val = createValueUnlessSelfReferential( 1049 FieldType, Visited, Depth + 1, CreatedValuesCount)) 1050 setValue(FieldLoc, *Val); 1051 Visited.erase(FieldType.getCanonicalType()); 1052 } 1053 }; 1054 1055 for (const FieldDecl *Field : DACtx->getModeledFields(Type)) { 1056 assert(Field != nullptr); 1057 QualType FieldType = Field->getType(); 1058 1059 if (FieldType->isReferenceType()) { 1060 Loc.setChild(*Field, 1061 &createLocAndMaybeValue(FieldType, Visited, Depth + 1, 1062 CreatedValuesCount)); 1063 } else { 1064 StorageLocation *FieldLoc = Loc.getChild(*Field); 1065 assert(FieldLoc != nullptr); 1066 initField(FieldType, *FieldLoc); 1067 } 1068 } 1069 for (const auto &[FieldName, FieldType] : DACtx->getSyntheticFields(Type)) { 1070 // Synthetic fields cannot have reference type, so we don't need to deal 1071 // with this case. 1072 assert(!FieldType->isReferenceType()); 1073 initField(FieldType, Loc.getSyntheticField(FieldName)); 1074 } 1075 } 1076 1077 StorageLocation &Environment::createObjectInternal(const ValueDecl *D, 1078 QualType Ty, 1079 const Expr *InitExpr) { 1080 if (Ty->isReferenceType()) { 1081 // Although variables of reference type always need to be initialized, it 1082 // can happen that we can't see the initializer, so `InitExpr` may still 1083 // be null. 1084 if (InitExpr) { 1085 if (auto *InitExprLoc = getStorageLocation(*InitExpr)) 1086 return *InitExprLoc; 1087 } 1088 1089 // Even though we have an initializer, we might not get an 1090 // InitExprLoc, for example if the InitExpr is a CallExpr for which we 1091 // don't have a function body. In this case, we just invent a storage 1092 // location and value -- it's the best we can do. 1093 return createObjectInternal(D, Ty.getNonReferenceType(), nullptr); 1094 } 1095 1096 StorageLocation &Loc = 1097 D ? createStorageLocation(*D) : createStorageLocation(Ty); 1098 1099 if (Ty->isRecordType()) { 1100 auto &RecordLoc = cast<RecordStorageLocation>(Loc); 1101 if (!InitExpr) 1102 initializeFieldsWithValues(RecordLoc); 1103 } else { 1104 Value *Val = nullptr; 1105 if (InitExpr) 1106 // In the (few) cases where an expression is intentionally 1107 // "uninterpreted", `InitExpr` is not associated with a value. There are 1108 // two ways to handle this situation: propagate the status, so that 1109 // uninterpreted initializers result in uninterpreted variables, or 1110 // provide a default value. We choose the latter so that later refinements 1111 // of the variable can be used for reasoning about the surrounding code. 1112 // For this reason, we let this case be handled by the `createValue()` 1113 // call below. 1114 // 1115 // FIXME. If and when we interpret all language cases, change this to 1116 // assert that `InitExpr` is interpreted, rather than supplying a 1117 // default value (assuming we don't update the environment API to return 1118 // references). 1119 Val = getValue(*InitExpr); 1120 if (!Val) 1121 Val = createValue(Ty); 1122 if (Val) 1123 setValue(Loc, *Val); 1124 } 1125 1126 return Loc; 1127 } 1128 1129 void Environment::assume(const Formula &F) { 1130 DACtx->addFlowConditionConstraint(FlowConditionToken, F); 1131 } 1132 1133 bool Environment::proves(const Formula &F) const { 1134 return DACtx->flowConditionImplies(FlowConditionToken, F); 1135 } 1136 1137 bool Environment::allows(const Formula &F) const { 1138 return DACtx->flowConditionAllows(FlowConditionToken, F); 1139 } 1140 1141 void Environment::dump(raw_ostream &OS) const { 1142 llvm::DenseMap<const StorageLocation *, std::string> LocToName; 1143 if (LocForRecordReturnVal != nullptr) 1144 LocToName[LocForRecordReturnVal] = "(returned record)"; 1145 if (ThisPointeeLoc != nullptr) 1146 LocToName[ThisPointeeLoc] = "this"; 1147 1148 OS << "DeclToLoc:\n"; 1149 for (auto [D, L] : DeclToLoc) { 1150 auto Iter = LocToName.insert({L, D->getNameAsString()}).first; 1151 OS << " [" << Iter->second << ", " << L << "]\n"; 1152 } 1153 OS << "ExprToLoc:\n"; 1154 for (auto [E, L] : ExprToLoc) 1155 OS << " [" << E << ", " << L << "]\n"; 1156 1157 OS << "ExprToVal:\n"; 1158 for (auto [E, V] : ExprToVal) 1159 OS << " [" << E << ", " << V << ": " << *V << "]\n"; 1160 1161 OS << "LocToVal:\n"; 1162 for (auto [L, V] : LocToVal) { 1163 OS << " [" << L; 1164 if (auto Iter = LocToName.find(L); Iter != LocToName.end()) 1165 OS << " (" << Iter->second << ")"; 1166 OS << ", " << V << ": " << *V << "]\n"; 1167 } 1168 1169 if (const FunctionDecl *Func = getCurrentFunc()) { 1170 if (Func->getReturnType()->isReferenceType()) { 1171 OS << "ReturnLoc: " << ReturnLoc; 1172 if (auto Iter = LocToName.find(ReturnLoc); Iter != LocToName.end()) 1173 OS << " (" << Iter->second << ")"; 1174 OS << "\n"; 1175 } else if (Func->getReturnType()->isRecordType() || 1176 isa<CXXConstructorDecl>(Func)) { 1177 OS << "LocForRecordReturnVal: " << LocForRecordReturnVal << "\n"; 1178 } else if (!Func->getReturnType()->isVoidType()) { 1179 if (ReturnVal == nullptr) 1180 OS << "ReturnVal: nullptr\n"; 1181 else 1182 OS << "ReturnVal: " << *ReturnVal << "\n"; 1183 } 1184 1185 if (isa<CXXMethodDecl>(Func)) { 1186 OS << "ThisPointeeLoc: " << ThisPointeeLoc << "\n"; 1187 } 1188 } 1189 1190 OS << "\n"; 1191 DACtx->dumpFlowCondition(FlowConditionToken, OS); 1192 } 1193 1194 void Environment::dump() const { dump(llvm::dbgs()); } 1195 1196 Environment::PrValueToResultObject Environment::buildResultObjectMap( 1197 DataflowAnalysisContext *DACtx, const FunctionDecl *FuncDecl, 1198 RecordStorageLocation *ThisPointeeLoc, 1199 RecordStorageLocation *LocForRecordReturnVal) { 1200 assert(FuncDecl->doesThisDeclarationHaveABody()); 1201 1202 PrValueToResultObject Map; 1203 1204 ResultObjectVisitor Visitor(Map, LocForRecordReturnVal, *DACtx); 1205 if (const auto *Ctor = dyn_cast<CXXConstructorDecl>(FuncDecl)) 1206 Visitor.TraverseConstructorInits(Ctor, ThisPointeeLoc); 1207 Visitor.TraverseStmt(FuncDecl->getBody()); 1208 1209 return Map; 1210 } 1211 1212 RecordStorageLocation *getImplicitObjectLocation(const CXXMemberCallExpr &MCE, 1213 const Environment &Env) { 1214 Expr *ImplicitObject = MCE.getImplicitObjectArgument(); 1215 if (ImplicitObject == nullptr) 1216 return nullptr; 1217 if (ImplicitObject->getType()->isPointerType()) { 1218 if (auto *Val = Env.get<PointerValue>(*ImplicitObject)) 1219 return &cast<RecordStorageLocation>(Val->getPointeeLoc()); 1220 return nullptr; 1221 } 1222 return cast_or_null<RecordStorageLocation>( 1223 Env.getStorageLocation(*ImplicitObject)); 1224 } 1225 1226 RecordStorageLocation *getBaseObjectLocation(const MemberExpr &ME, 1227 const Environment &Env) { 1228 Expr *Base = ME.getBase(); 1229 if (Base == nullptr) 1230 return nullptr; 1231 if (ME.isArrow()) { 1232 if (auto *Val = Env.get<PointerValue>(*Base)) 1233 return &cast<RecordStorageLocation>(Val->getPointeeLoc()); 1234 return nullptr; 1235 } 1236 return Env.get<RecordStorageLocation>(*Base); 1237 } 1238 1239 } // namespace dataflow 1240 } // namespace clang 1241