xref: /llvm-project/clang/lib/Analysis/ExprMutationAnalyzer.cpp (revision ae20dbdd63d97c342b89a72e9e839556d0deed07)
1 //===---------- ExprMutationAnalyzer.cpp ----------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 #include "clang/Analysis/Analyses/ExprMutationAnalyzer.h"
9 #include "clang/AST/Expr.h"
10 #include "clang/AST/OperationKinds.h"
11 #include "clang/ASTMatchers/ASTMatchFinder.h"
12 #include "clang/ASTMatchers/ASTMatchers.h"
13 #include "llvm/ADT/STLExtras.h"
14 
15 namespace clang {
16 using namespace ast_matchers;
17 
18 // Check if result of Source expression could be a Target expression.
19 // Checks:
20 //  - Implicit Casts
21 //  - Binary Operators
22 //  - ConditionalOperator
23 //  - BinaryConditionalOperator
24 static bool canExprResolveTo(const Expr *Source, const Expr *Target) {
25 
26   const auto IgnoreDerivedToBase = [](const Expr *E, auto Matcher) {
27     if (Matcher(E))
28       return true;
29     if (const auto *Cast = dyn_cast<ImplicitCastExpr>(E)) {
30       if ((Cast->getCastKind() == CK_DerivedToBase ||
31            Cast->getCastKind() == CK_UncheckedDerivedToBase) &&
32           Matcher(Cast->getSubExpr()))
33         return true;
34     }
35     return false;
36   };
37 
38   const auto EvalCommaExpr = [](const Expr *E, auto Matcher) {
39     const Expr *Result = E;
40     while (const auto *BOComma =
41                dyn_cast_or_null<BinaryOperator>(Result->IgnoreParens())) {
42       if (!BOComma->isCommaOp())
43         break;
44       Result = BOComma->getRHS();
45     }
46 
47     return Result != E && Matcher(Result);
48   };
49 
50   // The 'ConditionalOperatorM' matches on `<anything> ? <expr> : <expr>`.
51   // This matching must be recursive because `<expr>` can be anything resolving
52   // to the `InnerMatcher`, for example another conditional operator.
53   // The edge-case `BaseClass &b = <cond> ? DerivedVar1 : DerivedVar2;`
54   // is handled, too. The implicit cast happens outside of the conditional.
55   // This is matched by `IgnoreDerivedToBase(canResolveToExpr(InnerMatcher))`
56   // below.
57   const auto ConditionalOperatorM = [Target](const Expr *E) {
58     if (const auto *OP = dyn_cast<ConditionalOperator>(E)) {
59       if (const auto *TE = OP->getTrueExpr()->IgnoreParens())
60         if (canExprResolveTo(TE, Target))
61           return true;
62       if (const auto *FE = OP->getFalseExpr()->IgnoreParens())
63         if (canExprResolveTo(FE, Target))
64           return true;
65     }
66     return false;
67   };
68 
69   const auto ElvisOperator = [Target](const Expr *E) {
70     if (const auto *OP = dyn_cast<BinaryConditionalOperator>(E)) {
71       if (const auto *TE = OP->getTrueExpr()->IgnoreParens())
72         if (canExprResolveTo(TE, Target))
73           return true;
74       if (const auto *FE = OP->getFalseExpr()->IgnoreParens())
75         if (canExprResolveTo(FE, Target))
76           return true;
77     }
78     return false;
79   };
80 
81   const Expr *SourceExprP = Source->IgnoreParens();
82   return IgnoreDerivedToBase(SourceExprP,
83                              [&](const Expr *E) {
84                                return E == Target || ConditionalOperatorM(E) ||
85                                       ElvisOperator(E);
86                              }) ||
87          EvalCommaExpr(SourceExprP, [&](const Expr *E) {
88            return IgnoreDerivedToBase(
89                E->IgnoreParens(), [&](const Expr *EE) { return EE == Target; });
90          });
91 }
92 
93 namespace {
94 
95 AST_MATCHER_P(LambdaExpr, hasCaptureInit, const Expr *, E) {
96   return llvm::is_contained(Node.capture_inits(), E);
97 }
98 
99 AST_MATCHER_P(CXXForRangeStmt, hasRangeStmt,
100               ast_matchers::internal::Matcher<DeclStmt>, InnerMatcher) {
101   const DeclStmt *const Range = Node.getRangeStmt();
102   return InnerMatcher.matches(*Range, Finder, Builder);
103 }
104 
105 AST_MATCHER_P(Stmt, canResolveToExpr, const Stmt *, Inner) {
106   auto *Exp = dyn_cast<Expr>(&Node);
107   if (!Exp)
108     return true;
109   auto *Target = dyn_cast<Expr>(Inner);
110   if (!Target)
111     return false;
112   return canExprResolveTo(Exp, Target);
113 }
114 
115 // Similar to 'hasAnyArgument', but does not work because 'InitListExpr' does
116 // not have the 'arguments()' method.
117 AST_MATCHER_P(InitListExpr, hasAnyInit, ast_matchers::internal::Matcher<Expr>,
118               InnerMatcher) {
119   for (const Expr *Arg : Node.inits()) {
120     ast_matchers::internal::BoundNodesTreeBuilder Result(*Builder);
121     if (InnerMatcher.matches(*Arg, Finder, &Result)) {
122       *Builder = std::move(Result);
123       return true;
124     }
125   }
126   return false;
127 }
128 
129 const ast_matchers::internal::VariadicDynCastAllOfMatcher<Stmt, CXXTypeidExpr>
130     cxxTypeidExpr;
131 
132 AST_MATCHER(CXXTypeidExpr, isPotentiallyEvaluated) {
133   return Node.isPotentiallyEvaluated();
134 }
135 
136 AST_MATCHER(CXXMemberCallExpr, isConstCallee) {
137   const Decl *CalleeDecl = Node.getCalleeDecl();
138   const auto *VD = dyn_cast_or_null<ValueDecl>(CalleeDecl);
139   if (!VD)
140     return false;
141   const QualType T = VD->getType().getCanonicalType();
142   const auto *MPT = dyn_cast<MemberPointerType>(T);
143   const auto *FPT = MPT ? cast<FunctionProtoType>(MPT->getPointeeType())
144                         : dyn_cast<FunctionProtoType>(T);
145   if (!FPT)
146     return false;
147   return FPT->isConst();
148 }
149 
150 AST_MATCHER_P(GenericSelectionExpr, hasControllingExpr,
151               ast_matchers::internal::Matcher<Expr>, InnerMatcher) {
152   if (Node.isTypePredicate())
153     return false;
154   return InnerMatcher.matches(*Node.getControllingExpr(), Finder, Builder);
155 }
156 
157 template <typename T>
158 ast_matchers::internal::Matcher<T>
159 findFirst(const ast_matchers::internal::Matcher<T> &Matcher) {
160   return anyOf(Matcher, hasDescendant(Matcher));
161 }
162 
163 const auto nonConstReferenceType = [] {
164   return hasUnqualifiedDesugaredType(
165       referenceType(pointee(unless(isConstQualified()))));
166 };
167 
168 const auto nonConstPointerType = [] {
169   return hasUnqualifiedDesugaredType(
170       pointerType(pointee(unless(isConstQualified()))));
171 };
172 
173 const auto isMoveOnly = [] {
174   return cxxRecordDecl(
175       hasMethod(cxxConstructorDecl(isMoveConstructor(), unless(isDeleted()))),
176       hasMethod(cxxMethodDecl(isMoveAssignmentOperator(), unless(isDeleted()))),
177       unless(anyOf(hasMethod(cxxConstructorDecl(isCopyConstructor(),
178                                                 unless(isDeleted()))),
179                    hasMethod(cxxMethodDecl(isCopyAssignmentOperator(),
180                                            unless(isDeleted()))))));
181 };
182 
183 template <class T> struct NodeID;
184 template <> struct NodeID<Expr> { static constexpr StringRef value = "expr"; };
185 template <> struct NodeID<Decl> { static constexpr StringRef value = "decl"; };
186 constexpr StringRef NodeID<Expr>::value;
187 constexpr StringRef NodeID<Decl>::value;
188 
189 template <class T,
190           class F = const Stmt *(ExprMutationAnalyzer::Analyzer::*)(const T *)>
191 const Stmt *tryEachMatch(ArrayRef<ast_matchers::BoundNodes> Matches,
192                          ExprMutationAnalyzer::Analyzer *Analyzer, F Finder) {
193   const StringRef ID = NodeID<T>::value;
194   for (const auto &Nodes : Matches) {
195     if (const Stmt *S = (Analyzer->*Finder)(Nodes.getNodeAs<T>(ID)))
196       return S;
197   }
198   return nullptr;
199 }
200 
201 } // namespace
202 
203 const Stmt *ExprMutationAnalyzer::Analyzer::findMutation(const Expr *Exp) {
204   return findMutationMemoized(
205       Exp,
206       {&ExprMutationAnalyzer::Analyzer::findDirectMutation,
207        &ExprMutationAnalyzer::Analyzer::findMemberMutation,
208        &ExprMutationAnalyzer::Analyzer::findArrayElementMutation,
209        &ExprMutationAnalyzer::Analyzer::findCastMutation,
210        &ExprMutationAnalyzer::Analyzer::findRangeLoopMutation,
211        &ExprMutationAnalyzer::Analyzer::findReferenceMutation,
212        &ExprMutationAnalyzer::Analyzer::findFunctionArgMutation},
213       Memorized.Results);
214 }
215 
216 const Stmt *ExprMutationAnalyzer::Analyzer::findMutation(const Decl *Dec) {
217   return tryEachDeclRef(Dec, &ExprMutationAnalyzer::Analyzer::findMutation);
218 }
219 
220 const Stmt *
221 ExprMutationAnalyzer::Analyzer::findPointeeMutation(const Expr *Exp) {
222   return findMutationMemoized(Exp, {/*TODO*/}, Memorized.PointeeResults);
223 }
224 
225 const Stmt *
226 ExprMutationAnalyzer::Analyzer::findPointeeMutation(const Decl *Dec) {
227   return tryEachDeclRef(Dec,
228                         &ExprMutationAnalyzer::Analyzer::findPointeeMutation);
229 }
230 
231 const Stmt *ExprMutationAnalyzer::Analyzer::findMutationMemoized(
232     const Expr *Exp, llvm::ArrayRef<MutationFinder> Finders,
233     Memoized::ResultMap &MemoizedResults) {
234   // Assume Exp is not mutated before analyzing Exp.
235   auto [Memoized, Inserted] = MemoizedResults.try_emplace(Exp);
236   if (!Inserted)
237     return Memoized->second;
238 
239   if (ExprMutationAnalyzer::isUnevaluated(Exp, Context))
240     return nullptr;
241 
242   for (const auto &Finder : Finders) {
243     if (const Stmt *S = (this->*Finder)(Exp))
244       return MemoizedResults[Exp] = S;
245   }
246 
247   return nullptr;
248 }
249 
250 const Stmt *
251 ExprMutationAnalyzer::Analyzer::tryEachDeclRef(const Decl *Dec,
252                                                MutationFinder Finder) {
253   const auto Refs = match(
254       findAll(
255           declRefExpr(to(
256                           // `Dec` or a binding if `Dec` is a decomposition.
257                           anyOf(equalsNode(Dec),
258                                 bindingDecl(forDecomposition(equalsNode(Dec))))
259                           //
260                           ))
261               .bind(NodeID<Expr>::value)),
262       Stm, Context);
263   for (const auto &RefNodes : Refs) {
264     const auto *E = RefNodes.getNodeAs<Expr>(NodeID<Expr>::value);
265     if ((this->*Finder)(E))
266       return E;
267   }
268   return nullptr;
269 }
270 
271 bool ExprMutationAnalyzer::isUnevaluated(const Stmt *Stm, ASTContext &Context) {
272   return !match(stmt(anyOf(
273                     // `Exp` is part of the underlying expression of
274                     // decltype/typeof if it has an ancestor of
275                     // typeLoc.
276                     hasAncestor(typeLoc(
277                         unless(hasAncestor(unaryExprOrTypeTraitExpr())))),
278                     hasAncestor(expr(anyOf(
279                         // `UnaryExprOrTypeTraitExpr` is unevaluated
280                         // unless it's sizeof on VLA.
281                         unaryExprOrTypeTraitExpr(unless(sizeOfExpr(
282                             hasArgumentOfType(variableArrayType())))),
283                         // `CXXTypeidExpr` is unevaluated unless it's
284                         // applied to an expression of glvalue of
285                         // polymorphic class type.
286                         cxxTypeidExpr(unless(isPotentiallyEvaluated())),
287                         // The controlling expression of
288                         // `GenericSelectionExpr` is unevaluated.
289                         genericSelectionExpr(
290                             hasControllingExpr(hasDescendant(equalsNode(Stm)))),
291                         cxxNoexceptExpr()))))),
292                 *Stm, Context)
293               .empty();
294 }
295 
296 const Stmt *
297 ExprMutationAnalyzer::Analyzer::findExprMutation(ArrayRef<BoundNodes> Matches) {
298   return tryEachMatch<Expr>(Matches, this,
299                             &ExprMutationAnalyzer::Analyzer::findMutation);
300 }
301 
302 const Stmt *
303 ExprMutationAnalyzer::Analyzer::findDeclMutation(ArrayRef<BoundNodes> Matches) {
304   return tryEachMatch<Decl>(Matches, this,
305                             &ExprMutationAnalyzer::Analyzer::findMutation);
306 }
307 
308 const Stmt *ExprMutationAnalyzer::Analyzer::findExprPointeeMutation(
309     ArrayRef<ast_matchers::BoundNodes> Matches) {
310   return tryEachMatch<Expr>(
311       Matches, this, &ExprMutationAnalyzer::Analyzer::findPointeeMutation);
312 }
313 
314 const Stmt *ExprMutationAnalyzer::Analyzer::findDeclPointeeMutation(
315     ArrayRef<ast_matchers::BoundNodes> Matches) {
316   return tryEachMatch<Decl>(
317       Matches, this, &ExprMutationAnalyzer::Analyzer::findPointeeMutation);
318 }
319 
320 const Stmt *
321 ExprMutationAnalyzer::Analyzer::findDirectMutation(const Expr *Exp) {
322   // LHS of any assignment operators.
323   const auto AsAssignmentLhs =
324       binaryOperator(isAssignmentOperator(), hasLHS(canResolveToExpr(Exp)));
325 
326   // Operand of increment/decrement operators.
327   const auto AsIncDecOperand =
328       unaryOperator(anyOf(hasOperatorName("++"), hasOperatorName("--")),
329                     hasUnaryOperand(canResolveToExpr(Exp)));
330 
331   // Invoking non-const member function.
332   // A member function is assumed to be non-const when it is unresolved.
333   const auto NonConstMethod = cxxMethodDecl(unless(isConst()));
334 
335   const auto AsNonConstThis = expr(anyOf(
336       cxxMemberCallExpr(on(canResolveToExpr(Exp)), unless(isConstCallee())),
337       cxxOperatorCallExpr(callee(NonConstMethod),
338                           hasArgument(0, canResolveToExpr(Exp))),
339       // In case of a templated type, calling overloaded operators is not
340       // resolved and modelled as `binaryOperator` on a dependent type.
341       // Such instances are considered a modification, because they can modify
342       // in different instantiations of the template.
343       binaryOperator(isTypeDependent(),
344                      hasEitherOperand(ignoringImpCasts(canResolveToExpr(Exp)))),
345       // A fold expression may contain `Exp` as it's initializer.
346       // We don't know if the operator modifies `Exp` because the
347       // operator is type dependent due to the parameter pack.
348       cxxFoldExpr(hasFoldInit(ignoringImpCasts(canResolveToExpr(Exp)))),
349       // Within class templates and member functions the member expression might
350       // not be resolved. In that case, the `callExpr` is considered to be a
351       // modification.
352       callExpr(callee(expr(anyOf(
353           unresolvedMemberExpr(hasObjectExpression(canResolveToExpr(Exp))),
354           cxxDependentScopeMemberExpr(
355               hasObjectExpression(canResolveToExpr(Exp))))))),
356       // Match on a call to a known method, but the call itself is type
357       // dependent (e.g. `vector<T> v; v.push(T{});` in a templated function).
358       callExpr(allOf(
359           isTypeDependent(),
360           callee(memberExpr(hasDeclaration(NonConstMethod),
361                             hasObjectExpression(canResolveToExpr(Exp))))))));
362 
363   // Taking address of 'Exp'.
364   // We're assuming 'Exp' is mutated as soon as its address is taken, though in
365   // theory we can follow the pointer and see whether it escaped `Stm` or is
366   // dereferenced and then mutated. This is left for future improvements.
367   const auto AsAmpersandOperand =
368       unaryOperator(hasOperatorName("&"),
369                     // A NoOp implicit cast is adding const.
370                     unless(hasParent(implicitCastExpr(hasCastKind(CK_NoOp)))),
371                     hasUnaryOperand(canResolveToExpr(Exp)));
372   const auto AsPointerFromArrayDecay = castExpr(
373       hasCastKind(CK_ArrayToPointerDecay),
374       unless(hasParent(arraySubscriptExpr())), has(canResolveToExpr(Exp)));
375   // Treat calling `operator->()` of move-only classes as taking address.
376   // These are typically smart pointers with unique ownership so we treat
377   // mutation of pointee as mutation of the smart pointer itself.
378   const auto AsOperatorArrowThis = cxxOperatorCallExpr(
379       hasOverloadedOperatorName("->"),
380       callee(
381           cxxMethodDecl(ofClass(isMoveOnly()), returns(nonConstPointerType()))),
382       argumentCountIs(1), hasArgument(0, canResolveToExpr(Exp)));
383 
384   // Used as non-const-ref argument when calling a function.
385   // An argument is assumed to be non-const-ref when the function is unresolved.
386   // Instantiated template functions are not handled here but in
387   // findFunctionArgMutation which has additional smarts for handling forwarding
388   // references.
389   const auto NonConstRefParam = forEachArgumentWithParamType(
390       anyOf(canResolveToExpr(Exp),
391             memberExpr(hasObjectExpression(canResolveToExpr(Exp)))),
392       nonConstReferenceType());
393   const auto NotInstantiated = unless(hasDeclaration(isInstantiated()));
394 
395   const auto AsNonConstRefArg =
396       anyOf(callExpr(NonConstRefParam, NotInstantiated),
397             cxxConstructExpr(NonConstRefParam, NotInstantiated),
398             // If the call is type-dependent, we can't properly process any
399             // argument because required type conversions and implicit casts
400             // will be inserted only after specialization.
401             callExpr(isTypeDependent(), hasAnyArgument(canResolveToExpr(Exp))),
402             cxxUnresolvedConstructExpr(hasAnyArgument(canResolveToExpr(Exp))),
403             // Previous False Positive in the following Code:
404             // `template <typename T> void f() { int i = 42; new Type<T>(i); }`
405             // Where the constructor of `Type` takes its argument as reference.
406             // The AST does not resolve in a `cxxConstructExpr` because it is
407             // type-dependent.
408             parenListExpr(hasDescendant(expr(canResolveToExpr(Exp)))),
409             // If the initializer is for a reference type, there is no cast for
410             // the variable. Values are cast to RValue first.
411             initListExpr(hasAnyInit(expr(canResolveToExpr(Exp)))));
412 
413   // Captured by a lambda by reference.
414   // If we're initializing a capture with 'Exp' directly then we're initializing
415   // a reference capture.
416   // For value captures there will be an ImplicitCastExpr <LValueToRValue>.
417   const auto AsLambdaRefCaptureInit = lambdaExpr(hasCaptureInit(Exp));
418 
419   // Returned as non-const-ref.
420   // If we're returning 'Exp' directly then it's returned as non-const-ref.
421   // For returning by value there will be an ImplicitCastExpr <LValueToRValue>.
422   // For returning by const-ref there will be an ImplicitCastExpr <NoOp> (for
423   // adding const.)
424   const auto AsNonConstRefReturn =
425       returnStmt(hasReturnValue(canResolveToExpr(Exp)));
426 
427   // It is used as a non-const-reference for initializing a range-for loop.
428   const auto AsNonConstRefRangeInit = cxxForRangeStmt(hasRangeInit(declRefExpr(
429       allOf(canResolveToExpr(Exp), hasType(nonConstReferenceType())))));
430 
431   const auto Matches = match(
432       traverse(
433           TK_AsIs,
434           findFirst(stmt(anyOf(AsAssignmentLhs, AsIncDecOperand, AsNonConstThis,
435                                AsAmpersandOperand, AsPointerFromArrayDecay,
436                                AsOperatorArrowThis, AsNonConstRefArg,
437                                AsLambdaRefCaptureInit, AsNonConstRefReturn,
438                                AsNonConstRefRangeInit))
439                         .bind("stmt"))),
440       Stm, Context);
441   return selectFirst<Stmt>("stmt", Matches);
442 }
443 
444 const Stmt *
445 ExprMutationAnalyzer::Analyzer::findMemberMutation(const Expr *Exp) {
446   // Check whether any member of 'Exp' is mutated.
447   const auto MemberExprs = match(
448       findAll(expr(anyOf(memberExpr(hasObjectExpression(canResolveToExpr(Exp))),
449                          cxxDependentScopeMemberExpr(
450                              hasObjectExpression(canResolveToExpr(Exp))),
451                          binaryOperator(hasOperatorName(".*"),
452                                         hasLHS(equalsNode(Exp)))))
453                   .bind(NodeID<Expr>::value)),
454       Stm, Context);
455   return findExprMutation(MemberExprs);
456 }
457 
458 const Stmt *
459 ExprMutationAnalyzer::Analyzer::findArrayElementMutation(const Expr *Exp) {
460   // Check whether any element of an array is mutated.
461   const auto SubscriptExprs = match(
462       findAll(arraySubscriptExpr(
463                   anyOf(hasBase(canResolveToExpr(Exp)),
464                         hasBase(implicitCastExpr(allOf(
465                             hasCastKind(CK_ArrayToPointerDecay),
466                             hasSourceExpression(canResolveToExpr(Exp)))))))
467                   .bind(NodeID<Expr>::value)),
468       Stm, Context);
469   return findExprMutation(SubscriptExprs);
470 }
471 
472 const Stmt *ExprMutationAnalyzer::Analyzer::findCastMutation(const Expr *Exp) {
473   // If the 'Exp' is explicitly casted to a non-const reference type the
474   // 'Exp' is considered to be modified.
475   const auto ExplicitCast =
476       match(findFirst(stmt(castExpr(hasSourceExpression(canResolveToExpr(Exp)),
477                                     explicitCastExpr(hasDestinationType(
478                                         nonConstReferenceType()))))
479                           .bind("stmt")),
480             Stm, Context);
481 
482   if (const auto *CastStmt = selectFirst<Stmt>("stmt", ExplicitCast))
483     return CastStmt;
484 
485   // If 'Exp' is casted to any non-const reference type, check the castExpr.
486   const auto Casts = match(
487       findAll(expr(castExpr(hasSourceExpression(canResolveToExpr(Exp)),
488                             anyOf(explicitCastExpr(hasDestinationType(
489                                       nonConstReferenceType())),
490                                   implicitCastExpr(hasImplicitDestinationType(
491                                       nonConstReferenceType())))))
492                   .bind(NodeID<Expr>::value)),
493       Stm, Context);
494 
495   if (const Stmt *S = findExprMutation(Casts))
496     return S;
497   // Treat std::{move,forward} as cast.
498   const auto Calls =
499       match(findAll(callExpr(callee(namedDecl(
500                                  hasAnyName("::std::move", "::std::forward"))),
501                              hasArgument(0, canResolveToExpr(Exp)))
502                         .bind("expr")),
503             Stm, Context);
504   return findExprMutation(Calls);
505 }
506 
507 const Stmt *
508 ExprMutationAnalyzer::Analyzer::findRangeLoopMutation(const Expr *Exp) {
509   // Keep the ordering for the specific initialization matches to happen first,
510   // because it is cheaper to match all potential modifications of the loop
511   // variable.
512 
513   // The range variable is a reference to a builtin array. In that case the
514   // array is considered modified if the loop-variable is a non-const reference.
515   const auto DeclStmtToNonRefToArray = declStmt(hasSingleDecl(varDecl(hasType(
516       hasUnqualifiedDesugaredType(referenceType(pointee(arrayType())))))));
517   const auto RefToArrayRefToElements = match(
518       findFirst(stmt(cxxForRangeStmt(
519                          hasLoopVariable(
520                              varDecl(anyOf(hasType(nonConstReferenceType()),
521                                            hasType(nonConstPointerType())))
522                                  .bind(NodeID<Decl>::value)),
523                          hasRangeStmt(DeclStmtToNonRefToArray),
524                          hasRangeInit(canResolveToExpr(Exp))))
525                     .bind("stmt")),
526       Stm, Context);
527 
528   if (const auto *BadRangeInitFromArray =
529           selectFirst<Stmt>("stmt", RefToArrayRefToElements))
530     return BadRangeInitFromArray;
531 
532   // Small helper to match special cases in range-for loops.
533   //
534   // It is possible that containers do not provide a const-overload for their
535   // iterator accessors. If this is the case, the variable is used non-const
536   // no matter what happens in the loop. This requires special detection as it
537   // is then faster to find all mutations of the loop variable.
538   // It aims at a different modification as well.
539   const auto HasAnyNonConstIterator =
540       anyOf(allOf(hasMethod(allOf(hasName("begin"), unless(isConst()))),
541                   unless(hasMethod(allOf(hasName("begin"), isConst())))),
542             allOf(hasMethod(allOf(hasName("end"), unless(isConst()))),
543                   unless(hasMethod(allOf(hasName("end"), isConst())))));
544 
545   const auto DeclStmtToNonConstIteratorContainer = declStmt(
546       hasSingleDecl(varDecl(hasType(hasUnqualifiedDesugaredType(referenceType(
547           pointee(hasDeclaration(cxxRecordDecl(HasAnyNonConstIterator)))))))));
548 
549   const auto RefToContainerBadIterators = match(
550       findFirst(stmt(cxxForRangeStmt(allOf(
551                          hasRangeStmt(DeclStmtToNonConstIteratorContainer),
552                          hasRangeInit(canResolveToExpr(Exp)))))
553                     .bind("stmt")),
554       Stm, Context);
555 
556   if (const auto *BadIteratorsContainer =
557           selectFirst<Stmt>("stmt", RefToContainerBadIterators))
558     return BadIteratorsContainer;
559 
560   // If range for looping over 'Exp' with a non-const reference loop variable,
561   // check all declRefExpr of the loop variable.
562   const auto LoopVars =
563       match(findAll(cxxForRangeStmt(
564                 hasLoopVariable(varDecl(hasType(nonConstReferenceType()))
565                                     .bind(NodeID<Decl>::value)),
566                 hasRangeInit(canResolveToExpr(Exp)))),
567             Stm, Context);
568   return findDeclMutation(LoopVars);
569 }
570 
571 const Stmt *
572 ExprMutationAnalyzer::Analyzer::findReferenceMutation(const Expr *Exp) {
573   // Follow non-const reference returned by `operator*()` of move-only classes.
574   // These are typically smart pointers with unique ownership so we treat
575   // mutation of pointee as mutation of the smart pointer itself.
576   const auto Ref = match(
577       findAll(cxxOperatorCallExpr(
578                   hasOverloadedOperatorName("*"),
579                   callee(cxxMethodDecl(ofClass(isMoveOnly()),
580                                        returns(nonConstReferenceType()))),
581                   argumentCountIs(1), hasArgument(0, canResolveToExpr(Exp)))
582                   .bind(NodeID<Expr>::value)),
583       Stm, Context);
584   if (const Stmt *S = findExprMutation(Ref))
585     return S;
586 
587   // If 'Exp' is bound to a non-const reference, check all declRefExpr to that.
588   const auto Refs = match(
589       stmt(forEachDescendant(
590           varDecl(hasType(nonConstReferenceType()),
591                   hasInitializer(anyOf(
592                       canResolveToExpr(Exp),
593                       memberExpr(hasObjectExpression(canResolveToExpr(Exp))))),
594                   hasParent(declStmt().bind("stmt")),
595                   // Don't follow the reference in range statement, we've
596                   // handled that separately.
597                   unless(hasParent(declStmt(hasParent(cxxForRangeStmt(
598                       hasRangeStmt(equalsBoundNode("stmt"))))))))
599               .bind(NodeID<Decl>::value))),
600       Stm, Context);
601   return findDeclMutation(Refs);
602 }
603 
604 const Stmt *
605 ExprMutationAnalyzer::Analyzer::findFunctionArgMutation(const Expr *Exp) {
606   const auto NonConstRefParam = forEachArgumentWithParam(
607       canResolveToExpr(Exp),
608       parmVarDecl(hasType(nonConstReferenceType())).bind("parm"));
609   const auto IsInstantiated = hasDeclaration(isInstantiated());
610   const auto FuncDecl = hasDeclaration(functionDecl().bind("func"));
611   const auto Matches = match(
612       traverse(
613           TK_AsIs,
614           findAll(
615               expr(anyOf(callExpr(NonConstRefParam, IsInstantiated, FuncDecl,
616                                   unless(callee(namedDecl(hasAnyName(
617                                       "::std::move", "::std::forward"))))),
618                          cxxConstructExpr(NonConstRefParam, IsInstantiated,
619                                           FuncDecl)))
620                   .bind(NodeID<Expr>::value))),
621       Stm, Context);
622   for (const auto &Nodes : Matches) {
623     const auto *Exp = Nodes.getNodeAs<Expr>(NodeID<Expr>::value);
624     const auto *Func = Nodes.getNodeAs<FunctionDecl>("func");
625     if (!Func->getBody() || !Func->getPrimaryTemplate())
626       return Exp;
627 
628     const auto *Parm = Nodes.getNodeAs<ParmVarDecl>("parm");
629     const ArrayRef<ParmVarDecl *> AllParams =
630         Func->getPrimaryTemplate()->getTemplatedDecl()->parameters();
631     QualType ParmType =
632         AllParams[std::min<size_t>(Parm->getFunctionScopeIndex(),
633                                    AllParams.size() - 1)]
634             ->getType();
635     if (const auto *T = ParmType->getAs<PackExpansionType>())
636       ParmType = T->getPattern();
637 
638     // If param type is forwarding reference, follow into the function
639     // definition and see whether the param is mutated inside.
640     if (const auto *RefType = ParmType->getAs<RValueReferenceType>()) {
641       if (!RefType->getPointeeType().getQualifiers() &&
642           RefType->getPointeeType()->getAs<TemplateTypeParmType>()) {
643         FunctionParmMutationAnalyzer *Analyzer =
644             FunctionParmMutationAnalyzer::getFunctionParmMutationAnalyzer(
645                 *Func, Context, Memorized);
646         if (Analyzer->findMutation(Parm))
647           return Exp;
648         continue;
649       }
650     }
651     // Not forwarding reference.
652     return Exp;
653   }
654   return nullptr;
655 }
656 
657 FunctionParmMutationAnalyzer::FunctionParmMutationAnalyzer(
658     const FunctionDecl &Func, ASTContext &Context,
659     ExprMutationAnalyzer::Memoized &Memorized)
660     : BodyAnalyzer(*Func.getBody(), Context, Memorized) {
661   if (const auto *Ctor = dyn_cast<CXXConstructorDecl>(&Func)) {
662     // CXXCtorInitializer might also mutate Param but they're not part of
663     // function body, check them eagerly here since they're typically trivial.
664     for (const CXXCtorInitializer *Init : Ctor->inits()) {
665       ExprMutationAnalyzer::Analyzer InitAnalyzer(*Init->getInit(), Context,
666                                                   Memorized);
667       for (const ParmVarDecl *Parm : Ctor->parameters()) {
668         if (Results.contains(Parm))
669           continue;
670         if (const Stmt *S = InitAnalyzer.findMutation(Parm))
671           Results[Parm] = S;
672       }
673     }
674   }
675 }
676 
677 const Stmt *
678 FunctionParmMutationAnalyzer::findMutation(const ParmVarDecl *Parm) {
679   const auto Memoized = Results.find(Parm);
680   if (Memoized != Results.end())
681     return Memoized->second;
682   // To handle call A -> call B -> call A. Assume parameters of A is not mutated
683   // before analyzing parameters of A. Then when analyzing the second "call A",
684   // FunctionParmMutationAnalyzer can use this memoized value to avoid infinite
685   // recursion.
686   Results[Parm] = nullptr;
687   if (const Stmt *S = BodyAnalyzer.findMutation(Parm))
688     return Results[Parm] = S;
689   return Results[Parm];
690 }
691 
692 } // namespace clang
693