1 //===---------- ExprMutationAnalyzer.cpp ----------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 #include "clang/Analysis/Analyses/ExprMutationAnalyzer.h" 9 #include "clang/AST/Expr.h" 10 #include "clang/AST/OperationKinds.h" 11 #include "clang/ASTMatchers/ASTMatchFinder.h" 12 #include "clang/ASTMatchers/ASTMatchers.h" 13 #include "llvm/ADT/STLExtras.h" 14 15 namespace clang { 16 using namespace ast_matchers; 17 18 // Check if result of Source expression could be a Target expression. 19 // Checks: 20 // - Implicit Casts 21 // - Binary Operators 22 // - ConditionalOperator 23 // - BinaryConditionalOperator 24 static bool canExprResolveTo(const Expr *Source, const Expr *Target) { 25 26 const auto IgnoreDerivedToBase = [](const Expr *E, auto Matcher) { 27 if (Matcher(E)) 28 return true; 29 if (const auto *Cast = dyn_cast<ImplicitCastExpr>(E)) { 30 if ((Cast->getCastKind() == CK_DerivedToBase || 31 Cast->getCastKind() == CK_UncheckedDerivedToBase) && 32 Matcher(Cast->getSubExpr())) 33 return true; 34 } 35 return false; 36 }; 37 38 const auto EvalCommaExpr = [](const Expr *E, auto Matcher) { 39 const Expr *Result = E; 40 while (const auto *BOComma = 41 dyn_cast_or_null<BinaryOperator>(Result->IgnoreParens())) { 42 if (!BOComma->isCommaOp()) 43 break; 44 Result = BOComma->getRHS(); 45 } 46 47 return Result != E && Matcher(Result); 48 }; 49 50 // The 'ConditionalOperatorM' matches on `<anything> ? <expr> : <expr>`. 51 // This matching must be recursive because `<expr>` can be anything resolving 52 // to the `InnerMatcher`, for example another conditional operator. 53 // The edge-case `BaseClass &b = <cond> ? DerivedVar1 : DerivedVar2;` 54 // is handled, too. The implicit cast happens outside of the conditional. 55 // This is matched by `IgnoreDerivedToBase(canResolveToExpr(InnerMatcher))` 56 // below. 57 const auto ConditionalOperatorM = [Target](const Expr *E) { 58 if (const auto *OP = dyn_cast<ConditionalOperator>(E)) { 59 if (const auto *TE = OP->getTrueExpr()->IgnoreParens()) 60 if (canExprResolveTo(TE, Target)) 61 return true; 62 if (const auto *FE = OP->getFalseExpr()->IgnoreParens()) 63 if (canExprResolveTo(FE, Target)) 64 return true; 65 } 66 return false; 67 }; 68 69 const auto ElvisOperator = [Target](const Expr *E) { 70 if (const auto *OP = dyn_cast<BinaryConditionalOperator>(E)) { 71 if (const auto *TE = OP->getTrueExpr()->IgnoreParens()) 72 if (canExprResolveTo(TE, Target)) 73 return true; 74 if (const auto *FE = OP->getFalseExpr()->IgnoreParens()) 75 if (canExprResolveTo(FE, Target)) 76 return true; 77 } 78 return false; 79 }; 80 81 const Expr *SourceExprP = Source->IgnoreParens(); 82 return IgnoreDerivedToBase(SourceExprP, 83 [&](const Expr *E) { 84 return E == Target || ConditionalOperatorM(E) || 85 ElvisOperator(E); 86 }) || 87 EvalCommaExpr(SourceExprP, [&](const Expr *E) { 88 return IgnoreDerivedToBase( 89 E->IgnoreParens(), [&](const Expr *EE) { return EE == Target; }); 90 }); 91 } 92 93 namespace { 94 95 AST_MATCHER_P(LambdaExpr, hasCaptureInit, const Expr *, E) { 96 return llvm::is_contained(Node.capture_inits(), E); 97 } 98 99 AST_MATCHER_P(CXXForRangeStmt, hasRangeStmt, 100 ast_matchers::internal::Matcher<DeclStmt>, InnerMatcher) { 101 const DeclStmt *const Range = Node.getRangeStmt(); 102 return InnerMatcher.matches(*Range, Finder, Builder); 103 } 104 105 AST_MATCHER_P(Stmt, canResolveToExpr, const Stmt *, Inner) { 106 auto *Exp = dyn_cast<Expr>(&Node); 107 if (!Exp) 108 return true; 109 auto *Target = dyn_cast<Expr>(Inner); 110 if (!Target) 111 return false; 112 return canExprResolveTo(Exp, Target); 113 } 114 115 // Similar to 'hasAnyArgument', but does not work because 'InitListExpr' does 116 // not have the 'arguments()' method. 117 AST_MATCHER_P(InitListExpr, hasAnyInit, ast_matchers::internal::Matcher<Expr>, 118 InnerMatcher) { 119 for (const Expr *Arg : Node.inits()) { 120 ast_matchers::internal::BoundNodesTreeBuilder Result(*Builder); 121 if (InnerMatcher.matches(*Arg, Finder, &Result)) { 122 *Builder = std::move(Result); 123 return true; 124 } 125 } 126 return false; 127 } 128 129 const ast_matchers::internal::VariadicDynCastAllOfMatcher<Stmt, CXXTypeidExpr> 130 cxxTypeidExpr; 131 132 AST_MATCHER(CXXTypeidExpr, isPotentiallyEvaluated) { 133 return Node.isPotentiallyEvaluated(); 134 } 135 136 AST_MATCHER(CXXMemberCallExpr, isConstCallee) { 137 const Decl *CalleeDecl = Node.getCalleeDecl(); 138 const auto *VD = dyn_cast_or_null<ValueDecl>(CalleeDecl); 139 if (!VD) 140 return false; 141 const QualType T = VD->getType().getCanonicalType(); 142 const auto *MPT = dyn_cast<MemberPointerType>(T); 143 const auto *FPT = MPT ? cast<FunctionProtoType>(MPT->getPointeeType()) 144 : dyn_cast<FunctionProtoType>(T); 145 if (!FPT) 146 return false; 147 return FPT->isConst(); 148 } 149 150 AST_MATCHER_P(GenericSelectionExpr, hasControllingExpr, 151 ast_matchers::internal::Matcher<Expr>, InnerMatcher) { 152 if (Node.isTypePredicate()) 153 return false; 154 return InnerMatcher.matches(*Node.getControllingExpr(), Finder, Builder); 155 } 156 157 template <typename T> 158 ast_matchers::internal::Matcher<T> 159 findFirst(const ast_matchers::internal::Matcher<T> &Matcher) { 160 return anyOf(Matcher, hasDescendant(Matcher)); 161 } 162 163 const auto nonConstReferenceType = [] { 164 return hasUnqualifiedDesugaredType( 165 referenceType(pointee(unless(isConstQualified())))); 166 }; 167 168 const auto nonConstPointerType = [] { 169 return hasUnqualifiedDesugaredType( 170 pointerType(pointee(unless(isConstQualified())))); 171 }; 172 173 const auto isMoveOnly = [] { 174 return cxxRecordDecl( 175 hasMethod(cxxConstructorDecl(isMoveConstructor(), unless(isDeleted()))), 176 hasMethod(cxxMethodDecl(isMoveAssignmentOperator(), unless(isDeleted()))), 177 unless(anyOf(hasMethod(cxxConstructorDecl(isCopyConstructor(), 178 unless(isDeleted()))), 179 hasMethod(cxxMethodDecl(isCopyAssignmentOperator(), 180 unless(isDeleted())))))); 181 }; 182 183 template <class T> struct NodeID; 184 template <> struct NodeID<Expr> { static constexpr StringRef value = "expr"; }; 185 template <> struct NodeID<Decl> { static constexpr StringRef value = "decl"; }; 186 constexpr StringRef NodeID<Expr>::value; 187 constexpr StringRef NodeID<Decl>::value; 188 189 template <class T, 190 class F = const Stmt *(ExprMutationAnalyzer::Analyzer::*)(const T *)> 191 const Stmt *tryEachMatch(ArrayRef<ast_matchers::BoundNodes> Matches, 192 ExprMutationAnalyzer::Analyzer *Analyzer, F Finder) { 193 const StringRef ID = NodeID<T>::value; 194 for (const auto &Nodes : Matches) { 195 if (const Stmt *S = (Analyzer->*Finder)(Nodes.getNodeAs<T>(ID))) 196 return S; 197 } 198 return nullptr; 199 } 200 201 } // namespace 202 203 const Stmt *ExprMutationAnalyzer::Analyzer::findMutation(const Expr *Exp) { 204 return findMutationMemoized( 205 Exp, 206 {&ExprMutationAnalyzer::Analyzer::findDirectMutation, 207 &ExprMutationAnalyzer::Analyzer::findMemberMutation, 208 &ExprMutationAnalyzer::Analyzer::findArrayElementMutation, 209 &ExprMutationAnalyzer::Analyzer::findCastMutation, 210 &ExprMutationAnalyzer::Analyzer::findRangeLoopMutation, 211 &ExprMutationAnalyzer::Analyzer::findReferenceMutation, 212 &ExprMutationAnalyzer::Analyzer::findFunctionArgMutation}, 213 Memorized.Results); 214 } 215 216 const Stmt *ExprMutationAnalyzer::Analyzer::findMutation(const Decl *Dec) { 217 return tryEachDeclRef(Dec, &ExprMutationAnalyzer::Analyzer::findMutation); 218 } 219 220 const Stmt * 221 ExprMutationAnalyzer::Analyzer::findPointeeMutation(const Expr *Exp) { 222 return findMutationMemoized(Exp, {/*TODO*/}, Memorized.PointeeResults); 223 } 224 225 const Stmt * 226 ExprMutationAnalyzer::Analyzer::findPointeeMutation(const Decl *Dec) { 227 return tryEachDeclRef(Dec, 228 &ExprMutationAnalyzer::Analyzer::findPointeeMutation); 229 } 230 231 const Stmt *ExprMutationAnalyzer::Analyzer::findMutationMemoized( 232 const Expr *Exp, llvm::ArrayRef<MutationFinder> Finders, 233 Memoized::ResultMap &MemoizedResults) { 234 // Assume Exp is not mutated before analyzing Exp. 235 auto [Memoized, Inserted] = MemoizedResults.try_emplace(Exp); 236 if (!Inserted) 237 return Memoized->second; 238 239 if (isUnevaluated(Exp)) 240 return nullptr; 241 242 for (const auto &Finder : Finders) { 243 if (const Stmt *S = (this->*Finder)(Exp)) 244 return MemoizedResults[Exp] = S; 245 } 246 247 return nullptr; 248 } 249 250 const Stmt * 251 ExprMutationAnalyzer::Analyzer::tryEachDeclRef(const Decl *Dec, 252 MutationFinder Finder) { 253 const auto Refs = match( 254 findAll( 255 declRefExpr(to( 256 // `Dec` or a binding if `Dec` is a decomposition. 257 anyOf(equalsNode(Dec), 258 bindingDecl(forDecomposition(equalsNode(Dec)))) 259 // 260 )) 261 .bind(NodeID<Expr>::value)), 262 Stm, Context); 263 for (const auto &RefNodes : Refs) { 264 const auto *E = RefNodes.getNodeAs<Expr>(NodeID<Expr>::value); 265 if ((this->*Finder)(E)) 266 return E; 267 } 268 return nullptr; 269 } 270 271 bool ExprMutationAnalyzer::Analyzer::isUnevaluated(const Stmt *Exp, 272 const Stmt &Stm, 273 ASTContext &Context) { 274 return selectFirst<Stmt>( 275 NodeID<Expr>::value, 276 match( 277 findFirst( 278 stmt(canResolveToExpr(Exp), 279 anyOf( 280 // `Exp` is part of the underlying expression of 281 // decltype/typeof if it has an ancestor of 282 // typeLoc. 283 hasAncestor(typeLoc(unless( 284 hasAncestor(unaryExprOrTypeTraitExpr())))), 285 hasAncestor(expr(anyOf( 286 // `UnaryExprOrTypeTraitExpr` is unevaluated 287 // unless it's sizeof on VLA. 288 unaryExprOrTypeTraitExpr(unless(sizeOfExpr( 289 hasArgumentOfType(variableArrayType())))), 290 // `CXXTypeidExpr` is unevaluated unless it's 291 // applied to an expression of glvalue of 292 // polymorphic class type. 293 cxxTypeidExpr( 294 unless(isPotentiallyEvaluated())), 295 // The controlling expression of 296 // `GenericSelectionExpr` is unevaluated. 297 genericSelectionExpr(hasControllingExpr( 298 hasDescendant(equalsNode(Exp)))), 299 cxxNoexceptExpr()))))) 300 .bind(NodeID<Expr>::value)), 301 Stm, Context)) != nullptr; 302 } 303 304 bool ExprMutationAnalyzer::Analyzer::isUnevaluated(const Expr *Exp) { 305 return isUnevaluated(Exp, Stm, Context); 306 } 307 308 const Stmt * 309 ExprMutationAnalyzer::Analyzer::findExprMutation(ArrayRef<BoundNodes> Matches) { 310 return tryEachMatch<Expr>(Matches, this, 311 &ExprMutationAnalyzer::Analyzer::findMutation); 312 } 313 314 const Stmt * 315 ExprMutationAnalyzer::Analyzer::findDeclMutation(ArrayRef<BoundNodes> Matches) { 316 return tryEachMatch<Decl>(Matches, this, 317 &ExprMutationAnalyzer::Analyzer::findMutation); 318 } 319 320 const Stmt *ExprMutationAnalyzer::Analyzer::findExprPointeeMutation( 321 ArrayRef<ast_matchers::BoundNodes> Matches) { 322 return tryEachMatch<Expr>( 323 Matches, this, &ExprMutationAnalyzer::Analyzer::findPointeeMutation); 324 } 325 326 const Stmt *ExprMutationAnalyzer::Analyzer::findDeclPointeeMutation( 327 ArrayRef<ast_matchers::BoundNodes> Matches) { 328 return tryEachMatch<Decl>( 329 Matches, this, &ExprMutationAnalyzer::Analyzer::findPointeeMutation); 330 } 331 332 const Stmt * 333 ExprMutationAnalyzer::Analyzer::findDirectMutation(const Expr *Exp) { 334 // LHS of any assignment operators. 335 const auto AsAssignmentLhs = 336 binaryOperator(isAssignmentOperator(), hasLHS(canResolveToExpr(Exp))); 337 338 // Operand of increment/decrement operators. 339 const auto AsIncDecOperand = 340 unaryOperator(anyOf(hasOperatorName("++"), hasOperatorName("--")), 341 hasUnaryOperand(canResolveToExpr(Exp))); 342 343 // Invoking non-const member function. 344 // A member function is assumed to be non-const when it is unresolved. 345 const auto NonConstMethod = cxxMethodDecl(unless(isConst())); 346 347 const auto AsNonConstThis = expr(anyOf( 348 cxxMemberCallExpr(on(canResolveToExpr(Exp)), unless(isConstCallee())), 349 cxxOperatorCallExpr(callee(NonConstMethod), 350 hasArgument(0, canResolveToExpr(Exp))), 351 // In case of a templated type, calling overloaded operators is not 352 // resolved and modelled as `binaryOperator` on a dependent type. 353 // Such instances are considered a modification, because they can modify 354 // in different instantiations of the template. 355 binaryOperator(isTypeDependent(), 356 hasEitherOperand(ignoringImpCasts(canResolveToExpr(Exp)))), 357 // A fold expression may contain `Exp` as it's initializer. 358 // We don't know if the operator modifies `Exp` because the 359 // operator is type dependent due to the parameter pack. 360 cxxFoldExpr(hasFoldInit(ignoringImpCasts(canResolveToExpr(Exp)))), 361 // Within class templates and member functions the member expression might 362 // not be resolved. In that case, the `callExpr` is considered to be a 363 // modification. 364 callExpr(callee(expr(anyOf( 365 unresolvedMemberExpr(hasObjectExpression(canResolveToExpr(Exp))), 366 cxxDependentScopeMemberExpr( 367 hasObjectExpression(canResolveToExpr(Exp))))))), 368 // Match on a call to a known method, but the call itself is type 369 // dependent (e.g. `vector<T> v; v.push(T{});` in a templated function). 370 callExpr(allOf( 371 isTypeDependent(), 372 callee(memberExpr(hasDeclaration(NonConstMethod), 373 hasObjectExpression(canResolveToExpr(Exp)))))))); 374 375 // Taking address of 'Exp'. 376 // We're assuming 'Exp' is mutated as soon as its address is taken, though in 377 // theory we can follow the pointer and see whether it escaped `Stm` or is 378 // dereferenced and then mutated. This is left for future improvements. 379 const auto AsAmpersandOperand = 380 unaryOperator(hasOperatorName("&"), 381 // A NoOp implicit cast is adding const. 382 unless(hasParent(implicitCastExpr(hasCastKind(CK_NoOp)))), 383 hasUnaryOperand(canResolveToExpr(Exp))); 384 const auto AsPointerFromArrayDecay = castExpr( 385 hasCastKind(CK_ArrayToPointerDecay), 386 unless(hasParent(arraySubscriptExpr())), has(canResolveToExpr(Exp))); 387 // Treat calling `operator->()` of move-only classes as taking address. 388 // These are typically smart pointers with unique ownership so we treat 389 // mutation of pointee as mutation of the smart pointer itself. 390 const auto AsOperatorArrowThis = cxxOperatorCallExpr( 391 hasOverloadedOperatorName("->"), 392 callee( 393 cxxMethodDecl(ofClass(isMoveOnly()), returns(nonConstPointerType()))), 394 argumentCountIs(1), hasArgument(0, canResolveToExpr(Exp))); 395 396 // Used as non-const-ref argument when calling a function. 397 // An argument is assumed to be non-const-ref when the function is unresolved. 398 // Instantiated template functions are not handled here but in 399 // findFunctionArgMutation which has additional smarts for handling forwarding 400 // references. 401 const auto NonConstRefParam = forEachArgumentWithParamType( 402 anyOf(canResolveToExpr(Exp), 403 memberExpr(hasObjectExpression(canResolveToExpr(Exp)))), 404 nonConstReferenceType()); 405 const auto NotInstantiated = unless(hasDeclaration(isInstantiated())); 406 407 const auto AsNonConstRefArg = 408 anyOf(callExpr(NonConstRefParam, NotInstantiated), 409 cxxConstructExpr(NonConstRefParam, NotInstantiated), 410 // If the call is type-dependent, we can't properly process any 411 // argument because required type conversions and implicit casts 412 // will be inserted only after specialization. 413 callExpr(isTypeDependent(), hasAnyArgument(canResolveToExpr(Exp))), 414 cxxUnresolvedConstructExpr(hasAnyArgument(canResolveToExpr(Exp))), 415 // Previous False Positive in the following Code: 416 // `template <typename T> void f() { int i = 42; new Type<T>(i); }` 417 // Where the constructor of `Type` takes its argument as reference. 418 // The AST does not resolve in a `cxxConstructExpr` because it is 419 // type-dependent. 420 parenListExpr(hasDescendant(expr(canResolveToExpr(Exp)))), 421 // If the initializer is for a reference type, there is no cast for 422 // the variable. Values are cast to RValue first. 423 initListExpr(hasAnyInit(expr(canResolveToExpr(Exp))))); 424 425 // Captured by a lambda by reference. 426 // If we're initializing a capture with 'Exp' directly then we're initializing 427 // a reference capture. 428 // For value captures there will be an ImplicitCastExpr <LValueToRValue>. 429 const auto AsLambdaRefCaptureInit = lambdaExpr(hasCaptureInit(Exp)); 430 431 // Returned as non-const-ref. 432 // If we're returning 'Exp' directly then it's returned as non-const-ref. 433 // For returning by value there will be an ImplicitCastExpr <LValueToRValue>. 434 // For returning by const-ref there will be an ImplicitCastExpr <NoOp> (for 435 // adding const.) 436 const auto AsNonConstRefReturn = 437 returnStmt(hasReturnValue(canResolveToExpr(Exp))); 438 439 // It is used as a non-const-reference for initializing a range-for loop. 440 const auto AsNonConstRefRangeInit = cxxForRangeStmt(hasRangeInit(declRefExpr( 441 allOf(canResolveToExpr(Exp), hasType(nonConstReferenceType()))))); 442 443 const auto Matches = match( 444 traverse( 445 TK_AsIs, 446 findFirst(stmt(anyOf(AsAssignmentLhs, AsIncDecOperand, AsNonConstThis, 447 AsAmpersandOperand, AsPointerFromArrayDecay, 448 AsOperatorArrowThis, AsNonConstRefArg, 449 AsLambdaRefCaptureInit, AsNonConstRefReturn, 450 AsNonConstRefRangeInit)) 451 .bind("stmt"))), 452 Stm, Context); 453 return selectFirst<Stmt>("stmt", Matches); 454 } 455 456 const Stmt * 457 ExprMutationAnalyzer::Analyzer::findMemberMutation(const Expr *Exp) { 458 // Check whether any member of 'Exp' is mutated. 459 const auto MemberExprs = match( 460 findAll(expr(anyOf(memberExpr(hasObjectExpression(canResolveToExpr(Exp))), 461 cxxDependentScopeMemberExpr( 462 hasObjectExpression(canResolveToExpr(Exp))), 463 binaryOperator(hasOperatorName(".*"), 464 hasLHS(equalsNode(Exp))))) 465 .bind(NodeID<Expr>::value)), 466 Stm, Context); 467 return findExprMutation(MemberExprs); 468 } 469 470 const Stmt * 471 ExprMutationAnalyzer::Analyzer::findArrayElementMutation(const Expr *Exp) { 472 // Check whether any element of an array is mutated. 473 const auto SubscriptExprs = match( 474 findAll(arraySubscriptExpr( 475 anyOf(hasBase(canResolveToExpr(Exp)), 476 hasBase(implicitCastExpr(allOf( 477 hasCastKind(CK_ArrayToPointerDecay), 478 hasSourceExpression(canResolveToExpr(Exp))))))) 479 .bind(NodeID<Expr>::value)), 480 Stm, Context); 481 return findExprMutation(SubscriptExprs); 482 } 483 484 const Stmt *ExprMutationAnalyzer::Analyzer::findCastMutation(const Expr *Exp) { 485 // If the 'Exp' is explicitly casted to a non-const reference type the 486 // 'Exp' is considered to be modified. 487 const auto ExplicitCast = 488 match(findFirst(stmt(castExpr(hasSourceExpression(canResolveToExpr(Exp)), 489 explicitCastExpr(hasDestinationType( 490 nonConstReferenceType())))) 491 .bind("stmt")), 492 Stm, Context); 493 494 if (const auto *CastStmt = selectFirst<Stmt>("stmt", ExplicitCast)) 495 return CastStmt; 496 497 // If 'Exp' is casted to any non-const reference type, check the castExpr. 498 const auto Casts = match( 499 findAll(expr(castExpr(hasSourceExpression(canResolveToExpr(Exp)), 500 anyOf(explicitCastExpr(hasDestinationType( 501 nonConstReferenceType())), 502 implicitCastExpr(hasImplicitDestinationType( 503 nonConstReferenceType()))))) 504 .bind(NodeID<Expr>::value)), 505 Stm, Context); 506 507 if (const Stmt *S = findExprMutation(Casts)) 508 return S; 509 // Treat std::{move,forward} as cast. 510 const auto Calls = 511 match(findAll(callExpr(callee(namedDecl( 512 hasAnyName("::std::move", "::std::forward"))), 513 hasArgument(0, canResolveToExpr(Exp))) 514 .bind("expr")), 515 Stm, Context); 516 return findExprMutation(Calls); 517 } 518 519 const Stmt * 520 ExprMutationAnalyzer::Analyzer::findRangeLoopMutation(const Expr *Exp) { 521 // Keep the ordering for the specific initialization matches to happen first, 522 // because it is cheaper to match all potential modifications of the loop 523 // variable. 524 525 // The range variable is a reference to a builtin array. In that case the 526 // array is considered modified if the loop-variable is a non-const reference. 527 const auto DeclStmtToNonRefToArray = declStmt(hasSingleDecl(varDecl(hasType( 528 hasUnqualifiedDesugaredType(referenceType(pointee(arrayType()))))))); 529 const auto RefToArrayRefToElements = match( 530 findFirst(stmt(cxxForRangeStmt( 531 hasLoopVariable( 532 varDecl(anyOf(hasType(nonConstReferenceType()), 533 hasType(nonConstPointerType()))) 534 .bind(NodeID<Decl>::value)), 535 hasRangeStmt(DeclStmtToNonRefToArray), 536 hasRangeInit(canResolveToExpr(Exp)))) 537 .bind("stmt")), 538 Stm, Context); 539 540 if (const auto *BadRangeInitFromArray = 541 selectFirst<Stmt>("stmt", RefToArrayRefToElements)) 542 return BadRangeInitFromArray; 543 544 // Small helper to match special cases in range-for loops. 545 // 546 // It is possible that containers do not provide a const-overload for their 547 // iterator accessors. If this is the case, the variable is used non-const 548 // no matter what happens in the loop. This requires special detection as it 549 // is then faster to find all mutations of the loop variable. 550 // It aims at a different modification as well. 551 const auto HasAnyNonConstIterator = 552 anyOf(allOf(hasMethod(allOf(hasName("begin"), unless(isConst()))), 553 unless(hasMethod(allOf(hasName("begin"), isConst())))), 554 allOf(hasMethod(allOf(hasName("end"), unless(isConst()))), 555 unless(hasMethod(allOf(hasName("end"), isConst()))))); 556 557 const auto DeclStmtToNonConstIteratorContainer = declStmt( 558 hasSingleDecl(varDecl(hasType(hasUnqualifiedDesugaredType(referenceType( 559 pointee(hasDeclaration(cxxRecordDecl(HasAnyNonConstIterator))))))))); 560 561 const auto RefToContainerBadIterators = match( 562 findFirst(stmt(cxxForRangeStmt(allOf( 563 hasRangeStmt(DeclStmtToNonConstIteratorContainer), 564 hasRangeInit(canResolveToExpr(Exp))))) 565 .bind("stmt")), 566 Stm, Context); 567 568 if (const auto *BadIteratorsContainer = 569 selectFirst<Stmt>("stmt", RefToContainerBadIterators)) 570 return BadIteratorsContainer; 571 572 // If range for looping over 'Exp' with a non-const reference loop variable, 573 // check all declRefExpr of the loop variable. 574 const auto LoopVars = 575 match(findAll(cxxForRangeStmt( 576 hasLoopVariable(varDecl(hasType(nonConstReferenceType())) 577 .bind(NodeID<Decl>::value)), 578 hasRangeInit(canResolveToExpr(Exp)))), 579 Stm, Context); 580 return findDeclMutation(LoopVars); 581 } 582 583 const Stmt * 584 ExprMutationAnalyzer::Analyzer::findReferenceMutation(const Expr *Exp) { 585 // Follow non-const reference returned by `operator*()` of move-only classes. 586 // These are typically smart pointers with unique ownership so we treat 587 // mutation of pointee as mutation of the smart pointer itself. 588 const auto Ref = match( 589 findAll(cxxOperatorCallExpr( 590 hasOverloadedOperatorName("*"), 591 callee(cxxMethodDecl(ofClass(isMoveOnly()), 592 returns(nonConstReferenceType()))), 593 argumentCountIs(1), hasArgument(0, canResolveToExpr(Exp))) 594 .bind(NodeID<Expr>::value)), 595 Stm, Context); 596 if (const Stmt *S = findExprMutation(Ref)) 597 return S; 598 599 // If 'Exp' is bound to a non-const reference, check all declRefExpr to that. 600 const auto Refs = match( 601 stmt(forEachDescendant( 602 varDecl(hasType(nonConstReferenceType()), 603 hasInitializer(anyOf( 604 canResolveToExpr(Exp), 605 memberExpr(hasObjectExpression(canResolveToExpr(Exp))))), 606 hasParent(declStmt().bind("stmt")), 607 // Don't follow the reference in range statement, we've 608 // handled that separately. 609 unless(hasParent(declStmt(hasParent(cxxForRangeStmt( 610 hasRangeStmt(equalsBoundNode("stmt")))))))) 611 .bind(NodeID<Decl>::value))), 612 Stm, Context); 613 return findDeclMutation(Refs); 614 } 615 616 const Stmt * 617 ExprMutationAnalyzer::Analyzer::findFunctionArgMutation(const Expr *Exp) { 618 const auto NonConstRefParam = forEachArgumentWithParam( 619 canResolveToExpr(Exp), 620 parmVarDecl(hasType(nonConstReferenceType())).bind("parm")); 621 const auto IsInstantiated = hasDeclaration(isInstantiated()); 622 const auto FuncDecl = hasDeclaration(functionDecl().bind("func")); 623 const auto Matches = match( 624 traverse( 625 TK_AsIs, 626 findAll( 627 expr(anyOf(callExpr(NonConstRefParam, IsInstantiated, FuncDecl, 628 unless(callee(namedDecl(hasAnyName( 629 "::std::move", "::std::forward"))))), 630 cxxConstructExpr(NonConstRefParam, IsInstantiated, 631 FuncDecl))) 632 .bind(NodeID<Expr>::value))), 633 Stm, Context); 634 for (const auto &Nodes : Matches) { 635 const auto *Exp = Nodes.getNodeAs<Expr>(NodeID<Expr>::value); 636 const auto *Func = Nodes.getNodeAs<FunctionDecl>("func"); 637 if (!Func->getBody() || !Func->getPrimaryTemplate()) 638 return Exp; 639 640 const auto *Parm = Nodes.getNodeAs<ParmVarDecl>("parm"); 641 const ArrayRef<ParmVarDecl *> AllParams = 642 Func->getPrimaryTemplate()->getTemplatedDecl()->parameters(); 643 QualType ParmType = 644 AllParams[std::min<size_t>(Parm->getFunctionScopeIndex(), 645 AllParams.size() - 1)] 646 ->getType(); 647 if (const auto *T = ParmType->getAs<PackExpansionType>()) 648 ParmType = T->getPattern(); 649 650 // If param type is forwarding reference, follow into the function 651 // definition and see whether the param is mutated inside. 652 if (const auto *RefType = ParmType->getAs<RValueReferenceType>()) { 653 if (!RefType->getPointeeType().getQualifiers() && 654 RefType->getPointeeType()->getAs<TemplateTypeParmType>()) { 655 FunctionParmMutationAnalyzer *Analyzer = 656 FunctionParmMutationAnalyzer::getFunctionParmMutationAnalyzer( 657 *Func, Context, Memorized); 658 if (Analyzer->findMutation(Parm)) 659 return Exp; 660 continue; 661 } 662 } 663 // Not forwarding reference. 664 return Exp; 665 } 666 return nullptr; 667 } 668 669 FunctionParmMutationAnalyzer::FunctionParmMutationAnalyzer( 670 const FunctionDecl &Func, ASTContext &Context, 671 ExprMutationAnalyzer::Memoized &Memorized) 672 : BodyAnalyzer(*Func.getBody(), Context, Memorized) { 673 if (const auto *Ctor = dyn_cast<CXXConstructorDecl>(&Func)) { 674 // CXXCtorInitializer might also mutate Param but they're not part of 675 // function body, check them eagerly here since they're typically trivial. 676 for (const CXXCtorInitializer *Init : Ctor->inits()) { 677 ExprMutationAnalyzer::Analyzer InitAnalyzer(*Init->getInit(), Context, 678 Memorized); 679 for (const ParmVarDecl *Parm : Ctor->parameters()) { 680 if (Results.contains(Parm)) 681 continue; 682 if (const Stmt *S = InitAnalyzer.findMutation(Parm)) 683 Results[Parm] = S; 684 } 685 } 686 } 687 } 688 689 const Stmt * 690 FunctionParmMutationAnalyzer::findMutation(const ParmVarDecl *Parm) { 691 const auto Memoized = Results.find(Parm); 692 if (Memoized != Results.end()) 693 return Memoized->second; 694 // To handle call A -> call B -> call A. Assume parameters of A is not mutated 695 // before analyzing parameters of A. Then when analyzing the second "call A", 696 // FunctionParmMutationAnalyzer can use this memoized value to avoid infinite 697 // recursion. 698 Results[Parm] = nullptr; 699 if (const Stmt *S = BodyAnalyzer.findMutation(Parm)) 700 return Results[Parm] = S; 701 return Results[Parm]; 702 } 703 704 } // namespace clang 705