1 //===--- ExprConstant.cpp - Expression Constant Evaluator -----------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the Expr constant evaluator. 10 // 11 // Constant expression evaluation produces four main results: 12 // 13 // * A success/failure flag indicating whether constant folding was successful. 14 // This is the 'bool' return value used by most of the code in this file. A 15 // 'false' return value indicates that constant folding has failed, and any 16 // appropriate diagnostic has already been produced. 17 // 18 // * An evaluated result, valid only if constant folding has not failed. 19 // 20 // * A flag indicating if evaluation encountered (unevaluated) side-effects. 21 // These arise in cases such as (sideEffect(), 0) and (sideEffect() || 1), 22 // where it is possible to determine the evaluated result regardless. 23 // 24 // * A set of notes indicating why the evaluation was not a constant expression 25 // (under the C++11 / C++1y rules only, at the moment), or, if folding failed 26 // too, why the expression could not be folded. 27 // 28 // If we are checking for a potential constant expression, failure to constant 29 // fold a potential constant sub-expression will be indicated by a 'false' 30 // return value (the expression could not be folded) and no diagnostic (the 31 // expression is not necessarily non-constant). 32 // 33 //===----------------------------------------------------------------------===// 34 35 #include "ByteCode/Context.h" 36 #include "ByteCode/Frame.h" 37 #include "ByteCode/State.h" 38 #include "ExprConstShared.h" 39 #include "clang/AST/APValue.h" 40 #include "clang/AST/ASTContext.h" 41 #include "clang/AST/ASTLambda.h" 42 #include "clang/AST/Attr.h" 43 #include "clang/AST/CXXInheritance.h" 44 #include "clang/AST/CharUnits.h" 45 #include "clang/AST/CurrentSourceLocExprScope.h" 46 #include "clang/AST/Expr.h" 47 #include "clang/AST/OSLog.h" 48 #include "clang/AST/OptionalDiagnostic.h" 49 #include "clang/AST/RecordLayout.h" 50 #include "clang/AST/StmtVisitor.h" 51 #include "clang/AST/TypeLoc.h" 52 #include "clang/Basic/Builtins.h" 53 #include "clang/Basic/DiagnosticSema.h" 54 #include "clang/Basic/TargetBuiltins.h" 55 #include "clang/Basic/TargetInfo.h" 56 #include "llvm/ADT/APFixedPoint.h" 57 #include "llvm/ADT/Sequence.h" 58 #include "llvm/ADT/SmallBitVector.h" 59 #include "llvm/ADT/StringExtras.h" 60 #include "llvm/Support/Casting.h" 61 #include "llvm/Support/Debug.h" 62 #include "llvm/Support/SaveAndRestore.h" 63 #include "llvm/Support/SipHash.h" 64 #include "llvm/Support/TimeProfiler.h" 65 #include "llvm/Support/raw_ostream.h" 66 #include <cstring> 67 #include <functional> 68 #include <optional> 69 70 #define DEBUG_TYPE "exprconstant" 71 72 using namespace clang; 73 using llvm::APFixedPoint; 74 using llvm::APInt; 75 using llvm::APSInt; 76 using llvm::APFloat; 77 using llvm::FixedPointSemantics; 78 79 namespace { 80 struct LValue; 81 class CallStackFrame; 82 class EvalInfo; 83 84 using SourceLocExprScopeGuard = 85 CurrentSourceLocExprScope::SourceLocExprScopeGuard; 86 87 static QualType getType(APValue::LValueBase B) { 88 return B.getType(); 89 } 90 91 /// Get an LValue path entry, which is known to not be an array index, as a 92 /// field declaration. 93 static const FieldDecl *getAsField(APValue::LValuePathEntry E) { 94 return dyn_cast_or_null<FieldDecl>(E.getAsBaseOrMember().getPointer()); 95 } 96 /// Get an LValue path entry, which is known to not be an array index, as a 97 /// base class declaration. 98 static const CXXRecordDecl *getAsBaseClass(APValue::LValuePathEntry E) { 99 return dyn_cast_or_null<CXXRecordDecl>(E.getAsBaseOrMember().getPointer()); 100 } 101 /// Determine whether this LValue path entry for a base class names a virtual 102 /// base class. 103 static bool isVirtualBaseClass(APValue::LValuePathEntry E) { 104 return E.getAsBaseOrMember().getInt(); 105 } 106 107 /// Given an expression, determine the type used to store the result of 108 /// evaluating that expression. 109 static QualType getStorageType(const ASTContext &Ctx, const Expr *E) { 110 if (E->isPRValue()) 111 return E->getType(); 112 return Ctx.getLValueReferenceType(E->getType()); 113 } 114 115 /// Given a CallExpr, try to get the alloc_size attribute. May return null. 116 static const AllocSizeAttr *getAllocSizeAttr(const CallExpr *CE) { 117 if (const FunctionDecl *DirectCallee = CE->getDirectCallee()) 118 return DirectCallee->getAttr<AllocSizeAttr>(); 119 if (const Decl *IndirectCallee = CE->getCalleeDecl()) 120 return IndirectCallee->getAttr<AllocSizeAttr>(); 121 return nullptr; 122 } 123 124 /// Attempts to unwrap a CallExpr (with an alloc_size attribute) from an Expr. 125 /// This will look through a single cast. 126 /// 127 /// Returns null if we couldn't unwrap a function with alloc_size. 128 static const CallExpr *tryUnwrapAllocSizeCall(const Expr *E) { 129 if (!E->getType()->isPointerType()) 130 return nullptr; 131 132 E = E->IgnoreParens(); 133 // If we're doing a variable assignment from e.g. malloc(N), there will 134 // probably be a cast of some kind. In exotic cases, we might also see a 135 // top-level ExprWithCleanups. Ignore them either way. 136 if (const auto *FE = dyn_cast<FullExpr>(E)) 137 E = FE->getSubExpr()->IgnoreParens(); 138 139 if (const auto *Cast = dyn_cast<CastExpr>(E)) 140 E = Cast->getSubExpr()->IgnoreParens(); 141 142 if (const auto *CE = dyn_cast<CallExpr>(E)) 143 return getAllocSizeAttr(CE) ? CE : nullptr; 144 return nullptr; 145 } 146 147 /// Determines whether or not the given Base contains a call to a function 148 /// with the alloc_size attribute. 149 static bool isBaseAnAllocSizeCall(APValue::LValueBase Base) { 150 const auto *E = Base.dyn_cast<const Expr *>(); 151 return E && E->getType()->isPointerType() && tryUnwrapAllocSizeCall(E); 152 } 153 154 /// Determines whether the given kind of constant expression is only ever 155 /// used for name mangling. If so, it's permitted to reference things that we 156 /// can't generate code for (in particular, dllimported functions). 157 static bool isForManglingOnly(ConstantExprKind Kind) { 158 switch (Kind) { 159 case ConstantExprKind::Normal: 160 case ConstantExprKind::ClassTemplateArgument: 161 case ConstantExprKind::ImmediateInvocation: 162 // Note that non-type template arguments of class type are emitted as 163 // template parameter objects. 164 return false; 165 166 case ConstantExprKind::NonClassTemplateArgument: 167 return true; 168 } 169 llvm_unreachable("unknown ConstantExprKind"); 170 } 171 172 static bool isTemplateArgument(ConstantExprKind Kind) { 173 switch (Kind) { 174 case ConstantExprKind::Normal: 175 case ConstantExprKind::ImmediateInvocation: 176 return false; 177 178 case ConstantExprKind::ClassTemplateArgument: 179 case ConstantExprKind::NonClassTemplateArgument: 180 return true; 181 } 182 llvm_unreachable("unknown ConstantExprKind"); 183 } 184 185 /// The bound to claim that an array of unknown bound has. 186 /// The value in MostDerivedArraySize is undefined in this case. So, set it 187 /// to an arbitrary value that's likely to loudly break things if it's used. 188 static const uint64_t AssumedSizeForUnsizedArray = 189 std::numeric_limits<uint64_t>::max() / 2; 190 191 /// Determines if an LValue with the given LValueBase will have an unsized 192 /// array in its designator. 193 /// Find the path length and type of the most-derived subobject in the given 194 /// path, and find the size of the containing array, if any. 195 static unsigned 196 findMostDerivedSubobject(ASTContext &Ctx, APValue::LValueBase Base, 197 ArrayRef<APValue::LValuePathEntry> Path, 198 uint64_t &ArraySize, QualType &Type, bool &IsArray, 199 bool &FirstEntryIsUnsizedArray) { 200 // This only accepts LValueBases from APValues, and APValues don't support 201 // arrays that lack size info. 202 assert(!isBaseAnAllocSizeCall(Base) && 203 "Unsized arrays shouldn't appear here"); 204 unsigned MostDerivedLength = 0; 205 Type = getType(Base); 206 207 for (unsigned I = 0, N = Path.size(); I != N; ++I) { 208 if (Type->isArrayType()) { 209 const ArrayType *AT = Ctx.getAsArrayType(Type); 210 Type = AT->getElementType(); 211 MostDerivedLength = I + 1; 212 IsArray = true; 213 214 if (auto *CAT = dyn_cast<ConstantArrayType>(AT)) { 215 ArraySize = CAT->getZExtSize(); 216 } else { 217 assert(I == 0 && "unexpected unsized array designator"); 218 FirstEntryIsUnsizedArray = true; 219 ArraySize = AssumedSizeForUnsizedArray; 220 } 221 } else if (Type->isAnyComplexType()) { 222 const ComplexType *CT = Type->castAs<ComplexType>(); 223 Type = CT->getElementType(); 224 ArraySize = 2; 225 MostDerivedLength = I + 1; 226 IsArray = true; 227 } else if (const auto *VT = Type->getAs<VectorType>()) { 228 Type = VT->getElementType(); 229 ArraySize = VT->getNumElements(); 230 MostDerivedLength = I + 1; 231 IsArray = true; 232 } else if (const FieldDecl *FD = getAsField(Path[I])) { 233 Type = FD->getType(); 234 ArraySize = 0; 235 MostDerivedLength = I + 1; 236 IsArray = false; 237 } else { 238 // Path[I] describes a base class. 239 ArraySize = 0; 240 IsArray = false; 241 } 242 } 243 return MostDerivedLength; 244 } 245 246 /// A path from a glvalue to a subobject of that glvalue. 247 struct SubobjectDesignator { 248 /// True if the subobject was named in a manner not supported by C++11. Such 249 /// lvalues can still be folded, but they are not core constant expressions 250 /// and we cannot perform lvalue-to-rvalue conversions on them. 251 LLVM_PREFERRED_TYPE(bool) 252 unsigned Invalid : 1; 253 254 /// Is this a pointer one past the end of an object? 255 LLVM_PREFERRED_TYPE(bool) 256 unsigned IsOnePastTheEnd : 1; 257 258 /// Indicator of whether the first entry is an unsized array. 259 LLVM_PREFERRED_TYPE(bool) 260 unsigned FirstEntryIsAnUnsizedArray : 1; 261 262 /// Indicator of whether the most-derived object is an array element. 263 LLVM_PREFERRED_TYPE(bool) 264 unsigned MostDerivedIsArrayElement : 1; 265 266 /// The length of the path to the most-derived object of which this is a 267 /// subobject. 268 unsigned MostDerivedPathLength : 28; 269 270 /// The size of the array of which the most-derived object is an element. 271 /// This will always be 0 if the most-derived object is not an array 272 /// element. 0 is not an indicator of whether or not the most-derived object 273 /// is an array, however, because 0-length arrays are allowed. 274 /// 275 /// If the current array is an unsized array, the value of this is 276 /// undefined. 277 uint64_t MostDerivedArraySize; 278 /// The type of the most derived object referred to by this address. 279 QualType MostDerivedType; 280 281 typedef APValue::LValuePathEntry PathEntry; 282 283 /// The entries on the path from the glvalue to the designated subobject. 284 SmallVector<PathEntry, 8> Entries; 285 286 SubobjectDesignator() : Invalid(true) {} 287 288 explicit SubobjectDesignator(QualType T) 289 : Invalid(false), IsOnePastTheEnd(false), 290 FirstEntryIsAnUnsizedArray(false), MostDerivedIsArrayElement(false), 291 MostDerivedPathLength(0), MostDerivedArraySize(0), 292 MostDerivedType(T) {} 293 294 SubobjectDesignator(ASTContext &Ctx, const APValue &V) 295 : Invalid(!V.isLValue() || !V.hasLValuePath()), IsOnePastTheEnd(false), 296 FirstEntryIsAnUnsizedArray(false), MostDerivedIsArrayElement(false), 297 MostDerivedPathLength(0), MostDerivedArraySize(0) { 298 assert(V.isLValue() && "Non-LValue used to make an LValue designator?"); 299 if (!Invalid) { 300 IsOnePastTheEnd = V.isLValueOnePastTheEnd(); 301 ArrayRef<PathEntry> VEntries = V.getLValuePath(); 302 Entries.insert(Entries.end(), VEntries.begin(), VEntries.end()); 303 if (V.getLValueBase()) { 304 bool IsArray = false; 305 bool FirstIsUnsizedArray = false; 306 MostDerivedPathLength = findMostDerivedSubobject( 307 Ctx, V.getLValueBase(), V.getLValuePath(), MostDerivedArraySize, 308 MostDerivedType, IsArray, FirstIsUnsizedArray); 309 MostDerivedIsArrayElement = IsArray; 310 FirstEntryIsAnUnsizedArray = FirstIsUnsizedArray; 311 } 312 } 313 } 314 315 void truncate(ASTContext &Ctx, APValue::LValueBase Base, 316 unsigned NewLength) { 317 if (Invalid) 318 return; 319 320 assert(Base && "cannot truncate path for null pointer"); 321 assert(NewLength <= Entries.size() && "not a truncation"); 322 323 if (NewLength == Entries.size()) 324 return; 325 Entries.resize(NewLength); 326 327 bool IsArray = false; 328 bool FirstIsUnsizedArray = false; 329 MostDerivedPathLength = findMostDerivedSubobject( 330 Ctx, Base, Entries, MostDerivedArraySize, MostDerivedType, IsArray, 331 FirstIsUnsizedArray); 332 MostDerivedIsArrayElement = IsArray; 333 FirstEntryIsAnUnsizedArray = FirstIsUnsizedArray; 334 } 335 336 void setInvalid() { 337 Invalid = true; 338 Entries.clear(); 339 } 340 341 /// Determine whether the most derived subobject is an array without a 342 /// known bound. 343 bool isMostDerivedAnUnsizedArray() const { 344 assert(!Invalid && "Calling this makes no sense on invalid designators"); 345 return Entries.size() == 1 && FirstEntryIsAnUnsizedArray; 346 } 347 348 /// Determine what the most derived array's size is. Results in an assertion 349 /// failure if the most derived array lacks a size. 350 uint64_t getMostDerivedArraySize() const { 351 assert(!isMostDerivedAnUnsizedArray() && "Unsized array has no size"); 352 return MostDerivedArraySize; 353 } 354 355 /// Determine whether this is a one-past-the-end pointer. 356 bool isOnePastTheEnd() const { 357 assert(!Invalid); 358 if (IsOnePastTheEnd) 359 return true; 360 if (!isMostDerivedAnUnsizedArray() && MostDerivedIsArrayElement && 361 Entries[MostDerivedPathLength - 1].getAsArrayIndex() == 362 MostDerivedArraySize) 363 return true; 364 return false; 365 } 366 367 /// Get the range of valid index adjustments in the form 368 /// {maximum value that can be subtracted from this pointer, 369 /// maximum value that can be added to this pointer} 370 std::pair<uint64_t, uint64_t> validIndexAdjustments() { 371 if (Invalid || isMostDerivedAnUnsizedArray()) 372 return {0, 0}; 373 374 // [expr.add]p4: For the purposes of these operators, a pointer to a 375 // nonarray object behaves the same as a pointer to the first element of 376 // an array of length one with the type of the object as its element type. 377 bool IsArray = MostDerivedPathLength == Entries.size() && 378 MostDerivedIsArrayElement; 379 uint64_t ArrayIndex = IsArray ? Entries.back().getAsArrayIndex() 380 : (uint64_t)IsOnePastTheEnd; 381 uint64_t ArraySize = 382 IsArray ? getMostDerivedArraySize() : (uint64_t)1; 383 return {ArrayIndex, ArraySize - ArrayIndex}; 384 } 385 386 /// Check that this refers to a valid subobject. 387 bool isValidSubobject() const { 388 if (Invalid) 389 return false; 390 return !isOnePastTheEnd(); 391 } 392 /// Check that this refers to a valid subobject, and if not, produce a 393 /// relevant diagnostic and set the designator as invalid. 394 bool checkSubobject(EvalInfo &Info, const Expr *E, CheckSubobjectKind CSK); 395 396 /// Get the type of the designated object. 397 QualType getType(ASTContext &Ctx) const { 398 assert(!Invalid && "invalid designator has no subobject type"); 399 return MostDerivedPathLength == Entries.size() 400 ? MostDerivedType 401 : Ctx.getRecordType(getAsBaseClass(Entries.back())); 402 } 403 404 /// Update this designator to refer to the first element within this array. 405 void addArrayUnchecked(const ConstantArrayType *CAT) { 406 Entries.push_back(PathEntry::ArrayIndex(0)); 407 408 // This is a most-derived object. 409 MostDerivedType = CAT->getElementType(); 410 MostDerivedIsArrayElement = true; 411 MostDerivedArraySize = CAT->getZExtSize(); 412 MostDerivedPathLength = Entries.size(); 413 } 414 /// Update this designator to refer to the first element within the array of 415 /// elements of type T. This is an array of unknown size. 416 void addUnsizedArrayUnchecked(QualType ElemTy) { 417 Entries.push_back(PathEntry::ArrayIndex(0)); 418 419 MostDerivedType = ElemTy; 420 MostDerivedIsArrayElement = true; 421 // The value in MostDerivedArraySize is undefined in this case. So, set it 422 // to an arbitrary value that's likely to loudly break things if it's 423 // used. 424 MostDerivedArraySize = AssumedSizeForUnsizedArray; 425 MostDerivedPathLength = Entries.size(); 426 } 427 /// Update this designator to refer to the given base or member of this 428 /// object. 429 void addDeclUnchecked(const Decl *D, bool Virtual = false) { 430 Entries.push_back(APValue::BaseOrMemberType(D, Virtual)); 431 432 // If this isn't a base class, it's a new most-derived object. 433 if (const FieldDecl *FD = dyn_cast<FieldDecl>(D)) { 434 MostDerivedType = FD->getType(); 435 MostDerivedIsArrayElement = false; 436 MostDerivedArraySize = 0; 437 MostDerivedPathLength = Entries.size(); 438 } 439 } 440 /// Update this designator to refer to the given complex component. 441 void addComplexUnchecked(QualType EltTy, bool Imag) { 442 Entries.push_back(PathEntry::ArrayIndex(Imag)); 443 444 // This is technically a most-derived object, though in practice this 445 // is unlikely to matter. 446 MostDerivedType = EltTy; 447 MostDerivedIsArrayElement = true; 448 MostDerivedArraySize = 2; 449 MostDerivedPathLength = Entries.size(); 450 } 451 452 void addVectorElementUnchecked(QualType EltTy, uint64_t Size, 453 uint64_t Idx) { 454 Entries.push_back(PathEntry::ArrayIndex(Idx)); 455 MostDerivedType = EltTy; 456 MostDerivedPathLength = Entries.size(); 457 MostDerivedArraySize = 0; 458 MostDerivedIsArrayElement = false; 459 } 460 461 void diagnoseUnsizedArrayPointerArithmetic(EvalInfo &Info, const Expr *E); 462 void diagnosePointerArithmetic(EvalInfo &Info, const Expr *E, 463 const APSInt &N); 464 /// Add N to the address of this subobject. 465 void adjustIndex(EvalInfo &Info, const Expr *E, APSInt N) { 466 if (Invalid || !N) return; 467 uint64_t TruncatedN = N.extOrTrunc(64).getZExtValue(); 468 if (isMostDerivedAnUnsizedArray()) { 469 diagnoseUnsizedArrayPointerArithmetic(Info, E); 470 // Can't verify -- trust that the user is doing the right thing (or if 471 // not, trust that the caller will catch the bad behavior). 472 // FIXME: Should we reject if this overflows, at least? 473 Entries.back() = PathEntry::ArrayIndex( 474 Entries.back().getAsArrayIndex() + TruncatedN); 475 return; 476 } 477 478 // [expr.add]p4: For the purposes of these operators, a pointer to a 479 // nonarray object behaves the same as a pointer to the first element of 480 // an array of length one with the type of the object as its element type. 481 bool IsArray = MostDerivedPathLength == Entries.size() && 482 MostDerivedIsArrayElement; 483 uint64_t ArrayIndex = IsArray ? Entries.back().getAsArrayIndex() 484 : (uint64_t)IsOnePastTheEnd; 485 uint64_t ArraySize = 486 IsArray ? getMostDerivedArraySize() : (uint64_t)1; 487 488 if (N < -(int64_t)ArrayIndex || N > ArraySize - ArrayIndex) { 489 // Calculate the actual index in a wide enough type, so we can include 490 // it in the note. 491 N = N.extend(std::max<unsigned>(N.getBitWidth() + 1, 65)); 492 (llvm::APInt&)N += ArrayIndex; 493 assert(N.ugt(ArraySize) && "bounds check failed for in-bounds index"); 494 diagnosePointerArithmetic(Info, E, N); 495 setInvalid(); 496 return; 497 } 498 499 ArrayIndex += TruncatedN; 500 assert(ArrayIndex <= ArraySize && 501 "bounds check succeeded for out-of-bounds index"); 502 503 if (IsArray) 504 Entries.back() = PathEntry::ArrayIndex(ArrayIndex); 505 else 506 IsOnePastTheEnd = (ArrayIndex != 0); 507 } 508 }; 509 510 /// A scope at the end of which an object can need to be destroyed. 511 enum class ScopeKind { 512 Block, 513 FullExpression, 514 Call 515 }; 516 517 /// A reference to a particular call and its arguments. 518 struct CallRef { 519 CallRef() : OrigCallee(), CallIndex(0), Version() {} 520 CallRef(const FunctionDecl *Callee, unsigned CallIndex, unsigned Version) 521 : OrigCallee(Callee), CallIndex(CallIndex), Version(Version) {} 522 523 explicit operator bool() const { return OrigCallee; } 524 525 /// Get the parameter that the caller initialized, corresponding to the 526 /// given parameter in the callee. 527 const ParmVarDecl *getOrigParam(const ParmVarDecl *PVD) const { 528 return OrigCallee ? OrigCallee->getParamDecl(PVD->getFunctionScopeIndex()) 529 : PVD; 530 } 531 532 /// The callee at the point where the arguments were evaluated. This might 533 /// be different from the actual callee (a different redeclaration, or a 534 /// virtual override), but this function's parameters are the ones that 535 /// appear in the parameter map. 536 const FunctionDecl *OrigCallee; 537 /// The call index of the frame that holds the argument values. 538 unsigned CallIndex; 539 /// The version of the parameters corresponding to this call. 540 unsigned Version; 541 }; 542 543 /// A stack frame in the constexpr call stack. 544 class CallStackFrame : public interp::Frame { 545 public: 546 EvalInfo &Info; 547 548 /// Parent - The caller of this stack frame. 549 CallStackFrame *Caller; 550 551 /// Callee - The function which was called. 552 const FunctionDecl *Callee; 553 554 /// This - The binding for the this pointer in this call, if any. 555 const LValue *This; 556 557 /// CallExpr - The syntactical structure of member function calls 558 const Expr *CallExpr; 559 560 /// Information on how to find the arguments to this call. Our arguments 561 /// are stored in our parent's CallStackFrame, using the ParmVarDecl* as a 562 /// key and this value as the version. 563 CallRef Arguments; 564 565 /// Source location information about the default argument or default 566 /// initializer expression we're evaluating, if any. 567 CurrentSourceLocExprScope CurSourceLocExprScope; 568 569 // Note that we intentionally use std::map here so that references to 570 // values are stable. 571 typedef std::pair<const void *, unsigned> MapKeyTy; 572 typedef std::map<MapKeyTy, APValue> MapTy; 573 /// Temporaries - Temporary lvalues materialized within this stack frame. 574 MapTy Temporaries; 575 576 /// CallRange - The source range of the call expression for this call. 577 SourceRange CallRange; 578 579 /// Index - The call index of this call. 580 unsigned Index; 581 582 /// The stack of integers for tracking version numbers for temporaries. 583 SmallVector<unsigned, 2> TempVersionStack = {1}; 584 unsigned CurTempVersion = TempVersionStack.back(); 585 586 unsigned getTempVersion() const { return TempVersionStack.back(); } 587 588 void pushTempVersion() { 589 TempVersionStack.push_back(++CurTempVersion); 590 } 591 592 void popTempVersion() { 593 TempVersionStack.pop_back(); 594 } 595 596 CallRef createCall(const FunctionDecl *Callee) { 597 return {Callee, Index, ++CurTempVersion}; 598 } 599 600 // FIXME: Adding this to every 'CallStackFrame' may have a nontrivial impact 601 // on the overall stack usage of deeply-recursing constexpr evaluations. 602 // (We should cache this map rather than recomputing it repeatedly.) 603 // But let's try this and see how it goes; we can look into caching the map 604 // as a later change. 605 606 /// LambdaCaptureFields - Mapping from captured variables/this to 607 /// corresponding data members in the closure class. 608 llvm::DenseMap<const ValueDecl *, FieldDecl *> LambdaCaptureFields; 609 FieldDecl *LambdaThisCaptureField = nullptr; 610 611 CallStackFrame(EvalInfo &Info, SourceRange CallRange, 612 const FunctionDecl *Callee, const LValue *This, 613 const Expr *CallExpr, CallRef Arguments); 614 ~CallStackFrame(); 615 616 // Return the temporary for Key whose version number is Version. 617 APValue *getTemporary(const void *Key, unsigned Version) { 618 MapKeyTy KV(Key, Version); 619 auto LB = Temporaries.lower_bound(KV); 620 if (LB != Temporaries.end() && LB->first == KV) 621 return &LB->second; 622 return nullptr; 623 } 624 625 // Return the current temporary for Key in the map. 626 APValue *getCurrentTemporary(const void *Key) { 627 auto UB = Temporaries.upper_bound(MapKeyTy(Key, UINT_MAX)); 628 if (UB != Temporaries.begin() && std::prev(UB)->first.first == Key) 629 return &std::prev(UB)->second; 630 return nullptr; 631 } 632 633 // Return the version number of the current temporary for Key. 634 unsigned getCurrentTemporaryVersion(const void *Key) const { 635 auto UB = Temporaries.upper_bound(MapKeyTy(Key, UINT_MAX)); 636 if (UB != Temporaries.begin() && std::prev(UB)->first.first == Key) 637 return std::prev(UB)->first.second; 638 return 0; 639 } 640 641 /// Allocate storage for an object of type T in this stack frame. 642 /// Populates LV with a handle to the created object. Key identifies 643 /// the temporary within the stack frame, and must not be reused without 644 /// bumping the temporary version number. 645 template<typename KeyT> 646 APValue &createTemporary(const KeyT *Key, QualType T, 647 ScopeKind Scope, LValue &LV); 648 649 /// Allocate storage for a parameter of a function call made in this frame. 650 APValue &createParam(CallRef Args, const ParmVarDecl *PVD, LValue &LV); 651 652 void describe(llvm::raw_ostream &OS) const override; 653 654 Frame *getCaller() const override { return Caller; } 655 SourceRange getCallRange() const override { return CallRange; } 656 const FunctionDecl *getCallee() const override { return Callee; } 657 658 bool isStdFunction() const { 659 for (const DeclContext *DC = Callee; DC; DC = DC->getParent()) 660 if (DC->isStdNamespace()) 661 return true; 662 return false; 663 } 664 665 /// Whether we're in a context where [[msvc::constexpr]] evaluation is 666 /// permitted. See MSConstexprDocs for description of permitted contexts. 667 bool CanEvalMSConstexpr = false; 668 669 private: 670 APValue &createLocal(APValue::LValueBase Base, const void *Key, QualType T, 671 ScopeKind Scope); 672 }; 673 674 /// Temporarily override 'this'. 675 class ThisOverrideRAII { 676 public: 677 ThisOverrideRAII(CallStackFrame &Frame, const LValue *NewThis, bool Enable) 678 : Frame(Frame), OldThis(Frame.This) { 679 if (Enable) 680 Frame.This = NewThis; 681 } 682 ~ThisOverrideRAII() { 683 Frame.This = OldThis; 684 } 685 private: 686 CallStackFrame &Frame; 687 const LValue *OldThis; 688 }; 689 690 // A shorthand time trace scope struct, prints source range, for example 691 // {"name":"EvaluateAsRValue","args":{"detail":"<test.cc:8:21, col:25>"}}} 692 class ExprTimeTraceScope { 693 public: 694 ExprTimeTraceScope(const Expr *E, const ASTContext &Ctx, StringRef Name) 695 : TimeScope(Name, [E, &Ctx] { 696 return E->getSourceRange().printToString(Ctx.getSourceManager()); 697 }) {} 698 699 private: 700 llvm::TimeTraceScope TimeScope; 701 }; 702 703 /// RAII object used to change the current ability of 704 /// [[msvc::constexpr]] evaulation. 705 struct MSConstexprContextRAII { 706 CallStackFrame &Frame; 707 bool OldValue; 708 explicit MSConstexprContextRAII(CallStackFrame &Frame, bool Value) 709 : Frame(Frame), OldValue(Frame.CanEvalMSConstexpr) { 710 Frame.CanEvalMSConstexpr = Value; 711 } 712 713 ~MSConstexprContextRAII() { Frame.CanEvalMSConstexpr = OldValue; } 714 }; 715 } 716 717 static bool HandleDestruction(EvalInfo &Info, const Expr *E, 718 const LValue &This, QualType ThisType); 719 static bool HandleDestruction(EvalInfo &Info, SourceLocation Loc, 720 APValue::LValueBase LVBase, APValue &Value, 721 QualType T); 722 723 namespace { 724 /// A cleanup, and a flag indicating whether it is lifetime-extended. 725 class Cleanup { 726 llvm::PointerIntPair<APValue*, 2, ScopeKind> Value; 727 APValue::LValueBase Base; 728 QualType T; 729 730 public: 731 Cleanup(APValue *Val, APValue::LValueBase Base, QualType T, 732 ScopeKind Scope) 733 : Value(Val, Scope), Base(Base), T(T) {} 734 735 /// Determine whether this cleanup should be performed at the end of the 736 /// given kind of scope. 737 bool isDestroyedAtEndOf(ScopeKind K) const { 738 return (int)Value.getInt() >= (int)K; 739 } 740 bool endLifetime(EvalInfo &Info, bool RunDestructors) { 741 if (RunDestructors) { 742 SourceLocation Loc; 743 if (const ValueDecl *VD = Base.dyn_cast<const ValueDecl*>()) 744 Loc = VD->getLocation(); 745 else if (const Expr *E = Base.dyn_cast<const Expr*>()) 746 Loc = E->getExprLoc(); 747 return HandleDestruction(Info, Loc, Base, *Value.getPointer(), T); 748 } 749 *Value.getPointer() = APValue(); 750 return true; 751 } 752 753 bool hasSideEffect() { 754 return T.isDestructedType(); 755 } 756 }; 757 758 /// A reference to an object whose construction we are currently evaluating. 759 struct ObjectUnderConstruction { 760 APValue::LValueBase Base; 761 ArrayRef<APValue::LValuePathEntry> Path; 762 friend bool operator==(const ObjectUnderConstruction &LHS, 763 const ObjectUnderConstruction &RHS) { 764 return LHS.Base == RHS.Base && LHS.Path == RHS.Path; 765 } 766 friend llvm::hash_code hash_value(const ObjectUnderConstruction &Obj) { 767 return llvm::hash_combine(Obj.Base, Obj.Path); 768 } 769 }; 770 enum class ConstructionPhase { 771 None, 772 Bases, 773 AfterBases, 774 AfterFields, 775 Destroying, 776 DestroyingBases 777 }; 778 } 779 780 namespace llvm { 781 template<> struct DenseMapInfo<ObjectUnderConstruction> { 782 using Base = DenseMapInfo<APValue::LValueBase>; 783 static ObjectUnderConstruction getEmptyKey() { 784 return {Base::getEmptyKey(), {}}; } 785 static ObjectUnderConstruction getTombstoneKey() { 786 return {Base::getTombstoneKey(), {}}; 787 } 788 static unsigned getHashValue(const ObjectUnderConstruction &Object) { 789 return hash_value(Object); 790 } 791 static bool isEqual(const ObjectUnderConstruction &LHS, 792 const ObjectUnderConstruction &RHS) { 793 return LHS == RHS; 794 } 795 }; 796 } 797 798 namespace { 799 /// A dynamically-allocated heap object. 800 struct DynAlloc { 801 /// The value of this heap-allocated object. 802 APValue Value; 803 /// The allocating expression; used for diagnostics. Either a CXXNewExpr 804 /// or a CallExpr (the latter is for direct calls to operator new inside 805 /// std::allocator<T>::allocate). 806 const Expr *AllocExpr = nullptr; 807 808 enum Kind { 809 New, 810 ArrayNew, 811 StdAllocator 812 }; 813 814 /// Get the kind of the allocation. This must match between allocation 815 /// and deallocation. 816 Kind getKind() const { 817 if (auto *NE = dyn_cast<CXXNewExpr>(AllocExpr)) 818 return NE->isArray() ? ArrayNew : New; 819 assert(isa<CallExpr>(AllocExpr)); 820 return StdAllocator; 821 } 822 }; 823 824 struct DynAllocOrder { 825 bool operator()(DynamicAllocLValue L, DynamicAllocLValue R) const { 826 return L.getIndex() < R.getIndex(); 827 } 828 }; 829 830 /// EvalInfo - This is a private struct used by the evaluator to capture 831 /// information about a subexpression as it is folded. It retains information 832 /// about the AST context, but also maintains information about the folded 833 /// expression. 834 /// 835 /// If an expression could be evaluated, it is still possible it is not a C 836 /// "integer constant expression" or constant expression. If not, this struct 837 /// captures information about how and why not. 838 /// 839 /// One bit of information passed *into* the request for constant folding 840 /// indicates whether the subexpression is "evaluated" or not according to C 841 /// rules. For example, the RHS of (0 && foo()) is not evaluated. We can 842 /// evaluate the expression regardless of what the RHS is, but C only allows 843 /// certain things in certain situations. 844 class EvalInfo : public interp::State { 845 public: 846 ASTContext &Ctx; 847 848 /// EvalStatus - Contains information about the evaluation. 849 Expr::EvalStatus &EvalStatus; 850 851 /// CurrentCall - The top of the constexpr call stack. 852 CallStackFrame *CurrentCall; 853 854 /// CallStackDepth - The number of calls in the call stack right now. 855 unsigned CallStackDepth; 856 857 /// NextCallIndex - The next call index to assign. 858 unsigned NextCallIndex; 859 860 /// StepsLeft - The remaining number of evaluation steps we're permitted 861 /// to perform. This is essentially a limit for the number of statements 862 /// we will evaluate. 863 unsigned StepsLeft; 864 865 /// Enable the experimental new constant interpreter. If an expression is 866 /// not supported by the interpreter, an error is triggered. 867 bool EnableNewConstInterp; 868 869 /// BottomFrame - The frame in which evaluation started. This must be 870 /// initialized after CurrentCall and CallStackDepth. 871 CallStackFrame BottomFrame; 872 873 /// A stack of values whose lifetimes end at the end of some surrounding 874 /// evaluation frame. 875 llvm::SmallVector<Cleanup, 16> CleanupStack; 876 877 /// EvaluatingDecl - This is the declaration whose initializer is being 878 /// evaluated, if any. 879 APValue::LValueBase EvaluatingDecl; 880 881 enum class EvaluatingDeclKind { 882 None, 883 /// We're evaluating the construction of EvaluatingDecl. 884 Ctor, 885 /// We're evaluating the destruction of EvaluatingDecl. 886 Dtor, 887 }; 888 EvaluatingDeclKind IsEvaluatingDecl = EvaluatingDeclKind::None; 889 890 /// EvaluatingDeclValue - This is the value being constructed for the 891 /// declaration whose initializer is being evaluated, if any. 892 APValue *EvaluatingDeclValue; 893 894 /// Set of objects that are currently being constructed. 895 llvm::DenseMap<ObjectUnderConstruction, ConstructionPhase> 896 ObjectsUnderConstruction; 897 898 /// Current heap allocations, along with the location where each was 899 /// allocated. We use std::map here because we need stable addresses 900 /// for the stored APValues. 901 std::map<DynamicAllocLValue, DynAlloc, DynAllocOrder> HeapAllocs; 902 903 /// The number of heap allocations performed so far in this evaluation. 904 unsigned NumHeapAllocs = 0; 905 906 struct EvaluatingConstructorRAII { 907 EvalInfo &EI; 908 ObjectUnderConstruction Object; 909 bool DidInsert; 910 EvaluatingConstructorRAII(EvalInfo &EI, ObjectUnderConstruction Object, 911 bool HasBases) 912 : EI(EI), Object(Object) { 913 DidInsert = 914 EI.ObjectsUnderConstruction 915 .insert({Object, HasBases ? ConstructionPhase::Bases 916 : ConstructionPhase::AfterBases}) 917 .second; 918 } 919 void finishedConstructingBases() { 920 EI.ObjectsUnderConstruction[Object] = ConstructionPhase::AfterBases; 921 } 922 void finishedConstructingFields() { 923 EI.ObjectsUnderConstruction[Object] = ConstructionPhase::AfterFields; 924 } 925 ~EvaluatingConstructorRAII() { 926 if (DidInsert) EI.ObjectsUnderConstruction.erase(Object); 927 } 928 }; 929 930 struct EvaluatingDestructorRAII { 931 EvalInfo &EI; 932 ObjectUnderConstruction Object; 933 bool DidInsert; 934 EvaluatingDestructorRAII(EvalInfo &EI, ObjectUnderConstruction Object) 935 : EI(EI), Object(Object) { 936 DidInsert = EI.ObjectsUnderConstruction 937 .insert({Object, ConstructionPhase::Destroying}) 938 .second; 939 } 940 void startedDestroyingBases() { 941 EI.ObjectsUnderConstruction[Object] = 942 ConstructionPhase::DestroyingBases; 943 } 944 ~EvaluatingDestructorRAII() { 945 if (DidInsert) 946 EI.ObjectsUnderConstruction.erase(Object); 947 } 948 }; 949 950 ConstructionPhase 951 isEvaluatingCtorDtor(APValue::LValueBase Base, 952 ArrayRef<APValue::LValuePathEntry> Path) { 953 return ObjectsUnderConstruction.lookup({Base, Path}); 954 } 955 956 /// If we're currently speculatively evaluating, the outermost call stack 957 /// depth at which we can mutate state, otherwise 0. 958 unsigned SpeculativeEvaluationDepth = 0; 959 960 /// The current array initialization index, if we're performing array 961 /// initialization. 962 uint64_t ArrayInitIndex = -1; 963 964 /// HasActiveDiagnostic - Was the previous diagnostic stored? If so, further 965 /// notes attached to it will also be stored, otherwise they will not be. 966 bool HasActiveDiagnostic; 967 968 /// Have we emitted a diagnostic explaining why we couldn't constant 969 /// fold (not just why it's not strictly a constant expression)? 970 bool HasFoldFailureDiagnostic; 971 972 /// Whether we're checking that an expression is a potential constant 973 /// expression. If so, do not fail on constructs that could become constant 974 /// later on (such as a use of an undefined global). 975 bool CheckingPotentialConstantExpression = false; 976 977 /// Whether we're checking for an expression that has undefined behavior. 978 /// If so, we will produce warnings if we encounter an operation that is 979 /// always undefined. 980 /// 981 /// Note that we still need to evaluate the expression normally when this 982 /// is set; this is used when evaluating ICEs in C. 983 bool CheckingForUndefinedBehavior = false; 984 985 enum EvaluationMode { 986 /// Evaluate as a constant expression. Stop if we find that the expression 987 /// is not a constant expression. 988 EM_ConstantExpression, 989 990 /// Evaluate as a constant expression. Stop if we find that the expression 991 /// is not a constant expression. Some expressions can be retried in the 992 /// optimizer if we don't constant fold them here, but in an unevaluated 993 /// context we try to fold them immediately since the optimizer never 994 /// gets a chance to look at it. 995 EM_ConstantExpressionUnevaluated, 996 997 /// Fold the expression to a constant. Stop if we hit a side-effect that 998 /// we can't model. 999 EM_ConstantFold, 1000 1001 /// Evaluate in any way we know how. Don't worry about side-effects that 1002 /// can't be modeled. 1003 EM_IgnoreSideEffects, 1004 } EvalMode; 1005 1006 /// Are we checking whether the expression is a potential constant 1007 /// expression? 1008 bool checkingPotentialConstantExpression() const override { 1009 return CheckingPotentialConstantExpression; 1010 } 1011 1012 /// Are we checking an expression for overflow? 1013 // FIXME: We should check for any kind of undefined or suspicious behavior 1014 // in such constructs, not just overflow. 1015 bool checkingForUndefinedBehavior() const override { 1016 return CheckingForUndefinedBehavior; 1017 } 1018 1019 EvalInfo(const ASTContext &C, Expr::EvalStatus &S, EvaluationMode Mode) 1020 : Ctx(const_cast<ASTContext &>(C)), EvalStatus(S), CurrentCall(nullptr), 1021 CallStackDepth(0), NextCallIndex(1), 1022 StepsLeft(C.getLangOpts().ConstexprStepLimit), 1023 EnableNewConstInterp(C.getLangOpts().EnableNewConstInterp), 1024 BottomFrame(*this, SourceLocation(), /*Callee=*/nullptr, 1025 /*This=*/nullptr, 1026 /*CallExpr=*/nullptr, CallRef()), 1027 EvaluatingDecl((const ValueDecl *)nullptr), 1028 EvaluatingDeclValue(nullptr), HasActiveDiagnostic(false), 1029 HasFoldFailureDiagnostic(false), EvalMode(Mode) {} 1030 1031 ~EvalInfo() { 1032 discardCleanups(); 1033 } 1034 1035 ASTContext &getASTContext() const override { return Ctx; } 1036 1037 void setEvaluatingDecl(APValue::LValueBase Base, APValue &Value, 1038 EvaluatingDeclKind EDK = EvaluatingDeclKind::Ctor) { 1039 EvaluatingDecl = Base; 1040 IsEvaluatingDecl = EDK; 1041 EvaluatingDeclValue = &Value; 1042 } 1043 1044 bool CheckCallLimit(SourceLocation Loc) { 1045 // Don't perform any constexpr calls (other than the call we're checking) 1046 // when checking a potential constant expression. 1047 if (checkingPotentialConstantExpression() && CallStackDepth > 1) 1048 return false; 1049 if (NextCallIndex == 0) { 1050 // NextCallIndex has wrapped around. 1051 FFDiag(Loc, diag::note_constexpr_call_limit_exceeded); 1052 return false; 1053 } 1054 if (CallStackDepth <= getLangOpts().ConstexprCallDepth) 1055 return true; 1056 FFDiag(Loc, diag::note_constexpr_depth_limit_exceeded) 1057 << getLangOpts().ConstexprCallDepth; 1058 return false; 1059 } 1060 1061 bool CheckArraySize(SourceLocation Loc, unsigned BitWidth, 1062 uint64_t ElemCount, bool Diag) { 1063 // FIXME: GH63562 1064 // APValue stores array extents as unsigned, 1065 // so anything that is greater that unsigned would overflow when 1066 // constructing the array, we catch this here. 1067 if (BitWidth > ConstantArrayType::getMaxSizeBits(Ctx) || 1068 ElemCount > uint64_t(std::numeric_limits<unsigned>::max())) { 1069 if (Diag) 1070 FFDiag(Loc, diag::note_constexpr_new_too_large) << ElemCount; 1071 return false; 1072 } 1073 1074 // FIXME: GH63562 1075 // Arrays allocate an APValue per element. 1076 // We use the number of constexpr steps as a proxy for the maximum size 1077 // of arrays to avoid exhausting the system resources, as initialization 1078 // of each element is likely to take some number of steps anyway. 1079 uint64_t Limit = Ctx.getLangOpts().ConstexprStepLimit; 1080 if (ElemCount > Limit) { 1081 if (Diag) 1082 FFDiag(Loc, diag::note_constexpr_new_exceeds_limits) 1083 << ElemCount << Limit; 1084 return false; 1085 } 1086 return true; 1087 } 1088 1089 std::pair<CallStackFrame *, unsigned> 1090 getCallFrameAndDepth(unsigned CallIndex) { 1091 assert(CallIndex && "no call index in getCallFrameAndDepth"); 1092 // We will eventually hit BottomFrame, which has Index 1, so Frame can't 1093 // be null in this loop. 1094 unsigned Depth = CallStackDepth; 1095 CallStackFrame *Frame = CurrentCall; 1096 while (Frame->Index > CallIndex) { 1097 Frame = Frame->Caller; 1098 --Depth; 1099 } 1100 if (Frame->Index == CallIndex) 1101 return {Frame, Depth}; 1102 return {nullptr, 0}; 1103 } 1104 1105 bool nextStep(const Stmt *S) { 1106 if (!StepsLeft) { 1107 FFDiag(S->getBeginLoc(), diag::note_constexpr_step_limit_exceeded); 1108 return false; 1109 } 1110 --StepsLeft; 1111 return true; 1112 } 1113 1114 APValue *createHeapAlloc(const Expr *E, QualType T, LValue &LV); 1115 1116 std::optional<DynAlloc *> lookupDynamicAlloc(DynamicAllocLValue DA) { 1117 std::optional<DynAlloc *> Result; 1118 auto It = HeapAllocs.find(DA); 1119 if (It != HeapAllocs.end()) 1120 Result = &It->second; 1121 return Result; 1122 } 1123 1124 /// Get the allocated storage for the given parameter of the given call. 1125 APValue *getParamSlot(CallRef Call, const ParmVarDecl *PVD) { 1126 CallStackFrame *Frame = getCallFrameAndDepth(Call.CallIndex).first; 1127 return Frame ? Frame->getTemporary(Call.getOrigParam(PVD), Call.Version) 1128 : nullptr; 1129 } 1130 1131 /// Information about a stack frame for std::allocator<T>::[de]allocate. 1132 struct StdAllocatorCaller { 1133 unsigned FrameIndex; 1134 QualType ElemType; 1135 explicit operator bool() const { return FrameIndex != 0; }; 1136 }; 1137 1138 StdAllocatorCaller getStdAllocatorCaller(StringRef FnName) const { 1139 for (const CallStackFrame *Call = CurrentCall; Call != &BottomFrame; 1140 Call = Call->Caller) { 1141 const auto *MD = dyn_cast_or_null<CXXMethodDecl>(Call->Callee); 1142 if (!MD) 1143 continue; 1144 const IdentifierInfo *FnII = MD->getIdentifier(); 1145 if (!FnII || !FnII->isStr(FnName)) 1146 continue; 1147 1148 const auto *CTSD = 1149 dyn_cast<ClassTemplateSpecializationDecl>(MD->getParent()); 1150 if (!CTSD) 1151 continue; 1152 1153 const IdentifierInfo *ClassII = CTSD->getIdentifier(); 1154 const TemplateArgumentList &TAL = CTSD->getTemplateArgs(); 1155 if (CTSD->isInStdNamespace() && ClassII && 1156 ClassII->isStr("allocator") && TAL.size() >= 1 && 1157 TAL[0].getKind() == TemplateArgument::Type) 1158 return {Call->Index, TAL[0].getAsType()}; 1159 } 1160 1161 return {}; 1162 } 1163 1164 void performLifetimeExtension() { 1165 // Disable the cleanups for lifetime-extended temporaries. 1166 llvm::erase_if(CleanupStack, [](Cleanup &C) { 1167 return !C.isDestroyedAtEndOf(ScopeKind::FullExpression); 1168 }); 1169 } 1170 1171 /// Throw away any remaining cleanups at the end of evaluation. If any 1172 /// cleanups would have had a side-effect, note that as an unmodeled 1173 /// side-effect and return false. Otherwise, return true. 1174 bool discardCleanups() { 1175 for (Cleanup &C : CleanupStack) { 1176 if (C.hasSideEffect() && !noteSideEffect()) { 1177 CleanupStack.clear(); 1178 return false; 1179 } 1180 } 1181 CleanupStack.clear(); 1182 return true; 1183 } 1184 1185 private: 1186 interp::Frame *getCurrentFrame() override { return CurrentCall; } 1187 const interp::Frame *getBottomFrame() const override { return &BottomFrame; } 1188 1189 bool hasActiveDiagnostic() override { return HasActiveDiagnostic; } 1190 void setActiveDiagnostic(bool Flag) override { HasActiveDiagnostic = Flag; } 1191 1192 void setFoldFailureDiagnostic(bool Flag) override { 1193 HasFoldFailureDiagnostic = Flag; 1194 } 1195 1196 Expr::EvalStatus &getEvalStatus() const override { return EvalStatus; } 1197 1198 // If we have a prior diagnostic, it will be noting that the expression 1199 // isn't a constant expression. This diagnostic is more important, 1200 // unless we require this evaluation to produce a constant expression. 1201 // 1202 // FIXME: We might want to show both diagnostics to the user in 1203 // EM_ConstantFold mode. 1204 bool hasPriorDiagnostic() override { 1205 if (!EvalStatus.Diag->empty()) { 1206 switch (EvalMode) { 1207 case EM_ConstantFold: 1208 case EM_IgnoreSideEffects: 1209 if (!HasFoldFailureDiagnostic) 1210 break; 1211 // We've already failed to fold something. Keep that diagnostic. 1212 [[fallthrough]]; 1213 case EM_ConstantExpression: 1214 case EM_ConstantExpressionUnevaluated: 1215 setActiveDiagnostic(false); 1216 return true; 1217 } 1218 } 1219 return false; 1220 } 1221 1222 unsigned getCallStackDepth() override { return CallStackDepth; } 1223 1224 public: 1225 /// Should we continue evaluation after encountering a side-effect that we 1226 /// couldn't model? 1227 bool keepEvaluatingAfterSideEffect() const override { 1228 switch (EvalMode) { 1229 case EM_IgnoreSideEffects: 1230 return true; 1231 1232 case EM_ConstantExpression: 1233 case EM_ConstantExpressionUnevaluated: 1234 case EM_ConstantFold: 1235 // By default, assume any side effect might be valid in some other 1236 // evaluation of this expression from a different context. 1237 return checkingPotentialConstantExpression() || 1238 checkingForUndefinedBehavior(); 1239 } 1240 llvm_unreachable("Missed EvalMode case"); 1241 } 1242 1243 /// Note that we have had a side-effect, and determine whether we should 1244 /// keep evaluating. 1245 bool noteSideEffect() override { 1246 EvalStatus.HasSideEffects = true; 1247 return keepEvaluatingAfterSideEffect(); 1248 } 1249 1250 /// Should we continue evaluation after encountering undefined behavior? 1251 bool keepEvaluatingAfterUndefinedBehavior() { 1252 switch (EvalMode) { 1253 case EM_IgnoreSideEffects: 1254 case EM_ConstantFold: 1255 return true; 1256 1257 case EM_ConstantExpression: 1258 case EM_ConstantExpressionUnevaluated: 1259 return checkingForUndefinedBehavior(); 1260 } 1261 llvm_unreachable("Missed EvalMode case"); 1262 } 1263 1264 /// Note that we hit something that was technically undefined behavior, but 1265 /// that we can evaluate past it (such as signed overflow or floating-point 1266 /// division by zero.) 1267 bool noteUndefinedBehavior() override { 1268 EvalStatus.HasUndefinedBehavior = true; 1269 return keepEvaluatingAfterUndefinedBehavior(); 1270 } 1271 1272 /// Should we continue evaluation as much as possible after encountering a 1273 /// construct which can't be reduced to a value? 1274 bool keepEvaluatingAfterFailure() const override { 1275 if (!StepsLeft) 1276 return false; 1277 1278 switch (EvalMode) { 1279 case EM_ConstantExpression: 1280 case EM_ConstantExpressionUnevaluated: 1281 case EM_ConstantFold: 1282 case EM_IgnoreSideEffects: 1283 return checkingPotentialConstantExpression() || 1284 checkingForUndefinedBehavior(); 1285 } 1286 llvm_unreachable("Missed EvalMode case"); 1287 } 1288 1289 /// Notes that we failed to evaluate an expression that other expressions 1290 /// directly depend on, and determine if we should keep evaluating. This 1291 /// should only be called if we actually intend to keep evaluating. 1292 /// 1293 /// Call noteSideEffect() instead if we may be able to ignore the value that 1294 /// we failed to evaluate, e.g. if we failed to evaluate Foo() in: 1295 /// 1296 /// (Foo(), 1) // use noteSideEffect 1297 /// (Foo() || true) // use noteSideEffect 1298 /// Foo() + 1 // use noteFailure 1299 [[nodiscard]] bool noteFailure() { 1300 // Failure when evaluating some expression often means there is some 1301 // subexpression whose evaluation was skipped. Therefore, (because we 1302 // don't track whether we skipped an expression when unwinding after an 1303 // evaluation failure) every evaluation failure that bubbles up from a 1304 // subexpression implies that a side-effect has potentially happened. We 1305 // skip setting the HasSideEffects flag to true until we decide to 1306 // continue evaluating after that point, which happens here. 1307 bool KeepGoing = keepEvaluatingAfterFailure(); 1308 EvalStatus.HasSideEffects |= KeepGoing; 1309 return KeepGoing; 1310 } 1311 1312 class ArrayInitLoopIndex { 1313 EvalInfo &Info; 1314 uint64_t OuterIndex; 1315 1316 public: 1317 ArrayInitLoopIndex(EvalInfo &Info) 1318 : Info(Info), OuterIndex(Info.ArrayInitIndex) { 1319 Info.ArrayInitIndex = 0; 1320 } 1321 ~ArrayInitLoopIndex() { Info.ArrayInitIndex = OuterIndex; } 1322 1323 operator uint64_t&() { return Info.ArrayInitIndex; } 1324 }; 1325 }; 1326 1327 /// Object used to treat all foldable expressions as constant expressions. 1328 struct FoldConstant { 1329 EvalInfo &Info; 1330 bool Enabled; 1331 bool HadNoPriorDiags; 1332 EvalInfo::EvaluationMode OldMode; 1333 1334 explicit FoldConstant(EvalInfo &Info, bool Enabled) 1335 : Info(Info), 1336 Enabled(Enabled), 1337 HadNoPriorDiags(Info.EvalStatus.Diag && 1338 Info.EvalStatus.Diag->empty() && 1339 !Info.EvalStatus.HasSideEffects), 1340 OldMode(Info.EvalMode) { 1341 if (Enabled) 1342 Info.EvalMode = EvalInfo::EM_ConstantFold; 1343 } 1344 void keepDiagnostics() { Enabled = false; } 1345 ~FoldConstant() { 1346 if (Enabled && HadNoPriorDiags && !Info.EvalStatus.Diag->empty() && 1347 !Info.EvalStatus.HasSideEffects) 1348 Info.EvalStatus.Diag->clear(); 1349 Info.EvalMode = OldMode; 1350 } 1351 }; 1352 1353 /// RAII object used to set the current evaluation mode to ignore 1354 /// side-effects. 1355 struct IgnoreSideEffectsRAII { 1356 EvalInfo &Info; 1357 EvalInfo::EvaluationMode OldMode; 1358 explicit IgnoreSideEffectsRAII(EvalInfo &Info) 1359 : Info(Info), OldMode(Info.EvalMode) { 1360 Info.EvalMode = EvalInfo::EM_IgnoreSideEffects; 1361 } 1362 1363 ~IgnoreSideEffectsRAII() { Info.EvalMode = OldMode; } 1364 }; 1365 1366 /// RAII object used to optionally suppress diagnostics and side-effects from 1367 /// a speculative evaluation. 1368 class SpeculativeEvaluationRAII { 1369 EvalInfo *Info = nullptr; 1370 Expr::EvalStatus OldStatus; 1371 unsigned OldSpeculativeEvaluationDepth = 0; 1372 1373 void moveFromAndCancel(SpeculativeEvaluationRAII &&Other) { 1374 Info = Other.Info; 1375 OldStatus = Other.OldStatus; 1376 OldSpeculativeEvaluationDepth = Other.OldSpeculativeEvaluationDepth; 1377 Other.Info = nullptr; 1378 } 1379 1380 void maybeRestoreState() { 1381 if (!Info) 1382 return; 1383 1384 Info->EvalStatus = OldStatus; 1385 Info->SpeculativeEvaluationDepth = OldSpeculativeEvaluationDepth; 1386 } 1387 1388 public: 1389 SpeculativeEvaluationRAII() = default; 1390 1391 SpeculativeEvaluationRAII( 1392 EvalInfo &Info, SmallVectorImpl<PartialDiagnosticAt> *NewDiag = nullptr) 1393 : Info(&Info), OldStatus(Info.EvalStatus), 1394 OldSpeculativeEvaluationDepth(Info.SpeculativeEvaluationDepth) { 1395 Info.EvalStatus.Diag = NewDiag; 1396 Info.SpeculativeEvaluationDepth = Info.CallStackDepth + 1; 1397 } 1398 1399 SpeculativeEvaluationRAII(const SpeculativeEvaluationRAII &Other) = delete; 1400 SpeculativeEvaluationRAII(SpeculativeEvaluationRAII &&Other) { 1401 moveFromAndCancel(std::move(Other)); 1402 } 1403 1404 SpeculativeEvaluationRAII &operator=(SpeculativeEvaluationRAII &&Other) { 1405 maybeRestoreState(); 1406 moveFromAndCancel(std::move(Other)); 1407 return *this; 1408 } 1409 1410 ~SpeculativeEvaluationRAII() { maybeRestoreState(); } 1411 }; 1412 1413 /// RAII object wrapping a full-expression or block scope, and handling 1414 /// the ending of the lifetime of temporaries created within it. 1415 template<ScopeKind Kind> 1416 class ScopeRAII { 1417 EvalInfo &Info; 1418 unsigned OldStackSize; 1419 public: 1420 ScopeRAII(EvalInfo &Info) 1421 : Info(Info), OldStackSize(Info.CleanupStack.size()) { 1422 // Push a new temporary version. This is needed to distinguish between 1423 // temporaries created in different iterations of a loop. 1424 Info.CurrentCall->pushTempVersion(); 1425 } 1426 bool destroy(bool RunDestructors = true) { 1427 bool OK = cleanup(Info, RunDestructors, OldStackSize); 1428 OldStackSize = -1U; 1429 return OK; 1430 } 1431 ~ScopeRAII() { 1432 if (OldStackSize != -1U) 1433 destroy(false); 1434 // Body moved to a static method to encourage the compiler to inline away 1435 // instances of this class. 1436 Info.CurrentCall->popTempVersion(); 1437 } 1438 private: 1439 static bool cleanup(EvalInfo &Info, bool RunDestructors, 1440 unsigned OldStackSize) { 1441 assert(OldStackSize <= Info.CleanupStack.size() && 1442 "running cleanups out of order?"); 1443 1444 // Run all cleanups for a block scope, and non-lifetime-extended cleanups 1445 // for a full-expression scope. 1446 bool Success = true; 1447 for (unsigned I = Info.CleanupStack.size(); I > OldStackSize; --I) { 1448 if (Info.CleanupStack[I - 1].isDestroyedAtEndOf(Kind)) { 1449 if (!Info.CleanupStack[I - 1].endLifetime(Info, RunDestructors)) { 1450 Success = false; 1451 break; 1452 } 1453 } 1454 } 1455 1456 // Compact any retained cleanups. 1457 auto NewEnd = Info.CleanupStack.begin() + OldStackSize; 1458 if (Kind != ScopeKind::Block) 1459 NewEnd = 1460 std::remove_if(NewEnd, Info.CleanupStack.end(), [](Cleanup &C) { 1461 return C.isDestroyedAtEndOf(Kind); 1462 }); 1463 Info.CleanupStack.erase(NewEnd, Info.CleanupStack.end()); 1464 return Success; 1465 } 1466 }; 1467 typedef ScopeRAII<ScopeKind::Block> BlockScopeRAII; 1468 typedef ScopeRAII<ScopeKind::FullExpression> FullExpressionRAII; 1469 typedef ScopeRAII<ScopeKind::Call> CallScopeRAII; 1470 } 1471 1472 bool SubobjectDesignator::checkSubobject(EvalInfo &Info, const Expr *E, 1473 CheckSubobjectKind CSK) { 1474 if (Invalid) 1475 return false; 1476 if (isOnePastTheEnd()) { 1477 Info.CCEDiag(E, diag::note_constexpr_past_end_subobject) 1478 << CSK; 1479 setInvalid(); 1480 return false; 1481 } 1482 // Note, we do not diagnose if isMostDerivedAnUnsizedArray(), because there 1483 // must actually be at least one array element; even a VLA cannot have a 1484 // bound of zero. And if our index is nonzero, we already had a CCEDiag. 1485 return true; 1486 } 1487 1488 void SubobjectDesignator::diagnoseUnsizedArrayPointerArithmetic(EvalInfo &Info, 1489 const Expr *E) { 1490 Info.CCEDiag(E, diag::note_constexpr_unsized_array_indexed); 1491 // Do not set the designator as invalid: we can represent this situation, 1492 // and correct handling of __builtin_object_size requires us to do so. 1493 } 1494 1495 void SubobjectDesignator::diagnosePointerArithmetic(EvalInfo &Info, 1496 const Expr *E, 1497 const APSInt &N) { 1498 // If we're complaining, we must be able to statically determine the size of 1499 // the most derived array. 1500 if (MostDerivedPathLength == Entries.size() && MostDerivedIsArrayElement) 1501 Info.CCEDiag(E, diag::note_constexpr_array_index) 1502 << N << /*array*/ 0 1503 << static_cast<unsigned>(getMostDerivedArraySize()); 1504 else 1505 Info.CCEDiag(E, diag::note_constexpr_array_index) 1506 << N << /*non-array*/ 1; 1507 setInvalid(); 1508 } 1509 1510 CallStackFrame::CallStackFrame(EvalInfo &Info, SourceRange CallRange, 1511 const FunctionDecl *Callee, const LValue *This, 1512 const Expr *CallExpr, CallRef Call) 1513 : Info(Info), Caller(Info.CurrentCall), Callee(Callee), This(This), 1514 CallExpr(CallExpr), Arguments(Call), CallRange(CallRange), 1515 Index(Info.NextCallIndex++) { 1516 Info.CurrentCall = this; 1517 ++Info.CallStackDepth; 1518 } 1519 1520 CallStackFrame::~CallStackFrame() { 1521 assert(Info.CurrentCall == this && "calls retired out of order"); 1522 --Info.CallStackDepth; 1523 Info.CurrentCall = Caller; 1524 } 1525 1526 static bool isRead(AccessKinds AK) { 1527 return AK == AK_Read || AK == AK_ReadObjectRepresentation || 1528 AK == AK_IsWithinLifetime; 1529 } 1530 1531 static bool isModification(AccessKinds AK) { 1532 switch (AK) { 1533 case AK_Read: 1534 case AK_ReadObjectRepresentation: 1535 case AK_MemberCall: 1536 case AK_DynamicCast: 1537 case AK_TypeId: 1538 case AK_IsWithinLifetime: 1539 return false; 1540 case AK_Assign: 1541 case AK_Increment: 1542 case AK_Decrement: 1543 case AK_Construct: 1544 case AK_Destroy: 1545 return true; 1546 } 1547 llvm_unreachable("unknown access kind"); 1548 } 1549 1550 static bool isAnyAccess(AccessKinds AK) { 1551 return isRead(AK) || isModification(AK); 1552 } 1553 1554 /// Is this an access per the C++ definition? 1555 static bool isFormalAccess(AccessKinds AK) { 1556 return isAnyAccess(AK) && AK != AK_Construct && AK != AK_Destroy && 1557 AK != AK_IsWithinLifetime; 1558 } 1559 1560 /// Is this kind of axcess valid on an indeterminate object value? 1561 static bool isValidIndeterminateAccess(AccessKinds AK) { 1562 switch (AK) { 1563 case AK_Read: 1564 case AK_Increment: 1565 case AK_Decrement: 1566 // These need the object's value. 1567 return false; 1568 1569 case AK_IsWithinLifetime: 1570 case AK_ReadObjectRepresentation: 1571 case AK_Assign: 1572 case AK_Construct: 1573 case AK_Destroy: 1574 // Construction and destruction don't need the value. 1575 return true; 1576 1577 case AK_MemberCall: 1578 case AK_DynamicCast: 1579 case AK_TypeId: 1580 // These aren't really meaningful on scalars. 1581 return true; 1582 } 1583 llvm_unreachable("unknown access kind"); 1584 } 1585 1586 namespace { 1587 struct ComplexValue { 1588 private: 1589 bool IsInt; 1590 1591 public: 1592 APSInt IntReal, IntImag; 1593 APFloat FloatReal, FloatImag; 1594 1595 ComplexValue() : FloatReal(APFloat::Bogus()), FloatImag(APFloat::Bogus()) {} 1596 1597 void makeComplexFloat() { IsInt = false; } 1598 bool isComplexFloat() const { return !IsInt; } 1599 APFloat &getComplexFloatReal() { return FloatReal; } 1600 APFloat &getComplexFloatImag() { return FloatImag; } 1601 1602 void makeComplexInt() { IsInt = true; } 1603 bool isComplexInt() const { return IsInt; } 1604 APSInt &getComplexIntReal() { return IntReal; } 1605 APSInt &getComplexIntImag() { return IntImag; } 1606 1607 void moveInto(APValue &v) const { 1608 if (isComplexFloat()) 1609 v = APValue(FloatReal, FloatImag); 1610 else 1611 v = APValue(IntReal, IntImag); 1612 } 1613 void setFrom(const APValue &v) { 1614 assert(v.isComplexFloat() || v.isComplexInt()); 1615 if (v.isComplexFloat()) { 1616 makeComplexFloat(); 1617 FloatReal = v.getComplexFloatReal(); 1618 FloatImag = v.getComplexFloatImag(); 1619 } else { 1620 makeComplexInt(); 1621 IntReal = v.getComplexIntReal(); 1622 IntImag = v.getComplexIntImag(); 1623 } 1624 } 1625 }; 1626 1627 struct LValue { 1628 APValue::LValueBase Base; 1629 CharUnits Offset; 1630 SubobjectDesignator Designator; 1631 bool IsNullPtr : 1; 1632 bool InvalidBase : 1; 1633 1634 const APValue::LValueBase getLValueBase() const { return Base; } 1635 CharUnits &getLValueOffset() { return Offset; } 1636 const CharUnits &getLValueOffset() const { return Offset; } 1637 SubobjectDesignator &getLValueDesignator() { return Designator; } 1638 const SubobjectDesignator &getLValueDesignator() const { return Designator;} 1639 bool isNullPointer() const { return IsNullPtr;} 1640 1641 unsigned getLValueCallIndex() const { return Base.getCallIndex(); } 1642 unsigned getLValueVersion() const { return Base.getVersion(); } 1643 1644 void moveInto(APValue &V) const { 1645 if (Designator.Invalid) 1646 V = APValue(Base, Offset, APValue::NoLValuePath(), IsNullPtr); 1647 else { 1648 assert(!InvalidBase && "APValues can't handle invalid LValue bases"); 1649 V = APValue(Base, Offset, Designator.Entries, 1650 Designator.IsOnePastTheEnd, IsNullPtr); 1651 } 1652 } 1653 void setFrom(ASTContext &Ctx, const APValue &V) { 1654 assert(V.isLValue() && "Setting LValue from a non-LValue?"); 1655 Base = V.getLValueBase(); 1656 Offset = V.getLValueOffset(); 1657 InvalidBase = false; 1658 Designator = SubobjectDesignator(Ctx, V); 1659 IsNullPtr = V.isNullPointer(); 1660 } 1661 1662 void set(APValue::LValueBase B, bool BInvalid = false) { 1663 #ifndef NDEBUG 1664 // We only allow a few types of invalid bases. Enforce that here. 1665 if (BInvalid) { 1666 const auto *E = B.get<const Expr *>(); 1667 assert((isa<MemberExpr>(E) || tryUnwrapAllocSizeCall(E)) && 1668 "Unexpected type of invalid base"); 1669 } 1670 #endif 1671 1672 Base = B; 1673 Offset = CharUnits::fromQuantity(0); 1674 InvalidBase = BInvalid; 1675 Designator = SubobjectDesignator(getType(B)); 1676 IsNullPtr = false; 1677 } 1678 1679 void setNull(ASTContext &Ctx, QualType PointerTy) { 1680 Base = (const ValueDecl *)nullptr; 1681 Offset = 1682 CharUnits::fromQuantity(Ctx.getTargetNullPointerValue(PointerTy)); 1683 InvalidBase = false; 1684 Designator = SubobjectDesignator(PointerTy->getPointeeType()); 1685 IsNullPtr = true; 1686 } 1687 1688 void setInvalid(APValue::LValueBase B, unsigned I = 0) { 1689 set(B, true); 1690 } 1691 1692 std::string toString(ASTContext &Ctx, QualType T) const { 1693 APValue Printable; 1694 moveInto(Printable); 1695 return Printable.getAsString(Ctx, T); 1696 } 1697 1698 private: 1699 // Check that this LValue is not based on a null pointer. If it is, produce 1700 // a diagnostic and mark the designator as invalid. 1701 template <typename GenDiagType> 1702 bool checkNullPointerDiagnosingWith(const GenDiagType &GenDiag) { 1703 if (Designator.Invalid) 1704 return false; 1705 if (IsNullPtr) { 1706 GenDiag(); 1707 Designator.setInvalid(); 1708 return false; 1709 } 1710 return true; 1711 } 1712 1713 public: 1714 bool checkNullPointer(EvalInfo &Info, const Expr *E, 1715 CheckSubobjectKind CSK) { 1716 return checkNullPointerDiagnosingWith([&Info, E, CSK] { 1717 Info.CCEDiag(E, diag::note_constexpr_null_subobject) << CSK; 1718 }); 1719 } 1720 1721 bool checkNullPointerForFoldAccess(EvalInfo &Info, const Expr *E, 1722 AccessKinds AK) { 1723 return checkNullPointerDiagnosingWith([&Info, E, AK] { 1724 Info.FFDiag(E, diag::note_constexpr_access_null) << AK; 1725 }); 1726 } 1727 1728 // Check this LValue refers to an object. If not, set the designator to be 1729 // invalid and emit a diagnostic. 1730 bool checkSubobject(EvalInfo &Info, const Expr *E, CheckSubobjectKind CSK) { 1731 return (CSK == CSK_ArrayToPointer || checkNullPointer(Info, E, CSK)) && 1732 Designator.checkSubobject(Info, E, CSK); 1733 } 1734 1735 void addDecl(EvalInfo &Info, const Expr *E, 1736 const Decl *D, bool Virtual = false) { 1737 if (checkSubobject(Info, E, isa<FieldDecl>(D) ? CSK_Field : CSK_Base)) 1738 Designator.addDeclUnchecked(D, Virtual); 1739 } 1740 void addUnsizedArray(EvalInfo &Info, const Expr *E, QualType ElemTy) { 1741 if (!Designator.Entries.empty()) { 1742 Info.CCEDiag(E, diag::note_constexpr_unsupported_unsized_array); 1743 Designator.setInvalid(); 1744 return; 1745 } 1746 if (checkSubobject(Info, E, CSK_ArrayToPointer)) { 1747 assert(getType(Base)->isPointerType() || getType(Base)->isArrayType()); 1748 Designator.FirstEntryIsAnUnsizedArray = true; 1749 Designator.addUnsizedArrayUnchecked(ElemTy); 1750 } 1751 } 1752 void addArray(EvalInfo &Info, const Expr *E, const ConstantArrayType *CAT) { 1753 if (checkSubobject(Info, E, CSK_ArrayToPointer)) 1754 Designator.addArrayUnchecked(CAT); 1755 } 1756 void addComplex(EvalInfo &Info, const Expr *E, QualType EltTy, bool Imag) { 1757 if (checkSubobject(Info, E, Imag ? CSK_Imag : CSK_Real)) 1758 Designator.addComplexUnchecked(EltTy, Imag); 1759 } 1760 void addVectorElement(EvalInfo &Info, const Expr *E, QualType EltTy, 1761 uint64_t Size, uint64_t Idx) { 1762 if (checkSubobject(Info, E, CSK_VectorElement)) 1763 Designator.addVectorElementUnchecked(EltTy, Size, Idx); 1764 } 1765 void clearIsNullPointer() { 1766 IsNullPtr = false; 1767 } 1768 void adjustOffsetAndIndex(EvalInfo &Info, const Expr *E, 1769 const APSInt &Index, CharUnits ElementSize) { 1770 // An index of 0 has no effect. (In C, adding 0 to a null pointer is UB, 1771 // but we're not required to diagnose it and it's valid in C++.) 1772 if (!Index) 1773 return; 1774 1775 // Compute the new offset in the appropriate width, wrapping at 64 bits. 1776 // FIXME: When compiling for a 32-bit target, we should use 32-bit 1777 // offsets. 1778 uint64_t Offset64 = Offset.getQuantity(); 1779 uint64_t ElemSize64 = ElementSize.getQuantity(); 1780 uint64_t Index64 = Index.extOrTrunc(64).getZExtValue(); 1781 Offset = CharUnits::fromQuantity(Offset64 + ElemSize64 * Index64); 1782 1783 if (checkNullPointer(Info, E, CSK_ArrayIndex)) 1784 Designator.adjustIndex(Info, E, Index); 1785 clearIsNullPointer(); 1786 } 1787 void adjustOffset(CharUnits N) { 1788 Offset += N; 1789 if (N.getQuantity()) 1790 clearIsNullPointer(); 1791 } 1792 }; 1793 1794 struct MemberPtr { 1795 MemberPtr() {} 1796 explicit MemberPtr(const ValueDecl *Decl) 1797 : DeclAndIsDerivedMember(Decl, false) {} 1798 1799 /// The member or (direct or indirect) field referred to by this member 1800 /// pointer, or 0 if this is a null member pointer. 1801 const ValueDecl *getDecl() const { 1802 return DeclAndIsDerivedMember.getPointer(); 1803 } 1804 /// Is this actually a member of some type derived from the relevant class? 1805 bool isDerivedMember() const { 1806 return DeclAndIsDerivedMember.getInt(); 1807 } 1808 /// Get the class which the declaration actually lives in. 1809 const CXXRecordDecl *getContainingRecord() const { 1810 return cast<CXXRecordDecl>( 1811 DeclAndIsDerivedMember.getPointer()->getDeclContext()); 1812 } 1813 1814 void moveInto(APValue &V) const { 1815 V = APValue(getDecl(), isDerivedMember(), Path); 1816 } 1817 void setFrom(const APValue &V) { 1818 assert(V.isMemberPointer()); 1819 DeclAndIsDerivedMember.setPointer(V.getMemberPointerDecl()); 1820 DeclAndIsDerivedMember.setInt(V.isMemberPointerToDerivedMember()); 1821 Path.clear(); 1822 ArrayRef<const CXXRecordDecl*> P = V.getMemberPointerPath(); 1823 Path.insert(Path.end(), P.begin(), P.end()); 1824 } 1825 1826 /// DeclAndIsDerivedMember - The member declaration, and a flag indicating 1827 /// whether the member is a member of some class derived from the class type 1828 /// of the member pointer. 1829 llvm::PointerIntPair<const ValueDecl*, 1, bool> DeclAndIsDerivedMember; 1830 /// Path - The path of base/derived classes from the member declaration's 1831 /// class (exclusive) to the class type of the member pointer (inclusive). 1832 SmallVector<const CXXRecordDecl*, 4> Path; 1833 1834 /// Perform a cast towards the class of the Decl (either up or down the 1835 /// hierarchy). 1836 bool castBack(const CXXRecordDecl *Class) { 1837 assert(!Path.empty()); 1838 const CXXRecordDecl *Expected; 1839 if (Path.size() >= 2) 1840 Expected = Path[Path.size() - 2]; 1841 else 1842 Expected = getContainingRecord(); 1843 if (Expected->getCanonicalDecl() != Class->getCanonicalDecl()) { 1844 // C++11 [expr.static.cast]p12: In a conversion from (D::*) to (B::*), 1845 // if B does not contain the original member and is not a base or 1846 // derived class of the class containing the original member, the result 1847 // of the cast is undefined. 1848 // C++11 [conv.mem]p2 does not cover this case for a cast from (B::*) to 1849 // (D::*). We consider that to be a language defect. 1850 return false; 1851 } 1852 Path.pop_back(); 1853 return true; 1854 } 1855 /// Perform a base-to-derived member pointer cast. 1856 bool castToDerived(const CXXRecordDecl *Derived) { 1857 if (!getDecl()) 1858 return true; 1859 if (!isDerivedMember()) { 1860 Path.push_back(Derived); 1861 return true; 1862 } 1863 if (!castBack(Derived)) 1864 return false; 1865 if (Path.empty()) 1866 DeclAndIsDerivedMember.setInt(false); 1867 return true; 1868 } 1869 /// Perform a derived-to-base member pointer cast. 1870 bool castToBase(const CXXRecordDecl *Base) { 1871 if (!getDecl()) 1872 return true; 1873 if (Path.empty()) 1874 DeclAndIsDerivedMember.setInt(true); 1875 if (isDerivedMember()) { 1876 Path.push_back(Base); 1877 return true; 1878 } 1879 return castBack(Base); 1880 } 1881 }; 1882 1883 /// Compare two member pointers, which are assumed to be of the same type. 1884 static bool operator==(const MemberPtr &LHS, const MemberPtr &RHS) { 1885 if (!LHS.getDecl() || !RHS.getDecl()) 1886 return !LHS.getDecl() && !RHS.getDecl(); 1887 if (LHS.getDecl()->getCanonicalDecl() != RHS.getDecl()->getCanonicalDecl()) 1888 return false; 1889 return LHS.Path == RHS.Path; 1890 } 1891 } 1892 1893 static bool Evaluate(APValue &Result, EvalInfo &Info, const Expr *E); 1894 static bool EvaluateInPlace(APValue &Result, EvalInfo &Info, 1895 const LValue &This, const Expr *E, 1896 bool AllowNonLiteralTypes = false); 1897 static bool EvaluateLValue(const Expr *E, LValue &Result, EvalInfo &Info, 1898 bool InvalidBaseOK = false); 1899 static bool EvaluatePointer(const Expr *E, LValue &Result, EvalInfo &Info, 1900 bool InvalidBaseOK = false); 1901 static bool EvaluateMemberPointer(const Expr *E, MemberPtr &Result, 1902 EvalInfo &Info); 1903 static bool EvaluateTemporary(const Expr *E, LValue &Result, EvalInfo &Info); 1904 static bool EvaluateInteger(const Expr *E, APSInt &Result, EvalInfo &Info); 1905 static bool EvaluateIntegerOrLValue(const Expr *E, APValue &Result, 1906 EvalInfo &Info); 1907 static bool EvaluateFloat(const Expr *E, APFloat &Result, EvalInfo &Info); 1908 static bool EvaluateComplex(const Expr *E, ComplexValue &Res, EvalInfo &Info); 1909 static bool EvaluateAtomic(const Expr *E, const LValue *This, APValue &Result, 1910 EvalInfo &Info); 1911 static bool EvaluateAsRValue(EvalInfo &Info, const Expr *E, APValue &Result); 1912 static bool EvaluateBuiltinStrLen(const Expr *E, uint64_t &Result, 1913 EvalInfo &Info, 1914 std::string *StringResult = nullptr); 1915 1916 /// Evaluate an integer or fixed point expression into an APResult. 1917 static bool EvaluateFixedPointOrInteger(const Expr *E, APFixedPoint &Result, 1918 EvalInfo &Info); 1919 1920 /// Evaluate only a fixed point expression into an APResult. 1921 static bool EvaluateFixedPoint(const Expr *E, APFixedPoint &Result, 1922 EvalInfo &Info); 1923 1924 //===----------------------------------------------------------------------===// 1925 // Misc utilities 1926 //===----------------------------------------------------------------------===// 1927 1928 /// Negate an APSInt in place, converting it to a signed form if necessary, and 1929 /// preserving its value (by extending by up to one bit as needed). 1930 static void negateAsSigned(APSInt &Int) { 1931 if (Int.isUnsigned() || Int.isMinSignedValue()) { 1932 Int = Int.extend(Int.getBitWidth() + 1); 1933 Int.setIsSigned(true); 1934 } 1935 Int = -Int; 1936 } 1937 1938 template<typename KeyT> 1939 APValue &CallStackFrame::createTemporary(const KeyT *Key, QualType T, 1940 ScopeKind Scope, LValue &LV) { 1941 unsigned Version = getTempVersion(); 1942 APValue::LValueBase Base(Key, Index, Version); 1943 LV.set(Base); 1944 return createLocal(Base, Key, T, Scope); 1945 } 1946 1947 /// Allocate storage for a parameter of a function call made in this frame. 1948 APValue &CallStackFrame::createParam(CallRef Args, const ParmVarDecl *PVD, 1949 LValue &LV) { 1950 assert(Args.CallIndex == Index && "creating parameter in wrong frame"); 1951 APValue::LValueBase Base(PVD, Index, Args.Version); 1952 LV.set(Base); 1953 // We always destroy parameters at the end of the call, even if we'd allow 1954 // them to live to the end of the full-expression at runtime, in order to 1955 // give portable results and match other compilers. 1956 return createLocal(Base, PVD, PVD->getType(), ScopeKind::Call); 1957 } 1958 1959 APValue &CallStackFrame::createLocal(APValue::LValueBase Base, const void *Key, 1960 QualType T, ScopeKind Scope) { 1961 assert(Base.getCallIndex() == Index && "lvalue for wrong frame"); 1962 unsigned Version = Base.getVersion(); 1963 APValue &Result = Temporaries[MapKeyTy(Key, Version)]; 1964 assert(Result.isAbsent() && "local created multiple times"); 1965 1966 // If we're creating a local immediately in the operand of a speculative 1967 // evaluation, don't register a cleanup to be run outside the speculative 1968 // evaluation context, since we won't actually be able to initialize this 1969 // object. 1970 if (Index <= Info.SpeculativeEvaluationDepth) { 1971 if (T.isDestructedType()) 1972 Info.noteSideEffect(); 1973 } else { 1974 Info.CleanupStack.push_back(Cleanup(&Result, Base, T, Scope)); 1975 } 1976 return Result; 1977 } 1978 1979 APValue *EvalInfo::createHeapAlloc(const Expr *E, QualType T, LValue &LV) { 1980 if (NumHeapAllocs > DynamicAllocLValue::getMaxIndex()) { 1981 FFDiag(E, diag::note_constexpr_heap_alloc_limit_exceeded); 1982 return nullptr; 1983 } 1984 1985 DynamicAllocLValue DA(NumHeapAllocs++); 1986 LV.set(APValue::LValueBase::getDynamicAlloc(DA, T)); 1987 auto Result = HeapAllocs.emplace(std::piecewise_construct, 1988 std::forward_as_tuple(DA), std::tuple<>()); 1989 assert(Result.second && "reused a heap alloc index?"); 1990 Result.first->second.AllocExpr = E; 1991 return &Result.first->second.Value; 1992 } 1993 1994 /// Produce a string describing the given constexpr call. 1995 void CallStackFrame::describe(raw_ostream &Out) const { 1996 unsigned ArgIndex = 0; 1997 bool IsMemberCall = 1998 isa<CXXMethodDecl>(Callee) && !isa<CXXConstructorDecl>(Callee) && 1999 cast<CXXMethodDecl>(Callee)->isImplicitObjectMemberFunction(); 2000 2001 if (!IsMemberCall) 2002 Callee->getNameForDiagnostic(Out, Info.Ctx.getPrintingPolicy(), 2003 /*Qualified=*/false); 2004 2005 if (This && IsMemberCall) { 2006 if (const auto *MCE = dyn_cast_if_present<CXXMemberCallExpr>(CallExpr)) { 2007 const Expr *Object = MCE->getImplicitObjectArgument(); 2008 Object->printPretty(Out, /*Helper=*/nullptr, Info.Ctx.getPrintingPolicy(), 2009 /*Indentation=*/0); 2010 if (Object->getType()->isPointerType()) 2011 Out << "->"; 2012 else 2013 Out << "."; 2014 } else if (const auto *OCE = 2015 dyn_cast_if_present<CXXOperatorCallExpr>(CallExpr)) { 2016 OCE->getArg(0)->printPretty(Out, /*Helper=*/nullptr, 2017 Info.Ctx.getPrintingPolicy(), 2018 /*Indentation=*/0); 2019 Out << "."; 2020 } else { 2021 APValue Val; 2022 This->moveInto(Val); 2023 Val.printPretty( 2024 Out, Info.Ctx, 2025 Info.Ctx.getLValueReferenceType(This->Designator.MostDerivedType)); 2026 Out << "."; 2027 } 2028 Callee->getNameForDiagnostic(Out, Info.Ctx.getPrintingPolicy(), 2029 /*Qualified=*/false); 2030 IsMemberCall = false; 2031 } 2032 2033 Out << '('; 2034 2035 for (FunctionDecl::param_const_iterator I = Callee->param_begin(), 2036 E = Callee->param_end(); I != E; ++I, ++ArgIndex) { 2037 if (ArgIndex > (unsigned)IsMemberCall) 2038 Out << ", "; 2039 2040 const ParmVarDecl *Param = *I; 2041 APValue *V = Info.getParamSlot(Arguments, Param); 2042 if (V) 2043 V->printPretty(Out, Info.Ctx, Param->getType()); 2044 else 2045 Out << "<...>"; 2046 2047 if (ArgIndex == 0 && IsMemberCall) 2048 Out << "->" << *Callee << '('; 2049 } 2050 2051 Out << ')'; 2052 } 2053 2054 /// Evaluate an expression to see if it had side-effects, and discard its 2055 /// result. 2056 /// \return \c true if the caller should keep evaluating. 2057 static bool EvaluateIgnoredValue(EvalInfo &Info, const Expr *E) { 2058 assert(!E->isValueDependent()); 2059 APValue Scratch; 2060 if (!Evaluate(Scratch, Info, E)) 2061 // We don't need the value, but we might have skipped a side effect here. 2062 return Info.noteSideEffect(); 2063 return true; 2064 } 2065 2066 /// Should this call expression be treated as forming an opaque constant? 2067 static bool IsOpaqueConstantCall(const CallExpr *E) { 2068 unsigned Builtin = E->getBuiltinCallee(); 2069 return (Builtin == Builtin::BI__builtin___CFStringMakeConstantString || 2070 Builtin == Builtin::BI__builtin___NSStringMakeConstantString || 2071 Builtin == Builtin::BI__builtin_ptrauth_sign_constant || 2072 Builtin == Builtin::BI__builtin_function_start); 2073 } 2074 2075 static bool IsOpaqueConstantCall(const LValue &LVal) { 2076 const auto *BaseExpr = 2077 llvm::dyn_cast_if_present<CallExpr>(LVal.Base.dyn_cast<const Expr *>()); 2078 return BaseExpr && IsOpaqueConstantCall(BaseExpr); 2079 } 2080 2081 static bool IsGlobalLValue(APValue::LValueBase B) { 2082 // C++11 [expr.const]p3 An address constant expression is a prvalue core 2083 // constant expression of pointer type that evaluates to... 2084 2085 // ... a null pointer value, or a prvalue core constant expression of type 2086 // std::nullptr_t. 2087 if (!B) 2088 return true; 2089 2090 if (const ValueDecl *D = B.dyn_cast<const ValueDecl*>()) { 2091 // ... the address of an object with static storage duration, 2092 if (const VarDecl *VD = dyn_cast<VarDecl>(D)) 2093 return VD->hasGlobalStorage(); 2094 if (isa<TemplateParamObjectDecl>(D)) 2095 return true; 2096 // ... the address of a function, 2097 // ... the address of a GUID [MS extension], 2098 // ... the address of an unnamed global constant 2099 return isa<FunctionDecl, MSGuidDecl, UnnamedGlobalConstantDecl>(D); 2100 } 2101 2102 if (B.is<TypeInfoLValue>() || B.is<DynamicAllocLValue>()) 2103 return true; 2104 2105 const Expr *E = B.get<const Expr*>(); 2106 switch (E->getStmtClass()) { 2107 default: 2108 return false; 2109 case Expr::CompoundLiteralExprClass: { 2110 const CompoundLiteralExpr *CLE = cast<CompoundLiteralExpr>(E); 2111 return CLE->isFileScope() && CLE->isLValue(); 2112 } 2113 case Expr::MaterializeTemporaryExprClass: 2114 // A materialized temporary might have been lifetime-extended to static 2115 // storage duration. 2116 return cast<MaterializeTemporaryExpr>(E)->getStorageDuration() == SD_Static; 2117 // A string literal has static storage duration. 2118 case Expr::StringLiteralClass: 2119 case Expr::PredefinedExprClass: 2120 case Expr::ObjCStringLiteralClass: 2121 case Expr::ObjCEncodeExprClass: 2122 return true; 2123 case Expr::ObjCBoxedExprClass: 2124 return cast<ObjCBoxedExpr>(E)->isExpressibleAsConstantInitializer(); 2125 case Expr::CallExprClass: 2126 return IsOpaqueConstantCall(cast<CallExpr>(E)); 2127 // For GCC compatibility, &&label has static storage duration. 2128 case Expr::AddrLabelExprClass: 2129 return true; 2130 // A Block literal expression may be used as the initialization value for 2131 // Block variables at global or local static scope. 2132 case Expr::BlockExprClass: 2133 return !cast<BlockExpr>(E)->getBlockDecl()->hasCaptures(); 2134 // The APValue generated from a __builtin_source_location will be emitted as a 2135 // literal. 2136 case Expr::SourceLocExprClass: 2137 return true; 2138 case Expr::ImplicitValueInitExprClass: 2139 // FIXME: 2140 // We can never form an lvalue with an implicit value initialization as its 2141 // base through expression evaluation, so these only appear in one case: the 2142 // implicit variable declaration we invent when checking whether a constexpr 2143 // constructor can produce a constant expression. We must assume that such 2144 // an expression might be a global lvalue. 2145 return true; 2146 } 2147 } 2148 2149 static const ValueDecl *GetLValueBaseDecl(const LValue &LVal) { 2150 return LVal.Base.dyn_cast<const ValueDecl*>(); 2151 } 2152 2153 // Information about an LValueBase that is some kind of string. 2154 struct LValueBaseString { 2155 std::string ObjCEncodeStorage; 2156 StringRef Bytes; 2157 int CharWidth; 2158 }; 2159 2160 // Gets the lvalue base of LVal as a string. 2161 static bool GetLValueBaseAsString(const EvalInfo &Info, const LValue &LVal, 2162 LValueBaseString &AsString) { 2163 const auto *BaseExpr = LVal.Base.dyn_cast<const Expr *>(); 2164 if (!BaseExpr) 2165 return false; 2166 2167 // For ObjCEncodeExpr, we need to compute and store the string. 2168 if (const auto *EE = dyn_cast<ObjCEncodeExpr>(BaseExpr)) { 2169 Info.Ctx.getObjCEncodingForType(EE->getEncodedType(), 2170 AsString.ObjCEncodeStorage); 2171 AsString.Bytes = AsString.ObjCEncodeStorage; 2172 AsString.CharWidth = 1; 2173 return true; 2174 } 2175 2176 // Otherwise, we have a StringLiteral. 2177 const auto *Lit = dyn_cast<StringLiteral>(BaseExpr); 2178 if (const auto *PE = dyn_cast<PredefinedExpr>(BaseExpr)) 2179 Lit = PE->getFunctionName(); 2180 2181 if (!Lit) 2182 return false; 2183 2184 AsString.Bytes = Lit->getBytes(); 2185 AsString.CharWidth = Lit->getCharByteWidth(); 2186 return true; 2187 } 2188 2189 // Determine whether two string literals potentially overlap. This will be the 2190 // case if they agree on the values of all the bytes on the overlapping region 2191 // between them. 2192 // 2193 // The overlapping region is the portion of the two string literals that must 2194 // overlap in memory if the pointers actually point to the same address at 2195 // runtime. For example, if LHS is "abcdef" + 3 and RHS is "cdef\0gh" + 1 then 2196 // the overlapping region is "cdef\0", which in this case does agree, so the 2197 // strings are potentially overlapping. Conversely, for "foobar" + 3 versus 2198 // "bazbar" + 3, the overlapping region contains all of both strings, so they 2199 // are not potentially overlapping, even though they agree from the given 2200 // addresses onwards. 2201 // 2202 // See open core issue CWG2765 which is discussing the desired rule here. 2203 static bool ArePotentiallyOverlappingStringLiterals(const EvalInfo &Info, 2204 const LValue &LHS, 2205 const LValue &RHS) { 2206 LValueBaseString LHSString, RHSString; 2207 if (!GetLValueBaseAsString(Info, LHS, LHSString) || 2208 !GetLValueBaseAsString(Info, RHS, RHSString)) 2209 return false; 2210 2211 // This is the byte offset to the location of the first character of LHS 2212 // within RHS. We don't need to look at the characters of one string that 2213 // would appear before the start of the other string if they were merged. 2214 CharUnits Offset = RHS.Offset - LHS.Offset; 2215 if (Offset.isNegative()) 2216 LHSString.Bytes = LHSString.Bytes.drop_front(-Offset.getQuantity()); 2217 else 2218 RHSString.Bytes = RHSString.Bytes.drop_front(Offset.getQuantity()); 2219 2220 bool LHSIsLonger = LHSString.Bytes.size() > RHSString.Bytes.size(); 2221 StringRef Longer = LHSIsLonger ? LHSString.Bytes : RHSString.Bytes; 2222 StringRef Shorter = LHSIsLonger ? RHSString.Bytes : LHSString.Bytes; 2223 int ShorterCharWidth = (LHSIsLonger ? RHSString : LHSString).CharWidth; 2224 2225 // The null terminator isn't included in the string data, so check for it 2226 // manually. If the longer string doesn't have a null terminator where the 2227 // shorter string ends, they aren't potentially overlapping. 2228 for (int NullByte : llvm::seq(ShorterCharWidth)) { 2229 if (Shorter.size() + NullByte >= Longer.size()) 2230 break; 2231 if (Longer[Shorter.size() + NullByte]) 2232 return false; 2233 } 2234 2235 // Otherwise, they're potentially overlapping if and only if the overlapping 2236 // region is the same. 2237 return Shorter == Longer.take_front(Shorter.size()); 2238 } 2239 2240 static bool IsWeakLValue(const LValue &Value) { 2241 const ValueDecl *Decl = GetLValueBaseDecl(Value); 2242 return Decl && Decl->isWeak(); 2243 } 2244 2245 static bool isZeroSized(const LValue &Value) { 2246 const ValueDecl *Decl = GetLValueBaseDecl(Value); 2247 if (isa_and_nonnull<VarDecl>(Decl)) { 2248 QualType Ty = Decl->getType(); 2249 if (Ty->isArrayType()) 2250 return Ty->isIncompleteType() || 2251 Decl->getASTContext().getTypeSize(Ty) == 0; 2252 } 2253 return false; 2254 } 2255 2256 static bool HasSameBase(const LValue &A, const LValue &B) { 2257 if (!A.getLValueBase()) 2258 return !B.getLValueBase(); 2259 if (!B.getLValueBase()) 2260 return false; 2261 2262 if (A.getLValueBase().getOpaqueValue() != 2263 B.getLValueBase().getOpaqueValue()) 2264 return false; 2265 2266 return A.getLValueCallIndex() == B.getLValueCallIndex() && 2267 A.getLValueVersion() == B.getLValueVersion(); 2268 } 2269 2270 static void NoteLValueLocation(EvalInfo &Info, APValue::LValueBase Base) { 2271 assert(Base && "no location for a null lvalue"); 2272 const ValueDecl *VD = Base.dyn_cast<const ValueDecl*>(); 2273 2274 // For a parameter, find the corresponding call stack frame (if it still 2275 // exists), and point at the parameter of the function definition we actually 2276 // invoked. 2277 if (auto *PVD = dyn_cast_or_null<ParmVarDecl>(VD)) { 2278 unsigned Idx = PVD->getFunctionScopeIndex(); 2279 for (CallStackFrame *F = Info.CurrentCall; F; F = F->Caller) { 2280 if (F->Arguments.CallIndex == Base.getCallIndex() && 2281 F->Arguments.Version == Base.getVersion() && F->Callee && 2282 Idx < F->Callee->getNumParams()) { 2283 VD = F->Callee->getParamDecl(Idx); 2284 break; 2285 } 2286 } 2287 } 2288 2289 if (VD) 2290 Info.Note(VD->getLocation(), diag::note_declared_at); 2291 else if (const Expr *E = Base.dyn_cast<const Expr*>()) 2292 Info.Note(E->getExprLoc(), diag::note_constexpr_temporary_here); 2293 else if (DynamicAllocLValue DA = Base.dyn_cast<DynamicAllocLValue>()) { 2294 // FIXME: Produce a note for dangling pointers too. 2295 if (std::optional<DynAlloc *> Alloc = Info.lookupDynamicAlloc(DA)) 2296 Info.Note((*Alloc)->AllocExpr->getExprLoc(), 2297 diag::note_constexpr_dynamic_alloc_here); 2298 } 2299 2300 // We have no information to show for a typeid(T) object. 2301 } 2302 2303 enum class CheckEvaluationResultKind { 2304 ConstantExpression, 2305 FullyInitialized, 2306 }; 2307 2308 /// Materialized temporaries that we've already checked to determine if they're 2309 /// initializsed by a constant expression. 2310 using CheckedTemporaries = 2311 llvm::SmallPtrSet<const MaterializeTemporaryExpr *, 8>; 2312 2313 static bool CheckEvaluationResult(CheckEvaluationResultKind CERK, 2314 EvalInfo &Info, SourceLocation DiagLoc, 2315 QualType Type, const APValue &Value, 2316 ConstantExprKind Kind, 2317 const FieldDecl *SubobjectDecl, 2318 CheckedTemporaries &CheckedTemps); 2319 2320 /// Check that this reference or pointer core constant expression is a valid 2321 /// value for an address or reference constant expression. Return true if we 2322 /// can fold this expression, whether or not it's a constant expression. 2323 static bool CheckLValueConstantExpression(EvalInfo &Info, SourceLocation Loc, 2324 QualType Type, const LValue &LVal, 2325 ConstantExprKind Kind, 2326 CheckedTemporaries &CheckedTemps) { 2327 bool IsReferenceType = Type->isReferenceType(); 2328 2329 APValue::LValueBase Base = LVal.getLValueBase(); 2330 const SubobjectDesignator &Designator = LVal.getLValueDesignator(); 2331 2332 const Expr *BaseE = Base.dyn_cast<const Expr *>(); 2333 const ValueDecl *BaseVD = Base.dyn_cast<const ValueDecl*>(); 2334 2335 // Additional restrictions apply in a template argument. We only enforce the 2336 // C++20 restrictions here; additional syntactic and semantic restrictions 2337 // are applied elsewhere. 2338 if (isTemplateArgument(Kind)) { 2339 int InvalidBaseKind = -1; 2340 StringRef Ident; 2341 if (Base.is<TypeInfoLValue>()) 2342 InvalidBaseKind = 0; 2343 else if (isa_and_nonnull<StringLiteral>(BaseE)) 2344 InvalidBaseKind = 1; 2345 else if (isa_and_nonnull<MaterializeTemporaryExpr>(BaseE) || 2346 isa_and_nonnull<LifetimeExtendedTemporaryDecl>(BaseVD)) 2347 InvalidBaseKind = 2; 2348 else if (auto *PE = dyn_cast_or_null<PredefinedExpr>(BaseE)) { 2349 InvalidBaseKind = 3; 2350 Ident = PE->getIdentKindName(); 2351 } 2352 2353 if (InvalidBaseKind != -1) { 2354 Info.FFDiag(Loc, diag::note_constexpr_invalid_template_arg) 2355 << IsReferenceType << !Designator.Entries.empty() << InvalidBaseKind 2356 << Ident; 2357 return false; 2358 } 2359 } 2360 2361 if (auto *FD = dyn_cast_or_null<FunctionDecl>(BaseVD); 2362 FD && FD->isImmediateFunction()) { 2363 Info.FFDiag(Loc, diag::note_consteval_address_accessible) 2364 << !Type->isAnyPointerType(); 2365 Info.Note(FD->getLocation(), diag::note_declared_at); 2366 return false; 2367 } 2368 2369 // Check that the object is a global. Note that the fake 'this' object we 2370 // manufacture when checking potential constant expressions is conservatively 2371 // assumed to be global here. 2372 if (!IsGlobalLValue(Base)) { 2373 if (Info.getLangOpts().CPlusPlus11) { 2374 Info.FFDiag(Loc, diag::note_constexpr_non_global, 1) 2375 << IsReferenceType << !Designator.Entries.empty() << !!BaseVD 2376 << BaseVD; 2377 auto *VarD = dyn_cast_or_null<VarDecl>(BaseVD); 2378 if (VarD && VarD->isConstexpr()) { 2379 // Non-static local constexpr variables have unintuitive semantics: 2380 // constexpr int a = 1; 2381 // constexpr const int *p = &a; 2382 // ... is invalid because the address of 'a' is not constant. Suggest 2383 // adding a 'static' in this case. 2384 Info.Note(VarD->getLocation(), diag::note_constexpr_not_static) 2385 << VarD 2386 << FixItHint::CreateInsertion(VarD->getBeginLoc(), "static "); 2387 } else { 2388 NoteLValueLocation(Info, Base); 2389 } 2390 } else { 2391 Info.FFDiag(Loc); 2392 } 2393 // Don't allow references to temporaries to escape. 2394 return false; 2395 } 2396 assert((Info.checkingPotentialConstantExpression() || 2397 LVal.getLValueCallIndex() == 0) && 2398 "have call index for global lvalue"); 2399 2400 if (Base.is<DynamicAllocLValue>()) { 2401 Info.FFDiag(Loc, diag::note_constexpr_dynamic_alloc) 2402 << IsReferenceType << !Designator.Entries.empty(); 2403 NoteLValueLocation(Info, Base); 2404 return false; 2405 } 2406 2407 if (BaseVD) { 2408 if (const VarDecl *Var = dyn_cast<const VarDecl>(BaseVD)) { 2409 // Check if this is a thread-local variable. 2410 if (Var->getTLSKind()) 2411 // FIXME: Diagnostic! 2412 return false; 2413 2414 // A dllimport variable never acts like a constant, unless we're 2415 // evaluating a value for use only in name mangling. 2416 if (!isForManglingOnly(Kind) && Var->hasAttr<DLLImportAttr>()) 2417 // FIXME: Diagnostic! 2418 return false; 2419 2420 // In CUDA/HIP device compilation, only device side variables have 2421 // constant addresses. 2422 if (Info.getASTContext().getLangOpts().CUDA && 2423 Info.getASTContext().getLangOpts().CUDAIsDevice && 2424 Info.getASTContext().CUDAConstantEvalCtx.NoWrongSidedVars) { 2425 if ((!Var->hasAttr<CUDADeviceAttr>() && 2426 !Var->hasAttr<CUDAConstantAttr>() && 2427 !Var->getType()->isCUDADeviceBuiltinSurfaceType() && 2428 !Var->getType()->isCUDADeviceBuiltinTextureType()) || 2429 Var->hasAttr<HIPManagedAttr>()) 2430 return false; 2431 } 2432 } 2433 if (const auto *FD = dyn_cast<const FunctionDecl>(BaseVD)) { 2434 // __declspec(dllimport) must be handled very carefully: 2435 // We must never initialize an expression with the thunk in C++. 2436 // Doing otherwise would allow the same id-expression to yield 2437 // different addresses for the same function in different translation 2438 // units. However, this means that we must dynamically initialize the 2439 // expression with the contents of the import address table at runtime. 2440 // 2441 // The C language has no notion of ODR; furthermore, it has no notion of 2442 // dynamic initialization. This means that we are permitted to 2443 // perform initialization with the address of the thunk. 2444 if (Info.getLangOpts().CPlusPlus && !isForManglingOnly(Kind) && 2445 FD->hasAttr<DLLImportAttr>()) 2446 // FIXME: Diagnostic! 2447 return false; 2448 } 2449 } else if (const auto *MTE = 2450 dyn_cast_or_null<MaterializeTemporaryExpr>(BaseE)) { 2451 if (CheckedTemps.insert(MTE).second) { 2452 QualType TempType = getType(Base); 2453 if (TempType.isDestructedType()) { 2454 Info.FFDiag(MTE->getExprLoc(), 2455 diag::note_constexpr_unsupported_temporary_nontrivial_dtor) 2456 << TempType; 2457 return false; 2458 } 2459 2460 APValue *V = MTE->getOrCreateValue(false); 2461 assert(V && "evasluation result refers to uninitialised temporary"); 2462 if (!CheckEvaluationResult(CheckEvaluationResultKind::ConstantExpression, 2463 Info, MTE->getExprLoc(), TempType, *V, Kind, 2464 /*SubobjectDecl=*/nullptr, CheckedTemps)) 2465 return false; 2466 } 2467 } 2468 2469 // Allow address constant expressions to be past-the-end pointers. This is 2470 // an extension: the standard requires them to point to an object. 2471 if (!IsReferenceType) 2472 return true; 2473 2474 // A reference constant expression must refer to an object. 2475 if (!Base) { 2476 // FIXME: diagnostic 2477 Info.CCEDiag(Loc); 2478 return true; 2479 } 2480 2481 // Does this refer one past the end of some object? 2482 if (!Designator.Invalid && Designator.isOnePastTheEnd()) { 2483 Info.FFDiag(Loc, diag::note_constexpr_past_end, 1) 2484 << !Designator.Entries.empty() << !!BaseVD << BaseVD; 2485 NoteLValueLocation(Info, Base); 2486 } 2487 2488 return true; 2489 } 2490 2491 /// Member pointers are constant expressions unless they point to a 2492 /// non-virtual dllimport member function. 2493 static bool CheckMemberPointerConstantExpression(EvalInfo &Info, 2494 SourceLocation Loc, 2495 QualType Type, 2496 const APValue &Value, 2497 ConstantExprKind Kind) { 2498 const ValueDecl *Member = Value.getMemberPointerDecl(); 2499 const auto *FD = dyn_cast_or_null<CXXMethodDecl>(Member); 2500 if (!FD) 2501 return true; 2502 if (FD->isImmediateFunction()) { 2503 Info.FFDiag(Loc, diag::note_consteval_address_accessible) << /*pointer*/ 0; 2504 Info.Note(FD->getLocation(), diag::note_declared_at); 2505 return false; 2506 } 2507 return isForManglingOnly(Kind) || FD->isVirtual() || 2508 !FD->hasAttr<DLLImportAttr>(); 2509 } 2510 2511 /// Check that this core constant expression is of literal type, and if not, 2512 /// produce an appropriate diagnostic. 2513 static bool CheckLiteralType(EvalInfo &Info, const Expr *E, 2514 const LValue *This = nullptr) { 2515 // The restriction to literal types does not exist in C++23 anymore. 2516 if (Info.getLangOpts().CPlusPlus23) 2517 return true; 2518 2519 if (!E->isPRValue() || E->getType()->isLiteralType(Info.Ctx)) 2520 return true; 2521 2522 // C++1y: A constant initializer for an object o [...] may also invoke 2523 // constexpr constructors for o and its subobjects even if those objects 2524 // are of non-literal class types. 2525 // 2526 // C++11 missed this detail for aggregates, so classes like this: 2527 // struct foo_t { union { int i; volatile int j; } u; }; 2528 // are not (obviously) initializable like so: 2529 // __attribute__((__require_constant_initialization__)) 2530 // static const foo_t x = {{0}}; 2531 // because "i" is a subobject with non-literal initialization (due to the 2532 // volatile member of the union). See: 2533 // http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_active.html#1677 2534 // Therefore, we use the C++1y behavior. 2535 if (This && Info.EvaluatingDecl == This->getLValueBase()) 2536 return true; 2537 2538 // Prvalue constant expressions must be of literal types. 2539 if (Info.getLangOpts().CPlusPlus11) 2540 Info.FFDiag(E, diag::note_constexpr_nonliteral) 2541 << E->getType(); 2542 else 2543 Info.FFDiag(E, diag::note_invalid_subexpr_in_const_expr); 2544 return false; 2545 } 2546 2547 static bool CheckEvaluationResult(CheckEvaluationResultKind CERK, 2548 EvalInfo &Info, SourceLocation DiagLoc, 2549 QualType Type, const APValue &Value, 2550 ConstantExprKind Kind, 2551 const FieldDecl *SubobjectDecl, 2552 CheckedTemporaries &CheckedTemps) { 2553 if (!Value.hasValue()) { 2554 if (SubobjectDecl) { 2555 Info.FFDiag(DiagLoc, diag::note_constexpr_uninitialized) 2556 << /*(name)*/ 1 << SubobjectDecl; 2557 Info.Note(SubobjectDecl->getLocation(), 2558 diag::note_constexpr_subobject_declared_here); 2559 } else { 2560 Info.FFDiag(DiagLoc, diag::note_constexpr_uninitialized) 2561 << /*of type*/ 0 << Type; 2562 } 2563 return false; 2564 } 2565 2566 // We allow _Atomic(T) to be initialized from anything that T can be 2567 // initialized from. 2568 if (const AtomicType *AT = Type->getAs<AtomicType>()) 2569 Type = AT->getValueType(); 2570 2571 // Core issue 1454: For a literal constant expression of array or class type, 2572 // each subobject of its value shall have been initialized by a constant 2573 // expression. 2574 if (Value.isArray()) { 2575 QualType EltTy = Type->castAsArrayTypeUnsafe()->getElementType(); 2576 for (unsigned I = 0, N = Value.getArrayInitializedElts(); I != N; ++I) { 2577 if (!CheckEvaluationResult(CERK, Info, DiagLoc, EltTy, 2578 Value.getArrayInitializedElt(I), Kind, 2579 SubobjectDecl, CheckedTemps)) 2580 return false; 2581 } 2582 if (!Value.hasArrayFiller()) 2583 return true; 2584 return CheckEvaluationResult(CERK, Info, DiagLoc, EltTy, 2585 Value.getArrayFiller(), Kind, SubobjectDecl, 2586 CheckedTemps); 2587 } 2588 if (Value.isUnion() && Value.getUnionField()) { 2589 return CheckEvaluationResult( 2590 CERK, Info, DiagLoc, Value.getUnionField()->getType(), 2591 Value.getUnionValue(), Kind, Value.getUnionField(), CheckedTemps); 2592 } 2593 if (Value.isStruct()) { 2594 RecordDecl *RD = Type->castAs<RecordType>()->getDecl(); 2595 if (const CXXRecordDecl *CD = dyn_cast<CXXRecordDecl>(RD)) { 2596 unsigned BaseIndex = 0; 2597 for (const CXXBaseSpecifier &BS : CD->bases()) { 2598 const APValue &BaseValue = Value.getStructBase(BaseIndex); 2599 if (!BaseValue.hasValue()) { 2600 SourceLocation TypeBeginLoc = BS.getBaseTypeLoc(); 2601 Info.FFDiag(TypeBeginLoc, diag::note_constexpr_uninitialized_base) 2602 << BS.getType() << SourceRange(TypeBeginLoc, BS.getEndLoc()); 2603 return false; 2604 } 2605 if (!CheckEvaluationResult(CERK, Info, DiagLoc, BS.getType(), BaseValue, 2606 Kind, /*SubobjectDecl=*/nullptr, 2607 CheckedTemps)) 2608 return false; 2609 ++BaseIndex; 2610 } 2611 } 2612 for (const auto *I : RD->fields()) { 2613 if (I->isUnnamedBitField()) 2614 continue; 2615 2616 if (!CheckEvaluationResult(CERK, Info, DiagLoc, I->getType(), 2617 Value.getStructField(I->getFieldIndex()), Kind, 2618 I, CheckedTemps)) 2619 return false; 2620 } 2621 } 2622 2623 if (Value.isLValue() && 2624 CERK == CheckEvaluationResultKind::ConstantExpression) { 2625 LValue LVal; 2626 LVal.setFrom(Info.Ctx, Value); 2627 return CheckLValueConstantExpression(Info, DiagLoc, Type, LVal, Kind, 2628 CheckedTemps); 2629 } 2630 2631 if (Value.isMemberPointer() && 2632 CERK == CheckEvaluationResultKind::ConstantExpression) 2633 return CheckMemberPointerConstantExpression(Info, DiagLoc, Type, Value, Kind); 2634 2635 // Everything else is fine. 2636 return true; 2637 } 2638 2639 /// Check that this core constant expression value is a valid value for a 2640 /// constant expression. If not, report an appropriate diagnostic. Does not 2641 /// check that the expression is of literal type. 2642 static bool CheckConstantExpression(EvalInfo &Info, SourceLocation DiagLoc, 2643 QualType Type, const APValue &Value, 2644 ConstantExprKind Kind) { 2645 // Nothing to check for a constant expression of type 'cv void'. 2646 if (Type->isVoidType()) 2647 return true; 2648 2649 CheckedTemporaries CheckedTemps; 2650 return CheckEvaluationResult(CheckEvaluationResultKind::ConstantExpression, 2651 Info, DiagLoc, Type, Value, Kind, 2652 /*SubobjectDecl=*/nullptr, CheckedTemps); 2653 } 2654 2655 /// Check that this evaluated value is fully-initialized and can be loaded by 2656 /// an lvalue-to-rvalue conversion. 2657 static bool CheckFullyInitialized(EvalInfo &Info, SourceLocation DiagLoc, 2658 QualType Type, const APValue &Value) { 2659 CheckedTemporaries CheckedTemps; 2660 return CheckEvaluationResult( 2661 CheckEvaluationResultKind::FullyInitialized, Info, DiagLoc, Type, Value, 2662 ConstantExprKind::Normal, /*SubobjectDecl=*/nullptr, CheckedTemps); 2663 } 2664 2665 /// Enforce C++2a [expr.const]/4.17, which disallows new-expressions unless 2666 /// "the allocated storage is deallocated within the evaluation". 2667 static bool CheckMemoryLeaks(EvalInfo &Info) { 2668 if (!Info.HeapAllocs.empty()) { 2669 // We can still fold to a constant despite a compile-time memory leak, 2670 // so long as the heap allocation isn't referenced in the result (we check 2671 // that in CheckConstantExpression). 2672 Info.CCEDiag(Info.HeapAllocs.begin()->second.AllocExpr, 2673 diag::note_constexpr_memory_leak) 2674 << unsigned(Info.HeapAllocs.size() - 1); 2675 } 2676 return true; 2677 } 2678 2679 static bool EvalPointerValueAsBool(const APValue &Value, bool &Result) { 2680 // A null base expression indicates a null pointer. These are always 2681 // evaluatable, and they are false unless the offset is zero. 2682 if (!Value.getLValueBase()) { 2683 // TODO: Should a non-null pointer with an offset of zero evaluate to true? 2684 Result = !Value.getLValueOffset().isZero(); 2685 return true; 2686 } 2687 2688 // We have a non-null base. These are generally known to be true, but if it's 2689 // a weak declaration it can be null at runtime. 2690 Result = true; 2691 const ValueDecl *Decl = Value.getLValueBase().dyn_cast<const ValueDecl*>(); 2692 return !Decl || !Decl->isWeak(); 2693 } 2694 2695 static bool HandleConversionToBool(const APValue &Val, bool &Result) { 2696 // TODO: This function should produce notes if it fails. 2697 switch (Val.getKind()) { 2698 case APValue::None: 2699 case APValue::Indeterminate: 2700 return false; 2701 case APValue::Int: 2702 Result = Val.getInt().getBoolValue(); 2703 return true; 2704 case APValue::FixedPoint: 2705 Result = Val.getFixedPoint().getBoolValue(); 2706 return true; 2707 case APValue::Float: 2708 Result = !Val.getFloat().isZero(); 2709 return true; 2710 case APValue::ComplexInt: 2711 Result = Val.getComplexIntReal().getBoolValue() || 2712 Val.getComplexIntImag().getBoolValue(); 2713 return true; 2714 case APValue::ComplexFloat: 2715 Result = !Val.getComplexFloatReal().isZero() || 2716 !Val.getComplexFloatImag().isZero(); 2717 return true; 2718 case APValue::LValue: 2719 return EvalPointerValueAsBool(Val, Result); 2720 case APValue::MemberPointer: 2721 if (Val.getMemberPointerDecl() && Val.getMemberPointerDecl()->isWeak()) { 2722 return false; 2723 } 2724 Result = Val.getMemberPointerDecl(); 2725 return true; 2726 case APValue::Vector: 2727 case APValue::Array: 2728 case APValue::Struct: 2729 case APValue::Union: 2730 case APValue::AddrLabelDiff: 2731 return false; 2732 } 2733 2734 llvm_unreachable("unknown APValue kind"); 2735 } 2736 2737 static bool EvaluateAsBooleanCondition(const Expr *E, bool &Result, 2738 EvalInfo &Info) { 2739 assert(!E->isValueDependent()); 2740 assert(E->isPRValue() && "missing lvalue-to-rvalue conv in bool condition"); 2741 APValue Val; 2742 if (!Evaluate(Val, Info, E)) 2743 return false; 2744 return HandleConversionToBool(Val, Result); 2745 } 2746 2747 template<typename T> 2748 static bool HandleOverflow(EvalInfo &Info, const Expr *E, 2749 const T &SrcValue, QualType DestType) { 2750 Info.CCEDiag(E, diag::note_constexpr_overflow) 2751 << SrcValue << DestType; 2752 return Info.noteUndefinedBehavior(); 2753 } 2754 2755 static bool HandleFloatToIntCast(EvalInfo &Info, const Expr *E, 2756 QualType SrcType, const APFloat &Value, 2757 QualType DestType, APSInt &Result) { 2758 unsigned DestWidth = Info.Ctx.getIntWidth(DestType); 2759 // Determine whether we are converting to unsigned or signed. 2760 bool DestSigned = DestType->isSignedIntegerOrEnumerationType(); 2761 2762 Result = APSInt(DestWidth, !DestSigned); 2763 bool ignored; 2764 if (Value.convertToInteger(Result, llvm::APFloat::rmTowardZero, &ignored) 2765 & APFloat::opInvalidOp) 2766 return HandleOverflow(Info, E, Value, DestType); 2767 return true; 2768 } 2769 2770 /// Get rounding mode to use in evaluation of the specified expression. 2771 /// 2772 /// If rounding mode is unknown at compile time, still try to evaluate the 2773 /// expression. If the result is exact, it does not depend on rounding mode. 2774 /// So return "tonearest" mode instead of "dynamic". 2775 static llvm::RoundingMode getActiveRoundingMode(EvalInfo &Info, const Expr *E) { 2776 llvm::RoundingMode RM = 2777 E->getFPFeaturesInEffect(Info.Ctx.getLangOpts()).getRoundingMode(); 2778 if (RM == llvm::RoundingMode::Dynamic) 2779 RM = llvm::RoundingMode::NearestTiesToEven; 2780 return RM; 2781 } 2782 2783 /// Check if the given evaluation result is allowed for constant evaluation. 2784 static bool checkFloatingPointResult(EvalInfo &Info, const Expr *E, 2785 APFloat::opStatus St) { 2786 // In a constant context, assume that any dynamic rounding mode or FP 2787 // exception state matches the default floating-point environment. 2788 if (Info.InConstantContext) 2789 return true; 2790 2791 FPOptions FPO = E->getFPFeaturesInEffect(Info.Ctx.getLangOpts()); 2792 if ((St & APFloat::opInexact) && 2793 FPO.getRoundingMode() == llvm::RoundingMode::Dynamic) { 2794 // Inexact result means that it depends on rounding mode. If the requested 2795 // mode is dynamic, the evaluation cannot be made in compile time. 2796 Info.FFDiag(E, diag::note_constexpr_dynamic_rounding); 2797 return false; 2798 } 2799 2800 if ((St != APFloat::opOK) && 2801 (FPO.getRoundingMode() == llvm::RoundingMode::Dynamic || 2802 FPO.getExceptionMode() != LangOptions::FPE_Ignore || 2803 FPO.getAllowFEnvAccess())) { 2804 Info.FFDiag(E, diag::note_constexpr_float_arithmetic_strict); 2805 return false; 2806 } 2807 2808 if ((St & APFloat::opStatus::opInvalidOp) && 2809 FPO.getExceptionMode() != LangOptions::FPE_Ignore) { 2810 // There is no usefully definable result. 2811 Info.FFDiag(E); 2812 return false; 2813 } 2814 2815 // FIXME: if: 2816 // - evaluation triggered other FP exception, and 2817 // - exception mode is not "ignore", and 2818 // - the expression being evaluated is not a part of global variable 2819 // initializer, 2820 // the evaluation probably need to be rejected. 2821 return true; 2822 } 2823 2824 static bool HandleFloatToFloatCast(EvalInfo &Info, const Expr *E, 2825 QualType SrcType, QualType DestType, 2826 APFloat &Result) { 2827 assert((isa<CastExpr>(E) || isa<CompoundAssignOperator>(E) || 2828 isa<ConvertVectorExpr>(E)) && 2829 "HandleFloatToFloatCast has been checked with only CastExpr, " 2830 "CompoundAssignOperator and ConvertVectorExpr. Please either validate " 2831 "the new expression or address the root cause of this usage."); 2832 llvm::RoundingMode RM = getActiveRoundingMode(Info, E); 2833 APFloat::opStatus St; 2834 APFloat Value = Result; 2835 bool ignored; 2836 St = Result.convert(Info.Ctx.getFloatTypeSemantics(DestType), RM, &ignored); 2837 return checkFloatingPointResult(Info, E, St); 2838 } 2839 2840 static APSInt HandleIntToIntCast(EvalInfo &Info, const Expr *E, 2841 QualType DestType, QualType SrcType, 2842 const APSInt &Value) { 2843 unsigned DestWidth = Info.Ctx.getIntWidth(DestType); 2844 // Figure out if this is a truncate, extend or noop cast. 2845 // If the input is signed, do a sign extend, noop, or truncate. 2846 APSInt Result = Value.extOrTrunc(DestWidth); 2847 Result.setIsUnsigned(DestType->isUnsignedIntegerOrEnumerationType()); 2848 if (DestType->isBooleanType()) 2849 Result = Value.getBoolValue(); 2850 return Result; 2851 } 2852 2853 static bool HandleIntToFloatCast(EvalInfo &Info, const Expr *E, 2854 const FPOptions FPO, 2855 QualType SrcType, const APSInt &Value, 2856 QualType DestType, APFloat &Result) { 2857 Result = APFloat(Info.Ctx.getFloatTypeSemantics(DestType), 1); 2858 llvm::RoundingMode RM = getActiveRoundingMode(Info, E); 2859 APFloat::opStatus St = Result.convertFromAPInt(Value, Value.isSigned(), RM); 2860 return checkFloatingPointResult(Info, E, St); 2861 } 2862 2863 static bool truncateBitfieldValue(EvalInfo &Info, const Expr *E, 2864 APValue &Value, const FieldDecl *FD) { 2865 assert(FD->isBitField() && "truncateBitfieldValue on non-bitfield"); 2866 2867 if (!Value.isInt()) { 2868 // Trying to store a pointer-cast-to-integer into a bitfield. 2869 // FIXME: In this case, we should provide the diagnostic for casting 2870 // a pointer to an integer. 2871 assert(Value.isLValue() && "integral value neither int nor lvalue?"); 2872 Info.FFDiag(E); 2873 return false; 2874 } 2875 2876 APSInt &Int = Value.getInt(); 2877 unsigned OldBitWidth = Int.getBitWidth(); 2878 unsigned NewBitWidth = FD->getBitWidthValue(Info.Ctx); 2879 if (NewBitWidth < OldBitWidth) 2880 Int = Int.trunc(NewBitWidth).extend(OldBitWidth); 2881 return true; 2882 } 2883 2884 /// Perform the given integer operation, which is known to need at most BitWidth 2885 /// bits, and check for overflow in the original type (if that type was not an 2886 /// unsigned type). 2887 template<typename Operation> 2888 static bool CheckedIntArithmetic(EvalInfo &Info, const Expr *E, 2889 const APSInt &LHS, const APSInt &RHS, 2890 unsigned BitWidth, Operation Op, 2891 APSInt &Result) { 2892 if (LHS.isUnsigned()) { 2893 Result = Op(LHS, RHS); 2894 return true; 2895 } 2896 2897 APSInt Value(Op(LHS.extend(BitWidth), RHS.extend(BitWidth)), false); 2898 Result = Value.trunc(LHS.getBitWidth()); 2899 if (Result.extend(BitWidth) != Value) { 2900 if (Info.checkingForUndefinedBehavior()) 2901 Info.Ctx.getDiagnostics().Report(E->getExprLoc(), 2902 diag::warn_integer_constant_overflow) 2903 << toString(Result, 10, Result.isSigned(), /*formatAsCLiteral=*/false, 2904 /*UpperCase=*/true, /*InsertSeparators=*/true) 2905 << E->getType() << E->getSourceRange(); 2906 return HandleOverflow(Info, E, Value, E->getType()); 2907 } 2908 return true; 2909 } 2910 2911 /// Perform the given binary integer operation. 2912 static bool handleIntIntBinOp(EvalInfo &Info, const BinaryOperator *E, 2913 const APSInt &LHS, BinaryOperatorKind Opcode, 2914 APSInt RHS, APSInt &Result) { 2915 bool HandleOverflowResult = true; 2916 switch (Opcode) { 2917 default: 2918 Info.FFDiag(E); 2919 return false; 2920 case BO_Mul: 2921 return CheckedIntArithmetic(Info, E, LHS, RHS, LHS.getBitWidth() * 2, 2922 std::multiplies<APSInt>(), Result); 2923 case BO_Add: 2924 return CheckedIntArithmetic(Info, E, LHS, RHS, LHS.getBitWidth() + 1, 2925 std::plus<APSInt>(), Result); 2926 case BO_Sub: 2927 return CheckedIntArithmetic(Info, E, LHS, RHS, LHS.getBitWidth() + 1, 2928 std::minus<APSInt>(), Result); 2929 case BO_And: Result = LHS & RHS; return true; 2930 case BO_Xor: Result = LHS ^ RHS; return true; 2931 case BO_Or: Result = LHS | RHS; return true; 2932 case BO_Div: 2933 case BO_Rem: 2934 if (RHS == 0) { 2935 Info.FFDiag(E, diag::note_expr_divide_by_zero) 2936 << E->getRHS()->getSourceRange(); 2937 return false; 2938 } 2939 // Check for overflow case: INT_MIN / -1 or INT_MIN % -1. APSInt supports 2940 // this operation and gives the two's complement result. 2941 if (RHS.isNegative() && RHS.isAllOnes() && LHS.isSigned() && 2942 LHS.isMinSignedValue()) 2943 HandleOverflowResult = HandleOverflow( 2944 Info, E, -LHS.extend(LHS.getBitWidth() + 1), E->getType()); 2945 Result = (Opcode == BO_Rem ? LHS % RHS : LHS / RHS); 2946 return HandleOverflowResult; 2947 case BO_Shl: { 2948 if (Info.getLangOpts().OpenCL) 2949 // OpenCL 6.3j: shift values are effectively % word size of LHS. 2950 RHS &= APSInt(llvm::APInt(RHS.getBitWidth(), 2951 static_cast<uint64_t>(LHS.getBitWidth() - 1)), 2952 RHS.isUnsigned()); 2953 else if (RHS.isSigned() && RHS.isNegative()) { 2954 // During constant-folding, a negative shift is an opposite shift. Such 2955 // a shift is not a constant expression. 2956 Info.CCEDiag(E, diag::note_constexpr_negative_shift) << RHS; 2957 if (!Info.noteUndefinedBehavior()) 2958 return false; 2959 RHS = -RHS; 2960 goto shift_right; 2961 } 2962 shift_left: 2963 // C++11 [expr.shift]p1: Shift width must be less than the bit width of 2964 // the shifted type. 2965 unsigned SA = (unsigned) RHS.getLimitedValue(LHS.getBitWidth()-1); 2966 if (SA != RHS) { 2967 Info.CCEDiag(E, diag::note_constexpr_large_shift) 2968 << RHS << E->getType() << LHS.getBitWidth(); 2969 if (!Info.noteUndefinedBehavior()) 2970 return false; 2971 } else if (LHS.isSigned() && !Info.getLangOpts().CPlusPlus20) { 2972 // C++11 [expr.shift]p2: A signed left shift must have a non-negative 2973 // operand, and must not overflow the corresponding unsigned type. 2974 // C++2a [expr.shift]p2: E1 << E2 is the unique value congruent to 2975 // E1 x 2^E2 module 2^N. 2976 if (LHS.isNegative()) { 2977 Info.CCEDiag(E, diag::note_constexpr_lshift_of_negative) << LHS; 2978 if (!Info.noteUndefinedBehavior()) 2979 return false; 2980 } else if (LHS.countl_zero() < SA) { 2981 Info.CCEDiag(E, diag::note_constexpr_lshift_discards); 2982 if (!Info.noteUndefinedBehavior()) 2983 return false; 2984 } 2985 } 2986 Result = LHS << SA; 2987 return true; 2988 } 2989 case BO_Shr: { 2990 if (Info.getLangOpts().OpenCL) 2991 // OpenCL 6.3j: shift values are effectively % word size of LHS. 2992 RHS &= APSInt(llvm::APInt(RHS.getBitWidth(), 2993 static_cast<uint64_t>(LHS.getBitWidth() - 1)), 2994 RHS.isUnsigned()); 2995 else if (RHS.isSigned() && RHS.isNegative()) { 2996 // During constant-folding, a negative shift is an opposite shift. Such a 2997 // shift is not a constant expression. 2998 Info.CCEDiag(E, diag::note_constexpr_negative_shift) << RHS; 2999 if (!Info.noteUndefinedBehavior()) 3000 return false; 3001 RHS = -RHS; 3002 goto shift_left; 3003 } 3004 shift_right: 3005 // C++11 [expr.shift]p1: Shift width must be less than the bit width of the 3006 // shifted type. 3007 unsigned SA = (unsigned) RHS.getLimitedValue(LHS.getBitWidth()-1); 3008 if (SA != RHS) { 3009 Info.CCEDiag(E, diag::note_constexpr_large_shift) 3010 << RHS << E->getType() << LHS.getBitWidth(); 3011 if (!Info.noteUndefinedBehavior()) 3012 return false; 3013 } 3014 3015 Result = LHS >> SA; 3016 return true; 3017 } 3018 3019 case BO_LT: Result = LHS < RHS; return true; 3020 case BO_GT: Result = LHS > RHS; return true; 3021 case BO_LE: Result = LHS <= RHS; return true; 3022 case BO_GE: Result = LHS >= RHS; return true; 3023 case BO_EQ: Result = LHS == RHS; return true; 3024 case BO_NE: Result = LHS != RHS; return true; 3025 case BO_Cmp: 3026 llvm_unreachable("BO_Cmp should be handled elsewhere"); 3027 } 3028 } 3029 3030 /// Perform the given binary floating-point operation, in-place, on LHS. 3031 static bool handleFloatFloatBinOp(EvalInfo &Info, const BinaryOperator *E, 3032 APFloat &LHS, BinaryOperatorKind Opcode, 3033 const APFloat &RHS) { 3034 llvm::RoundingMode RM = getActiveRoundingMode(Info, E); 3035 APFloat::opStatus St; 3036 switch (Opcode) { 3037 default: 3038 Info.FFDiag(E); 3039 return false; 3040 case BO_Mul: 3041 St = LHS.multiply(RHS, RM); 3042 break; 3043 case BO_Add: 3044 St = LHS.add(RHS, RM); 3045 break; 3046 case BO_Sub: 3047 St = LHS.subtract(RHS, RM); 3048 break; 3049 case BO_Div: 3050 // [expr.mul]p4: 3051 // If the second operand of / or % is zero the behavior is undefined. 3052 if (RHS.isZero()) 3053 Info.CCEDiag(E, diag::note_expr_divide_by_zero); 3054 St = LHS.divide(RHS, RM); 3055 break; 3056 } 3057 3058 // [expr.pre]p4: 3059 // If during the evaluation of an expression, the result is not 3060 // mathematically defined [...], the behavior is undefined. 3061 // FIXME: C++ rules require us to not conform to IEEE 754 here. 3062 if (LHS.isNaN()) { 3063 Info.CCEDiag(E, diag::note_constexpr_float_arithmetic) << LHS.isNaN(); 3064 return Info.noteUndefinedBehavior(); 3065 } 3066 3067 return checkFloatingPointResult(Info, E, St); 3068 } 3069 3070 static bool handleLogicalOpForVector(const APInt &LHSValue, 3071 BinaryOperatorKind Opcode, 3072 const APInt &RHSValue, APInt &Result) { 3073 bool LHS = (LHSValue != 0); 3074 bool RHS = (RHSValue != 0); 3075 3076 if (Opcode == BO_LAnd) 3077 Result = LHS && RHS; 3078 else 3079 Result = LHS || RHS; 3080 return true; 3081 } 3082 static bool handleLogicalOpForVector(const APFloat &LHSValue, 3083 BinaryOperatorKind Opcode, 3084 const APFloat &RHSValue, APInt &Result) { 3085 bool LHS = !LHSValue.isZero(); 3086 bool RHS = !RHSValue.isZero(); 3087 3088 if (Opcode == BO_LAnd) 3089 Result = LHS && RHS; 3090 else 3091 Result = LHS || RHS; 3092 return true; 3093 } 3094 3095 static bool handleLogicalOpForVector(const APValue &LHSValue, 3096 BinaryOperatorKind Opcode, 3097 const APValue &RHSValue, APInt &Result) { 3098 // The result is always an int type, however operands match the first. 3099 if (LHSValue.getKind() == APValue::Int) 3100 return handleLogicalOpForVector(LHSValue.getInt(), Opcode, 3101 RHSValue.getInt(), Result); 3102 assert(LHSValue.getKind() == APValue::Float && "Should be no other options"); 3103 return handleLogicalOpForVector(LHSValue.getFloat(), Opcode, 3104 RHSValue.getFloat(), Result); 3105 } 3106 3107 template <typename APTy> 3108 static bool 3109 handleCompareOpForVectorHelper(const APTy &LHSValue, BinaryOperatorKind Opcode, 3110 const APTy &RHSValue, APInt &Result) { 3111 switch (Opcode) { 3112 default: 3113 llvm_unreachable("unsupported binary operator"); 3114 case BO_EQ: 3115 Result = (LHSValue == RHSValue); 3116 break; 3117 case BO_NE: 3118 Result = (LHSValue != RHSValue); 3119 break; 3120 case BO_LT: 3121 Result = (LHSValue < RHSValue); 3122 break; 3123 case BO_GT: 3124 Result = (LHSValue > RHSValue); 3125 break; 3126 case BO_LE: 3127 Result = (LHSValue <= RHSValue); 3128 break; 3129 case BO_GE: 3130 Result = (LHSValue >= RHSValue); 3131 break; 3132 } 3133 3134 // The boolean operations on these vector types use an instruction that 3135 // results in a mask of '-1' for the 'truth' value. Ensure that we negate 1 3136 // to -1 to make sure that we produce the correct value. 3137 Result.negate(); 3138 3139 return true; 3140 } 3141 3142 static bool handleCompareOpForVector(const APValue &LHSValue, 3143 BinaryOperatorKind Opcode, 3144 const APValue &RHSValue, APInt &Result) { 3145 // The result is always an int type, however operands match the first. 3146 if (LHSValue.getKind() == APValue::Int) 3147 return handleCompareOpForVectorHelper(LHSValue.getInt(), Opcode, 3148 RHSValue.getInt(), Result); 3149 assert(LHSValue.getKind() == APValue::Float && "Should be no other options"); 3150 return handleCompareOpForVectorHelper(LHSValue.getFloat(), Opcode, 3151 RHSValue.getFloat(), Result); 3152 } 3153 3154 // Perform binary operations for vector types, in place on the LHS. 3155 static bool handleVectorVectorBinOp(EvalInfo &Info, const BinaryOperator *E, 3156 BinaryOperatorKind Opcode, 3157 APValue &LHSValue, 3158 const APValue &RHSValue) { 3159 assert(Opcode != BO_PtrMemD && Opcode != BO_PtrMemI && 3160 "Operation not supported on vector types"); 3161 3162 const auto *VT = E->getType()->castAs<VectorType>(); 3163 unsigned NumElements = VT->getNumElements(); 3164 QualType EltTy = VT->getElementType(); 3165 3166 // In the cases (typically C as I've observed) where we aren't evaluating 3167 // constexpr but are checking for cases where the LHS isn't yet evaluatable, 3168 // just give up. 3169 if (!LHSValue.isVector()) { 3170 assert(LHSValue.isLValue() && 3171 "A vector result that isn't a vector OR uncalculated LValue"); 3172 Info.FFDiag(E); 3173 return false; 3174 } 3175 3176 assert(LHSValue.getVectorLength() == NumElements && 3177 RHSValue.getVectorLength() == NumElements && "Different vector sizes"); 3178 3179 SmallVector<APValue, 4> ResultElements; 3180 3181 for (unsigned EltNum = 0; EltNum < NumElements; ++EltNum) { 3182 APValue LHSElt = LHSValue.getVectorElt(EltNum); 3183 APValue RHSElt = RHSValue.getVectorElt(EltNum); 3184 3185 if (EltTy->isIntegerType()) { 3186 APSInt EltResult{Info.Ctx.getIntWidth(EltTy), 3187 EltTy->isUnsignedIntegerType()}; 3188 bool Success = true; 3189 3190 if (BinaryOperator::isLogicalOp(Opcode)) 3191 Success = handleLogicalOpForVector(LHSElt, Opcode, RHSElt, EltResult); 3192 else if (BinaryOperator::isComparisonOp(Opcode)) 3193 Success = handleCompareOpForVector(LHSElt, Opcode, RHSElt, EltResult); 3194 else 3195 Success = handleIntIntBinOp(Info, E, LHSElt.getInt(), Opcode, 3196 RHSElt.getInt(), EltResult); 3197 3198 if (!Success) { 3199 Info.FFDiag(E); 3200 return false; 3201 } 3202 ResultElements.emplace_back(EltResult); 3203 3204 } else if (EltTy->isFloatingType()) { 3205 assert(LHSElt.getKind() == APValue::Float && 3206 RHSElt.getKind() == APValue::Float && 3207 "Mismatched LHS/RHS/Result Type"); 3208 APFloat LHSFloat = LHSElt.getFloat(); 3209 3210 if (!handleFloatFloatBinOp(Info, E, LHSFloat, Opcode, 3211 RHSElt.getFloat())) { 3212 Info.FFDiag(E); 3213 return false; 3214 } 3215 3216 ResultElements.emplace_back(LHSFloat); 3217 } 3218 } 3219 3220 LHSValue = APValue(ResultElements.data(), ResultElements.size()); 3221 return true; 3222 } 3223 3224 /// Cast an lvalue referring to a base subobject to a derived class, by 3225 /// truncating the lvalue's path to the given length. 3226 static bool CastToDerivedClass(EvalInfo &Info, const Expr *E, LValue &Result, 3227 const RecordDecl *TruncatedType, 3228 unsigned TruncatedElements) { 3229 SubobjectDesignator &D = Result.Designator; 3230 3231 // Check we actually point to a derived class object. 3232 if (TruncatedElements == D.Entries.size()) 3233 return true; 3234 assert(TruncatedElements >= D.MostDerivedPathLength && 3235 "not casting to a derived class"); 3236 if (!Result.checkSubobject(Info, E, CSK_Derived)) 3237 return false; 3238 3239 // Truncate the path to the subobject, and remove any derived-to-base offsets. 3240 const RecordDecl *RD = TruncatedType; 3241 for (unsigned I = TruncatedElements, N = D.Entries.size(); I != N; ++I) { 3242 if (RD->isInvalidDecl()) return false; 3243 const ASTRecordLayout &Layout = Info.Ctx.getASTRecordLayout(RD); 3244 const CXXRecordDecl *Base = getAsBaseClass(D.Entries[I]); 3245 if (isVirtualBaseClass(D.Entries[I])) 3246 Result.Offset -= Layout.getVBaseClassOffset(Base); 3247 else 3248 Result.Offset -= Layout.getBaseClassOffset(Base); 3249 RD = Base; 3250 } 3251 D.Entries.resize(TruncatedElements); 3252 return true; 3253 } 3254 3255 static bool HandleLValueDirectBase(EvalInfo &Info, const Expr *E, LValue &Obj, 3256 const CXXRecordDecl *Derived, 3257 const CXXRecordDecl *Base, 3258 const ASTRecordLayout *RL = nullptr) { 3259 if (!RL) { 3260 if (Derived->isInvalidDecl()) return false; 3261 RL = &Info.Ctx.getASTRecordLayout(Derived); 3262 } 3263 3264 Obj.addDecl(Info, E, Base, /*Virtual*/ false); 3265 Obj.getLValueOffset() += RL->getBaseClassOffset(Base); 3266 return true; 3267 } 3268 3269 static bool HandleLValueBase(EvalInfo &Info, const Expr *E, LValue &Obj, 3270 const CXXRecordDecl *DerivedDecl, 3271 const CXXBaseSpecifier *Base) { 3272 const CXXRecordDecl *BaseDecl = Base->getType()->getAsCXXRecordDecl(); 3273 3274 if (!Base->isVirtual()) 3275 return HandleLValueDirectBase(Info, E, Obj, DerivedDecl, BaseDecl); 3276 3277 SubobjectDesignator &D = Obj.Designator; 3278 if (D.Invalid) 3279 return false; 3280 3281 // Extract most-derived object and corresponding type. 3282 DerivedDecl = D.MostDerivedType->getAsCXXRecordDecl(); 3283 if (!CastToDerivedClass(Info, E, Obj, DerivedDecl, D.MostDerivedPathLength)) 3284 return false; 3285 3286 // Find the virtual base class. 3287 if (DerivedDecl->isInvalidDecl()) return false; 3288 const ASTRecordLayout &Layout = Info.Ctx.getASTRecordLayout(DerivedDecl); 3289 Obj.addDecl(Info, E, BaseDecl, /*Virtual*/ true); 3290 Obj.getLValueOffset() += Layout.getVBaseClassOffset(BaseDecl); 3291 return true; 3292 } 3293 3294 static bool HandleLValueBasePath(EvalInfo &Info, const CastExpr *E, 3295 QualType Type, LValue &Result) { 3296 for (CastExpr::path_const_iterator PathI = E->path_begin(), 3297 PathE = E->path_end(); 3298 PathI != PathE; ++PathI) { 3299 if (!HandleLValueBase(Info, E, Result, Type->getAsCXXRecordDecl(), 3300 *PathI)) 3301 return false; 3302 Type = (*PathI)->getType(); 3303 } 3304 return true; 3305 } 3306 3307 /// Cast an lvalue referring to a derived class to a known base subobject. 3308 static bool CastToBaseClass(EvalInfo &Info, const Expr *E, LValue &Result, 3309 const CXXRecordDecl *DerivedRD, 3310 const CXXRecordDecl *BaseRD) { 3311 CXXBasePaths Paths(/*FindAmbiguities=*/false, 3312 /*RecordPaths=*/true, /*DetectVirtual=*/false); 3313 if (!DerivedRD->isDerivedFrom(BaseRD, Paths)) 3314 llvm_unreachable("Class must be derived from the passed in base class!"); 3315 3316 for (CXXBasePathElement &Elem : Paths.front()) 3317 if (!HandleLValueBase(Info, E, Result, Elem.Class, Elem.Base)) 3318 return false; 3319 return true; 3320 } 3321 3322 /// Update LVal to refer to the given field, which must be a member of the type 3323 /// currently described by LVal. 3324 static bool HandleLValueMember(EvalInfo &Info, const Expr *E, LValue &LVal, 3325 const FieldDecl *FD, 3326 const ASTRecordLayout *RL = nullptr) { 3327 if (!RL) { 3328 if (FD->getParent()->isInvalidDecl()) return false; 3329 RL = &Info.Ctx.getASTRecordLayout(FD->getParent()); 3330 } 3331 3332 unsigned I = FD->getFieldIndex(); 3333 LVal.addDecl(Info, E, FD); 3334 LVal.adjustOffset(Info.Ctx.toCharUnitsFromBits(RL->getFieldOffset(I))); 3335 return true; 3336 } 3337 3338 /// Update LVal to refer to the given indirect field. 3339 static bool HandleLValueIndirectMember(EvalInfo &Info, const Expr *E, 3340 LValue &LVal, 3341 const IndirectFieldDecl *IFD) { 3342 for (const auto *C : IFD->chain()) 3343 if (!HandleLValueMember(Info, E, LVal, cast<FieldDecl>(C))) 3344 return false; 3345 return true; 3346 } 3347 3348 enum class SizeOfType { 3349 SizeOf, 3350 DataSizeOf, 3351 }; 3352 3353 /// Get the size of the given type in char units. 3354 static bool HandleSizeof(EvalInfo &Info, SourceLocation Loc, QualType Type, 3355 CharUnits &Size, SizeOfType SOT = SizeOfType::SizeOf) { 3356 // sizeof(void), __alignof__(void), sizeof(function) = 1 as a gcc 3357 // extension. 3358 if (Type->isVoidType() || Type->isFunctionType()) { 3359 Size = CharUnits::One(); 3360 return true; 3361 } 3362 3363 if (Type->isDependentType()) { 3364 Info.FFDiag(Loc); 3365 return false; 3366 } 3367 3368 if (!Type->isConstantSizeType()) { 3369 // sizeof(vla) is not a constantexpr: C99 6.5.3.4p2. 3370 // FIXME: Better diagnostic. 3371 Info.FFDiag(Loc); 3372 return false; 3373 } 3374 3375 if (SOT == SizeOfType::SizeOf) 3376 Size = Info.Ctx.getTypeSizeInChars(Type); 3377 else 3378 Size = Info.Ctx.getTypeInfoDataSizeInChars(Type).Width; 3379 return true; 3380 } 3381 3382 /// Update a pointer value to model pointer arithmetic. 3383 /// \param Info - Information about the ongoing evaluation. 3384 /// \param E - The expression being evaluated, for diagnostic purposes. 3385 /// \param LVal - The pointer value to be updated. 3386 /// \param EltTy - The pointee type represented by LVal. 3387 /// \param Adjustment - The adjustment, in objects of type EltTy, to add. 3388 static bool HandleLValueArrayAdjustment(EvalInfo &Info, const Expr *E, 3389 LValue &LVal, QualType EltTy, 3390 APSInt Adjustment) { 3391 CharUnits SizeOfPointee; 3392 if (!HandleSizeof(Info, E->getExprLoc(), EltTy, SizeOfPointee)) 3393 return false; 3394 3395 LVal.adjustOffsetAndIndex(Info, E, Adjustment, SizeOfPointee); 3396 return true; 3397 } 3398 3399 static bool HandleLValueArrayAdjustment(EvalInfo &Info, const Expr *E, 3400 LValue &LVal, QualType EltTy, 3401 int64_t Adjustment) { 3402 return HandleLValueArrayAdjustment(Info, E, LVal, EltTy, 3403 APSInt::get(Adjustment)); 3404 } 3405 3406 /// Update an lvalue to refer to a component of a complex number. 3407 /// \param Info - Information about the ongoing evaluation. 3408 /// \param LVal - The lvalue to be updated. 3409 /// \param EltTy - The complex number's component type. 3410 /// \param Imag - False for the real component, true for the imaginary. 3411 static bool HandleLValueComplexElement(EvalInfo &Info, const Expr *E, 3412 LValue &LVal, QualType EltTy, 3413 bool Imag) { 3414 if (Imag) { 3415 CharUnits SizeOfComponent; 3416 if (!HandleSizeof(Info, E->getExprLoc(), EltTy, SizeOfComponent)) 3417 return false; 3418 LVal.Offset += SizeOfComponent; 3419 } 3420 LVal.addComplex(Info, E, EltTy, Imag); 3421 return true; 3422 } 3423 3424 static bool HandleLValueVectorElement(EvalInfo &Info, const Expr *E, 3425 LValue &LVal, QualType EltTy, 3426 uint64_t Size, uint64_t Idx) { 3427 if (Idx) { 3428 CharUnits SizeOfElement; 3429 if (!HandleSizeof(Info, E->getExprLoc(), EltTy, SizeOfElement)) 3430 return false; 3431 LVal.Offset += SizeOfElement * Idx; 3432 } 3433 LVal.addVectorElement(Info, E, EltTy, Size, Idx); 3434 return true; 3435 } 3436 3437 /// Try to evaluate the initializer for a variable declaration. 3438 /// 3439 /// \param Info Information about the ongoing evaluation. 3440 /// \param E An expression to be used when printing diagnostics. 3441 /// \param VD The variable whose initializer should be obtained. 3442 /// \param Version The version of the variable within the frame. 3443 /// \param Frame The frame in which the variable was created. Must be null 3444 /// if this variable is not local to the evaluation. 3445 /// \param Result Filled in with a pointer to the value of the variable. 3446 static bool evaluateVarDeclInit(EvalInfo &Info, const Expr *E, 3447 const VarDecl *VD, CallStackFrame *Frame, 3448 unsigned Version, APValue *&Result) { 3449 APValue::LValueBase Base(VD, Frame ? Frame->Index : 0, Version); 3450 3451 // If this is a local variable, dig out its value. 3452 if (Frame) { 3453 Result = Frame->getTemporary(VD, Version); 3454 if (Result) 3455 return true; 3456 3457 if (!isa<ParmVarDecl>(VD)) { 3458 // Assume variables referenced within a lambda's call operator that were 3459 // not declared within the call operator are captures and during checking 3460 // of a potential constant expression, assume they are unknown constant 3461 // expressions. 3462 assert(isLambdaCallOperator(Frame->Callee) && 3463 (VD->getDeclContext() != Frame->Callee || VD->isInitCapture()) && 3464 "missing value for local variable"); 3465 if (Info.checkingPotentialConstantExpression()) 3466 return false; 3467 // FIXME: This diagnostic is bogus; we do support captures. Is this code 3468 // still reachable at all? 3469 Info.FFDiag(E->getBeginLoc(), 3470 diag::note_unimplemented_constexpr_lambda_feature_ast) 3471 << "captures not currently allowed"; 3472 return false; 3473 } 3474 } 3475 3476 // If we're currently evaluating the initializer of this declaration, use that 3477 // in-flight value. 3478 if (Info.EvaluatingDecl == Base) { 3479 Result = Info.EvaluatingDeclValue; 3480 return true; 3481 } 3482 3483 if (isa<ParmVarDecl>(VD)) { 3484 // Assume parameters of a potential constant expression are usable in 3485 // constant expressions. 3486 if (!Info.checkingPotentialConstantExpression() || 3487 !Info.CurrentCall->Callee || 3488 !Info.CurrentCall->Callee->Equals(VD->getDeclContext())) { 3489 if (Info.getLangOpts().CPlusPlus11) { 3490 Info.FFDiag(E, diag::note_constexpr_function_param_value_unknown) 3491 << VD; 3492 NoteLValueLocation(Info, Base); 3493 } else { 3494 Info.FFDiag(E); 3495 } 3496 } 3497 return false; 3498 } 3499 3500 if (E->isValueDependent()) 3501 return false; 3502 3503 // Dig out the initializer, and use the declaration which it's attached to. 3504 // FIXME: We should eventually check whether the variable has a reachable 3505 // initializing declaration. 3506 const Expr *Init = VD->getAnyInitializer(VD); 3507 if (!Init) { 3508 // Don't diagnose during potential constant expression checking; an 3509 // initializer might be added later. 3510 if (!Info.checkingPotentialConstantExpression()) { 3511 Info.FFDiag(E, diag::note_constexpr_var_init_unknown, 1) 3512 << VD; 3513 NoteLValueLocation(Info, Base); 3514 } 3515 return false; 3516 } 3517 3518 if (Init->isValueDependent()) { 3519 // The DeclRefExpr is not value-dependent, but the variable it refers to 3520 // has a value-dependent initializer. This should only happen in 3521 // constant-folding cases, where the variable is not actually of a suitable 3522 // type for use in a constant expression (otherwise the DeclRefExpr would 3523 // have been value-dependent too), so diagnose that. 3524 assert(!VD->mightBeUsableInConstantExpressions(Info.Ctx)); 3525 if (!Info.checkingPotentialConstantExpression()) { 3526 Info.FFDiag(E, Info.getLangOpts().CPlusPlus11 3527 ? diag::note_constexpr_ltor_non_constexpr 3528 : diag::note_constexpr_ltor_non_integral, 1) 3529 << VD << VD->getType(); 3530 NoteLValueLocation(Info, Base); 3531 } 3532 return false; 3533 } 3534 3535 // Check that we can fold the initializer. In C++, we will have already done 3536 // this in the cases where it matters for conformance. 3537 if (!VD->evaluateValue()) { 3538 Info.FFDiag(E, diag::note_constexpr_var_init_non_constant, 1) << VD; 3539 NoteLValueLocation(Info, Base); 3540 return false; 3541 } 3542 3543 // Check that the variable is actually usable in constant expressions. For a 3544 // const integral variable or a reference, we might have a non-constant 3545 // initializer that we can nonetheless evaluate the initializer for. Such 3546 // variables are not usable in constant expressions. In C++98, the 3547 // initializer also syntactically needs to be an ICE. 3548 // 3549 // FIXME: We don't diagnose cases that aren't potentially usable in constant 3550 // expressions here; doing so would regress diagnostics for things like 3551 // reading from a volatile constexpr variable. 3552 if ((Info.getLangOpts().CPlusPlus && !VD->hasConstantInitialization() && 3553 VD->mightBeUsableInConstantExpressions(Info.Ctx)) || 3554 ((Info.getLangOpts().CPlusPlus || Info.getLangOpts().OpenCL) && 3555 !Info.getLangOpts().CPlusPlus11 && !VD->hasICEInitializer(Info.Ctx))) { 3556 Info.CCEDiag(E, diag::note_constexpr_var_init_non_constant, 1) << VD; 3557 NoteLValueLocation(Info, Base); 3558 } 3559 3560 // Never use the initializer of a weak variable, not even for constant 3561 // folding. We can't be sure that this is the definition that will be used. 3562 if (VD->isWeak()) { 3563 Info.FFDiag(E, diag::note_constexpr_var_init_weak) << VD; 3564 NoteLValueLocation(Info, Base); 3565 return false; 3566 } 3567 3568 Result = VD->getEvaluatedValue(); 3569 return true; 3570 } 3571 3572 /// Get the base index of the given base class within an APValue representing 3573 /// the given derived class. 3574 static unsigned getBaseIndex(const CXXRecordDecl *Derived, 3575 const CXXRecordDecl *Base) { 3576 Base = Base->getCanonicalDecl(); 3577 unsigned Index = 0; 3578 for (CXXRecordDecl::base_class_const_iterator I = Derived->bases_begin(), 3579 E = Derived->bases_end(); I != E; ++I, ++Index) { 3580 if (I->getType()->getAsCXXRecordDecl()->getCanonicalDecl() == Base) 3581 return Index; 3582 } 3583 3584 llvm_unreachable("base class missing from derived class's bases list"); 3585 } 3586 3587 /// Extract the value of a character from a string literal. 3588 static APSInt extractStringLiteralCharacter(EvalInfo &Info, const Expr *Lit, 3589 uint64_t Index) { 3590 assert(!isa<SourceLocExpr>(Lit) && 3591 "SourceLocExpr should have already been converted to a StringLiteral"); 3592 3593 // FIXME: Support MakeStringConstant 3594 if (const auto *ObjCEnc = dyn_cast<ObjCEncodeExpr>(Lit)) { 3595 std::string Str; 3596 Info.Ctx.getObjCEncodingForType(ObjCEnc->getEncodedType(), Str); 3597 assert(Index <= Str.size() && "Index too large"); 3598 return APSInt::getUnsigned(Str.c_str()[Index]); 3599 } 3600 3601 if (auto PE = dyn_cast<PredefinedExpr>(Lit)) 3602 Lit = PE->getFunctionName(); 3603 const StringLiteral *S = cast<StringLiteral>(Lit); 3604 const ConstantArrayType *CAT = 3605 Info.Ctx.getAsConstantArrayType(S->getType()); 3606 assert(CAT && "string literal isn't an array"); 3607 QualType CharType = CAT->getElementType(); 3608 assert(CharType->isIntegerType() && "unexpected character type"); 3609 APSInt Value(Info.Ctx.getTypeSize(CharType), 3610 CharType->isUnsignedIntegerType()); 3611 if (Index < S->getLength()) 3612 Value = S->getCodeUnit(Index); 3613 return Value; 3614 } 3615 3616 // Expand a string literal into an array of characters. 3617 // 3618 // FIXME: This is inefficient; we should probably introduce something similar 3619 // to the LLVM ConstantDataArray to make this cheaper. 3620 static void expandStringLiteral(EvalInfo &Info, const StringLiteral *S, 3621 APValue &Result, 3622 QualType AllocType = QualType()) { 3623 const ConstantArrayType *CAT = Info.Ctx.getAsConstantArrayType( 3624 AllocType.isNull() ? S->getType() : AllocType); 3625 assert(CAT && "string literal isn't an array"); 3626 QualType CharType = CAT->getElementType(); 3627 assert(CharType->isIntegerType() && "unexpected character type"); 3628 3629 unsigned Elts = CAT->getZExtSize(); 3630 Result = APValue(APValue::UninitArray(), 3631 std::min(S->getLength(), Elts), Elts); 3632 APSInt Value(Info.Ctx.getTypeSize(CharType), 3633 CharType->isUnsignedIntegerType()); 3634 if (Result.hasArrayFiller()) 3635 Result.getArrayFiller() = APValue(Value); 3636 for (unsigned I = 0, N = Result.getArrayInitializedElts(); I != N; ++I) { 3637 Value = S->getCodeUnit(I); 3638 Result.getArrayInitializedElt(I) = APValue(Value); 3639 } 3640 } 3641 3642 // Expand an array so that it has more than Index filled elements. 3643 static void expandArray(APValue &Array, unsigned Index) { 3644 unsigned Size = Array.getArraySize(); 3645 assert(Index < Size); 3646 3647 // Always at least double the number of elements for which we store a value. 3648 unsigned OldElts = Array.getArrayInitializedElts(); 3649 unsigned NewElts = std::max(Index+1, OldElts * 2); 3650 NewElts = std::min(Size, std::max(NewElts, 8u)); 3651 3652 // Copy the data across. 3653 APValue NewValue(APValue::UninitArray(), NewElts, Size); 3654 for (unsigned I = 0; I != OldElts; ++I) 3655 NewValue.getArrayInitializedElt(I).swap(Array.getArrayInitializedElt(I)); 3656 for (unsigned I = OldElts; I != NewElts; ++I) 3657 NewValue.getArrayInitializedElt(I) = Array.getArrayFiller(); 3658 if (NewValue.hasArrayFiller()) 3659 NewValue.getArrayFiller() = Array.getArrayFiller(); 3660 Array.swap(NewValue); 3661 } 3662 3663 /// Determine whether a type would actually be read by an lvalue-to-rvalue 3664 /// conversion. If it's of class type, we may assume that the copy operation 3665 /// is trivial. Note that this is never true for a union type with fields 3666 /// (because the copy always "reads" the active member) and always true for 3667 /// a non-class type. 3668 static bool isReadByLvalueToRvalueConversion(const CXXRecordDecl *RD); 3669 static bool isReadByLvalueToRvalueConversion(QualType T) { 3670 CXXRecordDecl *RD = T->getBaseElementTypeUnsafe()->getAsCXXRecordDecl(); 3671 return !RD || isReadByLvalueToRvalueConversion(RD); 3672 } 3673 static bool isReadByLvalueToRvalueConversion(const CXXRecordDecl *RD) { 3674 // FIXME: A trivial copy of a union copies the object representation, even if 3675 // the union is empty. 3676 if (RD->isUnion()) 3677 return !RD->field_empty(); 3678 if (RD->isEmpty()) 3679 return false; 3680 3681 for (auto *Field : RD->fields()) 3682 if (!Field->isUnnamedBitField() && 3683 isReadByLvalueToRvalueConversion(Field->getType())) 3684 return true; 3685 3686 for (auto &BaseSpec : RD->bases()) 3687 if (isReadByLvalueToRvalueConversion(BaseSpec.getType())) 3688 return true; 3689 3690 return false; 3691 } 3692 3693 /// Diagnose an attempt to read from any unreadable field within the specified 3694 /// type, which might be a class type. 3695 static bool diagnoseMutableFields(EvalInfo &Info, const Expr *E, AccessKinds AK, 3696 QualType T) { 3697 CXXRecordDecl *RD = T->getBaseElementTypeUnsafe()->getAsCXXRecordDecl(); 3698 if (!RD) 3699 return false; 3700 3701 if (!RD->hasMutableFields()) 3702 return false; 3703 3704 for (auto *Field : RD->fields()) { 3705 // If we're actually going to read this field in some way, then it can't 3706 // be mutable. If we're in a union, then assigning to a mutable field 3707 // (even an empty one) can change the active member, so that's not OK. 3708 // FIXME: Add core issue number for the union case. 3709 if (Field->isMutable() && 3710 (RD->isUnion() || isReadByLvalueToRvalueConversion(Field->getType()))) { 3711 Info.FFDiag(E, diag::note_constexpr_access_mutable, 1) << AK << Field; 3712 Info.Note(Field->getLocation(), diag::note_declared_at); 3713 return true; 3714 } 3715 3716 if (diagnoseMutableFields(Info, E, AK, Field->getType())) 3717 return true; 3718 } 3719 3720 for (auto &BaseSpec : RD->bases()) 3721 if (diagnoseMutableFields(Info, E, AK, BaseSpec.getType())) 3722 return true; 3723 3724 // All mutable fields were empty, and thus not actually read. 3725 return false; 3726 } 3727 3728 static bool lifetimeStartedInEvaluation(EvalInfo &Info, 3729 APValue::LValueBase Base, 3730 bool MutableSubobject = false) { 3731 // A temporary or transient heap allocation we created. 3732 if (Base.getCallIndex() || Base.is<DynamicAllocLValue>()) 3733 return true; 3734 3735 switch (Info.IsEvaluatingDecl) { 3736 case EvalInfo::EvaluatingDeclKind::None: 3737 return false; 3738 3739 case EvalInfo::EvaluatingDeclKind::Ctor: 3740 // The variable whose initializer we're evaluating. 3741 if (Info.EvaluatingDecl == Base) 3742 return true; 3743 3744 // A temporary lifetime-extended by the variable whose initializer we're 3745 // evaluating. 3746 if (auto *BaseE = Base.dyn_cast<const Expr *>()) 3747 if (auto *BaseMTE = dyn_cast<MaterializeTemporaryExpr>(BaseE)) 3748 return Info.EvaluatingDecl == BaseMTE->getExtendingDecl(); 3749 return false; 3750 3751 case EvalInfo::EvaluatingDeclKind::Dtor: 3752 // C++2a [expr.const]p6: 3753 // [during constant destruction] the lifetime of a and its non-mutable 3754 // subobjects (but not its mutable subobjects) [are] considered to start 3755 // within e. 3756 if (MutableSubobject || Base != Info.EvaluatingDecl) 3757 return false; 3758 // FIXME: We can meaningfully extend this to cover non-const objects, but 3759 // we will need special handling: we should be able to access only 3760 // subobjects of such objects that are themselves declared const. 3761 QualType T = getType(Base); 3762 return T.isConstQualified() || T->isReferenceType(); 3763 } 3764 3765 llvm_unreachable("unknown evaluating decl kind"); 3766 } 3767 3768 static bool CheckArraySize(EvalInfo &Info, const ConstantArrayType *CAT, 3769 SourceLocation CallLoc = {}) { 3770 return Info.CheckArraySize( 3771 CAT->getSizeExpr() ? CAT->getSizeExpr()->getBeginLoc() : CallLoc, 3772 CAT->getNumAddressingBits(Info.Ctx), CAT->getZExtSize(), 3773 /*Diag=*/true); 3774 } 3775 3776 namespace { 3777 /// A handle to a complete object (an object that is not a subobject of 3778 /// another object). 3779 struct CompleteObject { 3780 /// The identity of the object. 3781 APValue::LValueBase Base; 3782 /// The value of the complete object. 3783 APValue *Value; 3784 /// The type of the complete object. 3785 QualType Type; 3786 3787 CompleteObject() : Value(nullptr) {} 3788 CompleteObject(APValue::LValueBase Base, APValue *Value, QualType Type) 3789 : Base(Base), Value(Value), Type(Type) {} 3790 3791 bool mayAccessMutableMembers(EvalInfo &Info, AccessKinds AK) const { 3792 // If this isn't a "real" access (eg, if it's just accessing the type 3793 // info), allow it. We assume the type doesn't change dynamically for 3794 // subobjects of constexpr objects (even though we'd hit UB here if it 3795 // did). FIXME: Is this right? 3796 if (!isAnyAccess(AK)) 3797 return true; 3798 3799 // In C++14 onwards, it is permitted to read a mutable member whose 3800 // lifetime began within the evaluation. 3801 // FIXME: Should we also allow this in C++11? 3802 if (!Info.getLangOpts().CPlusPlus14 && 3803 AK != AccessKinds::AK_IsWithinLifetime) 3804 return false; 3805 return lifetimeStartedInEvaluation(Info, Base, /*MutableSubobject*/true); 3806 } 3807 3808 explicit operator bool() const { return !Type.isNull(); } 3809 }; 3810 } // end anonymous namespace 3811 3812 static QualType getSubobjectType(QualType ObjType, QualType SubobjType, 3813 bool IsMutable = false) { 3814 // C++ [basic.type.qualifier]p1: 3815 // - A const object is an object of type const T or a non-mutable subobject 3816 // of a const object. 3817 if (ObjType.isConstQualified() && !IsMutable) 3818 SubobjType.addConst(); 3819 // - A volatile object is an object of type const T or a subobject of a 3820 // volatile object. 3821 if (ObjType.isVolatileQualified()) 3822 SubobjType.addVolatile(); 3823 return SubobjType; 3824 } 3825 3826 /// Find the designated sub-object of an rvalue. 3827 template <typename SubobjectHandler> 3828 static typename SubobjectHandler::result_type 3829 findSubobject(EvalInfo &Info, const Expr *E, const CompleteObject &Obj, 3830 const SubobjectDesignator &Sub, SubobjectHandler &handler) { 3831 if (Sub.Invalid) 3832 // A diagnostic will have already been produced. 3833 return handler.failed(); 3834 if (Sub.isOnePastTheEnd() || Sub.isMostDerivedAnUnsizedArray()) { 3835 if (Info.getLangOpts().CPlusPlus11) 3836 Info.FFDiag(E, Sub.isOnePastTheEnd() 3837 ? diag::note_constexpr_access_past_end 3838 : diag::note_constexpr_access_unsized_array) 3839 << handler.AccessKind; 3840 else 3841 Info.FFDiag(E); 3842 return handler.failed(); 3843 } 3844 3845 APValue *O = Obj.Value; 3846 QualType ObjType = Obj.Type; 3847 const FieldDecl *LastField = nullptr; 3848 const FieldDecl *VolatileField = nullptr; 3849 3850 // Walk the designator's path to find the subobject. 3851 for (unsigned I = 0, N = Sub.Entries.size(); /**/; ++I) { 3852 // Reading an indeterminate value is undefined, but assigning over one is OK. 3853 if ((O->isAbsent() && !(handler.AccessKind == AK_Construct && I == N)) || 3854 (O->isIndeterminate() && 3855 !isValidIndeterminateAccess(handler.AccessKind))) { 3856 // Object has ended lifetime. 3857 // If I is non-zero, some subobject (member or array element) of a 3858 // complete object has ended its lifetime, so this is valid for 3859 // IsWithinLifetime, resulting in false. 3860 if (I != 0 && handler.AccessKind == AK_IsWithinLifetime) 3861 return false; 3862 if (!Info.checkingPotentialConstantExpression()) 3863 Info.FFDiag(E, diag::note_constexpr_access_uninit) 3864 << handler.AccessKind << O->isIndeterminate() 3865 << E->getSourceRange(); 3866 return handler.failed(); 3867 } 3868 3869 // C++ [class.ctor]p5, C++ [class.dtor]p5: 3870 // const and volatile semantics are not applied on an object under 3871 // {con,de}struction. 3872 if ((ObjType.isConstQualified() || ObjType.isVolatileQualified()) && 3873 ObjType->isRecordType() && 3874 Info.isEvaluatingCtorDtor( 3875 Obj.Base, 3876 llvm::ArrayRef(Sub.Entries.begin(), Sub.Entries.begin() + I)) != 3877 ConstructionPhase::None) { 3878 ObjType = Info.Ctx.getCanonicalType(ObjType); 3879 ObjType.removeLocalConst(); 3880 ObjType.removeLocalVolatile(); 3881 } 3882 3883 // If this is our last pass, check that the final object type is OK. 3884 if (I == N || (I == N - 1 && ObjType->isAnyComplexType())) { 3885 // Accesses to volatile objects are prohibited. 3886 if (ObjType.isVolatileQualified() && isFormalAccess(handler.AccessKind)) { 3887 if (Info.getLangOpts().CPlusPlus) { 3888 int DiagKind; 3889 SourceLocation Loc; 3890 const NamedDecl *Decl = nullptr; 3891 if (VolatileField) { 3892 DiagKind = 2; 3893 Loc = VolatileField->getLocation(); 3894 Decl = VolatileField; 3895 } else if (auto *VD = Obj.Base.dyn_cast<const ValueDecl*>()) { 3896 DiagKind = 1; 3897 Loc = VD->getLocation(); 3898 Decl = VD; 3899 } else { 3900 DiagKind = 0; 3901 if (auto *E = Obj.Base.dyn_cast<const Expr *>()) 3902 Loc = E->getExprLoc(); 3903 } 3904 Info.FFDiag(E, diag::note_constexpr_access_volatile_obj, 1) 3905 << handler.AccessKind << DiagKind << Decl; 3906 Info.Note(Loc, diag::note_constexpr_volatile_here) << DiagKind; 3907 } else { 3908 Info.FFDiag(E, diag::note_invalid_subexpr_in_const_expr); 3909 } 3910 return handler.failed(); 3911 } 3912 3913 // If we are reading an object of class type, there may still be more 3914 // things we need to check: if there are any mutable subobjects, we 3915 // cannot perform this read. (This only happens when performing a trivial 3916 // copy or assignment.) 3917 if (ObjType->isRecordType() && 3918 !Obj.mayAccessMutableMembers(Info, handler.AccessKind) && 3919 diagnoseMutableFields(Info, E, handler.AccessKind, ObjType)) 3920 return handler.failed(); 3921 } 3922 3923 if (I == N) { 3924 if (!handler.found(*O, ObjType)) 3925 return false; 3926 3927 // If we modified a bit-field, truncate it to the right width. 3928 if (isModification(handler.AccessKind) && 3929 LastField && LastField->isBitField() && 3930 !truncateBitfieldValue(Info, E, *O, LastField)) 3931 return false; 3932 3933 return true; 3934 } 3935 3936 LastField = nullptr; 3937 if (ObjType->isArrayType()) { 3938 // Next subobject is an array element. 3939 const ConstantArrayType *CAT = Info.Ctx.getAsConstantArrayType(ObjType); 3940 assert(CAT && "vla in literal type?"); 3941 uint64_t Index = Sub.Entries[I].getAsArrayIndex(); 3942 if (CAT->getSize().ule(Index)) { 3943 // Note, it should not be possible to form a pointer with a valid 3944 // designator which points more than one past the end of the array. 3945 if (Info.getLangOpts().CPlusPlus11) 3946 Info.FFDiag(E, diag::note_constexpr_access_past_end) 3947 << handler.AccessKind; 3948 else 3949 Info.FFDiag(E); 3950 return handler.failed(); 3951 } 3952 3953 ObjType = CAT->getElementType(); 3954 3955 if (O->getArrayInitializedElts() > Index) 3956 O = &O->getArrayInitializedElt(Index); 3957 else if (!isRead(handler.AccessKind)) { 3958 if (!CheckArraySize(Info, CAT, E->getExprLoc())) 3959 return handler.failed(); 3960 3961 expandArray(*O, Index); 3962 O = &O->getArrayInitializedElt(Index); 3963 } else 3964 O = &O->getArrayFiller(); 3965 } else if (ObjType->isAnyComplexType()) { 3966 // Next subobject is a complex number. 3967 uint64_t Index = Sub.Entries[I].getAsArrayIndex(); 3968 if (Index > 1) { 3969 if (Info.getLangOpts().CPlusPlus11) 3970 Info.FFDiag(E, diag::note_constexpr_access_past_end) 3971 << handler.AccessKind; 3972 else 3973 Info.FFDiag(E); 3974 return handler.failed(); 3975 } 3976 3977 ObjType = getSubobjectType( 3978 ObjType, ObjType->castAs<ComplexType>()->getElementType()); 3979 3980 assert(I == N - 1 && "extracting subobject of scalar?"); 3981 if (O->isComplexInt()) { 3982 return handler.found(Index ? O->getComplexIntImag() 3983 : O->getComplexIntReal(), ObjType); 3984 } else { 3985 assert(O->isComplexFloat()); 3986 return handler.found(Index ? O->getComplexFloatImag() 3987 : O->getComplexFloatReal(), ObjType); 3988 } 3989 } else if (const auto *VT = ObjType->getAs<VectorType>()) { 3990 uint64_t Index = Sub.Entries[I].getAsArrayIndex(); 3991 unsigned NumElements = VT->getNumElements(); 3992 if (Index == NumElements) { 3993 if (Info.getLangOpts().CPlusPlus11) 3994 Info.FFDiag(E, diag::note_constexpr_access_past_end) 3995 << handler.AccessKind; 3996 else 3997 Info.FFDiag(E); 3998 return handler.failed(); 3999 } 4000 4001 if (Index > NumElements) { 4002 Info.CCEDiag(E, diag::note_constexpr_array_index) 4003 << Index << /*array*/ 0 << NumElements; 4004 return handler.failed(); 4005 } 4006 4007 ObjType = VT->getElementType(); 4008 assert(I == N - 1 && "extracting subobject of scalar?"); 4009 return handler.found(O->getVectorElt(Index), ObjType); 4010 } else if (const FieldDecl *Field = getAsField(Sub.Entries[I])) { 4011 if (Field->isMutable() && 4012 !Obj.mayAccessMutableMembers(Info, handler.AccessKind)) { 4013 Info.FFDiag(E, diag::note_constexpr_access_mutable, 1) 4014 << handler.AccessKind << Field; 4015 Info.Note(Field->getLocation(), diag::note_declared_at); 4016 return handler.failed(); 4017 } 4018 4019 // Next subobject is a class, struct or union field. 4020 RecordDecl *RD = ObjType->castAs<RecordType>()->getDecl(); 4021 if (RD->isUnion()) { 4022 const FieldDecl *UnionField = O->getUnionField(); 4023 if (!UnionField || 4024 UnionField->getCanonicalDecl() != Field->getCanonicalDecl()) { 4025 if (I == N - 1 && handler.AccessKind == AK_Construct) { 4026 // Placement new onto an inactive union member makes it active. 4027 O->setUnion(Field, APValue()); 4028 } else { 4029 // Pointer to/into inactive union member: Not within lifetime 4030 if (handler.AccessKind == AK_IsWithinLifetime) 4031 return false; 4032 // FIXME: If O->getUnionValue() is absent, report that there's no 4033 // active union member rather than reporting the prior active union 4034 // member. We'll need to fix nullptr_t to not use APValue() as its 4035 // representation first. 4036 Info.FFDiag(E, diag::note_constexpr_access_inactive_union_member) 4037 << handler.AccessKind << Field << !UnionField << UnionField; 4038 return handler.failed(); 4039 } 4040 } 4041 O = &O->getUnionValue(); 4042 } else 4043 O = &O->getStructField(Field->getFieldIndex()); 4044 4045 ObjType = getSubobjectType(ObjType, Field->getType(), Field->isMutable()); 4046 LastField = Field; 4047 if (Field->getType().isVolatileQualified()) 4048 VolatileField = Field; 4049 } else { 4050 // Next subobject is a base class. 4051 const CXXRecordDecl *Derived = ObjType->getAsCXXRecordDecl(); 4052 const CXXRecordDecl *Base = getAsBaseClass(Sub.Entries[I]); 4053 O = &O->getStructBase(getBaseIndex(Derived, Base)); 4054 4055 ObjType = getSubobjectType(ObjType, Info.Ctx.getRecordType(Base)); 4056 } 4057 } 4058 } 4059 4060 namespace { 4061 struct ExtractSubobjectHandler { 4062 EvalInfo &Info; 4063 const Expr *E; 4064 APValue &Result; 4065 const AccessKinds AccessKind; 4066 4067 typedef bool result_type; 4068 bool failed() { return false; } 4069 bool found(APValue &Subobj, QualType SubobjType) { 4070 Result = Subobj; 4071 if (AccessKind == AK_ReadObjectRepresentation) 4072 return true; 4073 return CheckFullyInitialized(Info, E->getExprLoc(), SubobjType, Result); 4074 } 4075 bool found(APSInt &Value, QualType SubobjType) { 4076 Result = APValue(Value); 4077 return true; 4078 } 4079 bool found(APFloat &Value, QualType SubobjType) { 4080 Result = APValue(Value); 4081 return true; 4082 } 4083 }; 4084 } // end anonymous namespace 4085 4086 /// Extract the designated sub-object of an rvalue. 4087 static bool extractSubobject(EvalInfo &Info, const Expr *E, 4088 const CompleteObject &Obj, 4089 const SubobjectDesignator &Sub, APValue &Result, 4090 AccessKinds AK = AK_Read) { 4091 assert(AK == AK_Read || AK == AK_ReadObjectRepresentation); 4092 ExtractSubobjectHandler Handler = {Info, E, Result, AK}; 4093 return findSubobject(Info, E, Obj, Sub, Handler); 4094 } 4095 4096 namespace { 4097 struct ModifySubobjectHandler { 4098 EvalInfo &Info; 4099 APValue &NewVal; 4100 const Expr *E; 4101 4102 typedef bool result_type; 4103 static const AccessKinds AccessKind = AK_Assign; 4104 4105 bool checkConst(QualType QT) { 4106 // Assigning to a const object has undefined behavior. 4107 if (QT.isConstQualified()) { 4108 Info.FFDiag(E, diag::note_constexpr_modify_const_type) << QT; 4109 return false; 4110 } 4111 return true; 4112 } 4113 4114 bool failed() { return false; } 4115 bool found(APValue &Subobj, QualType SubobjType) { 4116 if (!checkConst(SubobjType)) 4117 return false; 4118 // We've been given ownership of NewVal, so just swap it in. 4119 Subobj.swap(NewVal); 4120 return true; 4121 } 4122 bool found(APSInt &Value, QualType SubobjType) { 4123 if (!checkConst(SubobjType)) 4124 return false; 4125 if (!NewVal.isInt()) { 4126 // Maybe trying to write a cast pointer value into a complex? 4127 Info.FFDiag(E); 4128 return false; 4129 } 4130 Value = NewVal.getInt(); 4131 return true; 4132 } 4133 bool found(APFloat &Value, QualType SubobjType) { 4134 if (!checkConst(SubobjType)) 4135 return false; 4136 Value = NewVal.getFloat(); 4137 return true; 4138 } 4139 }; 4140 } // end anonymous namespace 4141 4142 const AccessKinds ModifySubobjectHandler::AccessKind; 4143 4144 /// Update the designated sub-object of an rvalue to the given value. 4145 static bool modifySubobject(EvalInfo &Info, const Expr *E, 4146 const CompleteObject &Obj, 4147 const SubobjectDesignator &Sub, 4148 APValue &NewVal) { 4149 ModifySubobjectHandler Handler = { Info, NewVal, E }; 4150 return findSubobject(Info, E, Obj, Sub, Handler); 4151 } 4152 4153 /// Find the position where two subobject designators diverge, or equivalently 4154 /// the length of the common initial subsequence. 4155 static unsigned FindDesignatorMismatch(QualType ObjType, 4156 const SubobjectDesignator &A, 4157 const SubobjectDesignator &B, 4158 bool &WasArrayIndex) { 4159 unsigned I = 0, N = std::min(A.Entries.size(), B.Entries.size()); 4160 for (/**/; I != N; ++I) { 4161 if (!ObjType.isNull() && 4162 (ObjType->isArrayType() || ObjType->isAnyComplexType())) { 4163 // Next subobject is an array element. 4164 if (A.Entries[I].getAsArrayIndex() != B.Entries[I].getAsArrayIndex()) { 4165 WasArrayIndex = true; 4166 return I; 4167 } 4168 if (ObjType->isAnyComplexType()) 4169 ObjType = ObjType->castAs<ComplexType>()->getElementType(); 4170 else 4171 ObjType = ObjType->castAsArrayTypeUnsafe()->getElementType(); 4172 } else { 4173 if (A.Entries[I].getAsBaseOrMember() != 4174 B.Entries[I].getAsBaseOrMember()) { 4175 WasArrayIndex = false; 4176 return I; 4177 } 4178 if (const FieldDecl *FD = getAsField(A.Entries[I])) 4179 // Next subobject is a field. 4180 ObjType = FD->getType(); 4181 else 4182 // Next subobject is a base class. 4183 ObjType = QualType(); 4184 } 4185 } 4186 WasArrayIndex = false; 4187 return I; 4188 } 4189 4190 /// Determine whether the given subobject designators refer to elements of the 4191 /// same array object. 4192 static bool AreElementsOfSameArray(QualType ObjType, 4193 const SubobjectDesignator &A, 4194 const SubobjectDesignator &B) { 4195 if (A.Entries.size() != B.Entries.size()) 4196 return false; 4197 4198 bool IsArray = A.MostDerivedIsArrayElement; 4199 if (IsArray && A.MostDerivedPathLength != A.Entries.size()) 4200 // A is a subobject of the array element. 4201 return false; 4202 4203 // If A (and B) designates an array element, the last entry will be the array 4204 // index. That doesn't have to match. Otherwise, we're in the 'implicit array 4205 // of length 1' case, and the entire path must match. 4206 bool WasArrayIndex; 4207 unsigned CommonLength = FindDesignatorMismatch(ObjType, A, B, WasArrayIndex); 4208 return CommonLength >= A.Entries.size() - IsArray; 4209 } 4210 4211 /// Find the complete object to which an LValue refers. 4212 static CompleteObject findCompleteObject(EvalInfo &Info, const Expr *E, 4213 AccessKinds AK, const LValue &LVal, 4214 QualType LValType) { 4215 if (LVal.InvalidBase) { 4216 Info.FFDiag(E); 4217 return CompleteObject(); 4218 } 4219 4220 if (!LVal.Base) { 4221 Info.FFDiag(E, diag::note_constexpr_access_null) << AK; 4222 return CompleteObject(); 4223 } 4224 4225 CallStackFrame *Frame = nullptr; 4226 unsigned Depth = 0; 4227 if (LVal.getLValueCallIndex()) { 4228 std::tie(Frame, Depth) = 4229 Info.getCallFrameAndDepth(LVal.getLValueCallIndex()); 4230 if (!Frame) { 4231 Info.FFDiag(E, diag::note_constexpr_lifetime_ended, 1) 4232 << AK << LVal.Base.is<const ValueDecl*>(); 4233 NoteLValueLocation(Info, LVal.Base); 4234 return CompleteObject(); 4235 } 4236 } 4237 4238 bool IsAccess = isAnyAccess(AK); 4239 4240 // C++11 DR1311: An lvalue-to-rvalue conversion on a volatile-qualified type 4241 // is not a constant expression (even if the object is non-volatile). We also 4242 // apply this rule to C++98, in order to conform to the expected 'volatile' 4243 // semantics. 4244 if (isFormalAccess(AK) && LValType.isVolatileQualified()) { 4245 if (Info.getLangOpts().CPlusPlus) 4246 Info.FFDiag(E, diag::note_constexpr_access_volatile_type) 4247 << AK << LValType; 4248 else 4249 Info.FFDiag(E); 4250 return CompleteObject(); 4251 } 4252 4253 // Compute value storage location and type of base object. 4254 APValue *BaseVal = nullptr; 4255 QualType BaseType = getType(LVal.Base); 4256 4257 if (Info.getLangOpts().CPlusPlus14 && LVal.Base == Info.EvaluatingDecl && 4258 lifetimeStartedInEvaluation(Info, LVal.Base)) { 4259 // This is the object whose initializer we're evaluating, so its lifetime 4260 // started in the current evaluation. 4261 BaseVal = Info.EvaluatingDeclValue; 4262 } else if (const ValueDecl *D = LVal.Base.dyn_cast<const ValueDecl *>()) { 4263 // Allow reading from a GUID declaration. 4264 if (auto *GD = dyn_cast<MSGuidDecl>(D)) { 4265 if (isModification(AK)) { 4266 // All the remaining cases do not permit modification of the object. 4267 Info.FFDiag(E, diag::note_constexpr_modify_global); 4268 return CompleteObject(); 4269 } 4270 APValue &V = GD->getAsAPValue(); 4271 if (V.isAbsent()) { 4272 Info.FFDiag(E, diag::note_constexpr_unsupported_layout) 4273 << GD->getType(); 4274 return CompleteObject(); 4275 } 4276 return CompleteObject(LVal.Base, &V, GD->getType()); 4277 } 4278 4279 // Allow reading the APValue from an UnnamedGlobalConstantDecl. 4280 if (auto *GCD = dyn_cast<UnnamedGlobalConstantDecl>(D)) { 4281 if (isModification(AK)) { 4282 Info.FFDiag(E, diag::note_constexpr_modify_global); 4283 return CompleteObject(); 4284 } 4285 return CompleteObject(LVal.Base, const_cast<APValue *>(&GCD->getValue()), 4286 GCD->getType()); 4287 } 4288 4289 // Allow reading from template parameter objects. 4290 if (auto *TPO = dyn_cast<TemplateParamObjectDecl>(D)) { 4291 if (isModification(AK)) { 4292 Info.FFDiag(E, diag::note_constexpr_modify_global); 4293 return CompleteObject(); 4294 } 4295 return CompleteObject(LVal.Base, const_cast<APValue *>(&TPO->getValue()), 4296 TPO->getType()); 4297 } 4298 4299 // In C++98, const, non-volatile integers initialized with ICEs are ICEs. 4300 // In C++11, constexpr, non-volatile variables initialized with constant 4301 // expressions are constant expressions too. Inside constexpr functions, 4302 // parameters are constant expressions even if they're non-const. 4303 // In C++1y, objects local to a constant expression (those with a Frame) are 4304 // both readable and writable inside constant expressions. 4305 // In C, such things can also be folded, although they are not ICEs. 4306 const VarDecl *VD = dyn_cast<VarDecl>(D); 4307 if (VD) { 4308 if (const VarDecl *VDef = VD->getDefinition(Info.Ctx)) 4309 VD = VDef; 4310 } 4311 if (!VD || VD->isInvalidDecl()) { 4312 Info.FFDiag(E); 4313 return CompleteObject(); 4314 } 4315 4316 bool IsConstant = BaseType.isConstant(Info.Ctx); 4317 bool ConstexprVar = false; 4318 if (const auto *VD = dyn_cast_if_present<VarDecl>( 4319 Info.EvaluatingDecl.dyn_cast<const ValueDecl *>())) 4320 ConstexprVar = VD->isConstexpr(); 4321 4322 // Unless we're looking at a local variable or argument in a constexpr call, 4323 // the variable we're reading must be const. 4324 if (!Frame) { 4325 if (IsAccess && isa<ParmVarDecl>(VD)) { 4326 // Access of a parameter that's not associated with a frame isn't going 4327 // to work out, but we can leave it to evaluateVarDeclInit to provide a 4328 // suitable diagnostic. 4329 } else if (Info.getLangOpts().CPlusPlus14 && 4330 lifetimeStartedInEvaluation(Info, LVal.Base)) { 4331 // OK, we can read and modify an object if we're in the process of 4332 // evaluating its initializer, because its lifetime began in this 4333 // evaluation. 4334 } else if (isModification(AK)) { 4335 // All the remaining cases do not permit modification of the object. 4336 Info.FFDiag(E, diag::note_constexpr_modify_global); 4337 return CompleteObject(); 4338 } else if (VD->isConstexpr()) { 4339 // OK, we can read this variable. 4340 } else if (Info.getLangOpts().C23 && ConstexprVar) { 4341 Info.FFDiag(E); 4342 return CompleteObject(); 4343 } else if (BaseType->isIntegralOrEnumerationType()) { 4344 if (!IsConstant) { 4345 if (!IsAccess) 4346 return CompleteObject(LVal.getLValueBase(), nullptr, BaseType); 4347 if (Info.getLangOpts().CPlusPlus) { 4348 Info.FFDiag(E, diag::note_constexpr_ltor_non_const_int, 1) << VD; 4349 Info.Note(VD->getLocation(), diag::note_declared_at); 4350 } else { 4351 Info.FFDiag(E); 4352 } 4353 return CompleteObject(); 4354 } 4355 } else if (!IsAccess) { 4356 return CompleteObject(LVal.getLValueBase(), nullptr, BaseType); 4357 } else if (IsConstant && Info.checkingPotentialConstantExpression() && 4358 BaseType->isLiteralType(Info.Ctx) && !VD->hasDefinition()) { 4359 // This variable might end up being constexpr. Don't diagnose it yet. 4360 } else if (IsConstant) { 4361 // Keep evaluating to see what we can do. In particular, we support 4362 // folding of const floating-point types, in order to make static const 4363 // data members of such types (supported as an extension) more useful. 4364 if (Info.getLangOpts().CPlusPlus) { 4365 Info.CCEDiag(E, Info.getLangOpts().CPlusPlus11 4366 ? diag::note_constexpr_ltor_non_constexpr 4367 : diag::note_constexpr_ltor_non_integral, 1) 4368 << VD << BaseType; 4369 Info.Note(VD->getLocation(), diag::note_declared_at); 4370 } else { 4371 Info.CCEDiag(E); 4372 } 4373 } else { 4374 // Never allow reading a non-const value. 4375 if (Info.getLangOpts().CPlusPlus) { 4376 Info.FFDiag(E, Info.getLangOpts().CPlusPlus11 4377 ? diag::note_constexpr_ltor_non_constexpr 4378 : diag::note_constexpr_ltor_non_integral, 1) 4379 << VD << BaseType; 4380 Info.Note(VD->getLocation(), diag::note_declared_at); 4381 } else { 4382 Info.FFDiag(E); 4383 } 4384 return CompleteObject(); 4385 } 4386 } 4387 4388 if (!evaluateVarDeclInit(Info, E, VD, Frame, LVal.getLValueVersion(), BaseVal)) 4389 return CompleteObject(); 4390 } else if (DynamicAllocLValue DA = LVal.Base.dyn_cast<DynamicAllocLValue>()) { 4391 std::optional<DynAlloc *> Alloc = Info.lookupDynamicAlloc(DA); 4392 if (!Alloc) { 4393 Info.FFDiag(E, diag::note_constexpr_access_deleted_object) << AK; 4394 return CompleteObject(); 4395 } 4396 return CompleteObject(LVal.Base, &(*Alloc)->Value, 4397 LVal.Base.getDynamicAllocType()); 4398 } else { 4399 const Expr *Base = LVal.Base.dyn_cast<const Expr*>(); 4400 4401 if (!Frame) { 4402 if (const MaterializeTemporaryExpr *MTE = 4403 dyn_cast_or_null<MaterializeTemporaryExpr>(Base)) { 4404 assert(MTE->getStorageDuration() == SD_Static && 4405 "should have a frame for a non-global materialized temporary"); 4406 4407 // C++20 [expr.const]p4: [DR2126] 4408 // An object or reference is usable in constant expressions if it is 4409 // - a temporary object of non-volatile const-qualified literal type 4410 // whose lifetime is extended to that of a variable that is usable 4411 // in constant expressions 4412 // 4413 // C++20 [expr.const]p5: 4414 // an lvalue-to-rvalue conversion [is not allowed unless it applies to] 4415 // - a non-volatile glvalue that refers to an object that is usable 4416 // in constant expressions, or 4417 // - a non-volatile glvalue of literal type that refers to a 4418 // non-volatile object whose lifetime began within the evaluation 4419 // of E; 4420 // 4421 // C++11 misses the 'began within the evaluation of e' check and 4422 // instead allows all temporaries, including things like: 4423 // int &&r = 1; 4424 // int x = ++r; 4425 // constexpr int k = r; 4426 // Therefore we use the C++14-onwards rules in C++11 too. 4427 // 4428 // Note that temporaries whose lifetimes began while evaluating a 4429 // variable's constructor are not usable while evaluating the 4430 // corresponding destructor, not even if they're of const-qualified 4431 // types. 4432 if (!MTE->isUsableInConstantExpressions(Info.Ctx) && 4433 !lifetimeStartedInEvaluation(Info, LVal.Base)) { 4434 if (!IsAccess) 4435 return CompleteObject(LVal.getLValueBase(), nullptr, BaseType); 4436 Info.FFDiag(E, diag::note_constexpr_access_static_temporary, 1) << AK; 4437 Info.Note(MTE->getExprLoc(), diag::note_constexpr_temporary_here); 4438 return CompleteObject(); 4439 } 4440 4441 BaseVal = MTE->getOrCreateValue(false); 4442 assert(BaseVal && "got reference to unevaluated temporary"); 4443 } else { 4444 if (!IsAccess) 4445 return CompleteObject(LVal.getLValueBase(), nullptr, BaseType); 4446 APValue Val; 4447 LVal.moveInto(Val); 4448 Info.FFDiag(E, diag::note_constexpr_access_unreadable_object) 4449 << AK 4450 << Val.getAsString(Info.Ctx, 4451 Info.Ctx.getLValueReferenceType(LValType)); 4452 NoteLValueLocation(Info, LVal.Base); 4453 return CompleteObject(); 4454 } 4455 } else { 4456 BaseVal = Frame->getTemporary(Base, LVal.Base.getVersion()); 4457 assert(BaseVal && "missing value for temporary"); 4458 } 4459 } 4460 4461 // In C++14, we can't safely access any mutable state when we might be 4462 // evaluating after an unmodeled side effect. Parameters are modeled as state 4463 // in the caller, but aren't visible once the call returns, so they can be 4464 // modified in a speculatively-evaluated call. 4465 // 4466 // FIXME: Not all local state is mutable. Allow local constant subobjects 4467 // to be read here (but take care with 'mutable' fields). 4468 unsigned VisibleDepth = Depth; 4469 if (llvm::isa_and_nonnull<ParmVarDecl>( 4470 LVal.Base.dyn_cast<const ValueDecl *>())) 4471 ++VisibleDepth; 4472 if ((Frame && Info.getLangOpts().CPlusPlus14 && 4473 Info.EvalStatus.HasSideEffects) || 4474 (isModification(AK) && VisibleDepth < Info.SpeculativeEvaluationDepth)) 4475 return CompleteObject(); 4476 4477 return CompleteObject(LVal.getLValueBase(), BaseVal, BaseType); 4478 } 4479 4480 /// Perform an lvalue-to-rvalue conversion on the given glvalue. This 4481 /// can also be used for 'lvalue-to-lvalue' conversions for looking up the 4482 /// glvalue referred to by an entity of reference type. 4483 /// 4484 /// \param Info - Information about the ongoing evaluation. 4485 /// \param Conv - The expression for which we are performing the conversion. 4486 /// Used for diagnostics. 4487 /// \param Type - The type of the glvalue (before stripping cv-qualifiers in the 4488 /// case of a non-class type). 4489 /// \param LVal - The glvalue on which we are attempting to perform this action. 4490 /// \param RVal - The produced value will be placed here. 4491 /// \param WantObjectRepresentation - If true, we're looking for the object 4492 /// representation rather than the value, and in particular, 4493 /// there is no requirement that the result be fully initialized. 4494 static bool 4495 handleLValueToRValueConversion(EvalInfo &Info, const Expr *Conv, QualType Type, 4496 const LValue &LVal, APValue &RVal, 4497 bool WantObjectRepresentation = false) { 4498 if (LVal.Designator.Invalid) 4499 return false; 4500 4501 // Check for special cases where there is no existing APValue to look at. 4502 const Expr *Base = LVal.Base.dyn_cast<const Expr*>(); 4503 4504 AccessKinds AK = 4505 WantObjectRepresentation ? AK_ReadObjectRepresentation : AK_Read; 4506 4507 if (Base && !LVal.getLValueCallIndex() && !Type.isVolatileQualified()) { 4508 if (const CompoundLiteralExpr *CLE = dyn_cast<CompoundLiteralExpr>(Base)) { 4509 // In C99, a CompoundLiteralExpr is an lvalue, and we defer evaluating the 4510 // initializer until now for such expressions. Such an expression can't be 4511 // an ICE in C, so this only matters for fold. 4512 if (Type.isVolatileQualified()) { 4513 Info.FFDiag(Conv); 4514 return false; 4515 } 4516 4517 APValue Lit; 4518 if (!Evaluate(Lit, Info, CLE->getInitializer())) 4519 return false; 4520 4521 // According to GCC info page: 4522 // 4523 // 6.28 Compound Literals 4524 // 4525 // As an optimization, G++ sometimes gives array compound literals longer 4526 // lifetimes: when the array either appears outside a function or has a 4527 // const-qualified type. If foo and its initializer had elements of type 4528 // char *const rather than char *, or if foo were a global variable, the 4529 // array would have static storage duration. But it is probably safest 4530 // just to avoid the use of array compound literals in C++ code. 4531 // 4532 // Obey that rule by checking constness for converted array types. 4533 4534 QualType CLETy = CLE->getType(); 4535 if (CLETy->isArrayType() && !Type->isArrayType()) { 4536 if (!CLETy.isConstant(Info.Ctx)) { 4537 Info.FFDiag(Conv); 4538 Info.Note(CLE->getExprLoc(), diag::note_declared_at); 4539 return false; 4540 } 4541 } 4542 4543 CompleteObject LitObj(LVal.Base, &Lit, Base->getType()); 4544 return extractSubobject(Info, Conv, LitObj, LVal.Designator, RVal, AK); 4545 } else if (isa<StringLiteral>(Base) || isa<PredefinedExpr>(Base)) { 4546 // Special-case character extraction so we don't have to construct an 4547 // APValue for the whole string. 4548 assert(LVal.Designator.Entries.size() <= 1 && 4549 "Can only read characters from string literals"); 4550 if (LVal.Designator.Entries.empty()) { 4551 // Fail for now for LValue to RValue conversion of an array. 4552 // (This shouldn't show up in C/C++, but it could be triggered by a 4553 // weird EvaluateAsRValue call from a tool.) 4554 Info.FFDiag(Conv); 4555 return false; 4556 } 4557 if (LVal.Designator.isOnePastTheEnd()) { 4558 if (Info.getLangOpts().CPlusPlus11) 4559 Info.FFDiag(Conv, diag::note_constexpr_access_past_end) << AK; 4560 else 4561 Info.FFDiag(Conv); 4562 return false; 4563 } 4564 uint64_t CharIndex = LVal.Designator.Entries[0].getAsArrayIndex(); 4565 RVal = APValue(extractStringLiteralCharacter(Info, Base, CharIndex)); 4566 return true; 4567 } 4568 } 4569 4570 CompleteObject Obj = findCompleteObject(Info, Conv, AK, LVal, Type); 4571 return Obj && extractSubobject(Info, Conv, Obj, LVal.Designator, RVal, AK); 4572 } 4573 4574 /// Perform an assignment of Val to LVal. Takes ownership of Val. 4575 static bool handleAssignment(EvalInfo &Info, const Expr *E, const LValue &LVal, 4576 QualType LValType, APValue &Val) { 4577 if (LVal.Designator.Invalid) 4578 return false; 4579 4580 if (!Info.getLangOpts().CPlusPlus14) { 4581 Info.FFDiag(E); 4582 return false; 4583 } 4584 4585 CompleteObject Obj = findCompleteObject(Info, E, AK_Assign, LVal, LValType); 4586 return Obj && modifySubobject(Info, E, Obj, LVal.Designator, Val); 4587 } 4588 4589 namespace { 4590 struct CompoundAssignSubobjectHandler { 4591 EvalInfo &Info; 4592 const CompoundAssignOperator *E; 4593 QualType PromotedLHSType; 4594 BinaryOperatorKind Opcode; 4595 const APValue &RHS; 4596 4597 static const AccessKinds AccessKind = AK_Assign; 4598 4599 typedef bool result_type; 4600 4601 bool checkConst(QualType QT) { 4602 // Assigning to a const object has undefined behavior. 4603 if (QT.isConstQualified()) { 4604 Info.FFDiag(E, diag::note_constexpr_modify_const_type) << QT; 4605 return false; 4606 } 4607 return true; 4608 } 4609 4610 bool failed() { return false; } 4611 bool found(APValue &Subobj, QualType SubobjType) { 4612 switch (Subobj.getKind()) { 4613 case APValue::Int: 4614 return found(Subobj.getInt(), SubobjType); 4615 case APValue::Float: 4616 return found(Subobj.getFloat(), SubobjType); 4617 case APValue::ComplexInt: 4618 case APValue::ComplexFloat: 4619 // FIXME: Implement complex compound assignment. 4620 Info.FFDiag(E); 4621 return false; 4622 case APValue::LValue: 4623 return foundPointer(Subobj, SubobjType); 4624 case APValue::Vector: 4625 return foundVector(Subobj, SubobjType); 4626 case APValue::Indeterminate: 4627 Info.FFDiag(E, diag::note_constexpr_access_uninit) 4628 << /*read of=*/0 << /*uninitialized object=*/1 4629 << E->getLHS()->getSourceRange(); 4630 return false; 4631 default: 4632 // FIXME: can this happen? 4633 Info.FFDiag(E); 4634 return false; 4635 } 4636 } 4637 4638 bool foundVector(APValue &Value, QualType SubobjType) { 4639 if (!checkConst(SubobjType)) 4640 return false; 4641 4642 if (!SubobjType->isVectorType()) { 4643 Info.FFDiag(E); 4644 return false; 4645 } 4646 return handleVectorVectorBinOp(Info, E, Opcode, Value, RHS); 4647 } 4648 4649 bool found(APSInt &Value, QualType SubobjType) { 4650 if (!checkConst(SubobjType)) 4651 return false; 4652 4653 if (!SubobjType->isIntegerType()) { 4654 // We don't support compound assignment on integer-cast-to-pointer 4655 // values. 4656 Info.FFDiag(E); 4657 return false; 4658 } 4659 4660 if (RHS.isInt()) { 4661 APSInt LHS = 4662 HandleIntToIntCast(Info, E, PromotedLHSType, SubobjType, Value); 4663 if (!handleIntIntBinOp(Info, E, LHS, Opcode, RHS.getInt(), LHS)) 4664 return false; 4665 Value = HandleIntToIntCast(Info, E, SubobjType, PromotedLHSType, LHS); 4666 return true; 4667 } else if (RHS.isFloat()) { 4668 const FPOptions FPO = E->getFPFeaturesInEffect( 4669 Info.Ctx.getLangOpts()); 4670 APFloat FValue(0.0); 4671 return HandleIntToFloatCast(Info, E, FPO, SubobjType, Value, 4672 PromotedLHSType, FValue) && 4673 handleFloatFloatBinOp(Info, E, FValue, Opcode, RHS.getFloat()) && 4674 HandleFloatToIntCast(Info, E, PromotedLHSType, FValue, SubobjType, 4675 Value); 4676 } 4677 4678 Info.FFDiag(E); 4679 return false; 4680 } 4681 bool found(APFloat &Value, QualType SubobjType) { 4682 return checkConst(SubobjType) && 4683 HandleFloatToFloatCast(Info, E, SubobjType, PromotedLHSType, 4684 Value) && 4685 handleFloatFloatBinOp(Info, E, Value, Opcode, RHS.getFloat()) && 4686 HandleFloatToFloatCast(Info, E, PromotedLHSType, SubobjType, Value); 4687 } 4688 bool foundPointer(APValue &Subobj, QualType SubobjType) { 4689 if (!checkConst(SubobjType)) 4690 return false; 4691 4692 QualType PointeeType; 4693 if (const PointerType *PT = SubobjType->getAs<PointerType>()) 4694 PointeeType = PT->getPointeeType(); 4695 4696 if (PointeeType.isNull() || !RHS.isInt() || 4697 (Opcode != BO_Add && Opcode != BO_Sub)) { 4698 Info.FFDiag(E); 4699 return false; 4700 } 4701 4702 APSInt Offset = RHS.getInt(); 4703 if (Opcode == BO_Sub) 4704 negateAsSigned(Offset); 4705 4706 LValue LVal; 4707 LVal.setFrom(Info.Ctx, Subobj); 4708 if (!HandleLValueArrayAdjustment(Info, E, LVal, PointeeType, Offset)) 4709 return false; 4710 LVal.moveInto(Subobj); 4711 return true; 4712 } 4713 }; 4714 } // end anonymous namespace 4715 4716 const AccessKinds CompoundAssignSubobjectHandler::AccessKind; 4717 4718 /// Perform a compound assignment of LVal <op>= RVal. 4719 static bool handleCompoundAssignment(EvalInfo &Info, 4720 const CompoundAssignOperator *E, 4721 const LValue &LVal, QualType LValType, 4722 QualType PromotedLValType, 4723 BinaryOperatorKind Opcode, 4724 const APValue &RVal) { 4725 if (LVal.Designator.Invalid) 4726 return false; 4727 4728 if (!Info.getLangOpts().CPlusPlus14) { 4729 Info.FFDiag(E); 4730 return false; 4731 } 4732 4733 CompleteObject Obj = findCompleteObject(Info, E, AK_Assign, LVal, LValType); 4734 CompoundAssignSubobjectHandler Handler = { Info, E, PromotedLValType, Opcode, 4735 RVal }; 4736 return Obj && findSubobject(Info, E, Obj, LVal.Designator, Handler); 4737 } 4738 4739 namespace { 4740 struct IncDecSubobjectHandler { 4741 EvalInfo &Info; 4742 const UnaryOperator *E; 4743 AccessKinds AccessKind; 4744 APValue *Old; 4745 4746 typedef bool result_type; 4747 4748 bool checkConst(QualType QT) { 4749 // Assigning to a const object has undefined behavior. 4750 if (QT.isConstQualified()) { 4751 Info.FFDiag(E, diag::note_constexpr_modify_const_type) << QT; 4752 return false; 4753 } 4754 return true; 4755 } 4756 4757 bool failed() { return false; } 4758 bool found(APValue &Subobj, QualType SubobjType) { 4759 // Stash the old value. Also clear Old, so we don't clobber it later 4760 // if we're post-incrementing a complex. 4761 if (Old) { 4762 *Old = Subobj; 4763 Old = nullptr; 4764 } 4765 4766 switch (Subobj.getKind()) { 4767 case APValue::Int: 4768 return found(Subobj.getInt(), SubobjType); 4769 case APValue::Float: 4770 return found(Subobj.getFloat(), SubobjType); 4771 case APValue::ComplexInt: 4772 return found(Subobj.getComplexIntReal(), 4773 SubobjType->castAs<ComplexType>()->getElementType() 4774 .withCVRQualifiers(SubobjType.getCVRQualifiers())); 4775 case APValue::ComplexFloat: 4776 return found(Subobj.getComplexFloatReal(), 4777 SubobjType->castAs<ComplexType>()->getElementType() 4778 .withCVRQualifiers(SubobjType.getCVRQualifiers())); 4779 case APValue::LValue: 4780 return foundPointer(Subobj, SubobjType); 4781 default: 4782 // FIXME: can this happen? 4783 Info.FFDiag(E); 4784 return false; 4785 } 4786 } 4787 bool found(APSInt &Value, QualType SubobjType) { 4788 if (!checkConst(SubobjType)) 4789 return false; 4790 4791 if (!SubobjType->isIntegerType()) { 4792 // We don't support increment / decrement on integer-cast-to-pointer 4793 // values. 4794 Info.FFDiag(E); 4795 return false; 4796 } 4797 4798 if (Old) *Old = APValue(Value); 4799 4800 // bool arithmetic promotes to int, and the conversion back to bool 4801 // doesn't reduce mod 2^n, so special-case it. 4802 if (SubobjType->isBooleanType()) { 4803 if (AccessKind == AK_Increment) 4804 Value = 1; 4805 else 4806 Value = !Value; 4807 return true; 4808 } 4809 4810 bool WasNegative = Value.isNegative(); 4811 if (AccessKind == AK_Increment) { 4812 ++Value; 4813 4814 if (!WasNegative && Value.isNegative() && E->canOverflow()) { 4815 APSInt ActualValue(Value, /*IsUnsigned*/true); 4816 return HandleOverflow(Info, E, ActualValue, SubobjType); 4817 } 4818 } else { 4819 --Value; 4820 4821 if (WasNegative && !Value.isNegative() && E->canOverflow()) { 4822 unsigned BitWidth = Value.getBitWidth(); 4823 APSInt ActualValue(Value.sext(BitWidth + 1), /*IsUnsigned*/false); 4824 ActualValue.setBit(BitWidth); 4825 return HandleOverflow(Info, E, ActualValue, SubobjType); 4826 } 4827 } 4828 return true; 4829 } 4830 bool found(APFloat &Value, QualType SubobjType) { 4831 if (!checkConst(SubobjType)) 4832 return false; 4833 4834 if (Old) *Old = APValue(Value); 4835 4836 APFloat One(Value.getSemantics(), 1); 4837 llvm::RoundingMode RM = getActiveRoundingMode(Info, E); 4838 APFloat::opStatus St; 4839 if (AccessKind == AK_Increment) 4840 St = Value.add(One, RM); 4841 else 4842 St = Value.subtract(One, RM); 4843 return checkFloatingPointResult(Info, E, St); 4844 } 4845 bool foundPointer(APValue &Subobj, QualType SubobjType) { 4846 if (!checkConst(SubobjType)) 4847 return false; 4848 4849 QualType PointeeType; 4850 if (const PointerType *PT = SubobjType->getAs<PointerType>()) 4851 PointeeType = PT->getPointeeType(); 4852 else { 4853 Info.FFDiag(E); 4854 return false; 4855 } 4856 4857 LValue LVal; 4858 LVal.setFrom(Info.Ctx, Subobj); 4859 if (!HandleLValueArrayAdjustment(Info, E, LVal, PointeeType, 4860 AccessKind == AK_Increment ? 1 : -1)) 4861 return false; 4862 LVal.moveInto(Subobj); 4863 return true; 4864 } 4865 }; 4866 } // end anonymous namespace 4867 4868 /// Perform an increment or decrement on LVal. 4869 static bool handleIncDec(EvalInfo &Info, const Expr *E, const LValue &LVal, 4870 QualType LValType, bool IsIncrement, APValue *Old) { 4871 if (LVal.Designator.Invalid) 4872 return false; 4873 4874 if (!Info.getLangOpts().CPlusPlus14) { 4875 Info.FFDiag(E); 4876 return false; 4877 } 4878 4879 AccessKinds AK = IsIncrement ? AK_Increment : AK_Decrement; 4880 CompleteObject Obj = findCompleteObject(Info, E, AK, LVal, LValType); 4881 IncDecSubobjectHandler Handler = {Info, cast<UnaryOperator>(E), AK, Old}; 4882 return Obj && findSubobject(Info, E, Obj, LVal.Designator, Handler); 4883 } 4884 4885 /// Build an lvalue for the object argument of a member function call. 4886 static bool EvaluateObjectArgument(EvalInfo &Info, const Expr *Object, 4887 LValue &This) { 4888 if (Object->getType()->isPointerType() && Object->isPRValue()) 4889 return EvaluatePointer(Object, This, Info); 4890 4891 if (Object->isGLValue()) 4892 return EvaluateLValue(Object, This, Info); 4893 4894 if (Object->getType()->isLiteralType(Info.Ctx)) 4895 return EvaluateTemporary(Object, This, Info); 4896 4897 if (Object->getType()->isRecordType() && Object->isPRValue()) 4898 return EvaluateTemporary(Object, This, Info); 4899 4900 Info.FFDiag(Object, diag::note_constexpr_nonliteral) << Object->getType(); 4901 return false; 4902 } 4903 4904 /// HandleMemberPointerAccess - Evaluate a member access operation and build an 4905 /// lvalue referring to the result. 4906 /// 4907 /// \param Info - Information about the ongoing evaluation. 4908 /// \param LV - An lvalue referring to the base of the member pointer. 4909 /// \param RHS - The member pointer expression. 4910 /// \param IncludeMember - Specifies whether the member itself is included in 4911 /// the resulting LValue subobject designator. This is not possible when 4912 /// creating a bound member function. 4913 /// \return The field or method declaration to which the member pointer refers, 4914 /// or 0 if evaluation fails. 4915 static const ValueDecl *HandleMemberPointerAccess(EvalInfo &Info, 4916 QualType LVType, 4917 LValue &LV, 4918 const Expr *RHS, 4919 bool IncludeMember = true) { 4920 MemberPtr MemPtr; 4921 if (!EvaluateMemberPointer(RHS, MemPtr, Info)) 4922 return nullptr; 4923 4924 // C++11 [expr.mptr.oper]p6: If the second operand is the null pointer to 4925 // member value, the behavior is undefined. 4926 if (!MemPtr.getDecl()) { 4927 // FIXME: Specific diagnostic. 4928 Info.FFDiag(RHS); 4929 return nullptr; 4930 } 4931 4932 if (MemPtr.isDerivedMember()) { 4933 // This is a member of some derived class. Truncate LV appropriately. 4934 // The end of the derived-to-base path for the base object must match the 4935 // derived-to-base path for the member pointer. 4936 if (LV.Designator.MostDerivedPathLength + MemPtr.Path.size() > 4937 LV.Designator.Entries.size()) { 4938 Info.FFDiag(RHS); 4939 return nullptr; 4940 } 4941 unsigned PathLengthToMember = 4942 LV.Designator.Entries.size() - MemPtr.Path.size(); 4943 for (unsigned I = 0, N = MemPtr.Path.size(); I != N; ++I) { 4944 const CXXRecordDecl *LVDecl = getAsBaseClass( 4945 LV.Designator.Entries[PathLengthToMember + I]); 4946 const CXXRecordDecl *MPDecl = MemPtr.Path[I]; 4947 if (LVDecl->getCanonicalDecl() != MPDecl->getCanonicalDecl()) { 4948 Info.FFDiag(RHS); 4949 return nullptr; 4950 } 4951 } 4952 4953 // Truncate the lvalue to the appropriate derived class. 4954 if (!CastToDerivedClass(Info, RHS, LV, MemPtr.getContainingRecord(), 4955 PathLengthToMember)) 4956 return nullptr; 4957 } else if (!MemPtr.Path.empty()) { 4958 // Extend the LValue path with the member pointer's path. 4959 LV.Designator.Entries.reserve(LV.Designator.Entries.size() + 4960 MemPtr.Path.size() + IncludeMember); 4961 4962 // Walk down to the appropriate base class. 4963 if (const PointerType *PT = LVType->getAs<PointerType>()) 4964 LVType = PT->getPointeeType(); 4965 const CXXRecordDecl *RD = LVType->getAsCXXRecordDecl(); 4966 assert(RD && "member pointer access on non-class-type expression"); 4967 // The first class in the path is that of the lvalue. 4968 for (unsigned I = 1, N = MemPtr.Path.size(); I != N; ++I) { 4969 const CXXRecordDecl *Base = MemPtr.Path[N - I - 1]; 4970 if (!HandleLValueDirectBase(Info, RHS, LV, RD, Base)) 4971 return nullptr; 4972 RD = Base; 4973 } 4974 // Finally cast to the class containing the member. 4975 if (!HandleLValueDirectBase(Info, RHS, LV, RD, 4976 MemPtr.getContainingRecord())) 4977 return nullptr; 4978 } 4979 4980 // Add the member. Note that we cannot build bound member functions here. 4981 if (IncludeMember) { 4982 if (const FieldDecl *FD = dyn_cast<FieldDecl>(MemPtr.getDecl())) { 4983 if (!HandleLValueMember(Info, RHS, LV, FD)) 4984 return nullptr; 4985 } else if (const IndirectFieldDecl *IFD = 4986 dyn_cast<IndirectFieldDecl>(MemPtr.getDecl())) { 4987 if (!HandleLValueIndirectMember(Info, RHS, LV, IFD)) 4988 return nullptr; 4989 } else { 4990 llvm_unreachable("can't construct reference to bound member function"); 4991 } 4992 } 4993 4994 return MemPtr.getDecl(); 4995 } 4996 4997 static const ValueDecl *HandleMemberPointerAccess(EvalInfo &Info, 4998 const BinaryOperator *BO, 4999 LValue &LV, 5000 bool IncludeMember = true) { 5001 assert(BO->getOpcode() == BO_PtrMemD || BO->getOpcode() == BO_PtrMemI); 5002 5003 if (!EvaluateObjectArgument(Info, BO->getLHS(), LV)) { 5004 if (Info.noteFailure()) { 5005 MemberPtr MemPtr; 5006 EvaluateMemberPointer(BO->getRHS(), MemPtr, Info); 5007 } 5008 return nullptr; 5009 } 5010 5011 return HandleMemberPointerAccess(Info, BO->getLHS()->getType(), LV, 5012 BO->getRHS(), IncludeMember); 5013 } 5014 5015 /// HandleBaseToDerivedCast - Apply the given base-to-derived cast operation on 5016 /// the provided lvalue, which currently refers to the base object. 5017 static bool HandleBaseToDerivedCast(EvalInfo &Info, const CastExpr *E, 5018 LValue &Result) { 5019 SubobjectDesignator &D = Result.Designator; 5020 if (D.Invalid || !Result.checkNullPointer(Info, E, CSK_Derived)) 5021 return false; 5022 5023 QualType TargetQT = E->getType(); 5024 if (const PointerType *PT = TargetQT->getAs<PointerType>()) 5025 TargetQT = PT->getPointeeType(); 5026 5027 // Check this cast lands within the final derived-to-base subobject path. 5028 if (D.MostDerivedPathLength + E->path_size() > D.Entries.size()) { 5029 Info.CCEDiag(E, diag::note_constexpr_invalid_downcast) 5030 << D.MostDerivedType << TargetQT; 5031 return false; 5032 } 5033 5034 // Check the type of the final cast. We don't need to check the path, 5035 // since a cast can only be formed if the path is unique. 5036 unsigned NewEntriesSize = D.Entries.size() - E->path_size(); 5037 const CXXRecordDecl *TargetType = TargetQT->getAsCXXRecordDecl(); 5038 const CXXRecordDecl *FinalType; 5039 if (NewEntriesSize == D.MostDerivedPathLength) 5040 FinalType = D.MostDerivedType->getAsCXXRecordDecl(); 5041 else 5042 FinalType = getAsBaseClass(D.Entries[NewEntriesSize - 1]); 5043 if (FinalType->getCanonicalDecl() != TargetType->getCanonicalDecl()) { 5044 Info.CCEDiag(E, diag::note_constexpr_invalid_downcast) 5045 << D.MostDerivedType << TargetQT; 5046 return false; 5047 } 5048 5049 // Truncate the lvalue to the appropriate derived class. 5050 return CastToDerivedClass(Info, E, Result, TargetType, NewEntriesSize); 5051 } 5052 5053 /// Get the value to use for a default-initialized object of type T. 5054 /// Return false if it encounters something invalid. 5055 static bool handleDefaultInitValue(QualType T, APValue &Result) { 5056 bool Success = true; 5057 5058 // If there is already a value present don't overwrite it. 5059 if (!Result.isAbsent()) 5060 return true; 5061 5062 if (auto *RD = T->getAsCXXRecordDecl()) { 5063 if (RD->isInvalidDecl()) { 5064 Result = APValue(); 5065 return false; 5066 } 5067 if (RD->isUnion()) { 5068 Result = APValue((const FieldDecl *)nullptr); 5069 return true; 5070 } 5071 Result = APValue(APValue::UninitStruct(), RD->getNumBases(), 5072 std::distance(RD->field_begin(), RD->field_end())); 5073 5074 unsigned Index = 0; 5075 for (CXXRecordDecl::base_class_const_iterator I = RD->bases_begin(), 5076 End = RD->bases_end(); 5077 I != End; ++I, ++Index) 5078 Success &= 5079 handleDefaultInitValue(I->getType(), Result.getStructBase(Index)); 5080 5081 for (const auto *I : RD->fields()) { 5082 if (I->isUnnamedBitField()) 5083 continue; 5084 Success &= handleDefaultInitValue( 5085 I->getType(), Result.getStructField(I->getFieldIndex())); 5086 } 5087 return Success; 5088 } 5089 5090 if (auto *AT = 5091 dyn_cast_or_null<ConstantArrayType>(T->getAsArrayTypeUnsafe())) { 5092 Result = APValue(APValue::UninitArray(), 0, AT->getZExtSize()); 5093 if (Result.hasArrayFiller()) 5094 Success &= 5095 handleDefaultInitValue(AT->getElementType(), Result.getArrayFiller()); 5096 5097 return Success; 5098 } 5099 5100 Result = APValue::IndeterminateValue(); 5101 return true; 5102 } 5103 5104 namespace { 5105 enum EvalStmtResult { 5106 /// Evaluation failed. 5107 ESR_Failed, 5108 /// Hit a 'return' statement. 5109 ESR_Returned, 5110 /// Evaluation succeeded. 5111 ESR_Succeeded, 5112 /// Hit a 'continue' statement. 5113 ESR_Continue, 5114 /// Hit a 'break' statement. 5115 ESR_Break, 5116 /// Still scanning for 'case' or 'default' statement. 5117 ESR_CaseNotFound 5118 }; 5119 } 5120 5121 static bool EvaluateVarDecl(EvalInfo &Info, const VarDecl *VD) { 5122 if (VD->isInvalidDecl()) 5123 return false; 5124 // We don't need to evaluate the initializer for a static local. 5125 if (!VD->hasLocalStorage()) 5126 return true; 5127 5128 LValue Result; 5129 APValue &Val = Info.CurrentCall->createTemporary(VD, VD->getType(), 5130 ScopeKind::Block, Result); 5131 5132 const Expr *InitE = VD->getInit(); 5133 if (!InitE) { 5134 if (VD->getType()->isDependentType()) 5135 return Info.noteSideEffect(); 5136 return handleDefaultInitValue(VD->getType(), Val); 5137 } 5138 if (InitE->isValueDependent()) 5139 return false; 5140 5141 if (!EvaluateInPlace(Val, Info, Result, InitE)) { 5142 // Wipe out any partially-computed value, to allow tracking that this 5143 // evaluation failed. 5144 Val = APValue(); 5145 return false; 5146 } 5147 5148 return true; 5149 } 5150 5151 static bool EvaluateDecl(EvalInfo &Info, const Decl *D) { 5152 bool OK = true; 5153 5154 if (const VarDecl *VD = dyn_cast<VarDecl>(D)) 5155 OK &= EvaluateVarDecl(Info, VD); 5156 5157 if (const DecompositionDecl *DD = dyn_cast<DecompositionDecl>(D)) 5158 for (auto *BD : DD->bindings()) 5159 if (auto *VD = BD->getHoldingVar()) 5160 OK &= EvaluateDecl(Info, VD); 5161 5162 return OK; 5163 } 5164 5165 static bool EvaluateDependentExpr(const Expr *E, EvalInfo &Info) { 5166 assert(E->isValueDependent()); 5167 if (Info.noteSideEffect()) 5168 return true; 5169 assert(E->containsErrors() && "valid value-dependent expression should never " 5170 "reach invalid code path."); 5171 return false; 5172 } 5173 5174 /// Evaluate a condition (either a variable declaration or an expression). 5175 static bool EvaluateCond(EvalInfo &Info, const VarDecl *CondDecl, 5176 const Expr *Cond, bool &Result) { 5177 if (Cond->isValueDependent()) 5178 return false; 5179 FullExpressionRAII Scope(Info); 5180 if (CondDecl && !EvaluateDecl(Info, CondDecl)) 5181 return false; 5182 if (!EvaluateAsBooleanCondition(Cond, Result, Info)) 5183 return false; 5184 return Scope.destroy(); 5185 } 5186 5187 namespace { 5188 /// A location where the result (returned value) of evaluating a 5189 /// statement should be stored. 5190 struct StmtResult { 5191 /// The APValue that should be filled in with the returned value. 5192 APValue &Value; 5193 /// The location containing the result, if any (used to support RVO). 5194 const LValue *Slot; 5195 }; 5196 5197 struct TempVersionRAII { 5198 CallStackFrame &Frame; 5199 5200 TempVersionRAII(CallStackFrame &Frame) : Frame(Frame) { 5201 Frame.pushTempVersion(); 5202 } 5203 5204 ~TempVersionRAII() { 5205 Frame.popTempVersion(); 5206 } 5207 }; 5208 5209 } 5210 5211 static EvalStmtResult EvaluateStmt(StmtResult &Result, EvalInfo &Info, 5212 const Stmt *S, 5213 const SwitchCase *SC = nullptr); 5214 5215 /// Evaluate the body of a loop, and translate the result as appropriate. 5216 static EvalStmtResult EvaluateLoopBody(StmtResult &Result, EvalInfo &Info, 5217 const Stmt *Body, 5218 const SwitchCase *Case = nullptr) { 5219 BlockScopeRAII Scope(Info); 5220 5221 EvalStmtResult ESR = EvaluateStmt(Result, Info, Body, Case); 5222 if (ESR != ESR_Failed && ESR != ESR_CaseNotFound && !Scope.destroy()) 5223 ESR = ESR_Failed; 5224 5225 switch (ESR) { 5226 case ESR_Break: 5227 return ESR_Succeeded; 5228 case ESR_Succeeded: 5229 case ESR_Continue: 5230 return ESR_Continue; 5231 case ESR_Failed: 5232 case ESR_Returned: 5233 case ESR_CaseNotFound: 5234 return ESR; 5235 } 5236 llvm_unreachable("Invalid EvalStmtResult!"); 5237 } 5238 5239 /// Evaluate a switch statement. 5240 static EvalStmtResult EvaluateSwitch(StmtResult &Result, EvalInfo &Info, 5241 const SwitchStmt *SS) { 5242 BlockScopeRAII Scope(Info); 5243 5244 // Evaluate the switch condition. 5245 APSInt Value; 5246 { 5247 if (const Stmt *Init = SS->getInit()) { 5248 EvalStmtResult ESR = EvaluateStmt(Result, Info, Init); 5249 if (ESR != ESR_Succeeded) { 5250 if (ESR != ESR_Failed && !Scope.destroy()) 5251 ESR = ESR_Failed; 5252 return ESR; 5253 } 5254 } 5255 5256 FullExpressionRAII CondScope(Info); 5257 if (SS->getConditionVariable() && 5258 !EvaluateDecl(Info, SS->getConditionVariable())) 5259 return ESR_Failed; 5260 if (SS->getCond()->isValueDependent()) { 5261 // We don't know what the value is, and which branch should jump to. 5262 EvaluateDependentExpr(SS->getCond(), Info); 5263 return ESR_Failed; 5264 } 5265 if (!EvaluateInteger(SS->getCond(), Value, Info)) 5266 return ESR_Failed; 5267 5268 if (!CondScope.destroy()) 5269 return ESR_Failed; 5270 } 5271 5272 // Find the switch case corresponding to the value of the condition. 5273 // FIXME: Cache this lookup. 5274 const SwitchCase *Found = nullptr; 5275 for (const SwitchCase *SC = SS->getSwitchCaseList(); SC; 5276 SC = SC->getNextSwitchCase()) { 5277 if (isa<DefaultStmt>(SC)) { 5278 Found = SC; 5279 continue; 5280 } 5281 5282 const CaseStmt *CS = cast<CaseStmt>(SC); 5283 APSInt LHS = CS->getLHS()->EvaluateKnownConstInt(Info.Ctx); 5284 APSInt RHS = CS->getRHS() ? CS->getRHS()->EvaluateKnownConstInt(Info.Ctx) 5285 : LHS; 5286 if (LHS <= Value && Value <= RHS) { 5287 Found = SC; 5288 break; 5289 } 5290 } 5291 5292 if (!Found) 5293 return Scope.destroy() ? ESR_Succeeded : ESR_Failed; 5294 5295 // Search the switch body for the switch case and evaluate it from there. 5296 EvalStmtResult ESR = EvaluateStmt(Result, Info, SS->getBody(), Found); 5297 if (ESR != ESR_Failed && ESR != ESR_CaseNotFound && !Scope.destroy()) 5298 return ESR_Failed; 5299 5300 switch (ESR) { 5301 case ESR_Break: 5302 return ESR_Succeeded; 5303 case ESR_Succeeded: 5304 case ESR_Continue: 5305 case ESR_Failed: 5306 case ESR_Returned: 5307 return ESR; 5308 case ESR_CaseNotFound: 5309 // This can only happen if the switch case is nested within a statement 5310 // expression. We have no intention of supporting that. 5311 Info.FFDiag(Found->getBeginLoc(), 5312 diag::note_constexpr_stmt_expr_unsupported); 5313 return ESR_Failed; 5314 } 5315 llvm_unreachable("Invalid EvalStmtResult!"); 5316 } 5317 5318 static bool CheckLocalVariableDeclaration(EvalInfo &Info, const VarDecl *VD) { 5319 // An expression E is a core constant expression unless the evaluation of E 5320 // would evaluate one of the following: [C++23] - a control flow that passes 5321 // through a declaration of a variable with static or thread storage duration 5322 // unless that variable is usable in constant expressions. 5323 if (VD->isLocalVarDecl() && VD->isStaticLocal() && 5324 !VD->isUsableInConstantExpressions(Info.Ctx)) { 5325 Info.CCEDiag(VD->getLocation(), diag::note_constexpr_static_local) 5326 << (VD->getTSCSpec() == TSCS_unspecified ? 0 : 1) << VD; 5327 return false; 5328 } 5329 return true; 5330 } 5331 5332 // Evaluate a statement. 5333 static EvalStmtResult EvaluateStmt(StmtResult &Result, EvalInfo &Info, 5334 const Stmt *S, const SwitchCase *Case) { 5335 if (!Info.nextStep(S)) 5336 return ESR_Failed; 5337 5338 // If we're hunting down a 'case' or 'default' label, recurse through 5339 // substatements until we hit the label. 5340 if (Case) { 5341 switch (S->getStmtClass()) { 5342 case Stmt::CompoundStmtClass: 5343 // FIXME: Precompute which substatement of a compound statement we 5344 // would jump to, and go straight there rather than performing a 5345 // linear scan each time. 5346 case Stmt::LabelStmtClass: 5347 case Stmt::AttributedStmtClass: 5348 case Stmt::DoStmtClass: 5349 break; 5350 5351 case Stmt::CaseStmtClass: 5352 case Stmt::DefaultStmtClass: 5353 if (Case == S) 5354 Case = nullptr; 5355 break; 5356 5357 case Stmt::IfStmtClass: { 5358 // FIXME: Precompute which side of an 'if' we would jump to, and go 5359 // straight there rather than scanning both sides. 5360 const IfStmt *IS = cast<IfStmt>(S); 5361 5362 // Wrap the evaluation in a block scope, in case it's a DeclStmt 5363 // preceded by our switch label. 5364 BlockScopeRAII Scope(Info); 5365 5366 // Step into the init statement in case it brings an (uninitialized) 5367 // variable into scope. 5368 if (const Stmt *Init = IS->getInit()) { 5369 EvalStmtResult ESR = EvaluateStmt(Result, Info, Init, Case); 5370 if (ESR != ESR_CaseNotFound) { 5371 assert(ESR != ESR_Succeeded); 5372 return ESR; 5373 } 5374 } 5375 5376 // Condition variable must be initialized if it exists. 5377 // FIXME: We can skip evaluating the body if there's a condition 5378 // variable, as there can't be any case labels within it. 5379 // (The same is true for 'for' statements.) 5380 5381 EvalStmtResult ESR = EvaluateStmt(Result, Info, IS->getThen(), Case); 5382 if (ESR == ESR_Failed) 5383 return ESR; 5384 if (ESR != ESR_CaseNotFound) 5385 return Scope.destroy() ? ESR : ESR_Failed; 5386 if (!IS->getElse()) 5387 return ESR_CaseNotFound; 5388 5389 ESR = EvaluateStmt(Result, Info, IS->getElse(), Case); 5390 if (ESR == ESR_Failed) 5391 return ESR; 5392 if (ESR != ESR_CaseNotFound) 5393 return Scope.destroy() ? ESR : ESR_Failed; 5394 return ESR_CaseNotFound; 5395 } 5396 5397 case Stmt::WhileStmtClass: { 5398 EvalStmtResult ESR = 5399 EvaluateLoopBody(Result, Info, cast<WhileStmt>(S)->getBody(), Case); 5400 if (ESR != ESR_Continue) 5401 return ESR; 5402 break; 5403 } 5404 5405 case Stmt::ForStmtClass: { 5406 const ForStmt *FS = cast<ForStmt>(S); 5407 BlockScopeRAII Scope(Info); 5408 5409 // Step into the init statement in case it brings an (uninitialized) 5410 // variable into scope. 5411 if (const Stmt *Init = FS->getInit()) { 5412 EvalStmtResult ESR = EvaluateStmt(Result, Info, Init, Case); 5413 if (ESR != ESR_CaseNotFound) { 5414 assert(ESR != ESR_Succeeded); 5415 return ESR; 5416 } 5417 } 5418 5419 EvalStmtResult ESR = 5420 EvaluateLoopBody(Result, Info, FS->getBody(), Case); 5421 if (ESR != ESR_Continue) 5422 return ESR; 5423 if (const auto *Inc = FS->getInc()) { 5424 if (Inc->isValueDependent()) { 5425 if (!EvaluateDependentExpr(Inc, Info)) 5426 return ESR_Failed; 5427 } else { 5428 FullExpressionRAII IncScope(Info); 5429 if (!EvaluateIgnoredValue(Info, Inc) || !IncScope.destroy()) 5430 return ESR_Failed; 5431 } 5432 } 5433 break; 5434 } 5435 5436 case Stmt::DeclStmtClass: { 5437 // Start the lifetime of any uninitialized variables we encounter. They 5438 // might be used by the selected branch of the switch. 5439 const DeclStmt *DS = cast<DeclStmt>(S); 5440 for (const auto *D : DS->decls()) { 5441 if (const auto *VD = dyn_cast<VarDecl>(D)) { 5442 if (!CheckLocalVariableDeclaration(Info, VD)) 5443 return ESR_Failed; 5444 if (VD->hasLocalStorage() && !VD->getInit()) 5445 if (!EvaluateVarDecl(Info, VD)) 5446 return ESR_Failed; 5447 // FIXME: If the variable has initialization that can't be jumped 5448 // over, bail out of any immediately-surrounding compound-statement 5449 // too. There can't be any case labels here. 5450 } 5451 } 5452 return ESR_CaseNotFound; 5453 } 5454 5455 default: 5456 return ESR_CaseNotFound; 5457 } 5458 } 5459 5460 switch (S->getStmtClass()) { 5461 default: 5462 if (const Expr *E = dyn_cast<Expr>(S)) { 5463 if (E->isValueDependent()) { 5464 if (!EvaluateDependentExpr(E, Info)) 5465 return ESR_Failed; 5466 } else { 5467 // Don't bother evaluating beyond an expression-statement which couldn't 5468 // be evaluated. 5469 // FIXME: Do we need the FullExpressionRAII object here? 5470 // VisitExprWithCleanups should create one when necessary. 5471 FullExpressionRAII Scope(Info); 5472 if (!EvaluateIgnoredValue(Info, E) || !Scope.destroy()) 5473 return ESR_Failed; 5474 } 5475 return ESR_Succeeded; 5476 } 5477 5478 Info.FFDiag(S->getBeginLoc()) << S->getSourceRange(); 5479 return ESR_Failed; 5480 5481 case Stmt::NullStmtClass: 5482 return ESR_Succeeded; 5483 5484 case Stmt::DeclStmtClass: { 5485 const DeclStmt *DS = cast<DeclStmt>(S); 5486 for (const auto *D : DS->decls()) { 5487 const VarDecl *VD = dyn_cast_or_null<VarDecl>(D); 5488 if (VD && !CheckLocalVariableDeclaration(Info, VD)) 5489 return ESR_Failed; 5490 // Each declaration initialization is its own full-expression. 5491 FullExpressionRAII Scope(Info); 5492 if (!EvaluateDecl(Info, D) && !Info.noteFailure()) 5493 return ESR_Failed; 5494 if (!Scope.destroy()) 5495 return ESR_Failed; 5496 } 5497 return ESR_Succeeded; 5498 } 5499 5500 case Stmt::ReturnStmtClass: { 5501 const Expr *RetExpr = cast<ReturnStmt>(S)->getRetValue(); 5502 FullExpressionRAII Scope(Info); 5503 if (RetExpr && RetExpr->isValueDependent()) { 5504 EvaluateDependentExpr(RetExpr, Info); 5505 // We know we returned, but we don't know what the value is. 5506 return ESR_Failed; 5507 } 5508 if (RetExpr && 5509 !(Result.Slot 5510 ? EvaluateInPlace(Result.Value, Info, *Result.Slot, RetExpr) 5511 : Evaluate(Result.Value, Info, RetExpr))) 5512 return ESR_Failed; 5513 return Scope.destroy() ? ESR_Returned : ESR_Failed; 5514 } 5515 5516 case Stmt::CompoundStmtClass: { 5517 BlockScopeRAII Scope(Info); 5518 5519 const CompoundStmt *CS = cast<CompoundStmt>(S); 5520 for (const auto *BI : CS->body()) { 5521 EvalStmtResult ESR = EvaluateStmt(Result, Info, BI, Case); 5522 if (ESR == ESR_Succeeded) 5523 Case = nullptr; 5524 else if (ESR != ESR_CaseNotFound) { 5525 if (ESR != ESR_Failed && !Scope.destroy()) 5526 return ESR_Failed; 5527 return ESR; 5528 } 5529 } 5530 if (Case) 5531 return ESR_CaseNotFound; 5532 return Scope.destroy() ? ESR_Succeeded : ESR_Failed; 5533 } 5534 5535 case Stmt::IfStmtClass: { 5536 const IfStmt *IS = cast<IfStmt>(S); 5537 5538 // Evaluate the condition, as either a var decl or as an expression. 5539 BlockScopeRAII Scope(Info); 5540 if (const Stmt *Init = IS->getInit()) { 5541 EvalStmtResult ESR = EvaluateStmt(Result, Info, Init); 5542 if (ESR != ESR_Succeeded) { 5543 if (ESR != ESR_Failed && !Scope.destroy()) 5544 return ESR_Failed; 5545 return ESR; 5546 } 5547 } 5548 bool Cond; 5549 if (IS->isConsteval()) { 5550 Cond = IS->isNonNegatedConsteval(); 5551 // If we are not in a constant context, if consteval should not evaluate 5552 // to true. 5553 if (!Info.InConstantContext) 5554 Cond = !Cond; 5555 } else if (!EvaluateCond(Info, IS->getConditionVariable(), IS->getCond(), 5556 Cond)) 5557 return ESR_Failed; 5558 5559 if (const Stmt *SubStmt = Cond ? IS->getThen() : IS->getElse()) { 5560 EvalStmtResult ESR = EvaluateStmt(Result, Info, SubStmt); 5561 if (ESR != ESR_Succeeded) { 5562 if (ESR != ESR_Failed && !Scope.destroy()) 5563 return ESR_Failed; 5564 return ESR; 5565 } 5566 } 5567 return Scope.destroy() ? ESR_Succeeded : ESR_Failed; 5568 } 5569 5570 case Stmt::WhileStmtClass: { 5571 const WhileStmt *WS = cast<WhileStmt>(S); 5572 while (true) { 5573 BlockScopeRAII Scope(Info); 5574 bool Continue; 5575 if (!EvaluateCond(Info, WS->getConditionVariable(), WS->getCond(), 5576 Continue)) 5577 return ESR_Failed; 5578 if (!Continue) 5579 break; 5580 5581 EvalStmtResult ESR = EvaluateLoopBody(Result, Info, WS->getBody()); 5582 if (ESR != ESR_Continue) { 5583 if (ESR != ESR_Failed && !Scope.destroy()) 5584 return ESR_Failed; 5585 return ESR; 5586 } 5587 if (!Scope.destroy()) 5588 return ESR_Failed; 5589 } 5590 return ESR_Succeeded; 5591 } 5592 5593 case Stmt::DoStmtClass: { 5594 const DoStmt *DS = cast<DoStmt>(S); 5595 bool Continue; 5596 do { 5597 EvalStmtResult ESR = EvaluateLoopBody(Result, Info, DS->getBody(), Case); 5598 if (ESR != ESR_Continue) 5599 return ESR; 5600 Case = nullptr; 5601 5602 if (DS->getCond()->isValueDependent()) { 5603 EvaluateDependentExpr(DS->getCond(), Info); 5604 // Bailout as we don't know whether to keep going or terminate the loop. 5605 return ESR_Failed; 5606 } 5607 FullExpressionRAII CondScope(Info); 5608 if (!EvaluateAsBooleanCondition(DS->getCond(), Continue, Info) || 5609 !CondScope.destroy()) 5610 return ESR_Failed; 5611 } while (Continue); 5612 return ESR_Succeeded; 5613 } 5614 5615 case Stmt::ForStmtClass: { 5616 const ForStmt *FS = cast<ForStmt>(S); 5617 BlockScopeRAII ForScope(Info); 5618 if (FS->getInit()) { 5619 EvalStmtResult ESR = EvaluateStmt(Result, Info, FS->getInit()); 5620 if (ESR != ESR_Succeeded) { 5621 if (ESR != ESR_Failed && !ForScope.destroy()) 5622 return ESR_Failed; 5623 return ESR; 5624 } 5625 } 5626 while (true) { 5627 BlockScopeRAII IterScope(Info); 5628 bool Continue = true; 5629 if (FS->getCond() && !EvaluateCond(Info, FS->getConditionVariable(), 5630 FS->getCond(), Continue)) 5631 return ESR_Failed; 5632 if (!Continue) 5633 break; 5634 5635 EvalStmtResult ESR = EvaluateLoopBody(Result, Info, FS->getBody()); 5636 if (ESR != ESR_Continue) { 5637 if (ESR != ESR_Failed && (!IterScope.destroy() || !ForScope.destroy())) 5638 return ESR_Failed; 5639 return ESR; 5640 } 5641 5642 if (const auto *Inc = FS->getInc()) { 5643 if (Inc->isValueDependent()) { 5644 if (!EvaluateDependentExpr(Inc, Info)) 5645 return ESR_Failed; 5646 } else { 5647 FullExpressionRAII IncScope(Info); 5648 if (!EvaluateIgnoredValue(Info, Inc) || !IncScope.destroy()) 5649 return ESR_Failed; 5650 } 5651 } 5652 5653 if (!IterScope.destroy()) 5654 return ESR_Failed; 5655 } 5656 return ForScope.destroy() ? ESR_Succeeded : ESR_Failed; 5657 } 5658 5659 case Stmt::CXXForRangeStmtClass: { 5660 const CXXForRangeStmt *FS = cast<CXXForRangeStmt>(S); 5661 BlockScopeRAII Scope(Info); 5662 5663 // Evaluate the init-statement if present. 5664 if (FS->getInit()) { 5665 EvalStmtResult ESR = EvaluateStmt(Result, Info, FS->getInit()); 5666 if (ESR != ESR_Succeeded) { 5667 if (ESR != ESR_Failed && !Scope.destroy()) 5668 return ESR_Failed; 5669 return ESR; 5670 } 5671 } 5672 5673 // Initialize the __range variable. 5674 EvalStmtResult ESR = EvaluateStmt(Result, Info, FS->getRangeStmt()); 5675 if (ESR != ESR_Succeeded) { 5676 if (ESR != ESR_Failed && !Scope.destroy()) 5677 return ESR_Failed; 5678 return ESR; 5679 } 5680 5681 // In error-recovery cases it's possible to get here even if we failed to 5682 // synthesize the __begin and __end variables. 5683 if (!FS->getBeginStmt() || !FS->getEndStmt() || !FS->getCond()) 5684 return ESR_Failed; 5685 5686 // Create the __begin and __end iterators. 5687 ESR = EvaluateStmt(Result, Info, FS->getBeginStmt()); 5688 if (ESR != ESR_Succeeded) { 5689 if (ESR != ESR_Failed && !Scope.destroy()) 5690 return ESR_Failed; 5691 return ESR; 5692 } 5693 ESR = EvaluateStmt(Result, Info, FS->getEndStmt()); 5694 if (ESR != ESR_Succeeded) { 5695 if (ESR != ESR_Failed && !Scope.destroy()) 5696 return ESR_Failed; 5697 return ESR; 5698 } 5699 5700 while (true) { 5701 // Condition: __begin != __end. 5702 { 5703 if (FS->getCond()->isValueDependent()) { 5704 EvaluateDependentExpr(FS->getCond(), Info); 5705 // We don't know whether to keep going or terminate the loop. 5706 return ESR_Failed; 5707 } 5708 bool Continue = true; 5709 FullExpressionRAII CondExpr(Info); 5710 if (!EvaluateAsBooleanCondition(FS->getCond(), Continue, Info)) 5711 return ESR_Failed; 5712 if (!Continue) 5713 break; 5714 } 5715 5716 // User's variable declaration, initialized by *__begin. 5717 BlockScopeRAII InnerScope(Info); 5718 ESR = EvaluateStmt(Result, Info, FS->getLoopVarStmt()); 5719 if (ESR != ESR_Succeeded) { 5720 if (ESR != ESR_Failed && (!InnerScope.destroy() || !Scope.destroy())) 5721 return ESR_Failed; 5722 return ESR; 5723 } 5724 5725 // Loop body. 5726 ESR = EvaluateLoopBody(Result, Info, FS->getBody()); 5727 if (ESR != ESR_Continue) { 5728 if (ESR != ESR_Failed && (!InnerScope.destroy() || !Scope.destroy())) 5729 return ESR_Failed; 5730 return ESR; 5731 } 5732 if (FS->getInc()->isValueDependent()) { 5733 if (!EvaluateDependentExpr(FS->getInc(), Info)) 5734 return ESR_Failed; 5735 } else { 5736 // Increment: ++__begin 5737 if (!EvaluateIgnoredValue(Info, FS->getInc())) 5738 return ESR_Failed; 5739 } 5740 5741 if (!InnerScope.destroy()) 5742 return ESR_Failed; 5743 } 5744 5745 return Scope.destroy() ? ESR_Succeeded : ESR_Failed; 5746 } 5747 5748 case Stmt::SwitchStmtClass: 5749 return EvaluateSwitch(Result, Info, cast<SwitchStmt>(S)); 5750 5751 case Stmt::ContinueStmtClass: 5752 return ESR_Continue; 5753 5754 case Stmt::BreakStmtClass: 5755 return ESR_Break; 5756 5757 case Stmt::LabelStmtClass: 5758 return EvaluateStmt(Result, Info, cast<LabelStmt>(S)->getSubStmt(), Case); 5759 5760 case Stmt::AttributedStmtClass: { 5761 const auto *AS = cast<AttributedStmt>(S); 5762 const auto *SS = AS->getSubStmt(); 5763 MSConstexprContextRAII ConstexprContext( 5764 *Info.CurrentCall, hasSpecificAttr<MSConstexprAttr>(AS->getAttrs()) && 5765 isa<ReturnStmt>(SS)); 5766 5767 auto LO = Info.getASTContext().getLangOpts(); 5768 if (LO.CXXAssumptions && !LO.MSVCCompat) { 5769 for (auto *Attr : AS->getAttrs()) { 5770 auto *AA = dyn_cast<CXXAssumeAttr>(Attr); 5771 if (!AA) 5772 continue; 5773 5774 auto *Assumption = AA->getAssumption(); 5775 if (Assumption->isValueDependent()) 5776 return ESR_Failed; 5777 5778 if (Assumption->HasSideEffects(Info.getASTContext())) 5779 continue; 5780 5781 bool Value; 5782 if (!EvaluateAsBooleanCondition(Assumption, Value, Info)) 5783 return ESR_Failed; 5784 if (!Value) { 5785 Info.CCEDiag(Assumption->getExprLoc(), 5786 diag::note_constexpr_assumption_failed); 5787 return ESR_Failed; 5788 } 5789 } 5790 } 5791 5792 return EvaluateStmt(Result, Info, SS, Case); 5793 } 5794 5795 case Stmt::CaseStmtClass: 5796 case Stmt::DefaultStmtClass: 5797 return EvaluateStmt(Result, Info, cast<SwitchCase>(S)->getSubStmt(), Case); 5798 case Stmt::CXXTryStmtClass: 5799 // Evaluate try blocks by evaluating all sub statements. 5800 return EvaluateStmt(Result, Info, cast<CXXTryStmt>(S)->getTryBlock(), Case); 5801 } 5802 } 5803 5804 /// CheckTrivialDefaultConstructor - Check whether a constructor is a trivial 5805 /// default constructor. If so, we'll fold it whether or not it's marked as 5806 /// constexpr. If it is marked as constexpr, we will never implicitly define it, 5807 /// so we need special handling. 5808 static bool CheckTrivialDefaultConstructor(EvalInfo &Info, SourceLocation Loc, 5809 const CXXConstructorDecl *CD, 5810 bool IsValueInitialization) { 5811 if (!CD->isTrivial() || !CD->isDefaultConstructor()) 5812 return false; 5813 5814 // Value-initialization does not call a trivial default constructor, so such a 5815 // call is a core constant expression whether or not the constructor is 5816 // constexpr. 5817 if (!CD->isConstexpr() && !IsValueInitialization) { 5818 if (Info.getLangOpts().CPlusPlus11) { 5819 // FIXME: If DiagDecl is an implicitly-declared special member function, 5820 // we should be much more explicit about why it's not constexpr. 5821 Info.CCEDiag(Loc, diag::note_constexpr_invalid_function, 1) 5822 << /*IsConstexpr*/0 << /*IsConstructor*/1 << CD; 5823 Info.Note(CD->getLocation(), diag::note_declared_at); 5824 } else { 5825 Info.CCEDiag(Loc, diag::note_invalid_subexpr_in_const_expr); 5826 } 5827 } 5828 return true; 5829 } 5830 5831 /// CheckConstexprFunction - Check that a function can be called in a constant 5832 /// expression. 5833 static bool CheckConstexprFunction(EvalInfo &Info, SourceLocation CallLoc, 5834 const FunctionDecl *Declaration, 5835 const FunctionDecl *Definition, 5836 const Stmt *Body) { 5837 // Potential constant expressions can contain calls to declared, but not yet 5838 // defined, constexpr functions. 5839 if (Info.checkingPotentialConstantExpression() && !Definition && 5840 Declaration->isConstexpr()) 5841 return false; 5842 5843 // Bail out if the function declaration itself is invalid. We will 5844 // have produced a relevant diagnostic while parsing it, so just 5845 // note the problematic sub-expression. 5846 if (Declaration->isInvalidDecl()) { 5847 Info.FFDiag(CallLoc, diag::note_invalid_subexpr_in_const_expr); 5848 return false; 5849 } 5850 5851 // DR1872: An instantiated virtual constexpr function can't be called in a 5852 // constant expression (prior to C++20). We can still constant-fold such a 5853 // call. 5854 if (!Info.Ctx.getLangOpts().CPlusPlus20 && isa<CXXMethodDecl>(Declaration) && 5855 cast<CXXMethodDecl>(Declaration)->isVirtual()) 5856 Info.CCEDiag(CallLoc, diag::note_constexpr_virtual_call); 5857 5858 if (Definition && Definition->isInvalidDecl()) { 5859 Info.FFDiag(CallLoc, diag::note_invalid_subexpr_in_const_expr); 5860 return false; 5861 } 5862 5863 // Can we evaluate this function call? 5864 if (Definition && Body && 5865 (Definition->isConstexpr() || (Info.CurrentCall->CanEvalMSConstexpr && 5866 Definition->hasAttr<MSConstexprAttr>()))) 5867 return true; 5868 5869 if (Info.getLangOpts().CPlusPlus11) { 5870 const FunctionDecl *DiagDecl = Definition ? Definition : Declaration; 5871 5872 // If this function is not constexpr because it is an inherited 5873 // non-constexpr constructor, diagnose that directly. 5874 auto *CD = dyn_cast<CXXConstructorDecl>(DiagDecl); 5875 if (CD && CD->isInheritingConstructor()) { 5876 auto *Inherited = CD->getInheritedConstructor().getConstructor(); 5877 if (!Inherited->isConstexpr()) 5878 DiagDecl = CD = Inherited; 5879 } 5880 5881 // FIXME: If DiagDecl is an implicitly-declared special member function 5882 // or an inheriting constructor, we should be much more explicit about why 5883 // it's not constexpr. 5884 if (CD && CD->isInheritingConstructor()) 5885 Info.FFDiag(CallLoc, diag::note_constexpr_invalid_inhctor, 1) 5886 << CD->getInheritedConstructor().getConstructor()->getParent(); 5887 else 5888 Info.FFDiag(CallLoc, diag::note_constexpr_invalid_function, 1) 5889 << DiagDecl->isConstexpr() << (bool)CD << DiagDecl; 5890 Info.Note(DiagDecl->getLocation(), diag::note_declared_at); 5891 } else { 5892 Info.FFDiag(CallLoc, diag::note_invalid_subexpr_in_const_expr); 5893 } 5894 return false; 5895 } 5896 5897 namespace { 5898 struct CheckDynamicTypeHandler { 5899 AccessKinds AccessKind; 5900 typedef bool result_type; 5901 bool failed() { return false; } 5902 bool found(APValue &Subobj, QualType SubobjType) { return true; } 5903 bool found(APSInt &Value, QualType SubobjType) { return true; } 5904 bool found(APFloat &Value, QualType SubobjType) { return true; } 5905 }; 5906 } // end anonymous namespace 5907 5908 /// Check that we can access the notional vptr of an object / determine its 5909 /// dynamic type. 5910 static bool checkDynamicType(EvalInfo &Info, const Expr *E, const LValue &This, 5911 AccessKinds AK, bool Polymorphic) { 5912 if (This.Designator.Invalid) 5913 return false; 5914 5915 CompleteObject Obj = findCompleteObject(Info, E, AK, This, QualType()); 5916 5917 if (!Obj) 5918 return false; 5919 5920 if (!Obj.Value) { 5921 // The object is not usable in constant expressions, so we can't inspect 5922 // its value to see if it's in-lifetime or what the active union members 5923 // are. We can still check for a one-past-the-end lvalue. 5924 if (This.Designator.isOnePastTheEnd() || 5925 This.Designator.isMostDerivedAnUnsizedArray()) { 5926 Info.FFDiag(E, This.Designator.isOnePastTheEnd() 5927 ? diag::note_constexpr_access_past_end 5928 : diag::note_constexpr_access_unsized_array) 5929 << AK; 5930 return false; 5931 } else if (Polymorphic) { 5932 // Conservatively refuse to perform a polymorphic operation if we would 5933 // not be able to read a notional 'vptr' value. 5934 APValue Val; 5935 This.moveInto(Val); 5936 QualType StarThisType = 5937 Info.Ctx.getLValueReferenceType(This.Designator.getType(Info.Ctx)); 5938 Info.FFDiag(E, diag::note_constexpr_polymorphic_unknown_dynamic_type) 5939 << AK << Val.getAsString(Info.Ctx, StarThisType); 5940 return false; 5941 } 5942 return true; 5943 } 5944 5945 CheckDynamicTypeHandler Handler{AK}; 5946 return Obj && findSubobject(Info, E, Obj, This.Designator, Handler); 5947 } 5948 5949 /// Check that the pointee of the 'this' pointer in a member function call is 5950 /// either within its lifetime or in its period of construction or destruction. 5951 static bool 5952 checkNonVirtualMemberCallThisPointer(EvalInfo &Info, const Expr *E, 5953 const LValue &This, 5954 const CXXMethodDecl *NamedMember) { 5955 return checkDynamicType( 5956 Info, E, This, 5957 isa<CXXDestructorDecl>(NamedMember) ? AK_Destroy : AK_MemberCall, false); 5958 } 5959 5960 struct DynamicType { 5961 /// The dynamic class type of the object. 5962 const CXXRecordDecl *Type; 5963 /// The corresponding path length in the lvalue. 5964 unsigned PathLength; 5965 }; 5966 5967 static const CXXRecordDecl *getBaseClassType(SubobjectDesignator &Designator, 5968 unsigned PathLength) { 5969 assert(PathLength >= Designator.MostDerivedPathLength && PathLength <= 5970 Designator.Entries.size() && "invalid path length"); 5971 return (PathLength == Designator.MostDerivedPathLength) 5972 ? Designator.MostDerivedType->getAsCXXRecordDecl() 5973 : getAsBaseClass(Designator.Entries[PathLength - 1]); 5974 } 5975 5976 /// Determine the dynamic type of an object. 5977 static std::optional<DynamicType> ComputeDynamicType(EvalInfo &Info, 5978 const Expr *E, 5979 LValue &This, 5980 AccessKinds AK) { 5981 // If we don't have an lvalue denoting an object of class type, there is no 5982 // meaningful dynamic type. (We consider objects of non-class type to have no 5983 // dynamic type.) 5984 if (!checkDynamicType(Info, E, This, AK, true)) 5985 return std::nullopt; 5986 5987 // Refuse to compute a dynamic type in the presence of virtual bases. This 5988 // shouldn't happen other than in constant-folding situations, since literal 5989 // types can't have virtual bases. 5990 // 5991 // Note that consumers of DynamicType assume that the type has no virtual 5992 // bases, and will need modifications if this restriction is relaxed. 5993 const CXXRecordDecl *Class = 5994 This.Designator.MostDerivedType->getAsCXXRecordDecl(); 5995 if (!Class || Class->getNumVBases()) { 5996 Info.FFDiag(E); 5997 return std::nullopt; 5998 } 5999 6000 // FIXME: For very deep class hierarchies, it might be beneficial to use a 6001 // binary search here instead. But the overwhelmingly common case is that 6002 // we're not in the middle of a constructor, so it probably doesn't matter 6003 // in practice. 6004 ArrayRef<APValue::LValuePathEntry> Path = This.Designator.Entries; 6005 for (unsigned PathLength = This.Designator.MostDerivedPathLength; 6006 PathLength <= Path.size(); ++PathLength) { 6007 switch (Info.isEvaluatingCtorDtor(This.getLValueBase(), 6008 Path.slice(0, PathLength))) { 6009 case ConstructionPhase::Bases: 6010 case ConstructionPhase::DestroyingBases: 6011 // We're constructing or destroying a base class. This is not the dynamic 6012 // type. 6013 break; 6014 6015 case ConstructionPhase::None: 6016 case ConstructionPhase::AfterBases: 6017 case ConstructionPhase::AfterFields: 6018 case ConstructionPhase::Destroying: 6019 // We've finished constructing the base classes and not yet started 6020 // destroying them again, so this is the dynamic type. 6021 return DynamicType{getBaseClassType(This.Designator, PathLength), 6022 PathLength}; 6023 } 6024 } 6025 6026 // CWG issue 1517: we're constructing a base class of the object described by 6027 // 'This', so that object has not yet begun its period of construction and 6028 // any polymorphic operation on it results in undefined behavior. 6029 Info.FFDiag(E); 6030 return std::nullopt; 6031 } 6032 6033 /// Perform virtual dispatch. 6034 static const CXXMethodDecl *HandleVirtualDispatch( 6035 EvalInfo &Info, const Expr *E, LValue &This, const CXXMethodDecl *Found, 6036 llvm::SmallVectorImpl<QualType> &CovariantAdjustmentPath) { 6037 std::optional<DynamicType> DynType = ComputeDynamicType( 6038 Info, E, This, 6039 isa<CXXDestructorDecl>(Found) ? AK_Destroy : AK_MemberCall); 6040 if (!DynType) 6041 return nullptr; 6042 6043 // Find the final overrider. It must be declared in one of the classes on the 6044 // path from the dynamic type to the static type. 6045 // FIXME: If we ever allow literal types to have virtual base classes, that 6046 // won't be true. 6047 const CXXMethodDecl *Callee = Found; 6048 unsigned PathLength = DynType->PathLength; 6049 for (/**/; PathLength <= This.Designator.Entries.size(); ++PathLength) { 6050 const CXXRecordDecl *Class = getBaseClassType(This.Designator, PathLength); 6051 const CXXMethodDecl *Overrider = 6052 Found->getCorrespondingMethodDeclaredInClass(Class, false); 6053 if (Overrider) { 6054 Callee = Overrider; 6055 break; 6056 } 6057 } 6058 6059 // C++2a [class.abstract]p6: 6060 // the effect of making a virtual call to a pure virtual function [...] is 6061 // undefined 6062 if (Callee->isPureVirtual()) { 6063 Info.FFDiag(E, diag::note_constexpr_pure_virtual_call, 1) << Callee; 6064 Info.Note(Callee->getLocation(), diag::note_declared_at); 6065 return nullptr; 6066 } 6067 6068 // If necessary, walk the rest of the path to determine the sequence of 6069 // covariant adjustment steps to apply. 6070 if (!Info.Ctx.hasSameUnqualifiedType(Callee->getReturnType(), 6071 Found->getReturnType())) { 6072 CovariantAdjustmentPath.push_back(Callee->getReturnType()); 6073 for (unsigned CovariantPathLength = PathLength + 1; 6074 CovariantPathLength != This.Designator.Entries.size(); 6075 ++CovariantPathLength) { 6076 const CXXRecordDecl *NextClass = 6077 getBaseClassType(This.Designator, CovariantPathLength); 6078 const CXXMethodDecl *Next = 6079 Found->getCorrespondingMethodDeclaredInClass(NextClass, false); 6080 if (Next && !Info.Ctx.hasSameUnqualifiedType( 6081 Next->getReturnType(), CovariantAdjustmentPath.back())) 6082 CovariantAdjustmentPath.push_back(Next->getReturnType()); 6083 } 6084 if (!Info.Ctx.hasSameUnqualifiedType(Found->getReturnType(), 6085 CovariantAdjustmentPath.back())) 6086 CovariantAdjustmentPath.push_back(Found->getReturnType()); 6087 } 6088 6089 // Perform 'this' adjustment. 6090 if (!CastToDerivedClass(Info, E, This, Callee->getParent(), PathLength)) 6091 return nullptr; 6092 6093 return Callee; 6094 } 6095 6096 /// Perform the adjustment from a value returned by a virtual function to 6097 /// a value of the statically expected type, which may be a pointer or 6098 /// reference to a base class of the returned type. 6099 static bool HandleCovariantReturnAdjustment(EvalInfo &Info, const Expr *E, 6100 APValue &Result, 6101 ArrayRef<QualType> Path) { 6102 assert(Result.isLValue() && 6103 "unexpected kind of APValue for covariant return"); 6104 if (Result.isNullPointer()) 6105 return true; 6106 6107 LValue LVal; 6108 LVal.setFrom(Info.Ctx, Result); 6109 6110 const CXXRecordDecl *OldClass = Path[0]->getPointeeCXXRecordDecl(); 6111 for (unsigned I = 1; I != Path.size(); ++I) { 6112 const CXXRecordDecl *NewClass = Path[I]->getPointeeCXXRecordDecl(); 6113 assert(OldClass && NewClass && "unexpected kind of covariant return"); 6114 if (OldClass != NewClass && 6115 !CastToBaseClass(Info, E, LVal, OldClass, NewClass)) 6116 return false; 6117 OldClass = NewClass; 6118 } 6119 6120 LVal.moveInto(Result); 6121 return true; 6122 } 6123 6124 /// Determine whether \p Base, which is known to be a direct base class of 6125 /// \p Derived, is a public base class. 6126 static bool isBaseClassPublic(const CXXRecordDecl *Derived, 6127 const CXXRecordDecl *Base) { 6128 for (const CXXBaseSpecifier &BaseSpec : Derived->bases()) { 6129 auto *BaseClass = BaseSpec.getType()->getAsCXXRecordDecl(); 6130 if (BaseClass && declaresSameEntity(BaseClass, Base)) 6131 return BaseSpec.getAccessSpecifier() == AS_public; 6132 } 6133 llvm_unreachable("Base is not a direct base of Derived"); 6134 } 6135 6136 /// Apply the given dynamic cast operation on the provided lvalue. 6137 /// 6138 /// This implements the hard case of dynamic_cast, requiring a "runtime check" 6139 /// to find a suitable target subobject. 6140 static bool HandleDynamicCast(EvalInfo &Info, const ExplicitCastExpr *E, 6141 LValue &Ptr) { 6142 // We can't do anything with a non-symbolic pointer value. 6143 SubobjectDesignator &D = Ptr.Designator; 6144 if (D.Invalid) 6145 return false; 6146 6147 // C++ [expr.dynamic.cast]p6: 6148 // If v is a null pointer value, the result is a null pointer value. 6149 if (Ptr.isNullPointer() && !E->isGLValue()) 6150 return true; 6151 6152 // For all the other cases, we need the pointer to point to an object within 6153 // its lifetime / period of construction / destruction, and we need to know 6154 // its dynamic type. 6155 std::optional<DynamicType> DynType = 6156 ComputeDynamicType(Info, E, Ptr, AK_DynamicCast); 6157 if (!DynType) 6158 return false; 6159 6160 // C++ [expr.dynamic.cast]p7: 6161 // If T is "pointer to cv void", then the result is a pointer to the most 6162 // derived object 6163 if (E->getType()->isVoidPointerType()) 6164 return CastToDerivedClass(Info, E, Ptr, DynType->Type, DynType->PathLength); 6165 6166 const CXXRecordDecl *C = E->getTypeAsWritten()->getPointeeCXXRecordDecl(); 6167 assert(C && "dynamic_cast target is not void pointer nor class"); 6168 CanQualType CQT = Info.Ctx.getCanonicalType(Info.Ctx.getRecordType(C)); 6169 6170 auto RuntimeCheckFailed = [&] (CXXBasePaths *Paths) { 6171 // C++ [expr.dynamic.cast]p9: 6172 if (!E->isGLValue()) { 6173 // The value of a failed cast to pointer type is the null pointer value 6174 // of the required result type. 6175 Ptr.setNull(Info.Ctx, E->getType()); 6176 return true; 6177 } 6178 6179 // A failed cast to reference type throws [...] std::bad_cast. 6180 unsigned DiagKind; 6181 if (!Paths && (declaresSameEntity(DynType->Type, C) || 6182 DynType->Type->isDerivedFrom(C))) 6183 DiagKind = 0; 6184 else if (!Paths || Paths->begin() == Paths->end()) 6185 DiagKind = 1; 6186 else if (Paths->isAmbiguous(CQT)) 6187 DiagKind = 2; 6188 else { 6189 assert(Paths->front().Access != AS_public && "why did the cast fail?"); 6190 DiagKind = 3; 6191 } 6192 Info.FFDiag(E, diag::note_constexpr_dynamic_cast_to_reference_failed) 6193 << DiagKind << Ptr.Designator.getType(Info.Ctx) 6194 << Info.Ctx.getRecordType(DynType->Type) 6195 << E->getType().getUnqualifiedType(); 6196 return false; 6197 }; 6198 6199 // Runtime check, phase 1: 6200 // Walk from the base subobject towards the derived object looking for the 6201 // target type. 6202 for (int PathLength = Ptr.Designator.Entries.size(); 6203 PathLength >= (int)DynType->PathLength; --PathLength) { 6204 const CXXRecordDecl *Class = getBaseClassType(Ptr.Designator, PathLength); 6205 if (declaresSameEntity(Class, C)) 6206 return CastToDerivedClass(Info, E, Ptr, Class, PathLength); 6207 // We can only walk across public inheritance edges. 6208 if (PathLength > (int)DynType->PathLength && 6209 !isBaseClassPublic(getBaseClassType(Ptr.Designator, PathLength - 1), 6210 Class)) 6211 return RuntimeCheckFailed(nullptr); 6212 } 6213 6214 // Runtime check, phase 2: 6215 // Search the dynamic type for an unambiguous public base of type C. 6216 CXXBasePaths Paths(/*FindAmbiguities=*/true, 6217 /*RecordPaths=*/true, /*DetectVirtual=*/false); 6218 if (DynType->Type->isDerivedFrom(C, Paths) && !Paths.isAmbiguous(CQT) && 6219 Paths.front().Access == AS_public) { 6220 // Downcast to the dynamic type... 6221 if (!CastToDerivedClass(Info, E, Ptr, DynType->Type, DynType->PathLength)) 6222 return false; 6223 // ... then upcast to the chosen base class subobject. 6224 for (CXXBasePathElement &Elem : Paths.front()) 6225 if (!HandleLValueBase(Info, E, Ptr, Elem.Class, Elem.Base)) 6226 return false; 6227 return true; 6228 } 6229 6230 // Otherwise, the runtime check fails. 6231 return RuntimeCheckFailed(&Paths); 6232 } 6233 6234 namespace { 6235 struct StartLifetimeOfUnionMemberHandler { 6236 EvalInfo &Info; 6237 const Expr *LHSExpr; 6238 const FieldDecl *Field; 6239 bool DuringInit; 6240 bool Failed = false; 6241 static const AccessKinds AccessKind = AK_Assign; 6242 6243 typedef bool result_type; 6244 bool failed() { return Failed; } 6245 bool found(APValue &Subobj, QualType SubobjType) { 6246 // We are supposed to perform no initialization but begin the lifetime of 6247 // the object. We interpret that as meaning to do what default 6248 // initialization of the object would do if all constructors involved were 6249 // trivial: 6250 // * All base, non-variant member, and array element subobjects' lifetimes 6251 // begin 6252 // * No variant members' lifetimes begin 6253 // * All scalar subobjects whose lifetimes begin have indeterminate values 6254 assert(SubobjType->isUnionType()); 6255 if (declaresSameEntity(Subobj.getUnionField(), Field)) { 6256 // This union member is already active. If it's also in-lifetime, there's 6257 // nothing to do. 6258 if (Subobj.getUnionValue().hasValue()) 6259 return true; 6260 } else if (DuringInit) { 6261 // We're currently in the process of initializing a different union 6262 // member. If we carried on, that initialization would attempt to 6263 // store to an inactive union member, resulting in undefined behavior. 6264 Info.FFDiag(LHSExpr, 6265 diag::note_constexpr_union_member_change_during_init); 6266 return false; 6267 } 6268 APValue Result; 6269 Failed = !handleDefaultInitValue(Field->getType(), Result); 6270 Subobj.setUnion(Field, Result); 6271 return true; 6272 } 6273 bool found(APSInt &Value, QualType SubobjType) { 6274 llvm_unreachable("wrong value kind for union object"); 6275 } 6276 bool found(APFloat &Value, QualType SubobjType) { 6277 llvm_unreachable("wrong value kind for union object"); 6278 } 6279 }; 6280 } // end anonymous namespace 6281 6282 const AccessKinds StartLifetimeOfUnionMemberHandler::AccessKind; 6283 6284 /// Handle a builtin simple-assignment or a call to a trivial assignment 6285 /// operator whose left-hand side might involve a union member access. If it 6286 /// does, implicitly start the lifetime of any accessed union elements per 6287 /// C++20 [class.union]5. 6288 static bool MaybeHandleUnionActiveMemberChange(EvalInfo &Info, 6289 const Expr *LHSExpr, 6290 const LValue &LHS) { 6291 if (LHS.InvalidBase || LHS.Designator.Invalid) 6292 return false; 6293 6294 llvm::SmallVector<std::pair<unsigned, const FieldDecl*>, 4> UnionPathLengths; 6295 // C++ [class.union]p5: 6296 // define the set S(E) of subexpressions of E as follows: 6297 unsigned PathLength = LHS.Designator.Entries.size(); 6298 for (const Expr *E = LHSExpr; E != nullptr;) { 6299 // -- If E is of the form A.B, S(E) contains the elements of S(A)... 6300 if (auto *ME = dyn_cast<MemberExpr>(E)) { 6301 auto *FD = dyn_cast<FieldDecl>(ME->getMemberDecl()); 6302 // Note that we can't implicitly start the lifetime of a reference, 6303 // so we don't need to proceed any further if we reach one. 6304 if (!FD || FD->getType()->isReferenceType()) 6305 break; 6306 6307 // ... and also contains A.B if B names a union member ... 6308 if (FD->getParent()->isUnion()) { 6309 // ... of a non-class, non-array type, or of a class type with a 6310 // trivial default constructor that is not deleted, or an array of 6311 // such types. 6312 auto *RD = 6313 FD->getType()->getBaseElementTypeUnsafe()->getAsCXXRecordDecl(); 6314 if (!RD || RD->hasTrivialDefaultConstructor()) 6315 UnionPathLengths.push_back({PathLength - 1, FD}); 6316 } 6317 6318 E = ME->getBase(); 6319 --PathLength; 6320 assert(declaresSameEntity(FD, 6321 LHS.Designator.Entries[PathLength] 6322 .getAsBaseOrMember().getPointer())); 6323 6324 // -- If E is of the form A[B] and is interpreted as a built-in array 6325 // subscripting operator, S(E) is [S(the array operand, if any)]. 6326 } else if (auto *ASE = dyn_cast<ArraySubscriptExpr>(E)) { 6327 // Step over an ArrayToPointerDecay implicit cast. 6328 auto *Base = ASE->getBase()->IgnoreImplicit(); 6329 if (!Base->getType()->isArrayType()) 6330 break; 6331 6332 E = Base; 6333 --PathLength; 6334 6335 } else if (auto *ICE = dyn_cast<ImplicitCastExpr>(E)) { 6336 // Step over a derived-to-base conversion. 6337 E = ICE->getSubExpr(); 6338 if (ICE->getCastKind() == CK_NoOp) 6339 continue; 6340 if (ICE->getCastKind() != CK_DerivedToBase && 6341 ICE->getCastKind() != CK_UncheckedDerivedToBase) 6342 break; 6343 // Walk path backwards as we walk up from the base to the derived class. 6344 for (const CXXBaseSpecifier *Elt : llvm::reverse(ICE->path())) { 6345 if (Elt->isVirtual()) { 6346 // A class with virtual base classes never has a trivial default 6347 // constructor, so S(E) is empty in this case. 6348 E = nullptr; 6349 break; 6350 } 6351 6352 --PathLength; 6353 assert(declaresSameEntity(Elt->getType()->getAsCXXRecordDecl(), 6354 LHS.Designator.Entries[PathLength] 6355 .getAsBaseOrMember().getPointer())); 6356 } 6357 6358 // -- Otherwise, S(E) is empty. 6359 } else { 6360 break; 6361 } 6362 } 6363 6364 // Common case: no unions' lifetimes are started. 6365 if (UnionPathLengths.empty()) 6366 return true; 6367 6368 // if modification of X [would access an inactive union member], an object 6369 // of the type of X is implicitly created 6370 CompleteObject Obj = 6371 findCompleteObject(Info, LHSExpr, AK_Assign, LHS, LHSExpr->getType()); 6372 if (!Obj) 6373 return false; 6374 for (std::pair<unsigned, const FieldDecl *> LengthAndField : 6375 llvm::reverse(UnionPathLengths)) { 6376 // Form a designator for the union object. 6377 SubobjectDesignator D = LHS.Designator; 6378 D.truncate(Info.Ctx, LHS.Base, LengthAndField.first); 6379 6380 bool DuringInit = Info.isEvaluatingCtorDtor(LHS.Base, D.Entries) == 6381 ConstructionPhase::AfterBases; 6382 StartLifetimeOfUnionMemberHandler StartLifetime{ 6383 Info, LHSExpr, LengthAndField.second, DuringInit}; 6384 if (!findSubobject(Info, LHSExpr, Obj, D, StartLifetime)) 6385 return false; 6386 } 6387 6388 return true; 6389 } 6390 6391 static bool EvaluateCallArg(const ParmVarDecl *PVD, const Expr *Arg, 6392 CallRef Call, EvalInfo &Info, 6393 bool NonNull = false) { 6394 LValue LV; 6395 // Create the parameter slot and register its destruction. For a vararg 6396 // argument, create a temporary. 6397 // FIXME: For calling conventions that destroy parameters in the callee, 6398 // should we consider performing destruction when the function returns 6399 // instead? 6400 APValue &V = PVD ? Info.CurrentCall->createParam(Call, PVD, LV) 6401 : Info.CurrentCall->createTemporary(Arg, Arg->getType(), 6402 ScopeKind::Call, LV); 6403 if (!EvaluateInPlace(V, Info, LV, Arg)) 6404 return false; 6405 6406 // Passing a null pointer to an __attribute__((nonnull)) parameter results in 6407 // undefined behavior, so is non-constant. 6408 if (NonNull && V.isLValue() && V.isNullPointer()) { 6409 Info.CCEDiag(Arg, diag::note_non_null_attribute_failed); 6410 return false; 6411 } 6412 6413 return true; 6414 } 6415 6416 /// Evaluate the arguments to a function call. 6417 static bool EvaluateArgs(ArrayRef<const Expr *> Args, CallRef Call, 6418 EvalInfo &Info, const FunctionDecl *Callee, 6419 bool RightToLeft = false) { 6420 bool Success = true; 6421 llvm::SmallBitVector ForbiddenNullArgs; 6422 if (Callee->hasAttr<NonNullAttr>()) { 6423 ForbiddenNullArgs.resize(Args.size()); 6424 for (const auto *Attr : Callee->specific_attrs<NonNullAttr>()) { 6425 if (!Attr->args_size()) { 6426 ForbiddenNullArgs.set(); 6427 break; 6428 } else 6429 for (auto Idx : Attr->args()) { 6430 unsigned ASTIdx = Idx.getASTIndex(); 6431 if (ASTIdx >= Args.size()) 6432 continue; 6433 ForbiddenNullArgs[ASTIdx] = true; 6434 } 6435 } 6436 } 6437 for (unsigned I = 0; I < Args.size(); I++) { 6438 unsigned Idx = RightToLeft ? Args.size() - I - 1 : I; 6439 const ParmVarDecl *PVD = 6440 Idx < Callee->getNumParams() ? Callee->getParamDecl(Idx) : nullptr; 6441 bool NonNull = !ForbiddenNullArgs.empty() && ForbiddenNullArgs[Idx]; 6442 if (!EvaluateCallArg(PVD, Args[Idx], Call, Info, NonNull)) { 6443 // If we're checking for a potential constant expression, evaluate all 6444 // initializers even if some of them fail. 6445 if (!Info.noteFailure()) 6446 return false; 6447 Success = false; 6448 } 6449 } 6450 return Success; 6451 } 6452 6453 /// Perform a trivial copy from Param, which is the parameter of a copy or move 6454 /// constructor or assignment operator. 6455 static bool handleTrivialCopy(EvalInfo &Info, const ParmVarDecl *Param, 6456 const Expr *E, APValue &Result, 6457 bool CopyObjectRepresentation) { 6458 // Find the reference argument. 6459 CallStackFrame *Frame = Info.CurrentCall; 6460 APValue *RefValue = Info.getParamSlot(Frame->Arguments, Param); 6461 if (!RefValue) { 6462 Info.FFDiag(E); 6463 return false; 6464 } 6465 6466 // Copy out the contents of the RHS object. 6467 LValue RefLValue; 6468 RefLValue.setFrom(Info.Ctx, *RefValue); 6469 return handleLValueToRValueConversion( 6470 Info, E, Param->getType().getNonReferenceType(), RefLValue, Result, 6471 CopyObjectRepresentation); 6472 } 6473 6474 /// Evaluate a function call. 6475 static bool HandleFunctionCall(SourceLocation CallLoc, 6476 const FunctionDecl *Callee, const LValue *This, 6477 const Expr *E, ArrayRef<const Expr *> Args, 6478 CallRef Call, const Stmt *Body, EvalInfo &Info, 6479 APValue &Result, const LValue *ResultSlot) { 6480 if (!Info.CheckCallLimit(CallLoc)) 6481 return false; 6482 6483 CallStackFrame Frame(Info, E->getSourceRange(), Callee, This, E, Call); 6484 6485 // For a trivial copy or move assignment, perform an APValue copy. This is 6486 // essential for unions, where the operations performed by the assignment 6487 // operator cannot be represented as statements. 6488 // 6489 // Skip this for non-union classes with no fields; in that case, the defaulted 6490 // copy/move does not actually read the object. 6491 const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(Callee); 6492 if (MD && MD->isDefaulted() && 6493 (MD->getParent()->isUnion() || 6494 (MD->isTrivial() && 6495 isReadByLvalueToRvalueConversion(MD->getParent())))) { 6496 assert(This && 6497 (MD->isCopyAssignmentOperator() || MD->isMoveAssignmentOperator())); 6498 APValue RHSValue; 6499 if (!handleTrivialCopy(Info, MD->getParamDecl(0), Args[0], RHSValue, 6500 MD->getParent()->isUnion())) 6501 return false; 6502 if (!handleAssignment(Info, Args[0], *This, MD->getThisType(), 6503 RHSValue)) 6504 return false; 6505 This->moveInto(Result); 6506 return true; 6507 } else if (MD && isLambdaCallOperator(MD)) { 6508 // We're in a lambda; determine the lambda capture field maps unless we're 6509 // just constexpr checking a lambda's call operator. constexpr checking is 6510 // done before the captures have been added to the closure object (unless 6511 // we're inferring constexpr-ness), so we don't have access to them in this 6512 // case. But since we don't need the captures to constexpr check, we can 6513 // just ignore them. 6514 if (!Info.checkingPotentialConstantExpression()) 6515 MD->getParent()->getCaptureFields(Frame.LambdaCaptureFields, 6516 Frame.LambdaThisCaptureField); 6517 } 6518 6519 StmtResult Ret = {Result, ResultSlot}; 6520 EvalStmtResult ESR = EvaluateStmt(Ret, Info, Body); 6521 if (ESR == ESR_Succeeded) { 6522 if (Callee->getReturnType()->isVoidType()) 6523 return true; 6524 Info.FFDiag(Callee->getEndLoc(), diag::note_constexpr_no_return); 6525 } 6526 return ESR == ESR_Returned; 6527 } 6528 6529 /// Evaluate a constructor call. 6530 static bool HandleConstructorCall(const Expr *E, const LValue &This, 6531 CallRef Call, 6532 const CXXConstructorDecl *Definition, 6533 EvalInfo &Info, APValue &Result) { 6534 SourceLocation CallLoc = E->getExprLoc(); 6535 if (!Info.CheckCallLimit(CallLoc)) 6536 return false; 6537 6538 const CXXRecordDecl *RD = Definition->getParent(); 6539 if (RD->getNumVBases()) { 6540 Info.FFDiag(CallLoc, diag::note_constexpr_virtual_base) << RD; 6541 return false; 6542 } 6543 6544 EvalInfo::EvaluatingConstructorRAII EvalObj( 6545 Info, 6546 ObjectUnderConstruction{This.getLValueBase(), This.Designator.Entries}, 6547 RD->getNumBases()); 6548 CallStackFrame Frame(Info, E->getSourceRange(), Definition, &This, E, Call); 6549 6550 // FIXME: Creating an APValue just to hold a nonexistent return value is 6551 // wasteful. 6552 APValue RetVal; 6553 StmtResult Ret = {RetVal, nullptr}; 6554 6555 // If it's a delegating constructor, delegate. 6556 if (Definition->isDelegatingConstructor()) { 6557 CXXConstructorDecl::init_const_iterator I = Definition->init_begin(); 6558 if ((*I)->getInit()->isValueDependent()) { 6559 if (!EvaluateDependentExpr((*I)->getInit(), Info)) 6560 return false; 6561 } else { 6562 FullExpressionRAII InitScope(Info); 6563 if (!EvaluateInPlace(Result, Info, This, (*I)->getInit()) || 6564 !InitScope.destroy()) 6565 return false; 6566 } 6567 return EvaluateStmt(Ret, Info, Definition->getBody()) != ESR_Failed; 6568 } 6569 6570 // For a trivial copy or move constructor, perform an APValue copy. This is 6571 // essential for unions (or classes with anonymous union members), where the 6572 // operations performed by the constructor cannot be represented by 6573 // ctor-initializers. 6574 // 6575 // Skip this for empty non-union classes; we should not perform an 6576 // lvalue-to-rvalue conversion on them because their copy constructor does not 6577 // actually read them. 6578 if (Definition->isDefaulted() && Definition->isCopyOrMoveConstructor() && 6579 (Definition->getParent()->isUnion() || 6580 (Definition->isTrivial() && 6581 isReadByLvalueToRvalueConversion(Definition->getParent())))) { 6582 return handleTrivialCopy(Info, Definition->getParamDecl(0), E, Result, 6583 Definition->getParent()->isUnion()); 6584 } 6585 6586 // Reserve space for the struct members. 6587 if (!Result.hasValue()) { 6588 if (!RD->isUnion()) 6589 Result = APValue(APValue::UninitStruct(), RD->getNumBases(), 6590 std::distance(RD->field_begin(), RD->field_end())); 6591 else 6592 // A union starts with no active member. 6593 Result = APValue((const FieldDecl*)nullptr); 6594 } 6595 6596 if (RD->isInvalidDecl()) return false; 6597 const ASTRecordLayout &Layout = Info.Ctx.getASTRecordLayout(RD); 6598 6599 // A scope for temporaries lifetime-extended by reference members. 6600 BlockScopeRAII LifetimeExtendedScope(Info); 6601 6602 bool Success = true; 6603 unsigned BasesSeen = 0; 6604 #ifndef NDEBUG 6605 CXXRecordDecl::base_class_const_iterator BaseIt = RD->bases_begin(); 6606 #endif 6607 CXXRecordDecl::field_iterator FieldIt = RD->field_begin(); 6608 auto SkipToField = [&](FieldDecl *FD, bool Indirect) { 6609 // We might be initializing the same field again if this is an indirect 6610 // field initialization. 6611 if (FieldIt == RD->field_end() || 6612 FieldIt->getFieldIndex() > FD->getFieldIndex()) { 6613 assert(Indirect && "fields out of order?"); 6614 return; 6615 } 6616 6617 // Default-initialize any fields with no explicit initializer. 6618 for (; !declaresSameEntity(*FieldIt, FD); ++FieldIt) { 6619 assert(FieldIt != RD->field_end() && "missing field?"); 6620 if (!FieldIt->isUnnamedBitField()) 6621 Success &= handleDefaultInitValue( 6622 FieldIt->getType(), 6623 Result.getStructField(FieldIt->getFieldIndex())); 6624 } 6625 ++FieldIt; 6626 }; 6627 for (const auto *I : Definition->inits()) { 6628 LValue Subobject = This; 6629 LValue SubobjectParent = This; 6630 APValue *Value = &Result; 6631 6632 // Determine the subobject to initialize. 6633 FieldDecl *FD = nullptr; 6634 if (I->isBaseInitializer()) { 6635 QualType BaseType(I->getBaseClass(), 0); 6636 #ifndef NDEBUG 6637 // Non-virtual base classes are initialized in the order in the class 6638 // definition. We have already checked for virtual base classes. 6639 assert(!BaseIt->isVirtual() && "virtual base for literal type"); 6640 assert(Info.Ctx.hasSameUnqualifiedType(BaseIt->getType(), BaseType) && 6641 "base class initializers not in expected order"); 6642 ++BaseIt; 6643 #endif 6644 if (!HandleLValueDirectBase(Info, I->getInit(), Subobject, RD, 6645 BaseType->getAsCXXRecordDecl(), &Layout)) 6646 return false; 6647 Value = &Result.getStructBase(BasesSeen++); 6648 } else if ((FD = I->getMember())) { 6649 if (!HandleLValueMember(Info, I->getInit(), Subobject, FD, &Layout)) 6650 return false; 6651 if (RD->isUnion()) { 6652 Result = APValue(FD); 6653 Value = &Result.getUnionValue(); 6654 } else { 6655 SkipToField(FD, false); 6656 Value = &Result.getStructField(FD->getFieldIndex()); 6657 } 6658 } else if (IndirectFieldDecl *IFD = I->getIndirectMember()) { 6659 // Walk the indirect field decl's chain to find the object to initialize, 6660 // and make sure we've initialized every step along it. 6661 auto IndirectFieldChain = IFD->chain(); 6662 for (auto *C : IndirectFieldChain) { 6663 FD = cast<FieldDecl>(C); 6664 CXXRecordDecl *CD = cast<CXXRecordDecl>(FD->getParent()); 6665 // Switch the union field if it differs. This happens if we had 6666 // preceding zero-initialization, and we're now initializing a union 6667 // subobject other than the first. 6668 // FIXME: In this case, the values of the other subobjects are 6669 // specified, since zero-initialization sets all padding bits to zero. 6670 if (!Value->hasValue() || 6671 (Value->isUnion() && Value->getUnionField() != FD)) { 6672 if (CD->isUnion()) 6673 *Value = APValue(FD); 6674 else 6675 // FIXME: This immediately starts the lifetime of all members of 6676 // an anonymous struct. It would be preferable to strictly start 6677 // member lifetime in initialization order. 6678 Success &= 6679 handleDefaultInitValue(Info.Ctx.getRecordType(CD), *Value); 6680 } 6681 // Store Subobject as its parent before updating it for the last element 6682 // in the chain. 6683 if (C == IndirectFieldChain.back()) 6684 SubobjectParent = Subobject; 6685 if (!HandleLValueMember(Info, I->getInit(), Subobject, FD)) 6686 return false; 6687 if (CD->isUnion()) 6688 Value = &Value->getUnionValue(); 6689 else { 6690 if (C == IndirectFieldChain.front() && !RD->isUnion()) 6691 SkipToField(FD, true); 6692 Value = &Value->getStructField(FD->getFieldIndex()); 6693 } 6694 } 6695 } else { 6696 llvm_unreachable("unknown base initializer kind"); 6697 } 6698 6699 // Need to override This for implicit field initializers as in this case 6700 // This refers to innermost anonymous struct/union containing initializer, 6701 // not to currently constructed class. 6702 const Expr *Init = I->getInit(); 6703 if (Init->isValueDependent()) { 6704 if (!EvaluateDependentExpr(Init, Info)) 6705 return false; 6706 } else { 6707 ThisOverrideRAII ThisOverride(*Info.CurrentCall, &SubobjectParent, 6708 isa<CXXDefaultInitExpr>(Init)); 6709 FullExpressionRAII InitScope(Info); 6710 if (!EvaluateInPlace(*Value, Info, Subobject, Init) || 6711 (FD && FD->isBitField() && 6712 !truncateBitfieldValue(Info, Init, *Value, FD))) { 6713 // If we're checking for a potential constant expression, evaluate all 6714 // initializers even if some of them fail. 6715 if (!Info.noteFailure()) 6716 return false; 6717 Success = false; 6718 } 6719 } 6720 6721 // This is the point at which the dynamic type of the object becomes this 6722 // class type. 6723 if (I->isBaseInitializer() && BasesSeen == RD->getNumBases()) 6724 EvalObj.finishedConstructingBases(); 6725 } 6726 6727 // Default-initialize any remaining fields. 6728 if (!RD->isUnion()) { 6729 for (; FieldIt != RD->field_end(); ++FieldIt) { 6730 if (!FieldIt->isUnnamedBitField()) 6731 Success &= handleDefaultInitValue( 6732 FieldIt->getType(), 6733 Result.getStructField(FieldIt->getFieldIndex())); 6734 } 6735 } 6736 6737 EvalObj.finishedConstructingFields(); 6738 6739 return Success && 6740 EvaluateStmt(Ret, Info, Definition->getBody()) != ESR_Failed && 6741 LifetimeExtendedScope.destroy(); 6742 } 6743 6744 static bool HandleConstructorCall(const Expr *E, const LValue &This, 6745 ArrayRef<const Expr*> Args, 6746 const CXXConstructorDecl *Definition, 6747 EvalInfo &Info, APValue &Result) { 6748 CallScopeRAII CallScope(Info); 6749 CallRef Call = Info.CurrentCall->createCall(Definition); 6750 if (!EvaluateArgs(Args, Call, Info, Definition)) 6751 return false; 6752 6753 return HandleConstructorCall(E, This, Call, Definition, Info, Result) && 6754 CallScope.destroy(); 6755 } 6756 6757 static bool HandleDestructionImpl(EvalInfo &Info, SourceRange CallRange, 6758 const LValue &This, APValue &Value, 6759 QualType T) { 6760 // Objects can only be destroyed while they're within their lifetimes. 6761 // FIXME: We have no representation for whether an object of type nullptr_t 6762 // is in its lifetime; it usually doesn't matter. Perhaps we should model it 6763 // as indeterminate instead? 6764 if (Value.isAbsent() && !T->isNullPtrType()) { 6765 APValue Printable; 6766 This.moveInto(Printable); 6767 Info.FFDiag(CallRange.getBegin(), 6768 diag::note_constexpr_destroy_out_of_lifetime) 6769 << Printable.getAsString(Info.Ctx, Info.Ctx.getLValueReferenceType(T)); 6770 return false; 6771 } 6772 6773 // Invent an expression for location purposes. 6774 // FIXME: We shouldn't need to do this. 6775 OpaqueValueExpr LocE(CallRange.getBegin(), Info.Ctx.IntTy, VK_PRValue); 6776 6777 // For arrays, destroy elements right-to-left. 6778 if (const ConstantArrayType *CAT = Info.Ctx.getAsConstantArrayType(T)) { 6779 uint64_t Size = CAT->getZExtSize(); 6780 QualType ElemT = CAT->getElementType(); 6781 6782 if (!CheckArraySize(Info, CAT, CallRange.getBegin())) 6783 return false; 6784 6785 LValue ElemLV = This; 6786 ElemLV.addArray(Info, &LocE, CAT); 6787 if (!HandleLValueArrayAdjustment(Info, &LocE, ElemLV, ElemT, Size)) 6788 return false; 6789 6790 // Ensure that we have actual array elements available to destroy; the 6791 // destructors might mutate the value, so we can't run them on the array 6792 // filler. 6793 if (Size && Size > Value.getArrayInitializedElts()) 6794 expandArray(Value, Value.getArraySize() - 1); 6795 6796 // The size of the array might have been reduced by 6797 // a placement new. 6798 for (Size = Value.getArraySize(); Size != 0; --Size) { 6799 APValue &Elem = Value.getArrayInitializedElt(Size - 1); 6800 if (!HandleLValueArrayAdjustment(Info, &LocE, ElemLV, ElemT, -1) || 6801 !HandleDestructionImpl(Info, CallRange, ElemLV, Elem, ElemT)) 6802 return false; 6803 } 6804 6805 // End the lifetime of this array now. 6806 Value = APValue(); 6807 return true; 6808 } 6809 6810 const CXXRecordDecl *RD = T->getAsCXXRecordDecl(); 6811 if (!RD) { 6812 if (T.isDestructedType()) { 6813 Info.FFDiag(CallRange.getBegin(), 6814 diag::note_constexpr_unsupported_destruction) 6815 << T; 6816 return false; 6817 } 6818 6819 Value = APValue(); 6820 return true; 6821 } 6822 6823 if (RD->getNumVBases()) { 6824 Info.FFDiag(CallRange.getBegin(), diag::note_constexpr_virtual_base) << RD; 6825 return false; 6826 } 6827 6828 const CXXDestructorDecl *DD = RD->getDestructor(); 6829 if (!DD && !RD->hasTrivialDestructor()) { 6830 Info.FFDiag(CallRange.getBegin()); 6831 return false; 6832 } 6833 6834 if (!DD || DD->isTrivial() || 6835 (RD->isAnonymousStructOrUnion() && RD->isUnion())) { 6836 // A trivial destructor just ends the lifetime of the object. Check for 6837 // this case before checking for a body, because we might not bother 6838 // building a body for a trivial destructor. Note that it doesn't matter 6839 // whether the destructor is constexpr in this case; all trivial 6840 // destructors are constexpr. 6841 // 6842 // If an anonymous union would be destroyed, some enclosing destructor must 6843 // have been explicitly defined, and the anonymous union destruction should 6844 // have no effect. 6845 Value = APValue(); 6846 return true; 6847 } 6848 6849 if (!Info.CheckCallLimit(CallRange.getBegin())) 6850 return false; 6851 6852 const FunctionDecl *Definition = nullptr; 6853 const Stmt *Body = DD->getBody(Definition); 6854 6855 if (!CheckConstexprFunction(Info, CallRange.getBegin(), DD, Definition, Body)) 6856 return false; 6857 6858 CallStackFrame Frame(Info, CallRange, Definition, &This, /*CallExpr=*/nullptr, 6859 CallRef()); 6860 6861 // We're now in the period of destruction of this object. 6862 unsigned BasesLeft = RD->getNumBases(); 6863 EvalInfo::EvaluatingDestructorRAII EvalObj( 6864 Info, 6865 ObjectUnderConstruction{This.getLValueBase(), This.Designator.Entries}); 6866 if (!EvalObj.DidInsert) { 6867 // C++2a [class.dtor]p19: 6868 // the behavior is undefined if the destructor is invoked for an object 6869 // whose lifetime has ended 6870 // (Note that formally the lifetime ends when the period of destruction 6871 // begins, even though certain uses of the object remain valid until the 6872 // period of destruction ends.) 6873 Info.FFDiag(CallRange.getBegin(), diag::note_constexpr_double_destroy); 6874 return false; 6875 } 6876 6877 // FIXME: Creating an APValue just to hold a nonexistent return value is 6878 // wasteful. 6879 APValue RetVal; 6880 StmtResult Ret = {RetVal, nullptr}; 6881 if (EvaluateStmt(Ret, Info, Definition->getBody()) == ESR_Failed) 6882 return false; 6883 6884 // A union destructor does not implicitly destroy its members. 6885 if (RD->isUnion()) 6886 return true; 6887 6888 const ASTRecordLayout &Layout = Info.Ctx.getASTRecordLayout(RD); 6889 6890 // We don't have a good way to iterate fields in reverse, so collect all the 6891 // fields first and then walk them backwards. 6892 SmallVector<FieldDecl*, 16> Fields(RD->fields()); 6893 for (const FieldDecl *FD : llvm::reverse(Fields)) { 6894 if (FD->isUnnamedBitField()) 6895 continue; 6896 6897 LValue Subobject = This; 6898 if (!HandleLValueMember(Info, &LocE, Subobject, FD, &Layout)) 6899 return false; 6900 6901 APValue *SubobjectValue = &Value.getStructField(FD->getFieldIndex()); 6902 if (!HandleDestructionImpl(Info, CallRange, Subobject, *SubobjectValue, 6903 FD->getType())) 6904 return false; 6905 } 6906 6907 if (BasesLeft != 0) 6908 EvalObj.startedDestroyingBases(); 6909 6910 // Destroy base classes in reverse order. 6911 for (const CXXBaseSpecifier &Base : llvm::reverse(RD->bases())) { 6912 --BasesLeft; 6913 6914 QualType BaseType = Base.getType(); 6915 LValue Subobject = This; 6916 if (!HandleLValueDirectBase(Info, &LocE, Subobject, RD, 6917 BaseType->getAsCXXRecordDecl(), &Layout)) 6918 return false; 6919 6920 APValue *SubobjectValue = &Value.getStructBase(BasesLeft); 6921 if (!HandleDestructionImpl(Info, CallRange, Subobject, *SubobjectValue, 6922 BaseType)) 6923 return false; 6924 } 6925 assert(BasesLeft == 0 && "NumBases was wrong?"); 6926 6927 // The period of destruction ends now. The object is gone. 6928 Value = APValue(); 6929 return true; 6930 } 6931 6932 namespace { 6933 struct DestroyObjectHandler { 6934 EvalInfo &Info; 6935 const Expr *E; 6936 const LValue &This; 6937 const AccessKinds AccessKind; 6938 6939 typedef bool result_type; 6940 bool failed() { return false; } 6941 bool found(APValue &Subobj, QualType SubobjType) { 6942 return HandleDestructionImpl(Info, E->getSourceRange(), This, Subobj, 6943 SubobjType); 6944 } 6945 bool found(APSInt &Value, QualType SubobjType) { 6946 Info.FFDiag(E, diag::note_constexpr_destroy_complex_elem); 6947 return false; 6948 } 6949 bool found(APFloat &Value, QualType SubobjType) { 6950 Info.FFDiag(E, diag::note_constexpr_destroy_complex_elem); 6951 return false; 6952 } 6953 }; 6954 } 6955 6956 /// Perform a destructor or pseudo-destructor call on the given object, which 6957 /// might in general not be a complete object. 6958 static bool HandleDestruction(EvalInfo &Info, const Expr *E, 6959 const LValue &This, QualType ThisType) { 6960 CompleteObject Obj = findCompleteObject(Info, E, AK_Destroy, This, ThisType); 6961 DestroyObjectHandler Handler = {Info, E, This, AK_Destroy}; 6962 return Obj && findSubobject(Info, E, Obj, This.Designator, Handler); 6963 } 6964 6965 /// Destroy and end the lifetime of the given complete object. 6966 static bool HandleDestruction(EvalInfo &Info, SourceLocation Loc, 6967 APValue::LValueBase LVBase, APValue &Value, 6968 QualType T) { 6969 // If we've had an unmodeled side-effect, we can't rely on mutable state 6970 // (such as the object we're about to destroy) being correct. 6971 if (Info.EvalStatus.HasSideEffects) 6972 return false; 6973 6974 LValue LV; 6975 LV.set({LVBase}); 6976 return HandleDestructionImpl(Info, Loc, LV, Value, T); 6977 } 6978 6979 /// Perform a call to 'operator new' or to `__builtin_operator_new'. 6980 static bool HandleOperatorNewCall(EvalInfo &Info, const CallExpr *E, 6981 LValue &Result) { 6982 if (Info.checkingPotentialConstantExpression() || 6983 Info.SpeculativeEvaluationDepth) 6984 return false; 6985 6986 // This is permitted only within a call to std::allocator<T>::allocate. 6987 auto Caller = Info.getStdAllocatorCaller("allocate"); 6988 if (!Caller) { 6989 Info.FFDiag(E->getExprLoc(), Info.getLangOpts().CPlusPlus20 6990 ? diag::note_constexpr_new_untyped 6991 : diag::note_constexpr_new); 6992 return false; 6993 } 6994 6995 QualType ElemType = Caller.ElemType; 6996 if (ElemType->isIncompleteType() || ElemType->isFunctionType()) { 6997 Info.FFDiag(E->getExprLoc(), 6998 diag::note_constexpr_new_not_complete_object_type) 6999 << (ElemType->isIncompleteType() ? 0 : 1) << ElemType; 7000 return false; 7001 } 7002 7003 APSInt ByteSize; 7004 if (!EvaluateInteger(E->getArg(0), ByteSize, Info)) 7005 return false; 7006 bool IsNothrow = false; 7007 for (unsigned I = 1, N = E->getNumArgs(); I != N; ++I) { 7008 EvaluateIgnoredValue(Info, E->getArg(I)); 7009 IsNothrow |= E->getType()->isNothrowT(); 7010 } 7011 7012 CharUnits ElemSize; 7013 if (!HandleSizeof(Info, E->getExprLoc(), ElemType, ElemSize)) 7014 return false; 7015 APInt Size, Remainder; 7016 APInt ElemSizeAP(ByteSize.getBitWidth(), ElemSize.getQuantity()); 7017 APInt::udivrem(ByteSize, ElemSizeAP, Size, Remainder); 7018 if (Remainder != 0) { 7019 // This likely indicates a bug in the implementation of 'std::allocator'. 7020 Info.FFDiag(E->getExprLoc(), diag::note_constexpr_operator_new_bad_size) 7021 << ByteSize << APSInt(ElemSizeAP, true) << ElemType; 7022 return false; 7023 } 7024 7025 if (!Info.CheckArraySize(E->getBeginLoc(), ByteSize.getActiveBits(), 7026 Size.getZExtValue(), /*Diag=*/!IsNothrow)) { 7027 if (IsNothrow) { 7028 Result.setNull(Info.Ctx, E->getType()); 7029 return true; 7030 } 7031 return false; 7032 } 7033 7034 QualType AllocType = Info.Ctx.getConstantArrayType( 7035 ElemType, Size, nullptr, ArraySizeModifier::Normal, 0); 7036 APValue *Val = Info.createHeapAlloc(E, AllocType, Result); 7037 *Val = APValue(APValue::UninitArray(), 0, Size.getZExtValue()); 7038 Result.addArray(Info, E, cast<ConstantArrayType>(AllocType)); 7039 return true; 7040 } 7041 7042 static bool hasVirtualDestructor(QualType T) { 7043 if (CXXRecordDecl *RD = T->getAsCXXRecordDecl()) 7044 if (CXXDestructorDecl *DD = RD->getDestructor()) 7045 return DD->isVirtual(); 7046 return false; 7047 } 7048 7049 static const FunctionDecl *getVirtualOperatorDelete(QualType T) { 7050 if (CXXRecordDecl *RD = T->getAsCXXRecordDecl()) 7051 if (CXXDestructorDecl *DD = RD->getDestructor()) 7052 return DD->isVirtual() ? DD->getOperatorDelete() : nullptr; 7053 return nullptr; 7054 } 7055 7056 /// Check that the given object is a suitable pointer to a heap allocation that 7057 /// still exists and is of the right kind for the purpose of a deletion. 7058 /// 7059 /// On success, returns the heap allocation to deallocate. On failure, produces 7060 /// a diagnostic and returns std::nullopt. 7061 static std::optional<DynAlloc *> CheckDeleteKind(EvalInfo &Info, const Expr *E, 7062 const LValue &Pointer, 7063 DynAlloc::Kind DeallocKind) { 7064 auto PointerAsString = [&] { 7065 return Pointer.toString(Info.Ctx, Info.Ctx.VoidPtrTy); 7066 }; 7067 7068 DynamicAllocLValue DA = Pointer.Base.dyn_cast<DynamicAllocLValue>(); 7069 if (!DA) { 7070 Info.FFDiag(E, diag::note_constexpr_delete_not_heap_alloc) 7071 << PointerAsString(); 7072 if (Pointer.Base) 7073 NoteLValueLocation(Info, Pointer.Base); 7074 return std::nullopt; 7075 } 7076 7077 std::optional<DynAlloc *> Alloc = Info.lookupDynamicAlloc(DA); 7078 if (!Alloc) { 7079 Info.FFDiag(E, diag::note_constexpr_double_delete); 7080 return std::nullopt; 7081 } 7082 7083 if (DeallocKind != (*Alloc)->getKind()) { 7084 QualType AllocType = Pointer.Base.getDynamicAllocType(); 7085 Info.FFDiag(E, diag::note_constexpr_new_delete_mismatch) 7086 << DeallocKind << (*Alloc)->getKind() << AllocType; 7087 NoteLValueLocation(Info, Pointer.Base); 7088 return std::nullopt; 7089 } 7090 7091 bool Subobject = false; 7092 if (DeallocKind == DynAlloc::New) { 7093 Subobject = Pointer.Designator.MostDerivedPathLength != 0 || 7094 Pointer.Designator.isOnePastTheEnd(); 7095 } else { 7096 Subobject = Pointer.Designator.Entries.size() != 1 || 7097 Pointer.Designator.Entries[0].getAsArrayIndex() != 0; 7098 } 7099 if (Subobject) { 7100 Info.FFDiag(E, diag::note_constexpr_delete_subobject) 7101 << PointerAsString() << Pointer.Designator.isOnePastTheEnd(); 7102 return std::nullopt; 7103 } 7104 7105 return Alloc; 7106 } 7107 7108 // Perform a call to 'operator delete' or '__builtin_operator_delete'. 7109 static bool HandleOperatorDeleteCall(EvalInfo &Info, const CallExpr *E) { 7110 if (Info.checkingPotentialConstantExpression() || 7111 Info.SpeculativeEvaluationDepth) 7112 return false; 7113 7114 // This is permitted only within a call to std::allocator<T>::deallocate. 7115 if (!Info.getStdAllocatorCaller("deallocate")) { 7116 Info.FFDiag(E->getExprLoc()); 7117 return true; 7118 } 7119 7120 LValue Pointer; 7121 if (!EvaluatePointer(E->getArg(0), Pointer, Info)) 7122 return false; 7123 for (unsigned I = 1, N = E->getNumArgs(); I != N; ++I) 7124 EvaluateIgnoredValue(Info, E->getArg(I)); 7125 7126 if (Pointer.Designator.Invalid) 7127 return false; 7128 7129 // Deleting a null pointer would have no effect, but it's not permitted by 7130 // std::allocator<T>::deallocate's contract. 7131 if (Pointer.isNullPointer()) { 7132 Info.CCEDiag(E->getExprLoc(), diag::note_constexpr_deallocate_null); 7133 return true; 7134 } 7135 7136 if (!CheckDeleteKind(Info, E, Pointer, DynAlloc::StdAllocator)) 7137 return false; 7138 7139 Info.HeapAllocs.erase(Pointer.Base.get<DynamicAllocLValue>()); 7140 return true; 7141 } 7142 7143 //===----------------------------------------------------------------------===// 7144 // Generic Evaluation 7145 //===----------------------------------------------------------------------===// 7146 namespace { 7147 7148 class BitCastBuffer { 7149 // FIXME: We're going to need bit-level granularity when we support 7150 // bit-fields. 7151 // FIXME: Its possible under the C++ standard for 'char' to not be 8 bits, but 7152 // we don't support a host or target where that is the case. Still, we should 7153 // use a more generic type in case we ever do. 7154 SmallVector<std::optional<unsigned char>, 32> Bytes; 7155 7156 static_assert(std::numeric_limits<unsigned char>::digits >= 8, 7157 "Need at least 8 bit unsigned char"); 7158 7159 bool TargetIsLittleEndian; 7160 7161 public: 7162 BitCastBuffer(CharUnits Width, bool TargetIsLittleEndian) 7163 : Bytes(Width.getQuantity()), 7164 TargetIsLittleEndian(TargetIsLittleEndian) {} 7165 7166 [[nodiscard]] bool readObject(CharUnits Offset, CharUnits Width, 7167 SmallVectorImpl<unsigned char> &Output) const { 7168 for (CharUnits I = Offset, E = Offset + Width; I != E; ++I) { 7169 // If a byte of an integer is uninitialized, then the whole integer is 7170 // uninitialized. 7171 if (!Bytes[I.getQuantity()]) 7172 return false; 7173 Output.push_back(*Bytes[I.getQuantity()]); 7174 } 7175 if (llvm::sys::IsLittleEndianHost != TargetIsLittleEndian) 7176 std::reverse(Output.begin(), Output.end()); 7177 return true; 7178 } 7179 7180 void writeObject(CharUnits Offset, SmallVectorImpl<unsigned char> &Input) { 7181 if (llvm::sys::IsLittleEndianHost != TargetIsLittleEndian) 7182 std::reverse(Input.begin(), Input.end()); 7183 7184 size_t Index = 0; 7185 for (unsigned char Byte : Input) { 7186 assert(!Bytes[Offset.getQuantity() + Index] && "overwriting a byte?"); 7187 Bytes[Offset.getQuantity() + Index] = Byte; 7188 ++Index; 7189 } 7190 } 7191 7192 size_t size() { return Bytes.size(); } 7193 }; 7194 7195 /// Traverse an APValue to produce an BitCastBuffer, emulating how the current 7196 /// target would represent the value at runtime. 7197 class APValueToBufferConverter { 7198 EvalInfo &Info; 7199 BitCastBuffer Buffer; 7200 const CastExpr *BCE; 7201 7202 APValueToBufferConverter(EvalInfo &Info, CharUnits ObjectWidth, 7203 const CastExpr *BCE) 7204 : Info(Info), 7205 Buffer(ObjectWidth, Info.Ctx.getTargetInfo().isLittleEndian()), 7206 BCE(BCE) {} 7207 7208 bool visit(const APValue &Val, QualType Ty) { 7209 return visit(Val, Ty, CharUnits::fromQuantity(0)); 7210 } 7211 7212 // Write out Val with type Ty into Buffer starting at Offset. 7213 bool visit(const APValue &Val, QualType Ty, CharUnits Offset) { 7214 assert((size_t)Offset.getQuantity() <= Buffer.size()); 7215 7216 // As a special case, nullptr_t has an indeterminate value. 7217 if (Ty->isNullPtrType()) 7218 return true; 7219 7220 // Dig through Src to find the byte at SrcOffset. 7221 switch (Val.getKind()) { 7222 case APValue::Indeterminate: 7223 case APValue::None: 7224 return true; 7225 7226 case APValue::Int: 7227 return visitInt(Val.getInt(), Ty, Offset); 7228 case APValue::Float: 7229 return visitFloat(Val.getFloat(), Ty, Offset); 7230 case APValue::Array: 7231 return visitArray(Val, Ty, Offset); 7232 case APValue::Struct: 7233 return visitRecord(Val, Ty, Offset); 7234 case APValue::Vector: 7235 return visitVector(Val, Ty, Offset); 7236 7237 case APValue::ComplexInt: 7238 case APValue::ComplexFloat: 7239 return visitComplex(Val, Ty, Offset); 7240 case APValue::FixedPoint: 7241 // FIXME: We should support these. 7242 7243 case APValue::Union: 7244 case APValue::MemberPointer: 7245 case APValue::AddrLabelDiff: { 7246 Info.FFDiag(BCE->getBeginLoc(), 7247 diag::note_constexpr_bit_cast_unsupported_type) 7248 << Ty; 7249 return false; 7250 } 7251 7252 case APValue::LValue: 7253 llvm_unreachable("LValue subobject in bit_cast?"); 7254 } 7255 llvm_unreachable("Unhandled APValue::ValueKind"); 7256 } 7257 7258 bool visitRecord(const APValue &Val, QualType Ty, CharUnits Offset) { 7259 const RecordDecl *RD = Ty->getAsRecordDecl(); 7260 const ASTRecordLayout &Layout = Info.Ctx.getASTRecordLayout(RD); 7261 7262 // Visit the base classes. 7263 if (auto *CXXRD = dyn_cast<CXXRecordDecl>(RD)) { 7264 for (size_t I = 0, E = CXXRD->getNumBases(); I != E; ++I) { 7265 const CXXBaseSpecifier &BS = CXXRD->bases_begin()[I]; 7266 CXXRecordDecl *BaseDecl = BS.getType()->getAsCXXRecordDecl(); 7267 7268 if (!visitRecord(Val.getStructBase(I), BS.getType(), 7269 Layout.getBaseClassOffset(BaseDecl) + Offset)) 7270 return false; 7271 } 7272 } 7273 7274 // Visit the fields. 7275 unsigned FieldIdx = 0; 7276 for (FieldDecl *FD : RD->fields()) { 7277 if (FD->isBitField()) { 7278 Info.FFDiag(BCE->getBeginLoc(), 7279 diag::note_constexpr_bit_cast_unsupported_bitfield); 7280 return false; 7281 } 7282 7283 uint64_t FieldOffsetBits = Layout.getFieldOffset(FieldIdx); 7284 7285 assert(FieldOffsetBits % Info.Ctx.getCharWidth() == 0 && 7286 "only bit-fields can have sub-char alignment"); 7287 CharUnits FieldOffset = 7288 Info.Ctx.toCharUnitsFromBits(FieldOffsetBits) + Offset; 7289 QualType FieldTy = FD->getType(); 7290 if (!visit(Val.getStructField(FieldIdx), FieldTy, FieldOffset)) 7291 return false; 7292 ++FieldIdx; 7293 } 7294 7295 return true; 7296 } 7297 7298 bool visitArray(const APValue &Val, QualType Ty, CharUnits Offset) { 7299 const auto *CAT = 7300 dyn_cast_or_null<ConstantArrayType>(Ty->getAsArrayTypeUnsafe()); 7301 if (!CAT) 7302 return false; 7303 7304 CharUnits ElemWidth = Info.Ctx.getTypeSizeInChars(CAT->getElementType()); 7305 unsigned NumInitializedElts = Val.getArrayInitializedElts(); 7306 unsigned ArraySize = Val.getArraySize(); 7307 // First, initialize the initialized elements. 7308 for (unsigned I = 0; I != NumInitializedElts; ++I) { 7309 const APValue &SubObj = Val.getArrayInitializedElt(I); 7310 if (!visit(SubObj, CAT->getElementType(), Offset + I * ElemWidth)) 7311 return false; 7312 } 7313 7314 // Next, initialize the rest of the array using the filler. 7315 if (Val.hasArrayFiller()) { 7316 const APValue &Filler = Val.getArrayFiller(); 7317 for (unsigned I = NumInitializedElts; I != ArraySize; ++I) { 7318 if (!visit(Filler, CAT->getElementType(), Offset + I * ElemWidth)) 7319 return false; 7320 } 7321 } 7322 7323 return true; 7324 } 7325 7326 bool visitComplex(const APValue &Val, QualType Ty, CharUnits Offset) { 7327 const ComplexType *ComplexTy = Ty->castAs<ComplexType>(); 7328 QualType EltTy = ComplexTy->getElementType(); 7329 CharUnits EltSizeChars = Info.Ctx.getTypeSizeInChars(EltTy); 7330 bool IsInt = Val.isComplexInt(); 7331 7332 if (IsInt) { 7333 if (!visitInt(Val.getComplexIntReal(), EltTy, 7334 Offset + (0 * EltSizeChars))) 7335 return false; 7336 if (!visitInt(Val.getComplexIntImag(), EltTy, 7337 Offset + (1 * EltSizeChars))) 7338 return false; 7339 } else { 7340 if (!visitFloat(Val.getComplexFloatReal(), EltTy, 7341 Offset + (0 * EltSizeChars))) 7342 return false; 7343 if (!visitFloat(Val.getComplexFloatImag(), EltTy, 7344 Offset + (1 * EltSizeChars))) 7345 return false; 7346 } 7347 7348 return true; 7349 } 7350 7351 bool visitVector(const APValue &Val, QualType Ty, CharUnits Offset) { 7352 const VectorType *VTy = Ty->castAs<VectorType>(); 7353 QualType EltTy = VTy->getElementType(); 7354 unsigned NElts = VTy->getNumElements(); 7355 unsigned EltSize = 7356 VTy->isExtVectorBoolType() ? 1 : Info.Ctx.getTypeSize(EltTy); 7357 7358 if ((NElts * EltSize) % Info.Ctx.getCharWidth() != 0) { 7359 // The vector's size in bits is not a multiple of the target's byte size, 7360 // so its layout is unspecified. For now, we'll simply treat these cases 7361 // as unsupported (this should only be possible with OpenCL bool vectors 7362 // whose element count isn't a multiple of the byte size). 7363 Info.FFDiag(BCE->getBeginLoc(), 7364 diag::note_constexpr_bit_cast_invalid_vector) 7365 << Ty.getCanonicalType() << EltSize << NElts 7366 << Info.Ctx.getCharWidth(); 7367 return false; 7368 } 7369 7370 if (EltTy->isRealFloatingType() && &Info.Ctx.getFloatTypeSemantics(EltTy) == 7371 &APFloat::x87DoubleExtended()) { 7372 // The layout for x86_fp80 vectors seems to be handled very inconsistently 7373 // by both clang and LLVM, so for now we won't allow bit_casts involving 7374 // it in a constexpr context. 7375 Info.FFDiag(BCE->getBeginLoc(), 7376 diag::note_constexpr_bit_cast_unsupported_type) 7377 << EltTy; 7378 return false; 7379 } 7380 7381 if (VTy->isExtVectorBoolType()) { 7382 // Special handling for OpenCL bool vectors: 7383 // Since these vectors are stored as packed bits, but we can't write 7384 // individual bits to the BitCastBuffer, we'll buffer all of the elements 7385 // together into an appropriately sized APInt and write them all out at 7386 // once. Because we don't accept vectors where NElts * EltSize isn't a 7387 // multiple of the char size, there will be no padding space, so we don't 7388 // have to worry about writing data which should have been left 7389 // uninitialized. 7390 bool BigEndian = Info.Ctx.getTargetInfo().isBigEndian(); 7391 7392 llvm::APInt Res = llvm::APInt::getZero(NElts); 7393 for (unsigned I = 0; I < NElts; ++I) { 7394 const llvm::APSInt &EltAsInt = Val.getVectorElt(I).getInt(); 7395 assert(EltAsInt.isUnsigned() && EltAsInt.getBitWidth() == 1 && 7396 "bool vector element must be 1-bit unsigned integer!"); 7397 7398 Res.insertBits(EltAsInt, BigEndian ? (NElts - I - 1) : I); 7399 } 7400 7401 SmallVector<uint8_t, 8> Bytes(NElts / 8); 7402 llvm::StoreIntToMemory(Res, &*Bytes.begin(), NElts / 8); 7403 Buffer.writeObject(Offset, Bytes); 7404 } else { 7405 // Iterate over each of the elements and write them out to the buffer at 7406 // the appropriate offset. 7407 CharUnits EltSizeChars = Info.Ctx.getTypeSizeInChars(EltTy); 7408 for (unsigned I = 0; I < NElts; ++I) { 7409 if (!visit(Val.getVectorElt(I), EltTy, Offset + I * EltSizeChars)) 7410 return false; 7411 } 7412 } 7413 7414 return true; 7415 } 7416 7417 bool visitInt(const APSInt &Val, QualType Ty, CharUnits Offset) { 7418 APSInt AdjustedVal = Val; 7419 unsigned Width = AdjustedVal.getBitWidth(); 7420 if (Ty->isBooleanType()) { 7421 Width = Info.Ctx.getTypeSize(Ty); 7422 AdjustedVal = AdjustedVal.extend(Width); 7423 } 7424 7425 SmallVector<uint8_t, 8> Bytes(Width / 8); 7426 llvm::StoreIntToMemory(AdjustedVal, &*Bytes.begin(), Width / 8); 7427 Buffer.writeObject(Offset, Bytes); 7428 return true; 7429 } 7430 7431 bool visitFloat(const APFloat &Val, QualType Ty, CharUnits Offset) { 7432 APSInt AsInt(Val.bitcastToAPInt()); 7433 return visitInt(AsInt, Ty, Offset); 7434 } 7435 7436 public: 7437 static std::optional<BitCastBuffer> 7438 convert(EvalInfo &Info, const APValue &Src, const CastExpr *BCE) { 7439 CharUnits DstSize = Info.Ctx.getTypeSizeInChars(BCE->getType()); 7440 APValueToBufferConverter Converter(Info, DstSize, BCE); 7441 if (!Converter.visit(Src, BCE->getSubExpr()->getType())) 7442 return std::nullopt; 7443 return Converter.Buffer; 7444 } 7445 }; 7446 7447 /// Write an BitCastBuffer into an APValue. 7448 class BufferToAPValueConverter { 7449 EvalInfo &Info; 7450 const BitCastBuffer &Buffer; 7451 const CastExpr *BCE; 7452 7453 BufferToAPValueConverter(EvalInfo &Info, const BitCastBuffer &Buffer, 7454 const CastExpr *BCE) 7455 : Info(Info), Buffer(Buffer), BCE(BCE) {} 7456 7457 // Emit an unsupported bit_cast type error. Sema refuses to build a bit_cast 7458 // with an invalid type, so anything left is a deficiency on our part (FIXME). 7459 // Ideally this will be unreachable. 7460 std::nullopt_t unsupportedType(QualType Ty) { 7461 Info.FFDiag(BCE->getBeginLoc(), 7462 diag::note_constexpr_bit_cast_unsupported_type) 7463 << Ty; 7464 return std::nullopt; 7465 } 7466 7467 std::nullopt_t unrepresentableValue(QualType Ty, const APSInt &Val) { 7468 Info.FFDiag(BCE->getBeginLoc(), 7469 diag::note_constexpr_bit_cast_unrepresentable_value) 7470 << Ty << toString(Val, /*Radix=*/10); 7471 return std::nullopt; 7472 } 7473 7474 std::optional<APValue> visit(const BuiltinType *T, CharUnits Offset, 7475 const EnumType *EnumSugar = nullptr) { 7476 if (T->isNullPtrType()) { 7477 uint64_t NullValue = Info.Ctx.getTargetNullPointerValue(QualType(T, 0)); 7478 return APValue((Expr *)nullptr, 7479 /*Offset=*/CharUnits::fromQuantity(NullValue), 7480 APValue::NoLValuePath{}, /*IsNullPtr=*/true); 7481 } 7482 7483 CharUnits SizeOf = Info.Ctx.getTypeSizeInChars(T); 7484 7485 // Work around floating point types that contain unused padding bytes. This 7486 // is really just `long double` on x86, which is the only fundamental type 7487 // with padding bytes. 7488 if (T->isRealFloatingType()) { 7489 const llvm::fltSemantics &Semantics = 7490 Info.Ctx.getFloatTypeSemantics(QualType(T, 0)); 7491 unsigned NumBits = llvm::APFloatBase::getSizeInBits(Semantics); 7492 assert(NumBits % 8 == 0); 7493 CharUnits NumBytes = CharUnits::fromQuantity(NumBits / 8); 7494 if (NumBytes != SizeOf) 7495 SizeOf = NumBytes; 7496 } 7497 7498 SmallVector<uint8_t, 8> Bytes; 7499 if (!Buffer.readObject(Offset, SizeOf, Bytes)) { 7500 // If this is std::byte or unsigned char, then its okay to store an 7501 // indeterminate value. 7502 bool IsStdByte = EnumSugar && EnumSugar->isStdByteType(); 7503 bool IsUChar = 7504 !EnumSugar && (T->isSpecificBuiltinType(BuiltinType::UChar) || 7505 T->isSpecificBuiltinType(BuiltinType::Char_U)); 7506 if (!IsStdByte && !IsUChar) { 7507 QualType DisplayType(EnumSugar ? (const Type *)EnumSugar : T, 0); 7508 Info.FFDiag(BCE->getExprLoc(), 7509 diag::note_constexpr_bit_cast_indet_dest) 7510 << DisplayType << Info.Ctx.getLangOpts().CharIsSigned; 7511 return std::nullopt; 7512 } 7513 7514 return APValue::IndeterminateValue(); 7515 } 7516 7517 APSInt Val(SizeOf.getQuantity() * Info.Ctx.getCharWidth(), true); 7518 llvm::LoadIntFromMemory(Val, &*Bytes.begin(), Bytes.size()); 7519 7520 if (T->isIntegralOrEnumerationType()) { 7521 Val.setIsSigned(T->isSignedIntegerOrEnumerationType()); 7522 7523 unsigned IntWidth = Info.Ctx.getIntWidth(QualType(T, 0)); 7524 if (IntWidth != Val.getBitWidth()) { 7525 APSInt Truncated = Val.trunc(IntWidth); 7526 if (Truncated.extend(Val.getBitWidth()) != Val) 7527 return unrepresentableValue(QualType(T, 0), Val); 7528 Val = Truncated; 7529 } 7530 7531 return APValue(Val); 7532 } 7533 7534 if (T->isRealFloatingType()) { 7535 const llvm::fltSemantics &Semantics = 7536 Info.Ctx.getFloatTypeSemantics(QualType(T, 0)); 7537 return APValue(APFloat(Semantics, Val)); 7538 } 7539 7540 return unsupportedType(QualType(T, 0)); 7541 } 7542 7543 std::optional<APValue> visit(const RecordType *RTy, CharUnits Offset) { 7544 const RecordDecl *RD = RTy->getAsRecordDecl(); 7545 const ASTRecordLayout &Layout = Info.Ctx.getASTRecordLayout(RD); 7546 7547 unsigned NumBases = 0; 7548 if (auto *CXXRD = dyn_cast<CXXRecordDecl>(RD)) 7549 NumBases = CXXRD->getNumBases(); 7550 7551 APValue ResultVal(APValue::UninitStruct(), NumBases, 7552 std::distance(RD->field_begin(), RD->field_end())); 7553 7554 // Visit the base classes. 7555 if (auto *CXXRD = dyn_cast<CXXRecordDecl>(RD)) { 7556 for (size_t I = 0, E = CXXRD->getNumBases(); I != E; ++I) { 7557 const CXXBaseSpecifier &BS = CXXRD->bases_begin()[I]; 7558 CXXRecordDecl *BaseDecl = BS.getType()->getAsCXXRecordDecl(); 7559 7560 std::optional<APValue> SubObj = visitType( 7561 BS.getType(), Layout.getBaseClassOffset(BaseDecl) + Offset); 7562 if (!SubObj) 7563 return std::nullopt; 7564 ResultVal.getStructBase(I) = *SubObj; 7565 } 7566 } 7567 7568 // Visit the fields. 7569 unsigned FieldIdx = 0; 7570 for (FieldDecl *FD : RD->fields()) { 7571 // FIXME: We don't currently support bit-fields. A lot of the logic for 7572 // this is in CodeGen, so we need to factor it around. 7573 if (FD->isBitField()) { 7574 Info.FFDiag(BCE->getBeginLoc(), 7575 diag::note_constexpr_bit_cast_unsupported_bitfield); 7576 return std::nullopt; 7577 } 7578 7579 uint64_t FieldOffsetBits = Layout.getFieldOffset(FieldIdx); 7580 assert(FieldOffsetBits % Info.Ctx.getCharWidth() == 0); 7581 7582 CharUnits FieldOffset = 7583 CharUnits::fromQuantity(FieldOffsetBits / Info.Ctx.getCharWidth()) + 7584 Offset; 7585 QualType FieldTy = FD->getType(); 7586 std::optional<APValue> SubObj = visitType(FieldTy, FieldOffset); 7587 if (!SubObj) 7588 return std::nullopt; 7589 ResultVal.getStructField(FieldIdx) = *SubObj; 7590 ++FieldIdx; 7591 } 7592 7593 return ResultVal; 7594 } 7595 7596 std::optional<APValue> visit(const EnumType *Ty, CharUnits Offset) { 7597 QualType RepresentationType = Ty->getDecl()->getIntegerType(); 7598 assert(!RepresentationType.isNull() && 7599 "enum forward decl should be caught by Sema"); 7600 const auto *AsBuiltin = 7601 RepresentationType.getCanonicalType()->castAs<BuiltinType>(); 7602 // Recurse into the underlying type. Treat std::byte transparently as 7603 // unsigned char. 7604 return visit(AsBuiltin, Offset, /*EnumTy=*/Ty); 7605 } 7606 7607 std::optional<APValue> visit(const ConstantArrayType *Ty, CharUnits Offset) { 7608 size_t Size = Ty->getLimitedSize(); 7609 CharUnits ElementWidth = Info.Ctx.getTypeSizeInChars(Ty->getElementType()); 7610 7611 APValue ArrayValue(APValue::UninitArray(), Size, Size); 7612 for (size_t I = 0; I != Size; ++I) { 7613 std::optional<APValue> ElementValue = 7614 visitType(Ty->getElementType(), Offset + I * ElementWidth); 7615 if (!ElementValue) 7616 return std::nullopt; 7617 ArrayValue.getArrayInitializedElt(I) = std::move(*ElementValue); 7618 } 7619 7620 return ArrayValue; 7621 } 7622 7623 std::optional<APValue> visit(const ComplexType *Ty, CharUnits Offset) { 7624 QualType ElementType = Ty->getElementType(); 7625 CharUnits ElementWidth = Info.Ctx.getTypeSizeInChars(ElementType); 7626 bool IsInt = ElementType->isIntegerType(); 7627 7628 std::optional<APValue> Values[2]; 7629 for (unsigned I = 0; I != 2; ++I) { 7630 Values[I] = visitType(Ty->getElementType(), Offset + I * ElementWidth); 7631 if (!Values[I]) 7632 return std::nullopt; 7633 } 7634 7635 if (IsInt) 7636 return APValue(Values[0]->getInt(), Values[1]->getInt()); 7637 return APValue(Values[0]->getFloat(), Values[1]->getFloat()); 7638 } 7639 7640 std::optional<APValue> visit(const VectorType *VTy, CharUnits Offset) { 7641 QualType EltTy = VTy->getElementType(); 7642 unsigned NElts = VTy->getNumElements(); 7643 unsigned EltSize = 7644 VTy->isExtVectorBoolType() ? 1 : Info.Ctx.getTypeSize(EltTy); 7645 7646 if ((NElts * EltSize) % Info.Ctx.getCharWidth() != 0) { 7647 // The vector's size in bits is not a multiple of the target's byte size, 7648 // so its layout is unspecified. For now, we'll simply treat these cases 7649 // as unsupported (this should only be possible with OpenCL bool vectors 7650 // whose element count isn't a multiple of the byte size). 7651 Info.FFDiag(BCE->getBeginLoc(), 7652 diag::note_constexpr_bit_cast_invalid_vector) 7653 << QualType(VTy, 0) << EltSize << NElts << Info.Ctx.getCharWidth(); 7654 return std::nullopt; 7655 } 7656 7657 if (EltTy->isRealFloatingType() && &Info.Ctx.getFloatTypeSemantics(EltTy) == 7658 &APFloat::x87DoubleExtended()) { 7659 // The layout for x86_fp80 vectors seems to be handled very inconsistently 7660 // by both clang and LLVM, so for now we won't allow bit_casts involving 7661 // it in a constexpr context. 7662 Info.FFDiag(BCE->getBeginLoc(), 7663 diag::note_constexpr_bit_cast_unsupported_type) 7664 << EltTy; 7665 return std::nullopt; 7666 } 7667 7668 SmallVector<APValue, 4> Elts; 7669 Elts.reserve(NElts); 7670 if (VTy->isExtVectorBoolType()) { 7671 // Special handling for OpenCL bool vectors: 7672 // Since these vectors are stored as packed bits, but we can't read 7673 // individual bits from the BitCastBuffer, we'll buffer all of the 7674 // elements together into an appropriately sized APInt and write them all 7675 // out at once. Because we don't accept vectors where NElts * EltSize 7676 // isn't a multiple of the char size, there will be no padding space, so 7677 // we don't have to worry about reading any padding data which didn't 7678 // actually need to be accessed. 7679 bool BigEndian = Info.Ctx.getTargetInfo().isBigEndian(); 7680 7681 SmallVector<uint8_t, 8> Bytes; 7682 Bytes.reserve(NElts / 8); 7683 if (!Buffer.readObject(Offset, CharUnits::fromQuantity(NElts / 8), Bytes)) 7684 return std::nullopt; 7685 7686 APSInt SValInt(NElts, true); 7687 llvm::LoadIntFromMemory(SValInt, &*Bytes.begin(), Bytes.size()); 7688 7689 for (unsigned I = 0; I < NElts; ++I) { 7690 llvm::APInt Elt = 7691 SValInt.extractBits(1, (BigEndian ? NElts - I - 1 : I) * EltSize); 7692 Elts.emplace_back( 7693 APSInt(std::move(Elt), !EltTy->isSignedIntegerType())); 7694 } 7695 } else { 7696 // Iterate over each of the elements and read them from the buffer at 7697 // the appropriate offset. 7698 CharUnits EltSizeChars = Info.Ctx.getTypeSizeInChars(EltTy); 7699 for (unsigned I = 0; I < NElts; ++I) { 7700 std::optional<APValue> EltValue = 7701 visitType(EltTy, Offset + I * EltSizeChars); 7702 if (!EltValue) 7703 return std::nullopt; 7704 Elts.push_back(std::move(*EltValue)); 7705 } 7706 } 7707 7708 return APValue(Elts.data(), Elts.size()); 7709 } 7710 7711 std::optional<APValue> visit(const Type *Ty, CharUnits Offset) { 7712 return unsupportedType(QualType(Ty, 0)); 7713 } 7714 7715 std::optional<APValue> visitType(QualType Ty, CharUnits Offset) { 7716 QualType Can = Ty.getCanonicalType(); 7717 7718 switch (Can->getTypeClass()) { 7719 #define TYPE(Class, Base) \ 7720 case Type::Class: \ 7721 return visit(cast<Class##Type>(Can.getTypePtr()), Offset); 7722 #define ABSTRACT_TYPE(Class, Base) 7723 #define NON_CANONICAL_TYPE(Class, Base) \ 7724 case Type::Class: \ 7725 llvm_unreachable("non-canonical type should be impossible!"); 7726 #define DEPENDENT_TYPE(Class, Base) \ 7727 case Type::Class: \ 7728 llvm_unreachable( \ 7729 "dependent types aren't supported in the constant evaluator!"); 7730 #define NON_CANONICAL_UNLESS_DEPENDENT(Class, Base) \ 7731 case Type::Class: \ 7732 llvm_unreachable("either dependent or not canonical!"); 7733 #include "clang/AST/TypeNodes.inc" 7734 } 7735 llvm_unreachable("Unhandled Type::TypeClass"); 7736 } 7737 7738 public: 7739 // Pull out a full value of type DstType. 7740 static std::optional<APValue> convert(EvalInfo &Info, BitCastBuffer &Buffer, 7741 const CastExpr *BCE) { 7742 BufferToAPValueConverter Converter(Info, Buffer, BCE); 7743 return Converter.visitType(BCE->getType(), CharUnits::fromQuantity(0)); 7744 } 7745 }; 7746 7747 static bool checkBitCastConstexprEligibilityType(SourceLocation Loc, 7748 QualType Ty, EvalInfo *Info, 7749 const ASTContext &Ctx, 7750 bool CheckingDest) { 7751 Ty = Ty.getCanonicalType(); 7752 7753 auto diag = [&](int Reason) { 7754 if (Info) 7755 Info->FFDiag(Loc, diag::note_constexpr_bit_cast_invalid_type) 7756 << CheckingDest << (Reason == 4) << Reason; 7757 return false; 7758 }; 7759 auto note = [&](int Construct, QualType NoteTy, SourceLocation NoteLoc) { 7760 if (Info) 7761 Info->Note(NoteLoc, diag::note_constexpr_bit_cast_invalid_subtype) 7762 << NoteTy << Construct << Ty; 7763 return false; 7764 }; 7765 7766 if (Ty->isUnionType()) 7767 return diag(0); 7768 if (Ty->isPointerType()) 7769 return diag(1); 7770 if (Ty->isMemberPointerType()) 7771 return diag(2); 7772 if (Ty.isVolatileQualified()) 7773 return diag(3); 7774 7775 if (RecordDecl *Record = Ty->getAsRecordDecl()) { 7776 if (auto *CXXRD = dyn_cast<CXXRecordDecl>(Record)) { 7777 for (CXXBaseSpecifier &BS : CXXRD->bases()) 7778 if (!checkBitCastConstexprEligibilityType(Loc, BS.getType(), Info, Ctx, 7779 CheckingDest)) 7780 return note(1, BS.getType(), BS.getBeginLoc()); 7781 } 7782 for (FieldDecl *FD : Record->fields()) { 7783 if (FD->getType()->isReferenceType()) 7784 return diag(4); 7785 if (!checkBitCastConstexprEligibilityType(Loc, FD->getType(), Info, Ctx, 7786 CheckingDest)) 7787 return note(0, FD->getType(), FD->getBeginLoc()); 7788 } 7789 } 7790 7791 if (Ty->isArrayType() && 7792 !checkBitCastConstexprEligibilityType(Loc, Ctx.getBaseElementType(Ty), 7793 Info, Ctx, CheckingDest)) 7794 return false; 7795 7796 return true; 7797 } 7798 7799 static bool checkBitCastConstexprEligibility(EvalInfo *Info, 7800 const ASTContext &Ctx, 7801 const CastExpr *BCE) { 7802 bool DestOK = checkBitCastConstexprEligibilityType( 7803 BCE->getBeginLoc(), BCE->getType(), Info, Ctx, true); 7804 bool SourceOK = DestOK && checkBitCastConstexprEligibilityType( 7805 BCE->getBeginLoc(), 7806 BCE->getSubExpr()->getType(), Info, Ctx, false); 7807 return SourceOK; 7808 } 7809 7810 static bool handleRValueToRValueBitCast(EvalInfo &Info, APValue &DestValue, 7811 const APValue &SourceRValue, 7812 const CastExpr *BCE) { 7813 assert(CHAR_BIT == 8 && Info.Ctx.getTargetInfo().getCharWidth() == 8 && 7814 "no host or target supports non 8-bit chars"); 7815 7816 if (!checkBitCastConstexprEligibility(&Info, Info.Ctx, BCE)) 7817 return false; 7818 7819 // Read out SourceValue into a char buffer. 7820 std::optional<BitCastBuffer> Buffer = 7821 APValueToBufferConverter::convert(Info, SourceRValue, BCE); 7822 if (!Buffer) 7823 return false; 7824 7825 // Write out the buffer into a new APValue. 7826 std::optional<APValue> MaybeDestValue = 7827 BufferToAPValueConverter::convert(Info, *Buffer, BCE); 7828 if (!MaybeDestValue) 7829 return false; 7830 7831 DestValue = std::move(*MaybeDestValue); 7832 return true; 7833 } 7834 7835 static bool handleLValueToRValueBitCast(EvalInfo &Info, APValue &DestValue, 7836 APValue &SourceValue, 7837 const CastExpr *BCE) { 7838 assert(CHAR_BIT == 8 && Info.Ctx.getTargetInfo().getCharWidth() == 8 && 7839 "no host or target supports non 8-bit chars"); 7840 assert(SourceValue.isLValue() && 7841 "LValueToRValueBitcast requires an lvalue operand!"); 7842 7843 LValue SourceLValue; 7844 APValue SourceRValue; 7845 SourceLValue.setFrom(Info.Ctx, SourceValue); 7846 if (!handleLValueToRValueConversion( 7847 Info, BCE, BCE->getSubExpr()->getType().withConst(), SourceLValue, 7848 SourceRValue, /*WantObjectRepresentation=*/true)) 7849 return false; 7850 7851 return handleRValueToRValueBitCast(Info, DestValue, SourceRValue, BCE); 7852 } 7853 7854 template <class Derived> 7855 class ExprEvaluatorBase 7856 : public ConstStmtVisitor<Derived, bool> { 7857 private: 7858 Derived &getDerived() { return static_cast<Derived&>(*this); } 7859 bool DerivedSuccess(const APValue &V, const Expr *E) { 7860 return getDerived().Success(V, E); 7861 } 7862 bool DerivedZeroInitialization(const Expr *E) { 7863 return getDerived().ZeroInitialization(E); 7864 } 7865 7866 // Check whether a conditional operator with a non-constant condition is a 7867 // potential constant expression. If neither arm is a potential constant 7868 // expression, then the conditional operator is not either. 7869 template<typename ConditionalOperator> 7870 void CheckPotentialConstantConditional(const ConditionalOperator *E) { 7871 assert(Info.checkingPotentialConstantExpression()); 7872 7873 // Speculatively evaluate both arms. 7874 SmallVector<PartialDiagnosticAt, 8> Diag; 7875 { 7876 SpeculativeEvaluationRAII Speculate(Info, &Diag); 7877 StmtVisitorTy::Visit(E->getFalseExpr()); 7878 if (Diag.empty()) 7879 return; 7880 } 7881 7882 { 7883 SpeculativeEvaluationRAII Speculate(Info, &Diag); 7884 Diag.clear(); 7885 StmtVisitorTy::Visit(E->getTrueExpr()); 7886 if (Diag.empty()) 7887 return; 7888 } 7889 7890 Error(E, diag::note_constexpr_conditional_never_const); 7891 } 7892 7893 7894 template<typename ConditionalOperator> 7895 bool HandleConditionalOperator(const ConditionalOperator *E) { 7896 bool BoolResult; 7897 if (!EvaluateAsBooleanCondition(E->getCond(), BoolResult, Info)) { 7898 if (Info.checkingPotentialConstantExpression() && Info.noteFailure()) { 7899 CheckPotentialConstantConditional(E); 7900 return false; 7901 } 7902 if (Info.noteFailure()) { 7903 StmtVisitorTy::Visit(E->getTrueExpr()); 7904 StmtVisitorTy::Visit(E->getFalseExpr()); 7905 } 7906 return false; 7907 } 7908 7909 Expr *EvalExpr = BoolResult ? E->getTrueExpr() : E->getFalseExpr(); 7910 return StmtVisitorTy::Visit(EvalExpr); 7911 } 7912 7913 protected: 7914 EvalInfo &Info; 7915 typedef ConstStmtVisitor<Derived, bool> StmtVisitorTy; 7916 typedef ExprEvaluatorBase ExprEvaluatorBaseTy; 7917 7918 OptionalDiagnostic CCEDiag(const Expr *E, diag::kind D) { 7919 return Info.CCEDiag(E, D); 7920 } 7921 7922 bool ZeroInitialization(const Expr *E) { return Error(E); } 7923 7924 bool IsConstantEvaluatedBuiltinCall(const CallExpr *E) { 7925 unsigned BuiltinOp = E->getBuiltinCallee(); 7926 return BuiltinOp != 0 && 7927 Info.Ctx.BuiltinInfo.isConstantEvaluated(BuiltinOp); 7928 } 7929 7930 public: 7931 ExprEvaluatorBase(EvalInfo &Info) : Info(Info) {} 7932 7933 EvalInfo &getEvalInfo() { return Info; } 7934 7935 /// Report an evaluation error. This should only be called when an error is 7936 /// first discovered. When propagating an error, just return false. 7937 bool Error(const Expr *E, diag::kind D) { 7938 Info.FFDiag(E, D) << E->getSourceRange(); 7939 return false; 7940 } 7941 bool Error(const Expr *E) { 7942 return Error(E, diag::note_invalid_subexpr_in_const_expr); 7943 } 7944 7945 bool VisitStmt(const Stmt *) { 7946 llvm_unreachable("Expression evaluator should not be called on stmts"); 7947 } 7948 bool VisitExpr(const Expr *E) { 7949 return Error(E); 7950 } 7951 7952 bool VisitEmbedExpr(const EmbedExpr *E) { 7953 const auto It = E->begin(); 7954 return StmtVisitorTy::Visit(*It); 7955 } 7956 7957 bool VisitPredefinedExpr(const PredefinedExpr *E) { 7958 return StmtVisitorTy::Visit(E->getFunctionName()); 7959 } 7960 bool VisitConstantExpr(const ConstantExpr *E) { 7961 if (E->hasAPValueResult()) 7962 return DerivedSuccess(E->getAPValueResult(), E); 7963 7964 return StmtVisitorTy::Visit(E->getSubExpr()); 7965 } 7966 7967 bool VisitParenExpr(const ParenExpr *E) 7968 { return StmtVisitorTy::Visit(E->getSubExpr()); } 7969 bool VisitUnaryExtension(const UnaryOperator *E) 7970 { return StmtVisitorTy::Visit(E->getSubExpr()); } 7971 bool VisitUnaryPlus(const UnaryOperator *E) 7972 { return StmtVisitorTy::Visit(E->getSubExpr()); } 7973 bool VisitChooseExpr(const ChooseExpr *E) 7974 { return StmtVisitorTy::Visit(E->getChosenSubExpr()); } 7975 bool VisitGenericSelectionExpr(const GenericSelectionExpr *E) 7976 { return StmtVisitorTy::Visit(E->getResultExpr()); } 7977 bool VisitSubstNonTypeTemplateParmExpr(const SubstNonTypeTemplateParmExpr *E) 7978 { return StmtVisitorTy::Visit(E->getReplacement()); } 7979 bool VisitCXXDefaultArgExpr(const CXXDefaultArgExpr *E) { 7980 TempVersionRAII RAII(*Info.CurrentCall); 7981 SourceLocExprScopeGuard Guard(E, Info.CurrentCall->CurSourceLocExprScope); 7982 return StmtVisitorTy::Visit(E->getExpr()); 7983 } 7984 bool VisitCXXDefaultInitExpr(const CXXDefaultInitExpr *E) { 7985 TempVersionRAII RAII(*Info.CurrentCall); 7986 // The initializer may not have been parsed yet, or might be erroneous. 7987 if (!E->getExpr()) 7988 return Error(E); 7989 SourceLocExprScopeGuard Guard(E, Info.CurrentCall->CurSourceLocExprScope); 7990 return StmtVisitorTy::Visit(E->getExpr()); 7991 } 7992 7993 bool VisitExprWithCleanups(const ExprWithCleanups *E) { 7994 FullExpressionRAII Scope(Info); 7995 return StmtVisitorTy::Visit(E->getSubExpr()) && Scope.destroy(); 7996 } 7997 7998 // Temporaries are registered when created, so we don't care about 7999 // CXXBindTemporaryExpr. 8000 bool VisitCXXBindTemporaryExpr(const CXXBindTemporaryExpr *E) { 8001 return StmtVisitorTy::Visit(E->getSubExpr()); 8002 } 8003 8004 bool VisitCXXReinterpretCastExpr(const CXXReinterpretCastExpr *E) { 8005 CCEDiag(E, diag::note_constexpr_invalid_cast) << 0; 8006 return static_cast<Derived*>(this)->VisitCastExpr(E); 8007 } 8008 bool VisitCXXDynamicCastExpr(const CXXDynamicCastExpr *E) { 8009 if (!Info.Ctx.getLangOpts().CPlusPlus20) 8010 CCEDiag(E, diag::note_constexpr_invalid_cast) << 1; 8011 return static_cast<Derived*>(this)->VisitCastExpr(E); 8012 } 8013 bool VisitBuiltinBitCastExpr(const BuiltinBitCastExpr *E) { 8014 return static_cast<Derived*>(this)->VisitCastExpr(E); 8015 } 8016 8017 bool VisitBinaryOperator(const BinaryOperator *E) { 8018 switch (E->getOpcode()) { 8019 default: 8020 return Error(E); 8021 8022 case BO_Comma: 8023 VisitIgnoredValue(E->getLHS()); 8024 return StmtVisitorTy::Visit(E->getRHS()); 8025 8026 case BO_PtrMemD: 8027 case BO_PtrMemI: { 8028 LValue Obj; 8029 if (!HandleMemberPointerAccess(Info, E, Obj)) 8030 return false; 8031 APValue Result; 8032 if (!handleLValueToRValueConversion(Info, E, E->getType(), Obj, Result)) 8033 return false; 8034 return DerivedSuccess(Result, E); 8035 } 8036 } 8037 } 8038 8039 bool VisitCXXRewrittenBinaryOperator(const CXXRewrittenBinaryOperator *E) { 8040 return StmtVisitorTy::Visit(E->getSemanticForm()); 8041 } 8042 8043 bool VisitBinaryConditionalOperator(const BinaryConditionalOperator *E) { 8044 // Evaluate and cache the common expression. We treat it as a temporary, 8045 // even though it's not quite the same thing. 8046 LValue CommonLV; 8047 if (!Evaluate(Info.CurrentCall->createTemporary( 8048 E->getOpaqueValue(), 8049 getStorageType(Info.Ctx, E->getOpaqueValue()), 8050 ScopeKind::FullExpression, CommonLV), 8051 Info, E->getCommon())) 8052 return false; 8053 8054 return HandleConditionalOperator(E); 8055 } 8056 8057 bool VisitConditionalOperator(const ConditionalOperator *E) { 8058 bool IsBcpCall = false; 8059 // If the condition (ignoring parens) is a __builtin_constant_p call, 8060 // the result is a constant expression if it can be folded without 8061 // side-effects. This is an important GNU extension. See GCC PR38377 8062 // for discussion. 8063 if (const CallExpr *CallCE = 8064 dyn_cast<CallExpr>(E->getCond()->IgnoreParenCasts())) 8065 if (CallCE->getBuiltinCallee() == Builtin::BI__builtin_constant_p) 8066 IsBcpCall = true; 8067 8068 // Always assume __builtin_constant_p(...) ? ... : ... is a potential 8069 // constant expression; we can't check whether it's potentially foldable. 8070 // FIXME: We should instead treat __builtin_constant_p as non-constant if 8071 // it would return 'false' in this mode. 8072 if (Info.checkingPotentialConstantExpression() && IsBcpCall) 8073 return false; 8074 8075 FoldConstant Fold(Info, IsBcpCall); 8076 if (!HandleConditionalOperator(E)) { 8077 Fold.keepDiagnostics(); 8078 return false; 8079 } 8080 8081 return true; 8082 } 8083 8084 bool VisitOpaqueValueExpr(const OpaqueValueExpr *E) { 8085 if (APValue *Value = Info.CurrentCall->getCurrentTemporary(E); 8086 Value && !Value->isAbsent()) 8087 return DerivedSuccess(*Value, E); 8088 8089 const Expr *Source = E->getSourceExpr(); 8090 if (!Source) 8091 return Error(E); 8092 if (Source == E) { 8093 assert(0 && "OpaqueValueExpr recursively refers to itself"); 8094 return Error(E); 8095 } 8096 return StmtVisitorTy::Visit(Source); 8097 } 8098 8099 bool VisitPseudoObjectExpr(const PseudoObjectExpr *E) { 8100 for (const Expr *SemE : E->semantics()) { 8101 if (auto *OVE = dyn_cast<OpaqueValueExpr>(SemE)) { 8102 // FIXME: We can't handle the case where an OpaqueValueExpr is also the 8103 // result expression: there could be two different LValues that would 8104 // refer to the same object in that case, and we can't model that. 8105 if (SemE == E->getResultExpr()) 8106 return Error(E); 8107 8108 // Unique OVEs get evaluated if and when we encounter them when 8109 // emitting the rest of the semantic form, rather than eagerly. 8110 if (OVE->isUnique()) 8111 continue; 8112 8113 LValue LV; 8114 if (!Evaluate(Info.CurrentCall->createTemporary( 8115 OVE, getStorageType(Info.Ctx, OVE), 8116 ScopeKind::FullExpression, LV), 8117 Info, OVE->getSourceExpr())) 8118 return false; 8119 } else if (SemE == E->getResultExpr()) { 8120 if (!StmtVisitorTy::Visit(SemE)) 8121 return false; 8122 } else { 8123 if (!EvaluateIgnoredValue(Info, SemE)) 8124 return false; 8125 } 8126 } 8127 return true; 8128 } 8129 8130 bool VisitCallExpr(const CallExpr *E) { 8131 APValue Result; 8132 if (!handleCallExpr(E, Result, nullptr)) 8133 return false; 8134 return DerivedSuccess(Result, E); 8135 } 8136 8137 bool handleCallExpr(const CallExpr *E, APValue &Result, 8138 const LValue *ResultSlot) { 8139 CallScopeRAII CallScope(Info); 8140 8141 const Expr *Callee = E->getCallee()->IgnoreParens(); 8142 QualType CalleeType = Callee->getType(); 8143 8144 const FunctionDecl *FD = nullptr; 8145 LValue *This = nullptr, ThisVal; 8146 auto Args = llvm::ArrayRef(E->getArgs(), E->getNumArgs()); 8147 bool HasQualifier = false; 8148 8149 CallRef Call; 8150 8151 // Extract function decl and 'this' pointer from the callee. 8152 if (CalleeType->isSpecificBuiltinType(BuiltinType::BoundMember)) { 8153 const CXXMethodDecl *Member = nullptr; 8154 if (const MemberExpr *ME = dyn_cast<MemberExpr>(Callee)) { 8155 // Explicit bound member calls, such as x.f() or p->g(); 8156 if (!EvaluateObjectArgument(Info, ME->getBase(), ThisVal)) 8157 return false; 8158 Member = dyn_cast<CXXMethodDecl>(ME->getMemberDecl()); 8159 if (!Member) 8160 return Error(Callee); 8161 This = &ThisVal; 8162 HasQualifier = ME->hasQualifier(); 8163 } else if (const BinaryOperator *BE = dyn_cast<BinaryOperator>(Callee)) { 8164 // Indirect bound member calls ('.*' or '->*'). 8165 const ValueDecl *D = 8166 HandleMemberPointerAccess(Info, BE, ThisVal, false); 8167 if (!D) 8168 return false; 8169 Member = dyn_cast<CXXMethodDecl>(D); 8170 if (!Member) 8171 return Error(Callee); 8172 This = &ThisVal; 8173 } else if (const auto *PDE = dyn_cast<CXXPseudoDestructorExpr>(Callee)) { 8174 if (!Info.getLangOpts().CPlusPlus20) 8175 Info.CCEDiag(PDE, diag::note_constexpr_pseudo_destructor); 8176 return EvaluateObjectArgument(Info, PDE->getBase(), ThisVal) && 8177 HandleDestruction(Info, PDE, ThisVal, PDE->getDestroyedType()); 8178 } else 8179 return Error(Callee); 8180 FD = Member; 8181 } else if (CalleeType->isFunctionPointerType()) { 8182 LValue CalleeLV; 8183 if (!EvaluatePointer(Callee, CalleeLV, Info)) 8184 return false; 8185 8186 if (!CalleeLV.getLValueOffset().isZero()) 8187 return Error(Callee); 8188 if (CalleeLV.isNullPointer()) { 8189 Info.FFDiag(Callee, diag::note_constexpr_null_callee) 8190 << const_cast<Expr *>(Callee); 8191 return false; 8192 } 8193 FD = dyn_cast_or_null<FunctionDecl>( 8194 CalleeLV.getLValueBase().dyn_cast<const ValueDecl *>()); 8195 if (!FD) 8196 return Error(Callee); 8197 // Don't call function pointers which have been cast to some other type. 8198 // Per DR (no number yet), the caller and callee can differ in noexcept. 8199 if (!Info.Ctx.hasSameFunctionTypeIgnoringExceptionSpec( 8200 CalleeType->getPointeeType(), FD->getType())) { 8201 return Error(E); 8202 } 8203 8204 // For an (overloaded) assignment expression, evaluate the RHS before the 8205 // LHS. 8206 auto *OCE = dyn_cast<CXXOperatorCallExpr>(E); 8207 if (OCE && OCE->isAssignmentOp()) { 8208 assert(Args.size() == 2 && "wrong number of arguments in assignment"); 8209 Call = Info.CurrentCall->createCall(FD); 8210 bool HasThis = false; 8211 if (const auto *MD = dyn_cast<CXXMethodDecl>(FD)) 8212 HasThis = MD->isImplicitObjectMemberFunction(); 8213 if (!EvaluateArgs(HasThis ? Args.slice(1) : Args, Call, Info, FD, 8214 /*RightToLeft=*/true)) 8215 return false; 8216 } 8217 8218 // Overloaded operator calls to member functions are represented as normal 8219 // calls with '*this' as the first argument. 8220 const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD); 8221 if (MD && 8222 (MD->isImplicitObjectMemberFunction() || (OCE && MD->isStatic()))) { 8223 // FIXME: When selecting an implicit conversion for an overloaded 8224 // operator delete, we sometimes try to evaluate calls to conversion 8225 // operators without a 'this' parameter! 8226 if (Args.empty()) 8227 return Error(E); 8228 8229 if (!EvaluateObjectArgument(Info, Args[0], ThisVal)) 8230 return false; 8231 8232 // If we are calling a static operator, the 'this' argument needs to be 8233 // ignored after being evaluated. 8234 if (MD->isInstance()) 8235 This = &ThisVal; 8236 8237 // If this is syntactically a simple assignment using a trivial 8238 // assignment operator, start the lifetimes of union members as needed, 8239 // per C++20 [class.union]5. 8240 if (Info.getLangOpts().CPlusPlus20 && OCE && 8241 OCE->getOperator() == OO_Equal && MD->isTrivial() && 8242 !MaybeHandleUnionActiveMemberChange(Info, Args[0], ThisVal)) 8243 return false; 8244 8245 Args = Args.slice(1); 8246 } else if (MD && MD->isLambdaStaticInvoker()) { 8247 // Map the static invoker for the lambda back to the call operator. 8248 // Conveniently, we don't have to slice out the 'this' argument (as is 8249 // being done for the non-static case), since a static member function 8250 // doesn't have an implicit argument passed in. 8251 const CXXRecordDecl *ClosureClass = MD->getParent(); 8252 assert( 8253 ClosureClass->captures_begin() == ClosureClass->captures_end() && 8254 "Number of captures must be zero for conversion to function-ptr"); 8255 8256 const CXXMethodDecl *LambdaCallOp = 8257 ClosureClass->getLambdaCallOperator(); 8258 8259 // Set 'FD', the function that will be called below, to the call 8260 // operator. If the closure object represents a generic lambda, find 8261 // the corresponding specialization of the call operator. 8262 8263 if (ClosureClass->isGenericLambda()) { 8264 assert(MD->isFunctionTemplateSpecialization() && 8265 "A generic lambda's static-invoker function must be a " 8266 "template specialization"); 8267 const TemplateArgumentList *TAL = MD->getTemplateSpecializationArgs(); 8268 FunctionTemplateDecl *CallOpTemplate = 8269 LambdaCallOp->getDescribedFunctionTemplate(); 8270 void *InsertPos = nullptr; 8271 FunctionDecl *CorrespondingCallOpSpecialization = 8272 CallOpTemplate->findSpecialization(TAL->asArray(), InsertPos); 8273 assert(CorrespondingCallOpSpecialization && 8274 "We must always have a function call operator specialization " 8275 "that corresponds to our static invoker specialization"); 8276 assert(isa<CXXMethodDecl>(CorrespondingCallOpSpecialization)); 8277 FD = CorrespondingCallOpSpecialization; 8278 } else 8279 FD = LambdaCallOp; 8280 } else if (FD->isReplaceableGlobalAllocationFunction()) { 8281 if (FD->getDeclName().getCXXOverloadedOperator() == OO_New || 8282 FD->getDeclName().getCXXOverloadedOperator() == OO_Array_New) { 8283 LValue Ptr; 8284 if (!HandleOperatorNewCall(Info, E, Ptr)) 8285 return false; 8286 Ptr.moveInto(Result); 8287 return CallScope.destroy(); 8288 } else { 8289 return HandleOperatorDeleteCall(Info, E) && CallScope.destroy(); 8290 } 8291 } 8292 } else 8293 return Error(E); 8294 8295 // Evaluate the arguments now if we've not already done so. 8296 if (!Call) { 8297 Call = Info.CurrentCall->createCall(FD); 8298 if (!EvaluateArgs(Args, Call, Info, FD)) 8299 return false; 8300 } 8301 8302 SmallVector<QualType, 4> CovariantAdjustmentPath; 8303 if (This) { 8304 auto *NamedMember = dyn_cast<CXXMethodDecl>(FD); 8305 if (NamedMember && NamedMember->isVirtual() && !HasQualifier) { 8306 // Perform virtual dispatch, if necessary. 8307 FD = HandleVirtualDispatch(Info, E, *This, NamedMember, 8308 CovariantAdjustmentPath); 8309 if (!FD) 8310 return false; 8311 } else if (NamedMember && NamedMember->isImplicitObjectMemberFunction()) { 8312 // Check that the 'this' pointer points to an object of the right type. 8313 // FIXME: If this is an assignment operator call, we may need to change 8314 // the active union member before we check this. 8315 if (!checkNonVirtualMemberCallThisPointer(Info, E, *This, NamedMember)) 8316 return false; 8317 } 8318 } 8319 8320 // Destructor calls are different enough that they have their own codepath. 8321 if (auto *DD = dyn_cast<CXXDestructorDecl>(FD)) { 8322 assert(This && "no 'this' pointer for destructor call"); 8323 return HandleDestruction(Info, E, *This, 8324 Info.Ctx.getRecordType(DD->getParent())) && 8325 CallScope.destroy(); 8326 } 8327 8328 const FunctionDecl *Definition = nullptr; 8329 Stmt *Body = FD->getBody(Definition); 8330 8331 if (!CheckConstexprFunction(Info, E->getExprLoc(), FD, Definition, Body) || 8332 !HandleFunctionCall(E->getExprLoc(), Definition, This, E, Args, Call, 8333 Body, Info, Result, ResultSlot)) 8334 return false; 8335 8336 if (!CovariantAdjustmentPath.empty() && 8337 !HandleCovariantReturnAdjustment(Info, E, Result, 8338 CovariantAdjustmentPath)) 8339 return false; 8340 8341 return CallScope.destroy(); 8342 } 8343 8344 bool VisitCompoundLiteralExpr(const CompoundLiteralExpr *E) { 8345 return StmtVisitorTy::Visit(E->getInitializer()); 8346 } 8347 bool VisitInitListExpr(const InitListExpr *E) { 8348 if (E->getNumInits() == 0) 8349 return DerivedZeroInitialization(E); 8350 if (E->getNumInits() == 1) 8351 return StmtVisitorTy::Visit(E->getInit(0)); 8352 return Error(E); 8353 } 8354 bool VisitImplicitValueInitExpr(const ImplicitValueInitExpr *E) { 8355 return DerivedZeroInitialization(E); 8356 } 8357 bool VisitCXXScalarValueInitExpr(const CXXScalarValueInitExpr *E) { 8358 return DerivedZeroInitialization(E); 8359 } 8360 bool VisitCXXNullPtrLiteralExpr(const CXXNullPtrLiteralExpr *E) { 8361 return DerivedZeroInitialization(E); 8362 } 8363 8364 /// A member expression where the object is a prvalue is itself a prvalue. 8365 bool VisitMemberExpr(const MemberExpr *E) { 8366 assert(!Info.Ctx.getLangOpts().CPlusPlus11 && 8367 "missing temporary materialization conversion"); 8368 assert(!E->isArrow() && "missing call to bound member function?"); 8369 8370 APValue Val; 8371 if (!Evaluate(Val, Info, E->getBase())) 8372 return false; 8373 8374 QualType BaseTy = E->getBase()->getType(); 8375 8376 const FieldDecl *FD = dyn_cast<FieldDecl>(E->getMemberDecl()); 8377 if (!FD) return Error(E); 8378 assert(!FD->getType()->isReferenceType() && "prvalue reference?"); 8379 assert(BaseTy->castAs<RecordType>()->getDecl()->getCanonicalDecl() == 8380 FD->getParent()->getCanonicalDecl() && "record / field mismatch"); 8381 8382 // Note: there is no lvalue base here. But this case should only ever 8383 // happen in C or in C++98, where we cannot be evaluating a constexpr 8384 // constructor, which is the only case the base matters. 8385 CompleteObject Obj(APValue::LValueBase(), &Val, BaseTy); 8386 SubobjectDesignator Designator(BaseTy); 8387 Designator.addDeclUnchecked(FD); 8388 8389 APValue Result; 8390 return extractSubobject(Info, E, Obj, Designator, Result) && 8391 DerivedSuccess(Result, E); 8392 } 8393 8394 bool VisitExtVectorElementExpr(const ExtVectorElementExpr *E) { 8395 APValue Val; 8396 if (!Evaluate(Val, Info, E->getBase())) 8397 return false; 8398 8399 if (Val.isVector()) { 8400 SmallVector<uint32_t, 4> Indices; 8401 E->getEncodedElementAccess(Indices); 8402 if (Indices.size() == 1) { 8403 // Return scalar. 8404 return DerivedSuccess(Val.getVectorElt(Indices[0]), E); 8405 } else { 8406 // Construct new APValue vector. 8407 SmallVector<APValue, 4> Elts; 8408 for (unsigned I = 0; I < Indices.size(); ++I) { 8409 Elts.push_back(Val.getVectorElt(Indices[I])); 8410 } 8411 APValue VecResult(Elts.data(), Indices.size()); 8412 return DerivedSuccess(VecResult, E); 8413 } 8414 } 8415 8416 return false; 8417 } 8418 8419 bool VisitCastExpr(const CastExpr *E) { 8420 switch (E->getCastKind()) { 8421 default: 8422 break; 8423 8424 case CK_AtomicToNonAtomic: { 8425 APValue AtomicVal; 8426 // This does not need to be done in place even for class/array types: 8427 // atomic-to-non-atomic conversion implies copying the object 8428 // representation. 8429 if (!Evaluate(AtomicVal, Info, E->getSubExpr())) 8430 return false; 8431 return DerivedSuccess(AtomicVal, E); 8432 } 8433 8434 case CK_NoOp: 8435 case CK_UserDefinedConversion: 8436 return StmtVisitorTy::Visit(E->getSubExpr()); 8437 8438 case CK_LValueToRValue: { 8439 LValue LVal; 8440 if (!EvaluateLValue(E->getSubExpr(), LVal, Info)) 8441 return false; 8442 APValue RVal; 8443 // Note, we use the subexpression's type in order to retain cv-qualifiers. 8444 if (!handleLValueToRValueConversion(Info, E, E->getSubExpr()->getType(), 8445 LVal, RVal)) 8446 return false; 8447 return DerivedSuccess(RVal, E); 8448 } 8449 case CK_LValueToRValueBitCast: { 8450 APValue DestValue, SourceValue; 8451 if (!Evaluate(SourceValue, Info, E->getSubExpr())) 8452 return false; 8453 if (!handleLValueToRValueBitCast(Info, DestValue, SourceValue, E)) 8454 return false; 8455 return DerivedSuccess(DestValue, E); 8456 } 8457 8458 case CK_AddressSpaceConversion: { 8459 APValue Value; 8460 if (!Evaluate(Value, Info, E->getSubExpr())) 8461 return false; 8462 return DerivedSuccess(Value, E); 8463 } 8464 } 8465 8466 return Error(E); 8467 } 8468 8469 bool VisitUnaryPostInc(const UnaryOperator *UO) { 8470 return VisitUnaryPostIncDec(UO); 8471 } 8472 bool VisitUnaryPostDec(const UnaryOperator *UO) { 8473 return VisitUnaryPostIncDec(UO); 8474 } 8475 bool VisitUnaryPostIncDec(const UnaryOperator *UO) { 8476 if (!Info.getLangOpts().CPlusPlus14 && !Info.keepEvaluatingAfterFailure()) 8477 return Error(UO); 8478 8479 LValue LVal; 8480 if (!EvaluateLValue(UO->getSubExpr(), LVal, Info)) 8481 return false; 8482 APValue RVal; 8483 if (!handleIncDec(this->Info, UO, LVal, UO->getSubExpr()->getType(), 8484 UO->isIncrementOp(), &RVal)) 8485 return false; 8486 return DerivedSuccess(RVal, UO); 8487 } 8488 8489 bool VisitStmtExpr(const StmtExpr *E) { 8490 // We will have checked the full-expressions inside the statement expression 8491 // when they were completed, and don't need to check them again now. 8492 llvm::SaveAndRestore NotCheckingForUB(Info.CheckingForUndefinedBehavior, 8493 false); 8494 8495 const CompoundStmt *CS = E->getSubStmt(); 8496 if (CS->body_empty()) 8497 return true; 8498 8499 BlockScopeRAII Scope(Info); 8500 for (CompoundStmt::const_body_iterator BI = CS->body_begin(), 8501 BE = CS->body_end(); 8502 /**/; ++BI) { 8503 if (BI + 1 == BE) { 8504 const Expr *FinalExpr = dyn_cast<Expr>(*BI); 8505 if (!FinalExpr) { 8506 Info.FFDiag((*BI)->getBeginLoc(), 8507 diag::note_constexpr_stmt_expr_unsupported); 8508 return false; 8509 } 8510 return this->Visit(FinalExpr) && Scope.destroy(); 8511 } 8512 8513 APValue ReturnValue; 8514 StmtResult Result = { ReturnValue, nullptr }; 8515 EvalStmtResult ESR = EvaluateStmt(Result, Info, *BI); 8516 if (ESR != ESR_Succeeded) { 8517 // FIXME: If the statement-expression terminated due to 'return', 8518 // 'break', or 'continue', it would be nice to propagate that to 8519 // the outer statement evaluation rather than bailing out. 8520 if (ESR != ESR_Failed) 8521 Info.FFDiag((*BI)->getBeginLoc(), 8522 diag::note_constexpr_stmt_expr_unsupported); 8523 return false; 8524 } 8525 } 8526 8527 llvm_unreachable("Return from function from the loop above."); 8528 } 8529 8530 bool VisitPackIndexingExpr(const PackIndexingExpr *E) { 8531 return StmtVisitorTy::Visit(E->getSelectedExpr()); 8532 } 8533 8534 /// Visit a value which is evaluated, but whose value is ignored. 8535 void VisitIgnoredValue(const Expr *E) { 8536 EvaluateIgnoredValue(Info, E); 8537 } 8538 8539 /// Potentially visit a MemberExpr's base expression. 8540 void VisitIgnoredBaseExpression(const Expr *E) { 8541 // While MSVC doesn't evaluate the base expression, it does diagnose the 8542 // presence of side-effecting behavior. 8543 if (Info.getLangOpts().MSVCCompat && !E->HasSideEffects(Info.Ctx)) 8544 return; 8545 VisitIgnoredValue(E); 8546 } 8547 }; 8548 8549 } // namespace 8550 8551 //===----------------------------------------------------------------------===// 8552 // Common base class for lvalue and temporary evaluation. 8553 //===----------------------------------------------------------------------===// 8554 namespace { 8555 template<class Derived> 8556 class LValueExprEvaluatorBase 8557 : public ExprEvaluatorBase<Derived> { 8558 protected: 8559 LValue &Result; 8560 bool InvalidBaseOK; 8561 typedef LValueExprEvaluatorBase LValueExprEvaluatorBaseTy; 8562 typedef ExprEvaluatorBase<Derived> ExprEvaluatorBaseTy; 8563 8564 bool Success(APValue::LValueBase B) { 8565 Result.set(B); 8566 return true; 8567 } 8568 8569 bool evaluatePointer(const Expr *E, LValue &Result) { 8570 return EvaluatePointer(E, Result, this->Info, InvalidBaseOK); 8571 } 8572 8573 public: 8574 LValueExprEvaluatorBase(EvalInfo &Info, LValue &Result, bool InvalidBaseOK) 8575 : ExprEvaluatorBaseTy(Info), Result(Result), 8576 InvalidBaseOK(InvalidBaseOK) {} 8577 8578 bool Success(const APValue &V, const Expr *E) { 8579 Result.setFrom(this->Info.Ctx, V); 8580 return true; 8581 } 8582 8583 bool VisitMemberExpr(const MemberExpr *E) { 8584 // Handle non-static data members. 8585 QualType BaseTy; 8586 bool EvalOK; 8587 if (E->isArrow()) { 8588 EvalOK = evaluatePointer(E->getBase(), Result); 8589 BaseTy = E->getBase()->getType()->castAs<PointerType>()->getPointeeType(); 8590 } else if (E->getBase()->isPRValue()) { 8591 assert(E->getBase()->getType()->isRecordType()); 8592 EvalOK = EvaluateTemporary(E->getBase(), Result, this->Info); 8593 BaseTy = E->getBase()->getType(); 8594 } else { 8595 EvalOK = this->Visit(E->getBase()); 8596 BaseTy = E->getBase()->getType(); 8597 } 8598 if (!EvalOK) { 8599 if (!InvalidBaseOK) 8600 return false; 8601 Result.setInvalid(E); 8602 return true; 8603 } 8604 8605 const ValueDecl *MD = E->getMemberDecl(); 8606 if (const FieldDecl *FD = dyn_cast<FieldDecl>(E->getMemberDecl())) { 8607 assert(BaseTy->castAs<RecordType>()->getDecl()->getCanonicalDecl() == 8608 FD->getParent()->getCanonicalDecl() && "record / field mismatch"); 8609 (void)BaseTy; 8610 if (!HandleLValueMember(this->Info, E, Result, FD)) 8611 return false; 8612 } else if (const IndirectFieldDecl *IFD = dyn_cast<IndirectFieldDecl>(MD)) { 8613 if (!HandleLValueIndirectMember(this->Info, E, Result, IFD)) 8614 return false; 8615 } else 8616 return this->Error(E); 8617 8618 if (MD->getType()->isReferenceType()) { 8619 APValue RefValue; 8620 if (!handleLValueToRValueConversion(this->Info, E, MD->getType(), Result, 8621 RefValue)) 8622 return false; 8623 return Success(RefValue, E); 8624 } 8625 return true; 8626 } 8627 8628 bool VisitBinaryOperator(const BinaryOperator *E) { 8629 switch (E->getOpcode()) { 8630 default: 8631 return ExprEvaluatorBaseTy::VisitBinaryOperator(E); 8632 8633 case BO_PtrMemD: 8634 case BO_PtrMemI: 8635 return HandleMemberPointerAccess(this->Info, E, Result); 8636 } 8637 } 8638 8639 bool VisitCastExpr(const CastExpr *E) { 8640 switch (E->getCastKind()) { 8641 default: 8642 return ExprEvaluatorBaseTy::VisitCastExpr(E); 8643 8644 case CK_DerivedToBase: 8645 case CK_UncheckedDerivedToBase: 8646 if (!this->Visit(E->getSubExpr())) 8647 return false; 8648 8649 // Now figure out the necessary offset to add to the base LV to get from 8650 // the derived class to the base class. 8651 return HandleLValueBasePath(this->Info, E, E->getSubExpr()->getType(), 8652 Result); 8653 } 8654 } 8655 }; 8656 } 8657 8658 //===----------------------------------------------------------------------===// 8659 // LValue Evaluation 8660 // 8661 // This is used for evaluating lvalues (in C and C++), xvalues (in C++11), 8662 // function designators (in C), decl references to void objects (in C), and 8663 // temporaries (if building with -Wno-address-of-temporary). 8664 // 8665 // LValue evaluation produces values comprising a base expression of one of the 8666 // following types: 8667 // - Declarations 8668 // * VarDecl 8669 // * FunctionDecl 8670 // - Literals 8671 // * CompoundLiteralExpr in C (and in global scope in C++) 8672 // * StringLiteral 8673 // * PredefinedExpr 8674 // * ObjCStringLiteralExpr 8675 // * ObjCEncodeExpr 8676 // * AddrLabelExpr 8677 // * BlockExpr 8678 // * CallExpr for a MakeStringConstant builtin 8679 // - typeid(T) expressions, as TypeInfoLValues 8680 // - Locals and temporaries 8681 // * MaterializeTemporaryExpr 8682 // * Any Expr, with a CallIndex indicating the function in which the temporary 8683 // was evaluated, for cases where the MaterializeTemporaryExpr is missing 8684 // from the AST (FIXME). 8685 // * A MaterializeTemporaryExpr that has static storage duration, with no 8686 // CallIndex, for a lifetime-extended temporary. 8687 // * The ConstantExpr that is currently being evaluated during evaluation of an 8688 // immediate invocation. 8689 // plus an offset in bytes. 8690 //===----------------------------------------------------------------------===// 8691 namespace { 8692 class LValueExprEvaluator 8693 : public LValueExprEvaluatorBase<LValueExprEvaluator> { 8694 public: 8695 LValueExprEvaluator(EvalInfo &Info, LValue &Result, bool InvalidBaseOK) : 8696 LValueExprEvaluatorBaseTy(Info, Result, InvalidBaseOK) {} 8697 8698 bool VisitVarDecl(const Expr *E, const VarDecl *VD); 8699 bool VisitUnaryPreIncDec(const UnaryOperator *UO); 8700 8701 bool VisitCallExpr(const CallExpr *E); 8702 bool VisitDeclRefExpr(const DeclRefExpr *E); 8703 bool VisitPredefinedExpr(const PredefinedExpr *E) { return Success(E); } 8704 bool VisitMaterializeTemporaryExpr(const MaterializeTemporaryExpr *E); 8705 bool VisitCompoundLiteralExpr(const CompoundLiteralExpr *E); 8706 bool VisitMemberExpr(const MemberExpr *E); 8707 bool VisitStringLiteral(const StringLiteral *E) { 8708 return Success(APValue::LValueBase( 8709 E, 0, Info.getASTContext().getNextStringLiteralVersion())); 8710 } 8711 bool VisitObjCEncodeExpr(const ObjCEncodeExpr *E) { return Success(E); } 8712 bool VisitCXXTypeidExpr(const CXXTypeidExpr *E); 8713 bool VisitCXXUuidofExpr(const CXXUuidofExpr *E); 8714 bool VisitArraySubscriptExpr(const ArraySubscriptExpr *E); 8715 bool VisitExtVectorElementExpr(const ExtVectorElementExpr *E); 8716 bool VisitUnaryDeref(const UnaryOperator *E); 8717 bool VisitUnaryReal(const UnaryOperator *E); 8718 bool VisitUnaryImag(const UnaryOperator *E); 8719 bool VisitUnaryPreInc(const UnaryOperator *UO) { 8720 return VisitUnaryPreIncDec(UO); 8721 } 8722 bool VisitUnaryPreDec(const UnaryOperator *UO) { 8723 return VisitUnaryPreIncDec(UO); 8724 } 8725 bool VisitBinAssign(const BinaryOperator *BO); 8726 bool VisitCompoundAssignOperator(const CompoundAssignOperator *CAO); 8727 8728 bool VisitCastExpr(const CastExpr *E) { 8729 switch (E->getCastKind()) { 8730 default: 8731 return LValueExprEvaluatorBaseTy::VisitCastExpr(E); 8732 8733 case CK_LValueBitCast: 8734 this->CCEDiag(E, diag::note_constexpr_invalid_cast) 8735 << 2 << Info.Ctx.getLangOpts().CPlusPlus; 8736 if (!Visit(E->getSubExpr())) 8737 return false; 8738 Result.Designator.setInvalid(); 8739 return true; 8740 8741 case CK_BaseToDerived: 8742 if (!Visit(E->getSubExpr())) 8743 return false; 8744 return HandleBaseToDerivedCast(Info, E, Result); 8745 8746 case CK_Dynamic: 8747 if (!Visit(E->getSubExpr())) 8748 return false; 8749 return HandleDynamicCast(Info, cast<ExplicitCastExpr>(E), Result); 8750 } 8751 } 8752 }; 8753 } // end anonymous namespace 8754 8755 /// Get an lvalue to a field of a lambda's closure type. 8756 static bool HandleLambdaCapture(EvalInfo &Info, const Expr *E, LValue &Result, 8757 const CXXMethodDecl *MD, const FieldDecl *FD, 8758 bool LValueToRValueConversion) { 8759 // Static lambda function call operators can't have captures. We already 8760 // diagnosed this, so bail out here. 8761 if (MD->isStatic()) { 8762 assert(Info.CurrentCall->This == nullptr && 8763 "This should not be set for a static call operator"); 8764 return false; 8765 } 8766 8767 // Start with 'Result' referring to the complete closure object... 8768 if (MD->isExplicitObjectMemberFunction()) { 8769 // Self may be passed by reference or by value. 8770 const ParmVarDecl *Self = MD->getParamDecl(0); 8771 if (Self->getType()->isReferenceType()) { 8772 APValue *RefValue = Info.getParamSlot(Info.CurrentCall->Arguments, Self); 8773 Result.setFrom(Info.Ctx, *RefValue); 8774 } else { 8775 const ParmVarDecl *VD = Info.CurrentCall->Arguments.getOrigParam(Self); 8776 CallStackFrame *Frame = 8777 Info.getCallFrameAndDepth(Info.CurrentCall->Arguments.CallIndex) 8778 .first; 8779 unsigned Version = Info.CurrentCall->Arguments.Version; 8780 Result.set({VD, Frame->Index, Version}); 8781 } 8782 } else 8783 Result = *Info.CurrentCall->This; 8784 8785 // ... then update it to refer to the field of the closure object 8786 // that represents the capture. 8787 if (!HandleLValueMember(Info, E, Result, FD)) 8788 return false; 8789 8790 // And if the field is of reference type (or if we captured '*this' by 8791 // reference), update 'Result' to refer to what 8792 // the field refers to. 8793 if (LValueToRValueConversion) { 8794 APValue RVal; 8795 if (!handleLValueToRValueConversion(Info, E, FD->getType(), Result, RVal)) 8796 return false; 8797 Result.setFrom(Info.Ctx, RVal); 8798 } 8799 return true; 8800 } 8801 8802 /// Evaluate an expression as an lvalue. This can be legitimately called on 8803 /// expressions which are not glvalues, in three cases: 8804 /// * function designators in C, and 8805 /// * "extern void" objects 8806 /// * @selector() expressions in Objective-C 8807 static bool EvaluateLValue(const Expr *E, LValue &Result, EvalInfo &Info, 8808 bool InvalidBaseOK) { 8809 assert(!E->isValueDependent()); 8810 assert(E->isGLValue() || E->getType()->isFunctionType() || 8811 E->getType()->isVoidType() || isa<ObjCSelectorExpr>(E->IgnoreParens())); 8812 return LValueExprEvaluator(Info, Result, InvalidBaseOK).Visit(E); 8813 } 8814 8815 bool LValueExprEvaluator::VisitDeclRefExpr(const DeclRefExpr *E) { 8816 const NamedDecl *D = E->getDecl(); 8817 if (isa<FunctionDecl, MSGuidDecl, TemplateParamObjectDecl, 8818 UnnamedGlobalConstantDecl>(D)) 8819 return Success(cast<ValueDecl>(D)); 8820 if (const VarDecl *VD = dyn_cast<VarDecl>(D)) 8821 return VisitVarDecl(E, VD); 8822 if (const BindingDecl *BD = dyn_cast<BindingDecl>(D)) 8823 return Visit(BD->getBinding()); 8824 return Error(E); 8825 } 8826 8827 8828 bool LValueExprEvaluator::VisitVarDecl(const Expr *E, const VarDecl *VD) { 8829 8830 // If we are within a lambda's call operator, check whether the 'VD' referred 8831 // to within 'E' actually represents a lambda-capture that maps to a 8832 // data-member/field within the closure object, and if so, evaluate to the 8833 // field or what the field refers to. 8834 if (Info.CurrentCall && isLambdaCallOperator(Info.CurrentCall->Callee) && 8835 isa<DeclRefExpr>(E) && 8836 cast<DeclRefExpr>(E)->refersToEnclosingVariableOrCapture()) { 8837 // We don't always have a complete capture-map when checking or inferring if 8838 // the function call operator meets the requirements of a constexpr function 8839 // - but we don't need to evaluate the captures to determine constexprness 8840 // (dcl.constexpr C++17). 8841 if (Info.checkingPotentialConstantExpression()) 8842 return false; 8843 8844 if (auto *FD = Info.CurrentCall->LambdaCaptureFields.lookup(VD)) { 8845 const auto *MD = cast<CXXMethodDecl>(Info.CurrentCall->Callee); 8846 return HandleLambdaCapture(Info, E, Result, MD, FD, 8847 FD->getType()->isReferenceType()); 8848 } 8849 } 8850 8851 CallStackFrame *Frame = nullptr; 8852 unsigned Version = 0; 8853 if (VD->hasLocalStorage()) { 8854 // Only if a local variable was declared in the function currently being 8855 // evaluated, do we expect to be able to find its value in the current 8856 // frame. (Otherwise it was likely declared in an enclosing context and 8857 // could either have a valid evaluatable value (for e.g. a constexpr 8858 // variable) or be ill-formed (and trigger an appropriate evaluation 8859 // diagnostic)). 8860 CallStackFrame *CurrFrame = Info.CurrentCall; 8861 if (CurrFrame->Callee && CurrFrame->Callee->Equals(VD->getDeclContext())) { 8862 // Function parameters are stored in some caller's frame. (Usually the 8863 // immediate caller, but for an inherited constructor they may be more 8864 // distant.) 8865 if (auto *PVD = dyn_cast<ParmVarDecl>(VD)) { 8866 if (CurrFrame->Arguments) { 8867 VD = CurrFrame->Arguments.getOrigParam(PVD); 8868 Frame = 8869 Info.getCallFrameAndDepth(CurrFrame->Arguments.CallIndex).first; 8870 Version = CurrFrame->Arguments.Version; 8871 } 8872 } else { 8873 Frame = CurrFrame; 8874 Version = CurrFrame->getCurrentTemporaryVersion(VD); 8875 } 8876 } 8877 } 8878 8879 if (!VD->getType()->isReferenceType()) { 8880 if (Frame) { 8881 Result.set({VD, Frame->Index, Version}); 8882 return true; 8883 } 8884 return Success(VD); 8885 } 8886 8887 if (!Info.getLangOpts().CPlusPlus11) { 8888 Info.CCEDiag(E, diag::note_constexpr_ltor_non_integral, 1) 8889 << VD << VD->getType(); 8890 Info.Note(VD->getLocation(), diag::note_declared_at); 8891 } 8892 8893 APValue *V; 8894 if (!evaluateVarDeclInit(Info, E, VD, Frame, Version, V)) 8895 return false; 8896 if (!V->hasValue()) { 8897 // FIXME: Is it possible for V to be indeterminate here? If so, we should 8898 // adjust the diagnostic to say that. 8899 if (!Info.checkingPotentialConstantExpression()) 8900 Info.FFDiag(E, diag::note_constexpr_use_uninit_reference); 8901 return false; 8902 } 8903 return Success(*V, E); 8904 } 8905 8906 bool LValueExprEvaluator::VisitCallExpr(const CallExpr *E) { 8907 if (!IsConstantEvaluatedBuiltinCall(E)) 8908 return ExprEvaluatorBaseTy::VisitCallExpr(E); 8909 8910 switch (E->getBuiltinCallee()) { 8911 default: 8912 return false; 8913 case Builtin::BIas_const: 8914 case Builtin::BIforward: 8915 case Builtin::BIforward_like: 8916 case Builtin::BImove: 8917 case Builtin::BImove_if_noexcept: 8918 if (cast<FunctionDecl>(E->getCalleeDecl())->isConstexpr()) 8919 return Visit(E->getArg(0)); 8920 break; 8921 } 8922 8923 return ExprEvaluatorBaseTy::VisitCallExpr(E); 8924 } 8925 8926 bool LValueExprEvaluator::VisitMaterializeTemporaryExpr( 8927 const MaterializeTemporaryExpr *E) { 8928 // Walk through the expression to find the materialized temporary itself. 8929 SmallVector<const Expr *, 2> CommaLHSs; 8930 SmallVector<SubobjectAdjustment, 2> Adjustments; 8931 const Expr *Inner = 8932 E->getSubExpr()->skipRValueSubobjectAdjustments(CommaLHSs, Adjustments); 8933 8934 // If we passed any comma operators, evaluate their LHSs. 8935 for (const Expr *E : CommaLHSs) 8936 if (!EvaluateIgnoredValue(Info, E)) 8937 return false; 8938 8939 // A materialized temporary with static storage duration can appear within the 8940 // result of a constant expression evaluation, so we need to preserve its 8941 // value for use outside this evaluation. 8942 APValue *Value; 8943 if (E->getStorageDuration() == SD_Static) { 8944 if (Info.EvalMode == EvalInfo::EM_ConstantFold) 8945 return false; 8946 // FIXME: What about SD_Thread? 8947 Value = E->getOrCreateValue(true); 8948 *Value = APValue(); 8949 Result.set(E); 8950 } else { 8951 Value = &Info.CurrentCall->createTemporary( 8952 E, Inner->getType(), 8953 E->getStorageDuration() == SD_FullExpression ? ScopeKind::FullExpression 8954 : ScopeKind::Block, 8955 Result); 8956 } 8957 8958 QualType Type = Inner->getType(); 8959 8960 // Materialize the temporary itself. 8961 if (!EvaluateInPlace(*Value, Info, Result, Inner)) { 8962 *Value = APValue(); 8963 return false; 8964 } 8965 8966 // Adjust our lvalue to refer to the desired subobject. 8967 for (unsigned I = Adjustments.size(); I != 0; /**/) { 8968 --I; 8969 switch (Adjustments[I].Kind) { 8970 case SubobjectAdjustment::DerivedToBaseAdjustment: 8971 if (!HandleLValueBasePath(Info, Adjustments[I].DerivedToBase.BasePath, 8972 Type, Result)) 8973 return false; 8974 Type = Adjustments[I].DerivedToBase.BasePath->getType(); 8975 break; 8976 8977 case SubobjectAdjustment::FieldAdjustment: 8978 if (!HandleLValueMember(Info, E, Result, Adjustments[I].Field)) 8979 return false; 8980 Type = Adjustments[I].Field->getType(); 8981 break; 8982 8983 case SubobjectAdjustment::MemberPointerAdjustment: 8984 if (!HandleMemberPointerAccess(this->Info, Type, Result, 8985 Adjustments[I].Ptr.RHS)) 8986 return false; 8987 Type = Adjustments[I].Ptr.MPT->getPointeeType(); 8988 break; 8989 } 8990 } 8991 8992 return true; 8993 } 8994 8995 bool 8996 LValueExprEvaluator::VisitCompoundLiteralExpr(const CompoundLiteralExpr *E) { 8997 assert((!Info.getLangOpts().CPlusPlus || E->isFileScope()) && 8998 "lvalue compound literal in c++?"); 8999 // Defer visiting the literal until the lvalue-to-rvalue conversion. We can 9000 // only see this when folding in C, so there's no standard to follow here. 9001 return Success(E); 9002 } 9003 9004 bool LValueExprEvaluator::VisitCXXTypeidExpr(const CXXTypeidExpr *E) { 9005 TypeInfoLValue TypeInfo; 9006 9007 if (!E->isPotentiallyEvaluated()) { 9008 if (E->isTypeOperand()) 9009 TypeInfo = TypeInfoLValue(E->getTypeOperand(Info.Ctx).getTypePtr()); 9010 else 9011 TypeInfo = TypeInfoLValue(E->getExprOperand()->getType().getTypePtr()); 9012 } else { 9013 if (!Info.Ctx.getLangOpts().CPlusPlus20) { 9014 Info.CCEDiag(E, diag::note_constexpr_typeid_polymorphic) 9015 << E->getExprOperand()->getType() 9016 << E->getExprOperand()->getSourceRange(); 9017 } 9018 9019 if (!Visit(E->getExprOperand())) 9020 return false; 9021 9022 std::optional<DynamicType> DynType = 9023 ComputeDynamicType(Info, E, Result, AK_TypeId); 9024 if (!DynType) 9025 return false; 9026 9027 TypeInfo = 9028 TypeInfoLValue(Info.Ctx.getRecordType(DynType->Type).getTypePtr()); 9029 } 9030 9031 return Success(APValue::LValueBase::getTypeInfo(TypeInfo, E->getType())); 9032 } 9033 9034 bool LValueExprEvaluator::VisitCXXUuidofExpr(const CXXUuidofExpr *E) { 9035 return Success(E->getGuidDecl()); 9036 } 9037 9038 bool LValueExprEvaluator::VisitMemberExpr(const MemberExpr *E) { 9039 // Handle static data members. 9040 if (const VarDecl *VD = dyn_cast<VarDecl>(E->getMemberDecl())) { 9041 VisitIgnoredBaseExpression(E->getBase()); 9042 return VisitVarDecl(E, VD); 9043 } 9044 9045 // Handle static member functions. 9046 if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(E->getMemberDecl())) { 9047 if (MD->isStatic()) { 9048 VisitIgnoredBaseExpression(E->getBase()); 9049 return Success(MD); 9050 } 9051 } 9052 9053 // Handle non-static data members. 9054 return LValueExprEvaluatorBaseTy::VisitMemberExpr(E); 9055 } 9056 9057 bool LValueExprEvaluator::VisitExtVectorElementExpr( 9058 const ExtVectorElementExpr *E) { 9059 bool Success = true; 9060 9061 APValue Val; 9062 if (!Evaluate(Val, Info, E->getBase())) { 9063 if (!Info.noteFailure()) 9064 return false; 9065 Success = false; 9066 } 9067 9068 SmallVector<uint32_t, 4> Indices; 9069 E->getEncodedElementAccess(Indices); 9070 // FIXME: support accessing more than one element 9071 if (Indices.size() > 1) 9072 return false; 9073 9074 if (Success) { 9075 Result.setFrom(Info.Ctx, Val); 9076 const auto *VT = E->getBase()->getType()->castAs<VectorType>(); 9077 HandleLValueVectorElement(Info, E, Result, VT->getElementType(), 9078 VT->getNumElements(), Indices[0]); 9079 } 9080 9081 return Success; 9082 } 9083 9084 bool LValueExprEvaluator::VisitArraySubscriptExpr(const ArraySubscriptExpr *E) { 9085 if (E->getBase()->getType()->isSveVLSBuiltinType()) 9086 return Error(E); 9087 9088 APSInt Index; 9089 bool Success = true; 9090 9091 if (const auto *VT = E->getBase()->getType()->getAs<VectorType>()) { 9092 APValue Val; 9093 if (!Evaluate(Val, Info, E->getBase())) { 9094 if (!Info.noteFailure()) 9095 return false; 9096 Success = false; 9097 } 9098 9099 if (!EvaluateInteger(E->getIdx(), Index, Info)) { 9100 if (!Info.noteFailure()) 9101 return false; 9102 Success = false; 9103 } 9104 9105 if (Success) { 9106 Result.setFrom(Info.Ctx, Val); 9107 HandleLValueVectorElement(Info, E, Result, VT->getElementType(), 9108 VT->getNumElements(), Index.getExtValue()); 9109 } 9110 9111 return Success; 9112 } 9113 9114 // C++17's rules require us to evaluate the LHS first, regardless of which 9115 // side is the base. 9116 for (const Expr *SubExpr : {E->getLHS(), E->getRHS()}) { 9117 if (SubExpr == E->getBase() ? !evaluatePointer(SubExpr, Result) 9118 : !EvaluateInteger(SubExpr, Index, Info)) { 9119 if (!Info.noteFailure()) 9120 return false; 9121 Success = false; 9122 } 9123 } 9124 9125 return Success && 9126 HandleLValueArrayAdjustment(Info, E, Result, E->getType(), Index); 9127 } 9128 9129 bool LValueExprEvaluator::VisitUnaryDeref(const UnaryOperator *E) { 9130 return evaluatePointer(E->getSubExpr(), Result); 9131 } 9132 9133 bool LValueExprEvaluator::VisitUnaryReal(const UnaryOperator *E) { 9134 if (!Visit(E->getSubExpr())) 9135 return false; 9136 // __real is a no-op on scalar lvalues. 9137 if (E->getSubExpr()->getType()->isAnyComplexType()) 9138 HandleLValueComplexElement(Info, E, Result, E->getType(), false); 9139 return true; 9140 } 9141 9142 bool LValueExprEvaluator::VisitUnaryImag(const UnaryOperator *E) { 9143 assert(E->getSubExpr()->getType()->isAnyComplexType() && 9144 "lvalue __imag__ on scalar?"); 9145 if (!Visit(E->getSubExpr())) 9146 return false; 9147 HandleLValueComplexElement(Info, E, Result, E->getType(), true); 9148 return true; 9149 } 9150 9151 bool LValueExprEvaluator::VisitUnaryPreIncDec(const UnaryOperator *UO) { 9152 if (!Info.getLangOpts().CPlusPlus14 && !Info.keepEvaluatingAfterFailure()) 9153 return Error(UO); 9154 9155 if (!this->Visit(UO->getSubExpr())) 9156 return false; 9157 9158 return handleIncDec( 9159 this->Info, UO, Result, UO->getSubExpr()->getType(), 9160 UO->isIncrementOp(), nullptr); 9161 } 9162 9163 bool LValueExprEvaluator::VisitCompoundAssignOperator( 9164 const CompoundAssignOperator *CAO) { 9165 if (!Info.getLangOpts().CPlusPlus14 && !Info.keepEvaluatingAfterFailure()) 9166 return Error(CAO); 9167 9168 bool Success = true; 9169 9170 // C++17 onwards require that we evaluate the RHS first. 9171 APValue RHS; 9172 if (!Evaluate(RHS, this->Info, CAO->getRHS())) { 9173 if (!Info.noteFailure()) 9174 return false; 9175 Success = false; 9176 } 9177 9178 // The overall lvalue result is the result of evaluating the LHS. 9179 if (!this->Visit(CAO->getLHS()) || !Success) 9180 return false; 9181 9182 return handleCompoundAssignment( 9183 this->Info, CAO, 9184 Result, CAO->getLHS()->getType(), CAO->getComputationLHSType(), 9185 CAO->getOpForCompoundAssignment(CAO->getOpcode()), RHS); 9186 } 9187 9188 bool LValueExprEvaluator::VisitBinAssign(const BinaryOperator *E) { 9189 if (!Info.getLangOpts().CPlusPlus14 && !Info.keepEvaluatingAfterFailure()) 9190 return Error(E); 9191 9192 bool Success = true; 9193 9194 // C++17 onwards require that we evaluate the RHS first. 9195 APValue NewVal; 9196 if (!Evaluate(NewVal, this->Info, E->getRHS())) { 9197 if (!Info.noteFailure()) 9198 return false; 9199 Success = false; 9200 } 9201 9202 if (!this->Visit(E->getLHS()) || !Success) 9203 return false; 9204 9205 if (Info.getLangOpts().CPlusPlus20 && 9206 !MaybeHandleUnionActiveMemberChange(Info, E->getLHS(), Result)) 9207 return false; 9208 9209 return handleAssignment(this->Info, E, Result, E->getLHS()->getType(), 9210 NewVal); 9211 } 9212 9213 //===----------------------------------------------------------------------===// 9214 // Pointer Evaluation 9215 //===----------------------------------------------------------------------===// 9216 9217 /// Attempts to compute the number of bytes available at the pointer 9218 /// returned by a function with the alloc_size attribute. Returns true if we 9219 /// were successful. Places an unsigned number into `Result`. 9220 /// 9221 /// This expects the given CallExpr to be a call to a function with an 9222 /// alloc_size attribute. 9223 static bool getBytesReturnedByAllocSizeCall(const ASTContext &Ctx, 9224 const CallExpr *Call, 9225 llvm::APInt &Result) { 9226 const AllocSizeAttr *AllocSize = getAllocSizeAttr(Call); 9227 9228 assert(AllocSize && AllocSize->getElemSizeParam().isValid()); 9229 unsigned SizeArgNo = AllocSize->getElemSizeParam().getASTIndex(); 9230 unsigned BitsInSizeT = Ctx.getTypeSize(Ctx.getSizeType()); 9231 if (Call->getNumArgs() <= SizeArgNo) 9232 return false; 9233 9234 auto EvaluateAsSizeT = [&](const Expr *E, APSInt &Into) { 9235 Expr::EvalResult ExprResult; 9236 if (!E->EvaluateAsInt(ExprResult, Ctx, Expr::SE_AllowSideEffects)) 9237 return false; 9238 Into = ExprResult.Val.getInt(); 9239 if (Into.isNegative() || !Into.isIntN(BitsInSizeT)) 9240 return false; 9241 Into = Into.zext(BitsInSizeT); 9242 return true; 9243 }; 9244 9245 APSInt SizeOfElem; 9246 if (!EvaluateAsSizeT(Call->getArg(SizeArgNo), SizeOfElem)) 9247 return false; 9248 9249 if (!AllocSize->getNumElemsParam().isValid()) { 9250 Result = std::move(SizeOfElem); 9251 return true; 9252 } 9253 9254 APSInt NumberOfElems; 9255 unsigned NumArgNo = AllocSize->getNumElemsParam().getASTIndex(); 9256 if (!EvaluateAsSizeT(Call->getArg(NumArgNo), NumberOfElems)) 9257 return false; 9258 9259 bool Overflow; 9260 llvm::APInt BytesAvailable = SizeOfElem.umul_ov(NumberOfElems, Overflow); 9261 if (Overflow) 9262 return false; 9263 9264 Result = std::move(BytesAvailable); 9265 return true; 9266 } 9267 9268 /// Convenience function. LVal's base must be a call to an alloc_size 9269 /// function. 9270 static bool getBytesReturnedByAllocSizeCall(const ASTContext &Ctx, 9271 const LValue &LVal, 9272 llvm::APInt &Result) { 9273 assert(isBaseAnAllocSizeCall(LVal.getLValueBase()) && 9274 "Can't get the size of a non alloc_size function"); 9275 const auto *Base = LVal.getLValueBase().get<const Expr *>(); 9276 const CallExpr *CE = tryUnwrapAllocSizeCall(Base); 9277 return getBytesReturnedByAllocSizeCall(Ctx, CE, Result); 9278 } 9279 9280 /// Attempts to evaluate the given LValueBase as the result of a call to 9281 /// a function with the alloc_size attribute. If it was possible to do so, this 9282 /// function will return true, make Result's Base point to said function call, 9283 /// and mark Result's Base as invalid. 9284 static bool evaluateLValueAsAllocSize(EvalInfo &Info, APValue::LValueBase Base, 9285 LValue &Result) { 9286 if (Base.isNull()) 9287 return false; 9288 9289 // Because we do no form of static analysis, we only support const variables. 9290 // 9291 // Additionally, we can't support parameters, nor can we support static 9292 // variables (in the latter case, use-before-assign isn't UB; in the former, 9293 // we have no clue what they'll be assigned to). 9294 const auto *VD = 9295 dyn_cast_or_null<VarDecl>(Base.dyn_cast<const ValueDecl *>()); 9296 if (!VD || !VD->isLocalVarDecl() || !VD->getType().isConstQualified()) 9297 return false; 9298 9299 const Expr *Init = VD->getAnyInitializer(); 9300 if (!Init || Init->getType().isNull()) 9301 return false; 9302 9303 const Expr *E = Init->IgnoreParens(); 9304 if (!tryUnwrapAllocSizeCall(E)) 9305 return false; 9306 9307 // Store E instead of E unwrapped so that the type of the LValue's base is 9308 // what the user wanted. 9309 Result.setInvalid(E); 9310 9311 QualType Pointee = E->getType()->castAs<PointerType>()->getPointeeType(); 9312 Result.addUnsizedArray(Info, E, Pointee); 9313 return true; 9314 } 9315 9316 namespace { 9317 class PointerExprEvaluator 9318 : public ExprEvaluatorBase<PointerExprEvaluator> { 9319 LValue &Result; 9320 bool InvalidBaseOK; 9321 9322 bool Success(const Expr *E) { 9323 Result.set(E); 9324 return true; 9325 } 9326 9327 bool evaluateLValue(const Expr *E, LValue &Result) { 9328 return EvaluateLValue(E, Result, Info, InvalidBaseOK); 9329 } 9330 9331 bool evaluatePointer(const Expr *E, LValue &Result) { 9332 return EvaluatePointer(E, Result, Info, InvalidBaseOK); 9333 } 9334 9335 bool visitNonBuiltinCallExpr(const CallExpr *E); 9336 public: 9337 9338 PointerExprEvaluator(EvalInfo &info, LValue &Result, bool InvalidBaseOK) 9339 : ExprEvaluatorBaseTy(info), Result(Result), 9340 InvalidBaseOK(InvalidBaseOK) {} 9341 9342 bool Success(const APValue &V, const Expr *E) { 9343 Result.setFrom(Info.Ctx, V); 9344 return true; 9345 } 9346 bool ZeroInitialization(const Expr *E) { 9347 Result.setNull(Info.Ctx, E->getType()); 9348 return true; 9349 } 9350 9351 bool VisitBinaryOperator(const BinaryOperator *E); 9352 bool VisitCastExpr(const CastExpr* E); 9353 bool VisitUnaryAddrOf(const UnaryOperator *E); 9354 bool VisitObjCStringLiteral(const ObjCStringLiteral *E) 9355 { return Success(E); } 9356 bool VisitObjCBoxedExpr(const ObjCBoxedExpr *E) { 9357 if (E->isExpressibleAsConstantInitializer()) 9358 return Success(E); 9359 if (Info.noteFailure()) 9360 EvaluateIgnoredValue(Info, E->getSubExpr()); 9361 return Error(E); 9362 } 9363 bool VisitAddrLabelExpr(const AddrLabelExpr *E) 9364 { return Success(E); } 9365 bool VisitCallExpr(const CallExpr *E); 9366 bool VisitBuiltinCallExpr(const CallExpr *E, unsigned BuiltinOp); 9367 bool VisitBlockExpr(const BlockExpr *E) { 9368 if (!E->getBlockDecl()->hasCaptures()) 9369 return Success(E); 9370 return Error(E); 9371 } 9372 bool VisitCXXThisExpr(const CXXThisExpr *E) { 9373 auto DiagnoseInvalidUseOfThis = [&] { 9374 if (Info.getLangOpts().CPlusPlus11) 9375 Info.FFDiag(E, diag::note_constexpr_this) << E->isImplicit(); 9376 else 9377 Info.FFDiag(E); 9378 }; 9379 9380 // Can't look at 'this' when checking a potential constant expression. 9381 if (Info.checkingPotentialConstantExpression()) 9382 return false; 9383 9384 bool IsExplicitLambda = 9385 isLambdaCallWithExplicitObjectParameter(Info.CurrentCall->Callee); 9386 if (!IsExplicitLambda) { 9387 if (!Info.CurrentCall->This) { 9388 DiagnoseInvalidUseOfThis(); 9389 return false; 9390 } 9391 9392 Result = *Info.CurrentCall->This; 9393 } 9394 9395 if (isLambdaCallOperator(Info.CurrentCall->Callee)) { 9396 // Ensure we actually have captured 'this'. If something was wrong with 9397 // 'this' capture, the error would have been previously reported. 9398 // Otherwise we can be inside of a default initialization of an object 9399 // declared by lambda's body, so no need to return false. 9400 if (!Info.CurrentCall->LambdaThisCaptureField) { 9401 if (IsExplicitLambda && !Info.CurrentCall->This) { 9402 DiagnoseInvalidUseOfThis(); 9403 return false; 9404 } 9405 9406 return true; 9407 } 9408 9409 const auto *MD = cast<CXXMethodDecl>(Info.CurrentCall->Callee); 9410 return HandleLambdaCapture( 9411 Info, E, Result, MD, Info.CurrentCall->LambdaThisCaptureField, 9412 Info.CurrentCall->LambdaThisCaptureField->getType()->isPointerType()); 9413 } 9414 return true; 9415 } 9416 9417 bool VisitCXXNewExpr(const CXXNewExpr *E); 9418 9419 bool VisitSourceLocExpr(const SourceLocExpr *E) { 9420 assert(!E->isIntType() && "SourceLocExpr isn't a pointer type?"); 9421 APValue LValResult = E->EvaluateInContext( 9422 Info.Ctx, Info.CurrentCall->CurSourceLocExprScope.getDefaultExpr()); 9423 Result.setFrom(Info.Ctx, LValResult); 9424 return true; 9425 } 9426 9427 bool VisitEmbedExpr(const EmbedExpr *E) { 9428 llvm::report_fatal_error("Not yet implemented for ExprConstant.cpp"); 9429 return true; 9430 } 9431 9432 bool VisitSYCLUniqueStableNameExpr(const SYCLUniqueStableNameExpr *E) { 9433 std::string ResultStr = E->ComputeName(Info.Ctx); 9434 9435 QualType CharTy = Info.Ctx.CharTy.withConst(); 9436 APInt Size(Info.Ctx.getTypeSize(Info.Ctx.getSizeType()), 9437 ResultStr.size() + 1); 9438 QualType ArrayTy = Info.Ctx.getConstantArrayType( 9439 CharTy, Size, nullptr, ArraySizeModifier::Normal, 0); 9440 9441 StringLiteral *SL = 9442 StringLiteral::Create(Info.Ctx, ResultStr, StringLiteralKind::Ordinary, 9443 /*Pascal*/ false, ArrayTy, E->getLocation()); 9444 9445 evaluateLValue(SL, Result); 9446 Result.addArray(Info, E, cast<ConstantArrayType>(ArrayTy)); 9447 return true; 9448 } 9449 9450 // FIXME: Missing: @protocol, @selector 9451 }; 9452 } // end anonymous namespace 9453 9454 static bool EvaluatePointer(const Expr* E, LValue& Result, EvalInfo &Info, 9455 bool InvalidBaseOK) { 9456 assert(!E->isValueDependent()); 9457 assert(E->isPRValue() && E->getType()->hasPointerRepresentation()); 9458 return PointerExprEvaluator(Info, Result, InvalidBaseOK).Visit(E); 9459 } 9460 9461 bool PointerExprEvaluator::VisitBinaryOperator(const BinaryOperator *E) { 9462 if (E->getOpcode() != BO_Add && 9463 E->getOpcode() != BO_Sub) 9464 return ExprEvaluatorBaseTy::VisitBinaryOperator(E); 9465 9466 const Expr *PExp = E->getLHS(); 9467 const Expr *IExp = E->getRHS(); 9468 if (IExp->getType()->isPointerType()) 9469 std::swap(PExp, IExp); 9470 9471 bool EvalPtrOK = evaluatePointer(PExp, Result); 9472 if (!EvalPtrOK && !Info.noteFailure()) 9473 return false; 9474 9475 llvm::APSInt Offset; 9476 if (!EvaluateInteger(IExp, Offset, Info) || !EvalPtrOK) 9477 return false; 9478 9479 if (E->getOpcode() == BO_Sub) 9480 negateAsSigned(Offset); 9481 9482 QualType Pointee = PExp->getType()->castAs<PointerType>()->getPointeeType(); 9483 return HandleLValueArrayAdjustment(Info, E, Result, Pointee, Offset); 9484 } 9485 9486 bool PointerExprEvaluator::VisitUnaryAddrOf(const UnaryOperator *E) { 9487 return evaluateLValue(E->getSubExpr(), Result); 9488 } 9489 9490 // Is the provided decl 'std::source_location::current'? 9491 static bool IsDeclSourceLocationCurrent(const FunctionDecl *FD) { 9492 if (!FD) 9493 return false; 9494 const IdentifierInfo *FnII = FD->getIdentifier(); 9495 if (!FnII || !FnII->isStr("current")) 9496 return false; 9497 9498 const auto *RD = dyn_cast<RecordDecl>(FD->getParent()); 9499 if (!RD) 9500 return false; 9501 9502 const IdentifierInfo *ClassII = RD->getIdentifier(); 9503 return RD->isInStdNamespace() && ClassII && ClassII->isStr("source_location"); 9504 } 9505 9506 bool PointerExprEvaluator::VisitCastExpr(const CastExpr *E) { 9507 const Expr *SubExpr = E->getSubExpr(); 9508 9509 switch (E->getCastKind()) { 9510 default: 9511 break; 9512 case CK_BitCast: 9513 case CK_CPointerToObjCPointerCast: 9514 case CK_BlockPointerToObjCPointerCast: 9515 case CK_AnyPointerToBlockPointerCast: 9516 case CK_AddressSpaceConversion: 9517 if (!Visit(SubExpr)) 9518 return false; 9519 // Bitcasts to cv void* are static_casts, not reinterpret_casts, so are 9520 // permitted in constant expressions in C++11. Bitcasts from cv void* are 9521 // also static_casts, but we disallow them as a resolution to DR1312. 9522 if (!E->getType()->isVoidPointerType()) { 9523 // In some circumstances, we permit casting from void* to cv1 T*, when the 9524 // actual pointee object is actually a cv2 T. 9525 bool HasValidResult = !Result.InvalidBase && !Result.Designator.Invalid && 9526 !Result.IsNullPtr; 9527 bool VoidPtrCastMaybeOK = 9528 Result.IsNullPtr || 9529 (HasValidResult && 9530 Info.Ctx.hasSimilarType(Result.Designator.getType(Info.Ctx), 9531 E->getType()->getPointeeType())); 9532 // 1. We'll allow it in std::allocator::allocate, and anything which that 9533 // calls. 9534 // 2. HACK 2022-03-28: Work around an issue with libstdc++'s 9535 // <source_location> header. Fixed in GCC 12 and later (2022-04-??). 9536 // We'll allow it in the body of std::source_location::current. GCC's 9537 // implementation had a parameter of type `void*`, and casts from 9538 // that back to `const __impl*` in its body. 9539 if (VoidPtrCastMaybeOK && 9540 (Info.getStdAllocatorCaller("allocate") || 9541 IsDeclSourceLocationCurrent(Info.CurrentCall->Callee) || 9542 Info.getLangOpts().CPlusPlus26)) { 9543 // Permitted. 9544 } else { 9545 if (SubExpr->getType()->isVoidPointerType() && 9546 Info.getLangOpts().CPlusPlus) { 9547 if (HasValidResult) 9548 CCEDiag(E, diag::note_constexpr_invalid_void_star_cast) 9549 << SubExpr->getType() << Info.getLangOpts().CPlusPlus26 9550 << Result.Designator.getType(Info.Ctx).getCanonicalType() 9551 << E->getType()->getPointeeType(); 9552 else 9553 CCEDiag(E, diag::note_constexpr_invalid_cast) 9554 << 3 << SubExpr->getType(); 9555 } else 9556 CCEDiag(E, diag::note_constexpr_invalid_cast) 9557 << 2 << Info.Ctx.getLangOpts().CPlusPlus; 9558 Result.Designator.setInvalid(); 9559 } 9560 } 9561 if (E->getCastKind() == CK_AddressSpaceConversion && Result.IsNullPtr) 9562 ZeroInitialization(E); 9563 return true; 9564 9565 case CK_DerivedToBase: 9566 case CK_UncheckedDerivedToBase: 9567 if (!evaluatePointer(E->getSubExpr(), Result)) 9568 return false; 9569 if (!Result.Base && Result.Offset.isZero()) 9570 return true; 9571 9572 // Now figure out the necessary offset to add to the base LV to get from 9573 // the derived class to the base class. 9574 return HandleLValueBasePath(Info, E, E->getSubExpr()->getType()-> 9575 castAs<PointerType>()->getPointeeType(), 9576 Result); 9577 9578 case CK_BaseToDerived: 9579 if (!Visit(E->getSubExpr())) 9580 return false; 9581 if (!Result.Base && Result.Offset.isZero()) 9582 return true; 9583 return HandleBaseToDerivedCast(Info, E, Result); 9584 9585 case CK_Dynamic: 9586 if (!Visit(E->getSubExpr())) 9587 return false; 9588 return HandleDynamicCast(Info, cast<ExplicitCastExpr>(E), Result); 9589 9590 case CK_NullToPointer: 9591 VisitIgnoredValue(E->getSubExpr()); 9592 return ZeroInitialization(E); 9593 9594 case CK_IntegralToPointer: { 9595 CCEDiag(E, diag::note_constexpr_invalid_cast) 9596 << 2 << Info.Ctx.getLangOpts().CPlusPlus; 9597 9598 APValue Value; 9599 if (!EvaluateIntegerOrLValue(SubExpr, Value, Info)) 9600 break; 9601 9602 if (Value.isInt()) { 9603 unsigned Size = Info.Ctx.getTypeSize(E->getType()); 9604 uint64_t N = Value.getInt().extOrTrunc(Size).getZExtValue(); 9605 Result.Base = (Expr*)nullptr; 9606 Result.InvalidBase = false; 9607 Result.Offset = CharUnits::fromQuantity(N); 9608 Result.Designator.setInvalid(); 9609 Result.IsNullPtr = false; 9610 return true; 9611 } else { 9612 // In rare instances, the value isn't an lvalue. 9613 // For example, when the value is the difference between the addresses of 9614 // two labels. We reject that as a constant expression because we can't 9615 // compute a valid offset to convert into a pointer. 9616 if (!Value.isLValue()) 9617 return false; 9618 9619 // Cast is of an lvalue, no need to change value. 9620 Result.setFrom(Info.Ctx, Value); 9621 return true; 9622 } 9623 } 9624 9625 case CK_ArrayToPointerDecay: { 9626 if (SubExpr->isGLValue()) { 9627 if (!evaluateLValue(SubExpr, Result)) 9628 return false; 9629 } else { 9630 APValue &Value = Info.CurrentCall->createTemporary( 9631 SubExpr, SubExpr->getType(), ScopeKind::FullExpression, Result); 9632 if (!EvaluateInPlace(Value, Info, Result, SubExpr)) 9633 return false; 9634 } 9635 // The result is a pointer to the first element of the array. 9636 auto *AT = Info.Ctx.getAsArrayType(SubExpr->getType()); 9637 if (auto *CAT = dyn_cast<ConstantArrayType>(AT)) 9638 Result.addArray(Info, E, CAT); 9639 else 9640 Result.addUnsizedArray(Info, E, AT->getElementType()); 9641 return true; 9642 } 9643 9644 case CK_FunctionToPointerDecay: 9645 return evaluateLValue(SubExpr, Result); 9646 9647 case CK_LValueToRValue: { 9648 LValue LVal; 9649 if (!evaluateLValue(E->getSubExpr(), LVal)) 9650 return false; 9651 9652 APValue RVal; 9653 // Note, we use the subexpression's type in order to retain cv-qualifiers. 9654 if (!handleLValueToRValueConversion(Info, E, E->getSubExpr()->getType(), 9655 LVal, RVal)) 9656 return InvalidBaseOK && 9657 evaluateLValueAsAllocSize(Info, LVal.Base, Result); 9658 return Success(RVal, E); 9659 } 9660 } 9661 9662 return ExprEvaluatorBaseTy::VisitCastExpr(E); 9663 } 9664 9665 static CharUnits GetAlignOfType(const ASTContext &Ctx, QualType T, 9666 UnaryExprOrTypeTrait ExprKind) { 9667 // C++ [expr.alignof]p3: 9668 // When alignof is applied to a reference type, the result is the 9669 // alignment of the referenced type. 9670 T = T.getNonReferenceType(); 9671 9672 if (T.getQualifiers().hasUnaligned()) 9673 return CharUnits::One(); 9674 9675 const bool AlignOfReturnsPreferred = 9676 Ctx.getLangOpts().getClangABICompat() <= LangOptions::ClangABI::Ver7; 9677 9678 // __alignof is defined to return the preferred alignment. 9679 // Before 8, clang returned the preferred alignment for alignof and _Alignof 9680 // as well. 9681 if (ExprKind == UETT_PreferredAlignOf || AlignOfReturnsPreferred) 9682 return Ctx.toCharUnitsFromBits(Ctx.getPreferredTypeAlign(T.getTypePtr())); 9683 // alignof and _Alignof are defined to return the ABI alignment. 9684 else if (ExprKind == UETT_AlignOf) 9685 return Ctx.getTypeAlignInChars(T.getTypePtr()); 9686 else 9687 llvm_unreachable("GetAlignOfType on a non-alignment ExprKind"); 9688 } 9689 9690 CharUnits GetAlignOfExpr(const ASTContext &Ctx, const Expr *E, 9691 UnaryExprOrTypeTrait ExprKind) { 9692 E = E->IgnoreParens(); 9693 9694 // The kinds of expressions that we have special-case logic here for 9695 // should be kept up to date with the special checks for those 9696 // expressions in Sema. 9697 9698 // alignof decl is always accepted, even if it doesn't make sense: we default 9699 // to 1 in those cases. 9700 if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E)) 9701 return Ctx.getDeclAlign(DRE->getDecl(), 9702 /*RefAsPointee*/ true); 9703 9704 if (const MemberExpr *ME = dyn_cast<MemberExpr>(E)) 9705 return Ctx.getDeclAlign(ME->getMemberDecl(), 9706 /*RefAsPointee*/ true); 9707 9708 return GetAlignOfType(Ctx, E->getType(), ExprKind); 9709 } 9710 9711 static CharUnits getBaseAlignment(EvalInfo &Info, const LValue &Value) { 9712 if (const auto *VD = Value.Base.dyn_cast<const ValueDecl *>()) 9713 return Info.Ctx.getDeclAlign(VD); 9714 if (const auto *E = Value.Base.dyn_cast<const Expr *>()) 9715 return GetAlignOfExpr(Info.Ctx, E, UETT_AlignOf); 9716 return GetAlignOfType(Info.Ctx, Value.Base.getTypeInfoType(), UETT_AlignOf); 9717 } 9718 9719 /// Evaluate the value of the alignment argument to __builtin_align_{up,down}, 9720 /// __builtin_is_aligned and __builtin_assume_aligned. 9721 static bool getAlignmentArgument(const Expr *E, QualType ForType, 9722 EvalInfo &Info, APSInt &Alignment) { 9723 if (!EvaluateInteger(E, Alignment, Info)) 9724 return false; 9725 if (Alignment < 0 || !Alignment.isPowerOf2()) { 9726 Info.FFDiag(E, diag::note_constexpr_invalid_alignment) << Alignment; 9727 return false; 9728 } 9729 unsigned SrcWidth = Info.Ctx.getIntWidth(ForType); 9730 APSInt MaxValue(APInt::getOneBitSet(SrcWidth, SrcWidth - 1)); 9731 if (APSInt::compareValues(Alignment, MaxValue) > 0) { 9732 Info.FFDiag(E, diag::note_constexpr_alignment_too_big) 9733 << MaxValue << ForType << Alignment; 9734 return false; 9735 } 9736 // Ensure both alignment and source value have the same bit width so that we 9737 // don't assert when computing the resulting value. 9738 APSInt ExtAlignment = 9739 APSInt(Alignment.zextOrTrunc(SrcWidth), /*isUnsigned=*/true); 9740 assert(APSInt::compareValues(Alignment, ExtAlignment) == 0 && 9741 "Alignment should not be changed by ext/trunc"); 9742 Alignment = ExtAlignment; 9743 assert(Alignment.getBitWidth() == SrcWidth); 9744 return true; 9745 } 9746 9747 // To be clear: this happily visits unsupported builtins. Better name welcomed. 9748 bool PointerExprEvaluator::visitNonBuiltinCallExpr(const CallExpr *E) { 9749 if (ExprEvaluatorBaseTy::VisitCallExpr(E)) 9750 return true; 9751 9752 if (!(InvalidBaseOK && getAllocSizeAttr(E))) 9753 return false; 9754 9755 Result.setInvalid(E); 9756 QualType PointeeTy = E->getType()->castAs<PointerType>()->getPointeeType(); 9757 Result.addUnsizedArray(Info, E, PointeeTy); 9758 return true; 9759 } 9760 9761 bool PointerExprEvaluator::VisitCallExpr(const CallExpr *E) { 9762 if (!IsConstantEvaluatedBuiltinCall(E)) 9763 return visitNonBuiltinCallExpr(E); 9764 return VisitBuiltinCallExpr(E, E->getBuiltinCallee()); 9765 } 9766 9767 // Determine if T is a character type for which we guarantee that 9768 // sizeof(T) == 1. 9769 static bool isOneByteCharacterType(QualType T) { 9770 return T->isCharType() || T->isChar8Type(); 9771 } 9772 9773 bool PointerExprEvaluator::VisitBuiltinCallExpr(const CallExpr *E, 9774 unsigned BuiltinOp) { 9775 if (IsOpaqueConstantCall(E)) 9776 return Success(E); 9777 9778 switch (BuiltinOp) { 9779 case Builtin::BIaddressof: 9780 case Builtin::BI__addressof: 9781 case Builtin::BI__builtin_addressof: 9782 return evaluateLValue(E->getArg(0), Result); 9783 case Builtin::BI__builtin_assume_aligned: { 9784 // We need to be very careful here because: if the pointer does not have the 9785 // asserted alignment, then the behavior is undefined, and undefined 9786 // behavior is non-constant. 9787 if (!evaluatePointer(E->getArg(0), Result)) 9788 return false; 9789 9790 LValue OffsetResult(Result); 9791 APSInt Alignment; 9792 if (!getAlignmentArgument(E->getArg(1), E->getArg(0)->getType(), Info, 9793 Alignment)) 9794 return false; 9795 CharUnits Align = CharUnits::fromQuantity(Alignment.getZExtValue()); 9796 9797 if (E->getNumArgs() > 2) { 9798 APSInt Offset; 9799 if (!EvaluateInteger(E->getArg(2), Offset, Info)) 9800 return false; 9801 9802 int64_t AdditionalOffset = -Offset.getZExtValue(); 9803 OffsetResult.Offset += CharUnits::fromQuantity(AdditionalOffset); 9804 } 9805 9806 // If there is a base object, then it must have the correct alignment. 9807 if (OffsetResult.Base) { 9808 CharUnits BaseAlignment = getBaseAlignment(Info, OffsetResult); 9809 9810 if (BaseAlignment < Align) { 9811 Result.Designator.setInvalid(); 9812 CCEDiag(E->getArg(0), diag::note_constexpr_baa_insufficient_alignment) 9813 << 0 << BaseAlignment.getQuantity() << Align.getQuantity(); 9814 return false; 9815 } 9816 } 9817 9818 // The offset must also have the correct alignment. 9819 if (OffsetResult.Offset.alignTo(Align) != OffsetResult.Offset) { 9820 Result.Designator.setInvalid(); 9821 9822 (OffsetResult.Base 9823 ? CCEDiag(E->getArg(0), 9824 diag::note_constexpr_baa_insufficient_alignment) 9825 << 1 9826 : CCEDiag(E->getArg(0), 9827 diag::note_constexpr_baa_value_insufficient_alignment)) 9828 << OffsetResult.Offset.getQuantity() << Align.getQuantity(); 9829 return false; 9830 } 9831 9832 return true; 9833 } 9834 case Builtin::BI__builtin_align_up: 9835 case Builtin::BI__builtin_align_down: { 9836 if (!evaluatePointer(E->getArg(0), Result)) 9837 return false; 9838 APSInt Alignment; 9839 if (!getAlignmentArgument(E->getArg(1), E->getArg(0)->getType(), Info, 9840 Alignment)) 9841 return false; 9842 CharUnits BaseAlignment = getBaseAlignment(Info, Result); 9843 CharUnits PtrAlign = BaseAlignment.alignmentAtOffset(Result.Offset); 9844 // For align_up/align_down, we can return the same value if the alignment 9845 // is known to be greater or equal to the requested value. 9846 if (PtrAlign.getQuantity() >= Alignment) 9847 return true; 9848 9849 // The alignment could be greater than the minimum at run-time, so we cannot 9850 // infer much about the resulting pointer value. One case is possible: 9851 // For `_Alignas(32) char buf[N]; __builtin_align_down(&buf[idx], 32)` we 9852 // can infer the correct index if the requested alignment is smaller than 9853 // the base alignment so we can perform the computation on the offset. 9854 if (BaseAlignment.getQuantity() >= Alignment) { 9855 assert(Alignment.getBitWidth() <= 64 && 9856 "Cannot handle > 64-bit address-space"); 9857 uint64_t Alignment64 = Alignment.getZExtValue(); 9858 CharUnits NewOffset = CharUnits::fromQuantity( 9859 BuiltinOp == Builtin::BI__builtin_align_down 9860 ? llvm::alignDown(Result.Offset.getQuantity(), Alignment64) 9861 : llvm::alignTo(Result.Offset.getQuantity(), Alignment64)); 9862 Result.adjustOffset(NewOffset - Result.Offset); 9863 // TODO: diagnose out-of-bounds values/only allow for arrays? 9864 return true; 9865 } 9866 // Otherwise, we cannot constant-evaluate the result. 9867 Info.FFDiag(E->getArg(0), diag::note_constexpr_alignment_adjust) 9868 << Alignment; 9869 return false; 9870 } 9871 case Builtin::BI__builtin_operator_new: 9872 return HandleOperatorNewCall(Info, E, Result); 9873 case Builtin::BI__builtin_launder: 9874 return evaluatePointer(E->getArg(0), Result); 9875 case Builtin::BIstrchr: 9876 case Builtin::BIwcschr: 9877 case Builtin::BImemchr: 9878 case Builtin::BIwmemchr: 9879 if (Info.getLangOpts().CPlusPlus11) 9880 Info.CCEDiag(E, diag::note_constexpr_invalid_function) 9881 << /*isConstexpr*/ 0 << /*isConstructor*/ 0 9882 << ("'" + Info.Ctx.BuiltinInfo.getName(BuiltinOp) + "'").str(); 9883 else 9884 Info.CCEDiag(E, diag::note_invalid_subexpr_in_const_expr); 9885 [[fallthrough]]; 9886 case Builtin::BI__builtin_strchr: 9887 case Builtin::BI__builtin_wcschr: 9888 case Builtin::BI__builtin_memchr: 9889 case Builtin::BI__builtin_char_memchr: 9890 case Builtin::BI__builtin_wmemchr: { 9891 if (!Visit(E->getArg(0))) 9892 return false; 9893 APSInt Desired; 9894 if (!EvaluateInteger(E->getArg(1), Desired, Info)) 9895 return false; 9896 uint64_t MaxLength = uint64_t(-1); 9897 if (BuiltinOp != Builtin::BIstrchr && 9898 BuiltinOp != Builtin::BIwcschr && 9899 BuiltinOp != Builtin::BI__builtin_strchr && 9900 BuiltinOp != Builtin::BI__builtin_wcschr) { 9901 APSInt N; 9902 if (!EvaluateInteger(E->getArg(2), N, Info)) 9903 return false; 9904 MaxLength = N.getZExtValue(); 9905 } 9906 // We cannot find the value if there are no candidates to match against. 9907 if (MaxLength == 0u) 9908 return ZeroInitialization(E); 9909 if (!Result.checkNullPointerForFoldAccess(Info, E, AK_Read) || 9910 Result.Designator.Invalid) 9911 return false; 9912 QualType CharTy = Result.Designator.getType(Info.Ctx); 9913 bool IsRawByte = BuiltinOp == Builtin::BImemchr || 9914 BuiltinOp == Builtin::BI__builtin_memchr; 9915 assert(IsRawByte || 9916 Info.Ctx.hasSameUnqualifiedType( 9917 CharTy, E->getArg(0)->getType()->getPointeeType())); 9918 // Pointers to const void may point to objects of incomplete type. 9919 if (IsRawByte && CharTy->isIncompleteType()) { 9920 Info.FFDiag(E, diag::note_constexpr_ltor_incomplete_type) << CharTy; 9921 return false; 9922 } 9923 // Give up on byte-oriented matching against multibyte elements. 9924 // FIXME: We can compare the bytes in the correct order. 9925 if (IsRawByte && !isOneByteCharacterType(CharTy)) { 9926 Info.FFDiag(E, diag::note_constexpr_memchr_unsupported) 9927 << ("'" + Info.Ctx.BuiltinInfo.getName(BuiltinOp) + "'").str() 9928 << CharTy; 9929 return false; 9930 } 9931 // Figure out what value we're actually looking for (after converting to 9932 // the corresponding unsigned type if necessary). 9933 uint64_t DesiredVal; 9934 bool StopAtNull = false; 9935 switch (BuiltinOp) { 9936 case Builtin::BIstrchr: 9937 case Builtin::BI__builtin_strchr: 9938 // strchr compares directly to the passed integer, and therefore 9939 // always fails if given an int that is not a char. 9940 if (!APSInt::isSameValue(HandleIntToIntCast(Info, E, CharTy, 9941 E->getArg(1)->getType(), 9942 Desired), 9943 Desired)) 9944 return ZeroInitialization(E); 9945 StopAtNull = true; 9946 [[fallthrough]]; 9947 case Builtin::BImemchr: 9948 case Builtin::BI__builtin_memchr: 9949 case Builtin::BI__builtin_char_memchr: 9950 // memchr compares by converting both sides to unsigned char. That's also 9951 // correct for strchr if we get this far (to cope with plain char being 9952 // unsigned in the strchr case). 9953 DesiredVal = Desired.trunc(Info.Ctx.getCharWidth()).getZExtValue(); 9954 break; 9955 9956 case Builtin::BIwcschr: 9957 case Builtin::BI__builtin_wcschr: 9958 StopAtNull = true; 9959 [[fallthrough]]; 9960 case Builtin::BIwmemchr: 9961 case Builtin::BI__builtin_wmemchr: 9962 // wcschr and wmemchr are given a wchar_t to look for. Just use it. 9963 DesiredVal = Desired.getZExtValue(); 9964 break; 9965 } 9966 9967 for (; MaxLength; --MaxLength) { 9968 APValue Char; 9969 if (!handleLValueToRValueConversion(Info, E, CharTy, Result, Char) || 9970 !Char.isInt()) 9971 return false; 9972 if (Char.getInt().getZExtValue() == DesiredVal) 9973 return true; 9974 if (StopAtNull && !Char.getInt()) 9975 break; 9976 if (!HandleLValueArrayAdjustment(Info, E, Result, CharTy, 1)) 9977 return false; 9978 } 9979 // Not found: return nullptr. 9980 return ZeroInitialization(E); 9981 } 9982 9983 case Builtin::BImemcpy: 9984 case Builtin::BImemmove: 9985 case Builtin::BIwmemcpy: 9986 case Builtin::BIwmemmove: 9987 if (Info.getLangOpts().CPlusPlus11) 9988 Info.CCEDiag(E, diag::note_constexpr_invalid_function) 9989 << /*isConstexpr*/ 0 << /*isConstructor*/ 0 9990 << ("'" + Info.Ctx.BuiltinInfo.getName(BuiltinOp) + "'").str(); 9991 else 9992 Info.CCEDiag(E, diag::note_invalid_subexpr_in_const_expr); 9993 [[fallthrough]]; 9994 case Builtin::BI__builtin_memcpy: 9995 case Builtin::BI__builtin_memmove: 9996 case Builtin::BI__builtin_wmemcpy: 9997 case Builtin::BI__builtin_wmemmove: { 9998 bool WChar = BuiltinOp == Builtin::BIwmemcpy || 9999 BuiltinOp == Builtin::BIwmemmove || 10000 BuiltinOp == Builtin::BI__builtin_wmemcpy || 10001 BuiltinOp == Builtin::BI__builtin_wmemmove; 10002 bool Move = BuiltinOp == Builtin::BImemmove || 10003 BuiltinOp == Builtin::BIwmemmove || 10004 BuiltinOp == Builtin::BI__builtin_memmove || 10005 BuiltinOp == Builtin::BI__builtin_wmemmove; 10006 10007 // The result of mem* is the first argument. 10008 if (!Visit(E->getArg(0))) 10009 return false; 10010 LValue Dest = Result; 10011 10012 LValue Src; 10013 if (!EvaluatePointer(E->getArg(1), Src, Info)) 10014 return false; 10015 10016 APSInt N; 10017 if (!EvaluateInteger(E->getArg(2), N, Info)) 10018 return false; 10019 assert(!N.isSigned() && "memcpy and friends take an unsigned size"); 10020 10021 // If the size is zero, we treat this as always being a valid no-op. 10022 // (Even if one of the src and dest pointers is null.) 10023 if (!N) 10024 return true; 10025 10026 // Otherwise, if either of the operands is null, we can't proceed. Don't 10027 // try to determine the type of the copied objects, because there aren't 10028 // any. 10029 if (!Src.Base || !Dest.Base) { 10030 APValue Val; 10031 (!Src.Base ? Src : Dest).moveInto(Val); 10032 Info.FFDiag(E, diag::note_constexpr_memcpy_null) 10033 << Move << WChar << !!Src.Base 10034 << Val.getAsString(Info.Ctx, E->getArg(0)->getType()); 10035 return false; 10036 } 10037 if (Src.Designator.Invalid || Dest.Designator.Invalid) 10038 return false; 10039 10040 // We require that Src and Dest are both pointers to arrays of 10041 // trivially-copyable type. (For the wide version, the designator will be 10042 // invalid if the designated object is not a wchar_t.) 10043 QualType T = Dest.Designator.getType(Info.Ctx); 10044 QualType SrcT = Src.Designator.getType(Info.Ctx); 10045 if (!Info.Ctx.hasSameUnqualifiedType(T, SrcT)) { 10046 // FIXME: Consider using our bit_cast implementation to support this. 10047 Info.FFDiag(E, diag::note_constexpr_memcpy_type_pun) << Move << SrcT << T; 10048 return false; 10049 } 10050 if (T->isIncompleteType()) { 10051 Info.FFDiag(E, diag::note_constexpr_memcpy_incomplete_type) << Move << T; 10052 return false; 10053 } 10054 if (!T.isTriviallyCopyableType(Info.Ctx)) { 10055 Info.FFDiag(E, diag::note_constexpr_memcpy_nontrivial) << Move << T; 10056 return false; 10057 } 10058 10059 // Figure out how many T's we're copying. 10060 uint64_t TSize = Info.Ctx.getTypeSizeInChars(T).getQuantity(); 10061 if (TSize == 0) 10062 return false; 10063 if (!WChar) { 10064 uint64_t Remainder; 10065 llvm::APInt OrigN = N; 10066 llvm::APInt::udivrem(OrigN, TSize, N, Remainder); 10067 if (Remainder) { 10068 Info.FFDiag(E, diag::note_constexpr_memcpy_unsupported) 10069 << Move << WChar << 0 << T << toString(OrigN, 10, /*Signed*/false) 10070 << (unsigned)TSize; 10071 return false; 10072 } 10073 } 10074 10075 // Check that the copying will remain within the arrays, just so that we 10076 // can give a more meaningful diagnostic. This implicitly also checks that 10077 // N fits into 64 bits. 10078 uint64_t RemainingSrcSize = Src.Designator.validIndexAdjustments().second; 10079 uint64_t RemainingDestSize = Dest.Designator.validIndexAdjustments().second; 10080 if (N.ugt(RemainingSrcSize) || N.ugt(RemainingDestSize)) { 10081 Info.FFDiag(E, diag::note_constexpr_memcpy_unsupported) 10082 << Move << WChar << (N.ugt(RemainingSrcSize) ? 1 : 2) << T 10083 << toString(N, 10, /*Signed*/false); 10084 return false; 10085 } 10086 uint64_t NElems = N.getZExtValue(); 10087 uint64_t NBytes = NElems * TSize; 10088 10089 // Check for overlap. 10090 int Direction = 1; 10091 if (HasSameBase(Src, Dest)) { 10092 uint64_t SrcOffset = Src.getLValueOffset().getQuantity(); 10093 uint64_t DestOffset = Dest.getLValueOffset().getQuantity(); 10094 if (DestOffset >= SrcOffset && DestOffset - SrcOffset < NBytes) { 10095 // Dest is inside the source region. 10096 if (!Move) { 10097 Info.FFDiag(E, diag::note_constexpr_memcpy_overlap) << WChar; 10098 return false; 10099 } 10100 // For memmove and friends, copy backwards. 10101 if (!HandleLValueArrayAdjustment(Info, E, Src, T, NElems - 1) || 10102 !HandleLValueArrayAdjustment(Info, E, Dest, T, NElems - 1)) 10103 return false; 10104 Direction = -1; 10105 } else if (!Move && SrcOffset >= DestOffset && 10106 SrcOffset - DestOffset < NBytes) { 10107 // Src is inside the destination region for memcpy: invalid. 10108 Info.FFDiag(E, diag::note_constexpr_memcpy_overlap) << WChar; 10109 return false; 10110 } 10111 } 10112 10113 while (true) { 10114 APValue Val; 10115 // FIXME: Set WantObjectRepresentation to true if we're copying a 10116 // char-like type? 10117 if (!handleLValueToRValueConversion(Info, E, T, Src, Val) || 10118 !handleAssignment(Info, E, Dest, T, Val)) 10119 return false; 10120 // Do not iterate past the last element; if we're copying backwards, that 10121 // might take us off the start of the array. 10122 if (--NElems == 0) 10123 return true; 10124 if (!HandleLValueArrayAdjustment(Info, E, Src, T, Direction) || 10125 !HandleLValueArrayAdjustment(Info, E, Dest, T, Direction)) 10126 return false; 10127 } 10128 } 10129 10130 default: 10131 return false; 10132 } 10133 } 10134 10135 static bool EvaluateArrayNewInitList(EvalInfo &Info, LValue &This, 10136 APValue &Result, const InitListExpr *ILE, 10137 QualType AllocType); 10138 static bool EvaluateArrayNewConstructExpr(EvalInfo &Info, LValue &This, 10139 APValue &Result, 10140 const CXXConstructExpr *CCE, 10141 QualType AllocType); 10142 10143 bool PointerExprEvaluator::VisitCXXNewExpr(const CXXNewExpr *E) { 10144 if (!Info.getLangOpts().CPlusPlus20) 10145 Info.CCEDiag(E, diag::note_constexpr_new); 10146 10147 // We cannot speculatively evaluate a delete expression. 10148 if (Info.SpeculativeEvaluationDepth) 10149 return false; 10150 10151 FunctionDecl *OperatorNew = E->getOperatorNew(); 10152 QualType AllocType = E->getAllocatedType(); 10153 QualType TargetType = AllocType; 10154 10155 bool IsNothrow = false; 10156 bool IsPlacement = false; 10157 10158 if (E->getNumPlacementArgs() == 1 && 10159 E->getPlacementArg(0)->getType()->isNothrowT()) { 10160 // The only new-placement list we support is of the form (std::nothrow). 10161 // 10162 // FIXME: There is no restriction on this, but it's not clear that any 10163 // other form makes any sense. We get here for cases such as: 10164 // 10165 // new (std::align_val_t{N}) X(int) 10166 // 10167 // (which should presumably be valid only if N is a multiple of 10168 // alignof(int), and in any case can't be deallocated unless N is 10169 // alignof(X) and X has new-extended alignment). 10170 LValue Nothrow; 10171 if (!EvaluateLValue(E->getPlacementArg(0), Nothrow, Info)) 10172 return false; 10173 IsNothrow = true; 10174 } else if (OperatorNew->isReservedGlobalPlacementOperator()) { 10175 if (Info.CurrentCall->isStdFunction() || Info.getLangOpts().CPlusPlus26) { 10176 if (!EvaluatePointer(E->getPlacementArg(0), Result, Info)) 10177 return false; 10178 if (Result.Designator.Invalid) 10179 return false; 10180 TargetType = E->getPlacementArg(0)->getType(); 10181 IsPlacement = true; 10182 } else { 10183 Info.FFDiag(E, diag::note_constexpr_new_placement) 10184 << /*C++26 feature*/ 1 << E->getSourceRange(); 10185 return false; 10186 } 10187 } else if (E->getNumPlacementArgs()) { 10188 Info.FFDiag(E, diag::note_constexpr_new_placement) 10189 << /*Unsupported*/ 0 << E->getSourceRange(); 10190 return false; 10191 } else if (!OperatorNew->isReplaceableGlobalAllocationFunction()) { 10192 Info.FFDiag(E, diag::note_constexpr_new_non_replaceable) 10193 << isa<CXXMethodDecl>(OperatorNew) << OperatorNew; 10194 return false; 10195 } 10196 10197 const Expr *Init = E->getInitializer(); 10198 const InitListExpr *ResizedArrayILE = nullptr; 10199 const CXXConstructExpr *ResizedArrayCCE = nullptr; 10200 bool ValueInit = false; 10201 10202 if (std::optional<const Expr *> ArraySize = E->getArraySize()) { 10203 const Expr *Stripped = *ArraySize; 10204 for (; auto *ICE = dyn_cast<ImplicitCastExpr>(Stripped); 10205 Stripped = ICE->getSubExpr()) 10206 if (ICE->getCastKind() != CK_NoOp && 10207 ICE->getCastKind() != CK_IntegralCast) 10208 break; 10209 10210 llvm::APSInt ArrayBound; 10211 if (!EvaluateInteger(Stripped, ArrayBound, Info)) 10212 return false; 10213 10214 // C++ [expr.new]p9: 10215 // The expression is erroneous if: 10216 // -- [...] its value before converting to size_t [or] applying the 10217 // second standard conversion sequence is less than zero 10218 if (ArrayBound.isSigned() && ArrayBound.isNegative()) { 10219 if (IsNothrow) 10220 return ZeroInitialization(E); 10221 10222 Info.FFDiag(*ArraySize, diag::note_constexpr_new_negative) 10223 << ArrayBound << (*ArraySize)->getSourceRange(); 10224 return false; 10225 } 10226 10227 // -- its value is such that the size of the allocated object would 10228 // exceed the implementation-defined limit 10229 if (!Info.CheckArraySize(ArraySize.value()->getExprLoc(), 10230 ConstantArrayType::getNumAddressingBits( 10231 Info.Ctx, AllocType, ArrayBound), 10232 ArrayBound.getZExtValue(), /*Diag=*/!IsNothrow)) { 10233 if (IsNothrow) 10234 return ZeroInitialization(E); 10235 return false; 10236 } 10237 10238 // -- the new-initializer is a braced-init-list and the number of 10239 // array elements for which initializers are provided [...] 10240 // exceeds the number of elements to initialize 10241 if (!Init) { 10242 // No initialization is performed. 10243 } else if (isa<CXXScalarValueInitExpr>(Init) || 10244 isa<ImplicitValueInitExpr>(Init)) { 10245 ValueInit = true; 10246 } else if (auto *CCE = dyn_cast<CXXConstructExpr>(Init)) { 10247 ResizedArrayCCE = CCE; 10248 } else { 10249 auto *CAT = Info.Ctx.getAsConstantArrayType(Init->getType()); 10250 assert(CAT && "unexpected type for array initializer"); 10251 10252 unsigned Bits = 10253 std::max(CAT->getSizeBitWidth(), ArrayBound.getBitWidth()); 10254 llvm::APInt InitBound = CAT->getSize().zext(Bits); 10255 llvm::APInt AllocBound = ArrayBound.zext(Bits); 10256 if (InitBound.ugt(AllocBound)) { 10257 if (IsNothrow) 10258 return ZeroInitialization(E); 10259 10260 Info.FFDiag(*ArraySize, diag::note_constexpr_new_too_small) 10261 << toString(AllocBound, 10, /*Signed=*/false) 10262 << toString(InitBound, 10, /*Signed=*/false) 10263 << (*ArraySize)->getSourceRange(); 10264 return false; 10265 } 10266 10267 // If the sizes differ, we must have an initializer list, and we need 10268 // special handling for this case when we initialize. 10269 if (InitBound != AllocBound) 10270 ResizedArrayILE = cast<InitListExpr>(Init); 10271 } 10272 10273 AllocType = Info.Ctx.getConstantArrayType(AllocType, ArrayBound, nullptr, 10274 ArraySizeModifier::Normal, 0); 10275 } else { 10276 assert(!AllocType->isArrayType() && 10277 "array allocation with non-array new"); 10278 } 10279 10280 APValue *Val; 10281 if (IsPlacement) { 10282 AccessKinds AK = AK_Construct; 10283 struct FindObjectHandler { 10284 EvalInfo &Info; 10285 const Expr *E; 10286 QualType AllocType; 10287 const AccessKinds AccessKind; 10288 APValue *Value; 10289 10290 typedef bool result_type; 10291 bool failed() { return false; } 10292 bool found(APValue &Subobj, QualType SubobjType) { 10293 // FIXME: Reject the cases where [basic.life]p8 would not permit the 10294 // old name of the object to be used to name the new object. 10295 unsigned SubobjectSize = 1; 10296 unsigned AllocSize = 1; 10297 if (auto *CAT = dyn_cast<ConstantArrayType>(AllocType)) 10298 AllocSize = CAT->getZExtSize(); 10299 if (auto *CAT = dyn_cast<ConstantArrayType>(SubobjType)) 10300 SubobjectSize = CAT->getZExtSize(); 10301 if (SubobjectSize < AllocSize || 10302 !Info.Ctx.hasSimilarType(Info.Ctx.getBaseElementType(SubobjType), 10303 Info.Ctx.getBaseElementType(AllocType))) { 10304 Info.FFDiag(E, diag::note_constexpr_placement_new_wrong_type) 10305 << SubobjType << AllocType; 10306 return false; 10307 } 10308 Value = &Subobj; 10309 return true; 10310 } 10311 bool found(APSInt &Value, QualType SubobjType) { 10312 Info.FFDiag(E, diag::note_constexpr_construct_complex_elem); 10313 return false; 10314 } 10315 bool found(APFloat &Value, QualType SubobjType) { 10316 Info.FFDiag(E, diag::note_constexpr_construct_complex_elem); 10317 return false; 10318 } 10319 } Handler = {Info, E, AllocType, AK, nullptr}; 10320 10321 CompleteObject Obj = findCompleteObject(Info, E, AK, Result, AllocType); 10322 if (!Obj || !findSubobject(Info, E, Obj, Result.Designator, Handler)) 10323 return false; 10324 10325 Val = Handler.Value; 10326 10327 // [basic.life]p1: 10328 // The lifetime of an object o of type T ends when [...] the storage 10329 // which the object occupies is [...] reused by an object that is not 10330 // nested within o (6.6.2). 10331 *Val = APValue(); 10332 } else { 10333 // Perform the allocation and obtain a pointer to the resulting object. 10334 Val = Info.createHeapAlloc(E, AllocType, Result); 10335 if (!Val) 10336 return false; 10337 } 10338 10339 if (ValueInit) { 10340 ImplicitValueInitExpr VIE(AllocType); 10341 if (!EvaluateInPlace(*Val, Info, Result, &VIE)) 10342 return false; 10343 } else if (ResizedArrayILE) { 10344 if (!EvaluateArrayNewInitList(Info, Result, *Val, ResizedArrayILE, 10345 AllocType)) 10346 return false; 10347 } else if (ResizedArrayCCE) { 10348 if (!EvaluateArrayNewConstructExpr(Info, Result, *Val, ResizedArrayCCE, 10349 AllocType)) 10350 return false; 10351 } else if (Init) { 10352 if (!EvaluateInPlace(*Val, Info, Result, Init)) 10353 return false; 10354 } else if (!handleDefaultInitValue(AllocType, *Val)) { 10355 return false; 10356 } 10357 10358 // Array new returns a pointer to the first element, not a pointer to the 10359 // array. 10360 if (auto *AT = AllocType->getAsArrayTypeUnsafe()) 10361 Result.addArray(Info, E, cast<ConstantArrayType>(AT)); 10362 10363 return true; 10364 } 10365 //===----------------------------------------------------------------------===// 10366 // Member Pointer Evaluation 10367 //===----------------------------------------------------------------------===// 10368 10369 namespace { 10370 class MemberPointerExprEvaluator 10371 : public ExprEvaluatorBase<MemberPointerExprEvaluator> { 10372 MemberPtr &Result; 10373 10374 bool Success(const ValueDecl *D) { 10375 Result = MemberPtr(D); 10376 return true; 10377 } 10378 public: 10379 10380 MemberPointerExprEvaluator(EvalInfo &Info, MemberPtr &Result) 10381 : ExprEvaluatorBaseTy(Info), Result(Result) {} 10382 10383 bool Success(const APValue &V, const Expr *E) { 10384 Result.setFrom(V); 10385 return true; 10386 } 10387 bool ZeroInitialization(const Expr *E) { 10388 return Success((const ValueDecl*)nullptr); 10389 } 10390 10391 bool VisitCastExpr(const CastExpr *E); 10392 bool VisitUnaryAddrOf(const UnaryOperator *E); 10393 }; 10394 } // end anonymous namespace 10395 10396 static bool EvaluateMemberPointer(const Expr *E, MemberPtr &Result, 10397 EvalInfo &Info) { 10398 assert(!E->isValueDependent()); 10399 assert(E->isPRValue() && E->getType()->isMemberPointerType()); 10400 return MemberPointerExprEvaluator(Info, Result).Visit(E); 10401 } 10402 10403 bool MemberPointerExprEvaluator::VisitCastExpr(const CastExpr *E) { 10404 switch (E->getCastKind()) { 10405 default: 10406 return ExprEvaluatorBaseTy::VisitCastExpr(E); 10407 10408 case CK_NullToMemberPointer: 10409 VisitIgnoredValue(E->getSubExpr()); 10410 return ZeroInitialization(E); 10411 10412 case CK_BaseToDerivedMemberPointer: { 10413 if (!Visit(E->getSubExpr())) 10414 return false; 10415 if (E->path_empty()) 10416 return true; 10417 // Base-to-derived member pointer casts store the path in derived-to-base 10418 // order, so iterate backwards. The CXXBaseSpecifier also provides us with 10419 // the wrong end of the derived->base arc, so stagger the path by one class. 10420 typedef std::reverse_iterator<CastExpr::path_const_iterator> ReverseIter; 10421 for (ReverseIter PathI(E->path_end() - 1), PathE(E->path_begin()); 10422 PathI != PathE; ++PathI) { 10423 assert(!(*PathI)->isVirtual() && "memptr cast through vbase"); 10424 const CXXRecordDecl *Derived = (*PathI)->getType()->getAsCXXRecordDecl(); 10425 if (!Result.castToDerived(Derived)) 10426 return Error(E); 10427 } 10428 const Type *FinalTy = E->getType()->castAs<MemberPointerType>()->getClass(); 10429 if (!Result.castToDerived(FinalTy->getAsCXXRecordDecl())) 10430 return Error(E); 10431 return true; 10432 } 10433 10434 case CK_DerivedToBaseMemberPointer: 10435 if (!Visit(E->getSubExpr())) 10436 return false; 10437 for (CastExpr::path_const_iterator PathI = E->path_begin(), 10438 PathE = E->path_end(); PathI != PathE; ++PathI) { 10439 assert(!(*PathI)->isVirtual() && "memptr cast through vbase"); 10440 const CXXRecordDecl *Base = (*PathI)->getType()->getAsCXXRecordDecl(); 10441 if (!Result.castToBase(Base)) 10442 return Error(E); 10443 } 10444 return true; 10445 } 10446 } 10447 10448 bool MemberPointerExprEvaluator::VisitUnaryAddrOf(const UnaryOperator *E) { 10449 // C++11 [expr.unary.op]p3 has very strict rules on how the address of a 10450 // member can be formed. 10451 return Success(cast<DeclRefExpr>(E->getSubExpr())->getDecl()); 10452 } 10453 10454 //===----------------------------------------------------------------------===// 10455 // Record Evaluation 10456 //===----------------------------------------------------------------------===// 10457 10458 namespace { 10459 class RecordExprEvaluator 10460 : public ExprEvaluatorBase<RecordExprEvaluator> { 10461 const LValue &This; 10462 APValue &Result; 10463 public: 10464 10465 RecordExprEvaluator(EvalInfo &info, const LValue &This, APValue &Result) 10466 : ExprEvaluatorBaseTy(info), This(This), Result(Result) {} 10467 10468 bool Success(const APValue &V, const Expr *E) { 10469 Result = V; 10470 return true; 10471 } 10472 bool ZeroInitialization(const Expr *E) { 10473 return ZeroInitialization(E, E->getType()); 10474 } 10475 bool ZeroInitialization(const Expr *E, QualType T); 10476 10477 bool VisitCallExpr(const CallExpr *E) { 10478 return handleCallExpr(E, Result, &This); 10479 } 10480 bool VisitCastExpr(const CastExpr *E); 10481 bool VisitInitListExpr(const InitListExpr *E); 10482 bool VisitCXXConstructExpr(const CXXConstructExpr *E) { 10483 return VisitCXXConstructExpr(E, E->getType()); 10484 } 10485 bool VisitLambdaExpr(const LambdaExpr *E); 10486 bool VisitCXXInheritedCtorInitExpr(const CXXInheritedCtorInitExpr *E); 10487 bool VisitCXXConstructExpr(const CXXConstructExpr *E, QualType T); 10488 bool VisitCXXStdInitializerListExpr(const CXXStdInitializerListExpr *E); 10489 bool VisitBinCmp(const BinaryOperator *E); 10490 bool VisitCXXParenListInitExpr(const CXXParenListInitExpr *E); 10491 bool VisitCXXParenListOrInitListExpr(const Expr *ExprToVisit, 10492 ArrayRef<Expr *> Args); 10493 }; 10494 } 10495 10496 /// Perform zero-initialization on an object of non-union class type. 10497 /// C++11 [dcl.init]p5: 10498 /// To zero-initialize an object or reference of type T means: 10499 /// [...] 10500 /// -- if T is a (possibly cv-qualified) non-union class type, 10501 /// each non-static data member and each base-class subobject is 10502 /// zero-initialized 10503 static bool HandleClassZeroInitialization(EvalInfo &Info, const Expr *E, 10504 const RecordDecl *RD, 10505 const LValue &This, APValue &Result) { 10506 assert(!RD->isUnion() && "Expected non-union class type"); 10507 const CXXRecordDecl *CD = dyn_cast<CXXRecordDecl>(RD); 10508 Result = APValue(APValue::UninitStruct(), CD ? CD->getNumBases() : 0, 10509 std::distance(RD->field_begin(), RD->field_end())); 10510 10511 if (RD->isInvalidDecl()) return false; 10512 const ASTRecordLayout &Layout = Info.Ctx.getASTRecordLayout(RD); 10513 10514 if (CD) { 10515 unsigned Index = 0; 10516 for (CXXRecordDecl::base_class_const_iterator I = CD->bases_begin(), 10517 End = CD->bases_end(); I != End; ++I, ++Index) { 10518 const CXXRecordDecl *Base = I->getType()->getAsCXXRecordDecl(); 10519 LValue Subobject = This; 10520 if (!HandleLValueDirectBase(Info, E, Subobject, CD, Base, &Layout)) 10521 return false; 10522 if (!HandleClassZeroInitialization(Info, E, Base, Subobject, 10523 Result.getStructBase(Index))) 10524 return false; 10525 } 10526 } 10527 10528 for (const auto *I : RD->fields()) { 10529 // -- if T is a reference type, no initialization is performed. 10530 if (I->isUnnamedBitField() || I->getType()->isReferenceType()) 10531 continue; 10532 10533 LValue Subobject = This; 10534 if (!HandleLValueMember(Info, E, Subobject, I, &Layout)) 10535 return false; 10536 10537 ImplicitValueInitExpr VIE(I->getType()); 10538 if (!EvaluateInPlace( 10539 Result.getStructField(I->getFieldIndex()), Info, Subobject, &VIE)) 10540 return false; 10541 } 10542 10543 return true; 10544 } 10545 10546 bool RecordExprEvaluator::ZeroInitialization(const Expr *E, QualType T) { 10547 const RecordDecl *RD = T->castAs<RecordType>()->getDecl(); 10548 if (RD->isInvalidDecl()) return false; 10549 if (RD->isUnion()) { 10550 // C++11 [dcl.init]p5: If T is a (possibly cv-qualified) union type, the 10551 // object's first non-static named data member is zero-initialized 10552 RecordDecl::field_iterator I = RD->field_begin(); 10553 while (I != RD->field_end() && (*I)->isUnnamedBitField()) 10554 ++I; 10555 if (I == RD->field_end()) { 10556 Result = APValue((const FieldDecl*)nullptr); 10557 return true; 10558 } 10559 10560 LValue Subobject = This; 10561 if (!HandleLValueMember(Info, E, Subobject, *I)) 10562 return false; 10563 Result = APValue(*I); 10564 ImplicitValueInitExpr VIE(I->getType()); 10565 return EvaluateInPlace(Result.getUnionValue(), Info, Subobject, &VIE); 10566 } 10567 10568 if (isa<CXXRecordDecl>(RD) && cast<CXXRecordDecl>(RD)->getNumVBases()) { 10569 Info.FFDiag(E, diag::note_constexpr_virtual_base) << RD; 10570 return false; 10571 } 10572 10573 return HandleClassZeroInitialization(Info, E, RD, This, Result); 10574 } 10575 10576 bool RecordExprEvaluator::VisitCastExpr(const CastExpr *E) { 10577 switch (E->getCastKind()) { 10578 default: 10579 return ExprEvaluatorBaseTy::VisitCastExpr(E); 10580 10581 case CK_ConstructorConversion: 10582 return Visit(E->getSubExpr()); 10583 10584 case CK_DerivedToBase: 10585 case CK_UncheckedDerivedToBase: { 10586 APValue DerivedObject; 10587 if (!Evaluate(DerivedObject, Info, E->getSubExpr())) 10588 return false; 10589 if (!DerivedObject.isStruct()) 10590 return Error(E->getSubExpr()); 10591 10592 // Derived-to-base rvalue conversion: just slice off the derived part. 10593 APValue *Value = &DerivedObject; 10594 const CXXRecordDecl *RD = E->getSubExpr()->getType()->getAsCXXRecordDecl(); 10595 for (CastExpr::path_const_iterator PathI = E->path_begin(), 10596 PathE = E->path_end(); PathI != PathE; ++PathI) { 10597 assert(!(*PathI)->isVirtual() && "record rvalue with virtual base"); 10598 const CXXRecordDecl *Base = (*PathI)->getType()->getAsCXXRecordDecl(); 10599 Value = &Value->getStructBase(getBaseIndex(RD, Base)); 10600 RD = Base; 10601 } 10602 Result = *Value; 10603 return true; 10604 } 10605 } 10606 } 10607 10608 bool RecordExprEvaluator::VisitInitListExpr(const InitListExpr *E) { 10609 if (E->isTransparent()) 10610 return Visit(E->getInit(0)); 10611 return VisitCXXParenListOrInitListExpr(E, E->inits()); 10612 } 10613 10614 bool RecordExprEvaluator::VisitCXXParenListOrInitListExpr( 10615 const Expr *ExprToVisit, ArrayRef<Expr *> Args) { 10616 const RecordDecl *RD = 10617 ExprToVisit->getType()->castAs<RecordType>()->getDecl(); 10618 if (RD->isInvalidDecl()) return false; 10619 const ASTRecordLayout &Layout = Info.Ctx.getASTRecordLayout(RD); 10620 auto *CXXRD = dyn_cast<CXXRecordDecl>(RD); 10621 10622 EvalInfo::EvaluatingConstructorRAII EvalObj( 10623 Info, 10624 ObjectUnderConstruction{This.getLValueBase(), This.Designator.Entries}, 10625 CXXRD && CXXRD->getNumBases()); 10626 10627 if (RD->isUnion()) { 10628 const FieldDecl *Field; 10629 if (auto *ILE = dyn_cast<InitListExpr>(ExprToVisit)) { 10630 Field = ILE->getInitializedFieldInUnion(); 10631 } else if (auto *PLIE = dyn_cast<CXXParenListInitExpr>(ExprToVisit)) { 10632 Field = PLIE->getInitializedFieldInUnion(); 10633 } else { 10634 llvm_unreachable( 10635 "Expression is neither an init list nor a C++ paren list"); 10636 } 10637 10638 Result = APValue(Field); 10639 if (!Field) 10640 return true; 10641 10642 // If the initializer list for a union does not contain any elements, the 10643 // first element of the union is value-initialized. 10644 // FIXME: The element should be initialized from an initializer list. 10645 // Is this difference ever observable for initializer lists which 10646 // we don't build? 10647 ImplicitValueInitExpr VIE(Field->getType()); 10648 const Expr *InitExpr = Args.empty() ? &VIE : Args[0]; 10649 10650 LValue Subobject = This; 10651 if (!HandleLValueMember(Info, InitExpr, Subobject, Field, &Layout)) 10652 return false; 10653 10654 // Temporarily override This, in case there's a CXXDefaultInitExpr in here. 10655 ThisOverrideRAII ThisOverride(*Info.CurrentCall, &This, 10656 isa<CXXDefaultInitExpr>(InitExpr)); 10657 10658 if (EvaluateInPlace(Result.getUnionValue(), Info, Subobject, InitExpr)) { 10659 if (Field->isBitField()) 10660 return truncateBitfieldValue(Info, InitExpr, Result.getUnionValue(), 10661 Field); 10662 return true; 10663 } 10664 10665 return false; 10666 } 10667 10668 if (!Result.hasValue()) 10669 Result = APValue(APValue::UninitStruct(), CXXRD ? CXXRD->getNumBases() : 0, 10670 std::distance(RD->field_begin(), RD->field_end())); 10671 unsigned ElementNo = 0; 10672 bool Success = true; 10673 10674 // Initialize base classes. 10675 if (CXXRD && CXXRD->getNumBases()) { 10676 for (const auto &Base : CXXRD->bases()) { 10677 assert(ElementNo < Args.size() && "missing init for base class"); 10678 const Expr *Init = Args[ElementNo]; 10679 10680 LValue Subobject = This; 10681 if (!HandleLValueBase(Info, Init, Subobject, CXXRD, &Base)) 10682 return false; 10683 10684 APValue &FieldVal = Result.getStructBase(ElementNo); 10685 if (!EvaluateInPlace(FieldVal, Info, Subobject, Init)) { 10686 if (!Info.noteFailure()) 10687 return false; 10688 Success = false; 10689 } 10690 ++ElementNo; 10691 } 10692 10693 EvalObj.finishedConstructingBases(); 10694 } 10695 10696 // Initialize members. 10697 for (const auto *Field : RD->fields()) { 10698 // Anonymous bit-fields are not considered members of the class for 10699 // purposes of aggregate initialization. 10700 if (Field->isUnnamedBitField()) 10701 continue; 10702 10703 LValue Subobject = This; 10704 10705 bool HaveInit = ElementNo < Args.size(); 10706 10707 // FIXME: Diagnostics here should point to the end of the initializer 10708 // list, not the start. 10709 if (!HandleLValueMember(Info, HaveInit ? Args[ElementNo] : ExprToVisit, 10710 Subobject, Field, &Layout)) 10711 return false; 10712 10713 // Perform an implicit value-initialization for members beyond the end of 10714 // the initializer list. 10715 ImplicitValueInitExpr VIE(HaveInit ? Info.Ctx.IntTy : Field->getType()); 10716 const Expr *Init = HaveInit ? Args[ElementNo++] : &VIE; 10717 10718 if (Field->getType()->isIncompleteArrayType()) { 10719 if (auto *CAT = Info.Ctx.getAsConstantArrayType(Init->getType())) { 10720 if (!CAT->isZeroSize()) { 10721 // Bail out for now. This might sort of "work", but the rest of the 10722 // code isn't really prepared to handle it. 10723 Info.FFDiag(Init, diag::note_constexpr_unsupported_flexible_array); 10724 return false; 10725 } 10726 } 10727 } 10728 10729 // Temporarily override This, in case there's a CXXDefaultInitExpr in here. 10730 ThisOverrideRAII ThisOverride(*Info.CurrentCall, &This, 10731 isa<CXXDefaultInitExpr>(Init)); 10732 10733 APValue &FieldVal = Result.getStructField(Field->getFieldIndex()); 10734 if (!EvaluateInPlace(FieldVal, Info, Subobject, Init) || 10735 (Field->isBitField() && !truncateBitfieldValue(Info, Init, 10736 FieldVal, Field))) { 10737 if (!Info.noteFailure()) 10738 return false; 10739 Success = false; 10740 } 10741 } 10742 10743 EvalObj.finishedConstructingFields(); 10744 10745 return Success; 10746 } 10747 10748 bool RecordExprEvaluator::VisitCXXConstructExpr(const CXXConstructExpr *E, 10749 QualType T) { 10750 // Note that E's type is not necessarily the type of our class here; we might 10751 // be initializing an array element instead. 10752 const CXXConstructorDecl *FD = E->getConstructor(); 10753 if (FD->isInvalidDecl() || FD->getParent()->isInvalidDecl()) return false; 10754 10755 bool ZeroInit = E->requiresZeroInitialization(); 10756 if (CheckTrivialDefaultConstructor(Info, E->getExprLoc(), FD, ZeroInit)) { 10757 // If we've already performed zero-initialization, we're already done. 10758 if (Result.hasValue()) 10759 return true; 10760 10761 if (ZeroInit) 10762 return ZeroInitialization(E, T); 10763 10764 return handleDefaultInitValue(T, Result); 10765 } 10766 10767 const FunctionDecl *Definition = nullptr; 10768 auto Body = FD->getBody(Definition); 10769 10770 if (!CheckConstexprFunction(Info, E->getExprLoc(), FD, Definition, Body)) 10771 return false; 10772 10773 // Avoid materializing a temporary for an elidable copy/move constructor. 10774 if (E->isElidable() && !ZeroInit) { 10775 // FIXME: This only handles the simplest case, where the source object 10776 // is passed directly as the first argument to the constructor. 10777 // This should also handle stepping though implicit casts and 10778 // and conversion sequences which involve two steps, with a 10779 // conversion operator followed by a converting constructor. 10780 const Expr *SrcObj = E->getArg(0); 10781 assert(SrcObj->isTemporaryObject(Info.Ctx, FD->getParent())); 10782 assert(Info.Ctx.hasSameUnqualifiedType(E->getType(), SrcObj->getType())); 10783 if (const MaterializeTemporaryExpr *ME = 10784 dyn_cast<MaterializeTemporaryExpr>(SrcObj)) 10785 return Visit(ME->getSubExpr()); 10786 } 10787 10788 if (ZeroInit && !ZeroInitialization(E, T)) 10789 return false; 10790 10791 auto Args = llvm::ArrayRef(E->getArgs(), E->getNumArgs()); 10792 return HandleConstructorCall(E, This, Args, 10793 cast<CXXConstructorDecl>(Definition), Info, 10794 Result); 10795 } 10796 10797 bool RecordExprEvaluator::VisitCXXInheritedCtorInitExpr( 10798 const CXXInheritedCtorInitExpr *E) { 10799 if (!Info.CurrentCall) { 10800 assert(Info.checkingPotentialConstantExpression()); 10801 return false; 10802 } 10803 10804 const CXXConstructorDecl *FD = E->getConstructor(); 10805 if (FD->isInvalidDecl() || FD->getParent()->isInvalidDecl()) 10806 return false; 10807 10808 const FunctionDecl *Definition = nullptr; 10809 auto Body = FD->getBody(Definition); 10810 10811 if (!CheckConstexprFunction(Info, E->getExprLoc(), FD, Definition, Body)) 10812 return false; 10813 10814 return HandleConstructorCall(E, This, Info.CurrentCall->Arguments, 10815 cast<CXXConstructorDecl>(Definition), Info, 10816 Result); 10817 } 10818 10819 bool RecordExprEvaluator::VisitCXXStdInitializerListExpr( 10820 const CXXStdInitializerListExpr *E) { 10821 const ConstantArrayType *ArrayType = 10822 Info.Ctx.getAsConstantArrayType(E->getSubExpr()->getType()); 10823 10824 LValue Array; 10825 if (!EvaluateLValue(E->getSubExpr(), Array, Info)) 10826 return false; 10827 10828 assert(ArrayType && "unexpected type for array initializer"); 10829 10830 // Get a pointer to the first element of the array. 10831 Array.addArray(Info, E, ArrayType); 10832 10833 // FIXME: What if the initializer_list type has base classes, etc? 10834 Result = APValue(APValue::UninitStruct(), 0, 2); 10835 Array.moveInto(Result.getStructField(0)); 10836 10837 RecordDecl *Record = E->getType()->castAs<RecordType>()->getDecl(); 10838 RecordDecl::field_iterator Field = Record->field_begin(); 10839 assert(Field != Record->field_end() && 10840 Info.Ctx.hasSameType(Field->getType()->getPointeeType(), 10841 ArrayType->getElementType()) && 10842 "Expected std::initializer_list first field to be const E *"); 10843 ++Field; 10844 assert(Field != Record->field_end() && 10845 "Expected std::initializer_list to have two fields"); 10846 10847 if (Info.Ctx.hasSameType(Field->getType(), Info.Ctx.getSizeType())) { 10848 // Length. 10849 Result.getStructField(1) = APValue(APSInt(ArrayType->getSize())); 10850 } else { 10851 // End pointer. 10852 assert(Info.Ctx.hasSameType(Field->getType()->getPointeeType(), 10853 ArrayType->getElementType()) && 10854 "Expected std::initializer_list second field to be const E *"); 10855 if (!HandleLValueArrayAdjustment(Info, E, Array, 10856 ArrayType->getElementType(), 10857 ArrayType->getZExtSize())) 10858 return false; 10859 Array.moveInto(Result.getStructField(1)); 10860 } 10861 10862 assert(++Field == Record->field_end() && 10863 "Expected std::initializer_list to only have two fields"); 10864 10865 return true; 10866 } 10867 10868 bool RecordExprEvaluator::VisitLambdaExpr(const LambdaExpr *E) { 10869 const CXXRecordDecl *ClosureClass = E->getLambdaClass(); 10870 if (ClosureClass->isInvalidDecl()) 10871 return false; 10872 10873 const size_t NumFields = 10874 std::distance(ClosureClass->field_begin(), ClosureClass->field_end()); 10875 10876 assert(NumFields == (size_t)std::distance(E->capture_init_begin(), 10877 E->capture_init_end()) && 10878 "The number of lambda capture initializers should equal the number of " 10879 "fields within the closure type"); 10880 10881 Result = APValue(APValue::UninitStruct(), /*NumBases*/0, NumFields); 10882 // Iterate through all the lambda's closure object's fields and initialize 10883 // them. 10884 auto *CaptureInitIt = E->capture_init_begin(); 10885 bool Success = true; 10886 const ASTRecordLayout &Layout = Info.Ctx.getASTRecordLayout(ClosureClass); 10887 for (const auto *Field : ClosureClass->fields()) { 10888 assert(CaptureInitIt != E->capture_init_end()); 10889 // Get the initializer for this field 10890 Expr *const CurFieldInit = *CaptureInitIt++; 10891 10892 // If there is no initializer, either this is a VLA or an error has 10893 // occurred. 10894 if (!CurFieldInit) 10895 return Error(E); 10896 10897 LValue Subobject = This; 10898 10899 if (!HandleLValueMember(Info, E, Subobject, Field, &Layout)) 10900 return false; 10901 10902 APValue &FieldVal = Result.getStructField(Field->getFieldIndex()); 10903 if (!EvaluateInPlace(FieldVal, Info, Subobject, CurFieldInit)) { 10904 if (!Info.keepEvaluatingAfterFailure()) 10905 return false; 10906 Success = false; 10907 } 10908 } 10909 return Success; 10910 } 10911 10912 static bool EvaluateRecord(const Expr *E, const LValue &This, 10913 APValue &Result, EvalInfo &Info) { 10914 assert(!E->isValueDependent()); 10915 assert(E->isPRValue() && E->getType()->isRecordType() && 10916 "can't evaluate expression as a record rvalue"); 10917 return RecordExprEvaluator(Info, This, Result).Visit(E); 10918 } 10919 10920 //===----------------------------------------------------------------------===// 10921 // Temporary Evaluation 10922 // 10923 // Temporaries are represented in the AST as rvalues, but generally behave like 10924 // lvalues. The full-object of which the temporary is a subobject is implicitly 10925 // materialized so that a reference can bind to it. 10926 //===----------------------------------------------------------------------===// 10927 namespace { 10928 class TemporaryExprEvaluator 10929 : public LValueExprEvaluatorBase<TemporaryExprEvaluator> { 10930 public: 10931 TemporaryExprEvaluator(EvalInfo &Info, LValue &Result) : 10932 LValueExprEvaluatorBaseTy(Info, Result, false) {} 10933 10934 /// Visit an expression which constructs the value of this temporary. 10935 bool VisitConstructExpr(const Expr *E) { 10936 APValue &Value = Info.CurrentCall->createTemporary( 10937 E, E->getType(), ScopeKind::FullExpression, Result); 10938 return EvaluateInPlace(Value, Info, Result, E); 10939 } 10940 10941 bool VisitCastExpr(const CastExpr *E) { 10942 switch (E->getCastKind()) { 10943 default: 10944 return LValueExprEvaluatorBaseTy::VisitCastExpr(E); 10945 10946 case CK_ConstructorConversion: 10947 return VisitConstructExpr(E->getSubExpr()); 10948 } 10949 } 10950 bool VisitInitListExpr(const InitListExpr *E) { 10951 return VisitConstructExpr(E); 10952 } 10953 bool VisitCXXConstructExpr(const CXXConstructExpr *E) { 10954 return VisitConstructExpr(E); 10955 } 10956 bool VisitCallExpr(const CallExpr *E) { 10957 return VisitConstructExpr(E); 10958 } 10959 bool VisitCXXStdInitializerListExpr(const CXXStdInitializerListExpr *E) { 10960 return VisitConstructExpr(E); 10961 } 10962 bool VisitLambdaExpr(const LambdaExpr *E) { 10963 return VisitConstructExpr(E); 10964 } 10965 }; 10966 } // end anonymous namespace 10967 10968 /// Evaluate an expression of record type as a temporary. 10969 static bool EvaluateTemporary(const Expr *E, LValue &Result, EvalInfo &Info) { 10970 assert(!E->isValueDependent()); 10971 assert(E->isPRValue() && E->getType()->isRecordType()); 10972 return TemporaryExprEvaluator(Info, Result).Visit(E); 10973 } 10974 10975 //===----------------------------------------------------------------------===// 10976 // Vector Evaluation 10977 //===----------------------------------------------------------------------===// 10978 10979 namespace { 10980 class VectorExprEvaluator 10981 : public ExprEvaluatorBase<VectorExprEvaluator> { 10982 APValue &Result; 10983 public: 10984 10985 VectorExprEvaluator(EvalInfo &info, APValue &Result) 10986 : ExprEvaluatorBaseTy(info), Result(Result) {} 10987 10988 bool Success(ArrayRef<APValue> V, const Expr *E) { 10989 assert(V.size() == E->getType()->castAs<VectorType>()->getNumElements()); 10990 // FIXME: remove this APValue copy. 10991 Result = APValue(V.data(), V.size()); 10992 return true; 10993 } 10994 bool Success(const APValue &V, const Expr *E) { 10995 assert(V.isVector()); 10996 Result = V; 10997 return true; 10998 } 10999 bool ZeroInitialization(const Expr *E); 11000 11001 bool VisitUnaryReal(const UnaryOperator *E) 11002 { return Visit(E->getSubExpr()); } 11003 bool VisitCastExpr(const CastExpr* E); 11004 bool VisitInitListExpr(const InitListExpr *E); 11005 bool VisitUnaryImag(const UnaryOperator *E); 11006 bool VisitBinaryOperator(const BinaryOperator *E); 11007 bool VisitUnaryOperator(const UnaryOperator *E); 11008 bool VisitConvertVectorExpr(const ConvertVectorExpr *E); 11009 bool VisitShuffleVectorExpr(const ShuffleVectorExpr *E); 11010 11011 // FIXME: Missing: conditional operator (for GNU 11012 // conditional select), ExtVectorElementExpr 11013 }; 11014 } // end anonymous namespace 11015 11016 static bool EvaluateVector(const Expr* E, APValue& Result, EvalInfo &Info) { 11017 assert(E->isPRValue() && E->getType()->isVectorType() && 11018 "not a vector prvalue"); 11019 return VectorExprEvaluator(Info, Result).Visit(E); 11020 } 11021 11022 bool VectorExprEvaluator::VisitCastExpr(const CastExpr *E) { 11023 const VectorType *VTy = E->getType()->castAs<VectorType>(); 11024 unsigned NElts = VTy->getNumElements(); 11025 11026 const Expr *SE = E->getSubExpr(); 11027 QualType SETy = SE->getType(); 11028 11029 switch (E->getCastKind()) { 11030 case CK_VectorSplat: { 11031 APValue Val = APValue(); 11032 if (SETy->isIntegerType()) { 11033 APSInt IntResult; 11034 if (!EvaluateInteger(SE, IntResult, Info)) 11035 return false; 11036 Val = APValue(std::move(IntResult)); 11037 } else if (SETy->isRealFloatingType()) { 11038 APFloat FloatResult(0.0); 11039 if (!EvaluateFloat(SE, FloatResult, Info)) 11040 return false; 11041 Val = APValue(std::move(FloatResult)); 11042 } else { 11043 return Error(E); 11044 } 11045 11046 // Splat and create vector APValue. 11047 SmallVector<APValue, 4> Elts(NElts, Val); 11048 return Success(Elts, E); 11049 } 11050 case CK_BitCast: { 11051 APValue SVal; 11052 if (!Evaluate(SVal, Info, SE)) 11053 return false; 11054 11055 if (!SVal.isInt() && !SVal.isFloat() && !SVal.isVector()) { 11056 // Give up if the input isn't an int, float, or vector. For example, we 11057 // reject "(v4i16)(intptr_t)&a". 11058 Info.FFDiag(E, diag::note_constexpr_invalid_cast) 11059 << 2 << Info.Ctx.getLangOpts().CPlusPlus; 11060 return false; 11061 } 11062 11063 if (!handleRValueToRValueBitCast(Info, Result, SVal, E)) 11064 return false; 11065 11066 return true; 11067 } 11068 case CK_HLSLVectorTruncation: { 11069 APValue Val; 11070 SmallVector<APValue, 4> Elements; 11071 if (!EvaluateVector(SE, Val, Info)) 11072 return Error(E); 11073 for (unsigned I = 0; I < NElts; I++) 11074 Elements.push_back(Val.getVectorElt(I)); 11075 return Success(Elements, E); 11076 } 11077 default: 11078 return ExprEvaluatorBaseTy::VisitCastExpr(E); 11079 } 11080 } 11081 11082 bool 11083 VectorExprEvaluator::VisitInitListExpr(const InitListExpr *E) { 11084 const VectorType *VT = E->getType()->castAs<VectorType>(); 11085 unsigned NumInits = E->getNumInits(); 11086 unsigned NumElements = VT->getNumElements(); 11087 11088 QualType EltTy = VT->getElementType(); 11089 SmallVector<APValue, 4> Elements; 11090 11091 // The number of initializers can be less than the number of 11092 // vector elements. For OpenCL, this can be due to nested vector 11093 // initialization. For GCC compatibility, missing trailing elements 11094 // should be initialized with zeroes. 11095 unsigned CountInits = 0, CountElts = 0; 11096 while (CountElts < NumElements) { 11097 // Handle nested vector initialization. 11098 if (CountInits < NumInits 11099 && E->getInit(CountInits)->getType()->isVectorType()) { 11100 APValue v; 11101 if (!EvaluateVector(E->getInit(CountInits), v, Info)) 11102 return Error(E); 11103 unsigned vlen = v.getVectorLength(); 11104 for (unsigned j = 0; j < vlen; j++) 11105 Elements.push_back(v.getVectorElt(j)); 11106 CountElts += vlen; 11107 } else if (EltTy->isIntegerType()) { 11108 llvm::APSInt sInt(32); 11109 if (CountInits < NumInits) { 11110 if (!EvaluateInteger(E->getInit(CountInits), sInt, Info)) 11111 return false; 11112 } else // trailing integer zero. 11113 sInt = Info.Ctx.MakeIntValue(0, EltTy); 11114 Elements.push_back(APValue(sInt)); 11115 CountElts++; 11116 } else { 11117 llvm::APFloat f(0.0); 11118 if (CountInits < NumInits) { 11119 if (!EvaluateFloat(E->getInit(CountInits), f, Info)) 11120 return false; 11121 } else // trailing float zero. 11122 f = APFloat::getZero(Info.Ctx.getFloatTypeSemantics(EltTy)); 11123 Elements.push_back(APValue(f)); 11124 CountElts++; 11125 } 11126 CountInits++; 11127 } 11128 return Success(Elements, E); 11129 } 11130 11131 bool 11132 VectorExprEvaluator::ZeroInitialization(const Expr *E) { 11133 const auto *VT = E->getType()->castAs<VectorType>(); 11134 QualType EltTy = VT->getElementType(); 11135 APValue ZeroElement; 11136 if (EltTy->isIntegerType()) 11137 ZeroElement = APValue(Info.Ctx.MakeIntValue(0, EltTy)); 11138 else 11139 ZeroElement = 11140 APValue(APFloat::getZero(Info.Ctx.getFloatTypeSemantics(EltTy))); 11141 11142 SmallVector<APValue, 4> Elements(VT->getNumElements(), ZeroElement); 11143 return Success(Elements, E); 11144 } 11145 11146 bool VectorExprEvaluator::VisitUnaryImag(const UnaryOperator *E) { 11147 VisitIgnoredValue(E->getSubExpr()); 11148 return ZeroInitialization(E); 11149 } 11150 11151 bool VectorExprEvaluator::VisitBinaryOperator(const BinaryOperator *E) { 11152 BinaryOperatorKind Op = E->getOpcode(); 11153 assert(Op != BO_PtrMemD && Op != BO_PtrMemI && Op != BO_Cmp && 11154 "Operation not supported on vector types"); 11155 11156 if (Op == BO_Comma) 11157 return ExprEvaluatorBaseTy::VisitBinaryOperator(E); 11158 11159 Expr *LHS = E->getLHS(); 11160 Expr *RHS = E->getRHS(); 11161 11162 assert(LHS->getType()->isVectorType() && RHS->getType()->isVectorType() && 11163 "Must both be vector types"); 11164 // Checking JUST the types are the same would be fine, except shifts don't 11165 // need to have their types be the same (since you always shift by an int). 11166 assert(LHS->getType()->castAs<VectorType>()->getNumElements() == 11167 E->getType()->castAs<VectorType>()->getNumElements() && 11168 RHS->getType()->castAs<VectorType>()->getNumElements() == 11169 E->getType()->castAs<VectorType>()->getNumElements() && 11170 "All operands must be the same size."); 11171 11172 APValue LHSValue; 11173 APValue RHSValue; 11174 bool LHSOK = Evaluate(LHSValue, Info, LHS); 11175 if (!LHSOK && !Info.noteFailure()) 11176 return false; 11177 if (!Evaluate(RHSValue, Info, RHS) || !LHSOK) 11178 return false; 11179 11180 if (!handleVectorVectorBinOp(Info, E, Op, LHSValue, RHSValue)) 11181 return false; 11182 11183 return Success(LHSValue, E); 11184 } 11185 11186 static std::optional<APValue> handleVectorUnaryOperator(ASTContext &Ctx, 11187 QualType ResultTy, 11188 UnaryOperatorKind Op, 11189 APValue Elt) { 11190 switch (Op) { 11191 case UO_Plus: 11192 // Nothing to do here. 11193 return Elt; 11194 case UO_Minus: 11195 if (Elt.getKind() == APValue::Int) { 11196 Elt.getInt().negate(); 11197 } else { 11198 assert(Elt.getKind() == APValue::Float && 11199 "Vector can only be int or float type"); 11200 Elt.getFloat().changeSign(); 11201 } 11202 return Elt; 11203 case UO_Not: 11204 // This is only valid for integral types anyway, so we don't have to handle 11205 // float here. 11206 assert(Elt.getKind() == APValue::Int && 11207 "Vector operator ~ can only be int"); 11208 Elt.getInt().flipAllBits(); 11209 return Elt; 11210 case UO_LNot: { 11211 if (Elt.getKind() == APValue::Int) { 11212 Elt.getInt() = !Elt.getInt(); 11213 // operator ! on vectors returns -1 for 'truth', so negate it. 11214 Elt.getInt().negate(); 11215 return Elt; 11216 } 11217 assert(Elt.getKind() == APValue::Float && 11218 "Vector can only be int or float type"); 11219 // Float types result in an int of the same size, but -1 for true, or 0 for 11220 // false. 11221 APSInt EltResult{Ctx.getIntWidth(ResultTy), 11222 ResultTy->isUnsignedIntegerType()}; 11223 if (Elt.getFloat().isZero()) 11224 EltResult.setAllBits(); 11225 else 11226 EltResult.clearAllBits(); 11227 11228 return APValue{EltResult}; 11229 } 11230 default: 11231 // FIXME: Implement the rest of the unary operators. 11232 return std::nullopt; 11233 } 11234 } 11235 11236 bool VectorExprEvaluator::VisitUnaryOperator(const UnaryOperator *E) { 11237 Expr *SubExpr = E->getSubExpr(); 11238 const auto *VD = SubExpr->getType()->castAs<VectorType>(); 11239 // This result element type differs in the case of negating a floating point 11240 // vector, since the result type is the a vector of the equivilant sized 11241 // integer. 11242 const QualType ResultEltTy = VD->getElementType(); 11243 UnaryOperatorKind Op = E->getOpcode(); 11244 11245 APValue SubExprValue; 11246 if (!Evaluate(SubExprValue, Info, SubExpr)) 11247 return false; 11248 11249 // FIXME: This vector evaluator someday needs to be changed to be LValue 11250 // aware/keep LValue information around, rather than dealing with just vector 11251 // types directly. Until then, we cannot handle cases where the operand to 11252 // these unary operators is an LValue. The only case I've been able to see 11253 // cause this is operator++ assigning to a member expression (only valid in 11254 // altivec compilations) in C mode, so this shouldn't limit us too much. 11255 if (SubExprValue.isLValue()) 11256 return false; 11257 11258 assert(SubExprValue.getVectorLength() == VD->getNumElements() && 11259 "Vector length doesn't match type?"); 11260 11261 SmallVector<APValue, 4> ResultElements; 11262 for (unsigned EltNum = 0; EltNum < VD->getNumElements(); ++EltNum) { 11263 std::optional<APValue> Elt = handleVectorUnaryOperator( 11264 Info.Ctx, ResultEltTy, Op, SubExprValue.getVectorElt(EltNum)); 11265 if (!Elt) 11266 return false; 11267 ResultElements.push_back(*Elt); 11268 } 11269 return Success(APValue(ResultElements.data(), ResultElements.size()), E); 11270 } 11271 11272 static bool handleVectorElementCast(EvalInfo &Info, const FPOptions FPO, 11273 const Expr *E, QualType SourceTy, 11274 QualType DestTy, APValue const &Original, 11275 APValue &Result) { 11276 if (SourceTy->isIntegerType()) { 11277 if (DestTy->isRealFloatingType()) { 11278 Result = APValue(APFloat(0.0)); 11279 return HandleIntToFloatCast(Info, E, FPO, SourceTy, Original.getInt(), 11280 DestTy, Result.getFloat()); 11281 } 11282 if (DestTy->isIntegerType()) { 11283 Result = APValue( 11284 HandleIntToIntCast(Info, E, DestTy, SourceTy, Original.getInt())); 11285 return true; 11286 } 11287 } else if (SourceTy->isRealFloatingType()) { 11288 if (DestTy->isRealFloatingType()) { 11289 Result = Original; 11290 return HandleFloatToFloatCast(Info, E, SourceTy, DestTy, 11291 Result.getFloat()); 11292 } 11293 if (DestTy->isIntegerType()) { 11294 Result = APValue(APSInt()); 11295 return HandleFloatToIntCast(Info, E, SourceTy, Original.getFloat(), 11296 DestTy, Result.getInt()); 11297 } 11298 } 11299 11300 Info.FFDiag(E, diag::err_convertvector_constexpr_unsupported_vector_cast) 11301 << SourceTy << DestTy; 11302 return false; 11303 } 11304 11305 bool VectorExprEvaluator::VisitConvertVectorExpr(const ConvertVectorExpr *E) { 11306 APValue Source; 11307 QualType SourceVecType = E->getSrcExpr()->getType(); 11308 if (!EvaluateAsRValue(Info, E->getSrcExpr(), Source)) 11309 return false; 11310 11311 QualType DestTy = E->getType()->castAs<VectorType>()->getElementType(); 11312 QualType SourceTy = SourceVecType->castAs<VectorType>()->getElementType(); 11313 11314 const FPOptions FPO = E->getFPFeaturesInEffect(Info.Ctx.getLangOpts()); 11315 11316 auto SourceLen = Source.getVectorLength(); 11317 SmallVector<APValue, 4> ResultElements; 11318 ResultElements.reserve(SourceLen); 11319 for (unsigned EltNum = 0; EltNum < SourceLen; ++EltNum) { 11320 APValue Elt; 11321 if (!handleVectorElementCast(Info, FPO, E, SourceTy, DestTy, 11322 Source.getVectorElt(EltNum), Elt)) 11323 return false; 11324 ResultElements.push_back(std::move(Elt)); 11325 } 11326 11327 return Success(APValue(ResultElements.data(), ResultElements.size()), E); 11328 } 11329 11330 static bool handleVectorShuffle(EvalInfo &Info, const ShuffleVectorExpr *E, 11331 QualType ElemType, APValue const &VecVal1, 11332 APValue const &VecVal2, unsigned EltNum, 11333 APValue &Result) { 11334 unsigned const TotalElementsInInputVector1 = VecVal1.getVectorLength(); 11335 unsigned const TotalElementsInInputVector2 = VecVal2.getVectorLength(); 11336 11337 APSInt IndexVal = E->getShuffleMaskIdx(Info.Ctx, EltNum); 11338 int64_t index = IndexVal.getExtValue(); 11339 // The spec says that -1 should be treated as undef for optimizations, 11340 // but in constexpr we'd have to produce an APValue::Indeterminate, 11341 // which is prohibited from being a top-level constant value. Emit a 11342 // diagnostic instead. 11343 if (index == -1) { 11344 Info.FFDiag( 11345 E, diag::err_shufflevector_minus_one_is_undefined_behavior_constexpr) 11346 << EltNum; 11347 return false; 11348 } 11349 11350 if (index < 0 || 11351 index >= TotalElementsInInputVector1 + TotalElementsInInputVector2) 11352 llvm_unreachable("Out of bounds shuffle index"); 11353 11354 if (index >= TotalElementsInInputVector1) 11355 Result = VecVal2.getVectorElt(index - TotalElementsInInputVector1); 11356 else 11357 Result = VecVal1.getVectorElt(index); 11358 return true; 11359 } 11360 11361 bool VectorExprEvaluator::VisitShuffleVectorExpr(const ShuffleVectorExpr *E) { 11362 APValue VecVal1; 11363 const Expr *Vec1 = E->getExpr(0); 11364 if (!EvaluateAsRValue(Info, Vec1, VecVal1)) 11365 return false; 11366 APValue VecVal2; 11367 const Expr *Vec2 = E->getExpr(1); 11368 if (!EvaluateAsRValue(Info, Vec2, VecVal2)) 11369 return false; 11370 11371 VectorType const *DestVecTy = E->getType()->castAs<VectorType>(); 11372 QualType DestElTy = DestVecTy->getElementType(); 11373 11374 auto TotalElementsInOutputVector = DestVecTy->getNumElements(); 11375 11376 SmallVector<APValue, 4> ResultElements; 11377 ResultElements.reserve(TotalElementsInOutputVector); 11378 for (unsigned EltNum = 0; EltNum < TotalElementsInOutputVector; ++EltNum) { 11379 APValue Elt; 11380 if (!handleVectorShuffle(Info, E, DestElTy, VecVal1, VecVal2, EltNum, Elt)) 11381 return false; 11382 ResultElements.push_back(std::move(Elt)); 11383 } 11384 11385 return Success(APValue(ResultElements.data(), ResultElements.size()), E); 11386 } 11387 11388 //===----------------------------------------------------------------------===// 11389 // Array Evaluation 11390 //===----------------------------------------------------------------------===// 11391 11392 namespace { 11393 class ArrayExprEvaluator 11394 : public ExprEvaluatorBase<ArrayExprEvaluator> { 11395 const LValue &This; 11396 APValue &Result; 11397 public: 11398 11399 ArrayExprEvaluator(EvalInfo &Info, const LValue &This, APValue &Result) 11400 : ExprEvaluatorBaseTy(Info), This(This), Result(Result) {} 11401 11402 bool Success(const APValue &V, const Expr *E) { 11403 assert(V.isArray() && "expected array"); 11404 Result = V; 11405 return true; 11406 } 11407 11408 bool ZeroInitialization(const Expr *E) { 11409 const ConstantArrayType *CAT = 11410 Info.Ctx.getAsConstantArrayType(E->getType()); 11411 if (!CAT) { 11412 if (E->getType()->isIncompleteArrayType()) { 11413 // We can be asked to zero-initialize a flexible array member; this 11414 // is represented as an ImplicitValueInitExpr of incomplete array 11415 // type. In this case, the array has zero elements. 11416 Result = APValue(APValue::UninitArray(), 0, 0); 11417 return true; 11418 } 11419 // FIXME: We could handle VLAs here. 11420 return Error(E); 11421 } 11422 11423 Result = APValue(APValue::UninitArray(), 0, CAT->getZExtSize()); 11424 if (!Result.hasArrayFiller()) 11425 return true; 11426 11427 // Zero-initialize all elements. 11428 LValue Subobject = This; 11429 Subobject.addArray(Info, E, CAT); 11430 ImplicitValueInitExpr VIE(CAT->getElementType()); 11431 return EvaluateInPlace(Result.getArrayFiller(), Info, Subobject, &VIE); 11432 } 11433 11434 bool VisitCallExpr(const CallExpr *E) { 11435 return handleCallExpr(E, Result, &This); 11436 } 11437 bool VisitInitListExpr(const InitListExpr *E, 11438 QualType AllocType = QualType()); 11439 bool VisitArrayInitLoopExpr(const ArrayInitLoopExpr *E); 11440 bool VisitCXXConstructExpr(const CXXConstructExpr *E); 11441 bool VisitCXXConstructExpr(const CXXConstructExpr *E, 11442 const LValue &Subobject, 11443 APValue *Value, QualType Type); 11444 bool VisitStringLiteral(const StringLiteral *E, 11445 QualType AllocType = QualType()) { 11446 expandStringLiteral(Info, E, Result, AllocType); 11447 return true; 11448 } 11449 bool VisitCXXParenListInitExpr(const CXXParenListInitExpr *E); 11450 bool VisitCXXParenListOrInitListExpr(const Expr *ExprToVisit, 11451 ArrayRef<Expr *> Args, 11452 const Expr *ArrayFiller, 11453 QualType AllocType = QualType()); 11454 }; 11455 } // end anonymous namespace 11456 11457 static bool EvaluateArray(const Expr *E, const LValue &This, 11458 APValue &Result, EvalInfo &Info) { 11459 assert(!E->isValueDependent()); 11460 assert(E->isPRValue() && E->getType()->isArrayType() && 11461 "not an array prvalue"); 11462 return ArrayExprEvaluator(Info, This, Result).Visit(E); 11463 } 11464 11465 static bool EvaluateArrayNewInitList(EvalInfo &Info, LValue &This, 11466 APValue &Result, const InitListExpr *ILE, 11467 QualType AllocType) { 11468 assert(!ILE->isValueDependent()); 11469 assert(ILE->isPRValue() && ILE->getType()->isArrayType() && 11470 "not an array prvalue"); 11471 return ArrayExprEvaluator(Info, This, Result) 11472 .VisitInitListExpr(ILE, AllocType); 11473 } 11474 11475 static bool EvaluateArrayNewConstructExpr(EvalInfo &Info, LValue &This, 11476 APValue &Result, 11477 const CXXConstructExpr *CCE, 11478 QualType AllocType) { 11479 assert(!CCE->isValueDependent()); 11480 assert(CCE->isPRValue() && CCE->getType()->isArrayType() && 11481 "not an array prvalue"); 11482 return ArrayExprEvaluator(Info, This, Result) 11483 .VisitCXXConstructExpr(CCE, This, &Result, AllocType); 11484 } 11485 11486 // Return true iff the given array filler may depend on the element index. 11487 static bool MaybeElementDependentArrayFiller(const Expr *FillerExpr) { 11488 // For now, just allow non-class value-initialization and initialization 11489 // lists comprised of them. 11490 if (isa<ImplicitValueInitExpr>(FillerExpr)) 11491 return false; 11492 if (const InitListExpr *ILE = dyn_cast<InitListExpr>(FillerExpr)) { 11493 for (unsigned I = 0, E = ILE->getNumInits(); I != E; ++I) { 11494 if (MaybeElementDependentArrayFiller(ILE->getInit(I))) 11495 return true; 11496 } 11497 11498 if (ILE->hasArrayFiller() && 11499 MaybeElementDependentArrayFiller(ILE->getArrayFiller())) 11500 return true; 11501 11502 return false; 11503 } 11504 return true; 11505 } 11506 11507 bool ArrayExprEvaluator::VisitInitListExpr(const InitListExpr *E, 11508 QualType AllocType) { 11509 const ConstantArrayType *CAT = Info.Ctx.getAsConstantArrayType( 11510 AllocType.isNull() ? E->getType() : AllocType); 11511 if (!CAT) 11512 return Error(E); 11513 11514 // C++11 [dcl.init.string]p1: A char array [...] can be initialized by [...] 11515 // an appropriately-typed string literal enclosed in braces. 11516 if (E->isStringLiteralInit()) { 11517 auto *SL = dyn_cast<StringLiteral>(E->getInit(0)->IgnoreParenImpCasts()); 11518 // FIXME: Support ObjCEncodeExpr here once we support it in 11519 // ArrayExprEvaluator generally. 11520 if (!SL) 11521 return Error(E); 11522 return VisitStringLiteral(SL, AllocType); 11523 } 11524 // Any other transparent list init will need proper handling of the 11525 // AllocType; we can't just recurse to the inner initializer. 11526 assert(!E->isTransparent() && 11527 "transparent array list initialization is not string literal init?"); 11528 11529 return VisitCXXParenListOrInitListExpr(E, E->inits(), E->getArrayFiller(), 11530 AllocType); 11531 } 11532 11533 bool ArrayExprEvaluator::VisitCXXParenListOrInitListExpr( 11534 const Expr *ExprToVisit, ArrayRef<Expr *> Args, const Expr *ArrayFiller, 11535 QualType AllocType) { 11536 const ConstantArrayType *CAT = Info.Ctx.getAsConstantArrayType( 11537 AllocType.isNull() ? ExprToVisit->getType() : AllocType); 11538 11539 bool Success = true; 11540 11541 assert((!Result.isArray() || Result.getArrayInitializedElts() == 0) && 11542 "zero-initialized array shouldn't have any initialized elts"); 11543 APValue Filler; 11544 if (Result.isArray() && Result.hasArrayFiller()) 11545 Filler = Result.getArrayFiller(); 11546 11547 unsigned NumEltsToInit = Args.size(); 11548 unsigned NumElts = CAT->getZExtSize(); 11549 11550 // If the initializer might depend on the array index, run it for each 11551 // array element. 11552 if (NumEltsToInit != NumElts && 11553 MaybeElementDependentArrayFiller(ArrayFiller)) { 11554 NumEltsToInit = NumElts; 11555 } else { 11556 for (auto *Init : Args) { 11557 if (auto *EmbedS = dyn_cast<EmbedExpr>(Init->IgnoreParenImpCasts())) 11558 NumEltsToInit += EmbedS->getDataElementCount() - 1; 11559 } 11560 if (NumEltsToInit > NumElts) 11561 NumEltsToInit = NumElts; 11562 } 11563 11564 LLVM_DEBUG(llvm::dbgs() << "The number of elements to initialize: " 11565 << NumEltsToInit << ".\n"); 11566 11567 Result = APValue(APValue::UninitArray(), NumEltsToInit, NumElts); 11568 11569 // If the array was previously zero-initialized, preserve the 11570 // zero-initialized values. 11571 if (Filler.hasValue()) { 11572 for (unsigned I = 0, E = Result.getArrayInitializedElts(); I != E; ++I) 11573 Result.getArrayInitializedElt(I) = Filler; 11574 if (Result.hasArrayFiller()) 11575 Result.getArrayFiller() = Filler; 11576 } 11577 11578 LValue Subobject = This; 11579 Subobject.addArray(Info, ExprToVisit, CAT); 11580 auto Eval = [&](const Expr *Init, unsigned ArrayIndex) { 11581 if (Init->isValueDependent()) 11582 return EvaluateDependentExpr(Init, Info); 11583 11584 if (!EvaluateInPlace(Result.getArrayInitializedElt(ArrayIndex), Info, 11585 Subobject, Init) || 11586 !HandleLValueArrayAdjustment(Info, Init, Subobject, 11587 CAT->getElementType(), 1)) { 11588 if (!Info.noteFailure()) 11589 return false; 11590 Success = false; 11591 } 11592 return true; 11593 }; 11594 unsigned ArrayIndex = 0; 11595 QualType DestTy = CAT->getElementType(); 11596 APSInt Value(Info.Ctx.getTypeSize(DestTy), DestTy->isUnsignedIntegerType()); 11597 for (unsigned Index = 0; Index != NumEltsToInit; ++Index) { 11598 const Expr *Init = Index < Args.size() ? Args[Index] : ArrayFiller; 11599 if (ArrayIndex >= NumEltsToInit) 11600 break; 11601 if (auto *EmbedS = dyn_cast<EmbedExpr>(Init->IgnoreParenImpCasts())) { 11602 StringLiteral *SL = EmbedS->getDataStringLiteral(); 11603 for (unsigned I = EmbedS->getStartingElementPos(), 11604 N = EmbedS->getDataElementCount(); 11605 I != EmbedS->getStartingElementPos() + N; ++I) { 11606 Value = SL->getCodeUnit(I); 11607 if (DestTy->isIntegerType()) { 11608 Result.getArrayInitializedElt(ArrayIndex) = APValue(Value); 11609 } else { 11610 assert(DestTy->isFloatingType() && "unexpected type"); 11611 const FPOptions FPO = 11612 Init->getFPFeaturesInEffect(Info.Ctx.getLangOpts()); 11613 APFloat FValue(0.0); 11614 if (!HandleIntToFloatCast(Info, Init, FPO, EmbedS->getType(), Value, 11615 DestTy, FValue)) 11616 return false; 11617 Result.getArrayInitializedElt(ArrayIndex) = APValue(FValue); 11618 } 11619 ArrayIndex++; 11620 } 11621 } else { 11622 if (!Eval(Init, ArrayIndex)) 11623 return false; 11624 ++ArrayIndex; 11625 } 11626 } 11627 11628 if (!Result.hasArrayFiller()) 11629 return Success; 11630 11631 // If we get here, we have a trivial filler, which we can just evaluate 11632 // once and splat over the rest of the array elements. 11633 assert(ArrayFiller && "no array filler for incomplete init list"); 11634 return EvaluateInPlace(Result.getArrayFiller(), Info, Subobject, 11635 ArrayFiller) && 11636 Success; 11637 } 11638 11639 bool ArrayExprEvaluator::VisitArrayInitLoopExpr(const ArrayInitLoopExpr *E) { 11640 LValue CommonLV; 11641 if (E->getCommonExpr() && 11642 !Evaluate(Info.CurrentCall->createTemporary( 11643 E->getCommonExpr(), 11644 getStorageType(Info.Ctx, E->getCommonExpr()), 11645 ScopeKind::FullExpression, CommonLV), 11646 Info, E->getCommonExpr()->getSourceExpr())) 11647 return false; 11648 11649 auto *CAT = cast<ConstantArrayType>(E->getType()->castAsArrayTypeUnsafe()); 11650 11651 uint64_t Elements = CAT->getZExtSize(); 11652 Result = APValue(APValue::UninitArray(), Elements, Elements); 11653 11654 LValue Subobject = This; 11655 Subobject.addArray(Info, E, CAT); 11656 11657 bool Success = true; 11658 for (EvalInfo::ArrayInitLoopIndex Index(Info); Index != Elements; ++Index) { 11659 // C++ [class.temporary]/5 11660 // There are four contexts in which temporaries are destroyed at a different 11661 // point than the end of the full-expression. [...] The second context is 11662 // when a copy constructor is called to copy an element of an array while 11663 // the entire array is copied [...]. In either case, if the constructor has 11664 // one or more default arguments, the destruction of every temporary created 11665 // in a default argument is sequenced before the construction of the next 11666 // array element, if any. 11667 FullExpressionRAII Scope(Info); 11668 11669 if (!EvaluateInPlace(Result.getArrayInitializedElt(Index), 11670 Info, Subobject, E->getSubExpr()) || 11671 !HandleLValueArrayAdjustment(Info, E, Subobject, 11672 CAT->getElementType(), 1)) { 11673 if (!Info.noteFailure()) 11674 return false; 11675 Success = false; 11676 } 11677 11678 // Make sure we run the destructors too. 11679 Scope.destroy(); 11680 } 11681 11682 return Success; 11683 } 11684 11685 bool ArrayExprEvaluator::VisitCXXConstructExpr(const CXXConstructExpr *E) { 11686 return VisitCXXConstructExpr(E, This, &Result, E->getType()); 11687 } 11688 11689 bool ArrayExprEvaluator::VisitCXXConstructExpr(const CXXConstructExpr *E, 11690 const LValue &Subobject, 11691 APValue *Value, 11692 QualType Type) { 11693 bool HadZeroInit = Value->hasValue(); 11694 11695 if (const ConstantArrayType *CAT = Info.Ctx.getAsConstantArrayType(Type)) { 11696 unsigned FinalSize = CAT->getZExtSize(); 11697 11698 // Preserve the array filler if we had prior zero-initialization. 11699 APValue Filler = 11700 HadZeroInit && Value->hasArrayFiller() ? Value->getArrayFiller() 11701 : APValue(); 11702 11703 *Value = APValue(APValue::UninitArray(), 0, FinalSize); 11704 if (FinalSize == 0) 11705 return true; 11706 11707 bool HasTrivialConstructor = CheckTrivialDefaultConstructor( 11708 Info, E->getExprLoc(), E->getConstructor(), 11709 E->requiresZeroInitialization()); 11710 LValue ArrayElt = Subobject; 11711 ArrayElt.addArray(Info, E, CAT); 11712 // We do the whole initialization in two passes, first for just one element, 11713 // then for the whole array. It's possible we may find out we can't do const 11714 // init in the first pass, in which case we avoid allocating a potentially 11715 // large array. We don't do more passes because expanding array requires 11716 // copying the data, which is wasteful. 11717 for (const unsigned N : {1u, FinalSize}) { 11718 unsigned OldElts = Value->getArrayInitializedElts(); 11719 if (OldElts == N) 11720 break; 11721 11722 // Expand the array to appropriate size. 11723 APValue NewValue(APValue::UninitArray(), N, FinalSize); 11724 for (unsigned I = 0; I < OldElts; ++I) 11725 NewValue.getArrayInitializedElt(I).swap( 11726 Value->getArrayInitializedElt(I)); 11727 Value->swap(NewValue); 11728 11729 if (HadZeroInit) 11730 for (unsigned I = OldElts; I < N; ++I) 11731 Value->getArrayInitializedElt(I) = Filler; 11732 11733 if (HasTrivialConstructor && N == FinalSize && FinalSize != 1) { 11734 // If we have a trivial constructor, only evaluate it once and copy 11735 // the result into all the array elements. 11736 APValue &FirstResult = Value->getArrayInitializedElt(0); 11737 for (unsigned I = OldElts; I < FinalSize; ++I) 11738 Value->getArrayInitializedElt(I) = FirstResult; 11739 } else { 11740 for (unsigned I = OldElts; I < N; ++I) { 11741 if (!VisitCXXConstructExpr(E, ArrayElt, 11742 &Value->getArrayInitializedElt(I), 11743 CAT->getElementType()) || 11744 !HandleLValueArrayAdjustment(Info, E, ArrayElt, 11745 CAT->getElementType(), 1)) 11746 return false; 11747 // When checking for const initilization any diagnostic is considered 11748 // an error. 11749 if (Info.EvalStatus.Diag && !Info.EvalStatus.Diag->empty() && 11750 !Info.keepEvaluatingAfterFailure()) 11751 return false; 11752 } 11753 } 11754 } 11755 11756 return true; 11757 } 11758 11759 if (!Type->isRecordType()) 11760 return Error(E); 11761 11762 return RecordExprEvaluator(Info, Subobject, *Value) 11763 .VisitCXXConstructExpr(E, Type); 11764 } 11765 11766 bool ArrayExprEvaluator::VisitCXXParenListInitExpr( 11767 const CXXParenListInitExpr *E) { 11768 assert(E->getType()->isConstantArrayType() && 11769 "Expression result is not a constant array type"); 11770 11771 return VisitCXXParenListOrInitListExpr(E, E->getInitExprs(), 11772 E->getArrayFiller()); 11773 } 11774 11775 //===----------------------------------------------------------------------===// 11776 // Integer Evaluation 11777 // 11778 // As a GNU extension, we support casting pointers to sufficiently-wide integer 11779 // types and back in constant folding. Integer values are thus represented 11780 // either as an integer-valued APValue, or as an lvalue-valued APValue. 11781 //===----------------------------------------------------------------------===// 11782 11783 namespace { 11784 class IntExprEvaluator 11785 : public ExprEvaluatorBase<IntExprEvaluator> { 11786 APValue &Result; 11787 public: 11788 IntExprEvaluator(EvalInfo &info, APValue &result) 11789 : ExprEvaluatorBaseTy(info), Result(result) {} 11790 11791 bool Success(const llvm::APSInt &SI, const Expr *E, APValue &Result) { 11792 assert(E->getType()->isIntegralOrEnumerationType() && 11793 "Invalid evaluation result."); 11794 assert(SI.isSigned() == E->getType()->isSignedIntegerOrEnumerationType() && 11795 "Invalid evaluation result."); 11796 assert(SI.getBitWidth() == Info.Ctx.getIntWidth(E->getType()) && 11797 "Invalid evaluation result."); 11798 Result = APValue(SI); 11799 return true; 11800 } 11801 bool Success(const llvm::APSInt &SI, const Expr *E) { 11802 return Success(SI, E, Result); 11803 } 11804 11805 bool Success(const llvm::APInt &I, const Expr *E, APValue &Result) { 11806 assert(E->getType()->isIntegralOrEnumerationType() && 11807 "Invalid evaluation result."); 11808 assert(I.getBitWidth() == Info.Ctx.getIntWidth(E->getType()) && 11809 "Invalid evaluation result."); 11810 Result = APValue(APSInt(I)); 11811 Result.getInt().setIsUnsigned( 11812 E->getType()->isUnsignedIntegerOrEnumerationType()); 11813 return true; 11814 } 11815 bool Success(const llvm::APInt &I, const Expr *E) { 11816 return Success(I, E, Result); 11817 } 11818 11819 bool Success(uint64_t Value, const Expr *E, APValue &Result) { 11820 assert(E->getType()->isIntegralOrEnumerationType() && 11821 "Invalid evaluation result."); 11822 Result = APValue(Info.Ctx.MakeIntValue(Value, E->getType())); 11823 return true; 11824 } 11825 bool Success(uint64_t Value, const Expr *E) { 11826 return Success(Value, E, Result); 11827 } 11828 11829 bool Success(CharUnits Size, const Expr *E) { 11830 return Success(Size.getQuantity(), E); 11831 } 11832 11833 bool Success(const APValue &V, const Expr *E) { 11834 if (V.isLValue() || V.isAddrLabelDiff() || V.isIndeterminate()) { 11835 Result = V; 11836 return true; 11837 } 11838 return Success(V.getInt(), E); 11839 } 11840 11841 bool ZeroInitialization(const Expr *E) { return Success(0, E); } 11842 11843 friend std::optional<bool> EvaluateBuiltinIsWithinLifetime(IntExprEvaluator &, 11844 const CallExpr *); 11845 11846 //===--------------------------------------------------------------------===// 11847 // Visitor Methods 11848 //===--------------------------------------------------------------------===// 11849 11850 bool VisitIntegerLiteral(const IntegerLiteral *E) { 11851 return Success(E->getValue(), E); 11852 } 11853 bool VisitCharacterLiteral(const CharacterLiteral *E) { 11854 return Success(E->getValue(), E); 11855 } 11856 11857 bool CheckReferencedDecl(const Expr *E, const Decl *D); 11858 bool VisitDeclRefExpr(const DeclRefExpr *E) { 11859 if (CheckReferencedDecl(E, E->getDecl())) 11860 return true; 11861 11862 return ExprEvaluatorBaseTy::VisitDeclRefExpr(E); 11863 } 11864 bool VisitMemberExpr(const MemberExpr *E) { 11865 if (CheckReferencedDecl(E, E->getMemberDecl())) { 11866 VisitIgnoredBaseExpression(E->getBase()); 11867 return true; 11868 } 11869 11870 return ExprEvaluatorBaseTy::VisitMemberExpr(E); 11871 } 11872 11873 bool VisitCallExpr(const CallExpr *E); 11874 bool VisitBuiltinCallExpr(const CallExpr *E, unsigned BuiltinOp); 11875 bool VisitBinaryOperator(const BinaryOperator *E); 11876 bool VisitOffsetOfExpr(const OffsetOfExpr *E); 11877 bool VisitUnaryOperator(const UnaryOperator *E); 11878 11879 bool VisitCastExpr(const CastExpr* E); 11880 bool VisitUnaryExprOrTypeTraitExpr(const UnaryExprOrTypeTraitExpr *E); 11881 11882 bool VisitCXXBoolLiteralExpr(const CXXBoolLiteralExpr *E) { 11883 return Success(E->getValue(), E); 11884 } 11885 11886 bool VisitObjCBoolLiteralExpr(const ObjCBoolLiteralExpr *E) { 11887 return Success(E->getValue(), E); 11888 } 11889 11890 bool VisitArrayInitIndexExpr(const ArrayInitIndexExpr *E) { 11891 if (Info.ArrayInitIndex == uint64_t(-1)) { 11892 // We were asked to evaluate this subexpression independent of the 11893 // enclosing ArrayInitLoopExpr. We can't do that. 11894 Info.FFDiag(E); 11895 return false; 11896 } 11897 return Success(Info.ArrayInitIndex, E); 11898 } 11899 11900 // Note, GNU defines __null as an integer, not a pointer. 11901 bool VisitGNUNullExpr(const GNUNullExpr *E) { 11902 return ZeroInitialization(E); 11903 } 11904 11905 bool VisitTypeTraitExpr(const TypeTraitExpr *E) { 11906 return Success(E->getValue(), E); 11907 } 11908 11909 bool VisitArrayTypeTraitExpr(const ArrayTypeTraitExpr *E) { 11910 return Success(E->getValue(), E); 11911 } 11912 11913 bool VisitExpressionTraitExpr(const ExpressionTraitExpr *E) { 11914 return Success(E->getValue(), E); 11915 } 11916 11917 bool VisitOpenACCAsteriskSizeExpr(const OpenACCAsteriskSizeExpr *E) { 11918 // This should not be evaluated during constant expr evaluation, as it 11919 // should always be in an unevaluated context (the args list of a 'gang' or 11920 // 'tile' clause). 11921 return Error(E); 11922 } 11923 11924 bool VisitUnaryReal(const UnaryOperator *E); 11925 bool VisitUnaryImag(const UnaryOperator *E); 11926 11927 bool VisitCXXNoexceptExpr(const CXXNoexceptExpr *E); 11928 bool VisitSizeOfPackExpr(const SizeOfPackExpr *E); 11929 bool VisitSourceLocExpr(const SourceLocExpr *E); 11930 bool VisitConceptSpecializationExpr(const ConceptSpecializationExpr *E); 11931 bool VisitRequiresExpr(const RequiresExpr *E); 11932 // FIXME: Missing: array subscript of vector, member of vector 11933 }; 11934 11935 class FixedPointExprEvaluator 11936 : public ExprEvaluatorBase<FixedPointExprEvaluator> { 11937 APValue &Result; 11938 11939 public: 11940 FixedPointExprEvaluator(EvalInfo &info, APValue &result) 11941 : ExprEvaluatorBaseTy(info), Result(result) {} 11942 11943 bool Success(const llvm::APInt &I, const Expr *E) { 11944 return Success( 11945 APFixedPoint(I, Info.Ctx.getFixedPointSemantics(E->getType())), E); 11946 } 11947 11948 bool Success(uint64_t Value, const Expr *E) { 11949 return Success( 11950 APFixedPoint(Value, Info.Ctx.getFixedPointSemantics(E->getType())), E); 11951 } 11952 11953 bool Success(const APValue &V, const Expr *E) { 11954 return Success(V.getFixedPoint(), E); 11955 } 11956 11957 bool Success(const APFixedPoint &V, const Expr *E) { 11958 assert(E->getType()->isFixedPointType() && "Invalid evaluation result."); 11959 assert(V.getWidth() == Info.Ctx.getIntWidth(E->getType()) && 11960 "Invalid evaluation result."); 11961 Result = APValue(V); 11962 return true; 11963 } 11964 11965 bool ZeroInitialization(const Expr *E) { 11966 return Success(0, E); 11967 } 11968 11969 //===--------------------------------------------------------------------===// 11970 // Visitor Methods 11971 //===--------------------------------------------------------------------===// 11972 11973 bool VisitFixedPointLiteral(const FixedPointLiteral *E) { 11974 return Success(E->getValue(), E); 11975 } 11976 11977 bool VisitCastExpr(const CastExpr *E); 11978 bool VisitUnaryOperator(const UnaryOperator *E); 11979 bool VisitBinaryOperator(const BinaryOperator *E); 11980 }; 11981 } // end anonymous namespace 11982 11983 /// EvaluateIntegerOrLValue - Evaluate an rvalue integral-typed expression, and 11984 /// produce either the integer value or a pointer. 11985 /// 11986 /// GCC has a heinous extension which folds casts between pointer types and 11987 /// pointer-sized integral types. We support this by allowing the evaluation of 11988 /// an integer rvalue to produce a pointer (represented as an lvalue) instead. 11989 /// Some simple arithmetic on such values is supported (they are treated much 11990 /// like char*). 11991 static bool EvaluateIntegerOrLValue(const Expr *E, APValue &Result, 11992 EvalInfo &Info) { 11993 assert(!E->isValueDependent()); 11994 assert(E->isPRValue() && E->getType()->isIntegralOrEnumerationType()); 11995 return IntExprEvaluator(Info, Result).Visit(E); 11996 } 11997 11998 static bool EvaluateInteger(const Expr *E, APSInt &Result, EvalInfo &Info) { 11999 assert(!E->isValueDependent()); 12000 APValue Val; 12001 if (!EvaluateIntegerOrLValue(E, Val, Info)) 12002 return false; 12003 if (!Val.isInt()) { 12004 // FIXME: It would be better to produce the diagnostic for casting 12005 // a pointer to an integer. 12006 Info.FFDiag(E, diag::note_invalid_subexpr_in_const_expr); 12007 return false; 12008 } 12009 Result = Val.getInt(); 12010 return true; 12011 } 12012 12013 bool IntExprEvaluator::VisitSourceLocExpr(const SourceLocExpr *E) { 12014 APValue Evaluated = E->EvaluateInContext( 12015 Info.Ctx, Info.CurrentCall->CurSourceLocExprScope.getDefaultExpr()); 12016 return Success(Evaluated, E); 12017 } 12018 12019 static bool EvaluateFixedPoint(const Expr *E, APFixedPoint &Result, 12020 EvalInfo &Info) { 12021 assert(!E->isValueDependent()); 12022 if (E->getType()->isFixedPointType()) { 12023 APValue Val; 12024 if (!FixedPointExprEvaluator(Info, Val).Visit(E)) 12025 return false; 12026 if (!Val.isFixedPoint()) 12027 return false; 12028 12029 Result = Val.getFixedPoint(); 12030 return true; 12031 } 12032 return false; 12033 } 12034 12035 static bool EvaluateFixedPointOrInteger(const Expr *E, APFixedPoint &Result, 12036 EvalInfo &Info) { 12037 assert(!E->isValueDependent()); 12038 if (E->getType()->isIntegerType()) { 12039 auto FXSema = Info.Ctx.getFixedPointSemantics(E->getType()); 12040 APSInt Val; 12041 if (!EvaluateInteger(E, Val, Info)) 12042 return false; 12043 Result = APFixedPoint(Val, FXSema); 12044 return true; 12045 } else if (E->getType()->isFixedPointType()) { 12046 return EvaluateFixedPoint(E, Result, Info); 12047 } 12048 return false; 12049 } 12050 12051 /// Check whether the given declaration can be directly converted to an integral 12052 /// rvalue. If not, no diagnostic is produced; there are other things we can 12053 /// try. 12054 bool IntExprEvaluator::CheckReferencedDecl(const Expr* E, const Decl* D) { 12055 // Enums are integer constant exprs. 12056 if (const EnumConstantDecl *ECD = dyn_cast<EnumConstantDecl>(D)) { 12057 // Check for signedness/width mismatches between E type and ECD value. 12058 bool SameSign = (ECD->getInitVal().isSigned() 12059 == E->getType()->isSignedIntegerOrEnumerationType()); 12060 bool SameWidth = (ECD->getInitVal().getBitWidth() 12061 == Info.Ctx.getIntWidth(E->getType())); 12062 if (SameSign && SameWidth) 12063 return Success(ECD->getInitVal(), E); 12064 else { 12065 // Get rid of mismatch (otherwise Success assertions will fail) 12066 // by computing a new value matching the type of E. 12067 llvm::APSInt Val = ECD->getInitVal(); 12068 if (!SameSign) 12069 Val.setIsSigned(!ECD->getInitVal().isSigned()); 12070 if (!SameWidth) 12071 Val = Val.extOrTrunc(Info.Ctx.getIntWidth(E->getType())); 12072 return Success(Val, E); 12073 } 12074 } 12075 return false; 12076 } 12077 12078 /// EvaluateBuiltinClassifyType - Evaluate __builtin_classify_type the same way 12079 /// as GCC. 12080 GCCTypeClass EvaluateBuiltinClassifyType(QualType T, 12081 const LangOptions &LangOpts) { 12082 assert(!T->isDependentType() && "unexpected dependent type"); 12083 12084 QualType CanTy = T.getCanonicalType(); 12085 12086 switch (CanTy->getTypeClass()) { 12087 #define TYPE(ID, BASE) 12088 #define DEPENDENT_TYPE(ID, BASE) case Type::ID: 12089 #define NON_CANONICAL_TYPE(ID, BASE) case Type::ID: 12090 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(ID, BASE) case Type::ID: 12091 #include "clang/AST/TypeNodes.inc" 12092 case Type::Auto: 12093 case Type::DeducedTemplateSpecialization: 12094 llvm_unreachable("unexpected non-canonical or dependent type"); 12095 12096 case Type::Builtin: 12097 switch (cast<BuiltinType>(CanTy)->getKind()) { 12098 #define BUILTIN_TYPE(ID, SINGLETON_ID) 12099 #define SIGNED_TYPE(ID, SINGLETON_ID) \ 12100 case BuiltinType::ID: return GCCTypeClass::Integer; 12101 #define FLOATING_TYPE(ID, SINGLETON_ID) \ 12102 case BuiltinType::ID: return GCCTypeClass::RealFloat; 12103 #define PLACEHOLDER_TYPE(ID, SINGLETON_ID) \ 12104 case BuiltinType::ID: break; 12105 #include "clang/AST/BuiltinTypes.def" 12106 case BuiltinType::Void: 12107 return GCCTypeClass::Void; 12108 12109 case BuiltinType::Bool: 12110 return GCCTypeClass::Bool; 12111 12112 case BuiltinType::Char_U: 12113 case BuiltinType::UChar: 12114 case BuiltinType::WChar_U: 12115 case BuiltinType::Char8: 12116 case BuiltinType::Char16: 12117 case BuiltinType::Char32: 12118 case BuiltinType::UShort: 12119 case BuiltinType::UInt: 12120 case BuiltinType::ULong: 12121 case BuiltinType::ULongLong: 12122 case BuiltinType::UInt128: 12123 return GCCTypeClass::Integer; 12124 12125 case BuiltinType::UShortAccum: 12126 case BuiltinType::UAccum: 12127 case BuiltinType::ULongAccum: 12128 case BuiltinType::UShortFract: 12129 case BuiltinType::UFract: 12130 case BuiltinType::ULongFract: 12131 case BuiltinType::SatUShortAccum: 12132 case BuiltinType::SatUAccum: 12133 case BuiltinType::SatULongAccum: 12134 case BuiltinType::SatUShortFract: 12135 case BuiltinType::SatUFract: 12136 case BuiltinType::SatULongFract: 12137 return GCCTypeClass::None; 12138 12139 case BuiltinType::NullPtr: 12140 12141 case BuiltinType::ObjCId: 12142 case BuiltinType::ObjCClass: 12143 case BuiltinType::ObjCSel: 12144 #define IMAGE_TYPE(ImgType, Id, SingletonId, Access, Suffix) \ 12145 case BuiltinType::Id: 12146 #include "clang/Basic/OpenCLImageTypes.def" 12147 #define EXT_OPAQUE_TYPE(ExtType, Id, Ext) \ 12148 case BuiltinType::Id: 12149 #include "clang/Basic/OpenCLExtensionTypes.def" 12150 case BuiltinType::OCLSampler: 12151 case BuiltinType::OCLEvent: 12152 case BuiltinType::OCLClkEvent: 12153 case BuiltinType::OCLQueue: 12154 case BuiltinType::OCLReserveID: 12155 #define SVE_TYPE(Name, Id, SingletonId) \ 12156 case BuiltinType::Id: 12157 #include "clang/Basic/AArch64SVEACLETypes.def" 12158 #define PPC_VECTOR_TYPE(Name, Id, Size) \ 12159 case BuiltinType::Id: 12160 #include "clang/Basic/PPCTypes.def" 12161 #define RVV_TYPE(Name, Id, SingletonId) case BuiltinType::Id: 12162 #include "clang/Basic/RISCVVTypes.def" 12163 #define WASM_TYPE(Name, Id, SingletonId) case BuiltinType::Id: 12164 #include "clang/Basic/WebAssemblyReferenceTypes.def" 12165 #define AMDGPU_TYPE(Name, Id, SingletonId, Width, Align) case BuiltinType::Id: 12166 #include "clang/Basic/AMDGPUTypes.def" 12167 #define HLSL_INTANGIBLE_TYPE(Name, Id, SingletonId) case BuiltinType::Id: 12168 #include "clang/Basic/HLSLIntangibleTypes.def" 12169 return GCCTypeClass::None; 12170 12171 case BuiltinType::Dependent: 12172 llvm_unreachable("unexpected dependent type"); 12173 }; 12174 llvm_unreachable("unexpected placeholder type"); 12175 12176 case Type::Enum: 12177 return LangOpts.CPlusPlus ? GCCTypeClass::Enum : GCCTypeClass::Integer; 12178 12179 case Type::Pointer: 12180 case Type::ConstantArray: 12181 case Type::VariableArray: 12182 case Type::IncompleteArray: 12183 case Type::FunctionNoProto: 12184 case Type::FunctionProto: 12185 case Type::ArrayParameter: 12186 return GCCTypeClass::Pointer; 12187 12188 case Type::MemberPointer: 12189 return CanTy->isMemberDataPointerType() 12190 ? GCCTypeClass::PointerToDataMember 12191 : GCCTypeClass::PointerToMemberFunction; 12192 12193 case Type::Complex: 12194 return GCCTypeClass::Complex; 12195 12196 case Type::Record: 12197 return CanTy->isUnionType() ? GCCTypeClass::Union 12198 : GCCTypeClass::ClassOrStruct; 12199 12200 case Type::Atomic: 12201 // GCC classifies _Atomic T the same as T. 12202 return EvaluateBuiltinClassifyType( 12203 CanTy->castAs<AtomicType>()->getValueType(), LangOpts); 12204 12205 case Type::Vector: 12206 case Type::ExtVector: 12207 return GCCTypeClass::Vector; 12208 12209 case Type::BlockPointer: 12210 case Type::ConstantMatrix: 12211 case Type::ObjCObject: 12212 case Type::ObjCInterface: 12213 case Type::ObjCObjectPointer: 12214 case Type::Pipe: 12215 case Type::HLSLAttributedResource: 12216 // Classify all other types that don't fit into the regular 12217 // classification the same way. 12218 return GCCTypeClass::None; 12219 12220 case Type::BitInt: 12221 return GCCTypeClass::BitInt; 12222 12223 case Type::LValueReference: 12224 case Type::RValueReference: 12225 llvm_unreachable("invalid type for expression"); 12226 } 12227 12228 llvm_unreachable("unexpected type class"); 12229 } 12230 12231 /// EvaluateBuiltinClassifyType - Evaluate __builtin_classify_type the same way 12232 /// as GCC. 12233 static GCCTypeClass 12234 EvaluateBuiltinClassifyType(const CallExpr *E, const LangOptions &LangOpts) { 12235 // If no argument was supplied, default to None. This isn't 12236 // ideal, however it is what gcc does. 12237 if (E->getNumArgs() == 0) 12238 return GCCTypeClass::None; 12239 12240 // FIXME: Bizarrely, GCC treats a call with more than one argument as not 12241 // being an ICE, but still folds it to a constant using the type of the first 12242 // argument. 12243 return EvaluateBuiltinClassifyType(E->getArg(0)->getType(), LangOpts); 12244 } 12245 12246 /// EvaluateBuiltinConstantPForLValue - Determine the result of 12247 /// __builtin_constant_p when applied to the given pointer. 12248 /// 12249 /// A pointer is only "constant" if it is null (or a pointer cast to integer) 12250 /// or it points to the first character of a string literal. 12251 static bool EvaluateBuiltinConstantPForLValue(const APValue &LV) { 12252 APValue::LValueBase Base = LV.getLValueBase(); 12253 if (Base.isNull()) { 12254 // A null base is acceptable. 12255 return true; 12256 } else if (const Expr *E = Base.dyn_cast<const Expr *>()) { 12257 if (!isa<StringLiteral>(E)) 12258 return false; 12259 return LV.getLValueOffset().isZero(); 12260 } else if (Base.is<TypeInfoLValue>()) { 12261 // Surprisingly, GCC considers __builtin_constant_p(&typeid(int)) to 12262 // evaluate to true. 12263 return true; 12264 } else { 12265 // Any other base is not constant enough for GCC. 12266 return false; 12267 } 12268 } 12269 12270 /// EvaluateBuiltinConstantP - Evaluate __builtin_constant_p as similarly to 12271 /// GCC as we can manage. 12272 static bool EvaluateBuiltinConstantP(EvalInfo &Info, const Expr *Arg) { 12273 // This evaluation is not permitted to have side-effects, so evaluate it in 12274 // a speculative evaluation context. 12275 SpeculativeEvaluationRAII SpeculativeEval(Info); 12276 12277 // Constant-folding is always enabled for the operand of __builtin_constant_p 12278 // (even when the enclosing evaluation context otherwise requires a strict 12279 // language-specific constant expression). 12280 FoldConstant Fold(Info, true); 12281 12282 QualType ArgType = Arg->getType(); 12283 12284 // __builtin_constant_p always has one operand. The rules which gcc follows 12285 // are not precisely documented, but are as follows: 12286 // 12287 // - If the operand is of integral, floating, complex or enumeration type, 12288 // and can be folded to a known value of that type, it returns 1. 12289 // - If the operand can be folded to a pointer to the first character 12290 // of a string literal (or such a pointer cast to an integral type) 12291 // or to a null pointer or an integer cast to a pointer, it returns 1. 12292 // 12293 // Otherwise, it returns 0. 12294 // 12295 // FIXME: GCC also intends to return 1 for literals of aggregate types, but 12296 // its support for this did not work prior to GCC 9 and is not yet well 12297 // understood. 12298 if (ArgType->isIntegralOrEnumerationType() || ArgType->isFloatingType() || 12299 ArgType->isAnyComplexType() || ArgType->isPointerType() || 12300 ArgType->isNullPtrType()) { 12301 APValue V; 12302 if (!::EvaluateAsRValue(Info, Arg, V) || Info.EvalStatus.HasSideEffects) { 12303 Fold.keepDiagnostics(); 12304 return false; 12305 } 12306 12307 // For a pointer (possibly cast to integer), there are special rules. 12308 if (V.getKind() == APValue::LValue) 12309 return EvaluateBuiltinConstantPForLValue(V); 12310 12311 // Otherwise, any constant value is good enough. 12312 return V.hasValue(); 12313 } 12314 12315 // Anything else isn't considered to be sufficiently constant. 12316 return false; 12317 } 12318 12319 /// Retrieves the "underlying object type" of the given expression, 12320 /// as used by __builtin_object_size. 12321 static QualType getObjectType(APValue::LValueBase B) { 12322 if (const ValueDecl *D = B.dyn_cast<const ValueDecl*>()) { 12323 if (const VarDecl *VD = dyn_cast<VarDecl>(D)) 12324 return VD->getType(); 12325 } else if (const Expr *E = B.dyn_cast<const Expr*>()) { 12326 if (isa<CompoundLiteralExpr>(E)) 12327 return E->getType(); 12328 } else if (B.is<TypeInfoLValue>()) { 12329 return B.getTypeInfoType(); 12330 } else if (B.is<DynamicAllocLValue>()) { 12331 return B.getDynamicAllocType(); 12332 } 12333 12334 return QualType(); 12335 } 12336 12337 /// A more selective version of E->IgnoreParenCasts for 12338 /// tryEvaluateBuiltinObjectSize. This ignores some casts/parens that serve only 12339 /// to change the type of E. 12340 /// Ex. For E = `(short*)((char*)(&foo))`, returns `&foo` 12341 /// 12342 /// Always returns an RValue with a pointer representation. 12343 static const Expr *ignorePointerCastsAndParens(const Expr *E) { 12344 assert(E->isPRValue() && E->getType()->hasPointerRepresentation()); 12345 12346 const Expr *NoParens = E->IgnoreParens(); 12347 const auto *Cast = dyn_cast<CastExpr>(NoParens); 12348 if (Cast == nullptr) 12349 return NoParens; 12350 12351 // We only conservatively allow a few kinds of casts, because this code is 12352 // inherently a simple solution that seeks to support the common case. 12353 auto CastKind = Cast->getCastKind(); 12354 if (CastKind != CK_NoOp && CastKind != CK_BitCast && 12355 CastKind != CK_AddressSpaceConversion) 12356 return NoParens; 12357 12358 const auto *SubExpr = Cast->getSubExpr(); 12359 if (!SubExpr->getType()->hasPointerRepresentation() || !SubExpr->isPRValue()) 12360 return NoParens; 12361 return ignorePointerCastsAndParens(SubExpr); 12362 } 12363 12364 /// Checks to see if the given LValue's Designator is at the end of the LValue's 12365 /// record layout. e.g. 12366 /// struct { struct { int a, b; } fst, snd; } obj; 12367 /// obj.fst // no 12368 /// obj.snd // yes 12369 /// obj.fst.a // no 12370 /// obj.fst.b // no 12371 /// obj.snd.a // no 12372 /// obj.snd.b // yes 12373 /// 12374 /// Please note: this function is specialized for how __builtin_object_size 12375 /// views "objects". 12376 /// 12377 /// If this encounters an invalid RecordDecl or otherwise cannot determine the 12378 /// correct result, it will always return true. 12379 static bool isDesignatorAtObjectEnd(const ASTContext &Ctx, const LValue &LVal) { 12380 assert(!LVal.Designator.Invalid); 12381 12382 auto IsLastOrInvalidFieldDecl = [&Ctx](const FieldDecl *FD, bool &Invalid) { 12383 const RecordDecl *Parent = FD->getParent(); 12384 Invalid = Parent->isInvalidDecl(); 12385 if (Invalid || Parent->isUnion()) 12386 return true; 12387 const ASTRecordLayout &Layout = Ctx.getASTRecordLayout(Parent); 12388 return FD->getFieldIndex() + 1 == Layout.getFieldCount(); 12389 }; 12390 12391 auto &Base = LVal.getLValueBase(); 12392 if (auto *ME = dyn_cast_or_null<MemberExpr>(Base.dyn_cast<const Expr *>())) { 12393 if (auto *FD = dyn_cast<FieldDecl>(ME->getMemberDecl())) { 12394 bool Invalid; 12395 if (!IsLastOrInvalidFieldDecl(FD, Invalid)) 12396 return Invalid; 12397 } else if (auto *IFD = dyn_cast<IndirectFieldDecl>(ME->getMemberDecl())) { 12398 for (auto *FD : IFD->chain()) { 12399 bool Invalid; 12400 if (!IsLastOrInvalidFieldDecl(cast<FieldDecl>(FD), Invalid)) 12401 return Invalid; 12402 } 12403 } 12404 } 12405 12406 unsigned I = 0; 12407 QualType BaseType = getType(Base); 12408 if (LVal.Designator.FirstEntryIsAnUnsizedArray) { 12409 // If we don't know the array bound, conservatively assume we're looking at 12410 // the final array element. 12411 ++I; 12412 if (BaseType->isIncompleteArrayType()) 12413 BaseType = Ctx.getAsArrayType(BaseType)->getElementType(); 12414 else 12415 BaseType = BaseType->castAs<PointerType>()->getPointeeType(); 12416 } 12417 12418 for (unsigned E = LVal.Designator.Entries.size(); I != E; ++I) { 12419 const auto &Entry = LVal.Designator.Entries[I]; 12420 if (BaseType->isArrayType()) { 12421 // Because __builtin_object_size treats arrays as objects, we can ignore 12422 // the index iff this is the last array in the Designator. 12423 if (I + 1 == E) 12424 return true; 12425 const auto *CAT = cast<ConstantArrayType>(Ctx.getAsArrayType(BaseType)); 12426 uint64_t Index = Entry.getAsArrayIndex(); 12427 if (Index + 1 != CAT->getZExtSize()) 12428 return false; 12429 BaseType = CAT->getElementType(); 12430 } else if (BaseType->isAnyComplexType()) { 12431 const auto *CT = BaseType->castAs<ComplexType>(); 12432 uint64_t Index = Entry.getAsArrayIndex(); 12433 if (Index != 1) 12434 return false; 12435 BaseType = CT->getElementType(); 12436 } else if (auto *FD = getAsField(Entry)) { 12437 bool Invalid; 12438 if (!IsLastOrInvalidFieldDecl(FD, Invalid)) 12439 return Invalid; 12440 BaseType = FD->getType(); 12441 } else { 12442 assert(getAsBaseClass(Entry) && "Expecting cast to a base class"); 12443 return false; 12444 } 12445 } 12446 return true; 12447 } 12448 12449 /// Tests to see if the LValue has a user-specified designator (that isn't 12450 /// necessarily valid). Note that this always returns 'true' if the LValue has 12451 /// an unsized array as its first designator entry, because there's currently no 12452 /// way to tell if the user typed *foo or foo[0]. 12453 static bool refersToCompleteObject(const LValue &LVal) { 12454 if (LVal.Designator.Invalid) 12455 return false; 12456 12457 if (!LVal.Designator.Entries.empty()) 12458 return LVal.Designator.isMostDerivedAnUnsizedArray(); 12459 12460 if (!LVal.InvalidBase) 12461 return true; 12462 12463 // If `E` is a MemberExpr, then the first part of the designator is hiding in 12464 // the LValueBase. 12465 const auto *E = LVal.Base.dyn_cast<const Expr *>(); 12466 return !E || !isa<MemberExpr>(E); 12467 } 12468 12469 /// Attempts to detect a user writing into a piece of memory that's impossible 12470 /// to figure out the size of by just using types. 12471 static bool isUserWritingOffTheEnd(const ASTContext &Ctx, const LValue &LVal) { 12472 const SubobjectDesignator &Designator = LVal.Designator; 12473 // Notes: 12474 // - Users can only write off of the end when we have an invalid base. Invalid 12475 // bases imply we don't know where the memory came from. 12476 // - We used to be a bit more aggressive here; we'd only be conservative if 12477 // the array at the end was flexible, or if it had 0 or 1 elements. This 12478 // broke some common standard library extensions (PR30346), but was 12479 // otherwise seemingly fine. It may be useful to reintroduce this behavior 12480 // with some sort of list. OTOH, it seems that GCC is always 12481 // conservative with the last element in structs (if it's an array), so our 12482 // current behavior is more compatible than an explicit list approach would 12483 // be. 12484 auto isFlexibleArrayMember = [&] { 12485 using FAMKind = LangOptions::StrictFlexArraysLevelKind; 12486 FAMKind StrictFlexArraysLevel = 12487 Ctx.getLangOpts().getStrictFlexArraysLevel(); 12488 12489 if (Designator.isMostDerivedAnUnsizedArray()) 12490 return true; 12491 12492 if (StrictFlexArraysLevel == FAMKind::Default) 12493 return true; 12494 12495 if (Designator.getMostDerivedArraySize() == 0 && 12496 StrictFlexArraysLevel != FAMKind::IncompleteOnly) 12497 return true; 12498 12499 if (Designator.getMostDerivedArraySize() == 1 && 12500 StrictFlexArraysLevel == FAMKind::OneZeroOrIncomplete) 12501 return true; 12502 12503 return false; 12504 }; 12505 12506 return LVal.InvalidBase && 12507 Designator.Entries.size() == Designator.MostDerivedPathLength && 12508 Designator.MostDerivedIsArrayElement && isFlexibleArrayMember() && 12509 isDesignatorAtObjectEnd(Ctx, LVal); 12510 } 12511 12512 /// Converts the given APInt to CharUnits, assuming the APInt is unsigned. 12513 /// Fails if the conversion would cause loss of precision. 12514 static bool convertUnsignedAPIntToCharUnits(const llvm::APInt &Int, 12515 CharUnits &Result) { 12516 auto CharUnitsMax = std::numeric_limits<CharUnits::QuantityType>::max(); 12517 if (Int.ugt(CharUnitsMax)) 12518 return false; 12519 Result = CharUnits::fromQuantity(Int.getZExtValue()); 12520 return true; 12521 } 12522 12523 /// If we're evaluating the object size of an instance of a struct that 12524 /// contains a flexible array member, add the size of the initializer. 12525 static void addFlexibleArrayMemberInitSize(EvalInfo &Info, const QualType &T, 12526 const LValue &LV, CharUnits &Size) { 12527 if (!T.isNull() && T->isStructureType() && 12528 T->getAsStructureType()->getDecl()->hasFlexibleArrayMember()) 12529 if (const auto *V = LV.getLValueBase().dyn_cast<const ValueDecl *>()) 12530 if (const auto *VD = dyn_cast<VarDecl>(V)) 12531 if (VD->hasInit()) 12532 Size += VD->getFlexibleArrayInitChars(Info.Ctx); 12533 } 12534 12535 /// Helper for tryEvaluateBuiltinObjectSize -- Given an LValue, this will 12536 /// determine how many bytes exist from the beginning of the object to either 12537 /// the end of the current subobject, or the end of the object itself, depending 12538 /// on what the LValue looks like + the value of Type. 12539 /// 12540 /// If this returns false, the value of Result is undefined. 12541 static bool determineEndOffset(EvalInfo &Info, SourceLocation ExprLoc, 12542 unsigned Type, const LValue &LVal, 12543 CharUnits &EndOffset) { 12544 bool DetermineForCompleteObject = refersToCompleteObject(LVal); 12545 12546 auto CheckedHandleSizeof = [&](QualType Ty, CharUnits &Result) { 12547 if (Ty.isNull() || Ty->isIncompleteType() || Ty->isFunctionType()) 12548 return false; 12549 return HandleSizeof(Info, ExprLoc, Ty, Result); 12550 }; 12551 12552 // We want to evaluate the size of the entire object. This is a valid fallback 12553 // for when Type=1 and the designator is invalid, because we're asked for an 12554 // upper-bound. 12555 if (!(Type & 1) || LVal.Designator.Invalid || DetermineForCompleteObject) { 12556 // Type=3 wants a lower bound, so we can't fall back to this. 12557 if (Type == 3 && !DetermineForCompleteObject) 12558 return false; 12559 12560 llvm::APInt APEndOffset; 12561 if (isBaseAnAllocSizeCall(LVal.getLValueBase()) && 12562 getBytesReturnedByAllocSizeCall(Info.Ctx, LVal, APEndOffset)) 12563 return convertUnsignedAPIntToCharUnits(APEndOffset, EndOffset); 12564 12565 if (LVal.InvalidBase) 12566 return false; 12567 12568 QualType BaseTy = getObjectType(LVal.getLValueBase()); 12569 const bool Ret = CheckedHandleSizeof(BaseTy, EndOffset); 12570 addFlexibleArrayMemberInitSize(Info, BaseTy, LVal, EndOffset); 12571 return Ret; 12572 } 12573 12574 // We want to evaluate the size of a subobject. 12575 const SubobjectDesignator &Designator = LVal.Designator; 12576 12577 // The following is a moderately common idiom in C: 12578 // 12579 // struct Foo { int a; char c[1]; }; 12580 // struct Foo *F = (struct Foo *)malloc(sizeof(struct Foo) + strlen(Bar)); 12581 // strcpy(&F->c[0], Bar); 12582 // 12583 // In order to not break too much legacy code, we need to support it. 12584 if (isUserWritingOffTheEnd(Info.Ctx, LVal)) { 12585 // If we can resolve this to an alloc_size call, we can hand that back, 12586 // because we know for certain how many bytes there are to write to. 12587 llvm::APInt APEndOffset; 12588 if (isBaseAnAllocSizeCall(LVal.getLValueBase()) && 12589 getBytesReturnedByAllocSizeCall(Info.Ctx, LVal, APEndOffset)) 12590 return convertUnsignedAPIntToCharUnits(APEndOffset, EndOffset); 12591 12592 // If we cannot determine the size of the initial allocation, then we can't 12593 // given an accurate upper-bound. However, we are still able to give 12594 // conservative lower-bounds for Type=3. 12595 if (Type == 1) 12596 return false; 12597 } 12598 12599 CharUnits BytesPerElem; 12600 if (!CheckedHandleSizeof(Designator.MostDerivedType, BytesPerElem)) 12601 return false; 12602 12603 // According to the GCC documentation, we want the size of the subobject 12604 // denoted by the pointer. But that's not quite right -- what we actually 12605 // want is the size of the immediately-enclosing array, if there is one. 12606 int64_t ElemsRemaining; 12607 if (Designator.MostDerivedIsArrayElement && 12608 Designator.Entries.size() == Designator.MostDerivedPathLength) { 12609 uint64_t ArraySize = Designator.getMostDerivedArraySize(); 12610 uint64_t ArrayIndex = Designator.Entries.back().getAsArrayIndex(); 12611 ElemsRemaining = ArraySize <= ArrayIndex ? 0 : ArraySize - ArrayIndex; 12612 } else { 12613 ElemsRemaining = Designator.isOnePastTheEnd() ? 0 : 1; 12614 } 12615 12616 EndOffset = LVal.getLValueOffset() + BytesPerElem * ElemsRemaining; 12617 return true; 12618 } 12619 12620 /// Tries to evaluate the __builtin_object_size for @p E. If successful, 12621 /// returns true and stores the result in @p Size. 12622 /// 12623 /// If @p WasError is non-null, this will report whether the failure to evaluate 12624 /// is to be treated as an Error in IntExprEvaluator. 12625 static bool tryEvaluateBuiltinObjectSize(const Expr *E, unsigned Type, 12626 EvalInfo &Info, uint64_t &Size) { 12627 // Determine the denoted object. 12628 LValue LVal; 12629 { 12630 // The operand of __builtin_object_size is never evaluated for side-effects. 12631 // If there are any, but we can determine the pointed-to object anyway, then 12632 // ignore the side-effects. 12633 SpeculativeEvaluationRAII SpeculativeEval(Info); 12634 IgnoreSideEffectsRAII Fold(Info); 12635 12636 if (E->isGLValue()) { 12637 // It's possible for us to be given GLValues if we're called via 12638 // Expr::tryEvaluateObjectSize. 12639 APValue RVal; 12640 if (!EvaluateAsRValue(Info, E, RVal)) 12641 return false; 12642 LVal.setFrom(Info.Ctx, RVal); 12643 } else if (!EvaluatePointer(ignorePointerCastsAndParens(E), LVal, Info, 12644 /*InvalidBaseOK=*/true)) 12645 return false; 12646 } 12647 12648 // If we point to before the start of the object, there are no accessible 12649 // bytes. 12650 if (LVal.getLValueOffset().isNegative()) { 12651 Size = 0; 12652 return true; 12653 } 12654 12655 CharUnits EndOffset; 12656 if (!determineEndOffset(Info, E->getExprLoc(), Type, LVal, EndOffset)) 12657 return false; 12658 12659 // If we've fallen outside of the end offset, just pretend there's nothing to 12660 // write to/read from. 12661 if (EndOffset <= LVal.getLValueOffset()) 12662 Size = 0; 12663 else 12664 Size = (EndOffset - LVal.getLValueOffset()).getQuantity(); 12665 return true; 12666 } 12667 12668 bool IntExprEvaluator::VisitCallExpr(const CallExpr *E) { 12669 if (!IsConstantEvaluatedBuiltinCall(E)) 12670 return ExprEvaluatorBaseTy::VisitCallExpr(E); 12671 return VisitBuiltinCallExpr(E, E->getBuiltinCallee()); 12672 } 12673 12674 static bool getBuiltinAlignArguments(const CallExpr *E, EvalInfo &Info, 12675 APValue &Val, APSInt &Alignment) { 12676 QualType SrcTy = E->getArg(0)->getType(); 12677 if (!getAlignmentArgument(E->getArg(1), SrcTy, Info, Alignment)) 12678 return false; 12679 // Even though we are evaluating integer expressions we could get a pointer 12680 // argument for the __builtin_is_aligned() case. 12681 if (SrcTy->isPointerType()) { 12682 LValue Ptr; 12683 if (!EvaluatePointer(E->getArg(0), Ptr, Info)) 12684 return false; 12685 Ptr.moveInto(Val); 12686 } else if (!SrcTy->isIntegralOrEnumerationType()) { 12687 Info.FFDiag(E->getArg(0)); 12688 return false; 12689 } else { 12690 APSInt SrcInt; 12691 if (!EvaluateInteger(E->getArg(0), SrcInt, Info)) 12692 return false; 12693 assert(SrcInt.getBitWidth() >= Alignment.getBitWidth() && 12694 "Bit widths must be the same"); 12695 Val = APValue(SrcInt); 12696 } 12697 assert(Val.hasValue()); 12698 return true; 12699 } 12700 12701 bool IntExprEvaluator::VisitBuiltinCallExpr(const CallExpr *E, 12702 unsigned BuiltinOp) { 12703 switch (BuiltinOp) { 12704 default: 12705 return false; 12706 12707 case Builtin::BI__builtin_dynamic_object_size: 12708 case Builtin::BI__builtin_object_size: { 12709 // The type was checked when we built the expression. 12710 unsigned Type = 12711 E->getArg(1)->EvaluateKnownConstInt(Info.Ctx).getZExtValue(); 12712 assert(Type <= 3 && "unexpected type"); 12713 12714 uint64_t Size; 12715 if (tryEvaluateBuiltinObjectSize(E->getArg(0), Type, Info, Size)) 12716 return Success(Size, E); 12717 12718 if (E->getArg(0)->HasSideEffects(Info.Ctx)) 12719 return Success((Type & 2) ? 0 : -1, E); 12720 12721 // Expression had no side effects, but we couldn't statically determine the 12722 // size of the referenced object. 12723 switch (Info.EvalMode) { 12724 case EvalInfo::EM_ConstantExpression: 12725 case EvalInfo::EM_ConstantFold: 12726 case EvalInfo::EM_IgnoreSideEffects: 12727 // Leave it to IR generation. 12728 return Error(E); 12729 case EvalInfo::EM_ConstantExpressionUnevaluated: 12730 // Reduce it to a constant now. 12731 return Success((Type & 2) ? 0 : -1, E); 12732 } 12733 12734 llvm_unreachable("unexpected EvalMode"); 12735 } 12736 12737 case Builtin::BI__builtin_os_log_format_buffer_size: { 12738 analyze_os_log::OSLogBufferLayout Layout; 12739 analyze_os_log::computeOSLogBufferLayout(Info.Ctx, E, Layout); 12740 return Success(Layout.size().getQuantity(), E); 12741 } 12742 12743 case Builtin::BI__builtin_is_aligned: { 12744 APValue Src; 12745 APSInt Alignment; 12746 if (!getBuiltinAlignArguments(E, Info, Src, Alignment)) 12747 return false; 12748 if (Src.isLValue()) { 12749 // If we evaluated a pointer, check the minimum known alignment. 12750 LValue Ptr; 12751 Ptr.setFrom(Info.Ctx, Src); 12752 CharUnits BaseAlignment = getBaseAlignment(Info, Ptr); 12753 CharUnits PtrAlign = BaseAlignment.alignmentAtOffset(Ptr.Offset); 12754 // We can return true if the known alignment at the computed offset is 12755 // greater than the requested alignment. 12756 assert(PtrAlign.isPowerOfTwo()); 12757 assert(Alignment.isPowerOf2()); 12758 if (PtrAlign.getQuantity() >= Alignment) 12759 return Success(1, E); 12760 // If the alignment is not known to be sufficient, some cases could still 12761 // be aligned at run time. However, if the requested alignment is less or 12762 // equal to the base alignment and the offset is not aligned, we know that 12763 // the run-time value can never be aligned. 12764 if (BaseAlignment.getQuantity() >= Alignment && 12765 PtrAlign.getQuantity() < Alignment) 12766 return Success(0, E); 12767 // Otherwise we can't infer whether the value is sufficiently aligned. 12768 // TODO: __builtin_is_aligned(__builtin_align_{down,up{(expr, N), N) 12769 // in cases where we can't fully evaluate the pointer. 12770 Info.FFDiag(E->getArg(0), diag::note_constexpr_alignment_compute) 12771 << Alignment; 12772 return false; 12773 } 12774 assert(Src.isInt()); 12775 return Success((Src.getInt() & (Alignment - 1)) == 0 ? 1 : 0, E); 12776 } 12777 case Builtin::BI__builtin_align_up: { 12778 APValue Src; 12779 APSInt Alignment; 12780 if (!getBuiltinAlignArguments(E, Info, Src, Alignment)) 12781 return false; 12782 if (!Src.isInt()) 12783 return Error(E); 12784 APSInt AlignedVal = 12785 APSInt((Src.getInt() + (Alignment - 1)) & ~(Alignment - 1), 12786 Src.getInt().isUnsigned()); 12787 assert(AlignedVal.getBitWidth() == Src.getInt().getBitWidth()); 12788 return Success(AlignedVal, E); 12789 } 12790 case Builtin::BI__builtin_align_down: { 12791 APValue Src; 12792 APSInt Alignment; 12793 if (!getBuiltinAlignArguments(E, Info, Src, Alignment)) 12794 return false; 12795 if (!Src.isInt()) 12796 return Error(E); 12797 APSInt AlignedVal = 12798 APSInt(Src.getInt() & ~(Alignment - 1), Src.getInt().isUnsigned()); 12799 assert(AlignedVal.getBitWidth() == Src.getInt().getBitWidth()); 12800 return Success(AlignedVal, E); 12801 } 12802 12803 case Builtin::BI__builtin_bitreverse8: 12804 case Builtin::BI__builtin_bitreverse16: 12805 case Builtin::BI__builtin_bitreverse32: 12806 case Builtin::BI__builtin_bitreverse64: { 12807 APSInt Val; 12808 if (!EvaluateInteger(E->getArg(0), Val, Info)) 12809 return false; 12810 12811 return Success(Val.reverseBits(), E); 12812 } 12813 12814 case Builtin::BI__builtin_bswap16: 12815 case Builtin::BI__builtin_bswap32: 12816 case Builtin::BI__builtin_bswap64: { 12817 APSInt Val; 12818 if (!EvaluateInteger(E->getArg(0), Val, Info)) 12819 return false; 12820 12821 return Success(Val.byteSwap(), E); 12822 } 12823 12824 case Builtin::BI__builtin_classify_type: 12825 return Success((int)EvaluateBuiltinClassifyType(E, Info.getLangOpts()), E); 12826 12827 case Builtin::BI__builtin_clrsb: 12828 case Builtin::BI__builtin_clrsbl: 12829 case Builtin::BI__builtin_clrsbll: { 12830 APSInt Val; 12831 if (!EvaluateInteger(E->getArg(0), Val, Info)) 12832 return false; 12833 12834 return Success(Val.getBitWidth() - Val.getSignificantBits(), E); 12835 } 12836 12837 case Builtin::BI__builtin_clz: 12838 case Builtin::BI__builtin_clzl: 12839 case Builtin::BI__builtin_clzll: 12840 case Builtin::BI__builtin_clzs: 12841 case Builtin::BI__builtin_clzg: 12842 case Builtin::BI__lzcnt16: // Microsoft variants of count leading-zeroes 12843 case Builtin::BI__lzcnt: 12844 case Builtin::BI__lzcnt64: { 12845 APSInt Val; 12846 if (!EvaluateInteger(E->getArg(0), Val, Info)) 12847 return false; 12848 12849 std::optional<APSInt> Fallback; 12850 if (BuiltinOp == Builtin::BI__builtin_clzg && E->getNumArgs() > 1) { 12851 APSInt FallbackTemp; 12852 if (!EvaluateInteger(E->getArg(1), FallbackTemp, Info)) 12853 return false; 12854 Fallback = FallbackTemp; 12855 } 12856 12857 if (!Val) { 12858 if (Fallback) 12859 return Success(*Fallback, E); 12860 12861 // When the argument is 0, the result of GCC builtins is undefined, 12862 // whereas for Microsoft intrinsics, the result is the bit-width of the 12863 // argument. 12864 bool ZeroIsUndefined = BuiltinOp != Builtin::BI__lzcnt16 && 12865 BuiltinOp != Builtin::BI__lzcnt && 12866 BuiltinOp != Builtin::BI__lzcnt64; 12867 12868 if (ZeroIsUndefined) 12869 return Error(E); 12870 } 12871 12872 return Success(Val.countl_zero(), E); 12873 } 12874 12875 case Builtin::BI__builtin_constant_p: { 12876 const Expr *Arg = E->getArg(0); 12877 if (EvaluateBuiltinConstantP(Info, Arg)) 12878 return Success(true, E); 12879 if (Info.InConstantContext || Arg->HasSideEffects(Info.Ctx)) { 12880 // Outside a constant context, eagerly evaluate to false in the presence 12881 // of side-effects in order to avoid -Wunsequenced false-positives in 12882 // a branch on __builtin_constant_p(expr). 12883 return Success(false, E); 12884 } 12885 Info.FFDiag(E, diag::note_invalid_subexpr_in_const_expr); 12886 return false; 12887 } 12888 12889 case Builtin::BI__noop: 12890 // __noop always evaluates successfully and returns 0. 12891 return Success(0, E); 12892 12893 case Builtin::BI__builtin_is_constant_evaluated: { 12894 const auto *Callee = Info.CurrentCall->getCallee(); 12895 if (Info.InConstantContext && !Info.CheckingPotentialConstantExpression && 12896 (Info.CallStackDepth == 1 || 12897 (Info.CallStackDepth == 2 && Callee->isInStdNamespace() && 12898 Callee->getIdentifier() && 12899 Callee->getIdentifier()->isStr("is_constant_evaluated")))) { 12900 // FIXME: Find a better way to avoid duplicated diagnostics. 12901 if (Info.EvalStatus.Diag) 12902 Info.report((Info.CallStackDepth == 1) 12903 ? E->getExprLoc() 12904 : Info.CurrentCall->getCallRange().getBegin(), 12905 diag::warn_is_constant_evaluated_always_true_constexpr) 12906 << (Info.CallStackDepth == 1 ? "__builtin_is_constant_evaluated" 12907 : "std::is_constant_evaluated"); 12908 } 12909 12910 return Success(Info.InConstantContext, E); 12911 } 12912 12913 case Builtin::BI__builtin_is_within_lifetime: 12914 if (auto result = EvaluateBuiltinIsWithinLifetime(*this, E)) 12915 return Success(*result, E); 12916 return false; 12917 12918 case Builtin::BI__builtin_ctz: 12919 case Builtin::BI__builtin_ctzl: 12920 case Builtin::BI__builtin_ctzll: 12921 case Builtin::BI__builtin_ctzs: 12922 case Builtin::BI__builtin_ctzg: { 12923 APSInt Val; 12924 if (!EvaluateInteger(E->getArg(0), Val, Info)) 12925 return false; 12926 12927 std::optional<APSInt> Fallback; 12928 if (BuiltinOp == Builtin::BI__builtin_ctzg && E->getNumArgs() > 1) { 12929 APSInt FallbackTemp; 12930 if (!EvaluateInteger(E->getArg(1), FallbackTemp, Info)) 12931 return false; 12932 Fallback = FallbackTemp; 12933 } 12934 12935 if (!Val) { 12936 if (Fallback) 12937 return Success(*Fallback, E); 12938 12939 return Error(E); 12940 } 12941 12942 return Success(Val.countr_zero(), E); 12943 } 12944 12945 case Builtin::BI__builtin_eh_return_data_regno: { 12946 int Operand = E->getArg(0)->EvaluateKnownConstInt(Info.Ctx).getZExtValue(); 12947 Operand = Info.Ctx.getTargetInfo().getEHDataRegisterNumber(Operand); 12948 return Success(Operand, E); 12949 } 12950 12951 case Builtin::BI__builtin_expect: 12952 case Builtin::BI__builtin_expect_with_probability: 12953 return Visit(E->getArg(0)); 12954 12955 case Builtin::BI__builtin_ptrauth_string_discriminator: { 12956 const auto *Literal = 12957 cast<StringLiteral>(E->getArg(0)->IgnoreParenImpCasts()); 12958 uint64_t Result = getPointerAuthStableSipHash(Literal->getString()); 12959 return Success(Result, E); 12960 } 12961 12962 case Builtin::BI__builtin_ffs: 12963 case Builtin::BI__builtin_ffsl: 12964 case Builtin::BI__builtin_ffsll: { 12965 APSInt Val; 12966 if (!EvaluateInteger(E->getArg(0), Val, Info)) 12967 return false; 12968 12969 unsigned N = Val.countr_zero(); 12970 return Success(N == Val.getBitWidth() ? 0 : N + 1, E); 12971 } 12972 12973 case Builtin::BI__builtin_fpclassify: { 12974 APFloat Val(0.0); 12975 if (!EvaluateFloat(E->getArg(5), Val, Info)) 12976 return false; 12977 unsigned Arg; 12978 switch (Val.getCategory()) { 12979 case APFloat::fcNaN: Arg = 0; break; 12980 case APFloat::fcInfinity: Arg = 1; break; 12981 case APFloat::fcNormal: Arg = Val.isDenormal() ? 3 : 2; break; 12982 case APFloat::fcZero: Arg = 4; break; 12983 } 12984 return Visit(E->getArg(Arg)); 12985 } 12986 12987 case Builtin::BI__builtin_isinf_sign: { 12988 APFloat Val(0.0); 12989 return EvaluateFloat(E->getArg(0), Val, Info) && 12990 Success(Val.isInfinity() ? (Val.isNegative() ? -1 : 1) : 0, E); 12991 } 12992 12993 case Builtin::BI__builtin_isinf: { 12994 APFloat Val(0.0); 12995 return EvaluateFloat(E->getArg(0), Val, Info) && 12996 Success(Val.isInfinity() ? 1 : 0, E); 12997 } 12998 12999 case Builtin::BI__builtin_isfinite: { 13000 APFloat Val(0.0); 13001 return EvaluateFloat(E->getArg(0), Val, Info) && 13002 Success(Val.isFinite() ? 1 : 0, E); 13003 } 13004 13005 case Builtin::BI__builtin_isnan: { 13006 APFloat Val(0.0); 13007 return EvaluateFloat(E->getArg(0), Val, Info) && 13008 Success(Val.isNaN() ? 1 : 0, E); 13009 } 13010 13011 case Builtin::BI__builtin_isnormal: { 13012 APFloat Val(0.0); 13013 return EvaluateFloat(E->getArg(0), Val, Info) && 13014 Success(Val.isNormal() ? 1 : 0, E); 13015 } 13016 13017 case Builtin::BI__builtin_issubnormal: { 13018 APFloat Val(0.0); 13019 return EvaluateFloat(E->getArg(0), Val, Info) && 13020 Success(Val.isDenormal() ? 1 : 0, E); 13021 } 13022 13023 case Builtin::BI__builtin_iszero: { 13024 APFloat Val(0.0); 13025 return EvaluateFloat(E->getArg(0), Val, Info) && 13026 Success(Val.isZero() ? 1 : 0, E); 13027 } 13028 13029 case Builtin::BI__builtin_signbit: 13030 case Builtin::BI__builtin_signbitf: 13031 case Builtin::BI__builtin_signbitl: { 13032 APFloat Val(0.0); 13033 return EvaluateFloat(E->getArg(0), Val, Info) && 13034 Success(Val.isNegative() ? 1 : 0, E); 13035 } 13036 13037 case Builtin::BI__builtin_isgreater: 13038 case Builtin::BI__builtin_isgreaterequal: 13039 case Builtin::BI__builtin_isless: 13040 case Builtin::BI__builtin_islessequal: 13041 case Builtin::BI__builtin_islessgreater: 13042 case Builtin::BI__builtin_isunordered: { 13043 APFloat LHS(0.0); 13044 APFloat RHS(0.0); 13045 if (!EvaluateFloat(E->getArg(0), LHS, Info) || 13046 !EvaluateFloat(E->getArg(1), RHS, Info)) 13047 return false; 13048 13049 return Success( 13050 [&] { 13051 switch (BuiltinOp) { 13052 case Builtin::BI__builtin_isgreater: 13053 return LHS > RHS; 13054 case Builtin::BI__builtin_isgreaterequal: 13055 return LHS >= RHS; 13056 case Builtin::BI__builtin_isless: 13057 return LHS < RHS; 13058 case Builtin::BI__builtin_islessequal: 13059 return LHS <= RHS; 13060 case Builtin::BI__builtin_islessgreater: { 13061 APFloat::cmpResult cmp = LHS.compare(RHS); 13062 return cmp == APFloat::cmpResult::cmpLessThan || 13063 cmp == APFloat::cmpResult::cmpGreaterThan; 13064 } 13065 case Builtin::BI__builtin_isunordered: 13066 return LHS.compare(RHS) == APFloat::cmpResult::cmpUnordered; 13067 default: 13068 llvm_unreachable("Unexpected builtin ID: Should be a floating " 13069 "point comparison function"); 13070 } 13071 }() 13072 ? 1 13073 : 0, 13074 E); 13075 } 13076 13077 case Builtin::BI__builtin_issignaling: { 13078 APFloat Val(0.0); 13079 return EvaluateFloat(E->getArg(0), Val, Info) && 13080 Success(Val.isSignaling() ? 1 : 0, E); 13081 } 13082 13083 case Builtin::BI__builtin_isfpclass: { 13084 APSInt MaskVal; 13085 if (!EvaluateInteger(E->getArg(1), MaskVal, Info)) 13086 return false; 13087 unsigned Test = static_cast<llvm::FPClassTest>(MaskVal.getZExtValue()); 13088 APFloat Val(0.0); 13089 return EvaluateFloat(E->getArg(0), Val, Info) && 13090 Success((Val.classify() & Test) ? 1 : 0, E); 13091 } 13092 13093 case Builtin::BI__builtin_parity: 13094 case Builtin::BI__builtin_parityl: 13095 case Builtin::BI__builtin_parityll: { 13096 APSInt Val; 13097 if (!EvaluateInteger(E->getArg(0), Val, Info)) 13098 return false; 13099 13100 return Success(Val.popcount() % 2, E); 13101 } 13102 13103 case Builtin::BI__builtin_abs: 13104 case Builtin::BI__builtin_labs: 13105 case Builtin::BI__builtin_llabs: { 13106 APSInt Val; 13107 if (!EvaluateInteger(E->getArg(0), Val, Info)) 13108 return false; 13109 if (Val == APSInt(APInt::getSignedMinValue(Val.getBitWidth()), 13110 /*IsUnsigned=*/false)) 13111 return false; 13112 if (Val.isNegative()) 13113 Val.negate(); 13114 return Success(Val, E); 13115 } 13116 13117 case Builtin::BI__builtin_popcount: 13118 case Builtin::BI__builtin_popcountl: 13119 case Builtin::BI__builtin_popcountll: 13120 case Builtin::BI__builtin_popcountg: 13121 case Builtin::BI__popcnt16: // Microsoft variants of popcount 13122 case Builtin::BI__popcnt: 13123 case Builtin::BI__popcnt64: { 13124 APSInt Val; 13125 if (!EvaluateInteger(E->getArg(0), Val, Info)) 13126 return false; 13127 13128 return Success(Val.popcount(), E); 13129 } 13130 13131 case Builtin::BI__builtin_rotateleft8: 13132 case Builtin::BI__builtin_rotateleft16: 13133 case Builtin::BI__builtin_rotateleft32: 13134 case Builtin::BI__builtin_rotateleft64: 13135 case Builtin::BI_rotl8: // Microsoft variants of rotate right 13136 case Builtin::BI_rotl16: 13137 case Builtin::BI_rotl: 13138 case Builtin::BI_lrotl: 13139 case Builtin::BI_rotl64: { 13140 APSInt Val, Amt; 13141 if (!EvaluateInteger(E->getArg(0), Val, Info) || 13142 !EvaluateInteger(E->getArg(1), Amt, Info)) 13143 return false; 13144 13145 return Success(Val.rotl(Amt.urem(Val.getBitWidth())), E); 13146 } 13147 13148 case Builtin::BI__builtin_rotateright8: 13149 case Builtin::BI__builtin_rotateright16: 13150 case Builtin::BI__builtin_rotateright32: 13151 case Builtin::BI__builtin_rotateright64: 13152 case Builtin::BI_rotr8: // Microsoft variants of rotate right 13153 case Builtin::BI_rotr16: 13154 case Builtin::BI_rotr: 13155 case Builtin::BI_lrotr: 13156 case Builtin::BI_rotr64: { 13157 APSInt Val, Amt; 13158 if (!EvaluateInteger(E->getArg(0), Val, Info) || 13159 !EvaluateInteger(E->getArg(1), Amt, Info)) 13160 return false; 13161 13162 return Success(Val.rotr(Amt.urem(Val.getBitWidth())), E); 13163 } 13164 13165 case Builtin::BIstrlen: 13166 case Builtin::BIwcslen: 13167 // A call to strlen is not a constant expression. 13168 if (Info.getLangOpts().CPlusPlus11) 13169 Info.CCEDiag(E, diag::note_constexpr_invalid_function) 13170 << /*isConstexpr*/ 0 << /*isConstructor*/ 0 13171 << ("'" + Info.Ctx.BuiltinInfo.getName(BuiltinOp) + "'").str(); 13172 else 13173 Info.CCEDiag(E, diag::note_invalid_subexpr_in_const_expr); 13174 [[fallthrough]]; 13175 case Builtin::BI__builtin_strlen: 13176 case Builtin::BI__builtin_wcslen: { 13177 // As an extension, we support __builtin_strlen() as a constant expression, 13178 // and support folding strlen() to a constant. 13179 uint64_t StrLen; 13180 if (EvaluateBuiltinStrLen(E->getArg(0), StrLen, Info)) 13181 return Success(StrLen, E); 13182 return false; 13183 } 13184 13185 case Builtin::BIstrcmp: 13186 case Builtin::BIwcscmp: 13187 case Builtin::BIstrncmp: 13188 case Builtin::BIwcsncmp: 13189 case Builtin::BImemcmp: 13190 case Builtin::BIbcmp: 13191 case Builtin::BIwmemcmp: 13192 // A call to strlen is not a constant expression. 13193 if (Info.getLangOpts().CPlusPlus11) 13194 Info.CCEDiag(E, diag::note_constexpr_invalid_function) 13195 << /*isConstexpr*/ 0 << /*isConstructor*/ 0 13196 << ("'" + Info.Ctx.BuiltinInfo.getName(BuiltinOp) + "'").str(); 13197 else 13198 Info.CCEDiag(E, diag::note_invalid_subexpr_in_const_expr); 13199 [[fallthrough]]; 13200 case Builtin::BI__builtin_strcmp: 13201 case Builtin::BI__builtin_wcscmp: 13202 case Builtin::BI__builtin_strncmp: 13203 case Builtin::BI__builtin_wcsncmp: 13204 case Builtin::BI__builtin_memcmp: 13205 case Builtin::BI__builtin_bcmp: 13206 case Builtin::BI__builtin_wmemcmp: { 13207 LValue String1, String2; 13208 if (!EvaluatePointer(E->getArg(0), String1, Info) || 13209 !EvaluatePointer(E->getArg(1), String2, Info)) 13210 return false; 13211 13212 uint64_t MaxLength = uint64_t(-1); 13213 if (BuiltinOp != Builtin::BIstrcmp && 13214 BuiltinOp != Builtin::BIwcscmp && 13215 BuiltinOp != Builtin::BI__builtin_strcmp && 13216 BuiltinOp != Builtin::BI__builtin_wcscmp) { 13217 APSInt N; 13218 if (!EvaluateInteger(E->getArg(2), N, Info)) 13219 return false; 13220 MaxLength = N.getZExtValue(); 13221 } 13222 13223 // Empty substrings compare equal by definition. 13224 if (MaxLength == 0u) 13225 return Success(0, E); 13226 13227 if (!String1.checkNullPointerForFoldAccess(Info, E, AK_Read) || 13228 !String2.checkNullPointerForFoldAccess(Info, E, AK_Read) || 13229 String1.Designator.Invalid || String2.Designator.Invalid) 13230 return false; 13231 13232 QualType CharTy1 = String1.Designator.getType(Info.Ctx); 13233 QualType CharTy2 = String2.Designator.getType(Info.Ctx); 13234 13235 bool IsRawByte = BuiltinOp == Builtin::BImemcmp || 13236 BuiltinOp == Builtin::BIbcmp || 13237 BuiltinOp == Builtin::BI__builtin_memcmp || 13238 BuiltinOp == Builtin::BI__builtin_bcmp; 13239 13240 assert(IsRawByte || 13241 (Info.Ctx.hasSameUnqualifiedType( 13242 CharTy1, E->getArg(0)->getType()->getPointeeType()) && 13243 Info.Ctx.hasSameUnqualifiedType(CharTy1, CharTy2))); 13244 13245 // For memcmp, allow comparing any arrays of '[[un]signed] char' or 13246 // 'char8_t', but no other types. 13247 if (IsRawByte && 13248 !(isOneByteCharacterType(CharTy1) && isOneByteCharacterType(CharTy2))) { 13249 // FIXME: Consider using our bit_cast implementation to support this. 13250 Info.FFDiag(E, diag::note_constexpr_memcmp_unsupported) 13251 << ("'" + Info.Ctx.BuiltinInfo.getName(BuiltinOp) + "'").str() 13252 << CharTy1 << CharTy2; 13253 return false; 13254 } 13255 13256 const auto &ReadCurElems = [&](APValue &Char1, APValue &Char2) { 13257 return handleLValueToRValueConversion(Info, E, CharTy1, String1, Char1) && 13258 handleLValueToRValueConversion(Info, E, CharTy2, String2, Char2) && 13259 Char1.isInt() && Char2.isInt(); 13260 }; 13261 const auto &AdvanceElems = [&] { 13262 return HandleLValueArrayAdjustment(Info, E, String1, CharTy1, 1) && 13263 HandleLValueArrayAdjustment(Info, E, String2, CharTy2, 1); 13264 }; 13265 13266 bool StopAtNull = 13267 (BuiltinOp != Builtin::BImemcmp && BuiltinOp != Builtin::BIbcmp && 13268 BuiltinOp != Builtin::BIwmemcmp && 13269 BuiltinOp != Builtin::BI__builtin_memcmp && 13270 BuiltinOp != Builtin::BI__builtin_bcmp && 13271 BuiltinOp != Builtin::BI__builtin_wmemcmp); 13272 bool IsWide = BuiltinOp == Builtin::BIwcscmp || 13273 BuiltinOp == Builtin::BIwcsncmp || 13274 BuiltinOp == Builtin::BIwmemcmp || 13275 BuiltinOp == Builtin::BI__builtin_wcscmp || 13276 BuiltinOp == Builtin::BI__builtin_wcsncmp || 13277 BuiltinOp == Builtin::BI__builtin_wmemcmp; 13278 13279 for (; MaxLength; --MaxLength) { 13280 APValue Char1, Char2; 13281 if (!ReadCurElems(Char1, Char2)) 13282 return false; 13283 if (Char1.getInt().ne(Char2.getInt())) { 13284 if (IsWide) // wmemcmp compares with wchar_t signedness. 13285 return Success(Char1.getInt() < Char2.getInt() ? -1 : 1, E); 13286 // memcmp always compares unsigned chars. 13287 return Success(Char1.getInt().ult(Char2.getInt()) ? -1 : 1, E); 13288 } 13289 if (StopAtNull && !Char1.getInt()) 13290 return Success(0, E); 13291 assert(!(StopAtNull && !Char2.getInt())); 13292 if (!AdvanceElems()) 13293 return false; 13294 } 13295 // We hit the strncmp / memcmp limit. 13296 return Success(0, E); 13297 } 13298 13299 case Builtin::BI__atomic_always_lock_free: 13300 case Builtin::BI__atomic_is_lock_free: 13301 case Builtin::BI__c11_atomic_is_lock_free: { 13302 APSInt SizeVal; 13303 if (!EvaluateInteger(E->getArg(0), SizeVal, Info)) 13304 return false; 13305 13306 // For __atomic_is_lock_free(sizeof(_Atomic(T))), if the size is a power 13307 // of two less than or equal to the maximum inline atomic width, we know it 13308 // is lock-free. If the size isn't a power of two, or greater than the 13309 // maximum alignment where we promote atomics, we know it is not lock-free 13310 // (at least not in the sense of atomic_is_lock_free). Otherwise, 13311 // the answer can only be determined at runtime; for example, 16-byte 13312 // atomics have lock-free implementations on some, but not all, 13313 // x86-64 processors. 13314 13315 // Check power-of-two. 13316 CharUnits Size = CharUnits::fromQuantity(SizeVal.getZExtValue()); 13317 if (Size.isPowerOfTwo()) { 13318 // Check against inlining width. 13319 unsigned InlineWidthBits = 13320 Info.Ctx.getTargetInfo().getMaxAtomicInlineWidth(); 13321 if (Size <= Info.Ctx.toCharUnitsFromBits(InlineWidthBits)) { 13322 if (BuiltinOp == Builtin::BI__c11_atomic_is_lock_free || 13323 Size == CharUnits::One()) 13324 return Success(1, E); 13325 13326 // If the pointer argument can be evaluated to a compile-time constant 13327 // integer (or nullptr), check if that value is appropriately aligned. 13328 const Expr *PtrArg = E->getArg(1); 13329 Expr::EvalResult ExprResult; 13330 APSInt IntResult; 13331 if (PtrArg->EvaluateAsRValue(ExprResult, Info.Ctx) && 13332 ExprResult.Val.toIntegralConstant(IntResult, PtrArg->getType(), 13333 Info.Ctx) && 13334 IntResult.isAligned(Size.getAsAlign())) 13335 return Success(1, E); 13336 13337 // Otherwise, check if the type's alignment against Size. 13338 if (auto *ICE = dyn_cast<ImplicitCastExpr>(PtrArg)) { 13339 // Drop the potential implicit-cast to 'const volatile void*', getting 13340 // the underlying type. 13341 if (ICE->getCastKind() == CK_BitCast) 13342 PtrArg = ICE->getSubExpr(); 13343 } 13344 13345 if (auto PtrTy = PtrArg->getType()->getAs<PointerType>()) { 13346 QualType PointeeType = PtrTy->getPointeeType(); 13347 if (!PointeeType->isIncompleteType() && 13348 Info.Ctx.getTypeAlignInChars(PointeeType) >= Size) { 13349 // OK, we will inline operations on this object. 13350 return Success(1, E); 13351 } 13352 } 13353 } 13354 } 13355 13356 return BuiltinOp == Builtin::BI__atomic_always_lock_free ? 13357 Success(0, E) : Error(E); 13358 } 13359 case Builtin::BI__builtin_addcb: 13360 case Builtin::BI__builtin_addcs: 13361 case Builtin::BI__builtin_addc: 13362 case Builtin::BI__builtin_addcl: 13363 case Builtin::BI__builtin_addcll: 13364 case Builtin::BI__builtin_subcb: 13365 case Builtin::BI__builtin_subcs: 13366 case Builtin::BI__builtin_subc: 13367 case Builtin::BI__builtin_subcl: 13368 case Builtin::BI__builtin_subcll: { 13369 LValue CarryOutLValue; 13370 APSInt LHS, RHS, CarryIn, CarryOut, Result; 13371 QualType ResultType = E->getArg(0)->getType(); 13372 if (!EvaluateInteger(E->getArg(0), LHS, Info) || 13373 !EvaluateInteger(E->getArg(1), RHS, Info) || 13374 !EvaluateInteger(E->getArg(2), CarryIn, Info) || 13375 !EvaluatePointer(E->getArg(3), CarryOutLValue, Info)) 13376 return false; 13377 // Copy the number of bits and sign. 13378 Result = LHS; 13379 CarryOut = LHS; 13380 13381 bool FirstOverflowed = false; 13382 bool SecondOverflowed = false; 13383 switch (BuiltinOp) { 13384 default: 13385 llvm_unreachable("Invalid value for BuiltinOp"); 13386 case Builtin::BI__builtin_addcb: 13387 case Builtin::BI__builtin_addcs: 13388 case Builtin::BI__builtin_addc: 13389 case Builtin::BI__builtin_addcl: 13390 case Builtin::BI__builtin_addcll: 13391 Result = 13392 LHS.uadd_ov(RHS, FirstOverflowed).uadd_ov(CarryIn, SecondOverflowed); 13393 break; 13394 case Builtin::BI__builtin_subcb: 13395 case Builtin::BI__builtin_subcs: 13396 case Builtin::BI__builtin_subc: 13397 case Builtin::BI__builtin_subcl: 13398 case Builtin::BI__builtin_subcll: 13399 Result = 13400 LHS.usub_ov(RHS, FirstOverflowed).usub_ov(CarryIn, SecondOverflowed); 13401 break; 13402 } 13403 13404 // It is possible for both overflows to happen but CGBuiltin uses an OR so 13405 // this is consistent. 13406 CarryOut = (uint64_t)(FirstOverflowed | SecondOverflowed); 13407 APValue APV{CarryOut}; 13408 if (!handleAssignment(Info, E, CarryOutLValue, ResultType, APV)) 13409 return false; 13410 return Success(Result, E); 13411 } 13412 case Builtin::BI__builtin_add_overflow: 13413 case Builtin::BI__builtin_sub_overflow: 13414 case Builtin::BI__builtin_mul_overflow: 13415 case Builtin::BI__builtin_sadd_overflow: 13416 case Builtin::BI__builtin_uadd_overflow: 13417 case Builtin::BI__builtin_uaddl_overflow: 13418 case Builtin::BI__builtin_uaddll_overflow: 13419 case Builtin::BI__builtin_usub_overflow: 13420 case Builtin::BI__builtin_usubl_overflow: 13421 case Builtin::BI__builtin_usubll_overflow: 13422 case Builtin::BI__builtin_umul_overflow: 13423 case Builtin::BI__builtin_umull_overflow: 13424 case Builtin::BI__builtin_umulll_overflow: 13425 case Builtin::BI__builtin_saddl_overflow: 13426 case Builtin::BI__builtin_saddll_overflow: 13427 case Builtin::BI__builtin_ssub_overflow: 13428 case Builtin::BI__builtin_ssubl_overflow: 13429 case Builtin::BI__builtin_ssubll_overflow: 13430 case Builtin::BI__builtin_smul_overflow: 13431 case Builtin::BI__builtin_smull_overflow: 13432 case Builtin::BI__builtin_smulll_overflow: { 13433 LValue ResultLValue; 13434 APSInt LHS, RHS; 13435 13436 QualType ResultType = E->getArg(2)->getType()->getPointeeType(); 13437 if (!EvaluateInteger(E->getArg(0), LHS, Info) || 13438 !EvaluateInteger(E->getArg(1), RHS, Info) || 13439 !EvaluatePointer(E->getArg(2), ResultLValue, Info)) 13440 return false; 13441 13442 APSInt Result; 13443 bool DidOverflow = false; 13444 13445 // If the types don't have to match, enlarge all 3 to the largest of them. 13446 if (BuiltinOp == Builtin::BI__builtin_add_overflow || 13447 BuiltinOp == Builtin::BI__builtin_sub_overflow || 13448 BuiltinOp == Builtin::BI__builtin_mul_overflow) { 13449 bool IsSigned = LHS.isSigned() || RHS.isSigned() || 13450 ResultType->isSignedIntegerOrEnumerationType(); 13451 bool AllSigned = LHS.isSigned() && RHS.isSigned() && 13452 ResultType->isSignedIntegerOrEnumerationType(); 13453 uint64_t LHSSize = LHS.getBitWidth(); 13454 uint64_t RHSSize = RHS.getBitWidth(); 13455 uint64_t ResultSize = Info.Ctx.getTypeSize(ResultType); 13456 uint64_t MaxBits = std::max(std::max(LHSSize, RHSSize), ResultSize); 13457 13458 // Add an additional bit if the signedness isn't uniformly agreed to. We 13459 // could do this ONLY if there is a signed and an unsigned that both have 13460 // MaxBits, but the code to check that is pretty nasty. The issue will be 13461 // caught in the shrink-to-result later anyway. 13462 if (IsSigned && !AllSigned) 13463 ++MaxBits; 13464 13465 LHS = APSInt(LHS.extOrTrunc(MaxBits), !IsSigned); 13466 RHS = APSInt(RHS.extOrTrunc(MaxBits), !IsSigned); 13467 Result = APSInt(MaxBits, !IsSigned); 13468 } 13469 13470 // Find largest int. 13471 switch (BuiltinOp) { 13472 default: 13473 llvm_unreachable("Invalid value for BuiltinOp"); 13474 case Builtin::BI__builtin_add_overflow: 13475 case Builtin::BI__builtin_sadd_overflow: 13476 case Builtin::BI__builtin_saddl_overflow: 13477 case Builtin::BI__builtin_saddll_overflow: 13478 case Builtin::BI__builtin_uadd_overflow: 13479 case Builtin::BI__builtin_uaddl_overflow: 13480 case Builtin::BI__builtin_uaddll_overflow: 13481 Result = LHS.isSigned() ? LHS.sadd_ov(RHS, DidOverflow) 13482 : LHS.uadd_ov(RHS, DidOverflow); 13483 break; 13484 case Builtin::BI__builtin_sub_overflow: 13485 case Builtin::BI__builtin_ssub_overflow: 13486 case Builtin::BI__builtin_ssubl_overflow: 13487 case Builtin::BI__builtin_ssubll_overflow: 13488 case Builtin::BI__builtin_usub_overflow: 13489 case Builtin::BI__builtin_usubl_overflow: 13490 case Builtin::BI__builtin_usubll_overflow: 13491 Result = LHS.isSigned() ? LHS.ssub_ov(RHS, DidOverflow) 13492 : LHS.usub_ov(RHS, DidOverflow); 13493 break; 13494 case Builtin::BI__builtin_mul_overflow: 13495 case Builtin::BI__builtin_smul_overflow: 13496 case Builtin::BI__builtin_smull_overflow: 13497 case Builtin::BI__builtin_smulll_overflow: 13498 case Builtin::BI__builtin_umul_overflow: 13499 case Builtin::BI__builtin_umull_overflow: 13500 case Builtin::BI__builtin_umulll_overflow: 13501 Result = LHS.isSigned() ? LHS.smul_ov(RHS, DidOverflow) 13502 : LHS.umul_ov(RHS, DidOverflow); 13503 break; 13504 } 13505 13506 // In the case where multiple sizes are allowed, truncate and see if 13507 // the values are the same. 13508 if (BuiltinOp == Builtin::BI__builtin_add_overflow || 13509 BuiltinOp == Builtin::BI__builtin_sub_overflow || 13510 BuiltinOp == Builtin::BI__builtin_mul_overflow) { 13511 // APSInt doesn't have a TruncOrSelf, so we use extOrTrunc instead, 13512 // since it will give us the behavior of a TruncOrSelf in the case where 13513 // its parameter <= its size. We previously set Result to be at least the 13514 // type-size of the result, so getTypeSize(ResultType) <= Result.BitWidth 13515 // will work exactly like TruncOrSelf. 13516 APSInt Temp = Result.extOrTrunc(Info.Ctx.getTypeSize(ResultType)); 13517 Temp.setIsSigned(ResultType->isSignedIntegerOrEnumerationType()); 13518 13519 if (!APSInt::isSameValue(Temp, Result)) 13520 DidOverflow = true; 13521 Result = Temp; 13522 } 13523 13524 APValue APV{Result}; 13525 if (!handleAssignment(Info, E, ResultLValue, ResultType, APV)) 13526 return false; 13527 return Success(DidOverflow, E); 13528 } 13529 13530 case Builtin::BI__builtin_reduce_add: 13531 case Builtin::BI__builtin_reduce_mul: 13532 case Builtin::BI__builtin_reduce_and: 13533 case Builtin::BI__builtin_reduce_or: 13534 case Builtin::BI__builtin_reduce_xor: { 13535 APValue Source; 13536 if (!EvaluateAsRValue(Info, E->getArg(0), Source)) 13537 return false; 13538 13539 unsigned SourceLen = Source.getVectorLength(); 13540 APSInt Reduced = Source.getVectorElt(0).getInt(); 13541 for (unsigned EltNum = 1; EltNum < SourceLen; ++EltNum) { 13542 switch (BuiltinOp) { 13543 default: 13544 return false; 13545 case Builtin::BI__builtin_reduce_add: { 13546 if (!CheckedIntArithmetic( 13547 Info, E, Reduced, Source.getVectorElt(EltNum).getInt(), 13548 Reduced.getBitWidth() + 1, std::plus<APSInt>(), Reduced)) 13549 return false; 13550 break; 13551 } 13552 case Builtin::BI__builtin_reduce_mul: { 13553 if (!CheckedIntArithmetic( 13554 Info, E, Reduced, Source.getVectorElt(EltNum).getInt(), 13555 Reduced.getBitWidth() * 2, std::multiplies<APSInt>(), Reduced)) 13556 return false; 13557 break; 13558 } 13559 case Builtin::BI__builtin_reduce_and: { 13560 Reduced &= Source.getVectorElt(EltNum).getInt(); 13561 break; 13562 } 13563 case Builtin::BI__builtin_reduce_or: { 13564 Reduced |= Source.getVectorElt(EltNum).getInt(); 13565 break; 13566 } 13567 case Builtin::BI__builtin_reduce_xor: { 13568 Reduced ^= Source.getVectorElt(EltNum).getInt(); 13569 break; 13570 } 13571 } 13572 } 13573 13574 return Success(Reduced, E); 13575 } 13576 13577 case clang::X86::BI__builtin_ia32_addcarryx_u32: 13578 case clang::X86::BI__builtin_ia32_addcarryx_u64: 13579 case clang::X86::BI__builtin_ia32_subborrow_u32: 13580 case clang::X86::BI__builtin_ia32_subborrow_u64: { 13581 LValue ResultLValue; 13582 APSInt CarryIn, LHS, RHS; 13583 QualType ResultType = E->getArg(3)->getType()->getPointeeType(); 13584 if (!EvaluateInteger(E->getArg(0), CarryIn, Info) || 13585 !EvaluateInteger(E->getArg(1), LHS, Info) || 13586 !EvaluateInteger(E->getArg(2), RHS, Info) || 13587 !EvaluatePointer(E->getArg(3), ResultLValue, Info)) 13588 return false; 13589 13590 bool IsAdd = BuiltinOp == clang::X86::BI__builtin_ia32_addcarryx_u32 || 13591 BuiltinOp == clang::X86::BI__builtin_ia32_addcarryx_u64; 13592 13593 unsigned BitWidth = LHS.getBitWidth(); 13594 unsigned CarryInBit = CarryIn.ugt(0) ? 1 : 0; 13595 APInt ExResult = 13596 IsAdd 13597 ? (LHS.zext(BitWidth + 1) + (RHS.zext(BitWidth + 1) + CarryInBit)) 13598 : (LHS.zext(BitWidth + 1) - (RHS.zext(BitWidth + 1) + CarryInBit)); 13599 13600 APInt Result = ExResult.extractBits(BitWidth, 0); 13601 uint64_t CarryOut = ExResult.extractBitsAsZExtValue(1, BitWidth); 13602 13603 APValue APV{APSInt(Result, /*isUnsigned=*/true)}; 13604 if (!handleAssignment(Info, E, ResultLValue, ResultType, APV)) 13605 return false; 13606 return Success(CarryOut, E); 13607 } 13608 13609 case clang::X86::BI__builtin_ia32_bextr_u32: 13610 case clang::X86::BI__builtin_ia32_bextr_u64: 13611 case clang::X86::BI__builtin_ia32_bextri_u32: 13612 case clang::X86::BI__builtin_ia32_bextri_u64: { 13613 APSInt Val, Idx; 13614 if (!EvaluateInteger(E->getArg(0), Val, Info) || 13615 !EvaluateInteger(E->getArg(1), Idx, Info)) 13616 return false; 13617 13618 unsigned BitWidth = Val.getBitWidth(); 13619 uint64_t Shift = Idx.extractBitsAsZExtValue(8, 0); 13620 uint64_t Length = Idx.extractBitsAsZExtValue(8, 8); 13621 Length = Length > BitWidth ? BitWidth : Length; 13622 13623 // Handle out of bounds cases. 13624 if (Length == 0 || Shift >= BitWidth) 13625 return Success(0, E); 13626 13627 uint64_t Result = Val.getZExtValue() >> Shift; 13628 Result &= llvm::maskTrailingOnes<uint64_t>(Length); 13629 return Success(Result, E); 13630 } 13631 13632 case clang::X86::BI__builtin_ia32_bzhi_si: 13633 case clang::X86::BI__builtin_ia32_bzhi_di: { 13634 APSInt Val, Idx; 13635 if (!EvaluateInteger(E->getArg(0), Val, Info) || 13636 !EvaluateInteger(E->getArg(1), Idx, Info)) 13637 return false; 13638 13639 unsigned BitWidth = Val.getBitWidth(); 13640 unsigned Index = Idx.extractBitsAsZExtValue(8, 0); 13641 if (Index < BitWidth) 13642 Val.clearHighBits(BitWidth - Index); 13643 return Success(Val, E); 13644 } 13645 13646 case clang::X86::BI__builtin_ia32_lzcnt_u16: 13647 case clang::X86::BI__builtin_ia32_lzcnt_u32: 13648 case clang::X86::BI__builtin_ia32_lzcnt_u64: { 13649 APSInt Val; 13650 if (!EvaluateInteger(E->getArg(0), Val, Info)) 13651 return false; 13652 return Success(Val.countLeadingZeros(), E); 13653 } 13654 13655 case clang::X86::BI__builtin_ia32_tzcnt_u16: 13656 case clang::X86::BI__builtin_ia32_tzcnt_u32: 13657 case clang::X86::BI__builtin_ia32_tzcnt_u64: { 13658 APSInt Val; 13659 if (!EvaluateInteger(E->getArg(0), Val, Info)) 13660 return false; 13661 return Success(Val.countTrailingZeros(), E); 13662 } 13663 13664 case clang::X86::BI__builtin_ia32_pdep_si: 13665 case clang::X86::BI__builtin_ia32_pdep_di: { 13666 APSInt Val, Msk; 13667 if (!EvaluateInteger(E->getArg(0), Val, Info) || 13668 !EvaluateInteger(E->getArg(1), Msk, Info)) 13669 return false; 13670 13671 unsigned BitWidth = Val.getBitWidth(); 13672 APInt Result = APInt::getZero(BitWidth); 13673 for (unsigned I = 0, P = 0; I != BitWidth; ++I) 13674 if (Msk[I]) 13675 Result.setBitVal(I, Val[P++]); 13676 return Success(Result, E); 13677 } 13678 13679 case clang::X86::BI__builtin_ia32_pext_si: 13680 case clang::X86::BI__builtin_ia32_pext_di: { 13681 APSInt Val, Msk; 13682 if (!EvaluateInteger(E->getArg(0), Val, Info) || 13683 !EvaluateInteger(E->getArg(1), Msk, Info)) 13684 return false; 13685 13686 unsigned BitWidth = Val.getBitWidth(); 13687 APInt Result = APInt::getZero(BitWidth); 13688 for (unsigned I = 0, P = 0; I != BitWidth; ++I) 13689 if (Msk[I]) 13690 Result.setBitVal(P++, Val[I]); 13691 return Success(Result, E); 13692 } 13693 } 13694 } 13695 13696 /// Determine whether this is a pointer past the end of the complete 13697 /// object referred to by the lvalue. 13698 static bool isOnePastTheEndOfCompleteObject(const ASTContext &Ctx, 13699 const LValue &LV) { 13700 // A null pointer can be viewed as being "past the end" but we don't 13701 // choose to look at it that way here. 13702 if (!LV.getLValueBase()) 13703 return false; 13704 13705 // If the designator is valid and refers to a subobject, we're not pointing 13706 // past the end. 13707 if (!LV.getLValueDesignator().Invalid && 13708 !LV.getLValueDesignator().isOnePastTheEnd()) 13709 return false; 13710 13711 // A pointer to an incomplete type might be past-the-end if the type's size is 13712 // zero. We cannot tell because the type is incomplete. 13713 QualType Ty = getType(LV.getLValueBase()); 13714 if (Ty->isIncompleteType()) 13715 return true; 13716 13717 // Can't be past the end of an invalid object. 13718 if (LV.getLValueDesignator().Invalid) 13719 return false; 13720 13721 // We're a past-the-end pointer if we point to the byte after the object, 13722 // no matter what our type or path is. 13723 auto Size = Ctx.getTypeSizeInChars(Ty); 13724 return LV.getLValueOffset() == Size; 13725 } 13726 13727 namespace { 13728 13729 /// Data recursive integer evaluator of certain binary operators. 13730 /// 13731 /// We use a data recursive algorithm for binary operators so that we are able 13732 /// to handle extreme cases of chained binary operators without causing stack 13733 /// overflow. 13734 class DataRecursiveIntBinOpEvaluator { 13735 struct EvalResult { 13736 APValue Val; 13737 bool Failed = false; 13738 13739 EvalResult() = default; 13740 13741 void swap(EvalResult &RHS) { 13742 Val.swap(RHS.Val); 13743 Failed = RHS.Failed; 13744 RHS.Failed = false; 13745 } 13746 }; 13747 13748 struct Job { 13749 const Expr *E; 13750 EvalResult LHSResult; // meaningful only for binary operator expression. 13751 enum { AnyExprKind, BinOpKind, BinOpVisitedLHSKind } Kind; 13752 13753 Job() = default; 13754 Job(Job &&) = default; 13755 13756 void startSpeculativeEval(EvalInfo &Info) { 13757 SpecEvalRAII = SpeculativeEvaluationRAII(Info); 13758 } 13759 13760 private: 13761 SpeculativeEvaluationRAII SpecEvalRAII; 13762 }; 13763 13764 SmallVector<Job, 16> Queue; 13765 13766 IntExprEvaluator &IntEval; 13767 EvalInfo &Info; 13768 APValue &FinalResult; 13769 13770 public: 13771 DataRecursiveIntBinOpEvaluator(IntExprEvaluator &IntEval, APValue &Result) 13772 : IntEval(IntEval), Info(IntEval.getEvalInfo()), FinalResult(Result) { } 13773 13774 /// True if \param E is a binary operator that we are going to handle 13775 /// data recursively. 13776 /// We handle binary operators that are comma, logical, or that have operands 13777 /// with integral or enumeration type. 13778 static bool shouldEnqueue(const BinaryOperator *E) { 13779 return E->getOpcode() == BO_Comma || E->isLogicalOp() || 13780 (E->isPRValue() && E->getType()->isIntegralOrEnumerationType() && 13781 E->getLHS()->getType()->isIntegralOrEnumerationType() && 13782 E->getRHS()->getType()->isIntegralOrEnumerationType()); 13783 } 13784 13785 bool Traverse(const BinaryOperator *E) { 13786 enqueue(E); 13787 EvalResult PrevResult; 13788 while (!Queue.empty()) 13789 process(PrevResult); 13790 13791 if (PrevResult.Failed) return false; 13792 13793 FinalResult.swap(PrevResult.Val); 13794 return true; 13795 } 13796 13797 private: 13798 bool Success(uint64_t Value, const Expr *E, APValue &Result) { 13799 return IntEval.Success(Value, E, Result); 13800 } 13801 bool Success(const APSInt &Value, const Expr *E, APValue &Result) { 13802 return IntEval.Success(Value, E, Result); 13803 } 13804 bool Error(const Expr *E) { 13805 return IntEval.Error(E); 13806 } 13807 bool Error(const Expr *E, diag::kind D) { 13808 return IntEval.Error(E, D); 13809 } 13810 13811 OptionalDiagnostic CCEDiag(const Expr *E, diag::kind D) { 13812 return Info.CCEDiag(E, D); 13813 } 13814 13815 // Returns true if visiting the RHS is necessary, false otherwise. 13816 bool VisitBinOpLHSOnly(EvalResult &LHSResult, const BinaryOperator *E, 13817 bool &SuppressRHSDiags); 13818 13819 bool VisitBinOp(const EvalResult &LHSResult, const EvalResult &RHSResult, 13820 const BinaryOperator *E, APValue &Result); 13821 13822 void EvaluateExpr(const Expr *E, EvalResult &Result) { 13823 Result.Failed = !Evaluate(Result.Val, Info, E); 13824 if (Result.Failed) 13825 Result.Val = APValue(); 13826 } 13827 13828 void process(EvalResult &Result); 13829 13830 void enqueue(const Expr *E) { 13831 E = E->IgnoreParens(); 13832 Queue.resize(Queue.size()+1); 13833 Queue.back().E = E; 13834 Queue.back().Kind = Job::AnyExprKind; 13835 } 13836 }; 13837 13838 } 13839 13840 bool DataRecursiveIntBinOpEvaluator:: 13841 VisitBinOpLHSOnly(EvalResult &LHSResult, const BinaryOperator *E, 13842 bool &SuppressRHSDiags) { 13843 if (E->getOpcode() == BO_Comma) { 13844 // Ignore LHS but note if we could not evaluate it. 13845 if (LHSResult.Failed) 13846 return Info.noteSideEffect(); 13847 return true; 13848 } 13849 13850 if (E->isLogicalOp()) { 13851 bool LHSAsBool; 13852 if (!LHSResult.Failed && HandleConversionToBool(LHSResult.Val, LHSAsBool)) { 13853 // We were able to evaluate the LHS, see if we can get away with not 13854 // evaluating the RHS: 0 && X -> 0, 1 || X -> 1 13855 if (LHSAsBool == (E->getOpcode() == BO_LOr)) { 13856 Success(LHSAsBool, E, LHSResult.Val); 13857 return false; // Ignore RHS 13858 } 13859 } else { 13860 LHSResult.Failed = true; 13861 13862 // Since we weren't able to evaluate the left hand side, it 13863 // might have had side effects. 13864 if (!Info.noteSideEffect()) 13865 return false; 13866 13867 // We can't evaluate the LHS; however, sometimes the result 13868 // is determined by the RHS: X && 0 -> 0, X || 1 -> 1. 13869 // Don't ignore RHS and suppress diagnostics from this arm. 13870 SuppressRHSDiags = true; 13871 } 13872 13873 return true; 13874 } 13875 13876 assert(E->getLHS()->getType()->isIntegralOrEnumerationType() && 13877 E->getRHS()->getType()->isIntegralOrEnumerationType()); 13878 13879 if (LHSResult.Failed && !Info.noteFailure()) 13880 return false; // Ignore RHS; 13881 13882 return true; 13883 } 13884 13885 static void addOrSubLValueAsInteger(APValue &LVal, const APSInt &Index, 13886 bool IsSub) { 13887 // Compute the new offset in the appropriate width, wrapping at 64 bits. 13888 // FIXME: When compiling for a 32-bit target, we should use 32-bit 13889 // offsets. 13890 assert(!LVal.hasLValuePath() && "have designator for integer lvalue"); 13891 CharUnits &Offset = LVal.getLValueOffset(); 13892 uint64_t Offset64 = Offset.getQuantity(); 13893 uint64_t Index64 = Index.extOrTrunc(64).getZExtValue(); 13894 Offset = CharUnits::fromQuantity(IsSub ? Offset64 - Index64 13895 : Offset64 + Index64); 13896 } 13897 13898 bool DataRecursiveIntBinOpEvaluator:: 13899 VisitBinOp(const EvalResult &LHSResult, const EvalResult &RHSResult, 13900 const BinaryOperator *E, APValue &Result) { 13901 if (E->getOpcode() == BO_Comma) { 13902 if (RHSResult.Failed) 13903 return false; 13904 Result = RHSResult.Val; 13905 return true; 13906 } 13907 13908 if (E->isLogicalOp()) { 13909 bool lhsResult, rhsResult; 13910 bool LHSIsOK = HandleConversionToBool(LHSResult.Val, lhsResult); 13911 bool RHSIsOK = HandleConversionToBool(RHSResult.Val, rhsResult); 13912 13913 if (LHSIsOK) { 13914 if (RHSIsOK) { 13915 if (E->getOpcode() == BO_LOr) 13916 return Success(lhsResult || rhsResult, E, Result); 13917 else 13918 return Success(lhsResult && rhsResult, E, Result); 13919 } 13920 } else { 13921 if (RHSIsOK) { 13922 // We can't evaluate the LHS; however, sometimes the result 13923 // is determined by the RHS: X && 0 -> 0, X || 1 -> 1. 13924 if (rhsResult == (E->getOpcode() == BO_LOr)) 13925 return Success(rhsResult, E, Result); 13926 } 13927 } 13928 13929 return false; 13930 } 13931 13932 assert(E->getLHS()->getType()->isIntegralOrEnumerationType() && 13933 E->getRHS()->getType()->isIntegralOrEnumerationType()); 13934 13935 if (LHSResult.Failed || RHSResult.Failed) 13936 return false; 13937 13938 const APValue &LHSVal = LHSResult.Val; 13939 const APValue &RHSVal = RHSResult.Val; 13940 13941 // Handle cases like (unsigned long)&a + 4. 13942 if (E->isAdditiveOp() && LHSVal.isLValue() && RHSVal.isInt()) { 13943 Result = LHSVal; 13944 addOrSubLValueAsInteger(Result, RHSVal.getInt(), E->getOpcode() == BO_Sub); 13945 return true; 13946 } 13947 13948 // Handle cases like 4 + (unsigned long)&a 13949 if (E->getOpcode() == BO_Add && 13950 RHSVal.isLValue() && LHSVal.isInt()) { 13951 Result = RHSVal; 13952 addOrSubLValueAsInteger(Result, LHSVal.getInt(), /*IsSub*/false); 13953 return true; 13954 } 13955 13956 if (E->getOpcode() == BO_Sub && LHSVal.isLValue() && RHSVal.isLValue()) { 13957 // Handle (intptr_t)&&A - (intptr_t)&&B. 13958 if (!LHSVal.getLValueOffset().isZero() || 13959 !RHSVal.getLValueOffset().isZero()) 13960 return false; 13961 const Expr *LHSExpr = LHSVal.getLValueBase().dyn_cast<const Expr*>(); 13962 const Expr *RHSExpr = RHSVal.getLValueBase().dyn_cast<const Expr*>(); 13963 if (!LHSExpr || !RHSExpr) 13964 return false; 13965 const AddrLabelExpr *LHSAddrExpr = dyn_cast<AddrLabelExpr>(LHSExpr); 13966 const AddrLabelExpr *RHSAddrExpr = dyn_cast<AddrLabelExpr>(RHSExpr); 13967 if (!LHSAddrExpr || !RHSAddrExpr) 13968 return false; 13969 // Make sure both labels come from the same function. 13970 if (LHSAddrExpr->getLabel()->getDeclContext() != 13971 RHSAddrExpr->getLabel()->getDeclContext()) 13972 return false; 13973 Result = APValue(LHSAddrExpr, RHSAddrExpr); 13974 return true; 13975 } 13976 13977 // All the remaining cases expect both operands to be an integer 13978 if (!LHSVal.isInt() || !RHSVal.isInt()) 13979 return Error(E); 13980 13981 // Set up the width and signedness manually, in case it can't be deduced 13982 // from the operation we're performing. 13983 // FIXME: Don't do this in the cases where we can deduce it. 13984 APSInt Value(Info.Ctx.getIntWidth(E->getType()), 13985 E->getType()->isUnsignedIntegerOrEnumerationType()); 13986 if (!handleIntIntBinOp(Info, E, LHSVal.getInt(), E->getOpcode(), 13987 RHSVal.getInt(), Value)) 13988 return false; 13989 return Success(Value, E, Result); 13990 } 13991 13992 void DataRecursiveIntBinOpEvaluator::process(EvalResult &Result) { 13993 Job &job = Queue.back(); 13994 13995 switch (job.Kind) { 13996 case Job::AnyExprKind: { 13997 if (const BinaryOperator *Bop = dyn_cast<BinaryOperator>(job.E)) { 13998 if (shouldEnqueue(Bop)) { 13999 job.Kind = Job::BinOpKind; 14000 enqueue(Bop->getLHS()); 14001 return; 14002 } 14003 } 14004 14005 EvaluateExpr(job.E, Result); 14006 Queue.pop_back(); 14007 return; 14008 } 14009 14010 case Job::BinOpKind: { 14011 const BinaryOperator *Bop = cast<BinaryOperator>(job.E); 14012 bool SuppressRHSDiags = false; 14013 if (!VisitBinOpLHSOnly(Result, Bop, SuppressRHSDiags)) { 14014 Queue.pop_back(); 14015 return; 14016 } 14017 if (SuppressRHSDiags) 14018 job.startSpeculativeEval(Info); 14019 job.LHSResult.swap(Result); 14020 job.Kind = Job::BinOpVisitedLHSKind; 14021 enqueue(Bop->getRHS()); 14022 return; 14023 } 14024 14025 case Job::BinOpVisitedLHSKind: { 14026 const BinaryOperator *Bop = cast<BinaryOperator>(job.E); 14027 EvalResult RHS; 14028 RHS.swap(Result); 14029 Result.Failed = !VisitBinOp(job.LHSResult, RHS, Bop, Result.Val); 14030 Queue.pop_back(); 14031 return; 14032 } 14033 } 14034 14035 llvm_unreachable("Invalid Job::Kind!"); 14036 } 14037 14038 namespace { 14039 enum class CmpResult { 14040 Unequal, 14041 Less, 14042 Equal, 14043 Greater, 14044 Unordered, 14045 }; 14046 } 14047 14048 template <class SuccessCB, class AfterCB> 14049 static bool 14050 EvaluateComparisonBinaryOperator(EvalInfo &Info, const BinaryOperator *E, 14051 SuccessCB &&Success, AfterCB &&DoAfter) { 14052 assert(!E->isValueDependent()); 14053 assert(E->isComparisonOp() && "expected comparison operator"); 14054 assert((E->getOpcode() == BO_Cmp || 14055 E->getType()->isIntegralOrEnumerationType()) && 14056 "unsupported binary expression evaluation"); 14057 auto Error = [&](const Expr *E) { 14058 Info.FFDiag(E, diag::note_invalid_subexpr_in_const_expr); 14059 return false; 14060 }; 14061 14062 bool IsRelational = E->isRelationalOp() || E->getOpcode() == BO_Cmp; 14063 bool IsEquality = E->isEqualityOp(); 14064 14065 QualType LHSTy = E->getLHS()->getType(); 14066 QualType RHSTy = E->getRHS()->getType(); 14067 14068 if (LHSTy->isIntegralOrEnumerationType() && 14069 RHSTy->isIntegralOrEnumerationType()) { 14070 APSInt LHS, RHS; 14071 bool LHSOK = EvaluateInteger(E->getLHS(), LHS, Info); 14072 if (!LHSOK && !Info.noteFailure()) 14073 return false; 14074 if (!EvaluateInteger(E->getRHS(), RHS, Info) || !LHSOK) 14075 return false; 14076 if (LHS < RHS) 14077 return Success(CmpResult::Less, E); 14078 if (LHS > RHS) 14079 return Success(CmpResult::Greater, E); 14080 return Success(CmpResult::Equal, E); 14081 } 14082 14083 if (LHSTy->isFixedPointType() || RHSTy->isFixedPointType()) { 14084 APFixedPoint LHSFX(Info.Ctx.getFixedPointSemantics(LHSTy)); 14085 APFixedPoint RHSFX(Info.Ctx.getFixedPointSemantics(RHSTy)); 14086 14087 bool LHSOK = EvaluateFixedPointOrInteger(E->getLHS(), LHSFX, Info); 14088 if (!LHSOK && !Info.noteFailure()) 14089 return false; 14090 if (!EvaluateFixedPointOrInteger(E->getRHS(), RHSFX, Info) || !LHSOK) 14091 return false; 14092 if (LHSFX < RHSFX) 14093 return Success(CmpResult::Less, E); 14094 if (LHSFX > RHSFX) 14095 return Success(CmpResult::Greater, E); 14096 return Success(CmpResult::Equal, E); 14097 } 14098 14099 if (LHSTy->isAnyComplexType() || RHSTy->isAnyComplexType()) { 14100 ComplexValue LHS, RHS; 14101 bool LHSOK; 14102 if (E->isAssignmentOp()) { 14103 LValue LV; 14104 EvaluateLValue(E->getLHS(), LV, Info); 14105 LHSOK = false; 14106 } else if (LHSTy->isRealFloatingType()) { 14107 LHSOK = EvaluateFloat(E->getLHS(), LHS.FloatReal, Info); 14108 if (LHSOK) { 14109 LHS.makeComplexFloat(); 14110 LHS.FloatImag = APFloat(LHS.FloatReal.getSemantics()); 14111 } 14112 } else { 14113 LHSOK = EvaluateComplex(E->getLHS(), LHS, Info); 14114 } 14115 if (!LHSOK && !Info.noteFailure()) 14116 return false; 14117 14118 if (E->getRHS()->getType()->isRealFloatingType()) { 14119 if (!EvaluateFloat(E->getRHS(), RHS.FloatReal, Info) || !LHSOK) 14120 return false; 14121 RHS.makeComplexFloat(); 14122 RHS.FloatImag = APFloat(RHS.FloatReal.getSemantics()); 14123 } else if (!EvaluateComplex(E->getRHS(), RHS, Info) || !LHSOK) 14124 return false; 14125 14126 if (LHS.isComplexFloat()) { 14127 APFloat::cmpResult CR_r = 14128 LHS.getComplexFloatReal().compare(RHS.getComplexFloatReal()); 14129 APFloat::cmpResult CR_i = 14130 LHS.getComplexFloatImag().compare(RHS.getComplexFloatImag()); 14131 bool IsEqual = CR_r == APFloat::cmpEqual && CR_i == APFloat::cmpEqual; 14132 return Success(IsEqual ? CmpResult::Equal : CmpResult::Unequal, E); 14133 } else { 14134 assert(IsEquality && "invalid complex comparison"); 14135 bool IsEqual = LHS.getComplexIntReal() == RHS.getComplexIntReal() && 14136 LHS.getComplexIntImag() == RHS.getComplexIntImag(); 14137 return Success(IsEqual ? CmpResult::Equal : CmpResult::Unequal, E); 14138 } 14139 } 14140 14141 if (LHSTy->isRealFloatingType() && 14142 RHSTy->isRealFloatingType()) { 14143 APFloat RHS(0.0), LHS(0.0); 14144 14145 bool LHSOK = EvaluateFloat(E->getRHS(), RHS, Info); 14146 if (!LHSOK && !Info.noteFailure()) 14147 return false; 14148 14149 if (!EvaluateFloat(E->getLHS(), LHS, Info) || !LHSOK) 14150 return false; 14151 14152 assert(E->isComparisonOp() && "Invalid binary operator!"); 14153 llvm::APFloatBase::cmpResult APFloatCmpResult = LHS.compare(RHS); 14154 if (!Info.InConstantContext && 14155 APFloatCmpResult == APFloat::cmpUnordered && 14156 E->getFPFeaturesInEffect(Info.Ctx.getLangOpts()).isFPConstrained()) { 14157 // Note: Compares may raise invalid in some cases involving NaN or sNaN. 14158 Info.FFDiag(E, diag::note_constexpr_float_arithmetic_strict); 14159 return false; 14160 } 14161 auto GetCmpRes = [&]() { 14162 switch (APFloatCmpResult) { 14163 case APFloat::cmpEqual: 14164 return CmpResult::Equal; 14165 case APFloat::cmpLessThan: 14166 return CmpResult::Less; 14167 case APFloat::cmpGreaterThan: 14168 return CmpResult::Greater; 14169 case APFloat::cmpUnordered: 14170 return CmpResult::Unordered; 14171 } 14172 llvm_unreachable("Unrecognised APFloat::cmpResult enum"); 14173 }; 14174 return Success(GetCmpRes(), E); 14175 } 14176 14177 if (LHSTy->isPointerType() && RHSTy->isPointerType()) { 14178 LValue LHSValue, RHSValue; 14179 14180 bool LHSOK = EvaluatePointer(E->getLHS(), LHSValue, Info); 14181 if (!LHSOK && !Info.noteFailure()) 14182 return false; 14183 14184 if (!EvaluatePointer(E->getRHS(), RHSValue, Info) || !LHSOK) 14185 return false; 14186 14187 // Reject differing bases from the normal codepath; we special-case 14188 // comparisons to null. 14189 if (!HasSameBase(LHSValue, RHSValue)) { 14190 auto DiagComparison = [&] (unsigned DiagID, bool Reversed = false) { 14191 std::string LHS = LHSValue.toString(Info.Ctx, E->getLHS()->getType()); 14192 std::string RHS = RHSValue.toString(Info.Ctx, E->getRHS()->getType()); 14193 Info.FFDiag(E, DiagID) 14194 << (Reversed ? RHS : LHS) << (Reversed ? LHS : RHS); 14195 return false; 14196 }; 14197 // Inequalities and subtractions between unrelated pointers have 14198 // unspecified or undefined behavior. 14199 if (!IsEquality) 14200 return DiagComparison( 14201 diag::note_constexpr_pointer_comparison_unspecified); 14202 // A constant address may compare equal to the address of a symbol. 14203 // The one exception is that address of an object cannot compare equal 14204 // to a null pointer constant. 14205 // TODO: Should we restrict this to actual null pointers, and exclude the 14206 // case of zero cast to pointer type? 14207 if ((!LHSValue.Base && !LHSValue.Offset.isZero()) || 14208 (!RHSValue.Base && !RHSValue.Offset.isZero())) 14209 return DiagComparison(diag::note_constexpr_pointer_constant_comparison, 14210 !RHSValue.Base); 14211 // C++2c [intro.object]/10: 14212 // Two objects [...] may have the same address if [...] they are both 14213 // potentially non-unique objects. 14214 // C++2c [intro.object]/9: 14215 // An object is potentially non-unique if it is a string literal object, 14216 // the backing array of an initializer list, or a subobject thereof. 14217 // 14218 // This makes the comparison result unspecified, so it's not a constant 14219 // expression. 14220 // 14221 // TODO: Do we need to handle the initializer list case here? 14222 if (ArePotentiallyOverlappingStringLiterals(Info, LHSValue, RHSValue)) 14223 return DiagComparison(diag::note_constexpr_literal_comparison); 14224 if (IsOpaqueConstantCall(LHSValue) || IsOpaqueConstantCall(RHSValue)) 14225 return DiagComparison(diag::note_constexpr_opaque_call_comparison, 14226 !IsOpaqueConstantCall(LHSValue)); 14227 // We can't tell whether weak symbols will end up pointing to the same 14228 // object. 14229 if (IsWeakLValue(LHSValue) || IsWeakLValue(RHSValue)) 14230 return DiagComparison(diag::note_constexpr_pointer_weak_comparison, 14231 !IsWeakLValue(LHSValue)); 14232 // We can't compare the address of the start of one object with the 14233 // past-the-end address of another object, per C++ DR1652. 14234 if (LHSValue.Base && LHSValue.Offset.isZero() && 14235 isOnePastTheEndOfCompleteObject(Info.Ctx, RHSValue)) 14236 return DiagComparison(diag::note_constexpr_pointer_comparison_past_end, 14237 true); 14238 if (RHSValue.Base && RHSValue.Offset.isZero() && 14239 isOnePastTheEndOfCompleteObject(Info.Ctx, LHSValue)) 14240 return DiagComparison(diag::note_constexpr_pointer_comparison_past_end, 14241 false); 14242 // We can't tell whether an object is at the same address as another 14243 // zero sized object. 14244 if ((RHSValue.Base && isZeroSized(LHSValue)) || 14245 (LHSValue.Base && isZeroSized(RHSValue))) 14246 return DiagComparison( 14247 diag::note_constexpr_pointer_comparison_zero_sized); 14248 return Success(CmpResult::Unequal, E); 14249 } 14250 14251 const CharUnits &LHSOffset = LHSValue.getLValueOffset(); 14252 const CharUnits &RHSOffset = RHSValue.getLValueOffset(); 14253 14254 SubobjectDesignator &LHSDesignator = LHSValue.getLValueDesignator(); 14255 SubobjectDesignator &RHSDesignator = RHSValue.getLValueDesignator(); 14256 14257 // C++11 [expr.rel]p2: 14258 // - If two pointers point to non-static data members of the same object, 14259 // or to subobjects or array elements fo such members, recursively, the 14260 // pointer to the later declared member compares greater provided the 14261 // two members have the same access control and provided their class is 14262 // not a union. 14263 // [...] 14264 // - Otherwise pointer comparisons are unspecified. 14265 if (!LHSDesignator.Invalid && !RHSDesignator.Invalid && IsRelational) { 14266 bool WasArrayIndex; 14267 unsigned Mismatch = FindDesignatorMismatch( 14268 getType(LHSValue.Base), LHSDesignator, RHSDesignator, WasArrayIndex); 14269 // At the point where the designators diverge, the comparison has a 14270 // specified value if: 14271 // - we are comparing array indices 14272 // - we are comparing fields of a union, or fields with the same access 14273 // Otherwise, the result is unspecified and thus the comparison is not a 14274 // constant expression. 14275 if (!WasArrayIndex && Mismatch < LHSDesignator.Entries.size() && 14276 Mismatch < RHSDesignator.Entries.size()) { 14277 const FieldDecl *LF = getAsField(LHSDesignator.Entries[Mismatch]); 14278 const FieldDecl *RF = getAsField(RHSDesignator.Entries[Mismatch]); 14279 if (!LF && !RF) 14280 Info.CCEDiag(E, diag::note_constexpr_pointer_comparison_base_classes); 14281 else if (!LF) 14282 Info.CCEDiag(E, diag::note_constexpr_pointer_comparison_base_field) 14283 << getAsBaseClass(LHSDesignator.Entries[Mismatch]) 14284 << RF->getParent() << RF; 14285 else if (!RF) 14286 Info.CCEDiag(E, diag::note_constexpr_pointer_comparison_base_field) 14287 << getAsBaseClass(RHSDesignator.Entries[Mismatch]) 14288 << LF->getParent() << LF; 14289 else if (!LF->getParent()->isUnion() && 14290 LF->getAccess() != RF->getAccess()) 14291 Info.CCEDiag(E, 14292 diag::note_constexpr_pointer_comparison_differing_access) 14293 << LF << LF->getAccess() << RF << RF->getAccess() 14294 << LF->getParent(); 14295 } 14296 } 14297 14298 // The comparison here must be unsigned, and performed with the same 14299 // width as the pointer. 14300 unsigned PtrSize = Info.Ctx.getTypeSize(LHSTy); 14301 uint64_t CompareLHS = LHSOffset.getQuantity(); 14302 uint64_t CompareRHS = RHSOffset.getQuantity(); 14303 assert(PtrSize <= 64 && "Unexpected pointer width"); 14304 uint64_t Mask = ~0ULL >> (64 - PtrSize); 14305 CompareLHS &= Mask; 14306 CompareRHS &= Mask; 14307 14308 // If there is a base and this is a relational operator, we can only 14309 // compare pointers within the object in question; otherwise, the result 14310 // depends on where the object is located in memory. 14311 if (!LHSValue.Base.isNull() && IsRelational) { 14312 QualType BaseTy = getType(LHSValue.Base); 14313 if (BaseTy->isIncompleteType()) 14314 return Error(E); 14315 CharUnits Size = Info.Ctx.getTypeSizeInChars(BaseTy); 14316 uint64_t OffsetLimit = Size.getQuantity(); 14317 if (CompareLHS > OffsetLimit || CompareRHS > OffsetLimit) 14318 return Error(E); 14319 } 14320 14321 if (CompareLHS < CompareRHS) 14322 return Success(CmpResult::Less, E); 14323 if (CompareLHS > CompareRHS) 14324 return Success(CmpResult::Greater, E); 14325 return Success(CmpResult::Equal, E); 14326 } 14327 14328 if (LHSTy->isMemberPointerType()) { 14329 assert(IsEquality && "unexpected member pointer operation"); 14330 assert(RHSTy->isMemberPointerType() && "invalid comparison"); 14331 14332 MemberPtr LHSValue, RHSValue; 14333 14334 bool LHSOK = EvaluateMemberPointer(E->getLHS(), LHSValue, Info); 14335 if (!LHSOK && !Info.noteFailure()) 14336 return false; 14337 14338 if (!EvaluateMemberPointer(E->getRHS(), RHSValue, Info) || !LHSOK) 14339 return false; 14340 14341 // If either operand is a pointer to a weak function, the comparison is not 14342 // constant. 14343 if (LHSValue.getDecl() && LHSValue.getDecl()->isWeak()) { 14344 Info.FFDiag(E, diag::note_constexpr_mem_pointer_weak_comparison) 14345 << LHSValue.getDecl(); 14346 return false; 14347 } 14348 if (RHSValue.getDecl() && RHSValue.getDecl()->isWeak()) { 14349 Info.FFDiag(E, diag::note_constexpr_mem_pointer_weak_comparison) 14350 << RHSValue.getDecl(); 14351 return false; 14352 } 14353 14354 // C++11 [expr.eq]p2: 14355 // If both operands are null, they compare equal. Otherwise if only one is 14356 // null, they compare unequal. 14357 if (!LHSValue.getDecl() || !RHSValue.getDecl()) { 14358 bool Equal = !LHSValue.getDecl() && !RHSValue.getDecl(); 14359 return Success(Equal ? CmpResult::Equal : CmpResult::Unequal, E); 14360 } 14361 14362 // Otherwise if either is a pointer to a virtual member function, the 14363 // result is unspecified. 14364 if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(LHSValue.getDecl())) 14365 if (MD->isVirtual()) 14366 Info.CCEDiag(E, diag::note_constexpr_compare_virtual_mem_ptr) << MD; 14367 if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(RHSValue.getDecl())) 14368 if (MD->isVirtual()) 14369 Info.CCEDiag(E, diag::note_constexpr_compare_virtual_mem_ptr) << MD; 14370 14371 // Otherwise they compare equal if and only if they would refer to the 14372 // same member of the same most derived object or the same subobject if 14373 // they were dereferenced with a hypothetical object of the associated 14374 // class type. 14375 bool Equal = LHSValue == RHSValue; 14376 return Success(Equal ? CmpResult::Equal : CmpResult::Unequal, E); 14377 } 14378 14379 if (LHSTy->isNullPtrType()) { 14380 assert(E->isComparisonOp() && "unexpected nullptr operation"); 14381 assert(RHSTy->isNullPtrType() && "missing pointer conversion"); 14382 // C++11 [expr.rel]p4, [expr.eq]p3: If two operands of type std::nullptr_t 14383 // are compared, the result is true of the operator is <=, >= or ==, and 14384 // false otherwise. 14385 LValue Res; 14386 if (!EvaluatePointer(E->getLHS(), Res, Info) || 14387 !EvaluatePointer(E->getRHS(), Res, Info)) 14388 return false; 14389 return Success(CmpResult::Equal, E); 14390 } 14391 14392 return DoAfter(); 14393 } 14394 14395 bool RecordExprEvaluator::VisitBinCmp(const BinaryOperator *E) { 14396 if (!CheckLiteralType(Info, E)) 14397 return false; 14398 14399 auto OnSuccess = [&](CmpResult CR, const BinaryOperator *E) { 14400 ComparisonCategoryResult CCR; 14401 switch (CR) { 14402 case CmpResult::Unequal: 14403 llvm_unreachable("should never produce Unequal for three-way comparison"); 14404 case CmpResult::Less: 14405 CCR = ComparisonCategoryResult::Less; 14406 break; 14407 case CmpResult::Equal: 14408 CCR = ComparisonCategoryResult::Equal; 14409 break; 14410 case CmpResult::Greater: 14411 CCR = ComparisonCategoryResult::Greater; 14412 break; 14413 case CmpResult::Unordered: 14414 CCR = ComparisonCategoryResult::Unordered; 14415 break; 14416 } 14417 // Evaluation succeeded. Lookup the information for the comparison category 14418 // type and fetch the VarDecl for the result. 14419 const ComparisonCategoryInfo &CmpInfo = 14420 Info.Ctx.CompCategories.getInfoForType(E->getType()); 14421 const VarDecl *VD = CmpInfo.getValueInfo(CmpInfo.makeWeakResult(CCR))->VD; 14422 // Check and evaluate the result as a constant expression. 14423 LValue LV; 14424 LV.set(VD); 14425 if (!handleLValueToRValueConversion(Info, E, E->getType(), LV, Result)) 14426 return false; 14427 return CheckConstantExpression(Info, E->getExprLoc(), E->getType(), Result, 14428 ConstantExprKind::Normal); 14429 }; 14430 return EvaluateComparisonBinaryOperator(Info, E, OnSuccess, [&]() { 14431 return ExprEvaluatorBaseTy::VisitBinCmp(E); 14432 }); 14433 } 14434 14435 bool RecordExprEvaluator::VisitCXXParenListInitExpr( 14436 const CXXParenListInitExpr *E) { 14437 return VisitCXXParenListOrInitListExpr(E, E->getInitExprs()); 14438 } 14439 14440 bool IntExprEvaluator::VisitBinaryOperator(const BinaryOperator *E) { 14441 // We don't support assignment in C. C++ assignments don't get here because 14442 // assignment is an lvalue in C++. 14443 if (E->isAssignmentOp()) { 14444 Error(E); 14445 if (!Info.noteFailure()) 14446 return false; 14447 } 14448 14449 if (DataRecursiveIntBinOpEvaluator::shouldEnqueue(E)) 14450 return DataRecursiveIntBinOpEvaluator(*this, Result).Traverse(E); 14451 14452 assert((!E->getLHS()->getType()->isIntegralOrEnumerationType() || 14453 !E->getRHS()->getType()->isIntegralOrEnumerationType()) && 14454 "DataRecursiveIntBinOpEvaluator should have handled integral types"); 14455 14456 if (E->isComparisonOp()) { 14457 // Evaluate builtin binary comparisons by evaluating them as three-way 14458 // comparisons and then translating the result. 14459 auto OnSuccess = [&](CmpResult CR, const BinaryOperator *E) { 14460 assert((CR != CmpResult::Unequal || E->isEqualityOp()) && 14461 "should only produce Unequal for equality comparisons"); 14462 bool IsEqual = CR == CmpResult::Equal, 14463 IsLess = CR == CmpResult::Less, 14464 IsGreater = CR == CmpResult::Greater; 14465 auto Op = E->getOpcode(); 14466 switch (Op) { 14467 default: 14468 llvm_unreachable("unsupported binary operator"); 14469 case BO_EQ: 14470 case BO_NE: 14471 return Success(IsEqual == (Op == BO_EQ), E); 14472 case BO_LT: 14473 return Success(IsLess, E); 14474 case BO_GT: 14475 return Success(IsGreater, E); 14476 case BO_LE: 14477 return Success(IsEqual || IsLess, E); 14478 case BO_GE: 14479 return Success(IsEqual || IsGreater, E); 14480 } 14481 }; 14482 return EvaluateComparisonBinaryOperator(Info, E, OnSuccess, [&]() { 14483 return ExprEvaluatorBaseTy::VisitBinaryOperator(E); 14484 }); 14485 } 14486 14487 QualType LHSTy = E->getLHS()->getType(); 14488 QualType RHSTy = E->getRHS()->getType(); 14489 14490 if (LHSTy->isPointerType() && RHSTy->isPointerType() && 14491 E->getOpcode() == BO_Sub) { 14492 LValue LHSValue, RHSValue; 14493 14494 bool LHSOK = EvaluatePointer(E->getLHS(), LHSValue, Info); 14495 if (!LHSOK && !Info.noteFailure()) 14496 return false; 14497 14498 if (!EvaluatePointer(E->getRHS(), RHSValue, Info) || !LHSOK) 14499 return false; 14500 14501 // Reject differing bases from the normal codepath; we special-case 14502 // comparisons to null. 14503 if (!HasSameBase(LHSValue, RHSValue)) { 14504 // Handle &&A - &&B. 14505 if (!LHSValue.Offset.isZero() || !RHSValue.Offset.isZero()) 14506 return Error(E); 14507 const Expr *LHSExpr = LHSValue.Base.dyn_cast<const Expr *>(); 14508 const Expr *RHSExpr = RHSValue.Base.dyn_cast<const Expr *>(); 14509 if (!LHSExpr || !RHSExpr) 14510 return Error(E); 14511 const AddrLabelExpr *LHSAddrExpr = dyn_cast<AddrLabelExpr>(LHSExpr); 14512 const AddrLabelExpr *RHSAddrExpr = dyn_cast<AddrLabelExpr>(RHSExpr); 14513 if (!LHSAddrExpr || !RHSAddrExpr) 14514 return Error(E); 14515 // Make sure both labels come from the same function. 14516 if (LHSAddrExpr->getLabel()->getDeclContext() != 14517 RHSAddrExpr->getLabel()->getDeclContext()) 14518 return Error(E); 14519 return Success(APValue(LHSAddrExpr, RHSAddrExpr), E); 14520 } 14521 const CharUnits &LHSOffset = LHSValue.getLValueOffset(); 14522 const CharUnits &RHSOffset = RHSValue.getLValueOffset(); 14523 14524 SubobjectDesignator &LHSDesignator = LHSValue.getLValueDesignator(); 14525 SubobjectDesignator &RHSDesignator = RHSValue.getLValueDesignator(); 14526 14527 // C++11 [expr.add]p6: 14528 // Unless both pointers point to elements of the same array object, or 14529 // one past the last element of the array object, the behavior is 14530 // undefined. 14531 if (!LHSDesignator.Invalid && !RHSDesignator.Invalid && 14532 !AreElementsOfSameArray(getType(LHSValue.Base), LHSDesignator, 14533 RHSDesignator)) 14534 Info.CCEDiag(E, diag::note_constexpr_pointer_subtraction_not_same_array); 14535 14536 QualType Type = E->getLHS()->getType(); 14537 QualType ElementType = Type->castAs<PointerType>()->getPointeeType(); 14538 14539 CharUnits ElementSize; 14540 if (!HandleSizeof(Info, E->getExprLoc(), ElementType, ElementSize)) 14541 return false; 14542 14543 // As an extension, a type may have zero size (empty struct or union in 14544 // C, array of zero length). Pointer subtraction in such cases has 14545 // undefined behavior, so is not constant. 14546 if (ElementSize.isZero()) { 14547 Info.FFDiag(E, diag::note_constexpr_pointer_subtraction_zero_size) 14548 << ElementType; 14549 return false; 14550 } 14551 14552 // FIXME: LLVM and GCC both compute LHSOffset - RHSOffset at runtime, 14553 // and produce incorrect results when it overflows. Such behavior 14554 // appears to be non-conforming, but is common, so perhaps we should 14555 // assume the standard intended for such cases to be undefined behavior 14556 // and check for them. 14557 14558 // Compute (LHSOffset - RHSOffset) / Size carefully, checking for 14559 // overflow in the final conversion to ptrdiff_t. 14560 APSInt LHS(llvm::APInt(65, (int64_t)LHSOffset.getQuantity(), true), false); 14561 APSInt RHS(llvm::APInt(65, (int64_t)RHSOffset.getQuantity(), true), false); 14562 APSInt ElemSize(llvm::APInt(65, (int64_t)ElementSize.getQuantity(), true), 14563 false); 14564 APSInt TrueResult = (LHS - RHS) / ElemSize; 14565 APSInt Result = TrueResult.trunc(Info.Ctx.getIntWidth(E->getType())); 14566 14567 if (Result.extend(65) != TrueResult && 14568 !HandleOverflow(Info, E, TrueResult, E->getType())) 14569 return false; 14570 return Success(Result, E); 14571 } 14572 14573 return ExprEvaluatorBaseTy::VisitBinaryOperator(E); 14574 } 14575 14576 /// VisitUnaryExprOrTypeTraitExpr - Evaluate a sizeof, alignof or vec_step with 14577 /// a result as the expression's type. 14578 bool IntExprEvaluator::VisitUnaryExprOrTypeTraitExpr( 14579 const UnaryExprOrTypeTraitExpr *E) { 14580 switch(E->getKind()) { 14581 case UETT_PreferredAlignOf: 14582 case UETT_AlignOf: { 14583 if (E->isArgumentType()) 14584 return Success( 14585 GetAlignOfType(Info.Ctx, E->getArgumentType(), E->getKind()), E); 14586 else 14587 return Success( 14588 GetAlignOfExpr(Info.Ctx, E->getArgumentExpr(), E->getKind()), E); 14589 } 14590 14591 case UETT_PtrAuthTypeDiscriminator: { 14592 if (E->getArgumentType()->isDependentType()) 14593 return false; 14594 return Success( 14595 Info.Ctx.getPointerAuthTypeDiscriminator(E->getArgumentType()), E); 14596 } 14597 case UETT_VecStep: { 14598 QualType Ty = E->getTypeOfArgument(); 14599 14600 if (Ty->isVectorType()) { 14601 unsigned n = Ty->castAs<VectorType>()->getNumElements(); 14602 14603 // The vec_step built-in functions that take a 3-component 14604 // vector return 4. (OpenCL 1.1 spec 6.11.12) 14605 if (n == 3) 14606 n = 4; 14607 14608 return Success(n, E); 14609 } else 14610 return Success(1, E); 14611 } 14612 14613 case UETT_DataSizeOf: 14614 case UETT_SizeOf: { 14615 QualType SrcTy = E->getTypeOfArgument(); 14616 // C++ [expr.sizeof]p2: "When applied to a reference or a reference type, 14617 // the result is the size of the referenced type." 14618 if (const ReferenceType *Ref = SrcTy->getAs<ReferenceType>()) 14619 SrcTy = Ref->getPointeeType(); 14620 14621 CharUnits Sizeof; 14622 if (!HandleSizeof(Info, E->getExprLoc(), SrcTy, Sizeof, 14623 E->getKind() == UETT_DataSizeOf ? SizeOfType::DataSizeOf 14624 : SizeOfType::SizeOf)) { 14625 return false; 14626 } 14627 return Success(Sizeof, E); 14628 } 14629 case UETT_OpenMPRequiredSimdAlign: 14630 assert(E->isArgumentType()); 14631 return Success( 14632 Info.Ctx.toCharUnitsFromBits( 14633 Info.Ctx.getOpenMPDefaultSimdAlign(E->getArgumentType())) 14634 .getQuantity(), 14635 E); 14636 case UETT_VectorElements: { 14637 QualType Ty = E->getTypeOfArgument(); 14638 // If the vector has a fixed size, we can determine the number of elements 14639 // at compile time. 14640 if (const auto *VT = Ty->getAs<VectorType>()) 14641 return Success(VT->getNumElements(), E); 14642 14643 assert(Ty->isSizelessVectorType()); 14644 if (Info.InConstantContext) 14645 Info.CCEDiag(E, diag::note_constexpr_non_const_vectorelements) 14646 << E->getSourceRange(); 14647 14648 return false; 14649 } 14650 } 14651 14652 llvm_unreachable("unknown expr/type trait"); 14653 } 14654 14655 bool IntExprEvaluator::VisitOffsetOfExpr(const OffsetOfExpr *OOE) { 14656 CharUnits Result; 14657 unsigned n = OOE->getNumComponents(); 14658 if (n == 0) 14659 return Error(OOE); 14660 QualType CurrentType = OOE->getTypeSourceInfo()->getType(); 14661 for (unsigned i = 0; i != n; ++i) { 14662 OffsetOfNode ON = OOE->getComponent(i); 14663 switch (ON.getKind()) { 14664 case OffsetOfNode::Array: { 14665 const Expr *Idx = OOE->getIndexExpr(ON.getArrayExprIndex()); 14666 APSInt IdxResult; 14667 if (!EvaluateInteger(Idx, IdxResult, Info)) 14668 return false; 14669 const ArrayType *AT = Info.Ctx.getAsArrayType(CurrentType); 14670 if (!AT) 14671 return Error(OOE); 14672 CurrentType = AT->getElementType(); 14673 CharUnits ElementSize = Info.Ctx.getTypeSizeInChars(CurrentType); 14674 Result += IdxResult.getSExtValue() * ElementSize; 14675 break; 14676 } 14677 14678 case OffsetOfNode::Field: { 14679 FieldDecl *MemberDecl = ON.getField(); 14680 const RecordType *RT = CurrentType->getAs<RecordType>(); 14681 if (!RT) 14682 return Error(OOE); 14683 RecordDecl *RD = RT->getDecl(); 14684 if (RD->isInvalidDecl()) return false; 14685 const ASTRecordLayout &RL = Info.Ctx.getASTRecordLayout(RD); 14686 unsigned i = MemberDecl->getFieldIndex(); 14687 assert(i < RL.getFieldCount() && "offsetof field in wrong type"); 14688 Result += Info.Ctx.toCharUnitsFromBits(RL.getFieldOffset(i)); 14689 CurrentType = MemberDecl->getType().getNonReferenceType(); 14690 break; 14691 } 14692 14693 case OffsetOfNode::Identifier: 14694 llvm_unreachable("dependent __builtin_offsetof"); 14695 14696 case OffsetOfNode::Base: { 14697 CXXBaseSpecifier *BaseSpec = ON.getBase(); 14698 if (BaseSpec->isVirtual()) 14699 return Error(OOE); 14700 14701 // Find the layout of the class whose base we are looking into. 14702 const RecordType *RT = CurrentType->getAs<RecordType>(); 14703 if (!RT) 14704 return Error(OOE); 14705 RecordDecl *RD = RT->getDecl(); 14706 if (RD->isInvalidDecl()) return false; 14707 const ASTRecordLayout &RL = Info.Ctx.getASTRecordLayout(RD); 14708 14709 // Find the base class itself. 14710 CurrentType = BaseSpec->getType(); 14711 const RecordType *BaseRT = CurrentType->getAs<RecordType>(); 14712 if (!BaseRT) 14713 return Error(OOE); 14714 14715 // Add the offset to the base. 14716 Result += RL.getBaseClassOffset(cast<CXXRecordDecl>(BaseRT->getDecl())); 14717 break; 14718 } 14719 } 14720 } 14721 return Success(Result, OOE); 14722 } 14723 14724 bool IntExprEvaluator::VisitUnaryOperator(const UnaryOperator *E) { 14725 switch (E->getOpcode()) { 14726 default: 14727 // Address, indirect, pre/post inc/dec, etc are not valid constant exprs. 14728 // See C99 6.6p3. 14729 return Error(E); 14730 case UO_Extension: 14731 // FIXME: Should extension allow i-c-e extension expressions in its scope? 14732 // If so, we could clear the diagnostic ID. 14733 return Visit(E->getSubExpr()); 14734 case UO_Plus: 14735 // The result is just the value. 14736 return Visit(E->getSubExpr()); 14737 case UO_Minus: { 14738 if (!Visit(E->getSubExpr())) 14739 return false; 14740 if (!Result.isInt()) return Error(E); 14741 const APSInt &Value = Result.getInt(); 14742 if (Value.isSigned() && Value.isMinSignedValue() && E->canOverflow()) { 14743 if (Info.checkingForUndefinedBehavior()) 14744 Info.Ctx.getDiagnostics().Report(E->getExprLoc(), 14745 diag::warn_integer_constant_overflow) 14746 << toString(Value, 10, Value.isSigned(), /*formatAsCLiteral=*/false, 14747 /*UpperCase=*/true, /*InsertSeparators=*/true) 14748 << E->getType() << E->getSourceRange(); 14749 14750 if (!HandleOverflow(Info, E, -Value.extend(Value.getBitWidth() + 1), 14751 E->getType())) 14752 return false; 14753 } 14754 return Success(-Value, E); 14755 } 14756 case UO_Not: { 14757 if (!Visit(E->getSubExpr())) 14758 return false; 14759 if (!Result.isInt()) return Error(E); 14760 return Success(~Result.getInt(), E); 14761 } 14762 case UO_LNot: { 14763 bool bres; 14764 if (!EvaluateAsBooleanCondition(E->getSubExpr(), bres, Info)) 14765 return false; 14766 return Success(!bres, E); 14767 } 14768 } 14769 } 14770 14771 /// HandleCast - This is used to evaluate implicit or explicit casts where the 14772 /// result type is integer. 14773 bool IntExprEvaluator::VisitCastExpr(const CastExpr *E) { 14774 const Expr *SubExpr = E->getSubExpr(); 14775 QualType DestType = E->getType(); 14776 QualType SrcType = SubExpr->getType(); 14777 14778 switch (E->getCastKind()) { 14779 case CK_BaseToDerived: 14780 case CK_DerivedToBase: 14781 case CK_UncheckedDerivedToBase: 14782 case CK_Dynamic: 14783 case CK_ToUnion: 14784 case CK_ArrayToPointerDecay: 14785 case CK_FunctionToPointerDecay: 14786 case CK_NullToPointer: 14787 case CK_NullToMemberPointer: 14788 case CK_BaseToDerivedMemberPointer: 14789 case CK_DerivedToBaseMemberPointer: 14790 case CK_ReinterpretMemberPointer: 14791 case CK_ConstructorConversion: 14792 case CK_IntegralToPointer: 14793 case CK_ToVoid: 14794 case CK_VectorSplat: 14795 case CK_IntegralToFloating: 14796 case CK_FloatingCast: 14797 case CK_CPointerToObjCPointerCast: 14798 case CK_BlockPointerToObjCPointerCast: 14799 case CK_AnyPointerToBlockPointerCast: 14800 case CK_ObjCObjectLValueCast: 14801 case CK_FloatingRealToComplex: 14802 case CK_FloatingComplexToReal: 14803 case CK_FloatingComplexCast: 14804 case CK_FloatingComplexToIntegralComplex: 14805 case CK_IntegralRealToComplex: 14806 case CK_IntegralComplexCast: 14807 case CK_IntegralComplexToFloatingComplex: 14808 case CK_BuiltinFnToFnPtr: 14809 case CK_ZeroToOCLOpaqueType: 14810 case CK_NonAtomicToAtomic: 14811 case CK_AddressSpaceConversion: 14812 case CK_IntToOCLSampler: 14813 case CK_FloatingToFixedPoint: 14814 case CK_FixedPointToFloating: 14815 case CK_FixedPointCast: 14816 case CK_IntegralToFixedPoint: 14817 case CK_MatrixCast: 14818 llvm_unreachable("invalid cast kind for integral value"); 14819 14820 case CK_BitCast: 14821 case CK_Dependent: 14822 case CK_LValueBitCast: 14823 case CK_ARCProduceObject: 14824 case CK_ARCConsumeObject: 14825 case CK_ARCReclaimReturnedObject: 14826 case CK_ARCExtendBlockObject: 14827 case CK_CopyAndAutoreleaseBlockObject: 14828 return Error(E); 14829 14830 case CK_UserDefinedConversion: 14831 case CK_LValueToRValue: 14832 case CK_AtomicToNonAtomic: 14833 case CK_NoOp: 14834 case CK_LValueToRValueBitCast: 14835 case CK_HLSLArrayRValue: 14836 return ExprEvaluatorBaseTy::VisitCastExpr(E); 14837 14838 case CK_MemberPointerToBoolean: 14839 case CK_PointerToBoolean: 14840 case CK_IntegralToBoolean: 14841 case CK_FloatingToBoolean: 14842 case CK_BooleanToSignedIntegral: 14843 case CK_FloatingComplexToBoolean: 14844 case CK_IntegralComplexToBoolean: { 14845 bool BoolResult; 14846 if (!EvaluateAsBooleanCondition(SubExpr, BoolResult, Info)) 14847 return false; 14848 uint64_t IntResult = BoolResult; 14849 if (BoolResult && E->getCastKind() == CK_BooleanToSignedIntegral) 14850 IntResult = (uint64_t)-1; 14851 return Success(IntResult, E); 14852 } 14853 14854 case CK_FixedPointToIntegral: { 14855 APFixedPoint Src(Info.Ctx.getFixedPointSemantics(SrcType)); 14856 if (!EvaluateFixedPoint(SubExpr, Src, Info)) 14857 return false; 14858 bool Overflowed; 14859 llvm::APSInt Result = Src.convertToInt( 14860 Info.Ctx.getIntWidth(DestType), 14861 DestType->isSignedIntegerOrEnumerationType(), &Overflowed); 14862 if (Overflowed && !HandleOverflow(Info, E, Result, DestType)) 14863 return false; 14864 return Success(Result, E); 14865 } 14866 14867 case CK_FixedPointToBoolean: { 14868 // Unsigned padding does not affect this. 14869 APValue Val; 14870 if (!Evaluate(Val, Info, SubExpr)) 14871 return false; 14872 return Success(Val.getFixedPoint().getBoolValue(), E); 14873 } 14874 14875 case CK_IntegralCast: { 14876 if (!Visit(SubExpr)) 14877 return false; 14878 14879 if (!Result.isInt()) { 14880 // Allow casts of address-of-label differences if they are no-ops 14881 // or narrowing. (The narrowing case isn't actually guaranteed to 14882 // be constant-evaluatable except in some narrow cases which are hard 14883 // to detect here. We let it through on the assumption the user knows 14884 // what they are doing.) 14885 if (Result.isAddrLabelDiff()) 14886 return Info.Ctx.getTypeSize(DestType) <= Info.Ctx.getTypeSize(SrcType); 14887 // Only allow casts of lvalues if they are lossless. 14888 return Info.Ctx.getTypeSize(DestType) == Info.Ctx.getTypeSize(SrcType); 14889 } 14890 14891 if (Info.Ctx.getLangOpts().CPlusPlus && Info.InConstantContext && 14892 Info.EvalMode == EvalInfo::EM_ConstantExpression && 14893 DestType->isEnumeralType()) { 14894 14895 bool ConstexprVar = true; 14896 14897 // We know if we are here that we are in a context that we might require 14898 // a constant expression or a context that requires a constant 14899 // value. But if we are initializing a value we don't know if it is a 14900 // constexpr variable or not. We can check the EvaluatingDecl to determine 14901 // if it constexpr or not. If not then we don't want to emit a diagnostic. 14902 if (const auto *VD = dyn_cast_or_null<VarDecl>( 14903 Info.EvaluatingDecl.dyn_cast<const ValueDecl *>())) 14904 ConstexprVar = VD->isConstexpr(); 14905 14906 const EnumType *ET = dyn_cast<EnumType>(DestType.getCanonicalType()); 14907 const EnumDecl *ED = ET->getDecl(); 14908 // Check that the value is within the range of the enumeration values. 14909 // 14910 // This corressponds to [expr.static.cast]p10 which says: 14911 // A value of integral or enumeration type can be explicitly converted 14912 // to a complete enumeration type ... If the enumeration type does not 14913 // have a fixed underlying type, the value is unchanged if the original 14914 // value is within the range of the enumeration values ([dcl.enum]), and 14915 // otherwise, the behavior is undefined. 14916 // 14917 // This was resolved as part of DR2338 which has CD5 status. 14918 if (!ED->isFixed()) { 14919 llvm::APInt Min; 14920 llvm::APInt Max; 14921 14922 ED->getValueRange(Max, Min); 14923 --Max; 14924 14925 if (ED->getNumNegativeBits() && ConstexprVar && 14926 (Max.slt(Result.getInt().getSExtValue()) || 14927 Min.sgt(Result.getInt().getSExtValue()))) 14928 Info.CCEDiag(E, diag::note_constexpr_unscoped_enum_out_of_range) 14929 << llvm::toString(Result.getInt(), 10) << Min.getSExtValue() 14930 << Max.getSExtValue() << ED; 14931 else if (!ED->getNumNegativeBits() && ConstexprVar && 14932 Max.ult(Result.getInt().getZExtValue())) 14933 Info.CCEDiag(E, diag::note_constexpr_unscoped_enum_out_of_range) 14934 << llvm::toString(Result.getInt(), 10) << Min.getZExtValue() 14935 << Max.getZExtValue() << ED; 14936 } 14937 } 14938 14939 return Success(HandleIntToIntCast(Info, E, DestType, SrcType, 14940 Result.getInt()), E); 14941 } 14942 14943 case CK_PointerToIntegral: { 14944 CCEDiag(E, diag::note_constexpr_invalid_cast) 14945 << 2 << Info.Ctx.getLangOpts().CPlusPlus << E->getSourceRange(); 14946 14947 LValue LV; 14948 if (!EvaluatePointer(SubExpr, LV, Info)) 14949 return false; 14950 14951 if (LV.getLValueBase()) { 14952 // Only allow based lvalue casts if they are lossless. 14953 // FIXME: Allow a larger integer size than the pointer size, and allow 14954 // narrowing back down to pointer width in subsequent integral casts. 14955 // FIXME: Check integer type's active bits, not its type size. 14956 if (Info.Ctx.getTypeSize(DestType) != Info.Ctx.getTypeSize(SrcType)) 14957 return Error(E); 14958 14959 LV.Designator.setInvalid(); 14960 LV.moveInto(Result); 14961 return true; 14962 } 14963 14964 APSInt AsInt; 14965 APValue V; 14966 LV.moveInto(V); 14967 if (!V.toIntegralConstant(AsInt, SrcType, Info.Ctx)) 14968 llvm_unreachable("Can't cast this!"); 14969 14970 return Success(HandleIntToIntCast(Info, E, DestType, SrcType, AsInt), E); 14971 } 14972 14973 case CK_IntegralComplexToReal: { 14974 ComplexValue C; 14975 if (!EvaluateComplex(SubExpr, C, Info)) 14976 return false; 14977 return Success(C.getComplexIntReal(), E); 14978 } 14979 14980 case CK_FloatingToIntegral: { 14981 APFloat F(0.0); 14982 if (!EvaluateFloat(SubExpr, F, Info)) 14983 return false; 14984 14985 APSInt Value; 14986 if (!HandleFloatToIntCast(Info, E, SrcType, F, DestType, Value)) 14987 return false; 14988 return Success(Value, E); 14989 } 14990 case CK_HLSLVectorTruncation: { 14991 APValue Val; 14992 if (!EvaluateVector(SubExpr, Val, Info)) 14993 return Error(E); 14994 return Success(Val.getVectorElt(0), E); 14995 } 14996 } 14997 14998 llvm_unreachable("unknown cast resulting in integral value"); 14999 } 15000 15001 bool IntExprEvaluator::VisitUnaryReal(const UnaryOperator *E) { 15002 if (E->getSubExpr()->getType()->isAnyComplexType()) { 15003 ComplexValue LV; 15004 if (!EvaluateComplex(E->getSubExpr(), LV, Info)) 15005 return false; 15006 if (!LV.isComplexInt()) 15007 return Error(E); 15008 return Success(LV.getComplexIntReal(), E); 15009 } 15010 15011 return Visit(E->getSubExpr()); 15012 } 15013 15014 bool IntExprEvaluator::VisitUnaryImag(const UnaryOperator *E) { 15015 if (E->getSubExpr()->getType()->isComplexIntegerType()) { 15016 ComplexValue LV; 15017 if (!EvaluateComplex(E->getSubExpr(), LV, Info)) 15018 return false; 15019 if (!LV.isComplexInt()) 15020 return Error(E); 15021 return Success(LV.getComplexIntImag(), E); 15022 } 15023 15024 VisitIgnoredValue(E->getSubExpr()); 15025 return Success(0, E); 15026 } 15027 15028 bool IntExprEvaluator::VisitSizeOfPackExpr(const SizeOfPackExpr *E) { 15029 return Success(E->getPackLength(), E); 15030 } 15031 15032 bool IntExprEvaluator::VisitCXXNoexceptExpr(const CXXNoexceptExpr *E) { 15033 return Success(E->getValue(), E); 15034 } 15035 15036 bool IntExprEvaluator::VisitConceptSpecializationExpr( 15037 const ConceptSpecializationExpr *E) { 15038 return Success(E->isSatisfied(), E); 15039 } 15040 15041 bool IntExprEvaluator::VisitRequiresExpr(const RequiresExpr *E) { 15042 return Success(E->isSatisfied(), E); 15043 } 15044 15045 bool FixedPointExprEvaluator::VisitUnaryOperator(const UnaryOperator *E) { 15046 switch (E->getOpcode()) { 15047 default: 15048 // Invalid unary operators 15049 return Error(E); 15050 case UO_Plus: 15051 // The result is just the value. 15052 return Visit(E->getSubExpr()); 15053 case UO_Minus: { 15054 if (!Visit(E->getSubExpr())) return false; 15055 if (!Result.isFixedPoint()) 15056 return Error(E); 15057 bool Overflowed; 15058 APFixedPoint Negated = Result.getFixedPoint().negate(&Overflowed); 15059 if (Overflowed && !HandleOverflow(Info, E, Negated, E->getType())) 15060 return false; 15061 return Success(Negated, E); 15062 } 15063 case UO_LNot: { 15064 bool bres; 15065 if (!EvaluateAsBooleanCondition(E->getSubExpr(), bres, Info)) 15066 return false; 15067 return Success(!bres, E); 15068 } 15069 } 15070 } 15071 15072 bool FixedPointExprEvaluator::VisitCastExpr(const CastExpr *E) { 15073 const Expr *SubExpr = E->getSubExpr(); 15074 QualType DestType = E->getType(); 15075 assert(DestType->isFixedPointType() && 15076 "Expected destination type to be a fixed point type"); 15077 auto DestFXSema = Info.Ctx.getFixedPointSemantics(DestType); 15078 15079 switch (E->getCastKind()) { 15080 case CK_FixedPointCast: { 15081 APFixedPoint Src(Info.Ctx.getFixedPointSemantics(SubExpr->getType())); 15082 if (!EvaluateFixedPoint(SubExpr, Src, Info)) 15083 return false; 15084 bool Overflowed; 15085 APFixedPoint Result = Src.convert(DestFXSema, &Overflowed); 15086 if (Overflowed) { 15087 if (Info.checkingForUndefinedBehavior()) 15088 Info.Ctx.getDiagnostics().Report(E->getExprLoc(), 15089 diag::warn_fixedpoint_constant_overflow) 15090 << Result.toString() << E->getType(); 15091 if (!HandleOverflow(Info, E, Result, E->getType())) 15092 return false; 15093 } 15094 return Success(Result, E); 15095 } 15096 case CK_IntegralToFixedPoint: { 15097 APSInt Src; 15098 if (!EvaluateInteger(SubExpr, Src, Info)) 15099 return false; 15100 15101 bool Overflowed; 15102 APFixedPoint IntResult = APFixedPoint::getFromIntValue( 15103 Src, Info.Ctx.getFixedPointSemantics(DestType), &Overflowed); 15104 15105 if (Overflowed) { 15106 if (Info.checkingForUndefinedBehavior()) 15107 Info.Ctx.getDiagnostics().Report(E->getExprLoc(), 15108 diag::warn_fixedpoint_constant_overflow) 15109 << IntResult.toString() << E->getType(); 15110 if (!HandleOverflow(Info, E, IntResult, E->getType())) 15111 return false; 15112 } 15113 15114 return Success(IntResult, E); 15115 } 15116 case CK_FloatingToFixedPoint: { 15117 APFloat Src(0.0); 15118 if (!EvaluateFloat(SubExpr, Src, Info)) 15119 return false; 15120 15121 bool Overflowed; 15122 APFixedPoint Result = APFixedPoint::getFromFloatValue( 15123 Src, Info.Ctx.getFixedPointSemantics(DestType), &Overflowed); 15124 15125 if (Overflowed) { 15126 if (Info.checkingForUndefinedBehavior()) 15127 Info.Ctx.getDiagnostics().Report(E->getExprLoc(), 15128 diag::warn_fixedpoint_constant_overflow) 15129 << Result.toString() << E->getType(); 15130 if (!HandleOverflow(Info, E, Result, E->getType())) 15131 return false; 15132 } 15133 15134 return Success(Result, E); 15135 } 15136 case CK_NoOp: 15137 case CK_LValueToRValue: 15138 return ExprEvaluatorBaseTy::VisitCastExpr(E); 15139 default: 15140 return Error(E); 15141 } 15142 } 15143 15144 bool FixedPointExprEvaluator::VisitBinaryOperator(const BinaryOperator *E) { 15145 if (E->isPtrMemOp() || E->isAssignmentOp() || E->getOpcode() == BO_Comma) 15146 return ExprEvaluatorBaseTy::VisitBinaryOperator(E); 15147 15148 const Expr *LHS = E->getLHS(); 15149 const Expr *RHS = E->getRHS(); 15150 FixedPointSemantics ResultFXSema = 15151 Info.Ctx.getFixedPointSemantics(E->getType()); 15152 15153 APFixedPoint LHSFX(Info.Ctx.getFixedPointSemantics(LHS->getType())); 15154 if (!EvaluateFixedPointOrInteger(LHS, LHSFX, Info)) 15155 return false; 15156 APFixedPoint RHSFX(Info.Ctx.getFixedPointSemantics(RHS->getType())); 15157 if (!EvaluateFixedPointOrInteger(RHS, RHSFX, Info)) 15158 return false; 15159 15160 bool OpOverflow = false, ConversionOverflow = false; 15161 APFixedPoint Result(LHSFX.getSemantics()); 15162 switch (E->getOpcode()) { 15163 case BO_Add: { 15164 Result = LHSFX.add(RHSFX, &OpOverflow) 15165 .convert(ResultFXSema, &ConversionOverflow); 15166 break; 15167 } 15168 case BO_Sub: { 15169 Result = LHSFX.sub(RHSFX, &OpOverflow) 15170 .convert(ResultFXSema, &ConversionOverflow); 15171 break; 15172 } 15173 case BO_Mul: { 15174 Result = LHSFX.mul(RHSFX, &OpOverflow) 15175 .convert(ResultFXSema, &ConversionOverflow); 15176 break; 15177 } 15178 case BO_Div: { 15179 if (RHSFX.getValue() == 0) { 15180 Info.FFDiag(E, diag::note_expr_divide_by_zero); 15181 return false; 15182 } 15183 Result = LHSFX.div(RHSFX, &OpOverflow) 15184 .convert(ResultFXSema, &ConversionOverflow); 15185 break; 15186 } 15187 case BO_Shl: 15188 case BO_Shr: { 15189 FixedPointSemantics LHSSema = LHSFX.getSemantics(); 15190 llvm::APSInt RHSVal = RHSFX.getValue(); 15191 15192 unsigned ShiftBW = 15193 LHSSema.getWidth() - (unsigned)LHSSema.hasUnsignedPadding(); 15194 unsigned Amt = RHSVal.getLimitedValue(ShiftBW - 1); 15195 // Embedded-C 4.1.6.2.2: 15196 // The right operand must be nonnegative and less than the total number 15197 // of (nonpadding) bits of the fixed-point operand ... 15198 if (RHSVal.isNegative()) 15199 Info.CCEDiag(E, diag::note_constexpr_negative_shift) << RHSVal; 15200 else if (Amt != RHSVal) 15201 Info.CCEDiag(E, diag::note_constexpr_large_shift) 15202 << RHSVal << E->getType() << ShiftBW; 15203 15204 if (E->getOpcode() == BO_Shl) 15205 Result = LHSFX.shl(Amt, &OpOverflow); 15206 else 15207 Result = LHSFX.shr(Amt, &OpOverflow); 15208 break; 15209 } 15210 default: 15211 return false; 15212 } 15213 if (OpOverflow || ConversionOverflow) { 15214 if (Info.checkingForUndefinedBehavior()) 15215 Info.Ctx.getDiagnostics().Report(E->getExprLoc(), 15216 diag::warn_fixedpoint_constant_overflow) 15217 << Result.toString() << E->getType(); 15218 if (!HandleOverflow(Info, E, Result, E->getType())) 15219 return false; 15220 } 15221 return Success(Result, E); 15222 } 15223 15224 //===----------------------------------------------------------------------===// 15225 // Float Evaluation 15226 //===----------------------------------------------------------------------===// 15227 15228 namespace { 15229 class FloatExprEvaluator 15230 : public ExprEvaluatorBase<FloatExprEvaluator> { 15231 APFloat &Result; 15232 public: 15233 FloatExprEvaluator(EvalInfo &info, APFloat &result) 15234 : ExprEvaluatorBaseTy(info), Result(result) {} 15235 15236 bool Success(const APValue &V, const Expr *e) { 15237 Result = V.getFloat(); 15238 return true; 15239 } 15240 15241 bool ZeroInitialization(const Expr *E) { 15242 Result = APFloat::getZero(Info.Ctx.getFloatTypeSemantics(E->getType())); 15243 return true; 15244 } 15245 15246 bool VisitCallExpr(const CallExpr *E); 15247 15248 bool VisitUnaryOperator(const UnaryOperator *E); 15249 bool VisitBinaryOperator(const BinaryOperator *E); 15250 bool VisitFloatingLiteral(const FloatingLiteral *E); 15251 bool VisitCastExpr(const CastExpr *E); 15252 15253 bool VisitUnaryReal(const UnaryOperator *E); 15254 bool VisitUnaryImag(const UnaryOperator *E); 15255 15256 // FIXME: Missing: array subscript of vector, member of vector 15257 }; 15258 } // end anonymous namespace 15259 15260 static bool EvaluateFloat(const Expr* E, APFloat& Result, EvalInfo &Info) { 15261 assert(!E->isValueDependent()); 15262 assert(E->isPRValue() && E->getType()->isRealFloatingType()); 15263 return FloatExprEvaluator(Info, Result).Visit(E); 15264 } 15265 15266 static bool TryEvaluateBuiltinNaN(const ASTContext &Context, 15267 QualType ResultTy, 15268 const Expr *Arg, 15269 bool SNaN, 15270 llvm::APFloat &Result) { 15271 const StringLiteral *S = dyn_cast<StringLiteral>(Arg->IgnoreParenCasts()); 15272 if (!S) return false; 15273 15274 const llvm::fltSemantics &Sem = Context.getFloatTypeSemantics(ResultTy); 15275 15276 llvm::APInt fill; 15277 15278 // Treat empty strings as if they were zero. 15279 if (S->getString().empty()) 15280 fill = llvm::APInt(32, 0); 15281 else if (S->getString().getAsInteger(0, fill)) 15282 return false; 15283 15284 if (Context.getTargetInfo().isNan2008()) { 15285 if (SNaN) 15286 Result = llvm::APFloat::getSNaN(Sem, false, &fill); 15287 else 15288 Result = llvm::APFloat::getQNaN(Sem, false, &fill); 15289 } else { 15290 // Prior to IEEE 754-2008, architectures were allowed to choose whether 15291 // the first bit of their significand was set for qNaN or sNaN. MIPS chose 15292 // a different encoding to what became a standard in 2008, and for pre- 15293 // 2008 revisions, MIPS interpreted sNaN-2008 as qNan and qNaN-2008 as 15294 // sNaN. This is now known as "legacy NaN" encoding. 15295 if (SNaN) 15296 Result = llvm::APFloat::getQNaN(Sem, false, &fill); 15297 else 15298 Result = llvm::APFloat::getSNaN(Sem, false, &fill); 15299 } 15300 15301 return true; 15302 } 15303 15304 bool FloatExprEvaluator::VisitCallExpr(const CallExpr *E) { 15305 if (!IsConstantEvaluatedBuiltinCall(E)) 15306 return ExprEvaluatorBaseTy::VisitCallExpr(E); 15307 15308 switch (E->getBuiltinCallee()) { 15309 default: 15310 return false; 15311 15312 case Builtin::BI__builtin_huge_val: 15313 case Builtin::BI__builtin_huge_valf: 15314 case Builtin::BI__builtin_huge_vall: 15315 case Builtin::BI__builtin_huge_valf16: 15316 case Builtin::BI__builtin_huge_valf128: 15317 case Builtin::BI__builtin_inf: 15318 case Builtin::BI__builtin_inff: 15319 case Builtin::BI__builtin_infl: 15320 case Builtin::BI__builtin_inff16: 15321 case Builtin::BI__builtin_inff128: { 15322 const llvm::fltSemantics &Sem = 15323 Info.Ctx.getFloatTypeSemantics(E->getType()); 15324 Result = llvm::APFloat::getInf(Sem); 15325 return true; 15326 } 15327 15328 case Builtin::BI__builtin_nans: 15329 case Builtin::BI__builtin_nansf: 15330 case Builtin::BI__builtin_nansl: 15331 case Builtin::BI__builtin_nansf16: 15332 case Builtin::BI__builtin_nansf128: 15333 if (!TryEvaluateBuiltinNaN(Info.Ctx, E->getType(), E->getArg(0), 15334 true, Result)) 15335 return Error(E); 15336 return true; 15337 15338 case Builtin::BI__builtin_nan: 15339 case Builtin::BI__builtin_nanf: 15340 case Builtin::BI__builtin_nanl: 15341 case Builtin::BI__builtin_nanf16: 15342 case Builtin::BI__builtin_nanf128: 15343 // If this is __builtin_nan() turn this into a nan, otherwise we 15344 // can't constant fold it. 15345 if (!TryEvaluateBuiltinNaN(Info.Ctx, E->getType(), E->getArg(0), 15346 false, Result)) 15347 return Error(E); 15348 return true; 15349 15350 case Builtin::BI__builtin_fabs: 15351 case Builtin::BI__builtin_fabsf: 15352 case Builtin::BI__builtin_fabsl: 15353 case Builtin::BI__builtin_fabsf128: 15354 // The C standard says "fabs raises no floating-point exceptions, 15355 // even if x is a signaling NaN. The returned value is independent of 15356 // the current rounding direction mode." Therefore constant folding can 15357 // proceed without regard to the floating point settings. 15358 // Reference, WG14 N2478 F.10.4.3 15359 if (!EvaluateFloat(E->getArg(0), Result, Info)) 15360 return false; 15361 15362 if (Result.isNegative()) 15363 Result.changeSign(); 15364 return true; 15365 15366 case Builtin::BI__arithmetic_fence: 15367 return EvaluateFloat(E->getArg(0), Result, Info); 15368 15369 // FIXME: Builtin::BI__builtin_powi 15370 // FIXME: Builtin::BI__builtin_powif 15371 // FIXME: Builtin::BI__builtin_powil 15372 15373 case Builtin::BI__builtin_copysign: 15374 case Builtin::BI__builtin_copysignf: 15375 case Builtin::BI__builtin_copysignl: 15376 case Builtin::BI__builtin_copysignf128: { 15377 APFloat RHS(0.); 15378 if (!EvaluateFloat(E->getArg(0), Result, Info) || 15379 !EvaluateFloat(E->getArg(1), RHS, Info)) 15380 return false; 15381 Result.copySign(RHS); 15382 return true; 15383 } 15384 15385 case Builtin::BI__builtin_fmax: 15386 case Builtin::BI__builtin_fmaxf: 15387 case Builtin::BI__builtin_fmaxl: 15388 case Builtin::BI__builtin_fmaxf16: 15389 case Builtin::BI__builtin_fmaxf128: { 15390 // TODO: Handle sNaN. 15391 APFloat RHS(0.); 15392 if (!EvaluateFloat(E->getArg(0), Result, Info) || 15393 !EvaluateFloat(E->getArg(1), RHS, Info)) 15394 return false; 15395 // When comparing zeroes, return +0.0 if one of the zeroes is positive. 15396 if (Result.isZero() && RHS.isZero() && Result.isNegative()) 15397 Result = RHS; 15398 else if (Result.isNaN() || RHS > Result) 15399 Result = RHS; 15400 return true; 15401 } 15402 15403 case Builtin::BI__builtin_fmin: 15404 case Builtin::BI__builtin_fminf: 15405 case Builtin::BI__builtin_fminl: 15406 case Builtin::BI__builtin_fminf16: 15407 case Builtin::BI__builtin_fminf128: { 15408 // TODO: Handle sNaN. 15409 APFloat RHS(0.); 15410 if (!EvaluateFloat(E->getArg(0), Result, Info) || 15411 !EvaluateFloat(E->getArg(1), RHS, Info)) 15412 return false; 15413 // When comparing zeroes, return -0.0 if one of the zeroes is negative. 15414 if (Result.isZero() && RHS.isZero() && RHS.isNegative()) 15415 Result = RHS; 15416 else if (Result.isNaN() || RHS < Result) 15417 Result = RHS; 15418 return true; 15419 } 15420 15421 case Builtin::BI__builtin_fmaximum_num: 15422 case Builtin::BI__builtin_fmaximum_numf: 15423 case Builtin::BI__builtin_fmaximum_numl: 15424 case Builtin::BI__builtin_fmaximum_numf16: 15425 case Builtin::BI__builtin_fmaximum_numf128: { 15426 APFloat RHS(0.); 15427 if (!EvaluateFloat(E->getArg(0), Result, Info) || 15428 !EvaluateFloat(E->getArg(1), RHS, Info)) 15429 return false; 15430 Result = maximumnum(Result, RHS); 15431 return true; 15432 } 15433 15434 case Builtin::BI__builtin_fminimum_num: 15435 case Builtin::BI__builtin_fminimum_numf: 15436 case Builtin::BI__builtin_fminimum_numl: 15437 case Builtin::BI__builtin_fminimum_numf16: 15438 case Builtin::BI__builtin_fminimum_numf128: { 15439 APFloat RHS(0.); 15440 if (!EvaluateFloat(E->getArg(0), Result, Info) || 15441 !EvaluateFloat(E->getArg(1), RHS, Info)) 15442 return false; 15443 Result = minimumnum(Result, RHS); 15444 return true; 15445 } 15446 } 15447 } 15448 15449 bool FloatExprEvaluator::VisitUnaryReal(const UnaryOperator *E) { 15450 if (E->getSubExpr()->getType()->isAnyComplexType()) { 15451 ComplexValue CV; 15452 if (!EvaluateComplex(E->getSubExpr(), CV, Info)) 15453 return false; 15454 Result = CV.FloatReal; 15455 return true; 15456 } 15457 15458 return Visit(E->getSubExpr()); 15459 } 15460 15461 bool FloatExprEvaluator::VisitUnaryImag(const UnaryOperator *E) { 15462 if (E->getSubExpr()->getType()->isAnyComplexType()) { 15463 ComplexValue CV; 15464 if (!EvaluateComplex(E->getSubExpr(), CV, Info)) 15465 return false; 15466 Result = CV.FloatImag; 15467 return true; 15468 } 15469 15470 VisitIgnoredValue(E->getSubExpr()); 15471 const llvm::fltSemantics &Sem = Info.Ctx.getFloatTypeSemantics(E->getType()); 15472 Result = llvm::APFloat::getZero(Sem); 15473 return true; 15474 } 15475 15476 bool FloatExprEvaluator::VisitUnaryOperator(const UnaryOperator *E) { 15477 switch (E->getOpcode()) { 15478 default: return Error(E); 15479 case UO_Plus: 15480 return EvaluateFloat(E->getSubExpr(), Result, Info); 15481 case UO_Minus: 15482 // In C standard, WG14 N2478 F.3 p4 15483 // "the unary - raises no floating point exceptions, 15484 // even if the operand is signalling." 15485 if (!EvaluateFloat(E->getSubExpr(), Result, Info)) 15486 return false; 15487 Result.changeSign(); 15488 return true; 15489 } 15490 } 15491 15492 bool FloatExprEvaluator::VisitBinaryOperator(const BinaryOperator *E) { 15493 if (E->isPtrMemOp() || E->isAssignmentOp() || E->getOpcode() == BO_Comma) 15494 return ExprEvaluatorBaseTy::VisitBinaryOperator(E); 15495 15496 APFloat RHS(0.0); 15497 bool LHSOK = EvaluateFloat(E->getLHS(), Result, Info); 15498 if (!LHSOK && !Info.noteFailure()) 15499 return false; 15500 return EvaluateFloat(E->getRHS(), RHS, Info) && LHSOK && 15501 handleFloatFloatBinOp(Info, E, Result, E->getOpcode(), RHS); 15502 } 15503 15504 bool FloatExprEvaluator::VisitFloatingLiteral(const FloatingLiteral *E) { 15505 Result = E->getValue(); 15506 return true; 15507 } 15508 15509 bool FloatExprEvaluator::VisitCastExpr(const CastExpr *E) { 15510 const Expr* SubExpr = E->getSubExpr(); 15511 15512 switch (E->getCastKind()) { 15513 default: 15514 return ExprEvaluatorBaseTy::VisitCastExpr(E); 15515 15516 case CK_IntegralToFloating: { 15517 APSInt IntResult; 15518 const FPOptions FPO = E->getFPFeaturesInEffect( 15519 Info.Ctx.getLangOpts()); 15520 return EvaluateInteger(SubExpr, IntResult, Info) && 15521 HandleIntToFloatCast(Info, E, FPO, SubExpr->getType(), 15522 IntResult, E->getType(), Result); 15523 } 15524 15525 case CK_FixedPointToFloating: { 15526 APFixedPoint FixResult(Info.Ctx.getFixedPointSemantics(SubExpr->getType())); 15527 if (!EvaluateFixedPoint(SubExpr, FixResult, Info)) 15528 return false; 15529 Result = 15530 FixResult.convertToFloat(Info.Ctx.getFloatTypeSemantics(E->getType())); 15531 return true; 15532 } 15533 15534 case CK_FloatingCast: { 15535 if (!Visit(SubExpr)) 15536 return false; 15537 return HandleFloatToFloatCast(Info, E, SubExpr->getType(), E->getType(), 15538 Result); 15539 } 15540 15541 case CK_FloatingComplexToReal: { 15542 ComplexValue V; 15543 if (!EvaluateComplex(SubExpr, V, Info)) 15544 return false; 15545 Result = V.getComplexFloatReal(); 15546 return true; 15547 } 15548 case CK_HLSLVectorTruncation: { 15549 APValue Val; 15550 if (!EvaluateVector(SubExpr, Val, Info)) 15551 return Error(E); 15552 return Success(Val.getVectorElt(0), E); 15553 } 15554 } 15555 } 15556 15557 //===----------------------------------------------------------------------===// 15558 // Complex Evaluation (for float and integer) 15559 //===----------------------------------------------------------------------===// 15560 15561 namespace { 15562 class ComplexExprEvaluator 15563 : public ExprEvaluatorBase<ComplexExprEvaluator> { 15564 ComplexValue &Result; 15565 15566 public: 15567 ComplexExprEvaluator(EvalInfo &info, ComplexValue &Result) 15568 : ExprEvaluatorBaseTy(info), Result(Result) {} 15569 15570 bool Success(const APValue &V, const Expr *e) { 15571 Result.setFrom(V); 15572 return true; 15573 } 15574 15575 bool ZeroInitialization(const Expr *E); 15576 15577 //===--------------------------------------------------------------------===// 15578 // Visitor Methods 15579 //===--------------------------------------------------------------------===// 15580 15581 bool VisitImaginaryLiteral(const ImaginaryLiteral *E); 15582 bool VisitCastExpr(const CastExpr *E); 15583 bool VisitBinaryOperator(const BinaryOperator *E); 15584 bool VisitUnaryOperator(const UnaryOperator *E); 15585 bool VisitInitListExpr(const InitListExpr *E); 15586 bool VisitCallExpr(const CallExpr *E); 15587 }; 15588 } // end anonymous namespace 15589 15590 static bool EvaluateComplex(const Expr *E, ComplexValue &Result, 15591 EvalInfo &Info) { 15592 assert(!E->isValueDependent()); 15593 assert(E->isPRValue() && E->getType()->isAnyComplexType()); 15594 return ComplexExprEvaluator(Info, Result).Visit(E); 15595 } 15596 15597 bool ComplexExprEvaluator::ZeroInitialization(const Expr *E) { 15598 QualType ElemTy = E->getType()->castAs<ComplexType>()->getElementType(); 15599 if (ElemTy->isRealFloatingType()) { 15600 Result.makeComplexFloat(); 15601 APFloat Zero = APFloat::getZero(Info.Ctx.getFloatTypeSemantics(ElemTy)); 15602 Result.FloatReal = Zero; 15603 Result.FloatImag = Zero; 15604 } else { 15605 Result.makeComplexInt(); 15606 APSInt Zero = Info.Ctx.MakeIntValue(0, ElemTy); 15607 Result.IntReal = Zero; 15608 Result.IntImag = Zero; 15609 } 15610 return true; 15611 } 15612 15613 bool ComplexExprEvaluator::VisitImaginaryLiteral(const ImaginaryLiteral *E) { 15614 const Expr* SubExpr = E->getSubExpr(); 15615 15616 if (SubExpr->getType()->isRealFloatingType()) { 15617 Result.makeComplexFloat(); 15618 APFloat &Imag = Result.FloatImag; 15619 if (!EvaluateFloat(SubExpr, Imag, Info)) 15620 return false; 15621 15622 Result.FloatReal = APFloat(Imag.getSemantics()); 15623 return true; 15624 } else { 15625 assert(SubExpr->getType()->isIntegerType() && 15626 "Unexpected imaginary literal."); 15627 15628 Result.makeComplexInt(); 15629 APSInt &Imag = Result.IntImag; 15630 if (!EvaluateInteger(SubExpr, Imag, Info)) 15631 return false; 15632 15633 Result.IntReal = APSInt(Imag.getBitWidth(), !Imag.isSigned()); 15634 return true; 15635 } 15636 } 15637 15638 bool ComplexExprEvaluator::VisitCastExpr(const CastExpr *E) { 15639 15640 switch (E->getCastKind()) { 15641 case CK_BitCast: 15642 case CK_BaseToDerived: 15643 case CK_DerivedToBase: 15644 case CK_UncheckedDerivedToBase: 15645 case CK_Dynamic: 15646 case CK_ToUnion: 15647 case CK_ArrayToPointerDecay: 15648 case CK_FunctionToPointerDecay: 15649 case CK_NullToPointer: 15650 case CK_NullToMemberPointer: 15651 case CK_BaseToDerivedMemberPointer: 15652 case CK_DerivedToBaseMemberPointer: 15653 case CK_MemberPointerToBoolean: 15654 case CK_ReinterpretMemberPointer: 15655 case CK_ConstructorConversion: 15656 case CK_IntegralToPointer: 15657 case CK_PointerToIntegral: 15658 case CK_PointerToBoolean: 15659 case CK_ToVoid: 15660 case CK_VectorSplat: 15661 case CK_IntegralCast: 15662 case CK_BooleanToSignedIntegral: 15663 case CK_IntegralToBoolean: 15664 case CK_IntegralToFloating: 15665 case CK_FloatingToIntegral: 15666 case CK_FloatingToBoolean: 15667 case CK_FloatingCast: 15668 case CK_CPointerToObjCPointerCast: 15669 case CK_BlockPointerToObjCPointerCast: 15670 case CK_AnyPointerToBlockPointerCast: 15671 case CK_ObjCObjectLValueCast: 15672 case CK_FloatingComplexToReal: 15673 case CK_FloatingComplexToBoolean: 15674 case CK_IntegralComplexToReal: 15675 case CK_IntegralComplexToBoolean: 15676 case CK_ARCProduceObject: 15677 case CK_ARCConsumeObject: 15678 case CK_ARCReclaimReturnedObject: 15679 case CK_ARCExtendBlockObject: 15680 case CK_CopyAndAutoreleaseBlockObject: 15681 case CK_BuiltinFnToFnPtr: 15682 case CK_ZeroToOCLOpaqueType: 15683 case CK_NonAtomicToAtomic: 15684 case CK_AddressSpaceConversion: 15685 case CK_IntToOCLSampler: 15686 case CK_FloatingToFixedPoint: 15687 case CK_FixedPointToFloating: 15688 case CK_FixedPointCast: 15689 case CK_FixedPointToBoolean: 15690 case CK_FixedPointToIntegral: 15691 case CK_IntegralToFixedPoint: 15692 case CK_MatrixCast: 15693 case CK_HLSLVectorTruncation: 15694 llvm_unreachable("invalid cast kind for complex value"); 15695 15696 case CK_LValueToRValue: 15697 case CK_AtomicToNonAtomic: 15698 case CK_NoOp: 15699 case CK_LValueToRValueBitCast: 15700 case CK_HLSLArrayRValue: 15701 return ExprEvaluatorBaseTy::VisitCastExpr(E); 15702 15703 case CK_Dependent: 15704 case CK_LValueBitCast: 15705 case CK_UserDefinedConversion: 15706 return Error(E); 15707 15708 case CK_FloatingRealToComplex: { 15709 APFloat &Real = Result.FloatReal; 15710 if (!EvaluateFloat(E->getSubExpr(), Real, Info)) 15711 return false; 15712 15713 Result.makeComplexFloat(); 15714 Result.FloatImag = APFloat(Real.getSemantics()); 15715 return true; 15716 } 15717 15718 case CK_FloatingComplexCast: { 15719 if (!Visit(E->getSubExpr())) 15720 return false; 15721 15722 QualType To = E->getType()->castAs<ComplexType>()->getElementType(); 15723 QualType From 15724 = E->getSubExpr()->getType()->castAs<ComplexType>()->getElementType(); 15725 15726 return HandleFloatToFloatCast(Info, E, From, To, Result.FloatReal) && 15727 HandleFloatToFloatCast(Info, E, From, To, Result.FloatImag); 15728 } 15729 15730 case CK_FloatingComplexToIntegralComplex: { 15731 if (!Visit(E->getSubExpr())) 15732 return false; 15733 15734 QualType To = E->getType()->castAs<ComplexType>()->getElementType(); 15735 QualType From 15736 = E->getSubExpr()->getType()->castAs<ComplexType>()->getElementType(); 15737 Result.makeComplexInt(); 15738 return HandleFloatToIntCast(Info, E, From, Result.FloatReal, 15739 To, Result.IntReal) && 15740 HandleFloatToIntCast(Info, E, From, Result.FloatImag, 15741 To, Result.IntImag); 15742 } 15743 15744 case CK_IntegralRealToComplex: { 15745 APSInt &Real = Result.IntReal; 15746 if (!EvaluateInteger(E->getSubExpr(), Real, Info)) 15747 return false; 15748 15749 Result.makeComplexInt(); 15750 Result.IntImag = APSInt(Real.getBitWidth(), !Real.isSigned()); 15751 return true; 15752 } 15753 15754 case CK_IntegralComplexCast: { 15755 if (!Visit(E->getSubExpr())) 15756 return false; 15757 15758 QualType To = E->getType()->castAs<ComplexType>()->getElementType(); 15759 QualType From 15760 = E->getSubExpr()->getType()->castAs<ComplexType>()->getElementType(); 15761 15762 Result.IntReal = HandleIntToIntCast(Info, E, To, From, Result.IntReal); 15763 Result.IntImag = HandleIntToIntCast(Info, E, To, From, Result.IntImag); 15764 return true; 15765 } 15766 15767 case CK_IntegralComplexToFloatingComplex: { 15768 if (!Visit(E->getSubExpr())) 15769 return false; 15770 15771 const FPOptions FPO = E->getFPFeaturesInEffect( 15772 Info.Ctx.getLangOpts()); 15773 QualType To = E->getType()->castAs<ComplexType>()->getElementType(); 15774 QualType From 15775 = E->getSubExpr()->getType()->castAs<ComplexType>()->getElementType(); 15776 Result.makeComplexFloat(); 15777 return HandleIntToFloatCast(Info, E, FPO, From, Result.IntReal, 15778 To, Result.FloatReal) && 15779 HandleIntToFloatCast(Info, E, FPO, From, Result.IntImag, 15780 To, Result.FloatImag); 15781 } 15782 } 15783 15784 llvm_unreachable("unknown cast resulting in complex value"); 15785 } 15786 15787 void HandleComplexComplexMul(APFloat A, APFloat B, APFloat C, APFloat D, 15788 APFloat &ResR, APFloat &ResI) { 15789 // This is an implementation of complex multiplication according to the 15790 // constraints laid out in C11 Annex G. The implementation uses the 15791 // following naming scheme: 15792 // (a + ib) * (c + id) 15793 15794 APFloat AC = A * C; 15795 APFloat BD = B * D; 15796 APFloat AD = A * D; 15797 APFloat BC = B * C; 15798 ResR = AC - BD; 15799 ResI = AD + BC; 15800 if (ResR.isNaN() && ResI.isNaN()) { 15801 bool Recalc = false; 15802 if (A.isInfinity() || B.isInfinity()) { 15803 A = APFloat::copySign(APFloat(A.getSemantics(), A.isInfinity() ? 1 : 0), 15804 A); 15805 B = APFloat::copySign(APFloat(B.getSemantics(), B.isInfinity() ? 1 : 0), 15806 B); 15807 if (C.isNaN()) 15808 C = APFloat::copySign(APFloat(C.getSemantics()), C); 15809 if (D.isNaN()) 15810 D = APFloat::copySign(APFloat(D.getSemantics()), D); 15811 Recalc = true; 15812 } 15813 if (C.isInfinity() || D.isInfinity()) { 15814 C = APFloat::copySign(APFloat(C.getSemantics(), C.isInfinity() ? 1 : 0), 15815 C); 15816 D = APFloat::copySign(APFloat(D.getSemantics(), D.isInfinity() ? 1 : 0), 15817 D); 15818 if (A.isNaN()) 15819 A = APFloat::copySign(APFloat(A.getSemantics()), A); 15820 if (B.isNaN()) 15821 B = APFloat::copySign(APFloat(B.getSemantics()), B); 15822 Recalc = true; 15823 } 15824 if (!Recalc && (AC.isInfinity() || BD.isInfinity() || AD.isInfinity() || 15825 BC.isInfinity())) { 15826 if (A.isNaN()) 15827 A = APFloat::copySign(APFloat(A.getSemantics()), A); 15828 if (B.isNaN()) 15829 B = APFloat::copySign(APFloat(B.getSemantics()), B); 15830 if (C.isNaN()) 15831 C = APFloat::copySign(APFloat(C.getSemantics()), C); 15832 if (D.isNaN()) 15833 D = APFloat::copySign(APFloat(D.getSemantics()), D); 15834 Recalc = true; 15835 } 15836 if (Recalc) { 15837 ResR = APFloat::getInf(A.getSemantics()) * (A * C - B * D); 15838 ResI = APFloat::getInf(A.getSemantics()) * (A * D + B * C); 15839 } 15840 } 15841 } 15842 15843 void HandleComplexComplexDiv(APFloat A, APFloat B, APFloat C, APFloat D, 15844 APFloat &ResR, APFloat &ResI) { 15845 // This is an implementation of complex division according to the 15846 // constraints laid out in C11 Annex G. The implementation uses the 15847 // following naming scheme: 15848 // (a + ib) / (c + id) 15849 15850 int DenomLogB = 0; 15851 APFloat MaxCD = maxnum(abs(C), abs(D)); 15852 if (MaxCD.isFinite()) { 15853 DenomLogB = ilogb(MaxCD); 15854 C = scalbn(C, -DenomLogB, APFloat::rmNearestTiesToEven); 15855 D = scalbn(D, -DenomLogB, APFloat::rmNearestTiesToEven); 15856 } 15857 APFloat Denom = C * C + D * D; 15858 ResR = 15859 scalbn((A * C + B * D) / Denom, -DenomLogB, APFloat::rmNearestTiesToEven); 15860 ResI = 15861 scalbn((B * C - A * D) / Denom, -DenomLogB, APFloat::rmNearestTiesToEven); 15862 if (ResR.isNaN() && ResI.isNaN()) { 15863 if (Denom.isPosZero() && (!A.isNaN() || !B.isNaN())) { 15864 ResR = APFloat::getInf(ResR.getSemantics(), C.isNegative()) * A; 15865 ResI = APFloat::getInf(ResR.getSemantics(), C.isNegative()) * B; 15866 } else if ((A.isInfinity() || B.isInfinity()) && C.isFinite() && 15867 D.isFinite()) { 15868 A = APFloat::copySign(APFloat(A.getSemantics(), A.isInfinity() ? 1 : 0), 15869 A); 15870 B = APFloat::copySign(APFloat(B.getSemantics(), B.isInfinity() ? 1 : 0), 15871 B); 15872 ResR = APFloat::getInf(ResR.getSemantics()) * (A * C + B * D); 15873 ResI = APFloat::getInf(ResI.getSemantics()) * (B * C - A * D); 15874 } else if (MaxCD.isInfinity() && A.isFinite() && B.isFinite()) { 15875 C = APFloat::copySign(APFloat(C.getSemantics(), C.isInfinity() ? 1 : 0), 15876 C); 15877 D = APFloat::copySign(APFloat(D.getSemantics(), D.isInfinity() ? 1 : 0), 15878 D); 15879 ResR = APFloat::getZero(ResR.getSemantics()) * (A * C + B * D); 15880 ResI = APFloat::getZero(ResI.getSemantics()) * (B * C - A * D); 15881 } 15882 } 15883 } 15884 15885 bool ComplexExprEvaluator::VisitBinaryOperator(const BinaryOperator *E) { 15886 if (E->isPtrMemOp() || E->isAssignmentOp() || E->getOpcode() == BO_Comma) 15887 return ExprEvaluatorBaseTy::VisitBinaryOperator(E); 15888 15889 // Track whether the LHS or RHS is real at the type system level. When this is 15890 // the case we can simplify our evaluation strategy. 15891 bool LHSReal = false, RHSReal = false; 15892 15893 bool LHSOK; 15894 if (E->getLHS()->getType()->isRealFloatingType()) { 15895 LHSReal = true; 15896 APFloat &Real = Result.FloatReal; 15897 LHSOK = EvaluateFloat(E->getLHS(), Real, Info); 15898 if (LHSOK) { 15899 Result.makeComplexFloat(); 15900 Result.FloatImag = APFloat(Real.getSemantics()); 15901 } 15902 } else { 15903 LHSOK = Visit(E->getLHS()); 15904 } 15905 if (!LHSOK && !Info.noteFailure()) 15906 return false; 15907 15908 ComplexValue RHS; 15909 if (E->getRHS()->getType()->isRealFloatingType()) { 15910 RHSReal = true; 15911 APFloat &Real = RHS.FloatReal; 15912 if (!EvaluateFloat(E->getRHS(), Real, Info) || !LHSOK) 15913 return false; 15914 RHS.makeComplexFloat(); 15915 RHS.FloatImag = APFloat(Real.getSemantics()); 15916 } else if (!EvaluateComplex(E->getRHS(), RHS, Info) || !LHSOK) 15917 return false; 15918 15919 assert(!(LHSReal && RHSReal) && 15920 "Cannot have both operands of a complex operation be real."); 15921 switch (E->getOpcode()) { 15922 default: return Error(E); 15923 case BO_Add: 15924 if (Result.isComplexFloat()) { 15925 Result.getComplexFloatReal().add(RHS.getComplexFloatReal(), 15926 APFloat::rmNearestTiesToEven); 15927 if (LHSReal) 15928 Result.getComplexFloatImag() = RHS.getComplexFloatImag(); 15929 else if (!RHSReal) 15930 Result.getComplexFloatImag().add(RHS.getComplexFloatImag(), 15931 APFloat::rmNearestTiesToEven); 15932 } else { 15933 Result.getComplexIntReal() += RHS.getComplexIntReal(); 15934 Result.getComplexIntImag() += RHS.getComplexIntImag(); 15935 } 15936 break; 15937 case BO_Sub: 15938 if (Result.isComplexFloat()) { 15939 Result.getComplexFloatReal().subtract(RHS.getComplexFloatReal(), 15940 APFloat::rmNearestTiesToEven); 15941 if (LHSReal) { 15942 Result.getComplexFloatImag() = RHS.getComplexFloatImag(); 15943 Result.getComplexFloatImag().changeSign(); 15944 } else if (!RHSReal) { 15945 Result.getComplexFloatImag().subtract(RHS.getComplexFloatImag(), 15946 APFloat::rmNearestTiesToEven); 15947 } 15948 } else { 15949 Result.getComplexIntReal() -= RHS.getComplexIntReal(); 15950 Result.getComplexIntImag() -= RHS.getComplexIntImag(); 15951 } 15952 break; 15953 case BO_Mul: 15954 if (Result.isComplexFloat()) { 15955 // This is an implementation of complex multiplication according to the 15956 // constraints laid out in C11 Annex G. The implementation uses the 15957 // following naming scheme: 15958 // (a + ib) * (c + id) 15959 ComplexValue LHS = Result; 15960 APFloat &A = LHS.getComplexFloatReal(); 15961 APFloat &B = LHS.getComplexFloatImag(); 15962 APFloat &C = RHS.getComplexFloatReal(); 15963 APFloat &D = RHS.getComplexFloatImag(); 15964 APFloat &ResR = Result.getComplexFloatReal(); 15965 APFloat &ResI = Result.getComplexFloatImag(); 15966 if (LHSReal) { 15967 assert(!RHSReal && "Cannot have two real operands for a complex op!"); 15968 ResR = A; 15969 ResI = A; 15970 // ResR = A * C; 15971 // ResI = A * D; 15972 if (!handleFloatFloatBinOp(Info, E, ResR, BO_Mul, C) || 15973 !handleFloatFloatBinOp(Info, E, ResI, BO_Mul, D)) 15974 return false; 15975 } else if (RHSReal) { 15976 // ResR = C * A; 15977 // ResI = C * B; 15978 ResR = C; 15979 ResI = C; 15980 if (!handleFloatFloatBinOp(Info, E, ResR, BO_Mul, A) || 15981 !handleFloatFloatBinOp(Info, E, ResI, BO_Mul, B)) 15982 return false; 15983 } else { 15984 HandleComplexComplexMul(A, B, C, D, ResR, ResI); 15985 } 15986 } else { 15987 ComplexValue LHS = Result; 15988 Result.getComplexIntReal() = 15989 (LHS.getComplexIntReal() * RHS.getComplexIntReal() - 15990 LHS.getComplexIntImag() * RHS.getComplexIntImag()); 15991 Result.getComplexIntImag() = 15992 (LHS.getComplexIntReal() * RHS.getComplexIntImag() + 15993 LHS.getComplexIntImag() * RHS.getComplexIntReal()); 15994 } 15995 break; 15996 case BO_Div: 15997 if (Result.isComplexFloat()) { 15998 // This is an implementation of complex division according to the 15999 // constraints laid out in C11 Annex G. The implementation uses the 16000 // following naming scheme: 16001 // (a + ib) / (c + id) 16002 ComplexValue LHS = Result; 16003 APFloat &A = LHS.getComplexFloatReal(); 16004 APFloat &B = LHS.getComplexFloatImag(); 16005 APFloat &C = RHS.getComplexFloatReal(); 16006 APFloat &D = RHS.getComplexFloatImag(); 16007 APFloat &ResR = Result.getComplexFloatReal(); 16008 APFloat &ResI = Result.getComplexFloatImag(); 16009 if (RHSReal) { 16010 ResR = A; 16011 ResI = B; 16012 // ResR = A / C; 16013 // ResI = B / C; 16014 if (!handleFloatFloatBinOp(Info, E, ResR, BO_Div, C) || 16015 !handleFloatFloatBinOp(Info, E, ResI, BO_Div, C)) 16016 return false; 16017 } else { 16018 if (LHSReal) { 16019 // No real optimizations we can do here, stub out with zero. 16020 B = APFloat::getZero(A.getSemantics()); 16021 } 16022 HandleComplexComplexDiv(A, B, C, D, ResR, ResI); 16023 } 16024 } else { 16025 ComplexValue LHS = Result; 16026 APSInt Den = RHS.getComplexIntReal() * RHS.getComplexIntReal() + 16027 RHS.getComplexIntImag() * RHS.getComplexIntImag(); 16028 if (Den.isZero()) 16029 return Error(E, diag::note_expr_divide_by_zero); 16030 16031 Result.getComplexIntReal() = 16032 (LHS.getComplexIntReal() * RHS.getComplexIntReal() + 16033 LHS.getComplexIntImag() * RHS.getComplexIntImag()) / Den; 16034 Result.getComplexIntImag() = 16035 (LHS.getComplexIntImag() * RHS.getComplexIntReal() - 16036 LHS.getComplexIntReal() * RHS.getComplexIntImag()) / Den; 16037 } 16038 break; 16039 } 16040 16041 return true; 16042 } 16043 16044 bool ComplexExprEvaluator::VisitUnaryOperator(const UnaryOperator *E) { 16045 // Get the operand value into 'Result'. 16046 if (!Visit(E->getSubExpr())) 16047 return false; 16048 16049 switch (E->getOpcode()) { 16050 default: 16051 return Error(E); 16052 case UO_Extension: 16053 return true; 16054 case UO_Plus: 16055 // The result is always just the subexpr. 16056 return true; 16057 case UO_Minus: 16058 if (Result.isComplexFloat()) { 16059 Result.getComplexFloatReal().changeSign(); 16060 Result.getComplexFloatImag().changeSign(); 16061 } 16062 else { 16063 Result.getComplexIntReal() = -Result.getComplexIntReal(); 16064 Result.getComplexIntImag() = -Result.getComplexIntImag(); 16065 } 16066 return true; 16067 case UO_Not: 16068 if (Result.isComplexFloat()) 16069 Result.getComplexFloatImag().changeSign(); 16070 else 16071 Result.getComplexIntImag() = -Result.getComplexIntImag(); 16072 return true; 16073 } 16074 } 16075 16076 bool ComplexExprEvaluator::VisitInitListExpr(const InitListExpr *E) { 16077 if (E->getNumInits() == 2) { 16078 if (E->getType()->isComplexType()) { 16079 Result.makeComplexFloat(); 16080 if (!EvaluateFloat(E->getInit(0), Result.FloatReal, Info)) 16081 return false; 16082 if (!EvaluateFloat(E->getInit(1), Result.FloatImag, Info)) 16083 return false; 16084 } else { 16085 Result.makeComplexInt(); 16086 if (!EvaluateInteger(E->getInit(0), Result.IntReal, Info)) 16087 return false; 16088 if (!EvaluateInteger(E->getInit(1), Result.IntImag, Info)) 16089 return false; 16090 } 16091 return true; 16092 } 16093 return ExprEvaluatorBaseTy::VisitInitListExpr(E); 16094 } 16095 16096 bool ComplexExprEvaluator::VisitCallExpr(const CallExpr *E) { 16097 if (!IsConstantEvaluatedBuiltinCall(E)) 16098 return ExprEvaluatorBaseTy::VisitCallExpr(E); 16099 16100 switch (E->getBuiltinCallee()) { 16101 case Builtin::BI__builtin_complex: 16102 Result.makeComplexFloat(); 16103 if (!EvaluateFloat(E->getArg(0), Result.FloatReal, Info)) 16104 return false; 16105 if (!EvaluateFloat(E->getArg(1), Result.FloatImag, Info)) 16106 return false; 16107 return true; 16108 16109 default: 16110 return false; 16111 } 16112 } 16113 16114 //===----------------------------------------------------------------------===// 16115 // Atomic expression evaluation, essentially just handling the NonAtomicToAtomic 16116 // implicit conversion. 16117 //===----------------------------------------------------------------------===// 16118 16119 namespace { 16120 class AtomicExprEvaluator : 16121 public ExprEvaluatorBase<AtomicExprEvaluator> { 16122 const LValue *This; 16123 APValue &Result; 16124 public: 16125 AtomicExprEvaluator(EvalInfo &Info, const LValue *This, APValue &Result) 16126 : ExprEvaluatorBaseTy(Info), This(This), Result(Result) {} 16127 16128 bool Success(const APValue &V, const Expr *E) { 16129 Result = V; 16130 return true; 16131 } 16132 16133 bool ZeroInitialization(const Expr *E) { 16134 ImplicitValueInitExpr VIE( 16135 E->getType()->castAs<AtomicType>()->getValueType()); 16136 // For atomic-qualified class (and array) types in C++, initialize the 16137 // _Atomic-wrapped subobject directly, in-place. 16138 return This ? EvaluateInPlace(Result, Info, *This, &VIE) 16139 : Evaluate(Result, Info, &VIE); 16140 } 16141 16142 bool VisitCastExpr(const CastExpr *E) { 16143 switch (E->getCastKind()) { 16144 default: 16145 return ExprEvaluatorBaseTy::VisitCastExpr(E); 16146 case CK_NullToPointer: 16147 VisitIgnoredValue(E->getSubExpr()); 16148 return ZeroInitialization(E); 16149 case CK_NonAtomicToAtomic: 16150 return This ? EvaluateInPlace(Result, Info, *This, E->getSubExpr()) 16151 : Evaluate(Result, Info, E->getSubExpr()); 16152 } 16153 } 16154 }; 16155 } // end anonymous namespace 16156 16157 static bool EvaluateAtomic(const Expr *E, const LValue *This, APValue &Result, 16158 EvalInfo &Info) { 16159 assert(!E->isValueDependent()); 16160 assert(E->isPRValue() && E->getType()->isAtomicType()); 16161 return AtomicExprEvaluator(Info, This, Result).Visit(E); 16162 } 16163 16164 //===----------------------------------------------------------------------===// 16165 // Void expression evaluation, primarily for a cast to void on the LHS of a 16166 // comma operator 16167 //===----------------------------------------------------------------------===// 16168 16169 namespace { 16170 class VoidExprEvaluator 16171 : public ExprEvaluatorBase<VoidExprEvaluator> { 16172 public: 16173 VoidExprEvaluator(EvalInfo &Info) : ExprEvaluatorBaseTy(Info) {} 16174 16175 bool Success(const APValue &V, const Expr *e) { return true; } 16176 16177 bool ZeroInitialization(const Expr *E) { return true; } 16178 16179 bool VisitCastExpr(const CastExpr *E) { 16180 switch (E->getCastKind()) { 16181 default: 16182 return ExprEvaluatorBaseTy::VisitCastExpr(E); 16183 case CK_ToVoid: 16184 VisitIgnoredValue(E->getSubExpr()); 16185 return true; 16186 } 16187 } 16188 16189 bool VisitCallExpr(const CallExpr *E) { 16190 if (!IsConstantEvaluatedBuiltinCall(E)) 16191 return ExprEvaluatorBaseTy::VisitCallExpr(E); 16192 16193 switch (E->getBuiltinCallee()) { 16194 case Builtin::BI__assume: 16195 case Builtin::BI__builtin_assume: 16196 // The argument is not evaluated! 16197 return true; 16198 16199 case Builtin::BI__builtin_operator_delete: 16200 return HandleOperatorDeleteCall(Info, E); 16201 16202 default: 16203 return false; 16204 } 16205 } 16206 16207 bool VisitCXXDeleteExpr(const CXXDeleteExpr *E); 16208 }; 16209 } // end anonymous namespace 16210 16211 bool VoidExprEvaluator::VisitCXXDeleteExpr(const CXXDeleteExpr *E) { 16212 // We cannot speculatively evaluate a delete expression. 16213 if (Info.SpeculativeEvaluationDepth) 16214 return false; 16215 16216 FunctionDecl *OperatorDelete = E->getOperatorDelete(); 16217 if (!OperatorDelete->isReplaceableGlobalAllocationFunction()) { 16218 Info.FFDiag(E, diag::note_constexpr_new_non_replaceable) 16219 << isa<CXXMethodDecl>(OperatorDelete) << OperatorDelete; 16220 return false; 16221 } 16222 16223 const Expr *Arg = E->getArgument(); 16224 16225 LValue Pointer; 16226 if (!EvaluatePointer(Arg, Pointer, Info)) 16227 return false; 16228 if (Pointer.Designator.Invalid) 16229 return false; 16230 16231 // Deleting a null pointer has no effect. 16232 if (Pointer.isNullPointer()) { 16233 // This is the only case where we need to produce an extension warning: 16234 // the only other way we can succeed is if we find a dynamic allocation, 16235 // and we will have warned when we allocated it in that case. 16236 if (!Info.getLangOpts().CPlusPlus20) 16237 Info.CCEDiag(E, diag::note_constexpr_new); 16238 return true; 16239 } 16240 16241 std::optional<DynAlloc *> Alloc = CheckDeleteKind( 16242 Info, E, Pointer, E->isArrayForm() ? DynAlloc::ArrayNew : DynAlloc::New); 16243 if (!Alloc) 16244 return false; 16245 QualType AllocType = Pointer.Base.getDynamicAllocType(); 16246 16247 // For the non-array case, the designator must be empty if the static type 16248 // does not have a virtual destructor. 16249 if (!E->isArrayForm() && Pointer.Designator.Entries.size() != 0 && 16250 !hasVirtualDestructor(Arg->getType()->getPointeeType())) { 16251 Info.FFDiag(E, diag::note_constexpr_delete_base_nonvirt_dtor) 16252 << Arg->getType()->getPointeeType() << AllocType; 16253 return false; 16254 } 16255 16256 // For a class type with a virtual destructor, the selected operator delete 16257 // is the one looked up when building the destructor. 16258 if (!E->isArrayForm() && !E->isGlobalDelete()) { 16259 const FunctionDecl *VirtualDelete = getVirtualOperatorDelete(AllocType); 16260 if (VirtualDelete && 16261 !VirtualDelete->isReplaceableGlobalAllocationFunction()) { 16262 Info.FFDiag(E, diag::note_constexpr_new_non_replaceable) 16263 << isa<CXXMethodDecl>(VirtualDelete) << VirtualDelete; 16264 return false; 16265 } 16266 } 16267 16268 if (!HandleDestruction(Info, E->getExprLoc(), Pointer.getLValueBase(), 16269 (*Alloc)->Value, AllocType)) 16270 return false; 16271 16272 if (!Info.HeapAllocs.erase(Pointer.Base.dyn_cast<DynamicAllocLValue>())) { 16273 // The element was already erased. This means the destructor call also 16274 // deleted the object. 16275 // FIXME: This probably results in undefined behavior before we get this 16276 // far, and should be diagnosed elsewhere first. 16277 Info.FFDiag(E, diag::note_constexpr_double_delete); 16278 return false; 16279 } 16280 16281 return true; 16282 } 16283 16284 static bool EvaluateVoid(const Expr *E, EvalInfo &Info) { 16285 assert(!E->isValueDependent()); 16286 assert(E->isPRValue() && E->getType()->isVoidType()); 16287 return VoidExprEvaluator(Info).Visit(E); 16288 } 16289 16290 //===----------------------------------------------------------------------===// 16291 // Top level Expr::EvaluateAsRValue method. 16292 //===----------------------------------------------------------------------===// 16293 16294 static bool Evaluate(APValue &Result, EvalInfo &Info, const Expr *E) { 16295 assert(!E->isValueDependent()); 16296 // In C, function designators are not lvalues, but we evaluate them as if they 16297 // are. 16298 QualType T = E->getType(); 16299 if (E->isGLValue() || T->isFunctionType()) { 16300 LValue LV; 16301 if (!EvaluateLValue(E, LV, Info)) 16302 return false; 16303 LV.moveInto(Result); 16304 } else if (T->isVectorType()) { 16305 if (!EvaluateVector(E, Result, Info)) 16306 return false; 16307 } else if (T->isIntegralOrEnumerationType()) { 16308 if (!IntExprEvaluator(Info, Result).Visit(E)) 16309 return false; 16310 } else if (T->hasPointerRepresentation()) { 16311 LValue LV; 16312 if (!EvaluatePointer(E, LV, Info)) 16313 return false; 16314 LV.moveInto(Result); 16315 } else if (T->isRealFloatingType()) { 16316 llvm::APFloat F(0.0); 16317 if (!EvaluateFloat(E, F, Info)) 16318 return false; 16319 Result = APValue(F); 16320 } else if (T->isAnyComplexType()) { 16321 ComplexValue C; 16322 if (!EvaluateComplex(E, C, Info)) 16323 return false; 16324 C.moveInto(Result); 16325 } else if (T->isFixedPointType()) { 16326 if (!FixedPointExprEvaluator(Info, Result).Visit(E)) return false; 16327 } else if (T->isMemberPointerType()) { 16328 MemberPtr P; 16329 if (!EvaluateMemberPointer(E, P, Info)) 16330 return false; 16331 P.moveInto(Result); 16332 return true; 16333 } else if (T->isArrayType()) { 16334 LValue LV; 16335 APValue &Value = 16336 Info.CurrentCall->createTemporary(E, T, ScopeKind::FullExpression, LV); 16337 if (!EvaluateArray(E, LV, Value, Info)) 16338 return false; 16339 Result = Value; 16340 } else if (T->isRecordType()) { 16341 LValue LV; 16342 APValue &Value = 16343 Info.CurrentCall->createTemporary(E, T, ScopeKind::FullExpression, LV); 16344 if (!EvaluateRecord(E, LV, Value, Info)) 16345 return false; 16346 Result = Value; 16347 } else if (T->isVoidType()) { 16348 if (!Info.getLangOpts().CPlusPlus11) 16349 Info.CCEDiag(E, diag::note_constexpr_nonliteral) 16350 << E->getType(); 16351 if (!EvaluateVoid(E, Info)) 16352 return false; 16353 } else if (T->isAtomicType()) { 16354 QualType Unqual = T.getAtomicUnqualifiedType(); 16355 if (Unqual->isArrayType() || Unqual->isRecordType()) { 16356 LValue LV; 16357 APValue &Value = Info.CurrentCall->createTemporary( 16358 E, Unqual, ScopeKind::FullExpression, LV); 16359 if (!EvaluateAtomic(E, &LV, Value, Info)) 16360 return false; 16361 Result = Value; 16362 } else { 16363 if (!EvaluateAtomic(E, nullptr, Result, Info)) 16364 return false; 16365 } 16366 } else if (Info.getLangOpts().CPlusPlus11) { 16367 Info.FFDiag(E, diag::note_constexpr_nonliteral) << E->getType(); 16368 return false; 16369 } else { 16370 Info.FFDiag(E, diag::note_invalid_subexpr_in_const_expr); 16371 return false; 16372 } 16373 16374 return true; 16375 } 16376 16377 /// EvaluateInPlace - Evaluate an expression in-place in an APValue. In some 16378 /// cases, the in-place evaluation is essential, since later initializers for 16379 /// an object can indirectly refer to subobjects which were initialized earlier. 16380 static bool EvaluateInPlace(APValue &Result, EvalInfo &Info, const LValue &This, 16381 const Expr *E, bool AllowNonLiteralTypes) { 16382 assert(!E->isValueDependent()); 16383 16384 if (!AllowNonLiteralTypes && !CheckLiteralType(Info, E, &This)) 16385 return false; 16386 16387 if (E->isPRValue()) { 16388 // Evaluate arrays and record types in-place, so that later initializers can 16389 // refer to earlier-initialized members of the object. 16390 QualType T = E->getType(); 16391 if (T->isArrayType()) 16392 return EvaluateArray(E, This, Result, Info); 16393 else if (T->isRecordType()) 16394 return EvaluateRecord(E, This, Result, Info); 16395 else if (T->isAtomicType()) { 16396 QualType Unqual = T.getAtomicUnqualifiedType(); 16397 if (Unqual->isArrayType() || Unqual->isRecordType()) 16398 return EvaluateAtomic(E, &This, Result, Info); 16399 } 16400 } 16401 16402 // For any other type, in-place evaluation is unimportant. 16403 return Evaluate(Result, Info, E); 16404 } 16405 16406 /// EvaluateAsRValue - Try to evaluate this expression, performing an implicit 16407 /// lvalue-to-rvalue cast if it is an lvalue. 16408 static bool EvaluateAsRValue(EvalInfo &Info, const Expr *E, APValue &Result) { 16409 assert(!E->isValueDependent()); 16410 16411 if (E->getType().isNull()) 16412 return false; 16413 16414 if (!CheckLiteralType(Info, E)) 16415 return false; 16416 16417 if (Info.EnableNewConstInterp) { 16418 if (!Info.Ctx.getInterpContext().evaluateAsRValue(Info, E, Result)) 16419 return false; 16420 return CheckConstantExpression(Info, E->getExprLoc(), E->getType(), Result, 16421 ConstantExprKind::Normal); 16422 } 16423 16424 if (!::Evaluate(Result, Info, E)) 16425 return false; 16426 16427 // Implicit lvalue-to-rvalue cast. 16428 if (E->isGLValue()) { 16429 LValue LV; 16430 LV.setFrom(Info.Ctx, Result); 16431 if (!handleLValueToRValueConversion(Info, E, E->getType(), LV, Result)) 16432 return false; 16433 } 16434 16435 // Check this core constant expression is a constant expression. 16436 return CheckConstantExpression(Info, E->getExprLoc(), E->getType(), Result, 16437 ConstantExprKind::Normal) && 16438 CheckMemoryLeaks(Info); 16439 } 16440 16441 static bool FastEvaluateAsRValue(const Expr *Exp, Expr::EvalResult &Result, 16442 const ASTContext &Ctx, bool &IsConst) { 16443 // Fast-path evaluations of integer literals, since we sometimes see files 16444 // containing vast quantities of these. 16445 if (const IntegerLiteral *L = dyn_cast<IntegerLiteral>(Exp)) { 16446 Result.Val = APValue(APSInt(L->getValue(), 16447 L->getType()->isUnsignedIntegerType())); 16448 IsConst = true; 16449 return true; 16450 } 16451 16452 if (const auto *L = dyn_cast<CXXBoolLiteralExpr>(Exp)) { 16453 Result.Val = APValue(APSInt(APInt(1, L->getValue()))); 16454 IsConst = true; 16455 return true; 16456 } 16457 16458 if (const auto *CE = dyn_cast<ConstantExpr>(Exp)) { 16459 if (CE->hasAPValueResult()) { 16460 APValue APV = CE->getAPValueResult(); 16461 if (!APV.isLValue()) { 16462 Result.Val = std::move(APV); 16463 IsConst = true; 16464 return true; 16465 } 16466 } 16467 16468 // The SubExpr is usually just an IntegerLiteral. 16469 return FastEvaluateAsRValue(CE->getSubExpr(), Result, Ctx, IsConst); 16470 } 16471 16472 // This case should be rare, but we need to check it before we check on 16473 // the type below. 16474 if (Exp->getType().isNull()) { 16475 IsConst = false; 16476 return true; 16477 } 16478 16479 return false; 16480 } 16481 16482 static bool hasUnacceptableSideEffect(Expr::EvalStatus &Result, 16483 Expr::SideEffectsKind SEK) { 16484 return (SEK < Expr::SE_AllowSideEffects && Result.HasSideEffects) || 16485 (SEK < Expr::SE_AllowUndefinedBehavior && Result.HasUndefinedBehavior); 16486 } 16487 16488 static bool EvaluateAsRValue(const Expr *E, Expr::EvalResult &Result, 16489 const ASTContext &Ctx, EvalInfo &Info) { 16490 assert(!E->isValueDependent()); 16491 bool IsConst; 16492 if (FastEvaluateAsRValue(E, Result, Ctx, IsConst)) 16493 return IsConst; 16494 16495 return EvaluateAsRValue(Info, E, Result.Val); 16496 } 16497 16498 static bool EvaluateAsInt(const Expr *E, Expr::EvalResult &ExprResult, 16499 const ASTContext &Ctx, 16500 Expr::SideEffectsKind AllowSideEffects, 16501 EvalInfo &Info) { 16502 assert(!E->isValueDependent()); 16503 if (!E->getType()->isIntegralOrEnumerationType()) 16504 return false; 16505 16506 if (!::EvaluateAsRValue(E, ExprResult, Ctx, Info) || 16507 !ExprResult.Val.isInt() || 16508 hasUnacceptableSideEffect(ExprResult, AllowSideEffects)) 16509 return false; 16510 16511 return true; 16512 } 16513 16514 static bool EvaluateAsFixedPoint(const Expr *E, Expr::EvalResult &ExprResult, 16515 const ASTContext &Ctx, 16516 Expr::SideEffectsKind AllowSideEffects, 16517 EvalInfo &Info) { 16518 assert(!E->isValueDependent()); 16519 if (!E->getType()->isFixedPointType()) 16520 return false; 16521 16522 if (!::EvaluateAsRValue(E, ExprResult, Ctx, Info)) 16523 return false; 16524 16525 if (!ExprResult.Val.isFixedPoint() || 16526 hasUnacceptableSideEffect(ExprResult, AllowSideEffects)) 16527 return false; 16528 16529 return true; 16530 } 16531 16532 /// EvaluateAsRValue - Return true if this is a constant which we can fold using 16533 /// any crazy technique (that has nothing to do with language standards) that 16534 /// we want to. If this function returns true, it returns the folded constant 16535 /// in Result. If this expression is a glvalue, an lvalue-to-rvalue conversion 16536 /// will be applied to the result. 16537 bool Expr::EvaluateAsRValue(EvalResult &Result, const ASTContext &Ctx, 16538 bool InConstantContext) const { 16539 assert(!isValueDependent() && 16540 "Expression evaluator can't be called on a dependent expression."); 16541 ExprTimeTraceScope TimeScope(this, Ctx, "EvaluateAsRValue"); 16542 EvalInfo Info(Ctx, Result, EvalInfo::EM_IgnoreSideEffects); 16543 Info.InConstantContext = InConstantContext; 16544 return ::EvaluateAsRValue(this, Result, Ctx, Info); 16545 } 16546 16547 bool Expr::EvaluateAsBooleanCondition(bool &Result, const ASTContext &Ctx, 16548 bool InConstantContext) const { 16549 assert(!isValueDependent() && 16550 "Expression evaluator can't be called on a dependent expression."); 16551 ExprTimeTraceScope TimeScope(this, Ctx, "EvaluateAsBooleanCondition"); 16552 EvalResult Scratch; 16553 return EvaluateAsRValue(Scratch, Ctx, InConstantContext) && 16554 HandleConversionToBool(Scratch.Val, Result); 16555 } 16556 16557 bool Expr::EvaluateAsInt(EvalResult &Result, const ASTContext &Ctx, 16558 SideEffectsKind AllowSideEffects, 16559 bool InConstantContext) const { 16560 assert(!isValueDependent() && 16561 "Expression evaluator can't be called on a dependent expression."); 16562 ExprTimeTraceScope TimeScope(this, Ctx, "EvaluateAsInt"); 16563 EvalInfo Info(Ctx, Result, EvalInfo::EM_IgnoreSideEffects); 16564 Info.InConstantContext = InConstantContext; 16565 return ::EvaluateAsInt(this, Result, Ctx, AllowSideEffects, Info); 16566 } 16567 16568 bool Expr::EvaluateAsFixedPoint(EvalResult &Result, const ASTContext &Ctx, 16569 SideEffectsKind AllowSideEffects, 16570 bool InConstantContext) const { 16571 assert(!isValueDependent() && 16572 "Expression evaluator can't be called on a dependent expression."); 16573 ExprTimeTraceScope TimeScope(this, Ctx, "EvaluateAsFixedPoint"); 16574 EvalInfo Info(Ctx, Result, EvalInfo::EM_IgnoreSideEffects); 16575 Info.InConstantContext = InConstantContext; 16576 return ::EvaluateAsFixedPoint(this, Result, Ctx, AllowSideEffects, Info); 16577 } 16578 16579 bool Expr::EvaluateAsFloat(APFloat &Result, const ASTContext &Ctx, 16580 SideEffectsKind AllowSideEffects, 16581 bool InConstantContext) const { 16582 assert(!isValueDependent() && 16583 "Expression evaluator can't be called on a dependent expression."); 16584 16585 if (!getType()->isRealFloatingType()) 16586 return false; 16587 16588 ExprTimeTraceScope TimeScope(this, Ctx, "EvaluateAsFloat"); 16589 EvalResult ExprResult; 16590 if (!EvaluateAsRValue(ExprResult, Ctx, InConstantContext) || 16591 !ExprResult.Val.isFloat() || 16592 hasUnacceptableSideEffect(ExprResult, AllowSideEffects)) 16593 return false; 16594 16595 Result = ExprResult.Val.getFloat(); 16596 return true; 16597 } 16598 16599 bool Expr::EvaluateAsLValue(EvalResult &Result, const ASTContext &Ctx, 16600 bool InConstantContext) const { 16601 assert(!isValueDependent() && 16602 "Expression evaluator can't be called on a dependent expression."); 16603 16604 ExprTimeTraceScope TimeScope(this, Ctx, "EvaluateAsLValue"); 16605 EvalInfo Info(Ctx, Result, EvalInfo::EM_ConstantFold); 16606 Info.InConstantContext = InConstantContext; 16607 LValue LV; 16608 CheckedTemporaries CheckedTemps; 16609 if (!EvaluateLValue(this, LV, Info) || !Info.discardCleanups() || 16610 Result.HasSideEffects || 16611 !CheckLValueConstantExpression(Info, getExprLoc(), 16612 Ctx.getLValueReferenceType(getType()), LV, 16613 ConstantExprKind::Normal, CheckedTemps)) 16614 return false; 16615 16616 LV.moveInto(Result.Val); 16617 return true; 16618 } 16619 16620 static bool EvaluateDestruction(const ASTContext &Ctx, APValue::LValueBase Base, 16621 APValue DestroyedValue, QualType Type, 16622 SourceLocation Loc, Expr::EvalStatus &EStatus, 16623 bool IsConstantDestruction) { 16624 EvalInfo Info(Ctx, EStatus, 16625 IsConstantDestruction ? EvalInfo::EM_ConstantExpression 16626 : EvalInfo::EM_ConstantFold); 16627 Info.setEvaluatingDecl(Base, DestroyedValue, 16628 EvalInfo::EvaluatingDeclKind::Dtor); 16629 Info.InConstantContext = IsConstantDestruction; 16630 16631 LValue LVal; 16632 LVal.set(Base); 16633 16634 if (!HandleDestruction(Info, Loc, Base, DestroyedValue, Type) || 16635 EStatus.HasSideEffects) 16636 return false; 16637 16638 if (!Info.discardCleanups()) 16639 llvm_unreachable("Unhandled cleanup; missing full expression marker?"); 16640 16641 return true; 16642 } 16643 16644 bool Expr::EvaluateAsConstantExpr(EvalResult &Result, const ASTContext &Ctx, 16645 ConstantExprKind Kind) const { 16646 assert(!isValueDependent() && 16647 "Expression evaluator can't be called on a dependent expression."); 16648 bool IsConst; 16649 if (FastEvaluateAsRValue(this, Result, Ctx, IsConst) && Result.Val.hasValue()) 16650 return true; 16651 16652 ExprTimeTraceScope TimeScope(this, Ctx, "EvaluateAsConstantExpr"); 16653 EvalInfo::EvaluationMode EM = EvalInfo::EM_ConstantExpression; 16654 EvalInfo Info(Ctx, Result, EM); 16655 Info.InConstantContext = true; 16656 16657 if (Info.EnableNewConstInterp) { 16658 if (!Info.Ctx.getInterpContext().evaluate(Info, this, Result.Val, Kind)) 16659 return false; 16660 return CheckConstantExpression(Info, getExprLoc(), 16661 getStorageType(Ctx, this), Result.Val, Kind); 16662 } 16663 16664 // The type of the object we're initializing is 'const T' for a class NTTP. 16665 QualType T = getType(); 16666 if (Kind == ConstantExprKind::ClassTemplateArgument) 16667 T.addConst(); 16668 16669 // If we're evaluating a prvalue, fake up a MaterializeTemporaryExpr to 16670 // represent the result of the evaluation. CheckConstantExpression ensures 16671 // this doesn't escape. 16672 MaterializeTemporaryExpr BaseMTE(T, const_cast<Expr*>(this), true); 16673 APValue::LValueBase Base(&BaseMTE); 16674 Info.setEvaluatingDecl(Base, Result.Val); 16675 16676 if (Info.EnableNewConstInterp) { 16677 if (!Info.Ctx.getInterpContext().evaluateAsRValue(Info, this, Result.Val)) 16678 return false; 16679 } else { 16680 LValue LVal; 16681 LVal.set(Base); 16682 // C++23 [intro.execution]/p5 16683 // A full-expression is [...] a constant-expression 16684 // So we need to make sure temporary objects are destroyed after having 16685 // evaluating the expression (per C++23 [class.temporary]/p4). 16686 FullExpressionRAII Scope(Info); 16687 if (!::EvaluateInPlace(Result.Val, Info, LVal, this) || 16688 Result.HasSideEffects || !Scope.destroy()) 16689 return false; 16690 16691 if (!Info.discardCleanups()) 16692 llvm_unreachable("Unhandled cleanup; missing full expression marker?"); 16693 } 16694 16695 if (!CheckConstantExpression(Info, getExprLoc(), getStorageType(Ctx, this), 16696 Result.Val, Kind)) 16697 return false; 16698 if (!CheckMemoryLeaks(Info)) 16699 return false; 16700 16701 // If this is a class template argument, it's required to have constant 16702 // destruction too. 16703 if (Kind == ConstantExprKind::ClassTemplateArgument && 16704 (!EvaluateDestruction(Ctx, Base, Result.Val, T, getBeginLoc(), Result, 16705 true) || 16706 Result.HasSideEffects)) { 16707 // FIXME: Prefix a note to indicate that the problem is lack of constant 16708 // destruction. 16709 return false; 16710 } 16711 16712 return true; 16713 } 16714 16715 bool Expr::EvaluateAsInitializer(APValue &Value, const ASTContext &Ctx, 16716 const VarDecl *VD, 16717 SmallVectorImpl<PartialDiagnosticAt> &Notes, 16718 bool IsConstantInitialization) const { 16719 assert(!isValueDependent() && 16720 "Expression evaluator can't be called on a dependent expression."); 16721 16722 llvm::TimeTraceScope TimeScope("EvaluateAsInitializer", [&] { 16723 std::string Name; 16724 llvm::raw_string_ostream OS(Name); 16725 VD->printQualifiedName(OS); 16726 return Name; 16727 }); 16728 16729 Expr::EvalStatus EStatus; 16730 EStatus.Diag = &Notes; 16731 16732 EvalInfo Info(Ctx, EStatus, 16733 (IsConstantInitialization && 16734 (Ctx.getLangOpts().CPlusPlus || Ctx.getLangOpts().C23)) 16735 ? EvalInfo::EM_ConstantExpression 16736 : EvalInfo::EM_ConstantFold); 16737 Info.setEvaluatingDecl(VD, Value); 16738 Info.InConstantContext = IsConstantInitialization; 16739 16740 SourceLocation DeclLoc = VD->getLocation(); 16741 QualType DeclTy = VD->getType(); 16742 16743 if (Info.EnableNewConstInterp) { 16744 auto &InterpCtx = const_cast<ASTContext &>(Ctx).getInterpContext(); 16745 if (!InterpCtx.evaluateAsInitializer(Info, VD, Value)) 16746 return false; 16747 16748 return CheckConstantExpression(Info, DeclLoc, DeclTy, Value, 16749 ConstantExprKind::Normal); 16750 } else { 16751 LValue LVal; 16752 LVal.set(VD); 16753 16754 { 16755 // C++23 [intro.execution]/p5 16756 // A full-expression is ... an init-declarator ([dcl.decl]) or a 16757 // mem-initializer. 16758 // So we need to make sure temporary objects are destroyed after having 16759 // evaluated the expression (per C++23 [class.temporary]/p4). 16760 // 16761 // FIXME: Otherwise this may break test/Modules/pr68702.cpp because the 16762 // serialization code calls ParmVarDecl::getDefaultArg() which strips the 16763 // outermost FullExpr, such as ExprWithCleanups. 16764 FullExpressionRAII Scope(Info); 16765 if (!EvaluateInPlace(Value, Info, LVal, this, 16766 /*AllowNonLiteralTypes=*/true) || 16767 EStatus.HasSideEffects) 16768 return false; 16769 } 16770 16771 // At this point, any lifetime-extended temporaries are completely 16772 // initialized. 16773 Info.performLifetimeExtension(); 16774 16775 if (!Info.discardCleanups()) 16776 llvm_unreachable("Unhandled cleanup; missing full expression marker?"); 16777 } 16778 16779 return CheckConstantExpression(Info, DeclLoc, DeclTy, Value, 16780 ConstantExprKind::Normal) && 16781 CheckMemoryLeaks(Info); 16782 } 16783 16784 bool VarDecl::evaluateDestruction( 16785 SmallVectorImpl<PartialDiagnosticAt> &Notes) const { 16786 Expr::EvalStatus EStatus; 16787 EStatus.Diag = &Notes; 16788 16789 // Only treat the destruction as constant destruction if we formally have 16790 // constant initialization (or are usable in a constant expression). 16791 bool IsConstantDestruction = hasConstantInitialization(); 16792 16793 // Make a copy of the value for the destructor to mutate, if we know it. 16794 // Otherwise, treat the value as default-initialized; if the destructor works 16795 // anyway, then the destruction is constant (and must be essentially empty). 16796 APValue DestroyedValue; 16797 if (getEvaluatedValue() && !getEvaluatedValue()->isAbsent()) 16798 DestroyedValue = *getEvaluatedValue(); 16799 else if (!handleDefaultInitValue(getType(), DestroyedValue)) 16800 return false; 16801 16802 if (!EvaluateDestruction(getASTContext(), this, std::move(DestroyedValue), 16803 getType(), getLocation(), EStatus, 16804 IsConstantDestruction) || 16805 EStatus.HasSideEffects) 16806 return false; 16807 16808 ensureEvaluatedStmt()->HasConstantDestruction = true; 16809 return true; 16810 } 16811 16812 /// isEvaluatable - Call EvaluateAsRValue to see if this expression can be 16813 /// constant folded, but discard the result. 16814 bool Expr::isEvaluatable(const ASTContext &Ctx, SideEffectsKind SEK) const { 16815 assert(!isValueDependent() && 16816 "Expression evaluator can't be called on a dependent expression."); 16817 16818 EvalResult Result; 16819 return EvaluateAsRValue(Result, Ctx, /* in constant context */ true) && 16820 !hasUnacceptableSideEffect(Result, SEK); 16821 } 16822 16823 APSInt Expr::EvaluateKnownConstInt(const ASTContext &Ctx, 16824 SmallVectorImpl<PartialDiagnosticAt> *Diag) const { 16825 assert(!isValueDependent() && 16826 "Expression evaluator can't be called on a dependent expression."); 16827 16828 ExprTimeTraceScope TimeScope(this, Ctx, "EvaluateKnownConstInt"); 16829 EvalResult EVResult; 16830 EVResult.Diag = Diag; 16831 EvalInfo Info(Ctx, EVResult, EvalInfo::EM_IgnoreSideEffects); 16832 Info.InConstantContext = true; 16833 16834 bool Result = ::EvaluateAsRValue(this, EVResult, Ctx, Info); 16835 (void)Result; 16836 assert(Result && "Could not evaluate expression"); 16837 assert(EVResult.Val.isInt() && "Expression did not evaluate to integer"); 16838 16839 return EVResult.Val.getInt(); 16840 } 16841 16842 APSInt Expr::EvaluateKnownConstIntCheckOverflow( 16843 const ASTContext &Ctx, SmallVectorImpl<PartialDiagnosticAt> *Diag) const { 16844 assert(!isValueDependent() && 16845 "Expression evaluator can't be called on a dependent expression."); 16846 16847 ExprTimeTraceScope TimeScope(this, Ctx, "EvaluateKnownConstIntCheckOverflow"); 16848 EvalResult EVResult; 16849 EVResult.Diag = Diag; 16850 EvalInfo Info(Ctx, EVResult, EvalInfo::EM_IgnoreSideEffects); 16851 Info.InConstantContext = true; 16852 Info.CheckingForUndefinedBehavior = true; 16853 16854 bool Result = ::EvaluateAsRValue(Info, this, EVResult.Val); 16855 (void)Result; 16856 assert(Result && "Could not evaluate expression"); 16857 assert(EVResult.Val.isInt() && "Expression did not evaluate to integer"); 16858 16859 return EVResult.Val.getInt(); 16860 } 16861 16862 void Expr::EvaluateForOverflow(const ASTContext &Ctx) const { 16863 assert(!isValueDependent() && 16864 "Expression evaluator can't be called on a dependent expression."); 16865 16866 ExprTimeTraceScope TimeScope(this, Ctx, "EvaluateForOverflow"); 16867 bool IsConst; 16868 EvalResult EVResult; 16869 if (!FastEvaluateAsRValue(this, EVResult, Ctx, IsConst)) { 16870 EvalInfo Info(Ctx, EVResult, EvalInfo::EM_IgnoreSideEffects); 16871 Info.CheckingForUndefinedBehavior = true; 16872 (void)::EvaluateAsRValue(Info, this, EVResult.Val); 16873 } 16874 } 16875 16876 bool Expr::EvalResult::isGlobalLValue() const { 16877 assert(Val.isLValue()); 16878 return IsGlobalLValue(Val.getLValueBase()); 16879 } 16880 16881 /// isIntegerConstantExpr - this recursive routine will test if an expression is 16882 /// an integer constant expression. 16883 16884 /// FIXME: Pass up a reason why! Invalid operation in i-c-e, division by zero, 16885 /// comma, etc 16886 16887 // CheckICE - This function does the fundamental ICE checking: the returned 16888 // ICEDiag contains an ICEKind indicating whether the expression is an ICE, 16889 // and a (possibly null) SourceLocation indicating the location of the problem. 16890 // 16891 // Note that to reduce code duplication, this helper does no evaluation 16892 // itself; the caller checks whether the expression is evaluatable, and 16893 // in the rare cases where CheckICE actually cares about the evaluated 16894 // value, it calls into Evaluate. 16895 16896 namespace { 16897 16898 enum ICEKind { 16899 /// This expression is an ICE. 16900 IK_ICE, 16901 /// This expression is not an ICE, but if it isn't evaluated, it's 16902 /// a legal subexpression for an ICE. This return value is used to handle 16903 /// the comma operator in C99 mode, and non-constant subexpressions. 16904 IK_ICEIfUnevaluated, 16905 /// This expression is not an ICE, and is not a legal subexpression for one. 16906 IK_NotICE 16907 }; 16908 16909 struct ICEDiag { 16910 ICEKind Kind; 16911 SourceLocation Loc; 16912 16913 ICEDiag(ICEKind IK, SourceLocation l) : Kind(IK), Loc(l) {} 16914 }; 16915 16916 } 16917 16918 static ICEDiag NoDiag() { return ICEDiag(IK_ICE, SourceLocation()); } 16919 16920 static ICEDiag Worst(ICEDiag A, ICEDiag B) { return A.Kind >= B.Kind ? A : B; } 16921 16922 static ICEDiag CheckEvalInICE(const Expr* E, const ASTContext &Ctx) { 16923 Expr::EvalResult EVResult; 16924 Expr::EvalStatus Status; 16925 EvalInfo Info(Ctx, Status, EvalInfo::EM_ConstantExpression); 16926 16927 Info.InConstantContext = true; 16928 if (!::EvaluateAsRValue(E, EVResult, Ctx, Info) || EVResult.HasSideEffects || 16929 !EVResult.Val.isInt()) 16930 return ICEDiag(IK_NotICE, E->getBeginLoc()); 16931 16932 return NoDiag(); 16933 } 16934 16935 static ICEDiag CheckICE(const Expr* E, const ASTContext &Ctx) { 16936 assert(!E->isValueDependent() && "Should not see value dependent exprs!"); 16937 if (!E->getType()->isIntegralOrEnumerationType()) 16938 return ICEDiag(IK_NotICE, E->getBeginLoc()); 16939 16940 switch (E->getStmtClass()) { 16941 #define ABSTRACT_STMT(Node) 16942 #define STMT(Node, Base) case Expr::Node##Class: 16943 #define EXPR(Node, Base) 16944 #include "clang/AST/StmtNodes.inc" 16945 case Expr::PredefinedExprClass: 16946 case Expr::FloatingLiteralClass: 16947 case Expr::ImaginaryLiteralClass: 16948 case Expr::StringLiteralClass: 16949 case Expr::ArraySubscriptExprClass: 16950 case Expr::MatrixSubscriptExprClass: 16951 case Expr::ArraySectionExprClass: 16952 case Expr::OMPArrayShapingExprClass: 16953 case Expr::OMPIteratorExprClass: 16954 case Expr::MemberExprClass: 16955 case Expr::CompoundAssignOperatorClass: 16956 case Expr::CompoundLiteralExprClass: 16957 case Expr::ExtVectorElementExprClass: 16958 case Expr::DesignatedInitExprClass: 16959 case Expr::ArrayInitLoopExprClass: 16960 case Expr::ArrayInitIndexExprClass: 16961 case Expr::NoInitExprClass: 16962 case Expr::DesignatedInitUpdateExprClass: 16963 case Expr::ImplicitValueInitExprClass: 16964 case Expr::ParenListExprClass: 16965 case Expr::VAArgExprClass: 16966 case Expr::AddrLabelExprClass: 16967 case Expr::StmtExprClass: 16968 case Expr::CXXMemberCallExprClass: 16969 case Expr::CUDAKernelCallExprClass: 16970 case Expr::CXXAddrspaceCastExprClass: 16971 case Expr::CXXDynamicCastExprClass: 16972 case Expr::CXXTypeidExprClass: 16973 case Expr::CXXUuidofExprClass: 16974 case Expr::MSPropertyRefExprClass: 16975 case Expr::MSPropertySubscriptExprClass: 16976 case Expr::CXXNullPtrLiteralExprClass: 16977 case Expr::UserDefinedLiteralClass: 16978 case Expr::CXXThisExprClass: 16979 case Expr::CXXThrowExprClass: 16980 case Expr::CXXNewExprClass: 16981 case Expr::CXXDeleteExprClass: 16982 case Expr::CXXPseudoDestructorExprClass: 16983 case Expr::UnresolvedLookupExprClass: 16984 case Expr::TypoExprClass: 16985 case Expr::RecoveryExprClass: 16986 case Expr::DependentScopeDeclRefExprClass: 16987 case Expr::CXXConstructExprClass: 16988 case Expr::CXXInheritedCtorInitExprClass: 16989 case Expr::CXXStdInitializerListExprClass: 16990 case Expr::CXXBindTemporaryExprClass: 16991 case Expr::ExprWithCleanupsClass: 16992 case Expr::CXXTemporaryObjectExprClass: 16993 case Expr::CXXUnresolvedConstructExprClass: 16994 case Expr::CXXDependentScopeMemberExprClass: 16995 case Expr::UnresolvedMemberExprClass: 16996 case Expr::ObjCStringLiteralClass: 16997 case Expr::ObjCBoxedExprClass: 16998 case Expr::ObjCArrayLiteralClass: 16999 case Expr::ObjCDictionaryLiteralClass: 17000 case Expr::ObjCEncodeExprClass: 17001 case Expr::ObjCMessageExprClass: 17002 case Expr::ObjCSelectorExprClass: 17003 case Expr::ObjCProtocolExprClass: 17004 case Expr::ObjCIvarRefExprClass: 17005 case Expr::ObjCPropertyRefExprClass: 17006 case Expr::ObjCSubscriptRefExprClass: 17007 case Expr::ObjCIsaExprClass: 17008 case Expr::ObjCAvailabilityCheckExprClass: 17009 case Expr::ShuffleVectorExprClass: 17010 case Expr::ConvertVectorExprClass: 17011 case Expr::BlockExprClass: 17012 case Expr::NoStmtClass: 17013 case Expr::OpaqueValueExprClass: 17014 case Expr::PackExpansionExprClass: 17015 case Expr::SubstNonTypeTemplateParmPackExprClass: 17016 case Expr::FunctionParmPackExprClass: 17017 case Expr::AsTypeExprClass: 17018 case Expr::ObjCIndirectCopyRestoreExprClass: 17019 case Expr::MaterializeTemporaryExprClass: 17020 case Expr::PseudoObjectExprClass: 17021 case Expr::AtomicExprClass: 17022 case Expr::LambdaExprClass: 17023 case Expr::CXXFoldExprClass: 17024 case Expr::CoawaitExprClass: 17025 case Expr::DependentCoawaitExprClass: 17026 case Expr::CoyieldExprClass: 17027 case Expr::SYCLUniqueStableNameExprClass: 17028 case Expr::CXXParenListInitExprClass: 17029 case Expr::HLSLOutArgExprClass: 17030 return ICEDiag(IK_NotICE, E->getBeginLoc()); 17031 17032 case Expr::InitListExprClass: { 17033 // C++03 [dcl.init]p13: If T is a scalar type, then a declaration of the 17034 // form "T x = { a };" is equivalent to "T x = a;". 17035 // Unless we're initializing a reference, T is a scalar as it is known to be 17036 // of integral or enumeration type. 17037 if (E->isPRValue()) 17038 if (cast<InitListExpr>(E)->getNumInits() == 1) 17039 return CheckICE(cast<InitListExpr>(E)->getInit(0), Ctx); 17040 return ICEDiag(IK_NotICE, E->getBeginLoc()); 17041 } 17042 17043 case Expr::SizeOfPackExprClass: 17044 case Expr::GNUNullExprClass: 17045 case Expr::SourceLocExprClass: 17046 case Expr::EmbedExprClass: 17047 case Expr::OpenACCAsteriskSizeExprClass: 17048 return NoDiag(); 17049 17050 case Expr::PackIndexingExprClass: 17051 return CheckICE(cast<PackIndexingExpr>(E)->getSelectedExpr(), Ctx); 17052 17053 case Expr::SubstNonTypeTemplateParmExprClass: 17054 return 17055 CheckICE(cast<SubstNonTypeTemplateParmExpr>(E)->getReplacement(), Ctx); 17056 17057 case Expr::ConstantExprClass: 17058 return CheckICE(cast<ConstantExpr>(E)->getSubExpr(), Ctx); 17059 17060 case Expr::ParenExprClass: 17061 return CheckICE(cast<ParenExpr>(E)->getSubExpr(), Ctx); 17062 case Expr::GenericSelectionExprClass: 17063 return CheckICE(cast<GenericSelectionExpr>(E)->getResultExpr(), Ctx); 17064 case Expr::IntegerLiteralClass: 17065 case Expr::FixedPointLiteralClass: 17066 case Expr::CharacterLiteralClass: 17067 case Expr::ObjCBoolLiteralExprClass: 17068 case Expr::CXXBoolLiteralExprClass: 17069 case Expr::CXXScalarValueInitExprClass: 17070 case Expr::TypeTraitExprClass: 17071 case Expr::ConceptSpecializationExprClass: 17072 case Expr::RequiresExprClass: 17073 case Expr::ArrayTypeTraitExprClass: 17074 case Expr::ExpressionTraitExprClass: 17075 case Expr::CXXNoexceptExprClass: 17076 return NoDiag(); 17077 case Expr::CallExprClass: 17078 case Expr::CXXOperatorCallExprClass: { 17079 // C99 6.6/3 allows function calls within unevaluated subexpressions of 17080 // constant expressions, but they can never be ICEs because an ICE cannot 17081 // contain an operand of (pointer to) function type. 17082 const CallExpr *CE = cast<CallExpr>(E); 17083 if (CE->getBuiltinCallee()) 17084 return CheckEvalInICE(E, Ctx); 17085 return ICEDiag(IK_NotICE, E->getBeginLoc()); 17086 } 17087 case Expr::CXXRewrittenBinaryOperatorClass: 17088 return CheckICE(cast<CXXRewrittenBinaryOperator>(E)->getSemanticForm(), 17089 Ctx); 17090 case Expr::DeclRefExprClass: { 17091 const NamedDecl *D = cast<DeclRefExpr>(E)->getDecl(); 17092 if (isa<EnumConstantDecl>(D)) 17093 return NoDiag(); 17094 17095 // C++ and OpenCL (FIXME: spec reference?) allow reading const-qualified 17096 // integer variables in constant expressions: 17097 // 17098 // C++ 7.1.5.1p2 17099 // A variable of non-volatile const-qualified integral or enumeration 17100 // type initialized by an ICE can be used in ICEs. 17101 // 17102 // We sometimes use CheckICE to check the C++98 rules in C++11 mode. In 17103 // that mode, use of reference variables should not be allowed. 17104 const VarDecl *VD = dyn_cast<VarDecl>(D); 17105 if (VD && VD->isUsableInConstantExpressions(Ctx) && 17106 !VD->getType()->isReferenceType()) 17107 return NoDiag(); 17108 17109 return ICEDiag(IK_NotICE, E->getBeginLoc()); 17110 } 17111 case Expr::UnaryOperatorClass: { 17112 const UnaryOperator *Exp = cast<UnaryOperator>(E); 17113 switch (Exp->getOpcode()) { 17114 case UO_PostInc: 17115 case UO_PostDec: 17116 case UO_PreInc: 17117 case UO_PreDec: 17118 case UO_AddrOf: 17119 case UO_Deref: 17120 case UO_Coawait: 17121 // C99 6.6/3 allows increment and decrement within unevaluated 17122 // subexpressions of constant expressions, but they can never be ICEs 17123 // because an ICE cannot contain an lvalue operand. 17124 return ICEDiag(IK_NotICE, E->getBeginLoc()); 17125 case UO_Extension: 17126 case UO_LNot: 17127 case UO_Plus: 17128 case UO_Minus: 17129 case UO_Not: 17130 case UO_Real: 17131 case UO_Imag: 17132 return CheckICE(Exp->getSubExpr(), Ctx); 17133 } 17134 llvm_unreachable("invalid unary operator class"); 17135 } 17136 case Expr::OffsetOfExprClass: { 17137 // Note that per C99, offsetof must be an ICE. And AFAIK, using 17138 // EvaluateAsRValue matches the proposed gcc behavior for cases like 17139 // "offsetof(struct s{int x[4];}, x[1.0])". This doesn't affect 17140 // compliance: we should warn earlier for offsetof expressions with 17141 // array subscripts that aren't ICEs, and if the array subscripts 17142 // are ICEs, the value of the offsetof must be an integer constant. 17143 return CheckEvalInICE(E, Ctx); 17144 } 17145 case Expr::UnaryExprOrTypeTraitExprClass: { 17146 const UnaryExprOrTypeTraitExpr *Exp = cast<UnaryExprOrTypeTraitExpr>(E); 17147 if ((Exp->getKind() == UETT_SizeOf) && 17148 Exp->getTypeOfArgument()->isVariableArrayType()) 17149 return ICEDiag(IK_NotICE, E->getBeginLoc()); 17150 return NoDiag(); 17151 } 17152 case Expr::BinaryOperatorClass: { 17153 const BinaryOperator *Exp = cast<BinaryOperator>(E); 17154 switch (Exp->getOpcode()) { 17155 case BO_PtrMemD: 17156 case BO_PtrMemI: 17157 case BO_Assign: 17158 case BO_MulAssign: 17159 case BO_DivAssign: 17160 case BO_RemAssign: 17161 case BO_AddAssign: 17162 case BO_SubAssign: 17163 case BO_ShlAssign: 17164 case BO_ShrAssign: 17165 case BO_AndAssign: 17166 case BO_XorAssign: 17167 case BO_OrAssign: 17168 // C99 6.6/3 allows assignments within unevaluated subexpressions of 17169 // constant expressions, but they can never be ICEs because an ICE cannot 17170 // contain an lvalue operand. 17171 return ICEDiag(IK_NotICE, E->getBeginLoc()); 17172 17173 case BO_Mul: 17174 case BO_Div: 17175 case BO_Rem: 17176 case BO_Add: 17177 case BO_Sub: 17178 case BO_Shl: 17179 case BO_Shr: 17180 case BO_LT: 17181 case BO_GT: 17182 case BO_LE: 17183 case BO_GE: 17184 case BO_EQ: 17185 case BO_NE: 17186 case BO_And: 17187 case BO_Xor: 17188 case BO_Or: 17189 case BO_Comma: 17190 case BO_Cmp: { 17191 ICEDiag LHSResult = CheckICE(Exp->getLHS(), Ctx); 17192 ICEDiag RHSResult = CheckICE(Exp->getRHS(), Ctx); 17193 if (Exp->getOpcode() == BO_Div || 17194 Exp->getOpcode() == BO_Rem) { 17195 // EvaluateAsRValue gives an error for undefined Div/Rem, so make sure 17196 // we don't evaluate one. 17197 if (LHSResult.Kind == IK_ICE && RHSResult.Kind == IK_ICE) { 17198 llvm::APSInt REval = Exp->getRHS()->EvaluateKnownConstInt(Ctx); 17199 if (REval == 0) 17200 return ICEDiag(IK_ICEIfUnevaluated, E->getBeginLoc()); 17201 if (REval.isSigned() && REval.isAllOnes()) { 17202 llvm::APSInt LEval = Exp->getLHS()->EvaluateKnownConstInt(Ctx); 17203 if (LEval.isMinSignedValue()) 17204 return ICEDiag(IK_ICEIfUnevaluated, E->getBeginLoc()); 17205 } 17206 } 17207 } 17208 if (Exp->getOpcode() == BO_Comma) { 17209 if (Ctx.getLangOpts().C99) { 17210 // C99 6.6p3 introduces a strange edge case: comma can be in an ICE 17211 // if it isn't evaluated. 17212 if (LHSResult.Kind == IK_ICE && RHSResult.Kind == IK_ICE) 17213 return ICEDiag(IK_ICEIfUnevaluated, E->getBeginLoc()); 17214 } else { 17215 // In both C89 and C++, commas in ICEs are illegal. 17216 return ICEDiag(IK_NotICE, E->getBeginLoc()); 17217 } 17218 } 17219 return Worst(LHSResult, RHSResult); 17220 } 17221 case BO_LAnd: 17222 case BO_LOr: { 17223 ICEDiag LHSResult = CheckICE(Exp->getLHS(), Ctx); 17224 ICEDiag RHSResult = CheckICE(Exp->getRHS(), Ctx); 17225 if (LHSResult.Kind == IK_ICE && RHSResult.Kind == IK_ICEIfUnevaluated) { 17226 // Rare case where the RHS has a comma "side-effect"; we need 17227 // to actually check the condition to see whether the side 17228 // with the comma is evaluated. 17229 if ((Exp->getOpcode() == BO_LAnd) != 17230 (Exp->getLHS()->EvaluateKnownConstInt(Ctx) == 0)) 17231 return RHSResult; 17232 return NoDiag(); 17233 } 17234 17235 return Worst(LHSResult, RHSResult); 17236 } 17237 } 17238 llvm_unreachable("invalid binary operator kind"); 17239 } 17240 case Expr::ImplicitCastExprClass: 17241 case Expr::CStyleCastExprClass: 17242 case Expr::CXXFunctionalCastExprClass: 17243 case Expr::CXXStaticCastExprClass: 17244 case Expr::CXXReinterpretCastExprClass: 17245 case Expr::CXXConstCastExprClass: 17246 case Expr::ObjCBridgedCastExprClass: { 17247 const Expr *SubExpr = cast<CastExpr>(E)->getSubExpr(); 17248 if (isa<ExplicitCastExpr>(E)) { 17249 if (const FloatingLiteral *FL 17250 = dyn_cast<FloatingLiteral>(SubExpr->IgnoreParenImpCasts())) { 17251 unsigned DestWidth = Ctx.getIntWidth(E->getType()); 17252 bool DestSigned = E->getType()->isSignedIntegerOrEnumerationType(); 17253 APSInt IgnoredVal(DestWidth, !DestSigned); 17254 bool Ignored; 17255 // If the value does not fit in the destination type, the behavior is 17256 // undefined, so we are not required to treat it as a constant 17257 // expression. 17258 if (FL->getValue().convertToInteger(IgnoredVal, 17259 llvm::APFloat::rmTowardZero, 17260 &Ignored) & APFloat::opInvalidOp) 17261 return ICEDiag(IK_NotICE, E->getBeginLoc()); 17262 return NoDiag(); 17263 } 17264 } 17265 switch (cast<CastExpr>(E)->getCastKind()) { 17266 case CK_LValueToRValue: 17267 case CK_AtomicToNonAtomic: 17268 case CK_NonAtomicToAtomic: 17269 case CK_NoOp: 17270 case CK_IntegralToBoolean: 17271 case CK_IntegralCast: 17272 return CheckICE(SubExpr, Ctx); 17273 default: 17274 return ICEDiag(IK_NotICE, E->getBeginLoc()); 17275 } 17276 } 17277 case Expr::BinaryConditionalOperatorClass: { 17278 const BinaryConditionalOperator *Exp = cast<BinaryConditionalOperator>(E); 17279 ICEDiag CommonResult = CheckICE(Exp->getCommon(), Ctx); 17280 if (CommonResult.Kind == IK_NotICE) return CommonResult; 17281 ICEDiag FalseResult = CheckICE(Exp->getFalseExpr(), Ctx); 17282 if (FalseResult.Kind == IK_NotICE) return FalseResult; 17283 if (CommonResult.Kind == IK_ICEIfUnevaluated) return CommonResult; 17284 if (FalseResult.Kind == IK_ICEIfUnevaluated && 17285 Exp->getCommon()->EvaluateKnownConstInt(Ctx) != 0) return NoDiag(); 17286 return FalseResult; 17287 } 17288 case Expr::ConditionalOperatorClass: { 17289 const ConditionalOperator *Exp = cast<ConditionalOperator>(E); 17290 // If the condition (ignoring parens) is a __builtin_constant_p call, 17291 // then only the true side is actually considered in an integer constant 17292 // expression, and it is fully evaluated. This is an important GNU 17293 // extension. See GCC PR38377 for discussion. 17294 if (const CallExpr *CallCE 17295 = dyn_cast<CallExpr>(Exp->getCond()->IgnoreParenCasts())) 17296 if (CallCE->getBuiltinCallee() == Builtin::BI__builtin_constant_p) 17297 return CheckEvalInICE(E, Ctx); 17298 ICEDiag CondResult = CheckICE(Exp->getCond(), Ctx); 17299 if (CondResult.Kind == IK_NotICE) 17300 return CondResult; 17301 17302 ICEDiag TrueResult = CheckICE(Exp->getTrueExpr(), Ctx); 17303 ICEDiag FalseResult = CheckICE(Exp->getFalseExpr(), Ctx); 17304 17305 if (TrueResult.Kind == IK_NotICE) 17306 return TrueResult; 17307 if (FalseResult.Kind == IK_NotICE) 17308 return FalseResult; 17309 if (CondResult.Kind == IK_ICEIfUnevaluated) 17310 return CondResult; 17311 if (TrueResult.Kind == IK_ICE && FalseResult.Kind == IK_ICE) 17312 return NoDiag(); 17313 // Rare case where the diagnostics depend on which side is evaluated 17314 // Note that if we get here, CondResult is 0, and at least one of 17315 // TrueResult and FalseResult is non-zero. 17316 if (Exp->getCond()->EvaluateKnownConstInt(Ctx) == 0) 17317 return FalseResult; 17318 return TrueResult; 17319 } 17320 case Expr::CXXDefaultArgExprClass: 17321 return CheckICE(cast<CXXDefaultArgExpr>(E)->getExpr(), Ctx); 17322 case Expr::CXXDefaultInitExprClass: 17323 return CheckICE(cast<CXXDefaultInitExpr>(E)->getExpr(), Ctx); 17324 case Expr::ChooseExprClass: { 17325 return CheckICE(cast<ChooseExpr>(E)->getChosenSubExpr(), Ctx); 17326 } 17327 case Expr::BuiltinBitCastExprClass: { 17328 if (!checkBitCastConstexprEligibility(nullptr, Ctx, cast<CastExpr>(E))) 17329 return ICEDiag(IK_NotICE, E->getBeginLoc()); 17330 return CheckICE(cast<CastExpr>(E)->getSubExpr(), Ctx); 17331 } 17332 } 17333 17334 llvm_unreachable("Invalid StmtClass!"); 17335 } 17336 17337 /// Evaluate an expression as a C++11 integral constant expression. 17338 static bool EvaluateCPlusPlus11IntegralConstantExpr(const ASTContext &Ctx, 17339 const Expr *E, 17340 llvm::APSInt *Value, 17341 SourceLocation *Loc) { 17342 if (!E->getType()->isIntegralOrUnscopedEnumerationType()) { 17343 if (Loc) *Loc = E->getExprLoc(); 17344 return false; 17345 } 17346 17347 APValue Result; 17348 if (!E->isCXX11ConstantExpr(Ctx, &Result, Loc)) 17349 return false; 17350 17351 if (!Result.isInt()) { 17352 if (Loc) *Loc = E->getExprLoc(); 17353 return false; 17354 } 17355 17356 if (Value) *Value = Result.getInt(); 17357 return true; 17358 } 17359 17360 bool Expr::isIntegerConstantExpr(const ASTContext &Ctx, 17361 SourceLocation *Loc) const { 17362 assert(!isValueDependent() && 17363 "Expression evaluator can't be called on a dependent expression."); 17364 17365 ExprTimeTraceScope TimeScope(this, Ctx, "isIntegerConstantExpr"); 17366 17367 if (Ctx.getLangOpts().CPlusPlus11) 17368 return EvaluateCPlusPlus11IntegralConstantExpr(Ctx, this, nullptr, Loc); 17369 17370 ICEDiag D = CheckICE(this, Ctx); 17371 if (D.Kind != IK_ICE) { 17372 if (Loc) *Loc = D.Loc; 17373 return false; 17374 } 17375 return true; 17376 } 17377 17378 std::optional<llvm::APSInt> 17379 Expr::getIntegerConstantExpr(const ASTContext &Ctx, SourceLocation *Loc) const { 17380 if (isValueDependent()) { 17381 // Expression evaluator can't succeed on a dependent expression. 17382 return std::nullopt; 17383 } 17384 17385 APSInt Value; 17386 17387 if (Ctx.getLangOpts().CPlusPlus11) { 17388 if (EvaluateCPlusPlus11IntegralConstantExpr(Ctx, this, &Value, Loc)) 17389 return Value; 17390 return std::nullopt; 17391 } 17392 17393 if (!isIntegerConstantExpr(Ctx, Loc)) 17394 return std::nullopt; 17395 17396 // The only possible side-effects here are due to UB discovered in the 17397 // evaluation (for instance, INT_MAX + 1). In such a case, we are still 17398 // required to treat the expression as an ICE, so we produce the folded 17399 // value. 17400 EvalResult ExprResult; 17401 Expr::EvalStatus Status; 17402 EvalInfo Info(Ctx, Status, EvalInfo::EM_IgnoreSideEffects); 17403 Info.InConstantContext = true; 17404 17405 if (!::EvaluateAsInt(this, ExprResult, Ctx, SE_AllowSideEffects, Info)) 17406 llvm_unreachable("ICE cannot be evaluated!"); 17407 17408 return ExprResult.Val.getInt(); 17409 } 17410 17411 bool Expr::isCXX98IntegralConstantExpr(const ASTContext &Ctx) const { 17412 assert(!isValueDependent() && 17413 "Expression evaluator can't be called on a dependent expression."); 17414 17415 return CheckICE(this, Ctx).Kind == IK_ICE; 17416 } 17417 17418 bool Expr::isCXX11ConstantExpr(const ASTContext &Ctx, APValue *Result, 17419 SourceLocation *Loc) const { 17420 assert(!isValueDependent() && 17421 "Expression evaluator can't be called on a dependent expression."); 17422 17423 // We support this checking in C++98 mode in order to diagnose compatibility 17424 // issues. 17425 assert(Ctx.getLangOpts().CPlusPlus); 17426 17427 // Build evaluation settings. 17428 Expr::EvalStatus Status; 17429 SmallVector<PartialDiagnosticAt, 8> Diags; 17430 Status.Diag = &Diags; 17431 EvalInfo Info(Ctx, Status, EvalInfo::EM_ConstantExpression); 17432 17433 APValue Scratch; 17434 bool IsConstExpr = 17435 ::EvaluateAsRValue(Info, this, Result ? *Result : Scratch) && 17436 // FIXME: We don't produce a diagnostic for this, but the callers that 17437 // call us on arbitrary full-expressions should generally not care. 17438 Info.discardCleanups() && !Status.HasSideEffects; 17439 17440 if (!Diags.empty()) { 17441 IsConstExpr = false; 17442 if (Loc) *Loc = Diags[0].first; 17443 } else if (!IsConstExpr) { 17444 // FIXME: This shouldn't happen. 17445 if (Loc) *Loc = getExprLoc(); 17446 } 17447 17448 return IsConstExpr; 17449 } 17450 17451 bool Expr::EvaluateWithSubstitution(APValue &Value, ASTContext &Ctx, 17452 const FunctionDecl *Callee, 17453 ArrayRef<const Expr*> Args, 17454 const Expr *This) const { 17455 assert(!isValueDependent() && 17456 "Expression evaluator can't be called on a dependent expression."); 17457 17458 llvm::TimeTraceScope TimeScope("EvaluateWithSubstitution", [&] { 17459 std::string Name; 17460 llvm::raw_string_ostream OS(Name); 17461 Callee->getNameForDiagnostic(OS, Ctx.getPrintingPolicy(), 17462 /*Qualified=*/true); 17463 return Name; 17464 }); 17465 17466 Expr::EvalStatus Status; 17467 EvalInfo Info(Ctx, Status, EvalInfo::EM_ConstantExpressionUnevaluated); 17468 Info.InConstantContext = true; 17469 17470 LValue ThisVal; 17471 const LValue *ThisPtr = nullptr; 17472 if (This) { 17473 #ifndef NDEBUG 17474 auto *MD = dyn_cast<CXXMethodDecl>(Callee); 17475 assert(MD && "Don't provide `this` for non-methods."); 17476 assert(MD->isImplicitObjectMemberFunction() && 17477 "Don't provide `this` for methods without an implicit object."); 17478 #endif 17479 if (!This->isValueDependent() && 17480 EvaluateObjectArgument(Info, This, ThisVal) && 17481 !Info.EvalStatus.HasSideEffects) 17482 ThisPtr = &ThisVal; 17483 17484 // Ignore any side-effects from a failed evaluation. This is safe because 17485 // they can't interfere with any other argument evaluation. 17486 Info.EvalStatus.HasSideEffects = false; 17487 } 17488 17489 CallRef Call = Info.CurrentCall->createCall(Callee); 17490 for (ArrayRef<const Expr*>::iterator I = Args.begin(), E = Args.end(); 17491 I != E; ++I) { 17492 unsigned Idx = I - Args.begin(); 17493 if (Idx >= Callee->getNumParams()) 17494 break; 17495 const ParmVarDecl *PVD = Callee->getParamDecl(Idx); 17496 if ((*I)->isValueDependent() || 17497 !EvaluateCallArg(PVD, *I, Call, Info) || 17498 Info.EvalStatus.HasSideEffects) { 17499 // If evaluation fails, throw away the argument entirely. 17500 if (APValue *Slot = Info.getParamSlot(Call, PVD)) 17501 *Slot = APValue(); 17502 } 17503 17504 // Ignore any side-effects from a failed evaluation. This is safe because 17505 // they can't interfere with any other argument evaluation. 17506 Info.EvalStatus.HasSideEffects = false; 17507 } 17508 17509 // Parameter cleanups happen in the caller and are not part of this 17510 // evaluation. 17511 Info.discardCleanups(); 17512 Info.EvalStatus.HasSideEffects = false; 17513 17514 // Build fake call to Callee. 17515 CallStackFrame Frame(Info, Callee->getLocation(), Callee, ThisPtr, This, 17516 Call); 17517 // FIXME: Missing ExprWithCleanups in enable_if conditions? 17518 FullExpressionRAII Scope(Info); 17519 return Evaluate(Value, Info, this) && Scope.destroy() && 17520 !Info.EvalStatus.HasSideEffects; 17521 } 17522 17523 bool Expr::isPotentialConstantExpr(const FunctionDecl *FD, 17524 SmallVectorImpl< 17525 PartialDiagnosticAt> &Diags) { 17526 // FIXME: It would be useful to check constexpr function templates, but at the 17527 // moment the constant expression evaluator cannot cope with the non-rigorous 17528 // ASTs which we build for dependent expressions. 17529 if (FD->isDependentContext()) 17530 return true; 17531 17532 llvm::TimeTraceScope TimeScope("isPotentialConstantExpr", [&] { 17533 std::string Name; 17534 llvm::raw_string_ostream OS(Name); 17535 FD->getNameForDiagnostic(OS, FD->getASTContext().getPrintingPolicy(), 17536 /*Qualified=*/true); 17537 return Name; 17538 }); 17539 17540 Expr::EvalStatus Status; 17541 Status.Diag = &Diags; 17542 17543 EvalInfo Info(FD->getASTContext(), Status, EvalInfo::EM_ConstantExpression); 17544 Info.InConstantContext = true; 17545 Info.CheckingPotentialConstantExpression = true; 17546 17547 // The constexpr VM attempts to compile all methods to bytecode here. 17548 if (Info.EnableNewConstInterp) { 17549 Info.Ctx.getInterpContext().isPotentialConstantExpr(Info, FD); 17550 return Diags.empty(); 17551 } 17552 17553 const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD); 17554 const CXXRecordDecl *RD = MD ? MD->getParent()->getCanonicalDecl() : nullptr; 17555 17556 // Fabricate an arbitrary expression on the stack and pretend that it 17557 // is a temporary being used as the 'this' pointer. 17558 LValue This; 17559 ImplicitValueInitExpr VIE(RD ? Info.Ctx.getRecordType(RD) : Info.Ctx.IntTy); 17560 This.set({&VIE, Info.CurrentCall->Index}); 17561 17562 ArrayRef<const Expr*> Args; 17563 17564 APValue Scratch; 17565 if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(FD)) { 17566 // Evaluate the call as a constant initializer, to allow the construction 17567 // of objects of non-literal types. 17568 Info.setEvaluatingDecl(This.getLValueBase(), Scratch); 17569 HandleConstructorCall(&VIE, This, Args, CD, Info, Scratch); 17570 } else { 17571 SourceLocation Loc = FD->getLocation(); 17572 HandleFunctionCall( 17573 Loc, FD, (MD && MD->isImplicitObjectMemberFunction()) ? &This : nullptr, 17574 &VIE, Args, CallRef(), FD->getBody(), Info, Scratch, 17575 /*ResultSlot=*/nullptr); 17576 } 17577 17578 return Diags.empty(); 17579 } 17580 17581 bool Expr::isPotentialConstantExprUnevaluated(Expr *E, 17582 const FunctionDecl *FD, 17583 SmallVectorImpl< 17584 PartialDiagnosticAt> &Diags) { 17585 assert(!E->isValueDependent() && 17586 "Expression evaluator can't be called on a dependent expression."); 17587 17588 Expr::EvalStatus Status; 17589 Status.Diag = &Diags; 17590 17591 EvalInfo Info(FD->getASTContext(), Status, 17592 EvalInfo::EM_ConstantExpressionUnevaluated); 17593 Info.InConstantContext = true; 17594 Info.CheckingPotentialConstantExpression = true; 17595 17596 // Fabricate a call stack frame to give the arguments a plausible cover story. 17597 CallStackFrame Frame(Info, SourceLocation(), FD, /*This=*/nullptr, 17598 /*CallExpr=*/nullptr, CallRef()); 17599 17600 APValue ResultScratch; 17601 Evaluate(ResultScratch, Info, E); 17602 return Diags.empty(); 17603 } 17604 17605 bool Expr::tryEvaluateObjectSize(uint64_t &Result, ASTContext &Ctx, 17606 unsigned Type) const { 17607 if (!getType()->isPointerType()) 17608 return false; 17609 17610 Expr::EvalStatus Status; 17611 EvalInfo Info(Ctx, Status, EvalInfo::EM_ConstantFold); 17612 return tryEvaluateBuiltinObjectSize(this, Type, Info, Result); 17613 } 17614 17615 static bool EvaluateBuiltinStrLen(const Expr *E, uint64_t &Result, 17616 EvalInfo &Info, std::string *StringResult) { 17617 if (!E->getType()->hasPointerRepresentation() || !E->isPRValue()) 17618 return false; 17619 17620 LValue String; 17621 17622 if (!EvaluatePointer(E, String, Info)) 17623 return false; 17624 17625 QualType CharTy = E->getType()->getPointeeType(); 17626 17627 // Fast path: if it's a string literal, search the string value. 17628 if (const StringLiteral *S = dyn_cast_or_null<StringLiteral>( 17629 String.getLValueBase().dyn_cast<const Expr *>())) { 17630 StringRef Str = S->getBytes(); 17631 int64_t Off = String.Offset.getQuantity(); 17632 if (Off >= 0 && (uint64_t)Off <= (uint64_t)Str.size() && 17633 S->getCharByteWidth() == 1 && 17634 // FIXME: Add fast-path for wchar_t too. 17635 Info.Ctx.hasSameUnqualifiedType(CharTy, Info.Ctx.CharTy)) { 17636 Str = Str.substr(Off); 17637 17638 StringRef::size_type Pos = Str.find(0); 17639 if (Pos != StringRef::npos) 17640 Str = Str.substr(0, Pos); 17641 17642 Result = Str.size(); 17643 if (StringResult) 17644 *StringResult = Str; 17645 return true; 17646 } 17647 17648 // Fall through to slow path. 17649 } 17650 17651 // Slow path: scan the bytes of the string looking for the terminating 0. 17652 for (uint64_t Strlen = 0; /**/; ++Strlen) { 17653 APValue Char; 17654 if (!handleLValueToRValueConversion(Info, E, CharTy, String, Char) || 17655 !Char.isInt()) 17656 return false; 17657 if (!Char.getInt()) { 17658 Result = Strlen; 17659 return true; 17660 } else if (StringResult) 17661 StringResult->push_back(Char.getInt().getExtValue()); 17662 if (!HandleLValueArrayAdjustment(Info, E, String, CharTy, 1)) 17663 return false; 17664 } 17665 } 17666 17667 std::optional<std::string> Expr::tryEvaluateString(ASTContext &Ctx) const { 17668 Expr::EvalStatus Status; 17669 EvalInfo Info(Ctx, Status, EvalInfo::EM_ConstantFold); 17670 uint64_t Result; 17671 std::string StringResult; 17672 17673 if (EvaluateBuiltinStrLen(this, Result, Info, &StringResult)) 17674 return StringResult; 17675 return {}; 17676 } 17677 17678 bool Expr::EvaluateCharRangeAsString(std::string &Result, 17679 const Expr *SizeExpression, 17680 const Expr *PtrExpression, ASTContext &Ctx, 17681 EvalResult &Status) const { 17682 LValue String; 17683 EvalInfo Info(Ctx, Status, EvalInfo::EM_ConstantExpression); 17684 Info.InConstantContext = true; 17685 17686 FullExpressionRAII Scope(Info); 17687 APSInt SizeValue; 17688 if (!::EvaluateInteger(SizeExpression, SizeValue, Info)) 17689 return false; 17690 17691 uint64_t Size = SizeValue.getZExtValue(); 17692 17693 if (!::EvaluatePointer(PtrExpression, String, Info)) 17694 return false; 17695 17696 QualType CharTy = PtrExpression->getType()->getPointeeType(); 17697 for (uint64_t I = 0; I < Size; ++I) { 17698 APValue Char; 17699 if (!handleLValueToRValueConversion(Info, PtrExpression, CharTy, String, 17700 Char)) 17701 return false; 17702 17703 APSInt C = Char.getInt(); 17704 Result.push_back(static_cast<char>(C.getExtValue())); 17705 if (!HandleLValueArrayAdjustment(Info, PtrExpression, String, CharTy, 1)) 17706 return false; 17707 } 17708 if (!Scope.destroy()) 17709 return false; 17710 17711 if (!CheckMemoryLeaks(Info)) 17712 return false; 17713 17714 return true; 17715 } 17716 17717 bool Expr::tryEvaluateStrLen(uint64_t &Result, ASTContext &Ctx) const { 17718 Expr::EvalStatus Status; 17719 EvalInfo Info(Ctx, Status, EvalInfo::EM_ConstantFold); 17720 return EvaluateBuiltinStrLen(this, Result, Info); 17721 } 17722 17723 namespace { 17724 struct IsWithinLifetimeHandler { 17725 EvalInfo &Info; 17726 static constexpr AccessKinds AccessKind = AccessKinds::AK_IsWithinLifetime; 17727 using result_type = std::optional<bool>; 17728 std::optional<bool> failed() { return std::nullopt; } 17729 template <typename T> 17730 std::optional<bool> found(T &Subobj, QualType SubobjType) { 17731 return true; 17732 } 17733 }; 17734 17735 std::optional<bool> EvaluateBuiltinIsWithinLifetime(IntExprEvaluator &IEE, 17736 const CallExpr *E) { 17737 EvalInfo &Info = IEE.Info; 17738 // Sometimes this is called during some sorts of constant folding / early 17739 // evaluation. These are meant for non-constant expressions and are not 17740 // necessary since this consteval builtin will never be evaluated at runtime. 17741 // Just fail to evaluate when not in a constant context. 17742 if (!Info.InConstantContext) 17743 return std::nullopt; 17744 assert(E->getBuiltinCallee() == Builtin::BI__builtin_is_within_lifetime); 17745 const Expr *Arg = E->getArg(0); 17746 if (Arg->isValueDependent()) 17747 return std::nullopt; 17748 LValue Val; 17749 if (!EvaluatePointer(Arg, Val, Info)) 17750 return std::nullopt; 17751 17752 auto Error = [&](int Diag) { 17753 bool CalledFromStd = false; 17754 const auto *Callee = Info.CurrentCall->getCallee(); 17755 if (Callee && Callee->isInStdNamespace()) { 17756 const IdentifierInfo *Identifier = Callee->getIdentifier(); 17757 CalledFromStd = Identifier && Identifier->isStr("is_within_lifetime"); 17758 } 17759 Info.CCEDiag(CalledFromStd ? Info.CurrentCall->getCallRange().getBegin() 17760 : E->getExprLoc(), 17761 diag::err_invalid_is_within_lifetime) 17762 << (CalledFromStd ? "std::is_within_lifetime" 17763 : "__builtin_is_within_lifetime") 17764 << Diag; 17765 return std::nullopt; 17766 }; 17767 // C++2c [meta.const.eval]p4: 17768 // During the evaluation of an expression E as a core constant expression, a 17769 // call to this function is ill-formed unless p points to an object that is 17770 // usable in constant expressions or whose complete object's lifetime began 17771 // within E. 17772 17773 // Make sure it points to an object 17774 // nullptr does not point to an object 17775 if (Val.isNullPointer() || Val.getLValueBase().isNull()) 17776 return Error(0); 17777 QualType T = Val.getLValueBase().getType(); 17778 assert(!T->isFunctionType() && 17779 "Pointers to functions should have been typed as function pointers " 17780 "which would have been rejected earlier"); 17781 assert(T->isObjectType()); 17782 // Hypothetical array element is not an object 17783 if (Val.getLValueDesignator().isOnePastTheEnd()) 17784 return Error(1); 17785 assert(Val.getLValueDesignator().isValidSubobject() && 17786 "Unchecked case for valid subobject"); 17787 // All other ill-formed values should have failed EvaluatePointer, so the 17788 // object should be a pointer to an object that is usable in a constant 17789 // expression or whose complete lifetime began within the expression 17790 CompleteObject CO = 17791 findCompleteObject(Info, E, AccessKinds::AK_IsWithinLifetime, Val, T); 17792 // The lifetime hasn't begun yet if we are still evaluating the 17793 // initializer ([basic.life]p(1.2)) 17794 if (Info.EvaluatingDeclValue && CO.Value == Info.EvaluatingDeclValue) 17795 return Error(2); 17796 17797 if (!CO) 17798 return false; 17799 IsWithinLifetimeHandler handler{Info}; 17800 return findSubobject(Info, E, CO, Val.getLValueDesignator(), handler); 17801 } 17802 } // namespace 17803