xref: /llvm-project/clang/lib/AST/Decl.cpp (revision 79f4d8f0145d72dff8c33745f35d45c74ecb3fdf)
1 //===- Decl.cpp - Declaration AST Node Implementation ---------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the Decl subclasses.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "clang/AST/Decl.h"
14 #include "Linkage.h"
15 #include "clang/AST/ASTContext.h"
16 #include "clang/AST/ASTDiagnostic.h"
17 #include "clang/AST/ASTLambda.h"
18 #include "clang/AST/ASTMutationListener.h"
19 #include "clang/AST/Attr.h"
20 #include "clang/AST/CanonicalType.h"
21 #include "clang/AST/DeclBase.h"
22 #include "clang/AST/DeclCXX.h"
23 #include "clang/AST/DeclObjC.h"
24 #include "clang/AST/DeclOpenMP.h"
25 #include "clang/AST/DeclTemplate.h"
26 #include "clang/AST/DeclarationName.h"
27 #include "clang/AST/Expr.h"
28 #include "clang/AST/ExprCXX.h"
29 #include "clang/AST/ExternalASTSource.h"
30 #include "clang/AST/ODRHash.h"
31 #include "clang/AST/PrettyDeclStackTrace.h"
32 #include "clang/AST/PrettyPrinter.h"
33 #include "clang/AST/Randstruct.h"
34 #include "clang/AST/RecordLayout.h"
35 #include "clang/AST/Redeclarable.h"
36 #include "clang/AST/Stmt.h"
37 #include "clang/AST/TemplateBase.h"
38 #include "clang/AST/Type.h"
39 #include "clang/AST/TypeLoc.h"
40 #include "clang/Basic/Builtins.h"
41 #include "clang/Basic/IdentifierTable.h"
42 #include "clang/Basic/LLVM.h"
43 #include "clang/Basic/LangOptions.h"
44 #include "clang/Basic/Linkage.h"
45 #include "clang/Basic/Module.h"
46 #include "clang/Basic/NoSanitizeList.h"
47 #include "clang/Basic/PartialDiagnostic.h"
48 #include "clang/Basic/Sanitizers.h"
49 #include "clang/Basic/SourceLocation.h"
50 #include "clang/Basic/SourceManager.h"
51 #include "clang/Basic/Specifiers.h"
52 #include "clang/Basic/TargetCXXABI.h"
53 #include "clang/Basic/TargetInfo.h"
54 #include "clang/Basic/Visibility.h"
55 #include "llvm/ADT/APSInt.h"
56 #include "llvm/ADT/ArrayRef.h"
57 #include "llvm/ADT/STLExtras.h"
58 #include "llvm/ADT/SmallVector.h"
59 #include "llvm/ADT/StringRef.h"
60 #include "llvm/ADT/StringSwitch.h"
61 #include "llvm/Support/Casting.h"
62 #include "llvm/Support/ErrorHandling.h"
63 #include "llvm/Support/raw_ostream.h"
64 #include "llvm/TargetParser/Triple.h"
65 #include <algorithm>
66 #include <cassert>
67 #include <cstddef>
68 #include <cstring>
69 #include <memory>
70 #include <optional>
71 #include <string>
72 #include <tuple>
73 #include <type_traits>
74 
75 using namespace clang;
76 
77 Decl *clang::getPrimaryMergedDecl(Decl *D) {
78   return D->getASTContext().getPrimaryMergedDecl(D);
79 }
80 
81 void PrettyDeclStackTraceEntry::print(raw_ostream &OS) const {
82   SourceLocation Loc = this->Loc;
83   if (!Loc.isValid() && TheDecl) Loc = TheDecl->getLocation();
84   if (Loc.isValid()) {
85     Loc.print(OS, Context.getSourceManager());
86     OS << ": ";
87   }
88   OS << Message;
89 
90   if (auto *ND = dyn_cast_if_present<NamedDecl>(TheDecl)) {
91     OS << " '";
92     ND->getNameForDiagnostic(OS, Context.getPrintingPolicy(), true);
93     OS << "'";
94   }
95 
96   OS << '\n';
97 }
98 
99 // Defined here so that it can be inlined into its direct callers.
100 bool Decl::isOutOfLine() const {
101   return !getLexicalDeclContext()->Equals(getDeclContext());
102 }
103 
104 TranslationUnitDecl::TranslationUnitDecl(ASTContext &ctx)
105     : Decl(TranslationUnit, nullptr, SourceLocation()),
106       DeclContext(TranslationUnit), redeclarable_base(ctx), Ctx(ctx) {}
107 
108 //===----------------------------------------------------------------------===//
109 // NamedDecl Implementation
110 //===----------------------------------------------------------------------===//
111 
112 // Visibility rules aren't rigorously externally specified, but here
113 // are the basic principles behind what we implement:
114 //
115 // 1. An explicit visibility attribute is generally a direct expression
116 // of the user's intent and should be honored.  Only the innermost
117 // visibility attribute applies.  If no visibility attribute applies,
118 // global visibility settings are considered.
119 //
120 // 2. There is one caveat to the above: on or in a template pattern,
121 // an explicit visibility attribute is just a default rule, and
122 // visibility can be decreased by the visibility of template
123 // arguments.  But this, too, has an exception: an attribute on an
124 // explicit specialization or instantiation causes all the visibility
125 // restrictions of the template arguments to be ignored.
126 //
127 // 3. A variable that does not otherwise have explicit visibility can
128 // be restricted by the visibility of its type.
129 //
130 // 4. A visibility restriction is explicit if it comes from an
131 // attribute (or something like it), not a global visibility setting.
132 // When emitting a reference to an external symbol, visibility
133 // restrictions are ignored unless they are explicit.
134 //
135 // 5. When computing the visibility of a non-type, including a
136 // non-type member of a class, only non-type visibility restrictions
137 // are considered: the 'visibility' attribute, global value-visibility
138 // settings, and a few special cases like __private_extern.
139 //
140 // 6. When computing the visibility of a type, including a type member
141 // of a class, only type visibility restrictions are considered:
142 // the 'type_visibility' attribute and global type-visibility settings.
143 // However, a 'visibility' attribute counts as a 'type_visibility'
144 // attribute on any declaration that only has the former.
145 //
146 // The visibility of a "secondary" entity, like a template argument,
147 // is computed using the kind of that entity, not the kind of the
148 // primary entity for which we are computing visibility.  For example,
149 // the visibility of a specialization of either of these templates:
150 //   template <class T, bool (&compare)(T, X)> bool has_match(list<T>, X);
151 //   template <class T, bool (&compare)(T, X)> class matcher;
152 // is restricted according to the type visibility of the argument 'T',
153 // the type visibility of 'bool(&)(T,X)', and the value visibility of
154 // the argument function 'compare'.  That 'has_match' is a value
155 // and 'matcher' is a type only matters when looking for attributes
156 // and settings from the immediate context.
157 
158 /// Does this computation kind permit us to consider additional
159 /// visibility settings from attributes and the like?
160 static bool hasExplicitVisibilityAlready(LVComputationKind computation) {
161   return computation.IgnoreExplicitVisibility;
162 }
163 
164 /// Given an LVComputationKind, return one of the same type/value sort
165 /// that records that it already has explicit visibility.
166 static LVComputationKind
167 withExplicitVisibilityAlready(LVComputationKind Kind) {
168   Kind.IgnoreExplicitVisibility = true;
169   return Kind;
170 }
171 
172 static std::optional<Visibility> getExplicitVisibility(const NamedDecl *D,
173                                                        LVComputationKind kind) {
174   assert(!kind.IgnoreExplicitVisibility &&
175          "asking for explicit visibility when we shouldn't be");
176   return D->getExplicitVisibility(kind.getExplicitVisibilityKind());
177 }
178 
179 /// Is the given declaration a "type" or a "value" for the purposes of
180 /// visibility computation?
181 static bool usesTypeVisibility(const NamedDecl *D) {
182   return isa<TypeDecl>(D) ||
183          isa<ClassTemplateDecl>(D) ||
184          isa<ObjCInterfaceDecl>(D);
185 }
186 
187 /// Does the given declaration have member specialization information,
188 /// and if so, is it an explicit specialization?
189 template <class T>
190 static std::enable_if_t<!std::is_base_of_v<RedeclarableTemplateDecl, T>, bool>
191 isExplicitMemberSpecialization(const T *D) {
192   if (const MemberSpecializationInfo *member =
193         D->getMemberSpecializationInfo()) {
194     return member->isExplicitSpecialization();
195   }
196   return false;
197 }
198 
199 /// For templates, this question is easier: a member template can't be
200 /// explicitly instantiated, so there's a single bit indicating whether
201 /// or not this is an explicit member specialization.
202 static bool isExplicitMemberSpecialization(const RedeclarableTemplateDecl *D) {
203   return D->isMemberSpecialization();
204 }
205 
206 /// Given a visibility attribute, return the explicit visibility
207 /// associated with it.
208 template <class T>
209 static Visibility getVisibilityFromAttr(const T *attr) {
210   switch (attr->getVisibility()) {
211   case T::Default:
212     return DefaultVisibility;
213   case T::Hidden:
214     return HiddenVisibility;
215   case T::Protected:
216     return ProtectedVisibility;
217   }
218   llvm_unreachable("bad visibility kind");
219 }
220 
221 /// Return the explicit visibility of the given declaration.
222 static std::optional<Visibility>
223 getVisibilityOf(const NamedDecl *D, NamedDecl::ExplicitVisibilityKind kind) {
224   // If we're ultimately computing the visibility of a type, look for
225   // a 'type_visibility' attribute before looking for 'visibility'.
226   if (kind == NamedDecl::VisibilityForType) {
227     if (const auto *A = D->getAttr<TypeVisibilityAttr>()) {
228       return getVisibilityFromAttr(A);
229     }
230   }
231 
232   // If this declaration has an explicit visibility attribute, use it.
233   if (const auto *A = D->getAttr<VisibilityAttr>()) {
234     return getVisibilityFromAttr(A);
235   }
236 
237   return std::nullopt;
238 }
239 
240 LinkageInfo LinkageComputer::getLVForType(const Type &T,
241                                           LVComputationKind computation) {
242   if (computation.IgnoreAllVisibility)
243     return LinkageInfo(T.getLinkage(), DefaultVisibility, true);
244   return getTypeLinkageAndVisibility(&T);
245 }
246 
247 /// Get the most restrictive linkage for the types in the given
248 /// template parameter list.  For visibility purposes, template
249 /// parameters are part of the signature of a template.
250 LinkageInfo LinkageComputer::getLVForTemplateParameterList(
251     const TemplateParameterList *Params, LVComputationKind computation) {
252   LinkageInfo LV;
253   for (const NamedDecl *P : *Params) {
254     // Template type parameters are the most common and never
255     // contribute to visibility, pack or not.
256     if (isa<TemplateTypeParmDecl>(P))
257       continue;
258 
259     // Non-type template parameters can be restricted by the value type, e.g.
260     //   template <enum X> class A { ... };
261     // We have to be careful here, though, because we can be dealing with
262     // dependent types.
263     if (const auto *NTTP = dyn_cast<NonTypeTemplateParmDecl>(P)) {
264       // Handle the non-pack case first.
265       if (!NTTP->isExpandedParameterPack()) {
266         if (!NTTP->getType()->isDependentType()) {
267           LV.merge(getLVForType(*NTTP->getType(), computation));
268         }
269         continue;
270       }
271 
272       // Look at all the types in an expanded pack.
273       for (unsigned i = 0, n = NTTP->getNumExpansionTypes(); i != n; ++i) {
274         QualType type = NTTP->getExpansionType(i);
275         if (!type->isDependentType())
276           LV.merge(getTypeLinkageAndVisibility(type));
277       }
278       continue;
279     }
280 
281     // Template template parameters can be restricted by their
282     // template parameters, recursively.
283     const auto *TTP = cast<TemplateTemplateParmDecl>(P);
284 
285     // Handle the non-pack case first.
286     if (!TTP->isExpandedParameterPack()) {
287       LV.merge(getLVForTemplateParameterList(TTP->getTemplateParameters(),
288                                              computation));
289       continue;
290     }
291 
292     // Look at all expansions in an expanded pack.
293     for (unsigned i = 0, n = TTP->getNumExpansionTemplateParameters();
294            i != n; ++i) {
295       LV.merge(getLVForTemplateParameterList(
296           TTP->getExpansionTemplateParameters(i), computation));
297     }
298   }
299 
300   return LV;
301 }
302 
303 static const Decl *getOutermostFuncOrBlockContext(const Decl *D) {
304   const Decl *Ret = nullptr;
305   const DeclContext *DC = D->getDeclContext();
306   while (DC->getDeclKind() != Decl::TranslationUnit) {
307     if (isa<FunctionDecl>(DC) || isa<BlockDecl>(DC))
308       Ret = cast<Decl>(DC);
309     DC = DC->getParent();
310   }
311   return Ret;
312 }
313 
314 /// Get the most restrictive linkage for the types and
315 /// declarations in the given template argument list.
316 ///
317 /// Note that we don't take an LVComputationKind because we always
318 /// want to honor the visibility of template arguments in the same way.
319 LinkageInfo
320 LinkageComputer::getLVForTemplateArgumentList(ArrayRef<TemplateArgument> Args,
321                                               LVComputationKind computation) {
322   LinkageInfo LV;
323 
324   for (const TemplateArgument &Arg : Args) {
325     switch (Arg.getKind()) {
326     case TemplateArgument::Null:
327     case TemplateArgument::Integral:
328     case TemplateArgument::Expression:
329       continue;
330 
331     case TemplateArgument::Type:
332       LV.merge(getLVForType(*Arg.getAsType(), computation));
333       continue;
334 
335     case TemplateArgument::Declaration: {
336       const NamedDecl *ND = Arg.getAsDecl();
337       assert(!usesTypeVisibility(ND));
338       LV.merge(getLVForDecl(ND, computation));
339       continue;
340     }
341 
342     case TemplateArgument::NullPtr:
343       LV.merge(getTypeLinkageAndVisibility(Arg.getNullPtrType()));
344       continue;
345 
346     case TemplateArgument::StructuralValue:
347       LV.merge(getLVForValue(Arg.getAsStructuralValue(), computation));
348       continue;
349 
350     case TemplateArgument::Template:
351     case TemplateArgument::TemplateExpansion:
352       if (TemplateDecl *Template =
353               Arg.getAsTemplateOrTemplatePattern().getAsTemplateDecl(
354                   /*IgnoreDeduced=*/true))
355         LV.merge(getLVForDecl(Template, computation));
356       continue;
357 
358     case TemplateArgument::Pack:
359       LV.merge(getLVForTemplateArgumentList(Arg.getPackAsArray(), computation));
360       continue;
361     }
362     llvm_unreachable("bad template argument kind");
363   }
364 
365   return LV;
366 }
367 
368 LinkageInfo
369 LinkageComputer::getLVForTemplateArgumentList(const TemplateArgumentList &TArgs,
370                                               LVComputationKind computation) {
371   return getLVForTemplateArgumentList(TArgs.asArray(), computation);
372 }
373 
374 static bool shouldConsiderTemplateVisibility(const FunctionDecl *fn,
375                         const FunctionTemplateSpecializationInfo *specInfo) {
376   // Include visibility from the template parameters and arguments
377   // only if this is not an explicit instantiation or specialization
378   // with direct explicit visibility.  (Implicit instantiations won't
379   // have a direct attribute.)
380   if (!specInfo->isExplicitInstantiationOrSpecialization())
381     return true;
382 
383   return !fn->hasAttr<VisibilityAttr>();
384 }
385 
386 /// Merge in template-related linkage and visibility for the given
387 /// function template specialization.
388 ///
389 /// We don't need a computation kind here because we can assume
390 /// LVForValue.
391 ///
392 /// \param[out] LV the computation to use for the parent
393 void LinkageComputer::mergeTemplateLV(
394     LinkageInfo &LV, const FunctionDecl *fn,
395     const FunctionTemplateSpecializationInfo *specInfo,
396     LVComputationKind computation) {
397   bool considerVisibility =
398     shouldConsiderTemplateVisibility(fn, specInfo);
399 
400   FunctionTemplateDecl *temp = specInfo->getTemplate();
401   // Merge information from the template declaration.
402   LinkageInfo tempLV = getLVForDecl(temp, computation);
403   // The linkage of the specialization should be consistent with the
404   // template declaration.
405   LV.setLinkage(tempLV.getLinkage());
406 
407   // Merge information from the template parameters.
408   LinkageInfo paramsLV =
409       getLVForTemplateParameterList(temp->getTemplateParameters(), computation);
410   LV.mergeMaybeWithVisibility(paramsLV, considerVisibility);
411 
412   // Merge information from the template arguments.
413   const TemplateArgumentList &templateArgs = *specInfo->TemplateArguments;
414   LinkageInfo argsLV = getLVForTemplateArgumentList(templateArgs, computation);
415   LV.mergeMaybeWithVisibility(argsLV, considerVisibility);
416 }
417 
418 /// Does the given declaration have a direct visibility attribute
419 /// that would match the given rules?
420 static bool hasDirectVisibilityAttribute(const NamedDecl *D,
421                                          LVComputationKind computation) {
422   if (computation.IgnoreAllVisibility)
423     return false;
424 
425   return (computation.isTypeVisibility() && D->hasAttr<TypeVisibilityAttr>()) ||
426          D->hasAttr<VisibilityAttr>();
427 }
428 
429 /// Should we consider visibility associated with the template
430 /// arguments and parameters of the given class template specialization?
431 static bool shouldConsiderTemplateVisibility(
432                                  const ClassTemplateSpecializationDecl *spec,
433                                  LVComputationKind computation) {
434   // Include visibility from the template parameters and arguments
435   // only if this is not an explicit instantiation or specialization
436   // with direct explicit visibility (and note that implicit
437   // instantiations won't have a direct attribute).
438   //
439   // Furthermore, we want to ignore template parameters and arguments
440   // for an explicit specialization when computing the visibility of a
441   // member thereof with explicit visibility.
442   //
443   // This is a bit complex; let's unpack it.
444   //
445   // An explicit class specialization is an independent, top-level
446   // declaration.  As such, if it or any of its members has an
447   // explicit visibility attribute, that must directly express the
448   // user's intent, and we should honor it.  The same logic applies to
449   // an explicit instantiation of a member of such a thing.
450 
451   // Fast path: if this is not an explicit instantiation or
452   // specialization, we always want to consider template-related
453   // visibility restrictions.
454   if (!spec->isExplicitInstantiationOrSpecialization())
455     return true;
456 
457   // This is the 'member thereof' check.
458   if (spec->isExplicitSpecialization() &&
459       hasExplicitVisibilityAlready(computation))
460     return false;
461 
462   return !hasDirectVisibilityAttribute(spec, computation);
463 }
464 
465 /// Merge in template-related linkage and visibility for the given
466 /// class template specialization.
467 void LinkageComputer::mergeTemplateLV(
468     LinkageInfo &LV, const ClassTemplateSpecializationDecl *spec,
469     LVComputationKind computation) {
470   bool considerVisibility = shouldConsiderTemplateVisibility(spec, computation);
471 
472   // Merge information from the template parameters, but ignore
473   // visibility if we're only considering template arguments.
474   ClassTemplateDecl *temp = spec->getSpecializedTemplate();
475   // Merge information from the template declaration.
476   LinkageInfo tempLV = getLVForDecl(temp, computation);
477   // The linkage of the specialization should be consistent with the
478   // template declaration.
479   LV.setLinkage(tempLV.getLinkage());
480 
481   LinkageInfo paramsLV =
482     getLVForTemplateParameterList(temp->getTemplateParameters(), computation);
483   LV.mergeMaybeWithVisibility(paramsLV,
484            considerVisibility && !hasExplicitVisibilityAlready(computation));
485 
486   // Merge information from the template arguments.  We ignore
487   // template-argument visibility if we've got an explicit
488   // instantiation with a visibility attribute.
489   const TemplateArgumentList &templateArgs = spec->getTemplateArgs();
490   LinkageInfo argsLV = getLVForTemplateArgumentList(templateArgs, computation);
491   if (considerVisibility)
492     LV.mergeVisibility(argsLV);
493   LV.mergeExternalVisibility(argsLV);
494 }
495 
496 /// Should we consider visibility associated with the template
497 /// arguments and parameters of the given variable template
498 /// specialization? As usual, follow class template specialization
499 /// logic up to initialization.
500 static bool shouldConsiderTemplateVisibility(
501                                  const VarTemplateSpecializationDecl *spec,
502                                  LVComputationKind computation) {
503   // Include visibility from the template parameters and arguments
504   // only if this is not an explicit instantiation or specialization
505   // with direct explicit visibility (and note that implicit
506   // instantiations won't have a direct attribute).
507   if (!spec->isExplicitInstantiationOrSpecialization())
508     return true;
509 
510   // An explicit variable specialization is an independent, top-level
511   // declaration.  As such, if it has an explicit visibility attribute,
512   // that must directly express the user's intent, and we should honor
513   // it.
514   if (spec->isExplicitSpecialization() &&
515       hasExplicitVisibilityAlready(computation))
516     return false;
517 
518   return !hasDirectVisibilityAttribute(spec, computation);
519 }
520 
521 /// Merge in template-related linkage and visibility for the given
522 /// variable template specialization. As usual, follow class template
523 /// specialization logic up to initialization.
524 void LinkageComputer::mergeTemplateLV(LinkageInfo &LV,
525                                       const VarTemplateSpecializationDecl *spec,
526                                       LVComputationKind computation) {
527   bool considerVisibility = shouldConsiderTemplateVisibility(spec, computation);
528 
529   // Merge information from the template parameters, but ignore
530   // visibility if we're only considering template arguments.
531   VarTemplateDecl *temp = spec->getSpecializedTemplate();
532   LinkageInfo tempLV =
533     getLVForTemplateParameterList(temp->getTemplateParameters(), computation);
534   LV.mergeMaybeWithVisibility(tempLV,
535            considerVisibility && !hasExplicitVisibilityAlready(computation));
536 
537   // Merge information from the template arguments.  We ignore
538   // template-argument visibility if we've got an explicit
539   // instantiation with a visibility attribute.
540   const TemplateArgumentList &templateArgs = spec->getTemplateArgs();
541   LinkageInfo argsLV = getLVForTemplateArgumentList(templateArgs, computation);
542   if (considerVisibility)
543     LV.mergeVisibility(argsLV);
544   LV.mergeExternalVisibility(argsLV);
545 }
546 
547 static bool useInlineVisibilityHidden(const NamedDecl *D) {
548   // FIXME: we should warn if -fvisibility-inlines-hidden is used with c.
549   const LangOptions &Opts = D->getASTContext().getLangOpts();
550   if (!Opts.CPlusPlus || !Opts.InlineVisibilityHidden)
551     return false;
552 
553   const auto *FD = dyn_cast<FunctionDecl>(D);
554   if (!FD)
555     return false;
556 
557   TemplateSpecializationKind TSK = TSK_Undeclared;
558   if (FunctionTemplateSpecializationInfo *spec
559       = FD->getTemplateSpecializationInfo()) {
560     TSK = spec->getTemplateSpecializationKind();
561   } else if (MemberSpecializationInfo *MSI =
562              FD->getMemberSpecializationInfo()) {
563     TSK = MSI->getTemplateSpecializationKind();
564   }
565 
566   const FunctionDecl *Def = nullptr;
567   // InlineVisibilityHidden only applies to definitions, and
568   // isInlined() only gives meaningful answers on definitions
569   // anyway.
570   return TSK != TSK_ExplicitInstantiationDeclaration &&
571     TSK != TSK_ExplicitInstantiationDefinition &&
572     FD->hasBody(Def) && Def->isInlined() && !Def->hasAttr<GNUInlineAttr>();
573 }
574 
575 template <typename T> static bool isFirstInExternCContext(T *D) {
576   const T *First = D->getFirstDecl();
577   return First->isInExternCContext();
578 }
579 
580 static bool isSingleLineLanguageLinkage(const Decl &D) {
581   if (const auto *SD = dyn_cast<LinkageSpecDecl>(D.getDeclContext()))
582     if (!SD->hasBraces())
583       return true;
584   return false;
585 }
586 
587 static LinkageInfo getExternalLinkageFor(const NamedDecl *D) {
588   return LinkageInfo::external();
589 }
590 
591 static StorageClass getStorageClass(const Decl *D) {
592   if (auto *TD = dyn_cast<TemplateDecl>(D))
593     D = TD->getTemplatedDecl();
594   if (D) {
595     if (auto *VD = dyn_cast<VarDecl>(D))
596       return VD->getStorageClass();
597     if (auto *FD = dyn_cast<FunctionDecl>(D))
598       return FD->getStorageClass();
599   }
600   return SC_None;
601 }
602 
603 LinkageInfo
604 LinkageComputer::getLVForNamespaceScopeDecl(const NamedDecl *D,
605                                             LVComputationKind computation,
606                                             bool IgnoreVarTypeLinkage) {
607   assert(D->getDeclContext()->getRedeclContext()->isFileContext() &&
608          "Not a name having namespace scope");
609   ASTContext &Context = D->getASTContext();
610   const auto *Var = dyn_cast<VarDecl>(D);
611 
612   // C++ [basic.link]p3:
613   //   A name having namespace scope (3.3.6) has internal linkage if it
614   //   is the name of
615 
616   if ((getStorageClass(D->getCanonicalDecl()) == SC_Static) ||
617       (Context.getLangOpts().C23 && Var && Var->isConstexpr())) {
618     // - a variable, variable template, function, or function template
619     //   that is explicitly declared static; or
620     // (This bullet corresponds to C99 6.2.2p3.)
621 
622     // C23 6.2.2p3
623     // If the declaration of a file scope identifier for
624     // an object contains any of the storage-class specifiers static or
625     // constexpr then the identifier has internal linkage.
626     return LinkageInfo::internal();
627   }
628 
629   if (Var) {
630     // - a non-template variable of non-volatile const-qualified type, unless
631     //   - it is explicitly declared extern, or
632     //   - it is declared in the purview of a module interface unit
633     //     (outside the private-module-fragment, if any) or module partition, or
634     //   - it is inline, or
635     //   - it was previously declared and the prior declaration did not have
636     //     internal linkage
637     // (There is no equivalent in C99.)
638     if (Context.getLangOpts().CPlusPlus && Var->getType().isConstQualified() &&
639         !Var->getType().isVolatileQualified() && !Var->isInline() &&
640         ![Var]() {
641           // Check if it is module purview except private module fragment
642           // and implementation unit.
643           if (auto *M = Var->getOwningModule())
644             return M->isInterfaceOrPartition() || M->isImplicitGlobalModule();
645           return false;
646         }() &&
647         !isa<VarTemplateSpecializationDecl>(Var) &&
648         !Var->getDescribedVarTemplate()) {
649       const VarDecl *PrevVar = Var->getPreviousDecl();
650       if (PrevVar)
651         return getLVForDecl(PrevVar, computation);
652 
653       if (Var->getStorageClass() != SC_Extern &&
654           Var->getStorageClass() != SC_PrivateExtern &&
655           !isSingleLineLanguageLinkage(*Var))
656         return LinkageInfo::internal();
657     }
658 
659     for (const VarDecl *PrevVar = Var->getPreviousDecl(); PrevVar;
660          PrevVar = PrevVar->getPreviousDecl()) {
661       if (PrevVar->getStorageClass() == SC_PrivateExtern &&
662           Var->getStorageClass() == SC_None)
663         return getDeclLinkageAndVisibility(PrevVar);
664       // Explicitly declared static.
665       if (PrevVar->getStorageClass() == SC_Static)
666         return LinkageInfo::internal();
667     }
668   } else if (const auto *IFD = dyn_cast<IndirectFieldDecl>(D)) {
669     //   - a data member of an anonymous union.
670     const VarDecl *VD = IFD->getVarDecl();
671     assert(VD && "Expected a VarDecl in this IndirectFieldDecl!");
672     return getLVForNamespaceScopeDecl(VD, computation, IgnoreVarTypeLinkage);
673   }
674   assert(!isa<FieldDecl>(D) && "Didn't expect a FieldDecl!");
675 
676   // FIXME: This gives internal linkage to names that should have no linkage
677   // (those not covered by [basic.link]p6).
678   if (D->isInAnonymousNamespace()) {
679     const auto *Var = dyn_cast<VarDecl>(D);
680     const auto *Func = dyn_cast<FunctionDecl>(D);
681     // FIXME: The check for extern "C" here is not justified by the standard
682     // wording, but we retain it from the pre-DR1113 model to avoid breaking
683     // code.
684     //
685     // C++11 [basic.link]p4:
686     //   An unnamed namespace or a namespace declared directly or indirectly
687     //   within an unnamed namespace has internal linkage.
688     if ((!Var || !isFirstInExternCContext(Var)) &&
689         (!Func || !isFirstInExternCContext(Func)))
690       return LinkageInfo::internal();
691   }
692 
693   // Set up the defaults.
694 
695   // C99 6.2.2p5:
696   //   If the declaration of an identifier for an object has file
697   //   scope and no storage-class specifier, its linkage is
698   //   external.
699   LinkageInfo LV = getExternalLinkageFor(D);
700 
701   if (!hasExplicitVisibilityAlready(computation)) {
702     if (std::optional<Visibility> Vis = getExplicitVisibility(D, computation)) {
703       LV.mergeVisibility(*Vis, true);
704     } else {
705       // If we're declared in a namespace with a visibility attribute,
706       // use that namespace's visibility, and it still counts as explicit.
707       for (const DeclContext *DC = D->getDeclContext();
708            !isa<TranslationUnitDecl>(DC);
709            DC = DC->getParent()) {
710         const auto *ND = dyn_cast<NamespaceDecl>(DC);
711         if (!ND) continue;
712         if (std::optional<Visibility> Vis =
713                 getExplicitVisibility(ND, computation)) {
714           LV.mergeVisibility(*Vis, true);
715           break;
716         }
717       }
718     }
719 
720     // Add in global settings if the above didn't give us direct visibility.
721     if (!LV.isVisibilityExplicit()) {
722       // Use global type/value visibility as appropriate.
723       Visibility globalVisibility =
724           computation.isValueVisibility()
725               ? Context.getLangOpts().getValueVisibilityMode()
726               : Context.getLangOpts().getTypeVisibilityMode();
727       LV.mergeVisibility(globalVisibility, /*explicit*/ false);
728 
729       // If we're paying attention to global visibility, apply
730       // -finline-visibility-hidden if this is an inline method.
731       if (useInlineVisibilityHidden(D))
732         LV.mergeVisibility(HiddenVisibility, /*visibilityExplicit=*/false);
733     }
734   }
735 
736   // C++ [basic.link]p4:
737 
738   //   A name having namespace scope that has not been given internal linkage
739   //   above and that is the name of
740   //   [...bullets...]
741   //   has its linkage determined as follows:
742   //     - if the enclosing namespace has internal linkage, the name has
743   //       internal linkage; [handled above]
744   //     - otherwise, if the declaration of the name is attached to a named
745   //       module and is not exported, the name has module linkage;
746   //     - otherwise, the name has external linkage.
747   // LV is currently set up to handle the last two bullets.
748   //
749   //   The bullets are:
750 
751   //     - a variable; or
752   if (const auto *Var = dyn_cast<VarDecl>(D)) {
753     // GCC applies the following optimization to variables and static
754     // data members, but not to functions:
755     //
756     // Modify the variable's LV by the LV of its type unless this is
757     // C or extern "C".  This follows from [basic.link]p9:
758     //   A type without linkage shall not be used as the type of a
759     //   variable or function with external linkage unless
760     //    - the entity has C language linkage, or
761     //    - the entity is declared within an unnamed namespace, or
762     //    - the entity is not used or is defined in the same
763     //      translation unit.
764     // and [basic.link]p10:
765     //   ...the types specified by all declarations referring to a
766     //   given variable or function shall be identical...
767     // C does not have an equivalent rule.
768     //
769     // Ignore this if we've got an explicit attribute;  the user
770     // probably knows what they're doing.
771     //
772     // Note that we don't want to make the variable non-external
773     // because of this, but unique-external linkage suits us.
774 
775     if (Context.getLangOpts().CPlusPlus && !isFirstInExternCContext(Var) &&
776         !IgnoreVarTypeLinkage) {
777       LinkageInfo TypeLV = getLVForType(*Var->getType(), computation);
778       if (!isExternallyVisible(TypeLV.getLinkage()))
779         return LinkageInfo::uniqueExternal();
780       if (!LV.isVisibilityExplicit())
781         LV.mergeVisibility(TypeLV);
782     }
783 
784     if (Var->getStorageClass() == SC_PrivateExtern)
785       LV.mergeVisibility(HiddenVisibility, true);
786 
787     // Note that Sema::MergeVarDecl already takes care of implementing
788     // C99 6.2.2p4 and propagating the visibility attribute, so we don't have
789     // to do it here.
790 
791     // As per function and class template specializations (below),
792     // consider LV for the template and template arguments.  We're at file
793     // scope, so we do not need to worry about nested specializations.
794     if (const auto *spec = dyn_cast<VarTemplateSpecializationDecl>(Var)) {
795       mergeTemplateLV(LV, spec, computation);
796     }
797 
798   //     - a function; or
799   } else if (const auto *Function = dyn_cast<FunctionDecl>(D)) {
800     // In theory, we can modify the function's LV by the LV of its
801     // type unless it has C linkage (see comment above about variables
802     // for justification).  In practice, GCC doesn't do this, so it's
803     // just too painful to make work.
804 
805     if (Function->getStorageClass() == SC_PrivateExtern)
806       LV.mergeVisibility(HiddenVisibility, true);
807 
808     // OpenMP target declare device functions are not callable from the host so
809     // they should not be exported from the device image. This applies to all
810     // functions as the host-callable kernel functions are emitted at codegen.
811     if (Context.getLangOpts().OpenMP &&
812         Context.getLangOpts().OpenMPIsTargetDevice &&
813         ((Context.getTargetInfo().getTriple().isAMDGPU() ||
814           Context.getTargetInfo().getTriple().isNVPTX()) ||
815          OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(Function)))
816       LV.mergeVisibility(HiddenVisibility, /*newExplicit=*/false);
817 
818     // Note that Sema::MergeCompatibleFunctionDecls already takes care of
819     // merging storage classes and visibility attributes, so we don't have to
820     // look at previous decls in here.
821 
822     // In C++, then if the type of the function uses a type with
823     // unique-external linkage, it's not legally usable from outside
824     // this translation unit.  However, we should use the C linkage
825     // rules instead for extern "C" declarations.
826     if (Context.getLangOpts().CPlusPlus && !isFirstInExternCContext(Function)) {
827       // Only look at the type-as-written. Otherwise, deducing the return type
828       // of a function could change its linkage.
829       QualType TypeAsWritten = Function->getType();
830       if (TypeSourceInfo *TSI = Function->getTypeSourceInfo())
831         TypeAsWritten = TSI->getType();
832       if (!isExternallyVisible(TypeAsWritten->getLinkage()))
833         return LinkageInfo::uniqueExternal();
834     }
835 
836     // Consider LV from the template and the template arguments.
837     // We're at file scope, so we do not need to worry about nested
838     // specializations.
839     if (FunctionTemplateSpecializationInfo *specInfo
840                                = Function->getTemplateSpecializationInfo()) {
841       mergeTemplateLV(LV, Function, specInfo, computation);
842     }
843 
844   //     - a named class (Clause 9), or an unnamed class defined in a
845   //       typedef declaration in which the class has the typedef name
846   //       for linkage purposes (7.1.3); or
847   //     - a named enumeration (7.2), or an unnamed enumeration
848   //       defined in a typedef declaration in which the enumeration
849   //       has the typedef name for linkage purposes (7.1.3); or
850   } else if (const auto *Tag = dyn_cast<TagDecl>(D)) {
851     // Unnamed tags have no linkage.
852     if (!Tag->hasNameForLinkage())
853       return LinkageInfo::none();
854 
855     // If this is a class template specialization, consider the
856     // linkage of the template and template arguments.  We're at file
857     // scope, so we do not need to worry about nested specializations.
858     if (const auto *spec = dyn_cast<ClassTemplateSpecializationDecl>(Tag)) {
859       mergeTemplateLV(LV, spec, computation);
860     }
861 
862   // FIXME: This is not part of the C++ standard any more.
863   //     - an enumerator belonging to an enumeration with external linkage; or
864   } else if (isa<EnumConstantDecl>(D)) {
865     LinkageInfo EnumLV = getLVForDecl(cast<NamedDecl>(D->getDeclContext()),
866                                       computation);
867     if (!isExternalFormalLinkage(EnumLV.getLinkage()))
868       return LinkageInfo::none();
869     LV.merge(EnumLV);
870 
871   //     - a template
872   } else if (const auto *temp = dyn_cast<TemplateDecl>(D)) {
873     bool considerVisibility = !hasExplicitVisibilityAlready(computation);
874     LinkageInfo tempLV =
875       getLVForTemplateParameterList(temp->getTemplateParameters(), computation);
876     LV.mergeMaybeWithVisibility(tempLV, considerVisibility);
877 
878   //     An unnamed namespace or a namespace declared directly or indirectly
879   //     within an unnamed namespace has internal linkage. All other namespaces
880   //     have external linkage.
881   //
882   // We handled names in anonymous namespaces above.
883   } else if (isa<NamespaceDecl>(D)) {
884     return LV;
885 
886   // By extension, we assign external linkage to Objective-C
887   // interfaces.
888   } else if (isa<ObjCInterfaceDecl>(D)) {
889     // fallout
890 
891   } else if (auto *TD = dyn_cast<TypedefNameDecl>(D)) {
892     // A typedef declaration has linkage if it gives a type a name for
893     // linkage purposes.
894     if (!TD->getAnonDeclWithTypedefName(/*AnyRedecl*/true))
895       return LinkageInfo::none();
896 
897   } else if (isa<MSGuidDecl>(D)) {
898     // A GUID behaves like an inline variable with external linkage. Fall
899     // through.
900 
901   // Everything not covered here has no linkage.
902   } else {
903     return LinkageInfo::none();
904   }
905 
906   // If we ended up with non-externally-visible linkage, visibility should
907   // always be default.
908   if (!isExternallyVisible(LV.getLinkage()))
909     return LinkageInfo(LV.getLinkage(), DefaultVisibility, false);
910 
911   return LV;
912 }
913 
914 LinkageInfo
915 LinkageComputer::getLVForClassMember(const NamedDecl *D,
916                                      LVComputationKind computation,
917                                      bool IgnoreVarTypeLinkage) {
918   // Only certain class members have linkage.  Note that fields don't
919   // really have linkage, but it's convenient to say they do for the
920   // purposes of calculating linkage of pointer-to-data-member
921   // template arguments.
922   //
923   // Templates also don't officially have linkage, but since we ignore
924   // the C++ standard and look at template arguments when determining
925   // linkage and visibility of a template specialization, we might hit
926   // a template template argument that way. If we do, we need to
927   // consider its linkage.
928   if (!(isa<CXXMethodDecl>(D) ||
929         isa<VarDecl>(D) ||
930         isa<FieldDecl>(D) ||
931         isa<IndirectFieldDecl>(D) ||
932         isa<TagDecl>(D) ||
933         isa<TemplateDecl>(D)))
934     return LinkageInfo::none();
935 
936   LinkageInfo LV;
937 
938   // If we have an explicit visibility attribute, merge that in.
939   if (!hasExplicitVisibilityAlready(computation)) {
940     if (std::optional<Visibility> Vis = getExplicitVisibility(D, computation))
941       LV.mergeVisibility(*Vis, true);
942     // If we're paying attention to global visibility, apply
943     // -finline-visibility-hidden if this is an inline method.
944     //
945     // Note that we do this before merging information about
946     // the class visibility.
947     if (!LV.isVisibilityExplicit() && useInlineVisibilityHidden(D))
948       LV.mergeVisibility(HiddenVisibility, /*visibilityExplicit=*/false);
949   }
950 
951   // If this class member has an explicit visibility attribute, the only
952   // thing that can change its visibility is the template arguments, so
953   // only look for them when processing the class.
954   LVComputationKind classComputation = computation;
955   if (LV.isVisibilityExplicit())
956     classComputation = withExplicitVisibilityAlready(computation);
957 
958   LinkageInfo classLV =
959     getLVForDecl(cast<RecordDecl>(D->getDeclContext()), classComputation);
960   // The member has the same linkage as the class. If that's not externally
961   // visible, we don't need to compute anything about the linkage.
962   // FIXME: If we're only computing linkage, can we bail out here?
963   if (!isExternallyVisible(classLV.getLinkage()))
964     return classLV;
965 
966 
967   // Otherwise, don't merge in classLV yet, because in certain cases
968   // we need to completely ignore the visibility from it.
969 
970   // Specifically, if this decl exists and has an explicit attribute.
971   const NamedDecl *explicitSpecSuppressor = nullptr;
972 
973   if (const auto *MD = dyn_cast<CXXMethodDecl>(D)) {
974     // Only look at the type-as-written. Otherwise, deducing the return type
975     // of a function could change its linkage.
976     QualType TypeAsWritten = MD->getType();
977     if (TypeSourceInfo *TSI = MD->getTypeSourceInfo())
978       TypeAsWritten = TSI->getType();
979     if (!isExternallyVisible(TypeAsWritten->getLinkage()))
980       return LinkageInfo::uniqueExternal();
981 
982     // If this is a method template specialization, use the linkage for
983     // the template parameters and arguments.
984     if (FunctionTemplateSpecializationInfo *spec
985            = MD->getTemplateSpecializationInfo()) {
986       mergeTemplateLV(LV, MD, spec, computation);
987       if (spec->isExplicitSpecialization()) {
988         explicitSpecSuppressor = MD;
989       } else if (isExplicitMemberSpecialization(spec->getTemplate())) {
990         explicitSpecSuppressor = spec->getTemplate()->getTemplatedDecl();
991       }
992     } else if (isExplicitMemberSpecialization(MD)) {
993       explicitSpecSuppressor = MD;
994     }
995 
996     // OpenMP target declare device functions are not callable from the host so
997     // they should not be exported from the device image. This applies to all
998     // functions as the host-callable kernel functions are emitted at codegen.
999     ASTContext &Context = D->getASTContext();
1000     if (Context.getLangOpts().OpenMP &&
1001         Context.getLangOpts().OpenMPIsTargetDevice &&
1002         ((Context.getTargetInfo().getTriple().isAMDGPU() ||
1003           Context.getTargetInfo().getTriple().isNVPTX()) ||
1004          OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(MD)))
1005       LV.mergeVisibility(HiddenVisibility, /*newExplicit=*/false);
1006 
1007   } else if (const auto *RD = dyn_cast<CXXRecordDecl>(D)) {
1008     if (const auto *spec = dyn_cast<ClassTemplateSpecializationDecl>(RD)) {
1009       mergeTemplateLV(LV, spec, computation);
1010       if (spec->isExplicitSpecialization()) {
1011         explicitSpecSuppressor = spec;
1012       } else {
1013         const ClassTemplateDecl *temp = spec->getSpecializedTemplate();
1014         if (isExplicitMemberSpecialization(temp)) {
1015           explicitSpecSuppressor = temp->getTemplatedDecl();
1016         }
1017       }
1018     } else if (isExplicitMemberSpecialization(RD)) {
1019       explicitSpecSuppressor = RD;
1020     }
1021 
1022   // Static data members.
1023   } else if (const auto *VD = dyn_cast<VarDecl>(D)) {
1024     if (const auto *spec = dyn_cast<VarTemplateSpecializationDecl>(VD))
1025       mergeTemplateLV(LV, spec, computation);
1026 
1027     // Modify the variable's linkage by its type, but ignore the
1028     // type's visibility unless it's a definition.
1029     if (!IgnoreVarTypeLinkage) {
1030       LinkageInfo typeLV = getLVForType(*VD->getType(), computation);
1031       // FIXME: If the type's linkage is not externally visible, we can
1032       // give this static data member UniqueExternalLinkage.
1033       if (!LV.isVisibilityExplicit() && !classLV.isVisibilityExplicit())
1034         LV.mergeVisibility(typeLV);
1035       LV.mergeExternalVisibility(typeLV);
1036     }
1037 
1038     if (isExplicitMemberSpecialization(VD)) {
1039       explicitSpecSuppressor = VD;
1040     }
1041 
1042   // Template members.
1043   } else if (const auto *temp = dyn_cast<TemplateDecl>(D)) {
1044     bool considerVisibility =
1045       (!LV.isVisibilityExplicit() &&
1046        !classLV.isVisibilityExplicit() &&
1047        !hasExplicitVisibilityAlready(computation));
1048     LinkageInfo tempLV =
1049       getLVForTemplateParameterList(temp->getTemplateParameters(), computation);
1050     LV.mergeMaybeWithVisibility(tempLV, considerVisibility);
1051 
1052     if (const auto *redeclTemp = dyn_cast<RedeclarableTemplateDecl>(temp)) {
1053       if (isExplicitMemberSpecialization(redeclTemp)) {
1054         explicitSpecSuppressor = temp->getTemplatedDecl();
1055       }
1056     }
1057   }
1058 
1059   // We should never be looking for an attribute directly on a template.
1060   assert(!explicitSpecSuppressor || !isa<TemplateDecl>(explicitSpecSuppressor));
1061 
1062   // If this member is an explicit member specialization, and it has
1063   // an explicit attribute, ignore visibility from the parent.
1064   bool considerClassVisibility = true;
1065   if (explicitSpecSuppressor &&
1066       // optimization: hasDVA() is true only with explicit visibility.
1067       LV.isVisibilityExplicit() &&
1068       classLV.getVisibility() != DefaultVisibility &&
1069       hasDirectVisibilityAttribute(explicitSpecSuppressor, computation)) {
1070     considerClassVisibility = false;
1071   }
1072 
1073   // Finally, merge in information from the class.
1074   LV.mergeMaybeWithVisibility(classLV, considerClassVisibility);
1075   return LV;
1076 }
1077 
1078 void NamedDecl::anchor() {}
1079 
1080 bool NamedDecl::isLinkageValid() const {
1081   if (!hasCachedLinkage())
1082     return true;
1083 
1084   Linkage L = LinkageComputer{}
1085                   .computeLVForDecl(this, LVComputationKind::forLinkageOnly())
1086                   .getLinkage();
1087   return L == getCachedLinkage();
1088 }
1089 
1090 bool NamedDecl::isPlaceholderVar(const LangOptions &LangOpts) const {
1091   // [C++2c] [basic.scope.scope]/p5
1092   // A declaration is name-independent if its name is _ and it declares
1093   // - a variable with automatic storage duration,
1094   // - a structured binding not inhabiting a namespace scope,
1095   // - the variable introduced by an init-capture
1096   // - or a non-static data member.
1097 
1098   if (!LangOpts.CPlusPlus || !getIdentifier() ||
1099       !getIdentifier()->isPlaceholder())
1100     return false;
1101   if (isa<FieldDecl>(this))
1102     return true;
1103   if (const auto *IFD = dyn_cast<IndirectFieldDecl>(this)) {
1104     if (!getDeclContext()->isFunctionOrMethod() &&
1105         !getDeclContext()->isRecord())
1106       return false;
1107     const VarDecl *VD = IFD->getVarDecl();
1108     return !VD || VD->getStorageDuration() == SD_Automatic;
1109   }
1110   // and it declares a variable with automatic storage duration
1111   if (const auto *VD = dyn_cast<VarDecl>(this)) {
1112     if (isa<ParmVarDecl>(VD))
1113       return false;
1114     if (VD->isInitCapture())
1115       return true;
1116     return VD->getStorageDuration() == StorageDuration::SD_Automatic;
1117   }
1118   if (const auto *BD = dyn_cast<BindingDecl>(this);
1119       BD && getDeclContext()->isFunctionOrMethod()) {
1120     const VarDecl *VD = BD->getHoldingVar();
1121     return !VD || VD->getStorageDuration() == StorageDuration::SD_Automatic;
1122   }
1123   return false;
1124 }
1125 
1126 ReservedIdentifierStatus
1127 NamedDecl::isReserved(const LangOptions &LangOpts) const {
1128   const IdentifierInfo *II = getIdentifier();
1129 
1130   // This triggers at least for CXXLiteralIdentifiers, which we already checked
1131   // at lexing time.
1132   if (!II)
1133     return ReservedIdentifierStatus::NotReserved;
1134 
1135   ReservedIdentifierStatus Status = II->isReserved(LangOpts);
1136   if (isReservedAtGlobalScope(Status) && !isReservedInAllContexts(Status)) {
1137     // This name is only reserved at global scope. Check if this declaration
1138     // conflicts with a global scope declaration.
1139     if (isa<ParmVarDecl>(this) || isTemplateParameter())
1140       return ReservedIdentifierStatus::NotReserved;
1141 
1142     // C++ [dcl.link]/7:
1143     //   Two declarations [conflict] if [...] one declares a function or
1144     //   variable with C language linkage, and the other declares [...] a
1145     //   variable that belongs to the global scope.
1146     //
1147     // Therefore names that are reserved at global scope are also reserved as
1148     // names of variables and functions with C language linkage.
1149     const DeclContext *DC = getDeclContext()->getRedeclContext();
1150     if (DC->isTranslationUnit())
1151       return Status;
1152     if (auto *VD = dyn_cast<VarDecl>(this))
1153       if (VD->isExternC())
1154         return ReservedIdentifierStatus::StartsWithUnderscoreAndIsExternC;
1155     if (auto *FD = dyn_cast<FunctionDecl>(this))
1156       if (FD->isExternC())
1157         return ReservedIdentifierStatus::StartsWithUnderscoreAndIsExternC;
1158     return ReservedIdentifierStatus::NotReserved;
1159   }
1160 
1161   return Status;
1162 }
1163 
1164 ObjCStringFormatFamily NamedDecl::getObjCFStringFormattingFamily() const {
1165   StringRef name = getName();
1166   if (name.empty()) return SFF_None;
1167 
1168   if (name.front() == 'C')
1169     if (name == "CFStringCreateWithFormat" ||
1170         name == "CFStringCreateWithFormatAndArguments" ||
1171         name == "CFStringAppendFormat" ||
1172         name == "CFStringAppendFormatAndArguments")
1173       return SFF_CFString;
1174   return SFF_None;
1175 }
1176 
1177 Linkage NamedDecl::getLinkageInternal() const {
1178   // We don't care about visibility here, so ask for the cheapest
1179   // possible visibility analysis.
1180   return LinkageComputer{}
1181       .getLVForDecl(this, LVComputationKind::forLinkageOnly())
1182       .getLinkage();
1183 }
1184 
1185 static bool isExportedFromModuleInterfaceUnit(const NamedDecl *D) {
1186   // FIXME: Handle isModulePrivate.
1187   switch (D->getModuleOwnershipKind()) {
1188   case Decl::ModuleOwnershipKind::Unowned:
1189   case Decl::ModuleOwnershipKind::ReachableWhenImported:
1190   case Decl::ModuleOwnershipKind::ModulePrivate:
1191     return false;
1192   case Decl::ModuleOwnershipKind::Visible:
1193   case Decl::ModuleOwnershipKind::VisibleWhenImported:
1194     return D->isInNamedModule();
1195   }
1196   llvm_unreachable("unexpected module ownership kind");
1197 }
1198 
1199 /// Get the linkage from a semantic point of view. Entities in
1200 /// anonymous namespaces are external (in c++98).
1201 Linkage NamedDecl::getFormalLinkage() const {
1202   Linkage InternalLinkage = getLinkageInternal();
1203 
1204   // C++ [basic.link]p4.8:
1205   //   - if the declaration of the name is attached to a named module and is not
1206   //   exported
1207   //     the name has module linkage;
1208   //
1209   // [basic.namespace.general]/p2
1210   //   A namespace is never attached to a named module and never has a name with
1211   //   module linkage.
1212   if (isInNamedModule() && InternalLinkage == Linkage::External &&
1213       !isExportedFromModuleInterfaceUnit(
1214           cast<NamedDecl>(this->getCanonicalDecl())) &&
1215       !isa<NamespaceDecl>(this))
1216     InternalLinkage = Linkage::Module;
1217 
1218   return clang::getFormalLinkage(InternalLinkage);
1219 }
1220 
1221 LinkageInfo NamedDecl::getLinkageAndVisibility() const {
1222   return LinkageComputer{}.getDeclLinkageAndVisibility(this);
1223 }
1224 
1225 static std::optional<Visibility>
1226 getExplicitVisibilityAux(const NamedDecl *ND,
1227                          NamedDecl::ExplicitVisibilityKind kind,
1228                          bool IsMostRecent) {
1229   assert(!IsMostRecent || ND == ND->getMostRecentDecl());
1230 
1231   // Check the declaration itself first.
1232   if (std::optional<Visibility> V = getVisibilityOf(ND, kind))
1233     return V;
1234 
1235   // If this is a member class of a specialization of a class template
1236   // and the corresponding decl has explicit visibility, use that.
1237   if (const auto *RD = dyn_cast<CXXRecordDecl>(ND)) {
1238     CXXRecordDecl *InstantiatedFrom = RD->getInstantiatedFromMemberClass();
1239     if (InstantiatedFrom)
1240       return getVisibilityOf(InstantiatedFrom, kind);
1241   }
1242 
1243   // If there wasn't explicit visibility there, and this is a
1244   // specialization of a class template, check for visibility
1245   // on the pattern.
1246   if (const auto *spec = dyn_cast<ClassTemplateSpecializationDecl>(ND)) {
1247     // Walk all the template decl till this point to see if there are
1248     // explicit visibility attributes.
1249     const auto *TD = spec->getSpecializedTemplate()->getTemplatedDecl();
1250     while (TD != nullptr) {
1251       auto Vis = getVisibilityOf(TD, kind);
1252       if (Vis != std::nullopt)
1253         return Vis;
1254       TD = TD->getPreviousDecl();
1255     }
1256     return std::nullopt;
1257   }
1258 
1259   // Use the most recent declaration.
1260   if (!IsMostRecent && !isa<NamespaceDecl>(ND)) {
1261     const NamedDecl *MostRecent = ND->getMostRecentDecl();
1262     if (MostRecent != ND)
1263       return getExplicitVisibilityAux(MostRecent, kind, true);
1264   }
1265 
1266   if (const auto *Var = dyn_cast<VarDecl>(ND)) {
1267     if (Var->isStaticDataMember()) {
1268       VarDecl *InstantiatedFrom = Var->getInstantiatedFromStaticDataMember();
1269       if (InstantiatedFrom)
1270         return getVisibilityOf(InstantiatedFrom, kind);
1271     }
1272 
1273     if (const auto *VTSD = dyn_cast<VarTemplateSpecializationDecl>(Var))
1274       return getVisibilityOf(VTSD->getSpecializedTemplate()->getTemplatedDecl(),
1275                              kind);
1276 
1277     return std::nullopt;
1278   }
1279   // Also handle function template specializations.
1280   if (const auto *fn = dyn_cast<FunctionDecl>(ND)) {
1281     // If the function is a specialization of a template with an
1282     // explicit visibility attribute, use that.
1283     if (FunctionTemplateSpecializationInfo *templateInfo
1284           = fn->getTemplateSpecializationInfo())
1285       return getVisibilityOf(templateInfo->getTemplate()->getTemplatedDecl(),
1286                              kind);
1287 
1288     // If the function is a member of a specialization of a class template
1289     // and the corresponding decl has explicit visibility, use that.
1290     FunctionDecl *InstantiatedFrom = fn->getInstantiatedFromMemberFunction();
1291     if (InstantiatedFrom)
1292       return getVisibilityOf(InstantiatedFrom, kind);
1293 
1294     return std::nullopt;
1295   }
1296 
1297   // The visibility of a template is stored in the templated decl.
1298   if (const auto *TD = dyn_cast<TemplateDecl>(ND))
1299     return getVisibilityOf(TD->getTemplatedDecl(), kind);
1300 
1301   return std::nullopt;
1302 }
1303 
1304 std::optional<Visibility>
1305 NamedDecl::getExplicitVisibility(ExplicitVisibilityKind kind) const {
1306   return getExplicitVisibilityAux(this, kind, false);
1307 }
1308 
1309 LinkageInfo LinkageComputer::getLVForClosure(const DeclContext *DC,
1310                                              Decl *ContextDecl,
1311                                              LVComputationKind computation) {
1312   // This lambda has its linkage/visibility determined by its owner.
1313   const NamedDecl *Owner;
1314   if (!ContextDecl)
1315     Owner = dyn_cast<NamedDecl>(DC);
1316   else if (isa<ParmVarDecl>(ContextDecl))
1317     Owner =
1318         dyn_cast<NamedDecl>(ContextDecl->getDeclContext()->getRedeclContext());
1319   else if (isa<ImplicitConceptSpecializationDecl>(ContextDecl)) {
1320     // Replace with the concept's owning decl, which is either a namespace or a
1321     // TU, so this needs a dyn_cast.
1322     Owner = dyn_cast<NamedDecl>(ContextDecl->getDeclContext());
1323   } else {
1324     Owner = cast<NamedDecl>(ContextDecl);
1325   }
1326 
1327   if (!Owner)
1328     return LinkageInfo::none();
1329 
1330   // If the owner has a deduced type, we need to skip querying the linkage and
1331   // visibility of that type, because it might involve this closure type.  The
1332   // only effect of this is that we might give a lambda VisibleNoLinkage rather
1333   // than NoLinkage when we don't strictly need to, which is benign.
1334   auto *VD = dyn_cast<VarDecl>(Owner);
1335   LinkageInfo OwnerLV =
1336       VD && VD->getType()->getContainedDeducedType()
1337           ? computeLVForDecl(Owner, computation, /*IgnoreVarTypeLinkage*/true)
1338           : getLVForDecl(Owner, computation);
1339 
1340   // A lambda never formally has linkage. But if the owner is externally
1341   // visible, then the lambda is too. We apply the same rules to blocks.
1342   if (!isExternallyVisible(OwnerLV.getLinkage()))
1343     return LinkageInfo::none();
1344   return LinkageInfo(Linkage::VisibleNone, OwnerLV.getVisibility(),
1345                      OwnerLV.isVisibilityExplicit());
1346 }
1347 
1348 LinkageInfo LinkageComputer::getLVForLocalDecl(const NamedDecl *D,
1349                                                LVComputationKind computation) {
1350   if (const auto *Function = dyn_cast<FunctionDecl>(D)) {
1351     if (Function->isInAnonymousNamespace() &&
1352         !isFirstInExternCContext(Function))
1353       return LinkageInfo::internal();
1354 
1355     // This is a "void f();" which got merged with a file static.
1356     if (Function->getCanonicalDecl()->getStorageClass() == SC_Static)
1357       return LinkageInfo::internal();
1358 
1359     LinkageInfo LV;
1360     if (!hasExplicitVisibilityAlready(computation)) {
1361       if (std::optional<Visibility> Vis =
1362               getExplicitVisibility(Function, computation))
1363         LV.mergeVisibility(*Vis, true);
1364     }
1365 
1366     // Note that Sema::MergeCompatibleFunctionDecls already takes care of
1367     // merging storage classes and visibility attributes, so we don't have to
1368     // look at previous decls in here.
1369 
1370     return LV;
1371   }
1372 
1373   if (const auto *Var = dyn_cast<VarDecl>(D)) {
1374     if (Var->hasExternalStorage()) {
1375       if (Var->isInAnonymousNamespace() && !isFirstInExternCContext(Var))
1376         return LinkageInfo::internal();
1377 
1378       LinkageInfo LV;
1379       if (Var->getStorageClass() == SC_PrivateExtern)
1380         LV.mergeVisibility(HiddenVisibility, true);
1381       else if (!hasExplicitVisibilityAlready(computation)) {
1382         if (std::optional<Visibility> Vis =
1383                 getExplicitVisibility(Var, computation))
1384           LV.mergeVisibility(*Vis, true);
1385       }
1386 
1387       if (const VarDecl *Prev = Var->getPreviousDecl()) {
1388         LinkageInfo PrevLV = getLVForDecl(Prev, computation);
1389         if (PrevLV.getLinkage() != Linkage::Invalid)
1390           LV.setLinkage(PrevLV.getLinkage());
1391         LV.mergeVisibility(PrevLV);
1392       }
1393 
1394       return LV;
1395     }
1396 
1397     if (!Var->isStaticLocal())
1398       return LinkageInfo::none();
1399   }
1400 
1401   ASTContext &Context = D->getASTContext();
1402   if (!Context.getLangOpts().CPlusPlus)
1403     return LinkageInfo::none();
1404 
1405   const Decl *OuterD = getOutermostFuncOrBlockContext(D);
1406   if (!OuterD || OuterD->isInvalidDecl())
1407     return LinkageInfo::none();
1408 
1409   LinkageInfo LV;
1410   if (const auto *BD = dyn_cast<BlockDecl>(OuterD)) {
1411     if (!BD->getBlockManglingNumber())
1412       return LinkageInfo::none();
1413 
1414     LV = getLVForClosure(BD->getDeclContext()->getRedeclContext(),
1415                          BD->getBlockManglingContextDecl(), computation);
1416   } else {
1417     const auto *FD = cast<FunctionDecl>(OuterD);
1418     if (!FD->isInlined() &&
1419         !isTemplateInstantiation(FD->getTemplateSpecializationKind()))
1420       return LinkageInfo::none();
1421 
1422     // If a function is hidden by -fvisibility-inlines-hidden option and
1423     // is not explicitly attributed as a hidden function,
1424     // we should not make static local variables in the function hidden.
1425     LV = getLVForDecl(FD, computation);
1426     if (isa<VarDecl>(D) && useInlineVisibilityHidden(FD) &&
1427         !LV.isVisibilityExplicit() &&
1428         !Context.getLangOpts().VisibilityInlinesHiddenStaticLocalVar) {
1429       assert(cast<VarDecl>(D)->isStaticLocal());
1430       // If this was an implicitly hidden inline method, check again for
1431       // explicit visibility on the parent class, and use that for static locals
1432       // if present.
1433       if (const auto *MD = dyn_cast<CXXMethodDecl>(FD))
1434         LV = getLVForDecl(MD->getParent(), computation);
1435       if (!LV.isVisibilityExplicit()) {
1436         Visibility globalVisibility =
1437             computation.isValueVisibility()
1438                 ? Context.getLangOpts().getValueVisibilityMode()
1439                 : Context.getLangOpts().getTypeVisibilityMode();
1440         return LinkageInfo(Linkage::VisibleNone, globalVisibility,
1441                            /*visibilityExplicit=*/false);
1442       }
1443     }
1444   }
1445   if (!isExternallyVisible(LV.getLinkage()))
1446     return LinkageInfo::none();
1447   return LinkageInfo(Linkage::VisibleNone, LV.getVisibility(),
1448                      LV.isVisibilityExplicit());
1449 }
1450 
1451 LinkageInfo LinkageComputer::computeLVForDecl(const NamedDecl *D,
1452                                               LVComputationKind computation,
1453                                               bool IgnoreVarTypeLinkage) {
1454   // Internal_linkage attribute overrides other considerations.
1455   if (D->hasAttr<InternalLinkageAttr>())
1456     return LinkageInfo::internal();
1457 
1458   // Objective-C: treat all Objective-C declarations as having external
1459   // linkage.
1460   switch (D->getKind()) {
1461     default:
1462       break;
1463 
1464     // Per C++ [basic.link]p2, only the names of objects, references,
1465     // functions, types, templates, namespaces, and values ever have linkage.
1466     //
1467     // Note that the name of a typedef, namespace alias, using declaration,
1468     // and so on are not the name of the corresponding type, namespace, or
1469     // declaration, so they do *not* have linkage.
1470     case Decl::ImplicitParam:
1471     case Decl::Label:
1472     case Decl::NamespaceAlias:
1473     case Decl::ParmVar:
1474     case Decl::Using:
1475     case Decl::UsingEnum:
1476     case Decl::UsingShadow:
1477     case Decl::UsingDirective:
1478       return LinkageInfo::none();
1479 
1480     case Decl::EnumConstant:
1481       // C++ [basic.link]p4: an enumerator has the linkage of its enumeration.
1482       if (D->getASTContext().getLangOpts().CPlusPlus)
1483         return getLVForDecl(cast<EnumDecl>(D->getDeclContext()), computation);
1484       return LinkageInfo::visible_none();
1485 
1486     case Decl::Typedef:
1487     case Decl::TypeAlias:
1488       // A typedef declaration has linkage if it gives a type a name for
1489       // linkage purposes.
1490       if (!cast<TypedefNameDecl>(D)
1491                ->getAnonDeclWithTypedefName(/*AnyRedecl*/true))
1492         return LinkageInfo::none();
1493       break;
1494 
1495     case Decl::TemplateTemplateParm: // count these as external
1496     case Decl::NonTypeTemplateParm:
1497     case Decl::ObjCAtDefsField:
1498     case Decl::ObjCCategory:
1499     case Decl::ObjCCategoryImpl:
1500     case Decl::ObjCCompatibleAlias:
1501     case Decl::ObjCImplementation:
1502     case Decl::ObjCMethod:
1503     case Decl::ObjCProperty:
1504     case Decl::ObjCPropertyImpl:
1505     case Decl::ObjCProtocol:
1506       return getExternalLinkageFor(D);
1507 
1508     case Decl::CXXRecord: {
1509       const auto *Record = cast<CXXRecordDecl>(D);
1510       if (Record->isLambda()) {
1511         if (Record->hasKnownLambdaInternalLinkage() ||
1512             !Record->getLambdaManglingNumber()) {
1513           // This lambda has no mangling number, so it's internal.
1514           return LinkageInfo::internal();
1515         }
1516 
1517         return getLVForClosure(
1518                   Record->getDeclContext()->getRedeclContext(),
1519                   Record->getLambdaContextDecl(), computation);
1520       }
1521 
1522       break;
1523     }
1524 
1525     case Decl::TemplateParamObject: {
1526       // The template parameter object can be referenced from anywhere its type
1527       // and value can be referenced.
1528       auto *TPO = cast<TemplateParamObjectDecl>(D);
1529       LinkageInfo LV = getLVForType(*TPO->getType(), computation);
1530       LV.merge(getLVForValue(TPO->getValue(), computation));
1531       return LV;
1532     }
1533   }
1534 
1535   // Handle linkage for namespace-scope names.
1536   if (D->getDeclContext()->getRedeclContext()->isFileContext())
1537     return getLVForNamespaceScopeDecl(D, computation, IgnoreVarTypeLinkage);
1538 
1539   // C++ [basic.link]p5:
1540   //   In addition, a member function, static data member, a named
1541   //   class or enumeration of class scope, or an unnamed class or
1542   //   enumeration defined in a class-scope typedef declaration such
1543   //   that the class or enumeration has the typedef name for linkage
1544   //   purposes (7.1.3), has external linkage if the name of the class
1545   //   has external linkage.
1546   if (D->getDeclContext()->isRecord())
1547     return getLVForClassMember(D, computation, IgnoreVarTypeLinkage);
1548 
1549   // C++ [basic.link]p6:
1550   //   The name of a function declared in block scope and the name of
1551   //   an object declared by a block scope extern declaration have
1552   //   linkage. If there is a visible declaration of an entity with
1553   //   linkage having the same name and type, ignoring entities
1554   //   declared outside the innermost enclosing namespace scope, the
1555   //   block scope declaration declares that same entity and receives
1556   //   the linkage of the previous declaration. If there is more than
1557   //   one such matching entity, the program is ill-formed. Otherwise,
1558   //   if no matching entity is found, the block scope entity receives
1559   //   external linkage.
1560   if (D->getDeclContext()->isFunctionOrMethod())
1561     return getLVForLocalDecl(D, computation);
1562 
1563   // C++ [basic.link]p6:
1564   //   Names not covered by these rules have no linkage.
1565   return LinkageInfo::none();
1566 }
1567 
1568 /// getLVForDecl - Get the linkage and visibility for the given declaration.
1569 LinkageInfo LinkageComputer::getLVForDecl(const NamedDecl *D,
1570                                           LVComputationKind computation) {
1571   // Internal_linkage attribute overrides other considerations.
1572   if (D->hasAttr<InternalLinkageAttr>())
1573     return LinkageInfo::internal();
1574 
1575   if (computation.IgnoreAllVisibility && D->hasCachedLinkage())
1576     return LinkageInfo(D->getCachedLinkage(), DefaultVisibility, false);
1577 
1578   if (std::optional<LinkageInfo> LI = lookup(D, computation))
1579     return *LI;
1580 
1581   LinkageInfo LV = computeLVForDecl(D, computation);
1582   if (D->hasCachedLinkage())
1583     assert(D->getCachedLinkage() == LV.getLinkage());
1584 
1585   D->setCachedLinkage(LV.getLinkage());
1586   cache(D, computation, LV);
1587 
1588 #ifndef NDEBUG
1589   // In C (because of gnu inline) and in c++ with microsoft extensions an
1590   // static can follow an extern, so we can have two decls with different
1591   // linkages.
1592   const LangOptions &Opts = D->getASTContext().getLangOpts();
1593   if (!Opts.CPlusPlus || Opts.MicrosoftExt)
1594     return LV;
1595 
1596   // We have just computed the linkage for this decl. By induction we know
1597   // that all other computed linkages match, check that the one we just
1598   // computed also does.
1599   NamedDecl *Old = nullptr;
1600   for (auto *I : D->redecls()) {
1601     auto *T = cast<NamedDecl>(I);
1602     if (T == D)
1603       continue;
1604     if (!T->isInvalidDecl() && T->hasCachedLinkage()) {
1605       Old = T;
1606       break;
1607     }
1608   }
1609   assert(!Old || Old->getCachedLinkage() == D->getCachedLinkage());
1610 #endif
1611 
1612   return LV;
1613 }
1614 
1615 LinkageInfo LinkageComputer::getDeclLinkageAndVisibility(const NamedDecl *D) {
1616   NamedDecl::ExplicitVisibilityKind EK = usesTypeVisibility(D)
1617                                              ? NamedDecl::VisibilityForType
1618                                              : NamedDecl::VisibilityForValue;
1619   LVComputationKind CK(EK);
1620   return getLVForDecl(D, D->getASTContext().getLangOpts().IgnoreXCOFFVisibility
1621                              ? CK.forLinkageOnly()
1622                              : CK);
1623 }
1624 
1625 Module *Decl::getOwningModuleForLinkage() const {
1626   if (isa<NamespaceDecl>(this))
1627     // Namespaces never have module linkage.  It is the entities within them
1628     // that [may] do.
1629     return nullptr;
1630 
1631   Module *M = getOwningModule();
1632   if (!M)
1633     return nullptr;
1634 
1635   switch (M->Kind) {
1636   case Module::ModuleMapModule:
1637     // Module map modules have no special linkage semantics.
1638     return nullptr;
1639 
1640   case Module::ModuleInterfaceUnit:
1641   case Module::ModuleImplementationUnit:
1642   case Module::ModulePartitionInterface:
1643   case Module::ModulePartitionImplementation:
1644     return M;
1645 
1646   case Module::ModuleHeaderUnit:
1647   case Module::ExplicitGlobalModuleFragment:
1648   case Module::ImplicitGlobalModuleFragment:
1649     // The global module shouldn't change the linkage.
1650     return nullptr;
1651 
1652   case Module::PrivateModuleFragment:
1653     // The private module fragment is part of its containing module for linkage
1654     // purposes.
1655     return M->Parent;
1656   }
1657 
1658   llvm_unreachable("unknown module kind");
1659 }
1660 
1661 void NamedDecl::printName(raw_ostream &OS, const PrintingPolicy &Policy) const {
1662   Name.print(OS, Policy);
1663 }
1664 
1665 void NamedDecl::printName(raw_ostream &OS) const {
1666   printName(OS, getASTContext().getPrintingPolicy());
1667 }
1668 
1669 std::string NamedDecl::getQualifiedNameAsString() const {
1670   std::string QualName;
1671   llvm::raw_string_ostream OS(QualName);
1672   printQualifiedName(OS, getASTContext().getPrintingPolicy());
1673   return QualName;
1674 }
1675 
1676 void NamedDecl::printQualifiedName(raw_ostream &OS) const {
1677   printQualifiedName(OS, getASTContext().getPrintingPolicy());
1678 }
1679 
1680 void NamedDecl::printQualifiedName(raw_ostream &OS,
1681                                    const PrintingPolicy &P) const {
1682   if (getDeclContext()->isFunctionOrMethod()) {
1683     // We do not print '(anonymous)' for function parameters without name.
1684     printName(OS, P);
1685     return;
1686   }
1687   printNestedNameSpecifier(OS, P);
1688   if (getDeclName())
1689     OS << *this;
1690   else {
1691     // Give the printName override a chance to pick a different name before we
1692     // fall back to "(anonymous)".
1693     SmallString<64> NameBuffer;
1694     llvm::raw_svector_ostream NameOS(NameBuffer);
1695     printName(NameOS, P);
1696     if (NameBuffer.empty())
1697       OS << "(anonymous)";
1698     else
1699       OS << NameBuffer;
1700   }
1701 }
1702 
1703 void NamedDecl::printNestedNameSpecifier(raw_ostream &OS) const {
1704   printNestedNameSpecifier(OS, getASTContext().getPrintingPolicy());
1705 }
1706 
1707 void NamedDecl::printNestedNameSpecifier(raw_ostream &OS,
1708                                          const PrintingPolicy &P) const {
1709   const DeclContext *Ctx = getDeclContext();
1710 
1711   // For ObjC methods and properties, look through categories and use the
1712   // interface as context.
1713   if (auto *MD = dyn_cast<ObjCMethodDecl>(this)) {
1714     if (auto *ID = MD->getClassInterface())
1715       Ctx = ID;
1716   } else if (auto *PD = dyn_cast<ObjCPropertyDecl>(this)) {
1717     if (auto *MD = PD->getGetterMethodDecl())
1718       if (auto *ID = MD->getClassInterface())
1719         Ctx = ID;
1720   } else if (auto *ID = dyn_cast<ObjCIvarDecl>(this)) {
1721     if (auto *CI = ID->getContainingInterface())
1722       Ctx = CI;
1723   }
1724 
1725   if (Ctx->isFunctionOrMethod())
1726     return;
1727 
1728   using ContextsTy = SmallVector<const DeclContext *, 8>;
1729   ContextsTy Contexts;
1730 
1731   // Collect named contexts.
1732   DeclarationName NameInScope = getDeclName();
1733   for (; Ctx; Ctx = Ctx->getParent()) {
1734     // Suppress anonymous namespace if requested.
1735     if (P.SuppressUnwrittenScope && isa<NamespaceDecl>(Ctx) &&
1736         cast<NamespaceDecl>(Ctx)->isAnonymousNamespace())
1737       continue;
1738 
1739     // Suppress inline namespace if it doesn't make the result ambiguous.
1740     if (Ctx->isInlineNamespace() && NameInScope) {
1741       bool isRedundant =
1742           cast<NamespaceDecl>(Ctx)->isRedundantInlineQualifierFor(NameInScope);
1743       if (P.SuppressInlineNamespace ==
1744               PrintingPolicy::SuppressInlineNamespaceMode::All ||
1745           (P.SuppressInlineNamespace ==
1746                PrintingPolicy::SuppressInlineNamespaceMode::Redundant &&
1747            isRedundant)) {
1748         continue;
1749       }
1750     }
1751 
1752     // Skip non-named contexts such as linkage specifications and ExportDecls.
1753     const NamedDecl *ND = dyn_cast<NamedDecl>(Ctx);
1754     if (!ND)
1755       continue;
1756 
1757     Contexts.push_back(Ctx);
1758     NameInScope = ND->getDeclName();
1759   }
1760 
1761   for (const DeclContext *DC : llvm::reverse(Contexts)) {
1762     if (const auto *Spec = dyn_cast<ClassTemplateSpecializationDecl>(DC)) {
1763       OS << Spec->getName();
1764       const TemplateArgumentList &TemplateArgs = Spec->getTemplateArgs();
1765       printTemplateArgumentList(
1766           OS, TemplateArgs.asArray(), P,
1767           Spec->getSpecializedTemplate()->getTemplateParameters());
1768     } else if (const auto *ND = dyn_cast<NamespaceDecl>(DC)) {
1769       if (ND->isAnonymousNamespace()) {
1770         OS << (P.MSVCFormatting ? "`anonymous namespace\'"
1771                                 : "(anonymous namespace)");
1772       }
1773       else
1774         OS << *ND;
1775     } else if (const auto *RD = dyn_cast<RecordDecl>(DC)) {
1776       if (!RD->getIdentifier())
1777         OS << "(anonymous " << RD->getKindName() << ')';
1778       else
1779         OS << *RD;
1780     } else if (const auto *FD = dyn_cast<FunctionDecl>(DC)) {
1781       const FunctionProtoType *FT = nullptr;
1782       if (FD->hasWrittenPrototype())
1783         FT = dyn_cast<FunctionProtoType>(FD->getType()->castAs<FunctionType>());
1784 
1785       OS << *FD << '(';
1786       if (FT) {
1787         unsigned NumParams = FD->getNumParams();
1788         for (unsigned i = 0; i < NumParams; ++i) {
1789           if (i)
1790             OS << ", ";
1791           OS << FD->getParamDecl(i)->getType().stream(P);
1792         }
1793 
1794         if (FT->isVariadic()) {
1795           if (NumParams > 0)
1796             OS << ", ";
1797           OS << "...";
1798         }
1799       }
1800       OS << ')';
1801     } else if (const auto *ED = dyn_cast<EnumDecl>(DC)) {
1802       // C++ [dcl.enum]p10: Each enum-name and each unscoped
1803       // enumerator is declared in the scope that immediately contains
1804       // the enum-specifier. Each scoped enumerator is declared in the
1805       // scope of the enumeration.
1806       // For the case of unscoped enumerator, do not include in the qualified
1807       // name any information about its enum enclosing scope, as its visibility
1808       // is global.
1809       if (ED->isScoped())
1810         OS << *ED;
1811       else
1812         continue;
1813     } else {
1814       OS << *cast<NamedDecl>(DC);
1815     }
1816     OS << "::";
1817   }
1818 }
1819 
1820 void NamedDecl::getNameForDiagnostic(raw_ostream &OS,
1821                                      const PrintingPolicy &Policy,
1822                                      bool Qualified) const {
1823   if (Qualified)
1824     printQualifiedName(OS, Policy);
1825   else
1826     printName(OS, Policy);
1827 }
1828 
1829 template<typename T> static bool isRedeclarableImpl(Redeclarable<T> *) {
1830   return true;
1831 }
1832 static bool isRedeclarableImpl(...) { return false; }
1833 static bool isRedeclarable(Decl::Kind K) {
1834   switch (K) {
1835 #define DECL(Type, Base) \
1836   case Decl::Type: \
1837     return isRedeclarableImpl((Type##Decl *)nullptr);
1838 #define ABSTRACT_DECL(DECL)
1839 #include "clang/AST/DeclNodes.inc"
1840   }
1841   llvm_unreachable("unknown decl kind");
1842 }
1843 
1844 bool NamedDecl::declarationReplaces(const NamedDecl *OldD,
1845                                     bool IsKnownNewer) const {
1846   assert(getDeclName() == OldD->getDeclName() && "Declaration name mismatch");
1847 
1848   // Never replace one imported declaration with another; we need both results
1849   // when re-exporting.
1850   if (OldD->isFromASTFile() && isFromASTFile())
1851     return false;
1852 
1853   // A kind mismatch implies that the declaration is not replaced.
1854   if (OldD->getKind() != getKind())
1855     return false;
1856 
1857   // For method declarations, we never replace. (Why?)
1858   if (isa<ObjCMethodDecl>(this))
1859     return false;
1860 
1861   // For parameters, pick the newer one. This is either an error or (in
1862   // Objective-C) permitted as an extension.
1863   if (isa<ParmVarDecl>(this))
1864     return true;
1865 
1866   // Inline namespaces can give us two declarations with the same
1867   // name and kind in the same scope but different contexts; we should
1868   // keep both declarations in this case.
1869   if (!this->getDeclContext()->getRedeclContext()->Equals(
1870           OldD->getDeclContext()->getRedeclContext()))
1871     return false;
1872 
1873   // Using declarations can be replaced if they import the same name from the
1874   // same context.
1875   if (const auto *UD = dyn_cast<UsingDecl>(this)) {
1876     ASTContext &Context = getASTContext();
1877     return Context.getCanonicalNestedNameSpecifier(UD->getQualifier()) ==
1878            Context.getCanonicalNestedNameSpecifier(
1879                cast<UsingDecl>(OldD)->getQualifier());
1880   }
1881   if (const auto *UUVD = dyn_cast<UnresolvedUsingValueDecl>(this)) {
1882     ASTContext &Context = getASTContext();
1883     return Context.getCanonicalNestedNameSpecifier(UUVD->getQualifier()) ==
1884            Context.getCanonicalNestedNameSpecifier(
1885                         cast<UnresolvedUsingValueDecl>(OldD)->getQualifier());
1886   }
1887 
1888   if (isRedeclarable(getKind())) {
1889     if (getCanonicalDecl() != OldD->getCanonicalDecl())
1890       return false;
1891 
1892     if (IsKnownNewer)
1893       return true;
1894 
1895     // Check whether this is actually newer than OldD. We want to keep the
1896     // newer declaration. This loop will usually only iterate once, because
1897     // OldD is usually the previous declaration.
1898     for (const auto *D : redecls()) {
1899       if (D == OldD)
1900         break;
1901 
1902       // If we reach the canonical declaration, then OldD is not actually older
1903       // than this one.
1904       //
1905       // FIXME: In this case, we should not add this decl to the lookup table.
1906       if (D->isCanonicalDecl())
1907         return false;
1908     }
1909 
1910     // It's a newer declaration of the same kind of declaration in the same
1911     // scope: we want this decl instead of the existing one.
1912     return true;
1913   }
1914 
1915   // In all other cases, we need to keep both declarations in case they have
1916   // different visibility. Any attempt to use the name will result in an
1917   // ambiguity if more than one is visible.
1918   return false;
1919 }
1920 
1921 bool NamedDecl::hasLinkage() const {
1922   switch (getFormalLinkage()) {
1923   case Linkage::Invalid:
1924     llvm_unreachable("Linkage hasn't been computed!");
1925   case Linkage::None:
1926     return false;
1927   case Linkage::Internal:
1928     return true;
1929   case Linkage::UniqueExternal:
1930   case Linkage::VisibleNone:
1931     llvm_unreachable("Non-formal linkage is not allowed here!");
1932   case Linkage::Module:
1933   case Linkage::External:
1934     return true;
1935   }
1936   llvm_unreachable("Unhandled Linkage enum");
1937 }
1938 
1939 NamedDecl *NamedDecl::getUnderlyingDeclImpl() {
1940   NamedDecl *ND = this;
1941   if (auto *UD = dyn_cast<UsingShadowDecl>(ND))
1942     ND = UD->getTargetDecl();
1943 
1944   if (auto *AD = dyn_cast<ObjCCompatibleAliasDecl>(ND))
1945     return AD->getClassInterface();
1946 
1947   if (auto *AD = dyn_cast<NamespaceAliasDecl>(ND))
1948     return AD->getNamespace();
1949 
1950   return ND;
1951 }
1952 
1953 bool NamedDecl::isCXXInstanceMember() const {
1954   if (!isCXXClassMember())
1955     return false;
1956 
1957   const NamedDecl *D = this;
1958   if (isa<UsingShadowDecl>(D))
1959     D = cast<UsingShadowDecl>(D)->getTargetDecl();
1960 
1961   if (isa<FieldDecl>(D) || isa<IndirectFieldDecl>(D) || isa<MSPropertyDecl>(D))
1962     return true;
1963   if (const auto *MD = dyn_cast_if_present<CXXMethodDecl>(D->getAsFunction()))
1964     return MD->isInstance();
1965   return false;
1966 }
1967 
1968 //===----------------------------------------------------------------------===//
1969 // DeclaratorDecl Implementation
1970 //===----------------------------------------------------------------------===//
1971 
1972 template <typename DeclT>
1973 static SourceLocation getTemplateOrInnerLocStart(const DeclT *decl) {
1974   if (decl->getNumTemplateParameterLists() > 0)
1975     return decl->getTemplateParameterList(0)->getTemplateLoc();
1976   return decl->getInnerLocStart();
1977 }
1978 
1979 SourceLocation DeclaratorDecl::getTypeSpecStartLoc() const {
1980   TypeSourceInfo *TSI = getTypeSourceInfo();
1981   if (TSI) return TSI->getTypeLoc().getBeginLoc();
1982   return SourceLocation();
1983 }
1984 
1985 SourceLocation DeclaratorDecl::getTypeSpecEndLoc() const {
1986   TypeSourceInfo *TSI = getTypeSourceInfo();
1987   if (TSI) return TSI->getTypeLoc().getEndLoc();
1988   return SourceLocation();
1989 }
1990 
1991 void DeclaratorDecl::setQualifierInfo(NestedNameSpecifierLoc QualifierLoc) {
1992   if (QualifierLoc) {
1993     // Make sure the extended decl info is allocated.
1994     if (!hasExtInfo()) {
1995       // Save (non-extended) type source info pointer.
1996       auto *savedTInfo = DeclInfo.get<TypeSourceInfo*>();
1997       // Allocate external info struct.
1998       DeclInfo = new (getASTContext()) ExtInfo;
1999       // Restore savedTInfo into (extended) decl info.
2000       getExtInfo()->TInfo = savedTInfo;
2001     }
2002     // Set qualifier info.
2003     getExtInfo()->QualifierLoc = QualifierLoc;
2004   } else if (hasExtInfo()) {
2005     // Here Qualifier == 0, i.e., we are removing the qualifier (if any).
2006     getExtInfo()->QualifierLoc = QualifierLoc;
2007   }
2008 }
2009 
2010 void DeclaratorDecl::setTrailingRequiresClause(Expr *TrailingRequiresClause) {
2011   assert(TrailingRequiresClause);
2012   // Make sure the extended decl info is allocated.
2013   if (!hasExtInfo()) {
2014     // Save (non-extended) type source info pointer.
2015     auto *savedTInfo = DeclInfo.get<TypeSourceInfo*>();
2016     // Allocate external info struct.
2017     DeclInfo = new (getASTContext()) ExtInfo;
2018     // Restore savedTInfo into (extended) decl info.
2019     getExtInfo()->TInfo = savedTInfo;
2020   }
2021   // Set requires clause info.
2022   getExtInfo()->TrailingRequiresClause = TrailingRequiresClause;
2023 }
2024 
2025 void DeclaratorDecl::setTemplateParameterListsInfo(
2026     ASTContext &Context, ArrayRef<TemplateParameterList *> TPLists) {
2027   assert(!TPLists.empty());
2028   // Make sure the extended decl info is allocated.
2029   if (!hasExtInfo()) {
2030     // Save (non-extended) type source info pointer.
2031     auto *savedTInfo = DeclInfo.get<TypeSourceInfo*>();
2032     // Allocate external info struct.
2033     DeclInfo = new (getASTContext()) ExtInfo;
2034     // Restore savedTInfo into (extended) decl info.
2035     getExtInfo()->TInfo = savedTInfo;
2036   }
2037   // Set the template parameter lists info.
2038   getExtInfo()->setTemplateParameterListsInfo(Context, TPLists);
2039 }
2040 
2041 SourceLocation DeclaratorDecl::getOuterLocStart() const {
2042   return getTemplateOrInnerLocStart(this);
2043 }
2044 
2045 // Helper function: returns true if QT is or contains a type
2046 // having a postfix component.
2047 static bool typeIsPostfix(QualType QT) {
2048   while (true) {
2049     const Type* T = QT.getTypePtr();
2050     switch (T->getTypeClass()) {
2051     default:
2052       return false;
2053     case Type::Pointer:
2054       QT = cast<PointerType>(T)->getPointeeType();
2055       break;
2056     case Type::BlockPointer:
2057       QT = cast<BlockPointerType>(T)->getPointeeType();
2058       break;
2059     case Type::MemberPointer:
2060       QT = cast<MemberPointerType>(T)->getPointeeType();
2061       break;
2062     case Type::LValueReference:
2063     case Type::RValueReference:
2064       QT = cast<ReferenceType>(T)->getPointeeType();
2065       break;
2066     case Type::PackExpansion:
2067       QT = cast<PackExpansionType>(T)->getPattern();
2068       break;
2069     case Type::Paren:
2070     case Type::ConstantArray:
2071     case Type::DependentSizedArray:
2072     case Type::IncompleteArray:
2073     case Type::VariableArray:
2074     case Type::FunctionProto:
2075     case Type::FunctionNoProto:
2076       return true;
2077     }
2078   }
2079 }
2080 
2081 SourceRange DeclaratorDecl::getSourceRange() const {
2082   SourceLocation RangeEnd = getLocation();
2083   if (TypeSourceInfo *TInfo = getTypeSourceInfo()) {
2084     // If the declaration has no name or the type extends past the name take the
2085     // end location of the type.
2086     if (!getDeclName() || typeIsPostfix(TInfo->getType()))
2087       RangeEnd = TInfo->getTypeLoc().getSourceRange().getEnd();
2088   }
2089   return SourceRange(getOuterLocStart(), RangeEnd);
2090 }
2091 
2092 void QualifierInfo::setTemplateParameterListsInfo(
2093     ASTContext &Context, ArrayRef<TemplateParameterList *> TPLists) {
2094   // Free previous template parameters (if any).
2095   if (NumTemplParamLists > 0) {
2096     Context.Deallocate(TemplParamLists);
2097     TemplParamLists = nullptr;
2098     NumTemplParamLists = 0;
2099   }
2100   // Set info on matched template parameter lists (if any).
2101   if (!TPLists.empty()) {
2102     TemplParamLists = new (Context) TemplateParameterList *[TPLists.size()];
2103     NumTemplParamLists = TPLists.size();
2104     std::copy(TPLists.begin(), TPLists.end(), TemplParamLists);
2105   }
2106 }
2107 
2108 //===----------------------------------------------------------------------===//
2109 // VarDecl Implementation
2110 //===----------------------------------------------------------------------===//
2111 
2112 const char *VarDecl::getStorageClassSpecifierString(StorageClass SC) {
2113   switch (SC) {
2114   case SC_None:                 break;
2115   case SC_Auto:                 return "auto";
2116   case SC_Extern:               return "extern";
2117   case SC_PrivateExtern:        return "__private_extern__";
2118   case SC_Register:             return "register";
2119   case SC_Static:               return "static";
2120   }
2121 
2122   llvm_unreachable("Invalid storage class");
2123 }
2124 
2125 VarDecl::VarDecl(Kind DK, ASTContext &C, DeclContext *DC,
2126                  SourceLocation StartLoc, SourceLocation IdLoc,
2127                  const IdentifierInfo *Id, QualType T, TypeSourceInfo *TInfo,
2128                  StorageClass SC)
2129     : DeclaratorDecl(DK, DC, IdLoc, Id, T, TInfo, StartLoc),
2130       redeclarable_base(C) {
2131   static_assert(sizeof(VarDeclBitfields) <= sizeof(unsigned),
2132                 "VarDeclBitfields too large!");
2133   static_assert(sizeof(ParmVarDeclBitfields) <= sizeof(unsigned),
2134                 "ParmVarDeclBitfields too large!");
2135   static_assert(sizeof(NonParmVarDeclBitfields) <= sizeof(unsigned),
2136                 "NonParmVarDeclBitfields too large!");
2137   AllBits = 0;
2138   VarDeclBits.SClass = SC;
2139   // Everything else is implicitly initialized to false.
2140 }
2141 
2142 VarDecl *VarDecl::Create(ASTContext &C, DeclContext *DC, SourceLocation StartL,
2143                          SourceLocation IdL, const IdentifierInfo *Id,
2144                          QualType T, TypeSourceInfo *TInfo, StorageClass S) {
2145   return new (C, DC) VarDecl(Var, C, DC, StartL, IdL, Id, T, TInfo, S);
2146 }
2147 
2148 VarDecl *VarDecl::CreateDeserialized(ASTContext &C, GlobalDeclID ID) {
2149   return new (C, ID)
2150       VarDecl(Var, C, nullptr, SourceLocation(), SourceLocation(), nullptr,
2151               QualType(), nullptr, SC_None);
2152 }
2153 
2154 void VarDecl::setStorageClass(StorageClass SC) {
2155   assert(isLegalForVariable(SC));
2156   VarDeclBits.SClass = SC;
2157 }
2158 
2159 VarDecl::TLSKind VarDecl::getTLSKind() const {
2160   switch (VarDeclBits.TSCSpec) {
2161   case TSCS_unspecified:
2162     if (!hasAttr<ThreadAttr>() &&
2163         !(getASTContext().getLangOpts().OpenMPUseTLS &&
2164           getASTContext().getTargetInfo().isTLSSupported() &&
2165           hasAttr<OMPThreadPrivateDeclAttr>()))
2166       return TLS_None;
2167     return ((getASTContext().getLangOpts().isCompatibleWithMSVC(
2168                 LangOptions::MSVC2015)) ||
2169             hasAttr<OMPThreadPrivateDeclAttr>())
2170                ? TLS_Dynamic
2171                : TLS_Static;
2172   case TSCS___thread: // Fall through.
2173   case TSCS__Thread_local:
2174     return TLS_Static;
2175   case TSCS_thread_local:
2176     return TLS_Dynamic;
2177   }
2178   llvm_unreachable("Unknown thread storage class specifier!");
2179 }
2180 
2181 SourceRange VarDecl::getSourceRange() const {
2182   if (const Expr *Init = getInit()) {
2183     SourceLocation InitEnd = Init->getEndLoc();
2184     // If Init is implicit, ignore its source range and fallback on
2185     // DeclaratorDecl::getSourceRange() to handle postfix elements.
2186     if (InitEnd.isValid() && InitEnd != getLocation())
2187       return SourceRange(getOuterLocStart(), InitEnd);
2188   }
2189   return DeclaratorDecl::getSourceRange();
2190 }
2191 
2192 template<typename T>
2193 static LanguageLinkage getDeclLanguageLinkage(const T &D) {
2194   // C++ [dcl.link]p1: All function types, function names with external linkage,
2195   // and variable names with external linkage have a language linkage.
2196   if (!D.hasExternalFormalLinkage())
2197     return NoLanguageLinkage;
2198 
2199   // Language linkage is a C++ concept, but saying that everything else in C has
2200   // C language linkage fits the implementation nicely.
2201   if (!D.getASTContext().getLangOpts().CPlusPlus)
2202     return CLanguageLinkage;
2203 
2204   // C++ [dcl.link]p4: A C language linkage is ignored in determining the
2205   // language linkage of the names of class members and the function type of
2206   // class member functions.
2207   const DeclContext *DC = D.getDeclContext();
2208   if (DC->isRecord())
2209     return CXXLanguageLinkage;
2210 
2211   // If the first decl is in an extern "C" context, any other redeclaration
2212   // will have C language linkage. If the first one is not in an extern "C"
2213   // context, we would have reported an error for any other decl being in one.
2214   if (isFirstInExternCContext(&D))
2215     return CLanguageLinkage;
2216   return CXXLanguageLinkage;
2217 }
2218 
2219 template<typename T>
2220 static bool isDeclExternC(const T &D) {
2221   // Since the context is ignored for class members, they can only have C++
2222   // language linkage or no language linkage.
2223   const DeclContext *DC = D.getDeclContext();
2224   if (DC->isRecord()) {
2225     assert(D.getASTContext().getLangOpts().CPlusPlus);
2226     return false;
2227   }
2228 
2229   return D.getLanguageLinkage() == CLanguageLinkage;
2230 }
2231 
2232 LanguageLinkage VarDecl::getLanguageLinkage() const {
2233   return getDeclLanguageLinkage(*this);
2234 }
2235 
2236 bool VarDecl::isExternC() const {
2237   return isDeclExternC(*this);
2238 }
2239 
2240 bool VarDecl::isInExternCContext() const {
2241   return getLexicalDeclContext()->isExternCContext();
2242 }
2243 
2244 bool VarDecl::isInExternCXXContext() const {
2245   return getLexicalDeclContext()->isExternCXXContext();
2246 }
2247 
2248 VarDecl *VarDecl::getCanonicalDecl() { return getFirstDecl(); }
2249 
2250 VarDecl::DefinitionKind
2251 VarDecl::isThisDeclarationADefinition(ASTContext &C) const {
2252   if (isThisDeclarationADemotedDefinition())
2253     return DeclarationOnly;
2254 
2255   // C++ [basic.def]p2:
2256   //   A declaration is a definition unless [...] it contains the 'extern'
2257   //   specifier or a linkage-specification and neither an initializer [...],
2258   //   it declares a non-inline static data member in a class declaration [...],
2259   //   it declares a static data member outside a class definition and the variable
2260   //   was defined within the class with the constexpr specifier [...],
2261   // C++1y [temp.expl.spec]p15:
2262   //   An explicit specialization of a static data member or an explicit
2263   //   specialization of a static data member template is a definition if the
2264   //   declaration includes an initializer; otherwise, it is a declaration.
2265   //
2266   // FIXME: How do you declare (but not define) a partial specialization of
2267   // a static data member template outside the containing class?
2268   if (isStaticDataMember()) {
2269     if (isOutOfLine() &&
2270         !(getCanonicalDecl()->isInline() &&
2271           getCanonicalDecl()->isConstexpr()) &&
2272         (hasInit() ||
2273          // If the first declaration is out-of-line, this may be an
2274          // instantiation of an out-of-line partial specialization of a variable
2275          // template for which we have not yet instantiated the initializer.
2276          (getFirstDecl()->isOutOfLine()
2277               ? getTemplateSpecializationKind() == TSK_Undeclared
2278               : getTemplateSpecializationKind() !=
2279                     TSK_ExplicitSpecialization) ||
2280          isa<VarTemplatePartialSpecializationDecl>(this)))
2281       return Definition;
2282     if (!isOutOfLine() && isInline())
2283       return Definition;
2284     return DeclarationOnly;
2285   }
2286   // C99 6.7p5:
2287   //   A definition of an identifier is a declaration for that identifier that
2288   //   [...] causes storage to be reserved for that object.
2289   // Note: that applies for all non-file-scope objects.
2290   // C99 6.9.2p1:
2291   //   If the declaration of an identifier for an object has file scope and an
2292   //   initializer, the declaration is an external definition for the identifier
2293   if (hasInit())
2294     return Definition;
2295 
2296   if (hasDefiningAttr())
2297     return Definition;
2298 
2299   if (const auto *SAA = getAttr<SelectAnyAttr>())
2300     if (!SAA->isInherited())
2301       return Definition;
2302 
2303   // A variable template specialization (other than a static data member
2304   // template or an explicit specialization) is a declaration until we
2305   // instantiate its initializer.
2306   if (auto *VTSD = dyn_cast<VarTemplateSpecializationDecl>(this)) {
2307     if (VTSD->getTemplateSpecializationKind() != TSK_ExplicitSpecialization &&
2308         !isa<VarTemplatePartialSpecializationDecl>(VTSD) &&
2309         !VTSD->IsCompleteDefinition)
2310       return DeclarationOnly;
2311   }
2312 
2313   if (hasExternalStorage())
2314     return DeclarationOnly;
2315 
2316   // [dcl.link] p7:
2317   //   A declaration directly contained in a linkage-specification is treated
2318   //   as if it contains the extern specifier for the purpose of determining
2319   //   the linkage of the declared name and whether it is a definition.
2320   if (isSingleLineLanguageLinkage(*this))
2321     return DeclarationOnly;
2322 
2323   // C99 6.9.2p2:
2324   //   A declaration of an object that has file scope without an initializer,
2325   //   and without a storage class specifier or the scs 'static', constitutes
2326   //   a tentative definition.
2327   // No such thing in C++.
2328   if (!C.getLangOpts().CPlusPlus && isFileVarDecl())
2329     return TentativeDefinition;
2330 
2331   // What's left is (in C, block-scope) declarations without initializers or
2332   // external storage. These are definitions.
2333   return Definition;
2334 }
2335 
2336 VarDecl *VarDecl::getActingDefinition() {
2337   DefinitionKind Kind = isThisDeclarationADefinition();
2338   if (Kind != TentativeDefinition)
2339     return nullptr;
2340 
2341   VarDecl *LastTentative = nullptr;
2342 
2343   // Loop through the declaration chain, starting with the most recent.
2344   for (VarDecl *Decl = getMostRecentDecl(); Decl;
2345        Decl = Decl->getPreviousDecl()) {
2346     Kind = Decl->isThisDeclarationADefinition();
2347     if (Kind == Definition)
2348       return nullptr;
2349     // Record the first (most recent) TentativeDefinition that is encountered.
2350     if (Kind == TentativeDefinition && !LastTentative)
2351       LastTentative = Decl;
2352   }
2353 
2354   return LastTentative;
2355 }
2356 
2357 VarDecl *VarDecl::getDefinition(ASTContext &C) {
2358   VarDecl *First = getFirstDecl();
2359   for (auto *I : First->redecls()) {
2360     if (I->isThisDeclarationADefinition(C) == Definition)
2361       return I;
2362   }
2363   return nullptr;
2364 }
2365 
2366 VarDecl::DefinitionKind VarDecl::hasDefinition(ASTContext &C) const {
2367   DefinitionKind Kind = DeclarationOnly;
2368 
2369   const VarDecl *First = getFirstDecl();
2370   for (auto *I : First->redecls()) {
2371     Kind = std::max(Kind, I->isThisDeclarationADefinition(C));
2372     if (Kind == Definition)
2373       break;
2374   }
2375 
2376   return Kind;
2377 }
2378 
2379 const Expr *VarDecl::getAnyInitializer(const VarDecl *&D) const {
2380   for (auto *I : redecls()) {
2381     if (auto Expr = I->getInit()) {
2382       D = I;
2383       return Expr;
2384     }
2385   }
2386   return nullptr;
2387 }
2388 
2389 bool VarDecl::hasInit() const {
2390   if (auto *P = dyn_cast<ParmVarDecl>(this))
2391     if (P->hasUnparsedDefaultArg() || P->hasUninstantiatedDefaultArg())
2392       return false;
2393 
2394   if (auto *Eval = getEvaluatedStmt())
2395     return Eval->Value.isValid();
2396 
2397   return !Init.isNull();
2398 }
2399 
2400 Expr *VarDecl::getInit() {
2401   if (!hasInit())
2402     return nullptr;
2403 
2404   if (auto *S = Init.dyn_cast<Stmt *>())
2405     return cast<Expr>(S);
2406 
2407   auto *Eval = getEvaluatedStmt();
2408 
2409   return cast<Expr>(Eval->Value.get(
2410       Eval->Value.isOffset() ? getASTContext().getExternalSource() : nullptr));
2411 }
2412 
2413 Stmt **VarDecl::getInitAddress() {
2414   if (auto *ES = Init.dyn_cast<EvaluatedStmt *>())
2415     return ES->Value.getAddressOfPointer(getASTContext().getExternalSource());
2416 
2417   return Init.getAddrOfPtr1();
2418 }
2419 
2420 VarDecl *VarDecl::getInitializingDeclaration() {
2421   VarDecl *Def = nullptr;
2422   for (auto *I : redecls()) {
2423     if (I->hasInit())
2424       return I;
2425 
2426     if (I->isThisDeclarationADefinition()) {
2427       if (isStaticDataMember())
2428         return I;
2429       Def = I;
2430     }
2431   }
2432   return Def;
2433 }
2434 
2435 bool VarDecl::isOutOfLine() const {
2436   if (Decl::isOutOfLine())
2437     return true;
2438 
2439   if (!isStaticDataMember())
2440     return false;
2441 
2442   // If this static data member was instantiated from a static data member of
2443   // a class template, check whether that static data member was defined
2444   // out-of-line.
2445   if (VarDecl *VD = getInstantiatedFromStaticDataMember())
2446     return VD->isOutOfLine();
2447 
2448   return false;
2449 }
2450 
2451 void VarDecl::setInit(Expr *I) {
2452   if (auto *Eval = Init.dyn_cast<EvaluatedStmt *>()) {
2453     Eval->~EvaluatedStmt();
2454     getASTContext().Deallocate(Eval);
2455   }
2456 
2457   Init = I;
2458 }
2459 
2460 bool VarDecl::mightBeUsableInConstantExpressions(const ASTContext &C) const {
2461   const LangOptions &Lang = C.getLangOpts();
2462 
2463   // OpenCL permits const integral variables to be used in constant
2464   // expressions, like in C++98.
2465   if (!Lang.CPlusPlus && !Lang.OpenCL && !Lang.C23)
2466     return false;
2467 
2468   // Function parameters are never usable in constant expressions.
2469   if (isa<ParmVarDecl>(this))
2470     return false;
2471 
2472   // The values of weak variables are never usable in constant expressions.
2473   if (isWeak())
2474     return false;
2475 
2476   // In C++11, any variable of reference type can be used in a constant
2477   // expression if it is initialized by a constant expression.
2478   if (Lang.CPlusPlus11 && getType()->isReferenceType())
2479     return true;
2480 
2481   // Only const objects can be used in constant expressions in C++. C++98 does
2482   // not require the variable to be non-volatile, but we consider this to be a
2483   // defect.
2484   if (!getType().isConstant(C) || getType().isVolatileQualified())
2485     return false;
2486 
2487   // In C++, but not in C, const, non-volatile variables of integral or
2488   // enumeration types can be used in constant expressions.
2489   if (getType()->isIntegralOrEnumerationType() && !Lang.C23)
2490     return true;
2491 
2492   // C23 6.6p7: An identifier that is:
2493   // ...
2494   // - declared with storage-class specifier constexpr and has an object type,
2495   // is a named constant, ... such a named constant is a constant expression
2496   // with the type and value of the declared object.
2497   // Additionally, in C++11, non-volatile constexpr variables can be used in
2498   // constant expressions.
2499   return (Lang.CPlusPlus11 || Lang.C23) && isConstexpr();
2500 }
2501 
2502 bool VarDecl::isUsableInConstantExpressions(const ASTContext &Context) const {
2503   // C++2a [expr.const]p3:
2504   //   A variable is usable in constant expressions after its initializing
2505   //   declaration is encountered...
2506   const VarDecl *DefVD = nullptr;
2507   const Expr *Init = getAnyInitializer(DefVD);
2508   if (!Init || Init->isValueDependent() || getType()->isDependentType())
2509     return false;
2510   //   ... if it is a constexpr variable, or it is of reference type or of
2511   //   const-qualified integral or enumeration type, ...
2512   if (!DefVD->mightBeUsableInConstantExpressions(Context))
2513     return false;
2514   //   ... and its initializer is a constant initializer.
2515   if ((Context.getLangOpts().CPlusPlus || getLangOpts().C23) &&
2516       !DefVD->hasConstantInitialization())
2517     return false;
2518   // C++98 [expr.const]p1:
2519   //   An integral constant-expression can involve only [...] const variables
2520   //   or static data members of integral or enumeration types initialized with
2521   //   [integer] constant expressions (dcl.init)
2522   if ((Context.getLangOpts().CPlusPlus || Context.getLangOpts().OpenCL) &&
2523       !Context.getLangOpts().CPlusPlus11 && !DefVD->hasICEInitializer(Context))
2524     return false;
2525   return true;
2526 }
2527 
2528 /// Convert the initializer for this declaration to the elaborated EvaluatedStmt
2529 /// form, which contains extra information on the evaluated value of the
2530 /// initializer.
2531 EvaluatedStmt *VarDecl::ensureEvaluatedStmt() const {
2532   auto *Eval = Init.dyn_cast<EvaluatedStmt *>();
2533   if (!Eval) {
2534     // Note: EvaluatedStmt contains an APValue, which usually holds
2535     // resources not allocated from the ASTContext.  We need to do some
2536     // work to avoid leaking those, but we do so in VarDecl::evaluateValue
2537     // where we can detect whether there's anything to clean up or not.
2538     Eval = new (getASTContext()) EvaluatedStmt;
2539     Eval->Value = Init.get<Stmt *>();
2540     Init = Eval;
2541   }
2542   return Eval;
2543 }
2544 
2545 EvaluatedStmt *VarDecl::getEvaluatedStmt() const {
2546   return Init.dyn_cast<EvaluatedStmt *>();
2547 }
2548 
2549 APValue *VarDecl::evaluateValue() const {
2550   SmallVector<PartialDiagnosticAt, 8> Notes;
2551   return evaluateValueImpl(Notes, hasConstantInitialization());
2552 }
2553 
2554 APValue *VarDecl::evaluateValueImpl(SmallVectorImpl<PartialDiagnosticAt> &Notes,
2555                                     bool IsConstantInitialization) const {
2556   EvaluatedStmt *Eval = ensureEvaluatedStmt();
2557 
2558   const auto *Init = getInit();
2559   assert(!Init->isValueDependent());
2560 
2561   // We only produce notes indicating why an initializer is non-constant the
2562   // first time it is evaluated. FIXME: The notes won't always be emitted the
2563   // first time we try evaluation, so might not be produced at all.
2564   if (Eval->WasEvaluated)
2565     return Eval->Evaluated.isAbsent() ? nullptr : &Eval->Evaluated;
2566 
2567   if (Eval->IsEvaluating) {
2568     // FIXME: Produce a diagnostic for self-initialization.
2569     return nullptr;
2570   }
2571 
2572   Eval->IsEvaluating = true;
2573 
2574   ASTContext &Ctx = getASTContext();
2575   bool Result = Init->EvaluateAsInitializer(Eval->Evaluated, Ctx, this, Notes,
2576                                             IsConstantInitialization);
2577 
2578   // In C++, or in C23 if we're initialising a 'constexpr' variable, this isn't
2579   // a constant initializer if we produced notes. In that case, we can't keep
2580   // the result, because it may only be correct under the assumption that the
2581   // initializer is a constant context.
2582   if (IsConstantInitialization &&
2583       (Ctx.getLangOpts().CPlusPlus ||
2584        (isConstexpr() && Ctx.getLangOpts().C23)) &&
2585       !Notes.empty())
2586     Result = false;
2587 
2588   // Ensure the computed APValue is cleaned up later if evaluation succeeded,
2589   // or that it's empty (so that there's nothing to clean up) if evaluation
2590   // failed.
2591   if (!Result)
2592     Eval->Evaluated = APValue();
2593   else if (Eval->Evaluated.needsCleanup())
2594     Ctx.addDestruction(&Eval->Evaluated);
2595 
2596   Eval->IsEvaluating = false;
2597   Eval->WasEvaluated = true;
2598 
2599   return Result ? &Eval->Evaluated : nullptr;
2600 }
2601 
2602 APValue *VarDecl::getEvaluatedValue() const {
2603   if (EvaluatedStmt *Eval = getEvaluatedStmt())
2604     if (Eval->WasEvaluated)
2605       return &Eval->Evaluated;
2606 
2607   return nullptr;
2608 }
2609 
2610 bool VarDecl::hasICEInitializer(const ASTContext &Context) const {
2611   const Expr *Init = getInit();
2612   assert(Init && "no initializer");
2613 
2614   EvaluatedStmt *Eval = ensureEvaluatedStmt();
2615   if (!Eval->CheckedForICEInit) {
2616     Eval->CheckedForICEInit = true;
2617     Eval->HasICEInit = Init->isIntegerConstantExpr(Context);
2618   }
2619   return Eval->HasICEInit;
2620 }
2621 
2622 bool VarDecl::hasConstantInitialization() const {
2623   // In C, all globals and constexpr variables should have constant
2624   // initialization. For constexpr variables in C check that initializer is a
2625   // constant initializer because they can be used in constant expressions.
2626   if (hasGlobalStorage() && !getASTContext().getLangOpts().CPlusPlus &&
2627       !isConstexpr())
2628     return true;
2629 
2630   // In C++, it depends on whether the evaluation at the point of definition
2631   // was evaluatable as a constant initializer.
2632   if (EvaluatedStmt *Eval = getEvaluatedStmt())
2633     return Eval->HasConstantInitialization;
2634 
2635   return false;
2636 }
2637 
2638 bool VarDecl::checkForConstantInitialization(
2639     SmallVectorImpl<PartialDiagnosticAt> &Notes) const {
2640   EvaluatedStmt *Eval = ensureEvaluatedStmt();
2641   // If we ask for the value before we know whether we have a constant
2642   // initializer, we can compute the wrong value (for example, due to
2643   // std::is_constant_evaluated()).
2644   assert(!Eval->WasEvaluated &&
2645          "already evaluated var value before checking for constant init");
2646   assert((getASTContext().getLangOpts().CPlusPlus ||
2647           getASTContext().getLangOpts().C23) &&
2648          "only meaningful in C++/C23");
2649 
2650   assert(!getInit()->isValueDependent());
2651 
2652   // Evaluate the initializer to check whether it's a constant expression.
2653   Eval->HasConstantInitialization =
2654       evaluateValueImpl(Notes, true) && Notes.empty();
2655 
2656   // If evaluation as a constant initializer failed, allow re-evaluation as a
2657   // non-constant initializer if we later find we want the value.
2658   if (!Eval->HasConstantInitialization)
2659     Eval->WasEvaluated = false;
2660 
2661   return Eval->HasConstantInitialization;
2662 }
2663 
2664 bool VarDecl::isParameterPack() const {
2665   return isa<PackExpansionType>(getType());
2666 }
2667 
2668 template<typename DeclT>
2669 static DeclT *getDefinitionOrSelf(DeclT *D) {
2670   assert(D);
2671   if (auto *Def = D->getDefinition())
2672     return Def;
2673   return D;
2674 }
2675 
2676 bool VarDecl::isEscapingByref() const {
2677   return hasAttr<BlocksAttr>() && NonParmVarDeclBits.EscapingByref;
2678 }
2679 
2680 bool VarDecl::isNonEscapingByref() const {
2681   return hasAttr<BlocksAttr>() && !NonParmVarDeclBits.EscapingByref;
2682 }
2683 
2684 bool VarDecl::hasDependentAlignment() const {
2685   QualType T = getType();
2686   return T->isDependentType() || T->isUndeducedType() ||
2687          llvm::any_of(specific_attrs<AlignedAttr>(), [](const AlignedAttr *AA) {
2688            return AA->isAlignmentDependent();
2689          });
2690 }
2691 
2692 VarDecl *VarDecl::getTemplateInstantiationPattern() const {
2693   const VarDecl *VD = this;
2694 
2695   // If this is an instantiated member, walk back to the template from which
2696   // it was instantiated.
2697   if (MemberSpecializationInfo *MSInfo = VD->getMemberSpecializationInfo()) {
2698     if (isTemplateInstantiation(MSInfo->getTemplateSpecializationKind())) {
2699       VD = VD->getInstantiatedFromStaticDataMember();
2700       while (auto *NewVD = VD->getInstantiatedFromStaticDataMember())
2701         VD = NewVD;
2702     }
2703   }
2704 
2705   // If it's an instantiated variable template specialization, find the
2706   // template or partial specialization from which it was instantiated.
2707   if (auto *VDTemplSpec = dyn_cast<VarTemplateSpecializationDecl>(VD)) {
2708     if (isTemplateInstantiation(VDTemplSpec->getTemplateSpecializationKind())) {
2709       auto From = VDTemplSpec->getInstantiatedFrom();
2710       if (auto *VTD = From.dyn_cast<VarTemplateDecl *>()) {
2711         while (!VTD->hasMemberSpecialization()) {
2712           if (auto *NewVTD = VTD->getInstantiatedFromMemberTemplate())
2713             VTD = NewVTD;
2714           else
2715             break;
2716         }
2717         return getDefinitionOrSelf(VTD->getTemplatedDecl());
2718       }
2719       if (auto *VTPSD =
2720               From.dyn_cast<VarTemplatePartialSpecializationDecl *>()) {
2721         while (!VTPSD->hasMemberSpecialization()) {
2722           if (auto *NewVTPSD = VTPSD->getInstantiatedFromMember())
2723             VTPSD = NewVTPSD;
2724           else
2725             break;
2726         }
2727         return getDefinitionOrSelf<VarDecl>(VTPSD);
2728       }
2729     }
2730   }
2731 
2732   // If this is the pattern of a variable template, find where it was
2733   // instantiated from. FIXME: Is this necessary?
2734   if (VarTemplateDecl *VTD = VD->getDescribedVarTemplate()) {
2735     while (!VTD->hasMemberSpecialization()) {
2736       if (auto *NewVTD = VTD->getInstantiatedFromMemberTemplate())
2737         VTD = NewVTD;
2738       else
2739         break;
2740     }
2741     return getDefinitionOrSelf(VTD->getTemplatedDecl());
2742   }
2743 
2744   if (VD == this)
2745     return nullptr;
2746   return getDefinitionOrSelf(const_cast<VarDecl*>(VD));
2747 }
2748 
2749 VarDecl *VarDecl::getInstantiatedFromStaticDataMember() const {
2750   if (MemberSpecializationInfo *MSI = getMemberSpecializationInfo())
2751     return cast<VarDecl>(MSI->getInstantiatedFrom());
2752 
2753   return nullptr;
2754 }
2755 
2756 TemplateSpecializationKind VarDecl::getTemplateSpecializationKind() const {
2757   if (const auto *Spec = dyn_cast<VarTemplateSpecializationDecl>(this))
2758     return Spec->getSpecializationKind();
2759 
2760   if (MemberSpecializationInfo *MSI = getMemberSpecializationInfo())
2761     return MSI->getTemplateSpecializationKind();
2762 
2763   return TSK_Undeclared;
2764 }
2765 
2766 TemplateSpecializationKind
2767 VarDecl::getTemplateSpecializationKindForInstantiation() const {
2768   if (MemberSpecializationInfo *MSI = getMemberSpecializationInfo())
2769     return MSI->getTemplateSpecializationKind();
2770 
2771   if (const auto *Spec = dyn_cast<VarTemplateSpecializationDecl>(this))
2772     return Spec->getSpecializationKind();
2773 
2774   return TSK_Undeclared;
2775 }
2776 
2777 SourceLocation VarDecl::getPointOfInstantiation() const {
2778   if (const auto *Spec = dyn_cast<VarTemplateSpecializationDecl>(this))
2779     return Spec->getPointOfInstantiation();
2780 
2781   if (MemberSpecializationInfo *MSI = getMemberSpecializationInfo())
2782     return MSI->getPointOfInstantiation();
2783 
2784   return SourceLocation();
2785 }
2786 
2787 VarTemplateDecl *VarDecl::getDescribedVarTemplate() const {
2788   return getASTContext().getTemplateOrSpecializationInfo(this)
2789       .dyn_cast<VarTemplateDecl *>();
2790 }
2791 
2792 void VarDecl::setDescribedVarTemplate(VarTemplateDecl *Template) {
2793   getASTContext().setTemplateOrSpecializationInfo(this, Template);
2794 }
2795 
2796 bool VarDecl::isKnownToBeDefined() const {
2797   const auto &LangOpts = getASTContext().getLangOpts();
2798   // In CUDA mode without relocatable device code, variables of form 'extern
2799   // __shared__ Foo foo[]' are pointers to the base of the GPU core's shared
2800   // memory pool.  These are never undefined variables, even if they appear
2801   // inside of an anon namespace or static function.
2802   //
2803   // With CUDA relocatable device code enabled, these variables don't get
2804   // special handling; they're treated like regular extern variables.
2805   if (LangOpts.CUDA && !LangOpts.GPURelocatableDeviceCode &&
2806       hasExternalStorage() && hasAttr<CUDASharedAttr>() &&
2807       isa<IncompleteArrayType>(getType()))
2808     return true;
2809 
2810   return hasDefinition();
2811 }
2812 
2813 bool VarDecl::isNoDestroy(const ASTContext &Ctx) const {
2814   if (!hasGlobalStorage())
2815     return false;
2816   if (hasAttr<NoDestroyAttr>())
2817     return true;
2818   if (hasAttr<AlwaysDestroyAttr>())
2819     return false;
2820 
2821   using RSDKind = LangOptions::RegisterStaticDestructorsKind;
2822   RSDKind K = Ctx.getLangOpts().getRegisterStaticDestructors();
2823   return K == RSDKind::None ||
2824          (K == RSDKind::ThreadLocal && getTLSKind() == TLS_None);
2825 }
2826 
2827 QualType::DestructionKind
2828 VarDecl::needsDestruction(const ASTContext &Ctx) const {
2829   if (EvaluatedStmt *Eval = getEvaluatedStmt())
2830     if (Eval->HasConstantDestruction)
2831       return QualType::DK_none;
2832 
2833   if (isNoDestroy(Ctx))
2834     return QualType::DK_none;
2835 
2836   return getType().isDestructedType();
2837 }
2838 
2839 bool VarDecl::hasFlexibleArrayInit(const ASTContext &Ctx) const {
2840   assert(hasInit() && "Expect initializer to check for flexible array init");
2841   auto *Ty = getType()->getAs<RecordType>();
2842   if (!Ty || !Ty->getDecl()->hasFlexibleArrayMember())
2843     return false;
2844   auto *List = dyn_cast<InitListExpr>(getInit()->IgnoreParens());
2845   if (!List)
2846     return false;
2847   const Expr *FlexibleInit = List->getInit(List->getNumInits() - 1);
2848   auto InitTy = Ctx.getAsConstantArrayType(FlexibleInit->getType());
2849   if (!InitTy)
2850     return false;
2851   return !InitTy->isZeroSize();
2852 }
2853 
2854 CharUnits VarDecl::getFlexibleArrayInitChars(const ASTContext &Ctx) const {
2855   assert(hasInit() && "Expect initializer to check for flexible array init");
2856   auto *Ty = getType()->getAs<RecordType>();
2857   if (!Ty || !Ty->getDecl()->hasFlexibleArrayMember())
2858     return CharUnits::Zero();
2859   auto *List = dyn_cast<InitListExpr>(getInit()->IgnoreParens());
2860   if (!List || List->getNumInits() == 0)
2861     return CharUnits::Zero();
2862   const Expr *FlexibleInit = List->getInit(List->getNumInits() - 1);
2863   auto InitTy = Ctx.getAsConstantArrayType(FlexibleInit->getType());
2864   if (!InitTy)
2865     return CharUnits::Zero();
2866   CharUnits FlexibleArraySize = Ctx.getTypeSizeInChars(InitTy);
2867   const ASTRecordLayout &RL = Ctx.getASTRecordLayout(Ty->getDecl());
2868   CharUnits FlexibleArrayOffset =
2869       Ctx.toCharUnitsFromBits(RL.getFieldOffset(RL.getFieldCount() - 1));
2870   if (FlexibleArrayOffset + FlexibleArraySize < RL.getSize())
2871     return CharUnits::Zero();
2872   return FlexibleArrayOffset + FlexibleArraySize - RL.getSize();
2873 }
2874 
2875 MemberSpecializationInfo *VarDecl::getMemberSpecializationInfo() const {
2876   if (isStaticDataMember())
2877     // FIXME: Remove ?
2878     // return getASTContext().getInstantiatedFromStaticDataMember(this);
2879     return getASTContext().getTemplateOrSpecializationInfo(this)
2880         .dyn_cast<MemberSpecializationInfo *>();
2881   return nullptr;
2882 }
2883 
2884 void VarDecl::setTemplateSpecializationKind(TemplateSpecializationKind TSK,
2885                                          SourceLocation PointOfInstantiation) {
2886   assert((isa<VarTemplateSpecializationDecl>(this) ||
2887           getMemberSpecializationInfo()) &&
2888          "not a variable or static data member template specialization");
2889 
2890   if (VarTemplateSpecializationDecl *Spec =
2891           dyn_cast<VarTemplateSpecializationDecl>(this)) {
2892     Spec->setSpecializationKind(TSK);
2893     if (TSK != TSK_ExplicitSpecialization &&
2894         PointOfInstantiation.isValid() &&
2895         Spec->getPointOfInstantiation().isInvalid()) {
2896       Spec->setPointOfInstantiation(PointOfInstantiation);
2897       if (ASTMutationListener *L = getASTContext().getASTMutationListener())
2898         L->InstantiationRequested(this);
2899     }
2900   } else if (MemberSpecializationInfo *MSI = getMemberSpecializationInfo()) {
2901     MSI->setTemplateSpecializationKind(TSK);
2902     if (TSK != TSK_ExplicitSpecialization && PointOfInstantiation.isValid() &&
2903         MSI->getPointOfInstantiation().isInvalid()) {
2904       MSI->setPointOfInstantiation(PointOfInstantiation);
2905       if (ASTMutationListener *L = getASTContext().getASTMutationListener())
2906         L->InstantiationRequested(this);
2907     }
2908   }
2909 }
2910 
2911 void
2912 VarDecl::setInstantiationOfStaticDataMember(VarDecl *VD,
2913                                             TemplateSpecializationKind TSK) {
2914   assert(getASTContext().getTemplateOrSpecializationInfo(this).isNull() &&
2915          "Previous template or instantiation?");
2916   getASTContext().setInstantiatedFromStaticDataMember(this, VD, TSK);
2917 }
2918 
2919 //===----------------------------------------------------------------------===//
2920 // ParmVarDecl Implementation
2921 //===----------------------------------------------------------------------===//
2922 
2923 ParmVarDecl *ParmVarDecl::Create(ASTContext &C, DeclContext *DC,
2924                                  SourceLocation StartLoc, SourceLocation IdLoc,
2925                                  const IdentifierInfo *Id, QualType T,
2926                                  TypeSourceInfo *TInfo, StorageClass S,
2927                                  Expr *DefArg) {
2928   return new (C, DC) ParmVarDecl(ParmVar, C, DC, StartLoc, IdLoc, Id, T, TInfo,
2929                                  S, DefArg);
2930 }
2931 
2932 QualType ParmVarDecl::getOriginalType() const {
2933   TypeSourceInfo *TSI = getTypeSourceInfo();
2934   QualType T = TSI ? TSI->getType() : getType();
2935   if (const auto *DT = dyn_cast<DecayedType>(T))
2936     return DT->getOriginalType();
2937   return T;
2938 }
2939 
2940 ParmVarDecl *ParmVarDecl::CreateDeserialized(ASTContext &C, GlobalDeclID ID) {
2941   return new (C, ID)
2942       ParmVarDecl(ParmVar, C, nullptr, SourceLocation(), SourceLocation(),
2943                   nullptr, QualType(), nullptr, SC_None, nullptr);
2944 }
2945 
2946 SourceRange ParmVarDecl::getSourceRange() const {
2947   if (!hasInheritedDefaultArg()) {
2948     SourceRange ArgRange = getDefaultArgRange();
2949     if (ArgRange.isValid())
2950       return SourceRange(getOuterLocStart(), ArgRange.getEnd());
2951   }
2952 
2953   // DeclaratorDecl considers the range of postfix types as overlapping with the
2954   // declaration name, but this is not the case with parameters in ObjC methods.
2955   if (isa<ObjCMethodDecl>(getDeclContext()))
2956     return SourceRange(DeclaratorDecl::getBeginLoc(), getLocation());
2957 
2958   return DeclaratorDecl::getSourceRange();
2959 }
2960 
2961 bool ParmVarDecl::isDestroyedInCallee() const {
2962   // ns_consumed only affects code generation in ARC
2963   if (hasAttr<NSConsumedAttr>())
2964     return getASTContext().getLangOpts().ObjCAutoRefCount;
2965 
2966   // FIXME: isParamDestroyedInCallee() should probably imply
2967   // isDestructedType()
2968   const auto *RT = getType()->getAs<RecordType>();
2969   if (RT && RT->getDecl()->isParamDestroyedInCallee() &&
2970       getType().isDestructedType())
2971     return true;
2972 
2973   return false;
2974 }
2975 
2976 Expr *ParmVarDecl::getDefaultArg() {
2977   assert(!hasUnparsedDefaultArg() && "Default argument is not yet parsed!");
2978   assert(!hasUninstantiatedDefaultArg() &&
2979          "Default argument is not yet instantiated!");
2980 
2981   Expr *Arg = getInit();
2982   if (auto *E = dyn_cast_if_present<FullExpr>(Arg))
2983     return E->getSubExpr();
2984 
2985   return Arg;
2986 }
2987 
2988 void ParmVarDecl::setDefaultArg(Expr *defarg) {
2989   ParmVarDeclBits.DefaultArgKind = DAK_Normal;
2990   Init = defarg;
2991 }
2992 
2993 SourceRange ParmVarDecl::getDefaultArgRange() const {
2994   switch (ParmVarDeclBits.DefaultArgKind) {
2995   case DAK_None:
2996   case DAK_Unparsed:
2997     // Nothing we can do here.
2998     return SourceRange();
2999 
3000   case DAK_Uninstantiated:
3001     return getUninstantiatedDefaultArg()->getSourceRange();
3002 
3003   case DAK_Normal:
3004     if (const Expr *E = getInit())
3005       return E->getSourceRange();
3006 
3007     // Missing an actual expression, may be invalid.
3008     return SourceRange();
3009   }
3010   llvm_unreachable("Invalid default argument kind.");
3011 }
3012 
3013 void ParmVarDecl::setUninstantiatedDefaultArg(Expr *arg) {
3014   ParmVarDeclBits.DefaultArgKind = DAK_Uninstantiated;
3015   Init = arg;
3016 }
3017 
3018 Expr *ParmVarDecl::getUninstantiatedDefaultArg() {
3019   assert(hasUninstantiatedDefaultArg() &&
3020          "Wrong kind of initialization expression!");
3021   return cast_if_present<Expr>(Init.get<Stmt *>());
3022 }
3023 
3024 bool ParmVarDecl::hasDefaultArg() const {
3025   // FIXME: We should just return false for DAK_None here once callers are
3026   // prepared for the case that we encountered an invalid default argument and
3027   // were unable to even build an invalid expression.
3028   return hasUnparsedDefaultArg() || hasUninstantiatedDefaultArg() ||
3029          !Init.isNull();
3030 }
3031 
3032 void ParmVarDecl::setParameterIndexLarge(unsigned parameterIndex) {
3033   getASTContext().setParameterIndex(this, parameterIndex);
3034   ParmVarDeclBits.ParameterIndex = ParameterIndexSentinel;
3035 }
3036 
3037 unsigned ParmVarDecl::getParameterIndexLarge() const {
3038   return getASTContext().getParameterIndex(this);
3039 }
3040 
3041 //===----------------------------------------------------------------------===//
3042 // FunctionDecl Implementation
3043 //===----------------------------------------------------------------------===//
3044 
3045 FunctionDecl::FunctionDecl(Kind DK, ASTContext &C, DeclContext *DC,
3046                            SourceLocation StartLoc,
3047                            const DeclarationNameInfo &NameInfo, QualType T,
3048                            TypeSourceInfo *TInfo, StorageClass S,
3049                            bool UsesFPIntrin, bool isInlineSpecified,
3050                            ConstexprSpecKind ConstexprKind,
3051                            Expr *TrailingRequiresClause)
3052     : DeclaratorDecl(DK, DC, NameInfo.getLoc(), NameInfo.getName(), T, TInfo,
3053                      StartLoc),
3054       DeclContext(DK), redeclarable_base(C), Body(), ODRHash(0),
3055       EndRangeLoc(NameInfo.getEndLoc()), DNLoc(NameInfo.getInfo()) {
3056   assert(T.isNull() || T->isFunctionType());
3057   FunctionDeclBits.SClass = S;
3058   FunctionDeclBits.IsInline = isInlineSpecified;
3059   FunctionDeclBits.IsInlineSpecified = isInlineSpecified;
3060   FunctionDeclBits.IsVirtualAsWritten = false;
3061   FunctionDeclBits.IsPureVirtual = false;
3062   FunctionDeclBits.HasInheritedPrototype = false;
3063   FunctionDeclBits.HasWrittenPrototype = true;
3064   FunctionDeclBits.IsDeleted = false;
3065   FunctionDeclBits.IsTrivial = false;
3066   FunctionDeclBits.IsTrivialForCall = false;
3067   FunctionDeclBits.IsDefaulted = false;
3068   FunctionDeclBits.IsExplicitlyDefaulted = false;
3069   FunctionDeclBits.HasDefaultedOrDeletedInfo = false;
3070   FunctionDeclBits.IsIneligibleOrNotSelected = false;
3071   FunctionDeclBits.HasImplicitReturnZero = false;
3072   FunctionDeclBits.IsLateTemplateParsed = false;
3073   FunctionDeclBits.ConstexprKind = static_cast<uint64_t>(ConstexprKind);
3074   FunctionDeclBits.BodyContainsImmediateEscalatingExpression = false;
3075   FunctionDeclBits.InstantiationIsPending = false;
3076   FunctionDeclBits.UsesSEHTry = false;
3077   FunctionDeclBits.UsesFPIntrin = UsesFPIntrin;
3078   FunctionDeclBits.HasSkippedBody = false;
3079   FunctionDeclBits.WillHaveBody = false;
3080   FunctionDeclBits.IsMultiVersion = false;
3081   FunctionDeclBits.DeductionCandidateKind =
3082       static_cast<unsigned char>(DeductionCandidate::Normal);
3083   FunctionDeclBits.HasODRHash = false;
3084   FunctionDeclBits.FriendConstraintRefersToEnclosingTemplate = false;
3085   if (TrailingRequiresClause)
3086     setTrailingRequiresClause(TrailingRequiresClause);
3087 }
3088 
3089 void FunctionDecl::getNameForDiagnostic(
3090     raw_ostream &OS, const PrintingPolicy &Policy, bool Qualified) const {
3091   NamedDecl::getNameForDiagnostic(OS, Policy, Qualified);
3092   const TemplateArgumentList *TemplateArgs = getTemplateSpecializationArgs();
3093   if (TemplateArgs)
3094     printTemplateArgumentList(OS, TemplateArgs->asArray(), Policy);
3095 }
3096 
3097 bool FunctionDecl::isVariadic() const {
3098   if (const auto *FT = getType()->getAs<FunctionProtoType>())
3099     return FT->isVariadic();
3100   return false;
3101 }
3102 
3103 FunctionDecl::DefaultedOrDeletedFunctionInfo *
3104 FunctionDecl::DefaultedOrDeletedFunctionInfo::Create(
3105     ASTContext &Context, ArrayRef<DeclAccessPair> Lookups,
3106     StringLiteral *DeletedMessage) {
3107   static constexpr size_t Alignment =
3108       std::max({alignof(DefaultedOrDeletedFunctionInfo),
3109                 alignof(DeclAccessPair), alignof(StringLiteral *)});
3110   size_t Size = totalSizeToAlloc<DeclAccessPair, StringLiteral *>(
3111       Lookups.size(), DeletedMessage != nullptr);
3112 
3113   DefaultedOrDeletedFunctionInfo *Info =
3114       new (Context.Allocate(Size, Alignment)) DefaultedOrDeletedFunctionInfo;
3115   Info->NumLookups = Lookups.size();
3116   Info->HasDeletedMessage = DeletedMessage != nullptr;
3117 
3118   std::uninitialized_copy(Lookups.begin(), Lookups.end(),
3119                           Info->getTrailingObjects<DeclAccessPair>());
3120   if (DeletedMessage)
3121     *Info->getTrailingObjects<StringLiteral *>() = DeletedMessage;
3122   return Info;
3123 }
3124 
3125 void FunctionDecl::setDefaultedOrDeletedInfo(
3126     DefaultedOrDeletedFunctionInfo *Info) {
3127   assert(!FunctionDeclBits.HasDefaultedOrDeletedInfo && "already have this");
3128   assert(!Body && "can't replace function body with defaulted function info");
3129 
3130   FunctionDeclBits.HasDefaultedOrDeletedInfo = true;
3131   DefaultedOrDeletedInfo = Info;
3132 }
3133 
3134 void FunctionDecl::setDeletedAsWritten(bool D, StringLiteral *Message) {
3135   FunctionDeclBits.IsDeleted = D;
3136 
3137   if (Message) {
3138     assert(isDeletedAsWritten() && "Function must be deleted");
3139     if (FunctionDeclBits.HasDefaultedOrDeletedInfo)
3140       DefaultedOrDeletedInfo->setDeletedMessage(Message);
3141     else
3142       setDefaultedOrDeletedInfo(DefaultedOrDeletedFunctionInfo::Create(
3143           getASTContext(), /*Lookups=*/{}, Message));
3144   }
3145 }
3146 
3147 void FunctionDecl::DefaultedOrDeletedFunctionInfo::setDeletedMessage(
3148     StringLiteral *Message) {
3149   // We should never get here with the DefaultedOrDeletedInfo populated, but
3150   // no space allocated for the deleted message, since that would require
3151   // recreating this, but setDefaultedOrDeletedInfo() disallows overwriting
3152   // an already existing DefaultedOrDeletedFunctionInfo.
3153   assert(HasDeletedMessage &&
3154          "No space to store a delete message in this DefaultedOrDeletedInfo");
3155   *getTrailingObjects<StringLiteral *>() = Message;
3156 }
3157 
3158 FunctionDecl::DefaultedOrDeletedFunctionInfo *
3159 FunctionDecl::getDefalutedOrDeletedInfo() const {
3160   return FunctionDeclBits.HasDefaultedOrDeletedInfo ? DefaultedOrDeletedInfo
3161                                                     : nullptr;
3162 }
3163 
3164 bool FunctionDecl::hasBody(const FunctionDecl *&Definition) const {
3165   for (const auto *I : redecls()) {
3166     if (I->doesThisDeclarationHaveABody()) {
3167       Definition = I;
3168       return true;
3169     }
3170   }
3171 
3172   return false;
3173 }
3174 
3175 bool FunctionDecl::hasTrivialBody() const {
3176   const Stmt *S = getBody();
3177   if (!S) {
3178     // Since we don't have a body for this function, we don't know if it's
3179     // trivial or not.
3180     return false;
3181   }
3182 
3183   if (isa<CompoundStmt>(S) && cast<CompoundStmt>(S)->body_empty())
3184     return true;
3185   return false;
3186 }
3187 
3188 bool FunctionDecl::isThisDeclarationInstantiatedFromAFriendDefinition() const {
3189   if (!getFriendObjectKind())
3190     return false;
3191 
3192   // Check for a friend function instantiated from a friend function
3193   // definition in a templated class.
3194   if (const FunctionDecl *InstantiatedFrom =
3195           getInstantiatedFromMemberFunction())
3196     return InstantiatedFrom->getFriendObjectKind() &&
3197            InstantiatedFrom->isThisDeclarationADefinition();
3198 
3199   // Check for a friend function template instantiated from a friend
3200   // function template definition in a templated class.
3201   if (const FunctionTemplateDecl *Template = getDescribedFunctionTemplate()) {
3202     if (const FunctionTemplateDecl *InstantiatedFrom =
3203             Template->getInstantiatedFromMemberTemplate())
3204       return InstantiatedFrom->getFriendObjectKind() &&
3205              InstantiatedFrom->isThisDeclarationADefinition();
3206   }
3207 
3208   return false;
3209 }
3210 
3211 bool FunctionDecl::isDefined(const FunctionDecl *&Definition,
3212                              bool CheckForPendingFriendDefinition) const {
3213   for (const FunctionDecl *FD : redecls()) {
3214     if (FD->isThisDeclarationADefinition()) {
3215       Definition = FD;
3216       return true;
3217     }
3218 
3219     // If this is a friend function defined in a class template, it does not
3220     // have a body until it is used, nevertheless it is a definition, see
3221     // [temp.inst]p2:
3222     //
3223     // ... for the purpose of determining whether an instantiated redeclaration
3224     // is valid according to [basic.def.odr] and [class.mem], a declaration that
3225     // corresponds to a definition in the template is considered to be a
3226     // definition.
3227     //
3228     // The following code must produce redefinition error:
3229     //
3230     //     template<typename T> struct C20 { friend void func_20() {} };
3231     //     C20<int> c20i;
3232     //     void func_20() {}
3233     //
3234     if (CheckForPendingFriendDefinition &&
3235         FD->isThisDeclarationInstantiatedFromAFriendDefinition()) {
3236       Definition = FD;
3237       return true;
3238     }
3239   }
3240 
3241   return false;
3242 }
3243 
3244 Stmt *FunctionDecl::getBody(const FunctionDecl *&Definition) const {
3245   if (!hasBody(Definition))
3246     return nullptr;
3247 
3248   assert(!Definition->FunctionDeclBits.HasDefaultedOrDeletedInfo &&
3249          "definition should not have a body");
3250   if (Definition->Body)
3251     return Definition->Body.get(getASTContext().getExternalSource());
3252 
3253   return nullptr;
3254 }
3255 
3256 void FunctionDecl::setBody(Stmt *B) {
3257   FunctionDeclBits.HasDefaultedOrDeletedInfo = false;
3258   Body = LazyDeclStmtPtr(B);
3259   if (B)
3260     EndRangeLoc = B->getEndLoc();
3261 }
3262 
3263 void FunctionDecl::setIsPureVirtual(bool P) {
3264   FunctionDeclBits.IsPureVirtual = P;
3265   if (P)
3266     if (auto *Parent = dyn_cast<CXXRecordDecl>(getDeclContext()))
3267       Parent->markedVirtualFunctionPure();
3268 }
3269 
3270 template<std::size_t Len>
3271 static bool isNamed(const NamedDecl *ND, const char (&Str)[Len]) {
3272   const IdentifierInfo *II = ND->getIdentifier();
3273   return II && II->isStr(Str);
3274 }
3275 
3276 bool FunctionDecl::isImmediateEscalating() const {
3277   // C++23 [expr.const]/p17
3278   // An immediate-escalating function is
3279   //  - the call operator of a lambda that is not declared with the consteval
3280   //  specifier,
3281   if (isLambdaCallOperator(this) && !isConsteval())
3282     return true;
3283   // - a defaulted special member function that is not declared with the
3284   // consteval specifier,
3285   if (isDefaulted() && !isConsteval())
3286     return true;
3287   // - a function that results from the instantiation of a templated entity
3288   // defined with the constexpr specifier.
3289   TemplatedKind TK = getTemplatedKind();
3290   if (TK != TK_NonTemplate && TK != TK_DependentNonTemplate &&
3291       isConstexprSpecified())
3292     return true;
3293   return false;
3294 }
3295 
3296 bool FunctionDecl::isImmediateFunction() const {
3297   // C++23 [expr.const]/p18
3298   // An immediate function is a function or constructor that is
3299   // - declared with the consteval specifier
3300   if (isConsteval())
3301     return true;
3302   // - an immediate-escalating function F whose function body contains an
3303   // immediate-escalating expression
3304   if (isImmediateEscalating() && BodyContainsImmediateEscalatingExpressions())
3305     return true;
3306 
3307   if (const auto *MD = dyn_cast<CXXMethodDecl>(this);
3308       MD && MD->isLambdaStaticInvoker())
3309     return MD->getParent()->getLambdaCallOperator()->isImmediateFunction();
3310 
3311   return false;
3312 }
3313 
3314 bool FunctionDecl::isMain() const {
3315   return isNamed(this, "main") && !getLangOpts().Freestanding &&
3316          !getLangOpts().HLSL &&
3317          (getDeclContext()->getRedeclContext()->isTranslationUnit() ||
3318           isExternC());
3319 }
3320 
3321 bool FunctionDecl::isMSVCRTEntryPoint() const {
3322   const TranslationUnitDecl *TUnit =
3323       dyn_cast<TranslationUnitDecl>(getDeclContext()->getRedeclContext());
3324   if (!TUnit)
3325     return false;
3326 
3327   // Even though we aren't really targeting MSVCRT if we are freestanding,
3328   // semantic analysis for these functions remains the same.
3329 
3330   // MSVCRT entry points only exist on MSVCRT targets.
3331   if (!TUnit->getASTContext().getTargetInfo().getTriple().isOSMSVCRT())
3332     return false;
3333 
3334   // Nameless functions like constructors cannot be entry points.
3335   if (!getIdentifier())
3336     return false;
3337 
3338   return llvm::StringSwitch<bool>(getName())
3339       .Cases("main",     // an ANSI console app
3340              "wmain",    // a Unicode console App
3341              "WinMain",  // an ANSI GUI app
3342              "wWinMain", // a Unicode GUI app
3343              "DllMain",  // a DLL
3344              true)
3345       .Default(false);
3346 }
3347 
3348 bool FunctionDecl::isReservedGlobalPlacementOperator() const {
3349   if (getDeclName().getNameKind() != DeclarationName::CXXOperatorName)
3350     return false;
3351   if (getDeclName().getCXXOverloadedOperator() != OO_New &&
3352       getDeclName().getCXXOverloadedOperator() != OO_Delete &&
3353       getDeclName().getCXXOverloadedOperator() != OO_Array_New &&
3354       getDeclName().getCXXOverloadedOperator() != OO_Array_Delete)
3355     return false;
3356 
3357   if (!getDeclContext()->getRedeclContext()->isTranslationUnit())
3358     return false;
3359 
3360   const auto *proto = getType()->castAs<FunctionProtoType>();
3361   if (proto->getNumParams() != 2 || proto->isVariadic())
3362     return false;
3363 
3364   const ASTContext &Context =
3365       cast<TranslationUnitDecl>(getDeclContext()->getRedeclContext())
3366           ->getASTContext();
3367 
3368   // The result type and first argument type are constant across all
3369   // these operators.  The second argument must be exactly void*.
3370   return (proto->getParamType(1).getCanonicalType() == Context.VoidPtrTy);
3371 }
3372 
3373 bool FunctionDecl::isReplaceableGlobalAllocationFunction(
3374     std::optional<unsigned> *AlignmentParam, bool *IsNothrow) const {
3375   if (getDeclName().getNameKind() != DeclarationName::CXXOperatorName)
3376     return false;
3377   if (getDeclName().getCXXOverloadedOperator() != OO_New &&
3378       getDeclName().getCXXOverloadedOperator() != OO_Delete &&
3379       getDeclName().getCXXOverloadedOperator() != OO_Array_New &&
3380       getDeclName().getCXXOverloadedOperator() != OO_Array_Delete)
3381     return false;
3382 
3383   if (isa<CXXRecordDecl>(getDeclContext()))
3384     return false;
3385 
3386   // This can only fail for an invalid 'operator new' declaration.
3387   if (!getDeclContext()->getRedeclContext()->isTranslationUnit())
3388     return false;
3389 
3390   const auto *FPT = getType()->castAs<FunctionProtoType>();
3391   if (FPT->getNumParams() == 0 || FPT->getNumParams() > 4 || FPT->isVariadic())
3392     return false;
3393 
3394   // If this is a single-parameter function, it must be a replaceable global
3395   // allocation or deallocation function.
3396   if (FPT->getNumParams() == 1)
3397     return true;
3398 
3399   unsigned Params = 1;
3400   QualType Ty = FPT->getParamType(Params);
3401   const ASTContext &Ctx = getASTContext();
3402 
3403   auto Consume = [&] {
3404     ++Params;
3405     Ty = Params < FPT->getNumParams() ? FPT->getParamType(Params) : QualType();
3406   };
3407 
3408   // In C++14, the next parameter can be a 'std::size_t' for sized delete.
3409   bool IsSizedDelete = false;
3410   if (Ctx.getLangOpts().SizedDeallocation &&
3411       (getDeclName().getCXXOverloadedOperator() == OO_Delete ||
3412        getDeclName().getCXXOverloadedOperator() == OO_Array_Delete) &&
3413       Ctx.hasSameType(Ty, Ctx.getSizeType())) {
3414     IsSizedDelete = true;
3415     Consume();
3416   }
3417 
3418   // In C++17, the next parameter can be a 'std::align_val_t' for aligned
3419   // new/delete.
3420   if (Ctx.getLangOpts().AlignedAllocation && !Ty.isNull() && Ty->isAlignValT()) {
3421     Consume();
3422     if (AlignmentParam)
3423       *AlignmentParam = Params;
3424   }
3425 
3426   // If this is not a sized delete, the next parameter can be a
3427   // 'const std::nothrow_t&'.
3428   if (!IsSizedDelete && !Ty.isNull() && Ty->isReferenceType()) {
3429     Ty = Ty->getPointeeType();
3430     if (Ty.getCVRQualifiers() != Qualifiers::Const)
3431       return false;
3432     if (Ty->isNothrowT()) {
3433       if (IsNothrow)
3434         *IsNothrow = true;
3435       Consume();
3436     }
3437   }
3438 
3439   // Finally, recognize the not yet standard versions of new that take a
3440   // hot/cold allocation hint (__hot_cold_t). These are currently supported by
3441   // tcmalloc (see
3442   // https://github.com/google/tcmalloc/blob/220043886d4e2efff7a5702d5172cb8065253664/tcmalloc/malloc_extension.h#L53).
3443   if (!IsSizedDelete && !Ty.isNull() && Ty->isEnumeralType()) {
3444     QualType T = Ty;
3445     while (const auto *TD = T->getAs<TypedefType>())
3446       T = TD->getDecl()->getUnderlyingType();
3447     const IdentifierInfo *II =
3448         T->castAs<EnumType>()->getDecl()->getIdentifier();
3449     if (II && II->isStr("__hot_cold_t"))
3450       Consume();
3451   }
3452 
3453   return Params == FPT->getNumParams();
3454 }
3455 
3456 bool FunctionDecl::isInlineBuiltinDeclaration() const {
3457   if (!getBuiltinID())
3458     return false;
3459 
3460   const FunctionDecl *Definition;
3461   if (!hasBody(Definition))
3462     return false;
3463 
3464   if (!Definition->isInlineSpecified() ||
3465       !Definition->hasAttr<AlwaysInlineAttr>())
3466     return false;
3467 
3468   ASTContext &Context = getASTContext();
3469   switch (Context.GetGVALinkageForFunction(Definition)) {
3470   case GVA_Internal:
3471   case GVA_DiscardableODR:
3472   case GVA_StrongODR:
3473     return false;
3474   case GVA_AvailableExternally:
3475   case GVA_StrongExternal:
3476     return true;
3477   }
3478   llvm_unreachable("Unknown GVALinkage");
3479 }
3480 
3481 bool FunctionDecl::isDestroyingOperatorDelete() const {
3482   // C++ P0722:
3483   //   Within a class C, a single object deallocation function with signature
3484   //     (T, std::destroying_delete_t, <more params>)
3485   //   is a destroying operator delete.
3486   if (!isa<CXXMethodDecl>(this) || getOverloadedOperator() != OO_Delete ||
3487       getNumParams() < 2)
3488     return false;
3489 
3490   auto *RD = getParamDecl(1)->getType()->getAsCXXRecordDecl();
3491   return RD && RD->isInStdNamespace() && RD->getIdentifier() &&
3492          RD->getIdentifier()->isStr("destroying_delete_t");
3493 }
3494 
3495 LanguageLinkage FunctionDecl::getLanguageLinkage() const {
3496   return getDeclLanguageLinkage(*this);
3497 }
3498 
3499 bool FunctionDecl::isExternC() const {
3500   return isDeclExternC(*this);
3501 }
3502 
3503 bool FunctionDecl::isInExternCContext() const {
3504   if (hasAttr<OpenCLKernelAttr>())
3505     return true;
3506   return getLexicalDeclContext()->isExternCContext();
3507 }
3508 
3509 bool FunctionDecl::isInExternCXXContext() const {
3510   return getLexicalDeclContext()->isExternCXXContext();
3511 }
3512 
3513 bool FunctionDecl::isGlobal() const {
3514   if (const auto *Method = dyn_cast<CXXMethodDecl>(this))
3515     return Method->isStatic();
3516 
3517   if (getCanonicalDecl()->getStorageClass() == SC_Static)
3518     return false;
3519 
3520   for (const DeclContext *DC = getDeclContext();
3521        DC->isNamespace();
3522        DC = DC->getParent()) {
3523     if (const auto *Namespace = cast<NamespaceDecl>(DC)) {
3524       if (!Namespace->getDeclName())
3525         return false;
3526     }
3527   }
3528 
3529   return true;
3530 }
3531 
3532 bool FunctionDecl::isNoReturn() const {
3533   if (hasAttr<NoReturnAttr>() || hasAttr<CXX11NoReturnAttr>() ||
3534       hasAttr<C11NoReturnAttr>())
3535     return true;
3536 
3537   if (auto *FnTy = getType()->getAs<FunctionType>())
3538     return FnTy->getNoReturnAttr();
3539 
3540   return false;
3541 }
3542 
3543 bool FunctionDecl::isMemberLikeConstrainedFriend() const {
3544   // C++20 [temp.friend]p9:
3545   //   A non-template friend declaration with a requires-clause [or]
3546   //   a friend function template with a constraint that depends on a template
3547   //   parameter from an enclosing template [...] does not declare the same
3548   //   function or function template as a declaration in any other scope.
3549 
3550   // If this isn't a friend then it's not a member-like constrained friend.
3551   if (!getFriendObjectKind()) {
3552     return false;
3553   }
3554 
3555   if (!getDescribedFunctionTemplate()) {
3556     // If these friends don't have constraints, they aren't constrained, and
3557     // thus don't fall under temp.friend p9. Else the simple presence of a
3558     // constraint makes them unique.
3559     return getTrailingRequiresClause();
3560   }
3561 
3562   return FriendConstraintRefersToEnclosingTemplate();
3563 }
3564 
3565 MultiVersionKind FunctionDecl::getMultiVersionKind() const {
3566   if (hasAttr<TargetAttr>())
3567     return MultiVersionKind::Target;
3568   if (hasAttr<TargetVersionAttr>())
3569     return MultiVersionKind::TargetVersion;
3570   if (hasAttr<CPUDispatchAttr>())
3571     return MultiVersionKind::CPUDispatch;
3572   if (hasAttr<CPUSpecificAttr>())
3573     return MultiVersionKind::CPUSpecific;
3574   if (hasAttr<TargetClonesAttr>())
3575     return MultiVersionKind::TargetClones;
3576   return MultiVersionKind::None;
3577 }
3578 
3579 bool FunctionDecl::isCPUDispatchMultiVersion() const {
3580   return isMultiVersion() && hasAttr<CPUDispatchAttr>();
3581 }
3582 
3583 bool FunctionDecl::isCPUSpecificMultiVersion() const {
3584   return isMultiVersion() && hasAttr<CPUSpecificAttr>();
3585 }
3586 
3587 bool FunctionDecl::isTargetMultiVersion() const {
3588   return isMultiVersion() &&
3589          (hasAttr<TargetAttr>() || hasAttr<TargetVersionAttr>());
3590 }
3591 
3592 bool FunctionDecl::isTargetMultiVersionDefault() const {
3593   if (!isMultiVersion())
3594     return false;
3595   if (hasAttr<TargetAttr>())
3596     return getAttr<TargetAttr>()->isDefaultVersion();
3597   return hasAttr<TargetVersionAttr>() &&
3598          getAttr<TargetVersionAttr>()->isDefaultVersion();
3599 }
3600 
3601 bool FunctionDecl::isTargetClonesMultiVersion() const {
3602   return isMultiVersion() && hasAttr<TargetClonesAttr>();
3603 }
3604 
3605 bool FunctionDecl::isTargetVersionMultiVersion() const {
3606   return isMultiVersion() && hasAttr<TargetVersionAttr>();
3607 }
3608 
3609 void
3610 FunctionDecl::setPreviousDeclaration(FunctionDecl *PrevDecl) {
3611   redeclarable_base::setPreviousDecl(PrevDecl);
3612 
3613   if (FunctionTemplateDecl *FunTmpl = getDescribedFunctionTemplate()) {
3614     FunctionTemplateDecl *PrevFunTmpl
3615       = PrevDecl? PrevDecl->getDescribedFunctionTemplate() : nullptr;
3616     assert((!PrevDecl || PrevFunTmpl) && "Function/function template mismatch");
3617     FunTmpl->setPreviousDecl(PrevFunTmpl);
3618   }
3619 
3620   if (PrevDecl && PrevDecl->isInlined())
3621     setImplicitlyInline(true);
3622 }
3623 
3624 FunctionDecl *FunctionDecl::getCanonicalDecl() { return getFirstDecl(); }
3625 
3626 /// Returns a value indicating whether this function corresponds to a builtin
3627 /// function.
3628 ///
3629 /// The function corresponds to a built-in function if it is declared at
3630 /// translation scope or within an extern "C" block and its name matches with
3631 /// the name of a builtin. The returned value will be 0 for functions that do
3632 /// not correspond to a builtin, a value of type \c Builtin::ID if in the
3633 /// target-independent range \c [1,Builtin::First), or a target-specific builtin
3634 /// value.
3635 ///
3636 /// \param ConsiderWrapperFunctions If true, we should consider wrapper
3637 /// functions as their wrapped builtins. This shouldn't be done in general, but
3638 /// it's useful in Sema to diagnose calls to wrappers based on their semantics.
3639 unsigned FunctionDecl::getBuiltinID(bool ConsiderWrapperFunctions) const {
3640   unsigned BuiltinID = 0;
3641 
3642   if (const auto *ABAA = getAttr<ArmBuiltinAliasAttr>()) {
3643     BuiltinID = ABAA->getBuiltinName()->getBuiltinID();
3644   } else if (const auto *BAA = getAttr<BuiltinAliasAttr>()) {
3645     BuiltinID = BAA->getBuiltinName()->getBuiltinID();
3646   } else if (const auto *A = getAttr<BuiltinAttr>()) {
3647     BuiltinID = A->getID();
3648   }
3649 
3650   if (!BuiltinID)
3651     return 0;
3652 
3653   // If the function is marked "overloadable", it has a different mangled name
3654   // and is not the C library function.
3655   if (!ConsiderWrapperFunctions && hasAttr<OverloadableAttr>() &&
3656       (!hasAttr<ArmBuiltinAliasAttr>() && !hasAttr<BuiltinAliasAttr>()))
3657     return 0;
3658 
3659   const ASTContext &Context = getASTContext();
3660   if (!Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID))
3661     return BuiltinID;
3662 
3663   // This function has the name of a known C library
3664   // function. Determine whether it actually refers to the C library
3665   // function or whether it just has the same name.
3666 
3667   // If this is a static function, it's not a builtin.
3668   if (!ConsiderWrapperFunctions && getStorageClass() == SC_Static)
3669     return 0;
3670 
3671   // OpenCL v1.2 s6.9.f - The library functions defined in
3672   // the C99 standard headers are not available.
3673   if (Context.getLangOpts().OpenCL &&
3674       Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID))
3675     return 0;
3676 
3677   // CUDA does not have device-side standard library. printf and malloc are the
3678   // only special cases that are supported by device-side runtime.
3679   if (Context.getLangOpts().CUDA && hasAttr<CUDADeviceAttr>() &&
3680       !hasAttr<CUDAHostAttr>() &&
3681       !(BuiltinID == Builtin::BIprintf || BuiltinID == Builtin::BImalloc))
3682     return 0;
3683 
3684   // As AMDGCN implementation of OpenMP does not have a device-side standard
3685   // library, none of the predefined library functions except printf and malloc
3686   // should be treated as a builtin i.e. 0 should be returned for them.
3687   if (Context.getTargetInfo().getTriple().isAMDGCN() &&
3688       Context.getLangOpts().OpenMPIsTargetDevice &&
3689       Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID) &&
3690       !(BuiltinID == Builtin::BIprintf || BuiltinID == Builtin::BImalloc))
3691     return 0;
3692 
3693   return BuiltinID;
3694 }
3695 
3696 /// getNumParams - Return the number of parameters this function must have
3697 /// based on its FunctionType.  This is the length of the ParamInfo array
3698 /// after it has been created.
3699 unsigned FunctionDecl::getNumParams() const {
3700   const auto *FPT = getType()->getAs<FunctionProtoType>();
3701   return FPT ? FPT->getNumParams() : 0;
3702 }
3703 
3704 void FunctionDecl::setParams(ASTContext &C,
3705                              ArrayRef<ParmVarDecl *> NewParamInfo) {
3706   assert(!ParamInfo && "Already has param info!");
3707   assert(NewParamInfo.size() == getNumParams() && "Parameter count mismatch!");
3708 
3709   // Zero params -> null pointer.
3710   if (!NewParamInfo.empty()) {
3711     ParamInfo = new (C) ParmVarDecl*[NewParamInfo.size()];
3712     std::copy(NewParamInfo.begin(), NewParamInfo.end(), ParamInfo);
3713   }
3714 }
3715 
3716 /// getMinRequiredArguments - Returns the minimum number of arguments
3717 /// needed to call this function. This may be fewer than the number of
3718 /// function parameters, if some of the parameters have default
3719 /// arguments (in C++) or are parameter packs (C++11).
3720 unsigned FunctionDecl::getMinRequiredArguments() const {
3721   if (!getASTContext().getLangOpts().CPlusPlus)
3722     return getNumParams();
3723 
3724   // Note that it is possible for a parameter with no default argument to
3725   // follow a parameter with a default argument.
3726   unsigned NumRequiredArgs = 0;
3727   unsigned MinParamsSoFar = 0;
3728   for (auto *Param : parameters()) {
3729     if (!Param->isParameterPack()) {
3730       ++MinParamsSoFar;
3731       if (!Param->hasDefaultArg())
3732         NumRequiredArgs = MinParamsSoFar;
3733     }
3734   }
3735   return NumRequiredArgs;
3736 }
3737 
3738 bool FunctionDecl::hasCXXExplicitFunctionObjectParameter() const {
3739   return getNumParams() != 0 && getParamDecl(0)->isExplicitObjectParameter();
3740 }
3741 
3742 unsigned FunctionDecl::getNumNonObjectParams() const {
3743   return getNumParams() -
3744          static_cast<unsigned>(hasCXXExplicitFunctionObjectParameter());
3745 }
3746 
3747 unsigned FunctionDecl::getMinRequiredExplicitArguments() const {
3748   return getMinRequiredArguments() -
3749          static_cast<unsigned>(hasCXXExplicitFunctionObjectParameter());
3750 }
3751 
3752 bool FunctionDecl::hasOneParamOrDefaultArgs() const {
3753   return getNumParams() == 1 ||
3754          (getNumParams() > 1 &&
3755           llvm::all_of(llvm::drop_begin(parameters()),
3756                        [](ParmVarDecl *P) { return P->hasDefaultArg(); }));
3757 }
3758 
3759 /// The combination of the extern and inline keywords under MSVC forces
3760 /// the function to be required.
3761 ///
3762 /// Note: This function assumes that we will only get called when isInlined()
3763 /// would return true for this FunctionDecl.
3764 bool FunctionDecl::isMSExternInline() const {
3765   assert(isInlined() && "expected to get called on an inlined function!");
3766 
3767   const ASTContext &Context = getASTContext();
3768   if (!Context.getTargetInfo().getCXXABI().isMicrosoft() &&
3769       !hasAttr<DLLExportAttr>())
3770     return false;
3771 
3772   for (const FunctionDecl *FD = getMostRecentDecl(); FD;
3773        FD = FD->getPreviousDecl())
3774     if (!FD->isImplicit() && FD->getStorageClass() == SC_Extern)
3775       return true;
3776 
3777   return false;
3778 }
3779 
3780 static bool redeclForcesDefMSVC(const FunctionDecl *Redecl) {
3781   if (Redecl->getStorageClass() != SC_Extern)
3782     return false;
3783 
3784   for (const FunctionDecl *FD = Redecl->getPreviousDecl(); FD;
3785        FD = FD->getPreviousDecl())
3786     if (!FD->isImplicit() && FD->getStorageClass() == SC_Extern)
3787       return false;
3788 
3789   return true;
3790 }
3791 
3792 static bool RedeclForcesDefC99(const FunctionDecl *Redecl) {
3793   // Only consider file-scope declarations in this test.
3794   if (!Redecl->getLexicalDeclContext()->isTranslationUnit())
3795     return false;
3796 
3797   // Only consider explicit declarations; the presence of a builtin for a
3798   // libcall shouldn't affect whether a definition is externally visible.
3799   if (Redecl->isImplicit())
3800     return false;
3801 
3802   if (!Redecl->isInlineSpecified() || Redecl->getStorageClass() == SC_Extern)
3803     return true; // Not an inline definition
3804 
3805   return false;
3806 }
3807 
3808 /// For a function declaration in C or C++, determine whether this
3809 /// declaration causes the definition to be externally visible.
3810 ///
3811 /// For instance, this determines if adding the current declaration to the set
3812 /// of redeclarations of the given functions causes
3813 /// isInlineDefinitionExternallyVisible to change from false to true.
3814 bool FunctionDecl::doesDeclarationForceExternallyVisibleDefinition() const {
3815   assert(!doesThisDeclarationHaveABody() &&
3816          "Must have a declaration without a body.");
3817 
3818   const ASTContext &Context = getASTContext();
3819 
3820   if (Context.getLangOpts().MSVCCompat) {
3821     const FunctionDecl *Definition;
3822     if (hasBody(Definition) && Definition->isInlined() &&
3823         redeclForcesDefMSVC(this))
3824       return true;
3825   }
3826 
3827   if (Context.getLangOpts().CPlusPlus)
3828     return false;
3829 
3830   if (Context.getLangOpts().GNUInline || hasAttr<GNUInlineAttr>()) {
3831     // With GNU inlining, a declaration with 'inline' but not 'extern', forces
3832     // an externally visible definition.
3833     //
3834     // FIXME: What happens if gnu_inline gets added on after the first
3835     // declaration?
3836     if (!isInlineSpecified() || getStorageClass() == SC_Extern)
3837       return false;
3838 
3839     const FunctionDecl *Prev = this;
3840     bool FoundBody = false;
3841     while ((Prev = Prev->getPreviousDecl())) {
3842       FoundBody |= Prev->doesThisDeclarationHaveABody();
3843 
3844       if (Prev->doesThisDeclarationHaveABody()) {
3845         // If it's not the case that both 'inline' and 'extern' are
3846         // specified on the definition, then it is always externally visible.
3847         if (!Prev->isInlineSpecified() ||
3848             Prev->getStorageClass() != SC_Extern)
3849           return false;
3850       } else if (Prev->isInlineSpecified() &&
3851                  Prev->getStorageClass() != SC_Extern) {
3852         return false;
3853       }
3854     }
3855     return FoundBody;
3856   }
3857 
3858   // C99 6.7.4p6:
3859   //   [...] If all of the file scope declarations for a function in a
3860   //   translation unit include the inline function specifier without extern,
3861   //   then the definition in that translation unit is an inline definition.
3862   if (isInlineSpecified() && getStorageClass() != SC_Extern)
3863     return false;
3864   const FunctionDecl *Prev = this;
3865   bool FoundBody = false;
3866   while ((Prev = Prev->getPreviousDecl())) {
3867     FoundBody |= Prev->doesThisDeclarationHaveABody();
3868     if (RedeclForcesDefC99(Prev))
3869       return false;
3870   }
3871   return FoundBody;
3872 }
3873 
3874 FunctionTypeLoc FunctionDecl::getFunctionTypeLoc() const {
3875   const TypeSourceInfo *TSI = getTypeSourceInfo();
3876   return TSI ? TSI->getTypeLoc().IgnoreParens().getAs<FunctionTypeLoc>()
3877              : FunctionTypeLoc();
3878 }
3879 
3880 SourceRange FunctionDecl::getReturnTypeSourceRange() const {
3881   FunctionTypeLoc FTL = getFunctionTypeLoc();
3882   if (!FTL)
3883     return SourceRange();
3884 
3885   // Skip self-referential return types.
3886   const SourceManager &SM = getASTContext().getSourceManager();
3887   SourceRange RTRange = FTL.getReturnLoc().getSourceRange();
3888   SourceLocation Boundary = getNameInfo().getBeginLoc();
3889   if (RTRange.isInvalid() || Boundary.isInvalid() ||
3890       !SM.isBeforeInTranslationUnit(RTRange.getEnd(), Boundary))
3891     return SourceRange();
3892 
3893   return RTRange;
3894 }
3895 
3896 SourceRange FunctionDecl::getParametersSourceRange() const {
3897   unsigned NP = getNumParams();
3898   SourceLocation EllipsisLoc = getEllipsisLoc();
3899 
3900   if (NP == 0 && EllipsisLoc.isInvalid())
3901     return SourceRange();
3902 
3903   SourceLocation Begin =
3904       NP > 0 ? ParamInfo[0]->getSourceRange().getBegin() : EllipsisLoc;
3905   SourceLocation End = EllipsisLoc.isValid()
3906                            ? EllipsisLoc
3907                            : ParamInfo[NP - 1]->getSourceRange().getEnd();
3908 
3909   return SourceRange(Begin, End);
3910 }
3911 
3912 SourceRange FunctionDecl::getExceptionSpecSourceRange() const {
3913   FunctionTypeLoc FTL = getFunctionTypeLoc();
3914   return FTL ? FTL.getExceptionSpecRange() : SourceRange();
3915 }
3916 
3917 /// For an inline function definition in C, or for a gnu_inline function
3918 /// in C++, determine whether the definition will be externally visible.
3919 ///
3920 /// Inline function definitions are always available for inlining optimizations.
3921 /// However, depending on the language dialect, declaration specifiers, and
3922 /// attributes, the definition of an inline function may or may not be
3923 /// "externally" visible to other translation units in the program.
3924 ///
3925 /// In C99, inline definitions are not externally visible by default. However,
3926 /// if even one of the global-scope declarations is marked "extern inline", the
3927 /// inline definition becomes externally visible (C99 6.7.4p6).
3928 ///
3929 /// In GNU89 mode, or if the gnu_inline attribute is attached to the function
3930 /// definition, we use the GNU semantics for inline, which are nearly the
3931 /// opposite of C99 semantics. In particular, "inline" by itself will create
3932 /// an externally visible symbol, but "extern inline" will not create an
3933 /// externally visible symbol.
3934 bool FunctionDecl::isInlineDefinitionExternallyVisible() const {
3935   assert((doesThisDeclarationHaveABody() || willHaveBody() ||
3936           hasAttr<AliasAttr>()) &&
3937          "Must be a function definition");
3938   assert(isInlined() && "Function must be inline");
3939   ASTContext &Context = getASTContext();
3940 
3941   if (Context.getLangOpts().GNUInline || hasAttr<GNUInlineAttr>()) {
3942     // Note: If you change the logic here, please change
3943     // doesDeclarationForceExternallyVisibleDefinition as well.
3944     //
3945     // If it's not the case that both 'inline' and 'extern' are
3946     // specified on the definition, then this inline definition is
3947     // externally visible.
3948     if (Context.getLangOpts().CPlusPlus)
3949       return false;
3950     if (!(isInlineSpecified() && getStorageClass() == SC_Extern))
3951       return true;
3952 
3953     // If any declaration is 'inline' but not 'extern', then this definition
3954     // is externally visible.
3955     for (auto *Redecl : redecls()) {
3956       if (Redecl->isInlineSpecified() &&
3957           Redecl->getStorageClass() != SC_Extern)
3958         return true;
3959     }
3960 
3961     return false;
3962   }
3963 
3964   // The rest of this function is C-only.
3965   assert(!Context.getLangOpts().CPlusPlus &&
3966          "should not use C inline rules in C++");
3967 
3968   // C99 6.7.4p6:
3969   //   [...] If all of the file scope declarations for a function in a
3970   //   translation unit include the inline function specifier without extern,
3971   //   then the definition in that translation unit is an inline definition.
3972   for (auto *Redecl : redecls()) {
3973     if (RedeclForcesDefC99(Redecl))
3974       return true;
3975   }
3976 
3977   // C99 6.7.4p6:
3978   //   An inline definition does not provide an external definition for the
3979   //   function, and does not forbid an external definition in another
3980   //   translation unit.
3981   return false;
3982 }
3983 
3984 /// getOverloadedOperator - Which C++ overloaded operator this
3985 /// function represents, if any.
3986 OverloadedOperatorKind FunctionDecl::getOverloadedOperator() const {
3987   if (getDeclName().getNameKind() == DeclarationName::CXXOperatorName)
3988     return getDeclName().getCXXOverloadedOperator();
3989   return OO_None;
3990 }
3991 
3992 /// getLiteralIdentifier - The literal suffix identifier this function
3993 /// represents, if any.
3994 const IdentifierInfo *FunctionDecl::getLiteralIdentifier() const {
3995   if (getDeclName().getNameKind() == DeclarationName::CXXLiteralOperatorName)
3996     return getDeclName().getCXXLiteralIdentifier();
3997   return nullptr;
3998 }
3999 
4000 FunctionDecl::TemplatedKind FunctionDecl::getTemplatedKind() const {
4001   if (TemplateOrSpecialization.isNull())
4002     return TK_NonTemplate;
4003   if (const auto *ND = TemplateOrSpecialization.dyn_cast<NamedDecl *>()) {
4004     if (isa<FunctionDecl>(ND))
4005       return TK_DependentNonTemplate;
4006     assert(isa<FunctionTemplateDecl>(ND) &&
4007            "No other valid types in NamedDecl");
4008     return TK_FunctionTemplate;
4009   }
4010   if (TemplateOrSpecialization.is<MemberSpecializationInfo *>())
4011     return TK_MemberSpecialization;
4012   if (TemplateOrSpecialization.is<FunctionTemplateSpecializationInfo *>())
4013     return TK_FunctionTemplateSpecialization;
4014   if (TemplateOrSpecialization.is
4015                                <DependentFunctionTemplateSpecializationInfo*>())
4016     return TK_DependentFunctionTemplateSpecialization;
4017 
4018   llvm_unreachable("Did we miss a TemplateOrSpecialization type?");
4019 }
4020 
4021 FunctionDecl *FunctionDecl::getInstantiatedFromMemberFunction() const {
4022   if (MemberSpecializationInfo *Info = getMemberSpecializationInfo())
4023     return cast<FunctionDecl>(Info->getInstantiatedFrom());
4024 
4025   return nullptr;
4026 }
4027 
4028 MemberSpecializationInfo *FunctionDecl::getMemberSpecializationInfo() const {
4029   if (auto *MSI =
4030           TemplateOrSpecialization.dyn_cast<MemberSpecializationInfo *>())
4031     return MSI;
4032   if (auto *FTSI = TemplateOrSpecialization
4033                        .dyn_cast<FunctionTemplateSpecializationInfo *>())
4034     return FTSI->getMemberSpecializationInfo();
4035   return nullptr;
4036 }
4037 
4038 void
4039 FunctionDecl::setInstantiationOfMemberFunction(ASTContext &C,
4040                                                FunctionDecl *FD,
4041                                                TemplateSpecializationKind TSK) {
4042   assert(TemplateOrSpecialization.isNull() &&
4043          "Member function is already a specialization");
4044   MemberSpecializationInfo *Info
4045     = new (C) MemberSpecializationInfo(FD, TSK);
4046   TemplateOrSpecialization = Info;
4047 }
4048 
4049 FunctionTemplateDecl *FunctionDecl::getDescribedFunctionTemplate() const {
4050   return dyn_cast_if_present<FunctionTemplateDecl>(
4051       TemplateOrSpecialization.dyn_cast<NamedDecl *>());
4052 }
4053 
4054 void FunctionDecl::setDescribedFunctionTemplate(
4055     FunctionTemplateDecl *Template) {
4056   assert(TemplateOrSpecialization.isNull() &&
4057          "Member function is already a specialization");
4058   TemplateOrSpecialization = Template;
4059 }
4060 
4061 bool FunctionDecl::isFunctionTemplateSpecialization() const {
4062   return TemplateOrSpecialization.is<FunctionTemplateSpecializationInfo *>() ||
4063          TemplateOrSpecialization
4064              .is<DependentFunctionTemplateSpecializationInfo *>();
4065 }
4066 
4067 void FunctionDecl::setInstantiatedFromDecl(FunctionDecl *FD) {
4068   assert(TemplateOrSpecialization.isNull() &&
4069          "Function is already a specialization");
4070   TemplateOrSpecialization = FD;
4071 }
4072 
4073 FunctionDecl *FunctionDecl::getInstantiatedFromDecl() const {
4074   return dyn_cast_if_present<FunctionDecl>(
4075       TemplateOrSpecialization.dyn_cast<NamedDecl *>());
4076 }
4077 
4078 bool FunctionDecl::isImplicitlyInstantiable() const {
4079   // If the function is invalid, it can't be implicitly instantiated.
4080   if (isInvalidDecl())
4081     return false;
4082 
4083   switch (getTemplateSpecializationKindForInstantiation()) {
4084   case TSK_Undeclared:
4085   case TSK_ExplicitInstantiationDefinition:
4086   case TSK_ExplicitSpecialization:
4087     return false;
4088 
4089   case TSK_ImplicitInstantiation:
4090     return true;
4091 
4092   case TSK_ExplicitInstantiationDeclaration:
4093     // Handled below.
4094     break;
4095   }
4096 
4097   // Find the actual template from which we will instantiate.
4098   const FunctionDecl *PatternDecl = getTemplateInstantiationPattern();
4099   bool HasPattern = false;
4100   if (PatternDecl)
4101     HasPattern = PatternDecl->hasBody(PatternDecl);
4102 
4103   // C++0x [temp.explicit]p9:
4104   //   Except for inline functions, other explicit instantiation declarations
4105   //   have the effect of suppressing the implicit instantiation of the entity
4106   //   to which they refer.
4107   if (!HasPattern || !PatternDecl)
4108     return true;
4109 
4110   return PatternDecl->isInlined();
4111 }
4112 
4113 bool FunctionDecl::isTemplateInstantiation() const {
4114   // FIXME: Remove this, it's not clear what it means. (Which template
4115   // specialization kind?)
4116   return clang::isTemplateInstantiation(getTemplateSpecializationKind());
4117 }
4118 
4119 FunctionDecl *
4120 FunctionDecl::getTemplateInstantiationPattern(bool ForDefinition) const {
4121   // If this is a generic lambda call operator specialization, its
4122   // instantiation pattern is always its primary template's pattern
4123   // even if its primary template was instantiated from another
4124   // member template (which happens with nested generic lambdas).
4125   // Since a lambda's call operator's body is transformed eagerly,
4126   // we don't have to go hunting for a prototype definition template
4127   // (i.e. instantiated-from-member-template) to use as an instantiation
4128   // pattern.
4129 
4130   if (isGenericLambdaCallOperatorSpecialization(
4131           dyn_cast<CXXMethodDecl>(this))) {
4132     assert(getPrimaryTemplate() && "not a generic lambda call operator?");
4133     return getDefinitionOrSelf(getPrimaryTemplate()->getTemplatedDecl());
4134   }
4135 
4136   // Check for a declaration of this function that was instantiated from a
4137   // friend definition.
4138   const FunctionDecl *FD = nullptr;
4139   if (!isDefined(FD, /*CheckForPendingFriendDefinition=*/true))
4140     FD = this;
4141 
4142   if (MemberSpecializationInfo *Info = FD->getMemberSpecializationInfo()) {
4143     if (ForDefinition &&
4144         !clang::isTemplateInstantiation(Info->getTemplateSpecializationKind()))
4145       return nullptr;
4146     return getDefinitionOrSelf(cast<FunctionDecl>(Info->getInstantiatedFrom()));
4147   }
4148 
4149   if (ForDefinition &&
4150       !clang::isTemplateInstantiation(getTemplateSpecializationKind()))
4151     return nullptr;
4152 
4153   if (FunctionTemplateDecl *Primary = getPrimaryTemplate()) {
4154     // If we hit a point where the user provided a specialization of this
4155     // template, we're done looking.
4156     while (!ForDefinition || !Primary->hasMemberSpecialization()) {
4157       if (auto *NewPrimary = Primary->getInstantiatedFromMemberTemplate())
4158         Primary = NewPrimary;
4159       else
4160         break;
4161     }
4162 
4163     return getDefinitionOrSelf(Primary->getTemplatedDecl());
4164   }
4165 
4166   return nullptr;
4167 }
4168 
4169 FunctionTemplateDecl *FunctionDecl::getPrimaryTemplate() const {
4170   if (FunctionTemplateSpecializationInfo *Info
4171         = TemplateOrSpecialization
4172             .dyn_cast<FunctionTemplateSpecializationInfo*>()) {
4173     return Info->getTemplate();
4174   }
4175   return nullptr;
4176 }
4177 
4178 FunctionTemplateSpecializationInfo *
4179 FunctionDecl::getTemplateSpecializationInfo() const {
4180   return TemplateOrSpecialization
4181       .dyn_cast<FunctionTemplateSpecializationInfo *>();
4182 }
4183 
4184 const TemplateArgumentList *
4185 FunctionDecl::getTemplateSpecializationArgs() const {
4186   if (FunctionTemplateSpecializationInfo *Info
4187         = TemplateOrSpecialization
4188             .dyn_cast<FunctionTemplateSpecializationInfo*>()) {
4189     return Info->TemplateArguments;
4190   }
4191   return nullptr;
4192 }
4193 
4194 const ASTTemplateArgumentListInfo *
4195 FunctionDecl::getTemplateSpecializationArgsAsWritten() const {
4196   if (FunctionTemplateSpecializationInfo *Info
4197         = TemplateOrSpecialization
4198             .dyn_cast<FunctionTemplateSpecializationInfo*>()) {
4199     return Info->TemplateArgumentsAsWritten;
4200   }
4201   if (DependentFunctionTemplateSpecializationInfo *Info =
4202           TemplateOrSpecialization
4203               .dyn_cast<DependentFunctionTemplateSpecializationInfo *>()) {
4204     return Info->TemplateArgumentsAsWritten;
4205   }
4206   return nullptr;
4207 }
4208 
4209 void FunctionDecl::setFunctionTemplateSpecialization(
4210     ASTContext &C, FunctionTemplateDecl *Template,
4211     TemplateArgumentList *TemplateArgs, void *InsertPos,
4212     TemplateSpecializationKind TSK,
4213     const TemplateArgumentListInfo *TemplateArgsAsWritten,
4214     SourceLocation PointOfInstantiation) {
4215   assert((TemplateOrSpecialization.isNull() ||
4216           TemplateOrSpecialization.is<MemberSpecializationInfo *>()) &&
4217          "Member function is already a specialization");
4218   assert(TSK != TSK_Undeclared &&
4219          "Must specify the type of function template specialization");
4220   assert((TemplateOrSpecialization.isNull() ||
4221           getFriendObjectKind() != FOK_None ||
4222           TSK == TSK_ExplicitSpecialization) &&
4223          "Member specialization must be an explicit specialization");
4224   FunctionTemplateSpecializationInfo *Info =
4225       FunctionTemplateSpecializationInfo::Create(
4226           C, this, Template, TSK, TemplateArgs, TemplateArgsAsWritten,
4227           PointOfInstantiation,
4228           TemplateOrSpecialization.dyn_cast<MemberSpecializationInfo *>());
4229   TemplateOrSpecialization = Info;
4230   Template->addSpecialization(Info, InsertPos);
4231 }
4232 
4233 void FunctionDecl::setDependentTemplateSpecialization(
4234     ASTContext &Context, const UnresolvedSetImpl &Templates,
4235     const TemplateArgumentListInfo *TemplateArgs) {
4236   assert(TemplateOrSpecialization.isNull());
4237   DependentFunctionTemplateSpecializationInfo *Info =
4238       DependentFunctionTemplateSpecializationInfo::Create(Context, Templates,
4239                                                           TemplateArgs);
4240   TemplateOrSpecialization = Info;
4241 }
4242 
4243 DependentFunctionTemplateSpecializationInfo *
4244 FunctionDecl::getDependentSpecializationInfo() const {
4245   return TemplateOrSpecialization
4246       .dyn_cast<DependentFunctionTemplateSpecializationInfo *>();
4247 }
4248 
4249 DependentFunctionTemplateSpecializationInfo *
4250 DependentFunctionTemplateSpecializationInfo::Create(
4251     ASTContext &Context, const UnresolvedSetImpl &Candidates,
4252     const TemplateArgumentListInfo *TArgs) {
4253   const auto *TArgsWritten =
4254       TArgs ? ASTTemplateArgumentListInfo::Create(Context, *TArgs) : nullptr;
4255   return new (Context.Allocate(
4256       totalSizeToAlloc<FunctionTemplateDecl *>(Candidates.size())))
4257       DependentFunctionTemplateSpecializationInfo(Candidates, TArgsWritten);
4258 }
4259 
4260 DependentFunctionTemplateSpecializationInfo::
4261     DependentFunctionTemplateSpecializationInfo(
4262         const UnresolvedSetImpl &Candidates,
4263         const ASTTemplateArgumentListInfo *TemplateArgsWritten)
4264     : NumCandidates(Candidates.size()),
4265       TemplateArgumentsAsWritten(TemplateArgsWritten) {
4266   std::transform(Candidates.begin(), Candidates.end(),
4267                  getTrailingObjects<FunctionTemplateDecl *>(),
4268                  [](NamedDecl *ND) {
4269                    return cast<FunctionTemplateDecl>(ND->getUnderlyingDecl());
4270                  });
4271 }
4272 
4273 TemplateSpecializationKind FunctionDecl::getTemplateSpecializationKind() const {
4274   // For a function template specialization, query the specialization
4275   // information object.
4276   if (FunctionTemplateSpecializationInfo *FTSInfo =
4277           TemplateOrSpecialization
4278               .dyn_cast<FunctionTemplateSpecializationInfo *>())
4279     return FTSInfo->getTemplateSpecializationKind();
4280 
4281   if (MemberSpecializationInfo *MSInfo =
4282           TemplateOrSpecialization.dyn_cast<MemberSpecializationInfo *>())
4283     return MSInfo->getTemplateSpecializationKind();
4284 
4285   // A dependent function template specialization is an explicit specialization,
4286   // except when it's a friend declaration.
4287   if (TemplateOrSpecialization
4288           .is<DependentFunctionTemplateSpecializationInfo *>() &&
4289       getFriendObjectKind() == FOK_None)
4290     return TSK_ExplicitSpecialization;
4291 
4292   return TSK_Undeclared;
4293 }
4294 
4295 TemplateSpecializationKind
4296 FunctionDecl::getTemplateSpecializationKindForInstantiation() const {
4297   // This is the same as getTemplateSpecializationKind(), except that for a
4298   // function that is both a function template specialization and a member
4299   // specialization, we prefer the member specialization information. Eg:
4300   //
4301   // template<typename T> struct A {
4302   //   template<typename U> void f() {}
4303   //   template<> void f<int>() {}
4304   // };
4305   //
4306   // Within the templated CXXRecordDecl, A<T>::f<int> is a dependent function
4307   // template specialization; both getTemplateSpecializationKind() and
4308   // getTemplateSpecializationKindForInstantiation() will return
4309   // TSK_ExplicitSpecialization.
4310   //
4311   // For A<int>::f<int>():
4312   // * getTemplateSpecializationKind() will return TSK_ExplicitSpecialization
4313   // * getTemplateSpecializationKindForInstantiation() will return
4314   //       TSK_ImplicitInstantiation
4315   //
4316   // This reflects the facts that A<int>::f<int> is an explicit specialization
4317   // of A<int>::f, and that A<int>::f<int> should be implicitly instantiated
4318   // from A::f<int> if a definition is needed.
4319   if (FunctionTemplateSpecializationInfo *FTSInfo =
4320           TemplateOrSpecialization
4321               .dyn_cast<FunctionTemplateSpecializationInfo *>()) {
4322     if (auto *MSInfo = FTSInfo->getMemberSpecializationInfo())
4323       return MSInfo->getTemplateSpecializationKind();
4324     return FTSInfo->getTemplateSpecializationKind();
4325   }
4326 
4327   if (MemberSpecializationInfo *MSInfo =
4328           TemplateOrSpecialization.dyn_cast<MemberSpecializationInfo *>())
4329     return MSInfo->getTemplateSpecializationKind();
4330 
4331   if (TemplateOrSpecialization
4332           .is<DependentFunctionTemplateSpecializationInfo *>() &&
4333       getFriendObjectKind() == FOK_None)
4334     return TSK_ExplicitSpecialization;
4335 
4336   return TSK_Undeclared;
4337 }
4338 
4339 void
4340 FunctionDecl::setTemplateSpecializationKind(TemplateSpecializationKind TSK,
4341                                           SourceLocation PointOfInstantiation) {
4342   if (FunctionTemplateSpecializationInfo *FTSInfo
4343         = TemplateOrSpecialization.dyn_cast<
4344                                     FunctionTemplateSpecializationInfo*>()) {
4345     FTSInfo->setTemplateSpecializationKind(TSK);
4346     if (TSK != TSK_ExplicitSpecialization &&
4347         PointOfInstantiation.isValid() &&
4348         FTSInfo->getPointOfInstantiation().isInvalid()) {
4349       FTSInfo->setPointOfInstantiation(PointOfInstantiation);
4350       if (ASTMutationListener *L = getASTContext().getASTMutationListener())
4351         L->InstantiationRequested(this);
4352     }
4353   } else if (MemberSpecializationInfo *MSInfo
4354              = TemplateOrSpecialization.dyn_cast<MemberSpecializationInfo*>()) {
4355     MSInfo->setTemplateSpecializationKind(TSK);
4356     if (TSK != TSK_ExplicitSpecialization &&
4357         PointOfInstantiation.isValid() &&
4358         MSInfo->getPointOfInstantiation().isInvalid()) {
4359       MSInfo->setPointOfInstantiation(PointOfInstantiation);
4360       if (ASTMutationListener *L = getASTContext().getASTMutationListener())
4361         L->InstantiationRequested(this);
4362     }
4363   } else
4364     llvm_unreachable("Function cannot have a template specialization kind");
4365 }
4366 
4367 SourceLocation FunctionDecl::getPointOfInstantiation() const {
4368   if (FunctionTemplateSpecializationInfo *FTSInfo
4369         = TemplateOrSpecialization.dyn_cast<
4370                                         FunctionTemplateSpecializationInfo*>())
4371     return FTSInfo->getPointOfInstantiation();
4372   if (MemberSpecializationInfo *MSInfo =
4373           TemplateOrSpecialization.dyn_cast<MemberSpecializationInfo *>())
4374     return MSInfo->getPointOfInstantiation();
4375 
4376   return SourceLocation();
4377 }
4378 
4379 bool FunctionDecl::isOutOfLine() const {
4380   if (Decl::isOutOfLine())
4381     return true;
4382 
4383   // If this function was instantiated from a member function of a
4384   // class template, check whether that member function was defined out-of-line.
4385   if (FunctionDecl *FD = getInstantiatedFromMemberFunction()) {
4386     const FunctionDecl *Definition;
4387     if (FD->hasBody(Definition))
4388       return Definition->isOutOfLine();
4389   }
4390 
4391   // If this function was instantiated from a function template,
4392   // check whether that function template was defined out-of-line.
4393   if (FunctionTemplateDecl *FunTmpl = getPrimaryTemplate()) {
4394     const FunctionDecl *Definition;
4395     if (FunTmpl->getTemplatedDecl()->hasBody(Definition))
4396       return Definition->isOutOfLine();
4397   }
4398 
4399   return false;
4400 }
4401 
4402 SourceRange FunctionDecl::getSourceRange() const {
4403   return SourceRange(getOuterLocStart(), EndRangeLoc);
4404 }
4405 
4406 unsigned FunctionDecl::getMemoryFunctionKind() const {
4407   IdentifierInfo *FnInfo = getIdentifier();
4408 
4409   if (!FnInfo)
4410     return 0;
4411 
4412   // Builtin handling.
4413   switch (getBuiltinID()) {
4414   case Builtin::BI__builtin_memset:
4415   case Builtin::BI__builtin___memset_chk:
4416   case Builtin::BImemset:
4417     return Builtin::BImemset;
4418 
4419   case Builtin::BI__builtin_memcpy:
4420   case Builtin::BI__builtin___memcpy_chk:
4421   case Builtin::BImemcpy:
4422     return Builtin::BImemcpy;
4423 
4424   case Builtin::BI__builtin_mempcpy:
4425   case Builtin::BI__builtin___mempcpy_chk:
4426   case Builtin::BImempcpy:
4427     return Builtin::BImempcpy;
4428 
4429   case Builtin::BI__builtin_memmove:
4430   case Builtin::BI__builtin___memmove_chk:
4431   case Builtin::BImemmove:
4432     return Builtin::BImemmove;
4433 
4434   case Builtin::BIstrlcpy:
4435   case Builtin::BI__builtin___strlcpy_chk:
4436     return Builtin::BIstrlcpy;
4437 
4438   case Builtin::BIstrlcat:
4439   case Builtin::BI__builtin___strlcat_chk:
4440     return Builtin::BIstrlcat;
4441 
4442   case Builtin::BI__builtin_memcmp:
4443   case Builtin::BImemcmp:
4444     return Builtin::BImemcmp;
4445 
4446   case Builtin::BI__builtin_bcmp:
4447   case Builtin::BIbcmp:
4448     return Builtin::BIbcmp;
4449 
4450   case Builtin::BI__builtin_strncpy:
4451   case Builtin::BI__builtin___strncpy_chk:
4452   case Builtin::BIstrncpy:
4453     return Builtin::BIstrncpy;
4454 
4455   case Builtin::BI__builtin_strncmp:
4456   case Builtin::BIstrncmp:
4457     return Builtin::BIstrncmp;
4458 
4459   case Builtin::BI__builtin_strncasecmp:
4460   case Builtin::BIstrncasecmp:
4461     return Builtin::BIstrncasecmp;
4462 
4463   case Builtin::BI__builtin_strncat:
4464   case Builtin::BI__builtin___strncat_chk:
4465   case Builtin::BIstrncat:
4466     return Builtin::BIstrncat;
4467 
4468   case Builtin::BI__builtin_strndup:
4469   case Builtin::BIstrndup:
4470     return Builtin::BIstrndup;
4471 
4472   case Builtin::BI__builtin_strlen:
4473   case Builtin::BIstrlen:
4474     return Builtin::BIstrlen;
4475 
4476   case Builtin::BI__builtin_bzero:
4477   case Builtin::BIbzero:
4478     return Builtin::BIbzero;
4479 
4480   case Builtin::BI__builtin_bcopy:
4481   case Builtin::BIbcopy:
4482     return Builtin::BIbcopy;
4483 
4484   case Builtin::BIfree:
4485     return Builtin::BIfree;
4486 
4487   default:
4488     if (isExternC()) {
4489       if (FnInfo->isStr("memset"))
4490         return Builtin::BImemset;
4491       if (FnInfo->isStr("memcpy"))
4492         return Builtin::BImemcpy;
4493       if (FnInfo->isStr("mempcpy"))
4494         return Builtin::BImempcpy;
4495       if (FnInfo->isStr("memmove"))
4496         return Builtin::BImemmove;
4497       if (FnInfo->isStr("memcmp"))
4498         return Builtin::BImemcmp;
4499       if (FnInfo->isStr("bcmp"))
4500         return Builtin::BIbcmp;
4501       if (FnInfo->isStr("strncpy"))
4502         return Builtin::BIstrncpy;
4503       if (FnInfo->isStr("strncmp"))
4504         return Builtin::BIstrncmp;
4505       if (FnInfo->isStr("strncasecmp"))
4506         return Builtin::BIstrncasecmp;
4507       if (FnInfo->isStr("strncat"))
4508         return Builtin::BIstrncat;
4509       if (FnInfo->isStr("strndup"))
4510         return Builtin::BIstrndup;
4511       if (FnInfo->isStr("strlen"))
4512         return Builtin::BIstrlen;
4513       if (FnInfo->isStr("bzero"))
4514         return Builtin::BIbzero;
4515       if (FnInfo->isStr("bcopy"))
4516         return Builtin::BIbcopy;
4517     } else if (isInStdNamespace()) {
4518       if (FnInfo->isStr("free"))
4519         return Builtin::BIfree;
4520     }
4521     break;
4522   }
4523   return 0;
4524 }
4525 
4526 unsigned FunctionDecl::getODRHash() const {
4527   assert(hasODRHash());
4528   return ODRHash;
4529 }
4530 
4531 unsigned FunctionDecl::getODRHash() {
4532   if (hasODRHash())
4533     return ODRHash;
4534 
4535   if (auto *FT = getInstantiatedFromMemberFunction()) {
4536     setHasODRHash(true);
4537     ODRHash = FT->getODRHash();
4538     return ODRHash;
4539   }
4540 
4541   class ODRHash Hash;
4542   Hash.AddFunctionDecl(this);
4543   setHasODRHash(true);
4544   ODRHash = Hash.CalculateHash();
4545   return ODRHash;
4546 }
4547 
4548 //===----------------------------------------------------------------------===//
4549 // FieldDecl Implementation
4550 //===----------------------------------------------------------------------===//
4551 
4552 FieldDecl *FieldDecl::Create(const ASTContext &C, DeclContext *DC,
4553                              SourceLocation StartLoc, SourceLocation IdLoc,
4554                              const IdentifierInfo *Id, QualType T,
4555                              TypeSourceInfo *TInfo, Expr *BW, bool Mutable,
4556                              InClassInitStyle InitStyle) {
4557   return new (C, DC) FieldDecl(Decl::Field, DC, StartLoc, IdLoc, Id, T, TInfo,
4558                                BW, Mutable, InitStyle);
4559 }
4560 
4561 FieldDecl *FieldDecl::CreateDeserialized(ASTContext &C, GlobalDeclID ID) {
4562   return new (C, ID) FieldDecl(Field, nullptr, SourceLocation(),
4563                                SourceLocation(), nullptr, QualType(), nullptr,
4564                                nullptr, false, ICIS_NoInit);
4565 }
4566 
4567 bool FieldDecl::isAnonymousStructOrUnion() const {
4568   if (!isImplicit() || getDeclName())
4569     return false;
4570 
4571   if (const auto *Record = getType()->getAs<RecordType>())
4572     return Record->getDecl()->isAnonymousStructOrUnion();
4573 
4574   return false;
4575 }
4576 
4577 Expr *FieldDecl::getInClassInitializer() const {
4578   if (!hasInClassInitializer())
4579     return nullptr;
4580 
4581   LazyDeclStmtPtr InitPtr = BitField ? InitAndBitWidth->Init : Init;
4582   return cast_if_present<Expr>(
4583       InitPtr.isOffset() ? InitPtr.get(getASTContext().getExternalSource())
4584                          : InitPtr.get(nullptr));
4585 }
4586 
4587 void FieldDecl::setInClassInitializer(Expr *NewInit) {
4588   setLazyInClassInitializer(LazyDeclStmtPtr(NewInit));
4589 }
4590 
4591 void FieldDecl::setLazyInClassInitializer(LazyDeclStmtPtr NewInit) {
4592   assert(hasInClassInitializer() && !getInClassInitializer());
4593   if (BitField)
4594     InitAndBitWidth->Init = NewInit;
4595   else
4596     Init = NewInit;
4597 }
4598 
4599 unsigned FieldDecl::getBitWidthValue(const ASTContext &Ctx) const {
4600   assert(isBitField() && "not a bitfield");
4601   return getBitWidth()->EvaluateKnownConstInt(Ctx).getZExtValue();
4602 }
4603 
4604 bool FieldDecl::isZeroLengthBitField(const ASTContext &Ctx) const {
4605   return isUnnamedBitField() && !getBitWidth()->isValueDependent() &&
4606          getBitWidthValue(Ctx) == 0;
4607 }
4608 
4609 bool FieldDecl::isZeroSize(const ASTContext &Ctx) const {
4610   if (isZeroLengthBitField(Ctx))
4611     return true;
4612 
4613   // C++2a [intro.object]p7:
4614   //   An object has nonzero size if it
4615   //     -- is not a potentially-overlapping subobject, or
4616   if (!hasAttr<NoUniqueAddressAttr>())
4617     return false;
4618 
4619   //     -- is not of class type, or
4620   const auto *RT = getType()->getAs<RecordType>();
4621   if (!RT)
4622     return false;
4623   const RecordDecl *RD = RT->getDecl()->getDefinition();
4624   if (!RD) {
4625     assert(isInvalidDecl() && "valid field has incomplete type");
4626     return false;
4627   }
4628 
4629   //     -- [has] virtual member functions or virtual base classes, or
4630   //     -- has subobjects of nonzero size or bit-fields of nonzero length
4631   const auto *CXXRD = cast<CXXRecordDecl>(RD);
4632   if (!CXXRD->isEmpty())
4633     return false;
4634 
4635   // Otherwise, [...] the circumstances under which the object has zero size
4636   // are implementation-defined.
4637   if (!Ctx.getTargetInfo().getCXXABI().isMicrosoft())
4638     return true;
4639 
4640   // MS ABI: has nonzero size if it is a class type with class type fields,
4641   // whether or not they have nonzero size
4642   return !llvm::any_of(CXXRD->fields(), [](const FieldDecl *Field) {
4643     return Field->getType()->getAs<RecordType>();
4644   });
4645 }
4646 
4647 bool FieldDecl::isPotentiallyOverlapping() const {
4648   return hasAttr<NoUniqueAddressAttr>() && getType()->getAsCXXRecordDecl();
4649 }
4650 
4651 unsigned FieldDecl::getFieldIndex() const {
4652   const FieldDecl *Canonical = getCanonicalDecl();
4653   if (Canonical != this)
4654     return Canonical->getFieldIndex();
4655 
4656   if (CachedFieldIndex) return CachedFieldIndex - 1;
4657 
4658   unsigned Index = 0;
4659   const RecordDecl *RD = getParent()->getDefinition();
4660   assert(RD && "requested index for field of struct with no definition");
4661 
4662   for (auto *Field : RD->fields()) {
4663     Field->getCanonicalDecl()->CachedFieldIndex = Index + 1;
4664     assert(Field->getCanonicalDecl()->CachedFieldIndex == Index + 1 &&
4665            "overflow in field numbering");
4666     ++Index;
4667   }
4668 
4669   assert(CachedFieldIndex && "failed to find field in parent");
4670   return CachedFieldIndex - 1;
4671 }
4672 
4673 SourceRange FieldDecl::getSourceRange() const {
4674   const Expr *FinalExpr = getInClassInitializer();
4675   if (!FinalExpr)
4676     FinalExpr = getBitWidth();
4677   if (FinalExpr)
4678     return SourceRange(getInnerLocStart(), FinalExpr->getEndLoc());
4679   return DeclaratorDecl::getSourceRange();
4680 }
4681 
4682 void FieldDecl::setCapturedVLAType(const VariableArrayType *VLAType) {
4683   assert((getParent()->isLambda() || getParent()->isCapturedRecord()) &&
4684          "capturing type in non-lambda or captured record.");
4685   assert(StorageKind == ISK_NoInit && !BitField &&
4686          "bit-field or field with default member initializer cannot capture "
4687          "VLA type");
4688   StorageKind = ISK_CapturedVLAType;
4689   CapturedVLAType = VLAType;
4690 }
4691 
4692 void FieldDecl::printName(raw_ostream &OS, const PrintingPolicy &Policy) const {
4693   // Print unnamed members using name of their type.
4694   if (isAnonymousStructOrUnion()) {
4695     this->getType().print(OS, Policy);
4696     return;
4697   }
4698   // Otherwise, do the normal printing.
4699   DeclaratorDecl::printName(OS, Policy);
4700 }
4701 
4702 const FieldDecl *FieldDecl::findCountedByField() const {
4703   const auto *CAT = getType()->getAs<CountAttributedType>();
4704   if (!CAT)
4705     return nullptr;
4706 
4707   const auto *CountDRE = cast<DeclRefExpr>(CAT->getCountExpr());
4708   const auto *CountDecl = CountDRE->getDecl();
4709   if (const auto *IFD = dyn_cast<IndirectFieldDecl>(CountDecl))
4710     CountDecl = IFD->getAnonField();
4711 
4712   return dyn_cast<FieldDecl>(CountDecl);
4713 }
4714 
4715 //===----------------------------------------------------------------------===//
4716 // TagDecl Implementation
4717 //===----------------------------------------------------------------------===//
4718 
4719 TagDecl::TagDecl(Kind DK, TagKind TK, const ASTContext &C, DeclContext *DC,
4720                  SourceLocation L, IdentifierInfo *Id, TagDecl *PrevDecl,
4721                  SourceLocation StartL)
4722     : TypeDecl(DK, DC, L, Id, StartL), DeclContext(DK), redeclarable_base(C),
4723       TypedefNameDeclOrQualifier((TypedefNameDecl *)nullptr) {
4724   assert((DK != Enum || TK == TagTypeKind::Enum) &&
4725          "EnumDecl not matched with TagTypeKind::Enum");
4726   setPreviousDecl(PrevDecl);
4727   setTagKind(TK);
4728   setCompleteDefinition(false);
4729   setBeingDefined(false);
4730   setEmbeddedInDeclarator(false);
4731   setFreeStanding(false);
4732   setCompleteDefinitionRequired(false);
4733   TagDeclBits.IsThisDeclarationADemotedDefinition = false;
4734 }
4735 
4736 SourceLocation TagDecl::getOuterLocStart() const {
4737   return getTemplateOrInnerLocStart(this);
4738 }
4739 
4740 SourceRange TagDecl::getSourceRange() const {
4741   SourceLocation RBraceLoc = BraceRange.getEnd();
4742   SourceLocation E = RBraceLoc.isValid() ? RBraceLoc : getLocation();
4743   return SourceRange(getOuterLocStart(), E);
4744 }
4745 
4746 TagDecl *TagDecl::getCanonicalDecl() { return getFirstDecl(); }
4747 
4748 void TagDecl::setTypedefNameForAnonDecl(TypedefNameDecl *TDD) {
4749   TypedefNameDeclOrQualifier = TDD;
4750   if (const Type *T = getTypeForDecl()) {
4751     (void)T;
4752     assert(T->isLinkageValid());
4753   }
4754   assert(isLinkageValid());
4755 }
4756 
4757 void TagDecl::startDefinition() {
4758   setBeingDefined(true);
4759 
4760   if (auto *D = dyn_cast<CXXRecordDecl>(this)) {
4761     struct CXXRecordDecl::DefinitionData *Data =
4762       new (getASTContext()) struct CXXRecordDecl::DefinitionData(D);
4763     for (auto *I : redecls())
4764       cast<CXXRecordDecl>(I)->DefinitionData = Data;
4765   }
4766 }
4767 
4768 void TagDecl::completeDefinition() {
4769   assert((!isa<CXXRecordDecl>(this) ||
4770           cast<CXXRecordDecl>(this)->hasDefinition()) &&
4771          "definition completed but not started");
4772 
4773   setCompleteDefinition(true);
4774   setBeingDefined(false);
4775 
4776   if (ASTMutationListener *L = getASTMutationListener())
4777     L->CompletedTagDefinition(this);
4778 }
4779 
4780 TagDecl *TagDecl::getDefinition() const {
4781   if (isCompleteDefinition())
4782     return const_cast<TagDecl *>(this);
4783 
4784   // If it's possible for us to have an out-of-date definition, check now.
4785   if (mayHaveOutOfDateDef()) {
4786     if (IdentifierInfo *II = getIdentifier()) {
4787       if (II->isOutOfDate()) {
4788         updateOutOfDate(*II);
4789       }
4790     }
4791   }
4792 
4793   if (const auto *CXXRD = dyn_cast<CXXRecordDecl>(this))
4794     return CXXRD->getDefinition();
4795 
4796   for (auto *R : redecls())
4797     if (R->isCompleteDefinition())
4798       return R;
4799 
4800   return nullptr;
4801 }
4802 
4803 void TagDecl::setQualifierInfo(NestedNameSpecifierLoc QualifierLoc) {
4804   if (QualifierLoc) {
4805     // Make sure the extended qualifier info is allocated.
4806     if (!hasExtInfo())
4807       TypedefNameDeclOrQualifier = new (getASTContext()) ExtInfo;
4808     // Set qualifier info.
4809     getExtInfo()->QualifierLoc = QualifierLoc;
4810   } else {
4811     // Here Qualifier == 0, i.e., we are removing the qualifier (if any).
4812     if (hasExtInfo()) {
4813       if (getExtInfo()->NumTemplParamLists == 0) {
4814         getASTContext().Deallocate(getExtInfo());
4815         TypedefNameDeclOrQualifier = (TypedefNameDecl *)nullptr;
4816       }
4817       else
4818         getExtInfo()->QualifierLoc = QualifierLoc;
4819     }
4820   }
4821 }
4822 
4823 void TagDecl::printName(raw_ostream &OS, const PrintingPolicy &Policy) const {
4824   DeclarationName Name = getDeclName();
4825   // If the name is supposed to have an identifier but does not have one, then
4826   // the tag is anonymous and we should print it differently.
4827   if (Name.isIdentifier() && !Name.getAsIdentifierInfo()) {
4828     // If the caller wanted to print a qualified name, they've already printed
4829     // the scope. And if the caller doesn't want that, the scope information
4830     // is already printed as part of the type.
4831     PrintingPolicy Copy(Policy);
4832     Copy.SuppressScope = true;
4833     getASTContext().getTagDeclType(this).print(OS, Copy);
4834     return;
4835   }
4836   // Otherwise, do the normal printing.
4837   Name.print(OS, Policy);
4838 }
4839 
4840 void TagDecl::setTemplateParameterListsInfo(
4841     ASTContext &Context, ArrayRef<TemplateParameterList *> TPLists) {
4842   assert(!TPLists.empty());
4843   // Make sure the extended decl info is allocated.
4844   if (!hasExtInfo())
4845     // Allocate external info struct.
4846     TypedefNameDeclOrQualifier = new (getASTContext()) ExtInfo;
4847   // Set the template parameter lists info.
4848   getExtInfo()->setTemplateParameterListsInfo(Context, TPLists);
4849 }
4850 
4851 //===----------------------------------------------------------------------===//
4852 // EnumDecl Implementation
4853 //===----------------------------------------------------------------------===//
4854 
4855 EnumDecl::EnumDecl(ASTContext &C, DeclContext *DC, SourceLocation StartLoc,
4856                    SourceLocation IdLoc, IdentifierInfo *Id, EnumDecl *PrevDecl,
4857                    bool Scoped, bool ScopedUsingClassTag, bool Fixed)
4858     : TagDecl(Enum, TagTypeKind::Enum, C, DC, IdLoc, Id, PrevDecl, StartLoc) {
4859   assert(Scoped || !ScopedUsingClassTag);
4860   IntegerType = nullptr;
4861   setNumPositiveBits(0);
4862   setNumNegativeBits(0);
4863   setScoped(Scoped);
4864   setScopedUsingClassTag(ScopedUsingClassTag);
4865   setFixed(Fixed);
4866   setHasODRHash(false);
4867   ODRHash = 0;
4868 }
4869 
4870 void EnumDecl::anchor() {}
4871 
4872 EnumDecl *EnumDecl::Create(ASTContext &C, DeclContext *DC,
4873                            SourceLocation StartLoc, SourceLocation IdLoc,
4874                            IdentifierInfo *Id,
4875                            EnumDecl *PrevDecl, bool IsScoped,
4876                            bool IsScopedUsingClassTag, bool IsFixed) {
4877   auto *Enum = new (C, DC) EnumDecl(C, DC, StartLoc, IdLoc, Id, PrevDecl,
4878                                     IsScoped, IsScopedUsingClassTag, IsFixed);
4879   Enum->setMayHaveOutOfDateDef(C.getLangOpts().Modules);
4880   C.getTypeDeclType(Enum, PrevDecl);
4881   return Enum;
4882 }
4883 
4884 EnumDecl *EnumDecl::CreateDeserialized(ASTContext &C, GlobalDeclID ID) {
4885   EnumDecl *Enum =
4886       new (C, ID) EnumDecl(C, nullptr, SourceLocation(), SourceLocation(),
4887                            nullptr, nullptr, false, false, false);
4888   Enum->setMayHaveOutOfDateDef(C.getLangOpts().Modules);
4889   return Enum;
4890 }
4891 
4892 SourceRange EnumDecl::getIntegerTypeRange() const {
4893   if (const TypeSourceInfo *TI = getIntegerTypeSourceInfo())
4894     return TI->getTypeLoc().getSourceRange();
4895   return SourceRange();
4896 }
4897 
4898 void EnumDecl::completeDefinition(QualType NewType,
4899                                   QualType NewPromotionType,
4900                                   unsigned NumPositiveBits,
4901                                   unsigned NumNegativeBits) {
4902   assert(!isCompleteDefinition() && "Cannot redefine enums!");
4903   if (!IntegerType)
4904     IntegerType = NewType.getTypePtr();
4905   PromotionType = NewPromotionType;
4906   setNumPositiveBits(NumPositiveBits);
4907   setNumNegativeBits(NumNegativeBits);
4908   TagDecl::completeDefinition();
4909 }
4910 
4911 bool EnumDecl::isClosed() const {
4912   if (const auto *A = getAttr<EnumExtensibilityAttr>())
4913     return A->getExtensibility() == EnumExtensibilityAttr::Closed;
4914   return true;
4915 }
4916 
4917 bool EnumDecl::isClosedFlag() const {
4918   return isClosed() && hasAttr<FlagEnumAttr>();
4919 }
4920 
4921 bool EnumDecl::isClosedNonFlag() const {
4922   return isClosed() && !hasAttr<FlagEnumAttr>();
4923 }
4924 
4925 TemplateSpecializationKind EnumDecl::getTemplateSpecializationKind() const {
4926   if (MemberSpecializationInfo *MSI = getMemberSpecializationInfo())
4927     return MSI->getTemplateSpecializationKind();
4928 
4929   return TSK_Undeclared;
4930 }
4931 
4932 void EnumDecl::setTemplateSpecializationKind(TemplateSpecializationKind TSK,
4933                                          SourceLocation PointOfInstantiation) {
4934   MemberSpecializationInfo *MSI = getMemberSpecializationInfo();
4935   assert(MSI && "Not an instantiated member enumeration?");
4936   MSI->setTemplateSpecializationKind(TSK);
4937   if (TSK != TSK_ExplicitSpecialization &&
4938       PointOfInstantiation.isValid() &&
4939       MSI->getPointOfInstantiation().isInvalid())
4940     MSI->setPointOfInstantiation(PointOfInstantiation);
4941 }
4942 
4943 EnumDecl *EnumDecl::getTemplateInstantiationPattern() const {
4944   if (MemberSpecializationInfo *MSInfo = getMemberSpecializationInfo()) {
4945     if (isTemplateInstantiation(MSInfo->getTemplateSpecializationKind())) {
4946       EnumDecl *ED = getInstantiatedFromMemberEnum();
4947       while (auto *NewED = ED->getInstantiatedFromMemberEnum())
4948         ED = NewED;
4949       return getDefinitionOrSelf(ED);
4950     }
4951   }
4952 
4953   assert(!isTemplateInstantiation(getTemplateSpecializationKind()) &&
4954          "couldn't find pattern for enum instantiation");
4955   return nullptr;
4956 }
4957 
4958 EnumDecl *EnumDecl::getInstantiatedFromMemberEnum() const {
4959   if (SpecializationInfo)
4960     return cast<EnumDecl>(SpecializationInfo->getInstantiatedFrom());
4961 
4962   return nullptr;
4963 }
4964 
4965 void EnumDecl::setInstantiationOfMemberEnum(ASTContext &C, EnumDecl *ED,
4966                                             TemplateSpecializationKind TSK) {
4967   assert(!SpecializationInfo && "Member enum is already a specialization");
4968   SpecializationInfo = new (C) MemberSpecializationInfo(ED, TSK);
4969 }
4970 
4971 unsigned EnumDecl::getODRHash() {
4972   if (hasODRHash())
4973     return ODRHash;
4974 
4975   class ODRHash Hash;
4976   Hash.AddEnumDecl(this);
4977   setHasODRHash(true);
4978   ODRHash = Hash.CalculateHash();
4979   return ODRHash;
4980 }
4981 
4982 SourceRange EnumDecl::getSourceRange() const {
4983   auto Res = TagDecl::getSourceRange();
4984   // Set end-point to enum-base, e.g. enum foo : ^bar
4985   if (auto *TSI = getIntegerTypeSourceInfo()) {
4986     // TagDecl doesn't know about the enum base.
4987     if (!getBraceRange().getEnd().isValid())
4988       Res.setEnd(TSI->getTypeLoc().getEndLoc());
4989   }
4990   return Res;
4991 }
4992 
4993 void EnumDecl::getValueRange(llvm::APInt &Max, llvm::APInt &Min) const {
4994   unsigned Bitwidth = getASTContext().getIntWidth(getIntegerType());
4995   unsigned NumNegativeBits = getNumNegativeBits();
4996   unsigned NumPositiveBits = getNumPositiveBits();
4997 
4998   if (NumNegativeBits) {
4999     unsigned NumBits = std::max(NumNegativeBits, NumPositiveBits + 1);
5000     Max = llvm::APInt(Bitwidth, 1) << (NumBits - 1);
5001     Min = -Max;
5002   } else {
5003     Max = llvm::APInt(Bitwidth, 1) << NumPositiveBits;
5004     Min = llvm::APInt::getZero(Bitwidth);
5005   }
5006 }
5007 
5008 //===----------------------------------------------------------------------===//
5009 // RecordDecl Implementation
5010 //===----------------------------------------------------------------------===//
5011 
5012 RecordDecl::RecordDecl(Kind DK, TagKind TK, const ASTContext &C,
5013                        DeclContext *DC, SourceLocation StartLoc,
5014                        SourceLocation IdLoc, IdentifierInfo *Id,
5015                        RecordDecl *PrevDecl)
5016     : TagDecl(DK, TK, C, DC, IdLoc, Id, PrevDecl, StartLoc) {
5017   assert(classof(static_cast<Decl *>(this)) && "Invalid Kind!");
5018   setHasFlexibleArrayMember(false);
5019   setAnonymousStructOrUnion(false);
5020   setHasObjectMember(false);
5021   setHasVolatileMember(false);
5022   setHasLoadedFieldsFromExternalStorage(false);
5023   setNonTrivialToPrimitiveDefaultInitialize(false);
5024   setNonTrivialToPrimitiveCopy(false);
5025   setNonTrivialToPrimitiveDestroy(false);
5026   setHasNonTrivialToPrimitiveDefaultInitializeCUnion(false);
5027   setHasNonTrivialToPrimitiveDestructCUnion(false);
5028   setHasNonTrivialToPrimitiveCopyCUnion(false);
5029   setParamDestroyedInCallee(false);
5030   setArgPassingRestrictions(RecordArgPassingKind::CanPassInRegs);
5031   setIsRandomized(false);
5032   setODRHash(0);
5033 }
5034 
5035 RecordDecl *RecordDecl::Create(const ASTContext &C, TagKind TK, DeclContext *DC,
5036                                SourceLocation StartLoc, SourceLocation IdLoc,
5037                                IdentifierInfo *Id, RecordDecl* PrevDecl) {
5038   RecordDecl *R = new (C, DC) RecordDecl(Record, TK, C, DC,
5039                                          StartLoc, IdLoc, Id, PrevDecl);
5040   R->setMayHaveOutOfDateDef(C.getLangOpts().Modules);
5041 
5042   C.getTypeDeclType(R, PrevDecl);
5043   return R;
5044 }
5045 
5046 RecordDecl *RecordDecl::CreateDeserialized(const ASTContext &C,
5047                                            GlobalDeclID ID) {
5048   RecordDecl *R = new (C, ID)
5049       RecordDecl(Record, TagTypeKind::Struct, C, nullptr, SourceLocation(),
5050                  SourceLocation(), nullptr, nullptr);
5051   R->setMayHaveOutOfDateDef(C.getLangOpts().Modules);
5052   return R;
5053 }
5054 
5055 bool RecordDecl::isInjectedClassName() const {
5056   return isImplicit() && getDeclName() && getDeclContext()->isRecord() &&
5057     cast<RecordDecl>(getDeclContext())->getDeclName() == getDeclName();
5058 }
5059 
5060 bool RecordDecl::isLambda() const {
5061   if (auto RD = dyn_cast<CXXRecordDecl>(this))
5062     return RD->isLambda();
5063   return false;
5064 }
5065 
5066 bool RecordDecl::isCapturedRecord() const {
5067   return hasAttr<CapturedRecordAttr>();
5068 }
5069 
5070 void RecordDecl::setCapturedRecord() {
5071   addAttr(CapturedRecordAttr::CreateImplicit(getASTContext()));
5072 }
5073 
5074 bool RecordDecl::isOrContainsUnion() const {
5075   if (isUnion())
5076     return true;
5077 
5078   if (const RecordDecl *Def = getDefinition()) {
5079     for (const FieldDecl *FD : Def->fields()) {
5080       const RecordType *RT = FD->getType()->getAs<RecordType>();
5081       if (RT && RT->getDecl()->isOrContainsUnion())
5082         return true;
5083     }
5084   }
5085 
5086   return false;
5087 }
5088 
5089 RecordDecl::field_iterator RecordDecl::field_begin() const {
5090   if (hasExternalLexicalStorage() && !hasLoadedFieldsFromExternalStorage())
5091     LoadFieldsFromExternalStorage();
5092   // This is necessary for correctness for C++ with modules.
5093   // FIXME: Come up with a test case that breaks without definition.
5094   if (RecordDecl *D = getDefinition(); D && D != this)
5095     return D->field_begin();
5096   return field_iterator(decl_iterator(FirstDecl));
5097 }
5098 
5099 /// completeDefinition - Notes that the definition of this type is now
5100 /// complete.
5101 void RecordDecl::completeDefinition() {
5102   assert(!isCompleteDefinition() && "Cannot redefine record!");
5103   TagDecl::completeDefinition();
5104 
5105   ASTContext &Ctx = getASTContext();
5106 
5107   // Layouts are dumped when computed, so if we are dumping for all complete
5108   // types, we need to force usage to get types that wouldn't be used elsewhere.
5109   //
5110   // If the type is dependent, then we can't compute its layout because there
5111   // is no way for us to know the size or alignment of a dependent type. Also
5112   // ignore declarations marked as invalid since 'getASTRecordLayout()' asserts
5113   // on that.
5114   if (Ctx.getLangOpts().DumpRecordLayoutsComplete && !isDependentType() &&
5115       !isInvalidDecl())
5116     (void)Ctx.getASTRecordLayout(this);
5117 }
5118 
5119 /// isMsStruct - Get whether or not this record uses ms_struct layout.
5120 /// This which can be turned on with an attribute, pragma, or the
5121 /// -mms-bitfields command-line option.
5122 bool RecordDecl::isMsStruct(const ASTContext &C) const {
5123   return hasAttr<MSStructAttr>() || C.getLangOpts().MSBitfields == 1;
5124 }
5125 
5126 void RecordDecl::reorderDecls(const SmallVectorImpl<Decl *> &Decls) {
5127   std::tie(FirstDecl, LastDecl) = DeclContext::BuildDeclChain(Decls, false);
5128   LastDecl->NextInContextAndBits.setPointer(nullptr);
5129   setIsRandomized(true);
5130 }
5131 
5132 void RecordDecl::LoadFieldsFromExternalStorage() const {
5133   ExternalASTSource *Source = getASTContext().getExternalSource();
5134   assert(hasExternalLexicalStorage() && Source && "No external storage?");
5135 
5136   // Notify that we have a RecordDecl doing some initialization.
5137   ExternalASTSource::Deserializing TheFields(Source);
5138 
5139   SmallVector<Decl*, 64> Decls;
5140   setHasLoadedFieldsFromExternalStorage(true);
5141   Source->FindExternalLexicalDecls(this, [](Decl::Kind K) {
5142     return FieldDecl::classofKind(K) || IndirectFieldDecl::classofKind(K);
5143   }, Decls);
5144 
5145 #ifndef NDEBUG
5146   // Check that all decls we got were FieldDecls.
5147   for (unsigned i=0, e=Decls.size(); i != e; ++i)
5148     assert(isa<FieldDecl>(Decls[i]) || isa<IndirectFieldDecl>(Decls[i]));
5149 #endif
5150 
5151   if (Decls.empty())
5152     return;
5153 
5154   auto [ExternalFirst, ExternalLast] =
5155       BuildDeclChain(Decls,
5156                      /*FieldsAlreadyLoaded=*/false);
5157   ExternalLast->NextInContextAndBits.setPointer(FirstDecl);
5158   FirstDecl = ExternalFirst;
5159   if (!LastDecl)
5160     LastDecl = ExternalLast;
5161 }
5162 
5163 bool RecordDecl::mayInsertExtraPadding(bool EmitRemark) const {
5164   ASTContext &Context = getASTContext();
5165   const SanitizerMask EnabledAsanMask = Context.getLangOpts().Sanitize.Mask &
5166       (SanitizerKind::Address | SanitizerKind::KernelAddress);
5167   if (!EnabledAsanMask || !Context.getLangOpts().SanitizeAddressFieldPadding)
5168     return false;
5169   const auto &NoSanitizeList = Context.getNoSanitizeList();
5170   const auto *CXXRD = dyn_cast<CXXRecordDecl>(this);
5171   // We may be able to relax some of these requirements.
5172   int ReasonToReject = -1;
5173   if (!CXXRD || CXXRD->isExternCContext())
5174     ReasonToReject = 0;  // is not C++.
5175   else if (CXXRD->hasAttr<PackedAttr>())
5176     ReasonToReject = 1;  // is packed.
5177   else if (CXXRD->isUnion())
5178     ReasonToReject = 2;  // is a union.
5179   else if (CXXRD->isTriviallyCopyable())
5180     ReasonToReject = 3;  // is trivially copyable.
5181   else if (CXXRD->hasTrivialDestructor())
5182     ReasonToReject = 4;  // has trivial destructor.
5183   else if (CXXRD->isStandardLayout())
5184     ReasonToReject = 5;  // is standard layout.
5185   else if (NoSanitizeList.containsLocation(EnabledAsanMask, getLocation(),
5186                                            "field-padding"))
5187     ReasonToReject = 6;  // is in an excluded file.
5188   else if (NoSanitizeList.containsType(
5189                EnabledAsanMask, getQualifiedNameAsString(), "field-padding"))
5190     ReasonToReject = 7;  // The type is excluded.
5191 
5192   if (EmitRemark) {
5193     if (ReasonToReject >= 0)
5194       Context.getDiagnostics().Report(
5195           getLocation(),
5196           diag::remark_sanitize_address_insert_extra_padding_rejected)
5197           << getQualifiedNameAsString() << ReasonToReject;
5198     else
5199       Context.getDiagnostics().Report(
5200           getLocation(),
5201           diag::remark_sanitize_address_insert_extra_padding_accepted)
5202           << getQualifiedNameAsString();
5203   }
5204   return ReasonToReject < 0;
5205 }
5206 
5207 const FieldDecl *RecordDecl::findFirstNamedDataMember() const {
5208   for (const auto *I : fields()) {
5209     if (I->getIdentifier())
5210       return I;
5211 
5212     if (const auto *RT = I->getType()->getAs<RecordType>())
5213       if (const FieldDecl *NamedDataMember =
5214               RT->getDecl()->findFirstNamedDataMember())
5215         return NamedDataMember;
5216   }
5217 
5218   // We didn't find a named data member.
5219   return nullptr;
5220 }
5221 
5222 unsigned RecordDecl::getODRHash() {
5223   if (hasODRHash())
5224     return RecordDeclBits.ODRHash;
5225 
5226   // Only calculate hash on first call of getODRHash per record.
5227   ODRHash Hash;
5228   Hash.AddRecordDecl(this);
5229   // For RecordDecl the ODRHash is stored in the remaining 26
5230   // bit of RecordDeclBits, adjust the hash to accomodate.
5231   setODRHash(Hash.CalculateHash() >> 6);
5232   return RecordDeclBits.ODRHash;
5233 }
5234 
5235 //===----------------------------------------------------------------------===//
5236 // BlockDecl Implementation
5237 //===----------------------------------------------------------------------===//
5238 
5239 BlockDecl::BlockDecl(DeclContext *DC, SourceLocation CaretLoc)
5240     : Decl(Block, DC, CaretLoc), DeclContext(Block) {
5241   setIsVariadic(false);
5242   setCapturesCXXThis(false);
5243   setBlockMissingReturnType(true);
5244   setIsConversionFromLambda(false);
5245   setDoesNotEscape(false);
5246   setCanAvoidCopyToHeap(false);
5247 }
5248 
5249 void BlockDecl::setParams(ArrayRef<ParmVarDecl *> NewParamInfo) {
5250   assert(!ParamInfo && "Already has param info!");
5251 
5252   // Zero params -> null pointer.
5253   if (!NewParamInfo.empty()) {
5254     NumParams = NewParamInfo.size();
5255     ParamInfo = new (getASTContext()) ParmVarDecl*[NewParamInfo.size()];
5256     std::copy(NewParamInfo.begin(), NewParamInfo.end(), ParamInfo);
5257   }
5258 }
5259 
5260 void BlockDecl::setCaptures(ASTContext &Context, ArrayRef<Capture> Captures,
5261                             bool CapturesCXXThis) {
5262   this->setCapturesCXXThis(CapturesCXXThis);
5263   this->NumCaptures = Captures.size();
5264 
5265   if (Captures.empty()) {
5266     this->Captures = nullptr;
5267     return;
5268   }
5269 
5270   this->Captures = Captures.copy(Context).data();
5271 }
5272 
5273 bool BlockDecl::capturesVariable(const VarDecl *variable) const {
5274   for (const auto &I : captures())
5275     // Only auto vars can be captured, so no redeclaration worries.
5276     if (I.getVariable() == variable)
5277       return true;
5278 
5279   return false;
5280 }
5281 
5282 SourceRange BlockDecl::getSourceRange() const {
5283   return SourceRange(getLocation(), Body ? Body->getEndLoc() : getLocation());
5284 }
5285 
5286 //===----------------------------------------------------------------------===//
5287 // Other Decl Allocation/Deallocation Method Implementations
5288 //===----------------------------------------------------------------------===//
5289 
5290 void TranslationUnitDecl::anchor() {}
5291 
5292 TranslationUnitDecl *TranslationUnitDecl::Create(ASTContext &C) {
5293   return new (C, (DeclContext *)nullptr) TranslationUnitDecl(C);
5294 }
5295 
5296 void TranslationUnitDecl::setAnonymousNamespace(NamespaceDecl *D) {
5297   AnonymousNamespace = D;
5298 
5299   if (ASTMutationListener *Listener = Ctx.getASTMutationListener())
5300     Listener->AddedAnonymousNamespace(this, D);
5301 }
5302 
5303 void PragmaCommentDecl::anchor() {}
5304 
5305 PragmaCommentDecl *PragmaCommentDecl::Create(const ASTContext &C,
5306                                              TranslationUnitDecl *DC,
5307                                              SourceLocation CommentLoc,
5308                                              PragmaMSCommentKind CommentKind,
5309                                              StringRef Arg) {
5310   PragmaCommentDecl *PCD =
5311       new (C, DC, additionalSizeToAlloc<char>(Arg.size() + 1))
5312           PragmaCommentDecl(DC, CommentLoc, CommentKind);
5313   memcpy(PCD->getTrailingObjects<char>(), Arg.data(), Arg.size());
5314   PCD->getTrailingObjects<char>()[Arg.size()] = '\0';
5315   return PCD;
5316 }
5317 
5318 PragmaCommentDecl *PragmaCommentDecl::CreateDeserialized(ASTContext &C,
5319                                                          GlobalDeclID ID,
5320                                                          unsigned ArgSize) {
5321   return new (C, ID, additionalSizeToAlloc<char>(ArgSize + 1))
5322       PragmaCommentDecl(nullptr, SourceLocation(), PCK_Unknown);
5323 }
5324 
5325 void PragmaDetectMismatchDecl::anchor() {}
5326 
5327 PragmaDetectMismatchDecl *
5328 PragmaDetectMismatchDecl::Create(const ASTContext &C, TranslationUnitDecl *DC,
5329                                  SourceLocation Loc, StringRef Name,
5330                                  StringRef Value) {
5331   size_t ValueStart = Name.size() + 1;
5332   PragmaDetectMismatchDecl *PDMD =
5333       new (C, DC, additionalSizeToAlloc<char>(ValueStart + Value.size() + 1))
5334           PragmaDetectMismatchDecl(DC, Loc, ValueStart);
5335   memcpy(PDMD->getTrailingObjects<char>(), Name.data(), Name.size());
5336   PDMD->getTrailingObjects<char>()[Name.size()] = '\0';
5337   memcpy(PDMD->getTrailingObjects<char>() + ValueStart, Value.data(),
5338          Value.size());
5339   PDMD->getTrailingObjects<char>()[ValueStart + Value.size()] = '\0';
5340   return PDMD;
5341 }
5342 
5343 PragmaDetectMismatchDecl *
5344 PragmaDetectMismatchDecl::CreateDeserialized(ASTContext &C, GlobalDeclID ID,
5345                                              unsigned NameValueSize) {
5346   return new (C, ID, additionalSizeToAlloc<char>(NameValueSize + 1))
5347       PragmaDetectMismatchDecl(nullptr, SourceLocation(), 0);
5348 }
5349 
5350 void ExternCContextDecl::anchor() {}
5351 
5352 ExternCContextDecl *ExternCContextDecl::Create(const ASTContext &C,
5353                                                TranslationUnitDecl *DC) {
5354   return new (C, DC) ExternCContextDecl(DC);
5355 }
5356 
5357 void LabelDecl::anchor() {}
5358 
5359 LabelDecl *LabelDecl::Create(ASTContext &C, DeclContext *DC,
5360                              SourceLocation IdentL, IdentifierInfo *II) {
5361   return new (C, DC) LabelDecl(DC, IdentL, II, nullptr, IdentL);
5362 }
5363 
5364 LabelDecl *LabelDecl::Create(ASTContext &C, DeclContext *DC,
5365                              SourceLocation IdentL, IdentifierInfo *II,
5366                              SourceLocation GnuLabelL) {
5367   assert(GnuLabelL != IdentL && "Use this only for GNU local labels");
5368   return new (C, DC) LabelDecl(DC, IdentL, II, nullptr, GnuLabelL);
5369 }
5370 
5371 LabelDecl *LabelDecl::CreateDeserialized(ASTContext &C, GlobalDeclID ID) {
5372   return new (C, ID) LabelDecl(nullptr, SourceLocation(), nullptr, nullptr,
5373                                SourceLocation());
5374 }
5375 
5376 void LabelDecl::setMSAsmLabel(StringRef Name) {
5377 char *Buffer = new (getASTContext(), 1) char[Name.size() + 1];
5378   memcpy(Buffer, Name.data(), Name.size());
5379   Buffer[Name.size()] = '\0';
5380   MSAsmName = Buffer;
5381 }
5382 
5383 void ValueDecl::anchor() {}
5384 
5385 bool ValueDecl::isWeak() const {
5386   auto *MostRecent = getMostRecentDecl();
5387   return MostRecent->hasAttr<WeakAttr>() ||
5388          MostRecent->hasAttr<WeakRefAttr>() || isWeakImported();
5389 }
5390 
5391 bool ValueDecl::isInitCapture() const {
5392   if (auto *Var = llvm::dyn_cast<VarDecl>(this))
5393     return Var->isInitCapture();
5394   return false;
5395 }
5396 
5397 void ImplicitParamDecl::anchor() {}
5398 
5399 ImplicitParamDecl *ImplicitParamDecl::Create(ASTContext &C, DeclContext *DC,
5400                                              SourceLocation IdLoc,
5401                                              IdentifierInfo *Id, QualType Type,
5402                                              ImplicitParamKind ParamKind) {
5403   return new (C, DC) ImplicitParamDecl(C, DC, IdLoc, Id, Type, ParamKind);
5404 }
5405 
5406 ImplicitParamDecl *ImplicitParamDecl::Create(ASTContext &C, QualType Type,
5407                                              ImplicitParamKind ParamKind) {
5408   return new (C, nullptr) ImplicitParamDecl(C, Type, ParamKind);
5409 }
5410 
5411 ImplicitParamDecl *ImplicitParamDecl::CreateDeserialized(ASTContext &C,
5412                                                          GlobalDeclID ID) {
5413   return new (C, ID) ImplicitParamDecl(C, QualType(), ImplicitParamKind::Other);
5414 }
5415 
5416 FunctionDecl *
5417 FunctionDecl::Create(ASTContext &C, DeclContext *DC, SourceLocation StartLoc,
5418                      const DeclarationNameInfo &NameInfo, QualType T,
5419                      TypeSourceInfo *TInfo, StorageClass SC, bool UsesFPIntrin,
5420                      bool isInlineSpecified, bool hasWrittenPrototype,
5421                      ConstexprSpecKind ConstexprKind,
5422                      Expr *TrailingRequiresClause) {
5423   FunctionDecl *New = new (C, DC) FunctionDecl(
5424       Function, C, DC, StartLoc, NameInfo, T, TInfo, SC, UsesFPIntrin,
5425       isInlineSpecified, ConstexprKind, TrailingRequiresClause);
5426   New->setHasWrittenPrototype(hasWrittenPrototype);
5427   return New;
5428 }
5429 
5430 FunctionDecl *FunctionDecl::CreateDeserialized(ASTContext &C, GlobalDeclID ID) {
5431   return new (C, ID) FunctionDecl(
5432       Function, C, nullptr, SourceLocation(), DeclarationNameInfo(), QualType(),
5433       nullptr, SC_None, false, false, ConstexprSpecKind::Unspecified, nullptr);
5434 }
5435 
5436 BlockDecl *BlockDecl::Create(ASTContext &C, DeclContext *DC, SourceLocation L) {
5437   return new (C, DC) BlockDecl(DC, L);
5438 }
5439 
5440 BlockDecl *BlockDecl::CreateDeserialized(ASTContext &C, GlobalDeclID ID) {
5441   return new (C, ID) BlockDecl(nullptr, SourceLocation());
5442 }
5443 
5444 CapturedDecl::CapturedDecl(DeclContext *DC, unsigned NumParams)
5445     : Decl(Captured, DC, SourceLocation()), DeclContext(Captured),
5446       NumParams(NumParams), ContextParam(0), BodyAndNothrow(nullptr, false) {}
5447 
5448 CapturedDecl *CapturedDecl::Create(ASTContext &C, DeclContext *DC,
5449                                    unsigned NumParams) {
5450   return new (C, DC, additionalSizeToAlloc<ImplicitParamDecl *>(NumParams))
5451       CapturedDecl(DC, NumParams);
5452 }
5453 
5454 CapturedDecl *CapturedDecl::CreateDeserialized(ASTContext &C, GlobalDeclID ID,
5455                                                unsigned NumParams) {
5456   return new (C, ID, additionalSizeToAlloc<ImplicitParamDecl *>(NumParams))
5457       CapturedDecl(nullptr, NumParams);
5458 }
5459 
5460 Stmt *CapturedDecl::getBody() const { return BodyAndNothrow.getPointer(); }
5461 void CapturedDecl::setBody(Stmt *B) { BodyAndNothrow.setPointer(B); }
5462 
5463 bool CapturedDecl::isNothrow() const { return BodyAndNothrow.getInt(); }
5464 void CapturedDecl::setNothrow(bool Nothrow) { BodyAndNothrow.setInt(Nothrow); }
5465 
5466 EnumConstantDecl::EnumConstantDecl(const ASTContext &C, DeclContext *DC,
5467                                    SourceLocation L, IdentifierInfo *Id,
5468                                    QualType T, Expr *E, const llvm::APSInt &V)
5469     : ValueDecl(EnumConstant, DC, L, Id, T), Init((Stmt *)E) {
5470   setInitVal(C, V);
5471 }
5472 
5473 EnumConstantDecl *EnumConstantDecl::Create(ASTContext &C, EnumDecl *CD,
5474                                            SourceLocation L,
5475                                            IdentifierInfo *Id, QualType T,
5476                                            Expr *E, const llvm::APSInt &V) {
5477   return new (C, CD) EnumConstantDecl(C, CD, L, Id, T, E, V);
5478 }
5479 
5480 EnumConstantDecl *EnumConstantDecl::CreateDeserialized(ASTContext &C,
5481                                                        GlobalDeclID ID) {
5482   return new (C, ID) EnumConstantDecl(C, nullptr, SourceLocation(), nullptr,
5483                                       QualType(), nullptr, llvm::APSInt());
5484 }
5485 
5486 void IndirectFieldDecl::anchor() {}
5487 
5488 IndirectFieldDecl::IndirectFieldDecl(ASTContext &C, DeclContext *DC,
5489                                      SourceLocation L, DeclarationName N,
5490                                      QualType T,
5491                                      MutableArrayRef<NamedDecl *> CH)
5492     : ValueDecl(IndirectField, DC, L, N, T), Chaining(CH.data()),
5493       ChainingSize(CH.size()) {
5494   // In C++, indirect field declarations conflict with tag declarations in the
5495   // same scope, so add them to IDNS_Tag so that tag redeclaration finds them.
5496   if (C.getLangOpts().CPlusPlus)
5497     IdentifierNamespace |= IDNS_Tag;
5498 }
5499 
5500 IndirectFieldDecl *
5501 IndirectFieldDecl::Create(ASTContext &C, DeclContext *DC, SourceLocation L,
5502                           const IdentifierInfo *Id, QualType T,
5503                           llvm::MutableArrayRef<NamedDecl *> CH) {
5504   return new (C, DC) IndirectFieldDecl(C, DC, L, Id, T, CH);
5505 }
5506 
5507 IndirectFieldDecl *IndirectFieldDecl::CreateDeserialized(ASTContext &C,
5508                                                          GlobalDeclID ID) {
5509   return new (C, ID) IndirectFieldDecl(C, nullptr, SourceLocation(),
5510                                        DeclarationName(), QualType(), {});
5511 }
5512 
5513 SourceRange EnumConstantDecl::getSourceRange() const {
5514   SourceLocation End = getLocation();
5515   if (Init)
5516     End = Init->getEndLoc();
5517   return SourceRange(getLocation(), End);
5518 }
5519 
5520 void TypeDecl::anchor() {}
5521 
5522 TypedefDecl *TypedefDecl::Create(ASTContext &C, DeclContext *DC,
5523                                  SourceLocation StartLoc, SourceLocation IdLoc,
5524                                  const IdentifierInfo *Id,
5525                                  TypeSourceInfo *TInfo) {
5526   return new (C, DC) TypedefDecl(C, DC, StartLoc, IdLoc, Id, TInfo);
5527 }
5528 
5529 void TypedefNameDecl::anchor() {}
5530 
5531 TagDecl *TypedefNameDecl::getAnonDeclWithTypedefName(bool AnyRedecl) const {
5532   if (auto *TT = getTypeSourceInfo()->getType()->getAs<TagType>()) {
5533     auto *OwningTypedef = TT->getDecl()->getTypedefNameForAnonDecl();
5534     auto *ThisTypedef = this;
5535     if (AnyRedecl && OwningTypedef) {
5536       OwningTypedef = OwningTypedef->getCanonicalDecl();
5537       ThisTypedef = ThisTypedef->getCanonicalDecl();
5538     }
5539     if (OwningTypedef == ThisTypedef)
5540       return TT->getDecl();
5541   }
5542 
5543   return nullptr;
5544 }
5545 
5546 bool TypedefNameDecl::isTransparentTagSlow() const {
5547   auto determineIsTransparent = [&]() {
5548     if (auto *TT = getUnderlyingType()->getAs<TagType>()) {
5549       if (auto *TD = TT->getDecl()) {
5550         if (TD->getName() != getName())
5551           return false;
5552         SourceLocation TTLoc = getLocation();
5553         SourceLocation TDLoc = TD->getLocation();
5554         if (!TTLoc.isMacroID() || !TDLoc.isMacroID())
5555           return false;
5556         SourceManager &SM = getASTContext().getSourceManager();
5557         return SM.getSpellingLoc(TTLoc) == SM.getSpellingLoc(TDLoc);
5558       }
5559     }
5560     return false;
5561   };
5562 
5563   bool isTransparent = determineIsTransparent();
5564   MaybeModedTInfo.setInt((isTransparent << 1) | 1);
5565   return isTransparent;
5566 }
5567 
5568 TypedefDecl *TypedefDecl::CreateDeserialized(ASTContext &C, GlobalDeclID ID) {
5569   return new (C, ID) TypedefDecl(C, nullptr, SourceLocation(), SourceLocation(),
5570                                  nullptr, nullptr);
5571 }
5572 
5573 TypeAliasDecl *TypeAliasDecl::Create(ASTContext &C, DeclContext *DC,
5574                                      SourceLocation StartLoc,
5575                                      SourceLocation IdLoc,
5576                                      const IdentifierInfo *Id,
5577                                      TypeSourceInfo *TInfo) {
5578   return new (C, DC) TypeAliasDecl(C, DC, StartLoc, IdLoc, Id, TInfo);
5579 }
5580 
5581 TypeAliasDecl *TypeAliasDecl::CreateDeserialized(ASTContext &C,
5582                                                  GlobalDeclID ID) {
5583   return new (C, ID) TypeAliasDecl(C, nullptr, SourceLocation(),
5584                                    SourceLocation(), nullptr, nullptr);
5585 }
5586 
5587 SourceRange TypedefDecl::getSourceRange() const {
5588   SourceLocation RangeEnd = getLocation();
5589   if (TypeSourceInfo *TInfo = getTypeSourceInfo()) {
5590     if (typeIsPostfix(TInfo->getType()))
5591       RangeEnd = TInfo->getTypeLoc().getSourceRange().getEnd();
5592   }
5593   return SourceRange(getBeginLoc(), RangeEnd);
5594 }
5595 
5596 SourceRange TypeAliasDecl::getSourceRange() const {
5597   SourceLocation RangeEnd = getBeginLoc();
5598   if (TypeSourceInfo *TInfo = getTypeSourceInfo())
5599     RangeEnd = TInfo->getTypeLoc().getSourceRange().getEnd();
5600   return SourceRange(getBeginLoc(), RangeEnd);
5601 }
5602 
5603 void FileScopeAsmDecl::anchor() {}
5604 
5605 FileScopeAsmDecl *FileScopeAsmDecl::Create(ASTContext &C, DeclContext *DC,
5606                                            StringLiteral *Str,
5607                                            SourceLocation AsmLoc,
5608                                            SourceLocation RParenLoc) {
5609   return new (C, DC) FileScopeAsmDecl(DC, Str, AsmLoc, RParenLoc);
5610 }
5611 
5612 FileScopeAsmDecl *FileScopeAsmDecl::CreateDeserialized(ASTContext &C,
5613                                                        GlobalDeclID ID) {
5614   return new (C, ID) FileScopeAsmDecl(nullptr, nullptr, SourceLocation(),
5615                                       SourceLocation());
5616 }
5617 
5618 void TopLevelStmtDecl::anchor() {}
5619 
5620 TopLevelStmtDecl *TopLevelStmtDecl::Create(ASTContext &C, Stmt *Statement) {
5621   assert(C.getLangOpts().IncrementalExtensions &&
5622          "Must be used only in incremental mode");
5623 
5624   SourceLocation Loc = Statement ? Statement->getBeginLoc() : SourceLocation();
5625   DeclContext *DC = C.getTranslationUnitDecl();
5626 
5627   return new (C, DC) TopLevelStmtDecl(DC, Loc, Statement);
5628 }
5629 
5630 TopLevelStmtDecl *TopLevelStmtDecl::CreateDeserialized(ASTContext &C,
5631                                                        GlobalDeclID ID) {
5632   return new (C, ID)
5633       TopLevelStmtDecl(/*DC=*/nullptr, SourceLocation(), /*S=*/nullptr);
5634 }
5635 
5636 SourceRange TopLevelStmtDecl::getSourceRange() const {
5637   return SourceRange(getLocation(), Statement->getEndLoc());
5638 }
5639 
5640 void TopLevelStmtDecl::setStmt(Stmt *S) {
5641   assert(S);
5642   Statement = S;
5643   setLocation(Statement->getBeginLoc());
5644 }
5645 
5646 void EmptyDecl::anchor() {}
5647 
5648 EmptyDecl *EmptyDecl::Create(ASTContext &C, DeclContext *DC, SourceLocation L) {
5649   return new (C, DC) EmptyDecl(DC, L);
5650 }
5651 
5652 EmptyDecl *EmptyDecl::CreateDeserialized(ASTContext &C, GlobalDeclID ID) {
5653   return new (C, ID) EmptyDecl(nullptr, SourceLocation());
5654 }
5655 
5656 HLSLBufferDecl::HLSLBufferDecl(DeclContext *DC, bool CBuffer,
5657                                SourceLocation KwLoc, IdentifierInfo *ID,
5658                                SourceLocation IDLoc, SourceLocation LBrace)
5659     : NamedDecl(Decl::Kind::HLSLBuffer, DC, IDLoc, DeclarationName(ID)),
5660       DeclContext(Decl::Kind::HLSLBuffer), LBraceLoc(LBrace), KwLoc(KwLoc),
5661       IsCBuffer(CBuffer) {}
5662 
5663 HLSLBufferDecl *HLSLBufferDecl::Create(ASTContext &C,
5664                                        DeclContext *LexicalParent, bool CBuffer,
5665                                        SourceLocation KwLoc, IdentifierInfo *ID,
5666                                        SourceLocation IDLoc,
5667                                        SourceLocation LBrace) {
5668   // For hlsl like this
5669   // cbuffer A {
5670   //     cbuffer B {
5671   //     }
5672   // }
5673   // compiler should treat it as
5674   // cbuffer A {
5675   // }
5676   // cbuffer B {
5677   // }
5678   // FIXME: support nested buffers if required for back-compat.
5679   DeclContext *DC = LexicalParent;
5680   HLSLBufferDecl *Result =
5681       new (C, DC) HLSLBufferDecl(DC, CBuffer, KwLoc, ID, IDLoc, LBrace);
5682   return Result;
5683 }
5684 
5685 HLSLBufferDecl *HLSLBufferDecl::CreateDeserialized(ASTContext &C,
5686                                                    GlobalDeclID ID) {
5687   return new (C, ID) HLSLBufferDecl(nullptr, false, SourceLocation(), nullptr,
5688                                     SourceLocation(), SourceLocation());
5689 }
5690 
5691 //===----------------------------------------------------------------------===//
5692 // ImportDecl Implementation
5693 //===----------------------------------------------------------------------===//
5694 
5695 /// Retrieve the number of module identifiers needed to name the given
5696 /// module.
5697 static unsigned getNumModuleIdentifiers(Module *Mod) {
5698   unsigned Result = 1;
5699   while (Mod->Parent) {
5700     Mod = Mod->Parent;
5701     ++Result;
5702   }
5703   return Result;
5704 }
5705 
5706 ImportDecl::ImportDecl(DeclContext *DC, SourceLocation StartLoc,
5707                        Module *Imported,
5708                        ArrayRef<SourceLocation> IdentifierLocs)
5709     : Decl(Import, DC, StartLoc), ImportedModule(Imported),
5710       NextLocalImportAndComplete(nullptr, true) {
5711   assert(getNumModuleIdentifiers(Imported) == IdentifierLocs.size());
5712   auto *StoredLocs = getTrailingObjects<SourceLocation>();
5713   std::uninitialized_copy(IdentifierLocs.begin(), IdentifierLocs.end(),
5714                           StoredLocs);
5715 }
5716 
5717 ImportDecl::ImportDecl(DeclContext *DC, SourceLocation StartLoc,
5718                        Module *Imported, SourceLocation EndLoc)
5719     : Decl(Import, DC, StartLoc), ImportedModule(Imported),
5720       NextLocalImportAndComplete(nullptr, false) {
5721   *getTrailingObjects<SourceLocation>() = EndLoc;
5722 }
5723 
5724 ImportDecl *ImportDecl::Create(ASTContext &C, DeclContext *DC,
5725                                SourceLocation StartLoc, Module *Imported,
5726                                ArrayRef<SourceLocation> IdentifierLocs) {
5727   return new (C, DC,
5728               additionalSizeToAlloc<SourceLocation>(IdentifierLocs.size()))
5729       ImportDecl(DC, StartLoc, Imported, IdentifierLocs);
5730 }
5731 
5732 ImportDecl *ImportDecl::CreateImplicit(ASTContext &C, DeclContext *DC,
5733                                        SourceLocation StartLoc,
5734                                        Module *Imported,
5735                                        SourceLocation EndLoc) {
5736   ImportDecl *Import = new (C, DC, additionalSizeToAlloc<SourceLocation>(1))
5737       ImportDecl(DC, StartLoc, Imported, EndLoc);
5738   Import->setImplicit();
5739   return Import;
5740 }
5741 
5742 ImportDecl *ImportDecl::CreateDeserialized(ASTContext &C, GlobalDeclID ID,
5743                                            unsigned NumLocations) {
5744   return new (C, ID, additionalSizeToAlloc<SourceLocation>(NumLocations))
5745       ImportDecl(EmptyShell());
5746 }
5747 
5748 ArrayRef<SourceLocation> ImportDecl::getIdentifierLocs() const {
5749   if (!isImportComplete())
5750     return {};
5751 
5752   const auto *StoredLocs = getTrailingObjects<SourceLocation>();
5753   return llvm::ArrayRef(StoredLocs,
5754                         getNumModuleIdentifiers(getImportedModule()));
5755 }
5756 
5757 SourceRange ImportDecl::getSourceRange() const {
5758   if (!isImportComplete())
5759     return SourceRange(getLocation(), *getTrailingObjects<SourceLocation>());
5760 
5761   return SourceRange(getLocation(), getIdentifierLocs().back());
5762 }
5763 
5764 //===----------------------------------------------------------------------===//
5765 // ExportDecl Implementation
5766 //===----------------------------------------------------------------------===//
5767 
5768 void ExportDecl::anchor() {}
5769 
5770 ExportDecl *ExportDecl::Create(ASTContext &C, DeclContext *DC,
5771                                SourceLocation ExportLoc) {
5772   return new (C, DC) ExportDecl(DC, ExportLoc);
5773 }
5774 
5775 ExportDecl *ExportDecl::CreateDeserialized(ASTContext &C, GlobalDeclID ID) {
5776   return new (C, ID) ExportDecl(nullptr, SourceLocation());
5777 }
5778 
5779 bool clang::IsArmStreamingFunction(const FunctionDecl *FD,
5780                                    bool IncludeLocallyStreaming) {
5781   if (IncludeLocallyStreaming)
5782     if (FD->hasAttr<ArmLocallyStreamingAttr>())
5783       return true;
5784 
5785   if (const Type *Ty = FD->getType().getTypePtrOrNull())
5786     if (const auto *FPT = Ty->getAs<FunctionProtoType>())
5787       if (FPT->getAArch64SMEAttributes() &
5788           FunctionType::SME_PStateSMEnabledMask)
5789         return true;
5790 
5791   return false;
5792 }
5793