xref: /llvm-project/clang/lib/AST/ByteCode/Program.cpp (revision bd8d432d7bd0891132ae69daa70e18ba387df43f)
1 //===--- Program.cpp - Bytecode for the constexpr VM ------------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #include "Program.h"
10 #include "Context.h"
11 #include "Function.h"
12 #include "Integral.h"
13 #include "Opcode.h"
14 #include "PrimType.h"
15 #include "clang/AST/Decl.h"
16 #include "clang/AST/DeclCXX.h"
17 
18 using namespace clang;
19 using namespace clang::interp;
20 
21 unsigned Program::getOrCreateNativePointer(const void *Ptr) {
22   auto It = NativePointerIndices.find(Ptr);
23   if (It != NativePointerIndices.end())
24     return It->second;
25 
26   unsigned Idx = NativePointers.size();
27   NativePointers.push_back(Ptr);
28   NativePointerIndices[Ptr] = Idx;
29   return Idx;
30 }
31 
32 const void *Program::getNativePointer(unsigned Idx) {
33   return NativePointers[Idx];
34 }
35 
36 unsigned Program::createGlobalString(const StringLiteral *S) {
37   const size_t CharWidth = S->getCharByteWidth();
38   const size_t BitWidth = CharWidth * Ctx.getCharBit();
39 
40   PrimType CharType;
41   switch (CharWidth) {
42   case 1:
43     CharType = PT_Sint8;
44     break;
45   case 2:
46     CharType = PT_Uint16;
47     break;
48   case 4:
49     CharType = PT_Uint32;
50     break;
51   default:
52     llvm_unreachable("unsupported character width");
53   }
54 
55   // Create a descriptor for the string.
56   Descriptor *Desc =
57       allocateDescriptor(S, CharType, Descriptor::GlobalMD, S->getLength() + 1,
58                          /*isConst=*/true,
59                          /*isTemporary=*/false,
60                          /*isMutable=*/false);
61 
62   // Allocate storage for the string.
63   // The byte length does not include the null terminator.
64   unsigned I = Globals.size();
65   unsigned Sz = Desc->getAllocSize();
66   auto *G = new (Allocator, Sz) Global(Ctx.getEvalID(), Desc, /*isStatic=*/true,
67                                        /*isExtern=*/false);
68   G->block()->invokeCtor();
69 
70   new (G->block()->rawData()) InlineDescriptor(Desc);
71   Globals.push_back(G);
72 
73   // Construct the string in storage.
74   const Pointer Ptr(G->block());
75   for (unsigned I = 0, N = S->getLength(); I <= N; ++I) {
76     Pointer Field = Ptr.atIndex(I).narrow();
77     const uint32_t CodePoint = I == N ? 0 : S->getCodeUnit(I);
78     switch (CharType) {
79     case PT_Sint8: {
80       using T = PrimConv<PT_Sint8>::T;
81       Field.deref<T>() = T::from(CodePoint, BitWidth);
82       Field.initialize();
83       break;
84     }
85     case PT_Uint16: {
86       using T = PrimConv<PT_Uint16>::T;
87       Field.deref<T>() = T::from(CodePoint, BitWidth);
88       Field.initialize();
89       break;
90     }
91     case PT_Uint32: {
92       using T = PrimConv<PT_Uint32>::T;
93       Field.deref<T>() = T::from(CodePoint, BitWidth);
94       Field.initialize();
95       break;
96     }
97     default:
98       llvm_unreachable("unsupported character type");
99     }
100   }
101   return I;
102 }
103 
104 Pointer Program::getPtrGlobal(unsigned Idx) const {
105   assert(Idx < Globals.size());
106   return Pointer(Globals[Idx]->block());
107 }
108 
109 std::optional<unsigned> Program::getGlobal(const ValueDecl *VD) {
110   if (auto It = GlobalIndices.find(VD); It != GlobalIndices.end())
111     return It->second;
112 
113   // Find any previous declarations which were already evaluated.
114   std::optional<unsigned> Index;
115   for (const Decl *P = VD->getPreviousDecl(); P; P = P->getPreviousDecl()) {
116     if (auto It = GlobalIndices.find(P); It != GlobalIndices.end()) {
117       Index = It->second;
118       break;
119     }
120   }
121 
122   // Map the decl to the existing index.
123   if (Index)
124     GlobalIndices[VD] = *Index;
125 
126   return std::nullopt;
127 }
128 
129 std::optional<unsigned> Program::getGlobal(const Expr *E) {
130   if (auto It = GlobalIndices.find(E); It != GlobalIndices.end())
131     return It->second;
132   return std::nullopt;
133 }
134 
135 std::optional<unsigned> Program::getOrCreateGlobal(const ValueDecl *VD,
136                                                    const Expr *Init) {
137   if (auto Idx = getGlobal(VD))
138     return Idx;
139 
140   if (auto Idx = createGlobal(VD, Init)) {
141     GlobalIndices[VD] = *Idx;
142     return Idx;
143   }
144   return std::nullopt;
145 }
146 
147 std::optional<unsigned> Program::getOrCreateDummy(const DeclTy &D) {
148   assert(D);
149   // Dedup blocks since they are immutable and pointers cannot be compared.
150   if (auto It = DummyVariables.find(D.getOpaqueValue());
151       It != DummyVariables.end())
152     return It->second;
153 
154   QualType QT;
155   if (const auto *E = D.dyn_cast<const Expr *>()) {
156     QT = E->getType();
157   } else {
158     const ValueDecl *VD = cast<ValueDecl>(D.get<const Decl *>());
159     QT = VD->getType();
160     if (const auto *RT = QT->getAs<ReferenceType>())
161       QT = RT->getPointeeType();
162   }
163   assert(!QT.isNull());
164 
165   Descriptor *Desc;
166   if (std::optional<PrimType> T = Ctx.classify(QT))
167     Desc = createDescriptor(D, *T, std::nullopt, /*IsTemporary=*/true,
168                             /*IsMutable=*/false);
169   else
170     Desc = createDescriptor(D, QT.getTypePtr(), std::nullopt,
171                             /*IsTemporary=*/true, /*IsMutable=*/false);
172   if (!Desc)
173     Desc = allocateDescriptor(D);
174 
175   assert(Desc);
176   Desc->makeDummy();
177 
178   assert(Desc->isDummy());
179 
180   // Allocate a block for storage.
181   unsigned I = Globals.size();
182 
183   auto *G = new (Allocator, Desc->getAllocSize())
184       Global(Ctx.getEvalID(), getCurrentDecl(), Desc, /*IsStatic=*/true,
185              /*IsExtern=*/false);
186   G->block()->invokeCtor();
187 
188   Globals.push_back(G);
189   DummyVariables[D.getOpaqueValue()] = I;
190   return I;
191 }
192 
193 std::optional<unsigned> Program::createGlobal(const ValueDecl *VD,
194                                               const Expr *Init) {
195   bool IsStatic, IsExtern;
196   if (const auto *Var = dyn_cast<VarDecl>(VD)) {
197     IsStatic = Context::shouldBeGloballyIndexed(VD);
198     IsExtern = Var->hasExternalStorage();
199   } else if (isa<UnnamedGlobalConstantDecl, MSGuidDecl,
200                  TemplateParamObjectDecl>(VD)) {
201     IsStatic = true;
202     IsExtern = false;
203   } else {
204     IsStatic = false;
205     IsExtern = true;
206   }
207   if (auto Idx = createGlobal(VD, VD->getType(), IsStatic, IsExtern, Init)) {
208     for (const Decl *P = VD; P; P = P->getPreviousDecl())
209       GlobalIndices[P] = *Idx;
210     return *Idx;
211   }
212   return std::nullopt;
213 }
214 
215 std::optional<unsigned> Program::createGlobal(const Expr *E) {
216   if (auto Idx = getGlobal(E))
217     return Idx;
218   if (auto Idx = createGlobal(E, E->getType(), /*isStatic=*/true,
219                               /*isExtern=*/false)) {
220     GlobalIndices[E] = *Idx;
221     return *Idx;
222   }
223   return std::nullopt;
224 }
225 
226 std::optional<unsigned> Program::createGlobal(const DeclTy &D, QualType Ty,
227                                               bool IsStatic, bool IsExtern,
228                                               const Expr *Init) {
229   // Create a descriptor for the global.
230   Descriptor *Desc;
231   const bool IsConst = Ty.isConstQualified();
232   const bool IsTemporary = D.dyn_cast<const Expr *>();
233   if (std::optional<PrimType> T = Ctx.classify(Ty))
234     Desc = createDescriptor(D, *T, Descriptor::GlobalMD, IsConst, IsTemporary);
235   else
236     Desc = createDescriptor(D, Ty.getTypePtr(), Descriptor::GlobalMD, IsConst,
237                             IsTemporary);
238 
239   if (!Desc)
240     return std::nullopt;
241 
242   // Allocate a block for storage.
243   unsigned I = Globals.size();
244 
245   auto *G = new (Allocator, Desc->getAllocSize())
246       Global(Ctx.getEvalID(), getCurrentDecl(), Desc, IsStatic, IsExtern);
247   G->block()->invokeCtor();
248 
249   // Initialize InlineDescriptor fields.
250   auto *GD = new (G->block()->rawData()) GlobalInlineDescriptor();
251   if (!Init)
252     GD->InitState = GlobalInitState::NoInitializer;
253   Globals.push_back(G);
254 
255   return I;
256 }
257 
258 Function *Program::getFunction(const FunctionDecl *F) {
259   F = F->getCanonicalDecl();
260   assert(F);
261   auto It = Funcs.find(F);
262   return It == Funcs.end() ? nullptr : It->second.get();
263 }
264 
265 Record *Program::getOrCreateRecord(const RecordDecl *RD) {
266   // Use the actual definition as a key.
267   RD = RD->getDefinition();
268   if (!RD)
269     return nullptr;
270 
271   if (!RD->isCompleteDefinition())
272     return nullptr;
273 
274   // Deduplicate records.
275   if (auto It = Records.find(RD); It != Records.end())
276     return It->second;
277 
278   // We insert nullptr now and replace that later, so recursive calls
279   // to this function with the same RecordDecl don't run into
280   // infinite recursion.
281   Records.insert({RD, nullptr});
282 
283   // Number of bytes required by fields and base classes.
284   unsigned BaseSize = 0;
285   // Number of bytes required by virtual base.
286   unsigned VirtSize = 0;
287 
288   // Helper to get a base descriptor.
289   auto GetBaseDesc = [this](const RecordDecl *BD,
290                             const Record *BR) -> const Descriptor * {
291     if (!BR)
292       return nullptr;
293     return allocateDescriptor(BD, BR, std::nullopt, /*isConst=*/false,
294                               /*isTemporary=*/false,
295                               /*isMutable=*/false);
296   };
297 
298   // Reserve space for base classes.
299   Record::BaseList Bases;
300   Record::VirtualBaseList VirtBases;
301   if (const auto *CD = dyn_cast<CXXRecordDecl>(RD)) {
302     for (const CXXBaseSpecifier &Spec : CD->bases()) {
303       if (Spec.isVirtual())
304         continue;
305 
306       // In error cases, the base might not be a RecordType.
307       const auto *RT = Spec.getType()->getAs<RecordType>();
308       if (!RT)
309         return nullptr;
310       const RecordDecl *BD = RT->getDecl();
311       const Record *BR = getOrCreateRecord(BD);
312 
313       const Descriptor *Desc = GetBaseDesc(BD, BR);
314       if (!Desc)
315         return nullptr;
316 
317       BaseSize += align(sizeof(InlineDescriptor));
318       Bases.push_back({BD, BaseSize, Desc, BR});
319       BaseSize += align(BR->getSize());
320     }
321 
322     for (const CXXBaseSpecifier &Spec : CD->vbases()) {
323       const auto *RT = Spec.getType()->getAs<RecordType>();
324       if (!RT)
325         return nullptr;
326 
327       const RecordDecl *BD = RT->getDecl();
328       const Record *BR = getOrCreateRecord(BD);
329 
330       const Descriptor *Desc = GetBaseDesc(BD, BR);
331       if (!Desc)
332         return nullptr;
333 
334       VirtSize += align(sizeof(InlineDescriptor));
335       VirtBases.push_back({BD, VirtSize, Desc, BR});
336       VirtSize += align(BR->getSize());
337     }
338   }
339 
340   // Reserve space for fields.
341   Record::FieldList Fields;
342   for (const FieldDecl *FD : RD->fields()) {
343     FD = FD->getFirstDecl();
344     // Note that we DO create fields and descriptors
345     // for unnamed bitfields here, even though we later ignore
346     // them everywhere. That's so the FieldDecl's getFieldIndex() matches.
347 
348     // Reserve space for the field's descriptor and the offset.
349     BaseSize += align(sizeof(InlineDescriptor));
350 
351     // Classify the field and add its metadata.
352     QualType FT = FD->getType();
353     const bool IsConst = FT.isConstQualified();
354     const bool IsMutable = FD->isMutable();
355     const Descriptor *Desc;
356     if (std::optional<PrimType> T = Ctx.classify(FT)) {
357       Desc = createDescriptor(FD, *T, std::nullopt, IsConst,
358                               /*isTemporary=*/false, IsMutable);
359     } else {
360       Desc = createDescriptor(FD, FT.getTypePtr(), std::nullopt, IsConst,
361                               /*isTemporary=*/false, IsMutable);
362     }
363     if (!Desc)
364       return nullptr;
365     Fields.push_back({FD, BaseSize, Desc});
366     BaseSize += align(Desc->getAllocSize());
367   }
368 
369   Record *R = new (Allocator) Record(RD, std::move(Bases), std::move(Fields),
370                                      std::move(VirtBases), VirtSize, BaseSize);
371   Records[RD] = R;
372   return R;
373 }
374 
375 Descriptor *Program::createDescriptor(const DeclTy &D, const Type *Ty,
376                                       Descriptor::MetadataSize MDSize,
377                                       bool IsConst, bool IsTemporary,
378                                       bool IsMutable, const Expr *Init) {
379 
380   // Classes and structures.
381   if (const auto *RT = Ty->getAs<RecordType>()) {
382     if (const auto *Record = getOrCreateRecord(RT->getDecl()))
383       return allocateDescriptor(D, Record, MDSize, IsConst, IsTemporary,
384                                 IsMutable);
385   }
386 
387   // Arrays.
388   if (const auto ArrayType = Ty->getAsArrayTypeUnsafe()) {
389     QualType ElemTy = ArrayType->getElementType();
390     // Array of well-known bounds.
391     if (auto CAT = dyn_cast<ConstantArrayType>(ArrayType)) {
392       size_t NumElems = CAT->getZExtSize();
393       if (std::optional<PrimType> T = Ctx.classify(ElemTy)) {
394         // Arrays of primitives.
395         unsigned ElemSize = primSize(*T);
396         if (std::numeric_limits<unsigned>::max() / ElemSize <= NumElems) {
397           return {};
398         }
399         return allocateDescriptor(D, *T, MDSize, NumElems, IsConst, IsTemporary,
400                                   IsMutable);
401       } else {
402         // Arrays of composites. In this case, the array is a list of pointers,
403         // followed by the actual elements.
404         const Descriptor *ElemDesc = createDescriptor(
405             D, ElemTy.getTypePtr(), std::nullopt, IsConst, IsTemporary);
406         if (!ElemDesc)
407           return nullptr;
408         unsigned ElemSize = ElemDesc->getAllocSize() + sizeof(InlineDescriptor);
409         if (std::numeric_limits<unsigned>::max() / ElemSize <= NumElems)
410           return {};
411         return allocateDescriptor(D, ElemDesc, MDSize, NumElems, IsConst,
412                                   IsTemporary, IsMutable);
413       }
414     }
415 
416     // Array of unknown bounds - cannot be accessed and pointer arithmetic
417     // is forbidden on pointers to such objects.
418     if (isa<IncompleteArrayType>(ArrayType) ||
419         isa<VariableArrayType>(ArrayType)) {
420       if (std::optional<PrimType> T = Ctx.classify(ElemTy)) {
421         return allocateDescriptor(D, *T, MDSize, IsTemporary,
422                                   Descriptor::UnknownSize{});
423       } else {
424         const Descriptor *Desc = createDescriptor(D, ElemTy.getTypePtr(),
425                                                   MDSize, IsConst, IsTemporary);
426         if (!Desc)
427           return nullptr;
428         return allocateDescriptor(D, Desc, MDSize, IsTemporary,
429                                   Descriptor::UnknownSize{});
430       }
431     }
432   }
433 
434   // Atomic types.
435   if (const auto *AT = Ty->getAs<AtomicType>()) {
436     const Type *InnerTy = AT->getValueType().getTypePtr();
437     return createDescriptor(D, InnerTy, MDSize, IsConst, IsTemporary,
438                             IsMutable);
439   }
440 
441   // Complex types - represented as arrays of elements.
442   if (const auto *CT = Ty->getAs<ComplexType>()) {
443     PrimType ElemTy = *Ctx.classify(CT->getElementType());
444     return allocateDescriptor(D, ElemTy, MDSize, 2, IsConst, IsTemporary,
445                               IsMutable);
446   }
447 
448   // Same with vector types.
449   if (const auto *VT = Ty->getAs<VectorType>()) {
450     PrimType ElemTy = *Ctx.classify(VT->getElementType());
451     return allocateDescriptor(D, ElemTy, MDSize, VT->getNumElements(), IsConst,
452                               IsTemporary, IsMutable);
453   }
454 
455   return nullptr;
456 }
457