1 //===--- Compiler.cpp - Code generator for expressions ---*- C++ -*-===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "Compiler.h" 10 #include "ByteCodeEmitter.h" 11 #include "Context.h" 12 #include "FixedPoint.h" 13 #include "Floating.h" 14 #include "Function.h" 15 #include "InterpShared.h" 16 #include "PrimType.h" 17 #include "Program.h" 18 #include "clang/AST/Attr.h" 19 20 using namespace clang; 21 using namespace clang::interp; 22 23 using APSInt = llvm::APSInt; 24 25 namespace clang { 26 namespace interp { 27 28 /// Scope used to handle temporaries in toplevel variable declarations. 29 template <class Emitter> class DeclScope final : public LocalScope<Emitter> { 30 public: 31 DeclScope(Compiler<Emitter> *Ctx, const ValueDecl *VD) 32 : LocalScope<Emitter>(Ctx, VD), Scope(Ctx->P, VD), 33 OldInitializingDecl(Ctx->InitializingDecl) { 34 Ctx->InitializingDecl = VD; 35 Ctx->InitStack.push_back(InitLink::Decl(VD)); 36 } 37 38 void addExtended(const Scope::Local &Local) override { 39 return this->addLocal(Local); 40 } 41 42 ~DeclScope() { 43 this->Ctx->InitializingDecl = OldInitializingDecl; 44 this->Ctx->InitStack.pop_back(); 45 } 46 47 private: 48 Program::DeclScope Scope; 49 const ValueDecl *OldInitializingDecl; 50 }; 51 52 /// Scope used to handle initialization methods. 53 template <class Emitter> class OptionScope final { 54 public: 55 /// Root constructor, compiling or discarding primitives. 56 OptionScope(Compiler<Emitter> *Ctx, bool NewDiscardResult, 57 bool NewInitializing) 58 : Ctx(Ctx), OldDiscardResult(Ctx->DiscardResult), 59 OldInitializing(Ctx->Initializing) { 60 Ctx->DiscardResult = NewDiscardResult; 61 Ctx->Initializing = NewInitializing; 62 } 63 64 ~OptionScope() { 65 Ctx->DiscardResult = OldDiscardResult; 66 Ctx->Initializing = OldInitializing; 67 } 68 69 private: 70 /// Parent context. 71 Compiler<Emitter> *Ctx; 72 /// Old discard flag to restore. 73 bool OldDiscardResult; 74 bool OldInitializing; 75 }; 76 77 template <class Emitter> 78 bool InitLink::emit(Compiler<Emitter> *Ctx, const Expr *E) const { 79 switch (Kind) { 80 case K_This: 81 return Ctx->emitThis(E); 82 case K_Field: 83 // We're assuming there's a base pointer on the stack already. 84 return Ctx->emitGetPtrFieldPop(Offset, E); 85 case K_Temp: 86 return Ctx->emitGetPtrLocal(Offset, E); 87 case K_Decl: 88 return Ctx->visitDeclRef(D, E); 89 case K_Elem: 90 if (!Ctx->emitConstUint32(Offset, E)) 91 return false; 92 return Ctx->emitArrayElemPtrPopUint32(E); 93 default: 94 llvm_unreachable("Unhandled InitLink kind"); 95 } 96 return true; 97 } 98 99 /// Scope managing label targets. 100 template <class Emitter> class LabelScope { 101 public: 102 virtual ~LabelScope() {} 103 104 protected: 105 LabelScope(Compiler<Emitter> *Ctx) : Ctx(Ctx) {} 106 /// Compiler instance. 107 Compiler<Emitter> *Ctx; 108 }; 109 110 /// Sets the context for break/continue statements. 111 template <class Emitter> class LoopScope final : public LabelScope<Emitter> { 112 public: 113 using LabelTy = typename Compiler<Emitter>::LabelTy; 114 using OptLabelTy = typename Compiler<Emitter>::OptLabelTy; 115 116 LoopScope(Compiler<Emitter> *Ctx, LabelTy BreakLabel, LabelTy ContinueLabel) 117 : LabelScope<Emitter>(Ctx), OldBreakLabel(Ctx->BreakLabel), 118 OldContinueLabel(Ctx->ContinueLabel), 119 OldBreakVarScope(Ctx->BreakVarScope), 120 OldContinueVarScope(Ctx->ContinueVarScope) { 121 this->Ctx->BreakLabel = BreakLabel; 122 this->Ctx->ContinueLabel = ContinueLabel; 123 this->Ctx->BreakVarScope = this->Ctx->VarScope; 124 this->Ctx->ContinueVarScope = this->Ctx->VarScope; 125 } 126 127 ~LoopScope() { 128 this->Ctx->BreakLabel = OldBreakLabel; 129 this->Ctx->ContinueLabel = OldContinueLabel; 130 this->Ctx->ContinueVarScope = OldContinueVarScope; 131 this->Ctx->BreakVarScope = OldBreakVarScope; 132 } 133 134 private: 135 OptLabelTy OldBreakLabel; 136 OptLabelTy OldContinueLabel; 137 VariableScope<Emitter> *OldBreakVarScope; 138 VariableScope<Emitter> *OldContinueVarScope; 139 }; 140 141 // Sets the context for a switch scope, mapping labels. 142 template <class Emitter> class SwitchScope final : public LabelScope<Emitter> { 143 public: 144 using LabelTy = typename Compiler<Emitter>::LabelTy; 145 using OptLabelTy = typename Compiler<Emitter>::OptLabelTy; 146 using CaseMap = typename Compiler<Emitter>::CaseMap; 147 148 SwitchScope(Compiler<Emitter> *Ctx, CaseMap &&CaseLabels, LabelTy BreakLabel, 149 OptLabelTy DefaultLabel) 150 : LabelScope<Emitter>(Ctx), OldBreakLabel(Ctx->BreakLabel), 151 OldDefaultLabel(this->Ctx->DefaultLabel), 152 OldCaseLabels(std::move(this->Ctx->CaseLabels)), 153 OldLabelVarScope(Ctx->BreakVarScope) { 154 this->Ctx->BreakLabel = BreakLabel; 155 this->Ctx->DefaultLabel = DefaultLabel; 156 this->Ctx->CaseLabels = std::move(CaseLabels); 157 this->Ctx->BreakVarScope = this->Ctx->VarScope; 158 } 159 160 ~SwitchScope() { 161 this->Ctx->BreakLabel = OldBreakLabel; 162 this->Ctx->DefaultLabel = OldDefaultLabel; 163 this->Ctx->CaseLabels = std::move(OldCaseLabels); 164 this->Ctx->BreakVarScope = OldLabelVarScope; 165 } 166 167 private: 168 OptLabelTy OldBreakLabel; 169 OptLabelTy OldDefaultLabel; 170 CaseMap OldCaseLabels; 171 VariableScope<Emitter> *OldLabelVarScope; 172 }; 173 174 template <class Emitter> class StmtExprScope final { 175 public: 176 StmtExprScope(Compiler<Emitter> *Ctx) : Ctx(Ctx), OldFlag(Ctx->InStmtExpr) { 177 Ctx->InStmtExpr = true; 178 } 179 180 ~StmtExprScope() { Ctx->InStmtExpr = OldFlag; } 181 182 private: 183 Compiler<Emitter> *Ctx; 184 bool OldFlag; 185 }; 186 187 } // namespace interp 188 } // namespace clang 189 190 template <class Emitter> 191 bool Compiler<Emitter>::VisitCastExpr(const CastExpr *CE) { 192 const Expr *SubExpr = CE->getSubExpr(); 193 switch (CE->getCastKind()) { 194 195 case CK_LValueToRValue: { 196 if (DiscardResult) 197 return this->discard(SubExpr); 198 199 std::optional<PrimType> SubExprT = classify(SubExpr->getType()); 200 // Prepare storage for the result. 201 if (!Initializing && !SubExprT) { 202 std::optional<unsigned> LocalIndex = allocateLocal(SubExpr); 203 if (!LocalIndex) 204 return false; 205 if (!this->emitGetPtrLocal(*LocalIndex, CE)) 206 return false; 207 } 208 209 if (!this->visit(SubExpr)) 210 return false; 211 212 if (SubExprT) 213 return this->emitLoadPop(*SubExprT, CE); 214 215 // If the subexpr type is not primitive, we need to perform a copy here. 216 // This happens for example in C when dereferencing a pointer of struct 217 // type. 218 return this->emitMemcpy(CE); 219 } 220 221 case CK_DerivedToBaseMemberPointer: { 222 assert(classifyPrim(CE->getType()) == PT_MemberPtr); 223 assert(classifyPrim(SubExpr->getType()) == PT_MemberPtr); 224 const auto *FromMP = SubExpr->getType()->getAs<MemberPointerType>(); 225 const auto *ToMP = CE->getType()->getAs<MemberPointerType>(); 226 227 unsigned DerivedOffset = collectBaseOffset(QualType(ToMP->getClass(), 0), 228 QualType(FromMP->getClass(), 0)); 229 230 if (!this->delegate(SubExpr)) 231 return false; 232 233 return this->emitGetMemberPtrBasePop(DerivedOffset, CE); 234 } 235 236 case CK_BaseToDerivedMemberPointer: { 237 assert(classifyPrim(CE) == PT_MemberPtr); 238 assert(classifyPrim(SubExpr) == PT_MemberPtr); 239 const auto *FromMP = SubExpr->getType()->getAs<MemberPointerType>(); 240 const auto *ToMP = CE->getType()->getAs<MemberPointerType>(); 241 242 unsigned DerivedOffset = collectBaseOffset(QualType(FromMP->getClass(), 0), 243 QualType(ToMP->getClass(), 0)); 244 245 if (!this->delegate(SubExpr)) 246 return false; 247 return this->emitGetMemberPtrBasePop(-DerivedOffset, CE); 248 } 249 250 case CK_UncheckedDerivedToBase: 251 case CK_DerivedToBase: { 252 if (!this->delegate(SubExpr)) 253 return false; 254 255 const auto extractRecordDecl = [](QualType Ty) -> const CXXRecordDecl * { 256 if (const auto *PT = dyn_cast<PointerType>(Ty)) 257 return PT->getPointeeType()->getAsCXXRecordDecl(); 258 return Ty->getAsCXXRecordDecl(); 259 }; 260 261 // FIXME: We can express a series of non-virtual casts as a single 262 // GetPtrBasePop op. 263 QualType CurType = SubExpr->getType(); 264 for (const CXXBaseSpecifier *B : CE->path()) { 265 if (B->isVirtual()) { 266 if (!this->emitGetPtrVirtBasePop(extractRecordDecl(B->getType()), CE)) 267 return false; 268 CurType = B->getType(); 269 } else { 270 unsigned DerivedOffset = collectBaseOffset(B->getType(), CurType); 271 if (!this->emitGetPtrBasePop(DerivedOffset, CE)) 272 return false; 273 CurType = B->getType(); 274 } 275 } 276 277 return true; 278 } 279 280 case CK_BaseToDerived: { 281 if (!this->delegate(SubExpr)) 282 return false; 283 284 unsigned DerivedOffset = 285 collectBaseOffset(SubExpr->getType(), CE->getType()); 286 287 return this->emitGetPtrDerivedPop(DerivedOffset, CE); 288 } 289 290 case CK_FloatingCast: { 291 // HLSL uses CK_FloatingCast to cast between vectors. 292 if (!SubExpr->getType()->isFloatingType() || 293 !CE->getType()->isFloatingType()) 294 return false; 295 if (DiscardResult) 296 return this->discard(SubExpr); 297 if (!this->visit(SubExpr)) 298 return false; 299 const auto *TargetSemantics = &Ctx.getFloatSemantics(CE->getType()); 300 return this->emitCastFP(TargetSemantics, getRoundingMode(CE), CE); 301 } 302 303 case CK_IntegralToFloating: { 304 if (DiscardResult) 305 return this->discard(SubExpr); 306 std::optional<PrimType> FromT = classify(SubExpr->getType()); 307 if (!FromT) 308 return false; 309 310 if (!this->visit(SubExpr)) 311 return false; 312 313 const auto *TargetSemantics = &Ctx.getFloatSemantics(CE->getType()); 314 return this->emitCastIntegralFloating(*FromT, TargetSemantics, 315 getFPOptions(CE), CE); 316 } 317 318 case CK_FloatingToBoolean: 319 case CK_FloatingToIntegral: { 320 if (DiscardResult) 321 return this->discard(SubExpr); 322 323 std::optional<PrimType> ToT = classify(CE->getType()); 324 325 if (!ToT) 326 return false; 327 328 if (!this->visit(SubExpr)) 329 return false; 330 331 if (ToT == PT_IntAP) 332 return this->emitCastFloatingIntegralAP(Ctx.getBitWidth(CE->getType()), 333 getFPOptions(CE), CE); 334 if (ToT == PT_IntAPS) 335 return this->emitCastFloatingIntegralAPS(Ctx.getBitWidth(CE->getType()), 336 getFPOptions(CE), CE); 337 338 return this->emitCastFloatingIntegral(*ToT, getFPOptions(CE), CE); 339 } 340 341 case CK_NullToPointer: 342 case CK_NullToMemberPointer: { 343 if (!this->discard(SubExpr)) 344 return false; 345 if (DiscardResult) 346 return true; 347 348 const Descriptor *Desc = nullptr; 349 const QualType PointeeType = CE->getType()->getPointeeType(); 350 if (!PointeeType.isNull()) { 351 if (std::optional<PrimType> T = classify(PointeeType)) 352 Desc = P.createDescriptor(SubExpr, *T); 353 else 354 Desc = P.createDescriptor(SubExpr, PointeeType.getTypePtr(), 355 std::nullopt, true, false, 356 /*IsMutable=*/false, nullptr); 357 } 358 return this->emitNull(classifyPrim(CE->getType()), Desc, CE); 359 } 360 361 case CK_PointerToIntegral: { 362 if (DiscardResult) 363 return this->discard(SubExpr); 364 365 if (!this->visit(SubExpr)) 366 return false; 367 368 // If SubExpr doesn't result in a pointer, make it one. 369 if (PrimType FromT = classifyPrim(SubExpr->getType()); FromT != PT_Ptr) { 370 assert(isPtrType(FromT)); 371 if (!this->emitDecayPtr(FromT, PT_Ptr, CE)) 372 return false; 373 } 374 375 PrimType T = classifyPrim(CE->getType()); 376 if (T == PT_IntAP) 377 return this->emitCastPointerIntegralAP(Ctx.getBitWidth(CE->getType()), 378 CE); 379 if (T == PT_IntAPS) 380 return this->emitCastPointerIntegralAPS(Ctx.getBitWidth(CE->getType()), 381 CE); 382 return this->emitCastPointerIntegral(T, CE); 383 } 384 385 case CK_ArrayToPointerDecay: { 386 if (!this->visit(SubExpr)) 387 return false; 388 if (!this->emitArrayDecay(CE)) 389 return false; 390 if (DiscardResult) 391 return this->emitPopPtr(CE); 392 return true; 393 } 394 395 case CK_IntegralToPointer: { 396 QualType IntType = SubExpr->getType(); 397 assert(IntType->isIntegralOrEnumerationType()); 398 if (!this->visit(SubExpr)) 399 return false; 400 // FIXME: I think the discard is wrong since the int->ptr cast might cause a 401 // diagnostic. 402 PrimType T = classifyPrim(IntType); 403 if (DiscardResult) 404 return this->emitPop(T, CE); 405 406 QualType PtrType = CE->getType(); 407 const Descriptor *Desc; 408 if (std::optional<PrimType> T = classify(PtrType->getPointeeType())) 409 Desc = P.createDescriptor(SubExpr, *T); 410 else if (PtrType->getPointeeType()->isVoidType()) 411 Desc = nullptr; 412 else 413 Desc = P.createDescriptor(CE, PtrType->getPointeeType().getTypePtr(), 414 Descriptor::InlineDescMD, true, false, 415 /*IsMutable=*/false, nullptr); 416 417 if (!this->emitGetIntPtr(T, Desc, CE)) 418 return false; 419 420 PrimType DestPtrT = classifyPrim(PtrType); 421 if (DestPtrT == PT_Ptr) 422 return true; 423 424 // In case we're converting the integer to a non-Pointer. 425 return this->emitDecayPtr(PT_Ptr, DestPtrT, CE); 426 } 427 428 case CK_AtomicToNonAtomic: 429 case CK_ConstructorConversion: 430 case CK_FunctionToPointerDecay: 431 case CK_NonAtomicToAtomic: 432 case CK_NoOp: 433 case CK_UserDefinedConversion: 434 case CK_AddressSpaceConversion: 435 case CK_CPointerToObjCPointerCast: 436 return this->delegate(SubExpr); 437 438 case CK_BitCast: { 439 // Reject bitcasts to atomic types. 440 if (CE->getType()->isAtomicType()) { 441 if (!this->discard(SubExpr)) 442 return false; 443 return this->emitInvalidCast(CastKind::Reinterpret, /*Fatal=*/true, CE); 444 } 445 446 if (DiscardResult) 447 return this->discard(SubExpr); 448 449 QualType SubExprTy = SubExpr->getType(); 450 std::optional<PrimType> FromT = classify(SubExprTy); 451 std::optional<PrimType> ToT = classify(CE->getType()); 452 if (!FromT || !ToT) 453 return false; 454 455 assert(isPtrType(*FromT)); 456 assert(isPtrType(*ToT)); 457 if (FromT == ToT) { 458 if (CE->getType()->isVoidPointerType()) 459 return this->delegate(SubExpr); 460 461 if (!this->visit(SubExpr)) 462 return false; 463 if (FromT == PT_Ptr) 464 return this->emitPtrPtrCast(SubExprTy->isVoidPointerType(), CE); 465 return true; 466 } 467 468 if (!this->visit(SubExpr)) 469 return false; 470 return this->emitDecayPtr(*FromT, *ToT, CE); 471 } 472 473 case CK_IntegralToBoolean: 474 case CK_FixedPointToBoolean: 475 case CK_BooleanToSignedIntegral: 476 case CK_IntegralCast: { 477 if (DiscardResult) 478 return this->discard(SubExpr); 479 std::optional<PrimType> FromT = classify(SubExpr->getType()); 480 std::optional<PrimType> ToT = classify(CE->getType()); 481 482 if (!FromT || !ToT) 483 return false; 484 485 if (!this->visit(SubExpr)) 486 return false; 487 488 // Possibly diagnose casts to enum types if the target type does not 489 // have a fixed size. 490 if (Ctx.getLangOpts().CPlusPlus && CE->getType()->isEnumeralType()) { 491 if (const auto *ET = CE->getType().getCanonicalType()->getAs<EnumType>(); 492 ET && !ET->getDecl()->isFixed()) { 493 if (!this->emitCheckEnumValue(*FromT, ET->getDecl(), CE)) 494 return false; 495 } 496 } 497 498 auto maybeNegate = [&]() -> bool { 499 if (CE->getCastKind() == CK_BooleanToSignedIntegral) 500 return this->emitNeg(*ToT, CE); 501 return true; 502 }; 503 504 if (ToT == PT_IntAP) 505 return this->emitCastAP(*FromT, Ctx.getBitWidth(CE->getType()), CE) && 506 maybeNegate(); 507 if (ToT == PT_IntAPS) 508 return this->emitCastAPS(*FromT, Ctx.getBitWidth(CE->getType()), CE) && 509 maybeNegate(); 510 511 if (FromT == ToT) 512 return true; 513 if (!this->emitCast(*FromT, *ToT, CE)) 514 return false; 515 516 return maybeNegate(); 517 } 518 519 case CK_PointerToBoolean: 520 case CK_MemberPointerToBoolean: { 521 PrimType PtrT = classifyPrim(SubExpr->getType()); 522 523 if (!this->visit(SubExpr)) 524 return false; 525 return this->emitIsNonNull(PtrT, CE); 526 } 527 528 case CK_IntegralComplexToBoolean: 529 case CK_FloatingComplexToBoolean: { 530 if (DiscardResult) 531 return this->discard(SubExpr); 532 if (!this->visit(SubExpr)) 533 return false; 534 return this->emitComplexBoolCast(SubExpr); 535 } 536 537 case CK_IntegralComplexToReal: 538 case CK_FloatingComplexToReal: 539 return this->emitComplexReal(SubExpr); 540 541 case CK_IntegralRealToComplex: 542 case CK_FloatingRealToComplex: { 543 // We're creating a complex value here, so we need to 544 // allocate storage for it. 545 if (!Initializing) { 546 unsigned LocalIndex = allocateTemporary(CE); 547 if (!this->emitGetPtrLocal(LocalIndex, CE)) 548 return false; 549 } 550 551 // Init the complex value to {SubExpr, 0}. 552 if (!this->visitArrayElemInit(0, SubExpr)) 553 return false; 554 // Zero-init the second element. 555 PrimType T = classifyPrim(SubExpr->getType()); 556 if (!this->visitZeroInitializer(T, SubExpr->getType(), SubExpr)) 557 return false; 558 return this->emitInitElem(T, 1, SubExpr); 559 } 560 561 case CK_IntegralComplexCast: 562 case CK_FloatingComplexCast: 563 case CK_IntegralComplexToFloatingComplex: 564 case CK_FloatingComplexToIntegralComplex: { 565 assert(CE->getType()->isAnyComplexType()); 566 assert(SubExpr->getType()->isAnyComplexType()); 567 if (DiscardResult) 568 return this->discard(SubExpr); 569 570 if (!Initializing) { 571 std::optional<unsigned> LocalIndex = allocateLocal(CE); 572 if (!LocalIndex) 573 return false; 574 if (!this->emitGetPtrLocal(*LocalIndex, CE)) 575 return false; 576 } 577 578 // Location for the SubExpr. 579 // Since SubExpr is of complex type, visiting it results in a pointer 580 // anyway, so we just create a temporary pointer variable. 581 unsigned SubExprOffset = allocateLocalPrimitive( 582 SubExpr, PT_Ptr, /*IsConst=*/true, /*IsExtended=*/false); 583 if (!this->visit(SubExpr)) 584 return false; 585 if (!this->emitSetLocal(PT_Ptr, SubExprOffset, CE)) 586 return false; 587 588 PrimType SourceElemT = classifyComplexElementType(SubExpr->getType()); 589 QualType DestElemType = 590 CE->getType()->getAs<ComplexType>()->getElementType(); 591 PrimType DestElemT = classifyPrim(DestElemType); 592 // Cast both elements individually. 593 for (unsigned I = 0; I != 2; ++I) { 594 if (!this->emitGetLocal(PT_Ptr, SubExprOffset, CE)) 595 return false; 596 if (!this->emitArrayElemPop(SourceElemT, I, CE)) 597 return false; 598 599 // Do the cast. 600 if (!this->emitPrimCast(SourceElemT, DestElemT, DestElemType, CE)) 601 return false; 602 603 // Save the value. 604 if (!this->emitInitElem(DestElemT, I, CE)) 605 return false; 606 } 607 return true; 608 } 609 610 case CK_VectorSplat: { 611 assert(!classify(CE->getType())); 612 assert(classify(SubExpr->getType())); 613 assert(CE->getType()->isVectorType()); 614 615 if (DiscardResult) 616 return this->discard(SubExpr); 617 618 if (!Initializing) { 619 std::optional<unsigned> LocalIndex = allocateLocal(CE); 620 if (!LocalIndex) 621 return false; 622 if (!this->emitGetPtrLocal(*LocalIndex, CE)) 623 return false; 624 } 625 626 const auto *VT = CE->getType()->getAs<VectorType>(); 627 PrimType ElemT = classifyPrim(SubExpr->getType()); 628 unsigned ElemOffset = allocateLocalPrimitive( 629 SubExpr, ElemT, /*IsConst=*/true, /*IsExtended=*/false); 630 631 // Prepare a local variable for the scalar value. 632 if (!this->visit(SubExpr)) 633 return false; 634 if (classifyPrim(SubExpr) == PT_Ptr && !this->emitLoadPop(ElemT, CE)) 635 return false; 636 637 if (!this->emitSetLocal(ElemT, ElemOffset, CE)) 638 return false; 639 640 for (unsigned I = 0; I != VT->getNumElements(); ++I) { 641 if (!this->emitGetLocal(ElemT, ElemOffset, CE)) 642 return false; 643 if (!this->emitInitElem(ElemT, I, CE)) 644 return false; 645 } 646 647 return true; 648 } 649 650 case CK_HLSLVectorTruncation: { 651 assert(SubExpr->getType()->isVectorType()); 652 if (std::optional<PrimType> ResultT = classify(CE)) { 653 assert(!DiscardResult); 654 // Result must be either a float or integer. Take the first element. 655 if (!this->visit(SubExpr)) 656 return false; 657 return this->emitArrayElemPop(*ResultT, 0, CE); 658 } 659 // Otherwise, this truncates from one vector type to another. 660 assert(CE->getType()->isVectorType()); 661 662 if (!Initializing) { 663 unsigned LocalIndex = allocateTemporary(CE); 664 if (!this->emitGetPtrLocal(LocalIndex, CE)) 665 return false; 666 } 667 unsigned ToSize = CE->getType()->getAs<VectorType>()->getNumElements(); 668 assert(SubExpr->getType()->getAs<VectorType>()->getNumElements() > ToSize); 669 if (!this->visit(SubExpr)) 670 return false; 671 return this->emitCopyArray(classifyVectorElementType(CE->getType()), 0, 0, 672 ToSize, CE); 673 }; 674 675 case CK_IntegralToFixedPoint: { 676 if (!this->visit(SubExpr)) 677 return false; 678 679 auto Sem = Ctx.getASTContext().getFixedPointSemantics(CE->getType()); 680 uint32_t I; 681 std::memcpy(&I, &Sem, sizeof(Sem)); 682 return this->emitCastIntegralFixedPoint(classifyPrim(SubExpr->getType()), I, 683 CE); 684 } 685 case CK_FloatingToFixedPoint: { 686 if (!this->visit(SubExpr)) 687 return false; 688 689 auto Sem = Ctx.getASTContext().getFixedPointSemantics(CE->getType()); 690 uint32_t I; 691 std::memcpy(&I, &Sem, sizeof(Sem)); 692 return this->emitCastFloatingFixedPoint(I, CE); 693 } 694 case CK_FixedPointToFloating: { 695 if (!this->visit(SubExpr)) 696 return false; 697 const auto *TargetSemantics = &Ctx.getFloatSemantics(CE->getType()); 698 return this->emitCastFixedPointFloating(TargetSemantics, CE); 699 } 700 case CK_FixedPointToIntegral: { 701 if (!this->visit(SubExpr)) 702 return false; 703 return this->emitCastFixedPointIntegral(classifyPrim(CE->getType()), CE); 704 } 705 case CK_FixedPointCast: { 706 if (!this->visit(SubExpr)) 707 return false; 708 auto Sem = Ctx.getASTContext().getFixedPointSemantics(CE->getType()); 709 uint32_t I; 710 std::memcpy(&I, &Sem, sizeof(Sem)); 711 return this->emitCastFixedPoint(I, CE); 712 } 713 714 case CK_ToVoid: 715 return discard(SubExpr); 716 717 default: 718 return this->emitInvalid(CE); 719 } 720 llvm_unreachable("Unhandled clang::CastKind enum"); 721 } 722 723 template <class Emitter> 724 bool Compiler<Emitter>::VisitIntegerLiteral(const IntegerLiteral *LE) { 725 if (DiscardResult) 726 return true; 727 728 return this->emitConst(LE->getValue(), LE); 729 } 730 731 template <class Emitter> 732 bool Compiler<Emitter>::VisitFloatingLiteral(const FloatingLiteral *E) { 733 if (DiscardResult) 734 return true; 735 736 return this->emitConstFloat(E->getValue(), E); 737 } 738 739 template <class Emitter> 740 bool Compiler<Emitter>::VisitImaginaryLiteral(const ImaginaryLiteral *E) { 741 assert(E->getType()->isAnyComplexType()); 742 if (DiscardResult) 743 return true; 744 745 if (!Initializing) { 746 unsigned LocalIndex = allocateTemporary(E); 747 if (!this->emitGetPtrLocal(LocalIndex, E)) 748 return false; 749 } 750 751 const Expr *SubExpr = E->getSubExpr(); 752 PrimType SubExprT = classifyPrim(SubExpr->getType()); 753 754 if (!this->visitZeroInitializer(SubExprT, SubExpr->getType(), SubExpr)) 755 return false; 756 if (!this->emitInitElem(SubExprT, 0, SubExpr)) 757 return false; 758 return this->visitArrayElemInit(1, SubExpr); 759 } 760 761 template <class Emitter> 762 bool Compiler<Emitter>::VisitFixedPointLiteral(const FixedPointLiteral *E) { 763 assert(E->getType()->isFixedPointType()); 764 assert(classifyPrim(E) == PT_FixedPoint); 765 766 if (DiscardResult) 767 return true; 768 769 auto Sem = Ctx.getASTContext().getFixedPointSemantics(E->getType()); 770 APInt Value = E->getValue(); 771 return this->emitConstFixedPoint(FixedPoint(Value, Sem), E); 772 } 773 774 template <class Emitter> 775 bool Compiler<Emitter>::VisitParenExpr(const ParenExpr *E) { 776 return this->delegate(E->getSubExpr()); 777 } 778 779 template <class Emitter> 780 bool Compiler<Emitter>::VisitBinaryOperator(const BinaryOperator *BO) { 781 // Need short-circuiting for these. 782 if (BO->isLogicalOp() && !BO->getType()->isVectorType()) 783 return this->VisitLogicalBinOp(BO); 784 785 const Expr *LHS = BO->getLHS(); 786 const Expr *RHS = BO->getRHS(); 787 788 // Handle comma operators. Just discard the LHS 789 // and delegate to RHS. 790 if (BO->isCommaOp()) { 791 if (!this->discard(LHS)) 792 return false; 793 if (RHS->getType()->isVoidType()) 794 return this->discard(RHS); 795 796 return this->delegate(RHS); 797 } 798 799 if (BO->getType()->isAnyComplexType()) 800 return this->VisitComplexBinOp(BO); 801 if (BO->getType()->isVectorType()) 802 return this->VisitVectorBinOp(BO); 803 if ((LHS->getType()->isAnyComplexType() || 804 RHS->getType()->isAnyComplexType()) && 805 BO->isComparisonOp()) 806 return this->emitComplexComparison(LHS, RHS, BO); 807 if (LHS->getType()->isFixedPointType() || RHS->getType()->isFixedPointType()) 808 return this->VisitFixedPointBinOp(BO); 809 810 if (BO->isPtrMemOp()) { 811 if (!this->visit(LHS)) 812 return false; 813 814 if (!this->visit(RHS)) 815 return false; 816 817 if (!this->emitToMemberPtr(BO)) 818 return false; 819 820 if (classifyPrim(BO) == PT_MemberPtr) 821 return true; 822 823 if (!this->emitCastMemberPtrPtr(BO)) 824 return false; 825 return DiscardResult ? this->emitPopPtr(BO) : true; 826 } 827 828 // Typecheck the args. 829 std::optional<PrimType> LT = classify(LHS); 830 std::optional<PrimType> RT = classify(RHS); 831 std::optional<PrimType> T = classify(BO->getType()); 832 833 // Special case for C++'s three-way/spaceship operator <=>, which 834 // returns a std::{strong,weak,partial}_ordering (which is a class, so doesn't 835 // have a PrimType). 836 if (!T && BO->getOpcode() == BO_Cmp) { 837 if (DiscardResult) 838 return true; 839 const ComparisonCategoryInfo *CmpInfo = 840 Ctx.getASTContext().CompCategories.lookupInfoForType(BO->getType()); 841 assert(CmpInfo); 842 843 // We need a temporary variable holding our return value. 844 if (!Initializing) { 845 std::optional<unsigned> ResultIndex = this->allocateLocal(BO); 846 if (!this->emitGetPtrLocal(*ResultIndex, BO)) 847 return false; 848 } 849 850 if (!visit(LHS) || !visit(RHS)) 851 return false; 852 853 return this->emitCMP3(*LT, CmpInfo, BO); 854 } 855 856 if (!LT || !RT || !T) 857 return false; 858 859 // Pointer arithmetic special case. 860 if (BO->getOpcode() == BO_Add || BO->getOpcode() == BO_Sub) { 861 if (isPtrType(*T) || (isPtrType(*LT) && isPtrType(*RT))) 862 return this->VisitPointerArithBinOp(BO); 863 } 864 865 // Assignmentes require us to evalute the RHS first. 866 if (BO->getOpcode() == BO_Assign) { 867 if (!visit(RHS) || !visit(LHS)) 868 return false; 869 if (!this->emitFlip(*LT, *RT, BO)) 870 return false; 871 } else { 872 if (!visit(LHS) || !visit(RHS)) 873 return false; 874 } 875 876 // For languages such as C, cast the result of one 877 // of our comparision opcodes to T (which is usually int). 878 auto MaybeCastToBool = [this, T, BO](bool Result) { 879 if (!Result) 880 return false; 881 if (DiscardResult) 882 return this->emitPop(*T, BO); 883 if (T != PT_Bool) 884 return this->emitCast(PT_Bool, *T, BO); 885 return true; 886 }; 887 888 auto Discard = [this, T, BO](bool Result) { 889 if (!Result) 890 return false; 891 return DiscardResult ? this->emitPop(*T, BO) : true; 892 }; 893 894 switch (BO->getOpcode()) { 895 case BO_EQ: 896 return MaybeCastToBool(this->emitEQ(*LT, BO)); 897 case BO_NE: 898 return MaybeCastToBool(this->emitNE(*LT, BO)); 899 case BO_LT: 900 return MaybeCastToBool(this->emitLT(*LT, BO)); 901 case BO_LE: 902 return MaybeCastToBool(this->emitLE(*LT, BO)); 903 case BO_GT: 904 return MaybeCastToBool(this->emitGT(*LT, BO)); 905 case BO_GE: 906 return MaybeCastToBool(this->emitGE(*LT, BO)); 907 case BO_Sub: 908 if (BO->getType()->isFloatingType()) 909 return Discard(this->emitSubf(getFPOptions(BO), BO)); 910 return Discard(this->emitSub(*T, BO)); 911 case BO_Add: 912 if (BO->getType()->isFloatingType()) 913 return Discard(this->emitAddf(getFPOptions(BO), BO)); 914 return Discard(this->emitAdd(*T, BO)); 915 case BO_Mul: 916 if (BO->getType()->isFloatingType()) 917 return Discard(this->emitMulf(getFPOptions(BO), BO)); 918 return Discard(this->emitMul(*T, BO)); 919 case BO_Rem: 920 return Discard(this->emitRem(*T, BO)); 921 case BO_Div: 922 if (BO->getType()->isFloatingType()) 923 return Discard(this->emitDivf(getFPOptions(BO), BO)); 924 return Discard(this->emitDiv(*T, BO)); 925 case BO_Assign: 926 if (DiscardResult) 927 return LHS->refersToBitField() ? this->emitStoreBitFieldPop(*T, BO) 928 : this->emitStorePop(*T, BO); 929 if (LHS->refersToBitField()) { 930 if (!this->emitStoreBitField(*T, BO)) 931 return false; 932 } else { 933 if (!this->emitStore(*T, BO)) 934 return false; 935 } 936 // Assignments aren't necessarily lvalues in C. 937 // Load from them in that case. 938 if (!BO->isLValue()) 939 return this->emitLoadPop(*T, BO); 940 return true; 941 case BO_And: 942 return Discard(this->emitBitAnd(*T, BO)); 943 case BO_Or: 944 return Discard(this->emitBitOr(*T, BO)); 945 case BO_Shl: 946 return Discard(this->emitShl(*LT, *RT, BO)); 947 case BO_Shr: 948 return Discard(this->emitShr(*LT, *RT, BO)); 949 case BO_Xor: 950 return Discard(this->emitBitXor(*T, BO)); 951 case BO_LOr: 952 case BO_LAnd: 953 llvm_unreachable("Already handled earlier"); 954 default: 955 return false; 956 } 957 958 llvm_unreachable("Unhandled binary op"); 959 } 960 961 /// Perform addition/subtraction of a pointer and an integer or 962 /// subtraction of two pointers. 963 template <class Emitter> 964 bool Compiler<Emitter>::VisitPointerArithBinOp(const BinaryOperator *E) { 965 BinaryOperatorKind Op = E->getOpcode(); 966 const Expr *LHS = E->getLHS(); 967 const Expr *RHS = E->getRHS(); 968 969 if ((Op != BO_Add && Op != BO_Sub) || 970 (!LHS->getType()->isPointerType() && !RHS->getType()->isPointerType())) 971 return false; 972 973 std::optional<PrimType> LT = classify(LHS); 974 std::optional<PrimType> RT = classify(RHS); 975 976 if (!LT || !RT) 977 return false; 978 979 // Visit the given pointer expression and optionally convert to a PT_Ptr. 980 auto visitAsPointer = [&](const Expr *E, PrimType T) -> bool { 981 if (!this->visit(E)) 982 return false; 983 if (T != PT_Ptr) 984 return this->emitDecayPtr(T, PT_Ptr, E); 985 return true; 986 }; 987 988 if (LHS->getType()->isPointerType() && RHS->getType()->isPointerType()) { 989 if (Op != BO_Sub) 990 return false; 991 992 assert(E->getType()->isIntegerType()); 993 if (!visitAsPointer(RHS, *RT) || !visitAsPointer(LHS, *LT)) 994 return false; 995 996 return this->emitSubPtr(classifyPrim(E->getType()), E); 997 } 998 999 PrimType OffsetType; 1000 if (LHS->getType()->isIntegerType()) { 1001 if (!visitAsPointer(RHS, *RT)) 1002 return false; 1003 if (!this->visit(LHS)) 1004 return false; 1005 OffsetType = *LT; 1006 } else if (RHS->getType()->isIntegerType()) { 1007 if (!visitAsPointer(LHS, *LT)) 1008 return false; 1009 if (!this->visit(RHS)) 1010 return false; 1011 OffsetType = *RT; 1012 } else { 1013 return false; 1014 } 1015 1016 // Do the operation and optionally transform to 1017 // result pointer type. 1018 if (Op == BO_Add) { 1019 if (!this->emitAddOffset(OffsetType, E)) 1020 return false; 1021 1022 if (classifyPrim(E) != PT_Ptr) 1023 return this->emitDecayPtr(PT_Ptr, classifyPrim(E), E); 1024 return true; 1025 } else if (Op == BO_Sub) { 1026 if (!this->emitSubOffset(OffsetType, E)) 1027 return false; 1028 1029 if (classifyPrim(E) != PT_Ptr) 1030 return this->emitDecayPtr(PT_Ptr, classifyPrim(E), E); 1031 return true; 1032 } 1033 1034 return false; 1035 } 1036 1037 template <class Emitter> 1038 bool Compiler<Emitter>::VisitLogicalBinOp(const BinaryOperator *E) { 1039 assert(E->isLogicalOp()); 1040 BinaryOperatorKind Op = E->getOpcode(); 1041 const Expr *LHS = E->getLHS(); 1042 const Expr *RHS = E->getRHS(); 1043 std::optional<PrimType> T = classify(E->getType()); 1044 1045 if (Op == BO_LOr) { 1046 // Logical OR. Visit LHS and only evaluate RHS if LHS was FALSE. 1047 LabelTy LabelTrue = this->getLabel(); 1048 LabelTy LabelEnd = this->getLabel(); 1049 1050 if (!this->visitBool(LHS)) 1051 return false; 1052 if (!this->jumpTrue(LabelTrue)) 1053 return false; 1054 1055 if (!this->visitBool(RHS)) 1056 return false; 1057 if (!this->jump(LabelEnd)) 1058 return false; 1059 1060 this->emitLabel(LabelTrue); 1061 this->emitConstBool(true, E); 1062 this->fallthrough(LabelEnd); 1063 this->emitLabel(LabelEnd); 1064 1065 } else { 1066 assert(Op == BO_LAnd); 1067 // Logical AND. 1068 // Visit LHS. Only visit RHS if LHS was TRUE. 1069 LabelTy LabelFalse = this->getLabel(); 1070 LabelTy LabelEnd = this->getLabel(); 1071 1072 if (!this->visitBool(LHS)) 1073 return false; 1074 if (!this->jumpFalse(LabelFalse)) 1075 return false; 1076 1077 if (!this->visitBool(RHS)) 1078 return false; 1079 if (!this->jump(LabelEnd)) 1080 return false; 1081 1082 this->emitLabel(LabelFalse); 1083 this->emitConstBool(false, E); 1084 this->fallthrough(LabelEnd); 1085 this->emitLabel(LabelEnd); 1086 } 1087 1088 if (DiscardResult) 1089 return this->emitPopBool(E); 1090 1091 // For C, cast back to integer type. 1092 assert(T); 1093 if (T != PT_Bool) 1094 return this->emitCast(PT_Bool, *T, E); 1095 return true; 1096 } 1097 1098 template <class Emitter> 1099 bool Compiler<Emitter>::VisitComplexBinOp(const BinaryOperator *E) { 1100 // Prepare storage for result. 1101 if (!Initializing) { 1102 unsigned LocalIndex = allocateTemporary(E); 1103 if (!this->emitGetPtrLocal(LocalIndex, E)) 1104 return false; 1105 } 1106 1107 // Both LHS and RHS might _not_ be of complex type, but one of them 1108 // needs to be. 1109 const Expr *LHS = E->getLHS(); 1110 const Expr *RHS = E->getRHS(); 1111 1112 PrimType ResultElemT = this->classifyComplexElementType(E->getType()); 1113 unsigned ResultOffset = ~0u; 1114 if (!DiscardResult) 1115 ResultOffset = this->allocateLocalPrimitive(E, PT_Ptr, true, false); 1116 1117 // Save result pointer in ResultOffset 1118 if (!this->DiscardResult) { 1119 if (!this->emitDupPtr(E)) 1120 return false; 1121 if (!this->emitSetLocal(PT_Ptr, ResultOffset, E)) 1122 return false; 1123 } 1124 QualType LHSType = LHS->getType(); 1125 if (const auto *AT = LHSType->getAs<AtomicType>()) 1126 LHSType = AT->getValueType(); 1127 QualType RHSType = RHS->getType(); 1128 if (const auto *AT = RHSType->getAs<AtomicType>()) 1129 RHSType = AT->getValueType(); 1130 1131 bool LHSIsComplex = LHSType->isAnyComplexType(); 1132 unsigned LHSOffset; 1133 bool RHSIsComplex = RHSType->isAnyComplexType(); 1134 1135 // For ComplexComplex Mul, we have special ops to make their implementation 1136 // easier. 1137 BinaryOperatorKind Op = E->getOpcode(); 1138 if (Op == BO_Mul && LHSIsComplex && RHSIsComplex) { 1139 assert(classifyPrim(LHSType->getAs<ComplexType>()->getElementType()) == 1140 classifyPrim(RHSType->getAs<ComplexType>()->getElementType())); 1141 PrimType ElemT = 1142 classifyPrim(LHSType->getAs<ComplexType>()->getElementType()); 1143 if (!this->visit(LHS)) 1144 return false; 1145 if (!this->visit(RHS)) 1146 return false; 1147 return this->emitMulc(ElemT, E); 1148 } 1149 1150 if (Op == BO_Div && RHSIsComplex) { 1151 QualType ElemQT = RHSType->getAs<ComplexType>()->getElementType(); 1152 PrimType ElemT = classifyPrim(ElemQT); 1153 // If the LHS is not complex, we still need to do the full complex 1154 // division, so just stub create a complex value and stub it out with 1155 // the LHS and a zero. 1156 1157 if (!LHSIsComplex) { 1158 // This is using the RHS type for the fake-complex LHS. 1159 LHSOffset = allocateTemporary(RHS); 1160 1161 if (!this->emitGetPtrLocal(LHSOffset, E)) 1162 return false; 1163 1164 if (!this->visit(LHS)) 1165 return false; 1166 // real is LHS 1167 if (!this->emitInitElem(ElemT, 0, E)) 1168 return false; 1169 // imag is zero 1170 if (!this->visitZeroInitializer(ElemT, ElemQT, E)) 1171 return false; 1172 if (!this->emitInitElem(ElemT, 1, E)) 1173 return false; 1174 } else { 1175 if (!this->visit(LHS)) 1176 return false; 1177 } 1178 1179 if (!this->visit(RHS)) 1180 return false; 1181 return this->emitDivc(ElemT, E); 1182 } 1183 1184 // Evaluate LHS and save value to LHSOffset. 1185 if (LHSType->isAnyComplexType()) { 1186 LHSOffset = this->allocateLocalPrimitive(LHS, PT_Ptr, true, false); 1187 if (!this->visit(LHS)) 1188 return false; 1189 if (!this->emitSetLocal(PT_Ptr, LHSOffset, E)) 1190 return false; 1191 } else { 1192 PrimType LHST = classifyPrim(LHSType); 1193 LHSOffset = this->allocateLocalPrimitive(LHS, LHST, true, false); 1194 if (!this->visit(LHS)) 1195 return false; 1196 if (!this->emitSetLocal(LHST, LHSOffset, E)) 1197 return false; 1198 } 1199 1200 // Same with RHS. 1201 unsigned RHSOffset; 1202 if (RHSType->isAnyComplexType()) { 1203 RHSOffset = this->allocateLocalPrimitive(RHS, PT_Ptr, true, false); 1204 if (!this->visit(RHS)) 1205 return false; 1206 if (!this->emitSetLocal(PT_Ptr, RHSOffset, E)) 1207 return false; 1208 } else { 1209 PrimType RHST = classifyPrim(RHSType); 1210 RHSOffset = this->allocateLocalPrimitive(RHS, RHST, true, false); 1211 if (!this->visit(RHS)) 1212 return false; 1213 if (!this->emitSetLocal(RHST, RHSOffset, E)) 1214 return false; 1215 } 1216 1217 // For both LHS and RHS, either load the value from the complex pointer, or 1218 // directly from the local variable. For index 1 (i.e. the imaginary part), 1219 // just load 0 and do the operation anyway. 1220 auto loadComplexValue = [this](bool IsComplex, bool LoadZero, 1221 unsigned ElemIndex, unsigned Offset, 1222 const Expr *E) -> bool { 1223 if (IsComplex) { 1224 if (!this->emitGetLocal(PT_Ptr, Offset, E)) 1225 return false; 1226 return this->emitArrayElemPop(classifyComplexElementType(E->getType()), 1227 ElemIndex, E); 1228 } 1229 if (ElemIndex == 0 || !LoadZero) 1230 return this->emitGetLocal(classifyPrim(E->getType()), Offset, E); 1231 return this->visitZeroInitializer(classifyPrim(E->getType()), E->getType(), 1232 E); 1233 }; 1234 1235 // Now we can get pointers to the LHS and RHS from the offsets above. 1236 for (unsigned ElemIndex = 0; ElemIndex != 2; ++ElemIndex) { 1237 // Result pointer for the store later. 1238 if (!this->DiscardResult) { 1239 if (!this->emitGetLocal(PT_Ptr, ResultOffset, E)) 1240 return false; 1241 } 1242 1243 // The actual operation. 1244 switch (Op) { 1245 case BO_Add: 1246 if (!loadComplexValue(LHSIsComplex, true, ElemIndex, LHSOffset, LHS)) 1247 return false; 1248 1249 if (!loadComplexValue(RHSIsComplex, true, ElemIndex, RHSOffset, RHS)) 1250 return false; 1251 if (ResultElemT == PT_Float) { 1252 if (!this->emitAddf(getFPOptions(E), E)) 1253 return false; 1254 } else { 1255 if (!this->emitAdd(ResultElemT, E)) 1256 return false; 1257 } 1258 break; 1259 case BO_Sub: 1260 if (!loadComplexValue(LHSIsComplex, true, ElemIndex, LHSOffset, LHS)) 1261 return false; 1262 1263 if (!loadComplexValue(RHSIsComplex, true, ElemIndex, RHSOffset, RHS)) 1264 return false; 1265 if (ResultElemT == PT_Float) { 1266 if (!this->emitSubf(getFPOptions(E), E)) 1267 return false; 1268 } else { 1269 if (!this->emitSub(ResultElemT, E)) 1270 return false; 1271 } 1272 break; 1273 case BO_Mul: 1274 if (!loadComplexValue(LHSIsComplex, false, ElemIndex, LHSOffset, LHS)) 1275 return false; 1276 1277 if (!loadComplexValue(RHSIsComplex, false, ElemIndex, RHSOffset, RHS)) 1278 return false; 1279 1280 if (ResultElemT == PT_Float) { 1281 if (!this->emitMulf(getFPOptions(E), E)) 1282 return false; 1283 } else { 1284 if (!this->emitMul(ResultElemT, E)) 1285 return false; 1286 } 1287 break; 1288 case BO_Div: 1289 assert(!RHSIsComplex); 1290 if (!loadComplexValue(LHSIsComplex, false, ElemIndex, LHSOffset, LHS)) 1291 return false; 1292 1293 if (!loadComplexValue(RHSIsComplex, false, ElemIndex, RHSOffset, RHS)) 1294 return false; 1295 1296 if (ResultElemT == PT_Float) { 1297 if (!this->emitDivf(getFPOptions(E), E)) 1298 return false; 1299 } else { 1300 if (!this->emitDiv(ResultElemT, E)) 1301 return false; 1302 } 1303 break; 1304 1305 default: 1306 return false; 1307 } 1308 1309 if (!this->DiscardResult) { 1310 // Initialize array element with the value we just computed. 1311 if (!this->emitInitElemPop(ResultElemT, ElemIndex, E)) 1312 return false; 1313 } else { 1314 if (!this->emitPop(ResultElemT, E)) 1315 return false; 1316 } 1317 } 1318 return true; 1319 } 1320 1321 template <class Emitter> 1322 bool Compiler<Emitter>::VisitVectorBinOp(const BinaryOperator *E) { 1323 assert(!E->isCommaOp() && 1324 "Comma op should be handled in VisitBinaryOperator"); 1325 assert(E->getType()->isVectorType()); 1326 assert(E->getLHS()->getType()->isVectorType()); 1327 assert(E->getRHS()->getType()->isVectorType()); 1328 1329 // Prepare storage for result. 1330 if (!Initializing && !E->isCompoundAssignmentOp()) { 1331 unsigned LocalIndex = allocateTemporary(E); 1332 if (!this->emitGetPtrLocal(LocalIndex, E)) 1333 return false; 1334 } 1335 1336 const Expr *LHS = E->getLHS(); 1337 const Expr *RHS = E->getRHS(); 1338 const auto *VecTy = E->getType()->getAs<VectorType>(); 1339 auto Op = E->isCompoundAssignmentOp() 1340 ? BinaryOperator::getOpForCompoundAssignment(E->getOpcode()) 1341 : E->getOpcode(); 1342 1343 PrimType ElemT = this->classifyVectorElementType(LHS->getType()); 1344 PrimType RHSElemT = this->classifyVectorElementType(RHS->getType()); 1345 PrimType ResultElemT = this->classifyVectorElementType(E->getType()); 1346 1347 // Evaluate LHS and save value to LHSOffset. 1348 unsigned LHSOffset = this->allocateLocalPrimitive(LHS, PT_Ptr, true, false); 1349 if (!this->visit(LHS)) 1350 return false; 1351 if (!this->emitSetLocal(PT_Ptr, LHSOffset, E)) 1352 return false; 1353 1354 // Evaluate RHS and save value to RHSOffset. 1355 unsigned RHSOffset = this->allocateLocalPrimitive(RHS, PT_Ptr, true, false); 1356 if (!this->visit(RHS)) 1357 return false; 1358 if (!this->emitSetLocal(PT_Ptr, RHSOffset, E)) 1359 return false; 1360 1361 if (E->isCompoundAssignmentOp() && !this->emitGetLocal(PT_Ptr, LHSOffset, E)) 1362 return false; 1363 1364 // BitAdd/BitOr/BitXor/Shl/Shr doesn't support bool type, we need perform the 1365 // integer promotion. 1366 bool NeedIntPromot = ElemT == PT_Bool && (E->isBitwiseOp() || E->isShiftOp()); 1367 QualType PromotTy = 1368 Ctx.getASTContext().getPromotedIntegerType(Ctx.getASTContext().BoolTy); 1369 PrimType PromotT = classifyPrim(PromotTy); 1370 PrimType OpT = NeedIntPromot ? PromotT : ElemT; 1371 1372 auto getElem = [=](unsigned Offset, PrimType ElemT, unsigned Index) { 1373 if (!this->emitGetLocal(PT_Ptr, Offset, E)) 1374 return false; 1375 if (!this->emitArrayElemPop(ElemT, Index, E)) 1376 return false; 1377 if (E->isLogicalOp()) { 1378 if (!this->emitPrimCast(ElemT, PT_Bool, Ctx.getASTContext().BoolTy, E)) 1379 return false; 1380 if (!this->emitPrimCast(PT_Bool, ResultElemT, VecTy->getElementType(), E)) 1381 return false; 1382 } else if (NeedIntPromot) { 1383 if (!this->emitPrimCast(ElemT, PromotT, PromotTy, E)) 1384 return false; 1385 } 1386 return true; 1387 }; 1388 1389 #define EMIT_ARITH_OP(OP) \ 1390 { \ 1391 if (ElemT == PT_Float) { \ 1392 if (!this->emit##OP##f(getFPOptions(E), E)) \ 1393 return false; \ 1394 } else { \ 1395 if (!this->emit##OP(ElemT, E)) \ 1396 return false; \ 1397 } \ 1398 break; \ 1399 } 1400 1401 for (unsigned I = 0; I != VecTy->getNumElements(); ++I) { 1402 if (!getElem(LHSOffset, ElemT, I)) 1403 return false; 1404 if (!getElem(RHSOffset, RHSElemT, I)) 1405 return false; 1406 switch (Op) { 1407 case BO_Add: 1408 EMIT_ARITH_OP(Add) 1409 case BO_Sub: 1410 EMIT_ARITH_OP(Sub) 1411 case BO_Mul: 1412 EMIT_ARITH_OP(Mul) 1413 case BO_Div: 1414 EMIT_ARITH_OP(Div) 1415 case BO_Rem: 1416 if (!this->emitRem(ElemT, E)) 1417 return false; 1418 break; 1419 case BO_And: 1420 if (!this->emitBitAnd(OpT, E)) 1421 return false; 1422 break; 1423 case BO_Or: 1424 if (!this->emitBitOr(OpT, E)) 1425 return false; 1426 break; 1427 case BO_Xor: 1428 if (!this->emitBitXor(OpT, E)) 1429 return false; 1430 break; 1431 case BO_Shl: 1432 if (!this->emitShl(OpT, RHSElemT, E)) 1433 return false; 1434 break; 1435 case BO_Shr: 1436 if (!this->emitShr(OpT, RHSElemT, E)) 1437 return false; 1438 break; 1439 case BO_EQ: 1440 if (!this->emitEQ(ElemT, E)) 1441 return false; 1442 break; 1443 case BO_NE: 1444 if (!this->emitNE(ElemT, E)) 1445 return false; 1446 break; 1447 case BO_LE: 1448 if (!this->emitLE(ElemT, E)) 1449 return false; 1450 break; 1451 case BO_LT: 1452 if (!this->emitLT(ElemT, E)) 1453 return false; 1454 break; 1455 case BO_GE: 1456 if (!this->emitGE(ElemT, E)) 1457 return false; 1458 break; 1459 case BO_GT: 1460 if (!this->emitGT(ElemT, E)) 1461 return false; 1462 break; 1463 case BO_LAnd: 1464 // a && b is equivalent to a!=0 & b!=0 1465 if (!this->emitBitAnd(ResultElemT, E)) 1466 return false; 1467 break; 1468 case BO_LOr: 1469 // a || b is equivalent to a!=0 | b!=0 1470 if (!this->emitBitOr(ResultElemT, E)) 1471 return false; 1472 break; 1473 default: 1474 return this->emitInvalid(E); 1475 } 1476 1477 // The result of the comparison is a vector of the same width and number 1478 // of elements as the comparison operands with a signed integral element 1479 // type. 1480 // 1481 // https://gcc.gnu.org/onlinedocs/gcc/Vector-Extensions.html 1482 if (E->isComparisonOp()) { 1483 if (!this->emitPrimCast(PT_Bool, ResultElemT, VecTy->getElementType(), E)) 1484 return false; 1485 if (!this->emitNeg(ResultElemT, E)) 1486 return false; 1487 } 1488 1489 // If we performed an integer promotion, we need to cast the compute result 1490 // into result vector element type. 1491 if (NeedIntPromot && 1492 !this->emitPrimCast(PromotT, ResultElemT, VecTy->getElementType(), E)) 1493 return false; 1494 1495 // Initialize array element with the value we just computed. 1496 if (!this->emitInitElem(ResultElemT, I, E)) 1497 return false; 1498 } 1499 1500 if (DiscardResult && E->isCompoundAssignmentOp() && !this->emitPopPtr(E)) 1501 return false; 1502 return true; 1503 } 1504 1505 template <class Emitter> 1506 bool Compiler<Emitter>::VisitFixedPointBinOp(const BinaryOperator *E) { 1507 const Expr *LHS = E->getLHS(); 1508 const Expr *RHS = E->getRHS(); 1509 1510 assert(LHS->getType()->isFixedPointType() || 1511 RHS->getType()->isFixedPointType()); 1512 1513 auto LHSSema = Ctx.getASTContext().getFixedPointSemantics(LHS->getType()); 1514 auto RHSSema = Ctx.getASTContext().getFixedPointSemantics(RHS->getType()); 1515 1516 if (!this->visit(LHS)) 1517 return false; 1518 if (!LHS->getType()->isFixedPointType()) { 1519 uint32_t I; 1520 std::memcpy(&I, &LHSSema, sizeof(llvm::FixedPointSemantics)); 1521 if (!this->emitCastIntegralFixedPoint(classifyPrim(LHS->getType()), I, E)) 1522 return false; 1523 } 1524 1525 if (!this->visit(RHS)) 1526 return false; 1527 if (!RHS->getType()->isFixedPointType()) { 1528 uint32_t I; 1529 std::memcpy(&I, &RHSSema, sizeof(llvm::FixedPointSemantics)); 1530 if (!this->emitCastIntegralFixedPoint(classifyPrim(RHS->getType()), I, E)) 1531 return false; 1532 } 1533 1534 // Convert the result to the target semantics. 1535 auto ConvertResult = [&](bool R) -> bool { 1536 if (!R) 1537 return false; 1538 auto ResultSema = Ctx.getASTContext().getFixedPointSemantics(E->getType()); 1539 auto CommonSema = LHSSema.getCommonSemantics(RHSSema); 1540 if (ResultSema != CommonSema) { 1541 uint32_t I; 1542 std::memcpy(&I, &ResultSema, sizeof(ResultSema)); 1543 return this->emitCastFixedPoint(I, E); 1544 } 1545 return true; 1546 }; 1547 1548 auto MaybeCastToBool = [&](bool Result) { 1549 if (!Result) 1550 return false; 1551 PrimType T = classifyPrim(E); 1552 if (DiscardResult) 1553 return this->emitPop(T, E); 1554 if (T != PT_Bool) 1555 return this->emitCast(PT_Bool, T, E); 1556 return true; 1557 }; 1558 1559 switch (E->getOpcode()) { 1560 case BO_EQ: 1561 return MaybeCastToBool(this->emitEQFixedPoint(E)); 1562 case BO_NE: 1563 return MaybeCastToBool(this->emitNEFixedPoint(E)); 1564 case BO_LT: 1565 return MaybeCastToBool(this->emitLTFixedPoint(E)); 1566 case BO_LE: 1567 return MaybeCastToBool(this->emitLEFixedPoint(E)); 1568 case BO_GT: 1569 return MaybeCastToBool(this->emitGTFixedPoint(E)); 1570 case BO_GE: 1571 return MaybeCastToBool(this->emitGEFixedPoint(E)); 1572 case BO_Add: 1573 return ConvertResult(this->emitAddFixedPoint(E)); 1574 case BO_Sub: 1575 return ConvertResult(this->emitSubFixedPoint(E)); 1576 case BO_Mul: 1577 return ConvertResult(this->emitMulFixedPoint(E)); 1578 case BO_Div: 1579 return ConvertResult(this->emitDivFixedPoint(E)); 1580 case BO_Shl: 1581 return ConvertResult(this->emitShiftFixedPoint(/*Left=*/true, E)); 1582 case BO_Shr: 1583 return ConvertResult(this->emitShiftFixedPoint(/*Left=*/false, E)); 1584 1585 default: 1586 return this->emitInvalid(E); 1587 } 1588 1589 llvm_unreachable("unhandled binop opcode"); 1590 } 1591 1592 template <class Emitter> 1593 bool Compiler<Emitter>::VisitFixedPointUnaryOperator(const UnaryOperator *E) { 1594 const Expr *SubExpr = E->getSubExpr(); 1595 assert(SubExpr->getType()->isFixedPointType()); 1596 1597 switch (E->getOpcode()) { 1598 case UO_Plus: 1599 return this->delegate(SubExpr); 1600 case UO_Minus: 1601 if (!this->visit(SubExpr)) 1602 return false; 1603 return this->emitNegFixedPoint(E); 1604 default: 1605 return false; 1606 } 1607 1608 llvm_unreachable("Unhandled unary opcode"); 1609 } 1610 1611 template <class Emitter> 1612 bool Compiler<Emitter>::VisitImplicitValueInitExpr( 1613 const ImplicitValueInitExpr *E) { 1614 QualType QT = E->getType(); 1615 1616 if (std::optional<PrimType> T = classify(QT)) 1617 return this->visitZeroInitializer(*T, QT, E); 1618 1619 if (QT->isRecordType()) { 1620 const RecordDecl *RD = QT->getAsRecordDecl(); 1621 assert(RD); 1622 if (RD->isInvalidDecl()) 1623 return false; 1624 1625 if (const auto *CXXRD = dyn_cast<CXXRecordDecl>(RD); 1626 CXXRD && CXXRD->getNumVBases() > 0) { 1627 // TODO: Diagnose. 1628 return false; 1629 } 1630 1631 const Record *R = getRecord(QT); 1632 if (!R) 1633 return false; 1634 1635 assert(Initializing); 1636 return this->visitZeroRecordInitializer(R, E); 1637 } 1638 1639 if (QT->isIncompleteArrayType()) 1640 return true; 1641 1642 if (QT->isArrayType()) { 1643 const ArrayType *AT = QT->getAsArrayTypeUnsafe(); 1644 assert(AT); 1645 const auto *CAT = cast<ConstantArrayType>(AT); 1646 size_t NumElems = CAT->getZExtSize(); 1647 PrimType ElemT = classifyPrim(CAT->getElementType()); 1648 1649 for (size_t I = 0; I != NumElems; ++I) { 1650 if (!this->visitZeroInitializer(ElemT, CAT->getElementType(), E)) 1651 return false; 1652 if (!this->emitInitElem(ElemT, I, E)) 1653 return false; 1654 } 1655 1656 return true; 1657 } 1658 1659 if (const auto *ComplexTy = E->getType()->getAs<ComplexType>()) { 1660 assert(Initializing); 1661 QualType ElemQT = ComplexTy->getElementType(); 1662 PrimType ElemT = classifyPrim(ElemQT); 1663 for (unsigned I = 0; I < 2; ++I) { 1664 if (!this->visitZeroInitializer(ElemT, ElemQT, E)) 1665 return false; 1666 if (!this->emitInitElem(ElemT, I, E)) 1667 return false; 1668 } 1669 return true; 1670 } 1671 1672 if (const auto *VecT = E->getType()->getAs<VectorType>()) { 1673 unsigned NumVecElements = VecT->getNumElements(); 1674 QualType ElemQT = VecT->getElementType(); 1675 PrimType ElemT = classifyPrim(ElemQT); 1676 1677 for (unsigned I = 0; I < NumVecElements; ++I) { 1678 if (!this->visitZeroInitializer(ElemT, ElemQT, E)) 1679 return false; 1680 if (!this->emitInitElem(ElemT, I, E)) 1681 return false; 1682 } 1683 return true; 1684 } 1685 1686 return false; 1687 } 1688 1689 template <class Emitter> 1690 bool Compiler<Emitter>::VisitArraySubscriptExpr(const ArraySubscriptExpr *E) { 1691 const Expr *LHS = E->getLHS(); 1692 const Expr *RHS = E->getRHS(); 1693 const Expr *Index = E->getIdx(); 1694 1695 if (DiscardResult) 1696 return this->discard(LHS) && this->discard(RHS); 1697 1698 // C++17's rules require us to evaluate the LHS first, regardless of which 1699 // side is the base. 1700 bool Success = true; 1701 for (const Expr *SubExpr : {LHS, RHS}) { 1702 if (!this->visit(SubExpr)) 1703 Success = false; 1704 } 1705 1706 if (!Success) 1707 return false; 1708 1709 PrimType IndexT = classifyPrim(Index->getType()); 1710 // If the index is first, we need to change that. 1711 if (LHS == Index) { 1712 if (!this->emitFlip(PT_Ptr, IndexT, E)) 1713 return false; 1714 } 1715 1716 return this->emitArrayElemPtrPop(IndexT, E); 1717 } 1718 1719 template <class Emitter> 1720 bool Compiler<Emitter>::visitInitList(ArrayRef<const Expr *> Inits, 1721 const Expr *ArrayFiller, const Expr *E) { 1722 QualType QT = E->getType(); 1723 if (const auto *AT = QT->getAs<AtomicType>()) 1724 QT = AT->getValueType(); 1725 1726 if (QT->isVoidType()) { 1727 if (Inits.size() == 0) 1728 return true; 1729 return this->emitInvalid(E); 1730 } 1731 1732 // Handle discarding first. 1733 if (DiscardResult) { 1734 for (const Expr *Init : Inits) { 1735 if (!this->discard(Init)) 1736 return false; 1737 } 1738 return true; 1739 } 1740 1741 // Primitive values. 1742 if (std::optional<PrimType> T = classify(QT)) { 1743 assert(!DiscardResult); 1744 if (Inits.size() == 0) 1745 return this->visitZeroInitializer(*T, QT, E); 1746 assert(Inits.size() == 1); 1747 return this->delegate(Inits[0]); 1748 } 1749 1750 if (QT->isRecordType()) { 1751 const Record *R = getRecord(QT); 1752 1753 if (Inits.size() == 1 && E->getType() == Inits[0]->getType()) 1754 return this->delegate(Inits[0]); 1755 1756 auto initPrimitiveField = [=](const Record::Field *FieldToInit, 1757 const Expr *Init, PrimType T) -> bool { 1758 InitStackScope<Emitter> ISS(this, isa<CXXDefaultInitExpr>(Init)); 1759 if (!this->visit(Init)) 1760 return false; 1761 1762 if (FieldToInit->isBitField()) 1763 return this->emitInitBitField(T, FieldToInit, E); 1764 return this->emitInitField(T, FieldToInit->Offset, E); 1765 }; 1766 1767 auto initCompositeField = [=](const Record::Field *FieldToInit, 1768 const Expr *Init) -> bool { 1769 InitStackScope<Emitter> ISS(this, isa<CXXDefaultInitExpr>(Init)); 1770 InitLinkScope<Emitter> ILS(this, InitLink::Field(FieldToInit->Offset)); 1771 // Non-primitive case. Get a pointer to the field-to-initialize 1772 // on the stack and recurse into visitInitializer(). 1773 if (!this->emitGetPtrField(FieldToInit->Offset, Init)) 1774 return false; 1775 if (!this->visitInitializer(Init)) 1776 return false; 1777 return this->emitPopPtr(E); 1778 }; 1779 1780 if (R->isUnion()) { 1781 if (Inits.size() == 0) { 1782 if (!this->visitZeroRecordInitializer(R, E)) 1783 return false; 1784 } else { 1785 const Expr *Init = Inits[0]; 1786 const FieldDecl *FToInit = nullptr; 1787 if (const auto *ILE = dyn_cast<InitListExpr>(E)) 1788 FToInit = ILE->getInitializedFieldInUnion(); 1789 else 1790 FToInit = cast<CXXParenListInitExpr>(E)->getInitializedFieldInUnion(); 1791 1792 const Record::Field *FieldToInit = R->getField(FToInit); 1793 if (std::optional<PrimType> T = classify(Init)) { 1794 if (!initPrimitiveField(FieldToInit, Init, *T)) 1795 return false; 1796 } else { 1797 if (!initCompositeField(FieldToInit, Init)) 1798 return false; 1799 } 1800 } 1801 return this->emitFinishInit(E); 1802 } 1803 1804 assert(!R->isUnion()); 1805 unsigned InitIndex = 0; 1806 for (const Expr *Init : Inits) { 1807 // Skip unnamed bitfields. 1808 while (InitIndex < R->getNumFields() && 1809 R->getField(InitIndex)->Decl->isUnnamedBitField()) 1810 ++InitIndex; 1811 1812 if (std::optional<PrimType> T = classify(Init)) { 1813 const Record::Field *FieldToInit = R->getField(InitIndex); 1814 if (!initPrimitiveField(FieldToInit, Init, *T)) 1815 return false; 1816 ++InitIndex; 1817 } else { 1818 // Initializer for a direct base class. 1819 if (const Record::Base *B = R->getBase(Init->getType())) { 1820 if (!this->emitGetPtrBase(B->Offset, Init)) 1821 return false; 1822 1823 if (!this->visitInitializer(Init)) 1824 return false; 1825 1826 if (!this->emitFinishInitPop(E)) 1827 return false; 1828 // Base initializers don't increase InitIndex, since they don't count 1829 // into the Record's fields. 1830 } else { 1831 const Record::Field *FieldToInit = R->getField(InitIndex); 1832 if (!initCompositeField(FieldToInit, Init)) 1833 return false; 1834 ++InitIndex; 1835 } 1836 } 1837 } 1838 return this->emitFinishInit(E); 1839 } 1840 1841 if (QT->isArrayType()) { 1842 if (Inits.size() == 1 && QT == Inits[0]->getType()) 1843 return this->delegate(Inits[0]); 1844 1845 unsigned ElementIndex = 0; 1846 for (const Expr *Init : Inits) { 1847 if (const auto *EmbedS = 1848 dyn_cast<EmbedExpr>(Init->IgnoreParenImpCasts())) { 1849 PrimType TargetT = classifyPrim(Init->getType()); 1850 1851 auto Eval = [&](const Expr *Init, unsigned ElemIndex) { 1852 PrimType InitT = classifyPrim(Init->getType()); 1853 if (!this->visit(Init)) 1854 return false; 1855 if (InitT != TargetT) { 1856 if (!this->emitCast(InitT, TargetT, E)) 1857 return false; 1858 } 1859 return this->emitInitElem(TargetT, ElemIndex, Init); 1860 }; 1861 if (!EmbedS->doForEachDataElement(Eval, ElementIndex)) 1862 return false; 1863 } else { 1864 if (!this->visitArrayElemInit(ElementIndex, Init)) 1865 return false; 1866 ++ElementIndex; 1867 } 1868 } 1869 1870 // Expand the filler expression. 1871 // FIXME: This should go away. 1872 if (ArrayFiller) { 1873 const ConstantArrayType *CAT = 1874 Ctx.getASTContext().getAsConstantArrayType(QT); 1875 uint64_t NumElems = CAT->getZExtSize(); 1876 1877 for (; ElementIndex != NumElems; ++ElementIndex) { 1878 if (!this->visitArrayElemInit(ElementIndex, ArrayFiller)) 1879 return false; 1880 } 1881 } 1882 1883 return this->emitFinishInit(E); 1884 } 1885 1886 if (const auto *ComplexTy = QT->getAs<ComplexType>()) { 1887 unsigned NumInits = Inits.size(); 1888 1889 if (NumInits == 1) 1890 return this->delegate(Inits[0]); 1891 1892 QualType ElemQT = ComplexTy->getElementType(); 1893 PrimType ElemT = classifyPrim(ElemQT); 1894 if (NumInits == 0) { 1895 // Zero-initialize both elements. 1896 for (unsigned I = 0; I < 2; ++I) { 1897 if (!this->visitZeroInitializer(ElemT, ElemQT, E)) 1898 return false; 1899 if (!this->emitInitElem(ElemT, I, E)) 1900 return false; 1901 } 1902 } else if (NumInits == 2) { 1903 unsigned InitIndex = 0; 1904 for (const Expr *Init : Inits) { 1905 if (!this->visit(Init)) 1906 return false; 1907 1908 if (!this->emitInitElem(ElemT, InitIndex, E)) 1909 return false; 1910 ++InitIndex; 1911 } 1912 } 1913 return true; 1914 } 1915 1916 if (const auto *VecT = QT->getAs<VectorType>()) { 1917 unsigned NumVecElements = VecT->getNumElements(); 1918 assert(NumVecElements >= Inits.size()); 1919 1920 QualType ElemQT = VecT->getElementType(); 1921 PrimType ElemT = classifyPrim(ElemQT); 1922 1923 // All initializer elements. 1924 unsigned InitIndex = 0; 1925 for (const Expr *Init : Inits) { 1926 if (!this->visit(Init)) 1927 return false; 1928 1929 // If the initializer is of vector type itself, we have to deconstruct 1930 // that and initialize all the target fields from the initializer fields. 1931 if (const auto *InitVecT = Init->getType()->getAs<VectorType>()) { 1932 if (!this->emitCopyArray(ElemT, 0, InitIndex, 1933 InitVecT->getNumElements(), E)) 1934 return false; 1935 InitIndex += InitVecT->getNumElements(); 1936 } else { 1937 if (!this->emitInitElem(ElemT, InitIndex, E)) 1938 return false; 1939 ++InitIndex; 1940 } 1941 } 1942 1943 assert(InitIndex <= NumVecElements); 1944 1945 // Fill the rest with zeroes. 1946 for (; InitIndex != NumVecElements; ++InitIndex) { 1947 if (!this->visitZeroInitializer(ElemT, ElemQT, E)) 1948 return false; 1949 if (!this->emitInitElem(ElemT, InitIndex, E)) 1950 return false; 1951 } 1952 return true; 1953 } 1954 1955 return false; 1956 } 1957 1958 /// Pointer to the array(not the element!) must be on the stack when calling 1959 /// this. 1960 template <class Emitter> 1961 bool Compiler<Emitter>::visitArrayElemInit(unsigned ElemIndex, 1962 const Expr *Init) { 1963 if (std::optional<PrimType> T = classify(Init->getType())) { 1964 // Visit the primitive element like normal. 1965 if (!this->visit(Init)) 1966 return false; 1967 return this->emitInitElem(*T, ElemIndex, Init); 1968 } 1969 1970 InitLinkScope<Emitter> ILS(this, InitLink::Elem(ElemIndex)); 1971 // Advance the pointer currently on the stack to the given 1972 // dimension. 1973 if (!this->emitConstUint32(ElemIndex, Init)) 1974 return false; 1975 if (!this->emitArrayElemPtrUint32(Init)) 1976 return false; 1977 if (!this->visitInitializer(Init)) 1978 return false; 1979 return this->emitFinishInitPop(Init); 1980 } 1981 1982 template <class Emitter> 1983 bool Compiler<Emitter>::VisitInitListExpr(const InitListExpr *E) { 1984 return this->visitInitList(E->inits(), E->getArrayFiller(), E); 1985 } 1986 1987 template <class Emitter> 1988 bool Compiler<Emitter>::VisitCXXParenListInitExpr( 1989 const CXXParenListInitExpr *E) { 1990 return this->visitInitList(E->getInitExprs(), E->getArrayFiller(), E); 1991 } 1992 1993 template <class Emitter> 1994 bool Compiler<Emitter>::VisitSubstNonTypeTemplateParmExpr( 1995 const SubstNonTypeTemplateParmExpr *E) { 1996 return this->delegate(E->getReplacement()); 1997 } 1998 1999 template <class Emitter> 2000 bool Compiler<Emitter>::VisitConstantExpr(const ConstantExpr *E) { 2001 std::optional<PrimType> T = classify(E->getType()); 2002 if (T && E->hasAPValueResult()) { 2003 // Try to emit the APValue directly, without visiting the subexpr. 2004 // This will only fail if we can't emit the APValue, so won't emit any 2005 // diagnostics or any double values. 2006 if (DiscardResult) 2007 return true; 2008 2009 if (this->visitAPValue(E->getAPValueResult(), *T, E)) 2010 return true; 2011 } 2012 return this->delegate(E->getSubExpr()); 2013 } 2014 2015 template <class Emitter> 2016 bool Compiler<Emitter>::VisitEmbedExpr(const EmbedExpr *E) { 2017 auto It = E->begin(); 2018 return this->visit(*It); 2019 } 2020 2021 static CharUnits AlignOfType(QualType T, const ASTContext &ASTCtx, 2022 UnaryExprOrTypeTrait Kind) { 2023 bool AlignOfReturnsPreferred = 2024 ASTCtx.getLangOpts().getClangABICompat() <= LangOptions::ClangABI::Ver7; 2025 2026 // C++ [expr.alignof]p3: 2027 // When alignof is applied to a reference type, the result is the 2028 // alignment of the referenced type. 2029 if (const auto *Ref = T->getAs<ReferenceType>()) 2030 T = Ref->getPointeeType(); 2031 2032 if (T.getQualifiers().hasUnaligned()) 2033 return CharUnits::One(); 2034 2035 // __alignof is defined to return the preferred alignment. 2036 // Before 8, clang returned the preferred alignment for alignof and 2037 // _Alignof as well. 2038 if (Kind == UETT_PreferredAlignOf || AlignOfReturnsPreferred) 2039 return ASTCtx.toCharUnitsFromBits(ASTCtx.getPreferredTypeAlign(T)); 2040 2041 return ASTCtx.getTypeAlignInChars(T); 2042 } 2043 2044 template <class Emitter> 2045 bool Compiler<Emitter>::VisitUnaryExprOrTypeTraitExpr( 2046 const UnaryExprOrTypeTraitExpr *E) { 2047 UnaryExprOrTypeTrait Kind = E->getKind(); 2048 const ASTContext &ASTCtx = Ctx.getASTContext(); 2049 2050 if (Kind == UETT_SizeOf || Kind == UETT_DataSizeOf) { 2051 QualType ArgType = E->getTypeOfArgument(); 2052 2053 // C++ [expr.sizeof]p2: "When applied to a reference or a reference type, 2054 // the result is the size of the referenced type." 2055 if (const auto *Ref = ArgType->getAs<ReferenceType>()) 2056 ArgType = Ref->getPointeeType(); 2057 2058 CharUnits Size; 2059 if (ArgType->isVoidType() || ArgType->isFunctionType()) 2060 Size = CharUnits::One(); 2061 else { 2062 if (ArgType->isDependentType() || !ArgType->isConstantSizeType()) 2063 return false; 2064 2065 if (Kind == UETT_SizeOf) 2066 Size = ASTCtx.getTypeSizeInChars(ArgType); 2067 else 2068 Size = ASTCtx.getTypeInfoDataSizeInChars(ArgType).Width; 2069 } 2070 2071 if (DiscardResult) 2072 return true; 2073 2074 return this->emitConst(Size.getQuantity(), E); 2075 } 2076 2077 if (Kind == UETT_AlignOf || Kind == UETT_PreferredAlignOf) { 2078 CharUnits Size; 2079 2080 if (E->isArgumentType()) { 2081 QualType ArgType = E->getTypeOfArgument(); 2082 2083 Size = AlignOfType(ArgType, ASTCtx, Kind); 2084 } else { 2085 // Argument is an expression, not a type. 2086 const Expr *Arg = E->getArgumentExpr()->IgnoreParens(); 2087 2088 // The kinds of expressions that we have special-case logic here for 2089 // should be kept up to date with the special checks for those 2090 // expressions in Sema. 2091 2092 // alignof decl is always accepted, even if it doesn't make sense: we 2093 // default to 1 in those cases. 2094 if (const auto *DRE = dyn_cast<DeclRefExpr>(Arg)) 2095 Size = ASTCtx.getDeclAlign(DRE->getDecl(), 2096 /*RefAsPointee*/ true); 2097 else if (const auto *ME = dyn_cast<MemberExpr>(Arg)) 2098 Size = ASTCtx.getDeclAlign(ME->getMemberDecl(), 2099 /*RefAsPointee*/ true); 2100 else 2101 Size = AlignOfType(Arg->getType(), ASTCtx, Kind); 2102 } 2103 2104 if (DiscardResult) 2105 return true; 2106 2107 return this->emitConst(Size.getQuantity(), E); 2108 } 2109 2110 if (Kind == UETT_VectorElements) { 2111 if (const auto *VT = E->getTypeOfArgument()->getAs<VectorType>()) 2112 return this->emitConst(VT->getNumElements(), E); 2113 assert(E->getTypeOfArgument()->isSizelessVectorType()); 2114 return this->emitSizelessVectorElementSize(E); 2115 } 2116 2117 if (Kind == UETT_VecStep) { 2118 if (const auto *VT = E->getTypeOfArgument()->getAs<VectorType>()) { 2119 unsigned N = VT->getNumElements(); 2120 2121 // The vec_step built-in functions that take a 3-component 2122 // vector return 4. (OpenCL 1.1 spec 6.11.12) 2123 if (N == 3) 2124 N = 4; 2125 2126 return this->emitConst(N, E); 2127 } 2128 return this->emitConst(1, E); 2129 } 2130 2131 if (Kind == UETT_OpenMPRequiredSimdAlign) { 2132 assert(E->isArgumentType()); 2133 unsigned Bits = ASTCtx.getOpenMPDefaultSimdAlign(E->getArgumentType()); 2134 2135 return this->emitConst(ASTCtx.toCharUnitsFromBits(Bits).getQuantity(), E); 2136 } 2137 2138 return false; 2139 } 2140 2141 template <class Emitter> 2142 bool Compiler<Emitter>::VisitMemberExpr(const MemberExpr *E) { 2143 // 'Base.Member' 2144 const Expr *Base = E->getBase(); 2145 const ValueDecl *Member = E->getMemberDecl(); 2146 2147 if (DiscardResult) 2148 return this->discard(Base); 2149 2150 // MemberExprs are almost always lvalues, in which case we don't need to 2151 // do the load. But sometimes they aren't. 2152 const auto maybeLoadValue = [&]() -> bool { 2153 if (E->isGLValue()) 2154 return true; 2155 if (std::optional<PrimType> T = classify(E)) 2156 return this->emitLoadPop(*T, E); 2157 return false; 2158 }; 2159 2160 if (const auto *VD = dyn_cast<VarDecl>(Member)) { 2161 // I am almost confident in saying that a var decl must be static 2162 // and therefore registered as a global variable. But this will probably 2163 // turn out to be wrong some time in the future, as always. 2164 if (auto GlobalIndex = P.getGlobal(VD)) 2165 return this->emitGetPtrGlobal(*GlobalIndex, E) && maybeLoadValue(); 2166 return false; 2167 } 2168 2169 if (!isa<FieldDecl>(Member)) { 2170 if (!this->discard(Base) && !this->emitSideEffect(E)) 2171 return false; 2172 2173 return this->visitDeclRef(Member, E); 2174 } 2175 2176 if (Initializing) { 2177 if (!this->delegate(Base)) 2178 return false; 2179 } else { 2180 if (!this->visit(Base)) 2181 return false; 2182 } 2183 2184 // Base above gives us a pointer on the stack. 2185 const auto *FD = cast<FieldDecl>(Member); 2186 const RecordDecl *RD = FD->getParent(); 2187 const Record *R = getRecord(RD); 2188 if (!R) 2189 return false; 2190 const Record::Field *F = R->getField(FD); 2191 // Leave a pointer to the field on the stack. 2192 if (F->Decl->getType()->isReferenceType()) 2193 return this->emitGetFieldPop(PT_Ptr, F->Offset, E) && maybeLoadValue(); 2194 return this->emitGetPtrFieldPop(F->Offset, E) && maybeLoadValue(); 2195 } 2196 2197 template <class Emitter> 2198 bool Compiler<Emitter>::VisitArrayInitIndexExpr(const ArrayInitIndexExpr *E) { 2199 // ArrayIndex might not be set if a ArrayInitIndexExpr is being evaluated 2200 // stand-alone, e.g. via EvaluateAsInt(). 2201 if (!ArrayIndex) 2202 return false; 2203 return this->emitConst(*ArrayIndex, E); 2204 } 2205 2206 template <class Emitter> 2207 bool Compiler<Emitter>::VisitArrayInitLoopExpr(const ArrayInitLoopExpr *E) { 2208 assert(Initializing); 2209 assert(!DiscardResult); 2210 2211 // We visit the common opaque expression here once so we have its value 2212 // cached. 2213 if (!this->discard(E->getCommonExpr())) 2214 return false; 2215 2216 // TODO: This compiles to quite a lot of bytecode if the array is larger. 2217 // Investigate compiling this to a loop. 2218 const Expr *SubExpr = E->getSubExpr(); 2219 size_t Size = E->getArraySize().getZExtValue(); 2220 2221 // So, every iteration, we execute an assignment here 2222 // where the LHS is on the stack (the target array) 2223 // and the RHS is our SubExpr. 2224 for (size_t I = 0; I != Size; ++I) { 2225 ArrayIndexScope<Emitter> IndexScope(this, I); 2226 BlockScope<Emitter> BS(this); 2227 2228 if (!this->visitArrayElemInit(I, SubExpr)) 2229 return false; 2230 if (!BS.destroyLocals()) 2231 return false; 2232 } 2233 return true; 2234 } 2235 2236 template <class Emitter> 2237 bool Compiler<Emitter>::VisitOpaqueValueExpr(const OpaqueValueExpr *E) { 2238 const Expr *SourceExpr = E->getSourceExpr(); 2239 if (!SourceExpr) 2240 return false; 2241 2242 if (Initializing) 2243 return this->visitInitializer(SourceExpr); 2244 2245 PrimType SubExprT = classify(SourceExpr).value_or(PT_Ptr); 2246 if (auto It = OpaqueExprs.find(E); It != OpaqueExprs.end()) 2247 return this->emitGetLocal(SubExprT, It->second, E); 2248 2249 if (!this->visit(SourceExpr)) 2250 return false; 2251 2252 // At this point we either have the evaluated source expression or a pointer 2253 // to an object on the stack. We want to create a local variable that stores 2254 // this value. 2255 unsigned LocalIndex = allocateLocalPrimitive(E, SubExprT, /*IsConst=*/true); 2256 if (!this->emitSetLocal(SubExprT, LocalIndex, E)) 2257 return false; 2258 2259 // Here the local variable is created but the value is removed from the stack, 2260 // so we put it back if the caller needs it. 2261 if (!DiscardResult) { 2262 if (!this->emitGetLocal(SubExprT, LocalIndex, E)) 2263 return false; 2264 } 2265 2266 // This is cleaned up when the local variable is destroyed. 2267 OpaqueExprs.insert({E, LocalIndex}); 2268 2269 return true; 2270 } 2271 2272 template <class Emitter> 2273 bool Compiler<Emitter>::VisitAbstractConditionalOperator( 2274 const AbstractConditionalOperator *E) { 2275 const Expr *Condition = E->getCond(); 2276 const Expr *TrueExpr = E->getTrueExpr(); 2277 const Expr *FalseExpr = E->getFalseExpr(); 2278 2279 LabelTy LabelEnd = this->getLabel(); // Label after the operator. 2280 LabelTy LabelFalse = this->getLabel(); // Label for the false expr. 2281 2282 if (!this->visitBool(Condition)) 2283 return false; 2284 2285 if (!this->jumpFalse(LabelFalse)) 2286 return false; 2287 2288 { 2289 LocalScope<Emitter> S(this); 2290 if (!this->delegate(TrueExpr)) 2291 return false; 2292 if (!S.destroyLocals()) 2293 return false; 2294 } 2295 2296 if (!this->jump(LabelEnd)) 2297 return false; 2298 2299 this->emitLabel(LabelFalse); 2300 2301 { 2302 LocalScope<Emitter> S(this); 2303 if (!this->delegate(FalseExpr)) 2304 return false; 2305 if (!S.destroyLocals()) 2306 return false; 2307 } 2308 2309 this->fallthrough(LabelEnd); 2310 this->emitLabel(LabelEnd); 2311 2312 return true; 2313 } 2314 2315 template <class Emitter> 2316 bool Compiler<Emitter>::VisitStringLiteral(const StringLiteral *E) { 2317 if (DiscardResult) 2318 return true; 2319 2320 if (!Initializing) { 2321 unsigned StringIndex = P.createGlobalString(E); 2322 return this->emitGetPtrGlobal(StringIndex, E); 2323 } 2324 2325 // We are initializing an array on the stack. 2326 const ConstantArrayType *CAT = 2327 Ctx.getASTContext().getAsConstantArrayType(E->getType()); 2328 assert(CAT && "a string literal that's not a constant array?"); 2329 2330 // If the initializer string is too long, a diagnostic has already been 2331 // emitted. Read only the array length from the string literal. 2332 unsigned ArraySize = CAT->getZExtSize(); 2333 unsigned N = std::min(ArraySize, E->getLength()); 2334 size_t CharWidth = E->getCharByteWidth(); 2335 2336 for (unsigned I = 0; I != N; ++I) { 2337 uint32_t CodeUnit = E->getCodeUnit(I); 2338 2339 if (CharWidth == 1) { 2340 this->emitConstSint8(CodeUnit, E); 2341 this->emitInitElemSint8(I, E); 2342 } else if (CharWidth == 2) { 2343 this->emitConstUint16(CodeUnit, E); 2344 this->emitInitElemUint16(I, E); 2345 } else if (CharWidth == 4) { 2346 this->emitConstUint32(CodeUnit, E); 2347 this->emitInitElemUint32(I, E); 2348 } else { 2349 llvm_unreachable("unsupported character width"); 2350 } 2351 } 2352 2353 // Fill up the rest of the char array with NUL bytes. 2354 for (unsigned I = N; I != ArraySize; ++I) { 2355 if (CharWidth == 1) { 2356 this->emitConstSint8(0, E); 2357 this->emitInitElemSint8(I, E); 2358 } else if (CharWidth == 2) { 2359 this->emitConstUint16(0, E); 2360 this->emitInitElemUint16(I, E); 2361 } else if (CharWidth == 4) { 2362 this->emitConstUint32(0, E); 2363 this->emitInitElemUint32(I, E); 2364 } else { 2365 llvm_unreachable("unsupported character width"); 2366 } 2367 } 2368 2369 return true; 2370 } 2371 2372 template <class Emitter> 2373 bool Compiler<Emitter>::VisitObjCStringLiteral(const ObjCStringLiteral *E) { 2374 if (std::optional<unsigned> I = P.getOrCreateDummy(E)) 2375 return this->emitGetPtrGlobal(*I, E); 2376 return false; 2377 } 2378 2379 template <class Emitter> 2380 bool Compiler<Emitter>::VisitObjCEncodeExpr(const ObjCEncodeExpr *E) { 2381 auto &A = Ctx.getASTContext(); 2382 std::string Str; 2383 A.getObjCEncodingForType(E->getEncodedType(), Str); 2384 StringLiteral *SL = 2385 StringLiteral::Create(A, Str, StringLiteralKind::Ordinary, 2386 /*Pascal=*/false, E->getType(), E->getAtLoc()); 2387 return this->delegate(SL); 2388 } 2389 2390 template <class Emitter> 2391 bool Compiler<Emitter>::VisitSYCLUniqueStableNameExpr( 2392 const SYCLUniqueStableNameExpr *E) { 2393 if (DiscardResult) 2394 return true; 2395 2396 assert(!Initializing); 2397 2398 auto &A = Ctx.getASTContext(); 2399 std::string ResultStr = E->ComputeName(A); 2400 2401 QualType CharTy = A.CharTy.withConst(); 2402 APInt Size(A.getTypeSize(A.getSizeType()), ResultStr.size() + 1); 2403 QualType ArrayTy = A.getConstantArrayType(CharTy, Size, nullptr, 2404 ArraySizeModifier::Normal, 0); 2405 2406 StringLiteral *SL = 2407 StringLiteral::Create(A, ResultStr, StringLiteralKind::Ordinary, 2408 /*Pascal=*/false, ArrayTy, E->getLocation()); 2409 2410 unsigned StringIndex = P.createGlobalString(SL); 2411 return this->emitGetPtrGlobal(StringIndex, E); 2412 } 2413 2414 template <class Emitter> 2415 bool Compiler<Emitter>::VisitCharacterLiteral(const CharacterLiteral *E) { 2416 if (DiscardResult) 2417 return true; 2418 return this->emitConst(E->getValue(), E); 2419 } 2420 2421 template <class Emitter> 2422 bool Compiler<Emitter>::VisitFloatCompoundAssignOperator( 2423 const CompoundAssignOperator *E) { 2424 2425 const Expr *LHS = E->getLHS(); 2426 const Expr *RHS = E->getRHS(); 2427 QualType LHSType = LHS->getType(); 2428 QualType LHSComputationType = E->getComputationLHSType(); 2429 QualType ResultType = E->getComputationResultType(); 2430 std::optional<PrimType> LT = classify(LHSComputationType); 2431 std::optional<PrimType> RT = classify(ResultType); 2432 2433 assert(ResultType->isFloatingType()); 2434 2435 if (!LT || !RT) 2436 return false; 2437 2438 PrimType LHST = classifyPrim(LHSType); 2439 2440 // C++17 onwards require that we evaluate the RHS first. 2441 // Compute RHS and save it in a temporary variable so we can 2442 // load it again later. 2443 if (!visit(RHS)) 2444 return false; 2445 2446 unsigned TempOffset = this->allocateLocalPrimitive(E, *RT, /*IsConst=*/true); 2447 if (!this->emitSetLocal(*RT, TempOffset, E)) 2448 return false; 2449 2450 // First, visit LHS. 2451 if (!visit(LHS)) 2452 return false; 2453 if (!this->emitLoad(LHST, E)) 2454 return false; 2455 2456 // If necessary, convert LHS to its computation type. 2457 if (!this->emitPrimCast(LHST, classifyPrim(LHSComputationType), 2458 LHSComputationType, E)) 2459 return false; 2460 2461 // Now load RHS. 2462 if (!this->emitGetLocal(*RT, TempOffset, E)) 2463 return false; 2464 2465 switch (E->getOpcode()) { 2466 case BO_AddAssign: 2467 if (!this->emitAddf(getFPOptions(E), E)) 2468 return false; 2469 break; 2470 case BO_SubAssign: 2471 if (!this->emitSubf(getFPOptions(E), E)) 2472 return false; 2473 break; 2474 case BO_MulAssign: 2475 if (!this->emitMulf(getFPOptions(E), E)) 2476 return false; 2477 break; 2478 case BO_DivAssign: 2479 if (!this->emitDivf(getFPOptions(E), E)) 2480 return false; 2481 break; 2482 default: 2483 return false; 2484 } 2485 2486 if (!this->emitPrimCast(classifyPrim(ResultType), LHST, LHS->getType(), E)) 2487 return false; 2488 2489 if (DiscardResult) 2490 return this->emitStorePop(LHST, E); 2491 return this->emitStore(LHST, E); 2492 } 2493 2494 template <class Emitter> 2495 bool Compiler<Emitter>::VisitPointerCompoundAssignOperator( 2496 const CompoundAssignOperator *E) { 2497 BinaryOperatorKind Op = E->getOpcode(); 2498 const Expr *LHS = E->getLHS(); 2499 const Expr *RHS = E->getRHS(); 2500 std::optional<PrimType> LT = classify(LHS->getType()); 2501 std::optional<PrimType> RT = classify(RHS->getType()); 2502 2503 if (Op != BO_AddAssign && Op != BO_SubAssign) 2504 return false; 2505 2506 if (!LT || !RT) 2507 return false; 2508 2509 if (!visit(LHS)) 2510 return false; 2511 2512 if (!this->emitLoad(*LT, LHS)) 2513 return false; 2514 2515 if (!visit(RHS)) 2516 return false; 2517 2518 if (Op == BO_AddAssign) { 2519 if (!this->emitAddOffset(*RT, E)) 2520 return false; 2521 } else { 2522 if (!this->emitSubOffset(*RT, E)) 2523 return false; 2524 } 2525 2526 if (DiscardResult) 2527 return this->emitStorePopPtr(E); 2528 return this->emitStorePtr(E); 2529 } 2530 2531 template <class Emitter> 2532 bool Compiler<Emitter>::VisitCompoundAssignOperator( 2533 const CompoundAssignOperator *E) { 2534 if (E->getType()->isVectorType()) 2535 return VisitVectorBinOp(E); 2536 2537 const Expr *LHS = E->getLHS(); 2538 const Expr *RHS = E->getRHS(); 2539 std::optional<PrimType> LHSComputationT = 2540 classify(E->getComputationLHSType()); 2541 std::optional<PrimType> LT = classify(LHS->getType()); 2542 std::optional<PrimType> RT = classify(RHS->getType()); 2543 std::optional<PrimType> ResultT = classify(E->getType()); 2544 2545 if (!Ctx.getLangOpts().CPlusPlus14) 2546 return this->visit(RHS) && this->visit(LHS) && this->emitError(E); 2547 2548 if (!LT || !RT || !ResultT || !LHSComputationT) 2549 return false; 2550 2551 // Handle floating point operations separately here, since they 2552 // require special care. 2553 2554 if (ResultT == PT_Float || RT == PT_Float) 2555 return VisitFloatCompoundAssignOperator(E); 2556 2557 if (E->getType()->isPointerType()) 2558 return VisitPointerCompoundAssignOperator(E); 2559 2560 assert(!E->getType()->isPointerType() && "Handled above"); 2561 assert(!E->getType()->isFloatingType() && "Handled above"); 2562 2563 // C++17 onwards require that we evaluate the RHS first. 2564 // Compute RHS and save it in a temporary variable so we can 2565 // load it again later. 2566 // FIXME: Compound assignments are unsequenced in C, so we might 2567 // have to figure out how to reject them. 2568 if (!visit(RHS)) 2569 return false; 2570 2571 unsigned TempOffset = this->allocateLocalPrimitive(E, *RT, /*IsConst=*/true); 2572 2573 if (!this->emitSetLocal(*RT, TempOffset, E)) 2574 return false; 2575 2576 // Get LHS pointer, load its value and cast it to the 2577 // computation type if necessary. 2578 if (!visit(LHS)) 2579 return false; 2580 if (!this->emitLoad(*LT, E)) 2581 return false; 2582 if (LT != LHSComputationT) { 2583 if (!this->emitCast(*LT, *LHSComputationT, E)) 2584 return false; 2585 } 2586 2587 // Get the RHS value on the stack. 2588 if (!this->emitGetLocal(*RT, TempOffset, E)) 2589 return false; 2590 2591 // Perform operation. 2592 switch (E->getOpcode()) { 2593 case BO_AddAssign: 2594 if (!this->emitAdd(*LHSComputationT, E)) 2595 return false; 2596 break; 2597 case BO_SubAssign: 2598 if (!this->emitSub(*LHSComputationT, E)) 2599 return false; 2600 break; 2601 case BO_MulAssign: 2602 if (!this->emitMul(*LHSComputationT, E)) 2603 return false; 2604 break; 2605 case BO_DivAssign: 2606 if (!this->emitDiv(*LHSComputationT, E)) 2607 return false; 2608 break; 2609 case BO_RemAssign: 2610 if (!this->emitRem(*LHSComputationT, E)) 2611 return false; 2612 break; 2613 case BO_ShlAssign: 2614 if (!this->emitShl(*LHSComputationT, *RT, E)) 2615 return false; 2616 break; 2617 case BO_ShrAssign: 2618 if (!this->emitShr(*LHSComputationT, *RT, E)) 2619 return false; 2620 break; 2621 case BO_AndAssign: 2622 if (!this->emitBitAnd(*LHSComputationT, E)) 2623 return false; 2624 break; 2625 case BO_XorAssign: 2626 if (!this->emitBitXor(*LHSComputationT, E)) 2627 return false; 2628 break; 2629 case BO_OrAssign: 2630 if (!this->emitBitOr(*LHSComputationT, E)) 2631 return false; 2632 break; 2633 default: 2634 llvm_unreachable("Unimplemented compound assign operator"); 2635 } 2636 2637 // And now cast from LHSComputationT to ResultT. 2638 if (ResultT != LHSComputationT) { 2639 if (!this->emitCast(*LHSComputationT, *ResultT, E)) 2640 return false; 2641 } 2642 2643 // And store the result in LHS. 2644 if (DiscardResult) { 2645 if (LHS->refersToBitField()) 2646 return this->emitStoreBitFieldPop(*ResultT, E); 2647 return this->emitStorePop(*ResultT, E); 2648 } 2649 if (LHS->refersToBitField()) 2650 return this->emitStoreBitField(*ResultT, E); 2651 return this->emitStore(*ResultT, E); 2652 } 2653 2654 template <class Emitter> 2655 bool Compiler<Emitter>::VisitExprWithCleanups(const ExprWithCleanups *E) { 2656 LocalScope<Emitter> ES(this); 2657 const Expr *SubExpr = E->getSubExpr(); 2658 2659 return this->delegate(SubExpr) && ES.destroyLocals(E); 2660 } 2661 2662 template <class Emitter> 2663 bool Compiler<Emitter>::VisitMaterializeTemporaryExpr( 2664 const MaterializeTemporaryExpr *E) { 2665 const Expr *SubExpr = E->getSubExpr(); 2666 2667 if (Initializing) { 2668 // We already have a value, just initialize that. 2669 return this->delegate(SubExpr); 2670 } 2671 // If we don't end up using the materialized temporary anyway, don't 2672 // bother creating it. 2673 if (DiscardResult) 2674 return this->discard(SubExpr); 2675 2676 // When we're initializing a global variable *or* the storage duration of 2677 // the temporary is explicitly static, create a global variable. 2678 std::optional<PrimType> SubExprT = classify(SubExpr); 2679 bool IsStatic = E->getStorageDuration() == SD_Static; 2680 if (IsStatic) { 2681 std::optional<unsigned> GlobalIndex = P.createGlobal(E); 2682 if (!GlobalIndex) 2683 return false; 2684 2685 const LifetimeExtendedTemporaryDecl *TempDecl = 2686 E->getLifetimeExtendedTemporaryDecl(); 2687 if (IsStatic) 2688 assert(TempDecl); 2689 2690 if (SubExprT) { 2691 if (!this->visit(SubExpr)) 2692 return false; 2693 if (IsStatic) { 2694 if (!this->emitInitGlobalTemp(*SubExprT, *GlobalIndex, TempDecl, E)) 2695 return false; 2696 } else { 2697 if (!this->emitInitGlobal(*SubExprT, *GlobalIndex, E)) 2698 return false; 2699 } 2700 return this->emitGetPtrGlobal(*GlobalIndex, E); 2701 } 2702 2703 if (!this->checkLiteralType(SubExpr)) 2704 return false; 2705 // Non-primitive values. 2706 if (!this->emitGetPtrGlobal(*GlobalIndex, E)) 2707 return false; 2708 if (!this->visitInitializer(SubExpr)) 2709 return false; 2710 if (IsStatic) 2711 return this->emitInitGlobalTempComp(TempDecl, E); 2712 return true; 2713 } 2714 2715 // For everyhing else, use local variables. 2716 if (SubExprT) { 2717 unsigned LocalIndex = allocateLocalPrimitive(E, *SubExprT, /*IsConst=*/true, 2718 /*IsExtended=*/true); 2719 if (!this->visit(SubExpr)) 2720 return false; 2721 if (!this->emitSetLocal(*SubExprT, LocalIndex, E)) 2722 return false; 2723 return this->emitGetPtrLocal(LocalIndex, E); 2724 } else { 2725 2726 if (!this->checkLiteralType(SubExpr)) 2727 return false; 2728 2729 const Expr *Inner = E->getSubExpr()->skipRValueSubobjectAdjustments(); 2730 if (std::optional<unsigned> LocalIndex = 2731 allocateLocal(Inner, E->getExtendingDecl())) { 2732 InitLinkScope<Emitter> ILS(this, InitLink::Temp(*LocalIndex)); 2733 if (!this->emitGetPtrLocal(*LocalIndex, E)) 2734 return false; 2735 return this->visitInitializer(SubExpr); 2736 } 2737 } 2738 return false; 2739 } 2740 2741 template <class Emitter> 2742 bool Compiler<Emitter>::VisitCXXBindTemporaryExpr( 2743 const CXXBindTemporaryExpr *E) { 2744 return this->delegate(E->getSubExpr()); 2745 } 2746 2747 template <class Emitter> 2748 bool Compiler<Emitter>::VisitCompoundLiteralExpr(const CompoundLiteralExpr *E) { 2749 const Expr *Init = E->getInitializer(); 2750 if (DiscardResult) 2751 return this->discard(Init); 2752 2753 if (Initializing) { 2754 // We already have a value, just initialize that. 2755 return this->visitInitializer(Init) && this->emitFinishInit(E); 2756 } 2757 2758 std::optional<PrimType> T = classify(E->getType()); 2759 if (E->isFileScope()) { 2760 // Avoid creating a variable if this is a primitive RValue anyway. 2761 if (T && !E->isLValue()) 2762 return this->delegate(Init); 2763 2764 if (std::optional<unsigned> GlobalIndex = P.createGlobal(E)) { 2765 if (!this->emitGetPtrGlobal(*GlobalIndex, E)) 2766 return false; 2767 2768 if (T) { 2769 if (!this->visit(Init)) 2770 return false; 2771 return this->emitInitGlobal(*T, *GlobalIndex, E); 2772 } 2773 2774 return this->visitInitializer(Init) && this->emitFinishInit(E); 2775 } 2776 2777 return false; 2778 } 2779 2780 // Otherwise, use a local variable. 2781 if (T && !E->isLValue()) { 2782 // For primitive types, we just visit the initializer. 2783 return this->delegate(Init); 2784 } else { 2785 unsigned LocalIndex; 2786 2787 if (T) 2788 LocalIndex = this->allocateLocalPrimitive(Init, *T, false, false); 2789 else if (std::optional<unsigned> MaybeIndex = this->allocateLocal(Init)) 2790 LocalIndex = *MaybeIndex; 2791 else 2792 return false; 2793 2794 if (!this->emitGetPtrLocal(LocalIndex, E)) 2795 return false; 2796 2797 if (T) { 2798 if (!this->visit(Init)) { 2799 return false; 2800 } 2801 return this->emitInit(*T, E); 2802 } else { 2803 if (!this->visitInitializer(Init) || !this->emitFinishInit(E)) 2804 return false; 2805 } 2806 return true; 2807 } 2808 2809 return false; 2810 } 2811 2812 template <class Emitter> 2813 bool Compiler<Emitter>::VisitTypeTraitExpr(const TypeTraitExpr *E) { 2814 if (DiscardResult) 2815 return true; 2816 if (E->getType()->isBooleanType()) 2817 return this->emitConstBool(E->getValue(), E); 2818 return this->emitConst(E->getValue(), E); 2819 } 2820 2821 template <class Emitter> 2822 bool Compiler<Emitter>::VisitArrayTypeTraitExpr(const ArrayTypeTraitExpr *E) { 2823 if (DiscardResult) 2824 return true; 2825 return this->emitConst(E->getValue(), E); 2826 } 2827 2828 template <class Emitter> 2829 bool Compiler<Emitter>::VisitLambdaExpr(const LambdaExpr *E) { 2830 if (DiscardResult) 2831 return true; 2832 2833 assert(Initializing); 2834 const Record *R = P.getOrCreateRecord(E->getLambdaClass()); 2835 2836 auto *CaptureInitIt = E->capture_init_begin(); 2837 // Initialize all fields (which represent lambda captures) of the 2838 // record with their initializers. 2839 for (const Record::Field &F : R->fields()) { 2840 const Expr *Init = *CaptureInitIt; 2841 ++CaptureInitIt; 2842 2843 if (!Init) 2844 continue; 2845 2846 if (std::optional<PrimType> T = classify(Init)) { 2847 if (!this->visit(Init)) 2848 return false; 2849 2850 if (!this->emitInitField(*T, F.Offset, E)) 2851 return false; 2852 } else { 2853 if (!this->emitGetPtrField(F.Offset, E)) 2854 return false; 2855 2856 if (!this->visitInitializer(Init)) 2857 return false; 2858 2859 if (!this->emitPopPtr(E)) 2860 return false; 2861 } 2862 } 2863 2864 return true; 2865 } 2866 2867 template <class Emitter> 2868 bool Compiler<Emitter>::VisitPredefinedExpr(const PredefinedExpr *E) { 2869 if (DiscardResult) 2870 return true; 2871 2872 return this->delegate(E->getFunctionName()); 2873 } 2874 2875 template <class Emitter> 2876 bool Compiler<Emitter>::VisitCXXThrowExpr(const CXXThrowExpr *E) { 2877 if (E->getSubExpr() && !this->discard(E->getSubExpr())) 2878 return false; 2879 2880 return this->emitInvalid(E); 2881 } 2882 2883 template <class Emitter> 2884 bool Compiler<Emitter>::VisitCXXReinterpretCastExpr( 2885 const CXXReinterpretCastExpr *E) { 2886 const Expr *SubExpr = E->getSubExpr(); 2887 2888 std::optional<PrimType> FromT = classify(SubExpr); 2889 std::optional<PrimType> ToT = classify(E); 2890 2891 if (!FromT || !ToT) 2892 return this->emitInvalidCast(CastKind::Reinterpret, /*Fatal=*/true, E); 2893 2894 if (FromT == PT_Ptr || ToT == PT_Ptr) { 2895 // Both types could be PT_Ptr because their expressions are glvalues. 2896 std::optional<PrimType> PointeeFromT; 2897 if (SubExpr->getType()->isPointerOrReferenceType()) 2898 PointeeFromT = classify(SubExpr->getType()->getPointeeType()); 2899 else 2900 PointeeFromT = classify(SubExpr->getType()); 2901 2902 std::optional<PrimType> PointeeToT; 2903 if (E->getType()->isPointerOrReferenceType()) 2904 PointeeToT = classify(E->getType()->getPointeeType()); 2905 else 2906 PointeeToT = classify(E->getType()); 2907 2908 bool Fatal = true; 2909 if (PointeeToT && PointeeFromT) { 2910 if (isIntegralType(*PointeeFromT) && isIntegralType(*PointeeToT)) 2911 Fatal = false; 2912 } 2913 2914 if (!this->emitInvalidCast(CastKind::Reinterpret, Fatal, E)) 2915 return false; 2916 2917 if (E->getCastKind() == CK_LValueBitCast) 2918 return this->delegate(SubExpr); 2919 return this->VisitCastExpr(E); 2920 } 2921 2922 // Try to actually do the cast. 2923 bool Fatal = (ToT != FromT); 2924 if (!this->emitInvalidCast(CastKind::Reinterpret, Fatal, E)) 2925 return false; 2926 2927 return this->VisitCastExpr(E); 2928 } 2929 2930 template <class Emitter> 2931 bool Compiler<Emitter>::VisitCXXNoexceptExpr(const CXXNoexceptExpr *E) { 2932 assert(E->getType()->isBooleanType()); 2933 2934 if (DiscardResult) 2935 return true; 2936 return this->emitConstBool(E->getValue(), E); 2937 } 2938 2939 template <class Emitter> 2940 bool Compiler<Emitter>::VisitCXXConstructExpr(const CXXConstructExpr *E) { 2941 QualType T = E->getType(); 2942 assert(!classify(T)); 2943 2944 if (T->isRecordType()) { 2945 const CXXConstructorDecl *Ctor = E->getConstructor(); 2946 2947 // Trivial copy/move constructor. Avoid copy. 2948 if (Ctor->isDefaulted() && Ctor->isCopyOrMoveConstructor() && 2949 Ctor->isTrivial() && 2950 E->getArg(0)->isTemporaryObject(Ctx.getASTContext(), 2951 T->getAsCXXRecordDecl())) 2952 return this->visitInitializer(E->getArg(0)); 2953 2954 // If we're discarding a construct expression, we still need 2955 // to allocate a variable and call the constructor and destructor. 2956 if (DiscardResult) { 2957 if (Ctor->isTrivial()) 2958 return true; 2959 assert(!Initializing); 2960 std::optional<unsigned> LocalIndex = allocateLocal(E); 2961 2962 if (!LocalIndex) 2963 return false; 2964 2965 if (!this->emitGetPtrLocal(*LocalIndex, E)) 2966 return false; 2967 } 2968 2969 // Zero initialization. 2970 if (E->requiresZeroInitialization()) { 2971 const Record *R = getRecord(E->getType()); 2972 2973 if (!this->visitZeroRecordInitializer(R, E)) 2974 return false; 2975 2976 // If the constructor is trivial anyway, we're done. 2977 if (Ctor->isTrivial()) 2978 return true; 2979 } 2980 2981 const Function *Func = getFunction(Ctor); 2982 2983 if (!Func) 2984 return false; 2985 2986 assert(Func->hasThisPointer()); 2987 assert(!Func->hasRVO()); 2988 2989 // The This pointer is already on the stack because this is an initializer, 2990 // but we need to dup() so the call() below has its own copy. 2991 if (!this->emitDupPtr(E)) 2992 return false; 2993 2994 // Constructor arguments. 2995 for (const auto *Arg : E->arguments()) { 2996 if (!this->visit(Arg)) 2997 return false; 2998 } 2999 3000 if (Func->isVariadic()) { 3001 uint32_t VarArgSize = 0; 3002 unsigned NumParams = Func->getNumWrittenParams(); 3003 for (unsigned I = NumParams, N = E->getNumArgs(); I != N; ++I) { 3004 VarArgSize += 3005 align(primSize(classify(E->getArg(I)->getType()).value_or(PT_Ptr))); 3006 } 3007 if (!this->emitCallVar(Func, VarArgSize, E)) 3008 return false; 3009 } else { 3010 if (!this->emitCall(Func, 0, E)) { 3011 // When discarding, we don't need the result anyway, so clean up 3012 // the instance dup we did earlier in case surrounding code wants 3013 // to keep evaluating. 3014 if (DiscardResult) 3015 (void)this->emitPopPtr(E); 3016 return false; 3017 } 3018 } 3019 3020 if (DiscardResult) 3021 return this->emitPopPtr(E); 3022 return this->emitFinishInit(E); 3023 } 3024 3025 if (T->isArrayType()) { 3026 const ConstantArrayType *CAT = 3027 Ctx.getASTContext().getAsConstantArrayType(E->getType()); 3028 if (!CAT) 3029 return false; 3030 3031 size_t NumElems = CAT->getZExtSize(); 3032 const Function *Func = getFunction(E->getConstructor()); 3033 if (!Func || !Func->isConstexpr()) 3034 return false; 3035 3036 // FIXME(perf): We're calling the constructor once per array element here, 3037 // in the old intepreter we had a special-case for trivial constructors. 3038 for (size_t I = 0; I != NumElems; ++I) { 3039 if (!this->emitConstUint64(I, E)) 3040 return false; 3041 if (!this->emitArrayElemPtrUint64(E)) 3042 return false; 3043 3044 // Constructor arguments. 3045 for (const auto *Arg : E->arguments()) { 3046 if (!this->visit(Arg)) 3047 return false; 3048 } 3049 3050 if (!this->emitCall(Func, 0, E)) 3051 return false; 3052 } 3053 return true; 3054 } 3055 3056 return false; 3057 } 3058 3059 template <class Emitter> 3060 bool Compiler<Emitter>::VisitSourceLocExpr(const SourceLocExpr *E) { 3061 if (DiscardResult) 3062 return true; 3063 3064 const APValue Val = 3065 E->EvaluateInContext(Ctx.getASTContext(), SourceLocDefaultExpr); 3066 3067 // Things like __builtin_LINE(). 3068 if (E->getType()->isIntegerType()) { 3069 assert(Val.isInt()); 3070 const APSInt &I = Val.getInt(); 3071 return this->emitConst(I, E); 3072 } 3073 // Otherwise, the APValue is an LValue, with only one element. 3074 // Theoretically, we don't need the APValue at all of course. 3075 assert(E->getType()->isPointerType()); 3076 assert(Val.isLValue()); 3077 const APValue::LValueBase &Base = Val.getLValueBase(); 3078 if (const Expr *LValueExpr = Base.dyn_cast<const Expr *>()) 3079 return this->visit(LValueExpr); 3080 3081 // Otherwise, we have a decl (which is the case for 3082 // __builtin_source_location). 3083 assert(Base.is<const ValueDecl *>()); 3084 assert(Val.getLValuePath().size() == 0); 3085 const auto *BaseDecl = Base.dyn_cast<const ValueDecl *>(); 3086 assert(BaseDecl); 3087 3088 auto *UGCD = cast<UnnamedGlobalConstantDecl>(BaseDecl); 3089 3090 std::optional<unsigned> GlobalIndex = P.getOrCreateGlobal(UGCD); 3091 if (!GlobalIndex) 3092 return false; 3093 3094 if (!this->emitGetPtrGlobal(*GlobalIndex, E)) 3095 return false; 3096 3097 const Record *R = getRecord(E->getType()); 3098 const APValue &V = UGCD->getValue(); 3099 for (unsigned I = 0, N = R->getNumFields(); I != N; ++I) { 3100 const Record::Field *F = R->getField(I); 3101 const APValue &FieldValue = V.getStructField(I); 3102 3103 PrimType FieldT = classifyPrim(F->Decl->getType()); 3104 3105 if (!this->visitAPValue(FieldValue, FieldT, E)) 3106 return false; 3107 if (!this->emitInitField(FieldT, F->Offset, E)) 3108 return false; 3109 } 3110 3111 // Leave the pointer to the global on the stack. 3112 return true; 3113 } 3114 3115 template <class Emitter> 3116 bool Compiler<Emitter>::VisitOffsetOfExpr(const OffsetOfExpr *E) { 3117 unsigned N = E->getNumComponents(); 3118 if (N == 0) 3119 return false; 3120 3121 for (unsigned I = 0; I != N; ++I) { 3122 const OffsetOfNode &Node = E->getComponent(I); 3123 if (Node.getKind() == OffsetOfNode::Array) { 3124 const Expr *ArrayIndexExpr = E->getIndexExpr(Node.getArrayExprIndex()); 3125 PrimType IndexT = classifyPrim(ArrayIndexExpr->getType()); 3126 3127 if (DiscardResult) { 3128 if (!this->discard(ArrayIndexExpr)) 3129 return false; 3130 continue; 3131 } 3132 3133 if (!this->visit(ArrayIndexExpr)) 3134 return false; 3135 // Cast to Sint64. 3136 if (IndexT != PT_Sint64) { 3137 if (!this->emitCast(IndexT, PT_Sint64, E)) 3138 return false; 3139 } 3140 } 3141 } 3142 3143 if (DiscardResult) 3144 return true; 3145 3146 PrimType T = classifyPrim(E->getType()); 3147 return this->emitOffsetOf(T, E, E); 3148 } 3149 3150 template <class Emitter> 3151 bool Compiler<Emitter>::VisitCXXScalarValueInitExpr( 3152 const CXXScalarValueInitExpr *E) { 3153 QualType Ty = E->getType(); 3154 3155 if (DiscardResult || Ty->isVoidType()) 3156 return true; 3157 3158 if (std::optional<PrimType> T = classify(Ty)) 3159 return this->visitZeroInitializer(*T, Ty, E); 3160 3161 if (const auto *CT = Ty->getAs<ComplexType>()) { 3162 if (!Initializing) { 3163 std::optional<unsigned> LocalIndex = allocateLocal(E); 3164 if (!LocalIndex) 3165 return false; 3166 if (!this->emitGetPtrLocal(*LocalIndex, E)) 3167 return false; 3168 } 3169 3170 // Initialize both fields to 0. 3171 QualType ElemQT = CT->getElementType(); 3172 PrimType ElemT = classifyPrim(ElemQT); 3173 3174 for (unsigned I = 0; I != 2; ++I) { 3175 if (!this->visitZeroInitializer(ElemT, ElemQT, E)) 3176 return false; 3177 if (!this->emitInitElem(ElemT, I, E)) 3178 return false; 3179 } 3180 return true; 3181 } 3182 3183 if (const auto *VT = Ty->getAs<VectorType>()) { 3184 // FIXME: Code duplication with the _Complex case above. 3185 if (!Initializing) { 3186 std::optional<unsigned> LocalIndex = allocateLocal(E); 3187 if (!LocalIndex) 3188 return false; 3189 if (!this->emitGetPtrLocal(*LocalIndex, E)) 3190 return false; 3191 } 3192 3193 // Initialize all fields to 0. 3194 QualType ElemQT = VT->getElementType(); 3195 PrimType ElemT = classifyPrim(ElemQT); 3196 3197 for (unsigned I = 0, N = VT->getNumElements(); I != N; ++I) { 3198 if (!this->visitZeroInitializer(ElemT, ElemQT, E)) 3199 return false; 3200 if (!this->emitInitElem(ElemT, I, E)) 3201 return false; 3202 } 3203 return true; 3204 } 3205 3206 return false; 3207 } 3208 3209 template <class Emitter> 3210 bool Compiler<Emitter>::VisitSizeOfPackExpr(const SizeOfPackExpr *E) { 3211 return this->emitConst(E->getPackLength(), E); 3212 } 3213 3214 template <class Emitter> 3215 bool Compiler<Emitter>::VisitGenericSelectionExpr( 3216 const GenericSelectionExpr *E) { 3217 return this->delegate(E->getResultExpr()); 3218 } 3219 3220 template <class Emitter> 3221 bool Compiler<Emitter>::VisitChooseExpr(const ChooseExpr *E) { 3222 return this->delegate(E->getChosenSubExpr()); 3223 } 3224 3225 template <class Emitter> 3226 bool Compiler<Emitter>::VisitObjCBoolLiteralExpr(const ObjCBoolLiteralExpr *E) { 3227 if (DiscardResult) 3228 return true; 3229 3230 return this->emitConst(E->getValue(), E); 3231 } 3232 3233 template <class Emitter> 3234 bool Compiler<Emitter>::VisitCXXInheritedCtorInitExpr( 3235 const CXXInheritedCtorInitExpr *E) { 3236 const CXXConstructorDecl *Ctor = E->getConstructor(); 3237 assert(!Ctor->isTrivial() && 3238 "Trivial CXXInheritedCtorInitExpr, implement. (possible?)"); 3239 const Function *F = this->getFunction(Ctor); 3240 assert(F); 3241 assert(!F->hasRVO()); 3242 assert(F->hasThisPointer()); 3243 3244 if (!this->emitDupPtr(SourceInfo{})) 3245 return false; 3246 3247 // Forward all arguments of the current function (which should be a 3248 // constructor itself) to the inherited ctor. 3249 // This is necessary because the calling code has pushed the pointer 3250 // of the correct base for us already, but the arguments need 3251 // to come after. 3252 unsigned Offset = align(primSize(PT_Ptr)); // instance pointer. 3253 for (const ParmVarDecl *PD : Ctor->parameters()) { 3254 PrimType PT = this->classify(PD->getType()).value_or(PT_Ptr); 3255 3256 if (!this->emitGetParam(PT, Offset, E)) 3257 return false; 3258 Offset += align(primSize(PT)); 3259 } 3260 3261 return this->emitCall(F, 0, E); 3262 } 3263 3264 template <class Emitter> 3265 bool Compiler<Emitter>::VisitCXXNewExpr(const CXXNewExpr *E) { 3266 assert(classifyPrim(E->getType()) == PT_Ptr); 3267 const Expr *Init = E->getInitializer(); 3268 QualType ElementType = E->getAllocatedType(); 3269 std::optional<PrimType> ElemT = classify(ElementType); 3270 unsigned PlacementArgs = E->getNumPlacementArgs(); 3271 const FunctionDecl *OperatorNew = E->getOperatorNew(); 3272 const Expr *PlacementDest = nullptr; 3273 bool IsNoThrow = false; 3274 3275 if (PlacementArgs != 0) { 3276 // FIXME: There is no restriction on this, but it's not clear that any 3277 // other form makes any sense. We get here for cases such as: 3278 // 3279 // new (std::align_val_t{N}) X(int) 3280 // 3281 // (which should presumably be valid only if N is a multiple of 3282 // alignof(int), and in any case can't be deallocated unless N is 3283 // alignof(X) and X has new-extended alignment). 3284 if (PlacementArgs == 1) { 3285 const Expr *Arg1 = E->getPlacementArg(0); 3286 if (Arg1->getType()->isNothrowT()) { 3287 if (!this->discard(Arg1)) 3288 return false; 3289 IsNoThrow = true; 3290 } else { 3291 // Invalid unless we have C++26 or are in a std:: function. 3292 if (!this->emitInvalidNewDeleteExpr(E, E)) 3293 return false; 3294 3295 // If we have a placement-new destination, we'll later use that instead 3296 // of allocating. 3297 if (OperatorNew->isReservedGlobalPlacementOperator()) 3298 PlacementDest = Arg1; 3299 } 3300 } else { 3301 // Always invalid. 3302 return this->emitInvalid(E); 3303 } 3304 } else if (!OperatorNew->isReplaceableGlobalAllocationFunction()) 3305 return this->emitInvalidNewDeleteExpr(E, E); 3306 3307 const Descriptor *Desc; 3308 if (!PlacementDest) { 3309 if (ElemT) { 3310 if (E->isArray()) 3311 Desc = nullptr; // We're not going to use it in this case. 3312 else 3313 Desc = P.createDescriptor(E, *ElemT, Descriptor::InlineDescMD, 3314 /*IsConst=*/false, /*IsTemporary=*/false, 3315 /*IsMutable=*/false); 3316 } else { 3317 Desc = P.createDescriptor( 3318 E, ElementType.getTypePtr(), 3319 E->isArray() ? std::nullopt : Descriptor::InlineDescMD, 3320 /*IsConst=*/false, /*IsTemporary=*/false, /*IsMutable=*/false, Init); 3321 } 3322 } 3323 3324 if (E->isArray()) { 3325 std::optional<const Expr *> ArraySizeExpr = E->getArraySize(); 3326 if (!ArraySizeExpr) 3327 return false; 3328 3329 const Expr *Stripped = *ArraySizeExpr; 3330 for (; auto *ICE = dyn_cast<ImplicitCastExpr>(Stripped); 3331 Stripped = ICE->getSubExpr()) 3332 if (ICE->getCastKind() != CK_NoOp && 3333 ICE->getCastKind() != CK_IntegralCast) 3334 break; 3335 3336 PrimType SizeT = classifyPrim(Stripped->getType()); 3337 3338 if (PlacementDest) { 3339 if (!this->visit(PlacementDest)) 3340 return false; 3341 if (!this->visit(Stripped)) 3342 return false; 3343 if (!this->emitCheckNewTypeMismatchArray(SizeT, E, E)) 3344 return false; 3345 } else { 3346 if (!this->visit(Stripped)) 3347 return false; 3348 3349 if (ElemT) { 3350 // N primitive elements. 3351 if (!this->emitAllocN(SizeT, *ElemT, E, IsNoThrow, E)) 3352 return false; 3353 } else { 3354 // N Composite elements. 3355 if (!this->emitAllocCN(SizeT, Desc, IsNoThrow, E)) 3356 return false; 3357 } 3358 } 3359 3360 if (Init && !this->visitInitializer(Init)) 3361 return false; 3362 3363 } else { 3364 if (PlacementDest) { 3365 if (!this->visit(PlacementDest)) 3366 return false; 3367 if (!this->emitCheckNewTypeMismatch(E, E)) 3368 return false; 3369 } else { 3370 // Allocate just one element. 3371 if (!this->emitAlloc(Desc, E)) 3372 return false; 3373 } 3374 3375 if (Init) { 3376 if (ElemT) { 3377 if (!this->visit(Init)) 3378 return false; 3379 3380 if (!this->emitInit(*ElemT, E)) 3381 return false; 3382 } else { 3383 // Composite. 3384 if (!this->visitInitializer(Init)) 3385 return false; 3386 } 3387 } 3388 } 3389 3390 if (DiscardResult) 3391 return this->emitPopPtr(E); 3392 3393 return true; 3394 } 3395 3396 template <class Emitter> 3397 bool Compiler<Emitter>::VisitCXXDeleteExpr(const CXXDeleteExpr *E) { 3398 const Expr *Arg = E->getArgument(); 3399 3400 const FunctionDecl *OperatorDelete = E->getOperatorDelete(); 3401 3402 if (!OperatorDelete->isReplaceableGlobalAllocationFunction()) 3403 return this->emitInvalidNewDeleteExpr(E, E); 3404 3405 // Arg must be an lvalue. 3406 if (!this->visit(Arg)) 3407 return false; 3408 3409 return this->emitFree(E->isArrayForm(), E->isGlobalDelete(), E); 3410 } 3411 3412 template <class Emitter> 3413 bool Compiler<Emitter>::VisitBlockExpr(const BlockExpr *E) { 3414 const Function *Func = nullptr; 3415 if (auto F = Compiler<ByteCodeEmitter>(Ctx, P).compileObjCBlock(E)) 3416 Func = F; 3417 3418 if (!Func) 3419 return false; 3420 return this->emitGetFnPtr(Func, E); 3421 } 3422 3423 template <class Emitter> 3424 bool Compiler<Emitter>::VisitExpressionTraitExpr(const ExpressionTraitExpr *E) { 3425 assert(Ctx.getLangOpts().CPlusPlus); 3426 return this->emitConstBool(E->getValue(), E); 3427 } 3428 3429 template <class Emitter> 3430 bool Compiler<Emitter>::VisitCXXUuidofExpr(const CXXUuidofExpr *E) { 3431 if (DiscardResult) 3432 return true; 3433 assert(!Initializing); 3434 3435 const MSGuidDecl *GuidDecl = E->getGuidDecl(); 3436 const RecordDecl *RD = GuidDecl->getType()->getAsRecordDecl(); 3437 assert(RD); 3438 // If the definiton of the result type is incomplete, just return a dummy. 3439 // If (and when) that is read from, we will fail, but not now. 3440 if (!RD->isCompleteDefinition()) { 3441 if (std::optional<unsigned> I = P.getOrCreateDummy(GuidDecl)) 3442 return this->emitGetPtrGlobal(*I, E); 3443 return false; 3444 } 3445 3446 std::optional<unsigned> GlobalIndex = P.getOrCreateGlobal(GuidDecl); 3447 if (!GlobalIndex) 3448 return false; 3449 if (!this->emitGetPtrGlobal(*GlobalIndex, E)) 3450 return false; 3451 3452 assert(this->getRecord(E->getType())); 3453 3454 const APValue &V = GuidDecl->getAsAPValue(); 3455 if (V.getKind() == APValue::None) 3456 return true; 3457 3458 assert(V.isStruct()); 3459 assert(V.getStructNumBases() == 0); 3460 if (!this->visitAPValueInitializer(V, E)) 3461 return false; 3462 3463 return this->emitFinishInit(E); 3464 } 3465 3466 template <class Emitter> 3467 bool Compiler<Emitter>::VisitRequiresExpr(const RequiresExpr *E) { 3468 assert(classifyPrim(E->getType()) == PT_Bool); 3469 if (DiscardResult) 3470 return true; 3471 return this->emitConstBool(E->isSatisfied(), E); 3472 } 3473 3474 template <class Emitter> 3475 bool Compiler<Emitter>::VisitConceptSpecializationExpr( 3476 const ConceptSpecializationExpr *E) { 3477 assert(classifyPrim(E->getType()) == PT_Bool); 3478 if (DiscardResult) 3479 return true; 3480 return this->emitConstBool(E->isSatisfied(), E); 3481 } 3482 3483 template <class Emitter> 3484 bool Compiler<Emitter>::VisitCXXRewrittenBinaryOperator( 3485 const CXXRewrittenBinaryOperator *E) { 3486 return this->delegate(E->getSemanticForm()); 3487 } 3488 3489 template <class Emitter> 3490 bool Compiler<Emitter>::VisitPseudoObjectExpr(const PseudoObjectExpr *E) { 3491 3492 for (const Expr *SemE : E->semantics()) { 3493 if (auto *OVE = dyn_cast<OpaqueValueExpr>(SemE)) { 3494 if (SemE == E->getResultExpr()) 3495 return false; 3496 3497 if (OVE->isUnique()) 3498 continue; 3499 3500 if (!this->discard(OVE)) 3501 return false; 3502 } else if (SemE == E->getResultExpr()) { 3503 if (!this->delegate(SemE)) 3504 return false; 3505 } else { 3506 if (!this->discard(SemE)) 3507 return false; 3508 } 3509 } 3510 return true; 3511 } 3512 3513 template <class Emitter> 3514 bool Compiler<Emitter>::VisitPackIndexingExpr(const PackIndexingExpr *E) { 3515 return this->delegate(E->getSelectedExpr()); 3516 } 3517 3518 template <class Emitter> 3519 bool Compiler<Emitter>::VisitRecoveryExpr(const RecoveryExpr *E) { 3520 return this->emitError(E); 3521 } 3522 3523 template <class Emitter> 3524 bool Compiler<Emitter>::VisitAddrLabelExpr(const AddrLabelExpr *E) { 3525 assert(E->getType()->isVoidPointerType()); 3526 3527 unsigned Offset = allocateLocalPrimitive( 3528 E->getLabel(), PT_Ptr, /*IsConst=*/true, /*IsExtended=*/false); 3529 3530 return this->emitGetLocal(PT_Ptr, Offset, E); 3531 } 3532 3533 template <class Emitter> 3534 bool Compiler<Emitter>::VisitConvertVectorExpr(const ConvertVectorExpr *E) { 3535 assert(Initializing); 3536 const auto *VT = E->getType()->castAs<VectorType>(); 3537 QualType ElemType = VT->getElementType(); 3538 PrimType ElemT = classifyPrim(ElemType); 3539 const Expr *Src = E->getSrcExpr(); 3540 PrimType SrcElemT = 3541 classifyPrim(Src->getType()->castAs<VectorType>()->getElementType()); 3542 3543 unsigned SrcOffset = this->allocateLocalPrimitive(Src, PT_Ptr, true, false); 3544 if (!this->visit(Src)) 3545 return false; 3546 if (!this->emitSetLocal(PT_Ptr, SrcOffset, E)) 3547 return false; 3548 3549 for (unsigned I = 0; I != VT->getNumElements(); ++I) { 3550 if (!this->emitGetLocal(PT_Ptr, SrcOffset, E)) 3551 return false; 3552 if (!this->emitArrayElemPop(SrcElemT, I, E)) 3553 return false; 3554 if (SrcElemT != ElemT) { 3555 if (!this->emitPrimCast(SrcElemT, ElemT, ElemType, E)) 3556 return false; 3557 } 3558 if (!this->emitInitElem(ElemT, I, E)) 3559 return false; 3560 } 3561 3562 return true; 3563 } 3564 3565 template <class Emitter> 3566 bool Compiler<Emitter>::VisitShuffleVectorExpr(const ShuffleVectorExpr *E) { 3567 assert(Initializing); 3568 assert(E->getNumSubExprs() > 2); 3569 3570 const Expr *Vecs[] = {E->getExpr(0), E->getExpr(1)}; 3571 const VectorType *VT = Vecs[0]->getType()->castAs<VectorType>(); 3572 PrimType ElemT = classifyPrim(VT->getElementType()); 3573 unsigned NumInputElems = VT->getNumElements(); 3574 unsigned NumOutputElems = E->getNumSubExprs() - 2; 3575 assert(NumOutputElems > 0); 3576 3577 // Save both input vectors to a local variable. 3578 unsigned VectorOffsets[2]; 3579 for (unsigned I = 0; I != 2; ++I) { 3580 VectorOffsets[I] = this->allocateLocalPrimitive( 3581 Vecs[I], PT_Ptr, /*IsConst=*/true, /*IsExtended=*/false); 3582 if (!this->visit(Vecs[I])) 3583 return false; 3584 if (!this->emitSetLocal(PT_Ptr, VectorOffsets[I], E)) 3585 return false; 3586 } 3587 for (unsigned I = 0; I != NumOutputElems; ++I) { 3588 APSInt ShuffleIndex = E->getShuffleMaskIdx(Ctx.getASTContext(), I); 3589 assert(ShuffleIndex >= -1); 3590 if (ShuffleIndex == -1) 3591 return this->emitInvalidShuffleVectorIndex(I, E); 3592 3593 assert(ShuffleIndex < (NumInputElems * 2)); 3594 if (!this->emitGetLocal(PT_Ptr, 3595 VectorOffsets[ShuffleIndex >= NumInputElems], E)) 3596 return false; 3597 unsigned InputVectorIndex = ShuffleIndex.getZExtValue() % NumInputElems; 3598 if (!this->emitArrayElemPop(ElemT, InputVectorIndex, E)) 3599 return false; 3600 3601 if (!this->emitInitElem(ElemT, I, E)) 3602 return false; 3603 } 3604 3605 return true; 3606 } 3607 3608 template <class Emitter> 3609 bool Compiler<Emitter>::VisitExtVectorElementExpr( 3610 const ExtVectorElementExpr *E) { 3611 const Expr *Base = E->getBase(); 3612 assert( 3613 Base->getType()->isVectorType() || 3614 Base->getType()->getAs<PointerType>()->getPointeeType()->isVectorType()); 3615 3616 SmallVector<uint32_t, 4> Indices; 3617 E->getEncodedElementAccess(Indices); 3618 3619 if (Indices.size() == 1) { 3620 if (!this->visit(Base)) 3621 return false; 3622 3623 if (E->isGLValue()) { 3624 if (!this->emitConstUint32(Indices[0], E)) 3625 return false; 3626 return this->emitArrayElemPtrPop(PT_Uint32, E); 3627 } 3628 // Else, also load the value. 3629 return this->emitArrayElemPop(classifyPrim(E->getType()), Indices[0], E); 3630 } 3631 3632 // Create a local variable for the base. 3633 unsigned BaseOffset = allocateLocalPrimitive(Base, PT_Ptr, /*IsConst=*/true, 3634 /*IsExtended=*/false); 3635 if (!this->visit(Base)) 3636 return false; 3637 if (!this->emitSetLocal(PT_Ptr, BaseOffset, E)) 3638 return false; 3639 3640 // Now the vector variable for the return value. 3641 if (!Initializing) { 3642 std::optional<unsigned> ResultIndex; 3643 ResultIndex = allocateLocal(E); 3644 if (!ResultIndex) 3645 return false; 3646 if (!this->emitGetPtrLocal(*ResultIndex, E)) 3647 return false; 3648 } 3649 3650 assert(Indices.size() == E->getType()->getAs<VectorType>()->getNumElements()); 3651 3652 PrimType ElemT = 3653 classifyPrim(E->getType()->getAs<VectorType>()->getElementType()); 3654 uint32_t DstIndex = 0; 3655 for (uint32_t I : Indices) { 3656 if (!this->emitGetLocal(PT_Ptr, BaseOffset, E)) 3657 return false; 3658 if (!this->emitArrayElemPop(ElemT, I, E)) 3659 return false; 3660 if (!this->emitInitElem(ElemT, DstIndex, E)) 3661 return false; 3662 ++DstIndex; 3663 } 3664 3665 // Leave the result pointer on the stack. 3666 assert(!DiscardResult); 3667 return true; 3668 } 3669 3670 template <class Emitter> 3671 bool Compiler<Emitter>::VisitObjCBoxedExpr(const ObjCBoxedExpr *E) { 3672 const Expr *SubExpr = E->getSubExpr(); 3673 if (!E->isExpressibleAsConstantInitializer()) 3674 return this->discard(SubExpr) && this->emitInvalid(E); 3675 3676 assert(classifyPrim(E) == PT_Ptr); 3677 if (std::optional<unsigned> I = P.getOrCreateDummy(E)) 3678 return this->emitGetPtrGlobal(*I, E); 3679 3680 return false; 3681 } 3682 3683 template <class Emitter> 3684 bool Compiler<Emitter>::VisitCXXStdInitializerListExpr( 3685 const CXXStdInitializerListExpr *E) { 3686 const Expr *SubExpr = E->getSubExpr(); 3687 const ConstantArrayType *ArrayType = 3688 Ctx.getASTContext().getAsConstantArrayType(SubExpr->getType()); 3689 const Record *R = getRecord(E->getType()); 3690 assert(Initializing); 3691 assert(SubExpr->isGLValue()); 3692 3693 if (!this->visit(SubExpr)) 3694 return false; 3695 if (!this->emitConstUint8(0, E)) 3696 return false; 3697 if (!this->emitArrayElemPtrPopUint8(E)) 3698 return false; 3699 if (!this->emitInitFieldPtr(R->getField(0u)->Offset, E)) 3700 return false; 3701 3702 PrimType SecondFieldT = classifyPrim(R->getField(1u)->Decl->getType()); 3703 if (isIntegralType(SecondFieldT)) { 3704 if (!this->emitConst(static_cast<APSInt>(ArrayType->getSize()), 3705 SecondFieldT, E)) 3706 return false; 3707 return this->emitInitField(SecondFieldT, R->getField(1u)->Offset, E); 3708 } 3709 assert(SecondFieldT == PT_Ptr); 3710 3711 if (!this->emitGetFieldPtr(R->getField(0u)->Offset, E)) 3712 return false; 3713 if (!this->emitExpandPtr(E)) 3714 return false; 3715 if (!this->emitConst(static_cast<APSInt>(ArrayType->getSize()), PT_Uint64, E)) 3716 return false; 3717 if (!this->emitArrayElemPtrPop(PT_Uint64, E)) 3718 return false; 3719 return this->emitInitFieldPtr(R->getField(1u)->Offset, E); 3720 } 3721 3722 template <class Emitter> 3723 bool Compiler<Emitter>::VisitStmtExpr(const StmtExpr *E) { 3724 BlockScope<Emitter> BS(this); 3725 StmtExprScope<Emitter> SS(this); 3726 3727 const CompoundStmt *CS = E->getSubStmt(); 3728 const Stmt *Result = CS->getStmtExprResult(); 3729 for (const Stmt *S : CS->body()) { 3730 if (S != Result) { 3731 if (!this->visitStmt(S)) 3732 return false; 3733 continue; 3734 } 3735 3736 assert(S == Result); 3737 if (const Expr *ResultExpr = dyn_cast<Expr>(S)) 3738 return this->delegate(ResultExpr); 3739 return this->emitUnsupported(E); 3740 } 3741 3742 return BS.destroyLocals(); 3743 } 3744 3745 template <class Emitter> bool Compiler<Emitter>::discard(const Expr *E) { 3746 OptionScope<Emitter> Scope(this, /*NewDiscardResult=*/true, 3747 /*NewInitializing=*/false); 3748 return this->Visit(E); 3749 } 3750 3751 template <class Emitter> bool Compiler<Emitter>::delegate(const Expr *E) { 3752 // We're basically doing: 3753 // OptionScope<Emitter> Scope(this, DicardResult, Initializing); 3754 // but that's unnecessary of course. 3755 return this->Visit(E); 3756 } 3757 3758 template <class Emitter> bool Compiler<Emitter>::visit(const Expr *E) { 3759 if (E->getType().isNull()) 3760 return false; 3761 3762 if (E->getType()->isVoidType()) 3763 return this->discard(E); 3764 3765 // Create local variable to hold the return value. 3766 if (!E->isGLValue() && !E->getType()->isAnyComplexType() && 3767 !classify(E->getType())) { 3768 std::optional<unsigned> LocalIndex = allocateLocal(E); 3769 if (!LocalIndex) 3770 return false; 3771 3772 if (!this->emitGetPtrLocal(*LocalIndex, E)) 3773 return false; 3774 return this->visitInitializer(E); 3775 } 3776 3777 // Otherwise,we have a primitive return value, produce the value directly 3778 // and push it on the stack. 3779 OptionScope<Emitter> Scope(this, /*NewDiscardResult=*/false, 3780 /*NewInitializing=*/false); 3781 return this->Visit(E); 3782 } 3783 3784 template <class Emitter> 3785 bool Compiler<Emitter>::visitInitializer(const Expr *E) { 3786 assert(!classify(E->getType())); 3787 3788 OptionScope<Emitter> Scope(this, /*NewDiscardResult=*/false, 3789 /*NewInitializing=*/true); 3790 return this->Visit(E); 3791 } 3792 3793 template <class Emitter> bool Compiler<Emitter>::visitBool(const Expr *E) { 3794 std::optional<PrimType> T = classify(E->getType()); 3795 if (!T) { 3796 // Convert complex values to bool. 3797 if (E->getType()->isAnyComplexType()) { 3798 if (!this->visit(E)) 3799 return false; 3800 return this->emitComplexBoolCast(E); 3801 } 3802 return false; 3803 } 3804 3805 if (!this->visit(E)) 3806 return false; 3807 3808 if (T == PT_Bool) 3809 return true; 3810 3811 // Convert pointers to bool. 3812 if (T == PT_Ptr || T == PT_FnPtr) { 3813 if (!this->emitNull(*T, nullptr, E)) 3814 return false; 3815 return this->emitNE(*T, E); 3816 } 3817 3818 // Or Floats. 3819 if (T == PT_Float) 3820 return this->emitCastFloatingIntegralBool(getFPOptions(E), E); 3821 3822 // Or anything else we can. 3823 return this->emitCast(*T, PT_Bool, E); 3824 } 3825 3826 template <class Emitter> 3827 bool Compiler<Emitter>::visitZeroInitializer(PrimType T, QualType QT, 3828 const Expr *E) { 3829 switch (T) { 3830 case PT_Bool: 3831 return this->emitZeroBool(E); 3832 case PT_Sint8: 3833 return this->emitZeroSint8(E); 3834 case PT_Uint8: 3835 return this->emitZeroUint8(E); 3836 case PT_Sint16: 3837 return this->emitZeroSint16(E); 3838 case PT_Uint16: 3839 return this->emitZeroUint16(E); 3840 case PT_Sint32: 3841 return this->emitZeroSint32(E); 3842 case PT_Uint32: 3843 return this->emitZeroUint32(E); 3844 case PT_Sint64: 3845 return this->emitZeroSint64(E); 3846 case PT_Uint64: 3847 return this->emitZeroUint64(E); 3848 case PT_IntAP: 3849 return this->emitZeroIntAP(Ctx.getBitWidth(QT), E); 3850 case PT_IntAPS: 3851 return this->emitZeroIntAPS(Ctx.getBitWidth(QT), E); 3852 case PT_Ptr: 3853 return this->emitNullPtr(nullptr, E); 3854 case PT_FnPtr: 3855 return this->emitNullFnPtr(nullptr, E); 3856 case PT_MemberPtr: 3857 return this->emitNullMemberPtr(nullptr, E); 3858 case PT_Float: 3859 return this->emitConstFloat(APFloat::getZero(Ctx.getFloatSemantics(QT)), E); 3860 case PT_FixedPoint: { 3861 auto Sem = Ctx.getASTContext().getFixedPointSemantics(E->getType()); 3862 return this->emitConstFixedPoint(FixedPoint::zero(Sem), E); 3863 } 3864 llvm_unreachable("Implement"); 3865 } 3866 llvm_unreachable("unknown primitive type"); 3867 } 3868 3869 template <class Emitter> 3870 bool Compiler<Emitter>::visitZeroRecordInitializer(const Record *R, 3871 const Expr *E) { 3872 assert(E); 3873 assert(R); 3874 // Fields 3875 for (const Record::Field &Field : R->fields()) { 3876 if (Field.Decl->isUnnamedBitField()) 3877 continue; 3878 3879 const Descriptor *D = Field.Desc; 3880 if (D->isPrimitive()) { 3881 QualType QT = D->getType(); 3882 PrimType T = classifyPrim(D->getType()); 3883 if (!this->visitZeroInitializer(T, QT, E)) 3884 return false; 3885 if (!this->emitInitField(T, Field.Offset, E)) 3886 return false; 3887 if (R->isUnion()) 3888 break; 3889 continue; 3890 } 3891 3892 if (!this->emitGetPtrField(Field.Offset, E)) 3893 return false; 3894 3895 if (D->isPrimitiveArray()) { 3896 QualType ET = D->getElemQualType(); 3897 PrimType T = classifyPrim(ET); 3898 for (uint32_t I = 0, N = D->getNumElems(); I != N; ++I) { 3899 if (!this->visitZeroInitializer(T, ET, E)) 3900 return false; 3901 if (!this->emitInitElem(T, I, E)) 3902 return false; 3903 } 3904 } else if (D->isCompositeArray()) { 3905 const Record *ElemRecord = D->ElemDesc->ElemRecord; 3906 assert(D->ElemDesc->ElemRecord); 3907 for (uint32_t I = 0, N = D->getNumElems(); I != N; ++I) { 3908 if (!this->emitConstUint32(I, E)) 3909 return false; 3910 if (!this->emitArrayElemPtr(PT_Uint32, E)) 3911 return false; 3912 if (!this->visitZeroRecordInitializer(ElemRecord, E)) 3913 return false; 3914 if (!this->emitPopPtr(E)) 3915 return false; 3916 } 3917 } else if (D->isRecord()) { 3918 if (!this->visitZeroRecordInitializer(D->ElemRecord, E)) 3919 return false; 3920 } else { 3921 assert(false); 3922 } 3923 3924 if (!this->emitFinishInitPop(E)) 3925 return false; 3926 3927 // C++11 [dcl.init]p5: If T is a (possibly cv-qualified) union type, the 3928 // object's first non-static named data member is zero-initialized 3929 if (R->isUnion()) 3930 break; 3931 } 3932 3933 for (const Record::Base &B : R->bases()) { 3934 if (!this->emitGetPtrBase(B.Offset, E)) 3935 return false; 3936 if (!this->visitZeroRecordInitializer(B.R, E)) 3937 return false; 3938 if (!this->emitFinishInitPop(E)) 3939 return false; 3940 } 3941 3942 // FIXME: Virtual bases. 3943 3944 return true; 3945 } 3946 3947 template <class Emitter> 3948 template <typename T> 3949 bool Compiler<Emitter>::emitConst(T Value, PrimType Ty, const Expr *E) { 3950 switch (Ty) { 3951 case PT_Sint8: 3952 return this->emitConstSint8(Value, E); 3953 case PT_Uint8: 3954 return this->emitConstUint8(Value, E); 3955 case PT_Sint16: 3956 return this->emitConstSint16(Value, E); 3957 case PT_Uint16: 3958 return this->emitConstUint16(Value, E); 3959 case PT_Sint32: 3960 return this->emitConstSint32(Value, E); 3961 case PT_Uint32: 3962 return this->emitConstUint32(Value, E); 3963 case PT_Sint64: 3964 return this->emitConstSint64(Value, E); 3965 case PT_Uint64: 3966 return this->emitConstUint64(Value, E); 3967 case PT_Bool: 3968 return this->emitConstBool(Value, E); 3969 case PT_Ptr: 3970 case PT_FnPtr: 3971 case PT_MemberPtr: 3972 case PT_Float: 3973 case PT_IntAP: 3974 case PT_IntAPS: 3975 case PT_FixedPoint: 3976 llvm_unreachable("Invalid integral type"); 3977 break; 3978 } 3979 llvm_unreachable("unknown primitive type"); 3980 } 3981 3982 template <class Emitter> 3983 template <typename T> 3984 bool Compiler<Emitter>::emitConst(T Value, const Expr *E) { 3985 return this->emitConst(Value, classifyPrim(E->getType()), E); 3986 } 3987 3988 template <class Emitter> 3989 bool Compiler<Emitter>::emitConst(const APSInt &Value, PrimType Ty, 3990 const Expr *E) { 3991 if (Ty == PT_IntAPS) 3992 return this->emitConstIntAPS(Value, E); 3993 if (Ty == PT_IntAP) 3994 return this->emitConstIntAP(Value, E); 3995 3996 if (Value.isSigned()) 3997 return this->emitConst(Value.getSExtValue(), Ty, E); 3998 return this->emitConst(Value.getZExtValue(), Ty, E); 3999 } 4000 4001 template <class Emitter> 4002 bool Compiler<Emitter>::emitConst(const APSInt &Value, const Expr *E) { 4003 return this->emitConst(Value, classifyPrim(E->getType()), E); 4004 } 4005 4006 template <class Emitter> 4007 unsigned Compiler<Emitter>::allocateLocalPrimitive(DeclTy &&Src, PrimType Ty, 4008 bool IsConst, 4009 bool IsExtended) { 4010 // Make sure we don't accidentally register the same decl twice. 4011 if (const auto *VD = 4012 dyn_cast_if_present<ValueDecl>(Src.dyn_cast<const Decl *>())) { 4013 assert(!P.getGlobal(VD)); 4014 assert(!Locals.contains(VD)); 4015 (void)VD; 4016 } 4017 4018 // FIXME: There are cases where Src.is<Expr*>() is wrong, e.g. 4019 // (int){12} in C. Consider using Expr::isTemporaryObject() instead 4020 // or isa<MaterializeTemporaryExpr>(). 4021 Descriptor *D = P.createDescriptor(Src, Ty, Descriptor::InlineDescMD, IsConst, 4022 Src.is<const Expr *>()); 4023 Scope::Local Local = this->createLocal(D); 4024 if (auto *VD = dyn_cast_if_present<ValueDecl>(Src.dyn_cast<const Decl *>())) 4025 Locals.insert({VD, Local}); 4026 VarScope->add(Local, IsExtended); 4027 return Local.Offset; 4028 } 4029 4030 template <class Emitter> 4031 std::optional<unsigned> 4032 Compiler<Emitter>::allocateLocal(DeclTy &&Src, const ValueDecl *ExtendingDecl) { 4033 // Make sure we don't accidentally register the same decl twice. 4034 if ([[maybe_unused]] const auto *VD = 4035 dyn_cast_if_present<ValueDecl>(Src.dyn_cast<const Decl *>())) { 4036 assert(!P.getGlobal(VD)); 4037 assert(!Locals.contains(VD)); 4038 } 4039 4040 QualType Ty; 4041 const ValueDecl *Key = nullptr; 4042 const Expr *Init = nullptr; 4043 bool IsTemporary = false; 4044 if (auto *VD = dyn_cast_if_present<ValueDecl>(Src.dyn_cast<const Decl *>())) { 4045 Key = VD; 4046 Ty = VD->getType(); 4047 4048 if (const auto *VarD = dyn_cast<VarDecl>(VD)) 4049 Init = VarD->getInit(); 4050 } 4051 if (auto *E = Src.dyn_cast<const Expr *>()) { 4052 IsTemporary = true; 4053 Ty = E->getType(); 4054 } 4055 4056 Descriptor *D = P.createDescriptor( 4057 Src, Ty.getTypePtr(), Descriptor::InlineDescMD, Ty.isConstQualified(), 4058 IsTemporary, /*IsMutable=*/false, Init); 4059 if (!D) 4060 return std::nullopt; 4061 4062 Scope::Local Local = this->createLocal(D); 4063 if (Key) 4064 Locals.insert({Key, Local}); 4065 if (ExtendingDecl) 4066 VarScope->addExtended(Local, ExtendingDecl); 4067 else 4068 VarScope->add(Local, false); 4069 return Local.Offset; 4070 } 4071 4072 template <class Emitter> 4073 unsigned Compiler<Emitter>::allocateTemporary(const Expr *E) { 4074 QualType Ty = E->getType(); 4075 assert(!Ty->isRecordType()); 4076 4077 Descriptor *D = P.createDescriptor( 4078 E, Ty.getTypePtr(), Descriptor::InlineDescMD, Ty.isConstQualified(), 4079 /*IsTemporary=*/true, /*IsMutable=*/false, /*Init=*/nullptr); 4080 assert(D); 4081 4082 Scope::Local Local = this->createLocal(D); 4083 VariableScope<Emitter> *S = VarScope; 4084 assert(S); 4085 // Attach to topmost scope. 4086 while (S->getParent()) 4087 S = S->getParent(); 4088 assert(S && !S->getParent()); 4089 S->addLocal(Local); 4090 return Local.Offset; 4091 } 4092 4093 template <class Emitter> 4094 const RecordType *Compiler<Emitter>::getRecordTy(QualType Ty) { 4095 if (const PointerType *PT = dyn_cast<PointerType>(Ty)) 4096 return PT->getPointeeType()->getAs<RecordType>(); 4097 return Ty->getAs<RecordType>(); 4098 } 4099 4100 template <class Emitter> Record *Compiler<Emitter>::getRecord(QualType Ty) { 4101 if (const auto *RecordTy = getRecordTy(Ty)) 4102 return getRecord(RecordTy->getDecl()); 4103 return nullptr; 4104 } 4105 4106 template <class Emitter> 4107 Record *Compiler<Emitter>::getRecord(const RecordDecl *RD) { 4108 return P.getOrCreateRecord(RD); 4109 } 4110 4111 template <class Emitter> 4112 const Function *Compiler<Emitter>::getFunction(const FunctionDecl *FD) { 4113 return Ctx.getOrCreateFunction(FD); 4114 } 4115 4116 template <class Emitter> 4117 bool Compiler<Emitter>::visitExpr(const Expr *E, bool DestroyToplevelScope) { 4118 LocalScope<Emitter> RootScope(this); 4119 4120 auto maybeDestroyLocals = [&]() -> bool { 4121 if (DestroyToplevelScope) 4122 return RootScope.destroyLocals(); 4123 return true; 4124 }; 4125 4126 // Void expressions. 4127 if (E->getType()->isVoidType()) { 4128 if (!visit(E)) 4129 return false; 4130 return this->emitRetVoid(E) && maybeDestroyLocals(); 4131 } 4132 4133 // Expressions with a primitive return type. 4134 if (std::optional<PrimType> T = classify(E)) { 4135 if (!visit(E)) 4136 return false; 4137 4138 return this->emitRet(*T, E) && maybeDestroyLocals(); 4139 } 4140 4141 // Expressions with a composite return type. 4142 // For us, that means everything we don't 4143 // have a PrimType for. 4144 if (std::optional<unsigned> LocalOffset = this->allocateLocal(E)) { 4145 if (!this->emitGetPtrLocal(*LocalOffset, E)) 4146 return false; 4147 4148 if (!visitInitializer(E)) 4149 return false; 4150 4151 if (!this->emitFinishInit(E)) 4152 return false; 4153 // We are destroying the locals AFTER the Ret op. 4154 // The Ret op needs to copy the (alive) values, but the 4155 // destructors may still turn the entire expression invalid. 4156 return this->emitRetValue(E) && maybeDestroyLocals(); 4157 } 4158 4159 (void)maybeDestroyLocals(); 4160 return false; 4161 } 4162 4163 template <class Emitter> 4164 VarCreationState Compiler<Emitter>::visitDecl(const VarDecl *VD) { 4165 4166 auto R = this->visitVarDecl(VD, /*Toplevel=*/true); 4167 4168 if (R.notCreated()) 4169 return R; 4170 4171 if (R) 4172 return true; 4173 4174 if (!R && Context::shouldBeGloballyIndexed(VD)) { 4175 if (auto GlobalIndex = P.getGlobal(VD)) { 4176 Block *GlobalBlock = P.getGlobal(*GlobalIndex); 4177 GlobalInlineDescriptor &GD = 4178 *reinterpret_cast<GlobalInlineDescriptor *>(GlobalBlock->rawData()); 4179 4180 GD.InitState = GlobalInitState::InitializerFailed; 4181 GlobalBlock->invokeDtor(); 4182 } 4183 } 4184 4185 return R; 4186 } 4187 4188 /// Toplevel visitDeclAndReturn(). 4189 /// We get here from evaluateAsInitializer(). 4190 /// We need to evaluate the initializer and return its value. 4191 template <class Emitter> 4192 bool Compiler<Emitter>::visitDeclAndReturn(const VarDecl *VD, 4193 bool ConstantContext) { 4194 std::optional<PrimType> VarT = classify(VD->getType()); 4195 4196 // We only create variables if we're evaluating in a constant context. 4197 // Otherwise, just evaluate the initializer and return it. 4198 if (!ConstantContext) { 4199 DeclScope<Emitter> LS(this, VD); 4200 if (!this->visit(VD->getAnyInitializer())) 4201 return false; 4202 return this->emitRet(VarT.value_or(PT_Ptr), VD) && LS.destroyLocals(); 4203 } 4204 4205 LocalScope<Emitter> VDScope(this, VD); 4206 if (!this->visitVarDecl(VD, /*Toplevel=*/true)) 4207 return false; 4208 4209 if (Context::shouldBeGloballyIndexed(VD)) { 4210 auto GlobalIndex = P.getGlobal(VD); 4211 assert(GlobalIndex); // visitVarDecl() didn't return false. 4212 if (VarT) { 4213 if (!this->emitGetGlobalUnchecked(*VarT, *GlobalIndex, VD)) 4214 return false; 4215 } else { 4216 if (!this->emitGetPtrGlobal(*GlobalIndex, VD)) 4217 return false; 4218 } 4219 } else { 4220 auto Local = Locals.find(VD); 4221 assert(Local != Locals.end()); // Same here. 4222 if (VarT) { 4223 if (!this->emitGetLocal(*VarT, Local->second.Offset, VD)) 4224 return false; 4225 } else { 4226 if (!this->emitGetPtrLocal(Local->second.Offset, VD)) 4227 return false; 4228 } 4229 } 4230 4231 // Return the value. 4232 if (!this->emitRet(VarT.value_or(PT_Ptr), VD)) { 4233 // If the Ret above failed and this is a global variable, mark it as 4234 // uninitialized, even everything else succeeded. 4235 if (Context::shouldBeGloballyIndexed(VD)) { 4236 auto GlobalIndex = P.getGlobal(VD); 4237 assert(GlobalIndex); 4238 Block *GlobalBlock = P.getGlobal(*GlobalIndex); 4239 GlobalInlineDescriptor &GD = 4240 *reinterpret_cast<GlobalInlineDescriptor *>(GlobalBlock->rawData()); 4241 4242 GD.InitState = GlobalInitState::InitializerFailed; 4243 GlobalBlock->invokeDtor(); 4244 } 4245 return false; 4246 } 4247 4248 return VDScope.destroyLocals(); 4249 } 4250 4251 template <class Emitter> 4252 VarCreationState Compiler<Emitter>::visitVarDecl(const VarDecl *VD, 4253 bool Toplevel) { 4254 // We don't know what to do with these, so just return false. 4255 if (VD->getType().isNull()) 4256 return false; 4257 4258 // This case is EvalEmitter-only. If we won't create any instructions for the 4259 // initializer anyway, don't bother creating the variable in the first place. 4260 if (!this->isActive()) 4261 return VarCreationState::NotCreated(); 4262 4263 const Expr *Init = VD->getInit(); 4264 std::optional<PrimType> VarT = classify(VD->getType()); 4265 4266 if (Init && Init->isValueDependent()) 4267 return false; 4268 4269 if (Context::shouldBeGloballyIndexed(VD)) { 4270 auto checkDecl = [&]() -> bool { 4271 bool NeedsOp = !Toplevel && VD->isLocalVarDecl() && VD->isStaticLocal(); 4272 return !NeedsOp || this->emitCheckDecl(VD, VD); 4273 }; 4274 4275 auto initGlobal = [&](unsigned GlobalIndex) -> bool { 4276 assert(Init); 4277 4278 if (VarT) { 4279 if (!this->visit(Init)) 4280 return checkDecl() && false; 4281 4282 return checkDecl() && this->emitInitGlobal(*VarT, GlobalIndex, VD); 4283 } 4284 4285 if (!checkDecl()) 4286 return false; 4287 4288 if (!this->emitGetPtrGlobal(GlobalIndex, Init)) 4289 return false; 4290 4291 if (!visitInitializer(Init)) 4292 return false; 4293 4294 if (!this->emitFinishInit(Init)) 4295 return false; 4296 4297 return this->emitPopPtr(Init); 4298 }; 4299 4300 DeclScope<Emitter> LocalScope(this, VD); 4301 4302 // We've already seen and initialized this global. 4303 if (std::optional<unsigned> GlobalIndex = P.getGlobal(VD)) { 4304 if (P.getPtrGlobal(*GlobalIndex).isInitialized()) 4305 return checkDecl(); 4306 4307 // The previous attempt at initialization might've been unsuccessful, 4308 // so let's try this one. 4309 return Init && checkDecl() && initGlobal(*GlobalIndex); 4310 } 4311 4312 std::optional<unsigned> GlobalIndex = P.createGlobal(VD, Init); 4313 4314 if (!GlobalIndex) 4315 return false; 4316 4317 return !Init || (checkDecl() && initGlobal(*GlobalIndex)); 4318 } else { 4319 InitLinkScope<Emitter> ILS(this, InitLink::Decl(VD)); 4320 4321 if (VarT) { 4322 unsigned Offset = this->allocateLocalPrimitive( 4323 VD, *VarT, VD->getType().isConstQualified()); 4324 if (Init) { 4325 // If this is a toplevel declaration, create a scope for the 4326 // initializer. 4327 if (Toplevel) { 4328 LocalScope<Emitter> Scope(this); 4329 if (!this->visit(Init)) 4330 return false; 4331 return this->emitSetLocal(*VarT, Offset, VD) && Scope.destroyLocals(); 4332 } else { 4333 if (!this->visit(Init)) 4334 return false; 4335 return this->emitSetLocal(*VarT, Offset, VD); 4336 } 4337 } 4338 } else { 4339 if (std::optional<unsigned> Offset = this->allocateLocal(VD)) { 4340 if (!Init) 4341 return true; 4342 4343 if (!this->emitGetPtrLocal(*Offset, Init)) 4344 return false; 4345 4346 if (!visitInitializer(Init)) 4347 return false; 4348 4349 if (!this->emitFinishInit(Init)) 4350 return false; 4351 4352 return this->emitPopPtr(Init); 4353 } 4354 return false; 4355 } 4356 return true; 4357 } 4358 4359 return false; 4360 } 4361 4362 template <class Emitter> 4363 bool Compiler<Emitter>::visitAPValue(const APValue &Val, PrimType ValType, 4364 const Expr *E) { 4365 assert(!DiscardResult); 4366 if (Val.isInt()) 4367 return this->emitConst(Val.getInt(), ValType, E); 4368 else if (Val.isFloat()) 4369 return this->emitConstFloat(Val.getFloat(), E); 4370 4371 if (Val.isLValue()) { 4372 if (Val.isNullPointer()) 4373 return this->emitNull(ValType, nullptr, E); 4374 APValue::LValueBase Base = Val.getLValueBase(); 4375 if (const Expr *BaseExpr = Base.dyn_cast<const Expr *>()) 4376 return this->visit(BaseExpr); 4377 else if (const auto *VD = Base.dyn_cast<const ValueDecl *>()) { 4378 return this->visitDeclRef(VD, E); 4379 } 4380 } else if (Val.isMemberPointer()) { 4381 if (const ValueDecl *MemberDecl = Val.getMemberPointerDecl()) 4382 return this->emitGetMemberPtr(MemberDecl, E); 4383 return this->emitNullMemberPtr(nullptr, E); 4384 } 4385 4386 return false; 4387 } 4388 4389 template <class Emitter> 4390 bool Compiler<Emitter>::visitAPValueInitializer(const APValue &Val, 4391 const Expr *E) { 4392 4393 if (Val.isStruct()) { 4394 const Record *R = this->getRecord(E->getType()); 4395 assert(R); 4396 for (unsigned I = 0, N = Val.getStructNumFields(); I != N; ++I) { 4397 const APValue &F = Val.getStructField(I); 4398 const Record::Field *RF = R->getField(I); 4399 4400 if (F.isInt() || F.isFloat() || F.isLValue() || F.isMemberPointer()) { 4401 PrimType T = classifyPrim(RF->Decl->getType()); 4402 if (!this->visitAPValue(F, T, E)) 4403 return false; 4404 if (!this->emitInitField(T, RF->Offset, E)) 4405 return false; 4406 } else if (F.isArray()) { 4407 assert(RF->Desc->isPrimitiveArray()); 4408 const auto *ArrType = RF->Decl->getType()->getAsArrayTypeUnsafe(); 4409 PrimType ElemT = classifyPrim(ArrType->getElementType()); 4410 assert(ArrType); 4411 4412 if (!this->emitGetPtrField(RF->Offset, E)) 4413 return false; 4414 4415 for (unsigned A = 0, AN = F.getArraySize(); A != AN; ++A) { 4416 if (!this->visitAPValue(F.getArrayInitializedElt(A), ElemT, E)) 4417 return false; 4418 if (!this->emitInitElem(ElemT, A, E)) 4419 return false; 4420 } 4421 4422 if (!this->emitPopPtr(E)) 4423 return false; 4424 } else if (F.isStruct() || F.isUnion()) { 4425 if (!this->emitGetPtrField(RF->Offset, E)) 4426 return false; 4427 if (!this->visitAPValueInitializer(F, E)) 4428 return false; 4429 if (!this->emitPopPtr(E)) 4430 return false; 4431 } else { 4432 assert(false && "I don't think this should be possible"); 4433 } 4434 } 4435 return true; 4436 } else if (Val.isUnion()) { 4437 const FieldDecl *UnionField = Val.getUnionField(); 4438 const Record *R = this->getRecord(UnionField->getParent()); 4439 assert(R); 4440 const APValue &F = Val.getUnionValue(); 4441 const Record::Field *RF = R->getField(UnionField); 4442 PrimType T = classifyPrim(RF->Decl->getType()); 4443 if (!this->visitAPValue(F, T, E)) 4444 return false; 4445 return this->emitInitField(T, RF->Offset, E); 4446 } 4447 // TODO: Other types. 4448 4449 return false; 4450 } 4451 4452 template <class Emitter> 4453 bool Compiler<Emitter>::VisitBuiltinCallExpr(const CallExpr *E, 4454 unsigned BuiltinID) { 4455 const Function *Func = getFunction(E->getDirectCallee()); 4456 if (!Func) 4457 return false; 4458 4459 // For these, we're expected to ultimately return an APValue pointing 4460 // to the CallExpr. This is needed to get the correct codegen. 4461 if (BuiltinID == Builtin::BI__builtin___CFStringMakeConstantString || 4462 BuiltinID == Builtin::BI__builtin___NSStringMakeConstantString || 4463 BuiltinID == Builtin::BI__builtin_ptrauth_sign_constant || 4464 BuiltinID == Builtin::BI__builtin_function_start) { 4465 if (std::optional<unsigned> GlobalOffset = P.getOrCreateDummy(E)) { 4466 if (!this->emitGetPtrGlobal(*GlobalOffset, E)) 4467 return false; 4468 4469 if (PrimType PT = classifyPrim(E); PT != PT_Ptr && isPtrType(PT)) 4470 return this->emitDecayPtr(PT_Ptr, PT, E); 4471 return true; 4472 } 4473 return false; 4474 } 4475 4476 QualType ReturnType = E->getType(); 4477 std::optional<PrimType> ReturnT = classify(E); 4478 4479 // Non-primitive return type. Prepare storage. 4480 if (!Initializing && !ReturnT && !ReturnType->isVoidType()) { 4481 std::optional<unsigned> LocalIndex = allocateLocal(E); 4482 if (!LocalIndex) 4483 return false; 4484 if (!this->emitGetPtrLocal(*LocalIndex, E)) 4485 return false; 4486 } 4487 4488 if (!Func->isUnevaluatedBuiltin()) { 4489 // Put arguments on the stack. 4490 for (const auto *Arg : E->arguments()) { 4491 if (!this->visit(Arg)) 4492 return false; 4493 } 4494 } 4495 4496 if (!this->emitCallBI(Func, E, BuiltinID, E)) 4497 return false; 4498 4499 if (DiscardResult && !ReturnType->isVoidType()) { 4500 assert(ReturnT); 4501 return this->emitPop(*ReturnT, E); 4502 } 4503 4504 return true; 4505 } 4506 4507 template <class Emitter> 4508 bool Compiler<Emitter>::VisitCallExpr(const CallExpr *E) { 4509 if (unsigned BuiltinID = E->getBuiltinCallee()) 4510 return VisitBuiltinCallExpr(E, BuiltinID); 4511 4512 const FunctionDecl *FuncDecl = E->getDirectCallee(); 4513 // Calls to replaceable operator new/operator delete. 4514 if (FuncDecl && FuncDecl->isReplaceableGlobalAllocationFunction()) { 4515 if (FuncDecl->getDeclName().getCXXOverloadedOperator() == OO_New || 4516 FuncDecl->getDeclName().getCXXOverloadedOperator() == OO_Array_New) { 4517 return VisitBuiltinCallExpr(E, Builtin::BI__builtin_operator_new); 4518 } else { 4519 assert(FuncDecl->getDeclName().getCXXOverloadedOperator() == OO_Delete); 4520 return VisitBuiltinCallExpr(E, Builtin::BI__builtin_operator_delete); 4521 } 4522 } 4523 4524 QualType ReturnType = E->getCallReturnType(Ctx.getASTContext()); 4525 std::optional<PrimType> T = classify(ReturnType); 4526 bool HasRVO = !ReturnType->isVoidType() && !T; 4527 4528 if (HasRVO) { 4529 if (DiscardResult) { 4530 // If we need to discard the return value but the function returns its 4531 // value via an RVO pointer, we need to create one such pointer just 4532 // for this call. 4533 if (std::optional<unsigned> LocalIndex = allocateLocal(E)) { 4534 if (!this->emitGetPtrLocal(*LocalIndex, E)) 4535 return false; 4536 } 4537 } else { 4538 // We need the result. Prepare a pointer to return or 4539 // dup the current one. 4540 if (!Initializing) { 4541 if (std::optional<unsigned> LocalIndex = allocateLocal(E)) { 4542 if (!this->emitGetPtrLocal(*LocalIndex, E)) 4543 return false; 4544 } 4545 } 4546 if (!this->emitDupPtr(E)) 4547 return false; 4548 } 4549 } 4550 4551 SmallVector<const Expr *, 8> Args( 4552 llvm::ArrayRef(E->getArgs(), E->getNumArgs())); 4553 4554 bool IsAssignmentOperatorCall = false; 4555 if (const auto *OCE = dyn_cast<CXXOperatorCallExpr>(E); 4556 OCE && OCE->isAssignmentOp()) { 4557 // Just like with regular assignments, we need to special-case assignment 4558 // operators here and evaluate the RHS (the second arg) before the LHS (the 4559 // first arg. We fix this by using a Flip op later. 4560 assert(Args.size() == 2); 4561 IsAssignmentOperatorCall = true; 4562 std::reverse(Args.begin(), Args.end()); 4563 } 4564 // Calling a static operator will still 4565 // pass the instance, but we don't need it. 4566 // Discard it here. 4567 if (isa<CXXOperatorCallExpr>(E)) { 4568 if (const auto *MD = dyn_cast_if_present<CXXMethodDecl>(FuncDecl); 4569 MD && MD->isStatic()) { 4570 if (!this->discard(E->getArg(0))) 4571 return false; 4572 // Drop first arg. 4573 Args.erase(Args.begin()); 4574 } 4575 } 4576 4577 std::optional<unsigned> CalleeOffset; 4578 // Add the (optional, implicit) This pointer. 4579 if (const auto *MC = dyn_cast<CXXMemberCallExpr>(E)) { 4580 if (!FuncDecl && classifyPrim(E->getCallee()) == PT_MemberPtr) { 4581 // If we end up creating a CallPtr op for this, we need the base of the 4582 // member pointer as the instance pointer, and later extract the function 4583 // decl as the function pointer. 4584 const Expr *Callee = E->getCallee(); 4585 CalleeOffset = 4586 this->allocateLocalPrimitive(Callee, PT_MemberPtr, true, false); 4587 if (!this->visit(Callee)) 4588 return false; 4589 if (!this->emitSetLocal(PT_MemberPtr, *CalleeOffset, E)) 4590 return false; 4591 if (!this->emitGetLocal(PT_MemberPtr, *CalleeOffset, E)) 4592 return false; 4593 if (!this->emitGetMemberPtrBase(E)) 4594 return false; 4595 } else if (!this->visit(MC->getImplicitObjectArgument())) { 4596 return false; 4597 } 4598 } else if (!FuncDecl) { 4599 const Expr *Callee = E->getCallee(); 4600 CalleeOffset = this->allocateLocalPrimitive(Callee, PT_FnPtr, true, false); 4601 if (!this->visit(Callee)) 4602 return false; 4603 if (!this->emitSetLocal(PT_FnPtr, *CalleeOffset, E)) 4604 return false; 4605 } 4606 4607 llvm::BitVector NonNullArgs = collectNonNullArgs(FuncDecl, Args); 4608 // Put arguments on the stack. 4609 unsigned ArgIndex = 0; 4610 for (const auto *Arg : Args) { 4611 if (!this->visit(Arg)) 4612 return false; 4613 4614 // If we know the callee already, check the known parametrs for nullability. 4615 if (FuncDecl && NonNullArgs[ArgIndex]) { 4616 PrimType ArgT = classify(Arg).value_or(PT_Ptr); 4617 if (ArgT == PT_Ptr || ArgT == PT_FnPtr) { 4618 if (!this->emitCheckNonNullArg(ArgT, Arg)) 4619 return false; 4620 } 4621 } 4622 ++ArgIndex; 4623 } 4624 4625 // Undo the argument reversal we did earlier. 4626 if (IsAssignmentOperatorCall) { 4627 assert(Args.size() == 2); 4628 PrimType Arg1T = classify(Args[0]).value_or(PT_Ptr); 4629 PrimType Arg2T = classify(Args[1]).value_or(PT_Ptr); 4630 if (!this->emitFlip(Arg2T, Arg1T, E)) 4631 return false; 4632 } 4633 4634 if (FuncDecl) { 4635 const Function *Func = getFunction(FuncDecl); 4636 if (!Func) 4637 return false; 4638 assert(HasRVO == Func->hasRVO()); 4639 4640 bool HasQualifier = false; 4641 if (const auto *ME = dyn_cast<MemberExpr>(E->getCallee())) 4642 HasQualifier = ME->hasQualifier(); 4643 4644 bool IsVirtual = false; 4645 if (const auto *MD = dyn_cast<CXXMethodDecl>(FuncDecl)) 4646 IsVirtual = MD->isVirtual(); 4647 4648 // In any case call the function. The return value will end up on the stack 4649 // and if the function has RVO, we already have the pointer on the stack to 4650 // write the result into. 4651 if (IsVirtual && !HasQualifier) { 4652 uint32_t VarArgSize = 0; 4653 unsigned NumParams = 4654 Func->getNumWrittenParams() + isa<CXXOperatorCallExpr>(E); 4655 for (unsigned I = NumParams, N = E->getNumArgs(); I != N; ++I) 4656 VarArgSize += align(primSize(classify(E->getArg(I)).value_or(PT_Ptr))); 4657 4658 if (!this->emitCallVirt(Func, VarArgSize, E)) 4659 return false; 4660 } else if (Func->isVariadic()) { 4661 uint32_t VarArgSize = 0; 4662 unsigned NumParams = 4663 Func->getNumWrittenParams() + isa<CXXOperatorCallExpr>(E); 4664 for (unsigned I = NumParams, N = E->getNumArgs(); I != N; ++I) 4665 VarArgSize += align(primSize(classify(E->getArg(I)).value_or(PT_Ptr))); 4666 if (!this->emitCallVar(Func, VarArgSize, E)) 4667 return false; 4668 } else { 4669 if (!this->emitCall(Func, 0, E)) 4670 return false; 4671 } 4672 } else { 4673 // Indirect call. Visit the callee, which will leave a FunctionPointer on 4674 // the stack. Cleanup of the returned value if necessary will be done after 4675 // the function call completed. 4676 4677 // Sum the size of all args from the call expr. 4678 uint32_t ArgSize = 0; 4679 for (unsigned I = 0, N = E->getNumArgs(); I != N; ++I) 4680 ArgSize += align(primSize(classify(E->getArg(I)).value_or(PT_Ptr))); 4681 4682 // Get the callee, either from a member pointer or function pointer saved in 4683 // CalleeOffset. 4684 if (isa<CXXMemberCallExpr>(E) && CalleeOffset) { 4685 if (!this->emitGetLocal(PT_MemberPtr, *CalleeOffset, E)) 4686 return false; 4687 if (!this->emitGetMemberPtrDecl(E)) 4688 return false; 4689 } else { 4690 if (!this->emitGetLocal(PT_FnPtr, *CalleeOffset, E)) 4691 return false; 4692 } 4693 if (!this->emitCallPtr(ArgSize, E, E)) 4694 return false; 4695 } 4696 4697 // Cleanup for discarded return values. 4698 if (DiscardResult && !ReturnType->isVoidType() && T) 4699 return this->emitPop(*T, E); 4700 4701 return true; 4702 } 4703 4704 template <class Emitter> 4705 bool Compiler<Emitter>::VisitCXXDefaultInitExpr(const CXXDefaultInitExpr *E) { 4706 SourceLocScope<Emitter> SLS(this, E); 4707 4708 return this->delegate(E->getExpr()); 4709 } 4710 4711 template <class Emitter> 4712 bool Compiler<Emitter>::VisitCXXDefaultArgExpr(const CXXDefaultArgExpr *E) { 4713 SourceLocScope<Emitter> SLS(this, E); 4714 4715 const Expr *SubExpr = E->getExpr(); 4716 if (std::optional<PrimType> T = classify(E->getExpr())) 4717 return this->visit(SubExpr); 4718 4719 assert(Initializing); 4720 return this->visitInitializer(SubExpr); 4721 } 4722 4723 template <class Emitter> 4724 bool Compiler<Emitter>::VisitCXXBoolLiteralExpr(const CXXBoolLiteralExpr *E) { 4725 if (DiscardResult) 4726 return true; 4727 4728 return this->emitConstBool(E->getValue(), E); 4729 } 4730 4731 template <class Emitter> 4732 bool Compiler<Emitter>::VisitCXXNullPtrLiteralExpr( 4733 const CXXNullPtrLiteralExpr *E) { 4734 if (DiscardResult) 4735 return true; 4736 4737 return this->emitNullPtr(nullptr, E); 4738 } 4739 4740 template <class Emitter> 4741 bool Compiler<Emitter>::VisitGNUNullExpr(const GNUNullExpr *E) { 4742 if (DiscardResult) 4743 return true; 4744 4745 assert(E->getType()->isIntegerType()); 4746 4747 PrimType T = classifyPrim(E->getType()); 4748 return this->emitZero(T, E); 4749 } 4750 4751 template <class Emitter> 4752 bool Compiler<Emitter>::VisitCXXThisExpr(const CXXThisExpr *E) { 4753 if (DiscardResult) 4754 return true; 4755 4756 if (this->LambdaThisCapture.Offset > 0) { 4757 if (this->LambdaThisCapture.IsPtr) 4758 return this->emitGetThisFieldPtr(this->LambdaThisCapture.Offset, E); 4759 return this->emitGetPtrThisField(this->LambdaThisCapture.Offset, E); 4760 } 4761 4762 // In some circumstances, the 'this' pointer does not actually refer to the 4763 // instance pointer of the current function frame, but e.g. to the declaration 4764 // currently being initialized. Here we emit the necessary instruction(s) for 4765 // this scenario. 4766 if (!InitStackActive || !E->isImplicit()) 4767 return this->emitThis(E); 4768 4769 if (InitStackActive && !InitStack.empty()) { 4770 unsigned StartIndex = 0; 4771 for (StartIndex = InitStack.size() - 1; StartIndex > 0; --StartIndex) { 4772 if (InitStack[StartIndex].Kind != InitLink::K_Field && 4773 InitStack[StartIndex].Kind != InitLink::K_Elem) 4774 break; 4775 } 4776 4777 for (unsigned I = StartIndex, N = InitStack.size(); I != N; ++I) { 4778 if (!InitStack[I].template emit<Emitter>(this, E)) 4779 return false; 4780 } 4781 return true; 4782 } 4783 return this->emitThis(E); 4784 } 4785 4786 template <class Emitter> bool Compiler<Emitter>::visitStmt(const Stmt *S) { 4787 switch (S->getStmtClass()) { 4788 case Stmt::CompoundStmtClass: 4789 return visitCompoundStmt(cast<CompoundStmt>(S)); 4790 case Stmt::DeclStmtClass: 4791 return visitDeclStmt(cast<DeclStmt>(S)); 4792 case Stmt::ReturnStmtClass: 4793 return visitReturnStmt(cast<ReturnStmt>(S)); 4794 case Stmt::IfStmtClass: 4795 return visitIfStmt(cast<IfStmt>(S)); 4796 case Stmt::WhileStmtClass: 4797 return visitWhileStmt(cast<WhileStmt>(S)); 4798 case Stmt::DoStmtClass: 4799 return visitDoStmt(cast<DoStmt>(S)); 4800 case Stmt::ForStmtClass: 4801 return visitForStmt(cast<ForStmt>(S)); 4802 case Stmt::CXXForRangeStmtClass: 4803 return visitCXXForRangeStmt(cast<CXXForRangeStmt>(S)); 4804 case Stmt::BreakStmtClass: 4805 return visitBreakStmt(cast<BreakStmt>(S)); 4806 case Stmt::ContinueStmtClass: 4807 return visitContinueStmt(cast<ContinueStmt>(S)); 4808 case Stmt::SwitchStmtClass: 4809 return visitSwitchStmt(cast<SwitchStmt>(S)); 4810 case Stmt::CaseStmtClass: 4811 return visitCaseStmt(cast<CaseStmt>(S)); 4812 case Stmt::DefaultStmtClass: 4813 return visitDefaultStmt(cast<DefaultStmt>(S)); 4814 case Stmt::AttributedStmtClass: 4815 return visitAttributedStmt(cast<AttributedStmt>(S)); 4816 case Stmt::CXXTryStmtClass: 4817 return visitCXXTryStmt(cast<CXXTryStmt>(S)); 4818 case Stmt::NullStmtClass: 4819 return true; 4820 // Always invalid statements. 4821 case Stmt::GCCAsmStmtClass: 4822 case Stmt::MSAsmStmtClass: 4823 case Stmt::GotoStmtClass: 4824 return this->emitInvalid(S); 4825 case Stmt::LabelStmtClass: 4826 return this->visitStmt(cast<LabelStmt>(S)->getSubStmt()); 4827 default: { 4828 if (const auto *E = dyn_cast<Expr>(S)) 4829 return this->discard(E); 4830 return false; 4831 } 4832 } 4833 } 4834 4835 template <class Emitter> 4836 bool Compiler<Emitter>::visitCompoundStmt(const CompoundStmt *S) { 4837 BlockScope<Emitter> Scope(this); 4838 for (const auto *InnerStmt : S->body()) 4839 if (!visitStmt(InnerStmt)) 4840 return false; 4841 return Scope.destroyLocals(); 4842 } 4843 4844 template <class Emitter> 4845 bool Compiler<Emitter>::visitDeclStmt(const DeclStmt *DS) { 4846 for (const auto *D : DS->decls()) { 4847 if (isa<StaticAssertDecl, TagDecl, TypedefNameDecl, UsingEnumDecl, 4848 FunctionDecl>(D)) 4849 continue; 4850 4851 const auto *VD = dyn_cast<VarDecl>(D); 4852 if (!VD) 4853 return false; 4854 if (!this->visitVarDecl(VD)) 4855 return false; 4856 } 4857 4858 return true; 4859 } 4860 4861 template <class Emitter> 4862 bool Compiler<Emitter>::visitReturnStmt(const ReturnStmt *RS) { 4863 if (this->InStmtExpr) 4864 return this->emitUnsupported(RS); 4865 4866 if (const Expr *RE = RS->getRetValue()) { 4867 LocalScope<Emitter> RetScope(this); 4868 if (ReturnType) { 4869 // Primitive types are simply returned. 4870 if (!this->visit(RE)) 4871 return false; 4872 this->emitCleanup(); 4873 return this->emitRet(*ReturnType, RS); 4874 } else if (RE->getType()->isVoidType()) { 4875 if (!this->visit(RE)) 4876 return false; 4877 } else { 4878 // RVO - construct the value in the return location. 4879 if (!this->emitRVOPtr(RE)) 4880 return false; 4881 if (!this->visitInitializer(RE)) 4882 return false; 4883 if (!this->emitPopPtr(RE)) 4884 return false; 4885 4886 this->emitCleanup(); 4887 return this->emitRetVoid(RS); 4888 } 4889 } 4890 4891 // Void return. 4892 this->emitCleanup(); 4893 return this->emitRetVoid(RS); 4894 } 4895 4896 template <class Emitter> bool Compiler<Emitter>::visitIfStmt(const IfStmt *IS) { 4897 if (auto *CondInit = IS->getInit()) 4898 if (!visitStmt(CondInit)) 4899 return false; 4900 4901 if (const DeclStmt *CondDecl = IS->getConditionVariableDeclStmt()) 4902 if (!visitDeclStmt(CondDecl)) 4903 return false; 4904 4905 // Compile condition. 4906 if (IS->isNonNegatedConsteval()) { 4907 if (!this->emitIsConstantContext(IS)) 4908 return false; 4909 } else if (IS->isNegatedConsteval()) { 4910 if (!this->emitIsConstantContext(IS)) 4911 return false; 4912 if (!this->emitInv(IS)) 4913 return false; 4914 } else { 4915 if (!this->visitBool(IS->getCond())) 4916 return false; 4917 } 4918 4919 if (const Stmt *Else = IS->getElse()) { 4920 LabelTy LabelElse = this->getLabel(); 4921 LabelTy LabelEnd = this->getLabel(); 4922 if (!this->jumpFalse(LabelElse)) 4923 return false; 4924 if (!visitStmt(IS->getThen())) 4925 return false; 4926 if (!this->jump(LabelEnd)) 4927 return false; 4928 this->emitLabel(LabelElse); 4929 if (!visitStmt(Else)) 4930 return false; 4931 this->emitLabel(LabelEnd); 4932 } else { 4933 LabelTy LabelEnd = this->getLabel(); 4934 if (!this->jumpFalse(LabelEnd)) 4935 return false; 4936 if (!visitStmt(IS->getThen())) 4937 return false; 4938 this->emitLabel(LabelEnd); 4939 } 4940 4941 return true; 4942 } 4943 4944 template <class Emitter> 4945 bool Compiler<Emitter>::visitWhileStmt(const WhileStmt *S) { 4946 const Expr *Cond = S->getCond(); 4947 const Stmt *Body = S->getBody(); 4948 4949 LabelTy CondLabel = this->getLabel(); // Label before the condition. 4950 LabelTy EndLabel = this->getLabel(); // Label after the loop. 4951 LoopScope<Emitter> LS(this, EndLabel, CondLabel); 4952 4953 this->fallthrough(CondLabel); 4954 this->emitLabel(CondLabel); 4955 4956 { 4957 LocalScope<Emitter> CondScope(this); 4958 if (const DeclStmt *CondDecl = S->getConditionVariableDeclStmt()) 4959 if (!visitDeclStmt(CondDecl)) 4960 return false; 4961 4962 if (!this->visitBool(Cond)) 4963 return false; 4964 if (!this->jumpFalse(EndLabel)) 4965 return false; 4966 4967 if (!this->visitStmt(Body)) 4968 return false; 4969 4970 if (!CondScope.destroyLocals()) 4971 return false; 4972 } 4973 if (!this->jump(CondLabel)) 4974 return false; 4975 this->fallthrough(EndLabel); 4976 this->emitLabel(EndLabel); 4977 4978 return true; 4979 } 4980 4981 template <class Emitter> bool Compiler<Emitter>::visitDoStmt(const DoStmt *S) { 4982 const Expr *Cond = S->getCond(); 4983 const Stmt *Body = S->getBody(); 4984 4985 LabelTy StartLabel = this->getLabel(); 4986 LabelTy EndLabel = this->getLabel(); 4987 LabelTy CondLabel = this->getLabel(); 4988 LoopScope<Emitter> LS(this, EndLabel, CondLabel); 4989 4990 this->fallthrough(StartLabel); 4991 this->emitLabel(StartLabel); 4992 4993 { 4994 LocalScope<Emitter> CondScope(this); 4995 if (!this->visitStmt(Body)) 4996 return false; 4997 this->fallthrough(CondLabel); 4998 this->emitLabel(CondLabel); 4999 if (!this->visitBool(Cond)) 5000 return false; 5001 5002 if (!CondScope.destroyLocals()) 5003 return false; 5004 } 5005 if (!this->jumpTrue(StartLabel)) 5006 return false; 5007 5008 this->fallthrough(EndLabel); 5009 this->emitLabel(EndLabel); 5010 return true; 5011 } 5012 5013 template <class Emitter> 5014 bool Compiler<Emitter>::visitForStmt(const ForStmt *S) { 5015 // for (Init; Cond; Inc) { Body } 5016 const Stmt *Init = S->getInit(); 5017 const Expr *Cond = S->getCond(); 5018 const Expr *Inc = S->getInc(); 5019 const Stmt *Body = S->getBody(); 5020 5021 LabelTy EndLabel = this->getLabel(); 5022 LabelTy CondLabel = this->getLabel(); 5023 LabelTy IncLabel = this->getLabel(); 5024 LoopScope<Emitter> LS(this, EndLabel, IncLabel); 5025 5026 if (Init && !this->visitStmt(Init)) 5027 return false; 5028 5029 this->fallthrough(CondLabel); 5030 this->emitLabel(CondLabel); 5031 5032 { 5033 LocalScope<Emitter> CondScope(this); 5034 if (const DeclStmt *CondDecl = S->getConditionVariableDeclStmt()) 5035 if (!visitDeclStmt(CondDecl)) 5036 return false; 5037 5038 if (Cond) { 5039 if (!this->visitBool(Cond)) 5040 return false; 5041 if (!this->jumpFalse(EndLabel)) 5042 return false; 5043 } 5044 5045 if (Body && !this->visitStmt(Body)) 5046 return false; 5047 5048 this->fallthrough(IncLabel); 5049 this->emitLabel(IncLabel); 5050 if (Inc && !this->discard(Inc)) 5051 return false; 5052 5053 if (!CondScope.destroyLocals()) 5054 return false; 5055 } 5056 if (!this->jump(CondLabel)) 5057 return false; 5058 5059 this->fallthrough(EndLabel); 5060 this->emitLabel(EndLabel); 5061 return true; 5062 } 5063 5064 template <class Emitter> 5065 bool Compiler<Emitter>::visitCXXForRangeStmt(const CXXForRangeStmt *S) { 5066 const Stmt *Init = S->getInit(); 5067 const Expr *Cond = S->getCond(); 5068 const Expr *Inc = S->getInc(); 5069 const Stmt *Body = S->getBody(); 5070 const Stmt *BeginStmt = S->getBeginStmt(); 5071 const Stmt *RangeStmt = S->getRangeStmt(); 5072 const Stmt *EndStmt = S->getEndStmt(); 5073 const VarDecl *LoopVar = S->getLoopVariable(); 5074 5075 LabelTy EndLabel = this->getLabel(); 5076 LabelTy CondLabel = this->getLabel(); 5077 LabelTy IncLabel = this->getLabel(); 5078 LoopScope<Emitter> LS(this, EndLabel, IncLabel); 5079 5080 // Emit declarations needed in the loop. 5081 if (Init && !this->visitStmt(Init)) 5082 return false; 5083 if (!this->visitStmt(RangeStmt)) 5084 return false; 5085 if (!this->visitStmt(BeginStmt)) 5086 return false; 5087 if (!this->visitStmt(EndStmt)) 5088 return false; 5089 5090 // Now the condition as well as the loop variable assignment. 5091 this->fallthrough(CondLabel); 5092 this->emitLabel(CondLabel); 5093 if (!this->visitBool(Cond)) 5094 return false; 5095 if (!this->jumpFalse(EndLabel)) 5096 return false; 5097 5098 if (!this->visitVarDecl(LoopVar)) 5099 return false; 5100 5101 // Body. 5102 { 5103 if (!this->visitStmt(Body)) 5104 return false; 5105 5106 this->fallthrough(IncLabel); 5107 this->emitLabel(IncLabel); 5108 if (!this->discard(Inc)) 5109 return false; 5110 } 5111 5112 if (!this->jump(CondLabel)) 5113 return false; 5114 5115 this->fallthrough(EndLabel); 5116 this->emitLabel(EndLabel); 5117 return true; 5118 } 5119 5120 template <class Emitter> 5121 bool Compiler<Emitter>::visitBreakStmt(const BreakStmt *S) { 5122 if (!BreakLabel) 5123 return false; 5124 5125 for (VariableScope<Emitter> *C = VarScope; C != BreakVarScope; 5126 C = C->getParent()) 5127 C->emitDestruction(); 5128 return this->jump(*BreakLabel); 5129 } 5130 5131 template <class Emitter> 5132 bool Compiler<Emitter>::visitContinueStmt(const ContinueStmt *S) { 5133 if (!ContinueLabel) 5134 return false; 5135 5136 for (VariableScope<Emitter> *C = VarScope; 5137 C && C->getParent() != ContinueVarScope; C = C->getParent()) 5138 C->emitDestruction(); 5139 return this->jump(*ContinueLabel); 5140 } 5141 5142 template <class Emitter> 5143 bool Compiler<Emitter>::visitSwitchStmt(const SwitchStmt *S) { 5144 const Expr *Cond = S->getCond(); 5145 PrimType CondT = this->classifyPrim(Cond->getType()); 5146 LocalScope<Emitter> LS(this); 5147 5148 LabelTy EndLabel = this->getLabel(); 5149 OptLabelTy DefaultLabel = std::nullopt; 5150 unsigned CondVar = this->allocateLocalPrimitive(Cond, CondT, true, false); 5151 5152 if (const auto *CondInit = S->getInit()) 5153 if (!visitStmt(CondInit)) 5154 return false; 5155 5156 if (const DeclStmt *CondDecl = S->getConditionVariableDeclStmt()) 5157 if (!visitDeclStmt(CondDecl)) 5158 return false; 5159 5160 // Initialize condition variable. 5161 if (!this->visit(Cond)) 5162 return false; 5163 if (!this->emitSetLocal(CondT, CondVar, S)) 5164 return false; 5165 5166 CaseMap CaseLabels; 5167 // Create labels and comparison ops for all case statements. 5168 for (const SwitchCase *SC = S->getSwitchCaseList(); SC; 5169 SC = SC->getNextSwitchCase()) { 5170 if (const auto *CS = dyn_cast<CaseStmt>(SC)) { 5171 // FIXME: Implement ranges. 5172 if (CS->caseStmtIsGNURange()) 5173 return false; 5174 CaseLabels[SC] = this->getLabel(); 5175 5176 const Expr *Value = CS->getLHS(); 5177 PrimType ValueT = this->classifyPrim(Value->getType()); 5178 5179 // Compare the case statement's value to the switch condition. 5180 if (!this->emitGetLocal(CondT, CondVar, CS)) 5181 return false; 5182 if (!this->visit(Value)) 5183 return false; 5184 5185 // Compare and jump to the case label. 5186 if (!this->emitEQ(ValueT, S)) 5187 return false; 5188 if (!this->jumpTrue(CaseLabels[CS])) 5189 return false; 5190 } else { 5191 assert(!DefaultLabel); 5192 DefaultLabel = this->getLabel(); 5193 } 5194 } 5195 5196 // If none of the conditions above were true, fall through to the default 5197 // statement or jump after the switch statement. 5198 if (DefaultLabel) { 5199 if (!this->jump(*DefaultLabel)) 5200 return false; 5201 } else { 5202 if (!this->jump(EndLabel)) 5203 return false; 5204 } 5205 5206 SwitchScope<Emitter> SS(this, std::move(CaseLabels), EndLabel, DefaultLabel); 5207 if (!this->visitStmt(S->getBody())) 5208 return false; 5209 this->emitLabel(EndLabel); 5210 5211 return LS.destroyLocals(); 5212 } 5213 5214 template <class Emitter> 5215 bool Compiler<Emitter>::visitCaseStmt(const CaseStmt *S) { 5216 this->emitLabel(CaseLabels[S]); 5217 return this->visitStmt(S->getSubStmt()); 5218 } 5219 5220 template <class Emitter> 5221 bool Compiler<Emitter>::visitDefaultStmt(const DefaultStmt *S) { 5222 this->emitLabel(*DefaultLabel); 5223 return this->visitStmt(S->getSubStmt()); 5224 } 5225 5226 template <class Emitter> 5227 bool Compiler<Emitter>::visitAttributedStmt(const AttributedStmt *S) { 5228 if (this->Ctx.getLangOpts().CXXAssumptions && 5229 !this->Ctx.getLangOpts().MSVCCompat) { 5230 for (const Attr *A : S->getAttrs()) { 5231 auto *AA = dyn_cast<CXXAssumeAttr>(A); 5232 if (!AA) 5233 continue; 5234 5235 assert(isa<NullStmt>(S->getSubStmt())); 5236 5237 const Expr *Assumption = AA->getAssumption(); 5238 if (Assumption->isValueDependent()) 5239 return false; 5240 5241 if (Assumption->HasSideEffects(this->Ctx.getASTContext())) 5242 continue; 5243 5244 // Evaluate assumption. 5245 if (!this->visitBool(Assumption)) 5246 return false; 5247 5248 if (!this->emitAssume(Assumption)) 5249 return false; 5250 } 5251 } 5252 5253 // Ignore other attributes. 5254 return this->visitStmt(S->getSubStmt()); 5255 } 5256 5257 template <class Emitter> 5258 bool Compiler<Emitter>::visitCXXTryStmt(const CXXTryStmt *S) { 5259 // Ignore all handlers. 5260 return this->visitStmt(S->getTryBlock()); 5261 } 5262 5263 template <class Emitter> 5264 bool Compiler<Emitter>::emitLambdaStaticInvokerBody(const CXXMethodDecl *MD) { 5265 assert(MD->isLambdaStaticInvoker()); 5266 assert(MD->hasBody()); 5267 assert(cast<CompoundStmt>(MD->getBody())->body_empty()); 5268 5269 const CXXRecordDecl *ClosureClass = MD->getParent(); 5270 const CXXMethodDecl *LambdaCallOp = ClosureClass->getLambdaCallOperator(); 5271 assert(ClosureClass->captures_begin() == ClosureClass->captures_end()); 5272 const Function *Func = this->getFunction(LambdaCallOp); 5273 if (!Func) 5274 return false; 5275 assert(Func->hasThisPointer()); 5276 assert(Func->getNumParams() == (MD->getNumParams() + 1 + Func->hasRVO())); 5277 5278 if (Func->hasRVO()) { 5279 if (!this->emitRVOPtr(MD)) 5280 return false; 5281 } 5282 5283 // The lambda call operator needs an instance pointer, but we don't have 5284 // one here, and we don't need one either because the lambda cannot have 5285 // any captures, as verified above. Emit a null pointer. This is then 5286 // special-cased when interpreting to not emit any misleading diagnostics. 5287 if (!this->emitNullPtr(nullptr, MD)) 5288 return false; 5289 5290 // Forward all arguments from the static invoker to the lambda call operator. 5291 for (const ParmVarDecl *PVD : MD->parameters()) { 5292 auto It = this->Params.find(PVD); 5293 assert(It != this->Params.end()); 5294 5295 // We do the lvalue-to-rvalue conversion manually here, so no need 5296 // to care about references. 5297 PrimType ParamType = this->classify(PVD->getType()).value_or(PT_Ptr); 5298 if (!this->emitGetParam(ParamType, It->second.Offset, MD)) 5299 return false; 5300 } 5301 5302 if (!this->emitCall(Func, 0, LambdaCallOp)) 5303 return false; 5304 5305 this->emitCleanup(); 5306 if (ReturnType) 5307 return this->emitRet(*ReturnType, MD); 5308 5309 // Nothing to do, since we emitted the RVO pointer above. 5310 return this->emitRetVoid(MD); 5311 } 5312 5313 template <class Emitter> 5314 bool Compiler<Emitter>::checkLiteralType(const Expr *E) { 5315 if (Ctx.getLangOpts().CPlusPlus23) 5316 return true; 5317 5318 if (!E->isPRValue() || E->getType()->isLiteralType(Ctx.getASTContext())) 5319 return true; 5320 5321 return this->emitCheckLiteralType(E->getType().getTypePtr(), E); 5322 } 5323 5324 template <class Emitter> 5325 bool Compiler<Emitter>::compileConstructor(const CXXConstructorDecl *Ctor) { 5326 assert(!ReturnType); 5327 5328 auto emitFieldInitializer = [&](const Record::Field *F, unsigned FieldOffset, 5329 const Expr *InitExpr) -> bool { 5330 // We don't know what to do with these, so just return false. 5331 if (InitExpr->getType().isNull()) 5332 return false; 5333 5334 if (std::optional<PrimType> T = this->classify(InitExpr)) { 5335 if (!this->visit(InitExpr)) 5336 return false; 5337 5338 if (F->isBitField()) 5339 return this->emitInitThisBitField(*T, F, FieldOffset, InitExpr); 5340 return this->emitInitThisField(*T, FieldOffset, InitExpr); 5341 } 5342 // Non-primitive case. Get a pointer to the field-to-initialize 5343 // on the stack and call visitInitialzer() for it. 5344 InitLinkScope<Emitter> FieldScope(this, InitLink::Field(F->Offset)); 5345 if (!this->emitGetPtrThisField(FieldOffset, InitExpr)) 5346 return false; 5347 5348 if (!this->visitInitializer(InitExpr)) 5349 return false; 5350 5351 return this->emitFinishInitPop(InitExpr); 5352 }; 5353 5354 const RecordDecl *RD = Ctor->getParent(); 5355 const Record *R = this->getRecord(RD); 5356 if (!R) 5357 return false; 5358 5359 if (R->isUnion() && Ctor->isCopyOrMoveConstructor()) { 5360 // union copy and move ctors are special. 5361 assert(cast<CompoundStmt>(Ctor->getBody())->body_empty()); 5362 if (!this->emitThis(Ctor)) 5363 return false; 5364 5365 auto PVD = Ctor->getParamDecl(0); 5366 ParamOffset PO = this->Params[PVD]; // Must exist. 5367 5368 if (!this->emitGetParam(PT_Ptr, PO.Offset, Ctor)) 5369 return false; 5370 5371 return this->emitMemcpy(Ctor) && this->emitPopPtr(Ctor) && 5372 this->emitRetVoid(Ctor); 5373 } 5374 5375 InitLinkScope<Emitter> InitScope(this, InitLink::This()); 5376 for (const auto *Init : Ctor->inits()) { 5377 // Scope needed for the initializers. 5378 BlockScope<Emitter> Scope(this); 5379 5380 const Expr *InitExpr = Init->getInit(); 5381 if (const FieldDecl *Member = Init->getMember()) { 5382 const Record::Field *F = R->getField(Member); 5383 5384 if (!emitFieldInitializer(F, F->Offset, InitExpr)) 5385 return false; 5386 } else if (const Type *Base = Init->getBaseClass()) { 5387 const auto *BaseDecl = Base->getAsCXXRecordDecl(); 5388 assert(BaseDecl); 5389 5390 if (Init->isBaseVirtual()) { 5391 assert(R->getVirtualBase(BaseDecl)); 5392 if (!this->emitGetPtrThisVirtBase(BaseDecl, InitExpr)) 5393 return false; 5394 5395 } else { 5396 // Base class initializer. 5397 // Get This Base and call initializer on it. 5398 const Record::Base *B = R->getBase(BaseDecl); 5399 assert(B); 5400 if (!this->emitGetPtrThisBase(B->Offset, InitExpr)) 5401 return false; 5402 } 5403 5404 if (!this->visitInitializer(InitExpr)) 5405 return false; 5406 if (!this->emitFinishInitPop(InitExpr)) 5407 return false; 5408 } else if (const IndirectFieldDecl *IFD = Init->getIndirectMember()) { 5409 assert(IFD->getChainingSize() >= 2); 5410 5411 unsigned NestedFieldOffset = 0; 5412 const Record::Field *NestedField = nullptr; 5413 for (const NamedDecl *ND : IFD->chain()) { 5414 const auto *FD = cast<FieldDecl>(ND); 5415 const Record *FieldRecord = this->P.getOrCreateRecord(FD->getParent()); 5416 assert(FieldRecord); 5417 5418 NestedField = FieldRecord->getField(FD); 5419 assert(NestedField); 5420 5421 NestedFieldOffset += NestedField->Offset; 5422 } 5423 assert(NestedField); 5424 5425 if (!emitFieldInitializer(NestedField, NestedFieldOffset, InitExpr)) 5426 return false; 5427 } else { 5428 assert(Init->isDelegatingInitializer()); 5429 if (!this->emitThis(InitExpr)) 5430 return false; 5431 if (!this->visitInitializer(Init->getInit())) 5432 return false; 5433 if (!this->emitPopPtr(InitExpr)) 5434 return false; 5435 } 5436 5437 if (!Scope.destroyLocals()) 5438 return false; 5439 } 5440 5441 if (const auto *Body = Ctor->getBody()) 5442 if (!visitStmt(Body)) 5443 return false; 5444 5445 return this->emitRetVoid(SourceInfo{}); 5446 } 5447 5448 template <class Emitter> 5449 bool Compiler<Emitter>::compileDestructor(const CXXDestructorDecl *Dtor) { 5450 const RecordDecl *RD = Dtor->getParent(); 5451 const Record *R = this->getRecord(RD); 5452 if (!R) 5453 return false; 5454 5455 if (!Dtor->isTrivial() && Dtor->getBody()) { 5456 if (!this->visitStmt(Dtor->getBody())) 5457 return false; 5458 } 5459 5460 if (!this->emitThis(Dtor)) 5461 return false; 5462 5463 assert(R); 5464 if (!R->isUnion()) { 5465 // First, destroy all fields. 5466 for (const Record::Field &Field : llvm::reverse(R->fields())) { 5467 const Descriptor *D = Field.Desc; 5468 if (!D->isPrimitive() && !D->isPrimitiveArray()) { 5469 if (!this->emitGetPtrField(Field.Offset, SourceInfo{})) 5470 return false; 5471 if (!this->emitDestruction(D, SourceInfo{})) 5472 return false; 5473 if (!this->emitPopPtr(SourceInfo{})) 5474 return false; 5475 } 5476 } 5477 } 5478 5479 for (const Record::Base &Base : llvm::reverse(R->bases())) { 5480 if (Base.R->isAnonymousUnion()) 5481 continue; 5482 5483 if (!this->emitGetPtrBase(Base.Offset, SourceInfo{})) 5484 return false; 5485 if (!this->emitRecordDestruction(Base.R, {})) 5486 return false; 5487 if (!this->emitPopPtr(SourceInfo{})) 5488 return false; 5489 } 5490 5491 // FIXME: Virtual bases. 5492 return this->emitPopPtr(Dtor) && this->emitRetVoid(Dtor); 5493 } 5494 5495 template <class Emitter> 5496 bool Compiler<Emitter>::visitFunc(const FunctionDecl *F) { 5497 // Classify the return type. 5498 ReturnType = this->classify(F->getReturnType()); 5499 5500 if (const auto *Ctor = dyn_cast<CXXConstructorDecl>(F)) 5501 return this->compileConstructor(Ctor); 5502 if (const auto *Dtor = dyn_cast<CXXDestructorDecl>(F)) 5503 return this->compileDestructor(Dtor); 5504 5505 // Emit custom code if this is a lambda static invoker. 5506 if (const auto *MD = dyn_cast<CXXMethodDecl>(F); 5507 MD && MD->isLambdaStaticInvoker()) 5508 return this->emitLambdaStaticInvokerBody(MD); 5509 5510 // Regular functions. 5511 if (const auto *Body = F->getBody()) 5512 if (!visitStmt(Body)) 5513 return false; 5514 5515 // Emit a guard return to protect against a code path missing one. 5516 if (F->getReturnType()->isVoidType()) 5517 return this->emitRetVoid(SourceInfo{}); 5518 return this->emitNoRet(SourceInfo{}); 5519 } 5520 5521 template <class Emitter> 5522 bool Compiler<Emitter>::VisitUnaryOperator(const UnaryOperator *E) { 5523 const Expr *SubExpr = E->getSubExpr(); 5524 if (SubExpr->getType()->isAnyComplexType()) 5525 return this->VisitComplexUnaryOperator(E); 5526 if (SubExpr->getType()->isVectorType()) 5527 return this->VisitVectorUnaryOperator(E); 5528 if (SubExpr->getType()->isFixedPointType()) 5529 return this->VisitFixedPointUnaryOperator(E); 5530 std::optional<PrimType> T = classify(SubExpr->getType()); 5531 5532 switch (E->getOpcode()) { 5533 case UO_PostInc: { // x++ 5534 if (!Ctx.getLangOpts().CPlusPlus14) 5535 return this->emitInvalid(E); 5536 if (!T) 5537 return this->emitError(E); 5538 5539 if (!this->visit(SubExpr)) 5540 return false; 5541 5542 if (T == PT_Ptr || T == PT_FnPtr) { 5543 if (!this->emitIncPtr(E)) 5544 return false; 5545 5546 return DiscardResult ? this->emitPopPtr(E) : true; 5547 } 5548 5549 if (T == PT_Float) { 5550 return DiscardResult ? this->emitIncfPop(getFPOptions(E), E) 5551 : this->emitIncf(getFPOptions(E), E); 5552 } 5553 5554 return DiscardResult ? this->emitIncPop(*T, E) : this->emitInc(*T, E); 5555 } 5556 case UO_PostDec: { // x-- 5557 if (!Ctx.getLangOpts().CPlusPlus14) 5558 return this->emitInvalid(E); 5559 if (!T) 5560 return this->emitError(E); 5561 5562 if (!this->visit(SubExpr)) 5563 return false; 5564 5565 if (T == PT_Ptr || T == PT_FnPtr) { 5566 if (!this->emitDecPtr(E)) 5567 return false; 5568 5569 return DiscardResult ? this->emitPopPtr(E) : true; 5570 } 5571 5572 if (T == PT_Float) { 5573 return DiscardResult ? this->emitDecfPop(getFPOptions(E), E) 5574 : this->emitDecf(getFPOptions(E), E); 5575 } 5576 5577 return DiscardResult ? this->emitDecPop(*T, E) : this->emitDec(*T, E); 5578 } 5579 case UO_PreInc: { // ++x 5580 if (!Ctx.getLangOpts().CPlusPlus14) 5581 return this->emitInvalid(E); 5582 if (!T) 5583 return this->emitError(E); 5584 5585 if (!this->visit(SubExpr)) 5586 return false; 5587 5588 if (T == PT_Ptr || T == PT_FnPtr) { 5589 if (!this->emitLoadPtr(E)) 5590 return false; 5591 if (!this->emitConstUint8(1, E)) 5592 return false; 5593 if (!this->emitAddOffsetUint8(E)) 5594 return false; 5595 return DiscardResult ? this->emitStorePopPtr(E) : this->emitStorePtr(E); 5596 } 5597 5598 // Post-inc and pre-inc are the same if the value is to be discarded. 5599 if (DiscardResult) { 5600 if (T == PT_Float) 5601 return this->emitIncfPop(getFPOptions(E), E); 5602 return this->emitIncPop(*T, E); 5603 } 5604 5605 if (T == PT_Float) { 5606 const auto &TargetSemantics = Ctx.getFloatSemantics(E->getType()); 5607 if (!this->emitLoadFloat(E)) 5608 return false; 5609 if (!this->emitConstFloat(llvm::APFloat(TargetSemantics, 1), E)) 5610 return false; 5611 if (!this->emitAddf(getFPOptions(E), E)) 5612 return false; 5613 if (!this->emitStoreFloat(E)) 5614 return false; 5615 } else { 5616 assert(isIntegralType(*T)); 5617 if (!this->emitLoad(*T, E)) 5618 return false; 5619 if (!this->emitConst(1, E)) 5620 return false; 5621 if (!this->emitAdd(*T, E)) 5622 return false; 5623 if (!this->emitStore(*T, E)) 5624 return false; 5625 } 5626 return E->isGLValue() || this->emitLoadPop(*T, E); 5627 } 5628 case UO_PreDec: { // --x 5629 if (!Ctx.getLangOpts().CPlusPlus14) 5630 return this->emitInvalid(E); 5631 if (!T) 5632 return this->emitError(E); 5633 5634 if (!this->visit(SubExpr)) 5635 return false; 5636 5637 if (T == PT_Ptr || T == PT_FnPtr) { 5638 if (!this->emitLoadPtr(E)) 5639 return false; 5640 if (!this->emitConstUint8(1, E)) 5641 return false; 5642 if (!this->emitSubOffsetUint8(E)) 5643 return false; 5644 return DiscardResult ? this->emitStorePopPtr(E) : this->emitStorePtr(E); 5645 } 5646 5647 // Post-dec and pre-dec are the same if the value is to be discarded. 5648 if (DiscardResult) { 5649 if (T == PT_Float) 5650 return this->emitDecfPop(getFPOptions(E), E); 5651 return this->emitDecPop(*T, E); 5652 } 5653 5654 if (T == PT_Float) { 5655 const auto &TargetSemantics = Ctx.getFloatSemantics(E->getType()); 5656 if (!this->emitLoadFloat(E)) 5657 return false; 5658 if (!this->emitConstFloat(llvm::APFloat(TargetSemantics, 1), E)) 5659 return false; 5660 if (!this->emitSubf(getFPOptions(E), E)) 5661 return false; 5662 if (!this->emitStoreFloat(E)) 5663 return false; 5664 } else { 5665 assert(isIntegralType(*T)); 5666 if (!this->emitLoad(*T, E)) 5667 return false; 5668 if (!this->emitConst(1, E)) 5669 return false; 5670 if (!this->emitSub(*T, E)) 5671 return false; 5672 if (!this->emitStore(*T, E)) 5673 return false; 5674 } 5675 return E->isGLValue() || this->emitLoadPop(*T, E); 5676 } 5677 case UO_LNot: // !x 5678 if (!T) 5679 return this->emitError(E); 5680 5681 if (DiscardResult) 5682 return this->discard(SubExpr); 5683 5684 if (!this->visitBool(SubExpr)) 5685 return false; 5686 5687 if (!this->emitInv(E)) 5688 return false; 5689 5690 if (PrimType ET = classifyPrim(E->getType()); ET != PT_Bool) 5691 return this->emitCast(PT_Bool, ET, E); 5692 return true; 5693 case UO_Minus: // -x 5694 if (!T) 5695 return this->emitError(E); 5696 5697 if (!this->visit(SubExpr)) 5698 return false; 5699 return DiscardResult ? this->emitPop(*T, E) : this->emitNeg(*T, E); 5700 case UO_Plus: // +x 5701 if (!T) 5702 return this->emitError(E); 5703 5704 if (!this->visit(SubExpr)) // noop 5705 return false; 5706 return DiscardResult ? this->emitPop(*T, E) : true; 5707 case UO_AddrOf: // &x 5708 if (E->getType()->isMemberPointerType()) { 5709 // C++11 [expr.unary.op]p3 has very strict rules on how the address of a 5710 // member can be formed. 5711 return this->emitGetMemberPtr(cast<DeclRefExpr>(SubExpr)->getDecl(), E); 5712 } 5713 // We should already have a pointer when we get here. 5714 return this->delegate(SubExpr); 5715 case UO_Deref: // *x 5716 if (DiscardResult) 5717 return this->discard(SubExpr); 5718 return this->visit(SubExpr); 5719 case UO_Not: // ~x 5720 if (!T) 5721 return this->emitError(E); 5722 5723 if (!this->visit(SubExpr)) 5724 return false; 5725 return DiscardResult ? this->emitPop(*T, E) : this->emitComp(*T, E); 5726 case UO_Real: // __real x 5727 assert(T); 5728 return this->delegate(SubExpr); 5729 case UO_Imag: { // __imag x 5730 assert(T); 5731 if (!this->discard(SubExpr)) 5732 return false; 5733 return this->visitZeroInitializer(*T, SubExpr->getType(), SubExpr); 5734 } 5735 case UO_Extension: 5736 return this->delegate(SubExpr); 5737 case UO_Coawait: 5738 assert(false && "Unhandled opcode"); 5739 } 5740 5741 return false; 5742 } 5743 5744 template <class Emitter> 5745 bool Compiler<Emitter>::VisitComplexUnaryOperator(const UnaryOperator *E) { 5746 const Expr *SubExpr = E->getSubExpr(); 5747 assert(SubExpr->getType()->isAnyComplexType()); 5748 5749 if (DiscardResult) 5750 return this->discard(SubExpr); 5751 5752 std::optional<PrimType> ResT = classify(E); 5753 auto prepareResult = [=]() -> bool { 5754 if (!ResT && !Initializing) { 5755 std::optional<unsigned> LocalIndex = allocateLocal(SubExpr); 5756 if (!LocalIndex) 5757 return false; 5758 return this->emitGetPtrLocal(*LocalIndex, E); 5759 } 5760 5761 return true; 5762 }; 5763 5764 // The offset of the temporary, if we created one. 5765 unsigned SubExprOffset = ~0u; 5766 auto createTemp = [=, &SubExprOffset]() -> bool { 5767 SubExprOffset = this->allocateLocalPrimitive(SubExpr, PT_Ptr, true, false); 5768 if (!this->visit(SubExpr)) 5769 return false; 5770 return this->emitSetLocal(PT_Ptr, SubExprOffset, E); 5771 }; 5772 5773 PrimType ElemT = classifyComplexElementType(SubExpr->getType()); 5774 auto getElem = [=](unsigned Offset, unsigned Index) -> bool { 5775 if (!this->emitGetLocal(PT_Ptr, Offset, E)) 5776 return false; 5777 return this->emitArrayElemPop(ElemT, Index, E); 5778 }; 5779 5780 switch (E->getOpcode()) { 5781 case UO_Minus: 5782 if (!prepareResult()) 5783 return false; 5784 if (!createTemp()) 5785 return false; 5786 for (unsigned I = 0; I != 2; ++I) { 5787 if (!getElem(SubExprOffset, I)) 5788 return false; 5789 if (!this->emitNeg(ElemT, E)) 5790 return false; 5791 if (!this->emitInitElem(ElemT, I, E)) 5792 return false; 5793 } 5794 break; 5795 5796 case UO_Plus: // +x 5797 case UO_AddrOf: // &x 5798 case UO_Deref: // *x 5799 return this->delegate(SubExpr); 5800 5801 case UO_LNot: 5802 if (!this->visit(SubExpr)) 5803 return false; 5804 if (!this->emitComplexBoolCast(SubExpr)) 5805 return false; 5806 if (!this->emitInv(E)) 5807 return false; 5808 if (PrimType ET = classifyPrim(E->getType()); ET != PT_Bool) 5809 return this->emitCast(PT_Bool, ET, E); 5810 return true; 5811 5812 case UO_Real: 5813 return this->emitComplexReal(SubExpr); 5814 5815 case UO_Imag: 5816 if (!this->visit(SubExpr)) 5817 return false; 5818 5819 if (SubExpr->isLValue()) { 5820 if (!this->emitConstUint8(1, E)) 5821 return false; 5822 return this->emitArrayElemPtrPopUint8(E); 5823 } 5824 5825 // Since our _Complex implementation does not map to a primitive type, 5826 // we sometimes have to do the lvalue-to-rvalue conversion here manually. 5827 return this->emitArrayElemPop(classifyPrim(E->getType()), 1, E); 5828 5829 case UO_Not: // ~x 5830 if (!this->visit(SubExpr)) 5831 return false; 5832 // Negate the imaginary component. 5833 if (!this->emitArrayElem(ElemT, 1, E)) 5834 return false; 5835 if (!this->emitNeg(ElemT, E)) 5836 return false; 5837 if (!this->emitInitElem(ElemT, 1, E)) 5838 return false; 5839 return DiscardResult ? this->emitPopPtr(E) : true; 5840 5841 case UO_Extension: 5842 return this->delegate(SubExpr); 5843 5844 default: 5845 return this->emitInvalid(E); 5846 } 5847 5848 return true; 5849 } 5850 5851 template <class Emitter> 5852 bool Compiler<Emitter>::VisitVectorUnaryOperator(const UnaryOperator *E) { 5853 const Expr *SubExpr = E->getSubExpr(); 5854 assert(SubExpr->getType()->isVectorType()); 5855 5856 if (DiscardResult) 5857 return this->discard(SubExpr); 5858 5859 auto UnaryOp = E->getOpcode(); 5860 if (UnaryOp != UO_Plus && UnaryOp != UO_Minus && UnaryOp != UO_LNot && 5861 UnaryOp != UO_Not && UnaryOp != UO_AddrOf) 5862 return this->emitInvalid(E); 5863 5864 // Nothing to do here. 5865 if (UnaryOp == UO_Plus || UnaryOp == UO_AddrOf) 5866 return this->delegate(SubExpr); 5867 5868 if (!Initializing) { 5869 std::optional<unsigned> LocalIndex = allocateLocal(SubExpr); 5870 if (!LocalIndex) 5871 return false; 5872 if (!this->emitGetPtrLocal(*LocalIndex, E)) 5873 return false; 5874 } 5875 5876 // The offset of the temporary, if we created one. 5877 unsigned SubExprOffset = 5878 this->allocateLocalPrimitive(SubExpr, PT_Ptr, true, false); 5879 if (!this->visit(SubExpr)) 5880 return false; 5881 if (!this->emitSetLocal(PT_Ptr, SubExprOffset, E)) 5882 return false; 5883 5884 const auto *VecTy = SubExpr->getType()->getAs<VectorType>(); 5885 PrimType ElemT = classifyVectorElementType(SubExpr->getType()); 5886 auto getElem = [=](unsigned Offset, unsigned Index) -> bool { 5887 if (!this->emitGetLocal(PT_Ptr, Offset, E)) 5888 return false; 5889 return this->emitArrayElemPop(ElemT, Index, E); 5890 }; 5891 5892 switch (UnaryOp) { 5893 case UO_Minus: 5894 for (unsigned I = 0; I != VecTy->getNumElements(); ++I) { 5895 if (!getElem(SubExprOffset, I)) 5896 return false; 5897 if (!this->emitNeg(ElemT, E)) 5898 return false; 5899 if (!this->emitInitElem(ElemT, I, E)) 5900 return false; 5901 } 5902 break; 5903 case UO_LNot: { // !x 5904 // In C++, the logic operators !, &&, || are available for vectors. !v is 5905 // equivalent to v == 0. 5906 // 5907 // The result of the comparison is a vector of the same width and number of 5908 // elements as the comparison operands with a signed integral element type. 5909 // 5910 // https://gcc.gnu.org/onlinedocs/gcc/Vector-Extensions.html 5911 QualType ResultVecTy = E->getType(); 5912 PrimType ResultVecElemT = 5913 classifyPrim(ResultVecTy->getAs<VectorType>()->getElementType()); 5914 for (unsigned I = 0; I != VecTy->getNumElements(); ++I) { 5915 if (!getElem(SubExprOffset, I)) 5916 return false; 5917 // operator ! on vectors returns -1 for 'truth', so negate it. 5918 if (!this->emitPrimCast(ElemT, PT_Bool, Ctx.getASTContext().BoolTy, E)) 5919 return false; 5920 if (!this->emitInv(E)) 5921 return false; 5922 if (!this->emitPrimCast(PT_Bool, ElemT, VecTy->getElementType(), E)) 5923 return false; 5924 if (!this->emitNeg(ElemT, E)) 5925 return false; 5926 if (ElemT != ResultVecElemT && 5927 !this->emitPrimCast(ElemT, ResultVecElemT, ResultVecTy, E)) 5928 return false; 5929 if (!this->emitInitElem(ResultVecElemT, I, E)) 5930 return false; 5931 } 5932 break; 5933 } 5934 case UO_Not: // ~x 5935 for (unsigned I = 0; I != VecTy->getNumElements(); ++I) { 5936 if (!getElem(SubExprOffset, I)) 5937 return false; 5938 if (ElemT == PT_Bool) { 5939 if (!this->emitInv(E)) 5940 return false; 5941 } else { 5942 if (!this->emitComp(ElemT, E)) 5943 return false; 5944 } 5945 if (!this->emitInitElem(ElemT, I, E)) 5946 return false; 5947 } 5948 break; 5949 default: 5950 llvm_unreachable("Unsupported unary operators should be handled up front"); 5951 } 5952 return true; 5953 } 5954 5955 template <class Emitter> 5956 bool Compiler<Emitter>::visitDeclRef(const ValueDecl *D, const Expr *E) { 5957 if (DiscardResult) 5958 return true; 5959 5960 if (const auto *ECD = dyn_cast<EnumConstantDecl>(D)) { 5961 return this->emitConst(ECD->getInitVal(), E); 5962 } else if (const auto *BD = dyn_cast<BindingDecl>(D)) { 5963 return this->visit(BD->getBinding()); 5964 } else if (const auto *FuncDecl = dyn_cast<FunctionDecl>(D)) { 5965 const Function *F = getFunction(FuncDecl); 5966 return F && this->emitGetFnPtr(F, E); 5967 } else if (const auto *TPOD = dyn_cast<TemplateParamObjectDecl>(D)) { 5968 if (std::optional<unsigned> Index = P.getOrCreateGlobal(D)) { 5969 if (!this->emitGetPtrGlobal(*Index, E)) 5970 return false; 5971 if (std::optional<PrimType> T = classify(E->getType())) { 5972 if (!this->visitAPValue(TPOD->getValue(), *T, E)) 5973 return false; 5974 return this->emitInitGlobal(*T, *Index, E); 5975 } 5976 return this->visitAPValueInitializer(TPOD->getValue(), E); 5977 } 5978 return false; 5979 } 5980 5981 // References are implemented via pointers, so when we see a DeclRefExpr 5982 // pointing to a reference, we need to get its value directly (i.e. the 5983 // pointer to the actual value) instead of a pointer to the pointer to the 5984 // value. 5985 bool IsReference = D->getType()->isReferenceType(); 5986 5987 // Check for local/global variables and parameters. 5988 if (auto It = Locals.find(D); It != Locals.end()) { 5989 const unsigned Offset = It->second.Offset; 5990 if (IsReference) 5991 return this->emitGetLocal(PT_Ptr, Offset, E); 5992 return this->emitGetPtrLocal(Offset, E); 5993 } else if (auto GlobalIndex = P.getGlobal(D)) { 5994 if (IsReference) { 5995 if (!Ctx.getLangOpts().CPlusPlus11) 5996 return this->emitGetGlobal(classifyPrim(E), *GlobalIndex, E); 5997 return this->emitGetGlobalUnchecked(classifyPrim(E), *GlobalIndex, E); 5998 } 5999 6000 return this->emitGetPtrGlobal(*GlobalIndex, E); 6001 } else if (const auto *PVD = dyn_cast<ParmVarDecl>(D)) { 6002 if (auto It = this->Params.find(PVD); It != this->Params.end()) { 6003 if (IsReference || !It->second.IsPtr) 6004 return this->emitGetParam(classifyPrim(E), It->second.Offset, E); 6005 6006 return this->emitGetPtrParam(It->second.Offset, E); 6007 } 6008 } 6009 6010 // In case we need to re-visit a declaration. 6011 auto revisit = [&](const VarDecl *VD) -> bool { 6012 auto VarState = this->visitDecl(VD); 6013 6014 if (VarState.notCreated()) 6015 return true; 6016 if (!VarState) 6017 return false; 6018 // Retry. 6019 return this->visitDeclRef(D, E); 6020 }; 6021 6022 // Handle lambda captures. 6023 if (auto It = this->LambdaCaptures.find(D); 6024 It != this->LambdaCaptures.end()) { 6025 auto [Offset, IsPtr] = It->second; 6026 6027 if (IsPtr) 6028 return this->emitGetThisFieldPtr(Offset, E); 6029 return this->emitGetPtrThisField(Offset, E); 6030 } else if (const auto *DRE = dyn_cast<DeclRefExpr>(E); 6031 DRE && DRE->refersToEnclosingVariableOrCapture()) { 6032 if (const auto *VD = dyn_cast<VarDecl>(D); VD && VD->isInitCapture()) 6033 return revisit(VD); 6034 } 6035 6036 if (D != InitializingDecl) { 6037 // Try to lazily visit (or emit dummy pointers for) declarations 6038 // we haven't seen yet. 6039 if (Ctx.getLangOpts().CPlusPlus) { 6040 if (const auto *VD = dyn_cast<VarDecl>(D)) { 6041 const auto typeShouldBeVisited = [&](QualType T) -> bool { 6042 if (T.isConstant(Ctx.getASTContext())) 6043 return true; 6044 if (const auto *RT = T->getAs<ReferenceType>()) 6045 return RT->getPointeeType().isConstQualified(); 6046 return false; 6047 }; 6048 6049 // DecompositionDecls are just proxies for us. 6050 if (isa<DecompositionDecl>(VD)) 6051 return revisit(VD); 6052 6053 if ((VD->hasGlobalStorage() || VD->isStaticDataMember()) && 6054 typeShouldBeVisited(VD->getType())) 6055 return revisit(VD); 6056 6057 // FIXME: The evaluateValue() check here is a little ridiculous, since 6058 // it will ultimately call into Context::evaluateAsInitializer(). In 6059 // other words, we're evaluating the initializer, just to know if we can 6060 // evaluate the initializer. 6061 if (VD->isLocalVarDecl() && typeShouldBeVisited(VD->getType()) && 6062 VD->getInit() && !VD->getInit()->isValueDependent() && 6063 VD->evaluateValue()) 6064 return revisit(VD); 6065 } 6066 } else { 6067 if (const auto *VD = dyn_cast<VarDecl>(D); 6068 VD && VD->getAnyInitializer() && 6069 VD->getType().isConstant(Ctx.getASTContext()) && !VD->isWeak()) 6070 return revisit(VD); 6071 } 6072 } 6073 6074 if (std::optional<unsigned> I = P.getOrCreateDummy(D)) { 6075 if (!this->emitGetPtrGlobal(*I, E)) 6076 return false; 6077 if (E->getType()->isVoidType()) 6078 return true; 6079 // Convert the dummy pointer to another pointer type if we have to. 6080 if (PrimType PT = classifyPrim(E); PT != PT_Ptr) { 6081 if (isPtrType(PT)) 6082 return this->emitDecayPtr(PT_Ptr, PT, E); 6083 return false; 6084 } 6085 return true; 6086 } 6087 6088 if (const auto *DRE = dyn_cast<DeclRefExpr>(E)) 6089 return this->emitInvalidDeclRef(DRE, E); 6090 return false; 6091 } 6092 6093 template <class Emitter> 6094 bool Compiler<Emitter>::VisitDeclRefExpr(const DeclRefExpr *E) { 6095 const auto *D = E->getDecl(); 6096 return this->visitDeclRef(D, E); 6097 } 6098 6099 template <class Emitter> void Compiler<Emitter>::emitCleanup() { 6100 for (VariableScope<Emitter> *C = VarScope; C; C = C->getParent()) 6101 C->emitDestruction(); 6102 } 6103 6104 template <class Emitter> 6105 unsigned Compiler<Emitter>::collectBaseOffset(const QualType BaseType, 6106 const QualType DerivedType) { 6107 const auto extractRecordDecl = [](QualType Ty) -> const CXXRecordDecl * { 6108 if (const auto *R = Ty->getPointeeCXXRecordDecl()) 6109 return R; 6110 return Ty->getAsCXXRecordDecl(); 6111 }; 6112 const CXXRecordDecl *BaseDecl = extractRecordDecl(BaseType); 6113 const CXXRecordDecl *DerivedDecl = extractRecordDecl(DerivedType); 6114 6115 return Ctx.collectBaseOffset(BaseDecl, DerivedDecl); 6116 } 6117 6118 /// Emit casts from a PrimType to another PrimType. 6119 template <class Emitter> 6120 bool Compiler<Emitter>::emitPrimCast(PrimType FromT, PrimType ToT, 6121 QualType ToQT, const Expr *E) { 6122 6123 if (FromT == PT_Float) { 6124 // Floating to floating. 6125 if (ToT == PT_Float) { 6126 const llvm::fltSemantics *ToSem = &Ctx.getFloatSemantics(ToQT); 6127 return this->emitCastFP(ToSem, getRoundingMode(E), E); 6128 } 6129 6130 if (ToT == PT_IntAP) 6131 return this->emitCastFloatingIntegralAP(Ctx.getBitWidth(ToQT), 6132 getFPOptions(E), E); 6133 if (ToT == PT_IntAPS) 6134 return this->emitCastFloatingIntegralAPS(Ctx.getBitWidth(ToQT), 6135 getFPOptions(E), E); 6136 6137 // Float to integral. 6138 if (isIntegralType(ToT) || ToT == PT_Bool) 6139 return this->emitCastFloatingIntegral(ToT, getFPOptions(E), E); 6140 } 6141 6142 if (isIntegralType(FromT) || FromT == PT_Bool) { 6143 if (ToT == PT_IntAP) 6144 return this->emitCastAP(FromT, Ctx.getBitWidth(ToQT), E); 6145 if (ToT == PT_IntAPS) 6146 return this->emitCastAPS(FromT, Ctx.getBitWidth(ToQT), E); 6147 6148 // Integral to integral. 6149 if (isIntegralType(ToT) || ToT == PT_Bool) 6150 return FromT != ToT ? this->emitCast(FromT, ToT, E) : true; 6151 6152 if (ToT == PT_Float) { 6153 // Integral to floating. 6154 const llvm::fltSemantics *ToSem = &Ctx.getFloatSemantics(ToQT); 6155 return this->emitCastIntegralFloating(FromT, ToSem, getFPOptions(E), E); 6156 } 6157 } 6158 6159 return false; 6160 } 6161 6162 /// Emits __real(SubExpr) 6163 template <class Emitter> 6164 bool Compiler<Emitter>::emitComplexReal(const Expr *SubExpr) { 6165 assert(SubExpr->getType()->isAnyComplexType()); 6166 6167 if (DiscardResult) 6168 return this->discard(SubExpr); 6169 6170 if (!this->visit(SubExpr)) 6171 return false; 6172 if (SubExpr->isLValue()) { 6173 if (!this->emitConstUint8(0, SubExpr)) 6174 return false; 6175 return this->emitArrayElemPtrPopUint8(SubExpr); 6176 } 6177 6178 // Rvalue, load the actual element. 6179 return this->emitArrayElemPop(classifyComplexElementType(SubExpr->getType()), 6180 0, SubExpr); 6181 } 6182 6183 template <class Emitter> 6184 bool Compiler<Emitter>::emitComplexBoolCast(const Expr *E) { 6185 assert(!DiscardResult); 6186 PrimType ElemT = classifyComplexElementType(E->getType()); 6187 // We emit the expression (__real(E) != 0 || __imag(E) != 0) 6188 // for us, that means (bool)E[0] || (bool)E[1] 6189 if (!this->emitArrayElem(ElemT, 0, E)) 6190 return false; 6191 if (ElemT == PT_Float) { 6192 if (!this->emitCastFloatingIntegral(PT_Bool, getFPOptions(E), E)) 6193 return false; 6194 } else { 6195 if (!this->emitCast(ElemT, PT_Bool, E)) 6196 return false; 6197 } 6198 6199 // We now have the bool value of E[0] on the stack. 6200 LabelTy LabelTrue = this->getLabel(); 6201 if (!this->jumpTrue(LabelTrue)) 6202 return false; 6203 6204 if (!this->emitArrayElemPop(ElemT, 1, E)) 6205 return false; 6206 if (ElemT == PT_Float) { 6207 if (!this->emitCastFloatingIntegral(PT_Bool, getFPOptions(E), E)) 6208 return false; 6209 } else { 6210 if (!this->emitCast(ElemT, PT_Bool, E)) 6211 return false; 6212 } 6213 // Leave the boolean value of E[1] on the stack. 6214 LabelTy EndLabel = this->getLabel(); 6215 this->jump(EndLabel); 6216 6217 this->emitLabel(LabelTrue); 6218 if (!this->emitPopPtr(E)) 6219 return false; 6220 if (!this->emitConstBool(true, E)) 6221 return false; 6222 6223 this->fallthrough(EndLabel); 6224 this->emitLabel(EndLabel); 6225 6226 return true; 6227 } 6228 6229 template <class Emitter> 6230 bool Compiler<Emitter>::emitComplexComparison(const Expr *LHS, const Expr *RHS, 6231 const BinaryOperator *E) { 6232 assert(E->isComparisonOp()); 6233 assert(!Initializing); 6234 assert(!DiscardResult); 6235 6236 PrimType ElemT; 6237 bool LHSIsComplex; 6238 unsigned LHSOffset; 6239 if (LHS->getType()->isAnyComplexType()) { 6240 LHSIsComplex = true; 6241 ElemT = classifyComplexElementType(LHS->getType()); 6242 LHSOffset = allocateLocalPrimitive(LHS, PT_Ptr, /*IsConst=*/true, 6243 /*IsExtended=*/false); 6244 if (!this->visit(LHS)) 6245 return false; 6246 if (!this->emitSetLocal(PT_Ptr, LHSOffset, E)) 6247 return false; 6248 } else { 6249 LHSIsComplex = false; 6250 PrimType LHST = classifyPrim(LHS->getType()); 6251 LHSOffset = this->allocateLocalPrimitive(LHS, LHST, true, false); 6252 if (!this->visit(LHS)) 6253 return false; 6254 if (!this->emitSetLocal(LHST, LHSOffset, E)) 6255 return false; 6256 } 6257 6258 bool RHSIsComplex; 6259 unsigned RHSOffset; 6260 if (RHS->getType()->isAnyComplexType()) { 6261 RHSIsComplex = true; 6262 ElemT = classifyComplexElementType(RHS->getType()); 6263 RHSOffset = allocateLocalPrimitive(RHS, PT_Ptr, /*IsConst=*/true, 6264 /*IsExtended=*/false); 6265 if (!this->visit(RHS)) 6266 return false; 6267 if (!this->emitSetLocal(PT_Ptr, RHSOffset, E)) 6268 return false; 6269 } else { 6270 RHSIsComplex = false; 6271 PrimType RHST = classifyPrim(RHS->getType()); 6272 RHSOffset = this->allocateLocalPrimitive(RHS, RHST, true, false); 6273 if (!this->visit(RHS)) 6274 return false; 6275 if (!this->emitSetLocal(RHST, RHSOffset, E)) 6276 return false; 6277 } 6278 6279 auto getElem = [&](unsigned LocalOffset, unsigned Index, 6280 bool IsComplex) -> bool { 6281 if (IsComplex) { 6282 if (!this->emitGetLocal(PT_Ptr, LocalOffset, E)) 6283 return false; 6284 return this->emitArrayElemPop(ElemT, Index, E); 6285 } 6286 return this->emitGetLocal(ElemT, LocalOffset, E); 6287 }; 6288 6289 for (unsigned I = 0; I != 2; ++I) { 6290 // Get both values. 6291 if (!getElem(LHSOffset, I, LHSIsComplex)) 6292 return false; 6293 if (!getElem(RHSOffset, I, RHSIsComplex)) 6294 return false; 6295 // And compare them. 6296 if (!this->emitEQ(ElemT, E)) 6297 return false; 6298 6299 if (!this->emitCastBoolUint8(E)) 6300 return false; 6301 } 6302 6303 // We now have two bool values on the stack. Compare those. 6304 if (!this->emitAddUint8(E)) 6305 return false; 6306 if (!this->emitConstUint8(2, E)) 6307 return false; 6308 6309 if (E->getOpcode() == BO_EQ) { 6310 if (!this->emitEQUint8(E)) 6311 return false; 6312 } else if (E->getOpcode() == BO_NE) { 6313 if (!this->emitNEUint8(E)) 6314 return false; 6315 } else 6316 return false; 6317 6318 // In C, this returns an int. 6319 if (PrimType ResT = classifyPrim(E->getType()); ResT != PT_Bool) 6320 return this->emitCast(PT_Bool, ResT, E); 6321 return true; 6322 } 6323 6324 /// When calling this, we have a pointer of the local-to-destroy 6325 /// on the stack. 6326 /// Emit destruction of record types (or arrays of record types). 6327 template <class Emitter> 6328 bool Compiler<Emitter>::emitRecordDestruction(const Record *R, SourceInfo Loc) { 6329 assert(R); 6330 assert(!R->isAnonymousUnion()); 6331 const CXXDestructorDecl *Dtor = R->getDestructor(); 6332 if (!Dtor || Dtor->isTrivial()) 6333 return true; 6334 6335 assert(Dtor); 6336 const Function *DtorFunc = getFunction(Dtor); 6337 if (!DtorFunc) 6338 return false; 6339 assert(DtorFunc->hasThisPointer()); 6340 assert(DtorFunc->getNumParams() == 1); 6341 if (!this->emitDupPtr(Loc)) 6342 return false; 6343 return this->emitCall(DtorFunc, 0, Loc); 6344 } 6345 /// When calling this, we have a pointer of the local-to-destroy 6346 /// on the stack. 6347 /// Emit destruction of record types (or arrays of record types). 6348 template <class Emitter> 6349 bool Compiler<Emitter>::emitDestruction(const Descriptor *Desc, 6350 SourceInfo Loc) { 6351 assert(Desc); 6352 assert(!Desc->isPrimitive()); 6353 assert(!Desc->isPrimitiveArray()); 6354 6355 // Arrays. 6356 if (Desc->isArray()) { 6357 const Descriptor *ElemDesc = Desc->ElemDesc; 6358 assert(ElemDesc); 6359 6360 // Don't need to do anything for these. 6361 if (ElemDesc->isPrimitiveArray()) 6362 return true; 6363 6364 // If this is an array of record types, check if we need 6365 // to call the element destructors at all. If not, try 6366 // to save the work. 6367 if (const Record *ElemRecord = ElemDesc->ElemRecord) { 6368 if (const CXXDestructorDecl *Dtor = ElemRecord->getDestructor(); 6369 !Dtor || Dtor->isTrivial()) 6370 return true; 6371 } 6372 6373 for (ssize_t I = Desc->getNumElems() - 1; I >= 0; --I) { 6374 if (!this->emitConstUint64(I, Loc)) 6375 return false; 6376 if (!this->emitArrayElemPtrUint64(Loc)) 6377 return false; 6378 if (!this->emitDestruction(ElemDesc, Loc)) 6379 return false; 6380 if (!this->emitPopPtr(Loc)) 6381 return false; 6382 } 6383 return true; 6384 } 6385 6386 assert(Desc->ElemRecord); 6387 if (Desc->ElemRecord->isAnonymousUnion()) 6388 return true; 6389 6390 return this->emitRecordDestruction(Desc->ElemRecord, Loc); 6391 } 6392 6393 namespace clang { 6394 namespace interp { 6395 6396 template class Compiler<ByteCodeEmitter>; 6397 template class Compiler<EvalEmitter>; 6398 6399 } // namespace interp 6400 } // namespace clang 6401