xref: /llvm-project/clang/lib/AST/ByteCode/Compiler.cpp (revision f86050de738385ecc27e7ce827f72296be8def36)
1 //===--- Compiler.cpp - Code generator for expressions ---*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #include "Compiler.h"
10 #include "ByteCodeEmitter.h"
11 #include "Context.h"
12 #include "Floating.h"
13 #include "Function.h"
14 #include "InterpShared.h"
15 #include "PrimType.h"
16 #include "Program.h"
17 #include "clang/AST/Attr.h"
18 
19 using namespace clang;
20 using namespace clang::interp;
21 
22 using APSInt = llvm::APSInt;
23 
24 namespace clang {
25 namespace interp {
26 
27 /// Scope used to handle temporaries in toplevel variable declarations.
28 template <class Emitter> class DeclScope final : public LocalScope<Emitter> {
29 public:
30   DeclScope(Compiler<Emitter> *Ctx, const ValueDecl *VD)
31       : LocalScope<Emitter>(Ctx, VD), Scope(Ctx->P, VD),
32         OldInitializingDecl(Ctx->InitializingDecl) {
33     Ctx->InitializingDecl = VD;
34     Ctx->InitStack.push_back(InitLink::Decl(VD));
35   }
36 
37   void addExtended(const Scope::Local &Local) override {
38     return this->addLocal(Local);
39   }
40 
41   ~DeclScope() {
42     this->Ctx->InitializingDecl = OldInitializingDecl;
43     this->Ctx->InitStack.pop_back();
44   }
45 
46 private:
47   Program::DeclScope Scope;
48   const ValueDecl *OldInitializingDecl;
49 };
50 
51 /// Scope used to handle initialization methods.
52 template <class Emitter> class OptionScope final {
53 public:
54   /// Root constructor, compiling or discarding primitives.
55   OptionScope(Compiler<Emitter> *Ctx, bool NewDiscardResult,
56               bool NewInitializing)
57       : Ctx(Ctx), OldDiscardResult(Ctx->DiscardResult),
58         OldInitializing(Ctx->Initializing) {
59     Ctx->DiscardResult = NewDiscardResult;
60     Ctx->Initializing = NewInitializing;
61   }
62 
63   ~OptionScope() {
64     Ctx->DiscardResult = OldDiscardResult;
65     Ctx->Initializing = OldInitializing;
66   }
67 
68 private:
69   /// Parent context.
70   Compiler<Emitter> *Ctx;
71   /// Old discard flag to restore.
72   bool OldDiscardResult;
73   bool OldInitializing;
74 };
75 
76 template <class Emitter>
77 bool InitLink::emit(Compiler<Emitter> *Ctx, const Expr *E) const {
78   switch (Kind) {
79   case K_This:
80     return Ctx->emitThis(E);
81   case K_Field:
82     // We're assuming there's a base pointer on the stack already.
83     return Ctx->emitGetPtrFieldPop(Offset, E);
84   case K_Temp:
85     return Ctx->emitGetPtrLocal(Offset, E);
86   case K_Decl:
87     return Ctx->visitDeclRef(D, E);
88   case K_Elem:
89     if (!Ctx->emitConstUint32(Offset, E))
90       return false;
91     return Ctx->emitArrayElemPtrPopUint32(E);
92   default:
93     llvm_unreachable("Unhandled InitLink kind");
94   }
95   return true;
96 }
97 
98 /// Scope managing label targets.
99 template <class Emitter> class LabelScope {
100 public:
101   virtual ~LabelScope() {}
102 
103 protected:
104   LabelScope(Compiler<Emitter> *Ctx) : Ctx(Ctx) {}
105   /// Compiler instance.
106   Compiler<Emitter> *Ctx;
107 };
108 
109 /// Sets the context for break/continue statements.
110 template <class Emitter> class LoopScope final : public LabelScope<Emitter> {
111 public:
112   using LabelTy = typename Compiler<Emitter>::LabelTy;
113   using OptLabelTy = typename Compiler<Emitter>::OptLabelTy;
114 
115   LoopScope(Compiler<Emitter> *Ctx, LabelTy BreakLabel, LabelTy ContinueLabel)
116       : LabelScope<Emitter>(Ctx), OldBreakLabel(Ctx->BreakLabel),
117         OldContinueLabel(Ctx->ContinueLabel),
118         OldBreakVarScope(Ctx->BreakVarScope),
119         OldContinueVarScope(Ctx->ContinueVarScope) {
120     this->Ctx->BreakLabel = BreakLabel;
121     this->Ctx->ContinueLabel = ContinueLabel;
122     this->Ctx->BreakVarScope = this->Ctx->VarScope;
123     this->Ctx->ContinueVarScope = this->Ctx->VarScope;
124   }
125 
126   ~LoopScope() {
127     this->Ctx->BreakLabel = OldBreakLabel;
128     this->Ctx->ContinueLabel = OldContinueLabel;
129     this->Ctx->ContinueVarScope = OldContinueVarScope;
130     this->Ctx->BreakVarScope = OldBreakVarScope;
131   }
132 
133 private:
134   OptLabelTy OldBreakLabel;
135   OptLabelTy OldContinueLabel;
136   VariableScope<Emitter> *OldBreakVarScope;
137   VariableScope<Emitter> *OldContinueVarScope;
138 };
139 
140 // Sets the context for a switch scope, mapping labels.
141 template <class Emitter> class SwitchScope final : public LabelScope<Emitter> {
142 public:
143   using LabelTy = typename Compiler<Emitter>::LabelTy;
144   using OptLabelTy = typename Compiler<Emitter>::OptLabelTy;
145   using CaseMap = typename Compiler<Emitter>::CaseMap;
146 
147   SwitchScope(Compiler<Emitter> *Ctx, CaseMap &&CaseLabels, LabelTy BreakLabel,
148               OptLabelTy DefaultLabel)
149       : LabelScope<Emitter>(Ctx), OldBreakLabel(Ctx->BreakLabel),
150         OldDefaultLabel(this->Ctx->DefaultLabel),
151         OldCaseLabels(std::move(this->Ctx->CaseLabels)),
152         OldLabelVarScope(Ctx->BreakVarScope) {
153     this->Ctx->BreakLabel = BreakLabel;
154     this->Ctx->DefaultLabel = DefaultLabel;
155     this->Ctx->CaseLabels = std::move(CaseLabels);
156     this->Ctx->BreakVarScope = this->Ctx->VarScope;
157   }
158 
159   ~SwitchScope() {
160     this->Ctx->BreakLabel = OldBreakLabel;
161     this->Ctx->DefaultLabel = OldDefaultLabel;
162     this->Ctx->CaseLabels = std::move(OldCaseLabels);
163     this->Ctx->BreakVarScope = OldLabelVarScope;
164   }
165 
166 private:
167   OptLabelTy OldBreakLabel;
168   OptLabelTy OldDefaultLabel;
169   CaseMap OldCaseLabels;
170   VariableScope<Emitter> *OldLabelVarScope;
171 };
172 
173 template <class Emitter> class StmtExprScope final {
174 public:
175   StmtExprScope(Compiler<Emitter> *Ctx) : Ctx(Ctx), OldFlag(Ctx->InStmtExpr) {
176     Ctx->InStmtExpr = true;
177   }
178 
179   ~StmtExprScope() { Ctx->InStmtExpr = OldFlag; }
180 
181 private:
182   Compiler<Emitter> *Ctx;
183   bool OldFlag;
184 };
185 
186 } // namespace interp
187 } // namespace clang
188 
189 template <class Emitter>
190 bool Compiler<Emitter>::VisitCastExpr(const CastExpr *CE) {
191   const Expr *SubExpr = CE->getSubExpr();
192   switch (CE->getCastKind()) {
193 
194   case CK_LValueToRValue: {
195     if (DiscardResult)
196       return this->discard(SubExpr);
197 
198     std::optional<PrimType> SubExprT = classify(SubExpr->getType());
199     // Prepare storage for the result.
200     if (!Initializing && !SubExprT) {
201       std::optional<unsigned> LocalIndex = allocateLocal(SubExpr);
202       if (!LocalIndex)
203         return false;
204       if (!this->emitGetPtrLocal(*LocalIndex, CE))
205         return false;
206     }
207 
208     if (!this->visit(SubExpr))
209       return false;
210 
211     if (SubExprT)
212       return this->emitLoadPop(*SubExprT, CE);
213 
214     // If the subexpr type is not primitive, we need to perform a copy here.
215     // This happens for example in C when dereferencing a pointer of struct
216     // type.
217     return this->emitMemcpy(CE);
218   }
219 
220   case CK_DerivedToBaseMemberPointer: {
221     assert(classifyPrim(CE->getType()) == PT_MemberPtr);
222     assert(classifyPrim(SubExpr->getType()) == PT_MemberPtr);
223     const auto *FromMP = SubExpr->getType()->getAs<MemberPointerType>();
224     const auto *ToMP = CE->getType()->getAs<MemberPointerType>();
225 
226     unsigned DerivedOffset = collectBaseOffset(QualType(ToMP->getClass(), 0),
227                                                QualType(FromMP->getClass(), 0));
228 
229     if (!this->delegate(SubExpr))
230       return false;
231 
232     return this->emitGetMemberPtrBasePop(DerivedOffset, CE);
233   }
234 
235   case CK_BaseToDerivedMemberPointer: {
236     assert(classifyPrim(CE) == PT_MemberPtr);
237     assert(classifyPrim(SubExpr) == PT_MemberPtr);
238     const auto *FromMP = SubExpr->getType()->getAs<MemberPointerType>();
239     const auto *ToMP = CE->getType()->getAs<MemberPointerType>();
240 
241     unsigned DerivedOffset = collectBaseOffset(QualType(FromMP->getClass(), 0),
242                                                QualType(ToMP->getClass(), 0));
243 
244     if (!this->delegate(SubExpr))
245       return false;
246     return this->emitGetMemberPtrBasePop(-DerivedOffset, CE);
247   }
248 
249   case CK_UncheckedDerivedToBase:
250   case CK_DerivedToBase: {
251     if (!this->delegate(SubExpr))
252       return false;
253 
254     const auto extractRecordDecl = [](QualType Ty) -> const CXXRecordDecl * {
255       if (const auto *PT = dyn_cast<PointerType>(Ty))
256         return PT->getPointeeType()->getAsCXXRecordDecl();
257       return Ty->getAsCXXRecordDecl();
258     };
259 
260     // FIXME: We can express a series of non-virtual casts as a single
261     // GetPtrBasePop op.
262     QualType CurType = SubExpr->getType();
263     for (const CXXBaseSpecifier *B : CE->path()) {
264       if (B->isVirtual()) {
265         if (!this->emitGetPtrVirtBasePop(extractRecordDecl(B->getType()), CE))
266           return false;
267         CurType = B->getType();
268       } else {
269         unsigned DerivedOffset = collectBaseOffset(B->getType(), CurType);
270         if (!this->emitGetPtrBasePop(DerivedOffset, CE))
271           return false;
272         CurType = B->getType();
273       }
274     }
275 
276     return true;
277   }
278 
279   case CK_BaseToDerived: {
280     if (!this->delegate(SubExpr))
281       return false;
282 
283     unsigned DerivedOffset =
284         collectBaseOffset(SubExpr->getType(), CE->getType());
285 
286     return this->emitGetPtrDerivedPop(DerivedOffset, CE);
287   }
288 
289   case CK_FloatingCast: {
290     // HLSL uses CK_FloatingCast to cast between vectors.
291     if (!SubExpr->getType()->isFloatingType() ||
292         !CE->getType()->isFloatingType())
293       return false;
294     if (DiscardResult)
295       return this->discard(SubExpr);
296     if (!this->visit(SubExpr))
297       return false;
298     const auto *TargetSemantics = &Ctx.getFloatSemantics(CE->getType());
299     return this->emitCastFP(TargetSemantics, getRoundingMode(CE), CE);
300   }
301 
302   case CK_IntegralToFloating: {
303     if (DiscardResult)
304       return this->discard(SubExpr);
305     std::optional<PrimType> FromT = classify(SubExpr->getType());
306     if (!FromT)
307       return false;
308 
309     if (!this->visit(SubExpr))
310       return false;
311 
312     const auto *TargetSemantics = &Ctx.getFloatSemantics(CE->getType());
313     return this->emitCastIntegralFloating(*FromT, TargetSemantics,
314                                           getFPOptions(CE), CE);
315   }
316 
317   case CK_FloatingToBoolean:
318   case CK_FloatingToIntegral: {
319     if (DiscardResult)
320       return this->discard(SubExpr);
321 
322     std::optional<PrimType> ToT = classify(CE->getType());
323 
324     if (!ToT)
325       return false;
326 
327     if (!this->visit(SubExpr))
328       return false;
329 
330     if (ToT == PT_IntAP)
331       return this->emitCastFloatingIntegralAP(Ctx.getBitWidth(CE->getType()),
332                                               getFPOptions(CE), CE);
333     if (ToT == PT_IntAPS)
334       return this->emitCastFloatingIntegralAPS(Ctx.getBitWidth(CE->getType()),
335                                                getFPOptions(CE), CE);
336 
337     return this->emitCastFloatingIntegral(*ToT, getFPOptions(CE), CE);
338   }
339 
340   case CK_NullToPointer:
341   case CK_NullToMemberPointer: {
342     if (!this->discard(SubExpr))
343       return false;
344     if (DiscardResult)
345       return true;
346 
347     const Descriptor *Desc = nullptr;
348     const QualType PointeeType = CE->getType()->getPointeeType();
349     if (!PointeeType.isNull()) {
350       if (std::optional<PrimType> T = classify(PointeeType))
351         Desc = P.createDescriptor(SubExpr, *T);
352       else
353         Desc = P.createDescriptor(SubExpr, PointeeType.getTypePtr(),
354                                   std::nullopt, true, false,
355                                   /*IsMutable=*/false, nullptr);
356     }
357     return this->emitNull(classifyPrim(CE->getType()), Desc, CE);
358   }
359 
360   case CK_PointerToIntegral: {
361     if (DiscardResult)
362       return this->discard(SubExpr);
363 
364     if (!this->visit(SubExpr))
365       return false;
366 
367     // If SubExpr doesn't result in a pointer, make it one.
368     if (PrimType FromT = classifyPrim(SubExpr->getType()); FromT != PT_Ptr) {
369       assert(isPtrType(FromT));
370       if (!this->emitDecayPtr(FromT, PT_Ptr, CE))
371         return false;
372     }
373 
374     PrimType T = classifyPrim(CE->getType());
375     if (T == PT_IntAP)
376       return this->emitCastPointerIntegralAP(Ctx.getBitWidth(CE->getType()),
377                                              CE);
378     if (T == PT_IntAPS)
379       return this->emitCastPointerIntegralAPS(Ctx.getBitWidth(CE->getType()),
380                                               CE);
381     return this->emitCastPointerIntegral(T, CE);
382   }
383 
384   case CK_ArrayToPointerDecay: {
385     if (!this->visit(SubExpr))
386       return false;
387     if (!this->emitArrayDecay(CE))
388       return false;
389     if (DiscardResult)
390       return this->emitPopPtr(CE);
391     return true;
392   }
393 
394   case CK_IntegralToPointer: {
395     QualType IntType = SubExpr->getType();
396     assert(IntType->isIntegralOrEnumerationType());
397     if (!this->visit(SubExpr))
398       return false;
399     // FIXME: I think the discard is wrong since the int->ptr cast might cause a
400     // diagnostic.
401     PrimType T = classifyPrim(IntType);
402     if (DiscardResult)
403       return this->emitPop(T, CE);
404 
405     QualType PtrType = CE->getType();
406     const Descriptor *Desc;
407     if (std::optional<PrimType> T = classify(PtrType->getPointeeType()))
408       Desc = P.createDescriptor(SubExpr, *T);
409     else if (PtrType->getPointeeType()->isVoidType())
410       Desc = nullptr;
411     else
412       Desc = P.createDescriptor(CE, PtrType->getPointeeType().getTypePtr(),
413                                 Descriptor::InlineDescMD, true, false,
414                                 /*IsMutable=*/false, nullptr);
415 
416     if (!this->emitGetIntPtr(T, Desc, CE))
417       return false;
418 
419     PrimType DestPtrT = classifyPrim(PtrType);
420     if (DestPtrT == PT_Ptr)
421       return true;
422 
423     // In case we're converting the integer to a non-Pointer.
424     return this->emitDecayPtr(PT_Ptr, DestPtrT, CE);
425   }
426 
427   case CK_AtomicToNonAtomic:
428   case CK_ConstructorConversion:
429   case CK_FunctionToPointerDecay:
430   case CK_NonAtomicToAtomic:
431   case CK_NoOp:
432   case CK_UserDefinedConversion:
433   case CK_AddressSpaceConversion:
434     return this->delegate(SubExpr);
435 
436   case CK_BitCast: {
437     // Reject bitcasts to atomic types.
438     if (CE->getType()->isAtomicType()) {
439       if (!this->discard(SubExpr))
440         return false;
441       return this->emitInvalidCast(CastKind::Reinterpret, /*Fatal=*/true, CE);
442     }
443 
444     if (DiscardResult)
445       return this->discard(SubExpr);
446 
447     QualType SubExprTy = SubExpr->getType();
448     std::optional<PrimType> FromT = classify(SubExprTy);
449     std::optional<PrimType> ToT = classify(CE->getType());
450     if (!FromT || !ToT)
451       return false;
452 
453     assert(isPtrType(*FromT));
454     assert(isPtrType(*ToT));
455     if (FromT == ToT) {
456       if (CE->getType()->isVoidPointerType())
457         return this->delegate(SubExpr);
458 
459       if (!this->visit(SubExpr))
460         return false;
461       if (FromT == PT_Ptr)
462         return this->emitPtrPtrCast(SubExprTy->isVoidPointerType(), CE);
463       return true;
464     }
465 
466     if (!this->visit(SubExpr))
467       return false;
468     return this->emitDecayPtr(*FromT, *ToT, CE);
469   }
470 
471   case CK_IntegralToBoolean:
472   case CK_BooleanToSignedIntegral:
473   case CK_IntegralCast: {
474     if (DiscardResult)
475       return this->discard(SubExpr);
476     std::optional<PrimType> FromT = classify(SubExpr->getType());
477     std::optional<PrimType> ToT = classify(CE->getType());
478 
479     if (!FromT || !ToT)
480       return false;
481 
482     if (!this->visit(SubExpr))
483       return false;
484 
485     // Possibly diagnose casts to enum types if the target type does not
486     // have a fixed size.
487     if (Ctx.getLangOpts().CPlusPlus && CE->getType()->isEnumeralType()) {
488       if (const auto *ET = CE->getType().getCanonicalType()->getAs<EnumType>();
489           ET && !ET->getDecl()->isFixed()) {
490         if (!this->emitCheckEnumValue(*FromT, ET->getDecl(), CE))
491           return false;
492       }
493     }
494 
495     auto maybeNegate = [&]() -> bool {
496       if (CE->getCastKind() == CK_BooleanToSignedIntegral)
497         return this->emitNeg(*ToT, CE);
498       return true;
499     };
500 
501     if (ToT == PT_IntAP)
502       return this->emitCastAP(*FromT, Ctx.getBitWidth(CE->getType()), CE) &&
503              maybeNegate();
504     if (ToT == PT_IntAPS)
505       return this->emitCastAPS(*FromT, Ctx.getBitWidth(CE->getType()), CE) &&
506              maybeNegate();
507 
508     if (FromT == ToT)
509       return true;
510     if (!this->emitCast(*FromT, *ToT, CE))
511       return false;
512 
513     return maybeNegate();
514   }
515 
516   case CK_PointerToBoolean:
517   case CK_MemberPointerToBoolean: {
518     PrimType PtrT = classifyPrim(SubExpr->getType());
519 
520     if (!this->visit(SubExpr))
521       return false;
522     return this->emitIsNonNull(PtrT, CE);
523   }
524 
525   case CK_IntegralComplexToBoolean:
526   case CK_FloatingComplexToBoolean: {
527     if (DiscardResult)
528       return this->discard(SubExpr);
529     if (!this->visit(SubExpr))
530       return false;
531     return this->emitComplexBoolCast(SubExpr);
532   }
533 
534   case CK_IntegralComplexToReal:
535   case CK_FloatingComplexToReal:
536     return this->emitComplexReal(SubExpr);
537 
538   case CK_IntegralRealToComplex:
539   case CK_FloatingRealToComplex: {
540     // We're creating a complex value here, so we need to
541     // allocate storage for it.
542     if (!Initializing) {
543       unsigned LocalIndex = allocateTemporary(CE);
544       if (!this->emitGetPtrLocal(LocalIndex, CE))
545         return false;
546     }
547 
548     // Init the complex value to {SubExpr, 0}.
549     if (!this->visitArrayElemInit(0, SubExpr))
550       return false;
551     // Zero-init the second element.
552     PrimType T = classifyPrim(SubExpr->getType());
553     if (!this->visitZeroInitializer(T, SubExpr->getType(), SubExpr))
554       return false;
555     return this->emitInitElem(T, 1, SubExpr);
556   }
557 
558   case CK_IntegralComplexCast:
559   case CK_FloatingComplexCast:
560   case CK_IntegralComplexToFloatingComplex:
561   case CK_FloatingComplexToIntegralComplex: {
562     assert(CE->getType()->isAnyComplexType());
563     assert(SubExpr->getType()->isAnyComplexType());
564     if (DiscardResult)
565       return this->discard(SubExpr);
566 
567     if (!Initializing) {
568       std::optional<unsigned> LocalIndex = allocateLocal(CE);
569       if (!LocalIndex)
570         return false;
571       if (!this->emitGetPtrLocal(*LocalIndex, CE))
572         return false;
573     }
574 
575     // Location for the SubExpr.
576     // Since SubExpr is of complex type, visiting it results in a pointer
577     // anyway, so we just create a temporary pointer variable.
578     unsigned SubExprOffset = allocateLocalPrimitive(
579         SubExpr, PT_Ptr, /*IsConst=*/true, /*IsExtended=*/false);
580     if (!this->visit(SubExpr))
581       return false;
582     if (!this->emitSetLocal(PT_Ptr, SubExprOffset, CE))
583       return false;
584 
585     PrimType SourceElemT = classifyComplexElementType(SubExpr->getType());
586     QualType DestElemType =
587         CE->getType()->getAs<ComplexType>()->getElementType();
588     PrimType DestElemT = classifyPrim(DestElemType);
589     // Cast both elements individually.
590     for (unsigned I = 0; I != 2; ++I) {
591       if (!this->emitGetLocal(PT_Ptr, SubExprOffset, CE))
592         return false;
593       if (!this->emitArrayElemPop(SourceElemT, I, CE))
594         return false;
595 
596       // Do the cast.
597       if (!this->emitPrimCast(SourceElemT, DestElemT, DestElemType, CE))
598         return false;
599 
600       // Save the value.
601       if (!this->emitInitElem(DestElemT, I, CE))
602         return false;
603     }
604     return true;
605   }
606 
607   case CK_VectorSplat: {
608     assert(!classify(CE->getType()));
609     assert(classify(SubExpr->getType()));
610     assert(CE->getType()->isVectorType());
611 
612     if (DiscardResult)
613       return this->discard(SubExpr);
614 
615     if (!Initializing) {
616       std::optional<unsigned> LocalIndex = allocateLocal(CE);
617       if (!LocalIndex)
618         return false;
619       if (!this->emitGetPtrLocal(*LocalIndex, CE))
620         return false;
621     }
622 
623     const auto *VT = CE->getType()->getAs<VectorType>();
624     PrimType ElemT = classifyPrim(SubExpr->getType());
625     unsigned ElemOffset = allocateLocalPrimitive(
626         SubExpr, ElemT, /*IsConst=*/true, /*IsExtended=*/false);
627 
628     // Prepare a local variable for the scalar value.
629     if (!this->visit(SubExpr))
630       return false;
631     if (classifyPrim(SubExpr) == PT_Ptr && !this->emitLoadPop(ElemT, CE))
632       return false;
633 
634     if (!this->emitSetLocal(ElemT, ElemOffset, CE))
635       return false;
636 
637     for (unsigned I = 0; I != VT->getNumElements(); ++I) {
638       if (!this->emitGetLocal(ElemT, ElemOffset, CE))
639         return false;
640       if (!this->emitInitElem(ElemT, I, CE))
641         return false;
642     }
643 
644     return true;
645   }
646 
647   case CK_HLSLVectorTruncation: {
648     assert(SubExpr->getType()->isVectorType());
649     if (std::optional<PrimType> ResultT = classify(CE)) {
650       assert(!DiscardResult);
651       // Result must be either a float or integer. Take the first element.
652       if (!this->visit(SubExpr))
653         return false;
654       return this->emitArrayElemPop(*ResultT, 0, CE);
655     }
656     // Otherwise, this truncates from one vector type to another.
657     assert(CE->getType()->isVectorType());
658 
659     if (!Initializing) {
660       unsigned LocalIndex = allocateTemporary(CE);
661       if (!this->emitGetPtrLocal(LocalIndex, CE))
662         return false;
663     }
664     unsigned ToSize = CE->getType()->getAs<VectorType>()->getNumElements();
665     assert(SubExpr->getType()->getAs<VectorType>()->getNumElements() > ToSize);
666     if (!this->visit(SubExpr))
667       return false;
668     return this->emitCopyArray(classifyVectorElementType(CE->getType()), 0, 0,
669                                ToSize, CE);
670   };
671 
672   case CK_ToVoid:
673     return discard(SubExpr);
674 
675   default:
676     return this->emitInvalid(CE);
677   }
678   llvm_unreachable("Unhandled clang::CastKind enum");
679 }
680 
681 template <class Emitter>
682 bool Compiler<Emitter>::VisitIntegerLiteral(const IntegerLiteral *LE) {
683   if (DiscardResult)
684     return true;
685 
686   return this->emitConst(LE->getValue(), LE);
687 }
688 
689 template <class Emitter>
690 bool Compiler<Emitter>::VisitFloatingLiteral(const FloatingLiteral *E) {
691   if (DiscardResult)
692     return true;
693 
694   return this->emitConstFloat(E->getValue(), E);
695 }
696 
697 template <class Emitter>
698 bool Compiler<Emitter>::VisitImaginaryLiteral(const ImaginaryLiteral *E) {
699   assert(E->getType()->isAnyComplexType());
700   if (DiscardResult)
701     return true;
702 
703   if (!Initializing) {
704     unsigned LocalIndex = allocateTemporary(E);
705     if (!this->emitGetPtrLocal(LocalIndex, E))
706       return false;
707   }
708 
709   const Expr *SubExpr = E->getSubExpr();
710   PrimType SubExprT = classifyPrim(SubExpr->getType());
711 
712   if (!this->visitZeroInitializer(SubExprT, SubExpr->getType(), SubExpr))
713     return false;
714   if (!this->emitInitElem(SubExprT, 0, SubExpr))
715     return false;
716   return this->visitArrayElemInit(1, SubExpr);
717 }
718 
719 template <class Emitter>
720 bool Compiler<Emitter>::VisitParenExpr(const ParenExpr *E) {
721   return this->delegate(E->getSubExpr());
722 }
723 
724 template <class Emitter>
725 bool Compiler<Emitter>::VisitBinaryOperator(const BinaryOperator *BO) {
726   // Need short-circuiting for these.
727   if (BO->getType()->isVectorType())
728     return this->VisitVectorBinOp(BO);
729   if (BO->isLogicalOp())
730     return this->VisitLogicalBinOp(BO);
731 
732   const Expr *LHS = BO->getLHS();
733   const Expr *RHS = BO->getRHS();
734 
735   // Handle comma operators. Just discard the LHS
736   // and delegate to RHS.
737   if (BO->isCommaOp()) {
738     if (!this->discard(LHS))
739       return false;
740     if (RHS->getType()->isVoidType())
741       return this->discard(RHS);
742 
743     return this->delegate(RHS);
744   }
745 
746   if (BO->getType()->isAnyComplexType())
747     return this->VisitComplexBinOp(BO);
748   if ((LHS->getType()->isAnyComplexType() ||
749        RHS->getType()->isAnyComplexType()) &&
750       BO->isComparisonOp())
751     return this->emitComplexComparison(LHS, RHS, BO);
752 
753   if (BO->isPtrMemOp()) {
754     if (!this->visit(LHS))
755       return false;
756 
757     if (!this->visit(RHS))
758       return false;
759 
760     if (!this->emitToMemberPtr(BO))
761       return false;
762 
763     if (classifyPrim(BO) == PT_MemberPtr)
764       return true;
765 
766     if (!this->emitCastMemberPtrPtr(BO))
767       return false;
768     return DiscardResult ? this->emitPopPtr(BO) : true;
769   }
770 
771   // Typecheck the args.
772   std::optional<PrimType> LT = classify(LHS);
773   std::optional<PrimType> RT = classify(RHS);
774   std::optional<PrimType> T = classify(BO->getType());
775 
776   // Special case for C++'s three-way/spaceship operator <=>, which
777   // returns a std::{strong,weak,partial}_ordering (which is a class, so doesn't
778   // have a PrimType).
779   if (!T && BO->getOpcode() == BO_Cmp) {
780     if (DiscardResult)
781       return true;
782     const ComparisonCategoryInfo *CmpInfo =
783         Ctx.getASTContext().CompCategories.lookupInfoForType(BO->getType());
784     assert(CmpInfo);
785 
786     // We need a temporary variable holding our return value.
787     if (!Initializing) {
788       std::optional<unsigned> ResultIndex = this->allocateLocal(BO);
789       if (!this->emitGetPtrLocal(*ResultIndex, BO))
790         return false;
791     }
792 
793     if (!visit(LHS) || !visit(RHS))
794       return false;
795 
796     return this->emitCMP3(*LT, CmpInfo, BO);
797   }
798 
799   if (!LT || !RT || !T)
800     return false;
801 
802   // Pointer arithmetic special case.
803   if (BO->getOpcode() == BO_Add || BO->getOpcode() == BO_Sub) {
804     if (isPtrType(*T) || (isPtrType(*LT) && isPtrType(*RT)))
805       return this->VisitPointerArithBinOp(BO);
806   }
807 
808   // Assignmentes require us to evalute the RHS first.
809   if (BO->getOpcode() == BO_Assign) {
810     if (!visit(RHS) || !visit(LHS))
811       return false;
812     if (!this->emitFlip(*LT, *RT, BO))
813       return false;
814   } else {
815     if (!visit(LHS) || !visit(RHS))
816       return false;
817   }
818 
819   // For languages such as C, cast the result of one
820   // of our comparision opcodes to T (which is usually int).
821   auto MaybeCastToBool = [this, T, BO](bool Result) {
822     if (!Result)
823       return false;
824     if (DiscardResult)
825       return this->emitPop(*T, BO);
826     if (T != PT_Bool)
827       return this->emitCast(PT_Bool, *T, BO);
828     return true;
829   };
830 
831   auto Discard = [this, T, BO](bool Result) {
832     if (!Result)
833       return false;
834     return DiscardResult ? this->emitPop(*T, BO) : true;
835   };
836 
837   switch (BO->getOpcode()) {
838   case BO_EQ:
839     return MaybeCastToBool(this->emitEQ(*LT, BO));
840   case BO_NE:
841     return MaybeCastToBool(this->emitNE(*LT, BO));
842   case BO_LT:
843     return MaybeCastToBool(this->emitLT(*LT, BO));
844   case BO_LE:
845     return MaybeCastToBool(this->emitLE(*LT, BO));
846   case BO_GT:
847     return MaybeCastToBool(this->emitGT(*LT, BO));
848   case BO_GE:
849     return MaybeCastToBool(this->emitGE(*LT, BO));
850   case BO_Sub:
851     if (BO->getType()->isFloatingType())
852       return Discard(this->emitSubf(getFPOptions(BO), BO));
853     return Discard(this->emitSub(*T, BO));
854   case BO_Add:
855     if (BO->getType()->isFloatingType())
856       return Discard(this->emitAddf(getFPOptions(BO), BO));
857     return Discard(this->emitAdd(*T, BO));
858   case BO_Mul:
859     if (BO->getType()->isFloatingType())
860       return Discard(this->emitMulf(getFPOptions(BO), BO));
861     return Discard(this->emitMul(*T, BO));
862   case BO_Rem:
863     return Discard(this->emitRem(*T, BO));
864   case BO_Div:
865     if (BO->getType()->isFloatingType())
866       return Discard(this->emitDivf(getFPOptions(BO), BO));
867     return Discard(this->emitDiv(*T, BO));
868   case BO_Assign:
869     if (DiscardResult)
870       return LHS->refersToBitField() ? this->emitStoreBitFieldPop(*T, BO)
871                                      : this->emitStorePop(*T, BO);
872     if (LHS->refersToBitField()) {
873       if (!this->emitStoreBitField(*T, BO))
874         return false;
875     } else {
876       if (!this->emitStore(*T, BO))
877         return false;
878     }
879     // Assignments aren't necessarily lvalues in C.
880     // Load from them in that case.
881     if (!BO->isLValue())
882       return this->emitLoadPop(*T, BO);
883     return true;
884   case BO_And:
885     return Discard(this->emitBitAnd(*T, BO));
886   case BO_Or:
887     return Discard(this->emitBitOr(*T, BO));
888   case BO_Shl:
889     return Discard(this->emitShl(*LT, *RT, BO));
890   case BO_Shr:
891     return Discard(this->emitShr(*LT, *RT, BO));
892   case BO_Xor:
893     return Discard(this->emitBitXor(*T, BO));
894   case BO_LOr:
895   case BO_LAnd:
896     llvm_unreachable("Already handled earlier");
897   default:
898     return false;
899   }
900 
901   llvm_unreachable("Unhandled binary op");
902 }
903 
904 /// Perform addition/subtraction of a pointer and an integer or
905 /// subtraction of two pointers.
906 template <class Emitter>
907 bool Compiler<Emitter>::VisitPointerArithBinOp(const BinaryOperator *E) {
908   BinaryOperatorKind Op = E->getOpcode();
909   const Expr *LHS = E->getLHS();
910   const Expr *RHS = E->getRHS();
911 
912   if ((Op != BO_Add && Op != BO_Sub) ||
913       (!LHS->getType()->isPointerType() && !RHS->getType()->isPointerType()))
914     return false;
915 
916   std::optional<PrimType> LT = classify(LHS);
917   std::optional<PrimType> RT = classify(RHS);
918 
919   if (!LT || !RT)
920     return false;
921 
922   // Visit the given pointer expression and optionally convert to a PT_Ptr.
923   auto visitAsPointer = [&](const Expr *E, PrimType T) -> bool {
924     if (!this->visit(E))
925       return false;
926     if (T != PT_Ptr)
927       return this->emitDecayPtr(T, PT_Ptr, E);
928     return true;
929   };
930 
931   if (LHS->getType()->isPointerType() && RHS->getType()->isPointerType()) {
932     if (Op != BO_Sub)
933       return false;
934 
935     assert(E->getType()->isIntegerType());
936     if (!visitAsPointer(RHS, *RT) || !visitAsPointer(LHS, *LT))
937       return false;
938 
939     return this->emitSubPtr(classifyPrim(E->getType()), E);
940   }
941 
942   PrimType OffsetType;
943   if (LHS->getType()->isIntegerType()) {
944     if (!visitAsPointer(RHS, *RT))
945       return false;
946     if (!this->visit(LHS))
947       return false;
948     OffsetType = *LT;
949   } else if (RHS->getType()->isIntegerType()) {
950     if (!visitAsPointer(LHS, *LT))
951       return false;
952     if (!this->visit(RHS))
953       return false;
954     OffsetType = *RT;
955   } else {
956     return false;
957   }
958 
959   // Do the operation and optionally transform to
960   // result pointer type.
961   if (Op == BO_Add) {
962     if (!this->emitAddOffset(OffsetType, E))
963       return false;
964 
965     if (classifyPrim(E) != PT_Ptr)
966       return this->emitDecayPtr(PT_Ptr, classifyPrim(E), E);
967     return true;
968   } else if (Op == BO_Sub) {
969     if (!this->emitSubOffset(OffsetType, E))
970       return false;
971 
972     if (classifyPrim(E) != PT_Ptr)
973       return this->emitDecayPtr(PT_Ptr, classifyPrim(E), E);
974     return true;
975   }
976 
977   return false;
978 }
979 
980 template <class Emitter>
981 bool Compiler<Emitter>::VisitLogicalBinOp(const BinaryOperator *E) {
982   assert(E->isLogicalOp());
983   BinaryOperatorKind Op = E->getOpcode();
984   const Expr *LHS = E->getLHS();
985   const Expr *RHS = E->getRHS();
986   std::optional<PrimType> T = classify(E->getType());
987 
988   if (Op == BO_LOr) {
989     // Logical OR. Visit LHS and only evaluate RHS if LHS was FALSE.
990     LabelTy LabelTrue = this->getLabel();
991     LabelTy LabelEnd = this->getLabel();
992 
993     if (!this->visitBool(LHS))
994       return false;
995     if (!this->jumpTrue(LabelTrue))
996       return false;
997 
998     if (!this->visitBool(RHS))
999       return false;
1000     if (!this->jump(LabelEnd))
1001       return false;
1002 
1003     this->emitLabel(LabelTrue);
1004     this->emitConstBool(true, E);
1005     this->fallthrough(LabelEnd);
1006     this->emitLabel(LabelEnd);
1007 
1008   } else {
1009     assert(Op == BO_LAnd);
1010     // Logical AND.
1011     // Visit LHS. Only visit RHS if LHS was TRUE.
1012     LabelTy LabelFalse = this->getLabel();
1013     LabelTy LabelEnd = this->getLabel();
1014 
1015     if (!this->visitBool(LHS))
1016       return false;
1017     if (!this->jumpFalse(LabelFalse))
1018       return false;
1019 
1020     if (!this->visitBool(RHS))
1021       return false;
1022     if (!this->jump(LabelEnd))
1023       return false;
1024 
1025     this->emitLabel(LabelFalse);
1026     this->emitConstBool(false, E);
1027     this->fallthrough(LabelEnd);
1028     this->emitLabel(LabelEnd);
1029   }
1030 
1031   if (DiscardResult)
1032     return this->emitPopBool(E);
1033 
1034   // For C, cast back to integer type.
1035   assert(T);
1036   if (T != PT_Bool)
1037     return this->emitCast(PT_Bool, *T, E);
1038   return true;
1039 }
1040 
1041 template <class Emitter>
1042 bool Compiler<Emitter>::VisitComplexBinOp(const BinaryOperator *E) {
1043   // Prepare storage for result.
1044   if (!Initializing) {
1045     unsigned LocalIndex = allocateTemporary(E);
1046     if (!this->emitGetPtrLocal(LocalIndex, E))
1047       return false;
1048   }
1049 
1050   // Both LHS and RHS might _not_ be of complex type, but one of them
1051   // needs to be.
1052   const Expr *LHS = E->getLHS();
1053   const Expr *RHS = E->getRHS();
1054 
1055   PrimType ResultElemT = this->classifyComplexElementType(E->getType());
1056   unsigned ResultOffset = ~0u;
1057   if (!DiscardResult)
1058     ResultOffset = this->allocateLocalPrimitive(E, PT_Ptr, true, false);
1059 
1060   // Save result pointer in ResultOffset
1061   if (!this->DiscardResult) {
1062     if (!this->emitDupPtr(E))
1063       return false;
1064     if (!this->emitSetLocal(PT_Ptr, ResultOffset, E))
1065       return false;
1066   }
1067   QualType LHSType = LHS->getType();
1068   if (const auto *AT = LHSType->getAs<AtomicType>())
1069     LHSType = AT->getValueType();
1070   QualType RHSType = RHS->getType();
1071   if (const auto *AT = RHSType->getAs<AtomicType>())
1072     RHSType = AT->getValueType();
1073 
1074   bool LHSIsComplex = LHSType->isAnyComplexType();
1075   unsigned LHSOffset;
1076   bool RHSIsComplex = RHSType->isAnyComplexType();
1077 
1078   // For ComplexComplex Mul, we have special ops to make their implementation
1079   // easier.
1080   BinaryOperatorKind Op = E->getOpcode();
1081   if (Op == BO_Mul && LHSIsComplex && RHSIsComplex) {
1082     assert(classifyPrim(LHSType->getAs<ComplexType>()->getElementType()) ==
1083            classifyPrim(RHSType->getAs<ComplexType>()->getElementType()));
1084     PrimType ElemT =
1085         classifyPrim(LHSType->getAs<ComplexType>()->getElementType());
1086     if (!this->visit(LHS))
1087       return false;
1088     if (!this->visit(RHS))
1089       return false;
1090     return this->emitMulc(ElemT, E);
1091   }
1092 
1093   if (Op == BO_Div && RHSIsComplex) {
1094     QualType ElemQT = RHSType->getAs<ComplexType>()->getElementType();
1095     PrimType ElemT = classifyPrim(ElemQT);
1096     // If the LHS is not complex, we still need to do the full complex
1097     // division, so just stub create a complex value and stub it out with
1098     // the LHS and a zero.
1099 
1100     if (!LHSIsComplex) {
1101       // This is using the RHS type for the fake-complex LHS.
1102       LHSOffset = allocateTemporary(RHS);
1103 
1104       if (!this->emitGetPtrLocal(LHSOffset, E))
1105         return false;
1106 
1107       if (!this->visit(LHS))
1108         return false;
1109       // real is LHS
1110       if (!this->emitInitElem(ElemT, 0, E))
1111         return false;
1112       // imag is zero
1113       if (!this->visitZeroInitializer(ElemT, ElemQT, E))
1114         return false;
1115       if (!this->emitInitElem(ElemT, 1, E))
1116         return false;
1117     } else {
1118       if (!this->visit(LHS))
1119         return false;
1120     }
1121 
1122     if (!this->visit(RHS))
1123       return false;
1124     return this->emitDivc(ElemT, E);
1125   }
1126 
1127   // Evaluate LHS and save value to LHSOffset.
1128   if (LHSType->isAnyComplexType()) {
1129     LHSOffset = this->allocateLocalPrimitive(LHS, PT_Ptr, true, false);
1130     if (!this->visit(LHS))
1131       return false;
1132     if (!this->emitSetLocal(PT_Ptr, LHSOffset, E))
1133       return false;
1134   } else {
1135     PrimType LHST = classifyPrim(LHSType);
1136     LHSOffset = this->allocateLocalPrimitive(LHS, LHST, true, false);
1137     if (!this->visit(LHS))
1138       return false;
1139     if (!this->emitSetLocal(LHST, LHSOffset, E))
1140       return false;
1141   }
1142 
1143   // Same with RHS.
1144   unsigned RHSOffset;
1145   if (RHSType->isAnyComplexType()) {
1146     RHSOffset = this->allocateLocalPrimitive(RHS, PT_Ptr, true, false);
1147     if (!this->visit(RHS))
1148       return false;
1149     if (!this->emitSetLocal(PT_Ptr, RHSOffset, E))
1150       return false;
1151   } else {
1152     PrimType RHST = classifyPrim(RHSType);
1153     RHSOffset = this->allocateLocalPrimitive(RHS, RHST, true, false);
1154     if (!this->visit(RHS))
1155       return false;
1156     if (!this->emitSetLocal(RHST, RHSOffset, E))
1157       return false;
1158   }
1159 
1160   // For both LHS and RHS, either load the value from the complex pointer, or
1161   // directly from the local variable. For index 1 (i.e. the imaginary part),
1162   // just load 0 and do the operation anyway.
1163   auto loadComplexValue = [this](bool IsComplex, bool LoadZero,
1164                                  unsigned ElemIndex, unsigned Offset,
1165                                  const Expr *E) -> bool {
1166     if (IsComplex) {
1167       if (!this->emitGetLocal(PT_Ptr, Offset, E))
1168         return false;
1169       return this->emitArrayElemPop(classifyComplexElementType(E->getType()),
1170                                     ElemIndex, E);
1171     }
1172     if (ElemIndex == 0 || !LoadZero)
1173       return this->emitGetLocal(classifyPrim(E->getType()), Offset, E);
1174     return this->visitZeroInitializer(classifyPrim(E->getType()), E->getType(),
1175                                       E);
1176   };
1177 
1178   // Now we can get pointers to the LHS and RHS from the offsets above.
1179   for (unsigned ElemIndex = 0; ElemIndex != 2; ++ElemIndex) {
1180     // Result pointer for the store later.
1181     if (!this->DiscardResult) {
1182       if (!this->emitGetLocal(PT_Ptr, ResultOffset, E))
1183         return false;
1184     }
1185 
1186     // The actual operation.
1187     switch (Op) {
1188     case BO_Add:
1189       if (!loadComplexValue(LHSIsComplex, true, ElemIndex, LHSOffset, LHS))
1190         return false;
1191 
1192       if (!loadComplexValue(RHSIsComplex, true, ElemIndex, RHSOffset, RHS))
1193         return false;
1194       if (ResultElemT == PT_Float) {
1195         if (!this->emitAddf(getFPOptions(E), E))
1196           return false;
1197       } else {
1198         if (!this->emitAdd(ResultElemT, E))
1199           return false;
1200       }
1201       break;
1202     case BO_Sub:
1203       if (!loadComplexValue(LHSIsComplex, true, ElemIndex, LHSOffset, LHS))
1204         return false;
1205 
1206       if (!loadComplexValue(RHSIsComplex, true, ElemIndex, RHSOffset, RHS))
1207         return false;
1208       if (ResultElemT == PT_Float) {
1209         if (!this->emitSubf(getFPOptions(E), E))
1210           return false;
1211       } else {
1212         if (!this->emitSub(ResultElemT, E))
1213           return false;
1214       }
1215       break;
1216     case BO_Mul:
1217       if (!loadComplexValue(LHSIsComplex, false, ElemIndex, LHSOffset, LHS))
1218         return false;
1219 
1220       if (!loadComplexValue(RHSIsComplex, false, ElemIndex, RHSOffset, RHS))
1221         return false;
1222 
1223       if (ResultElemT == PT_Float) {
1224         if (!this->emitMulf(getFPOptions(E), E))
1225           return false;
1226       } else {
1227         if (!this->emitMul(ResultElemT, E))
1228           return false;
1229       }
1230       break;
1231     case BO_Div:
1232       assert(!RHSIsComplex);
1233       if (!loadComplexValue(LHSIsComplex, false, ElemIndex, LHSOffset, LHS))
1234         return false;
1235 
1236       if (!loadComplexValue(RHSIsComplex, false, ElemIndex, RHSOffset, RHS))
1237         return false;
1238 
1239       if (ResultElemT == PT_Float) {
1240         if (!this->emitDivf(getFPOptions(E), E))
1241           return false;
1242       } else {
1243         if (!this->emitDiv(ResultElemT, E))
1244           return false;
1245       }
1246       break;
1247 
1248     default:
1249       return false;
1250     }
1251 
1252     if (!this->DiscardResult) {
1253       // Initialize array element with the value we just computed.
1254       if (!this->emitInitElemPop(ResultElemT, ElemIndex, E))
1255         return false;
1256     } else {
1257       if (!this->emitPop(ResultElemT, E))
1258         return false;
1259     }
1260   }
1261   return true;
1262 }
1263 
1264 template <class Emitter>
1265 bool Compiler<Emitter>::VisitVectorBinOp(const BinaryOperator *E) {
1266   assert(E->getType()->isVectorType());
1267   assert(E->getLHS()->getType()->isVectorType());
1268   assert(E->getRHS()->getType()->isVectorType());
1269 
1270   // Prepare storage for result.
1271   if (!Initializing && !E->isCompoundAssignmentOp()) {
1272     unsigned LocalIndex = allocateTemporary(E);
1273     if (!this->emitGetPtrLocal(LocalIndex, E))
1274       return false;
1275   }
1276 
1277   const Expr *LHS = E->getLHS();
1278   const Expr *RHS = E->getRHS();
1279   const auto *VecTy = E->getType()->getAs<VectorType>();
1280   auto Op = E->isCompoundAssignmentOp()
1281                 ? BinaryOperator::getOpForCompoundAssignment(E->getOpcode())
1282                 : E->getOpcode();
1283 
1284   // The LHS and RHS of a comparison operator must have the same type. So we
1285   // just use LHS vector element type here.
1286   PrimType ElemT = this->classifyVectorElementType(LHS->getType());
1287   PrimType ResultElemT = this->classifyVectorElementType(E->getType());
1288 
1289   // Evaluate LHS and save value to LHSOffset.
1290   unsigned LHSOffset = this->allocateLocalPrimitive(LHS, PT_Ptr, true, false);
1291   if (!this->visit(LHS))
1292     return false;
1293   if (!this->emitSetLocal(PT_Ptr, LHSOffset, E))
1294     return false;
1295 
1296   // Evaluate RHS and save value to RHSOffset.
1297   unsigned RHSOffset = this->allocateLocalPrimitive(RHS, PT_Ptr, true, false);
1298   if (!this->visit(RHS))
1299     return false;
1300   if (!this->emitSetLocal(PT_Ptr, RHSOffset, E))
1301     return false;
1302 
1303   if (E->isCompoundAssignmentOp() && !this->emitGetLocal(PT_Ptr, LHSOffset, E))
1304     return false;
1305 
1306   // BitAdd/BitOr/BitXor/Shl/Shr doesn't support bool type, we need perform the
1307   // integer promotion.
1308   bool NeedIntPromot = ElemT == PT_Bool && (E->isBitwiseOp() || E->isShiftOp());
1309   QualType PromotTy =
1310       Ctx.getASTContext().getPromotedIntegerType(Ctx.getASTContext().BoolTy);
1311   PrimType PromotT = classifyPrim(PromotTy);
1312   PrimType OpT = NeedIntPromot ? PromotT : ElemT;
1313 
1314   auto getElem = [=](unsigned Offset, unsigned Index) {
1315     if (!this->emitGetLocal(PT_Ptr, Offset, E))
1316       return false;
1317     if (!this->emitArrayElemPop(ElemT, Index, E))
1318       return false;
1319     if (E->isLogicalOp()) {
1320       if (!this->emitPrimCast(ElemT, PT_Bool, Ctx.getASTContext().BoolTy, E))
1321         return false;
1322       if (!this->emitPrimCast(PT_Bool, ResultElemT, VecTy->getElementType(), E))
1323         return false;
1324     } else if (NeedIntPromot) {
1325       if (!this->emitPrimCast(ElemT, PromotT, PromotTy, E))
1326         return false;
1327     }
1328     return true;
1329   };
1330 
1331 #define EMIT_ARITH_OP(OP)                                                      \
1332   {                                                                            \
1333     if (ElemT == PT_Float) {                                                   \
1334       if (!this->emit##OP##f(getFPOptions(E), E))                              \
1335         return false;                                                          \
1336     } else {                                                                   \
1337       if (!this->emit##OP(ElemT, E))                                           \
1338         return false;                                                          \
1339     }                                                                          \
1340     break;                                                                     \
1341   }
1342 
1343   for (unsigned I = 0; I != VecTy->getNumElements(); ++I) {
1344     if (!getElem(LHSOffset, I))
1345       return false;
1346     if (!getElem(RHSOffset, I))
1347       return false;
1348     switch (Op) {
1349     case BO_Add:
1350       EMIT_ARITH_OP(Add)
1351     case BO_Sub:
1352       EMIT_ARITH_OP(Sub)
1353     case BO_Mul:
1354       EMIT_ARITH_OP(Mul)
1355     case BO_Div:
1356       EMIT_ARITH_OP(Div)
1357     case BO_Rem:
1358       if (!this->emitRem(ElemT, E))
1359         return false;
1360       break;
1361     case BO_And:
1362       if (!this->emitBitAnd(OpT, E))
1363         return false;
1364       break;
1365     case BO_Or:
1366       if (!this->emitBitOr(OpT, E))
1367         return false;
1368       break;
1369     case BO_Xor:
1370       if (!this->emitBitXor(OpT, E))
1371         return false;
1372       break;
1373     case BO_Shl:
1374       if (!this->emitShl(OpT, ElemT, E))
1375         return false;
1376       break;
1377     case BO_Shr:
1378       if (!this->emitShr(OpT, ElemT, E))
1379         return false;
1380       break;
1381     case BO_EQ:
1382       if (!this->emitEQ(ElemT, E))
1383         return false;
1384       break;
1385     case BO_NE:
1386       if (!this->emitNE(ElemT, E))
1387         return false;
1388       break;
1389     case BO_LE:
1390       if (!this->emitLE(ElemT, E))
1391         return false;
1392       break;
1393     case BO_LT:
1394       if (!this->emitLT(ElemT, E))
1395         return false;
1396       break;
1397     case BO_GE:
1398       if (!this->emitGE(ElemT, E))
1399         return false;
1400       break;
1401     case BO_GT:
1402       if (!this->emitGT(ElemT, E))
1403         return false;
1404       break;
1405     case BO_LAnd:
1406       // a && b is equivalent to a!=0 & b!=0
1407       if (!this->emitBitAnd(ResultElemT, E))
1408         return false;
1409       break;
1410     case BO_LOr:
1411       // a || b is equivalent to a!=0 | b!=0
1412       if (!this->emitBitOr(ResultElemT, E))
1413         return false;
1414       break;
1415     default:
1416       return this->emitInvalid(E);
1417     }
1418 
1419     // The result of the comparison is a vector of the same width and number
1420     // of elements as the comparison operands with a signed integral element
1421     // type.
1422     //
1423     // https://gcc.gnu.org/onlinedocs/gcc/Vector-Extensions.html
1424     if (E->isComparisonOp()) {
1425       if (!this->emitPrimCast(PT_Bool, ResultElemT, VecTy->getElementType(), E))
1426         return false;
1427       if (!this->emitNeg(ResultElemT, E))
1428         return false;
1429     }
1430 
1431     // If we performed an integer promotion, we need to cast the compute result
1432     // into result vector element type.
1433     if (NeedIntPromot &&
1434         !this->emitPrimCast(PromotT, ResultElemT, VecTy->getElementType(), E))
1435       return false;
1436 
1437     // Initialize array element with the value we just computed.
1438     if (!this->emitInitElem(ResultElemT, I, E))
1439       return false;
1440   }
1441 
1442   if (DiscardResult && E->isCompoundAssignmentOp() && !this->emitPopPtr(E))
1443     return false;
1444   return true;
1445 }
1446 
1447 template <class Emitter>
1448 bool Compiler<Emitter>::VisitImplicitValueInitExpr(
1449     const ImplicitValueInitExpr *E) {
1450   QualType QT = E->getType();
1451 
1452   if (std::optional<PrimType> T = classify(QT))
1453     return this->visitZeroInitializer(*T, QT, E);
1454 
1455   if (QT->isRecordType()) {
1456     const RecordDecl *RD = QT->getAsRecordDecl();
1457     assert(RD);
1458     if (RD->isInvalidDecl())
1459       return false;
1460 
1461     if (const auto *CXXRD = dyn_cast<CXXRecordDecl>(RD);
1462         CXXRD && CXXRD->getNumVBases() > 0) {
1463       // TODO: Diagnose.
1464       return false;
1465     }
1466 
1467     const Record *R = getRecord(QT);
1468     if (!R)
1469       return false;
1470 
1471     assert(Initializing);
1472     return this->visitZeroRecordInitializer(R, E);
1473   }
1474 
1475   if (QT->isIncompleteArrayType())
1476     return true;
1477 
1478   if (QT->isArrayType()) {
1479     const ArrayType *AT = QT->getAsArrayTypeUnsafe();
1480     assert(AT);
1481     const auto *CAT = cast<ConstantArrayType>(AT);
1482     size_t NumElems = CAT->getZExtSize();
1483     PrimType ElemT = classifyPrim(CAT->getElementType());
1484 
1485     for (size_t I = 0; I != NumElems; ++I) {
1486       if (!this->visitZeroInitializer(ElemT, CAT->getElementType(), E))
1487         return false;
1488       if (!this->emitInitElem(ElemT, I, E))
1489         return false;
1490     }
1491 
1492     return true;
1493   }
1494 
1495   if (const auto *ComplexTy = E->getType()->getAs<ComplexType>()) {
1496     assert(Initializing);
1497     QualType ElemQT = ComplexTy->getElementType();
1498     PrimType ElemT = classifyPrim(ElemQT);
1499     for (unsigned I = 0; I < 2; ++I) {
1500       if (!this->visitZeroInitializer(ElemT, ElemQT, E))
1501         return false;
1502       if (!this->emitInitElem(ElemT, I, E))
1503         return false;
1504     }
1505     return true;
1506   }
1507 
1508   if (const auto *VecT = E->getType()->getAs<VectorType>()) {
1509     unsigned NumVecElements = VecT->getNumElements();
1510     QualType ElemQT = VecT->getElementType();
1511     PrimType ElemT = classifyPrim(ElemQT);
1512 
1513     for (unsigned I = 0; I < NumVecElements; ++I) {
1514       if (!this->visitZeroInitializer(ElemT, ElemQT, E))
1515         return false;
1516       if (!this->emitInitElem(ElemT, I, E))
1517         return false;
1518     }
1519     return true;
1520   }
1521 
1522   return false;
1523 }
1524 
1525 template <class Emitter>
1526 bool Compiler<Emitter>::VisitArraySubscriptExpr(const ArraySubscriptExpr *E) {
1527   const Expr *LHS = E->getLHS();
1528   const Expr *RHS = E->getRHS();
1529   const Expr *Index = E->getIdx();
1530 
1531   if (DiscardResult)
1532     return this->discard(LHS) && this->discard(RHS);
1533 
1534   // C++17's rules require us to evaluate the LHS first, regardless of which
1535   // side is the base.
1536   bool Success = true;
1537   for (const Expr *SubExpr : {LHS, RHS}) {
1538     if (!this->visit(SubExpr))
1539       Success = false;
1540   }
1541 
1542   if (!Success)
1543     return false;
1544 
1545   PrimType IndexT = classifyPrim(Index->getType());
1546   // If the index is first, we need to change that.
1547   if (LHS == Index) {
1548     if (!this->emitFlip(PT_Ptr, IndexT, E))
1549       return false;
1550   }
1551 
1552   return this->emitArrayElemPtrPop(IndexT, E);
1553 }
1554 
1555 template <class Emitter>
1556 bool Compiler<Emitter>::visitInitList(ArrayRef<const Expr *> Inits,
1557                                       const Expr *ArrayFiller, const Expr *E) {
1558   QualType QT = E->getType();
1559   if (const auto *AT = QT->getAs<AtomicType>())
1560     QT = AT->getValueType();
1561 
1562   if (QT->isVoidType()) {
1563     if (Inits.size() == 0)
1564       return true;
1565     return this->emitInvalid(E);
1566   }
1567 
1568   // Handle discarding first.
1569   if (DiscardResult) {
1570     for (const Expr *Init : Inits) {
1571       if (!this->discard(Init))
1572         return false;
1573     }
1574     return true;
1575   }
1576 
1577   // Primitive values.
1578   if (std::optional<PrimType> T = classify(QT)) {
1579     assert(!DiscardResult);
1580     if (Inits.size() == 0)
1581       return this->visitZeroInitializer(*T, QT, E);
1582     assert(Inits.size() == 1);
1583     return this->delegate(Inits[0]);
1584   }
1585 
1586   if (QT->isRecordType()) {
1587     const Record *R = getRecord(QT);
1588 
1589     if (Inits.size() == 1 && E->getType() == Inits[0]->getType())
1590       return this->delegate(Inits[0]);
1591 
1592     auto initPrimitiveField = [=](const Record::Field *FieldToInit,
1593                                   const Expr *Init, PrimType T) -> bool {
1594       InitStackScope<Emitter> ISS(this, isa<CXXDefaultInitExpr>(Init));
1595       if (!this->visit(Init))
1596         return false;
1597 
1598       if (FieldToInit->isBitField())
1599         return this->emitInitBitField(T, FieldToInit, E);
1600       return this->emitInitField(T, FieldToInit->Offset, E);
1601     };
1602 
1603     auto initCompositeField = [=](const Record::Field *FieldToInit,
1604                                   const Expr *Init) -> bool {
1605       InitStackScope<Emitter> ISS(this, isa<CXXDefaultInitExpr>(Init));
1606       InitLinkScope<Emitter> ILS(this, InitLink::Field(FieldToInit->Offset));
1607       // Non-primitive case. Get a pointer to the field-to-initialize
1608       // on the stack and recurse into visitInitializer().
1609       if (!this->emitGetPtrField(FieldToInit->Offset, Init))
1610         return false;
1611       if (!this->visitInitializer(Init))
1612         return false;
1613       return this->emitPopPtr(E);
1614     };
1615 
1616     if (R->isUnion()) {
1617       if (Inits.size() == 0) {
1618         if (!this->visitZeroRecordInitializer(R, E))
1619           return false;
1620       } else {
1621         const Expr *Init = Inits[0];
1622         const FieldDecl *FToInit = nullptr;
1623         if (const auto *ILE = dyn_cast<InitListExpr>(E))
1624           FToInit = ILE->getInitializedFieldInUnion();
1625         else
1626           FToInit = cast<CXXParenListInitExpr>(E)->getInitializedFieldInUnion();
1627 
1628         const Record::Field *FieldToInit = R->getField(FToInit);
1629         if (std::optional<PrimType> T = classify(Init)) {
1630           if (!initPrimitiveField(FieldToInit, Init, *T))
1631             return false;
1632         } else {
1633           if (!initCompositeField(FieldToInit, Init))
1634             return false;
1635         }
1636       }
1637       return this->emitFinishInit(E);
1638     }
1639 
1640     assert(!R->isUnion());
1641     unsigned InitIndex = 0;
1642     for (const Expr *Init : Inits) {
1643       // Skip unnamed bitfields.
1644       while (InitIndex < R->getNumFields() &&
1645              R->getField(InitIndex)->Decl->isUnnamedBitField())
1646         ++InitIndex;
1647 
1648       if (std::optional<PrimType> T = classify(Init)) {
1649         const Record::Field *FieldToInit = R->getField(InitIndex);
1650         if (!initPrimitiveField(FieldToInit, Init, *T))
1651           return false;
1652         ++InitIndex;
1653       } else {
1654         // Initializer for a direct base class.
1655         if (const Record::Base *B = R->getBase(Init->getType())) {
1656           if (!this->emitGetPtrBase(B->Offset, Init))
1657             return false;
1658 
1659           if (!this->visitInitializer(Init))
1660             return false;
1661 
1662           if (!this->emitFinishInitPop(E))
1663             return false;
1664           // Base initializers don't increase InitIndex, since they don't count
1665           // into the Record's fields.
1666         } else {
1667           const Record::Field *FieldToInit = R->getField(InitIndex);
1668           if (!initCompositeField(FieldToInit, Init))
1669             return false;
1670           ++InitIndex;
1671         }
1672       }
1673     }
1674     return this->emitFinishInit(E);
1675   }
1676 
1677   if (QT->isArrayType()) {
1678     if (Inits.size() == 1 && QT == Inits[0]->getType())
1679       return this->delegate(Inits[0]);
1680 
1681     unsigned ElementIndex = 0;
1682     for (const Expr *Init : Inits) {
1683       if (const auto *EmbedS =
1684               dyn_cast<EmbedExpr>(Init->IgnoreParenImpCasts())) {
1685         PrimType TargetT = classifyPrim(Init->getType());
1686 
1687         auto Eval = [&](const Expr *Init, unsigned ElemIndex) {
1688           PrimType InitT = classifyPrim(Init->getType());
1689           if (!this->visit(Init))
1690             return false;
1691           if (InitT != TargetT) {
1692             if (!this->emitCast(InitT, TargetT, E))
1693               return false;
1694           }
1695           return this->emitInitElem(TargetT, ElemIndex, Init);
1696         };
1697         if (!EmbedS->doForEachDataElement(Eval, ElementIndex))
1698           return false;
1699       } else {
1700         if (!this->visitArrayElemInit(ElementIndex, Init))
1701           return false;
1702         ++ElementIndex;
1703       }
1704     }
1705 
1706     // Expand the filler expression.
1707     // FIXME: This should go away.
1708     if (ArrayFiller) {
1709       const ConstantArrayType *CAT =
1710           Ctx.getASTContext().getAsConstantArrayType(QT);
1711       uint64_t NumElems = CAT->getZExtSize();
1712 
1713       for (; ElementIndex != NumElems; ++ElementIndex) {
1714         if (!this->visitArrayElemInit(ElementIndex, ArrayFiller))
1715           return false;
1716       }
1717     }
1718 
1719     return this->emitFinishInit(E);
1720   }
1721 
1722   if (const auto *ComplexTy = QT->getAs<ComplexType>()) {
1723     unsigned NumInits = Inits.size();
1724 
1725     if (NumInits == 1)
1726       return this->delegate(Inits[0]);
1727 
1728     QualType ElemQT = ComplexTy->getElementType();
1729     PrimType ElemT = classifyPrim(ElemQT);
1730     if (NumInits == 0) {
1731       // Zero-initialize both elements.
1732       for (unsigned I = 0; I < 2; ++I) {
1733         if (!this->visitZeroInitializer(ElemT, ElemQT, E))
1734           return false;
1735         if (!this->emitInitElem(ElemT, I, E))
1736           return false;
1737       }
1738     } else if (NumInits == 2) {
1739       unsigned InitIndex = 0;
1740       for (const Expr *Init : Inits) {
1741         if (!this->visit(Init))
1742           return false;
1743 
1744         if (!this->emitInitElem(ElemT, InitIndex, E))
1745           return false;
1746         ++InitIndex;
1747       }
1748     }
1749     return true;
1750   }
1751 
1752   if (const auto *VecT = QT->getAs<VectorType>()) {
1753     unsigned NumVecElements = VecT->getNumElements();
1754     assert(NumVecElements >= Inits.size());
1755 
1756     QualType ElemQT = VecT->getElementType();
1757     PrimType ElemT = classifyPrim(ElemQT);
1758 
1759     // All initializer elements.
1760     unsigned InitIndex = 0;
1761     for (const Expr *Init : Inits) {
1762       if (!this->visit(Init))
1763         return false;
1764 
1765       // If the initializer is of vector type itself, we have to deconstruct
1766       // that and initialize all the target fields from the initializer fields.
1767       if (const auto *InitVecT = Init->getType()->getAs<VectorType>()) {
1768         if (!this->emitCopyArray(ElemT, 0, InitIndex,
1769                                  InitVecT->getNumElements(), E))
1770           return false;
1771         InitIndex += InitVecT->getNumElements();
1772       } else {
1773         if (!this->emitInitElem(ElemT, InitIndex, E))
1774           return false;
1775         ++InitIndex;
1776       }
1777     }
1778 
1779     assert(InitIndex <= NumVecElements);
1780 
1781     // Fill the rest with zeroes.
1782     for (; InitIndex != NumVecElements; ++InitIndex) {
1783       if (!this->visitZeroInitializer(ElemT, ElemQT, E))
1784         return false;
1785       if (!this->emitInitElem(ElemT, InitIndex, E))
1786         return false;
1787     }
1788     return true;
1789   }
1790 
1791   return false;
1792 }
1793 
1794 /// Pointer to the array(not the element!) must be on the stack when calling
1795 /// this.
1796 template <class Emitter>
1797 bool Compiler<Emitter>::visitArrayElemInit(unsigned ElemIndex,
1798                                            const Expr *Init) {
1799   if (std::optional<PrimType> T = classify(Init->getType())) {
1800     // Visit the primitive element like normal.
1801     if (!this->visit(Init))
1802       return false;
1803     return this->emitInitElem(*T, ElemIndex, Init);
1804   }
1805 
1806   InitLinkScope<Emitter> ILS(this, InitLink::Elem(ElemIndex));
1807   // Advance the pointer currently on the stack to the given
1808   // dimension.
1809   if (!this->emitConstUint32(ElemIndex, Init))
1810     return false;
1811   if (!this->emitArrayElemPtrUint32(Init))
1812     return false;
1813   if (!this->visitInitializer(Init))
1814     return false;
1815   return this->emitFinishInitPop(Init);
1816 }
1817 
1818 template <class Emitter>
1819 bool Compiler<Emitter>::VisitInitListExpr(const InitListExpr *E) {
1820   return this->visitInitList(E->inits(), E->getArrayFiller(), E);
1821 }
1822 
1823 template <class Emitter>
1824 bool Compiler<Emitter>::VisitCXXParenListInitExpr(
1825     const CXXParenListInitExpr *E) {
1826   return this->visitInitList(E->getInitExprs(), E->getArrayFiller(), E);
1827 }
1828 
1829 template <class Emitter>
1830 bool Compiler<Emitter>::VisitSubstNonTypeTemplateParmExpr(
1831     const SubstNonTypeTemplateParmExpr *E) {
1832   return this->delegate(E->getReplacement());
1833 }
1834 
1835 template <class Emitter>
1836 bool Compiler<Emitter>::VisitConstantExpr(const ConstantExpr *E) {
1837   std::optional<PrimType> T = classify(E->getType());
1838   if (T && E->hasAPValueResult()) {
1839     // Try to emit the APValue directly, without visiting the subexpr.
1840     // This will only fail if we can't emit the APValue, so won't emit any
1841     // diagnostics or any double values.
1842     if (DiscardResult)
1843       return true;
1844 
1845     if (this->visitAPValue(E->getAPValueResult(), *T, E))
1846       return true;
1847   }
1848   return this->delegate(E->getSubExpr());
1849 }
1850 
1851 template <class Emitter>
1852 bool Compiler<Emitter>::VisitEmbedExpr(const EmbedExpr *E) {
1853   auto It = E->begin();
1854   return this->visit(*It);
1855 }
1856 
1857 static CharUnits AlignOfType(QualType T, const ASTContext &ASTCtx,
1858                              UnaryExprOrTypeTrait Kind) {
1859   bool AlignOfReturnsPreferred =
1860       ASTCtx.getLangOpts().getClangABICompat() <= LangOptions::ClangABI::Ver7;
1861 
1862   // C++ [expr.alignof]p3:
1863   //     When alignof is applied to a reference type, the result is the
1864   //     alignment of the referenced type.
1865   if (const auto *Ref = T->getAs<ReferenceType>())
1866     T = Ref->getPointeeType();
1867 
1868   if (T.getQualifiers().hasUnaligned())
1869     return CharUnits::One();
1870 
1871   // __alignof is defined to return the preferred alignment.
1872   // Before 8, clang returned the preferred alignment for alignof and
1873   // _Alignof as well.
1874   if (Kind == UETT_PreferredAlignOf || AlignOfReturnsPreferred)
1875     return ASTCtx.toCharUnitsFromBits(ASTCtx.getPreferredTypeAlign(T));
1876 
1877   return ASTCtx.getTypeAlignInChars(T);
1878 }
1879 
1880 template <class Emitter>
1881 bool Compiler<Emitter>::VisitUnaryExprOrTypeTraitExpr(
1882     const UnaryExprOrTypeTraitExpr *E) {
1883   UnaryExprOrTypeTrait Kind = E->getKind();
1884   const ASTContext &ASTCtx = Ctx.getASTContext();
1885 
1886   if (Kind == UETT_SizeOf || Kind == UETT_DataSizeOf) {
1887     QualType ArgType = E->getTypeOfArgument();
1888 
1889     // C++ [expr.sizeof]p2: "When applied to a reference or a reference type,
1890     //   the result is the size of the referenced type."
1891     if (const auto *Ref = ArgType->getAs<ReferenceType>())
1892       ArgType = Ref->getPointeeType();
1893 
1894     CharUnits Size;
1895     if (ArgType->isVoidType() || ArgType->isFunctionType())
1896       Size = CharUnits::One();
1897     else {
1898       if (ArgType->isDependentType() || !ArgType->isConstantSizeType())
1899         return false;
1900 
1901       if (Kind == UETT_SizeOf)
1902         Size = ASTCtx.getTypeSizeInChars(ArgType);
1903       else
1904         Size = ASTCtx.getTypeInfoDataSizeInChars(ArgType).Width;
1905     }
1906 
1907     if (DiscardResult)
1908       return true;
1909 
1910     return this->emitConst(Size.getQuantity(), E);
1911   }
1912 
1913   if (Kind == UETT_AlignOf || Kind == UETT_PreferredAlignOf) {
1914     CharUnits Size;
1915 
1916     if (E->isArgumentType()) {
1917       QualType ArgType = E->getTypeOfArgument();
1918 
1919       Size = AlignOfType(ArgType, ASTCtx, Kind);
1920     } else {
1921       // Argument is an expression, not a type.
1922       const Expr *Arg = E->getArgumentExpr()->IgnoreParens();
1923 
1924       // The kinds of expressions that we have special-case logic here for
1925       // should be kept up to date with the special checks for those
1926       // expressions in Sema.
1927 
1928       // alignof decl is always accepted, even if it doesn't make sense: we
1929       // default to 1 in those cases.
1930       if (const auto *DRE = dyn_cast<DeclRefExpr>(Arg))
1931         Size = ASTCtx.getDeclAlign(DRE->getDecl(),
1932                                    /*RefAsPointee*/ true);
1933       else if (const auto *ME = dyn_cast<MemberExpr>(Arg))
1934         Size = ASTCtx.getDeclAlign(ME->getMemberDecl(),
1935                                    /*RefAsPointee*/ true);
1936       else
1937         Size = AlignOfType(Arg->getType(), ASTCtx, Kind);
1938     }
1939 
1940     if (DiscardResult)
1941       return true;
1942 
1943     return this->emitConst(Size.getQuantity(), E);
1944   }
1945 
1946   if (Kind == UETT_VectorElements) {
1947     if (const auto *VT = E->getTypeOfArgument()->getAs<VectorType>())
1948       return this->emitConst(VT->getNumElements(), E);
1949     assert(E->getTypeOfArgument()->isSizelessVectorType());
1950     return this->emitSizelessVectorElementSize(E);
1951   }
1952 
1953   if (Kind == UETT_VecStep) {
1954     if (const auto *VT = E->getTypeOfArgument()->getAs<VectorType>()) {
1955       unsigned N = VT->getNumElements();
1956 
1957       // The vec_step built-in functions that take a 3-component
1958       // vector return 4. (OpenCL 1.1 spec 6.11.12)
1959       if (N == 3)
1960         N = 4;
1961 
1962       return this->emitConst(N, E);
1963     }
1964     return this->emitConst(1, E);
1965   }
1966 
1967   return false;
1968 }
1969 
1970 template <class Emitter>
1971 bool Compiler<Emitter>::VisitMemberExpr(const MemberExpr *E) {
1972   // 'Base.Member'
1973   const Expr *Base = E->getBase();
1974   const ValueDecl *Member = E->getMemberDecl();
1975 
1976   if (DiscardResult)
1977     return this->discard(Base);
1978 
1979   // MemberExprs are almost always lvalues, in which case we don't need to
1980   // do the load. But sometimes they aren't.
1981   const auto maybeLoadValue = [&]() -> bool {
1982     if (E->isGLValue())
1983       return true;
1984     if (std::optional<PrimType> T = classify(E))
1985       return this->emitLoadPop(*T, E);
1986     return false;
1987   };
1988 
1989   if (const auto *VD = dyn_cast<VarDecl>(Member)) {
1990     // I am almost confident in saying that a var decl must be static
1991     // and therefore registered as a global variable. But this will probably
1992     // turn out to be wrong some time in the future, as always.
1993     if (auto GlobalIndex = P.getGlobal(VD))
1994       return this->emitGetPtrGlobal(*GlobalIndex, E) && maybeLoadValue();
1995     return false;
1996   }
1997 
1998   if (!isa<FieldDecl>(Member)) {
1999     if (!this->discard(Base) && !this->emitSideEffect(E))
2000       return false;
2001 
2002     return this->visitDeclRef(Member, E);
2003   }
2004 
2005   if (Initializing) {
2006     if (!this->delegate(Base))
2007       return false;
2008   } else {
2009     if (!this->visit(Base))
2010       return false;
2011   }
2012 
2013   // Base above gives us a pointer on the stack.
2014   const auto *FD = cast<FieldDecl>(Member);
2015   const RecordDecl *RD = FD->getParent();
2016   const Record *R = getRecord(RD);
2017   if (!R)
2018     return false;
2019   const Record::Field *F = R->getField(FD);
2020   // Leave a pointer to the field on the stack.
2021   if (F->Decl->getType()->isReferenceType())
2022     return this->emitGetFieldPop(PT_Ptr, F->Offset, E) && maybeLoadValue();
2023   return this->emitGetPtrFieldPop(F->Offset, E) && maybeLoadValue();
2024 }
2025 
2026 template <class Emitter>
2027 bool Compiler<Emitter>::VisitArrayInitIndexExpr(const ArrayInitIndexExpr *E) {
2028   // ArrayIndex might not be set if a ArrayInitIndexExpr is being evaluated
2029   // stand-alone, e.g. via EvaluateAsInt().
2030   if (!ArrayIndex)
2031     return false;
2032   return this->emitConst(*ArrayIndex, E);
2033 }
2034 
2035 template <class Emitter>
2036 bool Compiler<Emitter>::VisitArrayInitLoopExpr(const ArrayInitLoopExpr *E) {
2037   assert(Initializing);
2038   assert(!DiscardResult);
2039 
2040   // We visit the common opaque expression here once so we have its value
2041   // cached.
2042   if (!this->discard(E->getCommonExpr()))
2043     return false;
2044 
2045   // TODO: This compiles to quite a lot of bytecode if the array is larger.
2046   //   Investigate compiling this to a loop.
2047   const Expr *SubExpr = E->getSubExpr();
2048   size_t Size = E->getArraySize().getZExtValue();
2049 
2050   // So, every iteration, we execute an assignment here
2051   // where the LHS is on the stack (the target array)
2052   // and the RHS is our SubExpr.
2053   for (size_t I = 0; I != Size; ++I) {
2054     ArrayIndexScope<Emitter> IndexScope(this, I);
2055     BlockScope<Emitter> BS(this);
2056 
2057     if (!this->visitArrayElemInit(I, SubExpr))
2058       return false;
2059     if (!BS.destroyLocals())
2060       return false;
2061   }
2062   return true;
2063 }
2064 
2065 template <class Emitter>
2066 bool Compiler<Emitter>::VisitOpaqueValueExpr(const OpaqueValueExpr *E) {
2067   const Expr *SourceExpr = E->getSourceExpr();
2068   if (!SourceExpr)
2069     return false;
2070 
2071   if (Initializing)
2072     return this->visitInitializer(SourceExpr);
2073 
2074   PrimType SubExprT = classify(SourceExpr).value_or(PT_Ptr);
2075   if (auto It = OpaqueExprs.find(E); It != OpaqueExprs.end())
2076     return this->emitGetLocal(SubExprT, It->second, E);
2077 
2078   if (!this->visit(SourceExpr))
2079     return false;
2080 
2081   // At this point we either have the evaluated source expression or a pointer
2082   // to an object on the stack. We want to create a local variable that stores
2083   // this value.
2084   unsigned LocalIndex = allocateLocalPrimitive(E, SubExprT, /*IsConst=*/true);
2085   if (!this->emitSetLocal(SubExprT, LocalIndex, E))
2086     return false;
2087 
2088   // Here the local variable is created but the value is removed from the stack,
2089   // so we put it back if the caller needs it.
2090   if (!DiscardResult) {
2091     if (!this->emitGetLocal(SubExprT, LocalIndex, E))
2092       return false;
2093   }
2094 
2095   // This is cleaned up when the local variable is destroyed.
2096   OpaqueExprs.insert({E, LocalIndex});
2097 
2098   return true;
2099 }
2100 
2101 template <class Emitter>
2102 bool Compiler<Emitter>::VisitAbstractConditionalOperator(
2103     const AbstractConditionalOperator *E) {
2104   const Expr *Condition = E->getCond();
2105   const Expr *TrueExpr = E->getTrueExpr();
2106   const Expr *FalseExpr = E->getFalseExpr();
2107 
2108   LabelTy LabelEnd = this->getLabel();   // Label after the operator.
2109   LabelTy LabelFalse = this->getLabel(); // Label for the false expr.
2110 
2111   if (!this->visitBool(Condition))
2112     return false;
2113 
2114   if (!this->jumpFalse(LabelFalse))
2115     return false;
2116 
2117   {
2118     LocalScope<Emitter> S(this);
2119     if (!this->delegate(TrueExpr))
2120       return false;
2121     if (!S.destroyLocals())
2122       return false;
2123   }
2124 
2125   if (!this->jump(LabelEnd))
2126     return false;
2127 
2128   this->emitLabel(LabelFalse);
2129 
2130   {
2131     LocalScope<Emitter> S(this);
2132     if (!this->delegate(FalseExpr))
2133       return false;
2134     if (!S.destroyLocals())
2135       return false;
2136   }
2137 
2138   this->fallthrough(LabelEnd);
2139   this->emitLabel(LabelEnd);
2140 
2141   return true;
2142 }
2143 
2144 template <class Emitter>
2145 bool Compiler<Emitter>::VisitStringLiteral(const StringLiteral *E) {
2146   if (DiscardResult)
2147     return true;
2148 
2149   if (!Initializing) {
2150     unsigned StringIndex = P.createGlobalString(E);
2151     return this->emitGetPtrGlobal(StringIndex, E);
2152   }
2153 
2154   // We are initializing an array on the stack.
2155   const ConstantArrayType *CAT =
2156       Ctx.getASTContext().getAsConstantArrayType(E->getType());
2157   assert(CAT && "a string literal that's not a constant array?");
2158 
2159   // If the initializer string is too long, a diagnostic has already been
2160   // emitted. Read only the array length from the string literal.
2161   unsigned ArraySize = CAT->getZExtSize();
2162   unsigned N = std::min(ArraySize, E->getLength());
2163   size_t CharWidth = E->getCharByteWidth();
2164 
2165   for (unsigned I = 0; I != N; ++I) {
2166     uint32_t CodeUnit = E->getCodeUnit(I);
2167 
2168     if (CharWidth == 1) {
2169       this->emitConstSint8(CodeUnit, E);
2170       this->emitInitElemSint8(I, E);
2171     } else if (CharWidth == 2) {
2172       this->emitConstUint16(CodeUnit, E);
2173       this->emitInitElemUint16(I, E);
2174     } else if (CharWidth == 4) {
2175       this->emitConstUint32(CodeUnit, E);
2176       this->emitInitElemUint32(I, E);
2177     } else {
2178       llvm_unreachable("unsupported character width");
2179     }
2180   }
2181 
2182   // Fill up the rest of the char array with NUL bytes.
2183   for (unsigned I = N; I != ArraySize; ++I) {
2184     if (CharWidth == 1) {
2185       this->emitConstSint8(0, E);
2186       this->emitInitElemSint8(I, E);
2187     } else if (CharWidth == 2) {
2188       this->emitConstUint16(0, E);
2189       this->emitInitElemUint16(I, E);
2190     } else if (CharWidth == 4) {
2191       this->emitConstUint32(0, E);
2192       this->emitInitElemUint32(I, E);
2193     } else {
2194       llvm_unreachable("unsupported character width");
2195     }
2196   }
2197 
2198   return true;
2199 }
2200 
2201 template <class Emitter>
2202 bool Compiler<Emitter>::VisitObjCStringLiteral(const ObjCStringLiteral *E) {
2203   if (std::optional<unsigned> I = P.getOrCreateDummy(E))
2204     return this->emitGetPtrGlobal(*I, E);
2205   return false;
2206 }
2207 
2208 template <class Emitter>
2209 bool Compiler<Emitter>::VisitObjCEncodeExpr(const ObjCEncodeExpr *E) {
2210   auto &A = Ctx.getASTContext();
2211   std::string Str;
2212   A.getObjCEncodingForType(E->getEncodedType(), Str);
2213   StringLiteral *SL =
2214       StringLiteral::Create(A, Str, StringLiteralKind::Ordinary,
2215                             /*Pascal=*/false, E->getType(), E->getAtLoc());
2216   return this->delegate(SL);
2217 }
2218 
2219 template <class Emitter>
2220 bool Compiler<Emitter>::VisitSYCLUniqueStableNameExpr(
2221     const SYCLUniqueStableNameExpr *E) {
2222   if (DiscardResult)
2223     return true;
2224 
2225   assert(!Initializing);
2226 
2227   auto &A = Ctx.getASTContext();
2228   std::string ResultStr = E->ComputeName(A);
2229 
2230   QualType CharTy = A.CharTy.withConst();
2231   APInt Size(A.getTypeSize(A.getSizeType()), ResultStr.size() + 1);
2232   QualType ArrayTy = A.getConstantArrayType(CharTy, Size, nullptr,
2233                                             ArraySizeModifier::Normal, 0);
2234 
2235   StringLiteral *SL =
2236       StringLiteral::Create(A, ResultStr, StringLiteralKind::Ordinary,
2237                             /*Pascal=*/false, ArrayTy, E->getLocation());
2238 
2239   unsigned StringIndex = P.createGlobalString(SL);
2240   return this->emitGetPtrGlobal(StringIndex, E);
2241 }
2242 
2243 template <class Emitter>
2244 bool Compiler<Emitter>::VisitCharacterLiteral(const CharacterLiteral *E) {
2245   if (DiscardResult)
2246     return true;
2247   return this->emitConst(E->getValue(), E);
2248 }
2249 
2250 template <class Emitter>
2251 bool Compiler<Emitter>::VisitFloatCompoundAssignOperator(
2252     const CompoundAssignOperator *E) {
2253 
2254   const Expr *LHS = E->getLHS();
2255   const Expr *RHS = E->getRHS();
2256   QualType LHSType = LHS->getType();
2257   QualType LHSComputationType = E->getComputationLHSType();
2258   QualType ResultType = E->getComputationResultType();
2259   std::optional<PrimType> LT = classify(LHSComputationType);
2260   std::optional<PrimType> RT = classify(ResultType);
2261 
2262   assert(ResultType->isFloatingType());
2263 
2264   if (!LT || !RT)
2265     return false;
2266 
2267   PrimType LHST = classifyPrim(LHSType);
2268 
2269   // C++17 onwards require that we evaluate the RHS first.
2270   // Compute RHS and save it in a temporary variable so we can
2271   // load it again later.
2272   if (!visit(RHS))
2273     return false;
2274 
2275   unsigned TempOffset = this->allocateLocalPrimitive(E, *RT, /*IsConst=*/true);
2276   if (!this->emitSetLocal(*RT, TempOffset, E))
2277     return false;
2278 
2279   // First, visit LHS.
2280   if (!visit(LHS))
2281     return false;
2282   if (!this->emitLoad(LHST, E))
2283     return false;
2284 
2285   // If necessary, convert LHS to its computation type.
2286   if (!this->emitPrimCast(LHST, classifyPrim(LHSComputationType),
2287                           LHSComputationType, E))
2288     return false;
2289 
2290   // Now load RHS.
2291   if (!this->emitGetLocal(*RT, TempOffset, E))
2292     return false;
2293 
2294   switch (E->getOpcode()) {
2295   case BO_AddAssign:
2296     if (!this->emitAddf(getFPOptions(E), E))
2297       return false;
2298     break;
2299   case BO_SubAssign:
2300     if (!this->emitSubf(getFPOptions(E), E))
2301       return false;
2302     break;
2303   case BO_MulAssign:
2304     if (!this->emitMulf(getFPOptions(E), E))
2305       return false;
2306     break;
2307   case BO_DivAssign:
2308     if (!this->emitDivf(getFPOptions(E), E))
2309       return false;
2310     break;
2311   default:
2312     return false;
2313   }
2314 
2315   if (!this->emitPrimCast(classifyPrim(ResultType), LHST, LHS->getType(), E))
2316     return false;
2317 
2318   if (DiscardResult)
2319     return this->emitStorePop(LHST, E);
2320   return this->emitStore(LHST, E);
2321 }
2322 
2323 template <class Emitter>
2324 bool Compiler<Emitter>::VisitPointerCompoundAssignOperator(
2325     const CompoundAssignOperator *E) {
2326   BinaryOperatorKind Op = E->getOpcode();
2327   const Expr *LHS = E->getLHS();
2328   const Expr *RHS = E->getRHS();
2329   std::optional<PrimType> LT = classify(LHS->getType());
2330   std::optional<PrimType> RT = classify(RHS->getType());
2331 
2332   if (Op != BO_AddAssign && Op != BO_SubAssign)
2333     return false;
2334 
2335   if (!LT || !RT)
2336     return false;
2337 
2338   if (!visit(LHS))
2339     return false;
2340 
2341   if (!this->emitLoad(*LT, LHS))
2342     return false;
2343 
2344   if (!visit(RHS))
2345     return false;
2346 
2347   if (Op == BO_AddAssign) {
2348     if (!this->emitAddOffset(*RT, E))
2349       return false;
2350   } else {
2351     if (!this->emitSubOffset(*RT, E))
2352       return false;
2353   }
2354 
2355   if (DiscardResult)
2356     return this->emitStorePopPtr(E);
2357   return this->emitStorePtr(E);
2358 }
2359 
2360 template <class Emitter>
2361 bool Compiler<Emitter>::VisitCompoundAssignOperator(
2362     const CompoundAssignOperator *E) {
2363   if (E->getType()->isVectorType())
2364     return VisitVectorBinOp(E);
2365 
2366   const Expr *LHS = E->getLHS();
2367   const Expr *RHS = E->getRHS();
2368   std::optional<PrimType> LHSComputationT =
2369       classify(E->getComputationLHSType());
2370   std::optional<PrimType> LT = classify(LHS->getType());
2371   std::optional<PrimType> RT = classify(RHS->getType());
2372   std::optional<PrimType> ResultT = classify(E->getType());
2373 
2374   if (!Ctx.getLangOpts().CPlusPlus14)
2375     return this->visit(RHS) && this->visit(LHS) && this->emitError(E);
2376 
2377   if (!LT || !RT || !ResultT || !LHSComputationT)
2378     return false;
2379 
2380   // Handle floating point operations separately here, since they
2381   // require special care.
2382 
2383   if (ResultT == PT_Float || RT == PT_Float)
2384     return VisitFloatCompoundAssignOperator(E);
2385 
2386   if (E->getType()->isPointerType())
2387     return VisitPointerCompoundAssignOperator(E);
2388 
2389   assert(!E->getType()->isPointerType() && "Handled above");
2390   assert(!E->getType()->isFloatingType() && "Handled above");
2391 
2392   // C++17 onwards require that we evaluate the RHS first.
2393   // Compute RHS and save it in a temporary variable so we can
2394   // load it again later.
2395   // FIXME: Compound assignments are unsequenced in C, so we might
2396   //   have to figure out how to reject them.
2397   if (!visit(RHS))
2398     return false;
2399 
2400   unsigned TempOffset = this->allocateLocalPrimitive(E, *RT, /*IsConst=*/true);
2401 
2402   if (!this->emitSetLocal(*RT, TempOffset, E))
2403     return false;
2404 
2405   // Get LHS pointer, load its value and cast it to the
2406   // computation type if necessary.
2407   if (!visit(LHS))
2408     return false;
2409   if (!this->emitLoad(*LT, E))
2410     return false;
2411   if (LT != LHSComputationT) {
2412     if (!this->emitCast(*LT, *LHSComputationT, E))
2413       return false;
2414   }
2415 
2416   // Get the RHS value on the stack.
2417   if (!this->emitGetLocal(*RT, TempOffset, E))
2418     return false;
2419 
2420   // Perform operation.
2421   switch (E->getOpcode()) {
2422   case BO_AddAssign:
2423     if (!this->emitAdd(*LHSComputationT, E))
2424       return false;
2425     break;
2426   case BO_SubAssign:
2427     if (!this->emitSub(*LHSComputationT, E))
2428       return false;
2429     break;
2430   case BO_MulAssign:
2431     if (!this->emitMul(*LHSComputationT, E))
2432       return false;
2433     break;
2434   case BO_DivAssign:
2435     if (!this->emitDiv(*LHSComputationT, E))
2436       return false;
2437     break;
2438   case BO_RemAssign:
2439     if (!this->emitRem(*LHSComputationT, E))
2440       return false;
2441     break;
2442   case BO_ShlAssign:
2443     if (!this->emitShl(*LHSComputationT, *RT, E))
2444       return false;
2445     break;
2446   case BO_ShrAssign:
2447     if (!this->emitShr(*LHSComputationT, *RT, E))
2448       return false;
2449     break;
2450   case BO_AndAssign:
2451     if (!this->emitBitAnd(*LHSComputationT, E))
2452       return false;
2453     break;
2454   case BO_XorAssign:
2455     if (!this->emitBitXor(*LHSComputationT, E))
2456       return false;
2457     break;
2458   case BO_OrAssign:
2459     if (!this->emitBitOr(*LHSComputationT, E))
2460       return false;
2461     break;
2462   default:
2463     llvm_unreachable("Unimplemented compound assign operator");
2464   }
2465 
2466   // And now cast from LHSComputationT to ResultT.
2467   if (ResultT != LHSComputationT) {
2468     if (!this->emitCast(*LHSComputationT, *ResultT, E))
2469       return false;
2470   }
2471 
2472   // And store the result in LHS.
2473   if (DiscardResult) {
2474     if (LHS->refersToBitField())
2475       return this->emitStoreBitFieldPop(*ResultT, E);
2476     return this->emitStorePop(*ResultT, E);
2477   }
2478   if (LHS->refersToBitField())
2479     return this->emitStoreBitField(*ResultT, E);
2480   return this->emitStore(*ResultT, E);
2481 }
2482 
2483 template <class Emitter>
2484 bool Compiler<Emitter>::VisitExprWithCleanups(const ExprWithCleanups *E) {
2485   LocalScope<Emitter> ES(this);
2486   const Expr *SubExpr = E->getSubExpr();
2487 
2488   return this->delegate(SubExpr) && ES.destroyLocals(E);
2489 }
2490 
2491 template <class Emitter>
2492 bool Compiler<Emitter>::VisitMaterializeTemporaryExpr(
2493     const MaterializeTemporaryExpr *E) {
2494   const Expr *SubExpr = E->getSubExpr();
2495 
2496   if (Initializing) {
2497     // We already have a value, just initialize that.
2498     return this->delegate(SubExpr);
2499   }
2500   // If we don't end up using the materialized temporary anyway, don't
2501   // bother creating it.
2502   if (DiscardResult)
2503     return this->discard(SubExpr);
2504 
2505   // When we're initializing a global variable *or* the storage duration of
2506   // the temporary is explicitly static, create a global variable.
2507   std::optional<PrimType> SubExprT = classify(SubExpr);
2508   bool IsStatic = E->getStorageDuration() == SD_Static;
2509   if (IsStatic) {
2510     std::optional<unsigned> GlobalIndex = P.createGlobal(E);
2511     if (!GlobalIndex)
2512       return false;
2513 
2514     const LifetimeExtendedTemporaryDecl *TempDecl =
2515         E->getLifetimeExtendedTemporaryDecl();
2516     if (IsStatic)
2517       assert(TempDecl);
2518 
2519     if (SubExprT) {
2520       if (!this->visit(SubExpr))
2521         return false;
2522       if (IsStatic) {
2523         if (!this->emitInitGlobalTemp(*SubExprT, *GlobalIndex, TempDecl, E))
2524           return false;
2525       } else {
2526         if (!this->emitInitGlobal(*SubExprT, *GlobalIndex, E))
2527           return false;
2528       }
2529       return this->emitGetPtrGlobal(*GlobalIndex, E);
2530     }
2531 
2532     if (!this->checkLiteralType(SubExpr))
2533       return false;
2534     // Non-primitive values.
2535     if (!this->emitGetPtrGlobal(*GlobalIndex, E))
2536       return false;
2537     if (!this->visitInitializer(SubExpr))
2538       return false;
2539     if (IsStatic)
2540       return this->emitInitGlobalTempComp(TempDecl, E);
2541     return true;
2542   }
2543 
2544   // For everyhing else, use local variables.
2545   if (SubExprT) {
2546     unsigned LocalIndex = allocateLocalPrimitive(E, *SubExprT, /*IsConst=*/true,
2547                                                  /*IsExtended=*/true);
2548     if (!this->visit(SubExpr))
2549       return false;
2550     if (!this->emitSetLocal(*SubExprT, LocalIndex, E))
2551       return false;
2552     return this->emitGetPtrLocal(LocalIndex, E);
2553   } else {
2554 
2555     if (!this->checkLiteralType(SubExpr))
2556       return false;
2557 
2558     const Expr *Inner = E->getSubExpr()->skipRValueSubobjectAdjustments();
2559     if (std::optional<unsigned> LocalIndex =
2560             allocateLocal(Inner, E->getExtendingDecl())) {
2561       InitLinkScope<Emitter> ILS(this, InitLink::Temp(*LocalIndex));
2562       if (!this->emitGetPtrLocal(*LocalIndex, E))
2563         return false;
2564       return this->visitInitializer(SubExpr);
2565     }
2566   }
2567   return false;
2568 }
2569 
2570 template <class Emitter>
2571 bool Compiler<Emitter>::VisitCXXBindTemporaryExpr(
2572     const CXXBindTemporaryExpr *E) {
2573   return this->delegate(E->getSubExpr());
2574 }
2575 
2576 template <class Emitter>
2577 bool Compiler<Emitter>::VisitCompoundLiteralExpr(const CompoundLiteralExpr *E) {
2578   const Expr *Init = E->getInitializer();
2579   if (DiscardResult)
2580     return this->discard(Init);
2581 
2582   if (Initializing) {
2583     // We already have a value, just initialize that.
2584     return this->visitInitializer(Init) && this->emitFinishInit(E);
2585   }
2586 
2587   std::optional<PrimType> T = classify(E->getType());
2588   if (E->isFileScope()) {
2589     // Avoid creating a variable if this is a primitive RValue anyway.
2590     if (T && !E->isLValue())
2591       return this->delegate(Init);
2592 
2593     if (std::optional<unsigned> GlobalIndex = P.createGlobal(E)) {
2594       if (!this->emitGetPtrGlobal(*GlobalIndex, E))
2595         return false;
2596 
2597       if (T) {
2598         if (!this->visit(Init))
2599           return false;
2600         return this->emitInitGlobal(*T, *GlobalIndex, E);
2601       }
2602 
2603       return this->visitInitializer(Init) && this->emitFinishInit(E);
2604     }
2605 
2606     return false;
2607   }
2608 
2609   // Otherwise, use a local variable.
2610   if (T && !E->isLValue()) {
2611     // For primitive types, we just visit the initializer.
2612     return this->delegate(Init);
2613   } else {
2614     unsigned LocalIndex;
2615 
2616     if (T)
2617       LocalIndex = this->allocateLocalPrimitive(Init, *T, false, false);
2618     else if (std::optional<unsigned> MaybeIndex = this->allocateLocal(Init))
2619       LocalIndex = *MaybeIndex;
2620     else
2621       return false;
2622 
2623     if (!this->emitGetPtrLocal(LocalIndex, E))
2624       return false;
2625 
2626     if (T) {
2627       if (!this->visit(Init)) {
2628         return false;
2629       }
2630       return this->emitInit(*T, E);
2631     } else {
2632       if (!this->visitInitializer(Init) || !this->emitFinishInit(E))
2633         return false;
2634     }
2635     return true;
2636   }
2637 
2638   return false;
2639 }
2640 
2641 template <class Emitter>
2642 bool Compiler<Emitter>::VisitTypeTraitExpr(const TypeTraitExpr *E) {
2643   if (DiscardResult)
2644     return true;
2645   if (E->getType()->isBooleanType())
2646     return this->emitConstBool(E->getValue(), E);
2647   return this->emitConst(E->getValue(), E);
2648 }
2649 
2650 template <class Emitter>
2651 bool Compiler<Emitter>::VisitArrayTypeTraitExpr(const ArrayTypeTraitExpr *E) {
2652   if (DiscardResult)
2653     return true;
2654   return this->emitConst(E->getValue(), E);
2655 }
2656 
2657 template <class Emitter>
2658 bool Compiler<Emitter>::VisitLambdaExpr(const LambdaExpr *E) {
2659   if (DiscardResult)
2660     return true;
2661 
2662   assert(Initializing);
2663   const Record *R = P.getOrCreateRecord(E->getLambdaClass());
2664 
2665   auto *CaptureInitIt = E->capture_init_begin();
2666   // Initialize all fields (which represent lambda captures) of the
2667   // record with their initializers.
2668   for (const Record::Field &F : R->fields()) {
2669     const Expr *Init = *CaptureInitIt;
2670     ++CaptureInitIt;
2671 
2672     if (!Init)
2673       continue;
2674 
2675     if (std::optional<PrimType> T = classify(Init)) {
2676       if (!this->visit(Init))
2677         return false;
2678 
2679       if (!this->emitInitField(*T, F.Offset, E))
2680         return false;
2681     } else {
2682       if (!this->emitGetPtrField(F.Offset, E))
2683         return false;
2684 
2685       if (!this->visitInitializer(Init))
2686         return false;
2687 
2688       if (!this->emitPopPtr(E))
2689         return false;
2690     }
2691   }
2692 
2693   return true;
2694 }
2695 
2696 template <class Emitter>
2697 bool Compiler<Emitter>::VisitPredefinedExpr(const PredefinedExpr *E) {
2698   if (DiscardResult)
2699     return true;
2700 
2701   return this->delegate(E->getFunctionName());
2702 }
2703 
2704 template <class Emitter>
2705 bool Compiler<Emitter>::VisitCXXThrowExpr(const CXXThrowExpr *E) {
2706   if (E->getSubExpr() && !this->discard(E->getSubExpr()))
2707     return false;
2708 
2709   return this->emitInvalid(E);
2710 }
2711 
2712 template <class Emitter>
2713 bool Compiler<Emitter>::VisitCXXReinterpretCastExpr(
2714     const CXXReinterpretCastExpr *E) {
2715   const Expr *SubExpr = E->getSubExpr();
2716 
2717   std::optional<PrimType> FromT = classify(SubExpr);
2718   std::optional<PrimType> ToT = classify(E);
2719 
2720   if (!FromT || !ToT)
2721     return this->emitInvalidCast(CastKind::Reinterpret, /*Fatal=*/true, E);
2722 
2723   if (FromT == PT_Ptr || ToT == PT_Ptr) {
2724     // Both types could be PT_Ptr because their expressions are glvalues.
2725     std::optional<PrimType> PointeeFromT;
2726     if (SubExpr->getType()->isPointerOrReferenceType())
2727       PointeeFromT = classify(SubExpr->getType()->getPointeeType());
2728     else
2729       PointeeFromT = classify(SubExpr->getType());
2730 
2731     std::optional<PrimType> PointeeToT;
2732     if (E->getType()->isPointerOrReferenceType())
2733       PointeeToT = classify(E->getType()->getPointeeType());
2734     else
2735       PointeeToT = classify(E->getType());
2736 
2737     bool Fatal = true;
2738     if (PointeeToT && PointeeFromT) {
2739       if (isIntegralType(*PointeeFromT) && isIntegralType(*PointeeToT))
2740         Fatal = false;
2741     }
2742 
2743     if (!this->emitInvalidCast(CastKind::Reinterpret, Fatal, E))
2744       return false;
2745 
2746     if (E->getCastKind() == CK_LValueBitCast)
2747       return this->delegate(SubExpr);
2748     return this->VisitCastExpr(E);
2749   }
2750 
2751   // Try to actually do the cast.
2752   bool Fatal = (ToT != FromT);
2753   if (!this->emitInvalidCast(CastKind::Reinterpret, Fatal, E))
2754     return false;
2755 
2756   return this->VisitCastExpr(E);
2757 }
2758 
2759 template <class Emitter>
2760 bool Compiler<Emitter>::VisitCXXNoexceptExpr(const CXXNoexceptExpr *E) {
2761   assert(E->getType()->isBooleanType());
2762 
2763   if (DiscardResult)
2764     return true;
2765   return this->emitConstBool(E->getValue(), E);
2766 }
2767 
2768 template <class Emitter>
2769 bool Compiler<Emitter>::VisitCXXConstructExpr(const CXXConstructExpr *E) {
2770   QualType T = E->getType();
2771   assert(!classify(T));
2772 
2773   if (T->isRecordType()) {
2774     const CXXConstructorDecl *Ctor = E->getConstructor();
2775 
2776     // Trivial copy/move constructor. Avoid copy.
2777     if (Ctor->isDefaulted() && Ctor->isCopyOrMoveConstructor() &&
2778         Ctor->isTrivial() &&
2779         E->getArg(0)->isTemporaryObject(Ctx.getASTContext(),
2780                                         T->getAsCXXRecordDecl()))
2781       return this->visitInitializer(E->getArg(0));
2782 
2783     // If we're discarding a construct expression, we still need
2784     // to allocate a variable and call the constructor and destructor.
2785     if (DiscardResult) {
2786       if (Ctor->isTrivial())
2787         return true;
2788       assert(!Initializing);
2789       std::optional<unsigned> LocalIndex = allocateLocal(E);
2790 
2791       if (!LocalIndex)
2792         return false;
2793 
2794       if (!this->emitGetPtrLocal(*LocalIndex, E))
2795         return false;
2796     }
2797 
2798     // Zero initialization.
2799     if (E->requiresZeroInitialization()) {
2800       const Record *R = getRecord(E->getType());
2801 
2802       if (!this->visitZeroRecordInitializer(R, E))
2803         return false;
2804 
2805       // If the constructor is trivial anyway, we're done.
2806       if (Ctor->isTrivial())
2807         return true;
2808     }
2809 
2810     const Function *Func = getFunction(Ctor);
2811 
2812     if (!Func)
2813       return false;
2814 
2815     assert(Func->hasThisPointer());
2816     assert(!Func->hasRVO());
2817 
2818     //  The This pointer is already on the stack because this is an initializer,
2819     //  but we need to dup() so the call() below has its own copy.
2820     if (!this->emitDupPtr(E))
2821       return false;
2822 
2823     // Constructor arguments.
2824     for (const auto *Arg : E->arguments()) {
2825       if (!this->visit(Arg))
2826         return false;
2827     }
2828 
2829     if (Func->isVariadic()) {
2830       uint32_t VarArgSize = 0;
2831       unsigned NumParams = Func->getNumWrittenParams();
2832       for (unsigned I = NumParams, N = E->getNumArgs(); I != N; ++I) {
2833         VarArgSize +=
2834             align(primSize(classify(E->getArg(I)->getType()).value_or(PT_Ptr)));
2835       }
2836       if (!this->emitCallVar(Func, VarArgSize, E))
2837         return false;
2838     } else {
2839       if (!this->emitCall(Func, 0, E)) {
2840         // When discarding, we don't need the result anyway, so clean up
2841         // the instance dup we did earlier in case surrounding code wants
2842         // to keep evaluating.
2843         if (DiscardResult)
2844           (void)this->emitPopPtr(E);
2845         return false;
2846       }
2847     }
2848 
2849     if (DiscardResult)
2850       return this->emitPopPtr(E);
2851     return this->emitFinishInit(E);
2852   }
2853 
2854   if (T->isArrayType()) {
2855     const ConstantArrayType *CAT =
2856         Ctx.getASTContext().getAsConstantArrayType(E->getType());
2857     if (!CAT)
2858       return false;
2859 
2860     size_t NumElems = CAT->getZExtSize();
2861     const Function *Func = getFunction(E->getConstructor());
2862     if (!Func || !Func->isConstexpr())
2863       return false;
2864 
2865     // FIXME(perf): We're calling the constructor once per array element here,
2866     //   in the old intepreter we had a special-case for trivial constructors.
2867     for (size_t I = 0; I != NumElems; ++I) {
2868       if (!this->emitConstUint64(I, E))
2869         return false;
2870       if (!this->emitArrayElemPtrUint64(E))
2871         return false;
2872 
2873       // Constructor arguments.
2874       for (const auto *Arg : E->arguments()) {
2875         if (!this->visit(Arg))
2876           return false;
2877       }
2878 
2879       if (!this->emitCall(Func, 0, E))
2880         return false;
2881     }
2882     return true;
2883   }
2884 
2885   return false;
2886 }
2887 
2888 template <class Emitter>
2889 bool Compiler<Emitter>::VisitSourceLocExpr(const SourceLocExpr *E) {
2890   if (DiscardResult)
2891     return true;
2892 
2893   const APValue Val =
2894       E->EvaluateInContext(Ctx.getASTContext(), SourceLocDefaultExpr);
2895 
2896   // Things like __builtin_LINE().
2897   if (E->getType()->isIntegerType()) {
2898     assert(Val.isInt());
2899     const APSInt &I = Val.getInt();
2900     return this->emitConst(I, E);
2901   }
2902   // Otherwise, the APValue is an LValue, with only one element.
2903   // Theoretically, we don't need the APValue at all of course.
2904   assert(E->getType()->isPointerType());
2905   assert(Val.isLValue());
2906   const APValue::LValueBase &Base = Val.getLValueBase();
2907   if (const Expr *LValueExpr = Base.dyn_cast<const Expr *>())
2908     return this->visit(LValueExpr);
2909 
2910   // Otherwise, we have a decl (which is the case for
2911   // __builtin_source_location).
2912   assert(Base.is<const ValueDecl *>());
2913   assert(Val.getLValuePath().size() == 0);
2914   const auto *BaseDecl = Base.dyn_cast<const ValueDecl *>();
2915   assert(BaseDecl);
2916 
2917   auto *UGCD = cast<UnnamedGlobalConstantDecl>(BaseDecl);
2918 
2919   std::optional<unsigned> GlobalIndex = P.getOrCreateGlobal(UGCD);
2920   if (!GlobalIndex)
2921     return false;
2922 
2923   if (!this->emitGetPtrGlobal(*GlobalIndex, E))
2924     return false;
2925 
2926   const Record *R = getRecord(E->getType());
2927   const APValue &V = UGCD->getValue();
2928   for (unsigned I = 0, N = R->getNumFields(); I != N; ++I) {
2929     const Record::Field *F = R->getField(I);
2930     const APValue &FieldValue = V.getStructField(I);
2931 
2932     PrimType FieldT = classifyPrim(F->Decl->getType());
2933 
2934     if (!this->visitAPValue(FieldValue, FieldT, E))
2935       return false;
2936     if (!this->emitInitField(FieldT, F->Offset, E))
2937       return false;
2938   }
2939 
2940   // Leave the pointer to the global on the stack.
2941   return true;
2942 }
2943 
2944 template <class Emitter>
2945 bool Compiler<Emitter>::VisitOffsetOfExpr(const OffsetOfExpr *E) {
2946   unsigned N = E->getNumComponents();
2947   if (N == 0)
2948     return false;
2949 
2950   for (unsigned I = 0; I != N; ++I) {
2951     const OffsetOfNode &Node = E->getComponent(I);
2952     if (Node.getKind() == OffsetOfNode::Array) {
2953       const Expr *ArrayIndexExpr = E->getIndexExpr(Node.getArrayExprIndex());
2954       PrimType IndexT = classifyPrim(ArrayIndexExpr->getType());
2955 
2956       if (DiscardResult) {
2957         if (!this->discard(ArrayIndexExpr))
2958           return false;
2959         continue;
2960       }
2961 
2962       if (!this->visit(ArrayIndexExpr))
2963         return false;
2964       // Cast to Sint64.
2965       if (IndexT != PT_Sint64) {
2966         if (!this->emitCast(IndexT, PT_Sint64, E))
2967           return false;
2968       }
2969     }
2970   }
2971 
2972   if (DiscardResult)
2973     return true;
2974 
2975   PrimType T = classifyPrim(E->getType());
2976   return this->emitOffsetOf(T, E, E);
2977 }
2978 
2979 template <class Emitter>
2980 bool Compiler<Emitter>::VisitCXXScalarValueInitExpr(
2981     const CXXScalarValueInitExpr *E) {
2982   QualType Ty = E->getType();
2983 
2984   if (DiscardResult || Ty->isVoidType())
2985     return true;
2986 
2987   if (std::optional<PrimType> T = classify(Ty))
2988     return this->visitZeroInitializer(*T, Ty, E);
2989 
2990   if (const auto *CT = Ty->getAs<ComplexType>()) {
2991     if (!Initializing) {
2992       std::optional<unsigned> LocalIndex = allocateLocal(E);
2993       if (!LocalIndex)
2994         return false;
2995       if (!this->emitGetPtrLocal(*LocalIndex, E))
2996         return false;
2997     }
2998 
2999     // Initialize both fields to 0.
3000     QualType ElemQT = CT->getElementType();
3001     PrimType ElemT = classifyPrim(ElemQT);
3002 
3003     for (unsigned I = 0; I != 2; ++I) {
3004       if (!this->visitZeroInitializer(ElemT, ElemQT, E))
3005         return false;
3006       if (!this->emitInitElem(ElemT, I, E))
3007         return false;
3008     }
3009     return true;
3010   }
3011 
3012   if (const auto *VT = Ty->getAs<VectorType>()) {
3013     // FIXME: Code duplication with the _Complex case above.
3014     if (!Initializing) {
3015       std::optional<unsigned> LocalIndex = allocateLocal(E);
3016       if (!LocalIndex)
3017         return false;
3018       if (!this->emitGetPtrLocal(*LocalIndex, E))
3019         return false;
3020     }
3021 
3022     // Initialize all fields to 0.
3023     QualType ElemQT = VT->getElementType();
3024     PrimType ElemT = classifyPrim(ElemQT);
3025 
3026     for (unsigned I = 0, N = VT->getNumElements(); I != N; ++I) {
3027       if (!this->visitZeroInitializer(ElemT, ElemQT, E))
3028         return false;
3029       if (!this->emitInitElem(ElemT, I, E))
3030         return false;
3031     }
3032     return true;
3033   }
3034 
3035   return false;
3036 }
3037 
3038 template <class Emitter>
3039 bool Compiler<Emitter>::VisitSizeOfPackExpr(const SizeOfPackExpr *E) {
3040   return this->emitConst(E->getPackLength(), E);
3041 }
3042 
3043 template <class Emitter>
3044 bool Compiler<Emitter>::VisitGenericSelectionExpr(
3045     const GenericSelectionExpr *E) {
3046   return this->delegate(E->getResultExpr());
3047 }
3048 
3049 template <class Emitter>
3050 bool Compiler<Emitter>::VisitChooseExpr(const ChooseExpr *E) {
3051   return this->delegate(E->getChosenSubExpr());
3052 }
3053 
3054 template <class Emitter>
3055 bool Compiler<Emitter>::VisitObjCBoolLiteralExpr(const ObjCBoolLiteralExpr *E) {
3056   if (DiscardResult)
3057     return true;
3058 
3059   return this->emitConst(E->getValue(), E);
3060 }
3061 
3062 template <class Emitter>
3063 bool Compiler<Emitter>::VisitCXXInheritedCtorInitExpr(
3064     const CXXInheritedCtorInitExpr *E) {
3065   const CXXConstructorDecl *Ctor = E->getConstructor();
3066   assert(!Ctor->isTrivial() &&
3067          "Trivial CXXInheritedCtorInitExpr, implement. (possible?)");
3068   const Function *F = this->getFunction(Ctor);
3069   assert(F);
3070   assert(!F->hasRVO());
3071   assert(F->hasThisPointer());
3072 
3073   if (!this->emitDupPtr(SourceInfo{}))
3074     return false;
3075 
3076   // Forward all arguments of the current function (which should be a
3077   // constructor itself) to the inherited ctor.
3078   // This is necessary because the calling code has pushed the pointer
3079   // of the correct base for  us already, but the arguments need
3080   // to come after.
3081   unsigned Offset = align(primSize(PT_Ptr)); // instance pointer.
3082   for (const ParmVarDecl *PD : Ctor->parameters()) {
3083     PrimType PT = this->classify(PD->getType()).value_or(PT_Ptr);
3084 
3085     if (!this->emitGetParam(PT, Offset, E))
3086       return false;
3087     Offset += align(primSize(PT));
3088   }
3089 
3090   return this->emitCall(F, 0, E);
3091 }
3092 
3093 template <class Emitter>
3094 bool Compiler<Emitter>::VisitCXXNewExpr(const CXXNewExpr *E) {
3095   assert(classifyPrim(E->getType()) == PT_Ptr);
3096   const Expr *Init = E->getInitializer();
3097   QualType ElementType = E->getAllocatedType();
3098   std::optional<PrimType> ElemT = classify(ElementType);
3099   unsigned PlacementArgs = E->getNumPlacementArgs();
3100   bool IsNoThrow = false;
3101 
3102   // FIXME: Better diagnostic. diag::note_constexpr_new_placement
3103   if (PlacementArgs != 0) {
3104     // The only new-placement list we support is of the form (std::nothrow).
3105     //
3106     // FIXME: There is no restriction on this, but it's not clear that any
3107     // other form makes any sense. We get here for cases such as:
3108     //
3109     //   new (std::align_val_t{N}) X(int)
3110     //
3111     // (which should presumably be valid only if N is a multiple of
3112     // alignof(int), and in any case can't be deallocated unless N is
3113     // alignof(X) and X has new-extended alignment).
3114     if (PlacementArgs != 1 || !E->getPlacementArg(0)->getType()->isNothrowT())
3115       return this->emitInvalid(E);
3116 
3117     if (!this->discard(E->getPlacementArg(0)))
3118       return false;
3119     IsNoThrow = true;
3120   }
3121 
3122   const Descriptor *Desc;
3123   if (ElemT) {
3124     if (E->isArray())
3125       Desc = nullptr; // We're not going to use it in this case.
3126     else
3127       Desc = P.createDescriptor(E, *ElemT, Descriptor::InlineDescMD,
3128                                 /*IsConst=*/false, /*IsTemporary=*/false,
3129                                 /*IsMutable=*/false);
3130   } else {
3131     Desc = P.createDescriptor(
3132         E, ElementType.getTypePtr(),
3133         E->isArray() ? std::nullopt : Descriptor::InlineDescMD,
3134         /*IsConst=*/false, /*IsTemporary=*/false, /*IsMutable=*/false, Init);
3135   }
3136 
3137   if (E->isArray()) {
3138     std::optional<const Expr *> ArraySizeExpr = E->getArraySize();
3139     if (!ArraySizeExpr)
3140       return false;
3141 
3142     const Expr *Stripped = *ArraySizeExpr;
3143     for (; auto *ICE = dyn_cast<ImplicitCastExpr>(Stripped);
3144          Stripped = ICE->getSubExpr())
3145       if (ICE->getCastKind() != CK_NoOp &&
3146           ICE->getCastKind() != CK_IntegralCast)
3147         break;
3148 
3149     PrimType SizeT = classifyPrim(Stripped->getType());
3150 
3151     if (!this->visit(Stripped))
3152       return false;
3153 
3154     if (ElemT) {
3155       // N primitive elements.
3156       if (!this->emitAllocN(SizeT, *ElemT, E, IsNoThrow, E))
3157         return false;
3158     } else {
3159       // N Composite elements.
3160       if (!this->emitAllocCN(SizeT, Desc, IsNoThrow, E))
3161         return false;
3162     }
3163 
3164     if (Init && !this->visitInitializer(Init))
3165       return false;
3166 
3167   } else {
3168     // Allocate just one element.
3169     if (!this->emitAlloc(Desc, E))
3170       return false;
3171 
3172     if (Init) {
3173       if (ElemT) {
3174         if (!this->visit(Init))
3175           return false;
3176 
3177         if (!this->emitInit(*ElemT, E))
3178           return false;
3179       } else {
3180         // Composite.
3181         if (!this->visitInitializer(Init))
3182           return false;
3183       }
3184     }
3185   }
3186 
3187   if (DiscardResult)
3188     return this->emitPopPtr(E);
3189 
3190   return true;
3191 }
3192 
3193 template <class Emitter>
3194 bool Compiler<Emitter>::VisitCXXDeleteExpr(const CXXDeleteExpr *E) {
3195   const Expr *Arg = E->getArgument();
3196 
3197   // Arg must be an lvalue.
3198   if (!this->visit(Arg))
3199     return false;
3200 
3201   return this->emitFree(E->isArrayForm(), E);
3202 }
3203 
3204 template <class Emitter>
3205 bool Compiler<Emitter>::VisitBlockExpr(const BlockExpr *E) {
3206   const Function *Func = nullptr;
3207   if (auto F = Compiler<ByteCodeEmitter>(Ctx, P).compileObjCBlock(E))
3208     Func = F;
3209 
3210   if (!Func)
3211     return false;
3212   return this->emitGetFnPtr(Func, E);
3213 }
3214 
3215 template <class Emitter>
3216 bool Compiler<Emitter>::VisitExpressionTraitExpr(const ExpressionTraitExpr *E) {
3217   assert(Ctx.getLangOpts().CPlusPlus);
3218   return this->emitConstBool(E->getValue(), E);
3219 }
3220 
3221 template <class Emitter>
3222 bool Compiler<Emitter>::VisitCXXUuidofExpr(const CXXUuidofExpr *E) {
3223   if (DiscardResult)
3224     return true;
3225   assert(!Initializing);
3226 
3227   const MSGuidDecl *GuidDecl = E->getGuidDecl();
3228   const RecordDecl *RD = GuidDecl->getType()->getAsRecordDecl();
3229   assert(RD);
3230   // If the definiton of the result type is incomplete, just return a dummy.
3231   // If (and when) that is read from, we will fail, but not now.
3232   if (!RD->isCompleteDefinition()) {
3233     if (std::optional<unsigned> I = P.getOrCreateDummy(GuidDecl))
3234       return this->emitGetPtrGlobal(*I, E);
3235     return false;
3236   }
3237 
3238   std::optional<unsigned> GlobalIndex = P.getOrCreateGlobal(GuidDecl);
3239   if (!GlobalIndex)
3240     return false;
3241   if (!this->emitGetPtrGlobal(*GlobalIndex, E))
3242     return false;
3243 
3244   assert(this->getRecord(E->getType()));
3245 
3246   const APValue &V = GuidDecl->getAsAPValue();
3247   if (V.getKind() == APValue::None)
3248     return true;
3249 
3250   assert(V.isStruct());
3251   assert(V.getStructNumBases() == 0);
3252   if (!this->visitAPValueInitializer(V, E))
3253     return false;
3254 
3255   return this->emitFinishInit(E);
3256 }
3257 
3258 template <class Emitter>
3259 bool Compiler<Emitter>::VisitRequiresExpr(const RequiresExpr *E) {
3260   assert(classifyPrim(E->getType()) == PT_Bool);
3261   if (DiscardResult)
3262     return true;
3263   return this->emitConstBool(E->isSatisfied(), E);
3264 }
3265 
3266 template <class Emitter>
3267 bool Compiler<Emitter>::VisitConceptSpecializationExpr(
3268     const ConceptSpecializationExpr *E) {
3269   assert(classifyPrim(E->getType()) == PT_Bool);
3270   if (DiscardResult)
3271     return true;
3272   return this->emitConstBool(E->isSatisfied(), E);
3273 }
3274 
3275 template <class Emitter>
3276 bool Compiler<Emitter>::VisitCXXRewrittenBinaryOperator(
3277     const CXXRewrittenBinaryOperator *E) {
3278   return this->delegate(E->getSemanticForm());
3279 }
3280 
3281 template <class Emitter>
3282 bool Compiler<Emitter>::VisitPseudoObjectExpr(const PseudoObjectExpr *E) {
3283 
3284   for (const Expr *SemE : E->semantics()) {
3285     if (auto *OVE = dyn_cast<OpaqueValueExpr>(SemE)) {
3286       if (SemE == E->getResultExpr())
3287         return false;
3288 
3289       if (OVE->isUnique())
3290         continue;
3291 
3292       if (!this->discard(OVE))
3293         return false;
3294     } else if (SemE == E->getResultExpr()) {
3295       if (!this->delegate(SemE))
3296         return false;
3297     } else {
3298       if (!this->discard(SemE))
3299         return false;
3300     }
3301   }
3302   return true;
3303 }
3304 
3305 template <class Emitter>
3306 bool Compiler<Emitter>::VisitPackIndexingExpr(const PackIndexingExpr *E) {
3307   return this->delegate(E->getSelectedExpr());
3308 }
3309 
3310 template <class Emitter>
3311 bool Compiler<Emitter>::VisitRecoveryExpr(const RecoveryExpr *E) {
3312   return this->emitError(E);
3313 }
3314 
3315 template <class Emitter>
3316 bool Compiler<Emitter>::VisitAddrLabelExpr(const AddrLabelExpr *E) {
3317   assert(E->getType()->isVoidPointerType());
3318 
3319   unsigned Offset = allocateLocalPrimitive(
3320       E->getLabel(), PT_Ptr, /*IsConst=*/true, /*IsExtended=*/false);
3321 
3322   return this->emitGetLocal(PT_Ptr, Offset, E);
3323 }
3324 
3325 template <class Emitter>
3326 bool Compiler<Emitter>::VisitConvertVectorExpr(const ConvertVectorExpr *E) {
3327   assert(Initializing);
3328   const auto *VT = E->getType()->castAs<VectorType>();
3329   QualType ElemType = VT->getElementType();
3330   PrimType ElemT = classifyPrim(ElemType);
3331   const Expr *Src = E->getSrcExpr();
3332   PrimType SrcElemT =
3333       classifyPrim(Src->getType()->castAs<VectorType>()->getElementType());
3334 
3335   unsigned SrcOffset = this->allocateLocalPrimitive(Src, PT_Ptr, true, false);
3336   if (!this->visit(Src))
3337     return false;
3338   if (!this->emitSetLocal(PT_Ptr, SrcOffset, E))
3339     return false;
3340 
3341   for (unsigned I = 0; I != VT->getNumElements(); ++I) {
3342     if (!this->emitGetLocal(PT_Ptr, SrcOffset, E))
3343       return false;
3344     if (!this->emitArrayElemPop(SrcElemT, I, E))
3345       return false;
3346     if (SrcElemT != ElemT) {
3347       if (!this->emitPrimCast(SrcElemT, ElemT, ElemType, E))
3348         return false;
3349     }
3350     if (!this->emitInitElem(ElemT, I, E))
3351       return false;
3352   }
3353 
3354   return true;
3355 }
3356 
3357 template <class Emitter>
3358 bool Compiler<Emitter>::VisitShuffleVectorExpr(const ShuffleVectorExpr *E) {
3359   assert(Initializing);
3360   assert(E->getNumSubExprs() > 2);
3361 
3362   const Expr *Vecs[] = {E->getExpr(0), E->getExpr(1)};
3363   const VectorType *VT = Vecs[0]->getType()->castAs<VectorType>();
3364   PrimType ElemT = classifyPrim(VT->getElementType());
3365   unsigned NumInputElems = VT->getNumElements();
3366   unsigned NumOutputElems = E->getNumSubExprs() - 2;
3367   assert(NumOutputElems > 0);
3368 
3369   // Save both input vectors to a local variable.
3370   unsigned VectorOffsets[2];
3371   for (unsigned I = 0; I != 2; ++I) {
3372     VectorOffsets[I] = this->allocateLocalPrimitive(
3373         Vecs[I], PT_Ptr, /*IsConst=*/true, /*IsExtended=*/false);
3374     if (!this->visit(Vecs[I]))
3375       return false;
3376     if (!this->emitSetLocal(PT_Ptr, VectorOffsets[I], E))
3377       return false;
3378   }
3379   for (unsigned I = 0; I != NumOutputElems; ++I) {
3380     APSInt ShuffleIndex = E->getShuffleMaskIdx(Ctx.getASTContext(), I);
3381     if (ShuffleIndex == -1)
3382       return this->emitInvalid(E); // FIXME: Better diagnostic.
3383 
3384     assert(ShuffleIndex < (NumInputElems * 2));
3385     if (!this->emitGetLocal(PT_Ptr,
3386                             VectorOffsets[ShuffleIndex >= NumInputElems], E))
3387       return false;
3388     unsigned InputVectorIndex = ShuffleIndex.getZExtValue() % NumInputElems;
3389     if (!this->emitArrayElemPop(ElemT, InputVectorIndex, E))
3390       return false;
3391 
3392     if (!this->emitInitElem(ElemT, I, E))
3393       return false;
3394   }
3395 
3396   return true;
3397 }
3398 
3399 template <class Emitter>
3400 bool Compiler<Emitter>::VisitExtVectorElementExpr(
3401     const ExtVectorElementExpr *E) {
3402   const Expr *Base = E->getBase();
3403   assert(
3404       Base->getType()->isVectorType() ||
3405       Base->getType()->getAs<PointerType>()->getPointeeType()->isVectorType());
3406 
3407   SmallVector<uint32_t, 4> Indices;
3408   E->getEncodedElementAccess(Indices);
3409 
3410   if (Indices.size() == 1) {
3411     if (!this->visit(Base))
3412       return false;
3413 
3414     if (E->isGLValue()) {
3415       if (!this->emitConstUint32(Indices[0], E))
3416         return false;
3417       return this->emitArrayElemPtrPop(PT_Uint32, E);
3418     }
3419     // Else, also load the value.
3420     return this->emitArrayElemPop(classifyPrim(E->getType()), Indices[0], E);
3421   }
3422 
3423   // Create a local variable for the base.
3424   unsigned BaseOffset = allocateLocalPrimitive(Base, PT_Ptr, /*IsConst=*/true,
3425                                                /*IsExtended=*/false);
3426   if (!this->visit(Base))
3427     return false;
3428   if (!this->emitSetLocal(PT_Ptr, BaseOffset, E))
3429     return false;
3430 
3431   // Now the vector variable for the return value.
3432   if (!Initializing) {
3433     std::optional<unsigned> ResultIndex;
3434     ResultIndex = allocateLocal(E);
3435     if (!ResultIndex)
3436       return false;
3437     if (!this->emitGetPtrLocal(*ResultIndex, E))
3438       return false;
3439   }
3440 
3441   assert(Indices.size() == E->getType()->getAs<VectorType>()->getNumElements());
3442 
3443   PrimType ElemT =
3444       classifyPrim(E->getType()->getAs<VectorType>()->getElementType());
3445   uint32_t DstIndex = 0;
3446   for (uint32_t I : Indices) {
3447     if (!this->emitGetLocal(PT_Ptr, BaseOffset, E))
3448       return false;
3449     if (!this->emitArrayElemPop(ElemT, I, E))
3450       return false;
3451     if (!this->emitInitElem(ElemT, DstIndex, E))
3452       return false;
3453     ++DstIndex;
3454   }
3455 
3456   // Leave the result pointer on the stack.
3457   assert(!DiscardResult);
3458   return true;
3459 }
3460 
3461 template <class Emitter>
3462 bool Compiler<Emitter>::VisitObjCBoxedExpr(const ObjCBoxedExpr *E) {
3463   const Expr *SubExpr = E->getSubExpr();
3464   if (!E->isExpressibleAsConstantInitializer())
3465     return this->discard(SubExpr) && this->emitInvalid(E);
3466 
3467   assert(classifyPrim(E) == PT_Ptr);
3468   if (std::optional<unsigned> I = P.getOrCreateDummy(E))
3469     return this->emitGetPtrGlobal(*I, E);
3470 
3471   return false;
3472 }
3473 
3474 template <class Emitter>
3475 bool Compiler<Emitter>::VisitCXXStdInitializerListExpr(
3476     const CXXStdInitializerListExpr *E) {
3477   const Expr *SubExpr = E->getSubExpr();
3478   const ConstantArrayType *ArrayType =
3479       Ctx.getASTContext().getAsConstantArrayType(SubExpr->getType());
3480   const Record *R = getRecord(E->getType());
3481   assert(Initializing);
3482   assert(SubExpr->isGLValue());
3483 
3484   if (!this->visit(SubExpr))
3485     return false;
3486   if (!this->emitConstUint8(0, E))
3487     return false;
3488   if (!this->emitArrayElemPtrPopUint8(E))
3489     return false;
3490   if (!this->emitInitFieldPtr(R->getField(0u)->Offset, E))
3491     return false;
3492 
3493   PrimType SecondFieldT = classifyPrim(R->getField(1u)->Decl->getType());
3494   if (isIntegralType(SecondFieldT)) {
3495     if (!this->emitConst(static_cast<APSInt>(ArrayType->getSize()),
3496                          SecondFieldT, E))
3497       return false;
3498     return this->emitInitField(SecondFieldT, R->getField(1u)->Offset, E);
3499   }
3500   assert(SecondFieldT == PT_Ptr);
3501 
3502   if (!this->emitGetFieldPtr(R->getField(0u)->Offset, E))
3503     return false;
3504   if (!this->emitExpandPtr(E))
3505     return false;
3506   if (!this->emitConst(static_cast<APSInt>(ArrayType->getSize()), PT_Uint64, E))
3507     return false;
3508   if (!this->emitArrayElemPtrPop(PT_Uint64, E))
3509     return false;
3510   return this->emitInitFieldPtr(R->getField(1u)->Offset, E);
3511 }
3512 
3513 template <class Emitter>
3514 bool Compiler<Emitter>::VisitStmtExpr(const StmtExpr *E) {
3515   BlockScope<Emitter> BS(this);
3516   StmtExprScope<Emitter> SS(this);
3517 
3518   const CompoundStmt *CS = E->getSubStmt();
3519   const Stmt *Result = CS->getStmtExprResult();
3520   for (const Stmt *S : CS->body()) {
3521     if (S != Result) {
3522       if (!this->visitStmt(S))
3523         return false;
3524       continue;
3525     }
3526 
3527     assert(S == Result);
3528     if (const Expr *ResultExpr = dyn_cast<Expr>(S))
3529       return this->delegate(ResultExpr);
3530     return this->emitUnsupported(E);
3531   }
3532 
3533   return BS.destroyLocals();
3534 }
3535 
3536 template <class Emitter> bool Compiler<Emitter>::discard(const Expr *E) {
3537   OptionScope<Emitter> Scope(this, /*NewDiscardResult=*/true,
3538                              /*NewInitializing=*/false);
3539   return this->Visit(E);
3540 }
3541 
3542 template <class Emitter> bool Compiler<Emitter>::delegate(const Expr *E) {
3543   // We're basically doing:
3544   // OptionScope<Emitter> Scope(this, DicardResult, Initializing);
3545   // but that's unnecessary of course.
3546   return this->Visit(E);
3547 }
3548 
3549 template <class Emitter> bool Compiler<Emitter>::visit(const Expr *E) {
3550   if (E->getType().isNull())
3551     return false;
3552 
3553   if (E->getType()->isVoidType())
3554     return this->discard(E);
3555 
3556   // Create local variable to hold the return value.
3557   if (!E->isGLValue() && !E->getType()->isAnyComplexType() &&
3558       !classify(E->getType())) {
3559     std::optional<unsigned> LocalIndex = allocateLocal(E);
3560     if (!LocalIndex)
3561       return false;
3562 
3563     if (!this->emitGetPtrLocal(*LocalIndex, E))
3564       return false;
3565     return this->visitInitializer(E);
3566   }
3567 
3568   //  Otherwise,we have a primitive return value, produce the value directly
3569   //  and push it on the stack.
3570   OptionScope<Emitter> Scope(this, /*NewDiscardResult=*/false,
3571                              /*NewInitializing=*/false);
3572   return this->Visit(E);
3573 }
3574 
3575 template <class Emitter>
3576 bool Compiler<Emitter>::visitInitializer(const Expr *E) {
3577   assert(!classify(E->getType()));
3578 
3579   OptionScope<Emitter> Scope(this, /*NewDiscardResult=*/false,
3580                              /*NewInitializing=*/true);
3581   return this->Visit(E);
3582 }
3583 
3584 template <class Emitter> bool Compiler<Emitter>::visitBool(const Expr *E) {
3585   std::optional<PrimType> T = classify(E->getType());
3586   if (!T) {
3587     // Convert complex values to bool.
3588     if (E->getType()->isAnyComplexType()) {
3589       if (!this->visit(E))
3590         return false;
3591       return this->emitComplexBoolCast(E);
3592     }
3593     return false;
3594   }
3595 
3596   if (!this->visit(E))
3597     return false;
3598 
3599   if (T == PT_Bool)
3600     return true;
3601 
3602   // Convert pointers to bool.
3603   if (T == PT_Ptr || T == PT_FnPtr) {
3604     if (!this->emitNull(*T, nullptr, E))
3605       return false;
3606     return this->emitNE(*T, E);
3607   }
3608 
3609   // Or Floats.
3610   if (T == PT_Float)
3611     return this->emitCastFloatingIntegralBool(getFPOptions(E), E);
3612 
3613   // Or anything else we can.
3614   return this->emitCast(*T, PT_Bool, E);
3615 }
3616 
3617 template <class Emitter>
3618 bool Compiler<Emitter>::visitZeroInitializer(PrimType T, QualType QT,
3619                                              const Expr *E) {
3620   switch (T) {
3621   case PT_Bool:
3622     return this->emitZeroBool(E);
3623   case PT_Sint8:
3624     return this->emitZeroSint8(E);
3625   case PT_Uint8:
3626     return this->emitZeroUint8(E);
3627   case PT_Sint16:
3628     return this->emitZeroSint16(E);
3629   case PT_Uint16:
3630     return this->emitZeroUint16(E);
3631   case PT_Sint32:
3632     return this->emitZeroSint32(E);
3633   case PT_Uint32:
3634     return this->emitZeroUint32(E);
3635   case PT_Sint64:
3636     return this->emitZeroSint64(E);
3637   case PT_Uint64:
3638     return this->emitZeroUint64(E);
3639   case PT_IntAP:
3640     return this->emitZeroIntAP(Ctx.getBitWidth(QT), E);
3641   case PT_IntAPS:
3642     return this->emitZeroIntAPS(Ctx.getBitWidth(QT), E);
3643   case PT_Ptr:
3644     return this->emitNullPtr(nullptr, E);
3645   case PT_FnPtr:
3646     return this->emitNullFnPtr(nullptr, E);
3647   case PT_MemberPtr:
3648     return this->emitNullMemberPtr(nullptr, E);
3649   case PT_Float: {
3650     return this->emitConstFloat(APFloat::getZero(Ctx.getFloatSemantics(QT)), E);
3651   }
3652   }
3653   llvm_unreachable("unknown primitive type");
3654 }
3655 
3656 template <class Emitter>
3657 bool Compiler<Emitter>::visitZeroRecordInitializer(const Record *R,
3658                                                    const Expr *E) {
3659   assert(E);
3660   assert(R);
3661   // Fields
3662   for (const Record::Field &Field : R->fields()) {
3663     if (Field.Decl->isUnnamedBitField())
3664       continue;
3665 
3666     const Descriptor *D = Field.Desc;
3667     if (D->isPrimitive()) {
3668       QualType QT = D->getType();
3669       PrimType T = classifyPrim(D->getType());
3670       if (!this->visitZeroInitializer(T, QT, E))
3671         return false;
3672       if (!this->emitInitField(T, Field.Offset, E))
3673         return false;
3674       if (R->isUnion())
3675         break;
3676       continue;
3677     }
3678 
3679     if (!this->emitGetPtrField(Field.Offset, E))
3680       return false;
3681 
3682     if (D->isPrimitiveArray()) {
3683       QualType ET = D->getElemQualType();
3684       PrimType T = classifyPrim(ET);
3685       for (uint32_t I = 0, N = D->getNumElems(); I != N; ++I) {
3686         if (!this->visitZeroInitializer(T, ET, E))
3687           return false;
3688         if (!this->emitInitElem(T, I, E))
3689           return false;
3690       }
3691     } else if (D->isCompositeArray()) {
3692       const Record *ElemRecord = D->ElemDesc->ElemRecord;
3693       assert(D->ElemDesc->ElemRecord);
3694       for (uint32_t I = 0, N = D->getNumElems(); I != N; ++I) {
3695         if (!this->emitConstUint32(I, E))
3696           return false;
3697         if (!this->emitArrayElemPtr(PT_Uint32, E))
3698           return false;
3699         if (!this->visitZeroRecordInitializer(ElemRecord, E))
3700           return false;
3701         if (!this->emitPopPtr(E))
3702           return false;
3703       }
3704     } else if (D->isRecord()) {
3705       if (!this->visitZeroRecordInitializer(D->ElemRecord, E))
3706         return false;
3707     } else {
3708       assert(false);
3709     }
3710 
3711     if (!this->emitFinishInitPop(E))
3712       return false;
3713 
3714     // C++11 [dcl.init]p5: If T is a (possibly cv-qualified) union type, the
3715     // object's first non-static named data member is zero-initialized
3716     if (R->isUnion())
3717       break;
3718   }
3719 
3720   for (const Record::Base &B : R->bases()) {
3721     if (!this->emitGetPtrBase(B.Offset, E))
3722       return false;
3723     if (!this->visitZeroRecordInitializer(B.R, E))
3724       return false;
3725     if (!this->emitFinishInitPop(E))
3726       return false;
3727   }
3728 
3729   // FIXME: Virtual bases.
3730 
3731   return true;
3732 }
3733 
3734 template <class Emitter>
3735 template <typename T>
3736 bool Compiler<Emitter>::emitConst(T Value, PrimType Ty, const Expr *E) {
3737   switch (Ty) {
3738   case PT_Sint8:
3739     return this->emitConstSint8(Value, E);
3740   case PT_Uint8:
3741     return this->emitConstUint8(Value, E);
3742   case PT_Sint16:
3743     return this->emitConstSint16(Value, E);
3744   case PT_Uint16:
3745     return this->emitConstUint16(Value, E);
3746   case PT_Sint32:
3747     return this->emitConstSint32(Value, E);
3748   case PT_Uint32:
3749     return this->emitConstUint32(Value, E);
3750   case PT_Sint64:
3751     return this->emitConstSint64(Value, E);
3752   case PT_Uint64:
3753     return this->emitConstUint64(Value, E);
3754   case PT_Bool:
3755     return this->emitConstBool(Value, E);
3756   case PT_Ptr:
3757   case PT_FnPtr:
3758   case PT_MemberPtr:
3759   case PT_Float:
3760   case PT_IntAP:
3761   case PT_IntAPS:
3762     llvm_unreachable("Invalid integral type");
3763     break;
3764   }
3765   llvm_unreachable("unknown primitive type");
3766 }
3767 
3768 template <class Emitter>
3769 template <typename T>
3770 bool Compiler<Emitter>::emitConst(T Value, const Expr *E) {
3771   return this->emitConst(Value, classifyPrim(E->getType()), E);
3772 }
3773 
3774 template <class Emitter>
3775 bool Compiler<Emitter>::emitConst(const APSInt &Value, PrimType Ty,
3776                                   const Expr *E) {
3777   if (Ty == PT_IntAPS)
3778     return this->emitConstIntAPS(Value, E);
3779   if (Ty == PT_IntAP)
3780     return this->emitConstIntAP(Value, E);
3781 
3782   if (Value.isSigned())
3783     return this->emitConst(Value.getSExtValue(), Ty, E);
3784   return this->emitConst(Value.getZExtValue(), Ty, E);
3785 }
3786 
3787 template <class Emitter>
3788 bool Compiler<Emitter>::emitConst(const APSInt &Value, const Expr *E) {
3789   return this->emitConst(Value, classifyPrim(E->getType()), E);
3790 }
3791 
3792 template <class Emitter>
3793 unsigned Compiler<Emitter>::allocateLocalPrimitive(DeclTy &&Src, PrimType Ty,
3794                                                    bool IsConst,
3795                                                    bool IsExtended) {
3796   // Make sure we don't accidentally register the same decl twice.
3797   if (const auto *VD =
3798           dyn_cast_if_present<ValueDecl>(Src.dyn_cast<const Decl *>())) {
3799     assert(!P.getGlobal(VD));
3800     assert(!Locals.contains(VD));
3801     (void)VD;
3802   }
3803 
3804   // FIXME: There are cases where Src.is<Expr*>() is wrong, e.g.
3805   //   (int){12} in C. Consider using Expr::isTemporaryObject() instead
3806   //   or isa<MaterializeTemporaryExpr>().
3807   Descriptor *D = P.createDescriptor(Src, Ty, Descriptor::InlineDescMD, IsConst,
3808                                      Src.is<const Expr *>());
3809   Scope::Local Local = this->createLocal(D);
3810   if (auto *VD = dyn_cast_if_present<ValueDecl>(Src.dyn_cast<const Decl *>()))
3811     Locals.insert({VD, Local});
3812   VarScope->add(Local, IsExtended);
3813   return Local.Offset;
3814 }
3815 
3816 template <class Emitter>
3817 std::optional<unsigned>
3818 Compiler<Emitter>::allocateLocal(DeclTy &&Src, const ValueDecl *ExtendingDecl) {
3819   // Make sure we don't accidentally register the same decl twice.
3820   if ([[maybe_unused]] const auto *VD =
3821           dyn_cast_if_present<ValueDecl>(Src.dyn_cast<const Decl *>())) {
3822     assert(!P.getGlobal(VD));
3823     assert(!Locals.contains(VD));
3824   }
3825 
3826   QualType Ty;
3827   const ValueDecl *Key = nullptr;
3828   const Expr *Init = nullptr;
3829   bool IsTemporary = false;
3830   if (auto *VD = dyn_cast_if_present<ValueDecl>(Src.dyn_cast<const Decl *>())) {
3831     Key = VD;
3832     Ty = VD->getType();
3833 
3834     if (const auto *VarD = dyn_cast<VarDecl>(VD))
3835       Init = VarD->getInit();
3836   }
3837   if (auto *E = Src.dyn_cast<const Expr *>()) {
3838     IsTemporary = true;
3839     Ty = E->getType();
3840   }
3841 
3842   Descriptor *D = P.createDescriptor(
3843       Src, Ty.getTypePtr(), Descriptor::InlineDescMD, Ty.isConstQualified(),
3844       IsTemporary, /*IsMutable=*/false, Init);
3845   if (!D)
3846     return std::nullopt;
3847 
3848   Scope::Local Local = this->createLocal(D);
3849   if (Key)
3850     Locals.insert({Key, Local});
3851   if (ExtendingDecl)
3852     VarScope->addExtended(Local, ExtendingDecl);
3853   else
3854     VarScope->add(Local, false);
3855   return Local.Offset;
3856 }
3857 
3858 template <class Emitter>
3859 unsigned Compiler<Emitter>::allocateTemporary(const Expr *E) {
3860   QualType Ty = E->getType();
3861   assert(!Ty->isRecordType());
3862 
3863   Descriptor *D = P.createDescriptor(
3864       E, Ty.getTypePtr(), Descriptor::InlineDescMD, Ty.isConstQualified(),
3865       /*IsTemporary=*/true, /*IsMutable=*/false, /*Init=*/nullptr);
3866   assert(D);
3867 
3868   Scope::Local Local = this->createLocal(D);
3869   VariableScope<Emitter> *S = VarScope;
3870   assert(S);
3871   // Attach to topmost scope.
3872   while (S->getParent())
3873     S = S->getParent();
3874   assert(S && !S->getParent());
3875   S->addLocal(Local);
3876   return Local.Offset;
3877 }
3878 
3879 template <class Emitter>
3880 const RecordType *Compiler<Emitter>::getRecordTy(QualType Ty) {
3881   if (const PointerType *PT = dyn_cast<PointerType>(Ty))
3882     return PT->getPointeeType()->getAs<RecordType>();
3883   return Ty->getAs<RecordType>();
3884 }
3885 
3886 template <class Emitter> Record *Compiler<Emitter>::getRecord(QualType Ty) {
3887   if (const auto *RecordTy = getRecordTy(Ty))
3888     return getRecord(RecordTy->getDecl());
3889   return nullptr;
3890 }
3891 
3892 template <class Emitter>
3893 Record *Compiler<Emitter>::getRecord(const RecordDecl *RD) {
3894   return P.getOrCreateRecord(RD);
3895 }
3896 
3897 template <class Emitter>
3898 const Function *Compiler<Emitter>::getFunction(const FunctionDecl *FD) {
3899   return Ctx.getOrCreateFunction(FD);
3900 }
3901 
3902 template <class Emitter>
3903 bool Compiler<Emitter>::visitExpr(const Expr *E, bool DestroyToplevelScope) {
3904   LocalScope<Emitter> RootScope(this);
3905 
3906   auto maybeDestroyLocals = [&]() -> bool {
3907     if (DestroyToplevelScope)
3908       return RootScope.destroyLocals();
3909     return true;
3910   };
3911 
3912   // Void expressions.
3913   if (E->getType()->isVoidType()) {
3914     if (!visit(E))
3915       return false;
3916     return this->emitRetVoid(E) && maybeDestroyLocals();
3917   }
3918 
3919   // Expressions with a primitive return type.
3920   if (std::optional<PrimType> T = classify(E)) {
3921     if (!visit(E))
3922       return false;
3923 
3924     return this->emitRet(*T, E) && maybeDestroyLocals();
3925   }
3926 
3927   // Expressions with a composite return type.
3928   // For us, that means everything we don't
3929   // have a PrimType for.
3930   if (std::optional<unsigned> LocalOffset = this->allocateLocal(E)) {
3931     if (!this->emitGetPtrLocal(*LocalOffset, E))
3932       return false;
3933 
3934     if (!visitInitializer(E))
3935       return false;
3936 
3937     if (!this->emitFinishInit(E))
3938       return false;
3939     // We are destroying the locals AFTER the Ret op.
3940     // The Ret op needs to copy the (alive) values, but the
3941     // destructors may still turn the entire expression invalid.
3942     return this->emitRetValue(E) && maybeDestroyLocals();
3943   }
3944 
3945   (void)maybeDestroyLocals();
3946   return false;
3947 }
3948 
3949 template <class Emitter>
3950 VarCreationState Compiler<Emitter>::visitDecl(const VarDecl *VD) {
3951 
3952   auto R = this->visitVarDecl(VD, /*Toplevel=*/true);
3953 
3954   if (R.notCreated())
3955     return R;
3956 
3957   if (R)
3958     return true;
3959 
3960   if (!R && Context::shouldBeGloballyIndexed(VD)) {
3961     if (auto GlobalIndex = P.getGlobal(VD)) {
3962       Block *GlobalBlock = P.getGlobal(*GlobalIndex);
3963       GlobalInlineDescriptor &GD =
3964           *reinterpret_cast<GlobalInlineDescriptor *>(GlobalBlock->rawData());
3965 
3966       GD.InitState = GlobalInitState::InitializerFailed;
3967       GlobalBlock->invokeDtor();
3968     }
3969   }
3970 
3971   return R;
3972 }
3973 
3974 /// Toplevel visitDeclAndReturn().
3975 /// We get here from evaluateAsInitializer().
3976 /// We need to evaluate the initializer and return its value.
3977 template <class Emitter>
3978 bool Compiler<Emitter>::visitDeclAndReturn(const VarDecl *VD,
3979                                            bool ConstantContext) {
3980   std::optional<PrimType> VarT = classify(VD->getType());
3981 
3982   // We only create variables if we're evaluating in a constant context.
3983   // Otherwise, just evaluate the initializer and return it.
3984   if (!ConstantContext) {
3985     DeclScope<Emitter> LS(this, VD);
3986     if (!this->visit(VD->getAnyInitializer()))
3987       return false;
3988     return this->emitRet(VarT.value_or(PT_Ptr), VD) && LS.destroyLocals();
3989   }
3990 
3991   LocalScope<Emitter> VDScope(this, VD);
3992   if (!this->visitVarDecl(VD, /*Toplevel=*/true))
3993     return false;
3994 
3995   if (Context::shouldBeGloballyIndexed(VD)) {
3996     auto GlobalIndex = P.getGlobal(VD);
3997     assert(GlobalIndex); // visitVarDecl() didn't return false.
3998     if (VarT) {
3999       if (!this->emitGetGlobalUnchecked(*VarT, *GlobalIndex, VD))
4000         return false;
4001     } else {
4002       if (!this->emitGetPtrGlobal(*GlobalIndex, VD))
4003         return false;
4004     }
4005   } else {
4006     auto Local = Locals.find(VD);
4007     assert(Local != Locals.end()); // Same here.
4008     if (VarT) {
4009       if (!this->emitGetLocal(*VarT, Local->second.Offset, VD))
4010         return false;
4011     } else {
4012       if (!this->emitGetPtrLocal(Local->second.Offset, VD))
4013         return false;
4014     }
4015   }
4016 
4017   // Return the value.
4018   if (!this->emitRet(VarT.value_or(PT_Ptr), VD)) {
4019     // If the Ret above failed and this is a global variable, mark it as
4020     // uninitialized, even everything else succeeded.
4021     if (Context::shouldBeGloballyIndexed(VD)) {
4022       auto GlobalIndex = P.getGlobal(VD);
4023       assert(GlobalIndex);
4024       Block *GlobalBlock = P.getGlobal(*GlobalIndex);
4025       GlobalInlineDescriptor &GD =
4026           *reinterpret_cast<GlobalInlineDescriptor *>(GlobalBlock->rawData());
4027 
4028       GD.InitState = GlobalInitState::InitializerFailed;
4029       GlobalBlock->invokeDtor();
4030     }
4031     return false;
4032   }
4033 
4034   return VDScope.destroyLocals();
4035 }
4036 
4037 template <class Emitter>
4038 VarCreationState Compiler<Emitter>::visitVarDecl(const VarDecl *VD,
4039                                                  bool Toplevel) {
4040   // We don't know what to do with these, so just return false.
4041   if (VD->getType().isNull())
4042     return false;
4043 
4044   // This case is EvalEmitter-only. If we won't create any instructions for the
4045   // initializer anyway, don't bother creating the variable in the first place.
4046   if (!this->isActive())
4047     return VarCreationState::NotCreated();
4048 
4049   const Expr *Init = VD->getInit();
4050   std::optional<PrimType> VarT = classify(VD->getType());
4051 
4052   if (Init && Init->isValueDependent())
4053     return false;
4054 
4055   if (Context::shouldBeGloballyIndexed(VD)) {
4056     auto checkDecl = [&]() -> bool {
4057       bool NeedsOp = !Toplevel && VD->isLocalVarDecl() && VD->isStaticLocal();
4058       return !NeedsOp || this->emitCheckDecl(VD, VD);
4059     };
4060 
4061     auto initGlobal = [&](unsigned GlobalIndex) -> bool {
4062       assert(Init);
4063 
4064       if (VarT) {
4065         if (!this->visit(Init))
4066           return checkDecl() && false;
4067 
4068         return checkDecl() && this->emitInitGlobal(*VarT, GlobalIndex, VD);
4069       }
4070 
4071       if (!checkDecl())
4072         return false;
4073 
4074       if (!this->emitGetPtrGlobal(GlobalIndex, Init))
4075         return false;
4076 
4077       if (!visitInitializer(Init))
4078         return false;
4079 
4080       if (!this->emitFinishInit(Init))
4081         return false;
4082 
4083       return this->emitPopPtr(Init);
4084     };
4085 
4086     DeclScope<Emitter> LocalScope(this, VD);
4087 
4088     // We've already seen and initialized this global.
4089     if (std::optional<unsigned> GlobalIndex = P.getGlobal(VD)) {
4090       if (P.getPtrGlobal(*GlobalIndex).isInitialized())
4091         return checkDecl();
4092 
4093       // The previous attempt at initialization might've been unsuccessful,
4094       // so let's try this one.
4095       return Init && checkDecl() && initGlobal(*GlobalIndex);
4096     }
4097 
4098     std::optional<unsigned> GlobalIndex = P.createGlobal(VD, Init);
4099 
4100     if (!GlobalIndex)
4101       return false;
4102 
4103     return !Init || (checkDecl() && initGlobal(*GlobalIndex));
4104   } else {
4105     InitLinkScope<Emitter> ILS(this, InitLink::Decl(VD));
4106 
4107     if (VarT) {
4108       unsigned Offset = this->allocateLocalPrimitive(
4109           VD, *VarT, VD->getType().isConstQualified());
4110       if (Init) {
4111         // If this is a toplevel declaration, create a scope for the
4112         // initializer.
4113         if (Toplevel) {
4114           LocalScope<Emitter> Scope(this);
4115           if (!this->visit(Init))
4116             return false;
4117           return this->emitSetLocal(*VarT, Offset, VD) && Scope.destroyLocals();
4118         } else {
4119           if (!this->visit(Init))
4120             return false;
4121           return this->emitSetLocal(*VarT, Offset, VD);
4122         }
4123       }
4124     } else {
4125       if (std::optional<unsigned> Offset = this->allocateLocal(VD)) {
4126         if (!Init)
4127           return true;
4128 
4129         if (!this->emitGetPtrLocal(*Offset, Init))
4130           return false;
4131 
4132         if (!visitInitializer(Init))
4133           return false;
4134 
4135         if (!this->emitFinishInit(Init))
4136           return false;
4137 
4138         return this->emitPopPtr(Init);
4139       }
4140       return false;
4141     }
4142     return true;
4143   }
4144 
4145   return false;
4146 }
4147 
4148 template <class Emitter>
4149 bool Compiler<Emitter>::visitAPValue(const APValue &Val, PrimType ValType,
4150                                      const Expr *E) {
4151   assert(!DiscardResult);
4152   if (Val.isInt())
4153     return this->emitConst(Val.getInt(), ValType, E);
4154   else if (Val.isFloat())
4155     return this->emitConstFloat(Val.getFloat(), E);
4156 
4157   if (Val.isLValue()) {
4158     if (Val.isNullPointer())
4159       return this->emitNull(ValType, nullptr, E);
4160     APValue::LValueBase Base = Val.getLValueBase();
4161     if (const Expr *BaseExpr = Base.dyn_cast<const Expr *>())
4162       return this->visit(BaseExpr);
4163     else if (const auto *VD = Base.dyn_cast<const ValueDecl *>()) {
4164       return this->visitDeclRef(VD, E);
4165     }
4166   } else if (Val.isMemberPointer()) {
4167     if (const ValueDecl *MemberDecl = Val.getMemberPointerDecl())
4168       return this->emitGetMemberPtr(MemberDecl, E);
4169     return this->emitNullMemberPtr(nullptr, E);
4170   }
4171 
4172   return false;
4173 }
4174 
4175 template <class Emitter>
4176 bool Compiler<Emitter>::visitAPValueInitializer(const APValue &Val,
4177                                                 const Expr *E) {
4178 
4179   if (Val.isStruct()) {
4180     const Record *R = this->getRecord(E->getType());
4181     assert(R);
4182     for (unsigned I = 0, N = Val.getStructNumFields(); I != N; ++I) {
4183       const APValue &F = Val.getStructField(I);
4184       const Record::Field *RF = R->getField(I);
4185 
4186       if (F.isInt() || F.isFloat() || F.isLValue() || F.isMemberPointer()) {
4187         PrimType T = classifyPrim(RF->Decl->getType());
4188         if (!this->visitAPValue(F, T, E))
4189           return false;
4190         if (!this->emitInitField(T, RF->Offset, E))
4191           return false;
4192       } else if (F.isArray()) {
4193         assert(RF->Desc->isPrimitiveArray());
4194         const auto *ArrType = RF->Decl->getType()->getAsArrayTypeUnsafe();
4195         PrimType ElemT = classifyPrim(ArrType->getElementType());
4196         assert(ArrType);
4197 
4198         if (!this->emitGetPtrField(RF->Offset, E))
4199           return false;
4200 
4201         for (unsigned A = 0, AN = F.getArraySize(); A != AN; ++A) {
4202           if (!this->visitAPValue(F.getArrayInitializedElt(A), ElemT, E))
4203             return false;
4204           if (!this->emitInitElem(ElemT, A, E))
4205             return false;
4206         }
4207 
4208         if (!this->emitPopPtr(E))
4209           return false;
4210       } else if (F.isStruct() || F.isUnion()) {
4211         if (!this->emitGetPtrField(RF->Offset, E))
4212           return false;
4213         if (!this->visitAPValueInitializer(F, E))
4214           return false;
4215         if (!this->emitPopPtr(E))
4216           return false;
4217       } else {
4218         assert(false && "I don't think this should be possible");
4219       }
4220     }
4221     return true;
4222   } else if (Val.isUnion()) {
4223     const FieldDecl *UnionField = Val.getUnionField();
4224     const Record *R = this->getRecord(UnionField->getParent());
4225     assert(R);
4226     const APValue &F = Val.getUnionValue();
4227     const Record::Field *RF = R->getField(UnionField);
4228     PrimType T = classifyPrim(RF->Decl->getType());
4229     if (!this->visitAPValue(F, T, E))
4230       return false;
4231     return this->emitInitField(T, RF->Offset, E);
4232   }
4233   // TODO: Other types.
4234 
4235   return false;
4236 }
4237 
4238 template <class Emitter>
4239 bool Compiler<Emitter>::VisitBuiltinCallExpr(const CallExpr *E,
4240                                              unsigned BuiltinID) {
4241   const Function *Func = getFunction(E->getDirectCallee());
4242   if (!Func)
4243     return false;
4244 
4245   // For these, we're expected to ultimately return an APValue pointing
4246   // to the CallExpr. This is needed to get the correct codegen.
4247   if (BuiltinID == Builtin::BI__builtin___CFStringMakeConstantString ||
4248       BuiltinID == Builtin::BI__builtin___NSStringMakeConstantString ||
4249       BuiltinID == Builtin::BI__builtin_ptrauth_sign_constant ||
4250       BuiltinID == Builtin::BI__builtin_function_start) {
4251     if (std::optional<unsigned> GlobalOffset = P.getOrCreateDummy(E)) {
4252       if (!this->emitGetPtrGlobal(*GlobalOffset, E))
4253         return false;
4254 
4255       if (PrimType PT = classifyPrim(E); PT != PT_Ptr && isPtrType(PT))
4256         return this->emitDecayPtr(PT_Ptr, PT, E);
4257       return true;
4258     }
4259     return false;
4260   }
4261 
4262   QualType ReturnType = E->getType();
4263   std::optional<PrimType> ReturnT = classify(E);
4264 
4265   // Non-primitive return type. Prepare storage.
4266   if (!Initializing && !ReturnT && !ReturnType->isVoidType()) {
4267     std::optional<unsigned> LocalIndex = allocateLocal(E);
4268     if (!LocalIndex)
4269       return false;
4270     if (!this->emitGetPtrLocal(*LocalIndex, E))
4271       return false;
4272   }
4273 
4274   if (!Func->isUnevaluatedBuiltin()) {
4275     // Put arguments on the stack.
4276     for (const auto *Arg : E->arguments()) {
4277       if (!this->visit(Arg))
4278         return false;
4279     }
4280   }
4281 
4282   if (!this->emitCallBI(Func, E, BuiltinID, E))
4283     return false;
4284 
4285   if (DiscardResult && !ReturnType->isVoidType()) {
4286     assert(ReturnT);
4287     return this->emitPop(*ReturnT, E);
4288   }
4289 
4290   return true;
4291 }
4292 
4293 template <class Emitter>
4294 bool Compiler<Emitter>::VisitCallExpr(const CallExpr *E) {
4295   if (unsigned BuiltinID = E->getBuiltinCallee())
4296     return VisitBuiltinCallExpr(E, BuiltinID);
4297 
4298   const FunctionDecl *FuncDecl = E->getDirectCallee();
4299   // Calls to replaceable operator new/operator delete.
4300   if (FuncDecl && FuncDecl->isReplaceableGlobalAllocationFunction()) {
4301     if (FuncDecl->getDeclName().getCXXOverloadedOperator() == OO_New ||
4302         FuncDecl->getDeclName().getCXXOverloadedOperator() == OO_Array_New) {
4303       return VisitBuiltinCallExpr(E, Builtin::BI__builtin_operator_new);
4304     } else {
4305       assert(FuncDecl->getDeclName().getCXXOverloadedOperator() == OO_Delete);
4306       return VisitBuiltinCallExpr(E, Builtin::BI__builtin_operator_delete);
4307     }
4308   }
4309 
4310   QualType ReturnType = E->getCallReturnType(Ctx.getASTContext());
4311   std::optional<PrimType> T = classify(ReturnType);
4312   bool HasRVO = !ReturnType->isVoidType() && !T;
4313 
4314   if (HasRVO) {
4315     if (DiscardResult) {
4316       // If we need to discard the return value but the function returns its
4317       // value via an RVO pointer, we need to create one such pointer just
4318       // for this call.
4319       if (std::optional<unsigned> LocalIndex = allocateLocal(E)) {
4320         if (!this->emitGetPtrLocal(*LocalIndex, E))
4321           return false;
4322       }
4323     } else {
4324       // We need the result. Prepare a pointer to return or
4325       // dup the current one.
4326       if (!Initializing) {
4327         if (std::optional<unsigned> LocalIndex = allocateLocal(E)) {
4328           if (!this->emitGetPtrLocal(*LocalIndex, E))
4329             return false;
4330         }
4331       }
4332       if (!this->emitDupPtr(E))
4333         return false;
4334     }
4335   }
4336 
4337   SmallVector<const Expr *, 8> Args(
4338       llvm::ArrayRef(E->getArgs(), E->getNumArgs()));
4339 
4340   bool IsAssignmentOperatorCall = false;
4341   if (const auto *OCE = dyn_cast<CXXOperatorCallExpr>(E);
4342       OCE && OCE->isAssignmentOp()) {
4343     // Just like with regular assignments, we need to special-case assignment
4344     // operators here and evaluate the RHS (the second arg) before the LHS (the
4345     // first arg. We fix this by using a Flip op later.
4346     assert(Args.size() == 2);
4347     IsAssignmentOperatorCall = true;
4348     std::reverse(Args.begin(), Args.end());
4349   }
4350   // Calling a static operator will still
4351   // pass the instance, but we don't need it.
4352   // Discard it here.
4353   if (isa<CXXOperatorCallExpr>(E)) {
4354     if (const auto *MD = dyn_cast_if_present<CXXMethodDecl>(FuncDecl);
4355         MD && MD->isStatic()) {
4356       if (!this->discard(E->getArg(0)))
4357         return false;
4358       // Drop first arg.
4359       Args.erase(Args.begin());
4360     }
4361   }
4362 
4363   std::optional<unsigned> CalleeOffset;
4364   // Add the (optional, implicit) This pointer.
4365   if (const auto *MC = dyn_cast<CXXMemberCallExpr>(E)) {
4366     if (!FuncDecl && classifyPrim(E->getCallee()) == PT_MemberPtr) {
4367       // If we end up creating a CallPtr op for this, we need the base of the
4368       // member pointer as the instance pointer, and later extract the function
4369       // decl as the function pointer.
4370       const Expr *Callee = E->getCallee();
4371       CalleeOffset =
4372           this->allocateLocalPrimitive(Callee, PT_MemberPtr, true, false);
4373       if (!this->visit(Callee))
4374         return false;
4375       if (!this->emitSetLocal(PT_MemberPtr, *CalleeOffset, E))
4376         return false;
4377       if (!this->emitGetLocal(PT_MemberPtr, *CalleeOffset, E))
4378         return false;
4379       if (!this->emitGetMemberPtrBase(E))
4380         return false;
4381     } else if (!this->visit(MC->getImplicitObjectArgument())) {
4382       return false;
4383     }
4384   } else if (!FuncDecl) {
4385     const Expr *Callee = E->getCallee();
4386     CalleeOffset = this->allocateLocalPrimitive(Callee, PT_FnPtr, true, false);
4387     if (!this->visit(Callee))
4388       return false;
4389     if (!this->emitSetLocal(PT_FnPtr, *CalleeOffset, E))
4390       return false;
4391   }
4392 
4393   llvm::BitVector NonNullArgs = collectNonNullArgs(FuncDecl, Args);
4394   // Put arguments on the stack.
4395   unsigned ArgIndex = 0;
4396   for (const auto *Arg : Args) {
4397     if (!this->visit(Arg))
4398       return false;
4399 
4400     // If we know the callee already, check the known parametrs for nullability.
4401     if (FuncDecl && NonNullArgs[ArgIndex]) {
4402       PrimType ArgT = classify(Arg).value_or(PT_Ptr);
4403       if (ArgT == PT_Ptr || ArgT == PT_FnPtr) {
4404         if (!this->emitCheckNonNullArg(ArgT, Arg))
4405           return false;
4406       }
4407     }
4408     ++ArgIndex;
4409   }
4410 
4411   // Undo the argument reversal we did earlier.
4412   if (IsAssignmentOperatorCall) {
4413     assert(Args.size() == 2);
4414     PrimType Arg1T = classify(Args[0]).value_or(PT_Ptr);
4415     PrimType Arg2T = classify(Args[1]).value_or(PT_Ptr);
4416     if (!this->emitFlip(Arg2T, Arg1T, E))
4417       return false;
4418   }
4419 
4420   if (FuncDecl) {
4421     const Function *Func = getFunction(FuncDecl);
4422     if (!Func)
4423       return false;
4424     assert(HasRVO == Func->hasRVO());
4425 
4426     bool HasQualifier = false;
4427     if (const auto *ME = dyn_cast<MemberExpr>(E->getCallee()))
4428       HasQualifier = ME->hasQualifier();
4429 
4430     bool IsVirtual = false;
4431     if (const auto *MD = dyn_cast<CXXMethodDecl>(FuncDecl))
4432       IsVirtual = MD->isVirtual();
4433 
4434     // In any case call the function. The return value will end up on the stack
4435     // and if the function has RVO, we already have the pointer on the stack to
4436     // write the result into.
4437     if (IsVirtual && !HasQualifier) {
4438       uint32_t VarArgSize = 0;
4439       unsigned NumParams =
4440           Func->getNumWrittenParams() + isa<CXXOperatorCallExpr>(E);
4441       for (unsigned I = NumParams, N = E->getNumArgs(); I != N; ++I)
4442         VarArgSize += align(primSize(classify(E->getArg(I)).value_or(PT_Ptr)));
4443 
4444       if (!this->emitCallVirt(Func, VarArgSize, E))
4445         return false;
4446     } else if (Func->isVariadic()) {
4447       uint32_t VarArgSize = 0;
4448       unsigned NumParams =
4449           Func->getNumWrittenParams() + isa<CXXOperatorCallExpr>(E);
4450       for (unsigned I = NumParams, N = E->getNumArgs(); I != N; ++I)
4451         VarArgSize += align(primSize(classify(E->getArg(I)).value_or(PT_Ptr)));
4452       if (!this->emitCallVar(Func, VarArgSize, E))
4453         return false;
4454     } else {
4455       if (!this->emitCall(Func, 0, E))
4456         return false;
4457     }
4458   } else {
4459     // Indirect call. Visit the callee, which will leave a FunctionPointer on
4460     // the stack. Cleanup of the returned value if necessary will be done after
4461     // the function call completed.
4462 
4463     // Sum the size of all args from the call expr.
4464     uint32_t ArgSize = 0;
4465     for (unsigned I = 0, N = E->getNumArgs(); I != N; ++I)
4466       ArgSize += align(primSize(classify(E->getArg(I)).value_or(PT_Ptr)));
4467 
4468     // Get the callee, either from a member pointer or function pointer saved in
4469     // CalleeOffset.
4470     if (isa<CXXMemberCallExpr>(E) && CalleeOffset) {
4471       if (!this->emitGetLocal(PT_MemberPtr, *CalleeOffset, E))
4472         return false;
4473       if (!this->emitGetMemberPtrDecl(E))
4474         return false;
4475     } else {
4476       if (!this->emitGetLocal(PT_FnPtr, *CalleeOffset, E))
4477         return false;
4478     }
4479     if (!this->emitCallPtr(ArgSize, E, E))
4480       return false;
4481   }
4482 
4483   // Cleanup for discarded return values.
4484   if (DiscardResult && !ReturnType->isVoidType() && T)
4485     return this->emitPop(*T, E);
4486 
4487   return true;
4488 }
4489 
4490 template <class Emitter>
4491 bool Compiler<Emitter>::VisitCXXDefaultInitExpr(const CXXDefaultInitExpr *E) {
4492   SourceLocScope<Emitter> SLS(this, E);
4493 
4494   return this->delegate(E->getExpr());
4495 }
4496 
4497 template <class Emitter>
4498 bool Compiler<Emitter>::VisitCXXDefaultArgExpr(const CXXDefaultArgExpr *E) {
4499   SourceLocScope<Emitter> SLS(this, E);
4500 
4501   const Expr *SubExpr = E->getExpr();
4502   if (std::optional<PrimType> T = classify(E->getExpr()))
4503     return this->visit(SubExpr);
4504 
4505   assert(Initializing);
4506   return this->visitInitializer(SubExpr);
4507 }
4508 
4509 template <class Emitter>
4510 bool Compiler<Emitter>::VisitCXXBoolLiteralExpr(const CXXBoolLiteralExpr *E) {
4511   if (DiscardResult)
4512     return true;
4513 
4514   return this->emitConstBool(E->getValue(), E);
4515 }
4516 
4517 template <class Emitter>
4518 bool Compiler<Emitter>::VisitCXXNullPtrLiteralExpr(
4519     const CXXNullPtrLiteralExpr *E) {
4520   if (DiscardResult)
4521     return true;
4522 
4523   return this->emitNullPtr(nullptr, E);
4524 }
4525 
4526 template <class Emitter>
4527 bool Compiler<Emitter>::VisitGNUNullExpr(const GNUNullExpr *E) {
4528   if (DiscardResult)
4529     return true;
4530 
4531   assert(E->getType()->isIntegerType());
4532 
4533   PrimType T = classifyPrim(E->getType());
4534   return this->emitZero(T, E);
4535 }
4536 
4537 template <class Emitter>
4538 bool Compiler<Emitter>::VisitCXXThisExpr(const CXXThisExpr *E) {
4539   if (DiscardResult)
4540     return true;
4541 
4542   if (this->LambdaThisCapture.Offset > 0) {
4543     if (this->LambdaThisCapture.IsPtr)
4544       return this->emitGetThisFieldPtr(this->LambdaThisCapture.Offset, E);
4545     return this->emitGetPtrThisField(this->LambdaThisCapture.Offset, E);
4546   }
4547 
4548   // In some circumstances, the 'this' pointer does not actually refer to the
4549   // instance pointer of the current function frame, but e.g. to the declaration
4550   // currently being initialized. Here we emit the necessary instruction(s) for
4551   // this scenario.
4552   if (!InitStackActive || !E->isImplicit())
4553     return this->emitThis(E);
4554 
4555   if (InitStackActive && !InitStack.empty()) {
4556     unsigned StartIndex = 0;
4557     for (StartIndex = InitStack.size() - 1; StartIndex > 0; --StartIndex) {
4558       if (InitStack[StartIndex].Kind != InitLink::K_Field &&
4559           InitStack[StartIndex].Kind != InitLink::K_Elem)
4560         break;
4561     }
4562 
4563     for (unsigned I = StartIndex, N = InitStack.size(); I != N; ++I) {
4564       if (!InitStack[I].template emit<Emitter>(this, E))
4565         return false;
4566     }
4567     return true;
4568   }
4569   return this->emitThis(E);
4570 }
4571 
4572 template <class Emitter> bool Compiler<Emitter>::visitStmt(const Stmt *S) {
4573   switch (S->getStmtClass()) {
4574   case Stmt::CompoundStmtClass:
4575     return visitCompoundStmt(cast<CompoundStmt>(S));
4576   case Stmt::DeclStmtClass:
4577     return visitDeclStmt(cast<DeclStmt>(S));
4578   case Stmt::ReturnStmtClass:
4579     return visitReturnStmt(cast<ReturnStmt>(S));
4580   case Stmt::IfStmtClass:
4581     return visitIfStmt(cast<IfStmt>(S));
4582   case Stmt::WhileStmtClass:
4583     return visitWhileStmt(cast<WhileStmt>(S));
4584   case Stmt::DoStmtClass:
4585     return visitDoStmt(cast<DoStmt>(S));
4586   case Stmt::ForStmtClass:
4587     return visitForStmt(cast<ForStmt>(S));
4588   case Stmt::CXXForRangeStmtClass:
4589     return visitCXXForRangeStmt(cast<CXXForRangeStmt>(S));
4590   case Stmt::BreakStmtClass:
4591     return visitBreakStmt(cast<BreakStmt>(S));
4592   case Stmt::ContinueStmtClass:
4593     return visitContinueStmt(cast<ContinueStmt>(S));
4594   case Stmt::SwitchStmtClass:
4595     return visitSwitchStmt(cast<SwitchStmt>(S));
4596   case Stmt::CaseStmtClass:
4597     return visitCaseStmt(cast<CaseStmt>(S));
4598   case Stmt::DefaultStmtClass:
4599     return visitDefaultStmt(cast<DefaultStmt>(S));
4600   case Stmt::AttributedStmtClass:
4601     return visitAttributedStmt(cast<AttributedStmt>(S));
4602   case Stmt::CXXTryStmtClass:
4603     return visitCXXTryStmt(cast<CXXTryStmt>(S));
4604   case Stmt::NullStmtClass:
4605     return true;
4606   // Always invalid statements.
4607   case Stmt::GCCAsmStmtClass:
4608   case Stmt::MSAsmStmtClass:
4609   case Stmt::GotoStmtClass:
4610     return this->emitInvalid(S);
4611   case Stmt::LabelStmtClass:
4612     return this->visitStmt(cast<LabelStmt>(S)->getSubStmt());
4613   default: {
4614     if (const auto *E = dyn_cast<Expr>(S))
4615       return this->discard(E);
4616     return false;
4617   }
4618   }
4619 }
4620 
4621 template <class Emitter>
4622 bool Compiler<Emitter>::visitCompoundStmt(const CompoundStmt *S) {
4623   BlockScope<Emitter> Scope(this);
4624   for (const auto *InnerStmt : S->body())
4625     if (!visitStmt(InnerStmt))
4626       return false;
4627   return Scope.destroyLocals();
4628 }
4629 
4630 template <class Emitter>
4631 bool Compiler<Emitter>::visitDeclStmt(const DeclStmt *DS) {
4632   for (const auto *D : DS->decls()) {
4633     if (isa<StaticAssertDecl, TagDecl, TypedefNameDecl, UsingEnumDecl,
4634             FunctionDecl>(D))
4635       continue;
4636 
4637     const auto *VD = dyn_cast<VarDecl>(D);
4638     if (!VD)
4639       return false;
4640     if (!this->visitVarDecl(VD))
4641       return false;
4642   }
4643 
4644   return true;
4645 }
4646 
4647 template <class Emitter>
4648 bool Compiler<Emitter>::visitReturnStmt(const ReturnStmt *RS) {
4649   if (this->InStmtExpr)
4650     return this->emitUnsupported(RS);
4651 
4652   if (const Expr *RE = RS->getRetValue()) {
4653     LocalScope<Emitter> RetScope(this);
4654     if (ReturnType) {
4655       // Primitive types are simply returned.
4656       if (!this->visit(RE))
4657         return false;
4658       this->emitCleanup();
4659       return this->emitRet(*ReturnType, RS);
4660     } else if (RE->getType()->isVoidType()) {
4661       if (!this->visit(RE))
4662         return false;
4663     } else {
4664       // RVO - construct the value in the return location.
4665       if (!this->emitRVOPtr(RE))
4666         return false;
4667       if (!this->visitInitializer(RE))
4668         return false;
4669       if (!this->emitPopPtr(RE))
4670         return false;
4671 
4672       this->emitCleanup();
4673       return this->emitRetVoid(RS);
4674     }
4675   }
4676 
4677   // Void return.
4678   this->emitCleanup();
4679   return this->emitRetVoid(RS);
4680 }
4681 
4682 template <class Emitter> bool Compiler<Emitter>::visitIfStmt(const IfStmt *IS) {
4683   if (auto *CondInit = IS->getInit())
4684     if (!visitStmt(CondInit))
4685       return false;
4686 
4687   if (const DeclStmt *CondDecl = IS->getConditionVariableDeclStmt())
4688     if (!visitDeclStmt(CondDecl))
4689       return false;
4690 
4691   // Compile condition.
4692   if (IS->isNonNegatedConsteval()) {
4693     if (!this->emitIsConstantContext(IS))
4694       return false;
4695   } else if (IS->isNegatedConsteval()) {
4696     if (!this->emitIsConstantContext(IS))
4697       return false;
4698     if (!this->emitInv(IS))
4699       return false;
4700   } else {
4701     if (!this->visitBool(IS->getCond()))
4702       return false;
4703   }
4704 
4705   if (const Stmt *Else = IS->getElse()) {
4706     LabelTy LabelElse = this->getLabel();
4707     LabelTy LabelEnd = this->getLabel();
4708     if (!this->jumpFalse(LabelElse))
4709       return false;
4710     if (!visitStmt(IS->getThen()))
4711       return false;
4712     if (!this->jump(LabelEnd))
4713       return false;
4714     this->emitLabel(LabelElse);
4715     if (!visitStmt(Else))
4716       return false;
4717     this->emitLabel(LabelEnd);
4718   } else {
4719     LabelTy LabelEnd = this->getLabel();
4720     if (!this->jumpFalse(LabelEnd))
4721       return false;
4722     if (!visitStmt(IS->getThen()))
4723       return false;
4724     this->emitLabel(LabelEnd);
4725   }
4726 
4727   return true;
4728 }
4729 
4730 template <class Emitter>
4731 bool Compiler<Emitter>::visitWhileStmt(const WhileStmt *S) {
4732   const Expr *Cond = S->getCond();
4733   const Stmt *Body = S->getBody();
4734 
4735   LabelTy CondLabel = this->getLabel(); // Label before the condition.
4736   LabelTy EndLabel = this->getLabel();  // Label after the loop.
4737   LoopScope<Emitter> LS(this, EndLabel, CondLabel);
4738 
4739   this->fallthrough(CondLabel);
4740   this->emitLabel(CondLabel);
4741 
4742   {
4743     LocalScope<Emitter> CondScope(this);
4744     if (const DeclStmt *CondDecl = S->getConditionVariableDeclStmt())
4745       if (!visitDeclStmt(CondDecl))
4746         return false;
4747 
4748     if (!this->visitBool(Cond))
4749       return false;
4750     if (!this->jumpFalse(EndLabel))
4751       return false;
4752 
4753     if (!this->visitStmt(Body))
4754       return false;
4755 
4756     if (!CondScope.destroyLocals())
4757       return false;
4758   }
4759   if (!this->jump(CondLabel))
4760     return false;
4761   this->fallthrough(EndLabel);
4762   this->emitLabel(EndLabel);
4763 
4764   return true;
4765 }
4766 
4767 template <class Emitter> bool Compiler<Emitter>::visitDoStmt(const DoStmt *S) {
4768   const Expr *Cond = S->getCond();
4769   const Stmt *Body = S->getBody();
4770 
4771   LabelTy StartLabel = this->getLabel();
4772   LabelTy EndLabel = this->getLabel();
4773   LabelTy CondLabel = this->getLabel();
4774   LoopScope<Emitter> LS(this, EndLabel, CondLabel);
4775 
4776   this->fallthrough(StartLabel);
4777   this->emitLabel(StartLabel);
4778 
4779   {
4780     LocalScope<Emitter> CondScope(this);
4781     if (!this->visitStmt(Body))
4782       return false;
4783     this->fallthrough(CondLabel);
4784     this->emitLabel(CondLabel);
4785     if (!this->visitBool(Cond))
4786       return false;
4787 
4788     if (!CondScope.destroyLocals())
4789       return false;
4790   }
4791   if (!this->jumpTrue(StartLabel))
4792     return false;
4793 
4794   this->fallthrough(EndLabel);
4795   this->emitLabel(EndLabel);
4796   return true;
4797 }
4798 
4799 template <class Emitter>
4800 bool Compiler<Emitter>::visitForStmt(const ForStmt *S) {
4801   // for (Init; Cond; Inc) { Body }
4802   const Stmt *Init = S->getInit();
4803   const Expr *Cond = S->getCond();
4804   const Expr *Inc = S->getInc();
4805   const Stmt *Body = S->getBody();
4806 
4807   LabelTy EndLabel = this->getLabel();
4808   LabelTy CondLabel = this->getLabel();
4809   LabelTy IncLabel = this->getLabel();
4810   LoopScope<Emitter> LS(this, EndLabel, IncLabel);
4811 
4812   if (Init && !this->visitStmt(Init))
4813     return false;
4814 
4815   this->fallthrough(CondLabel);
4816   this->emitLabel(CondLabel);
4817 
4818   {
4819     LocalScope<Emitter> CondScope(this);
4820     if (const DeclStmt *CondDecl = S->getConditionVariableDeclStmt())
4821       if (!visitDeclStmt(CondDecl))
4822         return false;
4823 
4824     if (Cond) {
4825       if (!this->visitBool(Cond))
4826         return false;
4827       if (!this->jumpFalse(EndLabel))
4828         return false;
4829     }
4830 
4831     if (Body && !this->visitStmt(Body))
4832       return false;
4833 
4834     this->fallthrough(IncLabel);
4835     this->emitLabel(IncLabel);
4836     if (Inc && !this->discard(Inc))
4837       return false;
4838 
4839     if (!CondScope.destroyLocals())
4840       return false;
4841   }
4842   if (!this->jump(CondLabel))
4843     return false;
4844 
4845   this->fallthrough(EndLabel);
4846   this->emitLabel(EndLabel);
4847   return true;
4848 }
4849 
4850 template <class Emitter>
4851 bool Compiler<Emitter>::visitCXXForRangeStmt(const CXXForRangeStmt *S) {
4852   const Stmt *Init = S->getInit();
4853   const Expr *Cond = S->getCond();
4854   const Expr *Inc = S->getInc();
4855   const Stmt *Body = S->getBody();
4856   const Stmt *BeginStmt = S->getBeginStmt();
4857   const Stmt *RangeStmt = S->getRangeStmt();
4858   const Stmt *EndStmt = S->getEndStmt();
4859   const VarDecl *LoopVar = S->getLoopVariable();
4860 
4861   LabelTy EndLabel = this->getLabel();
4862   LabelTy CondLabel = this->getLabel();
4863   LabelTy IncLabel = this->getLabel();
4864   LoopScope<Emitter> LS(this, EndLabel, IncLabel);
4865 
4866   // Emit declarations needed in the loop.
4867   if (Init && !this->visitStmt(Init))
4868     return false;
4869   if (!this->visitStmt(RangeStmt))
4870     return false;
4871   if (!this->visitStmt(BeginStmt))
4872     return false;
4873   if (!this->visitStmt(EndStmt))
4874     return false;
4875 
4876   // Now the condition as well as the loop variable assignment.
4877   this->fallthrough(CondLabel);
4878   this->emitLabel(CondLabel);
4879   if (!this->visitBool(Cond))
4880     return false;
4881   if (!this->jumpFalse(EndLabel))
4882     return false;
4883 
4884   if (!this->visitVarDecl(LoopVar))
4885     return false;
4886 
4887   // Body.
4888   {
4889     if (!this->visitStmt(Body))
4890       return false;
4891 
4892     this->fallthrough(IncLabel);
4893     this->emitLabel(IncLabel);
4894     if (!this->discard(Inc))
4895       return false;
4896   }
4897 
4898   if (!this->jump(CondLabel))
4899     return false;
4900 
4901   this->fallthrough(EndLabel);
4902   this->emitLabel(EndLabel);
4903   return true;
4904 }
4905 
4906 template <class Emitter>
4907 bool Compiler<Emitter>::visitBreakStmt(const BreakStmt *S) {
4908   if (!BreakLabel)
4909     return false;
4910 
4911   for (VariableScope<Emitter> *C = VarScope; C != BreakVarScope;
4912        C = C->getParent())
4913     C->emitDestruction();
4914   return this->jump(*BreakLabel);
4915 }
4916 
4917 template <class Emitter>
4918 bool Compiler<Emitter>::visitContinueStmt(const ContinueStmt *S) {
4919   if (!ContinueLabel)
4920     return false;
4921 
4922   for (VariableScope<Emitter> *C = VarScope;
4923        C && C->getParent() != ContinueVarScope; C = C->getParent())
4924     C->emitDestruction();
4925   return this->jump(*ContinueLabel);
4926 }
4927 
4928 template <class Emitter>
4929 bool Compiler<Emitter>::visitSwitchStmt(const SwitchStmt *S) {
4930   const Expr *Cond = S->getCond();
4931   PrimType CondT = this->classifyPrim(Cond->getType());
4932   LocalScope<Emitter> LS(this);
4933 
4934   LabelTy EndLabel = this->getLabel();
4935   OptLabelTy DefaultLabel = std::nullopt;
4936   unsigned CondVar = this->allocateLocalPrimitive(Cond, CondT, true, false);
4937 
4938   if (const auto *CondInit = S->getInit())
4939     if (!visitStmt(CondInit))
4940       return false;
4941 
4942   if (const DeclStmt *CondDecl = S->getConditionVariableDeclStmt())
4943     if (!visitDeclStmt(CondDecl))
4944       return false;
4945 
4946   // Initialize condition variable.
4947   if (!this->visit(Cond))
4948     return false;
4949   if (!this->emitSetLocal(CondT, CondVar, S))
4950     return false;
4951 
4952   CaseMap CaseLabels;
4953   // Create labels and comparison ops for all case statements.
4954   for (const SwitchCase *SC = S->getSwitchCaseList(); SC;
4955        SC = SC->getNextSwitchCase()) {
4956     if (const auto *CS = dyn_cast<CaseStmt>(SC)) {
4957       // FIXME: Implement ranges.
4958       if (CS->caseStmtIsGNURange())
4959         return false;
4960       CaseLabels[SC] = this->getLabel();
4961 
4962       const Expr *Value = CS->getLHS();
4963       PrimType ValueT = this->classifyPrim(Value->getType());
4964 
4965       // Compare the case statement's value to the switch condition.
4966       if (!this->emitGetLocal(CondT, CondVar, CS))
4967         return false;
4968       if (!this->visit(Value))
4969         return false;
4970 
4971       // Compare and jump to the case label.
4972       if (!this->emitEQ(ValueT, S))
4973         return false;
4974       if (!this->jumpTrue(CaseLabels[CS]))
4975         return false;
4976     } else {
4977       assert(!DefaultLabel);
4978       DefaultLabel = this->getLabel();
4979     }
4980   }
4981 
4982   // If none of the conditions above were true, fall through to the default
4983   // statement or jump after the switch statement.
4984   if (DefaultLabel) {
4985     if (!this->jump(*DefaultLabel))
4986       return false;
4987   } else {
4988     if (!this->jump(EndLabel))
4989       return false;
4990   }
4991 
4992   SwitchScope<Emitter> SS(this, std::move(CaseLabels), EndLabel, DefaultLabel);
4993   if (!this->visitStmt(S->getBody()))
4994     return false;
4995   this->emitLabel(EndLabel);
4996 
4997   return LS.destroyLocals();
4998 }
4999 
5000 template <class Emitter>
5001 bool Compiler<Emitter>::visitCaseStmt(const CaseStmt *S) {
5002   this->emitLabel(CaseLabels[S]);
5003   return this->visitStmt(S->getSubStmt());
5004 }
5005 
5006 template <class Emitter>
5007 bool Compiler<Emitter>::visitDefaultStmt(const DefaultStmt *S) {
5008   this->emitLabel(*DefaultLabel);
5009   return this->visitStmt(S->getSubStmt());
5010 }
5011 
5012 template <class Emitter>
5013 bool Compiler<Emitter>::visitAttributedStmt(const AttributedStmt *S) {
5014   if (this->Ctx.getLangOpts().CXXAssumptions &&
5015       !this->Ctx.getLangOpts().MSVCCompat) {
5016     for (const Attr *A : S->getAttrs()) {
5017       auto *AA = dyn_cast<CXXAssumeAttr>(A);
5018       if (!AA)
5019         continue;
5020 
5021       assert(isa<NullStmt>(S->getSubStmt()));
5022 
5023       const Expr *Assumption = AA->getAssumption();
5024       if (Assumption->isValueDependent())
5025         return false;
5026 
5027       if (Assumption->HasSideEffects(this->Ctx.getASTContext()))
5028         continue;
5029 
5030       // Evaluate assumption.
5031       if (!this->visitBool(Assumption))
5032         return false;
5033 
5034       if (!this->emitAssume(Assumption))
5035         return false;
5036     }
5037   }
5038 
5039   // Ignore other attributes.
5040   return this->visitStmt(S->getSubStmt());
5041 }
5042 
5043 template <class Emitter>
5044 bool Compiler<Emitter>::visitCXXTryStmt(const CXXTryStmt *S) {
5045   // Ignore all handlers.
5046   return this->visitStmt(S->getTryBlock());
5047 }
5048 
5049 template <class Emitter>
5050 bool Compiler<Emitter>::emitLambdaStaticInvokerBody(const CXXMethodDecl *MD) {
5051   assert(MD->isLambdaStaticInvoker());
5052   assert(MD->hasBody());
5053   assert(cast<CompoundStmt>(MD->getBody())->body_empty());
5054 
5055   const CXXRecordDecl *ClosureClass = MD->getParent();
5056   const CXXMethodDecl *LambdaCallOp = ClosureClass->getLambdaCallOperator();
5057   assert(ClosureClass->captures_begin() == ClosureClass->captures_end());
5058   const Function *Func = this->getFunction(LambdaCallOp);
5059   if (!Func)
5060     return false;
5061   assert(Func->hasThisPointer());
5062   assert(Func->getNumParams() == (MD->getNumParams() + 1 + Func->hasRVO()));
5063 
5064   if (Func->hasRVO()) {
5065     if (!this->emitRVOPtr(MD))
5066       return false;
5067   }
5068 
5069   // The lambda call operator needs an instance pointer, but we don't have
5070   // one here, and we don't need one either because the lambda cannot have
5071   // any captures, as verified above. Emit a null pointer. This is then
5072   // special-cased when interpreting to not emit any misleading diagnostics.
5073   if (!this->emitNullPtr(nullptr, MD))
5074     return false;
5075 
5076   // Forward all arguments from the static invoker to the lambda call operator.
5077   for (const ParmVarDecl *PVD : MD->parameters()) {
5078     auto It = this->Params.find(PVD);
5079     assert(It != this->Params.end());
5080 
5081     // We do the lvalue-to-rvalue conversion manually here, so no need
5082     // to care about references.
5083     PrimType ParamType = this->classify(PVD->getType()).value_or(PT_Ptr);
5084     if (!this->emitGetParam(ParamType, It->second.Offset, MD))
5085       return false;
5086   }
5087 
5088   if (!this->emitCall(Func, 0, LambdaCallOp))
5089     return false;
5090 
5091   this->emitCleanup();
5092   if (ReturnType)
5093     return this->emitRet(*ReturnType, MD);
5094 
5095   // Nothing to do, since we emitted the RVO pointer above.
5096   return this->emitRetVoid(MD);
5097 }
5098 
5099 template <class Emitter>
5100 bool Compiler<Emitter>::checkLiteralType(const Expr *E) {
5101   if (Ctx.getLangOpts().CPlusPlus23)
5102     return true;
5103 
5104   if (!E->isPRValue() || E->getType()->isLiteralType(Ctx.getASTContext()))
5105     return true;
5106 
5107   return this->emitCheckLiteralType(E->getType().getTypePtr(), E);
5108 }
5109 
5110 template <class Emitter>
5111 bool Compiler<Emitter>::compileConstructor(const CXXConstructorDecl *Ctor) {
5112   assert(!ReturnType);
5113 
5114   auto emitFieldInitializer = [&](const Record::Field *F, unsigned FieldOffset,
5115                                   const Expr *InitExpr) -> bool {
5116     // We don't know what to do with these, so just return false.
5117     if (InitExpr->getType().isNull())
5118       return false;
5119 
5120     if (std::optional<PrimType> T = this->classify(InitExpr)) {
5121       if (!this->visit(InitExpr))
5122         return false;
5123 
5124       if (F->isBitField())
5125         return this->emitInitThisBitField(*T, F, FieldOffset, InitExpr);
5126       return this->emitInitThisField(*T, FieldOffset, InitExpr);
5127     }
5128     // Non-primitive case. Get a pointer to the field-to-initialize
5129     // on the stack and call visitInitialzer() for it.
5130     InitLinkScope<Emitter> FieldScope(this, InitLink::Field(F->Offset));
5131     if (!this->emitGetPtrThisField(FieldOffset, InitExpr))
5132       return false;
5133 
5134     if (!this->visitInitializer(InitExpr))
5135       return false;
5136 
5137     return this->emitFinishInitPop(InitExpr);
5138   };
5139 
5140   const RecordDecl *RD = Ctor->getParent();
5141   const Record *R = this->getRecord(RD);
5142   if (!R)
5143     return false;
5144 
5145   if (R->isUnion() && Ctor->isCopyOrMoveConstructor()) {
5146     // union copy and move ctors are special.
5147     assert(cast<CompoundStmt>(Ctor->getBody())->body_empty());
5148     if (!this->emitThis(Ctor))
5149       return false;
5150 
5151     auto PVD = Ctor->getParamDecl(0);
5152     ParamOffset PO = this->Params[PVD]; // Must exist.
5153 
5154     if (!this->emitGetParam(PT_Ptr, PO.Offset, Ctor))
5155       return false;
5156 
5157     return this->emitMemcpy(Ctor) && this->emitPopPtr(Ctor) &&
5158            this->emitRetVoid(Ctor);
5159   }
5160 
5161   InitLinkScope<Emitter> InitScope(this, InitLink::This());
5162   for (const auto *Init : Ctor->inits()) {
5163     // Scope needed for the initializers.
5164     BlockScope<Emitter> Scope(this);
5165 
5166     const Expr *InitExpr = Init->getInit();
5167     if (const FieldDecl *Member = Init->getMember()) {
5168       const Record::Field *F = R->getField(Member);
5169 
5170       if (!emitFieldInitializer(F, F->Offset, InitExpr))
5171         return false;
5172     } else if (const Type *Base = Init->getBaseClass()) {
5173       const auto *BaseDecl = Base->getAsCXXRecordDecl();
5174       assert(BaseDecl);
5175 
5176       if (Init->isBaseVirtual()) {
5177         assert(R->getVirtualBase(BaseDecl));
5178         if (!this->emitGetPtrThisVirtBase(BaseDecl, InitExpr))
5179           return false;
5180 
5181       } else {
5182         // Base class initializer.
5183         // Get This Base and call initializer on it.
5184         const Record::Base *B = R->getBase(BaseDecl);
5185         assert(B);
5186         if (!this->emitGetPtrThisBase(B->Offset, InitExpr))
5187           return false;
5188       }
5189 
5190       if (!this->visitInitializer(InitExpr))
5191         return false;
5192       if (!this->emitFinishInitPop(InitExpr))
5193         return false;
5194     } else if (const IndirectFieldDecl *IFD = Init->getIndirectMember()) {
5195       assert(IFD->getChainingSize() >= 2);
5196 
5197       unsigned NestedFieldOffset = 0;
5198       const Record::Field *NestedField = nullptr;
5199       for (const NamedDecl *ND : IFD->chain()) {
5200         const auto *FD = cast<FieldDecl>(ND);
5201         const Record *FieldRecord = this->P.getOrCreateRecord(FD->getParent());
5202         assert(FieldRecord);
5203 
5204         NestedField = FieldRecord->getField(FD);
5205         assert(NestedField);
5206 
5207         NestedFieldOffset += NestedField->Offset;
5208       }
5209       assert(NestedField);
5210 
5211       if (!emitFieldInitializer(NestedField, NestedFieldOffset, InitExpr))
5212         return false;
5213     } else {
5214       assert(Init->isDelegatingInitializer());
5215       if (!this->emitThis(InitExpr))
5216         return false;
5217       if (!this->visitInitializer(Init->getInit()))
5218         return false;
5219       if (!this->emitPopPtr(InitExpr))
5220         return false;
5221     }
5222 
5223     if (!Scope.destroyLocals())
5224       return false;
5225   }
5226 
5227   if (const auto *Body = Ctor->getBody())
5228     if (!visitStmt(Body))
5229       return false;
5230 
5231   return this->emitRetVoid(SourceInfo{});
5232 }
5233 
5234 template <class Emitter>
5235 bool Compiler<Emitter>::compileDestructor(const CXXDestructorDecl *Dtor) {
5236   const RecordDecl *RD = Dtor->getParent();
5237   const Record *R = this->getRecord(RD);
5238   if (!R)
5239     return false;
5240 
5241   if (!Dtor->isTrivial() && Dtor->getBody()) {
5242     if (!this->visitStmt(Dtor->getBody()))
5243       return false;
5244   }
5245 
5246   if (!this->emitThis(Dtor))
5247     return false;
5248 
5249   assert(R);
5250   if (!R->isUnion()) {
5251     // First, destroy all fields.
5252     for (const Record::Field &Field : llvm::reverse(R->fields())) {
5253       const Descriptor *D = Field.Desc;
5254       if (!D->isPrimitive() && !D->isPrimitiveArray()) {
5255         if (!this->emitGetPtrField(Field.Offset, SourceInfo{}))
5256           return false;
5257         if (!this->emitDestruction(D))
5258           return false;
5259         if (!this->emitPopPtr(SourceInfo{}))
5260           return false;
5261       }
5262     }
5263   }
5264 
5265   for (const Record::Base &Base : llvm::reverse(R->bases())) {
5266     if (!this->emitGetPtrBase(Base.Offset, SourceInfo{}))
5267       return false;
5268     if (!this->emitRecordDestruction(Base.R))
5269       return false;
5270     if (!this->emitPopPtr(SourceInfo{}))
5271       return false;
5272   }
5273 
5274   // FIXME: Virtual bases.
5275   return this->emitPopPtr(Dtor) && this->emitRetVoid(Dtor);
5276 }
5277 
5278 template <class Emitter>
5279 bool Compiler<Emitter>::visitFunc(const FunctionDecl *F) {
5280   // Classify the return type.
5281   ReturnType = this->classify(F->getReturnType());
5282 
5283   if (const auto *Ctor = dyn_cast<CXXConstructorDecl>(F))
5284     return this->compileConstructor(Ctor);
5285   if (const auto *Dtor = dyn_cast<CXXDestructorDecl>(F))
5286     return this->compileDestructor(Dtor);
5287 
5288   // Emit custom code if this is a lambda static invoker.
5289   if (const auto *MD = dyn_cast<CXXMethodDecl>(F);
5290       MD && MD->isLambdaStaticInvoker())
5291     return this->emitLambdaStaticInvokerBody(MD);
5292 
5293   // Regular functions.
5294   if (const auto *Body = F->getBody())
5295     if (!visitStmt(Body))
5296       return false;
5297 
5298   // Emit a guard return to protect against a code path missing one.
5299   if (F->getReturnType()->isVoidType())
5300     return this->emitRetVoid(SourceInfo{});
5301   return this->emitNoRet(SourceInfo{});
5302 }
5303 
5304 template <class Emitter>
5305 bool Compiler<Emitter>::VisitUnaryOperator(const UnaryOperator *E) {
5306   const Expr *SubExpr = E->getSubExpr();
5307   if (SubExpr->getType()->isAnyComplexType())
5308     return this->VisitComplexUnaryOperator(E);
5309   if (SubExpr->getType()->isVectorType())
5310     return this->VisitVectorUnaryOperator(E);
5311   std::optional<PrimType> T = classify(SubExpr->getType());
5312 
5313   switch (E->getOpcode()) {
5314   case UO_PostInc: { // x++
5315     if (!Ctx.getLangOpts().CPlusPlus14)
5316       return this->emitInvalid(E);
5317     if (!T)
5318       return this->emitError(E);
5319 
5320     if (!this->visit(SubExpr))
5321       return false;
5322 
5323     if (T == PT_Ptr || T == PT_FnPtr) {
5324       if (!this->emitIncPtr(E))
5325         return false;
5326 
5327       return DiscardResult ? this->emitPopPtr(E) : true;
5328     }
5329 
5330     if (T == PT_Float) {
5331       return DiscardResult ? this->emitIncfPop(getFPOptions(E), E)
5332                            : this->emitIncf(getFPOptions(E), E);
5333     }
5334 
5335     return DiscardResult ? this->emitIncPop(*T, E) : this->emitInc(*T, E);
5336   }
5337   case UO_PostDec: { // x--
5338     if (!Ctx.getLangOpts().CPlusPlus14)
5339       return this->emitInvalid(E);
5340     if (!T)
5341       return this->emitError(E);
5342 
5343     if (!this->visit(SubExpr))
5344       return false;
5345 
5346     if (T == PT_Ptr || T == PT_FnPtr) {
5347       if (!this->emitDecPtr(E))
5348         return false;
5349 
5350       return DiscardResult ? this->emitPopPtr(E) : true;
5351     }
5352 
5353     if (T == PT_Float) {
5354       return DiscardResult ? this->emitDecfPop(getFPOptions(E), E)
5355                            : this->emitDecf(getFPOptions(E), E);
5356     }
5357 
5358     return DiscardResult ? this->emitDecPop(*T, E) : this->emitDec(*T, E);
5359   }
5360   case UO_PreInc: { // ++x
5361     if (!Ctx.getLangOpts().CPlusPlus14)
5362       return this->emitInvalid(E);
5363     if (!T)
5364       return this->emitError(E);
5365 
5366     if (!this->visit(SubExpr))
5367       return false;
5368 
5369     if (T == PT_Ptr || T == PT_FnPtr) {
5370       if (!this->emitLoadPtr(E))
5371         return false;
5372       if (!this->emitConstUint8(1, E))
5373         return false;
5374       if (!this->emitAddOffsetUint8(E))
5375         return false;
5376       return DiscardResult ? this->emitStorePopPtr(E) : this->emitStorePtr(E);
5377     }
5378 
5379     // Post-inc and pre-inc are the same if the value is to be discarded.
5380     if (DiscardResult) {
5381       if (T == PT_Float)
5382         return this->emitIncfPop(getFPOptions(E), E);
5383       return this->emitIncPop(*T, E);
5384     }
5385 
5386     if (T == PT_Float) {
5387       const auto &TargetSemantics = Ctx.getFloatSemantics(E->getType());
5388       if (!this->emitLoadFloat(E))
5389         return false;
5390       if (!this->emitConstFloat(llvm::APFloat(TargetSemantics, 1), E))
5391         return false;
5392       if (!this->emitAddf(getFPOptions(E), E))
5393         return false;
5394       if (!this->emitStoreFloat(E))
5395         return false;
5396     } else {
5397       assert(isIntegralType(*T));
5398       if (!this->emitLoad(*T, E))
5399         return false;
5400       if (!this->emitConst(1, E))
5401         return false;
5402       if (!this->emitAdd(*T, E))
5403         return false;
5404       if (!this->emitStore(*T, E))
5405         return false;
5406     }
5407     return E->isGLValue() || this->emitLoadPop(*T, E);
5408   }
5409   case UO_PreDec: { // --x
5410     if (!Ctx.getLangOpts().CPlusPlus14)
5411       return this->emitInvalid(E);
5412     if (!T)
5413       return this->emitError(E);
5414 
5415     if (!this->visit(SubExpr))
5416       return false;
5417 
5418     if (T == PT_Ptr || T == PT_FnPtr) {
5419       if (!this->emitLoadPtr(E))
5420         return false;
5421       if (!this->emitConstUint8(1, E))
5422         return false;
5423       if (!this->emitSubOffsetUint8(E))
5424         return false;
5425       return DiscardResult ? this->emitStorePopPtr(E) : this->emitStorePtr(E);
5426     }
5427 
5428     // Post-dec and pre-dec are the same if the value is to be discarded.
5429     if (DiscardResult) {
5430       if (T == PT_Float)
5431         return this->emitDecfPop(getFPOptions(E), E);
5432       return this->emitDecPop(*T, E);
5433     }
5434 
5435     if (T == PT_Float) {
5436       const auto &TargetSemantics = Ctx.getFloatSemantics(E->getType());
5437       if (!this->emitLoadFloat(E))
5438         return false;
5439       if (!this->emitConstFloat(llvm::APFloat(TargetSemantics, 1), E))
5440         return false;
5441       if (!this->emitSubf(getFPOptions(E), E))
5442         return false;
5443       if (!this->emitStoreFloat(E))
5444         return false;
5445     } else {
5446       assert(isIntegralType(*T));
5447       if (!this->emitLoad(*T, E))
5448         return false;
5449       if (!this->emitConst(1, E))
5450         return false;
5451       if (!this->emitSub(*T, E))
5452         return false;
5453       if (!this->emitStore(*T, E))
5454         return false;
5455     }
5456     return E->isGLValue() || this->emitLoadPop(*T, E);
5457   }
5458   case UO_LNot: // !x
5459     if (!T)
5460       return this->emitError(E);
5461 
5462     if (DiscardResult)
5463       return this->discard(SubExpr);
5464 
5465     if (!this->visitBool(SubExpr))
5466       return false;
5467 
5468     if (!this->emitInv(E))
5469       return false;
5470 
5471     if (PrimType ET = classifyPrim(E->getType()); ET != PT_Bool)
5472       return this->emitCast(PT_Bool, ET, E);
5473     return true;
5474   case UO_Minus: // -x
5475     if (!T)
5476       return this->emitError(E);
5477 
5478     if (!this->visit(SubExpr))
5479       return false;
5480     return DiscardResult ? this->emitPop(*T, E) : this->emitNeg(*T, E);
5481   case UO_Plus: // +x
5482     if (!T)
5483       return this->emitError(E);
5484 
5485     if (!this->visit(SubExpr)) // noop
5486       return false;
5487     return DiscardResult ? this->emitPop(*T, E) : true;
5488   case UO_AddrOf: // &x
5489     if (E->getType()->isMemberPointerType()) {
5490       // C++11 [expr.unary.op]p3 has very strict rules on how the address of a
5491       // member can be formed.
5492       return this->emitGetMemberPtr(cast<DeclRefExpr>(SubExpr)->getDecl(), E);
5493     }
5494     // We should already have a pointer when we get here.
5495     return this->delegate(SubExpr);
5496   case UO_Deref: // *x
5497     if (DiscardResult)
5498       return this->discard(SubExpr);
5499     return this->visit(SubExpr);
5500   case UO_Not: // ~x
5501     if (!T)
5502       return this->emitError(E);
5503 
5504     if (!this->visit(SubExpr))
5505       return false;
5506     return DiscardResult ? this->emitPop(*T, E) : this->emitComp(*T, E);
5507   case UO_Real: // __real x
5508     assert(T);
5509     return this->delegate(SubExpr);
5510   case UO_Imag: { // __imag x
5511     assert(T);
5512     if (!this->discard(SubExpr))
5513       return false;
5514     return this->visitZeroInitializer(*T, SubExpr->getType(), SubExpr);
5515   }
5516   case UO_Extension:
5517     return this->delegate(SubExpr);
5518   case UO_Coawait:
5519     assert(false && "Unhandled opcode");
5520   }
5521 
5522   return false;
5523 }
5524 
5525 template <class Emitter>
5526 bool Compiler<Emitter>::VisitComplexUnaryOperator(const UnaryOperator *E) {
5527   const Expr *SubExpr = E->getSubExpr();
5528   assert(SubExpr->getType()->isAnyComplexType());
5529 
5530   if (DiscardResult)
5531     return this->discard(SubExpr);
5532 
5533   std::optional<PrimType> ResT = classify(E);
5534   auto prepareResult = [=]() -> bool {
5535     if (!ResT && !Initializing) {
5536       std::optional<unsigned> LocalIndex = allocateLocal(SubExpr);
5537       if (!LocalIndex)
5538         return false;
5539       return this->emitGetPtrLocal(*LocalIndex, E);
5540     }
5541 
5542     return true;
5543   };
5544 
5545   // The offset of the temporary, if we created one.
5546   unsigned SubExprOffset = ~0u;
5547   auto createTemp = [=, &SubExprOffset]() -> bool {
5548     SubExprOffset = this->allocateLocalPrimitive(SubExpr, PT_Ptr, true, false);
5549     if (!this->visit(SubExpr))
5550       return false;
5551     return this->emitSetLocal(PT_Ptr, SubExprOffset, E);
5552   };
5553 
5554   PrimType ElemT = classifyComplexElementType(SubExpr->getType());
5555   auto getElem = [=](unsigned Offset, unsigned Index) -> bool {
5556     if (!this->emitGetLocal(PT_Ptr, Offset, E))
5557       return false;
5558     return this->emitArrayElemPop(ElemT, Index, E);
5559   };
5560 
5561   switch (E->getOpcode()) {
5562   case UO_Minus:
5563     if (!prepareResult())
5564       return false;
5565     if (!createTemp())
5566       return false;
5567     for (unsigned I = 0; I != 2; ++I) {
5568       if (!getElem(SubExprOffset, I))
5569         return false;
5570       if (!this->emitNeg(ElemT, E))
5571         return false;
5572       if (!this->emitInitElem(ElemT, I, E))
5573         return false;
5574     }
5575     break;
5576 
5577   case UO_Plus:   // +x
5578   case UO_AddrOf: // &x
5579   case UO_Deref:  // *x
5580     return this->delegate(SubExpr);
5581 
5582   case UO_LNot:
5583     if (!this->visit(SubExpr))
5584       return false;
5585     if (!this->emitComplexBoolCast(SubExpr))
5586       return false;
5587     if (!this->emitInv(E))
5588       return false;
5589     if (PrimType ET = classifyPrim(E->getType()); ET != PT_Bool)
5590       return this->emitCast(PT_Bool, ET, E);
5591     return true;
5592 
5593   case UO_Real:
5594     return this->emitComplexReal(SubExpr);
5595 
5596   case UO_Imag:
5597     if (!this->visit(SubExpr))
5598       return false;
5599 
5600     if (SubExpr->isLValue()) {
5601       if (!this->emitConstUint8(1, E))
5602         return false;
5603       return this->emitArrayElemPtrPopUint8(E);
5604     }
5605 
5606     // Since our _Complex implementation does not map to a primitive type,
5607     // we sometimes have to do the lvalue-to-rvalue conversion here manually.
5608     return this->emitArrayElemPop(classifyPrim(E->getType()), 1, E);
5609 
5610   case UO_Not: // ~x
5611     if (!this->visit(SubExpr))
5612       return false;
5613     // Negate the imaginary component.
5614     if (!this->emitArrayElem(ElemT, 1, E))
5615       return false;
5616     if (!this->emitNeg(ElemT, E))
5617       return false;
5618     if (!this->emitInitElem(ElemT, 1, E))
5619       return false;
5620     return DiscardResult ? this->emitPopPtr(E) : true;
5621 
5622   case UO_Extension:
5623     return this->delegate(SubExpr);
5624 
5625   default:
5626     return this->emitInvalid(E);
5627   }
5628 
5629   return true;
5630 }
5631 
5632 template <class Emitter>
5633 bool Compiler<Emitter>::VisitVectorUnaryOperator(const UnaryOperator *E) {
5634   const Expr *SubExpr = E->getSubExpr();
5635   assert(SubExpr->getType()->isVectorType());
5636 
5637   if (DiscardResult)
5638     return this->discard(SubExpr);
5639 
5640   auto UnaryOp = E->getOpcode();
5641   if (UnaryOp != UO_Plus && UnaryOp != UO_Minus && UnaryOp != UO_LNot &&
5642       UnaryOp != UO_Not && UnaryOp != UO_AddrOf)
5643     return this->emitInvalid(E);
5644 
5645   // Nothing to do here.
5646   if (UnaryOp == UO_Plus || UnaryOp == UO_AddrOf)
5647     return this->delegate(SubExpr);
5648 
5649   if (!Initializing) {
5650     std::optional<unsigned> LocalIndex = allocateLocal(SubExpr);
5651     if (!LocalIndex)
5652       return false;
5653     if (!this->emitGetPtrLocal(*LocalIndex, E))
5654       return false;
5655   }
5656 
5657   // The offset of the temporary, if we created one.
5658   unsigned SubExprOffset =
5659       this->allocateLocalPrimitive(SubExpr, PT_Ptr, true, false);
5660   if (!this->visit(SubExpr))
5661     return false;
5662   if (!this->emitSetLocal(PT_Ptr, SubExprOffset, E))
5663     return false;
5664 
5665   const auto *VecTy = SubExpr->getType()->getAs<VectorType>();
5666   PrimType ElemT = classifyVectorElementType(SubExpr->getType());
5667   auto getElem = [=](unsigned Offset, unsigned Index) -> bool {
5668     if (!this->emitGetLocal(PT_Ptr, Offset, E))
5669       return false;
5670     return this->emitArrayElemPop(ElemT, Index, E);
5671   };
5672 
5673   switch (UnaryOp) {
5674   case UO_Minus:
5675     for (unsigned I = 0; I != VecTy->getNumElements(); ++I) {
5676       if (!getElem(SubExprOffset, I))
5677         return false;
5678       if (!this->emitNeg(ElemT, E))
5679         return false;
5680       if (!this->emitInitElem(ElemT, I, E))
5681         return false;
5682     }
5683     break;
5684   case UO_LNot: { // !x
5685     // In C++, the logic operators !, &&, || are available for vectors. !v is
5686     // equivalent to v == 0.
5687     //
5688     // The result of the comparison is a vector of the same width and number of
5689     // elements as the comparison operands with a signed integral element type.
5690     //
5691     // https://gcc.gnu.org/onlinedocs/gcc/Vector-Extensions.html
5692     QualType ResultVecTy = E->getType();
5693     PrimType ResultVecElemT =
5694         classifyPrim(ResultVecTy->getAs<VectorType>()->getElementType());
5695     for (unsigned I = 0; I != VecTy->getNumElements(); ++I) {
5696       if (!getElem(SubExprOffset, I))
5697         return false;
5698       // operator ! on vectors returns -1 for 'truth', so negate it.
5699       if (!this->emitPrimCast(ElemT, PT_Bool, Ctx.getASTContext().BoolTy, E))
5700         return false;
5701       if (!this->emitInv(E))
5702         return false;
5703       if (!this->emitPrimCast(PT_Bool, ElemT, VecTy->getElementType(), E))
5704         return false;
5705       if (!this->emitNeg(ElemT, E))
5706         return false;
5707       if (ElemT != ResultVecElemT &&
5708           !this->emitPrimCast(ElemT, ResultVecElemT, ResultVecTy, E))
5709         return false;
5710       if (!this->emitInitElem(ResultVecElemT, I, E))
5711         return false;
5712     }
5713     break;
5714   }
5715   case UO_Not: // ~x
5716     for (unsigned I = 0; I != VecTy->getNumElements(); ++I) {
5717       if (!getElem(SubExprOffset, I))
5718         return false;
5719       if (ElemT == PT_Bool) {
5720         if (!this->emitInv(E))
5721           return false;
5722       } else {
5723         if (!this->emitComp(ElemT, E))
5724           return false;
5725       }
5726       if (!this->emitInitElem(ElemT, I, E))
5727         return false;
5728     }
5729     break;
5730   default:
5731     llvm_unreachable("Unsupported unary operators should be handled up front");
5732   }
5733   return true;
5734 }
5735 
5736 template <class Emitter>
5737 bool Compiler<Emitter>::visitDeclRef(const ValueDecl *D, const Expr *E) {
5738   if (DiscardResult)
5739     return true;
5740 
5741   if (const auto *ECD = dyn_cast<EnumConstantDecl>(D)) {
5742     return this->emitConst(ECD->getInitVal(), E);
5743   } else if (const auto *BD = dyn_cast<BindingDecl>(D)) {
5744     return this->visit(BD->getBinding());
5745   } else if (const auto *FuncDecl = dyn_cast<FunctionDecl>(D)) {
5746     const Function *F = getFunction(FuncDecl);
5747     return F && this->emitGetFnPtr(F, E);
5748   } else if (const auto *TPOD = dyn_cast<TemplateParamObjectDecl>(D)) {
5749     if (std::optional<unsigned> Index = P.getOrCreateGlobal(D)) {
5750       if (!this->emitGetPtrGlobal(*Index, E))
5751         return false;
5752       if (std::optional<PrimType> T = classify(E->getType())) {
5753         if (!this->visitAPValue(TPOD->getValue(), *T, E))
5754           return false;
5755         return this->emitInitGlobal(*T, *Index, E);
5756       }
5757       return this->visitAPValueInitializer(TPOD->getValue(), E);
5758     }
5759     return false;
5760   }
5761 
5762   // References are implemented via pointers, so when we see a DeclRefExpr
5763   // pointing to a reference, we need to get its value directly (i.e. the
5764   // pointer to the actual value) instead of a pointer to the pointer to the
5765   // value.
5766   bool IsReference = D->getType()->isReferenceType();
5767 
5768   // Check for local/global variables and parameters.
5769   if (auto It = Locals.find(D); It != Locals.end()) {
5770     const unsigned Offset = It->second.Offset;
5771     if (IsReference)
5772       return this->emitGetLocal(PT_Ptr, Offset, E);
5773     return this->emitGetPtrLocal(Offset, E);
5774   } else if (auto GlobalIndex = P.getGlobal(D)) {
5775     if (IsReference) {
5776       if (!Ctx.getLangOpts().CPlusPlus11)
5777         return this->emitGetGlobal(classifyPrim(E), *GlobalIndex, E);
5778       return this->emitGetGlobalUnchecked(classifyPrim(E), *GlobalIndex, E);
5779     }
5780 
5781     return this->emitGetPtrGlobal(*GlobalIndex, E);
5782   } else if (const auto *PVD = dyn_cast<ParmVarDecl>(D)) {
5783     if (auto It = this->Params.find(PVD); It != this->Params.end()) {
5784       if (IsReference || !It->second.IsPtr)
5785         return this->emitGetParam(classifyPrim(E), It->second.Offset, E);
5786 
5787       return this->emitGetPtrParam(It->second.Offset, E);
5788     }
5789   }
5790 
5791   // In case we need to re-visit a declaration.
5792   auto revisit = [&](const VarDecl *VD) -> bool {
5793     auto VarState = this->visitDecl(VD);
5794 
5795     if (VarState.notCreated())
5796       return true;
5797     if (!VarState)
5798       return false;
5799     // Retry.
5800     return this->visitDeclRef(D, E);
5801   };
5802 
5803   // Handle lambda captures.
5804   if (auto It = this->LambdaCaptures.find(D);
5805       It != this->LambdaCaptures.end()) {
5806     auto [Offset, IsPtr] = It->second;
5807 
5808     if (IsPtr)
5809       return this->emitGetThisFieldPtr(Offset, E);
5810     return this->emitGetPtrThisField(Offset, E);
5811   } else if (const auto *DRE = dyn_cast<DeclRefExpr>(E);
5812              DRE && DRE->refersToEnclosingVariableOrCapture()) {
5813     if (const auto *VD = dyn_cast<VarDecl>(D); VD && VD->isInitCapture())
5814       return revisit(VD);
5815   }
5816 
5817   if (D != InitializingDecl) {
5818     // Try to lazily visit (or emit dummy pointers for) declarations
5819     // we haven't seen yet.
5820     if (Ctx.getLangOpts().CPlusPlus) {
5821       if (const auto *VD = dyn_cast<VarDecl>(D)) {
5822         const auto typeShouldBeVisited = [&](QualType T) -> bool {
5823           if (T.isConstant(Ctx.getASTContext()))
5824             return true;
5825           if (const auto *RT = T->getAs<ReferenceType>())
5826             return RT->getPointeeType().isConstQualified();
5827           return false;
5828         };
5829 
5830         // DecompositionDecls are just proxies for us.
5831         if (isa<DecompositionDecl>(VD))
5832           return revisit(VD);
5833 
5834         if ((VD->hasGlobalStorage() || VD->isStaticDataMember()) &&
5835             typeShouldBeVisited(VD->getType()))
5836           return revisit(VD);
5837 
5838         // FIXME: The evaluateValue() check here is a little ridiculous, since
5839         // it will ultimately call into Context::evaluateAsInitializer(). In
5840         // other words, we're evaluating the initializer, just to know if we can
5841         // evaluate the initializer.
5842         if (VD->isLocalVarDecl() && typeShouldBeVisited(VD->getType()) &&
5843             VD->getInit() && !VD->getInit()->isValueDependent() &&
5844             VD->evaluateValue())
5845           return revisit(VD);
5846       }
5847     } else {
5848       if (const auto *VD = dyn_cast<VarDecl>(D);
5849           VD && VD->getAnyInitializer() &&
5850           VD->getType().isConstant(Ctx.getASTContext()) && !VD->isWeak())
5851         return revisit(VD);
5852     }
5853   }
5854 
5855   if (std::optional<unsigned> I = P.getOrCreateDummy(D)) {
5856     if (!this->emitGetPtrGlobal(*I, E))
5857       return false;
5858     if (E->getType()->isVoidType())
5859       return true;
5860     // Convert the dummy pointer to another pointer type if we have to.
5861     if (PrimType PT = classifyPrim(E); PT != PT_Ptr) {
5862       if (isPtrType(PT))
5863         return this->emitDecayPtr(PT_Ptr, PT, E);
5864       return false;
5865     }
5866     return true;
5867   }
5868 
5869   if (const auto *DRE = dyn_cast<DeclRefExpr>(E))
5870     return this->emitInvalidDeclRef(DRE, E);
5871   return false;
5872 }
5873 
5874 template <class Emitter>
5875 bool Compiler<Emitter>::VisitDeclRefExpr(const DeclRefExpr *E) {
5876   const auto *D = E->getDecl();
5877   return this->visitDeclRef(D, E);
5878 }
5879 
5880 template <class Emitter> void Compiler<Emitter>::emitCleanup() {
5881   for (VariableScope<Emitter> *C = VarScope; C; C = C->getParent())
5882     C->emitDestruction();
5883 }
5884 
5885 template <class Emitter>
5886 unsigned Compiler<Emitter>::collectBaseOffset(const QualType BaseType,
5887                                               const QualType DerivedType) {
5888   const auto extractRecordDecl = [](QualType Ty) -> const CXXRecordDecl * {
5889     if (const auto *R = Ty->getPointeeCXXRecordDecl())
5890       return R;
5891     return Ty->getAsCXXRecordDecl();
5892   };
5893   const CXXRecordDecl *BaseDecl = extractRecordDecl(BaseType);
5894   const CXXRecordDecl *DerivedDecl = extractRecordDecl(DerivedType);
5895 
5896   return Ctx.collectBaseOffset(BaseDecl, DerivedDecl);
5897 }
5898 
5899 /// Emit casts from a PrimType to another PrimType.
5900 template <class Emitter>
5901 bool Compiler<Emitter>::emitPrimCast(PrimType FromT, PrimType ToT,
5902                                      QualType ToQT, const Expr *E) {
5903 
5904   if (FromT == PT_Float) {
5905     // Floating to floating.
5906     if (ToT == PT_Float) {
5907       const llvm::fltSemantics *ToSem = &Ctx.getFloatSemantics(ToQT);
5908       return this->emitCastFP(ToSem, getRoundingMode(E), E);
5909     }
5910 
5911     if (ToT == PT_IntAP)
5912       return this->emitCastFloatingIntegralAP(Ctx.getBitWidth(ToQT),
5913                                               getFPOptions(E), E);
5914     if (ToT == PT_IntAPS)
5915       return this->emitCastFloatingIntegralAPS(Ctx.getBitWidth(ToQT),
5916                                                getFPOptions(E), E);
5917 
5918     // Float to integral.
5919     if (isIntegralType(ToT) || ToT == PT_Bool)
5920       return this->emitCastFloatingIntegral(ToT, getFPOptions(E), E);
5921   }
5922 
5923   if (isIntegralType(FromT) || FromT == PT_Bool) {
5924     if (ToT == PT_IntAP)
5925       return this->emitCastAP(FromT, Ctx.getBitWidth(ToQT), E);
5926     if (ToT == PT_IntAPS)
5927       return this->emitCastAPS(FromT, Ctx.getBitWidth(ToQT), E);
5928 
5929     // Integral to integral.
5930     if (isIntegralType(ToT) || ToT == PT_Bool)
5931       return FromT != ToT ? this->emitCast(FromT, ToT, E) : true;
5932 
5933     if (ToT == PT_Float) {
5934       // Integral to floating.
5935       const llvm::fltSemantics *ToSem = &Ctx.getFloatSemantics(ToQT);
5936       return this->emitCastIntegralFloating(FromT, ToSem, getFPOptions(E), E);
5937     }
5938   }
5939 
5940   return false;
5941 }
5942 
5943 /// Emits __real(SubExpr)
5944 template <class Emitter>
5945 bool Compiler<Emitter>::emitComplexReal(const Expr *SubExpr) {
5946   assert(SubExpr->getType()->isAnyComplexType());
5947 
5948   if (DiscardResult)
5949     return this->discard(SubExpr);
5950 
5951   if (!this->visit(SubExpr))
5952     return false;
5953   if (SubExpr->isLValue()) {
5954     if (!this->emitConstUint8(0, SubExpr))
5955       return false;
5956     return this->emitArrayElemPtrPopUint8(SubExpr);
5957   }
5958 
5959   // Rvalue, load the actual element.
5960   return this->emitArrayElemPop(classifyComplexElementType(SubExpr->getType()),
5961                                 0, SubExpr);
5962 }
5963 
5964 template <class Emitter>
5965 bool Compiler<Emitter>::emitComplexBoolCast(const Expr *E) {
5966   assert(!DiscardResult);
5967   PrimType ElemT = classifyComplexElementType(E->getType());
5968   // We emit the expression (__real(E) != 0 || __imag(E) != 0)
5969   // for us, that means (bool)E[0] || (bool)E[1]
5970   if (!this->emitArrayElem(ElemT, 0, E))
5971     return false;
5972   if (ElemT == PT_Float) {
5973     if (!this->emitCastFloatingIntegral(PT_Bool, getFPOptions(E), E))
5974       return false;
5975   } else {
5976     if (!this->emitCast(ElemT, PT_Bool, E))
5977       return false;
5978   }
5979 
5980   // We now have the bool value of E[0] on the stack.
5981   LabelTy LabelTrue = this->getLabel();
5982   if (!this->jumpTrue(LabelTrue))
5983     return false;
5984 
5985   if (!this->emitArrayElemPop(ElemT, 1, E))
5986     return false;
5987   if (ElemT == PT_Float) {
5988     if (!this->emitCastFloatingIntegral(PT_Bool, getFPOptions(E), E))
5989       return false;
5990   } else {
5991     if (!this->emitCast(ElemT, PT_Bool, E))
5992       return false;
5993   }
5994   // Leave the boolean value of E[1] on the stack.
5995   LabelTy EndLabel = this->getLabel();
5996   this->jump(EndLabel);
5997 
5998   this->emitLabel(LabelTrue);
5999   if (!this->emitPopPtr(E))
6000     return false;
6001   if (!this->emitConstBool(true, E))
6002     return false;
6003 
6004   this->fallthrough(EndLabel);
6005   this->emitLabel(EndLabel);
6006 
6007   return true;
6008 }
6009 
6010 template <class Emitter>
6011 bool Compiler<Emitter>::emitComplexComparison(const Expr *LHS, const Expr *RHS,
6012                                               const BinaryOperator *E) {
6013   assert(E->isComparisonOp());
6014   assert(!Initializing);
6015   assert(!DiscardResult);
6016 
6017   PrimType ElemT;
6018   bool LHSIsComplex;
6019   unsigned LHSOffset;
6020   if (LHS->getType()->isAnyComplexType()) {
6021     LHSIsComplex = true;
6022     ElemT = classifyComplexElementType(LHS->getType());
6023     LHSOffset = allocateLocalPrimitive(LHS, PT_Ptr, /*IsConst=*/true,
6024                                        /*IsExtended=*/false);
6025     if (!this->visit(LHS))
6026       return false;
6027     if (!this->emitSetLocal(PT_Ptr, LHSOffset, E))
6028       return false;
6029   } else {
6030     LHSIsComplex = false;
6031     PrimType LHST = classifyPrim(LHS->getType());
6032     LHSOffset = this->allocateLocalPrimitive(LHS, LHST, true, false);
6033     if (!this->visit(LHS))
6034       return false;
6035     if (!this->emitSetLocal(LHST, LHSOffset, E))
6036       return false;
6037   }
6038 
6039   bool RHSIsComplex;
6040   unsigned RHSOffset;
6041   if (RHS->getType()->isAnyComplexType()) {
6042     RHSIsComplex = true;
6043     ElemT = classifyComplexElementType(RHS->getType());
6044     RHSOffset = allocateLocalPrimitive(RHS, PT_Ptr, /*IsConst=*/true,
6045                                        /*IsExtended=*/false);
6046     if (!this->visit(RHS))
6047       return false;
6048     if (!this->emitSetLocal(PT_Ptr, RHSOffset, E))
6049       return false;
6050   } else {
6051     RHSIsComplex = false;
6052     PrimType RHST = classifyPrim(RHS->getType());
6053     RHSOffset = this->allocateLocalPrimitive(RHS, RHST, true, false);
6054     if (!this->visit(RHS))
6055       return false;
6056     if (!this->emitSetLocal(RHST, RHSOffset, E))
6057       return false;
6058   }
6059 
6060   auto getElem = [&](unsigned LocalOffset, unsigned Index,
6061                      bool IsComplex) -> bool {
6062     if (IsComplex) {
6063       if (!this->emitGetLocal(PT_Ptr, LocalOffset, E))
6064         return false;
6065       return this->emitArrayElemPop(ElemT, Index, E);
6066     }
6067     return this->emitGetLocal(ElemT, LocalOffset, E);
6068   };
6069 
6070   for (unsigned I = 0; I != 2; ++I) {
6071     // Get both values.
6072     if (!getElem(LHSOffset, I, LHSIsComplex))
6073       return false;
6074     if (!getElem(RHSOffset, I, RHSIsComplex))
6075       return false;
6076     // And compare them.
6077     if (!this->emitEQ(ElemT, E))
6078       return false;
6079 
6080     if (!this->emitCastBoolUint8(E))
6081       return false;
6082   }
6083 
6084   // We now have two bool values on the stack. Compare those.
6085   if (!this->emitAddUint8(E))
6086     return false;
6087   if (!this->emitConstUint8(2, E))
6088     return false;
6089 
6090   if (E->getOpcode() == BO_EQ) {
6091     if (!this->emitEQUint8(E))
6092       return false;
6093   } else if (E->getOpcode() == BO_NE) {
6094     if (!this->emitNEUint8(E))
6095       return false;
6096   } else
6097     return false;
6098 
6099   // In C, this returns an int.
6100   if (PrimType ResT = classifyPrim(E->getType()); ResT != PT_Bool)
6101     return this->emitCast(PT_Bool, ResT, E);
6102   return true;
6103 }
6104 
6105 /// When calling this, we have a pointer of the local-to-destroy
6106 /// on the stack.
6107 /// Emit destruction of record types (or arrays of record types).
6108 template <class Emitter>
6109 bool Compiler<Emitter>::emitRecordDestruction(const Record *R) {
6110   assert(R);
6111   const CXXDestructorDecl *Dtor = R->getDestructor();
6112   if (!Dtor || Dtor->isTrivial())
6113     return true;
6114 
6115   assert(Dtor);
6116   const Function *DtorFunc = getFunction(Dtor);
6117   if (!DtorFunc)
6118     return false;
6119   assert(DtorFunc->hasThisPointer());
6120   assert(DtorFunc->getNumParams() == 1);
6121   if (!this->emitDupPtr(SourceInfo{}))
6122     return false;
6123   return this->emitCall(DtorFunc, 0, SourceInfo{});
6124 }
6125 /// When calling this, we have a pointer of the local-to-destroy
6126 /// on the stack.
6127 /// Emit destruction of record types (or arrays of record types).
6128 template <class Emitter>
6129 bool Compiler<Emitter>::emitDestruction(const Descriptor *Desc) {
6130   assert(Desc);
6131   assert(!Desc->isPrimitive());
6132   assert(!Desc->isPrimitiveArray());
6133 
6134   // Arrays.
6135   if (Desc->isArray()) {
6136     const Descriptor *ElemDesc = Desc->ElemDesc;
6137     assert(ElemDesc);
6138 
6139     // Don't need to do anything for these.
6140     if (ElemDesc->isPrimitiveArray())
6141       return true;
6142 
6143     // If this is an array of record types, check if we need
6144     // to call the element destructors at all. If not, try
6145     // to save the work.
6146     if (const Record *ElemRecord = ElemDesc->ElemRecord) {
6147       if (const CXXDestructorDecl *Dtor = ElemRecord->getDestructor();
6148           !Dtor || Dtor->isTrivial())
6149         return true;
6150     }
6151 
6152     for (ssize_t I = Desc->getNumElems() - 1; I >= 0; --I) {
6153       if (!this->emitConstUint64(I, SourceInfo{}))
6154         return false;
6155       if (!this->emitArrayElemPtrUint64(SourceInfo{}))
6156         return false;
6157       if (!this->emitDestruction(ElemDesc))
6158         return false;
6159       if (!this->emitPopPtr(SourceInfo{}))
6160         return false;
6161     }
6162     return true;
6163   }
6164 
6165   assert(Desc->ElemRecord);
6166   return this->emitRecordDestruction(Desc->ElemRecord);
6167 }
6168 
6169 namespace clang {
6170 namespace interp {
6171 
6172 template class Compiler<ByteCodeEmitter>;
6173 template class Compiler<EvalEmitter>;
6174 
6175 } // namespace interp
6176 } // namespace clang
6177