xref: /llvm-project/clang/lib/AST/ByteCode/Compiler.cpp (revision defead4d2dfc18fe423792005e99edc7b14edf2f)
1 //===--- Compiler.cpp - Code generator for expressions ---*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #include "Compiler.h"
10 #include "ByteCodeEmitter.h"
11 #include "Context.h"
12 #include "FixedPoint.h"
13 #include "Floating.h"
14 #include "Function.h"
15 #include "InterpShared.h"
16 #include "PrimType.h"
17 #include "Program.h"
18 #include "clang/AST/Attr.h"
19 
20 using namespace clang;
21 using namespace clang::interp;
22 
23 using APSInt = llvm::APSInt;
24 
25 namespace clang {
26 namespace interp {
27 
28 /// Scope used to handle temporaries in toplevel variable declarations.
29 template <class Emitter> class DeclScope final : public LocalScope<Emitter> {
30 public:
31   DeclScope(Compiler<Emitter> *Ctx, const ValueDecl *VD)
32       : LocalScope<Emitter>(Ctx, VD), Scope(Ctx->P, VD),
33         OldInitializingDecl(Ctx->InitializingDecl) {
34     Ctx->InitializingDecl = VD;
35     Ctx->InitStack.push_back(InitLink::Decl(VD));
36   }
37 
38   void addExtended(const Scope::Local &Local) override {
39     return this->addLocal(Local);
40   }
41 
42   ~DeclScope() {
43     this->Ctx->InitializingDecl = OldInitializingDecl;
44     this->Ctx->InitStack.pop_back();
45   }
46 
47 private:
48   Program::DeclScope Scope;
49   const ValueDecl *OldInitializingDecl;
50 };
51 
52 /// Scope used to handle initialization methods.
53 template <class Emitter> class OptionScope final {
54 public:
55   /// Root constructor, compiling or discarding primitives.
56   OptionScope(Compiler<Emitter> *Ctx, bool NewDiscardResult,
57               bool NewInitializing)
58       : Ctx(Ctx), OldDiscardResult(Ctx->DiscardResult),
59         OldInitializing(Ctx->Initializing) {
60     Ctx->DiscardResult = NewDiscardResult;
61     Ctx->Initializing = NewInitializing;
62   }
63 
64   ~OptionScope() {
65     Ctx->DiscardResult = OldDiscardResult;
66     Ctx->Initializing = OldInitializing;
67   }
68 
69 private:
70   /// Parent context.
71   Compiler<Emitter> *Ctx;
72   /// Old discard flag to restore.
73   bool OldDiscardResult;
74   bool OldInitializing;
75 };
76 
77 template <class Emitter>
78 bool InitLink::emit(Compiler<Emitter> *Ctx, const Expr *E) const {
79   switch (Kind) {
80   case K_This:
81     return Ctx->emitThis(E);
82   case K_Field:
83     // We're assuming there's a base pointer on the stack already.
84     return Ctx->emitGetPtrFieldPop(Offset, E);
85   case K_Temp:
86     return Ctx->emitGetPtrLocal(Offset, E);
87   case K_Decl:
88     return Ctx->visitDeclRef(D, E);
89   case K_Elem:
90     if (!Ctx->emitConstUint32(Offset, E))
91       return false;
92     return Ctx->emitArrayElemPtrPopUint32(E);
93   default:
94     llvm_unreachable("Unhandled InitLink kind");
95   }
96   return true;
97 }
98 
99 /// Scope managing label targets.
100 template <class Emitter> class LabelScope {
101 public:
102   virtual ~LabelScope() {}
103 
104 protected:
105   LabelScope(Compiler<Emitter> *Ctx) : Ctx(Ctx) {}
106   /// Compiler instance.
107   Compiler<Emitter> *Ctx;
108 };
109 
110 /// Sets the context for break/continue statements.
111 template <class Emitter> class LoopScope final : public LabelScope<Emitter> {
112 public:
113   using LabelTy = typename Compiler<Emitter>::LabelTy;
114   using OptLabelTy = typename Compiler<Emitter>::OptLabelTy;
115 
116   LoopScope(Compiler<Emitter> *Ctx, LabelTy BreakLabel, LabelTy ContinueLabel)
117       : LabelScope<Emitter>(Ctx), OldBreakLabel(Ctx->BreakLabel),
118         OldContinueLabel(Ctx->ContinueLabel),
119         OldBreakVarScope(Ctx->BreakVarScope),
120         OldContinueVarScope(Ctx->ContinueVarScope) {
121     this->Ctx->BreakLabel = BreakLabel;
122     this->Ctx->ContinueLabel = ContinueLabel;
123     this->Ctx->BreakVarScope = this->Ctx->VarScope;
124     this->Ctx->ContinueVarScope = this->Ctx->VarScope;
125   }
126 
127   ~LoopScope() {
128     this->Ctx->BreakLabel = OldBreakLabel;
129     this->Ctx->ContinueLabel = OldContinueLabel;
130     this->Ctx->ContinueVarScope = OldContinueVarScope;
131     this->Ctx->BreakVarScope = OldBreakVarScope;
132   }
133 
134 private:
135   OptLabelTy OldBreakLabel;
136   OptLabelTy OldContinueLabel;
137   VariableScope<Emitter> *OldBreakVarScope;
138   VariableScope<Emitter> *OldContinueVarScope;
139 };
140 
141 // Sets the context for a switch scope, mapping labels.
142 template <class Emitter> class SwitchScope final : public LabelScope<Emitter> {
143 public:
144   using LabelTy = typename Compiler<Emitter>::LabelTy;
145   using OptLabelTy = typename Compiler<Emitter>::OptLabelTy;
146   using CaseMap = typename Compiler<Emitter>::CaseMap;
147 
148   SwitchScope(Compiler<Emitter> *Ctx, CaseMap &&CaseLabels, LabelTy BreakLabel,
149               OptLabelTy DefaultLabel)
150       : LabelScope<Emitter>(Ctx), OldBreakLabel(Ctx->BreakLabel),
151         OldDefaultLabel(this->Ctx->DefaultLabel),
152         OldCaseLabels(std::move(this->Ctx->CaseLabels)),
153         OldLabelVarScope(Ctx->BreakVarScope) {
154     this->Ctx->BreakLabel = BreakLabel;
155     this->Ctx->DefaultLabel = DefaultLabel;
156     this->Ctx->CaseLabels = std::move(CaseLabels);
157     this->Ctx->BreakVarScope = this->Ctx->VarScope;
158   }
159 
160   ~SwitchScope() {
161     this->Ctx->BreakLabel = OldBreakLabel;
162     this->Ctx->DefaultLabel = OldDefaultLabel;
163     this->Ctx->CaseLabels = std::move(OldCaseLabels);
164     this->Ctx->BreakVarScope = OldLabelVarScope;
165   }
166 
167 private:
168   OptLabelTy OldBreakLabel;
169   OptLabelTy OldDefaultLabel;
170   CaseMap OldCaseLabels;
171   VariableScope<Emitter> *OldLabelVarScope;
172 };
173 
174 template <class Emitter> class StmtExprScope final {
175 public:
176   StmtExprScope(Compiler<Emitter> *Ctx) : Ctx(Ctx), OldFlag(Ctx->InStmtExpr) {
177     Ctx->InStmtExpr = true;
178   }
179 
180   ~StmtExprScope() { Ctx->InStmtExpr = OldFlag; }
181 
182 private:
183   Compiler<Emitter> *Ctx;
184   bool OldFlag;
185 };
186 
187 } // namespace interp
188 } // namespace clang
189 
190 template <class Emitter>
191 bool Compiler<Emitter>::VisitCastExpr(const CastExpr *CE) {
192   const Expr *SubExpr = CE->getSubExpr();
193   switch (CE->getCastKind()) {
194 
195   case CK_LValueToRValue: {
196     if (DiscardResult)
197       return this->discard(SubExpr);
198 
199     std::optional<PrimType> SubExprT = classify(SubExpr->getType());
200     // Prepare storage for the result.
201     if (!Initializing && !SubExprT) {
202       std::optional<unsigned> LocalIndex = allocateLocal(SubExpr);
203       if (!LocalIndex)
204         return false;
205       if (!this->emitGetPtrLocal(*LocalIndex, CE))
206         return false;
207     }
208 
209     if (!this->visit(SubExpr))
210       return false;
211 
212     if (SubExprT)
213       return this->emitLoadPop(*SubExprT, CE);
214 
215     // If the subexpr type is not primitive, we need to perform a copy here.
216     // This happens for example in C when dereferencing a pointer of struct
217     // type.
218     return this->emitMemcpy(CE);
219   }
220 
221   case CK_DerivedToBaseMemberPointer: {
222     assert(classifyPrim(CE->getType()) == PT_MemberPtr);
223     assert(classifyPrim(SubExpr->getType()) == PT_MemberPtr);
224     const auto *FromMP = SubExpr->getType()->getAs<MemberPointerType>();
225     const auto *ToMP = CE->getType()->getAs<MemberPointerType>();
226 
227     unsigned DerivedOffset = collectBaseOffset(QualType(ToMP->getClass(), 0),
228                                                QualType(FromMP->getClass(), 0));
229 
230     if (!this->delegate(SubExpr))
231       return false;
232 
233     return this->emitGetMemberPtrBasePop(DerivedOffset, CE);
234   }
235 
236   case CK_BaseToDerivedMemberPointer: {
237     assert(classifyPrim(CE) == PT_MemberPtr);
238     assert(classifyPrim(SubExpr) == PT_MemberPtr);
239     const auto *FromMP = SubExpr->getType()->getAs<MemberPointerType>();
240     const auto *ToMP = CE->getType()->getAs<MemberPointerType>();
241 
242     unsigned DerivedOffset = collectBaseOffset(QualType(FromMP->getClass(), 0),
243                                                QualType(ToMP->getClass(), 0));
244 
245     if (!this->delegate(SubExpr))
246       return false;
247     return this->emitGetMemberPtrBasePop(-DerivedOffset, CE);
248   }
249 
250   case CK_UncheckedDerivedToBase:
251   case CK_DerivedToBase: {
252     if (!this->delegate(SubExpr))
253       return false;
254 
255     const auto extractRecordDecl = [](QualType Ty) -> const CXXRecordDecl * {
256       if (const auto *PT = dyn_cast<PointerType>(Ty))
257         return PT->getPointeeType()->getAsCXXRecordDecl();
258       return Ty->getAsCXXRecordDecl();
259     };
260 
261     // FIXME: We can express a series of non-virtual casts as a single
262     // GetPtrBasePop op.
263     QualType CurType = SubExpr->getType();
264     for (const CXXBaseSpecifier *B : CE->path()) {
265       if (B->isVirtual()) {
266         if (!this->emitGetPtrVirtBasePop(extractRecordDecl(B->getType()), CE))
267           return false;
268         CurType = B->getType();
269       } else {
270         unsigned DerivedOffset = collectBaseOffset(B->getType(), CurType);
271         if (!this->emitGetPtrBasePop(DerivedOffset, CE))
272           return false;
273         CurType = B->getType();
274       }
275     }
276 
277     return true;
278   }
279 
280   case CK_BaseToDerived: {
281     if (!this->delegate(SubExpr))
282       return false;
283 
284     unsigned DerivedOffset =
285         collectBaseOffset(SubExpr->getType(), CE->getType());
286 
287     return this->emitGetPtrDerivedPop(DerivedOffset, CE);
288   }
289 
290   case CK_FloatingCast: {
291     // HLSL uses CK_FloatingCast to cast between vectors.
292     if (!SubExpr->getType()->isFloatingType() ||
293         !CE->getType()->isFloatingType())
294       return false;
295     if (DiscardResult)
296       return this->discard(SubExpr);
297     if (!this->visit(SubExpr))
298       return false;
299     const auto *TargetSemantics = &Ctx.getFloatSemantics(CE->getType());
300     return this->emitCastFP(TargetSemantics, getRoundingMode(CE), CE);
301   }
302 
303   case CK_IntegralToFloating: {
304     if (DiscardResult)
305       return this->discard(SubExpr);
306     std::optional<PrimType> FromT = classify(SubExpr->getType());
307     if (!FromT)
308       return false;
309 
310     if (!this->visit(SubExpr))
311       return false;
312 
313     const auto *TargetSemantics = &Ctx.getFloatSemantics(CE->getType());
314     return this->emitCastIntegralFloating(*FromT, TargetSemantics,
315                                           getFPOptions(CE), CE);
316   }
317 
318   case CK_FloatingToBoolean:
319   case CK_FloatingToIntegral: {
320     if (DiscardResult)
321       return this->discard(SubExpr);
322 
323     std::optional<PrimType> ToT = classify(CE->getType());
324 
325     if (!ToT)
326       return false;
327 
328     if (!this->visit(SubExpr))
329       return false;
330 
331     if (ToT == PT_IntAP)
332       return this->emitCastFloatingIntegralAP(Ctx.getBitWidth(CE->getType()),
333                                               getFPOptions(CE), CE);
334     if (ToT == PT_IntAPS)
335       return this->emitCastFloatingIntegralAPS(Ctx.getBitWidth(CE->getType()),
336                                                getFPOptions(CE), CE);
337 
338     return this->emitCastFloatingIntegral(*ToT, getFPOptions(CE), CE);
339   }
340 
341   case CK_NullToPointer:
342   case CK_NullToMemberPointer: {
343     if (!this->discard(SubExpr))
344       return false;
345     if (DiscardResult)
346       return true;
347 
348     const Descriptor *Desc = nullptr;
349     const QualType PointeeType = CE->getType()->getPointeeType();
350     if (!PointeeType.isNull()) {
351       if (std::optional<PrimType> T = classify(PointeeType))
352         Desc = P.createDescriptor(SubExpr, *T);
353       else
354         Desc = P.createDescriptor(SubExpr, PointeeType.getTypePtr(),
355                                   std::nullopt, true, false,
356                                   /*IsMutable=*/false, nullptr);
357     }
358     return this->emitNull(classifyPrim(CE->getType()), Desc, CE);
359   }
360 
361   case CK_PointerToIntegral: {
362     if (DiscardResult)
363       return this->discard(SubExpr);
364 
365     if (!this->visit(SubExpr))
366       return false;
367 
368     // If SubExpr doesn't result in a pointer, make it one.
369     if (PrimType FromT = classifyPrim(SubExpr->getType()); FromT != PT_Ptr) {
370       assert(isPtrType(FromT));
371       if (!this->emitDecayPtr(FromT, PT_Ptr, CE))
372         return false;
373     }
374 
375     PrimType T = classifyPrim(CE->getType());
376     if (T == PT_IntAP)
377       return this->emitCastPointerIntegralAP(Ctx.getBitWidth(CE->getType()),
378                                              CE);
379     if (T == PT_IntAPS)
380       return this->emitCastPointerIntegralAPS(Ctx.getBitWidth(CE->getType()),
381                                               CE);
382     return this->emitCastPointerIntegral(T, CE);
383   }
384 
385   case CK_ArrayToPointerDecay: {
386     if (!this->visit(SubExpr))
387       return false;
388     if (!this->emitArrayDecay(CE))
389       return false;
390     if (DiscardResult)
391       return this->emitPopPtr(CE);
392     return true;
393   }
394 
395   case CK_IntegralToPointer: {
396     QualType IntType = SubExpr->getType();
397     assert(IntType->isIntegralOrEnumerationType());
398     if (!this->visit(SubExpr))
399       return false;
400     // FIXME: I think the discard is wrong since the int->ptr cast might cause a
401     // diagnostic.
402     PrimType T = classifyPrim(IntType);
403     if (DiscardResult)
404       return this->emitPop(T, CE);
405 
406     QualType PtrType = CE->getType();
407     const Descriptor *Desc;
408     if (std::optional<PrimType> T = classify(PtrType->getPointeeType()))
409       Desc = P.createDescriptor(SubExpr, *T);
410     else if (PtrType->getPointeeType()->isVoidType())
411       Desc = nullptr;
412     else
413       Desc = P.createDescriptor(CE, PtrType->getPointeeType().getTypePtr(),
414                                 Descriptor::InlineDescMD, true, false,
415                                 /*IsMutable=*/false, nullptr);
416 
417     if (!this->emitGetIntPtr(T, Desc, CE))
418       return false;
419 
420     PrimType DestPtrT = classifyPrim(PtrType);
421     if (DestPtrT == PT_Ptr)
422       return true;
423 
424     // In case we're converting the integer to a non-Pointer.
425     return this->emitDecayPtr(PT_Ptr, DestPtrT, CE);
426   }
427 
428   case CK_AtomicToNonAtomic:
429   case CK_ConstructorConversion:
430   case CK_FunctionToPointerDecay:
431   case CK_NonAtomicToAtomic:
432   case CK_NoOp:
433   case CK_UserDefinedConversion:
434   case CK_AddressSpaceConversion:
435   case CK_CPointerToObjCPointerCast:
436     return this->delegate(SubExpr);
437 
438   case CK_BitCast: {
439     // Reject bitcasts to atomic types.
440     if (CE->getType()->isAtomicType()) {
441       if (!this->discard(SubExpr))
442         return false;
443       return this->emitInvalidCast(CastKind::Reinterpret, /*Fatal=*/true, CE);
444     }
445 
446     if (DiscardResult)
447       return this->discard(SubExpr);
448 
449     QualType SubExprTy = SubExpr->getType();
450     std::optional<PrimType> FromT = classify(SubExprTy);
451     std::optional<PrimType> ToT = classify(CE->getType());
452     if (!FromT || !ToT)
453       return false;
454 
455     assert(isPtrType(*FromT));
456     assert(isPtrType(*ToT));
457     if (FromT == ToT) {
458       if (CE->getType()->isVoidPointerType())
459         return this->delegate(SubExpr);
460 
461       if (!this->visit(SubExpr))
462         return false;
463       if (FromT == PT_Ptr)
464         return this->emitPtrPtrCast(SubExprTy->isVoidPointerType(), CE);
465       return true;
466     }
467 
468     if (!this->visit(SubExpr))
469       return false;
470     return this->emitDecayPtr(*FromT, *ToT, CE);
471   }
472 
473   case CK_IntegralToBoolean:
474   case CK_FixedPointToBoolean:
475   case CK_BooleanToSignedIntegral:
476   case CK_IntegralCast: {
477     if (DiscardResult)
478       return this->discard(SubExpr);
479     std::optional<PrimType> FromT = classify(SubExpr->getType());
480     std::optional<PrimType> ToT = classify(CE->getType());
481 
482     if (!FromT || !ToT)
483       return false;
484 
485     if (!this->visit(SubExpr))
486       return false;
487 
488     // Possibly diagnose casts to enum types if the target type does not
489     // have a fixed size.
490     if (Ctx.getLangOpts().CPlusPlus && CE->getType()->isEnumeralType()) {
491       if (const auto *ET = CE->getType().getCanonicalType()->getAs<EnumType>();
492           ET && !ET->getDecl()->isFixed()) {
493         if (!this->emitCheckEnumValue(*FromT, ET->getDecl(), CE))
494           return false;
495       }
496     }
497 
498     auto maybeNegate = [&]() -> bool {
499       if (CE->getCastKind() == CK_BooleanToSignedIntegral)
500         return this->emitNeg(*ToT, CE);
501       return true;
502     };
503 
504     if (ToT == PT_IntAP)
505       return this->emitCastAP(*FromT, Ctx.getBitWidth(CE->getType()), CE) &&
506              maybeNegate();
507     if (ToT == PT_IntAPS)
508       return this->emitCastAPS(*FromT, Ctx.getBitWidth(CE->getType()), CE) &&
509              maybeNegate();
510 
511     if (FromT == ToT)
512       return true;
513     if (!this->emitCast(*FromT, *ToT, CE))
514       return false;
515 
516     return maybeNegate();
517   }
518 
519   case CK_PointerToBoolean:
520   case CK_MemberPointerToBoolean: {
521     PrimType PtrT = classifyPrim(SubExpr->getType());
522 
523     if (!this->visit(SubExpr))
524       return false;
525     return this->emitIsNonNull(PtrT, CE);
526   }
527 
528   case CK_IntegralComplexToBoolean:
529   case CK_FloatingComplexToBoolean: {
530     if (DiscardResult)
531       return this->discard(SubExpr);
532     if (!this->visit(SubExpr))
533       return false;
534     return this->emitComplexBoolCast(SubExpr);
535   }
536 
537   case CK_IntegralComplexToReal:
538   case CK_FloatingComplexToReal:
539     return this->emitComplexReal(SubExpr);
540 
541   case CK_IntegralRealToComplex:
542   case CK_FloatingRealToComplex: {
543     // We're creating a complex value here, so we need to
544     // allocate storage for it.
545     if (!Initializing) {
546       unsigned LocalIndex = allocateTemporary(CE);
547       if (!this->emitGetPtrLocal(LocalIndex, CE))
548         return false;
549     }
550 
551     // Init the complex value to {SubExpr, 0}.
552     if (!this->visitArrayElemInit(0, SubExpr))
553       return false;
554     // Zero-init the second element.
555     PrimType T = classifyPrim(SubExpr->getType());
556     if (!this->visitZeroInitializer(T, SubExpr->getType(), SubExpr))
557       return false;
558     return this->emitInitElem(T, 1, SubExpr);
559   }
560 
561   case CK_IntegralComplexCast:
562   case CK_FloatingComplexCast:
563   case CK_IntegralComplexToFloatingComplex:
564   case CK_FloatingComplexToIntegralComplex: {
565     assert(CE->getType()->isAnyComplexType());
566     assert(SubExpr->getType()->isAnyComplexType());
567     if (DiscardResult)
568       return this->discard(SubExpr);
569 
570     if (!Initializing) {
571       std::optional<unsigned> LocalIndex = allocateLocal(CE);
572       if (!LocalIndex)
573         return false;
574       if (!this->emitGetPtrLocal(*LocalIndex, CE))
575         return false;
576     }
577 
578     // Location for the SubExpr.
579     // Since SubExpr is of complex type, visiting it results in a pointer
580     // anyway, so we just create a temporary pointer variable.
581     unsigned SubExprOffset = allocateLocalPrimitive(
582         SubExpr, PT_Ptr, /*IsConst=*/true, /*IsExtended=*/false);
583     if (!this->visit(SubExpr))
584       return false;
585     if (!this->emitSetLocal(PT_Ptr, SubExprOffset, CE))
586       return false;
587 
588     PrimType SourceElemT = classifyComplexElementType(SubExpr->getType());
589     QualType DestElemType =
590         CE->getType()->getAs<ComplexType>()->getElementType();
591     PrimType DestElemT = classifyPrim(DestElemType);
592     // Cast both elements individually.
593     for (unsigned I = 0; I != 2; ++I) {
594       if (!this->emitGetLocal(PT_Ptr, SubExprOffset, CE))
595         return false;
596       if (!this->emitArrayElemPop(SourceElemT, I, CE))
597         return false;
598 
599       // Do the cast.
600       if (!this->emitPrimCast(SourceElemT, DestElemT, DestElemType, CE))
601         return false;
602 
603       // Save the value.
604       if (!this->emitInitElem(DestElemT, I, CE))
605         return false;
606     }
607     return true;
608   }
609 
610   case CK_VectorSplat: {
611     assert(!classify(CE->getType()));
612     assert(classify(SubExpr->getType()));
613     assert(CE->getType()->isVectorType());
614 
615     if (DiscardResult)
616       return this->discard(SubExpr);
617 
618     if (!Initializing) {
619       std::optional<unsigned> LocalIndex = allocateLocal(CE);
620       if (!LocalIndex)
621         return false;
622       if (!this->emitGetPtrLocal(*LocalIndex, CE))
623         return false;
624     }
625 
626     const auto *VT = CE->getType()->getAs<VectorType>();
627     PrimType ElemT = classifyPrim(SubExpr->getType());
628     unsigned ElemOffset = allocateLocalPrimitive(
629         SubExpr, ElemT, /*IsConst=*/true, /*IsExtended=*/false);
630 
631     // Prepare a local variable for the scalar value.
632     if (!this->visit(SubExpr))
633       return false;
634     if (classifyPrim(SubExpr) == PT_Ptr && !this->emitLoadPop(ElemT, CE))
635       return false;
636 
637     if (!this->emitSetLocal(ElemT, ElemOffset, CE))
638       return false;
639 
640     for (unsigned I = 0; I != VT->getNumElements(); ++I) {
641       if (!this->emitGetLocal(ElemT, ElemOffset, CE))
642         return false;
643       if (!this->emitInitElem(ElemT, I, CE))
644         return false;
645     }
646 
647     return true;
648   }
649 
650   case CK_HLSLVectorTruncation: {
651     assert(SubExpr->getType()->isVectorType());
652     if (std::optional<PrimType> ResultT = classify(CE)) {
653       assert(!DiscardResult);
654       // Result must be either a float or integer. Take the first element.
655       if (!this->visit(SubExpr))
656         return false;
657       return this->emitArrayElemPop(*ResultT, 0, CE);
658     }
659     // Otherwise, this truncates from one vector type to another.
660     assert(CE->getType()->isVectorType());
661 
662     if (!Initializing) {
663       unsigned LocalIndex = allocateTemporary(CE);
664       if (!this->emitGetPtrLocal(LocalIndex, CE))
665         return false;
666     }
667     unsigned ToSize = CE->getType()->getAs<VectorType>()->getNumElements();
668     assert(SubExpr->getType()->getAs<VectorType>()->getNumElements() > ToSize);
669     if (!this->visit(SubExpr))
670       return false;
671     return this->emitCopyArray(classifyVectorElementType(CE->getType()), 0, 0,
672                                ToSize, CE);
673   };
674 
675   case CK_IntegralToFixedPoint: {
676     if (!this->visit(SubExpr))
677       return false;
678 
679     auto Sem = Ctx.getASTContext().getFixedPointSemantics(CE->getType());
680     uint32_t I;
681     std::memcpy(&I, &Sem, sizeof(Sem));
682     return this->emitCastIntegralFixedPoint(classifyPrim(SubExpr->getType()), I,
683                                             CE);
684   }
685   case CK_FloatingToFixedPoint: {
686     if (!this->visit(SubExpr))
687       return false;
688 
689     auto Sem = Ctx.getASTContext().getFixedPointSemantics(CE->getType());
690     uint32_t I;
691     std::memcpy(&I, &Sem, sizeof(Sem));
692     return this->emitCastFloatingFixedPoint(I, CE);
693   }
694   case CK_FixedPointToFloating: {
695     if (!this->visit(SubExpr))
696       return false;
697     const auto *TargetSemantics = &Ctx.getFloatSemantics(CE->getType());
698     return this->emitCastFixedPointFloating(TargetSemantics, CE);
699   }
700 
701   case CK_ToVoid:
702     return discard(SubExpr);
703 
704   default:
705     return this->emitInvalid(CE);
706   }
707   llvm_unreachable("Unhandled clang::CastKind enum");
708 }
709 
710 template <class Emitter>
711 bool Compiler<Emitter>::VisitIntegerLiteral(const IntegerLiteral *LE) {
712   if (DiscardResult)
713     return true;
714 
715   return this->emitConst(LE->getValue(), LE);
716 }
717 
718 template <class Emitter>
719 bool Compiler<Emitter>::VisitFloatingLiteral(const FloatingLiteral *E) {
720   if (DiscardResult)
721     return true;
722 
723   return this->emitConstFloat(E->getValue(), E);
724 }
725 
726 template <class Emitter>
727 bool Compiler<Emitter>::VisitImaginaryLiteral(const ImaginaryLiteral *E) {
728   assert(E->getType()->isAnyComplexType());
729   if (DiscardResult)
730     return true;
731 
732   if (!Initializing) {
733     unsigned LocalIndex = allocateTemporary(E);
734     if (!this->emitGetPtrLocal(LocalIndex, E))
735       return false;
736   }
737 
738   const Expr *SubExpr = E->getSubExpr();
739   PrimType SubExprT = classifyPrim(SubExpr->getType());
740 
741   if (!this->visitZeroInitializer(SubExprT, SubExpr->getType(), SubExpr))
742     return false;
743   if (!this->emitInitElem(SubExprT, 0, SubExpr))
744     return false;
745   return this->visitArrayElemInit(1, SubExpr);
746 }
747 
748 template <class Emitter>
749 bool Compiler<Emitter>::VisitFixedPointLiteral(const FixedPointLiteral *E) {
750   assert(E->getType()->isFixedPointType());
751   assert(classifyPrim(E) == PT_FixedPoint);
752 
753   auto Sem = Ctx.getASTContext().getFixedPointSemantics(E->getType());
754   APInt Value = E->getValue();
755   return this->emitConstFixedPoint(FixedPoint(Value, Sem), E);
756 }
757 
758 template <class Emitter>
759 bool Compiler<Emitter>::VisitParenExpr(const ParenExpr *E) {
760   return this->delegate(E->getSubExpr());
761 }
762 
763 template <class Emitter>
764 bool Compiler<Emitter>::VisitBinaryOperator(const BinaryOperator *BO) {
765   // Need short-circuiting for these.
766   if (BO->isLogicalOp() && !BO->getType()->isVectorType())
767     return this->VisitLogicalBinOp(BO);
768 
769   const Expr *LHS = BO->getLHS();
770   const Expr *RHS = BO->getRHS();
771 
772   // Handle comma operators. Just discard the LHS
773   // and delegate to RHS.
774   if (BO->isCommaOp()) {
775     if (!this->discard(LHS))
776       return false;
777     if (RHS->getType()->isVoidType())
778       return this->discard(RHS);
779 
780     return this->delegate(RHS);
781   }
782 
783   if (BO->getType()->isAnyComplexType())
784     return this->VisitComplexBinOp(BO);
785   if (BO->getType()->isVectorType())
786     return this->VisitVectorBinOp(BO);
787   if ((LHS->getType()->isAnyComplexType() ||
788        RHS->getType()->isAnyComplexType()) &&
789       BO->isComparisonOp())
790     return this->emitComplexComparison(LHS, RHS, BO);
791   if (LHS->getType()->isFixedPointType() || RHS->getType()->isFixedPointType())
792     return this->VisitFixedPointBinOp(BO);
793 
794   if (BO->isPtrMemOp()) {
795     if (!this->visit(LHS))
796       return false;
797 
798     if (!this->visit(RHS))
799       return false;
800 
801     if (!this->emitToMemberPtr(BO))
802       return false;
803 
804     if (classifyPrim(BO) == PT_MemberPtr)
805       return true;
806 
807     if (!this->emitCastMemberPtrPtr(BO))
808       return false;
809     return DiscardResult ? this->emitPopPtr(BO) : true;
810   }
811 
812   // Typecheck the args.
813   std::optional<PrimType> LT = classify(LHS);
814   std::optional<PrimType> RT = classify(RHS);
815   std::optional<PrimType> T = classify(BO->getType());
816 
817   // Special case for C++'s three-way/spaceship operator <=>, which
818   // returns a std::{strong,weak,partial}_ordering (which is a class, so doesn't
819   // have a PrimType).
820   if (!T && BO->getOpcode() == BO_Cmp) {
821     if (DiscardResult)
822       return true;
823     const ComparisonCategoryInfo *CmpInfo =
824         Ctx.getASTContext().CompCategories.lookupInfoForType(BO->getType());
825     assert(CmpInfo);
826 
827     // We need a temporary variable holding our return value.
828     if (!Initializing) {
829       std::optional<unsigned> ResultIndex = this->allocateLocal(BO);
830       if (!this->emitGetPtrLocal(*ResultIndex, BO))
831         return false;
832     }
833 
834     if (!visit(LHS) || !visit(RHS))
835       return false;
836 
837     return this->emitCMP3(*LT, CmpInfo, BO);
838   }
839 
840   if (!LT || !RT || !T)
841     return false;
842 
843   // Pointer arithmetic special case.
844   if (BO->getOpcode() == BO_Add || BO->getOpcode() == BO_Sub) {
845     if (isPtrType(*T) || (isPtrType(*LT) && isPtrType(*RT)))
846       return this->VisitPointerArithBinOp(BO);
847   }
848 
849   // Assignmentes require us to evalute the RHS first.
850   if (BO->getOpcode() == BO_Assign) {
851     if (!visit(RHS) || !visit(LHS))
852       return false;
853     if (!this->emitFlip(*LT, *RT, BO))
854       return false;
855   } else {
856     if (!visit(LHS) || !visit(RHS))
857       return false;
858   }
859 
860   // For languages such as C, cast the result of one
861   // of our comparision opcodes to T (which is usually int).
862   auto MaybeCastToBool = [this, T, BO](bool Result) {
863     if (!Result)
864       return false;
865     if (DiscardResult)
866       return this->emitPop(*T, BO);
867     if (T != PT_Bool)
868       return this->emitCast(PT_Bool, *T, BO);
869     return true;
870   };
871 
872   auto Discard = [this, T, BO](bool Result) {
873     if (!Result)
874       return false;
875     return DiscardResult ? this->emitPop(*T, BO) : true;
876   };
877 
878   switch (BO->getOpcode()) {
879   case BO_EQ:
880     return MaybeCastToBool(this->emitEQ(*LT, BO));
881   case BO_NE:
882     return MaybeCastToBool(this->emitNE(*LT, BO));
883   case BO_LT:
884     return MaybeCastToBool(this->emitLT(*LT, BO));
885   case BO_LE:
886     return MaybeCastToBool(this->emitLE(*LT, BO));
887   case BO_GT:
888     return MaybeCastToBool(this->emitGT(*LT, BO));
889   case BO_GE:
890     return MaybeCastToBool(this->emitGE(*LT, BO));
891   case BO_Sub:
892     if (BO->getType()->isFloatingType())
893       return Discard(this->emitSubf(getFPOptions(BO), BO));
894     return Discard(this->emitSub(*T, BO));
895   case BO_Add:
896     if (BO->getType()->isFloatingType())
897       return Discard(this->emitAddf(getFPOptions(BO), BO));
898     return Discard(this->emitAdd(*T, BO));
899   case BO_Mul:
900     if (BO->getType()->isFloatingType())
901       return Discard(this->emitMulf(getFPOptions(BO), BO));
902     return Discard(this->emitMul(*T, BO));
903   case BO_Rem:
904     return Discard(this->emitRem(*T, BO));
905   case BO_Div:
906     if (BO->getType()->isFloatingType())
907       return Discard(this->emitDivf(getFPOptions(BO), BO));
908     return Discard(this->emitDiv(*T, BO));
909   case BO_Assign:
910     if (DiscardResult)
911       return LHS->refersToBitField() ? this->emitStoreBitFieldPop(*T, BO)
912                                      : this->emitStorePop(*T, BO);
913     if (LHS->refersToBitField()) {
914       if (!this->emitStoreBitField(*T, BO))
915         return false;
916     } else {
917       if (!this->emitStore(*T, BO))
918         return false;
919     }
920     // Assignments aren't necessarily lvalues in C.
921     // Load from them in that case.
922     if (!BO->isLValue())
923       return this->emitLoadPop(*T, BO);
924     return true;
925   case BO_And:
926     return Discard(this->emitBitAnd(*T, BO));
927   case BO_Or:
928     return Discard(this->emitBitOr(*T, BO));
929   case BO_Shl:
930     return Discard(this->emitShl(*LT, *RT, BO));
931   case BO_Shr:
932     return Discard(this->emitShr(*LT, *RT, BO));
933   case BO_Xor:
934     return Discard(this->emitBitXor(*T, BO));
935   case BO_LOr:
936   case BO_LAnd:
937     llvm_unreachable("Already handled earlier");
938   default:
939     return false;
940   }
941 
942   llvm_unreachable("Unhandled binary op");
943 }
944 
945 /// Perform addition/subtraction of a pointer and an integer or
946 /// subtraction of two pointers.
947 template <class Emitter>
948 bool Compiler<Emitter>::VisitPointerArithBinOp(const BinaryOperator *E) {
949   BinaryOperatorKind Op = E->getOpcode();
950   const Expr *LHS = E->getLHS();
951   const Expr *RHS = E->getRHS();
952 
953   if ((Op != BO_Add && Op != BO_Sub) ||
954       (!LHS->getType()->isPointerType() && !RHS->getType()->isPointerType()))
955     return false;
956 
957   std::optional<PrimType> LT = classify(LHS);
958   std::optional<PrimType> RT = classify(RHS);
959 
960   if (!LT || !RT)
961     return false;
962 
963   // Visit the given pointer expression and optionally convert to a PT_Ptr.
964   auto visitAsPointer = [&](const Expr *E, PrimType T) -> bool {
965     if (!this->visit(E))
966       return false;
967     if (T != PT_Ptr)
968       return this->emitDecayPtr(T, PT_Ptr, E);
969     return true;
970   };
971 
972   if (LHS->getType()->isPointerType() && RHS->getType()->isPointerType()) {
973     if (Op != BO_Sub)
974       return false;
975 
976     assert(E->getType()->isIntegerType());
977     if (!visitAsPointer(RHS, *RT) || !visitAsPointer(LHS, *LT))
978       return false;
979 
980     return this->emitSubPtr(classifyPrim(E->getType()), E);
981   }
982 
983   PrimType OffsetType;
984   if (LHS->getType()->isIntegerType()) {
985     if (!visitAsPointer(RHS, *RT))
986       return false;
987     if (!this->visit(LHS))
988       return false;
989     OffsetType = *LT;
990   } else if (RHS->getType()->isIntegerType()) {
991     if (!visitAsPointer(LHS, *LT))
992       return false;
993     if (!this->visit(RHS))
994       return false;
995     OffsetType = *RT;
996   } else {
997     return false;
998   }
999 
1000   // Do the operation and optionally transform to
1001   // result pointer type.
1002   if (Op == BO_Add) {
1003     if (!this->emitAddOffset(OffsetType, E))
1004       return false;
1005 
1006     if (classifyPrim(E) != PT_Ptr)
1007       return this->emitDecayPtr(PT_Ptr, classifyPrim(E), E);
1008     return true;
1009   } else if (Op == BO_Sub) {
1010     if (!this->emitSubOffset(OffsetType, E))
1011       return false;
1012 
1013     if (classifyPrim(E) != PT_Ptr)
1014       return this->emitDecayPtr(PT_Ptr, classifyPrim(E), E);
1015     return true;
1016   }
1017 
1018   return false;
1019 }
1020 
1021 template <class Emitter>
1022 bool Compiler<Emitter>::VisitLogicalBinOp(const BinaryOperator *E) {
1023   assert(E->isLogicalOp());
1024   BinaryOperatorKind Op = E->getOpcode();
1025   const Expr *LHS = E->getLHS();
1026   const Expr *RHS = E->getRHS();
1027   std::optional<PrimType> T = classify(E->getType());
1028 
1029   if (Op == BO_LOr) {
1030     // Logical OR. Visit LHS and only evaluate RHS if LHS was FALSE.
1031     LabelTy LabelTrue = this->getLabel();
1032     LabelTy LabelEnd = this->getLabel();
1033 
1034     if (!this->visitBool(LHS))
1035       return false;
1036     if (!this->jumpTrue(LabelTrue))
1037       return false;
1038 
1039     if (!this->visitBool(RHS))
1040       return false;
1041     if (!this->jump(LabelEnd))
1042       return false;
1043 
1044     this->emitLabel(LabelTrue);
1045     this->emitConstBool(true, E);
1046     this->fallthrough(LabelEnd);
1047     this->emitLabel(LabelEnd);
1048 
1049   } else {
1050     assert(Op == BO_LAnd);
1051     // Logical AND.
1052     // Visit LHS. Only visit RHS if LHS was TRUE.
1053     LabelTy LabelFalse = this->getLabel();
1054     LabelTy LabelEnd = this->getLabel();
1055 
1056     if (!this->visitBool(LHS))
1057       return false;
1058     if (!this->jumpFalse(LabelFalse))
1059       return false;
1060 
1061     if (!this->visitBool(RHS))
1062       return false;
1063     if (!this->jump(LabelEnd))
1064       return false;
1065 
1066     this->emitLabel(LabelFalse);
1067     this->emitConstBool(false, E);
1068     this->fallthrough(LabelEnd);
1069     this->emitLabel(LabelEnd);
1070   }
1071 
1072   if (DiscardResult)
1073     return this->emitPopBool(E);
1074 
1075   // For C, cast back to integer type.
1076   assert(T);
1077   if (T != PT_Bool)
1078     return this->emitCast(PT_Bool, *T, E);
1079   return true;
1080 }
1081 
1082 template <class Emitter>
1083 bool Compiler<Emitter>::VisitComplexBinOp(const BinaryOperator *E) {
1084   // Prepare storage for result.
1085   if (!Initializing) {
1086     unsigned LocalIndex = allocateTemporary(E);
1087     if (!this->emitGetPtrLocal(LocalIndex, E))
1088       return false;
1089   }
1090 
1091   // Both LHS and RHS might _not_ be of complex type, but one of them
1092   // needs to be.
1093   const Expr *LHS = E->getLHS();
1094   const Expr *RHS = E->getRHS();
1095 
1096   PrimType ResultElemT = this->classifyComplexElementType(E->getType());
1097   unsigned ResultOffset = ~0u;
1098   if (!DiscardResult)
1099     ResultOffset = this->allocateLocalPrimitive(E, PT_Ptr, true, false);
1100 
1101   // Save result pointer in ResultOffset
1102   if (!this->DiscardResult) {
1103     if (!this->emitDupPtr(E))
1104       return false;
1105     if (!this->emitSetLocal(PT_Ptr, ResultOffset, E))
1106       return false;
1107   }
1108   QualType LHSType = LHS->getType();
1109   if (const auto *AT = LHSType->getAs<AtomicType>())
1110     LHSType = AT->getValueType();
1111   QualType RHSType = RHS->getType();
1112   if (const auto *AT = RHSType->getAs<AtomicType>())
1113     RHSType = AT->getValueType();
1114 
1115   bool LHSIsComplex = LHSType->isAnyComplexType();
1116   unsigned LHSOffset;
1117   bool RHSIsComplex = RHSType->isAnyComplexType();
1118 
1119   // For ComplexComplex Mul, we have special ops to make their implementation
1120   // easier.
1121   BinaryOperatorKind Op = E->getOpcode();
1122   if (Op == BO_Mul && LHSIsComplex && RHSIsComplex) {
1123     assert(classifyPrim(LHSType->getAs<ComplexType>()->getElementType()) ==
1124            classifyPrim(RHSType->getAs<ComplexType>()->getElementType()));
1125     PrimType ElemT =
1126         classifyPrim(LHSType->getAs<ComplexType>()->getElementType());
1127     if (!this->visit(LHS))
1128       return false;
1129     if (!this->visit(RHS))
1130       return false;
1131     return this->emitMulc(ElemT, E);
1132   }
1133 
1134   if (Op == BO_Div && RHSIsComplex) {
1135     QualType ElemQT = RHSType->getAs<ComplexType>()->getElementType();
1136     PrimType ElemT = classifyPrim(ElemQT);
1137     // If the LHS is not complex, we still need to do the full complex
1138     // division, so just stub create a complex value and stub it out with
1139     // the LHS and a zero.
1140 
1141     if (!LHSIsComplex) {
1142       // This is using the RHS type for the fake-complex LHS.
1143       LHSOffset = allocateTemporary(RHS);
1144 
1145       if (!this->emitGetPtrLocal(LHSOffset, E))
1146         return false;
1147 
1148       if (!this->visit(LHS))
1149         return false;
1150       // real is LHS
1151       if (!this->emitInitElem(ElemT, 0, E))
1152         return false;
1153       // imag is zero
1154       if (!this->visitZeroInitializer(ElemT, ElemQT, E))
1155         return false;
1156       if (!this->emitInitElem(ElemT, 1, E))
1157         return false;
1158     } else {
1159       if (!this->visit(LHS))
1160         return false;
1161     }
1162 
1163     if (!this->visit(RHS))
1164       return false;
1165     return this->emitDivc(ElemT, E);
1166   }
1167 
1168   // Evaluate LHS and save value to LHSOffset.
1169   if (LHSType->isAnyComplexType()) {
1170     LHSOffset = this->allocateLocalPrimitive(LHS, PT_Ptr, true, false);
1171     if (!this->visit(LHS))
1172       return false;
1173     if (!this->emitSetLocal(PT_Ptr, LHSOffset, E))
1174       return false;
1175   } else {
1176     PrimType LHST = classifyPrim(LHSType);
1177     LHSOffset = this->allocateLocalPrimitive(LHS, LHST, true, false);
1178     if (!this->visit(LHS))
1179       return false;
1180     if (!this->emitSetLocal(LHST, LHSOffset, E))
1181       return false;
1182   }
1183 
1184   // Same with RHS.
1185   unsigned RHSOffset;
1186   if (RHSType->isAnyComplexType()) {
1187     RHSOffset = this->allocateLocalPrimitive(RHS, PT_Ptr, true, false);
1188     if (!this->visit(RHS))
1189       return false;
1190     if (!this->emitSetLocal(PT_Ptr, RHSOffset, E))
1191       return false;
1192   } else {
1193     PrimType RHST = classifyPrim(RHSType);
1194     RHSOffset = this->allocateLocalPrimitive(RHS, RHST, true, false);
1195     if (!this->visit(RHS))
1196       return false;
1197     if (!this->emitSetLocal(RHST, RHSOffset, E))
1198       return false;
1199   }
1200 
1201   // For both LHS and RHS, either load the value from the complex pointer, or
1202   // directly from the local variable. For index 1 (i.e. the imaginary part),
1203   // just load 0 and do the operation anyway.
1204   auto loadComplexValue = [this](bool IsComplex, bool LoadZero,
1205                                  unsigned ElemIndex, unsigned Offset,
1206                                  const Expr *E) -> bool {
1207     if (IsComplex) {
1208       if (!this->emitGetLocal(PT_Ptr, Offset, E))
1209         return false;
1210       return this->emitArrayElemPop(classifyComplexElementType(E->getType()),
1211                                     ElemIndex, E);
1212     }
1213     if (ElemIndex == 0 || !LoadZero)
1214       return this->emitGetLocal(classifyPrim(E->getType()), Offset, E);
1215     return this->visitZeroInitializer(classifyPrim(E->getType()), E->getType(),
1216                                       E);
1217   };
1218 
1219   // Now we can get pointers to the LHS and RHS from the offsets above.
1220   for (unsigned ElemIndex = 0; ElemIndex != 2; ++ElemIndex) {
1221     // Result pointer for the store later.
1222     if (!this->DiscardResult) {
1223       if (!this->emitGetLocal(PT_Ptr, ResultOffset, E))
1224         return false;
1225     }
1226 
1227     // The actual operation.
1228     switch (Op) {
1229     case BO_Add:
1230       if (!loadComplexValue(LHSIsComplex, true, ElemIndex, LHSOffset, LHS))
1231         return false;
1232 
1233       if (!loadComplexValue(RHSIsComplex, true, ElemIndex, RHSOffset, RHS))
1234         return false;
1235       if (ResultElemT == PT_Float) {
1236         if (!this->emitAddf(getFPOptions(E), E))
1237           return false;
1238       } else {
1239         if (!this->emitAdd(ResultElemT, E))
1240           return false;
1241       }
1242       break;
1243     case BO_Sub:
1244       if (!loadComplexValue(LHSIsComplex, true, ElemIndex, LHSOffset, LHS))
1245         return false;
1246 
1247       if (!loadComplexValue(RHSIsComplex, true, ElemIndex, RHSOffset, RHS))
1248         return false;
1249       if (ResultElemT == PT_Float) {
1250         if (!this->emitSubf(getFPOptions(E), E))
1251           return false;
1252       } else {
1253         if (!this->emitSub(ResultElemT, E))
1254           return false;
1255       }
1256       break;
1257     case BO_Mul:
1258       if (!loadComplexValue(LHSIsComplex, false, ElemIndex, LHSOffset, LHS))
1259         return false;
1260 
1261       if (!loadComplexValue(RHSIsComplex, false, ElemIndex, RHSOffset, RHS))
1262         return false;
1263 
1264       if (ResultElemT == PT_Float) {
1265         if (!this->emitMulf(getFPOptions(E), E))
1266           return false;
1267       } else {
1268         if (!this->emitMul(ResultElemT, E))
1269           return false;
1270       }
1271       break;
1272     case BO_Div:
1273       assert(!RHSIsComplex);
1274       if (!loadComplexValue(LHSIsComplex, false, ElemIndex, LHSOffset, LHS))
1275         return false;
1276 
1277       if (!loadComplexValue(RHSIsComplex, false, ElemIndex, RHSOffset, RHS))
1278         return false;
1279 
1280       if (ResultElemT == PT_Float) {
1281         if (!this->emitDivf(getFPOptions(E), E))
1282           return false;
1283       } else {
1284         if (!this->emitDiv(ResultElemT, E))
1285           return false;
1286       }
1287       break;
1288 
1289     default:
1290       return false;
1291     }
1292 
1293     if (!this->DiscardResult) {
1294       // Initialize array element with the value we just computed.
1295       if (!this->emitInitElemPop(ResultElemT, ElemIndex, E))
1296         return false;
1297     } else {
1298       if (!this->emitPop(ResultElemT, E))
1299         return false;
1300     }
1301   }
1302   return true;
1303 }
1304 
1305 template <class Emitter>
1306 bool Compiler<Emitter>::VisitVectorBinOp(const BinaryOperator *E) {
1307   assert(!E->isCommaOp() &&
1308          "Comma op should be handled in VisitBinaryOperator");
1309   assert(E->getType()->isVectorType());
1310   assert(E->getLHS()->getType()->isVectorType());
1311   assert(E->getRHS()->getType()->isVectorType());
1312 
1313   // Prepare storage for result.
1314   if (!Initializing && !E->isCompoundAssignmentOp()) {
1315     unsigned LocalIndex = allocateTemporary(E);
1316     if (!this->emitGetPtrLocal(LocalIndex, E))
1317       return false;
1318   }
1319 
1320   const Expr *LHS = E->getLHS();
1321   const Expr *RHS = E->getRHS();
1322   const auto *VecTy = E->getType()->getAs<VectorType>();
1323   auto Op = E->isCompoundAssignmentOp()
1324                 ? BinaryOperator::getOpForCompoundAssignment(E->getOpcode())
1325                 : E->getOpcode();
1326 
1327   PrimType ElemT = this->classifyVectorElementType(LHS->getType());
1328   PrimType RHSElemT = this->classifyVectorElementType(RHS->getType());
1329   PrimType ResultElemT = this->classifyVectorElementType(E->getType());
1330 
1331   // Evaluate LHS and save value to LHSOffset.
1332   unsigned LHSOffset = this->allocateLocalPrimitive(LHS, PT_Ptr, true, false);
1333   if (!this->visit(LHS))
1334     return false;
1335   if (!this->emitSetLocal(PT_Ptr, LHSOffset, E))
1336     return false;
1337 
1338   // Evaluate RHS and save value to RHSOffset.
1339   unsigned RHSOffset = this->allocateLocalPrimitive(RHS, PT_Ptr, true, false);
1340   if (!this->visit(RHS))
1341     return false;
1342   if (!this->emitSetLocal(PT_Ptr, RHSOffset, E))
1343     return false;
1344 
1345   if (E->isCompoundAssignmentOp() && !this->emitGetLocal(PT_Ptr, LHSOffset, E))
1346     return false;
1347 
1348   // BitAdd/BitOr/BitXor/Shl/Shr doesn't support bool type, we need perform the
1349   // integer promotion.
1350   bool NeedIntPromot = ElemT == PT_Bool && (E->isBitwiseOp() || E->isShiftOp());
1351   QualType PromotTy =
1352       Ctx.getASTContext().getPromotedIntegerType(Ctx.getASTContext().BoolTy);
1353   PrimType PromotT = classifyPrim(PromotTy);
1354   PrimType OpT = NeedIntPromot ? PromotT : ElemT;
1355 
1356   auto getElem = [=](unsigned Offset, PrimType ElemT, unsigned Index) {
1357     if (!this->emitGetLocal(PT_Ptr, Offset, E))
1358       return false;
1359     if (!this->emitArrayElemPop(ElemT, Index, E))
1360       return false;
1361     if (E->isLogicalOp()) {
1362       if (!this->emitPrimCast(ElemT, PT_Bool, Ctx.getASTContext().BoolTy, E))
1363         return false;
1364       if (!this->emitPrimCast(PT_Bool, ResultElemT, VecTy->getElementType(), E))
1365         return false;
1366     } else if (NeedIntPromot) {
1367       if (!this->emitPrimCast(ElemT, PromotT, PromotTy, E))
1368         return false;
1369     }
1370     return true;
1371   };
1372 
1373 #define EMIT_ARITH_OP(OP)                                                      \
1374   {                                                                            \
1375     if (ElemT == PT_Float) {                                                   \
1376       if (!this->emit##OP##f(getFPOptions(E), E))                              \
1377         return false;                                                          \
1378     } else {                                                                   \
1379       if (!this->emit##OP(ElemT, E))                                           \
1380         return false;                                                          \
1381     }                                                                          \
1382     break;                                                                     \
1383   }
1384 
1385   for (unsigned I = 0; I != VecTy->getNumElements(); ++I) {
1386     if (!getElem(LHSOffset, ElemT, I))
1387       return false;
1388     if (!getElem(RHSOffset, RHSElemT, I))
1389       return false;
1390     switch (Op) {
1391     case BO_Add:
1392       EMIT_ARITH_OP(Add)
1393     case BO_Sub:
1394       EMIT_ARITH_OP(Sub)
1395     case BO_Mul:
1396       EMIT_ARITH_OP(Mul)
1397     case BO_Div:
1398       EMIT_ARITH_OP(Div)
1399     case BO_Rem:
1400       if (!this->emitRem(ElemT, E))
1401         return false;
1402       break;
1403     case BO_And:
1404       if (!this->emitBitAnd(OpT, E))
1405         return false;
1406       break;
1407     case BO_Or:
1408       if (!this->emitBitOr(OpT, E))
1409         return false;
1410       break;
1411     case BO_Xor:
1412       if (!this->emitBitXor(OpT, E))
1413         return false;
1414       break;
1415     case BO_Shl:
1416       if (!this->emitShl(OpT, RHSElemT, E))
1417         return false;
1418       break;
1419     case BO_Shr:
1420       if (!this->emitShr(OpT, RHSElemT, E))
1421         return false;
1422       break;
1423     case BO_EQ:
1424       if (!this->emitEQ(ElemT, E))
1425         return false;
1426       break;
1427     case BO_NE:
1428       if (!this->emitNE(ElemT, E))
1429         return false;
1430       break;
1431     case BO_LE:
1432       if (!this->emitLE(ElemT, E))
1433         return false;
1434       break;
1435     case BO_LT:
1436       if (!this->emitLT(ElemT, E))
1437         return false;
1438       break;
1439     case BO_GE:
1440       if (!this->emitGE(ElemT, E))
1441         return false;
1442       break;
1443     case BO_GT:
1444       if (!this->emitGT(ElemT, E))
1445         return false;
1446       break;
1447     case BO_LAnd:
1448       // a && b is equivalent to a!=0 & b!=0
1449       if (!this->emitBitAnd(ResultElemT, E))
1450         return false;
1451       break;
1452     case BO_LOr:
1453       // a || b is equivalent to a!=0 | b!=0
1454       if (!this->emitBitOr(ResultElemT, E))
1455         return false;
1456       break;
1457     default:
1458       return this->emitInvalid(E);
1459     }
1460 
1461     // The result of the comparison is a vector of the same width and number
1462     // of elements as the comparison operands with a signed integral element
1463     // type.
1464     //
1465     // https://gcc.gnu.org/onlinedocs/gcc/Vector-Extensions.html
1466     if (E->isComparisonOp()) {
1467       if (!this->emitPrimCast(PT_Bool, ResultElemT, VecTy->getElementType(), E))
1468         return false;
1469       if (!this->emitNeg(ResultElemT, E))
1470         return false;
1471     }
1472 
1473     // If we performed an integer promotion, we need to cast the compute result
1474     // into result vector element type.
1475     if (NeedIntPromot &&
1476         !this->emitPrimCast(PromotT, ResultElemT, VecTy->getElementType(), E))
1477       return false;
1478 
1479     // Initialize array element with the value we just computed.
1480     if (!this->emitInitElem(ResultElemT, I, E))
1481       return false;
1482   }
1483 
1484   if (DiscardResult && E->isCompoundAssignmentOp() && !this->emitPopPtr(E))
1485     return false;
1486   return true;
1487 }
1488 
1489 template <class Emitter>
1490 bool Compiler<Emitter>::VisitFixedPointBinOp(const BinaryOperator *E) {
1491   const Expr *LHS = E->getLHS();
1492   const Expr *RHS = E->getRHS();
1493 
1494   assert(LHS->getType()->isFixedPointType() ||
1495          RHS->getType()->isFixedPointType());
1496 
1497   if (!this->visit(LHS))
1498     return false;
1499   if (!LHS->getType()->isFixedPointType()) {
1500     auto Sem = Ctx.getASTContext().getFixedPointSemantics(LHS->getType());
1501     uint32_t I;
1502     std::memcpy(&I, &Sem, sizeof(Sem));
1503     if (!this->emitCastIntegralFixedPoint(classifyPrim(LHS->getType()), I, E))
1504       return false;
1505   }
1506   if (!this->visit(RHS))
1507     return false;
1508   if (!RHS->getType()->isFixedPointType()) {
1509     auto Sem = Ctx.getASTContext().getFixedPointSemantics(RHS->getType());
1510     uint32_t I;
1511     std::memcpy(&I, &Sem, sizeof(Sem));
1512     if (!this->emitCastIntegralFixedPoint(classifyPrim(RHS->getType()), I, E))
1513       return false;
1514   }
1515 
1516   switch (E->getOpcode()) {
1517   case BO_EQ:
1518     return this->emitEQFixedPoint(E);
1519   case BO_NE:
1520     return this->emitNEFixedPoint(E);
1521 #if 0
1522   case BO_LT:
1523     return this->emitLTFixedPoint(E);
1524   case BO_LE:
1525     return this->emitLEFixedPoint(E);
1526   case BO_GT:
1527     return this->emitGTFixedPoint(E);
1528   case BO_GE:
1529     return this->emitGEFixedPoint(E);
1530 #endif
1531   case BO_Add:
1532     return this->emitAddFixedPoint(E);
1533 
1534   default:
1535     return this->emitInvalid(E);
1536   }
1537 
1538   llvm_unreachable("unhandled binop opcode");
1539 }
1540 
1541 template <class Emitter>
1542 bool Compiler<Emitter>::VisitImplicitValueInitExpr(
1543     const ImplicitValueInitExpr *E) {
1544   QualType QT = E->getType();
1545 
1546   if (std::optional<PrimType> T = classify(QT))
1547     return this->visitZeroInitializer(*T, QT, E);
1548 
1549   if (QT->isRecordType()) {
1550     const RecordDecl *RD = QT->getAsRecordDecl();
1551     assert(RD);
1552     if (RD->isInvalidDecl())
1553       return false;
1554 
1555     if (const auto *CXXRD = dyn_cast<CXXRecordDecl>(RD);
1556         CXXRD && CXXRD->getNumVBases() > 0) {
1557       // TODO: Diagnose.
1558       return false;
1559     }
1560 
1561     const Record *R = getRecord(QT);
1562     if (!R)
1563       return false;
1564 
1565     assert(Initializing);
1566     return this->visitZeroRecordInitializer(R, E);
1567   }
1568 
1569   if (QT->isIncompleteArrayType())
1570     return true;
1571 
1572   if (QT->isArrayType()) {
1573     const ArrayType *AT = QT->getAsArrayTypeUnsafe();
1574     assert(AT);
1575     const auto *CAT = cast<ConstantArrayType>(AT);
1576     size_t NumElems = CAT->getZExtSize();
1577     PrimType ElemT = classifyPrim(CAT->getElementType());
1578 
1579     for (size_t I = 0; I != NumElems; ++I) {
1580       if (!this->visitZeroInitializer(ElemT, CAT->getElementType(), E))
1581         return false;
1582       if (!this->emitInitElem(ElemT, I, E))
1583         return false;
1584     }
1585 
1586     return true;
1587   }
1588 
1589   if (const auto *ComplexTy = E->getType()->getAs<ComplexType>()) {
1590     assert(Initializing);
1591     QualType ElemQT = ComplexTy->getElementType();
1592     PrimType ElemT = classifyPrim(ElemQT);
1593     for (unsigned I = 0; I < 2; ++I) {
1594       if (!this->visitZeroInitializer(ElemT, ElemQT, E))
1595         return false;
1596       if (!this->emitInitElem(ElemT, I, E))
1597         return false;
1598     }
1599     return true;
1600   }
1601 
1602   if (const auto *VecT = E->getType()->getAs<VectorType>()) {
1603     unsigned NumVecElements = VecT->getNumElements();
1604     QualType ElemQT = VecT->getElementType();
1605     PrimType ElemT = classifyPrim(ElemQT);
1606 
1607     for (unsigned I = 0; I < NumVecElements; ++I) {
1608       if (!this->visitZeroInitializer(ElemT, ElemQT, E))
1609         return false;
1610       if (!this->emitInitElem(ElemT, I, E))
1611         return false;
1612     }
1613     return true;
1614   }
1615 
1616   return false;
1617 }
1618 
1619 template <class Emitter>
1620 bool Compiler<Emitter>::VisitArraySubscriptExpr(const ArraySubscriptExpr *E) {
1621   const Expr *LHS = E->getLHS();
1622   const Expr *RHS = E->getRHS();
1623   const Expr *Index = E->getIdx();
1624 
1625   if (DiscardResult)
1626     return this->discard(LHS) && this->discard(RHS);
1627 
1628   // C++17's rules require us to evaluate the LHS first, regardless of which
1629   // side is the base.
1630   bool Success = true;
1631   for (const Expr *SubExpr : {LHS, RHS}) {
1632     if (!this->visit(SubExpr))
1633       Success = false;
1634   }
1635 
1636   if (!Success)
1637     return false;
1638 
1639   PrimType IndexT = classifyPrim(Index->getType());
1640   // If the index is first, we need to change that.
1641   if (LHS == Index) {
1642     if (!this->emitFlip(PT_Ptr, IndexT, E))
1643       return false;
1644   }
1645 
1646   return this->emitArrayElemPtrPop(IndexT, E);
1647 }
1648 
1649 template <class Emitter>
1650 bool Compiler<Emitter>::visitInitList(ArrayRef<const Expr *> Inits,
1651                                       const Expr *ArrayFiller, const Expr *E) {
1652   QualType QT = E->getType();
1653   if (const auto *AT = QT->getAs<AtomicType>())
1654     QT = AT->getValueType();
1655 
1656   if (QT->isVoidType()) {
1657     if (Inits.size() == 0)
1658       return true;
1659     return this->emitInvalid(E);
1660   }
1661 
1662   // Handle discarding first.
1663   if (DiscardResult) {
1664     for (const Expr *Init : Inits) {
1665       if (!this->discard(Init))
1666         return false;
1667     }
1668     return true;
1669   }
1670 
1671   // Primitive values.
1672   if (std::optional<PrimType> T = classify(QT)) {
1673     assert(!DiscardResult);
1674     if (Inits.size() == 0)
1675       return this->visitZeroInitializer(*T, QT, E);
1676     assert(Inits.size() == 1);
1677     return this->delegate(Inits[0]);
1678   }
1679 
1680   if (QT->isRecordType()) {
1681     const Record *R = getRecord(QT);
1682 
1683     if (Inits.size() == 1 && E->getType() == Inits[0]->getType())
1684       return this->delegate(Inits[0]);
1685 
1686     auto initPrimitiveField = [=](const Record::Field *FieldToInit,
1687                                   const Expr *Init, PrimType T) -> bool {
1688       InitStackScope<Emitter> ISS(this, isa<CXXDefaultInitExpr>(Init));
1689       if (!this->visit(Init))
1690         return false;
1691 
1692       if (FieldToInit->isBitField())
1693         return this->emitInitBitField(T, FieldToInit, E);
1694       return this->emitInitField(T, FieldToInit->Offset, E);
1695     };
1696 
1697     auto initCompositeField = [=](const Record::Field *FieldToInit,
1698                                   const Expr *Init) -> bool {
1699       InitStackScope<Emitter> ISS(this, isa<CXXDefaultInitExpr>(Init));
1700       InitLinkScope<Emitter> ILS(this, InitLink::Field(FieldToInit->Offset));
1701       // Non-primitive case. Get a pointer to the field-to-initialize
1702       // on the stack and recurse into visitInitializer().
1703       if (!this->emitGetPtrField(FieldToInit->Offset, Init))
1704         return false;
1705       if (!this->visitInitializer(Init))
1706         return false;
1707       return this->emitPopPtr(E);
1708     };
1709 
1710     if (R->isUnion()) {
1711       if (Inits.size() == 0) {
1712         if (!this->visitZeroRecordInitializer(R, E))
1713           return false;
1714       } else {
1715         const Expr *Init = Inits[0];
1716         const FieldDecl *FToInit = nullptr;
1717         if (const auto *ILE = dyn_cast<InitListExpr>(E))
1718           FToInit = ILE->getInitializedFieldInUnion();
1719         else
1720           FToInit = cast<CXXParenListInitExpr>(E)->getInitializedFieldInUnion();
1721 
1722         const Record::Field *FieldToInit = R->getField(FToInit);
1723         if (std::optional<PrimType> T = classify(Init)) {
1724           if (!initPrimitiveField(FieldToInit, Init, *T))
1725             return false;
1726         } else {
1727           if (!initCompositeField(FieldToInit, Init))
1728             return false;
1729         }
1730       }
1731       return this->emitFinishInit(E);
1732     }
1733 
1734     assert(!R->isUnion());
1735     unsigned InitIndex = 0;
1736     for (const Expr *Init : Inits) {
1737       // Skip unnamed bitfields.
1738       while (InitIndex < R->getNumFields() &&
1739              R->getField(InitIndex)->Decl->isUnnamedBitField())
1740         ++InitIndex;
1741 
1742       if (std::optional<PrimType> T = classify(Init)) {
1743         const Record::Field *FieldToInit = R->getField(InitIndex);
1744         if (!initPrimitiveField(FieldToInit, Init, *T))
1745           return false;
1746         ++InitIndex;
1747       } else {
1748         // Initializer for a direct base class.
1749         if (const Record::Base *B = R->getBase(Init->getType())) {
1750           if (!this->emitGetPtrBase(B->Offset, Init))
1751             return false;
1752 
1753           if (!this->visitInitializer(Init))
1754             return false;
1755 
1756           if (!this->emitFinishInitPop(E))
1757             return false;
1758           // Base initializers don't increase InitIndex, since they don't count
1759           // into the Record's fields.
1760         } else {
1761           const Record::Field *FieldToInit = R->getField(InitIndex);
1762           if (!initCompositeField(FieldToInit, Init))
1763             return false;
1764           ++InitIndex;
1765         }
1766       }
1767     }
1768     return this->emitFinishInit(E);
1769   }
1770 
1771   if (QT->isArrayType()) {
1772     if (Inits.size() == 1 && QT == Inits[0]->getType())
1773       return this->delegate(Inits[0]);
1774 
1775     unsigned ElementIndex = 0;
1776     for (const Expr *Init : Inits) {
1777       if (const auto *EmbedS =
1778               dyn_cast<EmbedExpr>(Init->IgnoreParenImpCasts())) {
1779         PrimType TargetT = classifyPrim(Init->getType());
1780 
1781         auto Eval = [&](const Expr *Init, unsigned ElemIndex) {
1782           PrimType InitT = classifyPrim(Init->getType());
1783           if (!this->visit(Init))
1784             return false;
1785           if (InitT != TargetT) {
1786             if (!this->emitCast(InitT, TargetT, E))
1787               return false;
1788           }
1789           return this->emitInitElem(TargetT, ElemIndex, Init);
1790         };
1791         if (!EmbedS->doForEachDataElement(Eval, ElementIndex))
1792           return false;
1793       } else {
1794         if (!this->visitArrayElemInit(ElementIndex, Init))
1795           return false;
1796         ++ElementIndex;
1797       }
1798     }
1799 
1800     // Expand the filler expression.
1801     // FIXME: This should go away.
1802     if (ArrayFiller) {
1803       const ConstantArrayType *CAT =
1804           Ctx.getASTContext().getAsConstantArrayType(QT);
1805       uint64_t NumElems = CAT->getZExtSize();
1806 
1807       for (; ElementIndex != NumElems; ++ElementIndex) {
1808         if (!this->visitArrayElemInit(ElementIndex, ArrayFiller))
1809           return false;
1810       }
1811     }
1812 
1813     return this->emitFinishInit(E);
1814   }
1815 
1816   if (const auto *ComplexTy = QT->getAs<ComplexType>()) {
1817     unsigned NumInits = Inits.size();
1818 
1819     if (NumInits == 1)
1820       return this->delegate(Inits[0]);
1821 
1822     QualType ElemQT = ComplexTy->getElementType();
1823     PrimType ElemT = classifyPrim(ElemQT);
1824     if (NumInits == 0) {
1825       // Zero-initialize both elements.
1826       for (unsigned I = 0; I < 2; ++I) {
1827         if (!this->visitZeroInitializer(ElemT, ElemQT, E))
1828           return false;
1829         if (!this->emitInitElem(ElemT, I, E))
1830           return false;
1831       }
1832     } else if (NumInits == 2) {
1833       unsigned InitIndex = 0;
1834       for (const Expr *Init : Inits) {
1835         if (!this->visit(Init))
1836           return false;
1837 
1838         if (!this->emitInitElem(ElemT, InitIndex, E))
1839           return false;
1840         ++InitIndex;
1841       }
1842     }
1843     return true;
1844   }
1845 
1846   if (const auto *VecT = QT->getAs<VectorType>()) {
1847     unsigned NumVecElements = VecT->getNumElements();
1848     assert(NumVecElements >= Inits.size());
1849 
1850     QualType ElemQT = VecT->getElementType();
1851     PrimType ElemT = classifyPrim(ElemQT);
1852 
1853     // All initializer elements.
1854     unsigned InitIndex = 0;
1855     for (const Expr *Init : Inits) {
1856       if (!this->visit(Init))
1857         return false;
1858 
1859       // If the initializer is of vector type itself, we have to deconstruct
1860       // that and initialize all the target fields from the initializer fields.
1861       if (const auto *InitVecT = Init->getType()->getAs<VectorType>()) {
1862         if (!this->emitCopyArray(ElemT, 0, InitIndex,
1863                                  InitVecT->getNumElements(), E))
1864           return false;
1865         InitIndex += InitVecT->getNumElements();
1866       } else {
1867         if (!this->emitInitElem(ElemT, InitIndex, E))
1868           return false;
1869         ++InitIndex;
1870       }
1871     }
1872 
1873     assert(InitIndex <= NumVecElements);
1874 
1875     // Fill the rest with zeroes.
1876     for (; InitIndex != NumVecElements; ++InitIndex) {
1877       if (!this->visitZeroInitializer(ElemT, ElemQT, E))
1878         return false;
1879       if (!this->emitInitElem(ElemT, InitIndex, E))
1880         return false;
1881     }
1882     return true;
1883   }
1884 
1885   return false;
1886 }
1887 
1888 /// Pointer to the array(not the element!) must be on the stack when calling
1889 /// this.
1890 template <class Emitter>
1891 bool Compiler<Emitter>::visitArrayElemInit(unsigned ElemIndex,
1892                                            const Expr *Init) {
1893   if (std::optional<PrimType> T = classify(Init->getType())) {
1894     // Visit the primitive element like normal.
1895     if (!this->visit(Init))
1896       return false;
1897     return this->emitInitElem(*T, ElemIndex, Init);
1898   }
1899 
1900   InitLinkScope<Emitter> ILS(this, InitLink::Elem(ElemIndex));
1901   // Advance the pointer currently on the stack to the given
1902   // dimension.
1903   if (!this->emitConstUint32(ElemIndex, Init))
1904     return false;
1905   if (!this->emitArrayElemPtrUint32(Init))
1906     return false;
1907   if (!this->visitInitializer(Init))
1908     return false;
1909   return this->emitFinishInitPop(Init);
1910 }
1911 
1912 template <class Emitter>
1913 bool Compiler<Emitter>::VisitInitListExpr(const InitListExpr *E) {
1914   return this->visitInitList(E->inits(), E->getArrayFiller(), E);
1915 }
1916 
1917 template <class Emitter>
1918 bool Compiler<Emitter>::VisitCXXParenListInitExpr(
1919     const CXXParenListInitExpr *E) {
1920   return this->visitInitList(E->getInitExprs(), E->getArrayFiller(), E);
1921 }
1922 
1923 template <class Emitter>
1924 bool Compiler<Emitter>::VisitSubstNonTypeTemplateParmExpr(
1925     const SubstNonTypeTemplateParmExpr *E) {
1926   return this->delegate(E->getReplacement());
1927 }
1928 
1929 template <class Emitter>
1930 bool Compiler<Emitter>::VisitConstantExpr(const ConstantExpr *E) {
1931   std::optional<PrimType> T = classify(E->getType());
1932   if (T && E->hasAPValueResult()) {
1933     // Try to emit the APValue directly, without visiting the subexpr.
1934     // This will only fail if we can't emit the APValue, so won't emit any
1935     // diagnostics or any double values.
1936     if (DiscardResult)
1937       return true;
1938 
1939     if (this->visitAPValue(E->getAPValueResult(), *T, E))
1940       return true;
1941   }
1942   return this->delegate(E->getSubExpr());
1943 }
1944 
1945 template <class Emitter>
1946 bool Compiler<Emitter>::VisitEmbedExpr(const EmbedExpr *E) {
1947   auto It = E->begin();
1948   return this->visit(*It);
1949 }
1950 
1951 static CharUnits AlignOfType(QualType T, const ASTContext &ASTCtx,
1952                              UnaryExprOrTypeTrait Kind) {
1953   bool AlignOfReturnsPreferred =
1954       ASTCtx.getLangOpts().getClangABICompat() <= LangOptions::ClangABI::Ver7;
1955 
1956   // C++ [expr.alignof]p3:
1957   //     When alignof is applied to a reference type, the result is the
1958   //     alignment of the referenced type.
1959   if (const auto *Ref = T->getAs<ReferenceType>())
1960     T = Ref->getPointeeType();
1961 
1962   if (T.getQualifiers().hasUnaligned())
1963     return CharUnits::One();
1964 
1965   // __alignof is defined to return the preferred alignment.
1966   // Before 8, clang returned the preferred alignment for alignof and
1967   // _Alignof as well.
1968   if (Kind == UETT_PreferredAlignOf || AlignOfReturnsPreferred)
1969     return ASTCtx.toCharUnitsFromBits(ASTCtx.getPreferredTypeAlign(T));
1970 
1971   return ASTCtx.getTypeAlignInChars(T);
1972 }
1973 
1974 template <class Emitter>
1975 bool Compiler<Emitter>::VisitUnaryExprOrTypeTraitExpr(
1976     const UnaryExprOrTypeTraitExpr *E) {
1977   UnaryExprOrTypeTrait Kind = E->getKind();
1978   const ASTContext &ASTCtx = Ctx.getASTContext();
1979 
1980   if (Kind == UETT_SizeOf || Kind == UETT_DataSizeOf) {
1981     QualType ArgType = E->getTypeOfArgument();
1982 
1983     // C++ [expr.sizeof]p2: "When applied to a reference or a reference type,
1984     //   the result is the size of the referenced type."
1985     if (const auto *Ref = ArgType->getAs<ReferenceType>())
1986       ArgType = Ref->getPointeeType();
1987 
1988     CharUnits Size;
1989     if (ArgType->isVoidType() || ArgType->isFunctionType())
1990       Size = CharUnits::One();
1991     else {
1992       if (ArgType->isDependentType() || !ArgType->isConstantSizeType())
1993         return false;
1994 
1995       if (Kind == UETT_SizeOf)
1996         Size = ASTCtx.getTypeSizeInChars(ArgType);
1997       else
1998         Size = ASTCtx.getTypeInfoDataSizeInChars(ArgType).Width;
1999     }
2000 
2001     if (DiscardResult)
2002       return true;
2003 
2004     return this->emitConst(Size.getQuantity(), E);
2005   }
2006 
2007   if (Kind == UETT_AlignOf || Kind == UETT_PreferredAlignOf) {
2008     CharUnits Size;
2009 
2010     if (E->isArgumentType()) {
2011       QualType ArgType = E->getTypeOfArgument();
2012 
2013       Size = AlignOfType(ArgType, ASTCtx, Kind);
2014     } else {
2015       // Argument is an expression, not a type.
2016       const Expr *Arg = E->getArgumentExpr()->IgnoreParens();
2017 
2018       // The kinds of expressions that we have special-case logic here for
2019       // should be kept up to date with the special checks for those
2020       // expressions in Sema.
2021 
2022       // alignof decl is always accepted, even if it doesn't make sense: we
2023       // default to 1 in those cases.
2024       if (const auto *DRE = dyn_cast<DeclRefExpr>(Arg))
2025         Size = ASTCtx.getDeclAlign(DRE->getDecl(),
2026                                    /*RefAsPointee*/ true);
2027       else if (const auto *ME = dyn_cast<MemberExpr>(Arg))
2028         Size = ASTCtx.getDeclAlign(ME->getMemberDecl(),
2029                                    /*RefAsPointee*/ true);
2030       else
2031         Size = AlignOfType(Arg->getType(), ASTCtx, Kind);
2032     }
2033 
2034     if (DiscardResult)
2035       return true;
2036 
2037     return this->emitConst(Size.getQuantity(), E);
2038   }
2039 
2040   if (Kind == UETT_VectorElements) {
2041     if (const auto *VT = E->getTypeOfArgument()->getAs<VectorType>())
2042       return this->emitConst(VT->getNumElements(), E);
2043     assert(E->getTypeOfArgument()->isSizelessVectorType());
2044     return this->emitSizelessVectorElementSize(E);
2045   }
2046 
2047   if (Kind == UETT_VecStep) {
2048     if (const auto *VT = E->getTypeOfArgument()->getAs<VectorType>()) {
2049       unsigned N = VT->getNumElements();
2050 
2051       // The vec_step built-in functions that take a 3-component
2052       // vector return 4. (OpenCL 1.1 spec 6.11.12)
2053       if (N == 3)
2054         N = 4;
2055 
2056       return this->emitConst(N, E);
2057     }
2058     return this->emitConst(1, E);
2059   }
2060 
2061   return false;
2062 }
2063 
2064 template <class Emitter>
2065 bool Compiler<Emitter>::VisitMemberExpr(const MemberExpr *E) {
2066   // 'Base.Member'
2067   const Expr *Base = E->getBase();
2068   const ValueDecl *Member = E->getMemberDecl();
2069 
2070   if (DiscardResult)
2071     return this->discard(Base);
2072 
2073   // MemberExprs are almost always lvalues, in which case we don't need to
2074   // do the load. But sometimes they aren't.
2075   const auto maybeLoadValue = [&]() -> bool {
2076     if (E->isGLValue())
2077       return true;
2078     if (std::optional<PrimType> T = classify(E))
2079       return this->emitLoadPop(*T, E);
2080     return false;
2081   };
2082 
2083   if (const auto *VD = dyn_cast<VarDecl>(Member)) {
2084     // I am almost confident in saying that a var decl must be static
2085     // and therefore registered as a global variable. But this will probably
2086     // turn out to be wrong some time in the future, as always.
2087     if (auto GlobalIndex = P.getGlobal(VD))
2088       return this->emitGetPtrGlobal(*GlobalIndex, E) && maybeLoadValue();
2089     return false;
2090   }
2091 
2092   if (!isa<FieldDecl>(Member)) {
2093     if (!this->discard(Base) && !this->emitSideEffect(E))
2094       return false;
2095 
2096     return this->visitDeclRef(Member, E);
2097   }
2098 
2099   if (Initializing) {
2100     if (!this->delegate(Base))
2101       return false;
2102   } else {
2103     if (!this->visit(Base))
2104       return false;
2105   }
2106 
2107   // Base above gives us a pointer on the stack.
2108   const auto *FD = cast<FieldDecl>(Member);
2109   const RecordDecl *RD = FD->getParent();
2110   const Record *R = getRecord(RD);
2111   if (!R)
2112     return false;
2113   const Record::Field *F = R->getField(FD);
2114   // Leave a pointer to the field on the stack.
2115   if (F->Decl->getType()->isReferenceType())
2116     return this->emitGetFieldPop(PT_Ptr, F->Offset, E) && maybeLoadValue();
2117   return this->emitGetPtrFieldPop(F->Offset, E) && maybeLoadValue();
2118 }
2119 
2120 template <class Emitter>
2121 bool Compiler<Emitter>::VisitArrayInitIndexExpr(const ArrayInitIndexExpr *E) {
2122   // ArrayIndex might not be set if a ArrayInitIndexExpr is being evaluated
2123   // stand-alone, e.g. via EvaluateAsInt().
2124   if (!ArrayIndex)
2125     return false;
2126   return this->emitConst(*ArrayIndex, E);
2127 }
2128 
2129 template <class Emitter>
2130 bool Compiler<Emitter>::VisitArrayInitLoopExpr(const ArrayInitLoopExpr *E) {
2131   assert(Initializing);
2132   assert(!DiscardResult);
2133 
2134   // We visit the common opaque expression here once so we have its value
2135   // cached.
2136   if (!this->discard(E->getCommonExpr()))
2137     return false;
2138 
2139   // TODO: This compiles to quite a lot of bytecode if the array is larger.
2140   //   Investigate compiling this to a loop.
2141   const Expr *SubExpr = E->getSubExpr();
2142   size_t Size = E->getArraySize().getZExtValue();
2143 
2144   // So, every iteration, we execute an assignment here
2145   // where the LHS is on the stack (the target array)
2146   // and the RHS is our SubExpr.
2147   for (size_t I = 0; I != Size; ++I) {
2148     ArrayIndexScope<Emitter> IndexScope(this, I);
2149     BlockScope<Emitter> BS(this);
2150 
2151     if (!this->visitArrayElemInit(I, SubExpr))
2152       return false;
2153     if (!BS.destroyLocals())
2154       return false;
2155   }
2156   return true;
2157 }
2158 
2159 template <class Emitter>
2160 bool Compiler<Emitter>::VisitOpaqueValueExpr(const OpaqueValueExpr *E) {
2161   const Expr *SourceExpr = E->getSourceExpr();
2162   if (!SourceExpr)
2163     return false;
2164 
2165   if (Initializing)
2166     return this->visitInitializer(SourceExpr);
2167 
2168   PrimType SubExprT = classify(SourceExpr).value_or(PT_Ptr);
2169   if (auto It = OpaqueExprs.find(E); It != OpaqueExprs.end())
2170     return this->emitGetLocal(SubExprT, It->second, E);
2171 
2172   if (!this->visit(SourceExpr))
2173     return false;
2174 
2175   // At this point we either have the evaluated source expression or a pointer
2176   // to an object on the stack. We want to create a local variable that stores
2177   // this value.
2178   unsigned LocalIndex = allocateLocalPrimitive(E, SubExprT, /*IsConst=*/true);
2179   if (!this->emitSetLocal(SubExprT, LocalIndex, E))
2180     return false;
2181 
2182   // Here the local variable is created but the value is removed from the stack,
2183   // so we put it back if the caller needs it.
2184   if (!DiscardResult) {
2185     if (!this->emitGetLocal(SubExprT, LocalIndex, E))
2186       return false;
2187   }
2188 
2189   // This is cleaned up when the local variable is destroyed.
2190   OpaqueExprs.insert({E, LocalIndex});
2191 
2192   return true;
2193 }
2194 
2195 template <class Emitter>
2196 bool Compiler<Emitter>::VisitAbstractConditionalOperator(
2197     const AbstractConditionalOperator *E) {
2198   const Expr *Condition = E->getCond();
2199   const Expr *TrueExpr = E->getTrueExpr();
2200   const Expr *FalseExpr = E->getFalseExpr();
2201 
2202   LabelTy LabelEnd = this->getLabel();   // Label after the operator.
2203   LabelTy LabelFalse = this->getLabel(); // Label for the false expr.
2204 
2205   if (!this->visitBool(Condition))
2206     return false;
2207 
2208   if (!this->jumpFalse(LabelFalse))
2209     return false;
2210 
2211   {
2212     LocalScope<Emitter> S(this);
2213     if (!this->delegate(TrueExpr))
2214       return false;
2215     if (!S.destroyLocals())
2216       return false;
2217   }
2218 
2219   if (!this->jump(LabelEnd))
2220     return false;
2221 
2222   this->emitLabel(LabelFalse);
2223 
2224   {
2225     LocalScope<Emitter> S(this);
2226     if (!this->delegate(FalseExpr))
2227       return false;
2228     if (!S.destroyLocals())
2229       return false;
2230   }
2231 
2232   this->fallthrough(LabelEnd);
2233   this->emitLabel(LabelEnd);
2234 
2235   return true;
2236 }
2237 
2238 template <class Emitter>
2239 bool Compiler<Emitter>::VisitStringLiteral(const StringLiteral *E) {
2240   if (DiscardResult)
2241     return true;
2242 
2243   if (!Initializing) {
2244     unsigned StringIndex = P.createGlobalString(E);
2245     return this->emitGetPtrGlobal(StringIndex, E);
2246   }
2247 
2248   // We are initializing an array on the stack.
2249   const ConstantArrayType *CAT =
2250       Ctx.getASTContext().getAsConstantArrayType(E->getType());
2251   assert(CAT && "a string literal that's not a constant array?");
2252 
2253   // If the initializer string is too long, a diagnostic has already been
2254   // emitted. Read only the array length from the string literal.
2255   unsigned ArraySize = CAT->getZExtSize();
2256   unsigned N = std::min(ArraySize, E->getLength());
2257   size_t CharWidth = E->getCharByteWidth();
2258 
2259   for (unsigned I = 0; I != N; ++I) {
2260     uint32_t CodeUnit = E->getCodeUnit(I);
2261 
2262     if (CharWidth == 1) {
2263       this->emitConstSint8(CodeUnit, E);
2264       this->emitInitElemSint8(I, E);
2265     } else if (CharWidth == 2) {
2266       this->emitConstUint16(CodeUnit, E);
2267       this->emitInitElemUint16(I, E);
2268     } else if (CharWidth == 4) {
2269       this->emitConstUint32(CodeUnit, E);
2270       this->emitInitElemUint32(I, E);
2271     } else {
2272       llvm_unreachable("unsupported character width");
2273     }
2274   }
2275 
2276   // Fill up the rest of the char array with NUL bytes.
2277   for (unsigned I = N; I != ArraySize; ++I) {
2278     if (CharWidth == 1) {
2279       this->emitConstSint8(0, E);
2280       this->emitInitElemSint8(I, E);
2281     } else if (CharWidth == 2) {
2282       this->emitConstUint16(0, E);
2283       this->emitInitElemUint16(I, E);
2284     } else if (CharWidth == 4) {
2285       this->emitConstUint32(0, E);
2286       this->emitInitElemUint32(I, E);
2287     } else {
2288       llvm_unreachable("unsupported character width");
2289     }
2290   }
2291 
2292   return true;
2293 }
2294 
2295 template <class Emitter>
2296 bool Compiler<Emitter>::VisitObjCStringLiteral(const ObjCStringLiteral *E) {
2297   if (std::optional<unsigned> I = P.getOrCreateDummy(E))
2298     return this->emitGetPtrGlobal(*I, E);
2299   return false;
2300 }
2301 
2302 template <class Emitter>
2303 bool Compiler<Emitter>::VisitObjCEncodeExpr(const ObjCEncodeExpr *E) {
2304   auto &A = Ctx.getASTContext();
2305   std::string Str;
2306   A.getObjCEncodingForType(E->getEncodedType(), Str);
2307   StringLiteral *SL =
2308       StringLiteral::Create(A, Str, StringLiteralKind::Ordinary,
2309                             /*Pascal=*/false, E->getType(), E->getAtLoc());
2310   return this->delegate(SL);
2311 }
2312 
2313 template <class Emitter>
2314 bool Compiler<Emitter>::VisitSYCLUniqueStableNameExpr(
2315     const SYCLUniqueStableNameExpr *E) {
2316   if (DiscardResult)
2317     return true;
2318 
2319   assert(!Initializing);
2320 
2321   auto &A = Ctx.getASTContext();
2322   std::string ResultStr = E->ComputeName(A);
2323 
2324   QualType CharTy = A.CharTy.withConst();
2325   APInt Size(A.getTypeSize(A.getSizeType()), ResultStr.size() + 1);
2326   QualType ArrayTy = A.getConstantArrayType(CharTy, Size, nullptr,
2327                                             ArraySizeModifier::Normal, 0);
2328 
2329   StringLiteral *SL =
2330       StringLiteral::Create(A, ResultStr, StringLiteralKind::Ordinary,
2331                             /*Pascal=*/false, ArrayTy, E->getLocation());
2332 
2333   unsigned StringIndex = P.createGlobalString(SL);
2334   return this->emitGetPtrGlobal(StringIndex, E);
2335 }
2336 
2337 template <class Emitter>
2338 bool Compiler<Emitter>::VisitCharacterLiteral(const CharacterLiteral *E) {
2339   if (DiscardResult)
2340     return true;
2341   return this->emitConst(E->getValue(), E);
2342 }
2343 
2344 template <class Emitter>
2345 bool Compiler<Emitter>::VisitFloatCompoundAssignOperator(
2346     const CompoundAssignOperator *E) {
2347 
2348   const Expr *LHS = E->getLHS();
2349   const Expr *RHS = E->getRHS();
2350   QualType LHSType = LHS->getType();
2351   QualType LHSComputationType = E->getComputationLHSType();
2352   QualType ResultType = E->getComputationResultType();
2353   std::optional<PrimType> LT = classify(LHSComputationType);
2354   std::optional<PrimType> RT = classify(ResultType);
2355 
2356   assert(ResultType->isFloatingType());
2357 
2358   if (!LT || !RT)
2359     return false;
2360 
2361   PrimType LHST = classifyPrim(LHSType);
2362 
2363   // C++17 onwards require that we evaluate the RHS first.
2364   // Compute RHS and save it in a temporary variable so we can
2365   // load it again later.
2366   if (!visit(RHS))
2367     return false;
2368 
2369   unsigned TempOffset = this->allocateLocalPrimitive(E, *RT, /*IsConst=*/true);
2370   if (!this->emitSetLocal(*RT, TempOffset, E))
2371     return false;
2372 
2373   // First, visit LHS.
2374   if (!visit(LHS))
2375     return false;
2376   if (!this->emitLoad(LHST, E))
2377     return false;
2378 
2379   // If necessary, convert LHS to its computation type.
2380   if (!this->emitPrimCast(LHST, classifyPrim(LHSComputationType),
2381                           LHSComputationType, E))
2382     return false;
2383 
2384   // Now load RHS.
2385   if (!this->emitGetLocal(*RT, TempOffset, E))
2386     return false;
2387 
2388   switch (E->getOpcode()) {
2389   case BO_AddAssign:
2390     if (!this->emitAddf(getFPOptions(E), E))
2391       return false;
2392     break;
2393   case BO_SubAssign:
2394     if (!this->emitSubf(getFPOptions(E), E))
2395       return false;
2396     break;
2397   case BO_MulAssign:
2398     if (!this->emitMulf(getFPOptions(E), E))
2399       return false;
2400     break;
2401   case BO_DivAssign:
2402     if (!this->emitDivf(getFPOptions(E), E))
2403       return false;
2404     break;
2405   default:
2406     return false;
2407   }
2408 
2409   if (!this->emitPrimCast(classifyPrim(ResultType), LHST, LHS->getType(), E))
2410     return false;
2411 
2412   if (DiscardResult)
2413     return this->emitStorePop(LHST, E);
2414   return this->emitStore(LHST, E);
2415 }
2416 
2417 template <class Emitter>
2418 bool Compiler<Emitter>::VisitPointerCompoundAssignOperator(
2419     const CompoundAssignOperator *E) {
2420   BinaryOperatorKind Op = E->getOpcode();
2421   const Expr *LHS = E->getLHS();
2422   const Expr *RHS = E->getRHS();
2423   std::optional<PrimType> LT = classify(LHS->getType());
2424   std::optional<PrimType> RT = classify(RHS->getType());
2425 
2426   if (Op != BO_AddAssign && Op != BO_SubAssign)
2427     return false;
2428 
2429   if (!LT || !RT)
2430     return false;
2431 
2432   if (!visit(LHS))
2433     return false;
2434 
2435   if (!this->emitLoad(*LT, LHS))
2436     return false;
2437 
2438   if (!visit(RHS))
2439     return false;
2440 
2441   if (Op == BO_AddAssign) {
2442     if (!this->emitAddOffset(*RT, E))
2443       return false;
2444   } else {
2445     if (!this->emitSubOffset(*RT, E))
2446       return false;
2447   }
2448 
2449   if (DiscardResult)
2450     return this->emitStorePopPtr(E);
2451   return this->emitStorePtr(E);
2452 }
2453 
2454 template <class Emitter>
2455 bool Compiler<Emitter>::VisitCompoundAssignOperator(
2456     const CompoundAssignOperator *E) {
2457   if (E->getType()->isVectorType())
2458     return VisitVectorBinOp(E);
2459 
2460   const Expr *LHS = E->getLHS();
2461   const Expr *RHS = E->getRHS();
2462   std::optional<PrimType> LHSComputationT =
2463       classify(E->getComputationLHSType());
2464   std::optional<PrimType> LT = classify(LHS->getType());
2465   std::optional<PrimType> RT = classify(RHS->getType());
2466   std::optional<PrimType> ResultT = classify(E->getType());
2467 
2468   if (!Ctx.getLangOpts().CPlusPlus14)
2469     return this->visit(RHS) && this->visit(LHS) && this->emitError(E);
2470 
2471   if (!LT || !RT || !ResultT || !LHSComputationT)
2472     return false;
2473 
2474   // Handle floating point operations separately here, since they
2475   // require special care.
2476 
2477   if (ResultT == PT_Float || RT == PT_Float)
2478     return VisitFloatCompoundAssignOperator(E);
2479 
2480   if (E->getType()->isPointerType())
2481     return VisitPointerCompoundAssignOperator(E);
2482 
2483   assert(!E->getType()->isPointerType() && "Handled above");
2484   assert(!E->getType()->isFloatingType() && "Handled above");
2485 
2486   // C++17 onwards require that we evaluate the RHS first.
2487   // Compute RHS and save it in a temporary variable so we can
2488   // load it again later.
2489   // FIXME: Compound assignments are unsequenced in C, so we might
2490   //   have to figure out how to reject them.
2491   if (!visit(RHS))
2492     return false;
2493 
2494   unsigned TempOffset = this->allocateLocalPrimitive(E, *RT, /*IsConst=*/true);
2495 
2496   if (!this->emitSetLocal(*RT, TempOffset, E))
2497     return false;
2498 
2499   // Get LHS pointer, load its value and cast it to the
2500   // computation type if necessary.
2501   if (!visit(LHS))
2502     return false;
2503   if (!this->emitLoad(*LT, E))
2504     return false;
2505   if (LT != LHSComputationT) {
2506     if (!this->emitCast(*LT, *LHSComputationT, E))
2507       return false;
2508   }
2509 
2510   // Get the RHS value on the stack.
2511   if (!this->emitGetLocal(*RT, TempOffset, E))
2512     return false;
2513 
2514   // Perform operation.
2515   switch (E->getOpcode()) {
2516   case BO_AddAssign:
2517     if (!this->emitAdd(*LHSComputationT, E))
2518       return false;
2519     break;
2520   case BO_SubAssign:
2521     if (!this->emitSub(*LHSComputationT, E))
2522       return false;
2523     break;
2524   case BO_MulAssign:
2525     if (!this->emitMul(*LHSComputationT, E))
2526       return false;
2527     break;
2528   case BO_DivAssign:
2529     if (!this->emitDiv(*LHSComputationT, E))
2530       return false;
2531     break;
2532   case BO_RemAssign:
2533     if (!this->emitRem(*LHSComputationT, E))
2534       return false;
2535     break;
2536   case BO_ShlAssign:
2537     if (!this->emitShl(*LHSComputationT, *RT, E))
2538       return false;
2539     break;
2540   case BO_ShrAssign:
2541     if (!this->emitShr(*LHSComputationT, *RT, E))
2542       return false;
2543     break;
2544   case BO_AndAssign:
2545     if (!this->emitBitAnd(*LHSComputationT, E))
2546       return false;
2547     break;
2548   case BO_XorAssign:
2549     if (!this->emitBitXor(*LHSComputationT, E))
2550       return false;
2551     break;
2552   case BO_OrAssign:
2553     if (!this->emitBitOr(*LHSComputationT, E))
2554       return false;
2555     break;
2556   default:
2557     llvm_unreachable("Unimplemented compound assign operator");
2558   }
2559 
2560   // And now cast from LHSComputationT to ResultT.
2561   if (ResultT != LHSComputationT) {
2562     if (!this->emitCast(*LHSComputationT, *ResultT, E))
2563       return false;
2564   }
2565 
2566   // And store the result in LHS.
2567   if (DiscardResult) {
2568     if (LHS->refersToBitField())
2569       return this->emitStoreBitFieldPop(*ResultT, E);
2570     return this->emitStorePop(*ResultT, E);
2571   }
2572   if (LHS->refersToBitField())
2573     return this->emitStoreBitField(*ResultT, E);
2574   return this->emitStore(*ResultT, E);
2575 }
2576 
2577 template <class Emitter>
2578 bool Compiler<Emitter>::VisitExprWithCleanups(const ExprWithCleanups *E) {
2579   LocalScope<Emitter> ES(this);
2580   const Expr *SubExpr = E->getSubExpr();
2581 
2582   return this->delegate(SubExpr) && ES.destroyLocals(E);
2583 }
2584 
2585 template <class Emitter>
2586 bool Compiler<Emitter>::VisitMaterializeTemporaryExpr(
2587     const MaterializeTemporaryExpr *E) {
2588   const Expr *SubExpr = E->getSubExpr();
2589 
2590   if (Initializing) {
2591     // We already have a value, just initialize that.
2592     return this->delegate(SubExpr);
2593   }
2594   // If we don't end up using the materialized temporary anyway, don't
2595   // bother creating it.
2596   if (DiscardResult)
2597     return this->discard(SubExpr);
2598 
2599   // When we're initializing a global variable *or* the storage duration of
2600   // the temporary is explicitly static, create a global variable.
2601   std::optional<PrimType> SubExprT = classify(SubExpr);
2602   bool IsStatic = E->getStorageDuration() == SD_Static;
2603   if (IsStatic) {
2604     std::optional<unsigned> GlobalIndex = P.createGlobal(E);
2605     if (!GlobalIndex)
2606       return false;
2607 
2608     const LifetimeExtendedTemporaryDecl *TempDecl =
2609         E->getLifetimeExtendedTemporaryDecl();
2610     if (IsStatic)
2611       assert(TempDecl);
2612 
2613     if (SubExprT) {
2614       if (!this->visit(SubExpr))
2615         return false;
2616       if (IsStatic) {
2617         if (!this->emitInitGlobalTemp(*SubExprT, *GlobalIndex, TempDecl, E))
2618           return false;
2619       } else {
2620         if (!this->emitInitGlobal(*SubExprT, *GlobalIndex, E))
2621           return false;
2622       }
2623       return this->emitGetPtrGlobal(*GlobalIndex, E);
2624     }
2625 
2626     if (!this->checkLiteralType(SubExpr))
2627       return false;
2628     // Non-primitive values.
2629     if (!this->emitGetPtrGlobal(*GlobalIndex, E))
2630       return false;
2631     if (!this->visitInitializer(SubExpr))
2632       return false;
2633     if (IsStatic)
2634       return this->emitInitGlobalTempComp(TempDecl, E);
2635     return true;
2636   }
2637 
2638   // For everyhing else, use local variables.
2639   if (SubExprT) {
2640     unsigned LocalIndex = allocateLocalPrimitive(E, *SubExprT, /*IsConst=*/true,
2641                                                  /*IsExtended=*/true);
2642     if (!this->visit(SubExpr))
2643       return false;
2644     if (!this->emitSetLocal(*SubExprT, LocalIndex, E))
2645       return false;
2646     return this->emitGetPtrLocal(LocalIndex, E);
2647   } else {
2648 
2649     if (!this->checkLiteralType(SubExpr))
2650       return false;
2651 
2652     const Expr *Inner = E->getSubExpr()->skipRValueSubobjectAdjustments();
2653     if (std::optional<unsigned> LocalIndex =
2654             allocateLocal(Inner, E->getExtendingDecl())) {
2655       InitLinkScope<Emitter> ILS(this, InitLink::Temp(*LocalIndex));
2656       if (!this->emitGetPtrLocal(*LocalIndex, E))
2657         return false;
2658       return this->visitInitializer(SubExpr);
2659     }
2660   }
2661   return false;
2662 }
2663 
2664 template <class Emitter>
2665 bool Compiler<Emitter>::VisitCXXBindTemporaryExpr(
2666     const CXXBindTemporaryExpr *E) {
2667   return this->delegate(E->getSubExpr());
2668 }
2669 
2670 template <class Emitter>
2671 bool Compiler<Emitter>::VisitCompoundLiteralExpr(const CompoundLiteralExpr *E) {
2672   const Expr *Init = E->getInitializer();
2673   if (DiscardResult)
2674     return this->discard(Init);
2675 
2676   if (Initializing) {
2677     // We already have a value, just initialize that.
2678     return this->visitInitializer(Init) && this->emitFinishInit(E);
2679   }
2680 
2681   std::optional<PrimType> T = classify(E->getType());
2682   if (E->isFileScope()) {
2683     // Avoid creating a variable if this is a primitive RValue anyway.
2684     if (T && !E->isLValue())
2685       return this->delegate(Init);
2686 
2687     if (std::optional<unsigned> GlobalIndex = P.createGlobal(E)) {
2688       if (!this->emitGetPtrGlobal(*GlobalIndex, E))
2689         return false;
2690 
2691       if (T) {
2692         if (!this->visit(Init))
2693           return false;
2694         return this->emitInitGlobal(*T, *GlobalIndex, E);
2695       }
2696 
2697       return this->visitInitializer(Init) && this->emitFinishInit(E);
2698     }
2699 
2700     return false;
2701   }
2702 
2703   // Otherwise, use a local variable.
2704   if (T && !E->isLValue()) {
2705     // For primitive types, we just visit the initializer.
2706     return this->delegate(Init);
2707   } else {
2708     unsigned LocalIndex;
2709 
2710     if (T)
2711       LocalIndex = this->allocateLocalPrimitive(Init, *T, false, false);
2712     else if (std::optional<unsigned> MaybeIndex = this->allocateLocal(Init))
2713       LocalIndex = *MaybeIndex;
2714     else
2715       return false;
2716 
2717     if (!this->emitGetPtrLocal(LocalIndex, E))
2718       return false;
2719 
2720     if (T) {
2721       if (!this->visit(Init)) {
2722         return false;
2723       }
2724       return this->emitInit(*T, E);
2725     } else {
2726       if (!this->visitInitializer(Init) || !this->emitFinishInit(E))
2727         return false;
2728     }
2729     return true;
2730   }
2731 
2732   return false;
2733 }
2734 
2735 template <class Emitter>
2736 bool Compiler<Emitter>::VisitTypeTraitExpr(const TypeTraitExpr *E) {
2737   if (DiscardResult)
2738     return true;
2739   if (E->getType()->isBooleanType())
2740     return this->emitConstBool(E->getValue(), E);
2741   return this->emitConst(E->getValue(), E);
2742 }
2743 
2744 template <class Emitter>
2745 bool Compiler<Emitter>::VisitArrayTypeTraitExpr(const ArrayTypeTraitExpr *E) {
2746   if (DiscardResult)
2747     return true;
2748   return this->emitConst(E->getValue(), E);
2749 }
2750 
2751 template <class Emitter>
2752 bool Compiler<Emitter>::VisitLambdaExpr(const LambdaExpr *E) {
2753   if (DiscardResult)
2754     return true;
2755 
2756   assert(Initializing);
2757   const Record *R = P.getOrCreateRecord(E->getLambdaClass());
2758 
2759   auto *CaptureInitIt = E->capture_init_begin();
2760   // Initialize all fields (which represent lambda captures) of the
2761   // record with their initializers.
2762   for (const Record::Field &F : R->fields()) {
2763     const Expr *Init = *CaptureInitIt;
2764     ++CaptureInitIt;
2765 
2766     if (!Init)
2767       continue;
2768 
2769     if (std::optional<PrimType> T = classify(Init)) {
2770       if (!this->visit(Init))
2771         return false;
2772 
2773       if (!this->emitInitField(*T, F.Offset, E))
2774         return false;
2775     } else {
2776       if (!this->emitGetPtrField(F.Offset, E))
2777         return false;
2778 
2779       if (!this->visitInitializer(Init))
2780         return false;
2781 
2782       if (!this->emitPopPtr(E))
2783         return false;
2784     }
2785   }
2786 
2787   return true;
2788 }
2789 
2790 template <class Emitter>
2791 bool Compiler<Emitter>::VisitPredefinedExpr(const PredefinedExpr *E) {
2792   if (DiscardResult)
2793     return true;
2794 
2795   return this->delegate(E->getFunctionName());
2796 }
2797 
2798 template <class Emitter>
2799 bool Compiler<Emitter>::VisitCXXThrowExpr(const CXXThrowExpr *E) {
2800   if (E->getSubExpr() && !this->discard(E->getSubExpr()))
2801     return false;
2802 
2803   return this->emitInvalid(E);
2804 }
2805 
2806 template <class Emitter>
2807 bool Compiler<Emitter>::VisitCXXReinterpretCastExpr(
2808     const CXXReinterpretCastExpr *E) {
2809   const Expr *SubExpr = E->getSubExpr();
2810 
2811   std::optional<PrimType> FromT = classify(SubExpr);
2812   std::optional<PrimType> ToT = classify(E);
2813 
2814   if (!FromT || !ToT)
2815     return this->emitInvalidCast(CastKind::Reinterpret, /*Fatal=*/true, E);
2816 
2817   if (FromT == PT_Ptr || ToT == PT_Ptr) {
2818     // Both types could be PT_Ptr because their expressions are glvalues.
2819     std::optional<PrimType> PointeeFromT;
2820     if (SubExpr->getType()->isPointerOrReferenceType())
2821       PointeeFromT = classify(SubExpr->getType()->getPointeeType());
2822     else
2823       PointeeFromT = classify(SubExpr->getType());
2824 
2825     std::optional<PrimType> PointeeToT;
2826     if (E->getType()->isPointerOrReferenceType())
2827       PointeeToT = classify(E->getType()->getPointeeType());
2828     else
2829       PointeeToT = classify(E->getType());
2830 
2831     bool Fatal = true;
2832     if (PointeeToT && PointeeFromT) {
2833       if (isIntegralType(*PointeeFromT) && isIntegralType(*PointeeToT))
2834         Fatal = false;
2835     }
2836 
2837     if (!this->emitInvalidCast(CastKind::Reinterpret, Fatal, E))
2838       return false;
2839 
2840     if (E->getCastKind() == CK_LValueBitCast)
2841       return this->delegate(SubExpr);
2842     return this->VisitCastExpr(E);
2843   }
2844 
2845   // Try to actually do the cast.
2846   bool Fatal = (ToT != FromT);
2847   if (!this->emitInvalidCast(CastKind::Reinterpret, Fatal, E))
2848     return false;
2849 
2850   return this->VisitCastExpr(E);
2851 }
2852 
2853 template <class Emitter>
2854 bool Compiler<Emitter>::VisitCXXNoexceptExpr(const CXXNoexceptExpr *E) {
2855   assert(E->getType()->isBooleanType());
2856 
2857   if (DiscardResult)
2858     return true;
2859   return this->emitConstBool(E->getValue(), E);
2860 }
2861 
2862 template <class Emitter>
2863 bool Compiler<Emitter>::VisitCXXConstructExpr(const CXXConstructExpr *E) {
2864   QualType T = E->getType();
2865   assert(!classify(T));
2866 
2867   if (T->isRecordType()) {
2868     const CXXConstructorDecl *Ctor = E->getConstructor();
2869 
2870     // Trivial copy/move constructor. Avoid copy.
2871     if (Ctor->isDefaulted() && Ctor->isCopyOrMoveConstructor() &&
2872         Ctor->isTrivial() &&
2873         E->getArg(0)->isTemporaryObject(Ctx.getASTContext(),
2874                                         T->getAsCXXRecordDecl()))
2875       return this->visitInitializer(E->getArg(0));
2876 
2877     // If we're discarding a construct expression, we still need
2878     // to allocate a variable and call the constructor and destructor.
2879     if (DiscardResult) {
2880       if (Ctor->isTrivial())
2881         return true;
2882       assert(!Initializing);
2883       std::optional<unsigned> LocalIndex = allocateLocal(E);
2884 
2885       if (!LocalIndex)
2886         return false;
2887 
2888       if (!this->emitGetPtrLocal(*LocalIndex, E))
2889         return false;
2890     }
2891 
2892     // Zero initialization.
2893     if (E->requiresZeroInitialization()) {
2894       const Record *R = getRecord(E->getType());
2895 
2896       if (!this->visitZeroRecordInitializer(R, E))
2897         return false;
2898 
2899       // If the constructor is trivial anyway, we're done.
2900       if (Ctor->isTrivial())
2901         return true;
2902     }
2903 
2904     const Function *Func = getFunction(Ctor);
2905 
2906     if (!Func)
2907       return false;
2908 
2909     assert(Func->hasThisPointer());
2910     assert(!Func->hasRVO());
2911 
2912     //  The This pointer is already on the stack because this is an initializer,
2913     //  but we need to dup() so the call() below has its own copy.
2914     if (!this->emitDupPtr(E))
2915       return false;
2916 
2917     // Constructor arguments.
2918     for (const auto *Arg : E->arguments()) {
2919       if (!this->visit(Arg))
2920         return false;
2921     }
2922 
2923     if (Func->isVariadic()) {
2924       uint32_t VarArgSize = 0;
2925       unsigned NumParams = Func->getNumWrittenParams();
2926       for (unsigned I = NumParams, N = E->getNumArgs(); I != N; ++I) {
2927         VarArgSize +=
2928             align(primSize(classify(E->getArg(I)->getType()).value_or(PT_Ptr)));
2929       }
2930       if (!this->emitCallVar(Func, VarArgSize, E))
2931         return false;
2932     } else {
2933       if (!this->emitCall(Func, 0, E)) {
2934         // When discarding, we don't need the result anyway, so clean up
2935         // the instance dup we did earlier in case surrounding code wants
2936         // to keep evaluating.
2937         if (DiscardResult)
2938           (void)this->emitPopPtr(E);
2939         return false;
2940       }
2941     }
2942 
2943     if (DiscardResult)
2944       return this->emitPopPtr(E);
2945     return this->emitFinishInit(E);
2946   }
2947 
2948   if (T->isArrayType()) {
2949     const ConstantArrayType *CAT =
2950         Ctx.getASTContext().getAsConstantArrayType(E->getType());
2951     if (!CAT)
2952       return false;
2953 
2954     size_t NumElems = CAT->getZExtSize();
2955     const Function *Func = getFunction(E->getConstructor());
2956     if (!Func || !Func->isConstexpr())
2957       return false;
2958 
2959     // FIXME(perf): We're calling the constructor once per array element here,
2960     //   in the old intepreter we had a special-case for trivial constructors.
2961     for (size_t I = 0; I != NumElems; ++I) {
2962       if (!this->emitConstUint64(I, E))
2963         return false;
2964       if (!this->emitArrayElemPtrUint64(E))
2965         return false;
2966 
2967       // Constructor arguments.
2968       for (const auto *Arg : E->arguments()) {
2969         if (!this->visit(Arg))
2970           return false;
2971       }
2972 
2973       if (!this->emitCall(Func, 0, E))
2974         return false;
2975     }
2976     return true;
2977   }
2978 
2979   return false;
2980 }
2981 
2982 template <class Emitter>
2983 bool Compiler<Emitter>::VisitSourceLocExpr(const SourceLocExpr *E) {
2984   if (DiscardResult)
2985     return true;
2986 
2987   const APValue Val =
2988       E->EvaluateInContext(Ctx.getASTContext(), SourceLocDefaultExpr);
2989 
2990   // Things like __builtin_LINE().
2991   if (E->getType()->isIntegerType()) {
2992     assert(Val.isInt());
2993     const APSInt &I = Val.getInt();
2994     return this->emitConst(I, E);
2995   }
2996   // Otherwise, the APValue is an LValue, with only one element.
2997   // Theoretically, we don't need the APValue at all of course.
2998   assert(E->getType()->isPointerType());
2999   assert(Val.isLValue());
3000   const APValue::LValueBase &Base = Val.getLValueBase();
3001   if (const Expr *LValueExpr = Base.dyn_cast<const Expr *>())
3002     return this->visit(LValueExpr);
3003 
3004   // Otherwise, we have a decl (which is the case for
3005   // __builtin_source_location).
3006   assert(Base.is<const ValueDecl *>());
3007   assert(Val.getLValuePath().size() == 0);
3008   const auto *BaseDecl = Base.dyn_cast<const ValueDecl *>();
3009   assert(BaseDecl);
3010 
3011   auto *UGCD = cast<UnnamedGlobalConstantDecl>(BaseDecl);
3012 
3013   std::optional<unsigned> GlobalIndex = P.getOrCreateGlobal(UGCD);
3014   if (!GlobalIndex)
3015     return false;
3016 
3017   if (!this->emitGetPtrGlobal(*GlobalIndex, E))
3018     return false;
3019 
3020   const Record *R = getRecord(E->getType());
3021   const APValue &V = UGCD->getValue();
3022   for (unsigned I = 0, N = R->getNumFields(); I != N; ++I) {
3023     const Record::Field *F = R->getField(I);
3024     const APValue &FieldValue = V.getStructField(I);
3025 
3026     PrimType FieldT = classifyPrim(F->Decl->getType());
3027 
3028     if (!this->visitAPValue(FieldValue, FieldT, E))
3029       return false;
3030     if (!this->emitInitField(FieldT, F->Offset, E))
3031       return false;
3032   }
3033 
3034   // Leave the pointer to the global on the stack.
3035   return true;
3036 }
3037 
3038 template <class Emitter>
3039 bool Compiler<Emitter>::VisitOffsetOfExpr(const OffsetOfExpr *E) {
3040   unsigned N = E->getNumComponents();
3041   if (N == 0)
3042     return false;
3043 
3044   for (unsigned I = 0; I != N; ++I) {
3045     const OffsetOfNode &Node = E->getComponent(I);
3046     if (Node.getKind() == OffsetOfNode::Array) {
3047       const Expr *ArrayIndexExpr = E->getIndexExpr(Node.getArrayExprIndex());
3048       PrimType IndexT = classifyPrim(ArrayIndexExpr->getType());
3049 
3050       if (DiscardResult) {
3051         if (!this->discard(ArrayIndexExpr))
3052           return false;
3053         continue;
3054       }
3055 
3056       if (!this->visit(ArrayIndexExpr))
3057         return false;
3058       // Cast to Sint64.
3059       if (IndexT != PT_Sint64) {
3060         if (!this->emitCast(IndexT, PT_Sint64, E))
3061           return false;
3062       }
3063     }
3064   }
3065 
3066   if (DiscardResult)
3067     return true;
3068 
3069   PrimType T = classifyPrim(E->getType());
3070   return this->emitOffsetOf(T, E, E);
3071 }
3072 
3073 template <class Emitter>
3074 bool Compiler<Emitter>::VisitCXXScalarValueInitExpr(
3075     const CXXScalarValueInitExpr *E) {
3076   QualType Ty = E->getType();
3077 
3078   if (DiscardResult || Ty->isVoidType())
3079     return true;
3080 
3081   if (std::optional<PrimType> T = classify(Ty))
3082     return this->visitZeroInitializer(*T, Ty, E);
3083 
3084   if (const auto *CT = Ty->getAs<ComplexType>()) {
3085     if (!Initializing) {
3086       std::optional<unsigned> LocalIndex = allocateLocal(E);
3087       if (!LocalIndex)
3088         return false;
3089       if (!this->emitGetPtrLocal(*LocalIndex, E))
3090         return false;
3091     }
3092 
3093     // Initialize both fields to 0.
3094     QualType ElemQT = CT->getElementType();
3095     PrimType ElemT = classifyPrim(ElemQT);
3096 
3097     for (unsigned I = 0; I != 2; ++I) {
3098       if (!this->visitZeroInitializer(ElemT, ElemQT, E))
3099         return false;
3100       if (!this->emitInitElem(ElemT, I, E))
3101         return false;
3102     }
3103     return true;
3104   }
3105 
3106   if (const auto *VT = Ty->getAs<VectorType>()) {
3107     // FIXME: Code duplication with the _Complex case above.
3108     if (!Initializing) {
3109       std::optional<unsigned> LocalIndex = allocateLocal(E);
3110       if (!LocalIndex)
3111         return false;
3112       if (!this->emitGetPtrLocal(*LocalIndex, E))
3113         return false;
3114     }
3115 
3116     // Initialize all fields to 0.
3117     QualType ElemQT = VT->getElementType();
3118     PrimType ElemT = classifyPrim(ElemQT);
3119 
3120     for (unsigned I = 0, N = VT->getNumElements(); I != N; ++I) {
3121       if (!this->visitZeroInitializer(ElemT, ElemQT, E))
3122         return false;
3123       if (!this->emitInitElem(ElemT, I, E))
3124         return false;
3125     }
3126     return true;
3127   }
3128 
3129   return false;
3130 }
3131 
3132 template <class Emitter>
3133 bool Compiler<Emitter>::VisitSizeOfPackExpr(const SizeOfPackExpr *E) {
3134   return this->emitConst(E->getPackLength(), E);
3135 }
3136 
3137 template <class Emitter>
3138 bool Compiler<Emitter>::VisitGenericSelectionExpr(
3139     const GenericSelectionExpr *E) {
3140   return this->delegate(E->getResultExpr());
3141 }
3142 
3143 template <class Emitter>
3144 bool Compiler<Emitter>::VisitChooseExpr(const ChooseExpr *E) {
3145   return this->delegate(E->getChosenSubExpr());
3146 }
3147 
3148 template <class Emitter>
3149 bool Compiler<Emitter>::VisitObjCBoolLiteralExpr(const ObjCBoolLiteralExpr *E) {
3150   if (DiscardResult)
3151     return true;
3152 
3153   return this->emitConst(E->getValue(), E);
3154 }
3155 
3156 template <class Emitter>
3157 bool Compiler<Emitter>::VisitCXXInheritedCtorInitExpr(
3158     const CXXInheritedCtorInitExpr *E) {
3159   const CXXConstructorDecl *Ctor = E->getConstructor();
3160   assert(!Ctor->isTrivial() &&
3161          "Trivial CXXInheritedCtorInitExpr, implement. (possible?)");
3162   const Function *F = this->getFunction(Ctor);
3163   assert(F);
3164   assert(!F->hasRVO());
3165   assert(F->hasThisPointer());
3166 
3167   if (!this->emitDupPtr(SourceInfo{}))
3168     return false;
3169 
3170   // Forward all arguments of the current function (which should be a
3171   // constructor itself) to the inherited ctor.
3172   // This is necessary because the calling code has pushed the pointer
3173   // of the correct base for  us already, but the arguments need
3174   // to come after.
3175   unsigned Offset = align(primSize(PT_Ptr)); // instance pointer.
3176   for (const ParmVarDecl *PD : Ctor->parameters()) {
3177     PrimType PT = this->classify(PD->getType()).value_or(PT_Ptr);
3178 
3179     if (!this->emitGetParam(PT, Offset, E))
3180       return false;
3181     Offset += align(primSize(PT));
3182   }
3183 
3184   return this->emitCall(F, 0, E);
3185 }
3186 
3187 template <class Emitter>
3188 bool Compiler<Emitter>::VisitCXXNewExpr(const CXXNewExpr *E) {
3189   assert(classifyPrim(E->getType()) == PT_Ptr);
3190   const Expr *Init = E->getInitializer();
3191   QualType ElementType = E->getAllocatedType();
3192   std::optional<PrimType> ElemT = classify(ElementType);
3193   unsigned PlacementArgs = E->getNumPlacementArgs();
3194   const FunctionDecl *OperatorNew = E->getOperatorNew();
3195   const Expr *PlacementDest = nullptr;
3196   bool IsNoThrow = false;
3197 
3198   if (PlacementArgs != 0) {
3199     // FIXME: There is no restriction on this, but it's not clear that any
3200     // other form makes any sense. We get here for cases such as:
3201     //
3202     //   new (std::align_val_t{N}) X(int)
3203     //
3204     // (which should presumably be valid only if N is a multiple of
3205     // alignof(int), and in any case can't be deallocated unless N is
3206     // alignof(X) and X has new-extended alignment).
3207     if (PlacementArgs == 1) {
3208       const Expr *Arg1 = E->getPlacementArg(0);
3209       if (Arg1->getType()->isNothrowT()) {
3210         if (!this->discard(Arg1))
3211           return false;
3212         IsNoThrow = true;
3213       } else {
3214         // Invalid unless we have C++26 or are in a std:: function.
3215         if (!this->emitInvalidNewDeleteExpr(E, E))
3216           return false;
3217 
3218         // If we have a placement-new destination, we'll later use that instead
3219         // of allocating.
3220         if (OperatorNew->isReservedGlobalPlacementOperator())
3221           PlacementDest = Arg1;
3222       }
3223     } else {
3224       // Always invalid.
3225       return this->emitInvalid(E);
3226     }
3227   } else if (!OperatorNew->isReplaceableGlobalAllocationFunction())
3228     return this->emitInvalidNewDeleteExpr(E, E);
3229 
3230   const Descriptor *Desc;
3231   if (!PlacementDest) {
3232     if (ElemT) {
3233       if (E->isArray())
3234         Desc = nullptr; // We're not going to use it in this case.
3235       else
3236         Desc = P.createDescriptor(E, *ElemT, Descriptor::InlineDescMD,
3237                                   /*IsConst=*/false, /*IsTemporary=*/false,
3238                                   /*IsMutable=*/false);
3239     } else {
3240       Desc = P.createDescriptor(
3241           E, ElementType.getTypePtr(),
3242           E->isArray() ? std::nullopt : Descriptor::InlineDescMD,
3243           /*IsConst=*/false, /*IsTemporary=*/false, /*IsMutable=*/false, Init);
3244     }
3245   }
3246 
3247   if (E->isArray()) {
3248     std::optional<const Expr *> ArraySizeExpr = E->getArraySize();
3249     if (!ArraySizeExpr)
3250       return false;
3251 
3252     const Expr *Stripped = *ArraySizeExpr;
3253     for (; auto *ICE = dyn_cast<ImplicitCastExpr>(Stripped);
3254          Stripped = ICE->getSubExpr())
3255       if (ICE->getCastKind() != CK_NoOp &&
3256           ICE->getCastKind() != CK_IntegralCast)
3257         break;
3258 
3259     PrimType SizeT = classifyPrim(Stripped->getType());
3260 
3261     if (PlacementDest) {
3262       if (!this->visit(PlacementDest))
3263         return false;
3264       if (!this->visit(Stripped))
3265         return false;
3266       if (!this->emitCheckNewTypeMismatchArray(SizeT, E, E))
3267         return false;
3268     } else {
3269       if (!this->visit(Stripped))
3270         return false;
3271 
3272       if (ElemT) {
3273         // N primitive elements.
3274         if (!this->emitAllocN(SizeT, *ElemT, E, IsNoThrow, E))
3275           return false;
3276       } else {
3277         // N Composite elements.
3278         if (!this->emitAllocCN(SizeT, Desc, IsNoThrow, E))
3279           return false;
3280       }
3281     }
3282 
3283     if (Init && !this->visitInitializer(Init))
3284       return false;
3285 
3286   } else {
3287     if (PlacementDest) {
3288       if (!this->visit(PlacementDest))
3289         return false;
3290       if (!this->emitCheckNewTypeMismatch(E, E))
3291         return false;
3292     } else {
3293       // Allocate just one element.
3294       if (!this->emitAlloc(Desc, E))
3295         return false;
3296     }
3297 
3298     if (Init) {
3299       if (ElemT) {
3300         if (!this->visit(Init))
3301           return false;
3302 
3303         if (!this->emitInit(*ElemT, E))
3304           return false;
3305       } else {
3306         // Composite.
3307         if (!this->visitInitializer(Init))
3308           return false;
3309       }
3310     }
3311   }
3312 
3313   if (DiscardResult)
3314     return this->emitPopPtr(E);
3315 
3316   return true;
3317 }
3318 
3319 template <class Emitter>
3320 bool Compiler<Emitter>::VisitCXXDeleteExpr(const CXXDeleteExpr *E) {
3321   const Expr *Arg = E->getArgument();
3322 
3323   const FunctionDecl *OperatorDelete = E->getOperatorDelete();
3324 
3325   if (!OperatorDelete->isReplaceableGlobalAllocationFunction())
3326     return this->emitInvalidNewDeleteExpr(E, E);
3327 
3328   // Arg must be an lvalue.
3329   if (!this->visit(Arg))
3330     return false;
3331 
3332   return this->emitFree(E->isArrayForm(), E);
3333 }
3334 
3335 template <class Emitter>
3336 bool Compiler<Emitter>::VisitBlockExpr(const BlockExpr *E) {
3337   const Function *Func = nullptr;
3338   if (auto F = Compiler<ByteCodeEmitter>(Ctx, P).compileObjCBlock(E))
3339     Func = F;
3340 
3341   if (!Func)
3342     return false;
3343   return this->emitGetFnPtr(Func, E);
3344 }
3345 
3346 template <class Emitter>
3347 bool Compiler<Emitter>::VisitExpressionTraitExpr(const ExpressionTraitExpr *E) {
3348   assert(Ctx.getLangOpts().CPlusPlus);
3349   return this->emitConstBool(E->getValue(), E);
3350 }
3351 
3352 template <class Emitter>
3353 bool Compiler<Emitter>::VisitCXXUuidofExpr(const CXXUuidofExpr *E) {
3354   if (DiscardResult)
3355     return true;
3356   assert(!Initializing);
3357 
3358   const MSGuidDecl *GuidDecl = E->getGuidDecl();
3359   const RecordDecl *RD = GuidDecl->getType()->getAsRecordDecl();
3360   assert(RD);
3361   // If the definiton of the result type is incomplete, just return a dummy.
3362   // If (and when) that is read from, we will fail, but not now.
3363   if (!RD->isCompleteDefinition()) {
3364     if (std::optional<unsigned> I = P.getOrCreateDummy(GuidDecl))
3365       return this->emitGetPtrGlobal(*I, E);
3366     return false;
3367   }
3368 
3369   std::optional<unsigned> GlobalIndex = P.getOrCreateGlobal(GuidDecl);
3370   if (!GlobalIndex)
3371     return false;
3372   if (!this->emitGetPtrGlobal(*GlobalIndex, E))
3373     return false;
3374 
3375   assert(this->getRecord(E->getType()));
3376 
3377   const APValue &V = GuidDecl->getAsAPValue();
3378   if (V.getKind() == APValue::None)
3379     return true;
3380 
3381   assert(V.isStruct());
3382   assert(V.getStructNumBases() == 0);
3383   if (!this->visitAPValueInitializer(V, E))
3384     return false;
3385 
3386   return this->emitFinishInit(E);
3387 }
3388 
3389 template <class Emitter>
3390 bool Compiler<Emitter>::VisitRequiresExpr(const RequiresExpr *E) {
3391   assert(classifyPrim(E->getType()) == PT_Bool);
3392   if (DiscardResult)
3393     return true;
3394   return this->emitConstBool(E->isSatisfied(), E);
3395 }
3396 
3397 template <class Emitter>
3398 bool Compiler<Emitter>::VisitConceptSpecializationExpr(
3399     const ConceptSpecializationExpr *E) {
3400   assert(classifyPrim(E->getType()) == PT_Bool);
3401   if (DiscardResult)
3402     return true;
3403   return this->emitConstBool(E->isSatisfied(), E);
3404 }
3405 
3406 template <class Emitter>
3407 bool Compiler<Emitter>::VisitCXXRewrittenBinaryOperator(
3408     const CXXRewrittenBinaryOperator *E) {
3409   return this->delegate(E->getSemanticForm());
3410 }
3411 
3412 template <class Emitter>
3413 bool Compiler<Emitter>::VisitPseudoObjectExpr(const PseudoObjectExpr *E) {
3414 
3415   for (const Expr *SemE : E->semantics()) {
3416     if (auto *OVE = dyn_cast<OpaqueValueExpr>(SemE)) {
3417       if (SemE == E->getResultExpr())
3418         return false;
3419 
3420       if (OVE->isUnique())
3421         continue;
3422 
3423       if (!this->discard(OVE))
3424         return false;
3425     } else if (SemE == E->getResultExpr()) {
3426       if (!this->delegate(SemE))
3427         return false;
3428     } else {
3429       if (!this->discard(SemE))
3430         return false;
3431     }
3432   }
3433   return true;
3434 }
3435 
3436 template <class Emitter>
3437 bool Compiler<Emitter>::VisitPackIndexingExpr(const PackIndexingExpr *E) {
3438   return this->delegate(E->getSelectedExpr());
3439 }
3440 
3441 template <class Emitter>
3442 bool Compiler<Emitter>::VisitRecoveryExpr(const RecoveryExpr *E) {
3443   return this->emitError(E);
3444 }
3445 
3446 template <class Emitter>
3447 bool Compiler<Emitter>::VisitAddrLabelExpr(const AddrLabelExpr *E) {
3448   assert(E->getType()->isVoidPointerType());
3449 
3450   unsigned Offset = allocateLocalPrimitive(
3451       E->getLabel(), PT_Ptr, /*IsConst=*/true, /*IsExtended=*/false);
3452 
3453   return this->emitGetLocal(PT_Ptr, Offset, E);
3454 }
3455 
3456 template <class Emitter>
3457 bool Compiler<Emitter>::VisitConvertVectorExpr(const ConvertVectorExpr *E) {
3458   assert(Initializing);
3459   const auto *VT = E->getType()->castAs<VectorType>();
3460   QualType ElemType = VT->getElementType();
3461   PrimType ElemT = classifyPrim(ElemType);
3462   const Expr *Src = E->getSrcExpr();
3463   PrimType SrcElemT =
3464       classifyPrim(Src->getType()->castAs<VectorType>()->getElementType());
3465 
3466   unsigned SrcOffset = this->allocateLocalPrimitive(Src, PT_Ptr, true, false);
3467   if (!this->visit(Src))
3468     return false;
3469   if (!this->emitSetLocal(PT_Ptr, SrcOffset, E))
3470     return false;
3471 
3472   for (unsigned I = 0; I != VT->getNumElements(); ++I) {
3473     if (!this->emitGetLocal(PT_Ptr, SrcOffset, E))
3474       return false;
3475     if (!this->emitArrayElemPop(SrcElemT, I, E))
3476       return false;
3477     if (SrcElemT != ElemT) {
3478       if (!this->emitPrimCast(SrcElemT, ElemT, ElemType, E))
3479         return false;
3480     }
3481     if (!this->emitInitElem(ElemT, I, E))
3482       return false;
3483   }
3484 
3485   return true;
3486 }
3487 
3488 template <class Emitter>
3489 bool Compiler<Emitter>::VisitShuffleVectorExpr(const ShuffleVectorExpr *E) {
3490   assert(Initializing);
3491   assert(E->getNumSubExprs() > 2);
3492 
3493   const Expr *Vecs[] = {E->getExpr(0), E->getExpr(1)};
3494   const VectorType *VT = Vecs[0]->getType()->castAs<VectorType>();
3495   PrimType ElemT = classifyPrim(VT->getElementType());
3496   unsigned NumInputElems = VT->getNumElements();
3497   unsigned NumOutputElems = E->getNumSubExprs() - 2;
3498   assert(NumOutputElems > 0);
3499 
3500   // Save both input vectors to a local variable.
3501   unsigned VectorOffsets[2];
3502   for (unsigned I = 0; I != 2; ++I) {
3503     VectorOffsets[I] = this->allocateLocalPrimitive(
3504         Vecs[I], PT_Ptr, /*IsConst=*/true, /*IsExtended=*/false);
3505     if (!this->visit(Vecs[I]))
3506       return false;
3507     if (!this->emitSetLocal(PT_Ptr, VectorOffsets[I], E))
3508       return false;
3509   }
3510   for (unsigned I = 0; I != NumOutputElems; ++I) {
3511     APSInt ShuffleIndex = E->getShuffleMaskIdx(Ctx.getASTContext(), I);
3512     if (ShuffleIndex == -1)
3513       return this->emitInvalid(E); // FIXME: Better diagnostic.
3514 
3515     assert(ShuffleIndex < (NumInputElems * 2));
3516     if (!this->emitGetLocal(PT_Ptr,
3517                             VectorOffsets[ShuffleIndex >= NumInputElems], E))
3518       return false;
3519     unsigned InputVectorIndex = ShuffleIndex.getZExtValue() % NumInputElems;
3520     if (!this->emitArrayElemPop(ElemT, InputVectorIndex, E))
3521       return false;
3522 
3523     if (!this->emitInitElem(ElemT, I, E))
3524       return false;
3525   }
3526 
3527   return true;
3528 }
3529 
3530 template <class Emitter>
3531 bool Compiler<Emitter>::VisitExtVectorElementExpr(
3532     const ExtVectorElementExpr *E) {
3533   const Expr *Base = E->getBase();
3534   assert(
3535       Base->getType()->isVectorType() ||
3536       Base->getType()->getAs<PointerType>()->getPointeeType()->isVectorType());
3537 
3538   SmallVector<uint32_t, 4> Indices;
3539   E->getEncodedElementAccess(Indices);
3540 
3541   if (Indices.size() == 1) {
3542     if (!this->visit(Base))
3543       return false;
3544 
3545     if (E->isGLValue()) {
3546       if (!this->emitConstUint32(Indices[0], E))
3547         return false;
3548       return this->emitArrayElemPtrPop(PT_Uint32, E);
3549     }
3550     // Else, also load the value.
3551     return this->emitArrayElemPop(classifyPrim(E->getType()), Indices[0], E);
3552   }
3553 
3554   // Create a local variable for the base.
3555   unsigned BaseOffset = allocateLocalPrimitive(Base, PT_Ptr, /*IsConst=*/true,
3556                                                /*IsExtended=*/false);
3557   if (!this->visit(Base))
3558     return false;
3559   if (!this->emitSetLocal(PT_Ptr, BaseOffset, E))
3560     return false;
3561 
3562   // Now the vector variable for the return value.
3563   if (!Initializing) {
3564     std::optional<unsigned> ResultIndex;
3565     ResultIndex = allocateLocal(E);
3566     if (!ResultIndex)
3567       return false;
3568     if (!this->emitGetPtrLocal(*ResultIndex, E))
3569       return false;
3570   }
3571 
3572   assert(Indices.size() == E->getType()->getAs<VectorType>()->getNumElements());
3573 
3574   PrimType ElemT =
3575       classifyPrim(E->getType()->getAs<VectorType>()->getElementType());
3576   uint32_t DstIndex = 0;
3577   for (uint32_t I : Indices) {
3578     if (!this->emitGetLocal(PT_Ptr, BaseOffset, E))
3579       return false;
3580     if (!this->emitArrayElemPop(ElemT, I, E))
3581       return false;
3582     if (!this->emitInitElem(ElemT, DstIndex, E))
3583       return false;
3584     ++DstIndex;
3585   }
3586 
3587   // Leave the result pointer on the stack.
3588   assert(!DiscardResult);
3589   return true;
3590 }
3591 
3592 template <class Emitter>
3593 bool Compiler<Emitter>::VisitObjCBoxedExpr(const ObjCBoxedExpr *E) {
3594   const Expr *SubExpr = E->getSubExpr();
3595   if (!E->isExpressibleAsConstantInitializer())
3596     return this->discard(SubExpr) && this->emitInvalid(E);
3597 
3598   assert(classifyPrim(E) == PT_Ptr);
3599   if (std::optional<unsigned> I = P.getOrCreateDummy(E))
3600     return this->emitGetPtrGlobal(*I, E);
3601 
3602   return false;
3603 }
3604 
3605 template <class Emitter>
3606 bool Compiler<Emitter>::VisitCXXStdInitializerListExpr(
3607     const CXXStdInitializerListExpr *E) {
3608   const Expr *SubExpr = E->getSubExpr();
3609   const ConstantArrayType *ArrayType =
3610       Ctx.getASTContext().getAsConstantArrayType(SubExpr->getType());
3611   const Record *R = getRecord(E->getType());
3612   assert(Initializing);
3613   assert(SubExpr->isGLValue());
3614 
3615   if (!this->visit(SubExpr))
3616     return false;
3617   if (!this->emitConstUint8(0, E))
3618     return false;
3619   if (!this->emitArrayElemPtrPopUint8(E))
3620     return false;
3621   if (!this->emitInitFieldPtr(R->getField(0u)->Offset, E))
3622     return false;
3623 
3624   PrimType SecondFieldT = classifyPrim(R->getField(1u)->Decl->getType());
3625   if (isIntegralType(SecondFieldT)) {
3626     if (!this->emitConst(static_cast<APSInt>(ArrayType->getSize()),
3627                          SecondFieldT, E))
3628       return false;
3629     return this->emitInitField(SecondFieldT, R->getField(1u)->Offset, E);
3630   }
3631   assert(SecondFieldT == PT_Ptr);
3632 
3633   if (!this->emitGetFieldPtr(R->getField(0u)->Offset, E))
3634     return false;
3635   if (!this->emitExpandPtr(E))
3636     return false;
3637   if (!this->emitConst(static_cast<APSInt>(ArrayType->getSize()), PT_Uint64, E))
3638     return false;
3639   if (!this->emitArrayElemPtrPop(PT_Uint64, E))
3640     return false;
3641   return this->emitInitFieldPtr(R->getField(1u)->Offset, E);
3642 }
3643 
3644 template <class Emitter>
3645 bool Compiler<Emitter>::VisitStmtExpr(const StmtExpr *E) {
3646   BlockScope<Emitter> BS(this);
3647   StmtExprScope<Emitter> SS(this);
3648 
3649   const CompoundStmt *CS = E->getSubStmt();
3650   const Stmt *Result = CS->getStmtExprResult();
3651   for (const Stmt *S : CS->body()) {
3652     if (S != Result) {
3653       if (!this->visitStmt(S))
3654         return false;
3655       continue;
3656     }
3657 
3658     assert(S == Result);
3659     if (const Expr *ResultExpr = dyn_cast<Expr>(S))
3660       return this->delegate(ResultExpr);
3661     return this->emitUnsupported(E);
3662   }
3663 
3664   return BS.destroyLocals();
3665 }
3666 
3667 template <class Emitter> bool Compiler<Emitter>::discard(const Expr *E) {
3668   OptionScope<Emitter> Scope(this, /*NewDiscardResult=*/true,
3669                              /*NewInitializing=*/false);
3670   return this->Visit(E);
3671 }
3672 
3673 template <class Emitter> bool Compiler<Emitter>::delegate(const Expr *E) {
3674   // We're basically doing:
3675   // OptionScope<Emitter> Scope(this, DicardResult, Initializing);
3676   // but that's unnecessary of course.
3677   return this->Visit(E);
3678 }
3679 
3680 template <class Emitter> bool Compiler<Emitter>::visit(const Expr *E) {
3681   if (E->getType().isNull())
3682     return false;
3683 
3684   if (E->getType()->isVoidType())
3685     return this->discard(E);
3686 
3687   // Create local variable to hold the return value.
3688   if (!E->isGLValue() && !E->getType()->isAnyComplexType() &&
3689       !classify(E->getType())) {
3690     std::optional<unsigned> LocalIndex = allocateLocal(E);
3691     if (!LocalIndex)
3692       return false;
3693 
3694     if (!this->emitGetPtrLocal(*LocalIndex, E))
3695       return false;
3696     return this->visitInitializer(E);
3697   }
3698 
3699   //  Otherwise,we have a primitive return value, produce the value directly
3700   //  and push it on the stack.
3701   OptionScope<Emitter> Scope(this, /*NewDiscardResult=*/false,
3702                              /*NewInitializing=*/false);
3703   return this->Visit(E);
3704 }
3705 
3706 template <class Emitter>
3707 bool Compiler<Emitter>::visitInitializer(const Expr *E) {
3708   assert(!classify(E->getType()));
3709 
3710   OptionScope<Emitter> Scope(this, /*NewDiscardResult=*/false,
3711                              /*NewInitializing=*/true);
3712   return this->Visit(E);
3713 }
3714 
3715 template <class Emitter> bool Compiler<Emitter>::visitBool(const Expr *E) {
3716   std::optional<PrimType> T = classify(E->getType());
3717   if (!T) {
3718     // Convert complex values to bool.
3719     if (E->getType()->isAnyComplexType()) {
3720       if (!this->visit(E))
3721         return false;
3722       return this->emitComplexBoolCast(E);
3723     }
3724     return false;
3725   }
3726 
3727   if (!this->visit(E))
3728     return false;
3729 
3730   if (T == PT_Bool)
3731     return true;
3732 
3733   // Convert pointers to bool.
3734   if (T == PT_Ptr || T == PT_FnPtr) {
3735     if (!this->emitNull(*T, nullptr, E))
3736       return false;
3737     return this->emitNE(*T, E);
3738   }
3739 
3740   // Or Floats.
3741   if (T == PT_Float)
3742     return this->emitCastFloatingIntegralBool(getFPOptions(E), E);
3743 
3744   // Or anything else we can.
3745   return this->emitCast(*T, PT_Bool, E);
3746 }
3747 
3748 template <class Emitter>
3749 bool Compiler<Emitter>::visitZeroInitializer(PrimType T, QualType QT,
3750                                              const Expr *E) {
3751   switch (T) {
3752   case PT_Bool:
3753     return this->emitZeroBool(E);
3754   case PT_Sint8:
3755     return this->emitZeroSint8(E);
3756   case PT_Uint8:
3757     return this->emitZeroUint8(E);
3758   case PT_Sint16:
3759     return this->emitZeroSint16(E);
3760   case PT_Uint16:
3761     return this->emitZeroUint16(E);
3762   case PT_Sint32:
3763     return this->emitZeroSint32(E);
3764   case PT_Uint32:
3765     return this->emitZeroUint32(E);
3766   case PT_Sint64:
3767     return this->emitZeroSint64(E);
3768   case PT_Uint64:
3769     return this->emitZeroUint64(E);
3770   case PT_IntAP:
3771     return this->emitZeroIntAP(Ctx.getBitWidth(QT), E);
3772   case PT_IntAPS:
3773     return this->emitZeroIntAPS(Ctx.getBitWidth(QT), E);
3774   case PT_Ptr:
3775     return this->emitNullPtr(nullptr, E);
3776   case PT_FnPtr:
3777     return this->emitNullFnPtr(nullptr, E);
3778   case PT_MemberPtr:
3779     return this->emitNullMemberPtr(nullptr, E);
3780   case PT_Float:
3781     return this->emitConstFloat(APFloat::getZero(Ctx.getFloatSemantics(QT)), E);
3782   case PT_FixedPoint: {
3783     auto Sem = Ctx.getASTContext().getFixedPointSemantics(E->getType());
3784     return this->emitConstFixedPoint(FixedPoint::Zero(Sem), E);
3785   }
3786     llvm_unreachable("Implement");
3787   }
3788   llvm_unreachable("unknown primitive type");
3789 }
3790 
3791 template <class Emitter>
3792 bool Compiler<Emitter>::visitZeroRecordInitializer(const Record *R,
3793                                                    const Expr *E) {
3794   assert(E);
3795   assert(R);
3796   // Fields
3797   for (const Record::Field &Field : R->fields()) {
3798     if (Field.Decl->isUnnamedBitField())
3799       continue;
3800 
3801     const Descriptor *D = Field.Desc;
3802     if (D->isPrimitive()) {
3803       QualType QT = D->getType();
3804       PrimType T = classifyPrim(D->getType());
3805       if (!this->visitZeroInitializer(T, QT, E))
3806         return false;
3807       if (!this->emitInitField(T, Field.Offset, E))
3808         return false;
3809       if (R->isUnion())
3810         break;
3811       continue;
3812     }
3813 
3814     if (!this->emitGetPtrField(Field.Offset, E))
3815       return false;
3816 
3817     if (D->isPrimitiveArray()) {
3818       QualType ET = D->getElemQualType();
3819       PrimType T = classifyPrim(ET);
3820       for (uint32_t I = 0, N = D->getNumElems(); I != N; ++I) {
3821         if (!this->visitZeroInitializer(T, ET, E))
3822           return false;
3823         if (!this->emitInitElem(T, I, E))
3824           return false;
3825       }
3826     } else if (D->isCompositeArray()) {
3827       const Record *ElemRecord = D->ElemDesc->ElemRecord;
3828       assert(D->ElemDesc->ElemRecord);
3829       for (uint32_t I = 0, N = D->getNumElems(); I != N; ++I) {
3830         if (!this->emitConstUint32(I, E))
3831           return false;
3832         if (!this->emitArrayElemPtr(PT_Uint32, E))
3833           return false;
3834         if (!this->visitZeroRecordInitializer(ElemRecord, E))
3835           return false;
3836         if (!this->emitPopPtr(E))
3837           return false;
3838       }
3839     } else if (D->isRecord()) {
3840       if (!this->visitZeroRecordInitializer(D->ElemRecord, E))
3841         return false;
3842     } else {
3843       assert(false);
3844     }
3845 
3846     if (!this->emitFinishInitPop(E))
3847       return false;
3848 
3849     // C++11 [dcl.init]p5: If T is a (possibly cv-qualified) union type, the
3850     // object's first non-static named data member is zero-initialized
3851     if (R->isUnion())
3852       break;
3853   }
3854 
3855   for (const Record::Base &B : R->bases()) {
3856     if (!this->emitGetPtrBase(B.Offset, E))
3857       return false;
3858     if (!this->visitZeroRecordInitializer(B.R, E))
3859       return false;
3860     if (!this->emitFinishInitPop(E))
3861       return false;
3862   }
3863 
3864   // FIXME: Virtual bases.
3865 
3866   return true;
3867 }
3868 
3869 template <class Emitter>
3870 template <typename T>
3871 bool Compiler<Emitter>::emitConst(T Value, PrimType Ty, const Expr *E) {
3872   switch (Ty) {
3873   case PT_Sint8:
3874     return this->emitConstSint8(Value, E);
3875   case PT_Uint8:
3876     return this->emitConstUint8(Value, E);
3877   case PT_Sint16:
3878     return this->emitConstSint16(Value, E);
3879   case PT_Uint16:
3880     return this->emitConstUint16(Value, E);
3881   case PT_Sint32:
3882     return this->emitConstSint32(Value, E);
3883   case PT_Uint32:
3884     return this->emitConstUint32(Value, E);
3885   case PT_Sint64:
3886     return this->emitConstSint64(Value, E);
3887   case PT_Uint64:
3888     return this->emitConstUint64(Value, E);
3889   case PT_Bool:
3890     return this->emitConstBool(Value, E);
3891   case PT_Ptr:
3892   case PT_FnPtr:
3893   case PT_MemberPtr:
3894   case PT_Float:
3895   case PT_IntAP:
3896   case PT_IntAPS:
3897   case PT_FixedPoint:
3898     llvm_unreachable("Invalid integral type");
3899     break;
3900   }
3901   llvm_unreachable("unknown primitive type");
3902 }
3903 
3904 template <class Emitter>
3905 template <typename T>
3906 bool Compiler<Emitter>::emitConst(T Value, const Expr *E) {
3907   return this->emitConst(Value, classifyPrim(E->getType()), E);
3908 }
3909 
3910 template <class Emitter>
3911 bool Compiler<Emitter>::emitConst(const APSInt &Value, PrimType Ty,
3912                                   const Expr *E) {
3913   if (Ty == PT_IntAPS)
3914     return this->emitConstIntAPS(Value, E);
3915   if (Ty == PT_IntAP)
3916     return this->emitConstIntAP(Value, E);
3917 
3918   if (Value.isSigned())
3919     return this->emitConst(Value.getSExtValue(), Ty, E);
3920   return this->emitConst(Value.getZExtValue(), Ty, E);
3921 }
3922 
3923 template <class Emitter>
3924 bool Compiler<Emitter>::emitConst(const APSInt &Value, const Expr *E) {
3925   return this->emitConst(Value, classifyPrim(E->getType()), E);
3926 }
3927 
3928 template <class Emitter>
3929 unsigned Compiler<Emitter>::allocateLocalPrimitive(DeclTy &&Src, PrimType Ty,
3930                                                    bool IsConst,
3931                                                    bool IsExtended) {
3932   // Make sure we don't accidentally register the same decl twice.
3933   if (const auto *VD =
3934           dyn_cast_if_present<ValueDecl>(Src.dyn_cast<const Decl *>())) {
3935     assert(!P.getGlobal(VD));
3936     assert(!Locals.contains(VD));
3937     (void)VD;
3938   }
3939 
3940   // FIXME: There are cases where Src.is<Expr*>() is wrong, e.g.
3941   //   (int){12} in C. Consider using Expr::isTemporaryObject() instead
3942   //   or isa<MaterializeTemporaryExpr>().
3943   Descriptor *D = P.createDescriptor(Src, Ty, Descriptor::InlineDescMD, IsConst,
3944                                      Src.is<const Expr *>());
3945   Scope::Local Local = this->createLocal(D);
3946   if (auto *VD = dyn_cast_if_present<ValueDecl>(Src.dyn_cast<const Decl *>()))
3947     Locals.insert({VD, Local});
3948   VarScope->add(Local, IsExtended);
3949   return Local.Offset;
3950 }
3951 
3952 template <class Emitter>
3953 std::optional<unsigned>
3954 Compiler<Emitter>::allocateLocal(DeclTy &&Src, const ValueDecl *ExtendingDecl) {
3955   // Make sure we don't accidentally register the same decl twice.
3956   if ([[maybe_unused]] const auto *VD =
3957           dyn_cast_if_present<ValueDecl>(Src.dyn_cast<const Decl *>())) {
3958     assert(!P.getGlobal(VD));
3959     assert(!Locals.contains(VD));
3960   }
3961 
3962   QualType Ty;
3963   const ValueDecl *Key = nullptr;
3964   const Expr *Init = nullptr;
3965   bool IsTemporary = false;
3966   if (auto *VD = dyn_cast_if_present<ValueDecl>(Src.dyn_cast<const Decl *>())) {
3967     Key = VD;
3968     Ty = VD->getType();
3969 
3970     if (const auto *VarD = dyn_cast<VarDecl>(VD))
3971       Init = VarD->getInit();
3972   }
3973   if (auto *E = Src.dyn_cast<const Expr *>()) {
3974     IsTemporary = true;
3975     Ty = E->getType();
3976   }
3977 
3978   Descriptor *D = P.createDescriptor(
3979       Src, Ty.getTypePtr(), Descriptor::InlineDescMD, Ty.isConstQualified(),
3980       IsTemporary, /*IsMutable=*/false, Init);
3981   if (!D)
3982     return std::nullopt;
3983 
3984   Scope::Local Local = this->createLocal(D);
3985   if (Key)
3986     Locals.insert({Key, Local});
3987   if (ExtendingDecl)
3988     VarScope->addExtended(Local, ExtendingDecl);
3989   else
3990     VarScope->add(Local, false);
3991   return Local.Offset;
3992 }
3993 
3994 template <class Emitter>
3995 unsigned Compiler<Emitter>::allocateTemporary(const Expr *E) {
3996   QualType Ty = E->getType();
3997   assert(!Ty->isRecordType());
3998 
3999   Descriptor *D = P.createDescriptor(
4000       E, Ty.getTypePtr(), Descriptor::InlineDescMD, Ty.isConstQualified(),
4001       /*IsTemporary=*/true, /*IsMutable=*/false, /*Init=*/nullptr);
4002   assert(D);
4003 
4004   Scope::Local Local = this->createLocal(D);
4005   VariableScope<Emitter> *S = VarScope;
4006   assert(S);
4007   // Attach to topmost scope.
4008   while (S->getParent())
4009     S = S->getParent();
4010   assert(S && !S->getParent());
4011   S->addLocal(Local);
4012   return Local.Offset;
4013 }
4014 
4015 template <class Emitter>
4016 const RecordType *Compiler<Emitter>::getRecordTy(QualType Ty) {
4017   if (const PointerType *PT = dyn_cast<PointerType>(Ty))
4018     return PT->getPointeeType()->getAs<RecordType>();
4019   return Ty->getAs<RecordType>();
4020 }
4021 
4022 template <class Emitter> Record *Compiler<Emitter>::getRecord(QualType Ty) {
4023   if (const auto *RecordTy = getRecordTy(Ty))
4024     return getRecord(RecordTy->getDecl());
4025   return nullptr;
4026 }
4027 
4028 template <class Emitter>
4029 Record *Compiler<Emitter>::getRecord(const RecordDecl *RD) {
4030   return P.getOrCreateRecord(RD);
4031 }
4032 
4033 template <class Emitter>
4034 const Function *Compiler<Emitter>::getFunction(const FunctionDecl *FD) {
4035   return Ctx.getOrCreateFunction(FD);
4036 }
4037 
4038 template <class Emitter>
4039 bool Compiler<Emitter>::visitExpr(const Expr *E, bool DestroyToplevelScope) {
4040   LocalScope<Emitter> RootScope(this);
4041 
4042   auto maybeDestroyLocals = [&]() -> bool {
4043     if (DestroyToplevelScope)
4044       return RootScope.destroyLocals();
4045     return true;
4046   };
4047 
4048   // Void expressions.
4049   if (E->getType()->isVoidType()) {
4050     if (!visit(E))
4051       return false;
4052     return this->emitRetVoid(E) && maybeDestroyLocals();
4053   }
4054 
4055   // Expressions with a primitive return type.
4056   if (std::optional<PrimType> T = classify(E)) {
4057     if (!visit(E))
4058       return false;
4059 
4060     return this->emitRet(*T, E) && maybeDestroyLocals();
4061   }
4062 
4063   // Expressions with a composite return type.
4064   // For us, that means everything we don't
4065   // have a PrimType for.
4066   if (std::optional<unsigned> LocalOffset = this->allocateLocal(E)) {
4067     if (!this->emitGetPtrLocal(*LocalOffset, E))
4068       return false;
4069 
4070     if (!visitInitializer(E))
4071       return false;
4072 
4073     if (!this->emitFinishInit(E))
4074       return false;
4075     // We are destroying the locals AFTER the Ret op.
4076     // The Ret op needs to copy the (alive) values, but the
4077     // destructors may still turn the entire expression invalid.
4078     return this->emitRetValue(E) && maybeDestroyLocals();
4079   }
4080 
4081   (void)maybeDestroyLocals();
4082   return false;
4083 }
4084 
4085 template <class Emitter>
4086 VarCreationState Compiler<Emitter>::visitDecl(const VarDecl *VD) {
4087 
4088   auto R = this->visitVarDecl(VD, /*Toplevel=*/true);
4089 
4090   if (R.notCreated())
4091     return R;
4092 
4093   if (R)
4094     return true;
4095 
4096   if (!R && Context::shouldBeGloballyIndexed(VD)) {
4097     if (auto GlobalIndex = P.getGlobal(VD)) {
4098       Block *GlobalBlock = P.getGlobal(*GlobalIndex);
4099       GlobalInlineDescriptor &GD =
4100           *reinterpret_cast<GlobalInlineDescriptor *>(GlobalBlock->rawData());
4101 
4102       GD.InitState = GlobalInitState::InitializerFailed;
4103       GlobalBlock->invokeDtor();
4104     }
4105   }
4106 
4107   return R;
4108 }
4109 
4110 /// Toplevel visitDeclAndReturn().
4111 /// We get here from evaluateAsInitializer().
4112 /// We need to evaluate the initializer and return its value.
4113 template <class Emitter>
4114 bool Compiler<Emitter>::visitDeclAndReturn(const VarDecl *VD,
4115                                            bool ConstantContext) {
4116   std::optional<PrimType> VarT = classify(VD->getType());
4117 
4118   // We only create variables if we're evaluating in a constant context.
4119   // Otherwise, just evaluate the initializer and return it.
4120   if (!ConstantContext) {
4121     DeclScope<Emitter> LS(this, VD);
4122     if (!this->visit(VD->getAnyInitializer()))
4123       return false;
4124     return this->emitRet(VarT.value_or(PT_Ptr), VD) && LS.destroyLocals();
4125   }
4126 
4127   LocalScope<Emitter> VDScope(this, VD);
4128   if (!this->visitVarDecl(VD, /*Toplevel=*/true))
4129     return false;
4130 
4131   if (Context::shouldBeGloballyIndexed(VD)) {
4132     auto GlobalIndex = P.getGlobal(VD);
4133     assert(GlobalIndex); // visitVarDecl() didn't return false.
4134     if (VarT) {
4135       if (!this->emitGetGlobalUnchecked(*VarT, *GlobalIndex, VD))
4136         return false;
4137     } else {
4138       if (!this->emitGetPtrGlobal(*GlobalIndex, VD))
4139         return false;
4140     }
4141   } else {
4142     auto Local = Locals.find(VD);
4143     assert(Local != Locals.end()); // Same here.
4144     if (VarT) {
4145       if (!this->emitGetLocal(*VarT, Local->second.Offset, VD))
4146         return false;
4147     } else {
4148       if (!this->emitGetPtrLocal(Local->second.Offset, VD))
4149         return false;
4150     }
4151   }
4152 
4153   // Return the value.
4154   if (!this->emitRet(VarT.value_or(PT_Ptr), VD)) {
4155     // If the Ret above failed and this is a global variable, mark it as
4156     // uninitialized, even everything else succeeded.
4157     if (Context::shouldBeGloballyIndexed(VD)) {
4158       auto GlobalIndex = P.getGlobal(VD);
4159       assert(GlobalIndex);
4160       Block *GlobalBlock = P.getGlobal(*GlobalIndex);
4161       GlobalInlineDescriptor &GD =
4162           *reinterpret_cast<GlobalInlineDescriptor *>(GlobalBlock->rawData());
4163 
4164       GD.InitState = GlobalInitState::InitializerFailed;
4165       GlobalBlock->invokeDtor();
4166     }
4167     return false;
4168   }
4169 
4170   return VDScope.destroyLocals();
4171 }
4172 
4173 template <class Emitter>
4174 VarCreationState Compiler<Emitter>::visitVarDecl(const VarDecl *VD,
4175                                                  bool Toplevel) {
4176   // We don't know what to do with these, so just return false.
4177   if (VD->getType().isNull())
4178     return false;
4179 
4180   // This case is EvalEmitter-only. If we won't create any instructions for the
4181   // initializer anyway, don't bother creating the variable in the first place.
4182   if (!this->isActive())
4183     return VarCreationState::NotCreated();
4184 
4185   const Expr *Init = VD->getInit();
4186   std::optional<PrimType> VarT = classify(VD->getType());
4187 
4188   if (Init && Init->isValueDependent())
4189     return false;
4190 
4191   if (Context::shouldBeGloballyIndexed(VD)) {
4192     auto checkDecl = [&]() -> bool {
4193       bool NeedsOp = !Toplevel && VD->isLocalVarDecl() && VD->isStaticLocal();
4194       return !NeedsOp || this->emitCheckDecl(VD, VD);
4195     };
4196 
4197     auto initGlobal = [&](unsigned GlobalIndex) -> bool {
4198       assert(Init);
4199 
4200       if (VarT) {
4201         if (!this->visit(Init))
4202           return checkDecl() && false;
4203 
4204         return checkDecl() && this->emitInitGlobal(*VarT, GlobalIndex, VD);
4205       }
4206 
4207       if (!checkDecl())
4208         return false;
4209 
4210       if (!this->emitGetPtrGlobal(GlobalIndex, Init))
4211         return false;
4212 
4213       if (!visitInitializer(Init))
4214         return false;
4215 
4216       if (!this->emitFinishInit(Init))
4217         return false;
4218 
4219       return this->emitPopPtr(Init);
4220     };
4221 
4222     DeclScope<Emitter> LocalScope(this, VD);
4223 
4224     // We've already seen and initialized this global.
4225     if (std::optional<unsigned> GlobalIndex = P.getGlobal(VD)) {
4226       if (P.getPtrGlobal(*GlobalIndex).isInitialized())
4227         return checkDecl();
4228 
4229       // The previous attempt at initialization might've been unsuccessful,
4230       // so let's try this one.
4231       return Init && checkDecl() && initGlobal(*GlobalIndex);
4232     }
4233 
4234     std::optional<unsigned> GlobalIndex = P.createGlobal(VD, Init);
4235 
4236     if (!GlobalIndex)
4237       return false;
4238 
4239     return !Init || (checkDecl() && initGlobal(*GlobalIndex));
4240   } else {
4241     InitLinkScope<Emitter> ILS(this, InitLink::Decl(VD));
4242 
4243     if (VarT) {
4244       unsigned Offset = this->allocateLocalPrimitive(
4245           VD, *VarT, VD->getType().isConstQualified());
4246       if (Init) {
4247         // If this is a toplevel declaration, create a scope for the
4248         // initializer.
4249         if (Toplevel) {
4250           LocalScope<Emitter> Scope(this);
4251           if (!this->visit(Init))
4252             return false;
4253           return this->emitSetLocal(*VarT, Offset, VD) && Scope.destroyLocals();
4254         } else {
4255           if (!this->visit(Init))
4256             return false;
4257           return this->emitSetLocal(*VarT, Offset, VD);
4258         }
4259       }
4260     } else {
4261       if (std::optional<unsigned> Offset = this->allocateLocal(VD)) {
4262         if (!Init)
4263           return true;
4264 
4265         if (!this->emitGetPtrLocal(*Offset, Init))
4266           return false;
4267 
4268         if (!visitInitializer(Init))
4269           return false;
4270 
4271         if (!this->emitFinishInit(Init))
4272           return false;
4273 
4274         return this->emitPopPtr(Init);
4275       }
4276       return false;
4277     }
4278     return true;
4279   }
4280 
4281   return false;
4282 }
4283 
4284 template <class Emitter>
4285 bool Compiler<Emitter>::visitAPValue(const APValue &Val, PrimType ValType,
4286                                      const Expr *E) {
4287   assert(!DiscardResult);
4288   if (Val.isInt())
4289     return this->emitConst(Val.getInt(), ValType, E);
4290   else if (Val.isFloat())
4291     return this->emitConstFloat(Val.getFloat(), E);
4292 
4293   if (Val.isLValue()) {
4294     if (Val.isNullPointer())
4295       return this->emitNull(ValType, nullptr, E);
4296     APValue::LValueBase Base = Val.getLValueBase();
4297     if (const Expr *BaseExpr = Base.dyn_cast<const Expr *>())
4298       return this->visit(BaseExpr);
4299     else if (const auto *VD = Base.dyn_cast<const ValueDecl *>()) {
4300       return this->visitDeclRef(VD, E);
4301     }
4302   } else if (Val.isMemberPointer()) {
4303     if (const ValueDecl *MemberDecl = Val.getMemberPointerDecl())
4304       return this->emitGetMemberPtr(MemberDecl, E);
4305     return this->emitNullMemberPtr(nullptr, E);
4306   }
4307 
4308   return false;
4309 }
4310 
4311 template <class Emitter>
4312 bool Compiler<Emitter>::visitAPValueInitializer(const APValue &Val,
4313                                                 const Expr *E) {
4314 
4315   if (Val.isStruct()) {
4316     const Record *R = this->getRecord(E->getType());
4317     assert(R);
4318     for (unsigned I = 0, N = Val.getStructNumFields(); I != N; ++I) {
4319       const APValue &F = Val.getStructField(I);
4320       const Record::Field *RF = R->getField(I);
4321 
4322       if (F.isInt() || F.isFloat() || F.isLValue() || F.isMemberPointer()) {
4323         PrimType T = classifyPrim(RF->Decl->getType());
4324         if (!this->visitAPValue(F, T, E))
4325           return false;
4326         if (!this->emitInitField(T, RF->Offset, E))
4327           return false;
4328       } else if (F.isArray()) {
4329         assert(RF->Desc->isPrimitiveArray());
4330         const auto *ArrType = RF->Decl->getType()->getAsArrayTypeUnsafe();
4331         PrimType ElemT = classifyPrim(ArrType->getElementType());
4332         assert(ArrType);
4333 
4334         if (!this->emitGetPtrField(RF->Offset, E))
4335           return false;
4336 
4337         for (unsigned A = 0, AN = F.getArraySize(); A != AN; ++A) {
4338           if (!this->visitAPValue(F.getArrayInitializedElt(A), ElemT, E))
4339             return false;
4340           if (!this->emitInitElem(ElemT, A, E))
4341             return false;
4342         }
4343 
4344         if (!this->emitPopPtr(E))
4345           return false;
4346       } else if (F.isStruct() || F.isUnion()) {
4347         if (!this->emitGetPtrField(RF->Offset, E))
4348           return false;
4349         if (!this->visitAPValueInitializer(F, E))
4350           return false;
4351         if (!this->emitPopPtr(E))
4352           return false;
4353       } else {
4354         assert(false && "I don't think this should be possible");
4355       }
4356     }
4357     return true;
4358   } else if (Val.isUnion()) {
4359     const FieldDecl *UnionField = Val.getUnionField();
4360     const Record *R = this->getRecord(UnionField->getParent());
4361     assert(R);
4362     const APValue &F = Val.getUnionValue();
4363     const Record::Field *RF = R->getField(UnionField);
4364     PrimType T = classifyPrim(RF->Decl->getType());
4365     if (!this->visitAPValue(F, T, E))
4366       return false;
4367     return this->emitInitField(T, RF->Offset, E);
4368   }
4369   // TODO: Other types.
4370 
4371   return false;
4372 }
4373 
4374 template <class Emitter>
4375 bool Compiler<Emitter>::VisitBuiltinCallExpr(const CallExpr *E,
4376                                              unsigned BuiltinID) {
4377   const Function *Func = getFunction(E->getDirectCallee());
4378   if (!Func)
4379     return false;
4380 
4381   // For these, we're expected to ultimately return an APValue pointing
4382   // to the CallExpr. This is needed to get the correct codegen.
4383   if (BuiltinID == Builtin::BI__builtin___CFStringMakeConstantString ||
4384       BuiltinID == Builtin::BI__builtin___NSStringMakeConstantString ||
4385       BuiltinID == Builtin::BI__builtin_ptrauth_sign_constant ||
4386       BuiltinID == Builtin::BI__builtin_function_start) {
4387     if (std::optional<unsigned> GlobalOffset = P.getOrCreateDummy(E)) {
4388       if (!this->emitGetPtrGlobal(*GlobalOffset, E))
4389         return false;
4390 
4391       if (PrimType PT = classifyPrim(E); PT != PT_Ptr && isPtrType(PT))
4392         return this->emitDecayPtr(PT_Ptr, PT, E);
4393       return true;
4394     }
4395     return false;
4396   }
4397 
4398   QualType ReturnType = E->getType();
4399   std::optional<PrimType> ReturnT = classify(E);
4400 
4401   // Non-primitive return type. Prepare storage.
4402   if (!Initializing && !ReturnT && !ReturnType->isVoidType()) {
4403     std::optional<unsigned> LocalIndex = allocateLocal(E);
4404     if (!LocalIndex)
4405       return false;
4406     if (!this->emitGetPtrLocal(*LocalIndex, E))
4407       return false;
4408   }
4409 
4410   if (!Func->isUnevaluatedBuiltin()) {
4411     // Put arguments on the stack.
4412     for (const auto *Arg : E->arguments()) {
4413       if (!this->visit(Arg))
4414         return false;
4415     }
4416   }
4417 
4418   if (!this->emitCallBI(Func, E, BuiltinID, E))
4419     return false;
4420 
4421   if (DiscardResult && !ReturnType->isVoidType()) {
4422     assert(ReturnT);
4423     return this->emitPop(*ReturnT, E);
4424   }
4425 
4426   return true;
4427 }
4428 
4429 template <class Emitter>
4430 bool Compiler<Emitter>::VisitCallExpr(const CallExpr *E) {
4431   if (unsigned BuiltinID = E->getBuiltinCallee())
4432     return VisitBuiltinCallExpr(E, BuiltinID);
4433 
4434   const FunctionDecl *FuncDecl = E->getDirectCallee();
4435   // Calls to replaceable operator new/operator delete.
4436   if (FuncDecl && FuncDecl->isReplaceableGlobalAllocationFunction()) {
4437     if (FuncDecl->getDeclName().getCXXOverloadedOperator() == OO_New ||
4438         FuncDecl->getDeclName().getCXXOverloadedOperator() == OO_Array_New) {
4439       return VisitBuiltinCallExpr(E, Builtin::BI__builtin_operator_new);
4440     } else {
4441       assert(FuncDecl->getDeclName().getCXXOverloadedOperator() == OO_Delete);
4442       return VisitBuiltinCallExpr(E, Builtin::BI__builtin_operator_delete);
4443     }
4444   }
4445 
4446   QualType ReturnType = E->getCallReturnType(Ctx.getASTContext());
4447   std::optional<PrimType> T = classify(ReturnType);
4448   bool HasRVO = !ReturnType->isVoidType() && !T;
4449 
4450   if (HasRVO) {
4451     if (DiscardResult) {
4452       // If we need to discard the return value but the function returns its
4453       // value via an RVO pointer, we need to create one such pointer just
4454       // for this call.
4455       if (std::optional<unsigned> LocalIndex = allocateLocal(E)) {
4456         if (!this->emitGetPtrLocal(*LocalIndex, E))
4457           return false;
4458       }
4459     } else {
4460       // We need the result. Prepare a pointer to return or
4461       // dup the current one.
4462       if (!Initializing) {
4463         if (std::optional<unsigned> LocalIndex = allocateLocal(E)) {
4464           if (!this->emitGetPtrLocal(*LocalIndex, E))
4465             return false;
4466         }
4467       }
4468       if (!this->emitDupPtr(E))
4469         return false;
4470     }
4471   }
4472 
4473   SmallVector<const Expr *, 8> Args(
4474       llvm::ArrayRef(E->getArgs(), E->getNumArgs()));
4475 
4476   bool IsAssignmentOperatorCall = false;
4477   if (const auto *OCE = dyn_cast<CXXOperatorCallExpr>(E);
4478       OCE && OCE->isAssignmentOp()) {
4479     // Just like with regular assignments, we need to special-case assignment
4480     // operators here and evaluate the RHS (the second arg) before the LHS (the
4481     // first arg. We fix this by using a Flip op later.
4482     assert(Args.size() == 2);
4483     IsAssignmentOperatorCall = true;
4484     std::reverse(Args.begin(), Args.end());
4485   }
4486   // Calling a static operator will still
4487   // pass the instance, but we don't need it.
4488   // Discard it here.
4489   if (isa<CXXOperatorCallExpr>(E)) {
4490     if (const auto *MD = dyn_cast_if_present<CXXMethodDecl>(FuncDecl);
4491         MD && MD->isStatic()) {
4492       if (!this->discard(E->getArg(0)))
4493         return false;
4494       // Drop first arg.
4495       Args.erase(Args.begin());
4496     }
4497   }
4498 
4499   std::optional<unsigned> CalleeOffset;
4500   // Add the (optional, implicit) This pointer.
4501   if (const auto *MC = dyn_cast<CXXMemberCallExpr>(E)) {
4502     if (!FuncDecl && classifyPrim(E->getCallee()) == PT_MemberPtr) {
4503       // If we end up creating a CallPtr op for this, we need the base of the
4504       // member pointer as the instance pointer, and later extract the function
4505       // decl as the function pointer.
4506       const Expr *Callee = E->getCallee();
4507       CalleeOffset =
4508           this->allocateLocalPrimitive(Callee, PT_MemberPtr, true, false);
4509       if (!this->visit(Callee))
4510         return false;
4511       if (!this->emitSetLocal(PT_MemberPtr, *CalleeOffset, E))
4512         return false;
4513       if (!this->emitGetLocal(PT_MemberPtr, *CalleeOffset, E))
4514         return false;
4515       if (!this->emitGetMemberPtrBase(E))
4516         return false;
4517     } else if (!this->visit(MC->getImplicitObjectArgument())) {
4518       return false;
4519     }
4520   } else if (!FuncDecl) {
4521     const Expr *Callee = E->getCallee();
4522     CalleeOffset = this->allocateLocalPrimitive(Callee, PT_FnPtr, true, false);
4523     if (!this->visit(Callee))
4524       return false;
4525     if (!this->emitSetLocal(PT_FnPtr, *CalleeOffset, E))
4526       return false;
4527   }
4528 
4529   llvm::BitVector NonNullArgs = collectNonNullArgs(FuncDecl, Args);
4530   // Put arguments on the stack.
4531   unsigned ArgIndex = 0;
4532   for (const auto *Arg : Args) {
4533     if (!this->visit(Arg))
4534       return false;
4535 
4536     // If we know the callee already, check the known parametrs for nullability.
4537     if (FuncDecl && NonNullArgs[ArgIndex]) {
4538       PrimType ArgT = classify(Arg).value_or(PT_Ptr);
4539       if (ArgT == PT_Ptr || ArgT == PT_FnPtr) {
4540         if (!this->emitCheckNonNullArg(ArgT, Arg))
4541           return false;
4542       }
4543     }
4544     ++ArgIndex;
4545   }
4546 
4547   // Undo the argument reversal we did earlier.
4548   if (IsAssignmentOperatorCall) {
4549     assert(Args.size() == 2);
4550     PrimType Arg1T = classify(Args[0]).value_or(PT_Ptr);
4551     PrimType Arg2T = classify(Args[1]).value_or(PT_Ptr);
4552     if (!this->emitFlip(Arg2T, Arg1T, E))
4553       return false;
4554   }
4555 
4556   if (FuncDecl) {
4557     const Function *Func = getFunction(FuncDecl);
4558     if (!Func)
4559       return false;
4560     assert(HasRVO == Func->hasRVO());
4561 
4562     bool HasQualifier = false;
4563     if (const auto *ME = dyn_cast<MemberExpr>(E->getCallee()))
4564       HasQualifier = ME->hasQualifier();
4565 
4566     bool IsVirtual = false;
4567     if (const auto *MD = dyn_cast<CXXMethodDecl>(FuncDecl))
4568       IsVirtual = MD->isVirtual();
4569 
4570     // In any case call the function. The return value will end up on the stack
4571     // and if the function has RVO, we already have the pointer on the stack to
4572     // write the result into.
4573     if (IsVirtual && !HasQualifier) {
4574       uint32_t VarArgSize = 0;
4575       unsigned NumParams =
4576           Func->getNumWrittenParams() + isa<CXXOperatorCallExpr>(E);
4577       for (unsigned I = NumParams, N = E->getNumArgs(); I != N; ++I)
4578         VarArgSize += align(primSize(classify(E->getArg(I)).value_or(PT_Ptr)));
4579 
4580       if (!this->emitCallVirt(Func, VarArgSize, E))
4581         return false;
4582     } else if (Func->isVariadic()) {
4583       uint32_t VarArgSize = 0;
4584       unsigned NumParams =
4585           Func->getNumWrittenParams() + isa<CXXOperatorCallExpr>(E);
4586       for (unsigned I = NumParams, N = E->getNumArgs(); I != N; ++I)
4587         VarArgSize += align(primSize(classify(E->getArg(I)).value_or(PT_Ptr)));
4588       if (!this->emitCallVar(Func, VarArgSize, E))
4589         return false;
4590     } else {
4591       if (!this->emitCall(Func, 0, E))
4592         return false;
4593     }
4594   } else {
4595     // Indirect call. Visit the callee, which will leave a FunctionPointer on
4596     // the stack. Cleanup of the returned value if necessary will be done after
4597     // the function call completed.
4598 
4599     // Sum the size of all args from the call expr.
4600     uint32_t ArgSize = 0;
4601     for (unsigned I = 0, N = E->getNumArgs(); I != N; ++I)
4602       ArgSize += align(primSize(classify(E->getArg(I)).value_or(PT_Ptr)));
4603 
4604     // Get the callee, either from a member pointer or function pointer saved in
4605     // CalleeOffset.
4606     if (isa<CXXMemberCallExpr>(E) && CalleeOffset) {
4607       if (!this->emitGetLocal(PT_MemberPtr, *CalleeOffset, E))
4608         return false;
4609       if (!this->emitGetMemberPtrDecl(E))
4610         return false;
4611     } else {
4612       if (!this->emitGetLocal(PT_FnPtr, *CalleeOffset, E))
4613         return false;
4614     }
4615     if (!this->emitCallPtr(ArgSize, E, E))
4616       return false;
4617   }
4618 
4619   // Cleanup for discarded return values.
4620   if (DiscardResult && !ReturnType->isVoidType() && T)
4621     return this->emitPop(*T, E);
4622 
4623   return true;
4624 }
4625 
4626 template <class Emitter>
4627 bool Compiler<Emitter>::VisitCXXDefaultInitExpr(const CXXDefaultInitExpr *E) {
4628   SourceLocScope<Emitter> SLS(this, E);
4629 
4630   return this->delegate(E->getExpr());
4631 }
4632 
4633 template <class Emitter>
4634 bool Compiler<Emitter>::VisitCXXDefaultArgExpr(const CXXDefaultArgExpr *E) {
4635   SourceLocScope<Emitter> SLS(this, E);
4636 
4637   const Expr *SubExpr = E->getExpr();
4638   if (std::optional<PrimType> T = classify(E->getExpr()))
4639     return this->visit(SubExpr);
4640 
4641   assert(Initializing);
4642   return this->visitInitializer(SubExpr);
4643 }
4644 
4645 template <class Emitter>
4646 bool Compiler<Emitter>::VisitCXXBoolLiteralExpr(const CXXBoolLiteralExpr *E) {
4647   if (DiscardResult)
4648     return true;
4649 
4650   return this->emitConstBool(E->getValue(), E);
4651 }
4652 
4653 template <class Emitter>
4654 bool Compiler<Emitter>::VisitCXXNullPtrLiteralExpr(
4655     const CXXNullPtrLiteralExpr *E) {
4656   if (DiscardResult)
4657     return true;
4658 
4659   return this->emitNullPtr(nullptr, E);
4660 }
4661 
4662 template <class Emitter>
4663 bool Compiler<Emitter>::VisitGNUNullExpr(const GNUNullExpr *E) {
4664   if (DiscardResult)
4665     return true;
4666 
4667   assert(E->getType()->isIntegerType());
4668 
4669   PrimType T = classifyPrim(E->getType());
4670   return this->emitZero(T, E);
4671 }
4672 
4673 template <class Emitter>
4674 bool Compiler<Emitter>::VisitCXXThisExpr(const CXXThisExpr *E) {
4675   if (DiscardResult)
4676     return true;
4677 
4678   if (this->LambdaThisCapture.Offset > 0) {
4679     if (this->LambdaThisCapture.IsPtr)
4680       return this->emitGetThisFieldPtr(this->LambdaThisCapture.Offset, E);
4681     return this->emitGetPtrThisField(this->LambdaThisCapture.Offset, E);
4682   }
4683 
4684   // In some circumstances, the 'this' pointer does not actually refer to the
4685   // instance pointer of the current function frame, but e.g. to the declaration
4686   // currently being initialized. Here we emit the necessary instruction(s) for
4687   // this scenario.
4688   if (!InitStackActive || !E->isImplicit())
4689     return this->emitThis(E);
4690 
4691   if (InitStackActive && !InitStack.empty()) {
4692     unsigned StartIndex = 0;
4693     for (StartIndex = InitStack.size() - 1; StartIndex > 0; --StartIndex) {
4694       if (InitStack[StartIndex].Kind != InitLink::K_Field &&
4695           InitStack[StartIndex].Kind != InitLink::K_Elem)
4696         break;
4697     }
4698 
4699     for (unsigned I = StartIndex, N = InitStack.size(); I != N; ++I) {
4700       if (!InitStack[I].template emit<Emitter>(this, E))
4701         return false;
4702     }
4703     return true;
4704   }
4705   return this->emitThis(E);
4706 }
4707 
4708 template <class Emitter> bool Compiler<Emitter>::visitStmt(const Stmt *S) {
4709   switch (S->getStmtClass()) {
4710   case Stmt::CompoundStmtClass:
4711     return visitCompoundStmt(cast<CompoundStmt>(S));
4712   case Stmt::DeclStmtClass:
4713     return visitDeclStmt(cast<DeclStmt>(S));
4714   case Stmt::ReturnStmtClass:
4715     return visitReturnStmt(cast<ReturnStmt>(S));
4716   case Stmt::IfStmtClass:
4717     return visitIfStmt(cast<IfStmt>(S));
4718   case Stmt::WhileStmtClass:
4719     return visitWhileStmt(cast<WhileStmt>(S));
4720   case Stmt::DoStmtClass:
4721     return visitDoStmt(cast<DoStmt>(S));
4722   case Stmt::ForStmtClass:
4723     return visitForStmt(cast<ForStmt>(S));
4724   case Stmt::CXXForRangeStmtClass:
4725     return visitCXXForRangeStmt(cast<CXXForRangeStmt>(S));
4726   case Stmt::BreakStmtClass:
4727     return visitBreakStmt(cast<BreakStmt>(S));
4728   case Stmt::ContinueStmtClass:
4729     return visitContinueStmt(cast<ContinueStmt>(S));
4730   case Stmt::SwitchStmtClass:
4731     return visitSwitchStmt(cast<SwitchStmt>(S));
4732   case Stmt::CaseStmtClass:
4733     return visitCaseStmt(cast<CaseStmt>(S));
4734   case Stmt::DefaultStmtClass:
4735     return visitDefaultStmt(cast<DefaultStmt>(S));
4736   case Stmt::AttributedStmtClass:
4737     return visitAttributedStmt(cast<AttributedStmt>(S));
4738   case Stmt::CXXTryStmtClass:
4739     return visitCXXTryStmt(cast<CXXTryStmt>(S));
4740   case Stmt::NullStmtClass:
4741     return true;
4742   // Always invalid statements.
4743   case Stmt::GCCAsmStmtClass:
4744   case Stmt::MSAsmStmtClass:
4745   case Stmt::GotoStmtClass:
4746     return this->emitInvalid(S);
4747   case Stmt::LabelStmtClass:
4748     return this->visitStmt(cast<LabelStmt>(S)->getSubStmt());
4749   default: {
4750     if (const auto *E = dyn_cast<Expr>(S))
4751       return this->discard(E);
4752     return false;
4753   }
4754   }
4755 }
4756 
4757 template <class Emitter>
4758 bool Compiler<Emitter>::visitCompoundStmt(const CompoundStmt *S) {
4759   BlockScope<Emitter> Scope(this);
4760   for (const auto *InnerStmt : S->body())
4761     if (!visitStmt(InnerStmt))
4762       return false;
4763   return Scope.destroyLocals();
4764 }
4765 
4766 template <class Emitter>
4767 bool Compiler<Emitter>::visitDeclStmt(const DeclStmt *DS) {
4768   for (const auto *D : DS->decls()) {
4769     if (isa<StaticAssertDecl, TagDecl, TypedefNameDecl, UsingEnumDecl,
4770             FunctionDecl>(D))
4771       continue;
4772 
4773     const auto *VD = dyn_cast<VarDecl>(D);
4774     if (!VD)
4775       return false;
4776     if (!this->visitVarDecl(VD))
4777       return false;
4778   }
4779 
4780   return true;
4781 }
4782 
4783 template <class Emitter>
4784 bool Compiler<Emitter>::visitReturnStmt(const ReturnStmt *RS) {
4785   if (this->InStmtExpr)
4786     return this->emitUnsupported(RS);
4787 
4788   if (const Expr *RE = RS->getRetValue()) {
4789     LocalScope<Emitter> RetScope(this);
4790     if (ReturnType) {
4791       // Primitive types are simply returned.
4792       if (!this->visit(RE))
4793         return false;
4794       this->emitCleanup();
4795       return this->emitRet(*ReturnType, RS);
4796     } else if (RE->getType()->isVoidType()) {
4797       if (!this->visit(RE))
4798         return false;
4799     } else {
4800       // RVO - construct the value in the return location.
4801       if (!this->emitRVOPtr(RE))
4802         return false;
4803       if (!this->visitInitializer(RE))
4804         return false;
4805       if (!this->emitPopPtr(RE))
4806         return false;
4807 
4808       this->emitCleanup();
4809       return this->emitRetVoid(RS);
4810     }
4811   }
4812 
4813   // Void return.
4814   this->emitCleanup();
4815   return this->emitRetVoid(RS);
4816 }
4817 
4818 template <class Emitter> bool Compiler<Emitter>::visitIfStmt(const IfStmt *IS) {
4819   if (auto *CondInit = IS->getInit())
4820     if (!visitStmt(CondInit))
4821       return false;
4822 
4823   if (const DeclStmt *CondDecl = IS->getConditionVariableDeclStmt())
4824     if (!visitDeclStmt(CondDecl))
4825       return false;
4826 
4827   // Compile condition.
4828   if (IS->isNonNegatedConsteval()) {
4829     if (!this->emitIsConstantContext(IS))
4830       return false;
4831   } else if (IS->isNegatedConsteval()) {
4832     if (!this->emitIsConstantContext(IS))
4833       return false;
4834     if (!this->emitInv(IS))
4835       return false;
4836   } else {
4837     if (!this->visitBool(IS->getCond()))
4838       return false;
4839   }
4840 
4841   if (const Stmt *Else = IS->getElse()) {
4842     LabelTy LabelElse = this->getLabel();
4843     LabelTy LabelEnd = this->getLabel();
4844     if (!this->jumpFalse(LabelElse))
4845       return false;
4846     if (!visitStmt(IS->getThen()))
4847       return false;
4848     if (!this->jump(LabelEnd))
4849       return false;
4850     this->emitLabel(LabelElse);
4851     if (!visitStmt(Else))
4852       return false;
4853     this->emitLabel(LabelEnd);
4854   } else {
4855     LabelTy LabelEnd = this->getLabel();
4856     if (!this->jumpFalse(LabelEnd))
4857       return false;
4858     if (!visitStmt(IS->getThen()))
4859       return false;
4860     this->emitLabel(LabelEnd);
4861   }
4862 
4863   return true;
4864 }
4865 
4866 template <class Emitter>
4867 bool Compiler<Emitter>::visitWhileStmt(const WhileStmt *S) {
4868   const Expr *Cond = S->getCond();
4869   const Stmt *Body = S->getBody();
4870 
4871   LabelTy CondLabel = this->getLabel(); // Label before the condition.
4872   LabelTy EndLabel = this->getLabel();  // Label after the loop.
4873   LoopScope<Emitter> LS(this, EndLabel, CondLabel);
4874 
4875   this->fallthrough(CondLabel);
4876   this->emitLabel(CondLabel);
4877 
4878   {
4879     LocalScope<Emitter> CondScope(this);
4880     if (const DeclStmt *CondDecl = S->getConditionVariableDeclStmt())
4881       if (!visitDeclStmt(CondDecl))
4882         return false;
4883 
4884     if (!this->visitBool(Cond))
4885       return false;
4886     if (!this->jumpFalse(EndLabel))
4887       return false;
4888 
4889     if (!this->visitStmt(Body))
4890       return false;
4891 
4892     if (!CondScope.destroyLocals())
4893       return false;
4894   }
4895   if (!this->jump(CondLabel))
4896     return false;
4897   this->fallthrough(EndLabel);
4898   this->emitLabel(EndLabel);
4899 
4900   return true;
4901 }
4902 
4903 template <class Emitter> bool Compiler<Emitter>::visitDoStmt(const DoStmt *S) {
4904   const Expr *Cond = S->getCond();
4905   const Stmt *Body = S->getBody();
4906 
4907   LabelTy StartLabel = this->getLabel();
4908   LabelTy EndLabel = this->getLabel();
4909   LabelTy CondLabel = this->getLabel();
4910   LoopScope<Emitter> LS(this, EndLabel, CondLabel);
4911 
4912   this->fallthrough(StartLabel);
4913   this->emitLabel(StartLabel);
4914 
4915   {
4916     LocalScope<Emitter> CondScope(this);
4917     if (!this->visitStmt(Body))
4918       return false;
4919     this->fallthrough(CondLabel);
4920     this->emitLabel(CondLabel);
4921     if (!this->visitBool(Cond))
4922       return false;
4923 
4924     if (!CondScope.destroyLocals())
4925       return false;
4926   }
4927   if (!this->jumpTrue(StartLabel))
4928     return false;
4929 
4930   this->fallthrough(EndLabel);
4931   this->emitLabel(EndLabel);
4932   return true;
4933 }
4934 
4935 template <class Emitter>
4936 bool Compiler<Emitter>::visitForStmt(const ForStmt *S) {
4937   // for (Init; Cond; Inc) { Body }
4938   const Stmt *Init = S->getInit();
4939   const Expr *Cond = S->getCond();
4940   const Expr *Inc = S->getInc();
4941   const Stmt *Body = S->getBody();
4942 
4943   LabelTy EndLabel = this->getLabel();
4944   LabelTy CondLabel = this->getLabel();
4945   LabelTy IncLabel = this->getLabel();
4946   LoopScope<Emitter> LS(this, EndLabel, IncLabel);
4947 
4948   if (Init && !this->visitStmt(Init))
4949     return false;
4950 
4951   this->fallthrough(CondLabel);
4952   this->emitLabel(CondLabel);
4953 
4954   {
4955     LocalScope<Emitter> CondScope(this);
4956     if (const DeclStmt *CondDecl = S->getConditionVariableDeclStmt())
4957       if (!visitDeclStmt(CondDecl))
4958         return false;
4959 
4960     if (Cond) {
4961       if (!this->visitBool(Cond))
4962         return false;
4963       if (!this->jumpFalse(EndLabel))
4964         return false;
4965     }
4966 
4967     if (Body && !this->visitStmt(Body))
4968       return false;
4969 
4970     this->fallthrough(IncLabel);
4971     this->emitLabel(IncLabel);
4972     if (Inc && !this->discard(Inc))
4973       return false;
4974 
4975     if (!CondScope.destroyLocals())
4976       return false;
4977   }
4978   if (!this->jump(CondLabel))
4979     return false;
4980 
4981   this->fallthrough(EndLabel);
4982   this->emitLabel(EndLabel);
4983   return true;
4984 }
4985 
4986 template <class Emitter>
4987 bool Compiler<Emitter>::visitCXXForRangeStmt(const CXXForRangeStmt *S) {
4988   const Stmt *Init = S->getInit();
4989   const Expr *Cond = S->getCond();
4990   const Expr *Inc = S->getInc();
4991   const Stmt *Body = S->getBody();
4992   const Stmt *BeginStmt = S->getBeginStmt();
4993   const Stmt *RangeStmt = S->getRangeStmt();
4994   const Stmt *EndStmt = S->getEndStmt();
4995   const VarDecl *LoopVar = S->getLoopVariable();
4996 
4997   LabelTy EndLabel = this->getLabel();
4998   LabelTy CondLabel = this->getLabel();
4999   LabelTy IncLabel = this->getLabel();
5000   LoopScope<Emitter> LS(this, EndLabel, IncLabel);
5001 
5002   // Emit declarations needed in the loop.
5003   if (Init && !this->visitStmt(Init))
5004     return false;
5005   if (!this->visitStmt(RangeStmt))
5006     return false;
5007   if (!this->visitStmt(BeginStmt))
5008     return false;
5009   if (!this->visitStmt(EndStmt))
5010     return false;
5011 
5012   // Now the condition as well as the loop variable assignment.
5013   this->fallthrough(CondLabel);
5014   this->emitLabel(CondLabel);
5015   if (!this->visitBool(Cond))
5016     return false;
5017   if (!this->jumpFalse(EndLabel))
5018     return false;
5019 
5020   if (!this->visitVarDecl(LoopVar))
5021     return false;
5022 
5023   // Body.
5024   {
5025     if (!this->visitStmt(Body))
5026       return false;
5027 
5028     this->fallthrough(IncLabel);
5029     this->emitLabel(IncLabel);
5030     if (!this->discard(Inc))
5031       return false;
5032   }
5033 
5034   if (!this->jump(CondLabel))
5035     return false;
5036 
5037   this->fallthrough(EndLabel);
5038   this->emitLabel(EndLabel);
5039   return true;
5040 }
5041 
5042 template <class Emitter>
5043 bool Compiler<Emitter>::visitBreakStmt(const BreakStmt *S) {
5044   if (!BreakLabel)
5045     return false;
5046 
5047   for (VariableScope<Emitter> *C = VarScope; C != BreakVarScope;
5048        C = C->getParent())
5049     C->emitDestruction();
5050   return this->jump(*BreakLabel);
5051 }
5052 
5053 template <class Emitter>
5054 bool Compiler<Emitter>::visitContinueStmt(const ContinueStmt *S) {
5055   if (!ContinueLabel)
5056     return false;
5057 
5058   for (VariableScope<Emitter> *C = VarScope;
5059        C && C->getParent() != ContinueVarScope; C = C->getParent())
5060     C->emitDestruction();
5061   return this->jump(*ContinueLabel);
5062 }
5063 
5064 template <class Emitter>
5065 bool Compiler<Emitter>::visitSwitchStmt(const SwitchStmt *S) {
5066   const Expr *Cond = S->getCond();
5067   PrimType CondT = this->classifyPrim(Cond->getType());
5068   LocalScope<Emitter> LS(this);
5069 
5070   LabelTy EndLabel = this->getLabel();
5071   OptLabelTy DefaultLabel = std::nullopt;
5072   unsigned CondVar = this->allocateLocalPrimitive(Cond, CondT, true, false);
5073 
5074   if (const auto *CondInit = S->getInit())
5075     if (!visitStmt(CondInit))
5076       return false;
5077 
5078   if (const DeclStmt *CondDecl = S->getConditionVariableDeclStmt())
5079     if (!visitDeclStmt(CondDecl))
5080       return false;
5081 
5082   // Initialize condition variable.
5083   if (!this->visit(Cond))
5084     return false;
5085   if (!this->emitSetLocal(CondT, CondVar, S))
5086     return false;
5087 
5088   CaseMap CaseLabels;
5089   // Create labels and comparison ops for all case statements.
5090   for (const SwitchCase *SC = S->getSwitchCaseList(); SC;
5091        SC = SC->getNextSwitchCase()) {
5092     if (const auto *CS = dyn_cast<CaseStmt>(SC)) {
5093       // FIXME: Implement ranges.
5094       if (CS->caseStmtIsGNURange())
5095         return false;
5096       CaseLabels[SC] = this->getLabel();
5097 
5098       const Expr *Value = CS->getLHS();
5099       PrimType ValueT = this->classifyPrim(Value->getType());
5100 
5101       // Compare the case statement's value to the switch condition.
5102       if (!this->emitGetLocal(CondT, CondVar, CS))
5103         return false;
5104       if (!this->visit(Value))
5105         return false;
5106 
5107       // Compare and jump to the case label.
5108       if (!this->emitEQ(ValueT, S))
5109         return false;
5110       if (!this->jumpTrue(CaseLabels[CS]))
5111         return false;
5112     } else {
5113       assert(!DefaultLabel);
5114       DefaultLabel = this->getLabel();
5115     }
5116   }
5117 
5118   // If none of the conditions above were true, fall through to the default
5119   // statement or jump after the switch statement.
5120   if (DefaultLabel) {
5121     if (!this->jump(*DefaultLabel))
5122       return false;
5123   } else {
5124     if (!this->jump(EndLabel))
5125       return false;
5126   }
5127 
5128   SwitchScope<Emitter> SS(this, std::move(CaseLabels), EndLabel, DefaultLabel);
5129   if (!this->visitStmt(S->getBody()))
5130     return false;
5131   this->emitLabel(EndLabel);
5132 
5133   return LS.destroyLocals();
5134 }
5135 
5136 template <class Emitter>
5137 bool Compiler<Emitter>::visitCaseStmt(const CaseStmt *S) {
5138   this->emitLabel(CaseLabels[S]);
5139   return this->visitStmt(S->getSubStmt());
5140 }
5141 
5142 template <class Emitter>
5143 bool Compiler<Emitter>::visitDefaultStmt(const DefaultStmt *S) {
5144   this->emitLabel(*DefaultLabel);
5145   return this->visitStmt(S->getSubStmt());
5146 }
5147 
5148 template <class Emitter>
5149 bool Compiler<Emitter>::visitAttributedStmt(const AttributedStmt *S) {
5150   if (this->Ctx.getLangOpts().CXXAssumptions &&
5151       !this->Ctx.getLangOpts().MSVCCompat) {
5152     for (const Attr *A : S->getAttrs()) {
5153       auto *AA = dyn_cast<CXXAssumeAttr>(A);
5154       if (!AA)
5155         continue;
5156 
5157       assert(isa<NullStmt>(S->getSubStmt()));
5158 
5159       const Expr *Assumption = AA->getAssumption();
5160       if (Assumption->isValueDependent())
5161         return false;
5162 
5163       if (Assumption->HasSideEffects(this->Ctx.getASTContext()))
5164         continue;
5165 
5166       // Evaluate assumption.
5167       if (!this->visitBool(Assumption))
5168         return false;
5169 
5170       if (!this->emitAssume(Assumption))
5171         return false;
5172     }
5173   }
5174 
5175   // Ignore other attributes.
5176   return this->visitStmt(S->getSubStmt());
5177 }
5178 
5179 template <class Emitter>
5180 bool Compiler<Emitter>::visitCXXTryStmt(const CXXTryStmt *S) {
5181   // Ignore all handlers.
5182   return this->visitStmt(S->getTryBlock());
5183 }
5184 
5185 template <class Emitter>
5186 bool Compiler<Emitter>::emitLambdaStaticInvokerBody(const CXXMethodDecl *MD) {
5187   assert(MD->isLambdaStaticInvoker());
5188   assert(MD->hasBody());
5189   assert(cast<CompoundStmt>(MD->getBody())->body_empty());
5190 
5191   const CXXRecordDecl *ClosureClass = MD->getParent();
5192   const CXXMethodDecl *LambdaCallOp = ClosureClass->getLambdaCallOperator();
5193   assert(ClosureClass->captures_begin() == ClosureClass->captures_end());
5194   const Function *Func = this->getFunction(LambdaCallOp);
5195   if (!Func)
5196     return false;
5197   assert(Func->hasThisPointer());
5198   assert(Func->getNumParams() == (MD->getNumParams() + 1 + Func->hasRVO()));
5199 
5200   if (Func->hasRVO()) {
5201     if (!this->emitRVOPtr(MD))
5202       return false;
5203   }
5204 
5205   // The lambda call operator needs an instance pointer, but we don't have
5206   // one here, and we don't need one either because the lambda cannot have
5207   // any captures, as verified above. Emit a null pointer. This is then
5208   // special-cased when interpreting to not emit any misleading diagnostics.
5209   if (!this->emitNullPtr(nullptr, MD))
5210     return false;
5211 
5212   // Forward all arguments from the static invoker to the lambda call operator.
5213   for (const ParmVarDecl *PVD : MD->parameters()) {
5214     auto It = this->Params.find(PVD);
5215     assert(It != this->Params.end());
5216 
5217     // We do the lvalue-to-rvalue conversion manually here, so no need
5218     // to care about references.
5219     PrimType ParamType = this->classify(PVD->getType()).value_or(PT_Ptr);
5220     if (!this->emitGetParam(ParamType, It->second.Offset, MD))
5221       return false;
5222   }
5223 
5224   if (!this->emitCall(Func, 0, LambdaCallOp))
5225     return false;
5226 
5227   this->emitCleanup();
5228   if (ReturnType)
5229     return this->emitRet(*ReturnType, MD);
5230 
5231   // Nothing to do, since we emitted the RVO pointer above.
5232   return this->emitRetVoid(MD);
5233 }
5234 
5235 template <class Emitter>
5236 bool Compiler<Emitter>::checkLiteralType(const Expr *E) {
5237   if (Ctx.getLangOpts().CPlusPlus23)
5238     return true;
5239 
5240   if (!E->isPRValue() || E->getType()->isLiteralType(Ctx.getASTContext()))
5241     return true;
5242 
5243   return this->emitCheckLiteralType(E->getType().getTypePtr(), E);
5244 }
5245 
5246 template <class Emitter>
5247 bool Compiler<Emitter>::compileConstructor(const CXXConstructorDecl *Ctor) {
5248   assert(!ReturnType);
5249 
5250   auto emitFieldInitializer = [&](const Record::Field *F, unsigned FieldOffset,
5251                                   const Expr *InitExpr) -> bool {
5252     // We don't know what to do with these, so just return false.
5253     if (InitExpr->getType().isNull())
5254       return false;
5255 
5256     if (std::optional<PrimType> T = this->classify(InitExpr)) {
5257       if (!this->visit(InitExpr))
5258         return false;
5259 
5260       if (F->isBitField())
5261         return this->emitInitThisBitField(*T, F, FieldOffset, InitExpr);
5262       return this->emitInitThisField(*T, FieldOffset, InitExpr);
5263     }
5264     // Non-primitive case. Get a pointer to the field-to-initialize
5265     // on the stack and call visitInitialzer() for it.
5266     InitLinkScope<Emitter> FieldScope(this, InitLink::Field(F->Offset));
5267     if (!this->emitGetPtrThisField(FieldOffset, InitExpr))
5268       return false;
5269 
5270     if (!this->visitInitializer(InitExpr))
5271       return false;
5272 
5273     return this->emitFinishInitPop(InitExpr);
5274   };
5275 
5276   const RecordDecl *RD = Ctor->getParent();
5277   const Record *R = this->getRecord(RD);
5278   if (!R)
5279     return false;
5280 
5281   if (R->isUnion() && Ctor->isCopyOrMoveConstructor()) {
5282     // union copy and move ctors are special.
5283     assert(cast<CompoundStmt>(Ctor->getBody())->body_empty());
5284     if (!this->emitThis(Ctor))
5285       return false;
5286 
5287     auto PVD = Ctor->getParamDecl(0);
5288     ParamOffset PO = this->Params[PVD]; // Must exist.
5289 
5290     if (!this->emitGetParam(PT_Ptr, PO.Offset, Ctor))
5291       return false;
5292 
5293     return this->emitMemcpy(Ctor) && this->emitPopPtr(Ctor) &&
5294            this->emitRetVoid(Ctor);
5295   }
5296 
5297   InitLinkScope<Emitter> InitScope(this, InitLink::This());
5298   for (const auto *Init : Ctor->inits()) {
5299     // Scope needed for the initializers.
5300     BlockScope<Emitter> Scope(this);
5301 
5302     const Expr *InitExpr = Init->getInit();
5303     if (const FieldDecl *Member = Init->getMember()) {
5304       const Record::Field *F = R->getField(Member);
5305 
5306       if (!emitFieldInitializer(F, F->Offset, InitExpr))
5307         return false;
5308     } else if (const Type *Base = Init->getBaseClass()) {
5309       const auto *BaseDecl = Base->getAsCXXRecordDecl();
5310       assert(BaseDecl);
5311 
5312       if (Init->isBaseVirtual()) {
5313         assert(R->getVirtualBase(BaseDecl));
5314         if (!this->emitGetPtrThisVirtBase(BaseDecl, InitExpr))
5315           return false;
5316 
5317       } else {
5318         // Base class initializer.
5319         // Get This Base and call initializer on it.
5320         const Record::Base *B = R->getBase(BaseDecl);
5321         assert(B);
5322         if (!this->emitGetPtrThisBase(B->Offset, InitExpr))
5323           return false;
5324       }
5325 
5326       if (!this->visitInitializer(InitExpr))
5327         return false;
5328       if (!this->emitFinishInitPop(InitExpr))
5329         return false;
5330     } else if (const IndirectFieldDecl *IFD = Init->getIndirectMember()) {
5331       assert(IFD->getChainingSize() >= 2);
5332 
5333       unsigned NestedFieldOffset = 0;
5334       const Record::Field *NestedField = nullptr;
5335       for (const NamedDecl *ND : IFD->chain()) {
5336         const auto *FD = cast<FieldDecl>(ND);
5337         const Record *FieldRecord = this->P.getOrCreateRecord(FD->getParent());
5338         assert(FieldRecord);
5339 
5340         NestedField = FieldRecord->getField(FD);
5341         assert(NestedField);
5342 
5343         NestedFieldOffset += NestedField->Offset;
5344       }
5345       assert(NestedField);
5346 
5347       if (!emitFieldInitializer(NestedField, NestedFieldOffset, InitExpr))
5348         return false;
5349     } else {
5350       assert(Init->isDelegatingInitializer());
5351       if (!this->emitThis(InitExpr))
5352         return false;
5353       if (!this->visitInitializer(Init->getInit()))
5354         return false;
5355       if (!this->emitPopPtr(InitExpr))
5356         return false;
5357     }
5358 
5359     if (!Scope.destroyLocals())
5360       return false;
5361   }
5362 
5363   if (const auto *Body = Ctor->getBody())
5364     if (!visitStmt(Body))
5365       return false;
5366 
5367   return this->emitRetVoid(SourceInfo{});
5368 }
5369 
5370 template <class Emitter>
5371 bool Compiler<Emitter>::compileDestructor(const CXXDestructorDecl *Dtor) {
5372   const RecordDecl *RD = Dtor->getParent();
5373   const Record *R = this->getRecord(RD);
5374   if (!R)
5375     return false;
5376 
5377   if (!Dtor->isTrivial() && Dtor->getBody()) {
5378     if (!this->visitStmt(Dtor->getBody()))
5379       return false;
5380   }
5381 
5382   if (!this->emitThis(Dtor))
5383     return false;
5384 
5385   assert(R);
5386   if (!R->isUnion()) {
5387     // First, destroy all fields.
5388     for (const Record::Field &Field : llvm::reverse(R->fields())) {
5389       const Descriptor *D = Field.Desc;
5390       if (!D->isPrimitive() && !D->isPrimitiveArray()) {
5391         if (!this->emitGetPtrField(Field.Offset, SourceInfo{}))
5392           return false;
5393         if (!this->emitDestruction(D, SourceInfo{}))
5394           return false;
5395         if (!this->emitPopPtr(SourceInfo{}))
5396           return false;
5397       }
5398     }
5399   }
5400 
5401   for (const Record::Base &Base : llvm::reverse(R->bases())) {
5402     if (Base.R->isAnonymousUnion())
5403       continue;
5404 
5405     if (!this->emitGetPtrBase(Base.Offset, SourceInfo{}))
5406       return false;
5407     if (!this->emitRecordDestruction(Base.R, {}))
5408       return false;
5409     if (!this->emitPopPtr(SourceInfo{}))
5410       return false;
5411   }
5412 
5413   // FIXME: Virtual bases.
5414   return this->emitPopPtr(Dtor) && this->emitRetVoid(Dtor);
5415 }
5416 
5417 template <class Emitter>
5418 bool Compiler<Emitter>::visitFunc(const FunctionDecl *F) {
5419   // Classify the return type.
5420   ReturnType = this->classify(F->getReturnType());
5421 
5422   if (const auto *Ctor = dyn_cast<CXXConstructorDecl>(F))
5423     return this->compileConstructor(Ctor);
5424   if (const auto *Dtor = dyn_cast<CXXDestructorDecl>(F))
5425     return this->compileDestructor(Dtor);
5426 
5427   // Emit custom code if this is a lambda static invoker.
5428   if (const auto *MD = dyn_cast<CXXMethodDecl>(F);
5429       MD && MD->isLambdaStaticInvoker())
5430     return this->emitLambdaStaticInvokerBody(MD);
5431 
5432   // Regular functions.
5433   if (const auto *Body = F->getBody())
5434     if (!visitStmt(Body))
5435       return false;
5436 
5437   // Emit a guard return to protect against a code path missing one.
5438   if (F->getReturnType()->isVoidType())
5439     return this->emitRetVoid(SourceInfo{});
5440   return this->emitNoRet(SourceInfo{});
5441 }
5442 
5443 template <class Emitter>
5444 bool Compiler<Emitter>::VisitUnaryOperator(const UnaryOperator *E) {
5445   const Expr *SubExpr = E->getSubExpr();
5446   if (SubExpr->getType()->isAnyComplexType())
5447     return this->VisitComplexUnaryOperator(E);
5448   if (SubExpr->getType()->isVectorType())
5449     return this->VisitVectorUnaryOperator(E);
5450   std::optional<PrimType> T = classify(SubExpr->getType());
5451 
5452   switch (E->getOpcode()) {
5453   case UO_PostInc: { // x++
5454     if (!Ctx.getLangOpts().CPlusPlus14)
5455       return this->emitInvalid(E);
5456     if (!T)
5457       return this->emitError(E);
5458 
5459     if (!this->visit(SubExpr))
5460       return false;
5461 
5462     if (T == PT_Ptr || T == PT_FnPtr) {
5463       if (!this->emitIncPtr(E))
5464         return false;
5465 
5466       return DiscardResult ? this->emitPopPtr(E) : true;
5467     }
5468 
5469     if (T == PT_Float) {
5470       return DiscardResult ? this->emitIncfPop(getFPOptions(E), E)
5471                            : this->emitIncf(getFPOptions(E), E);
5472     }
5473 
5474     return DiscardResult ? this->emitIncPop(*T, E) : this->emitInc(*T, E);
5475   }
5476   case UO_PostDec: { // x--
5477     if (!Ctx.getLangOpts().CPlusPlus14)
5478       return this->emitInvalid(E);
5479     if (!T)
5480       return this->emitError(E);
5481 
5482     if (!this->visit(SubExpr))
5483       return false;
5484 
5485     if (T == PT_Ptr || T == PT_FnPtr) {
5486       if (!this->emitDecPtr(E))
5487         return false;
5488 
5489       return DiscardResult ? this->emitPopPtr(E) : true;
5490     }
5491 
5492     if (T == PT_Float) {
5493       return DiscardResult ? this->emitDecfPop(getFPOptions(E), E)
5494                            : this->emitDecf(getFPOptions(E), E);
5495     }
5496 
5497     return DiscardResult ? this->emitDecPop(*T, E) : this->emitDec(*T, E);
5498   }
5499   case UO_PreInc: { // ++x
5500     if (!Ctx.getLangOpts().CPlusPlus14)
5501       return this->emitInvalid(E);
5502     if (!T)
5503       return this->emitError(E);
5504 
5505     if (!this->visit(SubExpr))
5506       return false;
5507 
5508     if (T == PT_Ptr || T == PT_FnPtr) {
5509       if (!this->emitLoadPtr(E))
5510         return false;
5511       if (!this->emitConstUint8(1, E))
5512         return false;
5513       if (!this->emitAddOffsetUint8(E))
5514         return false;
5515       return DiscardResult ? this->emitStorePopPtr(E) : this->emitStorePtr(E);
5516     }
5517 
5518     // Post-inc and pre-inc are the same if the value is to be discarded.
5519     if (DiscardResult) {
5520       if (T == PT_Float)
5521         return this->emitIncfPop(getFPOptions(E), E);
5522       return this->emitIncPop(*T, E);
5523     }
5524 
5525     if (T == PT_Float) {
5526       const auto &TargetSemantics = Ctx.getFloatSemantics(E->getType());
5527       if (!this->emitLoadFloat(E))
5528         return false;
5529       if (!this->emitConstFloat(llvm::APFloat(TargetSemantics, 1), E))
5530         return false;
5531       if (!this->emitAddf(getFPOptions(E), E))
5532         return false;
5533       if (!this->emitStoreFloat(E))
5534         return false;
5535     } else {
5536       assert(isIntegralType(*T));
5537       if (!this->emitLoad(*T, E))
5538         return false;
5539       if (!this->emitConst(1, E))
5540         return false;
5541       if (!this->emitAdd(*T, E))
5542         return false;
5543       if (!this->emitStore(*T, E))
5544         return false;
5545     }
5546     return E->isGLValue() || this->emitLoadPop(*T, E);
5547   }
5548   case UO_PreDec: { // --x
5549     if (!Ctx.getLangOpts().CPlusPlus14)
5550       return this->emitInvalid(E);
5551     if (!T)
5552       return this->emitError(E);
5553 
5554     if (!this->visit(SubExpr))
5555       return false;
5556 
5557     if (T == PT_Ptr || T == PT_FnPtr) {
5558       if (!this->emitLoadPtr(E))
5559         return false;
5560       if (!this->emitConstUint8(1, E))
5561         return false;
5562       if (!this->emitSubOffsetUint8(E))
5563         return false;
5564       return DiscardResult ? this->emitStorePopPtr(E) : this->emitStorePtr(E);
5565     }
5566 
5567     // Post-dec and pre-dec are the same if the value is to be discarded.
5568     if (DiscardResult) {
5569       if (T == PT_Float)
5570         return this->emitDecfPop(getFPOptions(E), E);
5571       return this->emitDecPop(*T, E);
5572     }
5573 
5574     if (T == PT_Float) {
5575       const auto &TargetSemantics = Ctx.getFloatSemantics(E->getType());
5576       if (!this->emitLoadFloat(E))
5577         return false;
5578       if (!this->emitConstFloat(llvm::APFloat(TargetSemantics, 1), E))
5579         return false;
5580       if (!this->emitSubf(getFPOptions(E), E))
5581         return false;
5582       if (!this->emitStoreFloat(E))
5583         return false;
5584     } else {
5585       assert(isIntegralType(*T));
5586       if (!this->emitLoad(*T, E))
5587         return false;
5588       if (!this->emitConst(1, E))
5589         return false;
5590       if (!this->emitSub(*T, E))
5591         return false;
5592       if (!this->emitStore(*T, E))
5593         return false;
5594     }
5595     return E->isGLValue() || this->emitLoadPop(*T, E);
5596   }
5597   case UO_LNot: // !x
5598     if (!T)
5599       return this->emitError(E);
5600 
5601     if (DiscardResult)
5602       return this->discard(SubExpr);
5603 
5604     if (!this->visitBool(SubExpr))
5605       return false;
5606 
5607     if (!this->emitInv(E))
5608       return false;
5609 
5610     if (PrimType ET = classifyPrim(E->getType()); ET != PT_Bool)
5611       return this->emitCast(PT_Bool, ET, E);
5612     return true;
5613   case UO_Minus: // -x
5614     if (!T)
5615       return this->emitError(E);
5616 
5617     if (!this->visit(SubExpr))
5618       return false;
5619     return DiscardResult ? this->emitPop(*T, E) : this->emitNeg(*T, E);
5620   case UO_Plus: // +x
5621     if (!T)
5622       return this->emitError(E);
5623 
5624     if (!this->visit(SubExpr)) // noop
5625       return false;
5626     return DiscardResult ? this->emitPop(*T, E) : true;
5627   case UO_AddrOf: // &x
5628     if (E->getType()->isMemberPointerType()) {
5629       // C++11 [expr.unary.op]p3 has very strict rules on how the address of a
5630       // member can be formed.
5631       return this->emitGetMemberPtr(cast<DeclRefExpr>(SubExpr)->getDecl(), E);
5632     }
5633     // We should already have a pointer when we get here.
5634     return this->delegate(SubExpr);
5635   case UO_Deref: // *x
5636     if (DiscardResult)
5637       return this->discard(SubExpr);
5638     return this->visit(SubExpr);
5639   case UO_Not: // ~x
5640     if (!T)
5641       return this->emitError(E);
5642 
5643     if (!this->visit(SubExpr))
5644       return false;
5645     return DiscardResult ? this->emitPop(*T, E) : this->emitComp(*T, E);
5646   case UO_Real: // __real x
5647     assert(T);
5648     return this->delegate(SubExpr);
5649   case UO_Imag: { // __imag x
5650     assert(T);
5651     if (!this->discard(SubExpr))
5652       return false;
5653     return this->visitZeroInitializer(*T, SubExpr->getType(), SubExpr);
5654   }
5655   case UO_Extension:
5656     return this->delegate(SubExpr);
5657   case UO_Coawait:
5658     assert(false && "Unhandled opcode");
5659   }
5660 
5661   return false;
5662 }
5663 
5664 template <class Emitter>
5665 bool Compiler<Emitter>::VisitComplexUnaryOperator(const UnaryOperator *E) {
5666   const Expr *SubExpr = E->getSubExpr();
5667   assert(SubExpr->getType()->isAnyComplexType());
5668 
5669   if (DiscardResult)
5670     return this->discard(SubExpr);
5671 
5672   std::optional<PrimType> ResT = classify(E);
5673   auto prepareResult = [=]() -> bool {
5674     if (!ResT && !Initializing) {
5675       std::optional<unsigned> LocalIndex = allocateLocal(SubExpr);
5676       if (!LocalIndex)
5677         return false;
5678       return this->emitGetPtrLocal(*LocalIndex, E);
5679     }
5680 
5681     return true;
5682   };
5683 
5684   // The offset of the temporary, if we created one.
5685   unsigned SubExprOffset = ~0u;
5686   auto createTemp = [=, &SubExprOffset]() -> bool {
5687     SubExprOffset = this->allocateLocalPrimitive(SubExpr, PT_Ptr, true, false);
5688     if (!this->visit(SubExpr))
5689       return false;
5690     return this->emitSetLocal(PT_Ptr, SubExprOffset, E);
5691   };
5692 
5693   PrimType ElemT = classifyComplexElementType(SubExpr->getType());
5694   auto getElem = [=](unsigned Offset, unsigned Index) -> bool {
5695     if (!this->emitGetLocal(PT_Ptr, Offset, E))
5696       return false;
5697     return this->emitArrayElemPop(ElemT, Index, E);
5698   };
5699 
5700   switch (E->getOpcode()) {
5701   case UO_Minus:
5702     if (!prepareResult())
5703       return false;
5704     if (!createTemp())
5705       return false;
5706     for (unsigned I = 0; I != 2; ++I) {
5707       if (!getElem(SubExprOffset, I))
5708         return false;
5709       if (!this->emitNeg(ElemT, E))
5710         return false;
5711       if (!this->emitInitElem(ElemT, I, E))
5712         return false;
5713     }
5714     break;
5715 
5716   case UO_Plus:   // +x
5717   case UO_AddrOf: // &x
5718   case UO_Deref:  // *x
5719     return this->delegate(SubExpr);
5720 
5721   case UO_LNot:
5722     if (!this->visit(SubExpr))
5723       return false;
5724     if (!this->emitComplexBoolCast(SubExpr))
5725       return false;
5726     if (!this->emitInv(E))
5727       return false;
5728     if (PrimType ET = classifyPrim(E->getType()); ET != PT_Bool)
5729       return this->emitCast(PT_Bool, ET, E);
5730     return true;
5731 
5732   case UO_Real:
5733     return this->emitComplexReal(SubExpr);
5734 
5735   case UO_Imag:
5736     if (!this->visit(SubExpr))
5737       return false;
5738 
5739     if (SubExpr->isLValue()) {
5740       if (!this->emitConstUint8(1, E))
5741         return false;
5742       return this->emitArrayElemPtrPopUint8(E);
5743     }
5744 
5745     // Since our _Complex implementation does not map to a primitive type,
5746     // we sometimes have to do the lvalue-to-rvalue conversion here manually.
5747     return this->emitArrayElemPop(classifyPrim(E->getType()), 1, E);
5748 
5749   case UO_Not: // ~x
5750     if (!this->visit(SubExpr))
5751       return false;
5752     // Negate the imaginary component.
5753     if (!this->emitArrayElem(ElemT, 1, E))
5754       return false;
5755     if (!this->emitNeg(ElemT, E))
5756       return false;
5757     if (!this->emitInitElem(ElemT, 1, E))
5758       return false;
5759     return DiscardResult ? this->emitPopPtr(E) : true;
5760 
5761   case UO_Extension:
5762     return this->delegate(SubExpr);
5763 
5764   default:
5765     return this->emitInvalid(E);
5766   }
5767 
5768   return true;
5769 }
5770 
5771 template <class Emitter>
5772 bool Compiler<Emitter>::VisitVectorUnaryOperator(const UnaryOperator *E) {
5773   const Expr *SubExpr = E->getSubExpr();
5774   assert(SubExpr->getType()->isVectorType());
5775 
5776   if (DiscardResult)
5777     return this->discard(SubExpr);
5778 
5779   auto UnaryOp = E->getOpcode();
5780   if (UnaryOp != UO_Plus && UnaryOp != UO_Minus && UnaryOp != UO_LNot &&
5781       UnaryOp != UO_Not && UnaryOp != UO_AddrOf)
5782     return this->emitInvalid(E);
5783 
5784   // Nothing to do here.
5785   if (UnaryOp == UO_Plus || UnaryOp == UO_AddrOf)
5786     return this->delegate(SubExpr);
5787 
5788   if (!Initializing) {
5789     std::optional<unsigned> LocalIndex = allocateLocal(SubExpr);
5790     if (!LocalIndex)
5791       return false;
5792     if (!this->emitGetPtrLocal(*LocalIndex, E))
5793       return false;
5794   }
5795 
5796   // The offset of the temporary, if we created one.
5797   unsigned SubExprOffset =
5798       this->allocateLocalPrimitive(SubExpr, PT_Ptr, true, false);
5799   if (!this->visit(SubExpr))
5800     return false;
5801   if (!this->emitSetLocal(PT_Ptr, SubExprOffset, E))
5802     return false;
5803 
5804   const auto *VecTy = SubExpr->getType()->getAs<VectorType>();
5805   PrimType ElemT = classifyVectorElementType(SubExpr->getType());
5806   auto getElem = [=](unsigned Offset, unsigned Index) -> bool {
5807     if (!this->emitGetLocal(PT_Ptr, Offset, E))
5808       return false;
5809     return this->emitArrayElemPop(ElemT, Index, E);
5810   };
5811 
5812   switch (UnaryOp) {
5813   case UO_Minus:
5814     for (unsigned I = 0; I != VecTy->getNumElements(); ++I) {
5815       if (!getElem(SubExprOffset, I))
5816         return false;
5817       if (!this->emitNeg(ElemT, E))
5818         return false;
5819       if (!this->emitInitElem(ElemT, I, E))
5820         return false;
5821     }
5822     break;
5823   case UO_LNot: { // !x
5824     // In C++, the logic operators !, &&, || are available for vectors. !v is
5825     // equivalent to v == 0.
5826     //
5827     // The result of the comparison is a vector of the same width and number of
5828     // elements as the comparison operands with a signed integral element type.
5829     //
5830     // https://gcc.gnu.org/onlinedocs/gcc/Vector-Extensions.html
5831     QualType ResultVecTy = E->getType();
5832     PrimType ResultVecElemT =
5833         classifyPrim(ResultVecTy->getAs<VectorType>()->getElementType());
5834     for (unsigned I = 0; I != VecTy->getNumElements(); ++I) {
5835       if (!getElem(SubExprOffset, I))
5836         return false;
5837       // operator ! on vectors returns -1 for 'truth', so negate it.
5838       if (!this->emitPrimCast(ElemT, PT_Bool, Ctx.getASTContext().BoolTy, E))
5839         return false;
5840       if (!this->emitInv(E))
5841         return false;
5842       if (!this->emitPrimCast(PT_Bool, ElemT, VecTy->getElementType(), E))
5843         return false;
5844       if (!this->emitNeg(ElemT, E))
5845         return false;
5846       if (ElemT != ResultVecElemT &&
5847           !this->emitPrimCast(ElemT, ResultVecElemT, ResultVecTy, E))
5848         return false;
5849       if (!this->emitInitElem(ResultVecElemT, I, E))
5850         return false;
5851     }
5852     break;
5853   }
5854   case UO_Not: // ~x
5855     for (unsigned I = 0; I != VecTy->getNumElements(); ++I) {
5856       if (!getElem(SubExprOffset, I))
5857         return false;
5858       if (ElemT == PT_Bool) {
5859         if (!this->emitInv(E))
5860           return false;
5861       } else {
5862         if (!this->emitComp(ElemT, E))
5863           return false;
5864       }
5865       if (!this->emitInitElem(ElemT, I, E))
5866         return false;
5867     }
5868     break;
5869   default:
5870     llvm_unreachable("Unsupported unary operators should be handled up front");
5871   }
5872   return true;
5873 }
5874 
5875 template <class Emitter>
5876 bool Compiler<Emitter>::visitDeclRef(const ValueDecl *D, const Expr *E) {
5877   if (DiscardResult)
5878     return true;
5879 
5880   if (const auto *ECD = dyn_cast<EnumConstantDecl>(D)) {
5881     return this->emitConst(ECD->getInitVal(), E);
5882   } else if (const auto *BD = dyn_cast<BindingDecl>(D)) {
5883     return this->visit(BD->getBinding());
5884   } else if (const auto *FuncDecl = dyn_cast<FunctionDecl>(D)) {
5885     const Function *F = getFunction(FuncDecl);
5886     return F && this->emitGetFnPtr(F, E);
5887   } else if (const auto *TPOD = dyn_cast<TemplateParamObjectDecl>(D)) {
5888     if (std::optional<unsigned> Index = P.getOrCreateGlobal(D)) {
5889       if (!this->emitGetPtrGlobal(*Index, E))
5890         return false;
5891       if (std::optional<PrimType> T = classify(E->getType())) {
5892         if (!this->visitAPValue(TPOD->getValue(), *T, E))
5893           return false;
5894         return this->emitInitGlobal(*T, *Index, E);
5895       }
5896       return this->visitAPValueInitializer(TPOD->getValue(), E);
5897     }
5898     return false;
5899   }
5900 
5901   // References are implemented via pointers, so when we see a DeclRefExpr
5902   // pointing to a reference, we need to get its value directly (i.e. the
5903   // pointer to the actual value) instead of a pointer to the pointer to the
5904   // value.
5905   bool IsReference = D->getType()->isReferenceType();
5906 
5907   // Check for local/global variables and parameters.
5908   if (auto It = Locals.find(D); It != Locals.end()) {
5909     const unsigned Offset = It->second.Offset;
5910     if (IsReference)
5911       return this->emitGetLocal(PT_Ptr, Offset, E);
5912     return this->emitGetPtrLocal(Offset, E);
5913   } else if (auto GlobalIndex = P.getGlobal(D)) {
5914     if (IsReference) {
5915       if (!Ctx.getLangOpts().CPlusPlus11)
5916         return this->emitGetGlobal(classifyPrim(E), *GlobalIndex, E);
5917       return this->emitGetGlobalUnchecked(classifyPrim(E), *GlobalIndex, E);
5918     }
5919 
5920     return this->emitGetPtrGlobal(*GlobalIndex, E);
5921   } else if (const auto *PVD = dyn_cast<ParmVarDecl>(D)) {
5922     if (auto It = this->Params.find(PVD); It != this->Params.end()) {
5923       if (IsReference || !It->second.IsPtr)
5924         return this->emitGetParam(classifyPrim(E), It->second.Offset, E);
5925 
5926       return this->emitGetPtrParam(It->second.Offset, E);
5927     }
5928   }
5929 
5930   // In case we need to re-visit a declaration.
5931   auto revisit = [&](const VarDecl *VD) -> bool {
5932     auto VarState = this->visitDecl(VD);
5933 
5934     if (VarState.notCreated())
5935       return true;
5936     if (!VarState)
5937       return false;
5938     // Retry.
5939     return this->visitDeclRef(D, E);
5940   };
5941 
5942   // Handle lambda captures.
5943   if (auto It = this->LambdaCaptures.find(D);
5944       It != this->LambdaCaptures.end()) {
5945     auto [Offset, IsPtr] = It->second;
5946 
5947     if (IsPtr)
5948       return this->emitGetThisFieldPtr(Offset, E);
5949     return this->emitGetPtrThisField(Offset, E);
5950   } else if (const auto *DRE = dyn_cast<DeclRefExpr>(E);
5951              DRE && DRE->refersToEnclosingVariableOrCapture()) {
5952     if (const auto *VD = dyn_cast<VarDecl>(D); VD && VD->isInitCapture())
5953       return revisit(VD);
5954   }
5955 
5956   if (D != InitializingDecl) {
5957     // Try to lazily visit (or emit dummy pointers for) declarations
5958     // we haven't seen yet.
5959     if (Ctx.getLangOpts().CPlusPlus) {
5960       if (const auto *VD = dyn_cast<VarDecl>(D)) {
5961         const auto typeShouldBeVisited = [&](QualType T) -> bool {
5962           if (T.isConstant(Ctx.getASTContext()))
5963             return true;
5964           if (const auto *RT = T->getAs<ReferenceType>())
5965             return RT->getPointeeType().isConstQualified();
5966           return false;
5967         };
5968 
5969         // DecompositionDecls are just proxies for us.
5970         if (isa<DecompositionDecl>(VD))
5971           return revisit(VD);
5972 
5973         if ((VD->hasGlobalStorage() || VD->isStaticDataMember()) &&
5974             typeShouldBeVisited(VD->getType()))
5975           return revisit(VD);
5976 
5977         // FIXME: The evaluateValue() check here is a little ridiculous, since
5978         // it will ultimately call into Context::evaluateAsInitializer(). In
5979         // other words, we're evaluating the initializer, just to know if we can
5980         // evaluate the initializer.
5981         if (VD->isLocalVarDecl() && typeShouldBeVisited(VD->getType()) &&
5982             VD->getInit() && !VD->getInit()->isValueDependent() &&
5983             VD->evaluateValue())
5984           return revisit(VD);
5985       }
5986     } else {
5987       if (const auto *VD = dyn_cast<VarDecl>(D);
5988           VD && VD->getAnyInitializer() &&
5989           VD->getType().isConstant(Ctx.getASTContext()) && !VD->isWeak())
5990         return revisit(VD);
5991     }
5992   }
5993 
5994   if (std::optional<unsigned> I = P.getOrCreateDummy(D)) {
5995     if (!this->emitGetPtrGlobal(*I, E))
5996       return false;
5997     if (E->getType()->isVoidType())
5998       return true;
5999     // Convert the dummy pointer to another pointer type if we have to.
6000     if (PrimType PT = classifyPrim(E); PT != PT_Ptr) {
6001       if (isPtrType(PT))
6002         return this->emitDecayPtr(PT_Ptr, PT, E);
6003       return false;
6004     }
6005     return true;
6006   }
6007 
6008   if (const auto *DRE = dyn_cast<DeclRefExpr>(E))
6009     return this->emitInvalidDeclRef(DRE, E);
6010   return false;
6011 }
6012 
6013 template <class Emitter>
6014 bool Compiler<Emitter>::VisitDeclRefExpr(const DeclRefExpr *E) {
6015   const auto *D = E->getDecl();
6016   return this->visitDeclRef(D, E);
6017 }
6018 
6019 template <class Emitter> void Compiler<Emitter>::emitCleanup() {
6020   for (VariableScope<Emitter> *C = VarScope; C; C = C->getParent())
6021     C->emitDestruction();
6022 }
6023 
6024 template <class Emitter>
6025 unsigned Compiler<Emitter>::collectBaseOffset(const QualType BaseType,
6026                                               const QualType DerivedType) {
6027   const auto extractRecordDecl = [](QualType Ty) -> const CXXRecordDecl * {
6028     if (const auto *R = Ty->getPointeeCXXRecordDecl())
6029       return R;
6030     return Ty->getAsCXXRecordDecl();
6031   };
6032   const CXXRecordDecl *BaseDecl = extractRecordDecl(BaseType);
6033   const CXXRecordDecl *DerivedDecl = extractRecordDecl(DerivedType);
6034 
6035   return Ctx.collectBaseOffset(BaseDecl, DerivedDecl);
6036 }
6037 
6038 /// Emit casts from a PrimType to another PrimType.
6039 template <class Emitter>
6040 bool Compiler<Emitter>::emitPrimCast(PrimType FromT, PrimType ToT,
6041                                      QualType ToQT, const Expr *E) {
6042 
6043   if (FromT == PT_Float) {
6044     // Floating to floating.
6045     if (ToT == PT_Float) {
6046       const llvm::fltSemantics *ToSem = &Ctx.getFloatSemantics(ToQT);
6047       return this->emitCastFP(ToSem, getRoundingMode(E), E);
6048     }
6049 
6050     if (ToT == PT_IntAP)
6051       return this->emitCastFloatingIntegralAP(Ctx.getBitWidth(ToQT),
6052                                               getFPOptions(E), E);
6053     if (ToT == PT_IntAPS)
6054       return this->emitCastFloatingIntegralAPS(Ctx.getBitWidth(ToQT),
6055                                                getFPOptions(E), E);
6056 
6057     // Float to integral.
6058     if (isIntegralType(ToT) || ToT == PT_Bool)
6059       return this->emitCastFloatingIntegral(ToT, getFPOptions(E), E);
6060   }
6061 
6062   if (isIntegralType(FromT) || FromT == PT_Bool) {
6063     if (ToT == PT_IntAP)
6064       return this->emitCastAP(FromT, Ctx.getBitWidth(ToQT), E);
6065     if (ToT == PT_IntAPS)
6066       return this->emitCastAPS(FromT, Ctx.getBitWidth(ToQT), E);
6067 
6068     // Integral to integral.
6069     if (isIntegralType(ToT) || ToT == PT_Bool)
6070       return FromT != ToT ? this->emitCast(FromT, ToT, E) : true;
6071 
6072     if (ToT == PT_Float) {
6073       // Integral to floating.
6074       const llvm::fltSemantics *ToSem = &Ctx.getFloatSemantics(ToQT);
6075       return this->emitCastIntegralFloating(FromT, ToSem, getFPOptions(E), E);
6076     }
6077   }
6078 
6079   return false;
6080 }
6081 
6082 /// Emits __real(SubExpr)
6083 template <class Emitter>
6084 bool Compiler<Emitter>::emitComplexReal(const Expr *SubExpr) {
6085   assert(SubExpr->getType()->isAnyComplexType());
6086 
6087   if (DiscardResult)
6088     return this->discard(SubExpr);
6089 
6090   if (!this->visit(SubExpr))
6091     return false;
6092   if (SubExpr->isLValue()) {
6093     if (!this->emitConstUint8(0, SubExpr))
6094       return false;
6095     return this->emitArrayElemPtrPopUint8(SubExpr);
6096   }
6097 
6098   // Rvalue, load the actual element.
6099   return this->emitArrayElemPop(classifyComplexElementType(SubExpr->getType()),
6100                                 0, SubExpr);
6101 }
6102 
6103 template <class Emitter>
6104 bool Compiler<Emitter>::emitComplexBoolCast(const Expr *E) {
6105   assert(!DiscardResult);
6106   PrimType ElemT = classifyComplexElementType(E->getType());
6107   // We emit the expression (__real(E) != 0 || __imag(E) != 0)
6108   // for us, that means (bool)E[0] || (bool)E[1]
6109   if (!this->emitArrayElem(ElemT, 0, E))
6110     return false;
6111   if (ElemT == PT_Float) {
6112     if (!this->emitCastFloatingIntegral(PT_Bool, getFPOptions(E), E))
6113       return false;
6114   } else {
6115     if (!this->emitCast(ElemT, PT_Bool, E))
6116       return false;
6117   }
6118 
6119   // We now have the bool value of E[0] on the stack.
6120   LabelTy LabelTrue = this->getLabel();
6121   if (!this->jumpTrue(LabelTrue))
6122     return false;
6123 
6124   if (!this->emitArrayElemPop(ElemT, 1, E))
6125     return false;
6126   if (ElemT == PT_Float) {
6127     if (!this->emitCastFloatingIntegral(PT_Bool, getFPOptions(E), E))
6128       return false;
6129   } else {
6130     if (!this->emitCast(ElemT, PT_Bool, E))
6131       return false;
6132   }
6133   // Leave the boolean value of E[1] on the stack.
6134   LabelTy EndLabel = this->getLabel();
6135   this->jump(EndLabel);
6136 
6137   this->emitLabel(LabelTrue);
6138   if (!this->emitPopPtr(E))
6139     return false;
6140   if (!this->emitConstBool(true, E))
6141     return false;
6142 
6143   this->fallthrough(EndLabel);
6144   this->emitLabel(EndLabel);
6145 
6146   return true;
6147 }
6148 
6149 template <class Emitter>
6150 bool Compiler<Emitter>::emitComplexComparison(const Expr *LHS, const Expr *RHS,
6151                                               const BinaryOperator *E) {
6152   assert(E->isComparisonOp());
6153   assert(!Initializing);
6154   assert(!DiscardResult);
6155 
6156   PrimType ElemT;
6157   bool LHSIsComplex;
6158   unsigned LHSOffset;
6159   if (LHS->getType()->isAnyComplexType()) {
6160     LHSIsComplex = true;
6161     ElemT = classifyComplexElementType(LHS->getType());
6162     LHSOffset = allocateLocalPrimitive(LHS, PT_Ptr, /*IsConst=*/true,
6163                                        /*IsExtended=*/false);
6164     if (!this->visit(LHS))
6165       return false;
6166     if (!this->emitSetLocal(PT_Ptr, LHSOffset, E))
6167       return false;
6168   } else {
6169     LHSIsComplex = false;
6170     PrimType LHST = classifyPrim(LHS->getType());
6171     LHSOffset = this->allocateLocalPrimitive(LHS, LHST, true, false);
6172     if (!this->visit(LHS))
6173       return false;
6174     if (!this->emitSetLocal(LHST, LHSOffset, E))
6175       return false;
6176   }
6177 
6178   bool RHSIsComplex;
6179   unsigned RHSOffset;
6180   if (RHS->getType()->isAnyComplexType()) {
6181     RHSIsComplex = true;
6182     ElemT = classifyComplexElementType(RHS->getType());
6183     RHSOffset = allocateLocalPrimitive(RHS, PT_Ptr, /*IsConst=*/true,
6184                                        /*IsExtended=*/false);
6185     if (!this->visit(RHS))
6186       return false;
6187     if (!this->emitSetLocal(PT_Ptr, RHSOffset, E))
6188       return false;
6189   } else {
6190     RHSIsComplex = false;
6191     PrimType RHST = classifyPrim(RHS->getType());
6192     RHSOffset = this->allocateLocalPrimitive(RHS, RHST, true, false);
6193     if (!this->visit(RHS))
6194       return false;
6195     if (!this->emitSetLocal(RHST, RHSOffset, E))
6196       return false;
6197   }
6198 
6199   auto getElem = [&](unsigned LocalOffset, unsigned Index,
6200                      bool IsComplex) -> bool {
6201     if (IsComplex) {
6202       if (!this->emitGetLocal(PT_Ptr, LocalOffset, E))
6203         return false;
6204       return this->emitArrayElemPop(ElemT, Index, E);
6205     }
6206     return this->emitGetLocal(ElemT, LocalOffset, E);
6207   };
6208 
6209   for (unsigned I = 0; I != 2; ++I) {
6210     // Get both values.
6211     if (!getElem(LHSOffset, I, LHSIsComplex))
6212       return false;
6213     if (!getElem(RHSOffset, I, RHSIsComplex))
6214       return false;
6215     // And compare them.
6216     if (!this->emitEQ(ElemT, E))
6217       return false;
6218 
6219     if (!this->emitCastBoolUint8(E))
6220       return false;
6221   }
6222 
6223   // We now have two bool values on the stack. Compare those.
6224   if (!this->emitAddUint8(E))
6225     return false;
6226   if (!this->emitConstUint8(2, E))
6227     return false;
6228 
6229   if (E->getOpcode() == BO_EQ) {
6230     if (!this->emitEQUint8(E))
6231       return false;
6232   } else if (E->getOpcode() == BO_NE) {
6233     if (!this->emitNEUint8(E))
6234       return false;
6235   } else
6236     return false;
6237 
6238   // In C, this returns an int.
6239   if (PrimType ResT = classifyPrim(E->getType()); ResT != PT_Bool)
6240     return this->emitCast(PT_Bool, ResT, E);
6241   return true;
6242 }
6243 
6244 /// When calling this, we have a pointer of the local-to-destroy
6245 /// on the stack.
6246 /// Emit destruction of record types (or arrays of record types).
6247 template <class Emitter>
6248 bool Compiler<Emitter>::emitRecordDestruction(const Record *R, SourceInfo Loc) {
6249   assert(R);
6250   assert(!R->isAnonymousUnion());
6251   const CXXDestructorDecl *Dtor = R->getDestructor();
6252   if (!Dtor || Dtor->isTrivial())
6253     return true;
6254 
6255   assert(Dtor);
6256   const Function *DtorFunc = getFunction(Dtor);
6257   if (!DtorFunc)
6258     return false;
6259   assert(DtorFunc->hasThisPointer());
6260   assert(DtorFunc->getNumParams() == 1);
6261   if (!this->emitDupPtr(Loc))
6262     return false;
6263   return this->emitCall(DtorFunc, 0, Loc);
6264 }
6265 /// When calling this, we have a pointer of the local-to-destroy
6266 /// on the stack.
6267 /// Emit destruction of record types (or arrays of record types).
6268 template <class Emitter>
6269 bool Compiler<Emitter>::emitDestruction(const Descriptor *Desc,
6270                                         SourceInfo Loc) {
6271   assert(Desc);
6272   assert(!Desc->isPrimitive());
6273   assert(!Desc->isPrimitiveArray());
6274 
6275   // Arrays.
6276   if (Desc->isArray()) {
6277     const Descriptor *ElemDesc = Desc->ElemDesc;
6278     assert(ElemDesc);
6279 
6280     // Don't need to do anything for these.
6281     if (ElemDesc->isPrimitiveArray())
6282       return true;
6283 
6284     // If this is an array of record types, check if we need
6285     // to call the element destructors at all. If not, try
6286     // to save the work.
6287     if (const Record *ElemRecord = ElemDesc->ElemRecord) {
6288       if (const CXXDestructorDecl *Dtor = ElemRecord->getDestructor();
6289           !Dtor || Dtor->isTrivial())
6290         return true;
6291     }
6292 
6293     for (ssize_t I = Desc->getNumElems() - 1; I >= 0; --I) {
6294       if (!this->emitConstUint64(I, Loc))
6295         return false;
6296       if (!this->emitArrayElemPtrUint64(Loc))
6297         return false;
6298       if (!this->emitDestruction(ElemDesc, Loc))
6299         return false;
6300       if (!this->emitPopPtr(Loc))
6301         return false;
6302     }
6303     return true;
6304   }
6305 
6306   assert(Desc->ElemRecord);
6307   if (Desc->ElemRecord->isAnonymousUnion())
6308     return true;
6309 
6310   return this->emitRecordDestruction(Desc->ElemRecord, Loc);
6311 }
6312 
6313 namespace clang {
6314 namespace interp {
6315 
6316 template class Compiler<ByteCodeEmitter>;
6317 template class Compiler<EvalEmitter>;
6318 
6319 } // namespace interp
6320 } // namespace clang
6321