xref: /llvm-project/clang/lib/AST/ByteCode/Compiler.cpp (revision ceaf6e912a846b88f19df682c6bdbe9516be04e9)
1 //===--- Compiler.cpp - Code generator for expressions ---*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #include "Compiler.h"
10 #include "ByteCodeEmitter.h"
11 #include "Context.h"
12 #include "FixedPoint.h"
13 #include "Floating.h"
14 #include "Function.h"
15 #include "InterpShared.h"
16 #include "PrimType.h"
17 #include "Program.h"
18 #include "clang/AST/Attr.h"
19 
20 using namespace clang;
21 using namespace clang::interp;
22 
23 using APSInt = llvm::APSInt;
24 
25 namespace clang {
26 namespace interp {
27 
28 /// Scope used to handle temporaries in toplevel variable declarations.
29 template <class Emitter> class DeclScope final : public LocalScope<Emitter> {
30 public:
31   DeclScope(Compiler<Emitter> *Ctx, const ValueDecl *VD)
32       : LocalScope<Emitter>(Ctx, VD), Scope(Ctx->P, VD),
33         OldInitializingDecl(Ctx->InitializingDecl) {
34     Ctx->InitializingDecl = VD;
35     Ctx->InitStack.push_back(InitLink::Decl(VD));
36   }
37 
38   void addExtended(const Scope::Local &Local) override {
39     return this->addLocal(Local);
40   }
41 
42   ~DeclScope() {
43     this->Ctx->InitializingDecl = OldInitializingDecl;
44     this->Ctx->InitStack.pop_back();
45   }
46 
47 private:
48   Program::DeclScope Scope;
49   const ValueDecl *OldInitializingDecl;
50 };
51 
52 /// Scope used to handle initialization methods.
53 template <class Emitter> class OptionScope final {
54 public:
55   /// Root constructor, compiling or discarding primitives.
56   OptionScope(Compiler<Emitter> *Ctx, bool NewDiscardResult,
57               bool NewInitializing)
58       : Ctx(Ctx), OldDiscardResult(Ctx->DiscardResult),
59         OldInitializing(Ctx->Initializing) {
60     Ctx->DiscardResult = NewDiscardResult;
61     Ctx->Initializing = NewInitializing;
62   }
63 
64   ~OptionScope() {
65     Ctx->DiscardResult = OldDiscardResult;
66     Ctx->Initializing = OldInitializing;
67   }
68 
69 private:
70   /// Parent context.
71   Compiler<Emitter> *Ctx;
72   /// Old discard flag to restore.
73   bool OldDiscardResult;
74   bool OldInitializing;
75 };
76 
77 template <class Emitter>
78 bool InitLink::emit(Compiler<Emitter> *Ctx, const Expr *E) const {
79   switch (Kind) {
80   case K_This:
81     return Ctx->emitThis(E);
82   case K_Field:
83     // We're assuming there's a base pointer on the stack already.
84     return Ctx->emitGetPtrFieldPop(Offset, E);
85   case K_Temp:
86     return Ctx->emitGetPtrLocal(Offset, E);
87   case K_Decl:
88     return Ctx->visitDeclRef(D, E);
89   case K_Elem:
90     if (!Ctx->emitConstUint32(Offset, E))
91       return false;
92     return Ctx->emitArrayElemPtrPopUint32(E);
93   default:
94     llvm_unreachable("Unhandled InitLink kind");
95   }
96   return true;
97 }
98 
99 /// Scope managing label targets.
100 template <class Emitter> class LabelScope {
101 public:
102   virtual ~LabelScope() {}
103 
104 protected:
105   LabelScope(Compiler<Emitter> *Ctx) : Ctx(Ctx) {}
106   /// Compiler instance.
107   Compiler<Emitter> *Ctx;
108 };
109 
110 /// Sets the context for break/continue statements.
111 template <class Emitter> class LoopScope final : public LabelScope<Emitter> {
112 public:
113   using LabelTy = typename Compiler<Emitter>::LabelTy;
114   using OptLabelTy = typename Compiler<Emitter>::OptLabelTy;
115 
116   LoopScope(Compiler<Emitter> *Ctx, LabelTy BreakLabel, LabelTy ContinueLabel)
117       : LabelScope<Emitter>(Ctx), OldBreakLabel(Ctx->BreakLabel),
118         OldContinueLabel(Ctx->ContinueLabel),
119         OldBreakVarScope(Ctx->BreakVarScope),
120         OldContinueVarScope(Ctx->ContinueVarScope) {
121     this->Ctx->BreakLabel = BreakLabel;
122     this->Ctx->ContinueLabel = ContinueLabel;
123     this->Ctx->BreakVarScope = this->Ctx->VarScope;
124     this->Ctx->ContinueVarScope = this->Ctx->VarScope;
125   }
126 
127   ~LoopScope() {
128     this->Ctx->BreakLabel = OldBreakLabel;
129     this->Ctx->ContinueLabel = OldContinueLabel;
130     this->Ctx->ContinueVarScope = OldContinueVarScope;
131     this->Ctx->BreakVarScope = OldBreakVarScope;
132   }
133 
134 private:
135   OptLabelTy OldBreakLabel;
136   OptLabelTy OldContinueLabel;
137   VariableScope<Emitter> *OldBreakVarScope;
138   VariableScope<Emitter> *OldContinueVarScope;
139 };
140 
141 // Sets the context for a switch scope, mapping labels.
142 template <class Emitter> class SwitchScope final : public LabelScope<Emitter> {
143 public:
144   using LabelTy = typename Compiler<Emitter>::LabelTy;
145   using OptLabelTy = typename Compiler<Emitter>::OptLabelTy;
146   using CaseMap = typename Compiler<Emitter>::CaseMap;
147 
148   SwitchScope(Compiler<Emitter> *Ctx, CaseMap &&CaseLabels, LabelTy BreakLabel,
149               OptLabelTy DefaultLabel)
150       : LabelScope<Emitter>(Ctx), OldBreakLabel(Ctx->BreakLabel),
151         OldDefaultLabel(this->Ctx->DefaultLabel),
152         OldCaseLabels(std::move(this->Ctx->CaseLabels)),
153         OldLabelVarScope(Ctx->BreakVarScope) {
154     this->Ctx->BreakLabel = BreakLabel;
155     this->Ctx->DefaultLabel = DefaultLabel;
156     this->Ctx->CaseLabels = std::move(CaseLabels);
157     this->Ctx->BreakVarScope = this->Ctx->VarScope;
158   }
159 
160   ~SwitchScope() {
161     this->Ctx->BreakLabel = OldBreakLabel;
162     this->Ctx->DefaultLabel = OldDefaultLabel;
163     this->Ctx->CaseLabels = std::move(OldCaseLabels);
164     this->Ctx->BreakVarScope = OldLabelVarScope;
165   }
166 
167 private:
168   OptLabelTy OldBreakLabel;
169   OptLabelTy OldDefaultLabel;
170   CaseMap OldCaseLabels;
171   VariableScope<Emitter> *OldLabelVarScope;
172 };
173 
174 template <class Emitter> class StmtExprScope final {
175 public:
176   StmtExprScope(Compiler<Emitter> *Ctx) : Ctx(Ctx), OldFlag(Ctx->InStmtExpr) {
177     Ctx->InStmtExpr = true;
178   }
179 
180   ~StmtExprScope() { Ctx->InStmtExpr = OldFlag; }
181 
182 private:
183   Compiler<Emitter> *Ctx;
184   bool OldFlag;
185 };
186 
187 } // namespace interp
188 } // namespace clang
189 
190 template <class Emitter>
191 bool Compiler<Emitter>::VisitCastExpr(const CastExpr *CE) {
192   const Expr *SubExpr = CE->getSubExpr();
193   switch (CE->getCastKind()) {
194 
195   case CK_LValueToRValue: {
196     if (DiscardResult)
197       return this->discard(SubExpr);
198 
199     std::optional<PrimType> SubExprT = classify(SubExpr->getType());
200     // Prepare storage for the result.
201     if (!Initializing && !SubExprT) {
202       std::optional<unsigned> LocalIndex = allocateLocal(SubExpr);
203       if (!LocalIndex)
204         return false;
205       if (!this->emitGetPtrLocal(*LocalIndex, CE))
206         return false;
207     }
208 
209     if (!this->visit(SubExpr))
210       return false;
211 
212     if (SubExprT)
213       return this->emitLoadPop(*SubExprT, CE);
214 
215     // If the subexpr type is not primitive, we need to perform a copy here.
216     // This happens for example in C when dereferencing a pointer of struct
217     // type.
218     return this->emitMemcpy(CE);
219   }
220 
221   case CK_DerivedToBaseMemberPointer: {
222     assert(classifyPrim(CE->getType()) == PT_MemberPtr);
223     assert(classifyPrim(SubExpr->getType()) == PT_MemberPtr);
224     const auto *FromMP = SubExpr->getType()->getAs<MemberPointerType>();
225     const auto *ToMP = CE->getType()->getAs<MemberPointerType>();
226 
227     unsigned DerivedOffset = collectBaseOffset(QualType(ToMP->getClass(), 0),
228                                                QualType(FromMP->getClass(), 0));
229 
230     if (!this->delegate(SubExpr))
231       return false;
232 
233     return this->emitGetMemberPtrBasePop(DerivedOffset, CE);
234   }
235 
236   case CK_BaseToDerivedMemberPointer: {
237     assert(classifyPrim(CE) == PT_MemberPtr);
238     assert(classifyPrim(SubExpr) == PT_MemberPtr);
239     const auto *FromMP = SubExpr->getType()->getAs<MemberPointerType>();
240     const auto *ToMP = CE->getType()->getAs<MemberPointerType>();
241 
242     unsigned DerivedOffset = collectBaseOffset(QualType(FromMP->getClass(), 0),
243                                                QualType(ToMP->getClass(), 0));
244 
245     if (!this->delegate(SubExpr))
246       return false;
247     return this->emitGetMemberPtrBasePop(-DerivedOffset, CE);
248   }
249 
250   case CK_UncheckedDerivedToBase:
251   case CK_DerivedToBase: {
252     if (!this->delegate(SubExpr))
253       return false;
254 
255     const auto extractRecordDecl = [](QualType Ty) -> const CXXRecordDecl * {
256       if (const auto *PT = dyn_cast<PointerType>(Ty))
257         return PT->getPointeeType()->getAsCXXRecordDecl();
258       return Ty->getAsCXXRecordDecl();
259     };
260 
261     // FIXME: We can express a series of non-virtual casts as a single
262     // GetPtrBasePop op.
263     QualType CurType = SubExpr->getType();
264     for (const CXXBaseSpecifier *B : CE->path()) {
265       if (B->isVirtual()) {
266         if (!this->emitGetPtrVirtBasePop(extractRecordDecl(B->getType()), CE))
267           return false;
268         CurType = B->getType();
269       } else {
270         unsigned DerivedOffset = collectBaseOffset(B->getType(), CurType);
271         if (!this->emitGetPtrBasePop(DerivedOffset, CE))
272           return false;
273         CurType = B->getType();
274       }
275     }
276 
277     return true;
278   }
279 
280   case CK_BaseToDerived: {
281     if (!this->delegate(SubExpr))
282       return false;
283 
284     unsigned DerivedOffset =
285         collectBaseOffset(SubExpr->getType(), CE->getType());
286 
287     return this->emitGetPtrDerivedPop(DerivedOffset, CE);
288   }
289 
290   case CK_FloatingCast: {
291     // HLSL uses CK_FloatingCast to cast between vectors.
292     if (!SubExpr->getType()->isFloatingType() ||
293         !CE->getType()->isFloatingType())
294       return false;
295     if (DiscardResult)
296       return this->discard(SubExpr);
297     if (!this->visit(SubExpr))
298       return false;
299     const auto *TargetSemantics = &Ctx.getFloatSemantics(CE->getType());
300     return this->emitCastFP(TargetSemantics, getRoundingMode(CE), CE);
301   }
302 
303   case CK_IntegralToFloating: {
304     if (DiscardResult)
305       return this->discard(SubExpr);
306     std::optional<PrimType> FromT = classify(SubExpr->getType());
307     if (!FromT)
308       return false;
309 
310     if (!this->visit(SubExpr))
311       return false;
312 
313     const auto *TargetSemantics = &Ctx.getFloatSemantics(CE->getType());
314     return this->emitCastIntegralFloating(*FromT, TargetSemantics,
315                                           getFPOptions(CE), CE);
316   }
317 
318   case CK_FloatingToBoolean:
319   case CK_FloatingToIntegral: {
320     if (DiscardResult)
321       return this->discard(SubExpr);
322 
323     std::optional<PrimType> ToT = classify(CE->getType());
324 
325     if (!ToT)
326       return false;
327 
328     if (!this->visit(SubExpr))
329       return false;
330 
331     if (ToT == PT_IntAP)
332       return this->emitCastFloatingIntegralAP(Ctx.getBitWidth(CE->getType()),
333                                               getFPOptions(CE), CE);
334     if (ToT == PT_IntAPS)
335       return this->emitCastFloatingIntegralAPS(Ctx.getBitWidth(CE->getType()),
336                                                getFPOptions(CE), CE);
337 
338     return this->emitCastFloatingIntegral(*ToT, getFPOptions(CE), CE);
339   }
340 
341   case CK_NullToPointer:
342   case CK_NullToMemberPointer: {
343     if (!this->discard(SubExpr))
344       return false;
345     if (DiscardResult)
346       return true;
347 
348     const Descriptor *Desc = nullptr;
349     const QualType PointeeType = CE->getType()->getPointeeType();
350     if (!PointeeType.isNull()) {
351       if (std::optional<PrimType> T = classify(PointeeType))
352         Desc = P.createDescriptor(SubExpr, *T);
353       else
354         Desc = P.createDescriptor(SubExpr, PointeeType.getTypePtr(),
355                                   std::nullopt, true, false,
356                                   /*IsMutable=*/false, nullptr);
357     }
358     return this->emitNull(classifyPrim(CE->getType()), Desc, CE);
359   }
360 
361   case CK_PointerToIntegral: {
362     if (DiscardResult)
363       return this->discard(SubExpr);
364 
365     if (!this->visit(SubExpr))
366       return false;
367 
368     // If SubExpr doesn't result in a pointer, make it one.
369     if (PrimType FromT = classifyPrim(SubExpr->getType()); FromT != PT_Ptr) {
370       assert(isPtrType(FromT));
371       if (!this->emitDecayPtr(FromT, PT_Ptr, CE))
372         return false;
373     }
374 
375     PrimType T = classifyPrim(CE->getType());
376     if (T == PT_IntAP)
377       return this->emitCastPointerIntegralAP(Ctx.getBitWidth(CE->getType()),
378                                              CE);
379     if (T == PT_IntAPS)
380       return this->emitCastPointerIntegralAPS(Ctx.getBitWidth(CE->getType()),
381                                               CE);
382     return this->emitCastPointerIntegral(T, CE);
383   }
384 
385   case CK_ArrayToPointerDecay: {
386     if (!this->visit(SubExpr))
387       return false;
388     if (!this->emitArrayDecay(CE))
389       return false;
390     if (DiscardResult)
391       return this->emitPopPtr(CE);
392     return true;
393   }
394 
395   case CK_IntegralToPointer: {
396     QualType IntType = SubExpr->getType();
397     assert(IntType->isIntegralOrEnumerationType());
398     if (!this->visit(SubExpr))
399       return false;
400     // FIXME: I think the discard is wrong since the int->ptr cast might cause a
401     // diagnostic.
402     PrimType T = classifyPrim(IntType);
403     if (DiscardResult)
404       return this->emitPop(T, CE);
405 
406     QualType PtrType = CE->getType();
407     const Descriptor *Desc;
408     if (std::optional<PrimType> T = classify(PtrType->getPointeeType()))
409       Desc = P.createDescriptor(SubExpr, *T);
410     else if (PtrType->getPointeeType()->isVoidType())
411       Desc = nullptr;
412     else
413       Desc = P.createDescriptor(CE, PtrType->getPointeeType().getTypePtr(),
414                                 Descriptor::InlineDescMD, true, false,
415                                 /*IsMutable=*/false, nullptr);
416 
417     if (!this->emitGetIntPtr(T, Desc, CE))
418       return false;
419 
420     PrimType DestPtrT = classifyPrim(PtrType);
421     if (DestPtrT == PT_Ptr)
422       return true;
423 
424     // In case we're converting the integer to a non-Pointer.
425     return this->emitDecayPtr(PT_Ptr, DestPtrT, CE);
426   }
427 
428   case CK_AtomicToNonAtomic:
429   case CK_ConstructorConversion:
430   case CK_FunctionToPointerDecay:
431   case CK_NonAtomicToAtomic:
432   case CK_NoOp:
433   case CK_UserDefinedConversion:
434   case CK_AddressSpaceConversion:
435   case CK_CPointerToObjCPointerCast:
436     return this->delegate(SubExpr);
437 
438   case CK_BitCast: {
439     // Reject bitcasts to atomic types.
440     if (CE->getType()->isAtomicType()) {
441       if (!this->discard(SubExpr))
442         return false;
443       return this->emitInvalidCast(CastKind::Reinterpret, /*Fatal=*/true, CE);
444     }
445 
446     if (DiscardResult)
447       return this->discard(SubExpr);
448 
449     QualType SubExprTy = SubExpr->getType();
450     std::optional<PrimType> FromT = classify(SubExprTy);
451     std::optional<PrimType> ToT = classify(CE->getType());
452     if (!FromT || !ToT)
453       return false;
454 
455     assert(isPtrType(*FromT));
456     assert(isPtrType(*ToT));
457     if (FromT == ToT) {
458       if (CE->getType()->isVoidPointerType())
459         return this->delegate(SubExpr);
460 
461       if (!this->visit(SubExpr))
462         return false;
463       if (FromT == PT_Ptr)
464         return this->emitPtrPtrCast(SubExprTy->isVoidPointerType(), CE);
465       return true;
466     }
467 
468     if (!this->visit(SubExpr))
469       return false;
470     return this->emitDecayPtr(*FromT, *ToT, CE);
471   }
472 
473   case CK_LValueToRValueBitCast:
474     return this->emitBuiltinBitCast(CE);
475 
476   case CK_IntegralToBoolean:
477   case CK_FixedPointToBoolean:
478   case CK_BooleanToSignedIntegral:
479   case CK_IntegralCast: {
480     if (DiscardResult)
481       return this->discard(SubExpr);
482     std::optional<PrimType> FromT = classify(SubExpr->getType());
483     std::optional<PrimType> ToT = classify(CE->getType());
484 
485     if (!FromT || !ToT)
486       return false;
487 
488     if (!this->visit(SubExpr))
489       return false;
490 
491     // Possibly diagnose casts to enum types if the target type does not
492     // have a fixed size.
493     if (Ctx.getLangOpts().CPlusPlus && CE->getType()->isEnumeralType()) {
494       if (const auto *ET = CE->getType().getCanonicalType()->getAs<EnumType>();
495           ET && !ET->getDecl()->isFixed()) {
496         if (!this->emitCheckEnumValue(*FromT, ET->getDecl(), CE))
497           return false;
498       }
499     }
500 
501     auto maybeNegate = [&]() -> bool {
502       if (CE->getCastKind() == CK_BooleanToSignedIntegral)
503         return this->emitNeg(*ToT, CE);
504       return true;
505     };
506 
507     if (ToT == PT_IntAP)
508       return this->emitCastAP(*FromT, Ctx.getBitWidth(CE->getType()), CE) &&
509              maybeNegate();
510     if (ToT == PT_IntAPS)
511       return this->emitCastAPS(*FromT, Ctx.getBitWidth(CE->getType()), CE) &&
512              maybeNegate();
513 
514     if (FromT == ToT)
515       return true;
516     if (!this->emitCast(*FromT, *ToT, CE))
517       return false;
518 
519     return maybeNegate();
520   }
521 
522   case CK_PointerToBoolean:
523   case CK_MemberPointerToBoolean: {
524     PrimType PtrT = classifyPrim(SubExpr->getType());
525 
526     if (!this->visit(SubExpr))
527       return false;
528     return this->emitIsNonNull(PtrT, CE);
529   }
530 
531   case CK_IntegralComplexToBoolean:
532   case CK_FloatingComplexToBoolean: {
533     if (DiscardResult)
534       return this->discard(SubExpr);
535     if (!this->visit(SubExpr))
536       return false;
537     return this->emitComplexBoolCast(SubExpr);
538   }
539 
540   case CK_IntegralComplexToReal:
541   case CK_FloatingComplexToReal:
542     return this->emitComplexReal(SubExpr);
543 
544   case CK_IntegralRealToComplex:
545   case CK_FloatingRealToComplex: {
546     // We're creating a complex value here, so we need to
547     // allocate storage for it.
548     if (!Initializing) {
549       unsigned LocalIndex = allocateTemporary(CE);
550       if (!this->emitGetPtrLocal(LocalIndex, CE))
551         return false;
552     }
553 
554     // Init the complex value to {SubExpr, 0}.
555     if (!this->visitArrayElemInit(0, SubExpr))
556       return false;
557     // Zero-init the second element.
558     PrimType T = classifyPrim(SubExpr->getType());
559     if (!this->visitZeroInitializer(T, SubExpr->getType(), SubExpr))
560       return false;
561     return this->emitInitElem(T, 1, SubExpr);
562   }
563 
564   case CK_IntegralComplexCast:
565   case CK_FloatingComplexCast:
566   case CK_IntegralComplexToFloatingComplex:
567   case CK_FloatingComplexToIntegralComplex: {
568     assert(CE->getType()->isAnyComplexType());
569     assert(SubExpr->getType()->isAnyComplexType());
570     if (DiscardResult)
571       return this->discard(SubExpr);
572 
573     if (!Initializing) {
574       std::optional<unsigned> LocalIndex = allocateLocal(CE);
575       if (!LocalIndex)
576         return false;
577       if (!this->emitGetPtrLocal(*LocalIndex, CE))
578         return false;
579     }
580 
581     // Location for the SubExpr.
582     // Since SubExpr is of complex type, visiting it results in a pointer
583     // anyway, so we just create a temporary pointer variable.
584     unsigned SubExprOffset = allocateLocalPrimitive(
585         SubExpr, PT_Ptr, /*IsConst=*/true, /*IsExtended=*/false);
586     if (!this->visit(SubExpr))
587       return false;
588     if (!this->emitSetLocal(PT_Ptr, SubExprOffset, CE))
589       return false;
590 
591     PrimType SourceElemT = classifyComplexElementType(SubExpr->getType());
592     QualType DestElemType =
593         CE->getType()->getAs<ComplexType>()->getElementType();
594     PrimType DestElemT = classifyPrim(DestElemType);
595     // Cast both elements individually.
596     for (unsigned I = 0; I != 2; ++I) {
597       if (!this->emitGetLocal(PT_Ptr, SubExprOffset, CE))
598         return false;
599       if (!this->emitArrayElemPop(SourceElemT, I, CE))
600         return false;
601 
602       // Do the cast.
603       if (!this->emitPrimCast(SourceElemT, DestElemT, DestElemType, CE))
604         return false;
605 
606       // Save the value.
607       if (!this->emitInitElem(DestElemT, I, CE))
608         return false;
609     }
610     return true;
611   }
612 
613   case CK_VectorSplat: {
614     assert(!classify(CE->getType()));
615     assert(classify(SubExpr->getType()));
616     assert(CE->getType()->isVectorType());
617 
618     if (DiscardResult)
619       return this->discard(SubExpr);
620 
621     if (!Initializing) {
622       std::optional<unsigned> LocalIndex = allocateLocal(CE);
623       if (!LocalIndex)
624         return false;
625       if (!this->emitGetPtrLocal(*LocalIndex, CE))
626         return false;
627     }
628 
629     const auto *VT = CE->getType()->getAs<VectorType>();
630     PrimType ElemT = classifyPrim(SubExpr->getType());
631     unsigned ElemOffset = allocateLocalPrimitive(
632         SubExpr, ElemT, /*IsConst=*/true, /*IsExtended=*/false);
633 
634     // Prepare a local variable for the scalar value.
635     if (!this->visit(SubExpr))
636       return false;
637     if (classifyPrim(SubExpr) == PT_Ptr && !this->emitLoadPop(ElemT, CE))
638       return false;
639 
640     if (!this->emitSetLocal(ElemT, ElemOffset, CE))
641       return false;
642 
643     for (unsigned I = 0; I != VT->getNumElements(); ++I) {
644       if (!this->emitGetLocal(ElemT, ElemOffset, CE))
645         return false;
646       if (!this->emitInitElem(ElemT, I, CE))
647         return false;
648     }
649 
650     return true;
651   }
652 
653   case CK_HLSLVectorTruncation: {
654     assert(SubExpr->getType()->isVectorType());
655     if (std::optional<PrimType> ResultT = classify(CE)) {
656       assert(!DiscardResult);
657       // Result must be either a float or integer. Take the first element.
658       if (!this->visit(SubExpr))
659         return false;
660       return this->emitArrayElemPop(*ResultT, 0, CE);
661     }
662     // Otherwise, this truncates from one vector type to another.
663     assert(CE->getType()->isVectorType());
664 
665     if (!Initializing) {
666       unsigned LocalIndex = allocateTemporary(CE);
667       if (!this->emitGetPtrLocal(LocalIndex, CE))
668         return false;
669     }
670     unsigned ToSize = CE->getType()->getAs<VectorType>()->getNumElements();
671     assert(SubExpr->getType()->getAs<VectorType>()->getNumElements() > ToSize);
672     if (!this->visit(SubExpr))
673       return false;
674     return this->emitCopyArray(classifyVectorElementType(CE->getType()), 0, 0,
675                                ToSize, CE);
676   };
677 
678   case CK_IntegralToFixedPoint: {
679     if (!this->visit(SubExpr))
680       return false;
681 
682     auto Sem = Ctx.getASTContext().getFixedPointSemantics(CE->getType());
683     uint32_t I;
684     std::memcpy(&I, &Sem, sizeof(Sem));
685     return this->emitCastIntegralFixedPoint(classifyPrim(SubExpr->getType()), I,
686                                             CE);
687   }
688   case CK_FloatingToFixedPoint: {
689     if (!this->visit(SubExpr))
690       return false;
691 
692     auto Sem = Ctx.getASTContext().getFixedPointSemantics(CE->getType());
693     uint32_t I;
694     std::memcpy(&I, &Sem, sizeof(Sem));
695     return this->emitCastFloatingFixedPoint(I, CE);
696   }
697   case CK_FixedPointToFloating: {
698     if (!this->visit(SubExpr))
699       return false;
700     const auto *TargetSemantics = &Ctx.getFloatSemantics(CE->getType());
701     return this->emitCastFixedPointFloating(TargetSemantics, CE);
702   }
703   case CK_FixedPointToIntegral: {
704     if (!this->visit(SubExpr))
705       return false;
706     return this->emitCastFixedPointIntegral(classifyPrim(CE->getType()), CE);
707   }
708   case CK_FixedPointCast: {
709     if (!this->visit(SubExpr))
710       return false;
711     auto Sem = Ctx.getASTContext().getFixedPointSemantics(CE->getType());
712     uint32_t I;
713     std::memcpy(&I, &Sem, sizeof(Sem));
714     return this->emitCastFixedPoint(I, CE);
715   }
716 
717   case CK_ToVoid:
718     return discard(SubExpr);
719 
720   default:
721     return this->emitInvalid(CE);
722   }
723   llvm_unreachable("Unhandled clang::CastKind enum");
724 }
725 
726 template <class Emitter>
727 bool Compiler<Emitter>::VisitIntegerLiteral(const IntegerLiteral *LE) {
728   if (DiscardResult)
729     return true;
730 
731   return this->emitConst(LE->getValue(), LE);
732 }
733 
734 template <class Emitter>
735 bool Compiler<Emitter>::VisitFloatingLiteral(const FloatingLiteral *E) {
736   if (DiscardResult)
737     return true;
738 
739   return this->emitConstFloat(E->getValue(), E);
740 }
741 
742 template <class Emitter>
743 bool Compiler<Emitter>::VisitImaginaryLiteral(const ImaginaryLiteral *E) {
744   assert(E->getType()->isAnyComplexType());
745   if (DiscardResult)
746     return true;
747 
748   if (!Initializing) {
749     unsigned LocalIndex = allocateTemporary(E);
750     if (!this->emitGetPtrLocal(LocalIndex, E))
751       return false;
752   }
753 
754   const Expr *SubExpr = E->getSubExpr();
755   PrimType SubExprT = classifyPrim(SubExpr->getType());
756 
757   if (!this->visitZeroInitializer(SubExprT, SubExpr->getType(), SubExpr))
758     return false;
759   if (!this->emitInitElem(SubExprT, 0, SubExpr))
760     return false;
761   return this->visitArrayElemInit(1, SubExpr);
762 }
763 
764 template <class Emitter>
765 bool Compiler<Emitter>::VisitFixedPointLiteral(const FixedPointLiteral *E) {
766   assert(E->getType()->isFixedPointType());
767   assert(classifyPrim(E) == PT_FixedPoint);
768 
769   if (DiscardResult)
770     return true;
771 
772   auto Sem = Ctx.getASTContext().getFixedPointSemantics(E->getType());
773   APInt Value = E->getValue();
774   return this->emitConstFixedPoint(FixedPoint(Value, Sem), E);
775 }
776 
777 template <class Emitter>
778 bool Compiler<Emitter>::VisitParenExpr(const ParenExpr *E) {
779   return this->delegate(E->getSubExpr());
780 }
781 
782 template <class Emitter>
783 bool Compiler<Emitter>::VisitBinaryOperator(const BinaryOperator *BO) {
784   // Need short-circuiting for these.
785   if (BO->isLogicalOp() && !BO->getType()->isVectorType())
786     return this->VisitLogicalBinOp(BO);
787 
788   const Expr *LHS = BO->getLHS();
789   const Expr *RHS = BO->getRHS();
790 
791   // Handle comma operators. Just discard the LHS
792   // and delegate to RHS.
793   if (BO->isCommaOp()) {
794     if (!this->discard(LHS))
795       return false;
796     if (RHS->getType()->isVoidType())
797       return this->discard(RHS);
798 
799     return this->delegate(RHS);
800   }
801 
802   if (BO->getType()->isAnyComplexType())
803     return this->VisitComplexBinOp(BO);
804   if (BO->getType()->isVectorType())
805     return this->VisitVectorBinOp(BO);
806   if ((LHS->getType()->isAnyComplexType() ||
807        RHS->getType()->isAnyComplexType()) &&
808       BO->isComparisonOp())
809     return this->emitComplexComparison(LHS, RHS, BO);
810   if (LHS->getType()->isFixedPointType() || RHS->getType()->isFixedPointType())
811     return this->VisitFixedPointBinOp(BO);
812 
813   if (BO->isPtrMemOp()) {
814     if (!this->visit(LHS))
815       return false;
816 
817     if (!this->visit(RHS))
818       return false;
819 
820     if (!this->emitToMemberPtr(BO))
821       return false;
822 
823     if (classifyPrim(BO) == PT_MemberPtr)
824       return true;
825 
826     if (!this->emitCastMemberPtrPtr(BO))
827       return false;
828     return DiscardResult ? this->emitPopPtr(BO) : true;
829   }
830 
831   // Typecheck the args.
832   std::optional<PrimType> LT = classify(LHS);
833   std::optional<PrimType> RT = classify(RHS);
834   std::optional<PrimType> T = classify(BO->getType());
835 
836   // Special case for C++'s three-way/spaceship operator <=>, which
837   // returns a std::{strong,weak,partial}_ordering (which is a class, so doesn't
838   // have a PrimType).
839   if (!T && BO->getOpcode() == BO_Cmp) {
840     if (DiscardResult)
841       return true;
842     const ComparisonCategoryInfo *CmpInfo =
843         Ctx.getASTContext().CompCategories.lookupInfoForType(BO->getType());
844     assert(CmpInfo);
845 
846     // We need a temporary variable holding our return value.
847     if (!Initializing) {
848       std::optional<unsigned> ResultIndex = this->allocateLocal(BO);
849       if (!this->emitGetPtrLocal(*ResultIndex, BO))
850         return false;
851     }
852 
853     if (!visit(LHS) || !visit(RHS))
854       return false;
855 
856     return this->emitCMP3(*LT, CmpInfo, BO);
857   }
858 
859   if (!LT || !RT || !T)
860     return false;
861 
862   // Pointer arithmetic special case.
863   if (BO->getOpcode() == BO_Add || BO->getOpcode() == BO_Sub) {
864     if (isPtrType(*T) || (isPtrType(*LT) && isPtrType(*RT)))
865       return this->VisitPointerArithBinOp(BO);
866   }
867 
868   // Assignmentes require us to evalute the RHS first.
869   if (BO->getOpcode() == BO_Assign) {
870     if (!visit(RHS) || !visit(LHS))
871       return false;
872     if (!this->emitFlip(*LT, *RT, BO))
873       return false;
874   } else {
875     if (!visit(LHS) || !visit(RHS))
876       return false;
877   }
878 
879   // For languages such as C, cast the result of one
880   // of our comparision opcodes to T (which is usually int).
881   auto MaybeCastToBool = [this, T, BO](bool Result) {
882     if (!Result)
883       return false;
884     if (DiscardResult)
885       return this->emitPop(*T, BO);
886     if (T != PT_Bool)
887       return this->emitCast(PT_Bool, *T, BO);
888     return true;
889   };
890 
891   auto Discard = [this, T, BO](bool Result) {
892     if (!Result)
893       return false;
894     return DiscardResult ? this->emitPop(*T, BO) : true;
895   };
896 
897   switch (BO->getOpcode()) {
898   case BO_EQ:
899     return MaybeCastToBool(this->emitEQ(*LT, BO));
900   case BO_NE:
901     return MaybeCastToBool(this->emitNE(*LT, BO));
902   case BO_LT:
903     return MaybeCastToBool(this->emitLT(*LT, BO));
904   case BO_LE:
905     return MaybeCastToBool(this->emitLE(*LT, BO));
906   case BO_GT:
907     return MaybeCastToBool(this->emitGT(*LT, BO));
908   case BO_GE:
909     return MaybeCastToBool(this->emitGE(*LT, BO));
910   case BO_Sub:
911     if (BO->getType()->isFloatingType())
912       return Discard(this->emitSubf(getFPOptions(BO), BO));
913     return Discard(this->emitSub(*T, BO));
914   case BO_Add:
915     if (BO->getType()->isFloatingType())
916       return Discard(this->emitAddf(getFPOptions(BO), BO));
917     return Discard(this->emitAdd(*T, BO));
918   case BO_Mul:
919     if (BO->getType()->isFloatingType())
920       return Discard(this->emitMulf(getFPOptions(BO), BO));
921     return Discard(this->emitMul(*T, BO));
922   case BO_Rem:
923     return Discard(this->emitRem(*T, BO));
924   case BO_Div:
925     if (BO->getType()->isFloatingType())
926       return Discard(this->emitDivf(getFPOptions(BO), BO));
927     return Discard(this->emitDiv(*T, BO));
928   case BO_Assign:
929     if (DiscardResult)
930       return LHS->refersToBitField() ? this->emitStoreBitFieldPop(*T, BO)
931                                      : this->emitStorePop(*T, BO);
932     if (LHS->refersToBitField()) {
933       if (!this->emitStoreBitField(*T, BO))
934         return false;
935     } else {
936       if (!this->emitStore(*T, BO))
937         return false;
938     }
939     // Assignments aren't necessarily lvalues in C.
940     // Load from them in that case.
941     if (!BO->isLValue())
942       return this->emitLoadPop(*T, BO);
943     return true;
944   case BO_And:
945     return Discard(this->emitBitAnd(*T, BO));
946   case BO_Or:
947     return Discard(this->emitBitOr(*T, BO));
948   case BO_Shl:
949     return Discard(this->emitShl(*LT, *RT, BO));
950   case BO_Shr:
951     return Discard(this->emitShr(*LT, *RT, BO));
952   case BO_Xor:
953     return Discard(this->emitBitXor(*T, BO));
954   case BO_LOr:
955   case BO_LAnd:
956     llvm_unreachable("Already handled earlier");
957   default:
958     return false;
959   }
960 
961   llvm_unreachable("Unhandled binary op");
962 }
963 
964 /// Perform addition/subtraction of a pointer and an integer or
965 /// subtraction of two pointers.
966 template <class Emitter>
967 bool Compiler<Emitter>::VisitPointerArithBinOp(const BinaryOperator *E) {
968   BinaryOperatorKind Op = E->getOpcode();
969   const Expr *LHS = E->getLHS();
970   const Expr *RHS = E->getRHS();
971 
972   if ((Op != BO_Add && Op != BO_Sub) ||
973       (!LHS->getType()->isPointerType() && !RHS->getType()->isPointerType()))
974     return false;
975 
976   std::optional<PrimType> LT = classify(LHS);
977   std::optional<PrimType> RT = classify(RHS);
978 
979   if (!LT || !RT)
980     return false;
981 
982   // Visit the given pointer expression and optionally convert to a PT_Ptr.
983   auto visitAsPointer = [&](const Expr *E, PrimType T) -> bool {
984     if (!this->visit(E))
985       return false;
986     if (T != PT_Ptr)
987       return this->emitDecayPtr(T, PT_Ptr, E);
988     return true;
989   };
990 
991   if (LHS->getType()->isPointerType() && RHS->getType()->isPointerType()) {
992     if (Op != BO_Sub)
993       return false;
994 
995     assert(E->getType()->isIntegerType());
996     if (!visitAsPointer(RHS, *RT) || !visitAsPointer(LHS, *LT))
997       return false;
998 
999     return this->emitSubPtr(classifyPrim(E->getType()), E);
1000   }
1001 
1002   PrimType OffsetType;
1003   if (LHS->getType()->isIntegerType()) {
1004     if (!visitAsPointer(RHS, *RT))
1005       return false;
1006     if (!this->visit(LHS))
1007       return false;
1008     OffsetType = *LT;
1009   } else if (RHS->getType()->isIntegerType()) {
1010     if (!visitAsPointer(LHS, *LT))
1011       return false;
1012     if (!this->visit(RHS))
1013       return false;
1014     OffsetType = *RT;
1015   } else {
1016     return false;
1017   }
1018 
1019   // Do the operation and optionally transform to
1020   // result pointer type.
1021   if (Op == BO_Add) {
1022     if (!this->emitAddOffset(OffsetType, E))
1023       return false;
1024 
1025     if (classifyPrim(E) != PT_Ptr)
1026       return this->emitDecayPtr(PT_Ptr, classifyPrim(E), E);
1027     return true;
1028   } else if (Op == BO_Sub) {
1029     if (!this->emitSubOffset(OffsetType, E))
1030       return false;
1031 
1032     if (classifyPrim(E) != PT_Ptr)
1033       return this->emitDecayPtr(PT_Ptr, classifyPrim(E), E);
1034     return true;
1035   }
1036 
1037   return false;
1038 }
1039 
1040 template <class Emitter>
1041 bool Compiler<Emitter>::VisitLogicalBinOp(const BinaryOperator *E) {
1042   assert(E->isLogicalOp());
1043   BinaryOperatorKind Op = E->getOpcode();
1044   const Expr *LHS = E->getLHS();
1045   const Expr *RHS = E->getRHS();
1046   std::optional<PrimType> T = classify(E->getType());
1047 
1048   if (Op == BO_LOr) {
1049     // Logical OR. Visit LHS and only evaluate RHS if LHS was FALSE.
1050     LabelTy LabelTrue = this->getLabel();
1051     LabelTy LabelEnd = this->getLabel();
1052 
1053     if (!this->visitBool(LHS))
1054       return false;
1055     if (!this->jumpTrue(LabelTrue))
1056       return false;
1057 
1058     if (!this->visitBool(RHS))
1059       return false;
1060     if (!this->jump(LabelEnd))
1061       return false;
1062 
1063     this->emitLabel(LabelTrue);
1064     this->emitConstBool(true, E);
1065     this->fallthrough(LabelEnd);
1066     this->emitLabel(LabelEnd);
1067 
1068   } else {
1069     assert(Op == BO_LAnd);
1070     // Logical AND.
1071     // Visit LHS. Only visit RHS if LHS was TRUE.
1072     LabelTy LabelFalse = this->getLabel();
1073     LabelTy LabelEnd = this->getLabel();
1074 
1075     if (!this->visitBool(LHS))
1076       return false;
1077     if (!this->jumpFalse(LabelFalse))
1078       return false;
1079 
1080     if (!this->visitBool(RHS))
1081       return false;
1082     if (!this->jump(LabelEnd))
1083       return false;
1084 
1085     this->emitLabel(LabelFalse);
1086     this->emitConstBool(false, E);
1087     this->fallthrough(LabelEnd);
1088     this->emitLabel(LabelEnd);
1089   }
1090 
1091   if (DiscardResult)
1092     return this->emitPopBool(E);
1093 
1094   // For C, cast back to integer type.
1095   assert(T);
1096   if (T != PT_Bool)
1097     return this->emitCast(PT_Bool, *T, E);
1098   return true;
1099 }
1100 
1101 template <class Emitter>
1102 bool Compiler<Emitter>::VisitComplexBinOp(const BinaryOperator *E) {
1103   // Prepare storage for result.
1104   if (!Initializing) {
1105     unsigned LocalIndex = allocateTemporary(E);
1106     if (!this->emitGetPtrLocal(LocalIndex, E))
1107       return false;
1108   }
1109 
1110   // Both LHS and RHS might _not_ be of complex type, but one of them
1111   // needs to be.
1112   const Expr *LHS = E->getLHS();
1113   const Expr *RHS = E->getRHS();
1114 
1115   PrimType ResultElemT = this->classifyComplexElementType(E->getType());
1116   unsigned ResultOffset = ~0u;
1117   if (!DiscardResult)
1118     ResultOffset = this->allocateLocalPrimitive(E, PT_Ptr, true, false);
1119 
1120   // Save result pointer in ResultOffset
1121   if (!this->DiscardResult) {
1122     if (!this->emitDupPtr(E))
1123       return false;
1124     if (!this->emitSetLocal(PT_Ptr, ResultOffset, E))
1125       return false;
1126   }
1127   QualType LHSType = LHS->getType();
1128   if (const auto *AT = LHSType->getAs<AtomicType>())
1129     LHSType = AT->getValueType();
1130   QualType RHSType = RHS->getType();
1131   if (const auto *AT = RHSType->getAs<AtomicType>())
1132     RHSType = AT->getValueType();
1133 
1134   bool LHSIsComplex = LHSType->isAnyComplexType();
1135   unsigned LHSOffset;
1136   bool RHSIsComplex = RHSType->isAnyComplexType();
1137 
1138   // For ComplexComplex Mul, we have special ops to make their implementation
1139   // easier.
1140   BinaryOperatorKind Op = E->getOpcode();
1141   if (Op == BO_Mul && LHSIsComplex && RHSIsComplex) {
1142     assert(classifyPrim(LHSType->getAs<ComplexType>()->getElementType()) ==
1143            classifyPrim(RHSType->getAs<ComplexType>()->getElementType()));
1144     PrimType ElemT =
1145         classifyPrim(LHSType->getAs<ComplexType>()->getElementType());
1146     if (!this->visit(LHS))
1147       return false;
1148     if (!this->visit(RHS))
1149       return false;
1150     return this->emitMulc(ElemT, E);
1151   }
1152 
1153   if (Op == BO_Div && RHSIsComplex) {
1154     QualType ElemQT = RHSType->getAs<ComplexType>()->getElementType();
1155     PrimType ElemT = classifyPrim(ElemQT);
1156     // If the LHS is not complex, we still need to do the full complex
1157     // division, so just stub create a complex value and stub it out with
1158     // the LHS and a zero.
1159 
1160     if (!LHSIsComplex) {
1161       // This is using the RHS type for the fake-complex LHS.
1162       LHSOffset = allocateTemporary(RHS);
1163 
1164       if (!this->emitGetPtrLocal(LHSOffset, E))
1165         return false;
1166 
1167       if (!this->visit(LHS))
1168         return false;
1169       // real is LHS
1170       if (!this->emitInitElem(ElemT, 0, E))
1171         return false;
1172       // imag is zero
1173       if (!this->visitZeroInitializer(ElemT, ElemQT, E))
1174         return false;
1175       if (!this->emitInitElem(ElemT, 1, E))
1176         return false;
1177     } else {
1178       if (!this->visit(LHS))
1179         return false;
1180     }
1181 
1182     if (!this->visit(RHS))
1183       return false;
1184     return this->emitDivc(ElemT, E);
1185   }
1186 
1187   // Evaluate LHS and save value to LHSOffset.
1188   if (LHSType->isAnyComplexType()) {
1189     LHSOffset = this->allocateLocalPrimitive(LHS, PT_Ptr, true, false);
1190     if (!this->visit(LHS))
1191       return false;
1192     if (!this->emitSetLocal(PT_Ptr, LHSOffset, E))
1193       return false;
1194   } else {
1195     PrimType LHST = classifyPrim(LHSType);
1196     LHSOffset = this->allocateLocalPrimitive(LHS, LHST, true, false);
1197     if (!this->visit(LHS))
1198       return false;
1199     if (!this->emitSetLocal(LHST, LHSOffset, E))
1200       return false;
1201   }
1202 
1203   // Same with RHS.
1204   unsigned RHSOffset;
1205   if (RHSType->isAnyComplexType()) {
1206     RHSOffset = this->allocateLocalPrimitive(RHS, PT_Ptr, true, false);
1207     if (!this->visit(RHS))
1208       return false;
1209     if (!this->emitSetLocal(PT_Ptr, RHSOffset, E))
1210       return false;
1211   } else {
1212     PrimType RHST = classifyPrim(RHSType);
1213     RHSOffset = this->allocateLocalPrimitive(RHS, RHST, true, false);
1214     if (!this->visit(RHS))
1215       return false;
1216     if (!this->emitSetLocal(RHST, RHSOffset, E))
1217       return false;
1218   }
1219 
1220   // For both LHS and RHS, either load the value from the complex pointer, or
1221   // directly from the local variable. For index 1 (i.e. the imaginary part),
1222   // just load 0 and do the operation anyway.
1223   auto loadComplexValue = [this](bool IsComplex, bool LoadZero,
1224                                  unsigned ElemIndex, unsigned Offset,
1225                                  const Expr *E) -> bool {
1226     if (IsComplex) {
1227       if (!this->emitGetLocal(PT_Ptr, Offset, E))
1228         return false;
1229       return this->emitArrayElemPop(classifyComplexElementType(E->getType()),
1230                                     ElemIndex, E);
1231     }
1232     if (ElemIndex == 0 || !LoadZero)
1233       return this->emitGetLocal(classifyPrim(E->getType()), Offset, E);
1234     return this->visitZeroInitializer(classifyPrim(E->getType()), E->getType(),
1235                                       E);
1236   };
1237 
1238   // Now we can get pointers to the LHS and RHS from the offsets above.
1239   for (unsigned ElemIndex = 0; ElemIndex != 2; ++ElemIndex) {
1240     // Result pointer for the store later.
1241     if (!this->DiscardResult) {
1242       if (!this->emitGetLocal(PT_Ptr, ResultOffset, E))
1243         return false;
1244     }
1245 
1246     // The actual operation.
1247     switch (Op) {
1248     case BO_Add:
1249       if (!loadComplexValue(LHSIsComplex, true, ElemIndex, LHSOffset, LHS))
1250         return false;
1251 
1252       if (!loadComplexValue(RHSIsComplex, true, ElemIndex, RHSOffset, RHS))
1253         return false;
1254       if (ResultElemT == PT_Float) {
1255         if (!this->emitAddf(getFPOptions(E), E))
1256           return false;
1257       } else {
1258         if (!this->emitAdd(ResultElemT, E))
1259           return false;
1260       }
1261       break;
1262     case BO_Sub:
1263       if (!loadComplexValue(LHSIsComplex, true, ElemIndex, LHSOffset, LHS))
1264         return false;
1265 
1266       if (!loadComplexValue(RHSIsComplex, true, ElemIndex, RHSOffset, RHS))
1267         return false;
1268       if (ResultElemT == PT_Float) {
1269         if (!this->emitSubf(getFPOptions(E), E))
1270           return false;
1271       } else {
1272         if (!this->emitSub(ResultElemT, E))
1273           return false;
1274       }
1275       break;
1276     case BO_Mul:
1277       if (!loadComplexValue(LHSIsComplex, false, ElemIndex, LHSOffset, LHS))
1278         return false;
1279 
1280       if (!loadComplexValue(RHSIsComplex, false, ElemIndex, RHSOffset, RHS))
1281         return false;
1282 
1283       if (ResultElemT == PT_Float) {
1284         if (!this->emitMulf(getFPOptions(E), E))
1285           return false;
1286       } else {
1287         if (!this->emitMul(ResultElemT, E))
1288           return false;
1289       }
1290       break;
1291     case BO_Div:
1292       assert(!RHSIsComplex);
1293       if (!loadComplexValue(LHSIsComplex, false, ElemIndex, LHSOffset, LHS))
1294         return false;
1295 
1296       if (!loadComplexValue(RHSIsComplex, false, ElemIndex, RHSOffset, RHS))
1297         return false;
1298 
1299       if (ResultElemT == PT_Float) {
1300         if (!this->emitDivf(getFPOptions(E), E))
1301           return false;
1302       } else {
1303         if (!this->emitDiv(ResultElemT, E))
1304           return false;
1305       }
1306       break;
1307 
1308     default:
1309       return false;
1310     }
1311 
1312     if (!this->DiscardResult) {
1313       // Initialize array element with the value we just computed.
1314       if (!this->emitInitElemPop(ResultElemT, ElemIndex, E))
1315         return false;
1316     } else {
1317       if (!this->emitPop(ResultElemT, E))
1318         return false;
1319     }
1320   }
1321   return true;
1322 }
1323 
1324 template <class Emitter>
1325 bool Compiler<Emitter>::VisitVectorBinOp(const BinaryOperator *E) {
1326   assert(!E->isCommaOp() &&
1327          "Comma op should be handled in VisitBinaryOperator");
1328   assert(E->getType()->isVectorType());
1329   assert(E->getLHS()->getType()->isVectorType());
1330   assert(E->getRHS()->getType()->isVectorType());
1331 
1332   // Prepare storage for result.
1333   if (!Initializing && !E->isCompoundAssignmentOp()) {
1334     unsigned LocalIndex = allocateTemporary(E);
1335     if (!this->emitGetPtrLocal(LocalIndex, E))
1336       return false;
1337   }
1338 
1339   const Expr *LHS = E->getLHS();
1340   const Expr *RHS = E->getRHS();
1341   const auto *VecTy = E->getType()->getAs<VectorType>();
1342   auto Op = E->isCompoundAssignmentOp()
1343                 ? BinaryOperator::getOpForCompoundAssignment(E->getOpcode())
1344                 : E->getOpcode();
1345 
1346   PrimType ElemT = this->classifyVectorElementType(LHS->getType());
1347   PrimType RHSElemT = this->classifyVectorElementType(RHS->getType());
1348   PrimType ResultElemT = this->classifyVectorElementType(E->getType());
1349 
1350   // Evaluate LHS and save value to LHSOffset.
1351   unsigned LHSOffset = this->allocateLocalPrimitive(LHS, PT_Ptr, true, false);
1352   if (!this->visit(LHS))
1353     return false;
1354   if (!this->emitSetLocal(PT_Ptr, LHSOffset, E))
1355     return false;
1356 
1357   // Evaluate RHS and save value to RHSOffset.
1358   unsigned RHSOffset = this->allocateLocalPrimitive(RHS, PT_Ptr, true, false);
1359   if (!this->visit(RHS))
1360     return false;
1361   if (!this->emitSetLocal(PT_Ptr, RHSOffset, E))
1362     return false;
1363 
1364   if (E->isCompoundAssignmentOp() && !this->emitGetLocal(PT_Ptr, LHSOffset, E))
1365     return false;
1366 
1367   // BitAdd/BitOr/BitXor/Shl/Shr doesn't support bool type, we need perform the
1368   // integer promotion.
1369   bool NeedIntPromot = ElemT == PT_Bool && (E->isBitwiseOp() || E->isShiftOp());
1370   QualType PromotTy =
1371       Ctx.getASTContext().getPromotedIntegerType(Ctx.getASTContext().BoolTy);
1372   PrimType PromotT = classifyPrim(PromotTy);
1373   PrimType OpT = NeedIntPromot ? PromotT : ElemT;
1374 
1375   auto getElem = [=](unsigned Offset, PrimType ElemT, unsigned Index) {
1376     if (!this->emitGetLocal(PT_Ptr, Offset, E))
1377       return false;
1378     if (!this->emitArrayElemPop(ElemT, Index, E))
1379       return false;
1380     if (E->isLogicalOp()) {
1381       if (!this->emitPrimCast(ElemT, PT_Bool, Ctx.getASTContext().BoolTy, E))
1382         return false;
1383       if (!this->emitPrimCast(PT_Bool, ResultElemT, VecTy->getElementType(), E))
1384         return false;
1385     } else if (NeedIntPromot) {
1386       if (!this->emitPrimCast(ElemT, PromotT, PromotTy, E))
1387         return false;
1388     }
1389     return true;
1390   };
1391 
1392 #define EMIT_ARITH_OP(OP)                                                      \
1393   {                                                                            \
1394     if (ElemT == PT_Float) {                                                   \
1395       if (!this->emit##OP##f(getFPOptions(E), E))                              \
1396         return false;                                                          \
1397     } else {                                                                   \
1398       if (!this->emit##OP(ElemT, E))                                           \
1399         return false;                                                          \
1400     }                                                                          \
1401     break;                                                                     \
1402   }
1403 
1404   for (unsigned I = 0; I != VecTy->getNumElements(); ++I) {
1405     if (!getElem(LHSOffset, ElemT, I))
1406       return false;
1407     if (!getElem(RHSOffset, RHSElemT, I))
1408       return false;
1409     switch (Op) {
1410     case BO_Add:
1411       EMIT_ARITH_OP(Add)
1412     case BO_Sub:
1413       EMIT_ARITH_OP(Sub)
1414     case BO_Mul:
1415       EMIT_ARITH_OP(Mul)
1416     case BO_Div:
1417       EMIT_ARITH_OP(Div)
1418     case BO_Rem:
1419       if (!this->emitRem(ElemT, E))
1420         return false;
1421       break;
1422     case BO_And:
1423       if (!this->emitBitAnd(OpT, E))
1424         return false;
1425       break;
1426     case BO_Or:
1427       if (!this->emitBitOr(OpT, E))
1428         return false;
1429       break;
1430     case BO_Xor:
1431       if (!this->emitBitXor(OpT, E))
1432         return false;
1433       break;
1434     case BO_Shl:
1435       if (!this->emitShl(OpT, RHSElemT, E))
1436         return false;
1437       break;
1438     case BO_Shr:
1439       if (!this->emitShr(OpT, RHSElemT, E))
1440         return false;
1441       break;
1442     case BO_EQ:
1443       if (!this->emitEQ(ElemT, E))
1444         return false;
1445       break;
1446     case BO_NE:
1447       if (!this->emitNE(ElemT, E))
1448         return false;
1449       break;
1450     case BO_LE:
1451       if (!this->emitLE(ElemT, E))
1452         return false;
1453       break;
1454     case BO_LT:
1455       if (!this->emitLT(ElemT, E))
1456         return false;
1457       break;
1458     case BO_GE:
1459       if (!this->emitGE(ElemT, E))
1460         return false;
1461       break;
1462     case BO_GT:
1463       if (!this->emitGT(ElemT, E))
1464         return false;
1465       break;
1466     case BO_LAnd:
1467       // a && b is equivalent to a!=0 & b!=0
1468       if (!this->emitBitAnd(ResultElemT, E))
1469         return false;
1470       break;
1471     case BO_LOr:
1472       // a || b is equivalent to a!=0 | b!=0
1473       if (!this->emitBitOr(ResultElemT, E))
1474         return false;
1475       break;
1476     default:
1477       return this->emitInvalid(E);
1478     }
1479 
1480     // The result of the comparison is a vector of the same width and number
1481     // of elements as the comparison operands with a signed integral element
1482     // type.
1483     //
1484     // https://gcc.gnu.org/onlinedocs/gcc/Vector-Extensions.html
1485     if (E->isComparisonOp()) {
1486       if (!this->emitPrimCast(PT_Bool, ResultElemT, VecTy->getElementType(), E))
1487         return false;
1488       if (!this->emitNeg(ResultElemT, E))
1489         return false;
1490     }
1491 
1492     // If we performed an integer promotion, we need to cast the compute result
1493     // into result vector element type.
1494     if (NeedIntPromot &&
1495         !this->emitPrimCast(PromotT, ResultElemT, VecTy->getElementType(), E))
1496       return false;
1497 
1498     // Initialize array element with the value we just computed.
1499     if (!this->emitInitElem(ResultElemT, I, E))
1500       return false;
1501   }
1502 
1503   if (DiscardResult && E->isCompoundAssignmentOp() && !this->emitPopPtr(E))
1504     return false;
1505   return true;
1506 }
1507 
1508 template <class Emitter>
1509 bool Compiler<Emitter>::VisitFixedPointBinOp(const BinaryOperator *E) {
1510   const Expr *LHS = E->getLHS();
1511   const Expr *RHS = E->getRHS();
1512 
1513   assert(LHS->getType()->isFixedPointType() ||
1514          RHS->getType()->isFixedPointType());
1515 
1516   auto LHSSema = Ctx.getASTContext().getFixedPointSemantics(LHS->getType());
1517   auto RHSSema = Ctx.getASTContext().getFixedPointSemantics(RHS->getType());
1518 
1519   if (!this->visit(LHS))
1520     return false;
1521   if (!LHS->getType()->isFixedPointType()) {
1522     uint32_t I;
1523     std::memcpy(&I, &LHSSema, sizeof(llvm::FixedPointSemantics));
1524     if (!this->emitCastIntegralFixedPoint(classifyPrim(LHS->getType()), I, E))
1525       return false;
1526   }
1527 
1528   if (!this->visit(RHS))
1529     return false;
1530   if (!RHS->getType()->isFixedPointType()) {
1531     uint32_t I;
1532     std::memcpy(&I, &RHSSema, sizeof(llvm::FixedPointSemantics));
1533     if (!this->emitCastIntegralFixedPoint(classifyPrim(RHS->getType()), I, E))
1534       return false;
1535   }
1536 
1537   // Convert the result to the target semantics.
1538   auto ConvertResult = [&](bool R) -> bool {
1539     if (!R)
1540       return false;
1541     auto ResultSema = Ctx.getASTContext().getFixedPointSemantics(E->getType());
1542     auto CommonSema = LHSSema.getCommonSemantics(RHSSema);
1543     if (ResultSema != CommonSema) {
1544       uint32_t I;
1545       std::memcpy(&I, &ResultSema, sizeof(ResultSema));
1546       return this->emitCastFixedPoint(I, E);
1547     }
1548     return true;
1549   };
1550 
1551   auto MaybeCastToBool = [&](bool Result) {
1552     if (!Result)
1553       return false;
1554     PrimType T = classifyPrim(E);
1555     if (DiscardResult)
1556       return this->emitPop(T, E);
1557     if (T != PT_Bool)
1558       return this->emitCast(PT_Bool, T, E);
1559     return true;
1560   };
1561 
1562   switch (E->getOpcode()) {
1563   case BO_EQ:
1564     return MaybeCastToBool(this->emitEQFixedPoint(E));
1565   case BO_NE:
1566     return MaybeCastToBool(this->emitNEFixedPoint(E));
1567   case BO_LT:
1568     return MaybeCastToBool(this->emitLTFixedPoint(E));
1569   case BO_LE:
1570     return MaybeCastToBool(this->emitLEFixedPoint(E));
1571   case BO_GT:
1572     return MaybeCastToBool(this->emitGTFixedPoint(E));
1573   case BO_GE:
1574     return MaybeCastToBool(this->emitGEFixedPoint(E));
1575   case BO_Add:
1576     return ConvertResult(this->emitAddFixedPoint(E));
1577   case BO_Sub:
1578     return ConvertResult(this->emitSubFixedPoint(E));
1579   case BO_Mul:
1580     return ConvertResult(this->emitMulFixedPoint(E));
1581   case BO_Div:
1582     return ConvertResult(this->emitDivFixedPoint(E));
1583   case BO_Shl:
1584     return ConvertResult(this->emitShiftFixedPoint(/*Left=*/true, E));
1585   case BO_Shr:
1586     return ConvertResult(this->emitShiftFixedPoint(/*Left=*/false, E));
1587 
1588   default:
1589     return this->emitInvalid(E);
1590   }
1591 
1592   llvm_unreachable("unhandled binop opcode");
1593 }
1594 
1595 template <class Emitter>
1596 bool Compiler<Emitter>::VisitFixedPointUnaryOperator(const UnaryOperator *E) {
1597   const Expr *SubExpr = E->getSubExpr();
1598   assert(SubExpr->getType()->isFixedPointType());
1599 
1600   switch (E->getOpcode()) {
1601   case UO_Plus:
1602     return this->delegate(SubExpr);
1603   case UO_Minus:
1604     if (!this->visit(SubExpr))
1605       return false;
1606     return this->emitNegFixedPoint(E);
1607   default:
1608     return false;
1609   }
1610 
1611   llvm_unreachable("Unhandled unary opcode");
1612 }
1613 
1614 template <class Emitter>
1615 bool Compiler<Emitter>::VisitImplicitValueInitExpr(
1616     const ImplicitValueInitExpr *E) {
1617   QualType QT = E->getType();
1618 
1619   if (std::optional<PrimType> T = classify(QT))
1620     return this->visitZeroInitializer(*T, QT, E);
1621 
1622   if (QT->isRecordType()) {
1623     const RecordDecl *RD = QT->getAsRecordDecl();
1624     assert(RD);
1625     if (RD->isInvalidDecl())
1626       return false;
1627 
1628     if (const auto *CXXRD = dyn_cast<CXXRecordDecl>(RD);
1629         CXXRD && CXXRD->getNumVBases() > 0) {
1630       // TODO: Diagnose.
1631       return false;
1632     }
1633 
1634     const Record *R = getRecord(QT);
1635     if (!R)
1636       return false;
1637 
1638     assert(Initializing);
1639     return this->visitZeroRecordInitializer(R, E);
1640   }
1641 
1642   if (QT->isIncompleteArrayType())
1643     return true;
1644 
1645   if (QT->isArrayType())
1646     return this->visitZeroArrayInitializer(QT, E);
1647 
1648   if (const auto *ComplexTy = E->getType()->getAs<ComplexType>()) {
1649     assert(Initializing);
1650     QualType ElemQT = ComplexTy->getElementType();
1651     PrimType ElemT = classifyPrim(ElemQT);
1652     for (unsigned I = 0; I < 2; ++I) {
1653       if (!this->visitZeroInitializer(ElemT, ElemQT, E))
1654         return false;
1655       if (!this->emitInitElem(ElemT, I, E))
1656         return false;
1657     }
1658     return true;
1659   }
1660 
1661   if (const auto *VecT = E->getType()->getAs<VectorType>()) {
1662     unsigned NumVecElements = VecT->getNumElements();
1663     QualType ElemQT = VecT->getElementType();
1664     PrimType ElemT = classifyPrim(ElemQT);
1665 
1666     for (unsigned I = 0; I < NumVecElements; ++I) {
1667       if (!this->visitZeroInitializer(ElemT, ElemQT, E))
1668         return false;
1669       if (!this->emitInitElem(ElemT, I, E))
1670         return false;
1671     }
1672     return true;
1673   }
1674 
1675   return false;
1676 }
1677 
1678 template <class Emitter>
1679 bool Compiler<Emitter>::VisitArraySubscriptExpr(const ArraySubscriptExpr *E) {
1680   const Expr *LHS = E->getLHS();
1681   const Expr *RHS = E->getRHS();
1682   const Expr *Index = E->getIdx();
1683 
1684   if (DiscardResult)
1685     return this->discard(LHS) && this->discard(RHS);
1686 
1687   // C++17's rules require us to evaluate the LHS first, regardless of which
1688   // side is the base.
1689   bool Success = true;
1690   for (const Expr *SubExpr : {LHS, RHS}) {
1691     if (!this->visit(SubExpr))
1692       Success = false;
1693   }
1694 
1695   if (!Success)
1696     return false;
1697 
1698   PrimType IndexT = classifyPrim(Index->getType());
1699   // If the index is first, we need to change that.
1700   if (LHS == Index) {
1701     if (!this->emitFlip(PT_Ptr, IndexT, E))
1702       return false;
1703   }
1704 
1705   return this->emitArrayElemPtrPop(IndexT, E);
1706 }
1707 
1708 template <class Emitter>
1709 bool Compiler<Emitter>::visitInitList(ArrayRef<const Expr *> Inits,
1710                                       const Expr *ArrayFiller, const Expr *E) {
1711   QualType QT = E->getType();
1712   if (const auto *AT = QT->getAs<AtomicType>())
1713     QT = AT->getValueType();
1714 
1715   if (QT->isVoidType()) {
1716     if (Inits.size() == 0)
1717       return true;
1718     return this->emitInvalid(E);
1719   }
1720 
1721   // Handle discarding first.
1722   if (DiscardResult) {
1723     for (const Expr *Init : Inits) {
1724       if (!this->discard(Init))
1725         return false;
1726     }
1727     return true;
1728   }
1729 
1730   // Primitive values.
1731   if (std::optional<PrimType> T = classify(QT)) {
1732     assert(!DiscardResult);
1733     if (Inits.size() == 0)
1734       return this->visitZeroInitializer(*T, QT, E);
1735     assert(Inits.size() == 1);
1736     return this->delegate(Inits[0]);
1737   }
1738 
1739   if (QT->isRecordType()) {
1740     const Record *R = getRecord(QT);
1741 
1742     if (Inits.size() == 1 && E->getType() == Inits[0]->getType())
1743       return this->delegate(Inits[0]);
1744 
1745     auto initPrimitiveField = [=](const Record::Field *FieldToInit,
1746                                   const Expr *Init, PrimType T) -> bool {
1747       InitStackScope<Emitter> ISS(this, isa<CXXDefaultInitExpr>(Init));
1748       if (!this->visit(Init))
1749         return false;
1750 
1751       if (FieldToInit->isBitField())
1752         return this->emitInitBitField(T, FieldToInit, E);
1753       return this->emitInitField(T, FieldToInit->Offset, E);
1754     };
1755 
1756     auto initCompositeField = [=](const Record::Field *FieldToInit,
1757                                   const Expr *Init) -> bool {
1758       InitStackScope<Emitter> ISS(this, isa<CXXDefaultInitExpr>(Init));
1759       InitLinkScope<Emitter> ILS(this, InitLink::Field(FieldToInit->Offset));
1760       // Non-primitive case. Get a pointer to the field-to-initialize
1761       // on the stack and recurse into visitInitializer().
1762       if (!this->emitGetPtrField(FieldToInit->Offset, Init))
1763         return false;
1764       if (!this->visitInitializer(Init))
1765         return false;
1766       return this->emitPopPtr(E);
1767     };
1768 
1769     if (R->isUnion()) {
1770       if (Inits.size() == 0) {
1771         if (!this->visitZeroRecordInitializer(R, E))
1772           return false;
1773       } else {
1774         const Expr *Init = Inits[0];
1775         const FieldDecl *FToInit = nullptr;
1776         if (const auto *ILE = dyn_cast<InitListExpr>(E))
1777           FToInit = ILE->getInitializedFieldInUnion();
1778         else
1779           FToInit = cast<CXXParenListInitExpr>(E)->getInitializedFieldInUnion();
1780 
1781         const Record::Field *FieldToInit = R->getField(FToInit);
1782         if (std::optional<PrimType> T = classify(Init)) {
1783           if (!initPrimitiveField(FieldToInit, Init, *T))
1784             return false;
1785         } else {
1786           if (!initCompositeField(FieldToInit, Init))
1787             return false;
1788         }
1789       }
1790       return this->emitFinishInit(E);
1791     }
1792 
1793     assert(!R->isUnion());
1794     unsigned InitIndex = 0;
1795     for (const Expr *Init : Inits) {
1796       // Skip unnamed bitfields.
1797       while (InitIndex < R->getNumFields() &&
1798              R->getField(InitIndex)->Decl->isUnnamedBitField())
1799         ++InitIndex;
1800 
1801       if (std::optional<PrimType> T = classify(Init)) {
1802         const Record::Field *FieldToInit = R->getField(InitIndex);
1803         if (!initPrimitiveField(FieldToInit, Init, *T))
1804           return false;
1805         ++InitIndex;
1806       } else {
1807         // Initializer for a direct base class.
1808         if (const Record::Base *B = R->getBase(Init->getType())) {
1809           if (!this->emitGetPtrBase(B->Offset, Init))
1810             return false;
1811 
1812           if (!this->visitInitializer(Init))
1813             return false;
1814 
1815           if (!this->emitFinishInitPop(E))
1816             return false;
1817           // Base initializers don't increase InitIndex, since they don't count
1818           // into the Record's fields.
1819         } else {
1820           const Record::Field *FieldToInit = R->getField(InitIndex);
1821           if (!initCompositeField(FieldToInit, Init))
1822             return false;
1823           ++InitIndex;
1824         }
1825       }
1826     }
1827     return this->emitFinishInit(E);
1828   }
1829 
1830   if (QT->isArrayType()) {
1831     if (Inits.size() == 1 && QT == Inits[0]->getType())
1832       return this->delegate(Inits[0]);
1833 
1834     unsigned ElementIndex = 0;
1835     for (const Expr *Init : Inits) {
1836       if (const auto *EmbedS =
1837               dyn_cast<EmbedExpr>(Init->IgnoreParenImpCasts())) {
1838         PrimType TargetT = classifyPrim(Init->getType());
1839 
1840         auto Eval = [&](const Expr *Init, unsigned ElemIndex) {
1841           PrimType InitT = classifyPrim(Init->getType());
1842           if (!this->visit(Init))
1843             return false;
1844           if (InitT != TargetT) {
1845             if (!this->emitCast(InitT, TargetT, E))
1846               return false;
1847           }
1848           return this->emitInitElem(TargetT, ElemIndex, Init);
1849         };
1850         if (!EmbedS->doForEachDataElement(Eval, ElementIndex))
1851           return false;
1852       } else {
1853         if (!this->visitArrayElemInit(ElementIndex, Init))
1854           return false;
1855         ++ElementIndex;
1856       }
1857     }
1858 
1859     // Expand the filler expression.
1860     // FIXME: This should go away.
1861     if (ArrayFiller) {
1862       const ConstantArrayType *CAT =
1863           Ctx.getASTContext().getAsConstantArrayType(QT);
1864       uint64_t NumElems = CAT->getZExtSize();
1865 
1866       for (; ElementIndex != NumElems; ++ElementIndex) {
1867         if (!this->visitArrayElemInit(ElementIndex, ArrayFiller))
1868           return false;
1869       }
1870     }
1871 
1872     return this->emitFinishInit(E);
1873   }
1874 
1875   if (const auto *ComplexTy = QT->getAs<ComplexType>()) {
1876     unsigned NumInits = Inits.size();
1877 
1878     if (NumInits == 1)
1879       return this->delegate(Inits[0]);
1880 
1881     QualType ElemQT = ComplexTy->getElementType();
1882     PrimType ElemT = classifyPrim(ElemQT);
1883     if (NumInits == 0) {
1884       // Zero-initialize both elements.
1885       for (unsigned I = 0; I < 2; ++I) {
1886         if (!this->visitZeroInitializer(ElemT, ElemQT, E))
1887           return false;
1888         if (!this->emitInitElem(ElemT, I, E))
1889           return false;
1890       }
1891     } else if (NumInits == 2) {
1892       unsigned InitIndex = 0;
1893       for (const Expr *Init : Inits) {
1894         if (!this->visit(Init))
1895           return false;
1896 
1897         if (!this->emitInitElem(ElemT, InitIndex, E))
1898           return false;
1899         ++InitIndex;
1900       }
1901     }
1902     return true;
1903   }
1904 
1905   if (const auto *VecT = QT->getAs<VectorType>()) {
1906     unsigned NumVecElements = VecT->getNumElements();
1907     assert(NumVecElements >= Inits.size());
1908 
1909     QualType ElemQT = VecT->getElementType();
1910     PrimType ElemT = classifyPrim(ElemQT);
1911 
1912     // All initializer elements.
1913     unsigned InitIndex = 0;
1914     for (const Expr *Init : Inits) {
1915       if (!this->visit(Init))
1916         return false;
1917 
1918       // If the initializer is of vector type itself, we have to deconstruct
1919       // that and initialize all the target fields from the initializer fields.
1920       if (const auto *InitVecT = Init->getType()->getAs<VectorType>()) {
1921         if (!this->emitCopyArray(ElemT, 0, InitIndex,
1922                                  InitVecT->getNumElements(), E))
1923           return false;
1924         InitIndex += InitVecT->getNumElements();
1925       } else {
1926         if (!this->emitInitElem(ElemT, InitIndex, E))
1927           return false;
1928         ++InitIndex;
1929       }
1930     }
1931 
1932     assert(InitIndex <= NumVecElements);
1933 
1934     // Fill the rest with zeroes.
1935     for (; InitIndex != NumVecElements; ++InitIndex) {
1936       if (!this->visitZeroInitializer(ElemT, ElemQT, E))
1937         return false;
1938       if (!this->emitInitElem(ElemT, InitIndex, E))
1939         return false;
1940     }
1941     return true;
1942   }
1943 
1944   return false;
1945 }
1946 
1947 /// Pointer to the array(not the element!) must be on the stack when calling
1948 /// this.
1949 template <class Emitter>
1950 bool Compiler<Emitter>::visitArrayElemInit(unsigned ElemIndex,
1951                                            const Expr *Init) {
1952   if (std::optional<PrimType> T = classify(Init->getType())) {
1953     // Visit the primitive element like normal.
1954     if (!this->visit(Init))
1955       return false;
1956     return this->emitInitElem(*T, ElemIndex, Init);
1957   }
1958 
1959   InitLinkScope<Emitter> ILS(this, InitLink::Elem(ElemIndex));
1960   // Advance the pointer currently on the stack to the given
1961   // dimension.
1962   if (!this->emitConstUint32(ElemIndex, Init))
1963     return false;
1964   if (!this->emitArrayElemPtrUint32(Init))
1965     return false;
1966   if (!this->visitInitializer(Init))
1967     return false;
1968   return this->emitFinishInitPop(Init);
1969 }
1970 
1971 template <class Emitter>
1972 bool Compiler<Emitter>::VisitInitListExpr(const InitListExpr *E) {
1973   return this->visitInitList(E->inits(), E->getArrayFiller(), E);
1974 }
1975 
1976 template <class Emitter>
1977 bool Compiler<Emitter>::VisitCXXParenListInitExpr(
1978     const CXXParenListInitExpr *E) {
1979   return this->visitInitList(E->getInitExprs(), E->getArrayFiller(), E);
1980 }
1981 
1982 template <class Emitter>
1983 bool Compiler<Emitter>::VisitSubstNonTypeTemplateParmExpr(
1984     const SubstNonTypeTemplateParmExpr *E) {
1985   return this->delegate(E->getReplacement());
1986 }
1987 
1988 template <class Emitter>
1989 bool Compiler<Emitter>::VisitConstantExpr(const ConstantExpr *E) {
1990   std::optional<PrimType> T = classify(E->getType());
1991   if (T && E->hasAPValueResult()) {
1992     // Try to emit the APValue directly, without visiting the subexpr.
1993     // This will only fail if we can't emit the APValue, so won't emit any
1994     // diagnostics or any double values.
1995     if (DiscardResult)
1996       return true;
1997 
1998     if (this->visitAPValue(E->getAPValueResult(), *T, E))
1999       return true;
2000   }
2001   return this->delegate(E->getSubExpr());
2002 }
2003 
2004 template <class Emitter>
2005 bool Compiler<Emitter>::VisitEmbedExpr(const EmbedExpr *E) {
2006   auto It = E->begin();
2007   return this->visit(*It);
2008 }
2009 
2010 static CharUnits AlignOfType(QualType T, const ASTContext &ASTCtx,
2011                              UnaryExprOrTypeTrait Kind) {
2012   bool AlignOfReturnsPreferred =
2013       ASTCtx.getLangOpts().getClangABICompat() <= LangOptions::ClangABI::Ver7;
2014 
2015   // C++ [expr.alignof]p3:
2016   //     When alignof is applied to a reference type, the result is the
2017   //     alignment of the referenced type.
2018   if (const auto *Ref = T->getAs<ReferenceType>())
2019     T = Ref->getPointeeType();
2020 
2021   if (T.getQualifiers().hasUnaligned())
2022     return CharUnits::One();
2023 
2024   // __alignof is defined to return the preferred alignment.
2025   // Before 8, clang returned the preferred alignment for alignof and
2026   // _Alignof as well.
2027   if (Kind == UETT_PreferredAlignOf || AlignOfReturnsPreferred)
2028     return ASTCtx.toCharUnitsFromBits(ASTCtx.getPreferredTypeAlign(T));
2029 
2030   return ASTCtx.getTypeAlignInChars(T);
2031 }
2032 
2033 template <class Emitter>
2034 bool Compiler<Emitter>::VisitUnaryExprOrTypeTraitExpr(
2035     const UnaryExprOrTypeTraitExpr *E) {
2036   UnaryExprOrTypeTrait Kind = E->getKind();
2037   const ASTContext &ASTCtx = Ctx.getASTContext();
2038 
2039   if (Kind == UETT_SizeOf || Kind == UETT_DataSizeOf) {
2040     QualType ArgType = E->getTypeOfArgument();
2041 
2042     // C++ [expr.sizeof]p2: "When applied to a reference or a reference type,
2043     //   the result is the size of the referenced type."
2044     if (const auto *Ref = ArgType->getAs<ReferenceType>())
2045       ArgType = Ref->getPointeeType();
2046 
2047     CharUnits Size;
2048     if (ArgType->isVoidType() || ArgType->isFunctionType())
2049       Size = CharUnits::One();
2050     else {
2051       if (ArgType->isDependentType() || !ArgType->isConstantSizeType())
2052         return false;
2053 
2054       if (Kind == UETT_SizeOf)
2055         Size = ASTCtx.getTypeSizeInChars(ArgType);
2056       else
2057         Size = ASTCtx.getTypeInfoDataSizeInChars(ArgType).Width;
2058     }
2059 
2060     if (DiscardResult)
2061       return true;
2062 
2063     return this->emitConst(Size.getQuantity(), E);
2064   }
2065 
2066   if (Kind == UETT_AlignOf || Kind == UETT_PreferredAlignOf) {
2067     CharUnits Size;
2068 
2069     if (E->isArgumentType()) {
2070       QualType ArgType = E->getTypeOfArgument();
2071 
2072       Size = AlignOfType(ArgType, ASTCtx, Kind);
2073     } else {
2074       // Argument is an expression, not a type.
2075       const Expr *Arg = E->getArgumentExpr()->IgnoreParens();
2076 
2077       // The kinds of expressions that we have special-case logic here for
2078       // should be kept up to date with the special checks for those
2079       // expressions in Sema.
2080 
2081       // alignof decl is always accepted, even if it doesn't make sense: we
2082       // default to 1 in those cases.
2083       if (const auto *DRE = dyn_cast<DeclRefExpr>(Arg))
2084         Size = ASTCtx.getDeclAlign(DRE->getDecl(),
2085                                    /*RefAsPointee*/ true);
2086       else if (const auto *ME = dyn_cast<MemberExpr>(Arg))
2087         Size = ASTCtx.getDeclAlign(ME->getMemberDecl(),
2088                                    /*RefAsPointee*/ true);
2089       else
2090         Size = AlignOfType(Arg->getType(), ASTCtx, Kind);
2091     }
2092 
2093     if (DiscardResult)
2094       return true;
2095 
2096     return this->emitConst(Size.getQuantity(), E);
2097   }
2098 
2099   if (Kind == UETT_VectorElements) {
2100     if (const auto *VT = E->getTypeOfArgument()->getAs<VectorType>())
2101       return this->emitConst(VT->getNumElements(), E);
2102     assert(E->getTypeOfArgument()->isSizelessVectorType());
2103     return this->emitSizelessVectorElementSize(E);
2104   }
2105 
2106   if (Kind == UETT_VecStep) {
2107     if (const auto *VT = E->getTypeOfArgument()->getAs<VectorType>()) {
2108       unsigned N = VT->getNumElements();
2109 
2110       // The vec_step built-in functions that take a 3-component
2111       // vector return 4. (OpenCL 1.1 spec 6.11.12)
2112       if (N == 3)
2113         N = 4;
2114 
2115       return this->emitConst(N, E);
2116     }
2117     return this->emitConst(1, E);
2118   }
2119 
2120   if (Kind == UETT_OpenMPRequiredSimdAlign) {
2121     assert(E->isArgumentType());
2122     unsigned Bits = ASTCtx.getOpenMPDefaultSimdAlign(E->getArgumentType());
2123 
2124     return this->emitConst(ASTCtx.toCharUnitsFromBits(Bits).getQuantity(), E);
2125   }
2126 
2127   return false;
2128 }
2129 
2130 template <class Emitter>
2131 bool Compiler<Emitter>::VisitMemberExpr(const MemberExpr *E) {
2132   // 'Base.Member'
2133   const Expr *Base = E->getBase();
2134   const ValueDecl *Member = E->getMemberDecl();
2135 
2136   if (DiscardResult)
2137     return this->discard(Base);
2138 
2139   // MemberExprs are almost always lvalues, in which case we don't need to
2140   // do the load. But sometimes they aren't.
2141   const auto maybeLoadValue = [&]() -> bool {
2142     if (E->isGLValue())
2143       return true;
2144     if (std::optional<PrimType> T = classify(E))
2145       return this->emitLoadPop(*T, E);
2146     return false;
2147   };
2148 
2149   if (const auto *VD = dyn_cast<VarDecl>(Member)) {
2150     // I am almost confident in saying that a var decl must be static
2151     // and therefore registered as a global variable. But this will probably
2152     // turn out to be wrong some time in the future, as always.
2153     if (auto GlobalIndex = P.getGlobal(VD))
2154       return this->emitGetPtrGlobal(*GlobalIndex, E) && maybeLoadValue();
2155     return false;
2156   }
2157 
2158   if (!isa<FieldDecl>(Member)) {
2159     if (!this->discard(Base) && !this->emitSideEffect(E))
2160       return false;
2161 
2162     return this->visitDeclRef(Member, E);
2163   }
2164 
2165   if (Initializing) {
2166     if (!this->delegate(Base))
2167       return false;
2168   } else {
2169     if (!this->visit(Base))
2170       return false;
2171   }
2172 
2173   // Base above gives us a pointer on the stack.
2174   const auto *FD = cast<FieldDecl>(Member);
2175   const RecordDecl *RD = FD->getParent();
2176   const Record *R = getRecord(RD);
2177   if (!R)
2178     return false;
2179   const Record::Field *F = R->getField(FD);
2180   // Leave a pointer to the field on the stack.
2181   if (F->Decl->getType()->isReferenceType())
2182     return this->emitGetFieldPop(PT_Ptr, F->Offset, E) && maybeLoadValue();
2183   return this->emitGetPtrFieldPop(F->Offset, E) && maybeLoadValue();
2184 }
2185 
2186 template <class Emitter>
2187 bool Compiler<Emitter>::VisitArrayInitIndexExpr(const ArrayInitIndexExpr *E) {
2188   // ArrayIndex might not be set if a ArrayInitIndexExpr is being evaluated
2189   // stand-alone, e.g. via EvaluateAsInt().
2190   if (!ArrayIndex)
2191     return false;
2192   return this->emitConst(*ArrayIndex, E);
2193 }
2194 
2195 template <class Emitter>
2196 bool Compiler<Emitter>::VisitArrayInitLoopExpr(const ArrayInitLoopExpr *E) {
2197   assert(Initializing);
2198   assert(!DiscardResult);
2199 
2200   // We visit the common opaque expression here once so we have its value
2201   // cached.
2202   if (!this->discard(E->getCommonExpr()))
2203     return false;
2204 
2205   // TODO: This compiles to quite a lot of bytecode if the array is larger.
2206   //   Investigate compiling this to a loop.
2207   const Expr *SubExpr = E->getSubExpr();
2208   size_t Size = E->getArraySize().getZExtValue();
2209 
2210   // So, every iteration, we execute an assignment here
2211   // where the LHS is on the stack (the target array)
2212   // and the RHS is our SubExpr.
2213   for (size_t I = 0; I != Size; ++I) {
2214     ArrayIndexScope<Emitter> IndexScope(this, I);
2215     BlockScope<Emitter> BS(this);
2216 
2217     if (!this->visitArrayElemInit(I, SubExpr))
2218       return false;
2219     if (!BS.destroyLocals())
2220       return false;
2221   }
2222   return true;
2223 }
2224 
2225 template <class Emitter>
2226 bool Compiler<Emitter>::VisitOpaqueValueExpr(const OpaqueValueExpr *E) {
2227   const Expr *SourceExpr = E->getSourceExpr();
2228   if (!SourceExpr)
2229     return false;
2230 
2231   if (Initializing)
2232     return this->visitInitializer(SourceExpr);
2233 
2234   PrimType SubExprT = classify(SourceExpr).value_or(PT_Ptr);
2235   if (auto It = OpaqueExprs.find(E); It != OpaqueExprs.end())
2236     return this->emitGetLocal(SubExprT, It->second, E);
2237 
2238   if (!this->visit(SourceExpr))
2239     return false;
2240 
2241   // At this point we either have the evaluated source expression or a pointer
2242   // to an object on the stack. We want to create a local variable that stores
2243   // this value.
2244   unsigned LocalIndex = allocateLocalPrimitive(E, SubExprT, /*IsConst=*/true);
2245   if (!this->emitSetLocal(SubExprT, LocalIndex, E))
2246     return false;
2247 
2248   // Here the local variable is created but the value is removed from the stack,
2249   // so we put it back if the caller needs it.
2250   if (!DiscardResult) {
2251     if (!this->emitGetLocal(SubExprT, LocalIndex, E))
2252       return false;
2253   }
2254 
2255   // This is cleaned up when the local variable is destroyed.
2256   OpaqueExprs.insert({E, LocalIndex});
2257 
2258   return true;
2259 }
2260 
2261 template <class Emitter>
2262 bool Compiler<Emitter>::VisitAbstractConditionalOperator(
2263     const AbstractConditionalOperator *E) {
2264   const Expr *Condition = E->getCond();
2265   const Expr *TrueExpr = E->getTrueExpr();
2266   const Expr *FalseExpr = E->getFalseExpr();
2267 
2268   LabelTy LabelEnd = this->getLabel();   // Label after the operator.
2269   LabelTy LabelFalse = this->getLabel(); // Label for the false expr.
2270 
2271   if (!this->visitBool(Condition))
2272     return false;
2273 
2274   if (!this->jumpFalse(LabelFalse))
2275     return false;
2276 
2277   {
2278     LocalScope<Emitter> S(this);
2279     if (!this->delegate(TrueExpr))
2280       return false;
2281     if (!S.destroyLocals())
2282       return false;
2283   }
2284 
2285   if (!this->jump(LabelEnd))
2286     return false;
2287 
2288   this->emitLabel(LabelFalse);
2289 
2290   {
2291     LocalScope<Emitter> S(this);
2292     if (!this->delegate(FalseExpr))
2293       return false;
2294     if (!S.destroyLocals())
2295       return false;
2296   }
2297 
2298   this->fallthrough(LabelEnd);
2299   this->emitLabel(LabelEnd);
2300 
2301   return true;
2302 }
2303 
2304 template <class Emitter>
2305 bool Compiler<Emitter>::VisitStringLiteral(const StringLiteral *E) {
2306   if (DiscardResult)
2307     return true;
2308 
2309   if (!Initializing) {
2310     unsigned StringIndex = P.createGlobalString(E);
2311     return this->emitGetPtrGlobal(StringIndex, E);
2312   }
2313 
2314   // We are initializing an array on the stack.
2315   const ConstantArrayType *CAT =
2316       Ctx.getASTContext().getAsConstantArrayType(E->getType());
2317   assert(CAT && "a string literal that's not a constant array?");
2318 
2319   // If the initializer string is too long, a diagnostic has already been
2320   // emitted. Read only the array length from the string literal.
2321   unsigned ArraySize = CAT->getZExtSize();
2322   unsigned N = std::min(ArraySize, E->getLength());
2323   size_t CharWidth = E->getCharByteWidth();
2324 
2325   for (unsigned I = 0; I != N; ++I) {
2326     uint32_t CodeUnit = E->getCodeUnit(I);
2327 
2328     if (CharWidth == 1) {
2329       this->emitConstSint8(CodeUnit, E);
2330       this->emitInitElemSint8(I, E);
2331     } else if (CharWidth == 2) {
2332       this->emitConstUint16(CodeUnit, E);
2333       this->emitInitElemUint16(I, E);
2334     } else if (CharWidth == 4) {
2335       this->emitConstUint32(CodeUnit, E);
2336       this->emitInitElemUint32(I, E);
2337     } else {
2338       llvm_unreachable("unsupported character width");
2339     }
2340   }
2341 
2342   // Fill up the rest of the char array with NUL bytes.
2343   for (unsigned I = N; I != ArraySize; ++I) {
2344     if (CharWidth == 1) {
2345       this->emitConstSint8(0, E);
2346       this->emitInitElemSint8(I, E);
2347     } else if (CharWidth == 2) {
2348       this->emitConstUint16(0, E);
2349       this->emitInitElemUint16(I, E);
2350     } else if (CharWidth == 4) {
2351       this->emitConstUint32(0, E);
2352       this->emitInitElemUint32(I, E);
2353     } else {
2354       llvm_unreachable("unsupported character width");
2355     }
2356   }
2357 
2358   return true;
2359 }
2360 
2361 template <class Emitter>
2362 bool Compiler<Emitter>::VisitObjCStringLiteral(const ObjCStringLiteral *E) {
2363   if (DiscardResult)
2364     return true;
2365   return this->emitDummyPtr(E, E);
2366 }
2367 
2368 template <class Emitter>
2369 bool Compiler<Emitter>::VisitObjCEncodeExpr(const ObjCEncodeExpr *E) {
2370   auto &A = Ctx.getASTContext();
2371   std::string Str;
2372   A.getObjCEncodingForType(E->getEncodedType(), Str);
2373   StringLiteral *SL =
2374       StringLiteral::Create(A, Str, StringLiteralKind::Ordinary,
2375                             /*Pascal=*/false, E->getType(), E->getAtLoc());
2376   return this->delegate(SL);
2377 }
2378 
2379 template <class Emitter>
2380 bool Compiler<Emitter>::VisitSYCLUniqueStableNameExpr(
2381     const SYCLUniqueStableNameExpr *E) {
2382   if (DiscardResult)
2383     return true;
2384 
2385   assert(!Initializing);
2386 
2387   auto &A = Ctx.getASTContext();
2388   std::string ResultStr = E->ComputeName(A);
2389 
2390   QualType CharTy = A.CharTy.withConst();
2391   APInt Size(A.getTypeSize(A.getSizeType()), ResultStr.size() + 1);
2392   QualType ArrayTy = A.getConstantArrayType(CharTy, Size, nullptr,
2393                                             ArraySizeModifier::Normal, 0);
2394 
2395   StringLiteral *SL =
2396       StringLiteral::Create(A, ResultStr, StringLiteralKind::Ordinary,
2397                             /*Pascal=*/false, ArrayTy, E->getLocation());
2398 
2399   unsigned StringIndex = P.createGlobalString(SL);
2400   return this->emitGetPtrGlobal(StringIndex, E);
2401 }
2402 
2403 template <class Emitter>
2404 bool Compiler<Emitter>::VisitCharacterLiteral(const CharacterLiteral *E) {
2405   if (DiscardResult)
2406     return true;
2407   return this->emitConst(E->getValue(), E);
2408 }
2409 
2410 template <class Emitter>
2411 bool Compiler<Emitter>::VisitFloatCompoundAssignOperator(
2412     const CompoundAssignOperator *E) {
2413 
2414   const Expr *LHS = E->getLHS();
2415   const Expr *RHS = E->getRHS();
2416   QualType LHSType = LHS->getType();
2417   QualType LHSComputationType = E->getComputationLHSType();
2418   QualType ResultType = E->getComputationResultType();
2419   std::optional<PrimType> LT = classify(LHSComputationType);
2420   std::optional<PrimType> RT = classify(ResultType);
2421 
2422   assert(ResultType->isFloatingType());
2423 
2424   if (!LT || !RT)
2425     return false;
2426 
2427   PrimType LHST = classifyPrim(LHSType);
2428 
2429   // C++17 onwards require that we evaluate the RHS first.
2430   // Compute RHS and save it in a temporary variable so we can
2431   // load it again later.
2432   if (!visit(RHS))
2433     return false;
2434 
2435   unsigned TempOffset = this->allocateLocalPrimitive(E, *RT, /*IsConst=*/true);
2436   if (!this->emitSetLocal(*RT, TempOffset, E))
2437     return false;
2438 
2439   // First, visit LHS.
2440   if (!visit(LHS))
2441     return false;
2442   if (!this->emitLoad(LHST, E))
2443     return false;
2444 
2445   // If necessary, convert LHS to its computation type.
2446   if (!this->emitPrimCast(LHST, classifyPrim(LHSComputationType),
2447                           LHSComputationType, E))
2448     return false;
2449 
2450   // Now load RHS.
2451   if (!this->emitGetLocal(*RT, TempOffset, E))
2452     return false;
2453 
2454   switch (E->getOpcode()) {
2455   case BO_AddAssign:
2456     if (!this->emitAddf(getFPOptions(E), E))
2457       return false;
2458     break;
2459   case BO_SubAssign:
2460     if (!this->emitSubf(getFPOptions(E), E))
2461       return false;
2462     break;
2463   case BO_MulAssign:
2464     if (!this->emitMulf(getFPOptions(E), E))
2465       return false;
2466     break;
2467   case BO_DivAssign:
2468     if (!this->emitDivf(getFPOptions(E), E))
2469       return false;
2470     break;
2471   default:
2472     return false;
2473   }
2474 
2475   if (!this->emitPrimCast(classifyPrim(ResultType), LHST, LHS->getType(), E))
2476     return false;
2477 
2478   if (DiscardResult)
2479     return this->emitStorePop(LHST, E);
2480   return this->emitStore(LHST, E);
2481 }
2482 
2483 template <class Emitter>
2484 bool Compiler<Emitter>::VisitPointerCompoundAssignOperator(
2485     const CompoundAssignOperator *E) {
2486   BinaryOperatorKind Op = E->getOpcode();
2487   const Expr *LHS = E->getLHS();
2488   const Expr *RHS = E->getRHS();
2489   std::optional<PrimType> LT = classify(LHS->getType());
2490   std::optional<PrimType> RT = classify(RHS->getType());
2491 
2492   if (Op != BO_AddAssign && Op != BO_SubAssign)
2493     return false;
2494 
2495   if (!LT || !RT)
2496     return false;
2497 
2498   if (!visit(LHS))
2499     return false;
2500 
2501   if (!this->emitLoad(*LT, LHS))
2502     return false;
2503 
2504   if (!visit(RHS))
2505     return false;
2506 
2507   if (Op == BO_AddAssign) {
2508     if (!this->emitAddOffset(*RT, E))
2509       return false;
2510   } else {
2511     if (!this->emitSubOffset(*RT, E))
2512       return false;
2513   }
2514 
2515   if (DiscardResult)
2516     return this->emitStorePopPtr(E);
2517   return this->emitStorePtr(E);
2518 }
2519 
2520 template <class Emitter>
2521 bool Compiler<Emitter>::VisitCompoundAssignOperator(
2522     const CompoundAssignOperator *E) {
2523   if (E->getType()->isVectorType())
2524     return VisitVectorBinOp(E);
2525 
2526   const Expr *LHS = E->getLHS();
2527   const Expr *RHS = E->getRHS();
2528   std::optional<PrimType> LHSComputationT =
2529       classify(E->getComputationLHSType());
2530   std::optional<PrimType> LT = classify(LHS->getType());
2531   std::optional<PrimType> RT = classify(RHS->getType());
2532   std::optional<PrimType> ResultT = classify(E->getType());
2533 
2534   if (!Ctx.getLangOpts().CPlusPlus14)
2535     return this->visit(RHS) && this->visit(LHS) && this->emitError(E);
2536 
2537   if (!LT || !RT || !ResultT || !LHSComputationT)
2538     return false;
2539 
2540   // Handle floating point operations separately here, since they
2541   // require special care.
2542 
2543   if (ResultT == PT_Float || RT == PT_Float)
2544     return VisitFloatCompoundAssignOperator(E);
2545 
2546   if (E->getType()->isPointerType())
2547     return VisitPointerCompoundAssignOperator(E);
2548 
2549   assert(!E->getType()->isPointerType() && "Handled above");
2550   assert(!E->getType()->isFloatingType() && "Handled above");
2551 
2552   // C++17 onwards require that we evaluate the RHS first.
2553   // Compute RHS and save it in a temporary variable so we can
2554   // load it again later.
2555   // FIXME: Compound assignments are unsequenced in C, so we might
2556   //   have to figure out how to reject them.
2557   if (!visit(RHS))
2558     return false;
2559 
2560   unsigned TempOffset = this->allocateLocalPrimitive(E, *RT, /*IsConst=*/true);
2561 
2562   if (!this->emitSetLocal(*RT, TempOffset, E))
2563     return false;
2564 
2565   // Get LHS pointer, load its value and cast it to the
2566   // computation type if necessary.
2567   if (!visit(LHS))
2568     return false;
2569   if (!this->emitLoad(*LT, E))
2570     return false;
2571   if (LT != LHSComputationT) {
2572     if (!this->emitCast(*LT, *LHSComputationT, E))
2573       return false;
2574   }
2575 
2576   // Get the RHS value on the stack.
2577   if (!this->emitGetLocal(*RT, TempOffset, E))
2578     return false;
2579 
2580   // Perform operation.
2581   switch (E->getOpcode()) {
2582   case BO_AddAssign:
2583     if (!this->emitAdd(*LHSComputationT, E))
2584       return false;
2585     break;
2586   case BO_SubAssign:
2587     if (!this->emitSub(*LHSComputationT, E))
2588       return false;
2589     break;
2590   case BO_MulAssign:
2591     if (!this->emitMul(*LHSComputationT, E))
2592       return false;
2593     break;
2594   case BO_DivAssign:
2595     if (!this->emitDiv(*LHSComputationT, E))
2596       return false;
2597     break;
2598   case BO_RemAssign:
2599     if (!this->emitRem(*LHSComputationT, E))
2600       return false;
2601     break;
2602   case BO_ShlAssign:
2603     if (!this->emitShl(*LHSComputationT, *RT, E))
2604       return false;
2605     break;
2606   case BO_ShrAssign:
2607     if (!this->emitShr(*LHSComputationT, *RT, E))
2608       return false;
2609     break;
2610   case BO_AndAssign:
2611     if (!this->emitBitAnd(*LHSComputationT, E))
2612       return false;
2613     break;
2614   case BO_XorAssign:
2615     if (!this->emitBitXor(*LHSComputationT, E))
2616       return false;
2617     break;
2618   case BO_OrAssign:
2619     if (!this->emitBitOr(*LHSComputationT, E))
2620       return false;
2621     break;
2622   default:
2623     llvm_unreachable("Unimplemented compound assign operator");
2624   }
2625 
2626   // And now cast from LHSComputationT to ResultT.
2627   if (ResultT != LHSComputationT) {
2628     if (!this->emitCast(*LHSComputationT, *ResultT, E))
2629       return false;
2630   }
2631 
2632   // And store the result in LHS.
2633   if (DiscardResult) {
2634     if (LHS->refersToBitField())
2635       return this->emitStoreBitFieldPop(*ResultT, E);
2636     return this->emitStorePop(*ResultT, E);
2637   }
2638   if (LHS->refersToBitField())
2639     return this->emitStoreBitField(*ResultT, E);
2640   return this->emitStore(*ResultT, E);
2641 }
2642 
2643 template <class Emitter>
2644 bool Compiler<Emitter>::VisitExprWithCleanups(const ExprWithCleanups *E) {
2645   LocalScope<Emitter> ES(this);
2646   const Expr *SubExpr = E->getSubExpr();
2647 
2648   return this->delegate(SubExpr) && ES.destroyLocals(E);
2649 }
2650 
2651 template <class Emitter>
2652 bool Compiler<Emitter>::VisitMaterializeTemporaryExpr(
2653     const MaterializeTemporaryExpr *E) {
2654   const Expr *SubExpr = E->getSubExpr();
2655 
2656   if (Initializing) {
2657     // We already have a value, just initialize that.
2658     return this->delegate(SubExpr);
2659   }
2660   // If we don't end up using the materialized temporary anyway, don't
2661   // bother creating it.
2662   if (DiscardResult)
2663     return this->discard(SubExpr);
2664 
2665   // When we're initializing a global variable *or* the storage duration of
2666   // the temporary is explicitly static, create a global variable.
2667   std::optional<PrimType> SubExprT = classify(SubExpr);
2668   bool IsStatic = E->getStorageDuration() == SD_Static;
2669   if (IsStatic) {
2670     std::optional<unsigned> GlobalIndex = P.createGlobal(E);
2671     if (!GlobalIndex)
2672       return false;
2673 
2674     const LifetimeExtendedTemporaryDecl *TempDecl =
2675         E->getLifetimeExtendedTemporaryDecl();
2676     if (IsStatic)
2677       assert(TempDecl);
2678 
2679     if (SubExprT) {
2680       if (!this->visit(SubExpr))
2681         return false;
2682       if (IsStatic) {
2683         if (!this->emitInitGlobalTemp(*SubExprT, *GlobalIndex, TempDecl, E))
2684           return false;
2685       } else {
2686         if (!this->emitInitGlobal(*SubExprT, *GlobalIndex, E))
2687           return false;
2688       }
2689       return this->emitGetPtrGlobal(*GlobalIndex, E);
2690     }
2691 
2692     if (!this->checkLiteralType(SubExpr))
2693       return false;
2694     // Non-primitive values.
2695     if (!this->emitGetPtrGlobal(*GlobalIndex, E))
2696       return false;
2697     if (!this->visitInitializer(SubExpr))
2698       return false;
2699     if (IsStatic)
2700       return this->emitInitGlobalTempComp(TempDecl, E);
2701     return true;
2702   }
2703 
2704   // For everyhing else, use local variables.
2705   if (SubExprT) {
2706     unsigned LocalIndex = allocateLocalPrimitive(E, *SubExprT, /*IsConst=*/true,
2707                                                  /*IsExtended=*/true);
2708     if (!this->visit(SubExpr))
2709       return false;
2710     if (!this->emitSetLocal(*SubExprT, LocalIndex, E))
2711       return false;
2712     return this->emitGetPtrLocal(LocalIndex, E);
2713   } else {
2714 
2715     if (!this->checkLiteralType(SubExpr))
2716       return false;
2717 
2718     const Expr *Inner = E->getSubExpr()->skipRValueSubobjectAdjustments();
2719     if (std::optional<unsigned> LocalIndex =
2720             allocateLocal(E, Inner->getType(), E->getExtendingDecl())) {
2721       InitLinkScope<Emitter> ILS(this, InitLink::Temp(*LocalIndex));
2722       if (!this->emitGetPtrLocal(*LocalIndex, E))
2723         return false;
2724       return this->visitInitializer(SubExpr) && this->emitFinishInit(E);
2725     }
2726   }
2727   return false;
2728 }
2729 
2730 template <class Emitter>
2731 bool Compiler<Emitter>::VisitCXXBindTemporaryExpr(
2732     const CXXBindTemporaryExpr *E) {
2733   return this->delegate(E->getSubExpr());
2734 }
2735 
2736 template <class Emitter>
2737 bool Compiler<Emitter>::VisitCompoundLiteralExpr(const CompoundLiteralExpr *E) {
2738   const Expr *Init = E->getInitializer();
2739   if (DiscardResult)
2740     return this->discard(Init);
2741 
2742   if (Initializing) {
2743     // We already have a value, just initialize that.
2744     return this->visitInitializer(Init) && this->emitFinishInit(E);
2745   }
2746 
2747   std::optional<PrimType> T = classify(E->getType());
2748   if (E->isFileScope()) {
2749     // Avoid creating a variable if this is a primitive RValue anyway.
2750     if (T && !E->isLValue())
2751       return this->delegate(Init);
2752 
2753     if (std::optional<unsigned> GlobalIndex = P.createGlobal(E)) {
2754       if (!this->emitGetPtrGlobal(*GlobalIndex, E))
2755         return false;
2756 
2757       if (T) {
2758         if (!this->visit(Init))
2759           return false;
2760         return this->emitInitGlobal(*T, *GlobalIndex, E);
2761       }
2762 
2763       return this->visitInitializer(Init) && this->emitFinishInit(E);
2764     }
2765 
2766     return false;
2767   }
2768 
2769   // Otherwise, use a local variable.
2770   if (T && !E->isLValue()) {
2771     // For primitive types, we just visit the initializer.
2772     return this->delegate(Init);
2773   } else {
2774     unsigned LocalIndex;
2775 
2776     if (T)
2777       LocalIndex = this->allocateLocalPrimitive(Init, *T, false, false);
2778     else if (std::optional<unsigned> MaybeIndex = this->allocateLocal(Init))
2779       LocalIndex = *MaybeIndex;
2780     else
2781       return false;
2782 
2783     if (!this->emitGetPtrLocal(LocalIndex, E))
2784       return false;
2785 
2786     if (T) {
2787       if (!this->visit(Init)) {
2788         return false;
2789       }
2790       return this->emitInit(*T, E);
2791     } else {
2792       if (!this->visitInitializer(Init) || !this->emitFinishInit(E))
2793         return false;
2794     }
2795     return true;
2796   }
2797 
2798   return false;
2799 }
2800 
2801 template <class Emitter>
2802 bool Compiler<Emitter>::VisitTypeTraitExpr(const TypeTraitExpr *E) {
2803   if (DiscardResult)
2804     return true;
2805   if (E->getType()->isBooleanType())
2806     return this->emitConstBool(E->getValue(), E);
2807   return this->emitConst(E->getValue(), E);
2808 }
2809 
2810 template <class Emitter>
2811 bool Compiler<Emitter>::VisitArrayTypeTraitExpr(const ArrayTypeTraitExpr *E) {
2812   if (DiscardResult)
2813     return true;
2814   return this->emitConst(E->getValue(), E);
2815 }
2816 
2817 template <class Emitter>
2818 bool Compiler<Emitter>::VisitLambdaExpr(const LambdaExpr *E) {
2819   if (DiscardResult)
2820     return true;
2821 
2822   assert(Initializing);
2823   const Record *R = P.getOrCreateRecord(E->getLambdaClass());
2824 
2825   auto *CaptureInitIt = E->capture_init_begin();
2826   // Initialize all fields (which represent lambda captures) of the
2827   // record with their initializers.
2828   for (const Record::Field &F : R->fields()) {
2829     const Expr *Init = *CaptureInitIt;
2830     ++CaptureInitIt;
2831 
2832     if (!Init)
2833       continue;
2834 
2835     if (std::optional<PrimType> T = classify(Init)) {
2836       if (!this->visit(Init))
2837         return false;
2838 
2839       if (!this->emitInitField(*T, F.Offset, E))
2840         return false;
2841     } else {
2842       if (!this->emitGetPtrField(F.Offset, E))
2843         return false;
2844 
2845       if (!this->visitInitializer(Init))
2846         return false;
2847 
2848       if (!this->emitPopPtr(E))
2849         return false;
2850     }
2851   }
2852 
2853   return true;
2854 }
2855 
2856 template <class Emitter>
2857 bool Compiler<Emitter>::VisitPredefinedExpr(const PredefinedExpr *E) {
2858   if (DiscardResult)
2859     return true;
2860 
2861   if (!Initializing) {
2862     unsigned StringIndex = P.createGlobalString(E->getFunctionName(), E);
2863     return this->emitGetPtrGlobal(StringIndex, E);
2864   }
2865 
2866   return this->delegate(E->getFunctionName());
2867 }
2868 
2869 template <class Emitter>
2870 bool Compiler<Emitter>::VisitCXXThrowExpr(const CXXThrowExpr *E) {
2871   if (E->getSubExpr() && !this->discard(E->getSubExpr()))
2872     return false;
2873 
2874   return this->emitInvalid(E);
2875 }
2876 
2877 template <class Emitter>
2878 bool Compiler<Emitter>::VisitCXXReinterpretCastExpr(
2879     const CXXReinterpretCastExpr *E) {
2880   const Expr *SubExpr = E->getSubExpr();
2881 
2882   std::optional<PrimType> FromT = classify(SubExpr);
2883   std::optional<PrimType> ToT = classify(E);
2884 
2885   if (!FromT || !ToT)
2886     return this->emitInvalidCast(CastKind::Reinterpret, /*Fatal=*/true, E);
2887 
2888   if (FromT == PT_Ptr || ToT == PT_Ptr) {
2889     // Both types could be PT_Ptr because their expressions are glvalues.
2890     std::optional<PrimType> PointeeFromT;
2891     if (SubExpr->getType()->isPointerOrReferenceType())
2892       PointeeFromT = classify(SubExpr->getType()->getPointeeType());
2893     else
2894       PointeeFromT = classify(SubExpr->getType());
2895 
2896     std::optional<PrimType> PointeeToT;
2897     if (E->getType()->isPointerOrReferenceType())
2898       PointeeToT = classify(E->getType()->getPointeeType());
2899     else
2900       PointeeToT = classify(E->getType());
2901 
2902     bool Fatal = true;
2903     if (PointeeToT && PointeeFromT) {
2904       if (isIntegralType(*PointeeFromT) && isIntegralType(*PointeeToT))
2905         Fatal = false;
2906     }
2907 
2908     if (!this->emitInvalidCast(CastKind::Reinterpret, Fatal, E))
2909       return false;
2910 
2911     if (E->getCastKind() == CK_LValueBitCast)
2912       return this->delegate(SubExpr);
2913     return this->VisitCastExpr(E);
2914   }
2915 
2916   // Try to actually do the cast.
2917   bool Fatal = (ToT != FromT);
2918   if (!this->emitInvalidCast(CastKind::Reinterpret, Fatal, E))
2919     return false;
2920 
2921   return this->VisitCastExpr(E);
2922 }
2923 
2924 template <class Emitter>
2925 bool Compiler<Emitter>::VisitCXXNoexceptExpr(const CXXNoexceptExpr *E) {
2926   assert(E->getType()->isBooleanType());
2927 
2928   if (DiscardResult)
2929     return true;
2930   return this->emitConstBool(E->getValue(), E);
2931 }
2932 
2933 template <class Emitter>
2934 bool Compiler<Emitter>::VisitCXXConstructExpr(const CXXConstructExpr *E) {
2935   QualType T = E->getType();
2936   assert(!classify(T));
2937 
2938   if (T->isRecordType()) {
2939     const CXXConstructorDecl *Ctor = E->getConstructor();
2940 
2941     // Trivial copy/move constructor. Avoid copy.
2942     if (Ctor->isDefaulted() && Ctor->isCopyOrMoveConstructor() &&
2943         Ctor->isTrivial() &&
2944         E->getArg(0)->isTemporaryObject(Ctx.getASTContext(),
2945                                         T->getAsCXXRecordDecl()))
2946       return this->visitInitializer(E->getArg(0));
2947 
2948     // If we're discarding a construct expression, we still need
2949     // to allocate a variable and call the constructor and destructor.
2950     if (DiscardResult) {
2951       if (Ctor->isTrivial())
2952         return true;
2953       assert(!Initializing);
2954       std::optional<unsigned> LocalIndex = allocateLocal(E);
2955 
2956       if (!LocalIndex)
2957         return false;
2958 
2959       if (!this->emitGetPtrLocal(*LocalIndex, E))
2960         return false;
2961     }
2962 
2963     // Zero initialization.
2964     if (E->requiresZeroInitialization()) {
2965       const Record *R = getRecord(E->getType());
2966 
2967       if (!this->visitZeroRecordInitializer(R, E))
2968         return false;
2969 
2970       // If the constructor is trivial anyway, we're done.
2971       if (Ctor->isTrivial())
2972         return true;
2973     }
2974 
2975     const Function *Func = getFunction(Ctor);
2976 
2977     if (!Func)
2978       return false;
2979 
2980     assert(Func->hasThisPointer());
2981     assert(!Func->hasRVO());
2982 
2983     //  The This pointer is already on the stack because this is an initializer,
2984     //  but we need to dup() so the call() below has its own copy.
2985     if (!this->emitDupPtr(E))
2986       return false;
2987 
2988     // Constructor arguments.
2989     for (const auto *Arg : E->arguments()) {
2990       if (!this->visit(Arg))
2991         return false;
2992     }
2993 
2994     if (Func->isVariadic()) {
2995       uint32_t VarArgSize = 0;
2996       unsigned NumParams = Func->getNumWrittenParams();
2997       for (unsigned I = NumParams, N = E->getNumArgs(); I != N; ++I) {
2998         VarArgSize +=
2999             align(primSize(classify(E->getArg(I)->getType()).value_or(PT_Ptr)));
3000       }
3001       if (!this->emitCallVar(Func, VarArgSize, E))
3002         return false;
3003     } else {
3004       if (!this->emitCall(Func, 0, E)) {
3005         // When discarding, we don't need the result anyway, so clean up
3006         // the instance dup we did earlier in case surrounding code wants
3007         // to keep evaluating.
3008         if (DiscardResult)
3009           (void)this->emitPopPtr(E);
3010         return false;
3011       }
3012     }
3013 
3014     if (DiscardResult)
3015       return this->emitPopPtr(E);
3016     return this->emitFinishInit(E);
3017   }
3018 
3019   if (T->isArrayType()) {
3020     const ConstantArrayType *CAT =
3021         Ctx.getASTContext().getAsConstantArrayType(E->getType());
3022     if (!CAT)
3023       return false;
3024 
3025     size_t NumElems = CAT->getZExtSize();
3026     const Function *Func = getFunction(E->getConstructor());
3027     if (!Func || !Func->isConstexpr())
3028       return false;
3029 
3030     // FIXME(perf): We're calling the constructor once per array element here,
3031     //   in the old intepreter we had a special-case for trivial constructors.
3032     for (size_t I = 0; I != NumElems; ++I) {
3033       if (!this->emitConstUint64(I, E))
3034         return false;
3035       if (!this->emitArrayElemPtrUint64(E))
3036         return false;
3037 
3038       // Constructor arguments.
3039       for (const auto *Arg : E->arguments()) {
3040         if (!this->visit(Arg))
3041           return false;
3042       }
3043 
3044       if (!this->emitCall(Func, 0, E))
3045         return false;
3046     }
3047     return true;
3048   }
3049 
3050   return false;
3051 }
3052 
3053 template <class Emitter>
3054 bool Compiler<Emitter>::VisitSourceLocExpr(const SourceLocExpr *E) {
3055   if (DiscardResult)
3056     return true;
3057 
3058   const APValue Val =
3059       E->EvaluateInContext(Ctx.getASTContext(), SourceLocDefaultExpr);
3060 
3061   // Things like __builtin_LINE().
3062   if (E->getType()->isIntegerType()) {
3063     assert(Val.isInt());
3064     const APSInt &I = Val.getInt();
3065     return this->emitConst(I, E);
3066   }
3067   // Otherwise, the APValue is an LValue, with only one element.
3068   // Theoretically, we don't need the APValue at all of course.
3069   assert(E->getType()->isPointerType());
3070   assert(Val.isLValue());
3071   const APValue::LValueBase &Base = Val.getLValueBase();
3072   if (const Expr *LValueExpr = Base.dyn_cast<const Expr *>())
3073     return this->visit(LValueExpr);
3074 
3075   // Otherwise, we have a decl (which is the case for
3076   // __builtin_source_location).
3077   assert(Base.is<const ValueDecl *>());
3078   assert(Val.getLValuePath().size() == 0);
3079   const auto *BaseDecl = Base.dyn_cast<const ValueDecl *>();
3080   assert(BaseDecl);
3081 
3082   auto *UGCD = cast<UnnamedGlobalConstantDecl>(BaseDecl);
3083 
3084   std::optional<unsigned> GlobalIndex = P.getOrCreateGlobal(UGCD);
3085   if (!GlobalIndex)
3086     return false;
3087 
3088   if (!this->emitGetPtrGlobal(*GlobalIndex, E))
3089     return false;
3090 
3091   const Record *R = getRecord(E->getType());
3092   const APValue &V = UGCD->getValue();
3093   for (unsigned I = 0, N = R->getNumFields(); I != N; ++I) {
3094     const Record::Field *F = R->getField(I);
3095     const APValue &FieldValue = V.getStructField(I);
3096 
3097     PrimType FieldT = classifyPrim(F->Decl->getType());
3098 
3099     if (!this->visitAPValue(FieldValue, FieldT, E))
3100       return false;
3101     if (!this->emitInitField(FieldT, F->Offset, E))
3102       return false;
3103   }
3104 
3105   // Leave the pointer to the global on the stack.
3106   return true;
3107 }
3108 
3109 template <class Emitter>
3110 bool Compiler<Emitter>::VisitOffsetOfExpr(const OffsetOfExpr *E) {
3111   unsigned N = E->getNumComponents();
3112   if (N == 0)
3113     return false;
3114 
3115   for (unsigned I = 0; I != N; ++I) {
3116     const OffsetOfNode &Node = E->getComponent(I);
3117     if (Node.getKind() == OffsetOfNode::Array) {
3118       const Expr *ArrayIndexExpr = E->getIndexExpr(Node.getArrayExprIndex());
3119       PrimType IndexT = classifyPrim(ArrayIndexExpr->getType());
3120 
3121       if (DiscardResult) {
3122         if (!this->discard(ArrayIndexExpr))
3123           return false;
3124         continue;
3125       }
3126 
3127       if (!this->visit(ArrayIndexExpr))
3128         return false;
3129       // Cast to Sint64.
3130       if (IndexT != PT_Sint64) {
3131         if (!this->emitCast(IndexT, PT_Sint64, E))
3132           return false;
3133       }
3134     }
3135   }
3136 
3137   if (DiscardResult)
3138     return true;
3139 
3140   PrimType T = classifyPrim(E->getType());
3141   return this->emitOffsetOf(T, E, E);
3142 }
3143 
3144 template <class Emitter>
3145 bool Compiler<Emitter>::VisitCXXScalarValueInitExpr(
3146     const CXXScalarValueInitExpr *E) {
3147   QualType Ty = E->getType();
3148 
3149   if (DiscardResult || Ty->isVoidType())
3150     return true;
3151 
3152   if (std::optional<PrimType> T = classify(Ty))
3153     return this->visitZeroInitializer(*T, Ty, E);
3154 
3155   if (const auto *CT = Ty->getAs<ComplexType>()) {
3156     if (!Initializing) {
3157       std::optional<unsigned> LocalIndex = allocateLocal(E);
3158       if (!LocalIndex)
3159         return false;
3160       if (!this->emitGetPtrLocal(*LocalIndex, E))
3161         return false;
3162     }
3163 
3164     // Initialize both fields to 0.
3165     QualType ElemQT = CT->getElementType();
3166     PrimType ElemT = classifyPrim(ElemQT);
3167 
3168     for (unsigned I = 0; I != 2; ++I) {
3169       if (!this->visitZeroInitializer(ElemT, ElemQT, E))
3170         return false;
3171       if (!this->emitInitElem(ElemT, I, E))
3172         return false;
3173     }
3174     return true;
3175   }
3176 
3177   if (const auto *VT = Ty->getAs<VectorType>()) {
3178     // FIXME: Code duplication with the _Complex case above.
3179     if (!Initializing) {
3180       std::optional<unsigned> LocalIndex = allocateLocal(E);
3181       if (!LocalIndex)
3182         return false;
3183       if (!this->emitGetPtrLocal(*LocalIndex, E))
3184         return false;
3185     }
3186 
3187     // Initialize all fields to 0.
3188     QualType ElemQT = VT->getElementType();
3189     PrimType ElemT = classifyPrim(ElemQT);
3190 
3191     for (unsigned I = 0, N = VT->getNumElements(); I != N; ++I) {
3192       if (!this->visitZeroInitializer(ElemT, ElemQT, E))
3193         return false;
3194       if (!this->emitInitElem(ElemT, I, E))
3195         return false;
3196     }
3197     return true;
3198   }
3199 
3200   return false;
3201 }
3202 
3203 template <class Emitter>
3204 bool Compiler<Emitter>::VisitSizeOfPackExpr(const SizeOfPackExpr *E) {
3205   return this->emitConst(E->getPackLength(), E);
3206 }
3207 
3208 template <class Emitter>
3209 bool Compiler<Emitter>::VisitGenericSelectionExpr(
3210     const GenericSelectionExpr *E) {
3211   return this->delegate(E->getResultExpr());
3212 }
3213 
3214 template <class Emitter>
3215 bool Compiler<Emitter>::VisitChooseExpr(const ChooseExpr *E) {
3216   return this->delegate(E->getChosenSubExpr());
3217 }
3218 
3219 template <class Emitter>
3220 bool Compiler<Emitter>::VisitObjCBoolLiteralExpr(const ObjCBoolLiteralExpr *E) {
3221   if (DiscardResult)
3222     return true;
3223 
3224   return this->emitConst(E->getValue(), E);
3225 }
3226 
3227 template <class Emitter>
3228 bool Compiler<Emitter>::VisitCXXInheritedCtorInitExpr(
3229     const CXXInheritedCtorInitExpr *E) {
3230   const CXXConstructorDecl *Ctor = E->getConstructor();
3231   assert(!Ctor->isTrivial() &&
3232          "Trivial CXXInheritedCtorInitExpr, implement. (possible?)");
3233   const Function *F = this->getFunction(Ctor);
3234   assert(F);
3235   assert(!F->hasRVO());
3236   assert(F->hasThisPointer());
3237 
3238   if (!this->emitDupPtr(SourceInfo{}))
3239     return false;
3240 
3241   // Forward all arguments of the current function (which should be a
3242   // constructor itself) to the inherited ctor.
3243   // This is necessary because the calling code has pushed the pointer
3244   // of the correct base for  us already, but the arguments need
3245   // to come after.
3246   unsigned Offset = align(primSize(PT_Ptr)); // instance pointer.
3247   for (const ParmVarDecl *PD : Ctor->parameters()) {
3248     PrimType PT = this->classify(PD->getType()).value_or(PT_Ptr);
3249 
3250     if (!this->emitGetParam(PT, Offset, E))
3251       return false;
3252     Offset += align(primSize(PT));
3253   }
3254 
3255   return this->emitCall(F, 0, E);
3256 }
3257 
3258 template <class Emitter>
3259 bool Compiler<Emitter>::VisitCXXNewExpr(const CXXNewExpr *E) {
3260   assert(classifyPrim(E->getType()) == PT_Ptr);
3261   const Expr *Init = E->getInitializer();
3262   QualType ElementType = E->getAllocatedType();
3263   std::optional<PrimType> ElemT = classify(ElementType);
3264   unsigned PlacementArgs = E->getNumPlacementArgs();
3265   const FunctionDecl *OperatorNew = E->getOperatorNew();
3266   const Expr *PlacementDest = nullptr;
3267   bool IsNoThrow = false;
3268 
3269   if (PlacementArgs != 0) {
3270     // FIXME: There is no restriction on this, but it's not clear that any
3271     // other form makes any sense. We get here for cases such as:
3272     //
3273     //   new (std::align_val_t{N}) X(int)
3274     //
3275     // (which should presumably be valid only if N is a multiple of
3276     // alignof(int), and in any case can't be deallocated unless N is
3277     // alignof(X) and X has new-extended alignment).
3278     if (PlacementArgs == 1) {
3279       const Expr *Arg1 = E->getPlacementArg(0);
3280       if (Arg1->getType()->isNothrowT()) {
3281         if (!this->discard(Arg1))
3282           return false;
3283         IsNoThrow = true;
3284       } else {
3285         // Invalid unless we have C++26 or are in a std:: function.
3286         if (!this->emitInvalidNewDeleteExpr(E, E))
3287           return false;
3288 
3289         // If we have a placement-new destination, we'll later use that instead
3290         // of allocating.
3291         if (OperatorNew->isReservedGlobalPlacementOperator())
3292           PlacementDest = Arg1;
3293       }
3294     } else {
3295       // Always invalid.
3296       return this->emitInvalid(E);
3297     }
3298   } else if (!OperatorNew->isReplaceableGlobalAllocationFunction())
3299     return this->emitInvalidNewDeleteExpr(E, E);
3300 
3301   const Descriptor *Desc;
3302   if (!PlacementDest) {
3303     if (ElemT) {
3304       if (E->isArray())
3305         Desc = nullptr; // We're not going to use it in this case.
3306       else
3307         Desc = P.createDescriptor(E, *ElemT, Descriptor::InlineDescMD,
3308                                   /*IsConst=*/false, /*IsTemporary=*/false,
3309                                   /*IsMutable=*/false);
3310     } else {
3311       Desc = P.createDescriptor(
3312           E, ElementType.getTypePtr(),
3313           E->isArray() ? std::nullopt : Descriptor::InlineDescMD,
3314           /*IsConst=*/false, /*IsTemporary=*/false, /*IsMutable=*/false, Init);
3315     }
3316   }
3317 
3318   if (E->isArray()) {
3319     std::optional<const Expr *> ArraySizeExpr = E->getArraySize();
3320     if (!ArraySizeExpr)
3321       return false;
3322 
3323     const Expr *Stripped = *ArraySizeExpr;
3324     for (; auto *ICE = dyn_cast<ImplicitCastExpr>(Stripped);
3325          Stripped = ICE->getSubExpr())
3326       if (ICE->getCastKind() != CK_NoOp &&
3327           ICE->getCastKind() != CK_IntegralCast)
3328         break;
3329 
3330     PrimType SizeT = classifyPrim(Stripped->getType());
3331 
3332     if (PlacementDest) {
3333       if (!this->visit(PlacementDest))
3334         return false;
3335       if (!this->visit(Stripped))
3336         return false;
3337       if (!this->emitCheckNewTypeMismatchArray(SizeT, E, E))
3338         return false;
3339     } else {
3340       if (!this->visit(Stripped))
3341         return false;
3342 
3343       if (ElemT) {
3344         // N primitive elements.
3345         if (!this->emitAllocN(SizeT, *ElemT, E, IsNoThrow, E))
3346           return false;
3347       } else {
3348         // N Composite elements.
3349         if (!this->emitAllocCN(SizeT, Desc, IsNoThrow, E))
3350           return false;
3351       }
3352     }
3353 
3354     if (Init && !this->visitInitializer(Init))
3355       return false;
3356 
3357   } else {
3358     if (PlacementDest) {
3359       if (!this->visit(PlacementDest))
3360         return false;
3361       if (!this->emitCheckNewTypeMismatch(E, E))
3362         return false;
3363     } else {
3364       // Allocate just one element.
3365       if (!this->emitAlloc(Desc, E))
3366         return false;
3367     }
3368 
3369     if (Init) {
3370       if (ElemT) {
3371         if (!this->visit(Init))
3372           return false;
3373 
3374         if (!this->emitInit(*ElemT, E))
3375           return false;
3376       } else {
3377         // Composite.
3378         if (!this->visitInitializer(Init))
3379           return false;
3380       }
3381     }
3382   }
3383 
3384   if (DiscardResult)
3385     return this->emitPopPtr(E);
3386 
3387   return true;
3388 }
3389 
3390 template <class Emitter>
3391 bool Compiler<Emitter>::VisitCXXDeleteExpr(const CXXDeleteExpr *E) {
3392   const Expr *Arg = E->getArgument();
3393 
3394   const FunctionDecl *OperatorDelete = E->getOperatorDelete();
3395 
3396   if (!OperatorDelete->isReplaceableGlobalAllocationFunction())
3397     return this->emitInvalidNewDeleteExpr(E, E);
3398 
3399   // Arg must be an lvalue.
3400   if (!this->visit(Arg))
3401     return false;
3402 
3403   return this->emitFree(E->isArrayForm(), E->isGlobalDelete(), E);
3404 }
3405 
3406 template <class Emitter>
3407 bool Compiler<Emitter>::VisitBlockExpr(const BlockExpr *E) {
3408   if (DiscardResult)
3409     return true;
3410 
3411   const Function *Func = nullptr;
3412   if (auto F = Compiler<ByteCodeEmitter>(Ctx, P).compileObjCBlock(E))
3413     Func = F;
3414 
3415   if (!Func)
3416     return false;
3417   return this->emitGetFnPtr(Func, E);
3418 }
3419 
3420 template <class Emitter>
3421 bool Compiler<Emitter>::VisitExpressionTraitExpr(const ExpressionTraitExpr *E) {
3422   assert(Ctx.getLangOpts().CPlusPlus);
3423   return this->emitConstBool(E->getValue(), E);
3424 }
3425 
3426 template <class Emitter>
3427 bool Compiler<Emitter>::VisitCXXUuidofExpr(const CXXUuidofExpr *E) {
3428   if (DiscardResult)
3429     return true;
3430   assert(!Initializing);
3431 
3432   const MSGuidDecl *GuidDecl = E->getGuidDecl();
3433   const RecordDecl *RD = GuidDecl->getType()->getAsRecordDecl();
3434   assert(RD);
3435   // If the definiton of the result type is incomplete, just return a dummy.
3436   // If (and when) that is read from, we will fail, but not now.
3437   if (!RD->isCompleteDefinition())
3438     return this->emitDummyPtr(GuidDecl, E);
3439 
3440   std::optional<unsigned> GlobalIndex = P.getOrCreateGlobal(GuidDecl);
3441   if (!GlobalIndex)
3442     return false;
3443   if (!this->emitGetPtrGlobal(*GlobalIndex, E))
3444     return false;
3445 
3446   assert(this->getRecord(E->getType()));
3447 
3448   const APValue &V = GuidDecl->getAsAPValue();
3449   if (V.getKind() == APValue::None)
3450     return true;
3451 
3452   assert(V.isStruct());
3453   assert(V.getStructNumBases() == 0);
3454   if (!this->visitAPValueInitializer(V, E))
3455     return false;
3456 
3457   return this->emitFinishInit(E);
3458 }
3459 
3460 template <class Emitter>
3461 bool Compiler<Emitter>::VisitRequiresExpr(const RequiresExpr *E) {
3462   assert(classifyPrim(E->getType()) == PT_Bool);
3463   if (DiscardResult)
3464     return true;
3465   return this->emitConstBool(E->isSatisfied(), E);
3466 }
3467 
3468 template <class Emitter>
3469 bool Compiler<Emitter>::VisitConceptSpecializationExpr(
3470     const ConceptSpecializationExpr *E) {
3471   assert(classifyPrim(E->getType()) == PT_Bool);
3472   if (DiscardResult)
3473     return true;
3474   return this->emitConstBool(E->isSatisfied(), E);
3475 }
3476 
3477 template <class Emitter>
3478 bool Compiler<Emitter>::VisitCXXRewrittenBinaryOperator(
3479     const CXXRewrittenBinaryOperator *E) {
3480   return this->delegate(E->getSemanticForm());
3481 }
3482 
3483 template <class Emitter>
3484 bool Compiler<Emitter>::VisitPseudoObjectExpr(const PseudoObjectExpr *E) {
3485 
3486   for (const Expr *SemE : E->semantics()) {
3487     if (auto *OVE = dyn_cast<OpaqueValueExpr>(SemE)) {
3488       if (SemE == E->getResultExpr())
3489         return false;
3490 
3491       if (OVE->isUnique())
3492         continue;
3493 
3494       if (!this->discard(OVE))
3495         return false;
3496     } else if (SemE == E->getResultExpr()) {
3497       if (!this->delegate(SemE))
3498         return false;
3499     } else {
3500       if (!this->discard(SemE))
3501         return false;
3502     }
3503   }
3504   return true;
3505 }
3506 
3507 template <class Emitter>
3508 bool Compiler<Emitter>::VisitPackIndexingExpr(const PackIndexingExpr *E) {
3509   return this->delegate(E->getSelectedExpr());
3510 }
3511 
3512 template <class Emitter>
3513 bool Compiler<Emitter>::VisitRecoveryExpr(const RecoveryExpr *E) {
3514   return this->emitError(E);
3515 }
3516 
3517 template <class Emitter>
3518 bool Compiler<Emitter>::VisitAddrLabelExpr(const AddrLabelExpr *E) {
3519   assert(E->getType()->isVoidPointerType());
3520 
3521   unsigned Offset = allocateLocalPrimitive(
3522       E->getLabel(), PT_Ptr, /*IsConst=*/true, /*IsExtended=*/false);
3523 
3524   return this->emitGetLocal(PT_Ptr, Offset, E);
3525 }
3526 
3527 template <class Emitter>
3528 bool Compiler<Emitter>::VisitConvertVectorExpr(const ConvertVectorExpr *E) {
3529   assert(Initializing);
3530   const auto *VT = E->getType()->castAs<VectorType>();
3531   QualType ElemType = VT->getElementType();
3532   PrimType ElemT = classifyPrim(ElemType);
3533   const Expr *Src = E->getSrcExpr();
3534   QualType SrcType = Src->getType();
3535   PrimType SrcElemT = classifyVectorElementType(SrcType);
3536 
3537   unsigned SrcOffset = this->allocateLocalPrimitive(Src, PT_Ptr, true, false);
3538   if (!this->visit(Src))
3539     return false;
3540   if (!this->emitSetLocal(PT_Ptr, SrcOffset, E))
3541     return false;
3542 
3543   for (unsigned I = 0; I != VT->getNumElements(); ++I) {
3544     if (!this->emitGetLocal(PT_Ptr, SrcOffset, E))
3545       return false;
3546     if (!this->emitArrayElemPop(SrcElemT, I, E))
3547       return false;
3548 
3549     // Cast to the desired result element type.
3550     if (SrcElemT != ElemT) {
3551       if (!this->emitPrimCast(SrcElemT, ElemT, ElemType, E))
3552         return false;
3553     } else if (ElemType->isFloatingType() && SrcType != ElemType) {
3554       const auto *TargetSemantics = &Ctx.getFloatSemantics(ElemType);
3555       if (!this->emitCastFP(TargetSemantics, getRoundingMode(E), E))
3556         return false;
3557     }
3558     if (!this->emitInitElem(ElemT, I, E))
3559       return false;
3560   }
3561 
3562   return true;
3563 }
3564 
3565 template <class Emitter>
3566 bool Compiler<Emitter>::VisitShuffleVectorExpr(const ShuffleVectorExpr *E) {
3567   assert(Initializing);
3568   assert(E->getNumSubExprs() > 2);
3569 
3570   const Expr *Vecs[] = {E->getExpr(0), E->getExpr(1)};
3571   const VectorType *VT = Vecs[0]->getType()->castAs<VectorType>();
3572   PrimType ElemT = classifyPrim(VT->getElementType());
3573   unsigned NumInputElems = VT->getNumElements();
3574   unsigned NumOutputElems = E->getNumSubExprs() - 2;
3575   assert(NumOutputElems > 0);
3576 
3577   // Save both input vectors to a local variable.
3578   unsigned VectorOffsets[2];
3579   for (unsigned I = 0; I != 2; ++I) {
3580     VectorOffsets[I] = this->allocateLocalPrimitive(
3581         Vecs[I], PT_Ptr, /*IsConst=*/true, /*IsExtended=*/false);
3582     if (!this->visit(Vecs[I]))
3583       return false;
3584     if (!this->emitSetLocal(PT_Ptr, VectorOffsets[I], E))
3585       return false;
3586   }
3587   for (unsigned I = 0; I != NumOutputElems; ++I) {
3588     APSInt ShuffleIndex = E->getShuffleMaskIdx(Ctx.getASTContext(), I);
3589     assert(ShuffleIndex >= -1);
3590     if (ShuffleIndex == -1)
3591       return this->emitInvalidShuffleVectorIndex(I, E);
3592 
3593     assert(ShuffleIndex < (NumInputElems * 2));
3594     if (!this->emitGetLocal(PT_Ptr,
3595                             VectorOffsets[ShuffleIndex >= NumInputElems], E))
3596       return false;
3597     unsigned InputVectorIndex = ShuffleIndex.getZExtValue() % NumInputElems;
3598     if (!this->emitArrayElemPop(ElemT, InputVectorIndex, E))
3599       return false;
3600 
3601     if (!this->emitInitElem(ElemT, I, E))
3602       return false;
3603   }
3604 
3605   return true;
3606 }
3607 
3608 template <class Emitter>
3609 bool Compiler<Emitter>::VisitExtVectorElementExpr(
3610     const ExtVectorElementExpr *E) {
3611   const Expr *Base = E->getBase();
3612   assert(
3613       Base->getType()->isVectorType() ||
3614       Base->getType()->getAs<PointerType>()->getPointeeType()->isVectorType());
3615 
3616   SmallVector<uint32_t, 4> Indices;
3617   E->getEncodedElementAccess(Indices);
3618 
3619   if (Indices.size() == 1) {
3620     if (!this->visit(Base))
3621       return false;
3622 
3623     if (E->isGLValue()) {
3624       if (!this->emitConstUint32(Indices[0], E))
3625         return false;
3626       return this->emitArrayElemPtrPop(PT_Uint32, E);
3627     }
3628     // Else, also load the value.
3629     return this->emitArrayElemPop(classifyPrim(E->getType()), Indices[0], E);
3630   }
3631 
3632   // Create a local variable for the base.
3633   unsigned BaseOffset = allocateLocalPrimitive(Base, PT_Ptr, /*IsConst=*/true,
3634                                                /*IsExtended=*/false);
3635   if (!this->visit(Base))
3636     return false;
3637   if (!this->emitSetLocal(PT_Ptr, BaseOffset, E))
3638     return false;
3639 
3640   // Now the vector variable for the return value.
3641   if (!Initializing) {
3642     std::optional<unsigned> ResultIndex;
3643     ResultIndex = allocateLocal(E);
3644     if (!ResultIndex)
3645       return false;
3646     if (!this->emitGetPtrLocal(*ResultIndex, E))
3647       return false;
3648   }
3649 
3650   assert(Indices.size() == E->getType()->getAs<VectorType>()->getNumElements());
3651 
3652   PrimType ElemT =
3653       classifyPrim(E->getType()->getAs<VectorType>()->getElementType());
3654   uint32_t DstIndex = 0;
3655   for (uint32_t I : Indices) {
3656     if (!this->emitGetLocal(PT_Ptr, BaseOffset, E))
3657       return false;
3658     if (!this->emitArrayElemPop(ElemT, I, E))
3659       return false;
3660     if (!this->emitInitElem(ElemT, DstIndex, E))
3661       return false;
3662     ++DstIndex;
3663   }
3664 
3665   // Leave the result pointer on the stack.
3666   assert(!DiscardResult);
3667   return true;
3668 }
3669 
3670 template <class Emitter>
3671 bool Compiler<Emitter>::VisitObjCBoxedExpr(const ObjCBoxedExpr *E) {
3672   const Expr *SubExpr = E->getSubExpr();
3673   if (!E->isExpressibleAsConstantInitializer())
3674     return this->discard(SubExpr) && this->emitInvalid(E);
3675 
3676   if (DiscardResult)
3677     return true;
3678 
3679   assert(classifyPrim(E) == PT_Ptr);
3680   return this->emitDummyPtr(E, E);
3681 }
3682 
3683 template <class Emitter>
3684 bool Compiler<Emitter>::VisitCXXStdInitializerListExpr(
3685     const CXXStdInitializerListExpr *E) {
3686   const Expr *SubExpr = E->getSubExpr();
3687   const ConstantArrayType *ArrayType =
3688       Ctx.getASTContext().getAsConstantArrayType(SubExpr->getType());
3689   const Record *R = getRecord(E->getType());
3690   assert(Initializing);
3691   assert(SubExpr->isGLValue());
3692 
3693   if (!this->visit(SubExpr))
3694     return false;
3695   if (!this->emitConstUint8(0, E))
3696     return false;
3697   if (!this->emitArrayElemPtrPopUint8(E))
3698     return false;
3699   if (!this->emitInitFieldPtr(R->getField(0u)->Offset, E))
3700     return false;
3701 
3702   PrimType SecondFieldT = classifyPrim(R->getField(1u)->Decl->getType());
3703   if (isIntegralType(SecondFieldT)) {
3704     if (!this->emitConst(static_cast<APSInt>(ArrayType->getSize()),
3705                          SecondFieldT, E))
3706       return false;
3707     return this->emitInitField(SecondFieldT, R->getField(1u)->Offset, E);
3708   }
3709   assert(SecondFieldT == PT_Ptr);
3710 
3711   if (!this->emitGetFieldPtr(R->getField(0u)->Offset, E))
3712     return false;
3713   if (!this->emitExpandPtr(E))
3714     return false;
3715   if (!this->emitConst(static_cast<APSInt>(ArrayType->getSize()), PT_Uint64, E))
3716     return false;
3717   if (!this->emitArrayElemPtrPop(PT_Uint64, E))
3718     return false;
3719   return this->emitInitFieldPtr(R->getField(1u)->Offset, E);
3720 }
3721 
3722 template <class Emitter>
3723 bool Compiler<Emitter>::VisitStmtExpr(const StmtExpr *E) {
3724   BlockScope<Emitter> BS(this);
3725   StmtExprScope<Emitter> SS(this);
3726 
3727   const CompoundStmt *CS = E->getSubStmt();
3728   const Stmt *Result = CS->getStmtExprResult();
3729   for (const Stmt *S : CS->body()) {
3730     if (S != Result) {
3731       if (!this->visitStmt(S))
3732         return false;
3733       continue;
3734     }
3735 
3736     assert(S == Result);
3737     if (const Expr *ResultExpr = dyn_cast<Expr>(S))
3738       return this->delegate(ResultExpr);
3739     return this->emitUnsupported(E);
3740   }
3741 
3742   return BS.destroyLocals();
3743 }
3744 
3745 template <class Emitter> bool Compiler<Emitter>::discard(const Expr *E) {
3746   OptionScope<Emitter> Scope(this, /*NewDiscardResult=*/true,
3747                              /*NewInitializing=*/false);
3748   return this->Visit(E);
3749 }
3750 
3751 template <class Emitter> bool Compiler<Emitter>::delegate(const Expr *E) {
3752   // We're basically doing:
3753   // OptionScope<Emitter> Scope(this, DicardResult, Initializing);
3754   // but that's unnecessary of course.
3755   return this->Visit(E);
3756 }
3757 
3758 template <class Emitter> bool Compiler<Emitter>::visit(const Expr *E) {
3759   if (E->getType().isNull())
3760     return false;
3761 
3762   if (E->getType()->isVoidType())
3763     return this->discard(E);
3764 
3765   // Create local variable to hold the return value.
3766   if (!E->isGLValue() && !E->getType()->isAnyComplexType() &&
3767       !classify(E->getType())) {
3768     std::optional<unsigned> LocalIndex = allocateLocal(E);
3769     if (!LocalIndex)
3770       return false;
3771 
3772     if (!this->emitGetPtrLocal(*LocalIndex, E))
3773       return false;
3774     return this->visitInitializer(E);
3775   }
3776 
3777   //  Otherwise,we have a primitive return value, produce the value directly
3778   //  and push it on the stack.
3779   OptionScope<Emitter> Scope(this, /*NewDiscardResult=*/false,
3780                              /*NewInitializing=*/false);
3781   return this->Visit(E);
3782 }
3783 
3784 template <class Emitter>
3785 bool Compiler<Emitter>::visitInitializer(const Expr *E) {
3786   assert(!classify(E->getType()));
3787 
3788   OptionScope<Emitter> Scope(this, /*NewDiscardResult=*/false,
3789                              /*NewInitializing=*/true);
3790   return this->Visit(E);
3791 }
3792 
3793 template <class Emitter> bool Compiler<Emitter>::visitBool(const Expr *E) {
3794   std::optional<PrimType> T = classify(E->getType());
3795   if (!T) {
3796     // Convert complex values to bool.
3797     if (E->getType()->isAnyComplexType()) {
3798       if (!this->visit(E))
3799         return false;
3800       return this->emitComplexBoolCast(E);
3801     }
3802     return false;
3803   }
3804 
3805   if (!this->visit(E))
3806     return false;
3807 
3808   if (T == PT_Bool)
3809     return true;
3810 
3811   // Convert pointers to bool.
3812   if (T == PT_Ptr || T == PT_FnPtr) {
3813     if (!this->emitNull(*T, nullptr, E))
3814       return false;
3815     return this->emitNE(*T, E);
3816   }
3817 
3818   // Or Floats.
3819   if (T == PT_Float)
3820     return this->emitCastFloatingIntegralBool(getFPOptions(E), E);
3821 
3822   // Or anything else we can.
3823   return this->emitCast(*T, PT_Bool, E);
3824 }
3825 
3826 template <class Emitter>
3827 bool Compiler<Emitter>::visitZeroInitializer(PrimType T, QualType QT,
3828                                              const Expr *E) {
3829   switch (T) {
3830   case PT_Bool:
3831     return this->emitZeroBool(E);
3832   case PT_Sint8:
3833     return this->emitZeroSint8(E);
3834   case PT_Uint8:
3835     return this->emitZeroUint8(E);
3836   case PT_Sint16:
3837     return this->emitZeroSint16(E);
3838   case PT_Uint16:
3839     return this->emitZeroUint16(E);
3840   case PT_Sint32:
3841     return this->emitZeroSint32(E);
3842   case PT_Uint32:
3843     return this->emitZeroUint32(E);
3844   case PT_Sint64:
3845     return this->emitZeroSint64(E);
3846   case PT_Uint64:
3847     return this->emitZeroUint64(E);
3848   case PT_IntAP:
3849     return this->emitZeroIntAP(Ctx.getBitWidth(QT), E);
3850   case PT_IntAPS:
3851     return this->emitZeroIntAPS(Ctx.getBitWidth(QT), E);
3852   case PT_Ptr:
3853     return this->emitNullPtr(nullptr, E);
3854   case PT_FnPtr:
3855     return this->emitNullFnPtr(nullptr, E);
3856   case PT_MemberPtr:
3857     return this->emitNullMemberPtr(nullptr, E);
3858   case PT_Float:
3859     return this->emitConstFloat(APFloat::getZero(Ctx.getFloatSemantics(QT)), E);
3860   case PT_FixedPoint: {
3861     auto Sem = Ctx.getASTContext().getFixedPointSemantics(E->getType());
3862     return this->emitConstFixedPoint(FixedPoint::zero(Sem), E);
3863   }
3864     llvm_unreachable("Implement");
3865   }
3866   llvm_unreachable("unknown primitive type");
3867 }
3868 
3869 template <class Emitter>
3870 bool Compiler<Emitter>::visitZeroRecordInitializer(const Record *R,
3871                                                    const Expr *E) {
3872   assert(E);
3873   assert(R);
3874   // Fields
3875   for (const Record::Field &Field : R->fields()) {
3876     if (Field.Decl->isUnnamedBitField())
3877       continue;
3878 
3879     const Descriptor *D = Field.Desc;
3880     if (D->isPrimitive()) {
3881       QualType QT = D->getType();
3882       PrimType T = classifyPrim(D->getType());
3883       if (!this->visitZeroInitializer(T, QT, E))
3884         return false;
3885       if (!this->emitInitField(T, Field.Offset, E))
3886         return false;
3887       if (R->isUnion())
3888         break;
3889       continue;
3890     }
3891 
3892     if (!this->emitGetPtrField(Field.Offset, E))
3893       return false;
3894 
3895     if (D->isPrimitiveArray()) {
3896       QualType ET = D->getElemQualType();
3897       PrimType T = classifyPrim(ET);
3898       for (uint32_t I = 0, N = D->getNumElems(); I != N; ++I) {
3899         if (!this->visitZeroInitializer(T, ET, E))
3900           return false;
3901         if (!this->emitInitElem(T, I, E))
3902           return false;
3903       }
3904     } else if (D->isCompositeArray()) {
3905       // Can't be a vector or complex field.
3906       if (!this->visitZeroArrayInitializer(D->getType(), E))
3907         return false;
3908     } else if (D->isRecord()) {
3909       if (!this->visitZeroRecordInitializer(D->ElemRecord, E))
3910         return false;
3911     } else {
3912       assert(false);
3913     }
3914 
3915     if (!this->emitFinishInitPop(E))
3916       return false;
3917 
3918     // C++11 [dcl.init]p5: If T is a (possibly cv-qualified) union type, the
3919     // object's first non-static named data member is zero-initialized
3920     if (R->isUnion())
3921       break;
3922   }
3923 
3924   for (const Record::Base &B : R->bases()) {
3925     if (!this->emitGetPtrBase(B.Offset, E))
3926       return false;
3927     if (!this->visitZeroRecordInitializer(B.R, E))
3928       return false;
3929     if (!this->emitFinishInitPop(E))
3930       return false;
3931   }
3932 
3933   // FIXME: Virtual bases.
3934 
3935   return true;
3936 }
3937 
3938 template <class Emitter>
3939 bool Compiler<Emitter>::visitZeroArrayInitializer(QualType T, const Expr *E) {
3940   assert(T->isArrayType() || T->isAnyComplexType() || T->isVectorType());
3941   const ArrayType *AT = T->getAsArrayTypeUnsafe();
3942   QualType ElemType = AT->getElementType();
3943   size_t NumElems = cast<ConstantArrayType>(AT)->getZExtSize();
3944 
3945   if (std::optional<PrimType> ElemT = classify(ElemType)) {
3946     for (size_t I = 0; I != NumElems; ++I) {
3947       if (!this->visitZeroInitializer(*ElemT, ElemType, E))
3948         return false;
3949       if (!this->emitInitElem(*ElemT, I, E))
3950         return false;
3951     }
3952     return true;
3953   } else if (ElemType->isRecordType()) {
3954     const Record *R = getRecord(ElemType);
3955 
3956     for (size_t I = 0; I != NumElems; ++I) {
3957       if (!this->emitConstUint32(I, E))
3958         return false;
3959       if (!this->emitArrayElemPtr(PT_Uint32, E))
3960         return false;
3961       if (!this->visitZeroRecordInitializer(R, E))
3962         return false;
3963       if (!this->emitPopPtr(E))
3964         return false;
3965     }
3966     return true;
3967   } else if (ElemType->isArrayType()) {
3968     for (size_t I = 0; I != NumElems; ++I) {
3969       if (!this->emitConstUint32(I, E))
3970         return false;
3971       if (!this->emitArrayElemPtr(PT_Uint32, E))
3972         return false;
3973       if (!this->visitZeroArrayInitializer(ElemType, E))
3974         return false;
3975       if (!this->emitPopPtr(E))
3976         return false;
3977     }
3978     return true;
3979   }
3980 
3981   return false;
3982 }
3983 
3984 template <class Emitter>
3985 template <typename T>
3986 bool Compiler<Emitter>::emitConst(T Value, PrimType Ty, const Expr *E) {
3987   switch (Ty) {
3988   case PT_Sint8:
3989     return this->emitConstSint8(Value, E);
3990   case PT_Uint8:
3991     return this->emitConstUint8(Value, E);
3992   case PT_Sint16:
3993     return this->emitConstSint16(Value, E);
3994   case PT_Uint16:
3995     return this->emitConstUint16(Value, E);
3996   case PT_Sint32:
3997     return this->emitConstSint32(Value, E);
3998   case PT_Uint32:
3999     return this->emitConstUint32(Value, E);
4000   case PT_Sint64:
4001     return this->emitConstSint64(Value, E);
4002   case PT_Uint64:
4003     return this->emitConstUint64(Value, E);
4004   case PT_Bool:
4005     return this->emitConstBool(Value, E);
4006   case PT_Ptr:
4007   case PT_FnPtr:
4008   case PT_MemberPtr:
4009   case PT_Float:
4010   case PT_IntAP:
4011   case PT_IntAPS:
4012   case PT_FixedPoint:
4013     llvm_unreachable("Invalid integral type");
4014     break;
4015   }
4016   llvm_unreachable("unknown primitive type");
4017 }
4018 
4019 template <class Emitter>
4020 template <typename T>
4021 bool Compiler<Emitter>::emitConst(T Value, const Expr *E) {
4022   return this->emitConst(Value, classifyPrim(E->getType()), E);
4023 }
4024 
4025 template <class Emitter>
4026 bool Compiler<Emitter>::emitConst(const APSInt &Value, PrimType Ty,
4027                                   const Expr *E) {
4028   if (Ty == PT_IntAPS)
4029     return this->emitConstIntAPS(Value, E);
4030   if (Ty == PT_IntAP)
4031     return this->emitConstIntAP(Value, E);
4032 
4033   if (Value.isSigned())
4034     return this->emitConst(Value.getSExtValue(), Ty, E);
4035   return this->emitConst(Value.getZExtValue(), Ty, E);
4036 }
4037 
4038 template <class Emitter>
4039 bool Compiler<Emitter>::emitConst(const APSInt &Value, const Expr *E) {
4040   return this->emitConst(Value, classifyPrim(E->getType()), E);
4041 }
4042 
4043 template <class Emitter>
4044 unsigned Compiler<Emitter>::allocateLocalPrimitive(DeclTy &&Src, PrimType Ty,
4045                                                    bool IsConst,
4046                                                    bool IsExtended) {
4047   // Make sure we don't accidentally register the same decl twice.
4048   if (const auto *VD =
4049           dyn_cast_if_present<ValueDecl>(Src.dyn_cast<const Decl *>())) {
4050     assert(!P.getGlobal(VD));
4051     assert(!Locals.contains(VD));
4052     (void)VD;
4053   }
4054 
4055   // FIXME: There are cases where Src.is<Expr*>() is wrong, e.g.
4056   //   (int){12} in C. Consider using Expr::isTemporaryObject() instead
4057   //   or isa<MaterializeTemporaryExpr>().
4058   Descriptor *D = P.createDescriptor(Src, Ty, Descriptor::InlineDescMD, IsConst,
4059                                      isa<const Expr *>(Src));
4060   Scope::Local Local = this->createLocal(D);
4061   if (auto *VD = dyn_cast_if_present<ValueDecl>(Src.dyn_cast<const Decl *>()))
4062     Locals.insert({VD, Local});
4063   VarScope->add(Local, IsExtended);
4064   return Local.Offset;
4065 }
4066 
4067 template <class Emitter>
4068 std::optional<unsigned>
4069 Compiler<Emitter>::allocateLocal(DeclTy &&Src, QualType Ty,
4070                                  const ValueDecl *ExtendingDecl) {
4071   // Make sure we don't accidentally register the same decl twice.
4072   if ([[maybe_unused]] const auto *VD =
4073           dyn_cast_if_present<ValueDecl>(Src.dyn_cast<const Decl *>())) {
4074     assert(!P.getGlobal(VD));
4075     assert(!Locals.contains(VD));
4076   }
4077 
4078   const ValueDecl *Key = nullptr;
4079   const Expr *Init = nullptr;
4080   bool IsTemporary = false;
4081   if (auto *VD = dyn_cast_if_present<ValueDecl>(Src.dyn_cast<const Decl *>())) {
4082     Key = VD;
4083     Ty = VD->getType();
4084 
4085     if (const auto *VarD = dyn_cast<VarDecl>(VD))
4086       Init = VarD->getInit();
4087   }
4088   if (auto *E = Src.dyn_cast<const Expr *>()) {
4089     IsTemporary = true;
4090     if (Ty.isNull())
4091       Ty = E->getType();
4092   }
4093 
4094   Descriptor *D = P.createDescriptor(
4095       Src, Ty.getTypePtr(), Descriptor::InlineDescMD, Ty.isConstQualified(),
4096       IsTemporary, /*IsMutable=*/false, Init);
4097   if (!D)
4098     return std::nullopt;
4099 
4100   Scope::Local Local = this->createLocal(D);
4101   if (Key)
4102     Locals.insert({Key, Local});
4103   if (ExtendingDecl)
4104     VarScope->addExtended(Local, ExtendingDecl);
4105   else
4106     VarScope->add(Local, false);
4107   return Local.Offset;
4108 }
4109 
4110 template <class Emitter>
4111 unsigned Compiler<Emitter>::allocateTemporary(const Expr *E) {
4112   QualType Ty = E->getType();
4113   assert(!Ty->isRecordType());
4114 
4115   Descriptor *D = P.createDescriptor(
4116       E, Ty.getTypePtr(), Descriptor::InlineDescMD, Ty.isConstQualified(),
4117       /*IsTemporary=*/true, /*IsMutable=*/false, /*Init=*/nullptr);
4118   assert(D);
4119 
4120   Scope::Local Local = this->createLocal(D);
4121   VariableScope<Emitter> *S = VarScope;
4122   assert(S);
4123   // Attach to topmost scope.
4124   while (S->getParent())
4125     S = S->getParent();
4126   assert(S && !S->getParent());
4127   S->addLocal(Local);
4128   return Local.Offset;
4129 }
4130 
4131 template <class Emitter>
4132 const RecordType *Compiler<Emitter>::getRecordTy(QualType Ty) {
4133   if (const PointerType *PT = dyn_cast<PointerType>(Ty))
4134     return PT->getPointeeType()->getAs<RecordType>();
4135   return Ty->getAs<RecordType>();
4136 }
4137 
4138 template <class Emitter> Record *Compiler<Emitter>::getRecord(QualType Ty) {
4139   if (const auto *RecordTy = getRecordTy(Ty))
4140     return getRecord(RecordTy->getDecl());
4141   return nullptr;
4142 }
4143 
4144 template <class Emitter>
4145 Record *Compiler<Emitter>::getRecord(const RecordDecl *RD) {
4146   return P.getOrCreateRecord(RD);
4147 }
4148 
4149 template <class Emitter>
4150 const Function *Compiler<Emitter>::getFunction(const FunctionDecl *FD) {
4151   return Ctx.getOrCreateFunction(FD);
4152 }
4153 
4154 template <class Emitter>
4155 bool Compiler<Emitter>::visitExpr(const Expr *E, bool DestroyToplevelScope) {
4156   LocalScope<Emitter> RootScope(this);
4157 
4158   // If we won't destroy the toplevel scope, check for memory leaks first.
4159   if (!DestroyToplevelScope) {
4160     if (!this->emitCheckAllocations(E))
4161       return false;
4162   }
4163 
4164   auto maybeDestroyLocals = [&]() -> bool {
4165     if (DestroyToplevelScope)
4166       return RootScope.destroyLocals() && this->emitCheckAllocations(E);
4167     return this->emitCheckAllocations(E);
4168   };
4169 
4170   // Void expressions.
4171   if (E->getType()->isVoidType()) {
4172     if (!visit(E))
4173       return false;
4174     return this->emitRetVoid(E) && maybeDestroyLocals();
4175   }
4176 
4177   // Expressions with a primitive return type.
4178   if (std::optional<PrimType> T = classify(E)) {
4179     if (!visit(E))
4180       return false;
4181 
4182     return this->emitRet(*T, E) && maybeDestroyLocals();
4183   }
4184 
4185   // Expressions with a composite return type.
4186   // For us, that means everything we don't
4187   // have a PrimType for.
4188   if (std::optional<unsigned> LocalOffset = this->allocateLocal(E)) {
4189     if (!this->emitGetPtrLocal(*LocalOffset, E))
4190       return false;
4191 
4192     if (!visitInitializer(E))
4193       return false;
4194 
4195     if (!this->emitFinishInit(E))
4196       return false;
4197     // We are destroying the locals AFTER the Ret op.
4198     // The Ret op needs to copy the (alive) values, but the
4199     // destructors may still turn the entire expression invalid.
4200     return this->emitRetValue(E) && maybeDestroyLocals();
4201   }
4202 
4203   return maybeDestroyLocals() && this->emitCheckAllocations(E) && false;
4204 }
4205 
4206 template <class Emitter>
4207 VarCreationState Compiler<Emitter>::visitDecl(const VarDecl *VD) {
4208 
4209   auto R = this->visitVarDecl(VD, /*Toplevel=*/true);
4210 
4211   if (R.notCreated())
4212     return R;
4213 
4214   if (R)
4215     return true;
4216 
4217   if (!R && Context::shouldBeGloballyIndexed(VD)) {
4218     if (auto GlobalIndex = P.getGlobal(VD)) {
4219       Block *GlobalBlock = P.getGlobal(*GlobalIndex);
4220       GlobalInlineDescriptor &GD =
4221           *reinterpret_cast<GlobalInlineDescriptor *>(GlobalBlock->rawData());
4222 
4223       GD.InitState = GlobalInitState::InitializerFailed;
4224       GlobalBlock->invokeDtor();
4225     }
4226   }
4227 
4228   return R;
4229 }
4230 
4231 /// Toplevel visitDeclAndReturn().
4232 /// We get here from evaluateAsInitializer().
4233 /// We need to evaluate the initializer and return its value.
4234 template <class Emitter>
4235 bool Compiler<Emitter>::visitDeclAndReturn(const VarDecl *VD,
4236                                            bool ConstantContext) {
4237   std::optional<PrimType> VarT = classify(VD->getType());
4238 
4239   // We only create variables if we're evaluating in a constant context.
4240   // Otherwise, just evaluate the initializer and return it.
4241   if (!ConstantContext) {
4242     DeclScope<Emitter> LS(this, VD);
4243     if (!this->visit(VD->getAnyInitializer()))
4244       return false;
4245     return this->emitRet(VarT.value_or(PT_Ptr), VD) && LS.destroyLocals() &&
4246            this->emitCheckAllocations(VD);
4247   }
4248 
4249   LocalScope<Emitter> VDScope(this, VD);
4250   if (!this->visitVarDecl(VD, /*Toplevel=*/true))
4251     return false;
4252 
4253   if (Context::shouldBeGloballyIndexed(VD)) {
4254     auto GlobalIndex = P.getGlobal(VD);
4255     assert(GlobalIndex); // visitVarDecl() didn't return false.
4256     if (VarT) {
4257       if (!this->emitGetGlobalUnchecked(*VarT, *GlobalIndex, VD))
4258         return false;
4259     } else {
4260       if (!this->emitGetPtrGlobal(*GlobalIndex, VD))
4261         return false;
4262     }
4263   } else {
4264     auto Local = Locals.find(VD);
4265     assert(Local != Locals.end()); // Same here.
4266     if (VarT) {
4267       if (!this->emitGetLocal(*VarT, Local->second.Offset, VD))
4268         return false;
4269     } else {
4270       if (!this->emitGetPtrLocal(Local->second.Offset, VD))
4271         return false;
4272     }
4273   }
4274 
4275   // Return the value.
4276   if (!this->emitRet(VarT.value_or(PT_Ptr), VD)) {
4277     // If the Ret above failed and this is a global variable, mark it as
4278     // uninitialized, even everything else succeeded.
4279     if (Context::shouldBeGloballyIndexed(VD)) {
4280       auto GlobalIndex = P.getGlobal(VD);
4281       assert(GlobalIndex);
4282       Block *GlobalBlock = P.getGlobal(*GlobalIndex);
4283       GlobalInlineDescriptor &GD =
4284           *reinterpret_cast<GlobalInlineDescriptor *>(GlobalBlock->rawData());
4285 
4286       GD.InitState = GlobalInitState::InitializerFailed;
4287       GlobalBlock->invokeDtor();
4288     }
4289     return false;
4290   }
4291 
4292   return VDScope.destroyLocals() && this->emitCheckAllocations(VD);
4293 }
4294 
4295 template <class Emitter>
4296 VarCreationState Compiler<Emitter>::visitVarDecl(const VarDecl *VD,
4297                                                  bool Toplevel) {
4298   // We don't know what to do with these, so just return false.
4299   if (VD->getType().isNull())
4300     return false;
4301 
4302   // This case is EvalEmitter-only. If we won't create any instructions for the
4303   // initializer anyway, don't bother creating the variable in the first place.
4304   if (!this->isActive())
4305     return VarCreationState::NotCreated();
4306 
4307   const Expr *Init = VD->getInit();
4308   std::optional<PrimType> VarT = classify(VD->getType());
4309 
4310   if (Init && Init->isValueDependent())
4311     return false;
4312 
4313   if (Context::shouldBeGloballyIndexed(VD)) {
4314     auto checkDecl = [&]() -> bool {
4315       bool NeedsOp = !Toplevel && VD->isLocalVarDecl() && VD->isStaticLocal();
4316       return !NeedsOp || this->emitCheckDecl(VD, VD);
4317     };
4318 
4319     auto initGlobal = [&](unsigned GlobalIndex) -> bool {
4320       assert(Init);
4321 
4322       if (VarT) {
4323         if (!this->visit(Init))
4324           return checkDecl() && false;
4325 
4326         return checkDecl() && this->emitInitGlobal(*VarT, GlobalIndex, VD);
4327       }
4328 
4329       if (!checkDecl())
4330         return false;
4331 
4332       if (!this->emitGetPtrGlobal(GlobalIndex, Init))
4333         return false;
4334 
4335       if (!visitInitializer(Init))
4336         return false;
4337 
4338       if (!this->emitFinishInit(Init))
4339         return false;
4340 
4341       return this->emitPopPtr(Init);
4342     };
4343 
4344     DeclScope<Emitter> LocalScope(this, VD);
4345 
4346     // We've already seen and initialized this global.
4347     if (std::optional<unsigned> GlobalIndex = P.getGlobal(VD)) {
4348       if (P.getPtrGlobal(*GlobalIndex).isInitialized())
4349         return checkDecl();
4350 
4351       // The previous attempt at initialization might've been unsuccessful,
4352       // so let's try this one.
4353       return Init && checkDecl() && initGlobal(*GlobalIndex);
4354     }
4355 
4356     std::optional<unsigned> GlobalIndex = P.createGlobal(VD, Init);
4357 
4358     if (!GlobalIndex)
4359       return false;
4360 
4361     return !Init || (checkDecl() && initGlobal(*GlobalIndex));
4362   } else {
4363     InitLinkScope<Emitter> ILS(this, InitLink::Decl(VD));
4364 
4365     if (VarT) {
4366       unsigned Offset = this->allocateLocalPrimitive(
4367           VD, *VarT, VD->getType().isConstQualified());
4368       if (Init) {
4369         // If this is a toplevel declaration, create a scope for the
4370         // initializer.
4371         if (Toplevel) {
4372           LocalScope<Emitter> Scope(this);
4373           if (!this->visit(Init))
4374             return false;
4375           return this->emitSetLocal(*VarT, Offset, VD) && Scope.destroyLocals();
4376         } else {
4377           if (!this->visit(Init))
4378             return false;
4379           return this->emitSetLocal(*VarT, Offset, VD);
4380         }
4381       }
4382     } else {
4383       if (std::optional<unsigned> Offset = this->allocateLocal(VD)) {
4384         if (!Init)
4385           return true;
4386 
4387         if (!this->emitGetPtrLocal(*Offset, Init))
4388           return false;
4389 
4390         if (!visitInitializer(Init))
4391           return false;
4392 
4393         if (!this->emitFinishInit(Init))
4394           return false;
4395 
4396         return this->emitPopPtr(Init);
4397       }
4398       return false;
4399     }
4400     return true;
4401   }
4402 
4403   return false;
4404 }
4405 
4406 template <class Emitter>
4407 bool Compiler<Emitter>::visitAPValue(const APValue &Val, PrimType ValType,
4408                                      const Expr *E) {
4409   assert(!DiscardResult);
4410   if (Val.isInt())
4411     return this->emitConst(Val.getInt(), ValType, E);
4412   else if (Val.isFloat())
4413     return this->emitConstFloat(Val.getFloat(), E);
4414 
4415   if (Val.isLValue()) {
4416     if (Val.isNullPointer())
4417       return this->emitNull(ValType, nullptr, E);
4418     APValue::LValueBase Base = Val.getLValueBase();
4419     if (const Expr *BaseExpr = Base.dyn_cast<const Expr *>())
4420       return this->visit(BaseExpr);
4421     else if (const auto *VD = Base.dyn_cast<const ValueDecl *>()) {
4422       return this->visitDeclRef(VD, E);
4423     }
4424   } else if (Val.isMemberPointer()) {
4425     if (const ValueDecl *MemberDecl = Val.getMemberPointerDecl())
4426       return this->emitGetMemberPtr(MemberDecl, E);
4427     return this->emitNullMemberPtr(nullptr, E);
4428   }
4429 
4430   return false;
4431 }
4432 
4433 template <class Emitter>
4434 bool Compiler<Emitter>::visitAPValueInitializer(const APValue &Val,
4435                                                 const Expr *E) {
4436 
4437   if (Val.isStruct()) {
4438     const Record *R = this->getRecord(E->getType());
4439     assert(R);
4440     for (unsigned I = 0, N = Val.getStructNumFields(); I != N; ++I) {
4441       const APValue &F = Val.getStructField(I);
4442       const Record::Field *RF = R->getField(I);
4443 
4444       if (F.isInt() || F.isFloat() || F.isLValue() || F.isMemberPointer()) {
4445         PrimType T = classifyPrim(RF->Decl->getType());
4446         if (!this->visitAPValue(F, T, E))
4447           return false;
4448         if (!this->emitInitField(T, RF->Offset, E))
4449           return false;
4450       } else if (F.isArray()) {
4451         assert(RF->Desc->isPrimitiveArray());
4452         const auto *ArrType = RF->Decl->getType()->getAsArrayTypeUnsafe();
4453         PrimType ElemT = classifyPrim(ArrType->getElementType());
4454         assert(ArrType);
4455 
4456         if (!this->emitGetPtrField(RF->Offset, E))
4457           return false;
4458 
4459         for (unsigned A = 0, AN = F.getArraySize(); A != AN; ++A) {
4460           if (!this->visitAPValue(F.getArrayInitializedElt(A), ElemT, E))
4461             return false;
4462           if (!this->emitInitElem(ElemT, A, E))
4463             return false;
4464         }
4465 
4466         if (!this->emitPopPtr(E))
4467           return false;
4468       } else if (F.isStruct() || F.isUnion()) {
4469         if (!this->emitGetPtrField(RF->Offset, E))
4470           return false;
4471         if (!this->visitAPValueInitializer(F, E))
4472           return false;
4473         if (!this->emitPopPtr(E))
4474           return false;
4475       } else {
4476         assert(false && "I don't think this should be possible");
4477       }
4478     }
4479     return true;
4480   } else if (Val.isUnion()) {
4481     const FieldDecl *UnionField = Val.getUnionField();
4482     const Record *R = this->getRecord(UnionField->getParent());
4483     assert(R);
4484     const APValue &F = Val.getUnionValue();
4485     const Record::Field *RF = R->getField(UnionField);
4486     PrimType T = classifyPrim(RF->Decl->getType());
4487     if (!this->visitAPValue(F, T, E))
4488       return false;
4489     return this->emitInitField(T, RF->Offset, E);
4490   }
4491   // TODO: Other types.
4492 
4493   return false;
4494 }
4495 
4496 template <class Emitter>
4497 bool Compiler<Emitter>::VisitBuiltinCallExpr(const CallExpr *E,
4498                                              unsigned BuiltinID) {
4499   const Function *Func = getFunction(E->getDirectCallee());
4500   if (!Func)
4501     return false;
4502 
4503   // For these, we're expected to ultimately return an APValue pointing
4504   // to the CallExpr. This is needed to get the correct codegen.
4505   if (BuiltinID == Builtin::BI__builtin___CFStringMakeConstantString ||
4506       BuiltinID == Builtin::BI__builtin___NSStringMakeConstantString ||
4507       BuiltinID == Builtin::BI__builtin_ptrauth_sign_constant ||
4508       BuiltinID == Builtin::BI__builtin_function_start) {
4509     if (DiscardResult)
4510       return true;
4511     return this->emitDummyPtr(E, E);
4512   }
4513 
4514   QualType ReturnType = E->getType();
4515   std::optional<PrimType> ReturnT = classify(E);
4516 
4517   // Non-primitive return type. Prepare storage.
4518   if (!Initializing && !ReturnT && !ReturnType->isVoidType()) {
4519     std::optional<unsigned> LocalIndex = allocateLocal(E);
4520     if (!LocalIndex)
4521       return false;
4522     if (!this->emitGetPtrLocal(*LocalIndex, E))
4523       return false;
4524   }
4525 
4526   if (!Func->isUnevaluatedBuiltin()) {
4527     // Put arguments on the stack.
4528     for (const auto *Arg : E->arguments()) {
4529       if (!this->visit(Arg))
4530         return false;
4531     }
4532   }
4533 
4534   if (!this->emitCallBI(Func, E, BuiltinID, E))
4535     return false;
4536 
4537   if (DiscardResult && !ReturnType->isVoidType()) {
4538     assert(ReturnT);
4539     return this->emitPop(*ReturnT, E);
4540   }
4541 
4542   return true;
4543 }
4544 
4545 template <class Emitter>
4546 bool Compiler<Emitter>::VisitCallExpr(const CallExpr *E) {
4547   if (unsigned BuiltinID = E->getBuiltinCallee())
4548     return VisitBuiltinCallExpr(E, BuiltinID);
4549 
4550   const FunctionDecl *FuncDecl = E->getDirectCallee();
4551   // Calls to replaceable operator new/operator delete.
4552   if (FuncDecl && FuncDecl->isReplaceableGlobalAllocationFunction()) {
4553     if (FuncDecl->getDeclName().getCXXOverloadedOperator() == OO_New ||
4554         FuncDecl->getDeclName().getCXXOverloadedOperator() == OO_Array_New) {
4555       return VisitBuiltinCallExpr(E, Builtin::BI__builtin_operator_new);
4556     } else {
4557       assert(FuncDecl->getDeclName().getCXXOverloadedOperator() == OO_Delete);
4558       return VisitBuiltinCallExpr(E, Builtin::BI__builtin_operator_delete);
4559     }
4560   }
4561   // Explicit calls to trivial destructors
4562   if (const auto *DD = dyn_cast_if_present<CXXDestructorDecl>(FuncDecl);
4563       DD && DD->isTrivial())
4564     return true;
4565 
4566   QualType ReturnType = E->getCallReturnType(Ctx.getASTContext());
4567   std::optional<PrimType> T = classify(ReturnType);
4568   bool HasRVO = !ReturnType->isVoidType() && !T;
4569 
4570   if (HasRVO) {
4571     if (DiscardResult) {
4572       // If we need to discard the return value but the function returns its
4573       // value via an RVO pointer, we need to create one such pointer just
4574       // for this call.
4575       if (std::optional<unsigned> LocalIndex = allocateLocal(E)) {
4576         if (!this->emitGetPtrLocal(*LocalIndex, E))
4577           return false;
4578       }
4579     } else {
4580       // We need the result. Prepare a pointer to return or
4581       // dup the current one.
4582       if (!Initializing) {
4583         if (std::optional<unsigned> LocalIndex = allocateLocal(E)) {
4584           if (!this->emitGetPtrLocal(*LocalIndex, E))
4585             return false;
4586         }
4587       }
4588       if (!this->emitDupPtr(E))
4589         return false;
4590     }
4591   }
4592 
4593   SmallVector<const Expr *, 8> Args(
4594       llvm::ArrayRef(E->getArgs(), E->getNumArgs()));
4595 
4596   bool IsAssignmentOperatorCall = false;
4597   if (const auto *OCE = dyn_cast<CXXOperatorCallExpr>(E);
4598       OCE && OCE->isAssignmentOp()) {
4599     // Just like with regular assignments, we need to special-case assignment
4600     // operators here and evaluate the RHS (the second arg) before the LHS (the
4601     // first arg. We fix this by using a Flip op later.
4602     assert(Args.size() == 2);
4603     IsAssignmentOperatorCall = true;
4604     std::reverse(Args.begin(), Args.end());
4605   }
4606   // Calling a static operator will still
4607   // pass the instance, but we don't need it.
4608   // Discard it here.
4609   if (isa<CXXOperatorCallExpr>(E)) {
4610     if (const auto *MD = dyn_cast_if_present<CXXMethodDecl>(FuncDecl);
4611         MD && MD->isStatic()) {
4612       if (!this->discard(E->getArg(0)))
4613         return false;
4614       // Drop first arg.
4615       Args.erase(Args.begin());
4616     }
4617   }
4618 
4619   std::optional<unsigned> CalleeOffset;
4620   // Add the (optional, implicit) This pointer.
4621   if (const auto *MC = dyn_cast<CXXMemberCallExpr>(E)) {
4622     if (!FuncDecl && classifyPrim(E->getCallee()) == PT_MemberPtr) {
4623       // If we end up creating a CallPtr op for this, we need the base of the
4624       // member pointer as the instance pointer, and later extract the function
4625       // decl as the function pointer.
4626       const Expr *Callee = E->getCallee();
4627       CalleeOffset =
4628           this->allocateLocalPrimitive(Callee, PT_MemberPtr, true, false);
4629       if (!this->visit(Callee))
4630         return false;
4631       if (!this->emitSetLocal(PT_MemberPtr, *CalleeOffset, E))
4632         return false;
4633       if (!this->emitGetLocal(PT_MemberPtr, *CalleeOffset, E))
4634         return false;
4635       if (!this->emitGetMemberPtrBase(E))
4636         return false;
4637     } else if (!this->visit(MC->getImplicitObjectArgument())) {
4638       return false;
4639     }
4640   } else if (!FuncDecl) {
4641     const Expr *Callee = E->getCallee();
4642     CalleeOffset = this->allocateLocalPrimitive(Callee, PT_FnPtr, true, false);
4643     if (!this->visit(Callee))
4644       return false;
4645     if (!this->emitSetLocal(PT_FnPtr, *CalleeOffset, E))
4646       return false;
4647   }
4648 
4649   llvm::BitVector NonNullArgs = collectNonNullArgs(FuncDecl, Args);
4650   // Put arguments on the stack.
4651   unsigned ArgIndex = 0;
4652   for (const auto *Arg : Args) {
4653     if (!this->visit(Arg))
4654       return false;
4655 
4656     // If we know the callee already, check the known parametrs for nullability.
4657     if (FuncDecl && NonNullArgs[ArgIndex]) {
4658       PrimType ArgT = classify(Arg).value_or(PT_Ptr);
4659       if (ArgT == PT_Ptr || ArgT == PT_FnPtr) {
4660         if (!this->emitCheckNonNullArg(ArgT, Arg))
4661           return false;
4662       }
4663     }
4664     ++ArgIndex;
4665   }
4666 
4667   // Undo the argument reversal we did earlier.
4668   if (IsAssignmentOperatorCall) {
4669     assert(Args.size() == 2);
4670     PrimType Arg1T = classify(Args[0]).value_or(PT_Ptr);
4671     PrimType Arg2T = classify(Args[1]).value_or(PT_Ptr);
4672     if (!this->emitFlip(Arg2T, Arg1T, E))
4673       return false;
4674   }
4675 
4676   if (FuncDecl) {
4677     const Function *Func = getFunction(FuncDecl);
4678     if (!Func)
4679       return false;
4680     assert(HasRVO == Func->hasRVO());
4681 
4682     bool HasQualifier = false;
4683     if (const auto *ME = dyn_cast<MemberExpr>(E->getCallee()))
4684       HasQualifier = ME->hasQualifier();
4685 
4686     bool IsVirtual = false;
4687     if (const auto *MD = dyn_cast<CXXMethodDecl>(FuncDecl))
4688       IsVirtual = MD->isVirtual();
4689 
4690     // In any case call the function. The return value will end up on the stack
4691     // and if the function has RVO, we already have the pointer on the stack to
4692     // write the result into.
4693     if (IsVirtual && !HasQualifier) {
4694       uint32_t VarArgSize = 0;
4695       unsigned NumParams =
4696           Func->getNumWrittenParams() + isa<CXXOperatorCallExpr>(E);
4697       for (unsigned I = NumParams, N = E->getNumArgs(); I != N; ++I)
4698         VarArgSize += align(primSize(classify(E->getArg(I)).value_or(PT_Ptr)));
4699 
4700       if (!this->emitCallVirt(Func, VarArgSize, E))
4701         return false;
4702     } else if (Func->isVariadic()) {
4703       uint32_t VarArgSize = 0;
4704       unsigned NumParams =
4705           Func->getNumWrittenParams() + isa<CXXOperatorCallExpr>(E);
4706       for (unsigned I = NumParams, N = E->getNumArgs(); I != N; ++I)
4707         VarArgSize += align(primSize(classify(E->getArg(I)).value_or(PT_Ptr)));
4708       if (!this->emitCallVar(Func, VarArgSize, E))
4709         return false;
4710     } else {
4711       if (!this->emitCall(Func, 0, E))
4712         return false;
4713     }
4714   } else {
4715     // Indirect call. Visit the callee, which will leave a FunctionPointer on
4716     // the stack. Cleanup of the returned value if necessary will be done after
4717     // the function call completed.
4718 
4719     // Sum the size of all args from the call expr.
4720     uint32_t ArgSize = 0;
4721     for (unsigned I = 0, N = E->getNumArgs(); I != N; ++I)
4722       ArgSize += align(primSize(classify(E->getArg(I)).value_or(PT_Ptr)));
4723 
4724     // Get the callee, either from a member pointer or function pointer saved in
4725     // CalleeOffset.
4726     if (isa<CXXMemberCallExpr>(E) && CalleeOffset) {
4727       if (!this->emitGetLocal(PT_MemberPtr, *CalleeOffset, E))
4728         return false;
4729       if (!this->emitGetMemberPtrDecl(E))
4730         return false;
4731     } else {
4732       if (!this->emitGetLocal(PT_FnPtr, *CalleeOffset, E))
4733         return false;
4734     }
4735     if (!this->emitCallPtr(ArgSize, E, E))
4736       return false;
4737   }
4738 
4739   // Cleanup for discarded return values.
4740   if (DiscardResult && !ReturnType->isVoidType() && T)
4741     return this->emitPop(*T, E);
4742 
4743   return true;
4744 }
4745 
4746 template <class Emitter>
4747 bool Compiler<Emitter>::VisitCXXDefaultInitExpr(const CXXDefaultInitExpr *E) {
4748   SourceLocScope<Emitter> SLS(this, E);
4749 
4750   return this->delegate(E->getExpr());
4751 }
4752 
4753 template <class Emitter>
4754 bool Compiler<Emitter>::VisitCXXDefaultArgExpr(const CXXDefaultArgExpr *E) {
4755   SourceLocScope<Emitter> SLS(this, E);
4756 
4757   const Expr *SubExpr = E->getExpr();
4758   if (std::optional<PrimType> T = classify(E->getExpr()))
4759     return this->visit(SubExpr);
4760 
4761   assert(Initializing);
4762   return this->visitInitializer(SubExpr);
4763 }
4764 
4765 template <class Emitter>
4766 bool Compiler<Emitter>::VisitCXXBoolLiteralExpr(const CXXBoolLiteralExpr *E) {
4767   if (DiscardResult)
4768     return true;
4769 
4770   return this->emitConstBool(E->getValue(), E);
4771 }
4772 
4773 template <class Emitter>
4774 bool Compiler<Emitter>::VisitCXXNullPtrLiteralExpr(
4775     const CXXNullPtrLiteralExpr *E) {
4776   if (DiscardResult)
4777     return true;
4778 
4779   return this->emitNullPtr(nullptr, E);
4780 }
4781 
4782 template <class Emitter>
4783 bool Compiler<Emitter>::VisitGNUNullExpr(const GNUNullExpr *E) {
4784   if (DiscardResult)
4785     return true;
4786 
4787   assert(E->getType()->isIntegerType());
4788 
4789   PrimType T = classifyPrim(E->getType());
4790   return this->emitZero(T, E);
4791 }
4792 
4793 template <class Emitter>
4794 bool Compiler<Emitter>::VisitCXXThisExpr(const CXXThisExpr *E) {
4795   if (DiscardResult)
4796     return true;
4797 
4798   if (this->LambdaThisCapture.Offset > 0) {
4799     if (this->LambdaThisCapture.IsPtr)
4800       return this->emitGetThisFieldPtr(this->LambdaThisCapture.Offset, E);
4801     return this->emitGetPtrThisField(this->LambdaThisCapture.Offset, E);
4802   }
4803 
4804   // In some circumstances, the 'this' pointer does not actually refer to the
4805   // instance pointer of the current function frame, but e.g. to the declaration
4806   // currently being initialized. Here we emit the necessary instruction(s) for
4807   // this scenario.
4808   if (!InitStackActive || !E->isImplicit())
4809     return this->emitThis(E);
4810 
4811   if (InitStackActive && !InitStack.empty()) {
4812     unsigned StartIndex = 0;
4813     for (StartIndex = InitStack.size() - 1; StartIndex > 0; --StartIndex) {
4814       if (InitStack[StartIndex].Kind != InitLink::K_Field &&
4815           InitStack[StartIndex].Kind != InitLink::K_Elem)
4816         break;
4817     }
4818 
4819     for (unsigned I = StartIndex, N = InitStack.size(); I != N; ++I) {
4820       if (!InitStack[I].template emit<Emitter>(this, E))
4821         return false;
4822     }
4823     return true;
4824   }
4825   return this->emitThis(E);
4826 }
4827 
4828 template <class Emitter> bool Compiler<Emitter>::visitStmt(const Stmt *S) {
4829   switch (S->getStmtClass()) {
4830   case Stmt::CompoundStmtClass:
4831     return visitCompoundStmt(cast<CompoundStmt>(S));
4832   case Stmt::DeclStmtClass:
4833     return visitDeclStmt(cast<DeclStmt>(S));
4834   case Stmt::ReturnStmtClass:
4835     return visitReturnStmt(cast<ReturnStmt>(S));
4836   case Stmt::IfStmtClass:
4837     return visitIfStmt(cast<IfStmt>(S));
4838   case Stmt::WhileStmtClass:
4839     return visitWhileStmt(cast<WhileStmt>(S));
4840   case Stmt::DoStmtClass:
4841     return visitDoStmt(cast<DoStmt>(S));
4842   case Stmt::ForStmtClass:
4843     return visitForStmt(cast<ForStmt>(S));
4844   case Stmt::CXXForRangeStmtClass:
4845     return visitCXXForRangeStmt(cast<CXXForRangeStmt>(S));
4846   case Stmt::BreakStmtClass:
4847     return visitBreakStmt(cast<BreakStmt>(S));
4848   case Stmt::ContinueStmtClass:
4849     return visitContinueStmt(cast<ContinueStmt>(S));
4850   case Stmt::SwitchStmtClass:
4851     return visitSwitchStmt(cast<SwitchStmt>(S));
4852   case Stmt::CaseStmtClass:
4853     return visitCaseStmt(cast<CaseStmt>(S));
4854   case Stmt::DefaultStmtClass:
4855     return visitDefaultStmt(cast<DefaultStmt>(S));
4856   case Stmt::AttributedStmtClass:
4857     return visitAttributedStmt(cast<AttributedStmt>(S));
4858   case Stmt::CXXTryStmtClass:
4859     return visitCXXTryStmt(cast<CXXTryStmt>(S));
4860   case Stmt::NullStmtClass:
4861     return true;
4862   // Always invalid statements.
4863   case Stmt::GCCAsmStmtClass:
4864   case Stmt::MSAsmStmtClass:
4865   case Stmt::GotoStmtClass:
4866     return this->emitInvalid(S);
4867   case Stmt::LabelStmtClass:
4868     return this->visitStmt(cast<LabelStmt>(S)->getSubStmt());
4869   default: {
4870     if (const auto *E = dyn_cast<Expr>(S))
4871       return this->discard(E);
4872     return false;
4873   }
4874   }
4875 }
4876 
4877 template <class Emitter>
4878 bool Compiler<Emitter>::visitCompoundStmt(const CompoundStmt *S) {
4879   BlockScope<Emitter> Scope(this);
4880   for (const auto *InnerStmt : S->body())
4881     if (!visitStmt(InnerStmt))
4882       return false;
4883   return Scope.destroyLocals();
4884 }
4885 
4886 template <class Emitter>
4887 bool Compiler<Emitter>::visitDeclStmt(const DeclStmt *DS) {
4888   for (const auto *D : DS->decls()) {
4889     if (isa<StaticAssertDecl, TagDecl, TypedefNameDecl, UsingEnumDecl,
4890             FunctionDecl>(D))
4891       continue;
4892 
4893     const auto *VD = dyn_cast<VarDecl>(D);
4894     if (!VD)
4895       return false;
4896     if (!this->visitVarDecl(VD))
4897       return false;
4898   }
4899 
4900   return true;
4901 }
4902 
4903 template <class Emitter>
4904 bool Compiler<Emitter>::visitReturnStmt(const ReturnStmt *RS) {
4905   if (this->InStmtExpr)
4906     return this->emitUnsupported(RS);
4907 
4908   if (const Expr *RE = RS->getRetValue()) {
4909     LocalScope<Emitter> RetScope(this);
4910     if (ReturnType) {
4911       // Primitive types are simply returned.
4912       if (!this->visit(RE))
4913         return false;
4914       this->emitCleanup();
4915       return this->emitRet(*ReturnType, RS);
4916     } else if (RE->getType()->isVoidType()) {
4917       if (!this->visit(RE))
4918         return false;
4919     } else {
4920       // RVO - construct the value in the return location.
4921       if (!this->emitRVOPtr(RE))
4922         return false;
4923       if (!this->visitInitializer(RE))
4924         return false;
4925       if (!this->emitPopPtr(RE))
4926         return false;
4927 
4928       this->emitCleanup();
4929       return this->emitRetVoid(RS);
4930     }
4931   }
4932 
4933   // Void return.
4934   this->emitCleanup();
4935   return this->emitRetVoid(RS);
4936 }
4937 
4938 template <class Emitter> bool Compiler<Emitter>::visitIfStmt(const IfStmt *IS) {
4939   if (auto *CondInit = IS->getInit())
4940     if (!visitStmt(CondInit))
4941       return false;
4942 
4943   if (const DeclStmt *CondDecl = IS->getConditionVariableDeclStmt())
4944     if (!visitDeclStmt(CondDecl))
4945       return false;
4946 
4947   // Compile condition.
4948   if (IS->isNonNegatedConsteval()) {
4949     if (!this->emitIsConstantContext(IS))
4950       return false;
4951   } else if (IS->isNegatedConsteval()) {
4952     if (!this->emitIsConstantContext(IS))
4953       return false;
4954     if (!this->emitInv(IS))
4955       return false;
4956   } else {
4957     if (!this->visitBool(IS->getCond()))
4958       return false;
4959   }
4960 
4961   if (const Stmt *Else = IS->getElse()) {
4962     LabelTy LabelElse = this->getLabel();
4963     LabelTy LabelEnd = this->getLabel();
4964     if (!this->jumpFalse(LabelElse))
4965       return false;
4966     if (!visitStmt(IS->getThen()))
4967       return false;
4968     if (!this->jump(LabelEnd))
4969       return false;
4970     this->emitLabel(LabelElse);
4971     if (!visitStmt(Else))
4972       return false;
4973     this->emitLabel(LabelEnd);
4974   } else {
4975     LabelTy LabelEnd = this->getLabel();
4976     if (!this->jumpFalse(LabelEnd))
4977       return false;
4978     if (!visitStmt(IS->getThen()))
4979       return false;
4980     this->emitLabel(LabelEnd);
4981   }
4982 
4983   return true;
4984 }
4985 
4986 template <class Emitter>
4987 bool Compiler<Emitter>::visitWhileStmt(const WhileStmt *S) {
4988   const Expr *Cond = S->getCond();
4989   const Stmt *Body = S->getBody();
4990 
4991   LabelTy CondLabel = this->getLabel(); // Label before the condition.
4992   LabelTy EndLabel = this->getLabel();  // Label after the loop.
4993   LoopScope<Emitter> LS(this, EndLabel, CondLabel);
4994 
4995   this->fallthrough(CondLabel);
4996   this->emitLabel(CondLabel);
4997 
4998   {
4999     LocalScope<Emitter> CondScope(this);
5000     if (const DeclStmt *CondDecl = S->getConditionVariableDeclStmt())
5001       if (!visitDeclStmt(CondDecl))
5002         return false;
5003 
5004     if (!this->visitBool(Cond))
5005       return false;
5006     if (!this->jumpFalse(EndLabel))
5007       return false;
5008 
5009     if (!this->visitStmt(Body))
5010       return false;
5011 
5012     if (!CondScope.destroyLocals())
5013       return false;
5014   }
5015   if (!this->jump(CondLabel))
5016     return false;
5017   this->fallthrough(EndLabel);
5018   this->emitLabel(EndLabel);
5019 
5020   return true;
5021 }
5022 
5023 template <class Emitter> bool Compiler<Emitter>::visitDoStmt(const DoStmt *S) {
5024   const Expr *Cond = S->getCond();
5025   const Stmt *Body = S->getBody();
5026 
5027   LabelTy StartLabel = this->getLabel();
5028   LabelTy EndLabel = this->getLabel();
5029   LabelTy CondLabel = this->getLabel();
5030   LoopScope<Emitter> LS(this, EndLabel, CondLabel);
5031 
5032   this->fallthrough(StartLabel);
5033   this->emitLabel(StartLabel);
5034 
5035   {
5036     LocalScope<Emitter> CondScope(this);
5037     if (!this->visitStmt(Body))
5038       return false;
5039     this->fallthrough(CondLabel);
5040     this->emitLabel(CondLabel);
5041     if (!this->visitBool(Cond))
5042       return false;
5043 
5044     if (!CondScope.destroyLocals())
5045       return false;
5046   }
5047   if (!this->jumpTrue(StartLabel))
5048     return false;
5049 
5050   this->fallthrough(EndLabel);
5051   this->emitLabel(EndLabel);
5052   return true;
5053 }
5054 
5055 template <class Emitter>
5056 bool Compiler<Emitter>::visitForStmt(const ForStmt *S) {
5057   // for (Init; Cond; Inc) { Body }
5058   const Stmt *Init = S->getInit();
5059   const Expr *Cond = S->getCond();
5060   const Expr *Inc = S->getInc();
5061   const Stmt *Body = S->getBody();
5062 
5063   LabelTy EndLabel = this->getLabel();
5064   LabelTy CondLabel = this->getLabel();
5065   LabelTy IncLabel = this->getLabel();
5066   LoopScope<Emitter> LS(this, EndLabel, IncLabel);
5067 
5068   if (Init && !this->visitStmt(Init))
5069     return false;
5070 
5071   this->fallthrough(CondLabel);
5072   this->emitLabel(CondLabel);
5073 
5074   {
5075     LocalScope<Emitter> CondScope(this);
5076     if (const DeclStmt *CondDecl = S->getConditionVariableDeclStmt())
5077       if (!visitDeclStmt(CondDecl))
5078         return false;
5079 
5080     if (Cond) {
5081       if (!this->visitBool(Cond))
5082         return false;
5083       if (!this->jumpFalse(EndLabel))
5084         return false;
5085     }
5086 
5087     if (Body && !this->visitStmt(Body))
5088       return false;
5089 
5090     this->fallthrough(IncLabel);
5091     this->emitLabel(IncLabel);
5092     if (Inc && !this->discard(Inc))
5093       return false;
5094 
5095     if (!CondScope.destroyLocals())
5096       return false;
5097   }
5098   if (!this->jump(CondLabel))
5099     return false;
5100 
5101   this->fallthrough(EndLabel);
5102   this->emitLabel(EndLabel);
5103   return true;
5104 }
5105 
5106 template <class Emitter>
5107 bool Compiler<Emitter>::visitCXXForRangeStmt(const CXXForRangeStmt *S) {
5108   const Stmt *Init = S->getInit();
5109   const Expr *Cond = S->getCond();
5110   const Expr *Inc = S->getInc();
5111   const Stmt *Body = S->getBody();
5112   const Stmt *BeginStmt = S->getBeginStmt();
5113   const Stmt *RangeStmt = S->getRangeStmt();
5114   const Stmt *EndStmt = S->getEndStmt();
5115   const VarDecl *LoopVar = S->getLoopVariable();
5116 
5117   LabelTy EndLabel = this->getLabel();
5118   LabelTy CondLabel = this->getLabel();
5119   LabelTy IncLabel = this->getLabel();
5120   LoopScope<Emitter> LS(this, EndLabel, IncLabel);
5121 
5122   // Emit declarations needed in the loop.
5123   if (Init && !this->visitStmt(Init))
5124     return false;
5125   if (!this->visitStmt(RangeStmt))
5126     return false;
5127   if (!this->visitStmt(BeginStmt))
5128     return false;
5129   if (!this->visitStmt(EndStmt))
5130     return false;
5131 
5132   // Now the condition as well as the loop variable assignment.
5133   this->fallthrough(CondLabel);
5134   this->emitLabel(CondLabel);
5135   if (!this->visitBool(Cond))
5136     return false;
5137   if (!this->jumpFalse(EndLabel))
5138     return false;
5139 
5140   if (!this->visitVarDecl(LoopVar))
5141     return false;
5142 
5143   // Body.
5144   {
5145     if (!this->visitStmt(Body))
5146       return false;
5147 
5148     this->fallthrough(IncLabel);
5149     this->emitLabel(IncLabel);
5150     if (!this->discard(Inc))
5151       return false;
5152   }
5153 
5154   if (!this->jump(CondLabel))
5155     return false;
5156 
5157   this->fallthrough(EndLabel);
5158   this->emitLabel(EndLabel);
5159   return true;
5160 }
5161 
5162 template <class Emitter>
5163 bool Compiler<Emitter>::visitBreakStmt(const BreakStmt *S) {
5164   if (!BreakLabel)
5165     return false;
5166 
5167   for (VariableScope<Emitter> *C = VarScope; C != BreakVarScope;
5168        C = C->getParent())
5169     C->emitDestruction();
5170   return this->jump(*BreakLabel);
5171 }
5172 
5173 template <class Emitter>
5174 bool Compiler<Emitter>::visitContinueStmt(const ContinueStmt *S) {
5175   if (!ContinueLabel)
5176     return false;
5177 
5178   for (VariableScope<Emitter> *C = VarScope;
5179        C && C->getParent() != ContinueVarScope; C = C->getParent())
5180     C->emitDestruction();
5181   return this->jump(*ContinueLabel);
5182 }
5183 
5184 template <class Emitter>
5185 bool Compiler<Emitter>::visitSwitchStmt(const SwitchStmt *S) {
5186   const Expr *Cond = S->getCond();
5187   PrimType CondT = this->classifyPrim(Cond->getType());
5188   LocalScope<Emitter> LS(this);
5189 
5190   LabelTy EndLabel = this->getLabel();
5191   OptLabelTy DefaultLabel = std::nullopt;
5192   unsigned CondVar = this->allocateLocalPrimitive(Cond, CondT, true, false);
5193 
5194   if (const auto *CondInit = S->getInit())
5195     if (!visitStmt(CondInit))
5196       return false;
5197 
5198   if (const DeclStmt *CondDecl = S->getConditionVariableDeclStmt())
5199     if (!visitDeclStmt(CondDecl))
5200       return false;
5201 
5202   // Initialize condition variable.
5203   if (!this->visit(Cond))
5204     return false;
5205   if (!this->emitSetLocal(CondT, CondVar, S))
5206     return false;
5207 
5208   CaseMap CaseLabels;
5209   // Create labels and comparison ops for all case statements.
5210   for (const SwitchCase *SC = S->getSwitchCaseList(); SC;
5211        SC = SC->getNextSwitchCase()) {
5212     if (const auto *CS = dyn_cast<CaseStmt>(SC)) {
5213       // FIXME: Implement ranges.
5214       if (CS->caseStmtIsGNURange())
5215         return false;
5216       CaseLabels[SC] = this->getLabel();
5217 
5218       const Expr *Value = CS->getLHS();
5219       PrimType ValueT = this->classifyPrim(Value->getType());
5220 
5221       // Compare the case statement's value to the switch condition.
5222       if (!this->emitGetLocal(CondT, CondVar, CS))
5223         return false;
5224       if (!this->visit(Value))
5225         return false;
5226 
5227       // Compare and jump to the case label.
5228       if (!this->emitEQ(ValueT, S))
5229         return false;
5230       if (!this->jumpTrue(CaseLabels[CS]))
5231         return false;
5232     } else {
5233       assert(!DefaultLabel);
5234       DefaultLabel = this->getLabel();
5235     }
5236   }
5237 
5238   // If none of the conditions above were true, fall through to the default
5239   // statement or jump after the switch statement.
5240   if (DefaultLabel) {
5241     if (!this->jump(*DefaultLabel))
5242       return false;
5243   } else {
5244     if (!this->jump(EndLabel))
5245       return false;
5246   }
5247 
5248   SwitchScope<Emitter> SS(this, std::move(CaseLabels), EndLabel, DefaultLabel);
5249   if (!this->visitStmt(S->getBody()))
5250     return false;
5251   this->emitLabel(EndLabel);
5252 
5253   return LS.destroyLocals();
5254 }
5255 
5256 template <class Emitter>
5257 bool Compiler<Emitter>::visitCaseStmt(const CaseStmt *S) {
5258   this->emitLabel(CaseLabels[S]);
5259   return this->visitStmt(S->getSubStmt());
5260 }
5261 
5262 template <class Emitter>
5263 bool Compiler<Emitter>::visitDefaultStmt(const DefaultStmt *S) {
5264   this->emitLabel(*DefaultLabel);
5265   return this->visitStmt(S->getSubStmt());
5266 }
5267 
5268 template <class Emitter>
5269 bool Compiler<Emitter>::visitAttributedStmt(const AttributedStmt *S) {
5270   if (this->Ctx.getLangOpts().CXXAssumptions &&
5271       !this->Ctx.getLangOpts().MSVCCompat) {
5272     for (const Attr *A : S->getAttrs()) {
5273       auto *AA = dyn_cast<CXXAssumeAttr>(A);
5274       if (!AA)
5275         continue;
5276 
5277       assert(isa<NullStmt>(S->getSubStmt()));
5278 
5279       const Expr *Assumption = AA->getAssumption();
5280       if (Assumption->isValueDependent())
5281         return false;
5282 
5283       if (Assumption->HasSideEffects(this->Ctx.getASTContext()))
5284         continue;
5285 
5286       // Evaluate assumption.
5287       if (!this->visitBool(Assumption))
5288         return false;
5289 
5290       if (!this->emitAssume(Assumption))
5291         return false;
5292     }
5293   }
5294 
5295   // Ignore other attributes.
5296   return this->visitStmt(S->getSubStmt());
5297 }
5298 
5299 template <class Emitter>
5300 bool Compiler<Emitter>::visitCXXTryStmt(const CXXTryStmt *S) {
5301   // Ignore all handlers.
5302   return this->visitStmt(S->getTryBlock());
5303 }
5304 
5305 template <class Emitter>
5306 bool Compiler<Emitter>::emitLambdaStaticInvokerBody(const CXXMethodDecl *MD) {
5307   assert(MD->isLambdaStaticInvoker());
5308   assert(MD->hasBody());
5309   assert(cast<CompoundStmt>(MD->getBody())->body_empty());
5310 
5311   const CXXRecordDecl *ClosureClass = MD->getParent();
5312   const CXXMethodDecl *LambdaCallOp = ClosureClass->getLambdaCallOperator();
5313   assert(ClosureClass->captures_begin() == ClosureClass->captures_end());
5314   const Function *Func = this->getFunction(LambdaCallOp);
5315   if (!Func)
5316     return false;
5317   assert(Func->hasThisPointer());
5318   assert(Func->getNumParams() == (MD->getNumParams() + 1 + Func->hasRVO()));
5319 
5320   if (Func->hasRVO()) {
5321     if (!this->emitRVOPtr(MD))
5322       return false;
5323   }
5324 
5325   // The lambda call operator needs an instance pointer, but we don't have
5326   // one here, and we don't need one either because the lambda cannot have
5327   // any captures, as verified above. Emit a null pointer. This is then
5328   // special-cased when interpreting to not emit any misleading diagnostics.
5329   if (!this->emitNullPtr(nullptr, MD))
5330     return false;
5331 
5332   // Forward all arguments from the static invoker to the lambda call operator.
5333   for (const ParmVarDecl *PVD : MD->parameters()) {
5334     auto It = this->Params.find(PVD);
5335     assert(It != this->Params.end());
5336 
5337     // We do the lvalue-to-rvalue conversion manually here, so no need
5338     // to care about references.
5339     PrimType ParamType = this->classify(PVD->getType()).value_or(PT_Ptr);
5340     if (!this->emitGetParam(ParamType, It->second.Offset, MD))
5341       return false;
5342   }
5343 
5344   if (!this->emitCall(Func, 0, LambdaCallOp))
5345     return false;
5346 
5347   this->emitCleanup();
5348   if (ReturnType)
5349     return this->emitRet(*ReturnType, MD);
5350 
5351   // Nothing to do, since we emitted the RVO pointer above.
5352   return this->emitRetVoid(MD);
5353 }
5354 
5355 template <class Emitter>
5356 bool Compiler<Emitter>::checkLiteralType(const Expr *E) {
5357   if (Ctx.getLangOpts().CPlusPlus23)
5358     return true;
5359 
5360   if (!E->isPRValue() || E->getType()->isLiteralType(Ctx.getASTContext()))
5361     return true;
5362 
5363   return this->emitCheckLiteralType(E->getType().getTypePtr(), E);
5364 }
5365 
5366 template <class Emitter>
5367 bool Compiler<Emitter>::compileConstructor(const CXXConstructorDecl *Ctor) {
5368   assert(!ReturnType);
5369 
5370   auto emitFieldInitializer = [&](const Record::Field *F, unsigned FieldOffset,
5371                                   const Expr *InitExpr) -> bool {
5372     // We don't know what to do with these, so just return false.
5373     if (InitExpr->getType().isNull())
5374       return false;
5375 
5376     if (std::optional<PrimType> T = this->classify(InitExpr)) {
5377       if (!this->visit(InitExpr))
5378         return false;
5379 
5380       if (F->isBitField())
5381         return this->emitInitThisBitField(*T, F, FieldOffset, InitExpr);
5382       return this->emitInitThisField(*T, FieldOffset, InitExpr);
5383     }
5384     // Non-primitive case. Get a pointer to the field-to-initialize
5385     // on the stack and call visitInitialzer() for it.
5386     InitLinkScope<Emitter> FieldScope(this, InitLink::Field(F->Offset));
5387     if (!this->emitGetPtrThisField(FieldOffset, InitExpr))
5388       return false;
5389 
5390     if (!this->visitInitializer(InitExpr))
5391       return false;
5392 
5393     return this->emitFinishInitPop(InitExpr);
5394   };
5395 
5396   const RecordDecl *RD = Ctor->getParent();
5397   const Record *R = this->getRecord(RD);
5398   if (!R)
5399     return false;
5400 
5401   if (R->isUnion() && Ctor->isCopyOrMoveConstructor()) {
5402     // union copy and move ctors are special.
5403     assert(cast<CompoundStmt>(Ctor->getBody())->body_empty());
5404     if (!this->emitThis(Ctor))
5405       return false;
5406 
5407     auto PVD = Ctor->getParamDecl(0);
5408     ParamOffset PO = this->Params[PVD]; // Must exist.
5409 
5410     if (!this->emitGetParam(PT_Ptr, PO.Offset, Ctor))
5411       return false;
5412 
5413     return this->emitMemcpy(Ctor) && this->emitPopPtr(Ctor) &&
5414            this->emitRetVoid(Ctor);
5415   }
5416 
5417   InitLinkScope<Emitter> InitScope(this, InitLink::This());
5418   for (const auto *Init : Ctor->inits()) {
5419     // Scope needed for the initializers.
5420     BlockScope<Emitter> Scope(this);
5421 
5422     const Expr *InitExpr = Init->getInit();
5423     if (const FieldDecl *Member = Init->getMember()) {
5424       const Record::Field *F = R->getField(Member);
5425 
5426       if (!emitFieldInitializer(F, F->Offset, InitExpr))
5427         return false;
5428     } else if (const Type *Base = Init->getBaseClass()) {
5429       const auto *BaseDecl = Base->getAsCXXRecordDecl();
5430       assert(BaseDecl);
5431 
5432       if (Init->isBaseVirtual()) {
5433         assert(R->getVirtualBase(BaseDecl));
5434         if (!this->emitGetPtrThisVirtBase(BaseDecl, InitExpr))
5435           return false;
5436 
5437       } else {
5438         // Base class initializer.
5439         // Get This Base and call initializer on it.
5440         const Record::Base *B = R->getBase(BaseDecl);
5441         assert(B);
5442         if (!this->emitGetPtrThisBase(B->Offset, InitExpr))
5443           return false;
5444       }
5445 
5446       if (!this->visitInitializer(InitExpr))
5447         return false;
5448       if (!this->emitFinishInitPop(InitExpr))
5449         return false;
5450     } else if (const IndirectFieldDecl *IFD = Init->getIndirectMember()) {
5451       assert(IFD->getChainingSize() >= 2);
5452 
5453       unsigned NestedFieldOffset = 0;
5454       const Record::Field *NestedField = nullptr;
5455       for (const NamedDecl *ND : IFD->chain()) {
5456         const auto *FD = cast<FieldDecl>(ND);
5457         const Record *FieldRecord = this->P.getOrCreateRecord(FD->getParent());
5458         assert(FieldRecord);
5459 
5460         NestedField = FieldRecord->getField(FD);
5461         assert(NestedField);
5462 
5463         NestedFieldOffset += NestedField->Offset;
5464       }
5465       assert(NestedField);
5466 
5467       if (!emitFieldInitializer(NestedField, NestedFieldOffset, InitExpr))
5468         return false;
5469     } else {
5470       assert(Init->isDelegatingInitializer());
5471       if (!this->emitThis(InitExpr))
5472         return false;
5473       if (!this->visitInitializer(Init->getInit()))
5474         return false;
5475       if (!this->emitPopPtr(InitExpr))
5476         return false;
5477     }
5478 
5479     if (!Scope.destroyLocals())
5480       return false;
5481   }
5482 
5483   if (const auto *Body = Ctor->getBody())
5484     if (!visitStmt(Body))
5485       return false;
5486 
5487   return this->emitRetVoid(SourceInfo{});
5488 }
5489 
5490 template <class Emitter>
5491 bool Compiler<Emitter>::compileDestructor(const CXXDestructorDecl *Dtor) {
5492   const RecordDecl *RD = Dtor->getParent();
5493   const Record *R = this->getRecord(RD);
5494   if (!R)
5495     return false;
5496 
5497   if (!Dtor->isTrivial() && Dtor->getBody()) {
5498     if (!this->visitStmt(Dtor->getBody()))
5499       return false;
5500   }
5501 
5502   if (!this->emitThis(Dtor))
5503     return false;
5504 
5505   assert(R);
5506   if (!R->isUnion()) {
5507     // First, destroy all fields.
5508     for (const Record::Field &Field : llvm::reverse(R->fields())) {
5509       const Descriptor *D = Field.Desc;
5510       if (!D->isPrimitive() && !D->isPrimitiveArray()) {
5511         if (!this->emitGetPtrField(Field.Offset, SourceInfo{}))
5512           return false;
5513         if (!this->emitDestruction(D, SourceInfo{}))
5514           return false;
5515         if (!this->emitPopPtr(SourceInfo{}))
5516           return false;
5517       }
5518     }
5519   }
5520 
5521   for (const Record::Base &Base : llvm::reverse(R->bases())) {
5522     if (Base.R->isAnonymousUnion())
5523       continue;
5524 
5525     if (!this->emitGetPtrBase(Base.Offset, SourceInfo{}))
5526       return false;
5527     if (!this->emitRecordDestruction(Base.R, {}))
5528       return false;
5529     if (!this->emitPopPtr(SourceInfo{}))
5530       return false;
5531   }
5532 
5533   // FIXME: Virtual bases.
5534   return this->emitPopPtr(Dtor) && this->emitRetVoid(Dtor);
5535 }
5536 
5537 template <class Emitter>
5538 bool Compiler<Emitter>::visitFunc(const FunctionDecl *F) {
5539   // Classify the return type.
5540   ReturnType = this->classify(F->getReturnType());
5541 
5542   if (const auto *Ctor = dyn_cast<CXXConstructorDecl>(F))
5543     return this->compileConstructor(Ctor);
5544   if (const auto *Dtor = dyn_cast<CXXDestructorDecl>(F))
5545     return this->compileDestructor(Dtor);
5546 
5547   // Emit custom code if this is a lambda static invoker.
5548   if (const auto *MD = dyn_cast<CXXMethodDecl>(F);
5549       MD && MD->isLambdaStaticInvoker())
5550     return this->emitLambdaStaticInvokerBody(MD);
5551 
5552   // Regular functions.
5553   if (const auto *Body = F->getBody())
5554     if (!visitStmt(Body))
5555       return false;
5556 
5557   // Emit a guard return to protect against a code path missing one.
5558   if (F->getReturnType()->isVoidType())
5559     return this->emitRetVoid(SourceInfo{});
5560   return this->emitNoRet(SourceInfo{});
5561 }
5562 
5563 template <class Emitter>
5564 bool Compiler<Emitter>::VisitUnaryOperator(const UnaryOperator *E) {
5565   const Expr *SubExpr = E->getSubExpr();
5566   if (SubExpr->getType()->isAnyComplexType())
5567     return this->VisitComplexUnaryOperator(E);
5568   if (SubExpr->getType()->isVectorType())
5569     return this->VisitVectorUnaryOperator(E);
5570   if (SubExpr->getType()->isFixedPointType())
5571     return this->VisitFixedPointUnaryOperator(E);
5572   std::optional<PrimType> T = classify(SubExpr->getType());
5573 
5574   switch (E->getOpcode()) {
5575   case UO_PostInc: { // x++
5576     if (!Ctx.getLangOpts().CPlusPlus14)
5577       return this->emitInvalid(E);
5578     if (!T)
5579       return this->emitError(E);
5580 
5581     if (!this->visit(SubExpr))
5582       return false;
5583 
5584     if (T == PT_Ptr || T == PT_FnPtr) {
5585       if (!this->emitIncPtr(E))
5586         return false;
5587 
5588       return DiscardResult ? this->emitPopPtr(E) : true;
5589     }
5590 
5591     if (T == PT_Float) {
5592       return DiscardResult ? this->emitIncfPop(getFPOptions(E), E)
5593                            : this->emitIncf(getFPOptions(E), E);
5594     }
5595 
5596     return DiscardResult ? this->emitIncPop(*T, E) : this->emitInc(*T, E);
5597   }
5598   case UO_PostDec: { // x--
5599     if (!Ctx.getLangOpts().CPlusPlus14)
5600       return this->emitInvalid(E);
5601     if (!T)
5602       return this->emitError(E);
5603 
5604     if (!this->visit(SubExpr))
5605       return false;
5606 
5607     if (T == PT_Ptr || T == PT_FnPtr) {
5608       if (!this->emitDecPtr(E))
5609         return false;
5610 
5611       return DiscardResult ? this->emitPopPtr(E) : true;
5612     }
5613 
5614     if (T == PT_Float) {
5615       return DiscardResult ? this->emitDecfPop(getFPOptions(E), E)
5616                            : this->emitDecf(getFPOptions(E), E);
5617     }
5618 
5619     return DiscardResult ? this->emitDecPop(*T, E) : this->emitDec(*T, E);
5620   }
5621   case UO_PreInc: { // ++x
5622     if (!Ctx.getLangOpts().CPlusPlus14)
5623       return this->emitInvalid(E);
5624     if (!T)
5625       return this->emitError(E);
5626 
5627     if (!this->visit(SubExpr))
5628       return false;
5629 
5630     if (T == PT_Ptr || T == PT_FnPtr) {
5631       if (!this->emitLoadPtr(E))
5632         return false;
5633       if (!this->emitConstUint8(1, E))
5634         return false;
5635       if (!this->emitAddOffsetUint8(E))
5636         return false;
5637       return DiscardResult ? this->emitStorePopPtr(E) : this->emitStorePtr(E);
5638     }
5639 
5640     // Post-inc and pre-inc are the same if the value is to be discarded.
5641     if (DiscardResult) {
5642       if (T == PT_Float)
5643         return this->emitIncfPop(getFPOptions(E), E);
5644       return this->emitIncPop(*T, E);
5645     }
5646 
5647     if (T == PT_Float) {
5648       const auto &TargetSemantics = Ctx.getFloatSemantics(E->getType());
5649       if (!this->emitLoadFloat(E))
5650         return false;
5651       if (!this->emitConstFloat(llvm::APFloat(TargetSemantics, 1), E))
5652         return false;
5653       if (!this->emitAddf(getFPOptions(E), E))
5654         return false;
5655       if (!this->emitStoreFloat(E))
5656         return false;
5657     } else {
5658       assert(isIntegralType(*T));
5659       if (!this->emitLoad(*T, E))
5660         return false;
5661       if (!this->emitConst(1, E))
5662         return false;
5663       if (!this->emitAdd(*T, E))
5664         return false;
5665       if (!this->emitStore(*T, E))
5666         return false;
5667     }
5668     return E->isGLValue() || this->emitLoadPop(*T, E);
5669   }
5670   case UO_PreDec: { // --x
5671     if (!Ctx.getLangOpts().CPlusPlus14)
5672       return this->emitInvalid(E);
5673     if (!T)
5674       return this->emitError(E);
5675 
5676     if (!this->visit(SubExpr))
5677       return false;
5678 
5679     if (T == PT_Ptr || T == PT_FnPtr) {
5680       if (!this->emitLoadPtr(E))
5681         return false;
5682       if (!this->emitConstUint8(1, E))
5683         return false;
5684       if (!this->emitSubOffsetUint8(E))
5685         return false;
5686       return DiscardResult ? this->emitStorePopPtr(E) : this->emitStorePtr(E);
5687     }
5688 
5689     // Post-dec and pre-dec are the same if the value is to be discarded.
5690     if (DiscardResult) {
5691       if (T == PT_Float)
5692         return this->emitDecfPop(getFPOptions(E), E);
5693       return this->emitDecPop(*T, E);
5694     }
5695 
5696     if (T == PT_Float) {
5697       const auto &TargetSemantics = Ctx.getFloatSemantics(E->getType());
5698       if (!this->emitLoadFloat(E))
5699         return false;
5700       if (!this->emitConstFloat(llvm::APFloat(TargetSemantics, 1), E))
5701         return false;
5702       if (!this->emitSubf(getFPOptions(E), E))
5703         return false;
5704       if (!this->emitStoreFloat(E))
5705         return false;
5706     } else {
5707       assert(isIntegralType(*T));
5708       if (!this->emitLoad(*T, E))
5709         return false;
5710       if (!this->emitConst(1, E))
5711         return false;
5712       if (!this->emitSub(*T, E))
5713         return false;
5714       if (!this->emitStore(*T, E))
5715         return false;
5716     }
5717     return E->isGLValue() || this->emitLoadPop(*T, E);
5718   }
5719   case UO_LNot: // !x
5720     if (!T)
5721       return this->emitError(E);
5722 
5723     if (DiscardResult)
5724       return this->discard(SubExpr);
5725 
5726     if (!this->visitBool(SubExpr))
5727       return false;
5728 
5729     if (!this->emitInv(E))
5730       return false;
5731 
5732     if (PrimType ET = classifyPrim(E->getType()); ET != PT_Bool)
5733       return this->emitCast(PT_Bool, ET, E);
5734     return true;
5735   case UO_Minus: // -x
5736     if (!T)
5737       return this->emitError(E);
5738 
5739     if (!this->visit(SubExpr))
5740       return false;
5741     return DiscardResult ? this->emitPop(*T, E) : this->emitNeg(*T, E);
5742   case UO_Plus: // +x
5743     if (!T)
5744       return this->emitError(E);
5745 
5746     if (!this->visit(SubExpr)) // noop
5747       return false;
5748     return DiscardResult ? this->emitPop(*T, E) : true;
5749   case UO_AddrOf: // &x
5750     if (E->getType()->isMemberPointerType()) {
5751       // C++11 [expr.unary.op]p3 has very strict rules on how the address of a
5752       // member can be formed.
5753       return this->emitGetMemberPtr(cast<DeclRefExpr>(SubExpr)->getDecl(), E);
5754     }
5755     // We should already have a pointer when we get here.
5756     return this->delegate(SubExpr);
5757   case UO_Deref: // *x
5758     if (DiscardResult) {
5759       // assert(false);
5760       return this->discard(SubExpr);
5761     }
5762 
5763     if (!this->visit(SubExpr))
5764       return false;
5765     if (classifyPrim(SubExpr) == PT_Ptr)
5766       return this->emitNarrowPtr(E);
5767     return true;
5768 
5769   case UO_Not: // ~x
5770     if (!T)
5771       return this->emitError(E);
5772 
5773     if (!this->visit(SubExpr))
5774       return false;
5775     return DiscardResult ? this->emitPop(*T, E) : this->emitComp(*T, E);
5776   case UO_Real: // __real x
5777     assert(T);
5778     return this->delegate(SubExpr);
5779   case UO_Imag: { // __imag x
5780     assert(T);
5781     if (!this->discard(SubExpr))
5782       return false;
5783     return this->visitZeroInitializer(*T, SubExpr->getType(), SubExpr);
5784   }
5785   case UO_Extension:
5786     return this->delegate(SubExpr);
5787   case UO_Coawait:
5788     assert(false && "Unhandled opcode");
5789   }
5790 
5791   return false;
5792 }
5793 
5794 template <class Emitter>
5795 bool Compiler<Emitter>::VisitComplexUnaryOperator(const UnaryOperator *E) {
5796   const Expr *SubExpr = E->getSubExpr();
5797   assert(SubExpr->getType()->isAnyComplexType());
5798 
5799   if (DiscardResult)
5800     return this->discard(SubExpr);
5801 
5802   std::optional<PrimType> ResT = classify(E);
5803   auto prepareResult = [=]() -> bool {
5804     if (!ResT && !Initializing) {
5805       std::optional<unsigned> LocalIndex = allocateLocal(SubExpr);
5806       if (!LocalIndex)
5807         return false;
5808       return this->emitGetPtrLocal(*LocalIndex, E);
5809     }
5810 
5811     return true;
5812   };
5813 
5814   // The offset of the temporary, if we created one.
5815   unsigned SubExprOffset = ~0u;
5816   auto createTemp = [=, &SubExprOffset]() -> bool {
5817     SubExprOffset = this->allocateLocalPrimitive(SubExpr, PT_Ptr, true, false);
5818     if (!this->visit(SubExpr))
5819       return false;
5820     return this->emitSetLocal(PT_Ptr, SubExprOffset, E);
5821   };
5822 
5823   PrimType ElemT = classifyComplexElementType(SubExpr->getType());
5824   auto getElem = [=](unsigned Offset, unsigned Index) -> bool {
5825     if (!this->emitGetLocal(PT_Ptr, Offset, E))
5826       return false;
5827     return this->emitArrayElemPop(ElemT, Index, E);
5828   };
5829 
5830   switch (E->getOpcode()) {
5831   case UO_Minus:
5832     if (!prepareResult())
5833       return false;
5834     if (!createTemp())
5835       return false;
5836     for (unsigned I = 0; I != 2; ++I) {
5837       if (!getElem(SubExprOffset, I))
5838         return false;
5839       if (!this->emitNeg(ElemT, E))
5840         return false;
5841       if (!this->emitInitElem(ElemT, I, E))
5842         return false;
5843     }
5844     break;
5845 
5846   case UO_Plus:   // +x
5847   case UO_AddrOf: // &x
5848   case UO_Deref:  // *x
5849     return this->delegate(SubExpr);
5850 
5851   case UO_LNot:
5852     if (!this->visit(SubExpr))
5853       return false;
5854     if (!this->emitComplexBoolCast(SubExpr))
5855       return false;
5856     if (!this->emitInv(E))
5857       return false;
5858     if (PrimType ET = classifyPrim(E->getType()); ET != PT_Bool)
5859       return this->emitCast(PT_Bool, ET, E);
5860     return true;
5861 
5862   case UO_Real:
5863     return this->emitComplexReal(SubExpr);
5864 
5865   case UO_Imag:
5866     if (!this->visit(SubExpr))
5867       return false;
5868 
5869     if (SubExpr->isLValue()) {
5870       if (!this->emitConstUint8(1, E))
5871         return false;
5872       return this->emitArrayElemPtrPopUint8(E);
5873     }
5874 
5875     // Since our _Complex implementation does not map to a primitive type,
5876     // we sometimes have to do the lvalue-to-rvalue conversion here manually.
5877     return this->emitArrayElemPop(classifyPrim(E->getType()), 1, E);
5878 
5879   case UO_Not: // ~x
5880     if (!this->visit(SubExpr))
5881       return false;
5882     // Negate the imaginary component.
5883     if (!this->emitArrayElem(ElemT, 1, E))
5884       return false;
5885     if (!this->emitNeg(ElemT, E))
5886       return false;
5887     if (!this->emitInitElem(ElemT, 1, E))
5888       return false;
5889     return DiscardResult ? this->emitPopPtr(E) : true;
5890 
5891   case UO_Extension:
5892     return this->delegate(SubExpr);
5893 
5894   default:
5895     return this->emitInvalid(E);
5896   }
5897 
5898   return true;
5899 }
5900 
5901 template <class Emitter>
5902 bool Compiler<Emitter>::VisitVectorUnaryOperator(const UnaryOperator *E) {
5903   const Expr *SubExpr = E->getSubExpr();
5904   assert(SubExpr->getType()->isVectorType());
5905 
5906   if (DiscardResult)
5907     return this->discard(SubExpr);
5908 
5909   auto UnaryOp = E->getOpcode();
5910   if (UnaryOp != UO_Plus && UnaryOp != UO_Minus && UnaryOp != UO_LNot &&
5911       UnaryOp != UO_Not && UnaryOp != UO_AddrOf)
5912     return this->emitInvalid(E);
5913 
5914   // Nothing to do here.
5915   if (UnaryOp == UO_Plus || UnaryOp == UO_AddrOf)
5916     return this->delegate(SubExpr);
5917 
5918   if (!Initializing) {
5919     std::optional<unsigned> LocalIndex = allocateLocal(SubExpr);
5920     if (!LocalIndex)
5921       return false;
5922     if (!this->emitGetPtrLocal(*LocalIndex, E))
5923       return false;
5924   }
5925 
5926   // The offset of the temporary, if we created one.
5927   unsigned SubExprOffset =
5928       this->allocateLocalPrimitive(SubExpr, PT_Ptr, true, false);
5929   if (!this->visit(SubExpr))
5930     return false;
5931   if (!this->emitSetLocal(PT_Ptr, SubExprOffset, E))
5932     return false;
5933 
5934   const auto *VecTy = SubExpr->getType()->getAs<VectorType>();
5935   PrimType ElemT = classifyVectorElementType(SubExpr->getType());
5936   auto getElem = [=](unsigned Offset, unsigned Index) -> bool {
5937     if (!this->emitGetLocal(PT_Ptr, Offset, E))
5938       return false;
5939     return this->emitArrayElemPop(ElemT, Index, E);
5940   };
5941 
5942   switch (UnaryOp) {
5943   case UO_Minus:
5944     for (unsigned I = 0; I != VecTy->getNumElements(); ++I) {
5945       if (!getElem(SubExprOffset, I))
5946         return false;
5947       if (!this->emitNeg(ElemT, E))
5948         return false;
5949       if (!this->emitInitElem(ElemT, I, E))
5950         return false;
5951     }
5952     break;
5953   case UO_LNot: { // !x
5954     // In C++, the logic operators !, &&, || are available for vectors. !v is
5955     // equivalent to v == 0.
5956     //
5957     // The result of the comparison is a vector of the same width and number of
5958     // elements as the comparison operands with a signed integral element type.
5959     //
5960     // https://gcc.gnu.org/onlinedocs/gcc/Vector-Extensions.html
5961     QualType ResultVecTy = E->getType();
5962     PrimType ResultVecElemT =
5963         classifyPrim(ResultVecTy->getAs<VectorType>()->getElementType());
5964     for (unsigned I = 0; I != VecTy->getNumElements(); ++I) {
5965       if (!getElem(SubExprOffset, I))
5966         return false;
5967       // operator ! on vectors returns -1 for 'truth', so negate it.
5968       if (!this->emitPrimCast(ElemT, PT_Bool, Ctx.getASTContext().BoolTy, E))
5969         return false;
5970       if (!this->emitInv(E))
5971         return false;
5972       if (!this->emitPrimCast(PT_Bool, ElemT, VecTy->getElementType(), E))
5973         return false;
5974       if (!this->emitNeg(ElemT, E))
5975         return false;
5976       if (ElemT != ResultVecElemT &&
5977           !this->emitPrimCast(ElemT, ResultVecElemT, ResultVecTy, E))
5978         return false;
5979       if (!this->emitInitElem(ResultVecElemT, I, E))
5980         return false;
5981     }
5982     break;
5983   }
5984   case UO_Not: // ~x
5985     for (unsigned I = 0; I != VecTy->getNumElements(); ++I) {
5986       if (!getElem(SubExprOffset, I))
5987         return false;
5988       if (ElemT == PT_Bool) {
5989         if (!this->emitInv(E))
5990           return false;
5991       } else {
5992         if (!this->emitComp(ElemT, E))
5993           return false;
5994       }
5995       if (!this->emitInitElem(ElemT, I, E))
5996         return false;
5997     }
5998     break;
5999   default:
6000     llvm_unreachable("Unsupported unary operators should be handled up front");
6001   }
6002   return true;
6003 }
6004 
6005 template <class Emitter>
6006 bool Compiler<Emitter>::visitDeclRef(const ValueDecl *D, const Expr *E) {
6007   if (DiscardResult)
6008     return true;
6009 
6010   if (const auto *ECD = dyn_cast<EnumConstantDecl>(D)) {
6011     return this->emitConst(ECD->getInitVal(), E);
6012   } else if (const auto *BD = dyn_cast<BindingDecl>(D)) {
6013     return this->visit(BD->getBinding());
6014   } else if (const auto *FuncDecl = dyn_cast<FunctionDecl>(D)) {
6015     const Function *F = getFunction(FuncDecl);
6016     return F && this->emitGetFnPtr(F, E);
6017   } else if (const auto *TPOD = dyn_cast<TemplateParamObjectDecl>(D)) {
6018     if (std::optional<unsigned> Index = P.getOrCreateGlobal(D)) {
6019       if (!this->emitGetPtrGlobal(*Index, E))
6020         return false;
6021       if (std::optional<PrimType> T = classify(E->getType())) {
6022         if (!this->visitAPValue(TPOD->getValue(), *T, E))
6023           return false;
6024         return this->emitInitGlobal(*T, *Index, E);
6025       }
6026       return this->visitAPValueInitializer(TPOD->getValue(), E);
6027     }
6028     return false;
6029   }
6030 
6031   // References are implemented via pointers, so when we see a DeclRefExpr
6032   // pointing to a reference, we need to get its value directly (i.e. the
6033   // pointer to the actual value) instead of a pointer to the pointer to the
6034   // value.
6035   bool IsReference = D->getType()->isReferenceType();
6036 
6037   // Check for local/global variables and parameters.
6038   if (auto It = Locals.find(D); It != Locals.end()) {
6039     const unsigned Offset = It->second.Offset;
6040     if (IsReference)
6041       return this->emitGetLocal(PT_Ptr, Offset, E);
6042     return this->emitGetPtrLocal(Offset, E);
6043   } else if (auto GlobalIndex = P.getGlobal(D)) {
6044     if (IsReference) {
6045       if (!Ctx.getLangOpts().CPlusPlus11)
6046         return this->emitGetGlobal(classifyPrim(E), *GlobalIndex, E);
6047       return this->emitGetGlobalUnchecked(classifyPrim(E), *GlobalIndex, E);
6048     }
6049 
6050     return this->emitGetPtrGlobal(*GlobalIndex, E);
6051   } else if (const auto *PVD = dyn_cast<ParmVarDecl>(D)) {
6052     if (auto It = this->Params.find(PVD); It != this->Params.end()) {
6053       if (IsReference || !It->second.IsPtr)
6054         return this->emitGetParam(classifyPrim(E), It->second.Offset, E);
6055 
6056       return this->emitGetPtrParam(It->second.Offset, E);
6057     }
6058 
6059     if (D->getType()->isReferenceType())
6060       return false; // FIXME: Do we need to emit InvalidDeclRef?
6061   }
6062 
6063   // In case we need to re-visit a declaration.
6064   auto revisit = [&](const VarDecl *VD) -> bool {
6065     auto VarState = this->visitDecl(VD);
6066 
6067     if (VarState.notCreated())
6068       return true;
6069     if (!VarState)
6070       return false;
6071     // Retry.
6072     return this->visitDeclRef(D, E);
6073   };
6074 
6075   // Handle lambda captures.
6076   if (auto It = this->LambdaCaptures.find(D);
6077       It != this->LambdaCaptures.end()) {
6078     auto [Offset, IsPtr] = It->second;
6079 
6080     if (IsPtr)
6081       return this->emitGetThisFieldPtr(Offset, E);
6082     return this->emitGetPtrThisField(Offset, E);
6083   } else if (const auto *DRE = dyn_cast<DeclRefExpr>(E);
6084              DRE && DRE->refersToEnclosingVariableOrCapture()) {
6085     if (const auto *VD = dyn_cast<VarDecl>(D); VD && VD->isInitCapture())
6086       return revisit(VD);
6087   }
6088 
6089   if (D != InitializingDecl) {
6090     // Try to lazily visit (or emit dummy pointers for) declarations
6091     // we haven't seen yet.
6092     if (Ctx.getLangOpts().CPlusPlus) {
6093       if (const auto *VD = dyn_cast<VarDecl>(D)) {
6094         const auto typeShouldBeVisited = [&](QualType T) -> bool {
6095           if (T.isConstant(Ctx.getASTContext()))
6096             return true;
6097           return T->isReferenceType();
6098         };
6099 
6100         // DecompositionDecls are just proxies for us.
6101         if (isa<DecompositionDecl>(VD))
6102           return revisit(VD);
6103 
6104         if ((VD->hasGlobalStorage() || VD->isStaticDataMember()) &&
6105             typeShouldBeVisited(VD->getType()))
6106           return revisit(VD);
6107 
6108         // FIXME: The evaluateValue() check here is a little ridiculous, since
6109         // it will ultimately call into Context::evaluateAsInitializer(). In
6110         // other words, we're evaluating the initializer, just to know if we can
6111         // evaluate the initializer.
6112         if (VD->isLocalVarDecl() && typeShouldBeVisited(VD->getType()) &&
6113             VD->getInit() && !VD->getInit()->isValueDependent()) {
6114 
6115           if (VD->evaluateValue())
6116             return revisit(VD);
6117 
6118           if (!D->getType()->isReferenceType())
6119             return this->emitDummyPtr(D, E);
6120 
6121           return this->emitInvalidDeclRef(cast<DeclRefExpr>(E),
6122                                           /*InitializerFailed=*/true, E);
6123         }
6124       }
6125     } else {
6126       if (const auto *VD = dyn_cast<VarDecl>(D);
6127           VD && VD->getAnyInitializer() &&
6128           VD->getType().isConstant(Ctx.getASTContext()) && !VD->isWeak())
6129         return revisit(VD);
6130     }
6131   }
6132 
6133   return this->emitDummyPtr(D, E);
6134 }
6135 
6136 template <class Emitter>
6137 bool Compiler<Emitter>::VisitDeclRefExpr(const DeclRefExpr *E) {
6138   const auto *D = E->getDecl();
6139   return this->visitDeclRef(D, E);
6140 }
6141 
6142 template <class Emitter> void Compiler<Emitter>::emitCleanup() {
6143   for (VariableScope<Emitter> *C = VarScope; C; C = C->getParent())
6144     C->emitDestruction();
6145 }
6146 
6147 template <class Emitter>
6148 unsigned Compiler<Emitter>::collectBaseOffset(const QualType BaseType,
6149                                               const QualType DerivedType) {
6150   const auto extractRecordDecl = [](QualType Ty) -> const CXXRecordDecl * {
6151     if (const auto *R = Ty->getPointeeCXXRecordDecl())
6152       return R;
6153     return Ty->getAsCXXRecordDecl();
6154   };
6155   const CXXRecordDecl *BaseDecl = extractRecordDecl(BaseType);
6156   const CXXRecordDecl *DerivedDecl = extractRecordDecl(DerivedType);
6157 
6158   return Ctx.collectBaseOffset(BaseDecl, DerivedDecl);
6159 }
6160 
6161 /// Emit casts from a PrimType to another PrimType.
6162 template <class Emitter>
6163 bool Compiler<Emitter>::emitPrimCast(PrimType FromT, PrimType ToT,
6164                                      QualType ToQT, const Expr *E) {
6165 
6166   if (FromT == PT_Float) {
6167     // Floating to floating.
6168     if (ToT == PT_Float) {
6169       const llvm::fltSemantics *ToSem = &Ctx.getFloatSemantics(ToQT);
6170       return this->emitCastFP(ToSem, getRoundingMode(E), E);
6171     }
6172 
6173     if (ToT == PT_IntAP)
6174       return this->emitCastFloatingIntegralAP(Ctx.getBitWidth(ToQT),
6175                                               getFPOptions(E), E);
6176     if (ToT == PT_IntAPS)
6177       return this->emitCastFloatingIntegralAPS(Ctx.getBitWidth(ToQT),
6178                                                getFPOptions(E), E);
6179 
6180     // Float to integral.
6181     if (isIntegralType(ToT) || ToT == PT_Bool)
6182       return this->emitCastFloatingIntegral(ToT, getFPOptions(E), E);
6183   }
6184 
6185   if (isIntegralType(FromT) || FromT == PT_Bool) {
6186     if (ToT == PT_IntAP)
6187       return this->emitCastAP(FromT, Ctx.getBitWidth(ToQT), E);
6188     if (ToT == PT_IntAPS)
6189       return this->emitCastAPS(FromT, Ctx.getBitWidth(ToQT), E);
6190 
6191     // Integral to integral.
6192     if (isIntegralType(ToT) || ToT == PT_Bool)
6193       return FromT != ToT ? this->emitCast(FromT, ToT, E) : true;
6194 
6195     if (ToT == PT_Float) {
6196       // Integral to floating.
6197       const llvm::fltSemantics *ToSem = &Ctx.getFloatSemantics(ToQT);
6198       return this->emitCastIntegralFloating(FromT, ToSem, getFPOptions(E), E);
6199     }
6200   }
6201 
6202   return false;
6203 }
6204 
6205 /// Emits __real(SubExpr)
6206 template <class Emitter>
6207 bool Compiler<Emitter>::emitComplexReal(const Expr *SubExpr) {
6208   assert(SubExpr->getType()->isAnyComplexType());
6209 
6210   if (DiscardResult)
6211     return this->discard(SubExpr);
6212 
6213   if (!this->visit(SubExpr))
6214     return false;
6215   if (SubExpr->isLValue()) {
6216     if (!this->emitConstUint8(0, SubExpr))
6217       return false;
6218     return this->emitArrayElemPtrPopUint8(SubExpr);
6219   }
6220 
6221   // Rvalue, load the actual element.
6222   return this->emitArrayElemPop(classifyComplexElementType(SubExpr->getType()),
6223                                 0, SubExpr);
6224 }
6225 
6226 template <class Emitter>
6227 bool Compiler<Emitter>::emitComplexBoolCast(const Expr *E) {
6228   assert(!DiscardResult);
6229   PrimType ElemT = classifyComplexElementType(E->getType());
6230   // We emit the expression (__real(E) != 0 || __imag(E) != 0)
6231   // for us, that means (bool)E[0] || (bool)E[1]
6232   if (!this->emitArrayElem(ElemT, 0, E))
6233     return false;
6234   if (ElemT == PT_Float) {
6235     if (!this->emitCastFloatingIntegral(PT_Bool, getFPOptions(E), E))
6236       return false;
6237   } else {
6238     if (!this->emitCast(ElemT, PT_Bool, E))
6239       return false;
6240   }
6241 
6242   // We now have the bool value of E[0] on the stack.
6243   LabelTy LabelTrue = this->getLabel();
6244   if (!this->jumpTrue(LabelTrue))
6245     return false;
6246 
6247   if (!this->emitArrayElemPop(ElemT, 1, E))
6248     return false;
6249   if (ElemT == PT_Float) {
6250     if (!this->emitCastFloatingIntegral(PT_Bool, getFPOptions(E), E))
6251       return false;
6252   } else {
6253     if (!this->emitCast(ElemT, PT_Bool, E))
6254       return false;
6255   }
6256   // Leave the boolean value of E[1] on the stack.
6257   LabelTy EndLabel = this->getLabel();
6258   this->jump(EndLabel);
6259 
6260   this->emitLabel(LabelTrue);
6261   if (!this->emitPopPtr(E))
6262     return false;
6263   if (!this->emitConstBool(true, E))
6264     return false;
6265 
6266   this->fallthrough(EndLabel);
6267   this->emitLabel(EndLabel);
6268 
6269   return true;
6270 }
6271 
6272 template <class Emitter>
6273 bool Compiler<Emitter>::emitComplexComparison(const Expr *LHS, const Expr *RHS,
6274                                               const BinaryOperator *E) {
6275   assert(E->isComparisonOp());
6276   assert(!Initializing);
6277   assert(!DiscardResult);
6278 
6279   PrimType ElemT;
6280   bool LHSIsComplex;
6281   unsigned LHSOffset;
6282   if (LHS->getType()->isAnyComplexType()) {
6283     LHSIsComplex = true;
6284     ElemT = classifyComplexElementType(LHS->getType());
6285     LHSOffset = allocateLocalPrimitive(LHS, PT_Ptr, /*IsConst=*/true,
6286                                        /*IsExtended=*/false);
6287     if (!this->visit(LHS))
6288       return false;
6289     if (!this->emitSetLocal(PT_Ptr, LHSOffset, E))
6290       return false;
6291   } else {
6292     LHSIsComplex = false;
6293     PrimType LHST = classifyPrim(LHS->getType());
6294     LHSOffset = this->allocateLocalPrimitive(LHS, LHST, true, false);
6295     if (!this->visit(LHS))
6296       return false;
6297     if (!this->emitSetLocal(LHST, LHSOffset, E))
6298       return false;
6299   }
6300 
6301   bool RHSIsComplex;
6302   unsigned RHSOffset;
6303   if (RHS->getType()->isAnyComplexType()) {
6304     RHSIsComplex = true;
6305     ElemT = classifyComplexElementType(RHS->getType());
6306     RHSOffset = allocateLocalPrimitive(RHS, PT_Ptr, /*IsConst=*/true,
6307                                        /*IsExtended=*/false);
6308     if (!this->visit(RHS))
6309       return false;
6310     if (!this->emitSetLocal(PT_Ptr, RHSOffset, E))
6311       return false;
6312   } else {
6313     RHSIsComplex = false;
6314     PrimType RHST = classifyPrim(RHS->getType());
6315     RHSOffset = this->allocateLocalPrimitive(RHS, RHST, true, false);
6316     if (!this->visit(RHS))
6317       return false;
6318     if (!this->emitSetLocal(RHST, RHSOffset, E))
6319       return false;
6320   }
6321 
6322   auto getElem = [&](unsigned LocalOffset, unsigned Index,
6323                      bool IsComplex) -> bool {
6324     if (IsComplex) {
6325       if (!this->emitGetLocal(PT_Ptr, LocalOffset, E))
6326         return false;
6327       return this->emitArrayElemPop(ElemT, Index, E);
6328     }
6329     return this->emitGetLocal(ElemT, LocalOffset, E);
6330   };
6331 
6332   for (unsigned I = 0; I != 2; ++I) {
6333     // Get both values.
6334     if (!getElem(LHSOffset, I, LHSIsComplex))
6335       return false;
6336     if (!getElem(RHSOffset, I, RHSIsComplex))
6337       return false;
6338     // And compare them.
6339     if (!this->emitEQ(ElemT, E))
6340       return false;
6341 
6342     if (!this->emitCastBoolUint8(E))
6343       return false;
6344   }
6345 
6346   // We now have two bool values on the stack. Compare those.
6347   if (!this->emitAddUint8(E))
6348     return false;
6349   if (!this->emitConstUint8(2, E))
6350     return false;
6351 
6352   if (E->getOpcode() == BO_EQ) {
6353     if (!this->emitEQUint8(E))
6354       return false;
6355   } else if (E->getOpcode() == BO_NE) {
6356     if (!this->emitNEUint8(E))
6357       return false;
6358   } else
6359     return false;
6360 
6361   // In C, this returns an int.
6362   if (PrimType ResT = classifyPrim(E->getType()); ResT != PT_Bool)
6363     return this->emitCast(PT_Bool, ResT, E);
6364   return true;
6365 }
6366 
6367 /// When calling this, we have a pointer of the local-to-destroy
6368 /// on the stack.
6369 /// Emit destruction of record types (or arrays of record types).
6370 template <class Emitter>
6371 bool Compiler<Emitter>::emitRecordDestruction(const Record *R, SourceInfo Loc) {
6372   assert(R);
6373   assert(!R->isAnonymousUnion());
6374   const CXXDestructorDecl *Dtor = R->getDestructor();
6375   if (!Dtor || Dtor->isTrivial())
6376     return true;
6377 
6378   assert(Dtor);
6379   const Function *DtorFunc = getFunction(Dtor);
6380   if (!DtorFunc)
6381     return false;
6382   assert(DtorFunc->hasThisPointer());
6383   assert(DtorFunc->getNumParams() == 1);
6384   if (!this->emitDupPtr(Loc))
6385     return false;
6386   return this->emitCall(DtorFunc, 0, Loc);
6387 }
6388 /// When calling this, we have a pointer of the local-to-destroy
6389 /// on the stack.
6390 /// Emit destruction of record types (or arrays of record types).
6391 template <class Emitter>
6392 bool Compiler<Emitter>::emitDestruction(const Descriptor *Desc,
6393                                         SourceInfo Loc) {
6394   assert(Desc);
6395   assert(!Desc->isPrimitive());
6396   assert(!Desc->isPrimitiveArray());
6397 
6398   // Arrays.
6399   if (Desc->isArray()) {
6400     const Descriptor *ElemDesc = Desc->ElemDesc;
6401     assert(ElemDesc);
6402 
6403     // Don't need to do anything for these.
6404     if (ElemDesc->isPrimitiveArray())
6405       return true;
6406 
6407     // If this is an array of record types, check if we need
6408     // to call the element destructors at all. If not, try
6409     // to save the work.
6410     if (const Record *ElemRecord = ElemDesc->ElemRecord) {
6411       if (const CXXDestructorDecl *Dtor = ElemRecord->getDestructor();
6412           !Dtor || Dtor->isTrivial())
6413         return true;
6414     }
6415 
6416     for (ssize_t I = Desc->getNumElems() - 1; I >= 0; --I) {
6417       if (!this->emitConstUint64(I, Loc))
6418         return false;
6419       if (!this->emitArrayElemPtrUint64(Loc))
6420         return false;
6421       if (!this->emitDestruction(ElemDesc, Loc))
6422         return false;
6423       if (!this->emitPopPtr(Loc))
6424         return false;
6425     }
6426     return true;
6427   }
6428 
6429   assert(Desc->ElemRecord);
6430   if (Desc->ElemRecord->isAnonymousUnion())
6431     return true;
6432 
6433   return this->emitRecordDestruction(Desc->ElemRecord, Loc);
6434 }
6435 
6436 /// Create a dummy pointer for the given decl (or expr) and
6437 /// push a pointer to it on the stack.
6438 template <class Emitter>
6439 bool Compiler<Emitter>::emitDummyPtr(const DeclTy &D, const Expr *E) {
6440   assert(!DiscardResult && "Should've been checked before");
6441 
6442   unsigned DummyID = P.getOrCreateDummy(D);
6443 
6444   if (!this->emitGetPtrGlobal(DummyID, E))
6445     return false;
6446   if (E->getType()->isVoidType())
6447     return true;
6448 
6449   // Convert the dummy pointer to another pointer type if we have to.
6450   if (PrimType PT = classifyPrim(E); PT != PT_Ptr) {
6451     if (isPtrType(PT))
6452       return this->emitDecayPtr(PT_Ptr, PT, E);
6453     return false;
6454   }
6455   return true;
6456 }
6457 
6458 //  This function is constexpr if and only if To, From, and the types of
6459 //  all subobjects of To and From are types T such that...
6460 //  (3.1) - is_union_v<T> is false;
6461 //  (3.2) - is_pointer_v<T> is false;
6462 //  (3.3) - is_member_pointer_v<T> is false;
6463 //  (3.4) - is_volatile_v<T> is false; and
6464 //  (3.5) - T has no non-static data members of reference type
6465 template <class Emitter>
6466 bool Compiler<Emitter>::emitBuiltinBitCast(const CastExpr *E) {
6467   const Expr *SubExpr = E->getSubExpr();
6468   QualType FromType = SubExpr->getType();
6469   QualType ToType = E->getType();
6470   std::optional<PrimType> ToT = classify(ToType);
6471 
6472   if (ToType->isNullPtrType()) {
6473     if (!this->discard(SubExpr))
6474       return false;
6475 
6476     return this->emitNullPtr(nullptr, E);
6477   }
6478 
6479   if (FromType->isNullPtrType() && ToT) {
6480     if (!this->discard(SubExpr))
6481       return false;
6482 
6483     return visitZeroInitializer(*ToT, ToType, E);
6484   }
6485   assert(!ToType->isReferenceType());
6486 
6487   // Prepare storage for the result in case we discard.
6488   if (DiscardResult && !Initializing && !ToT) {
6489     std::optional<unsigned> LocalIndex = allocateLocal(E);
6490     if (!LocalIndex)
6491       return false;
6492     if (!this->emitGetPtrLocal(*LocalIndex, E))
6493       return false;
6494   }
6495 
6496   // Get a pointer to the value-to-cast on the stack.
6497   if (!this->visit(SubExpr))
6498     return false;
6499 
6500   if (!ToT || ToT == PT_Ptr) {
6501     if (!this->emitBitCastPtr(E))
6502       return false;
6503     return DiscardResult ? this->emitPopPtr(E) : true;
6504   }
6505   assert(ToT);
6506 
6507   const llvm::fltSemantics *TargetSemantics = nullptr;
6508   if (ToT == PT_Float)
6509     TargetSemantics = &Ctx.getFloatSemantics(ToType);
6510 
6511   // Conversion to a primitive type. FromType can be another
6512   // primitive type, or a record/array.
6513   bool ToTypeIsUChar = (ToType->isSpecificBuiltinType(BuiltinType::UChar) ||
6514                         ToType->isSpecificBuiltinType(BuiltinType::Char_U));
6515   uint32_t ResultBitWidth = std::max(Ctx.getBitWidth(ToType), 8u);
6516 
6517   if (!this->emitBitCast(*ToT, ToTypeIsUChar || ToType->isStdByteType(),
6518                          ResultBitWidth, TargetSemantics, E))
6519     return false;
6520 
6521   if (DiscardResult)
6522     return this->emitPop(*ToT, E);
6523 
6524   return true;
6525 }
6526 
6527 namespace clang {
6528 namespace interp {
6529 
6530 template class Compiler<ByteCodeEmitter>;
6531 template class Compiler<EvalEmitter>;
6532 
6533 } // namespace interp
6534 } // namespace clang
6535