1 //===--- Compiler.cpp - Code generator for expressions ---*- C++ -*-===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "Compiler.h" 10 #include "ByteCodeEmitter.h" 11 #include "Context.h" 12 #include "FixedPoint.h" 13 #include "Floating.h" 14 #include "Function.h" 15 #include "InterpShared.h" 16 #include "PrimType.h" 17 #include "Program.h" 18 #include "clang/AST/Attr.h" 19 20 using namespace clang; 21 using namespace clang::interp; 22 23 using APSInt = llvm::APSInt; 24 25 namespace clang { 26 namespace interp { 27 28 /// Scope used to handle temporaries in toplevel variable declarations. 29 template <class Emitter> class DeclScope final : public LocalScope<Emitter> { 30 public: 31 DeclScope(Compiler<Emitter> *Ctx, const ValueDecl *VD) 32 : LocalScope<Emitter>(Ctx, VD), Scope(Ctx->P, VD), 33 OldInitializingDecl(Ctx->InitializingDecl) { 34 Ctx->InitializingDecl = VD; 35 Ctx->InitStack.push_back(InitLink::Decl(VD)); 36 } 37 38 void addExtended(const Scope::Local &Local) override { 39 return this->addLocal(Local); 40 } 41 42 ~DeclScope() { 43 this->Ctx->InitializingDecl = OldInitializingDecl; 44 this->Ctx->InitStack.pop_back(); 45 } 46 47 private: 48 Program::DeclScope Scope; 49 const ValueDecl *OldInitializingDecl; 50 }; 51 52 /// Scope used to handle initialization methods. 53 template <class Emitter> class OptionScope final { 54 public: 55 /// Root constructor, compiling or discarding primitives. 56 OptionScope(Compiler<Emitter> *Ctx, bool NewDiscardResult, 57 bool NewInitializing) 58 : Ctx(Ctx), OldDiscardResult(Ctx->DiscardResult), 59 OldInitializing(Ctx->Initializing) { 60 Ctx->DiscardResult = NewDiscardResult; 61 Ctx->Initializing = NewInitializing; 62 } 63 64 ~OptionScope() { 65 Ctx->DiscardResult = OldDiscardResult; 66 Ctx->Initializing = OldInitializing; 67 } 68 69 private: 70 /// Parent context. 71 Compiler<Emitter> *Ctx; 72 /// Old discard flag to restore. 73 bool OldDiscardResult; 74 bool OldInitializing; 75 }; 76 77 template <class Emitter> 78 bool InitLink::emit(Compiler<Emitter> *Ctx, const Expr *E) const { 79 switch (Kind) { 80 case K_This: 81 return Ctx->emitThis(E); 82 case K_Field: 83 // We're assuming there's a base pointer on the stack already. 84 return Ctx->emitGetPtrFieldPop(Offset, E); 85 case K_Temp: 86 return Ctx->emitGetPtrLocal(Offset, E); 87 case K_Decl: 88 return Ctx->visitDeclRef(D, E); 89 case K_Elem: 90 if (!Ctx->emitConstUint32(Offset, E)) 91 return false; 92 return Ctx->emitArrayElemPtrPopUint32(E); 93 case K_RVO: 94 return Ctx->emitRVOPtr(E); 95 case K_InitList: 96 return true; 97 default: 98 llvm_unreachable("Unhandled InitLink kind"); 99 } 100 return true; 101 } 102 103 /// Scope managing label targets. 104 template <class Emitter> class LabelScope { 105 public: 106 virtual ~LabelScope() {} 107 108 protected: 109 LabelScope(Compiler<Emitter> *Ctx) : Ctx(Ctx) {} 110 /// Compiler instance. 111 Compiler<Emitter> *Ctx; 112 }; 113 114 /// Sets the context for break/continue statements. 115 template <class Emitter> class LoopScope final : public LabelScope<Emitter> { 116 public: 117 using LabelTy = typename Compiler<Emitter>::LabelTy; 118 using OptLabelTy = typename Compiler<Emitter>::OptLabelTy; 119 120 LoopScope(Compiler<Emitter> *Ctx, LabelTy BreakLabel, LabelTy ContinueLabel) 121 : LabelScope<Emitter>(Ctx), OldBreakLabel(Ctx->BreakLabel), 122 OldContinueLabel(Ctx->ContinueLabel), 123 OldBreakVarScope(Ctx->BreakVarScope), 124 OldContinueVarScope(Ctx->ContinueVarScope) { 125 this->Ctx->BreakLabel = BreakLabel; 126 this->Ctx->ContinueLabel = ContinueLabel; 127 this->Ctx->BreakVarScope = this->Ctx->VarScope; 128 this->Ctx->ContinueVarScope = this->Ctx->VarScope; 129 } 130 131 ~LoopScope() { 132 this->Ctx->BreakLabel = OldBreakLabel; 133 this->Ctx->ContinueLabel = OldContinueLabel; 134 this->Ctx->ContinueVarScope = OldContinueVarScope; 135 this->Ctx->BreakVarScope = OldBreakVarScope; 136 } 137 138 private: 139 OptLabelTy OldBreakLabel; 140 OptLabelTy OldContinueLabel; 141 VariableScope<Emitter> *OldBreakVarScope; 142 VariableScope<Emitter> *OldContinueVarScope; 143 }; 144 145 // Sets the context for a switch scope, mapping labels. 146 template <class Emitter> class SwitchScope final : public LabelScope<Emitter> { 147 public: 148 using LabelTy = typename Compiler<Emitter>::LabelTy; 149 using OptLabelTy = typename Compiler<Emitter>::OptLabelTy; 150 using CaseMap = typename Compiler<Emitter>::CaseMap; 151 152 SwitchScope(Compiler<Emitter> *Ctx, CaseMap &&CaseLabels, LabelTy BreakLabel, 153 OptLabelTy DefaultLabel) 154 : LabelScope<Emitter>(Ctx), OldBreakLabel(Ctx->BreakLabel), 155 OldDefaultLabel(this->Ctx->DefaultLabel), 156 OldCaseLabels(std::move(this->Ctx->CaseLabels)), 157 OldLabelVarScope(Ctx->BreakVarScope) { 158 this->Ctx->BreakLabel = BreakLabel; 159 this->Ctx->DefaultLabel = DefaultLabel; 160 this->Ctx->CaseLabels = std::move(CaseLabels); 161 this->Ctx->BreakVarScope = this->Ctx->VarScope; 162 } 163 164 ~SwitchScope() { 165 this->Ctx->BreakLabel = OldBreakLabel; 166 this->Ctx->DefaultLabel = OldDefaultLabel; 167 this->Ctx->CaseLabels = std::move(OldCaseLabels); 168 this->Ctx->BreakVarScope = OldLabelVarScope; 169 } 170 171 private: 172 OptLabelTy OldBreakLabel; 173 OptLabelTy OldDefaultLabel; 174 CaseMap OldCaseLabels; 175 VariableScope<Emitter> *OldLabelVarScope; 176 }; 177 178 template <class Emitter> class StmtExprScope final { 179 public: 180 StmtExprScope(Compiler<Emitter> *Ctx) : Ctx(Ctx), OldFlag(Ctx->InStmtExpr) { 181 Ctx->InStmtExpr = true; 182 } 183 184 ~StmtExprScope() { Ctx->InStmtExpr = OldFlag; } 185 186 private: 187 Compiler<Emitter> *Ctx; 188 bool OldFlag; 189 }; 190 191 } // namespace interp 192 } // namespace clang 193 194 template <class Emitter> 195 bool Compiler<Emitter>::VisitCastExpr(const CastExpr *CE) { 196 const Expr *SubExpr = CE->getSubExpr(); 197 switch (CE->getCastKind()) { 198 199 case CK_LValueToRValue: { 200 if (DiscardResult) 201 return this->discard(SubExpr); 202 203 std::optional<PrimType> SubExprT = classify(SubExpr->getType()); 204 // Prepare storage for the result. 205 if (!Initializing && !SubExprT) { 206 std::optional<unsigned> LocalIndex = allocateLocal(SubExpr); 207 if (!LocalIndex) 208 return false; 209 if (!this->emitGetPtrLocal(*LocalIndex, CE)) 210 return false; 211 } 212 213 if (!this->visit(SubExpr)) 214 return false; 215 216 if (SubExprT) 217 return this->emitLoadPop(*SubExprT, CE); 218 219 // If the subexpr type is not primitive, we need to perform a copy here. 220 // This happens for example in C when dereferencing a pointer of struct 221 // type. 222 return this->emitMemcpy(CE); 223 } 224 225 case CK_DerivedToBaseMemberPointer: { 226 assert(classifyPrim(CE->getType()) == PT_MemberPtr); 227 assert(classifyPrim(SubExpr->getType()) == PT_MemberPtr); 228 const auto *FromMP = SubExpr->getType()->getAs<MemberPointerType>(); 229 const auto *ToMP = CE->getType()->getAs<MemberPointerType>(); 230 231 unsigned DerivedOffset = collectBaseOffset(QualType(ToMP->getClass(), 0), 232 QualType(FromMP->getClass(), 0)); 233 234 if (!this->delegate(SubExpr)) 235 return false; 236 237 return this->emitGetMemberPtrBasePop(DerivedOffset, CE); 238 } 239 240 case CK_BaseToDerivedMemberPointer: { 241 assert(classifyPrim(CE) == PT_MemberPtr); 242 assert(classifyPrim(SubExpr) == PT_MemberPtr); 243 const auto *FromMP = SubExpr->getType()->getAs<MemberPointerType>(); 244 const auto *ToMP = CE->getType()->getAs<MemberPointerType>(); 245 246 unsigned DerivedOffset = collectBaseOffset(QualType(FromMP->getClass(), 0), 247 QualType(ToMP->getClass(), 0)); 248 249 if (!this->delegate(SubExpr)) 250 return false; 251 return this->emitGetMemberPtrBasePop(-DerivedOffset, CE); 252 } 253 254 case CK_UncheckedDerivedToBase: 255 case CK_DerivedToBase: { 256 if (!this->delegate(SubExpr)) 257 return false; 258 259 const auto extractRecordDecl = [](QualType Ty) -> const CXXRecordDecl * { 260 if (const auto *PT = dyn_cast<PointerType>(Ty)) 261 return PT->getPointeeType()->getAsCXXRecordDecl(); 262 return Ty->getAsCXXRecordDecl(); 263 }; 264 265 // FIXME: We can express a series of non-virtual casts as a single 266 // GetPtrBasePop op. 267 QualType CurType = SubExpr->getType(); 268 for (const CXXBaseSpecifier *B : CE->path()) { 269 if (B->isVirtual()) { 270 if (!this->emitGetPtrVirtBasePop(extractRecordDecl(B->getType()), CE)) 271 return false; 272 CurType = B->getType(); 273 } else { 274 unsigned DerivedOffset = collectBaseOffset(B->getType(), CurType); 275 if (!this->emitGetPtrBasePop(DerivedOffset, CE)) 276 return false; 277 CurType = B->getType(); 278 } 279 } 280 281 return true; 282 } 283 284 case CK_BaseToDerived: { 285 if (!this->delegate(SubExpr)) 286 return false; 287 288 unsigned DerivedOffset = 289 collectBaseOffset(SubExpr->getType(), CE->getType()); 290 291 return this->emitGetPtrDerivedPop(DerivedOffset, CE); 292 } 293 294 case CK_FloatingCast: { 295 // HLSL uses CK_FloatingCast to cast between vectors. 296 if (!SubExpr->getType()->isFloatingType() || 297 !CE->getType()->isFloatingType()) 298 return false; 299 if (DiscardResult) 300 return this->discard(SubExpr); 301 if (!this->visit(SubExpr)) 302 return false; 303 const auto *TargetSemantics = &Ctx.getFloatSemantics(CE->getType()); 304 return this->emitCastFP(TargetSemantics, getRoundingMode(CE), CE); 305 } 306 307 case CK_IntegralToFloating: { 308 if (DiscardResult) 309 return this->discard(SubExpr); 310 std::optional<PrimType> FromT = classify(SubExpr->getType()); 311 if (!FromT) 312 return false; 313 314 if (!this->visit(SubExpr)) 315 return false; 316 317 const auto *TargetSemantics = &Ctx.getFloatSemantics(CE->getType()); 318 return this->emitCastIntegralFloating(*FromT, TargetSemantics, 319 getFPOptions(CE), CE); 320 } 321 322 case CK_FloatingToBoolean: 323 case CK_FloatingToIntegral: { 324 if (DiscardResult) 325 return this->discard(SubExpr); 326 327 std::optional<PrimType> ToT = classify(CE->getType()); 328 329 if (!ToT) 330 return false; 331 332 if (!this->visit(SubExpr)) 333 return false; 334 335 if (ToT == PT_IntAP) 336 return this->emitCastFloatingIntegralAP(Ctx.getBitWidth(CE->getType()), 337 getFPOptions(CE), CE); 338 if (ToT == PT_IntAPS) 339 return this->emitCastFloatingIntegralAPS(Ctx.getBitWidth(CE->getType()), 340 getFPOptions(CE), CE); 341 342 return this->emitCastFloatingIntegral(*ToT, getFPOptions(CE), CE); 343 } 344 345 case CK_NullToPointer: 346 case CK_NullToMemberPointer: { 347 if (!this->discard(SubExpr)) 348 return false; 349 if (DiscardResult) 350 return true; 351 352 const Descriptor *Desc = nullptr; 353 const QualType PointeeType = CE->getType()->getPointeeType(); 354 if (!PointeeType.isNull()) { 355 if (std::optional<PrimType> T = classify(PointeeType)) 356 Desc = P.createDescriptor(SubExpr, *T); 357 else 358 Desc = P.createDescriptor(SubExpr, PointeeType.getTypePtr(), 359 std::nullopt, true, false, 360 /*IsMutable=*/false, nullptr); 361 } 362 363 uint64_t Val = Ctx.getASTContext().getTargetNullPointerValue(CE->getType()); 364 return this->emitNull(classifyPrim(CE->getType()), Val, Desc, CE); 365 } 366 367 case CK_PointerToIntegral: { 368 if (DiscardResult) 369 return this->discard(SubExpr); 370 371 if (!this->visit(SubExpr)) 372 return false; 373 374 // If SubExpr doesn't result in a pointer, make it one. 375 if (PrimType FromT = classifyPrim(SubExpr->getType()); FromT != PT_Ptr) { 376 assert(isPtrType(FromT)); 377 if (!this->emitDecayPtr(FromT, PT_Ptr, CE)) 378 return false; 379 } 380 381 PrimType T = classifyPrim(CE->getType()); 382 if (T == PT_IntAP) 383 return this->emitCastPointerIntegralAP(Ctx.getBitWidth(CE->getType()), 384 CE); 385 if (T == PT_IntAPS) 386 return this->emitCastPointerIntegralAPS(Ctx.getBitWidth(CE->getType()), 387 CE); 388 return this->emitCastPointerIntegral(T, CE); 389 } 390 391 case CK_ArrayToPointerDecay: { 392 if (!this->visit(SubExpr)) 393 return false; 394 if (!this->emitArrayDecay(CE)) 395 return false; 396 if (DiscardResult) 397 return this->emitPopPtr(CE); 398 return true; 399 } 400 401 case CK_IntegralToPointer: { 402 QualType IntType = SubExpr->getType(); 403 assert(IntType->isIntegralOrEnumerationType()); 404 if (!this->visit(SubExpr)) 405 return false; 406 // FIXME: I think the discard is wrong since the int->ptr cast might cause a 407 // diagnostic. 408 PrimType T = classifyPrim(IntType); 409 if (DiscardResult) 410 return this->emitPop(T, CE); 411 412 QualType PtrType = CE->getType(); 413 const Descriptor *Desc; 414 if (std::optional<PrimType> T = classify(PtrType->getPointeeType())) 415 Desc = P.createDescriptor(SubExpr, *T); 416 else if (PtrType->getPointeeType()->isVoidType()) 417 Desc = nullptr; 418 else 419 Desc = P.createDescriptor(CE, PtrType->getPointeeType().getTypePtr(), 420 Descriptor::InlineDescMD, true, false, 421 /*IsMutable=*/false, nullptr); 422 423 if (!this->emitGetIntPtr(T, Desc, CE)) 424 return false; 425 426 PrimType DestPtrT = classifyPrim(PtrType); 427 if (DestPtrT == PT_Ptr) 428 return true; 429 430 // In case we're converting the integer to a non-Pointer. 431 return this->emitDecayPtr(PT_Ptr, DestPtrT, CE); 432 } 433 434 case CK_AtomicToNonAtomic: 435 case CK_ConstructorConversion: 436 case CK_FunctionToPointerDecay: 437 case CK_NonAtomicToAtomic: 438 case CK_NoOp: 439 case CK_UserDefinedConversion: 440 case CK_AddressSpaceConversion: 441 case CK_CPointerToObjCPointerCast: 442 return this->delegate(SubExpr); 443 444 case CK_BitCast: { 445 // Reject bitcasts to atomic types. 446 if (CE->getType()->isAtomicType()) { 447 if (!this->discard(SubExpr)) 448 return false; 449 return this->emitInvalidCast(CastKind::Reinterpret, /*Fatal=*/true, CE); 450 } 451 452 if (DiscardResult) 453 return this->discard(SubExpr); 454 455 QualType SubExprTy = SubExpr->getType(); 456 std::optional<PrimType> FromT = classify(SubExprTy); 457 // Casts from integer/vector to vector. 458 if (CE->getType()->isVectorType()) 459 return this->emitBuiltinBitCast(CE); 460 461 std::optional<PrimType> ToT = classify(CE->getType()); 462 if (!FromT || !ToT) 463 return false; 464 465 assert(isPtrType(*FromT)); 466 assert(isPtrType(*ToT)); 467 if (FromT == ToT) { 468 if (CE->getType()->isVoidPointerType()) 469 return this->delegate(SubExpr); 470 471 if (!this->visit(SubExpr)) 472 return false; 473 if (FromT == PT_Ptr) 474 return this->emitPtrPtrCast(SubExprTy->isVoidPointerType(), CE); 475 return true; 476 } 477 478 if (!this->visit(SubExpr)) 479 return false; 480 return this->emitDecayPtr(*FromT, *ToT, CE); 481 } 482 483 case CK_LValueToRValueBitCast: 484 return this->emitBuiltinBitCast(CE); 485 486 case CK_IntegralToBoolean: 487 case CK_FixedPointToBoolean: 488 case CK_BooleanToSignedIntegral: 489 case CK_IntegralCast: { 490 if (DiscardResult) 491 return this->discard(SubExpr); 492 std::optional<PrimType> FromT = classify(SubExpr->getType()); 493 std::optional<PrimType> ToT = classify(CE->getType()); 494 495 if (!FromT || !ToT) 496 return false; 497 498 if (!this->visit(SubExpr)) 499 return false; 500 501 // Possibly diagnose casts to enum types if the target type does not 502 // have a fixed size. 503 if (Ctx.getLangOpts().CPlusPlus && CE->getType()->isEnumeralType()) { 504 if (const auto *ET = CE->getType().getCanonicalType()->getAs<EnumType>(); 505 ET && !ET->getDecl()->isFixed()) { 506 if (!this->emitCheckEnumValue(*FromT, ET->getDecl(), CE)) 507 return false; 508 } 509 } 510 511 auto maybeNegate = [&]() -> bool { 512 if (CE->getCastKind() == CK_BooleanToSignedIntegral) 513 return this->emitNeg(*ToT, CE); 514 return true; 515 }; 516 517 if (ToT == PT_IntAP) 518 return this->emitCastAP(*FromT, Ctx.getBitWidth(CE->getType()), CE) && 519 maybeNegate(); 520 if (ToT == PT_IntAPS) 521 return this->emitCastAPS(*FromT, Ctx.getBitWidth(CE->getType()), CE) && 522 maybeNegate(); 523 524 if (FromT == ToT) 525 return true; 526 if (!this->emitCast(*FromT, *ToT, CE)) 527 return false; 528 529 return maybeNegate(); 530 } 531 532 case CK_PointerToBoolean: 533 case CK_MemberPointerToBoolean: { 534 PrimType PtrT = classifyPrim(SubExpr->getType()); 535 536 if (!this->visit(SubExpr)) 537 return false; 538 return this->emitIsNonNull(PtrT, CE); 539 } 540 541 case CK_IntegralComplexToBoolean: 542 case CK_FloatingComplexToBoolean: { 543 if (DiscardResult) 544 return this->discard(SubExpr); 545 if (!this->visit(SubExpr)) 546 return false; 547 return this->emitComplexBoolCast(SubExpr); 548 } 549 550 case CK_IntegralComplexToReal: 551 case CK_FloatingComplexToReal: 552 return this->emitComplexReal(SubExpr); 553 554 case CK_IntegralRealToComplex: 555 case CK_FloatingRealToComplex: { 556 // We're creating a complex value here, so we need to 557 // allocate storage for it. 558 if (!Initializing) { 559 unsigned LocalIndex = allocateTemporary(CE); 560 if (!this->emitGetPtrLocal(LocalIndex, CE)) 561 return false; 562 } 563 564 // Init the complex value to {SubExpr, 0}. 565 if (!this->visitArrayElemInit(0, SubExpr)) 566 return false; 567 // Zero-init the second element. 568 PrimType T = classifyPrim(SubExpr->getType()); 569 if (!this->visitZeroInitializer(T, SubExpr->getType(), SubExpr)) 570 return false; 571 return this->emitInitElem(T, 1, SubExpr); 572 } 573 574 case CK_IntegralComplexCast: 575 case CK_FloatingComplexCast: 576 case CK_IntegralComplexToFloatingComplex: 577 case CK_FloatingComplexToIntegralComplex: { 578 assert(CE->getType()->isAnyComplexType()); 579 assert(SubExpr->getType()->isAnyComplexType()); 580 if (DiscardResult) 581 return this->discard(SubExpr); 582 583 if (!Initializing) { 584 std::optional<unsigned> LocalIndex = allocateLocal(CE); 585 if (!LocalIndex) 586 return false; 587 if (!this->emitGetPtrLocal(*LocalIndex, CE)) 588 return false; 589 } 590 591 // Location for the SubExpr. 592 // Since SubExpr is of complex type, visiting it results in a pointer 593 // anyway, so we just create a temporary pointer variable. 594 unsigned SubExprOffset = allocateLocalPrimitive( 595 SubExpr, PT_Ptr, /*IsConst=*/true, /*IsExtended=*/false); 596 if (!this->visit(SubExpr)) 597 return false; 598 if (!this->emitSetLocal(PT_Ptr, SubExprOffset, CE)) 599 return false; 600 601 PrimType SourceElemT = classifyComplexElementType(SubExpr->getType()); 602 QualType DestElemType = 603 CE->getType()->getAs<ComplexType>()->getElementType(); 604 PrimType DestElemT = classifyPrim(DestElemType); 605 // Cast both elements individually. 606 for (unsigned I = 0; I != 2; ++I) { 607 if (!this->emitGetLocal(PT_Ptr, SubExprOffset, CE)) 608 return false; 609 if (!this->emitArrayElemPop(SourceElemT, I, CE)) 610 return false; 611 612 // Do the cast. 613 if (!this->emitPrimCast(SourceElemT, DestElemT, DestElemType, CE)) 614 return false; 615 616 // Save the value. 617 if (!this->emitInitElem(DestElemT, I, CE)) 618 return false; 619 } 620 return true; 621 } 622 623 case CK_VectorSplat: { 624 assert(!classify(CE->getType())); 625 assert(classify(SubExpr->getType())); 626 assert(CE->getType()->isVectorType()); 627 628 if (DiscardResult) 629 return this->discard(SubExpr); 630 631 if (!Initializing) { 632 std::optional<unsigned> LocalIndex = allocateLocal(CE); 633 if (!LocalIndex) 634 return false; 635 if (!this->emitGetPtrLocal(*LocalIndex, CE)) 636 return false; 637 } 638 639 const auto *VT = CE->getType()->getAs<VectorType>(); 640 PrimType ElemT = classifyPrim(SubExpr->getType()); 641 unsigned ElemOffset = allocateLocalPrimitive( 642 SubExpr, ElemT, /*IsConst=*/true, /*IsExtended=*/false); 643 644 // Prepare a local variable for the scalar value. 645 if (!this->visit(SubExpr)) 646 return false; 647 if (classifyPrim(SubExpr) == PT_Ptr && !this->emitLoadPop(ElemT, CE)) 648 return false; 649 650 if (!this->emitSetLocal(ElemT, ElemOffset, CE)) 651 return false; 652 653 for (unsigned I = 0; I != VT->getNumElements(); ++I) { 654 if (!this->emitGetLocal(ElemT, ElemOffset, CE)) 655 return false; 656 if (!this->emitInitElem(ElemT, I, CE)) 657 return false; 658 } 659 660 return true; 661 } 662 663 case CK_HLSLVectorTruncation: { 664 assert(SubExpr->getType()->isVectorType()); 665 if (std::optional<PrimType> ResultT = classify(CE)) { 666 assert(!DiscardResult); 667 // Result must be either a float or integer. Take the first element. 668 if (!this->visit(SubExpr)) 669 return false; 670 return this->emitArrayElemPop(*ResultT, 0, CE); 671 } 672 // Otherwise, this truncates from one vector type to another. 673 assert(CE->getType()->isVectorType()); 674 675 if (!Initializing) { 676 unsigned LocalIndex = allocateTemporary(CE); 677 if (!this->emitGetPtrLocal(LocalIndex, CE)) 678 return false; 679 } 680 unsigned ToSize = CE->getType()->getAs<VectorType>()->getNumElements(); 681 assert(SubExpr->getType()->getAs<VectorType>()->getNumElements() > ToSize); 682 if (!this->visit(SubExpr)) 683 return false; 684 return this->emitCopyArray(classifyVectorElementType(CE->getType()), 0, 0, 685 ToSize, CE); 686 }; 687 688 case CK_IntegralToFixedPoint: { 689 if (!this->visit(SubExpr)) 690 return false; 691 692 auto Sem = Ctx.getASTContext().getFixedPointSemantics(CE->getType()); 693 uint32_t I; 694 std::memcpy(&I, &Sem, sizeof(Sem)); 695 return this->emitCastIntegralFixedPoint(classifyPrim(SubExpr->getType()), I, 696 CE); 697 } 698 case CK_FloatingToFixedPoint: { 699 if (!this->visit(SubExpr)) 700 return false; 701 702 auto Sem = Ctx.getASTContext().getFixedPointSemantics(CE->getType()); 703 uint32_t I; 704 std::memcpy(&I, &Sem, sizeof(Sem)); 705 return this->emitCastFloatingFixedPoint(I, CE); 706 } 707 case CK_FixedPointToFloating: { 708 if (!this->visit(SubExpr)) 709 return false; 710 const auto *TargetSemantics = &Ctx.getFloatSemantics(CE->getType()); 711 return this->emitCastFixedPointFloating(TargetSemantics, CE); 712 } 713 case CK_FixedPointToIntegral: { 714 if (!this->visit(SubExpr)) 715 return false; 716 return this->emitCastFixedPointIntegral(classifyPrim(CE->getType()), CE); 717 } 718 case CK_FixedPointCast: { 719 if (!this->visit(SubExpr)) 720 return false; 721 auto Sem = Ctx.getASTContext().getFixedPointSemantics(CE->getType()); 722 uint32_t I; 723 std::memcpy(&I, &Sem, sizeof(Sem)); 724 return this->emitCastFixedPoint(I, CE); 725 } 726 727 case CK_ToVoid: 728 return discard(SubExpr); 729 730 default: 731 return this->emitInvalid(CE); 732 } 733 llvm_unreachable("Unhandled clang::CastKind enum"); 734 } 735 736 template <class Emitter> 737 bool Compiler<Emitter>::VisitIntegerLiteral(const IntegerLiteral *LE) { 738 if (DiscardResult) 739 return true; 740 741 return this->emitConst(LE->getValue(), LE); 742 } 743 744 template <class Emitter> 745 bool Compiler<Emitter>::VisitFloatingLiteral(const FloatingLiteral *E) { 746 if (DiscardResult) 747 return true; 748 749 return this->emitConstFloat(E->getValue(), E); 750 } 751 752 template <class Emitter> 753 bool Compiler<Emitter>::VisitImaginaryLiteral(const ImaginaryLiteral *E) { 754 assert(E->getType()->isAnyComplexType()); 755 if (DiscardResult) 756 return true; 757 758 if (!Initializing) { 759 unsigned LocalIndex = allocateTemporary(E); 760 if (!this->emitGetPtrLocal(LocalIndex, E)) 761 return false; 762 } 763 764 const Expr *SubExpr = E->getSubExpr(); 765 PrimType SubExprT = classifyPrim(SubExpr->getType()); 766 767 if (!this->visitZeroInitializer(SubExprT, SubExpr->getType(), SubExpr)) 768 return false; 769 if (!this->emitInitElem(SubExprT, 0, SubExpr)) 770 return false; 771 return this->visitArrayElemInit(1, SubExpr); 772 } 773 774 template <class Emitter> 775 bool Compiler<Emitter>::VisitFixedPointLiteral(const FixedPointLiteral *E) { 776 assert(E->getType()->isFixedPointType()); 777 assert(classifyPrim(E) == PT_FixedPoint); 778 779 if (DiscardResult) 780 return true; 781 782 auto Sem = Ctx.getASTContext().getFixedPointSemantics(E->getType()); 783 APInt Value = E->getValue(); 784 return this->emitConstFixedPoint(FixedPoint(Value, Sem), E); 785 } 786 787 template <class Emitter> 788 bool Compiler<Emitter>::VisitParenExpr(const ParenExpr *E) { 789 return this->delegate(E->getSubExpr()); 790 } 791 792 template <class Emitter> 793 bool Compiler<Emitter>::VisitBinaryOperator(const BinaryOperator *BO) { 794 // Need short-circuiting for these. 795 if (BO->isLogicalOp() && !BO->getType()->isVectorType()) 796 return this->VisitLogicalBinOp(BO); 797 798 const Expr *LHS = BO->getLHS(); 799 const Expr *RHS = BO->getRHS(); 800 801 // Handle comma operators. Just discard the LHS 802 // and delegate to RHS. 803 if (BO->isCommaOp()) { 804 if (!this->discard(LHS)) 805 return false; 806 if (RHS->getType()->isVoidType()) 807 return this->discard(RHS); 808 809 return this->delegate(RHS); 810 } 811 812 if (BO->getType()->isAnyComplexType()) 813 return this->VisitComplexBinOp(BO); 814 if (BO->getType()->isVectorType()) 815 return this->VisitVectorBinOp(BO); 816 if ((LHS->getType()->isAnyComplexType() || 817 RHS->getType()->isAnyComplexType()) && 818 BO->isComparisonOp()) 819 return this->emitComplexComparison(LHS, RHS, BO); 820 if (LHS->getType()->isFixedPointType() || RHS->getType()->isFixedPointType()) 821 return this->VisitFixedPointBinOp(BO); 822 823 if (BO->isPtrMemOp()) { 824 if (!this->visit(LHS)) 825 return false; 826 827 if (!this->visit(RHS)) 828 return false; 829 830 if (!this->emitToMemberPtr(BO)) 831 return false; 832 833 if (classifyPrim(BO) == PT_MemberPtr) 834 return true; 835 836 if (!this->emitCastMemberPtrPtr(BO)) 837 return false; 838 return DiscardResult ? this->emitPopPtr(BO) : true; 839 } 840 841 // Typecheck the args. 842 std::optional<PrimType> LT = classify(LHS); 843 std::optional<PrimType> RT = classify(RHS); 844 std::optional<PrimType> T = classify(BO->getType()); 845 846 // Special case for C++'s three-way/spaceship operator <=>, which 847 // returns a std::{strong,weak,partial}_ordering (which is a class, so doesn't 848 // have a PrimType). 849 if (!T && BO->getOpcode() == BO_Cmp) { 850 if (DiscardResult) 851 return true; 852 const ComparisonCategoryInfo *CmpInfo = 853 Ctx.getASTContext().CompCategories.lookupInfoForType(BO->getType()); 854 assert(CmpInfo); 855 856 // We need a temporary variable holding our return value. 857 if (!Initializing) { 858 std::optional<unsigned> ResultIndex = this->allocateLocal(BO); 859 if (!this->emitGetPtrLocal(*ResultIndex, BO)) 860 return false; 861 } 862 863 if (!visit(LHS) || !visit(RHS)) 864 return false; 865 866 return this->emitCMP3(*LT, CmpInfo, BO); 867 } 868 869 if (!LT || !RT || !T) 870 return false; 871 872 // Pointer arithmetic special case. 873 if (BO->getOpcode() == BO_Add || BO->getOpcode() == BO_Sub) { 874 if (isPtrType(*T) || (isPtrType(*LT) && isPtrType(*RT))) 875 return this->VisitPointerArithBinOp(BO); 876 } 877 878 // Assignmentes require us to evalute the RHS first. 879 if (BO->getOpcode() == BO_Assign) { 880 if (!visit(RHS) || !visit(LHS)) 881 return false; 882 if (!this->emitFlip(*LT, *RT, BO)) 883 return false; 884 } else { 885 if (!visit(LHS) || !visit(RHS)) 886 return false; 887 } 888 889 // For languages such as C, cast the result of one 890 // of our comparision opcodes to T (which is usually int). 891 auto MaybeCastToBool = [this, T, BO](bool Result) { 892 if (!Result) 893 return false; 894 if (DiscardResult) 895 return this->emitPop(*T, BO); 896 if (T != PT_Bool) 897 return this->emitCast(PT_Bool, *T, BO); 898 return true; 899 }; 900 901 auto Discard = [this, T, BO](bool Result) { 902 if (!Result) 903 return false; 904 return DiscardResult ? this->emitPop(*T, BO) : true; 905 }; 906 907 switch (BO->getOpcode()) { 908 case BO_EQ: 909 return MaybeCastToBool(this->emitEQ(*LT, BO)); 910 case BO_NE: 911 return MaybeCastToBool(this->emitNE(*LT, BO)); 912 case BO_LT: 913 return MaybeCastToBool(this->emitLT(*LT, BO)); 914 case BO_LE: 915 return MaybeCastToBool(this->emitLE(*LT, BO)); 916 case BO_GT: 917 return MaybeCastToBool(this->emitGT(*LT, BO)); 918 case BO_GE: 919 return MaybeCastToBool(this->emitGE(*LT, BO)); 920 case BO_Sub: 921 if (BO->getType()->isFloatingType()) 922 return Discard(this->emitSubf(getFPOptions(BO), BO)); 923 return Discard(this->emitSub(*T, BO)); 924 case BO_Add: 925 if (BO->getType()->isFloatingType()) 926 return Discard(this->emitAddf(getFPOptions(BO), BO)); 927 return Discard(this->emitAdd(*T, BO)); 928 case BO_Mul: 929 if (BO->getType()->isFloatingType()) 930 return Discard(this->emitMulf(getFPOptions(BO), BO)); 931 return Discard(this->emitMul(*T, BO)); 932 case BO_Rem: 933 return Discard(this->emitRem(*T, BO)); 934 case BO_Div: 935 if (BO->getType()->isFloatingType()) 936 return Discard(this->emitDivf(getFPOptions(BO), BO)); 937 return Discard(this->emitDiv(*T, BO)); 938 case BO_Assign: 939 if (DiscardResult) 940 return LHS->refersToBitField() ? this->emitStoreBitFieldPop(*T, BO) 941 : this->emitStorePop(*T, BO); 942 if (LHS->refersToBitField()) { 943 if (!this->emitStoreBitField(*T, BO)) 944 return false; 945 } else { 946 if (!this->emitStore(*T, BO)) 947 return false; 948 } 949 // Assignments aren't necessarily lvalues in C. 950 // Load from them in that case. 951 if (!BO->isLValue()) 952 return this->emitLoadPop(*T, BO); 953 return true; 954 case BO_And: 955 return Discard(this->emitBitAnd(*T, BO)); 956 case BO_Or: 957 return Discard(this->emitBitOr(*T, BO)); 958 case BO_Shl: 959 return Discard(this->emitShl(*LT, *RT, BO)); 960 case BO_Shr: 961 return Discard(this->emitShr(*LT, *RT, BO)); 962 case BO_Xor: 963 return Discard(this->emitBitXor(*T, BO)); 964 case BO_LOr: 965 case BO_LAnd: 966 llvm_unreachable("Already handled earlier"); 967 default: 968 return false; 969 } 970 971 llvm_unreachable("Unhandled binary op"); 972 } 973 974 /// Perform addition/subtraction of a pointer and an integer or 975 /// subtraction of two pointers. 976 template <class Emitter> 977 bool Compiler<Emitter>::VisitPointerArithBinOp(const BinaryOperator *E) { 978 BinaryOperatorKind Op = E->getOpcode(); 979 const Expr *LHS = E->getLHS(); 980 const Expr *RHS = E->getRHS(); 981 982 if ((Op != BO_Add && Op != BO_Sub) || 983 (!LHS->getType()->isPointerType() && !RHS->getType()->isPointerType())) 984 return false; 985 986 std::optional<PrimType> LT = classify(LHS); 987 std::optional<PrimType> RT = classify(RHS); 988 989 if (!LT || !RT) 990 return false; 991 992 // Visit the given pointer expression and optionally convert to a PT_Ptr. 993 auto visitAsPointer = [&](const Expr *E, PrimType T) -> bool { 994 if (!this->visit(E)) 995 return false; 996 if (T != PT_Ptr) 997 return this->emitDecayPtr(T, PT_Ptr, E); 998 return true; 999 }; 1000 1001 if (LHS->getType()->isPointerType() && RHS->getType()->isPointerType()) { 1002 if (Op != BO_Sub) 1003 return false; 1004 1005 assert(E->getType()->isIntegerType()); 1006 if (!visitAsPointer(RHS, *RT) || !visitAsPointer(LHS, *LT)) 1007 return false; 1008 1009 PrimType IntT = classifyPrim(E->getType()); 1010 if (!this->emitSubPtr(IntT, E)) 1011 return false; 1012 return DiscardResult ? this->emitPop(IntT, E) : true; 1013 } 1014 1015 PrimType OffsetType; 1016 if (LHS->getType()->isIntegerType()) { 1017 if (!visitAsPointer(RHS, *RT)) 1018 return false; 1019 if (!this->visit(LHS)) 1020 return false; 1021 OffsetType = *LT; 1022 } else if (RHS->getType()->isIntegerType()) { 1023 if (!visitAsPointer(LHS, *LT)) 1024 return false; 1025 if (!this->visit(RHS)) 1026 return false; 1027 OffsetType = *RT; 1028 } else { 1029 return false; 1030 } 1031 1032 // Do the operation and optionally transform to 1033 // result pointer type. 1034 if (Op == BO_Add) { 1035 if (!this->emitAddOffset(OffsetType, E)) 1036 return false; 1037 1038 if (classifyPrim(E) != PT_Ptr) 1039 return this->emitDecayPtr(PT_Ptr, classifyPrim(E), E); 1040 return true; 1041 } else if (Op == BO_Sub) { 1042 if (!this->emitSubOffset(OffsetType, E)) 1043 return false; 1044 1045 if (classifyPrim(E) != PT_Ptr) 1046 return this->emitDecayPtr(PT_Ptr, classifyPrim(E), E); 1047 return true; 1048 } 1049 1050 return false; 1051 } 1052 1053 template <class Emitter> 1054 bool Compiler<Emitter>::VisitLogicalBinOp(const BinaryOperator *E) { 1055 assert(E->isLogicalOp()); 1056 BinaryOperatorKind Op = E->getOpcode(); 1057 const Expr *LHS = E->getLHS(); 1058 const Expr *RHS = E->getRHS(); 1059 std::optional<PrimType> T = classify(E->getType()); 1060 1061 if (Op == BO_LOr) { 1062 // Logical OR. Visit LHS and only evaluate RHS if LHS was FALSE. 1063 LabelTy LabelTrue = this->getLabel(); 1064 LabelTy LabelEnd = this->getLabel(); 1065 1066 if (!this->visitBool(LHS)) 1067 return false; 1068 if (!this->jumpTrue(LabelTrue)) 1069 return false; 1070 1071 if (!this->visitBool(RHS)) 1072 return false; 1073 if (!this->jump(LabelEnd)) 1074 return false; 1075 1076 this->emitLabel(LabelTrue); 1077 this->emitConstBool(true, E); 1078 this->fallthrough(LabelEnd); 1079 this->emitLabel(LabelEnd); 1080 1081 } else { 1082 assert(Op == BO_LAnd); 1083 // Logical AND. 1084 // Visit LHS. Only visit RHS if LHS was TRUE. 1085 LabelTy LabelFalse = this->getLabel(); 1086 LabelTy LabelEnd = this->getLabel(); 1087 1088 if (!this->visitBool(LHS)) 1089 return false; 1090 if (!this->jumpFalse(LabelFalse)) 1091 return false; 1092 1093 if (!this->visitBool(RHS)) 1094 return false; 1095 if (!this->jump(LabelEnd)) 1096 return false; 1097 1098 this->emitLabel(LabelFalse); 1099 this->emitConstBool(false, E); 1100 this->fallthrough(LabelEnd); 1101 this->emitLabel(LabelEnd); 1102 } 1103 1104 if (DiscardResult) 1105 return this->emitPopBool(E); 1106 1107 // For C, cast back to integer type. 1108 assert(T); 1109 if (T != PT_Bool) 1110 return this->emitCast(PT_Bool, *T, E); 1111 return true; 1112 } 1113 1114 template <class Emitter> 1115 bool Compiler<Emitter>::VisitComplexBinOp(const BinaryOperator *E) { 1116 // Prepare storage for result. 1117 if (!Initializing) { 1118 unsigned LocalIndex = allocateTemporary(E); 1119 if (!this->emitGetPtrLocal(LocalIndex, E)) 1120 return false; 1121 } 1122 1123 // Both LHS and RHS might _not_ be of complex type, but one of them 1124 // needs to be. 1125 const Expr *LHS = E->getLHS(); 1126 const Expr *RHS = E->getRHS(); 1127 1128 PrimType ResultElemT = this->classifyComplexElementType(E->getType()); 1129 unsigned ResultOffset = ~0u; 1130 if (!DiscardResult) 1131 ResultOffset = this->allocateLocalPrimitive(E, PT_Ptr, true, false); 1132 1133 // Save result pointer in ResultOffset 1134 if (!this->DiscardResult) { 1135 if (!this->emitDupPtr(E)) 1136 return false; 1137 if (!this->emitSetLocal(PT_Ptr, ResultOffset, E)) 1138 return false; 1139 } 1140 QualType LHSType = LHS->getType(); 1141 if (const auto *AT = LHSType->getAs<AtomicType>()) 1142 LHSType = AT->getValueType(); 1143 QualType RHSType = RHS->getType(); 1144 if (const auto *AT = RHSType->getAs<AtomicType>()) 1145 RHSType = AT->getValueType(); 1146 1147 bool LHSIsComplex = LHSType->isAnyComplexType(); 1148 unsigned LHSOffset; 1149 bool RHSIsComplex = RHSType->isAnyComplexType(); 1150 1151 // For ComplexComplex Mul, we have special ops to make their implementation 1152 // easier. 1153 BinaryOperatorKind Op = E->getOpcode(); 1154 if (Op == BO_Mul && LHSIsComplex && RHSIsComplex) { 1155 assert(classifyPrim(LHSType->getAs<ComplexType>()->getElementType()) == 1156 classifyPrim(RHSType->getAs<ComplexType>()->getElementType())); 1157 PrimType ElemT = 1158 classifyPrim(LHSType->getAs<ComplexType>()->getElementType()); 1159 if (!this->visit(LHS)) 1160 return false; 1161 if (!this->visit(RHS)) 1162 return false; 1163 return this->emitMulc(ElemT, E); 1164 } 1165 1166 if (Op == BO_Div && RHSIsComplex) { 1167 QualType ElemQT = RHSType->getAs<ComplexType>()->getElementType(); 1168 PrimType ElemT = classifyPrim(ElemQT); 1169 // If the LHS is not complex, we still need to do the full complex 1170 // division, so just stub create a complex value and stub it out with 1171 // the LHS and a zero. 1172 1173 if (!LHSIsComplex) { 1174 // This is using the RHS type for the fake-complex LHS. 1175 LHSOffset = allocateTemporary(RHS); 1176 1177 if (!this->emitGetPtrLocal(LHSOffset, E)) 1178 return false; 1179 1180 if (!this->visit(LHS)) 1181 return false; 1182 // real is LHS 1183 if (!this->emitInitElem(ElemT, 0, E)) 1184 return false; 1185 // imag is zero 1186 if (!this->visitZeroInitializer(ElemT, ElemQT, E)) 1187 return false; 1188 if (!this->emitInitElem(ElemT, 1, E)) 1189 return false; 1190 } else { 1191 if (!this->visit(LHS)) 1192 return false; 1193 } 1194 1195 if (!this->visit(RHS)) 1196 return false; 1197 return this->emitDivc(ElemT, E); 1198 } 1199 1200 // Evaluate LHS and save value to LHSOffset. 1201 if (LHSType->isAnyComplexType()) { 1202 LHSOffset = this->allocateLocalPrimitive(LHS, PT_Ptr, true, false); 1203 if (!this->visit(LHS)) 1204 return false; 1205 if (!this->emitSetLocal(PT_Ptr, LHSOffset, E)) 1206 return false; 1207 } else { 1208 PrimType LHST = classifyPrim(LHSType); 1209 LHSOffset = this->allocateLocalPrimitive(LHS, LHST, true, false); 1210 if (!this->visit(LHS)) 1211 return false; 1212 if (!this->emitSetLocal(LHST, LHSOffset, E)) 1213 return false; 1214 } 1215 1216 // Same with RHS. 1217 unsigned RHSOffset; 1218 if (RHSType->isAnyComplexType()) { 1219 RHSOffset = this->allocateLocalPrimitive(RHS, PT_Ptr, true, false); 1220 if (!this->visit(RHS)) 1221 return false; 1222 if (!this->emitSetLocal(PT_Ptr, RHSOffset, E)) 1223 return false; 1224 } else { 1225 PrimType RHST = classifyPrim(RHSType); 1226 RHSOffset = this->allocateLocalPrimitive(RHS, RHST, true, false); 1227 if (!this->visit(RHS)) 1228 return false; 1229 if (!this->emitSetLocal(RHST, RHSOffset, E)) 1230 return false; 1231 } 1232 1233 // For both LHS and RHS, either load the value from the complex pointer, or 1234 // directly from the local variable. For index 1 (i.e. the imaginary part), 1235 // just load 0 and do the operation anyway. 1236 auto loadComplexValue = [this](bool IsComplex, bool LoadZero, 1237 unsigned ElemIndex, unsigned Offset, 1238 const Expr *E) -> bool { 1239 if (IsComplex) { 1240 if (!this->emitGetLocal(PT_Ptr, Offset, E)) 1241 return false; 1242 return this->emitArrayElemPop(classifyComplexElementType(E->getType()), 1243 ElemIndex, E); 1244 } 1245 if (ElemIndex == 0 || !LoadZero) 1246 return this->emitGetLocal(classifyPrim(E->getType()), Offset, E); 1247 return this->visitZeroInitializer(classifyPrim(E->getType()), E->getType(), 1248 E); 1249 }; 1250 1251 // Now we can get pointers to the LHS and RHS from the offsets above. 1252 for (unsigned ElemIndex = 0; ElemIndex != 2; ++ElemIndex) { 1253 // Result pointer for the store later. 1254 if (!this->DiscardResult) { 1255 if (!this->emitGetLocal(PT_Ptr, ResultOffset, E)) 1256 return false; 1257 } 1258 1259 // The actual operation. 1260 switch (Op) { 1261 case BO_Add: 1262 if (!loadComplexValue(LHSIsComplex, true, ElemIndex, LHSOffset, LHS)) 1263 return false; 1264 1265 if (!loadComplexValue(RHSIsComplex, true, ElemIndex, RHSOffset, RHS)) 1266 return false; 1267 if (ResultElemT == PT_Float) { 1268 if (!this->emitAddf(getFPOptions(E), E)) 1269 return false; 1270 } else { 1271 if (!this->emitAdd(ResultElemT, E)) 1272 return false; 1273 } 1274 break; 1275 case BO_Sub: 1276 if (!loadComplexValue(LHSIsComplex, true, ElemIndex, LHSOffset, LHS)) 1277 return false; 1278 1279 if (!loadComplexValue(RHSIsComplex, true, ElemIndex, RHSOffset, RHS)) 1280 return false; 1281 if (ResultElemT == PT_Float) { 1282 if (!this->emitSubf(getFPOptions(E), E)) 1283 return false; 1284 } else { 1285 if (!this->emitSub(ResultElemT, E)) 1286 return false; 1287 } 1288 break; 1289 case BO_Mul: 1290 if (!loadComplexValue(LHSIsComplex, false, ElemIndex, LHSOffset, LHS)) 1291 return false; 1292 1293 if (!loadComplexValue(RHSIsComplex, false, ElemIndex, RHSOffset, RHS)) 1294 return false; 1295 1296 if (ResultElemT == PT_Float) { 1297 if (!this->emitMulf(getFPOptions(E), E)) 1298 return false; 1299 } else { 1300 if (!this->emitMul(ResultElemT, E)) 1301 return false; 1302 } 1303 break; 1304 case BO_Div: 1305 assert(!RHSIsComplex); 1306 if (!loadComplexValue(LHSIsComplex, false, ElemIndex, LHSOffset, LHS)) 1307 return false; 1308 1309 if (!loadComplexValue(RHSIsComplex, false, ElemIndex, RHSOffset, RHS)) 1310 return false; 1311 1312 if (ResultElemT == PT_Float) { 1313 if (!this->emitDivf(getFPOptions(E), E)) 1314 return false; 1315 } else { 1316 if (!this->emitDiv(ResultElemT, E)) 1317 return false; 1318 } 1319 break; 1320 1321 default: 1322 return false; 1323 } 1324 1325 if (!this->DiscardResult) { 1326 // Initialize array element with the value we just computed. 1327 if (!this->emitInitElemPop(ResultElemT, ElemIndex, E)) 1328 return false; 1329 } else { 1330 if (!this->emitPop(ResultElemT, E)) 1331 return false; 1332 } 1333 } 1334 return true; 1335 } 1336 1337 template <class Emitter> 1338 bool Compiler<Emitter>::VisitVectorBinOp(const BinaryOperator *E) { 1339 assert(!E->isCommaOp() && 1340 "Comma op should be handled in VisitBinaryOperator"); 1341 assert(E->getType()->isVectorType()); 1342 assert(E->getLHS()->getType()->isVectorType()); 1343 assert(E->getRHS()->getType()->isVectorType()); 1344 1345 // Prepare storage for result. 1346 if (!Initializing && !E->isCompoundAssignmentOp()) { 1347 unsigned LocalIndex = allocateTemporary(E); 1348 if (!this->emitGetPtrLocal(LocalIndex, E)) 1349 return false; 1350 } 1351 1352 const Expr *LHS = E->getLHS(); 1353 const Expr *RHS = E->getRHS(); 1354 const auto *VecTy = E->getType()->getAs<VectorType>(); 1355 auto Op = E->isCompoundAssignmentOp() 1356 ? BinaryOperator::getOpForCompoundAssignment(E->getOpcode()) 1357 : E->getOpcode(); 1358 1359 PrimType ElemT = this->classifyVectorElementType(LHS->getType()); 1360 PrimType RHSElemT = this->classifyVectorElementType(RHS->getType()); 1361 PrimType ResultElemT = this->classifyVectorElementType(E->getType()); 1362 1363 // Evaluate LHS and save value to LHSOffset. 1364 unsigned LHSOffset = this->allocateLocalPrimitive(LHS, PT_Ptr, true, false); 1365 if (!this->visit(LHS)) 1366 return false; 1367 if (!this->emitSetLocal(PT_Ptr, LHSOffset, E)) 1368 return false; 1369 1370 // Evaluate RHS and save value to RHSOffset. 1371 unsigned RHSOffset = this->allocateLocalPrimitive(RHS, PT_Ptr, true, false); 1372 if (!this->visit(RHS)) 1373 return false; 1374 if (!this->emitSetLocal(PT_Ptr, RHSOffset, E)) 1375 return false; 1376 1377 if (E->isCompoundAssignmentOp() && !this->emitGetLocal(PT_Ptr, LHSOffset, E)) 1378 return false; 1379 1380 // BitAdd/BitOr/BitXor/Shl/Shr doesn't support bool type, we need perform the 1381 // integer promotion. 1382 bool NeedIntPromot = ElemT == PT_Bool && (E->isBitwiseOp() || E->isShiftOp()); 1383 QualType PromotTy = 1384 Ctx.getASTContext().getPromotedIntegerType(Ctx.getASTContext().BoolTy); 1385 PrimType PromotT = classifyPrim(PromotTy); 1386 PrimType OpT = NeedIntPromot ? PromotT : ElemT; 1387 1388 auto getElem = [=](unsigned Offset, PrimType ElemT, unsigned Index) { 1389 if (!this->emitGetLocal(PT_Ptr, Offset, E)) 1390 return false; 1391 if (!this->emitArrayElemPop(ElemT, Index, E)) 1392 return false; 1393 if (E->isLogicalOp()) { 1394 if (!this->emitPrimCast(ElemT, PT_Bool, Ctx.getASTContext().BoolTy, E)) 1395 return false; 1396 if (!this->emitPrimCast(PT_Bool, ResultElemT, VecTy->getElementType(), E)) 1397 return false; 1398 } else if (NeedIntPromot) { 1399 if (!this->emitPrimCast(ElemT, PromotT, PromotTy, E)) 1400 return false; 1401 } 1402 return true; 1403 }; 1404 1405 #define EMIT_ARITH_OP(OP) \ 1406 { \ 1407 if (ElemT == PT_Float) { \ 1408 if (!this->emit##OP##f(getFPOptions(E), E)) \ 1409 return false; \ 1410 } else { \ 1411 if (!this->emit##OP(ElemT, E)) \ 1412 return false; \ 1413 } \ 1414 break; \ 1415 } 1416 1417 for (unsigned I = 0; I != VecTy->getNumElements(); ++I) { 1418 if (!getElem(LHSOffset, ElemT, I)) 1419 return false; 1420 if (!getElem(RHSOffset, RHSElemT, I)) 1421 return false; 1422 switch (Op) { 1423 case BO_Add: 1424 EMIT_ARITH_OP(Add) 1425 case BO_Sub: 1426 EMIT_ARITH_OP(Sub) 1427 case BO_Mul: 1428 EMIT_ARITH_OP(Mul) 1429 case BO_Div: 1430 EMIT_ARITH_OP(Div) 1431 case BO_Rem: 1432 if (!this->emitRem(ElemT, E)) 1433 return false; 1434 break; 1435 case BO_And: 1436 if (!this->emitBitAnd(OpT, E)) 1437 return false; 1438 break; 1439 case BO_Or: 1440 if (!this->emitBitOr(OpT, E)) 1441 return false; 1442 break; 1443 case BO_Xor: 1444 if (!this->emitBitXor(OpT, E)) 1445 return false; 1446 break; 1447 case BO_Shl: 1448 if (!this->emitShl(OpT, RHSElemT, E)) 1449 return false; 1450 break; 1451 case BO_Shr: 1452 if (!this->emitShr(OpT, RHSElemT, E)) 1453 return false; 1454 break; 1455 case BO_EQ: 1456 if (!this->emitEQ(ElemT, E)) 1457 return false; 1458 break; 1459 case BO_NE: 1460 if (!this->emitNE(ElemT, E)) 1461 return false; 1462 break; 1463 case BO_LE: 1464 if (!this->emitLE(ElemT, E)) 1465 return false; 1466 break; 1467 case BO_LT: 1468 if (!this->emitLT(ElemT, E)) 1469 return false; 1470 break; 1471 case BO_GE: 1472 if (!this->emitGE(ElemT, E)) 1473 return false; 1474 break; 1475 case BO_GT: 1476 if (!this->emitGT(ElemT, E)) 1477 return false; 1478 break; 1479 case BO_LAnd: 1480 // a && b is equivalent to a!=0 & b!=0 1481 if (!this->emitBitAnd(ResultElemT, E)) 1482 return false; 1483 break; 1484 case BO_LOr: 1485 // a || b is equivalent to a!=0 | b!=0 1486 if (!this->emitBitOr(ResultElemT, E)) 1487 return false; 1488 break; 1489 default: 1490 return this->emitInvalid(E); 1491 } 1492 1493 // The result of the comparison is a vector of the same width and number 1494 // of elements as the comparison operands with a signed integral element 1495 // type. 1496 // 1497 // https://gcc.gnu.org/onlinedocs/gcc/Vector-Extensions.html 1498 if (E->isComparisonOp()) { 1499 if (!this->emitPrimCast(PT_Bool, ResultElemT, VecTy->getElementType(), E)) 1500 return false; 1501 if (!this->emitNeg(ResultElemT, E)) 1502 return false; 1503 } 1504 1505 // If we performed an integer promotion, we need to cast the compute result 1506 // into result vector element type. 1507 if (NeedIntPromot && 1508 !this->emitPrimCast(PromotT, ResultElemT, VecTy->getElementType(), E)) 1509 return false; 1510 1511 // Initialize array element with the value we just computed. 1512 if (!this->emitInitElem(ResultElemT, I, E)) 1513 return false; 1514 } 1515 1516 if (DiscardResult && E->isCompoundAssignmentOp() && !this->emitPopPtr(E)) 1517 return false; 1518 return true; 1519 } 1520 1521 template <class Emitter> 1522 bool Compiler<Emitter>::VisitFixedPointBinOp(const BinaryOperator *E) { 1523 const Expr *LHS = E->getLHS(); 1524 const Expr *RHS = E->getRHS(); 1525 1526 assert(LHS->getType()->isFixedPointType() || 1527 RHS->getType()->isFixedPointType()); 1528 1529 auto LHSSema = Ctx.getASTContext().getFixedPointSemantics(LHS->getType()); 1530 auto RHSSema = Ctx.getASTContext().getFixedPointSemantics(RHS->getType()); 1531 1532 if (!this->visit(LHS)) 1533 return false; 1534 if (!LHS->getType()->isFixedPointType()) { 1535 uint32_t I; 1536 std::memcpy(&I, &LHSSema, sizeof(llvm::FixedPointSemantics)); 1537 if (!this->emitCastIntegralFixedPoint(classifyPrim(LHS->getType()), I, E)) 1538 return false; 1539 } 1540 1541 if (!this->visit(RHS)) 1542 return false; 1543 if (!RHS->getType()->isFixedPointType()) { 1544 uint32_t I; 1545 std::memcpy(&I, &RHSSema, sizeof(llvm::FixedPointSemantics)); 1546 if (!this->emitCastIntegralFixedPoint(classifyPrim(RHS->getType()), I, E)) 1547 return false; 1548 } 1549 1550 // Convert the result to the target semantics. 1551 auto ConvertResult = [&](bool R) -> bool { 1552 if (!R) 1553 return false; 1554 auto ResultSema = Ctx.getASTContext().getFixedPointSemantics(E->getType()); 1555 auto CommonSema = LHSSema.getCommonSemantics(RHSSema); 1556 if (ResultSema != CommonSema) { 1557 uint32_t I; 1558 std::memcpy(&I, &ResultSema, sizeof(ResultSema)); 1559 return this->emitCastFixedPoint(I, E); 1560 } 1561 return true; 1562 }; 1563 1564 auto MaybeCastToBool = [&](bool Result) { 1565 if (!Result) 1566 return false; 1567 PrimType T = classifyPrim(E); 1568 if (DiscardResult) 1569 return this->emitPop(T, E); 1570 if (T != PT_Bool) 1571 return this->emitCast(PT_Bool, T, E); 1572 return true; 1573 }; 1574 1575 switch (E->getOpcode()) { 1576 case BO_EQ: 1577 return MaybeCastToBool(this->emitEQFixedPoint(E)); 1578 case BO_NE: 1579 return MaybeCastToBool(this->emitNEFixedPoint(E)); 1580 case BO_LT: 1581 return MaybeCastToBool(this->emitLTFixedPoint(E)); 1582 case BO_LE: 1583 return MaybeCastToBool(this->emitLEFixedPoint(E)); 1584 case BO_GT: 1585 return MaybeCastToBool(this->emitGTFixedPoint(E)); 1586 case BO_GE: 1587 return MaybeCastToBool(this->emitGEFixedPoint(E)); 1588 case BO_Add: 1589 return ConvertResult(this->emitAddFixedPoint(E)); 1590 case BO_Sub: 1591 return ConvertResult(this->emitSubFixedPoint(E)); 1592 case BO_Mul: 1593 return ConvertResult(this->emitMulFixedPoint(E)); 1594 case BO_Div: 1595 return ConvertResult(this->emitDivFixedPoint(E)); 1596 case BO_Shl: 1597 return ConvertResult(this->emitShiftFixedPoint(/*Left=*/true, E)); 1598 case BO_Shr: 1599 return ConvertResult(this->emitShiftFixedPoint(/*Left=*/false, E)); 1600 1601 default: 1602 return this->emitInvalid(E); 1603 } 1604 1605 llvm_unreachable("unhandled binop opcode"); 1606 } 1607 1608 template <class Emitter> 1609 bool Compiler<Emitter>::VisitFixedPointUnaryOperator(const UnaryOperator *E) { 1610 const Expr *SubExpr = E->getSubExpr(); 1611 assert(SubExpr->getType()->isFixedPointType()); 1612 1613 switch (E->getOpcode()) { 1614 case UO_Plus: 1615 return this->delegate(SubExpr); 1616 case UO_Minus: 1617 if (!this->visit(SubExpr)) 1618 return false; 1619 return this->emitNegFixedPoint(E); 1620 default: 1621 return false; 1622 } 1623 1624 llvm_unreachable("Unhandled unary opcode"); 1625 } 1626 1627 template <class Emitter> 1628 bool Compiler<Emitter>::VisitImplicitValueInitExpr( 1629 const ImplicitValueInitExpr *E) { 1630 QualType QT = E->getType(); 1631 1632 if (std::optional<PrimType> T = classify(QT)) 1633 return this->visitZeroInitializer(*T, QT, E); 1634 1635 if (QT->isRecordType()) { 1636 const RecordDecl *RD = QT->getAsRecordDecl(); 1637 assert(RD); 1638 if (RD->isInvalidDecl()) 1639 return false; 1640 1641 if (const auto *CXXRD = dyn_cast<CXXRecordDecl>(RD); 1642 CXXRD && CXXRD->getNumVBases() > 0) { 1643 // TODO: Diagnose. 1644 return false; 1645 } 1646 1647 const Record *R = getRecord(QT); 1648 if (!R) 1649 return false; 1650 1651 assert(Initializing); 1652 return this->visitZeroRecordInitializer(R, E); 1653 } 1654 1655 if (QT->isIncompleteArrayType()) 1656 return true; 1657 1658 if (QT->isArrayType()) 1659 return this->visitZeroArrayInitializer(QT, E); 1660 1661 if (const auto *ComplexTy = E->getType()->getAs<ComplexType>()) { 1662 assert(Initializing); 1663 QualType ElemQT = ComplexTy->getElementType(); 1664 PrimType ElemT = classifyPrim(ElemQT); 1665 for (unsigned I = 0; I < 2; ++I) { 1666 if (!this->visitZeroInitializer(ElemT, ElemQT, E)) 1667 return false; 1668 if (!this->emitInitElem(ElemT, I, E)) 1669 return false; 1670 } 1671 return true; 1672 } 1673 1674 if (const auto *VecT = E->getType()->getAs<VectorType>()) { 1675 unsigned NumVecElements = VecT->getNumElements(); 1676 QualType ElemQT = VecT->getElementType(); 1677 PrimType ElemT = classifyPrim(ElemQT); 1678 1679 for (unsigned I = 0; I < NumVecElements; ++I) { 1680 if (!this->visitZeroInitializer(ElemT, ElemQT, E)) 1681 return false; 1682 if (!this->emitInitElem(ElemT, I, E)) 1683 return false; 1684 } 1685 return true; 1686 } 1687 1688 return false; 1689 } 1690 1691 template <class Emitter> 1692 bool Compiler<Emitter>::VisitArraySubscriptExpr(const ArraySubscriptExpr *E) { 1693 const Expr *LHS = E->getLHS(); 1694 const Expr *RHS = E->getRHS(); 1695 const Expr *Index = E->getIdx(); 1696 1697 if (DiscardResult) 1698 return this->discard(LHS) && this->discard(RHS); 1699 1700 // C++17's rules require us to evaluate the LHS first, regardless of which 1701 // side is the base. 1702 bool Success = true; 1703 for (const Expr *SubExpr : {LHS, RHS}) { 1704 if (!this->visit(SubExpr)) 1705 Success = false; 1706 } 1707 1708 if (!Success) 1709 return false; 1710 1711 PrimType IndexT = classifyPrim(Index->getType()); 1712 // If the index is first, we need to change that. 1713 if (LHS == Index) { 1714 if (!this->emitFlip(PT_Ptr, IndexT, E)) 1715 return false; 1716 } 1717 1718 return this->emitArrayElemPtrPop(IndexT, E); 1719 } 1720 1721 template <class Emitter> 1722 bool Compiler<Emitter>::visitInitList(ArrayRef<const Expr *> Inits, 1723 const Expr *ArrayFiller, const Expr *E) { 1724 InitLinkScope<Emitter> ILS(this, InitLink::InitList()); 1725 1726 QualType QT = E->getType(); 1727 if (const auto *AT = QT->getAs<AtomicType>()) 1728 QT = AT->getValueType(); 1729 1730 if (QT->isVoidType()) { 1731 if (Inits.size() == 0) 1732 return true; 1733 return this->emitInvalid(E); 1734 } 1735 1736 // Handle discarding first. 1737 if (DiscardResult) { 1738 for (const Expr *Init : Inits) { 1739 if (!this->discard(Init)) 1740 return false; 1741 } 1742 return true; 1743 } 1744 1745 // Primitive values. 1746 if (std::optional<PrimType> T = classify(QT)) { 1747 assert(!DiscardResult); 1748 if (Inits.size() == 0) 1749 return this->visitZeroInitializer(*T, QT, E); 1750 assert(Inits.size() == 1); 1751 return this->delegate(Inits[0]); 1752 } 1753 1754 if (QT->isRecordType()) { 1755 const Record *R = getRecord(QT); 1756 1757 if (Inits.size() == 1 && E->getType() == Inits[0]->getType()) 1758 return this->delegate(Inits[0]); 1759 1760 auto initPrimitiveField = [=](const Record::Field *FieldToInit, 1761 const Expr *Init, PrimType T) -> bool { 1762 InitStackScope<Emitter> ISS(this, isa<CXXDefaultInitExpr>(Init)); 1763 InitLinkScope<Emitter> ILS(this, InitLink::Field(FieldToInit->Offset)); 1764 if (!this->visit(Init)) 1765 return false; 1766 1767 if (FieldToInit->isBitField()) 1768 return this->emitInitBitField(T, FieldToInit, E); 1769 return this->emitInitField(T, FieldToInit->Offset, E); 1770 }; 1771 1772 auto initCompositeField = [=](const Record::Field *FieldToInit, 1773 const Expr *Init) -> bool { 1774 InitStackScope<Emitter> ISS(this, isa<CXXDefaultInitExpr>(Init)); 1775 InitLinkScope<Emitter> ILS(this, InitLink::Field(FieldToInit->Offset)); 1776 1777 // Non-primitive case. Get a pointer to the field-to-initialize 1778 // on the stack and recurse into visitInitializer(). 1779 if (!this->emitGetPtrField(FieldToInit->Offset, Init)) 1780 return false; 1781 if (!this->visitInitializer(Init)) 1782 return false; 1783 return this->emitPopPtr(E); 1784 }; 1785 1786 if (R->isUnion()) { 1787 if (Inits.size() == 0) { 1788 if (!this->visitZeroRecordInitializer(R, E)) 1789 return false; 1790 } else { 1791 const Expr *Init = Inits[0]; 1792 const FieldDecl *FToInit = nullptr; 1793 if (const auto *ILE = dyn_cast<InitListExpr>(E)) 1794 FToInit = ILE->getInitializedFieldInUnion(); 1795 else 1796 FToInit = cast<CXXParenListInitExpr>(E)->getInitializedFieldInUnion(); 1797 1798 const Record::Field *FieldToInit = R->getField(FToInit); 1799 if (std::optional<PrimType> T = classify(Init)) { 1800 if (!initPrimitiveField(FieldToInit, Init, *T)) 1801 return false; 1802 } else { 1803 if (!initCompositeField(FieldToInit, Init)) 1804 return false; 1805 } 1806 } 1807 return this->emitFinishInit(E); 1808 } 1809 1810 assert(!R->isUnion()); 1811 unsigned InitIndex = 0; 1812 for (const Expr *Init : Inits) { 1813 // Skip unnamed bitfields. 1814 while (InitIndex < R->getNumFields() && 1815 R->getField(InitIndex)->Decl->isUnnamedBitField()) 1816 ++InitIndex; 1817 1818 if (std::optional<PrimType> T = classify(Init)) { 1819 const Record::Field *FieldToInit = R->getField(InitIndex); 1820 if (!initPrimitiveField(FieldToInit, Init, *T)) 1821 return false; 1822 ++InitIndex; 1823 } else { 1824 // Initializer for a direct base class. 1825 if (const Record::Base *B = R->getBase(Init->getType())) { 1826 if (!this->emitGetPtrBase(B->Offset, Init)) 1827 return false; 1828 1829 if (!this->visitInitializer(Init)) 1830 return false; 1831 1832 if (!this->emitFinishInitPop(E)) 1833 return false; 1834 // Base initializers don't increase InitIndex, since they don't count 1835 // into the Record's fields. 1836 } else { 1837 const Record::Field *FieldToInit = R->getField(InitIndex); 1838 if (!initCompositeField(FieldToInit, Init)) 1839 return false; 1840 ++InitIndex; 1841 } 1842 } 1843 } 1844 return this->emitFinishInit(E); 1845 } 1846 1847 if (QT->isArrayType()) { 1848 if (Inits.size() == 1 && QT == Inits[0]->getType()) 1849 return this->delegate(Inits[0]); 1850 1851 unsigned ElementIndex = 0; 1852 for (const Expr *Init : Inits) { 1853 if (const auto *EmbedS = 1854 dyn_cast<EmbedExpr>(Init->IgnoreParenImpCasts())) { 1855 PrimType TargetT = classifyPrim(Init->getType()); 1856 1857 auto Eval = [&](const Expr *Init, unsigned ElemIndex) { 1858 PrimType InitT = classifyPrim(Init->getType()); 1859 if (!this->visit(Init)) 1860 return false; 1861 if (InitT != TargetT) { 1862 if (!this->emitCast(InitT, TargetT, E)) 1863 return false; 1864 } 1865 return this->emitInitElem(TargetT, ElemIndex, Init); 1866 }; 1867 if (!EmbedS->doForEachDataElement(Eval, ElementIndex)) 1868 return false; 1869 } else { 1870 if (!this->visitArrayElemInit(ElementIndex, Init)) 1871 return false; 1872 ++ElementIndex; 1873 } 1874 } 1875 1876 // Expand the filler expression. 1877 // FIXME: This should go away. 1878 if (ArrayFiller) { 1879 const ConstantArrayType *CAT = 1880 Ctx.getASTContext().getAsConstantArrayType(QT); 1881 uint64_t NumElems = CAT->getZExtSize(); 1882 1883 for (; ElementIndex != NumElems; ++ElementIndex) { 1884 if (!this->visitArrayElemInit(ElementIndex, ArrayFiller)) 1885 return false; 1886 } 1887 } 1888 1889 return this->emitFinishInit(E); 1890 } 1891 1892 if (const auto *ComplexTy = QT->getAs<ComplexType>()) { 1893 unsigned NumInits = Inits.size(); 1894 1895 if (NumInits == 1) 1896 return this->delegate(Inits[0]); 1897 1898 QualType ElemQT = ComplexTy->getElementType(); 1899 PrimType ElemT = classifyPrim(ElemQT); 1900 if (NumInits == 0) { 1901 // Zero-initialize both elements. 1902 for (unsigned I = 0; I < 2; ++I) { 1903 if (!this->visitZeroInitializer(ElemT, ElemQT, E)) 1904 return false; 1905 if (!this->emitInitElem(ElemT, I, E)) 1906 return false; 1907 } 1908 } else if (NumInits == 2) { 1909 unsigned InitIndex = 0; 1910 for (const Expr *Init : Inits) { 1911 if (!this->visit(Init)) 1912 return false; 1913 1914 if (!this->emitInitElem(ElemT, InitIndex, E)) 1915 return false; 1916 ++InitIndex; 1917 } 1918 } 1919 return true; 1920 } 1921 1922 if (const auto *VecT = QT->getAs<VectorType>()) { 1923 unsigned NumVecElements = VecT->getNumElements(); 1924 assert(NumVecElements >= Inits.size()); 1925 1926 QualType ElemQT = VecT->getElementType(); 1927 PrimType ElemT = classifyPrim(ElemQT); 1928 1929 // All initializer elements. 1930 unsigned InitIndex = 0; 1931 for (const Expr *Init : Inits) { 1932 if (!this->visit(Init)) 1933 return false; 1934 1935 // If the initializer is of vector type itself, we have to deconstruct 1936 // that and initialize all the target fields from the initializer fields. 1937 if (const auto *InitVecT = Init->getType()->getAs<VectorType>()) { 1938 if (!this->emitCopyArray(ElemT, 0, InitIndex, 1939 InitVecT->getNumElements(), E)) 1940 return false; 1941 InitIndex += InitVecT->getNumElements(); 1942 } else { 1943 if (!this->emitInitElem(ElemT, InitIndex, E)) 1944 return false; 1945 ++InitIndex; 1946 } 1947 } 1948 1949 assert(InitIndex <= NumVecElements); 1950 1951 // Fill the rest with zeroes. 1952 for (; InitIndex != NumVecElements; ++InitIndex) { 1953 if (!this->visitZeroInitializer(ElemT, ElemQT, E)) 1954 return false; 1955 if (!this->emitInitElem(ElemT, InitIndex, E)) 1956 return false; 1957 } 1958 return true; 1959 } 1960 1961 return false; 1962 } 1963 1964 /// Pointer to the array(not the element!) must be on the stack when calling 1965 /// this. 1966 template <class Emitter> 1967 bool Compiler<Emitter>::visitArrayElemInit(unsigned ElemIndex, 1968 const Expr *Init) { 1969 if (std::optional<PrimType> T = classify(Init->getType())) { 1970 // Visit the primitive element like normal. 1971 if (!this->visit(Init)) 1972 return false; 1973 return this->emitInitElem(*T, ElemIndex, Init); 1974 } 1975 1976 InitLinkScope<Emitter> ILS(this, InitLink::Elem(ElemIndex)); 1977 // Advance the pointer currently on the stack to the given 1978 // dimension. 1979 if (!this->emitConstUint32(ElemIndex, Init)) 1980 return false; 1981 if (!this->emitArrayElemPtrUint32(Init)) 1982 return false; 1983 if (!this->visitInitializer(Init)) 1984 return false; 1985 return this->emitFinishInitPop(Init); 1986 } 1987 1988 template <class Emitter> 1989 bool Compiler<Emitter>::VisitInitListExpr(const InitListExpr *E) { 1990 return this->visitInitList(E->inits(), E->getArrayFiller(), E); 1991 } 1992 1993 template <class Emitter> 1994 bool Compiler<Emitter>::VisitCXXParenListInitExpr( 1995 const CXXParenListInitExpr *E) { 1996 return this->visitInitList(E->getInitExprs(), E->getArrayFiller(), E); 1997 } 1998 1999 template <class Emitter> 2000 bool Compiler<Emitter>::VisitSubstNonTypeTemplateParmExpr( 2001 const SubstNonTypeTemplateParmExpr *E) { 2002 return this->delegate(E->getReplacement()); 2003 } 2004 2005 template <class Emitter> 2006 bool Compiler<Emitter>::VisitConstantExpr(const ConstantExpr *E) { 2007 std::optional<PrimType> T = classify(E->getType()); 2008 if (T && E->hasAPValueResult()) { 2009 // Try to emit the APValue directly, without visiting the subexpr. 2010 // This will only fail if we can't emit the APValue, so won't emit any 2011 // diagnostics or any double values. 2012 if (DiscardResult) 2013 return true; 2014 2015 if (this->visitAPValue(E->getAPValueResult(), *T, E)) 2016 return true; 2017 } 2018 return this->delegate(E->getSubExpr()); 2019 } 2020 2021 template <class Emitter> 2022 bool Compiler<Emitter>::VisitEmbedExpr(const EmbedExpr *E) { 2023 auto It = E->begin(); 2024 return this->visit(*It); 2025 } 2026 2027 static CharUnits AlignOfType(QualType T, const ASTContext &ASTCtx, 2028 UnaryExprOrTypeTrait Kind) { 2029 bool AlignOfReturnsPreferred = 2030 ASTCtx.getLangOpts().getClangABICompat() <= LangOptions::ClangABI::Ver7; 2031 2032 // C++ [expr.alignof]p3: 2033 // When alignof is applied to a reference type, the result is the 2034 // alignment of the referenced type. 2035 if (const auto *Ref = T->getAs<ReferenceType>()) 2036 T = Ref->getPointeeType(); 2037 2038 if (T.getQualifiers().hasUnaligned()) 2039 return CharUnits::One(); 2040 2041 // __alignof is defined to return the preferred alignment. 2042 // Before 8, clang returned the preferred alignment for alignof and 2043 // _Alignof as well. 2044 if (Kind == UETT_PreferredAlignOf || AlignOfReturnsPreferred) 2045 return ASTCtx.toCharUnitsFromBits(ASTCtx.getPreferredTypeAlign(T)); 2046 2047 return ASTCtx.getTypeAlignInChars(T); 2048 } 2049 2050 template <class Emitter> 2051 bool Compiler<Emitter>::VisitUnaryExprOrTypeTraitExpr( 2052 const UnaryExprOrTypeTraitExpr *E) { 2053 UnaryExprOrTypeTrait Kind = E->getKind(); 2054 const ASTContext &ASTCtx = Ctx.getASTContext(); 2055 2056 if (Kind == UETT_SizeOf || Kind == UETT_DataSizeOf) { 2057 QualType ArgType = E->getTypeOfArgument(); 2058 2059 // C++ [expr.sizeof]p2: "When applied to a reference or a reference type, 2060 // the result is the size of the referenced type." 2061 if (const auto *Ref = ArgType->getAs<ReferenceType>()) 2062 ArgType = Ref->getPointeeType(); 2063 2064 CharUnits Size; 2065 if (ArgType->isVoidType() || ArgType->isFunctionType()) 2066 Size = CharUnits::One(); 2067 else { 2068 if (ArgType->isDependentType() || !ArgType->isConstantSizeType()) 2069 return this->emitInvalid(E); 2070 2071 if (Kind == UETT_SizeOf) 2072 Size = ASTCtx.getTypeSizeInChars(ArgType); 2073 else 2074 Size = ASTCtx.getTypeInfoDataSizeInChars(ArgType).Width; 2075 } 2076 2077 if (DiscardResult) 2078 return true; 2079 2080 return this->emitConst(Size.getQuantity(), E); 2081 } 2082 2083 if (Kind == UETT_AlignOf || Kind == UETT_PreferredAlignOf) { 2084 CharUnits Size; 2085 2086 if (E->isArgumentType()) { 2087 QualType ArgType = E->getTypeOfArgument(); 2088 2089 Size = AlignOfType(ArgType, ASTCtx, Kind); 2090 } else { 2091 // Argument is an expression, not a type. 2092 const Expr *Arg = E->getArgumentExpr()->IgnoreParens(); 2093 2094 // The kinds of expressions that we have special-case logic here for 2095 // should be kept up to date with the special checks for those 2096 // expressions in Sema. 2097 2098 // alignof decl is always accepted, even if it doesn't make sense: we 2099 // default to 1 in those cases. 2100 if (const auto *DRE = dyn_cast<DeclRefExpr>(Arg)) 2101 Size = ASTCtx.getDeclAlign(DRE->getDecl(), 2102 /*RefAsPointee*/ true); 2103 else if (const auto *ME = dyn_cast<MemberExpr>(Arg)) 2104 Size = ASTCtx.getDeclAlign(ME->getMemberDecl(), 2105 /*RefAsPointee*/ true); 2106 else 2107 Size = AlignOfType(Arg->getType(), ASTCtx, Kind); 2108 } 2109 2110 if (DiscardResult) 2111 return true; 2112 2113 return this->emitConst(Size.getQuantity(), E); 2114 } 2115 2116 if (Kind == UETT_VectorElements) { 2117 if (const auto *VT = E->getTypeOfArgument()->getAs<VectorType>()) 2118 return this->emitConst(VT->getNumElements(), E); 2119 assert(E->getTypeOfArgument()->isSizelessVectorType()); 2120 return this->emitSizelessVectorElementSize(E); 2121 } 2122 2123 if (Kind == UETT_VecStep) { 2124 if (const auto *VT = E->getTypeOfArgument()->getAs<VectorType>()) { 2125 unsigned N = VT->getNumElements(); 2126 2127 // The vec_step built-in functions that take a 3-component 2128 // vector return 4. (OpenCL 1.1 spec 6.11.12) 2129 if (N == 3) 2130 N = 4; 2131 2132 return this->emitConst(N, E); 2133 } 2134 return this->emitConst(1, E); 2135 } 2136 2137 if (Kind == UETT_OpenMPRequiredSimdAlign) { 2138 assert(E->isArgumentType()); 2139 unsigned Bits = ASTCtx.getOpenMPDefaultSimdAlign(E->getArgumentType()); 2140 2141 return this->emitConst(ASTCtx.toCharUnitsFromBits(Bits).getQuantity(), E); 2142 } 2143 2144 if (Kind == UETT_PtrAuthTypeDiscriminator) { 2145 if (E->getArgumentType()->isDependentType()) 2146 return this->emitInvalid(E); 2147 2148 return this->emitConst( 2149 const_cast<ASTContext &>(ASTCtx).getPointerAuthTypeDiscriminator( 2150 E->getArgumentType()), 2151 E); 2152 } 2153 2154 return false; 2155 } 2156 2157 template <class Emitter> 2158 bool Compiler<Emitter>::VisitMemberExpr(const MemberExpr *E) { 2159 // 'Base.Member' 2160 const Expr *Base = E->getBase(); 2161 const ValueDecl *Member = E->getMemberDecl(); 2162 2163 if (DiscardResult) 2164 return this->discard(Base); 2165 2166 // MemberExprs are almost always lvalues, in which case we don't need to 2167 // do the load. But sometimes they aren't. 2168 const auto maybeLoadValue = [&]() -> bool { 2169 if (E->isGLValue()) 2170 return true; 2171 if (std::optional<PrimType> T = classify(E)) 2172 return this->emitLoadPop(*T, E); 2173 return false; 2174 }; 2175 2176 if (const auto *VD = dyn_cast<VarDecl>(Member)) { 2177 // I am almost confident in saying that a var decl must be static 2178 // and therefore registered as a global variable. But this will probably 2179 // turn out to be wrong some time in the future, as always. 2180 if (auto GlobalIndex = P.getGlobal(VD)) 2181 return this->emitGetPtrGlobal(*GlobalIndex, E) && maybeLoadValue(); 2182 return false; 2183 } 2184 2185 if (!isa<FieldDecl>(Member)) { 2186 if (!this->discard(Base) && !this->emitSideEffect(E)) 2187 return false; 2188 2189 return this->visitDeclRef(Member, E); 2190 } 2191 2192 if (Initializing) { 2193 if (!this->delegate(Base)) 2194 return false; 2195 } else { 2196 if (!this->visit(Base)) 2197 return false; 2198 } 2199 2200 // Base above gives us a pointer on the stack. 2201 const auto *FD = cast<FieldDecl>(Member); 2202 const RecordDecl *RD = FD->getParent(); 2203 const Record *R = getRecord(RD); 2204 if (!R) 2205 return false; 2206 const Record::Field *F = R->getField(FD); 2207 // Leave a pointer to the field on the stack. 2208 if (F->Decl->getType()->isReferenceType()) 2209 return this->emitGetFieldPop(PT_Ptr, F->Offset, E) && maybeLoadValue(); 2210 return this->emitGetPtrFieldPop(F->Offset, E) && maybeLoadValue(); 2211 } 2212 2213 template <class Emitter> 2214 bool Compiler<Emitter>::VisitArrayInitIndexExpr(const ArrayInitIndexExpr *E) { 2215 // ArrayIndex might not be set if a ArrayInitIndexExpr is being evaluated 2216 // stand-alone, e.g. via EvaluateAsInt(). 2217 if (!ArrayIndex) 2218 return false; 2219 return this->emitConst(*ArrayIndex, E); 2220 } 2221 2222 template <class Emitter> 2223 bool Compiler<Emitter>::VisitArrayInitLoopExpr(const ArrayInitLoopExpr *E) { 2224 assert(Initializing); 2225 assert(!DiscardResult); 2226 2227 // We visit the common opaque expression here once so we have its value 2228 // cached. 2229 if (!this->discard(E->getCommonExpr())) 2230 return false; 2231 2232 // TODO: This compiles to quite a lot of bytecode if the array is larger. 2233 // Investigate compiling this to a loop. 2234 const Expr *SubExpr = E->getSubExpr(); 2235 size_t Size = E->getArraySize().getZExtValue(); 2236 2237 // So, every iteration, we execute an assignment here 2238 // where the LHS is on the stack (the target array) 2239 // and the RHS is our SubExpr. 2240 for (size_t I = 0; I != Size; ++I) { 2241 ArrayIndexScope<Emitter> IndexScope(this, I); 2242 BlockScope<Emitter> BS(this); 2243 2244 if (!this->visitArrayElemInit(I, SubExpr)) 2245 return false; 2246 if (!BS.destroyLocals()) 2247 return false; 2248 } 2249 return true; 2250 } 2251 2252 template <class Emitter> 2253 bool Compiler<Emitter>::VisitOpaqueValueExpr(const OpaqueValueExpr *E) { 2254 const Expr *SourceExpr = E->getSourceExpr(); 2255 if (!SourceExpr) 2256 return false; 2257 2258 if (Initializing) 2259 return this->visitInitializer(SourceExpr); 2260 2261 PrimType SubExprT = classify(SourceExpr).value_or(PT_Ptr); 2262 if (auto It = OpaqueExprs.find(E); It != OpaqueExprs.end()) 2263 return this->emitGetLocal(SubExprT, It->second, E); 2264 2265 if (!this->visit(SourceExpr)) 2266 return false; 2267 2268 // At this point we either have the evaluated source expression or a pointer 2269 // to an object on the stack. We want to create a local variable that stores 2270 // this value. 2271 unsigned LocalIndex = allocateLocalPrimitive(E, SubExprT, /*IsConst=*/true); 2272 if (!this->emitSetLocal(SubExprT, LocalIndex, E)) 2273 return false; 2274 2275 // Here the local variable is created but the value is removed from the stack, 2276 // so we put it back if the caller needs it. 2277 if (!DiscardResult) { 2278 if (!this->emitGetLocal(SubExprT, LocalIndex, E)) 2279 return false; 2280 } 2281 2282 // This is cleaned up when the local variable is destroyed. 2283 OpaqueExprs.insert({E, LocalIndex}); 2284 2285 return true; 2286 } 2287 2288 template <class Emitter> 2289 bool Compiler<Emitter>::VisitAbstractConditionalOperator( 2290 const AbstractConditionalOperator *E) { 2291 const Expr *Condition = E->getCond(); 2292 const Expr *TrueExpr = E->getTrueExpr(); 2293 const Expr *FalseExpr = E->getFalseExpr(); 2294 2295 LabelTy LabelEnd = this->getLabel(); // Label after the operator. 2296 LabelTy LabelFalse = this->getLabel(); // Label for the false expr. 2297 2298 if (!this->visitBool(Condition)) 2299 return false; 2300 2301 if (!this->jumpFalse(LabelFalse)) 2302 return false; 2303 2304 { 2305 LocalScope<Emitter> S(this); 2306 if (!this->delegate(TrueExpr)) 2307 return false; 2308 if (!S.destroyLocals()) 2309 return false; 2310 } 2311 2312 if (!this->jump(LabelEnd)) 2313 return false; 2314 2315 this->emitLabel(LabelFalse); 2316 2317 { 2318 LocalScope<Emitter> S(this); 2319 if (!this->delegate(FalseExpr)) 2320 return false; 2321 if (!S.destroyLocals()) 2322 return false; 2323 } 2324 2325 this->fallthrough(LabelEnd); 2326 this->emitLabel(LabelEnd); 2327 2328 return true; 2329 } 2330 2331 template <class Emitter> 2332 bool Compiler<Emitter>::VisitStringLiteral(const StringLiteral *E) { 2333 if (DiscardResult) 2334 return true; 2335 2336 if (!Initializing) { 2337 unsigned StringIndex = P.createGlobalString(E); 2338 return this->emitGetPtrGlobal(StringIndex, E); 2339 } 2340 2341 // We are initializing an array on the stack. 2342 const ConstantArrayType *CAT = 2343 Ctx.getASTContext().getAsConstantArrayType(E->getType()); 2344 assert(CAT && "a string literal that's not a constant array?"); 2345 2346 // If the initializer string is too long, a diagnostic has already been 2347 // emitted. Read only the array length from the string literal. 2348 unsigned ArraySize = CAT->getZExtSize(); 2349 unsigned N = std::min(ArraySize, E->getLength()); 2350 size_t CharWidth = E->getCharByteWidth(); 2351 2352 for (unsigned I = 0; I != N; ++I) { 2353 uint32_t CodeUnit = E->getCodeUnit(I); 2354 2355 if (CharWidth == 1) { 2356 this->emitConstSint8(CodeUnit, E); 2357 this->emitInitElemSint8(I, E); 2358 } else if (CharWidth == 2) { 2359 this->emitConstUint16(CodeUnit, E); 2360 this->emitInitElemUint16(I, E); 2361 } else if (CharWidth == 4) { 2362 this->emitConstUint32(CodeUnit, E); 2363 this->emitInitElemUint32(I, E); 2364 } else { 2365 llvm_unreachable("unsupported character width"); 2366 } 2367 } 2368 2369 // Fill up the rest of the char array with NUL bytes. 2370 for (unsigned I = N; I != ArraySize; ++I) { 2371 if (CharWidth == 1) { 2372 this->emitConstSint8(0, E); 2373 this->emitInitElemSint8(I, E); 2374 } else if (CharWidth == 2) { 2375 this->emitConstUint16(0, E); 2376 this->emitInitElemUint16(I, E); 2377 } else if (CharWidth == 4) { 2378 this->emitConstUint32(0, E); 2379 this->emitInitElemUint32(I, E); 2380 } else { 2381 llvm_unreachable("unsupported character width"); 2382 } 2383 } 2384 2385 return true; 2386 } 2387 2388 template <class Emitter> 2389 bool Compiler<Emitter>::VisitObjCStringLiteral(const ObjCStringLiteral *E) { 2390 if (DiscardResult) 2391 return true; 2392 return this->emitDummyPtr(E, E); 2393 } 2394 2395 template <class Emitter> 2396 bool Compiler<Emitter>::VisitObjCEncodeExpr(const ObjCEncodeExpr *E) { 2397 auto &A = Ctx.getASTContext(); 2398 std::string Str; 2399 A.getObjCEncodingForType(E->getEncodedType(), Str); 2400 StringLiteral *SL = 2401 StringLiteral::Create(A, Str, StringLiteralKind::Ordinary, 2402 /*Pascal=*/false, E->getType(), E->getAtLoc()); 2403 return this->delegate(SL); 2404 } 2405 2406 template <class Emitter> 2407 bool Compiler<Emitter>::VisitSYCLUniqueStableNameExpr( 2408 const SYCLUniqueStableNameExpr *E) { 2409 if (DiscardResult) 2410 return true; 2411 2412 assert(!Initializing); 2413 2414 auto &A = Ctx.getASTContext(); 2415 std::string ResultStr = E->ComputeName(A); 2416 2417 QualType CharTy = A.CharTy.withConst(); 2418 APInt Size(A.getTypeSize(A.getSizeType()), ResultStr.size() + 1); 2419 QualType ArrayTy = A.getConstantArrayType(CharTy, Size, nullptr, 2420 ArraySizeModifier::Normal, 0); 2421 2422 StringLiteral *SL = 2423 StringLiteral::Create(A, ResultStr, StringLiteralKind::Ordinary, 2424 /*Pascal=*/false, ArrayTy, E->getLocation()); 2425 2426 unsigned StringIndex = P.createGlobalString(SL); 2427 return this->emitGetPtrGlobal(StringIndex, E); 2428 } 2429 2430 template <class Emitter> 2431 bool Compiler<Emitter>::VisitCharacterLiteral(const CharacterLiteral *E) { 2432 if (DiscardResult) 2433 return true; 2434 return this->emitConst(E->getValue(), E); 2435 } 2436 2437 template <class Emitter> 2438 bool Compiler<Emitter>::VisitFloatCompoundAssignOperator( 2439 const CompoundAssignOperator *E) { 2440 2441 const Expr *LHS = E->getLHS(); 2442 const Expr *RHS = E->getRHS(); 2443 QualType LHSType = LHS->getType(); 2444 QualType LHSComputationType = E->getComputationLHSType(); 2445 QualType ResultType = E->getComputationResultType(); 2446 std::optional<PrimType> LT = classify(LHSComputationType); 2447 std::optional<PrimType> RT = classify(ResultType); 2448 2449 assert(ResultType->isFloatingType()); 2450 2451 if (!LT || !RT) 2452 return false; 2453 2454 PrimType LHST = classifyPrim(LHSType); 2455 2456 // C++17 onwards require that we evaluate the RHS first. 2457 // Compute RHS and save it in a temporary variable so we can 2458 // load it again later. 2459 if (!visit(RHS)) 2460 return false; 2461 2462 unsigned TempOffset = this->allocateLocalPrimitive(E, *RT, /*IsConst=*/true); 2463 if (!this->emitSetLocal(*RT, TempOffset, E)) 2464 return false; 2465 2466 // First, visit LHS. 2467 if (!visit(LHS)) 2468 return false; 2469 if (!this->emitLoad(LHST, E)) 2470 return false; 2471 2472 // If necessary, convert LHS to its computation type. 2473 if (!this->emitPrimCast(LHST, classifyPrim(LHSComputationType), 2474 LHSComputationType, E)) 2475 return false; 2476 2477 // Now load RHS. 2478 if (!this->emitGetLocal(*RT, TempOffset, E)) 2479 return false; 2480 2481 switch (E->getOpcode()) { 2482 case BO_AddAssign: 2483 if (!this->emitAddf(getFPOptions(E), E)) 2484 return false; 2485 break; 2486 case BO_SubAssign: 2487 if (!this->emitSubf(getFPOptions(E), E)) 2488 return false; 2489 break; 2490 case BO_MulAssign: 2491 if (!this->emitMulf(getFPOptions(E), E)) 2492 return false; 2493 break; 2494 case BO_DivAssign: 2495 if (!this->emitDivf(getFPOptions(E), E)) 2496 return false; 2497 break; 2498 default: 2499 return false; 2500 } 2501 2502 if (!this->emitPrimCast(classifyPrim(ResultType), LHST, LHS->getType(), E)) 2503 return false; 2504 2505 if (DiscardResult) 2506 return this->emitStorePop(LHST, E); 2507 return this->emitStore(LHST, E); 2508 } 2509 2510 template <class Emitter> 2511 bool Compiler<Emitter>::VisitPointerCompoundAssignOperator( 2512 const CompoundAssignOperator *E) { 2513 BinaryOperatorKind Op = E->getOpcode(); 2514 const Expr *LHS = E->getLHS(); 2515 const Expr *RHS = E->getRHS(); 2516 std::optional<PrimType> LT = classify(LHS->getType()); 2517 std::optional<PrimType> RT = classify(RHS->getType()); 2518 2519 if (Op != BO_AddAssign && Op != BO_SubAssign) 2520 return false; 2521 2522 if (!LT || !RT) 2523 return false; 2524 2525 if (!visit(LHS)) 2526 return false; 2527 2528 if (!this->emitLoad(*LT, LHS)) 2529 return false; 2530 2531 if (!visit(RHS)) 2532 return false; 2533 2534 if (Op == BO_AddAssign) { 2535 if (!this->emitAddOffset(*RT, E)) 2536 return false; 2537 } else { 2538 if (!this->emitSubOffset(*RT, E)) 2539 return false; 2540 } 2541 2542 if (DiscardResult) 2543 return this->emitStorePopPtr(E); 2544 return this->emitStorePtr(E); 2545 } 2546 2547 template <class Emitter> 2548 bool Compiler<Emitter>::VisitCompoundAssignOperator( 2549 const CompoundAssignOperator *E) { 2550 if (E->getType()->isVectorType()) 2551 return VisitVectorBinOp(E); 2552 2553 const Expr *LHS = E->getLHS(); 2554 const Expr *RHS = E->getRHS(); 2555 std::optional<PrimType> LHSComputationT = 2556 classify(E->getComputationLHSType()); 2557 std::optional<PrimType> LT = classify(LHS->getType()); 2558 std::optional<PrimType> RT = classify(RHS->getType()); 2559 std::optional<PrimType> ResultT = classify(E->getType()); 2560 2561 if (!Ctx.getLangOpts().CPlusPlus14) 2562 return this->visit(RHS) && this->visit(LHS) && this->emitError(E); 2563 2564 if (!LT || !RT || !ResultT || !LHSComputationT) 2565 return false; 2566 2567 // Handle floating point operations separately here, since they 2568 // require special care. 2569 2570 if (ResultT == PT_Float || RT == PT_Float) 2571 return VisitFloatCompoundAssignOperator(E); 2572 2573 if (E->getType()->isPointerType()) 2574 return VisitPointerCompoundAssignOperator(E); 2575 2576 assert(!E->getType()->isPointerType() && "Handled above"); 2577 assert(!E->getType()->isFloatingType() && "Handled above"); 2578 2579 // C++17 onwards require that we evaluate the RHS first. 2580 // Compute RHS and save it in a temporary variable so we can 2581 // load it again later. 2582 // FIXME: Compound assignments are unsequenced in C, so we might 2583 // have to figure out how to reject them. 2584 if (!visit(RHS)) 2585 return false; 2586 2587 unsigned TempOffset = this->allocateLocalPrimitive(E, *RT, /*IsConst=*/true); 2588 2589 if (!this->emitSetLocal(*RT, TempOffset, E)) 2590 return false; 2591 2592 // Get LHS pointer, load its value and cast it to the 2593 // computation type if necessary. 2594 if (!visit(LHS)) 2595 return false; 2596 if (!this->emitLoad(*LT, E)) 2597 return false; 2598 if (LT != LHSComputationT) { 2599 if (!this->emitCast(*LT, *LHSComputationT, E)) 2600 return false; 2601 } 2602 2603 // Get the RHS value on the stack. 2604 if (!this->emitGetLocal(*RT, TempOffset, E)) 2605 return false; 2606 2607 // Perform operation. 2608 switch (E->getOpcode()) { 2609 case BO_AddAssign: 2610 if (!this->emitAdd(*LHSComputationT, E)) 2611 return false; 2612 break; 2613 case BO_SubAssign: 2614 if (!this->emitSub(*LHSComputationT, E)) 2615 return false; 2616 break; 2617 case BO_MulAssign: 2618 if (!this->emitMul(*LHSComputationT, E)) 2619 return false; 2620 break; 2621 case BO_DivAssign: 2622 if (!this->emitDiv(*LHSComputationT, E)) 2623 return false; 2624 break; 2625 case BO_RemAssign: 2626 if (!this->emitRem(*LHSComputationT, E)) 2627 return false; 2628 break; 2629 case BO_ShlAssign: 2630 if (!this->emitShl(*LHSComputationT, *RT, E)) 2631 return false; 2632 break; 2633 case BO_ShrAssign: 2634 if (!this->emitShr(*LHSComputationT, *RT, E)) 2635 return false; 2636 break; 2637 case BO_AndAssign: 2638 if (!this->emitBitAnd(*LHSComputationT, E)) 2639 return false; 2640 break; 2641 case BO_XorAssign: 2642 if (!this->emitBitXor(*LHSComputationT, E)) 2643 return false; 2644 break; 2645 case BO_OrAssign: 2646 if (!this->emitBitOr(*LHSComputationT, E)) 2647 return false; 2648 break; 2649 default: 2650 llvm_unreachable("Unimplemented compound assign operator"); 2651 } 2652 2653 // And now cast from LHSComputationT to ResultT. 2654 if (ResultT != LHSComputationT) { 2655 if (!this->emitCast(*LHSComputationT, *ResultT, E)) 2656 return false; 2657 } 2658 2659 // And store the result in LHS. 2660 if (DiscardResult) { 2661 if (LHS->refersToBitField()) 2662 return this->emitStoreBitFieldPop(*ResultT, E); 2663 return this->emitStorePop(*ResultT, E); 2664 } 2665 if (LHS->refersToBitField()) 2666 return this->emitStoreBitField(*ResultT, E); 2667 return this->emitStore(*ResultT, E); 2668 } 2669 2670 template <class Emitter> 2671 bool Compiler<Emitter>::VisitExprWithCleanups(const ExprWithCleanups *E) { 2672 LocalScope<Emitter> ES(this); 2673 const Expr *SubExpr = E->getSubExpr(); 2674 2675 return this->delegate(SubExpr) && ES.destroyLocals(E); 2676 } 2677 2678 template <class Emitter> 2679 bool Compiler<Emitter>::VisitMaterializeTemporaryExpr( 2680 const MaterializeTemporaryExpr *E) { 2681 const Expr *SubExpr = E->getSubExpr(); 2682 2683 if (Initializing) { 2684 // We already have a value, just initialize that. 2685 return this->delegate(SubExpr); 2686 } 2687 // If we don't end up using the materialized temporary anyway, don't 2688 // bother creating it. 2689 if (DiscardResult) 2690 return this->discard(SubExpr); 2691 2692 // When we're initializing a global variable *or* the storage duration of 2693 // the temporary is explicitly static, create a global variable. 2694 std::optional<PrimType> SubExprT = classify(SubExpr); 2695 bool IsStatic = E->getStorageDuration() == SD_Static; 2696 if (IsStatic) { 2697 std::optional<unsigned> GlobalIndex = P.createGlobal(E); 2698 if (!GlobalIndex) 2699 return false; 2700 2701 const LifetimeExtendedTemporaryDecl *TempDecl = 2702 E->getLifetimeExtendedTemporaryDecl(); 2703 if (IsStatic) 2704 assert(TempDecl); 2705 2706 if (SubExprT) { 2707 if (!this->visit(SubExpr)) 2708 return false; 2709 if (IsStatic) { 2710 if (!this->emitInitGlobalTemp(*SubExprT, *GlobalIndex, TempDecl, E)) 2711 return false; 2712 } else { 2713 if (!this->emitInitGlobal(*SubExprT, *GlobalIndex, E)) 2714 return false; 2715 } 2716 return this->emitGetPtrGlobal(*GlobalIndex, E); 2717 } 2718 2719 if (!this->checkLiteralType(SubExpr)) 2720 return false; 2721 // Non-primitive values. 2722 if (!this->emitGetPtrGlobal(*GlobalIndex, E)) 2723 return false; 2724 if (!this->visitInitializer(SubExpr)) 2725 return false; 2726 if (IsStatic) 2727 return this->emitInitGlobalTempComp(TempDecl, E); 2728 return true; 2729 } 2730 2731 // For everyhing else, use local variables. 2732 if (SubExprT) { 2733 unsigned LocalIndex = allocateLocalPrimitive(E, *SubExprT, /*IsConst=*/true, 2734 /*IsExtended=*/true); 2735 if (!this->visit(SubExpr)) 2736 return false; 2737 if (!this->emitSetLocal(*SubExprT, LocalIndex, E)) 2738 return false; 2739 return this->emitGetPtrLocal(LocalIndex, E); 2740 } else { 2741 2742 if (!this->checkLiteralType(SubExpr)) 2743 return false; 2744 2745 const Expr *Inner = E->getSubExpr()->skipRValueSubobjectAdjustments(); 2746 if (std::optional<unsigned> LocalIndex = 2747 allocateLocal(E, Inner->getType(), E->getExtendingDecl())) { 2748 InitLinkScope<Emitter> ILS(this, InitLink::Temp(*LocalIndex)); 2749 if (!this->emitGetPtrLocal(*LocalIndex, E)) 2750 return false; 2751 return this->visitInitializer(SubExpr) && this->emitFinishInit(E); 2752 } 2753 } 2754 return false; 2755 } 2756 2757 template <class Emitter> 2758 bool Compiler<Emitter>::VisitCXXBindTemporaryExpr( 2759 const CXXBindTemporaryExpr *E) { 2760 return this->delegate(E->getSubExpr()); 2761 } 2762 2763 template <class Emitter> 2764 bool Compiler<Emitter>::VisitCompoundLiteralExpr(const CompoundLiteralExpr *E) { 2765 const Expr *Init = E->getInitializer(); 2766 if (DiscardResult) 2767 return this->discard(Init); 2768 2769 if (Initializing) { 2770 // We already have a value, just initialize that. 2771 return this->visitInitializer(Init) && this->emitFinishInit(E); 2772 } 2773 2774 std::optional<PrimType> T = classify(E->getType()); 2775 if (E->isFileScope()) { 2776 // Avoid creating a variable if this is a primitive RValue anyway. 2777 if (T && !E->isLValue()) 2778 return this->delegate(Init); 2779 2780 if (std::optional<unsigned> GlobalIndex = P.createGlobal(E)) { 2781 if (!this->emitGetPtrGlobal(*GlobalIndex, E)) 2782 return false; 2783 2784 if (T) { 2785 if (!this->visit(Init)) 2786 return false; 2787 return this->emitInitGlobal(*T, *GlobalIndex, E); 2788 } 2789 2790 return this->visitInitializer(Init) && this->emitFinishInit(E); 2791 } 2792 2793 return false; 2794 } 2795 2796 // Otherwise, use a local variable. 2797 if (T && !E->isLValue()) { 2798 // For primitive types, we just visit the initializer. 2799 return this->delegate(Init); 2800 } else { 2801 unsigned LocalIndex; 2802 2803 if (T) 2804 LocalIndex = this->allocateLocalPrimitive(Init, *T, false, false); 2805 else if (std::optional<unsigned> MaybeIndex = this->allocateLocal(Init)) 2806 LocalIndex = *MaybeIndex; 2807 else 2808 return false; 2809 2810 if (!this->emitGetPtrLocal(LocalIndex, E)) 2811 return false; 2812 2813 if (T) { 2814 if (!this->visit(Init)) { 2815 return false; 2816 } 2817 return this->emitInit(*T, E); 2818 } else { 2819 if (!this->visitInitializer(Init) || !this->emitFinishInit(E)) 2820 return false; 2821 } 2822 return true; 2823 } 2824 2825 return false; 2826 } 2827 2828 template <class Emitter> 2829 bool Compiler<Emitter>::VisitTypeTraitExpr(const TypeTraitExpr *E) { 2830 if (DiscardResult) 2831 return true; 2832 if (E->getType()->isBooleanType()) 2833 return this->emitConstBool(E->getValue(), E); 2834 return this->emitConst(E->getValue(), E); 2835 } 2836 2837 template <class Emitter> 2838 bool Compiler<Emitter>::VisitArrayTypeTraitExpr(const ArrayTypeTraitExpr *E) { 2839 if (DiscardResult) 2840 return true; 2841 return this->emitConst(E->getValue(), E); 2842 } 2843 2844 template <class Emitter> 2845 bool Compiler<Emitter>::VisitLambdaExpr(const LambdaExpr *E) { 2846 if (DiscardResult) 2847 return true; 2848 2849 assert(Initializing); 2850 const Record *R = P.getOrCreateRecord(E->getLambdaClass()); 2851 2852 auto *CaptureInitIt = E->capture_init_begin(); 2853 // Initialize all fields (which represent lambda captures) of the 2854 // record with their initializers. 2855 for (const Record::Field &F : R->fields()) { 2856 const Expr *Init = *CaptureInitIt; 2857 ++CaptureInitIt; 2858 2859 if (!Init) 2860 continue; 2861 2862 if (std::optional<PrimType> T = classify(Init)) { 2863 if (!this->visit(Init)) 2864 return false; 2865 2866 if (!this->emitInitField(*T, F.Offset, E)) 2867 return false; 2868 } else { 2869 if (!this->emitGetPtrField(F.Offset, E)) 2870 return false; 2871 2872 if (!this->visitInitializer(Init)) 2873 return false; 2874 2875 if (!this->emitPopPtr(E)) 2876 return false; 2877 } 2878 } 2879 2880 return true; 2881 } 2882 2883 template <class Emitter> 2884 bool Compiler<Emitter>::VisitPredefinedExpr(const PredefinedExpr *E) { 2885 if (DiscardResult) 2886 return true; 2887 2888 if (!Initializing) { 2889 unsigned StringIndex = P.createGlobalString(E->getFunctionName(), E); 2890 return this->emitGetPtrGlobal(StringIndex, E); 2891 } 2892 2893 return this->delegate(E->getFunctionName()); 2894 } 2895 2896 template <class Emitter> 2897 bool Compiler<Emitter>::VisitCXXThrowExpr(const CXXThrowExpr *E) { 2898 if (E->getSubExpr() && !this->discard(E->getSubExpr())) 2899 return false; 2900 2901 return this->emitInvalid(E); 2902 } 2903 2904 template <class Emitter> 2905 bool Compiler<Emitter>::VisitCXXReinterpretCastExpr( 2906 const CXXReinterpretCastExpr *E) { 2907 const Expr *SubExpr = E->getSubExpr(); 2908 2909 std::optional<PrimType> FromT = classify(SubExpr); 2910 std::optional<PrimType> ToT = classify(E); 2911 2912 if (!FromT || !ToT) 2913 return this->emitInvalidCast(CastKind::Reinterpret, /*Fatal=*/true, E); 2914 2915 if (FromT == PT_Ptr || ToT == PT_Ptr) { 2916 // Both types could be PT_Ptr because their expressions are glvalues. 2917 std::optional<PrimType> PointeeFromT; 2918 if (SubExpr->getType()->isPointerOrReferenceType()) 2919 PointeeFromT = classify(SubExpr->getType()->getPointeeType()); 2920 else 2921 PointeeFromT = classify(SubExpr->getType()); 2922 2923 std::optional<PrimType> PointeeToT; 2924 if (E->getType()->isPointerOrReferenceType()) 2925 PointeeToT = classify(E->getType()->getPointeeType()); 2926 else 2927 PointeeToT = classify(E->getType()); 2928 2929 bool Fatal = true; 2930 if (PointeeToT && PointeeFromT) { 2931 if (isIntegralType(*PointeeFromT) && isIntegralType(*PointeeToT)) 2932 Fatal = false; 2933 } 2934 2935 if (!this->emitInvalidCast(CastKind::Reinterpret, Fatal, E)) 2936 return false; 2937 2938 if (E->getCastKind() == CK_LValueBitCast) 2939 return this->delegate(SubExpr); 2940 return this->VisitCastExpr(E); 2941 } 2942 2943 // Try to actually do the cast. 2944 bool Fatal = (ToT != FromT); 2945 if (!this->emitInvalidCast(CastKind::Reinterpret, Fatal, E)) 2946 return false; 2947 2948 return this->VisitCastExpr(E); 2949 } 2950 2951 template <class Emitter> 2952 bool Compiler<Emitter>::VisitCXXNoexceptExpr(const CXXNoexceptExpr *E) { 2953 assert(E->getType()->isBooleanType()); 2954 2955 if (DiscardResult) 2956 return true; 2957 return this->emitConstBool(E->getValue(), E); 2958 } 2959 2960 template <class Emitter> 2961 bool Compiler<Emitter>::VisitCXXConstructExpr(const CXXConstructExpr *E) { 2962 QualType T = E->getType(); 2963 assert(!classify(T)); 2964 2965 if (T->isRecordType()) { 2966 const CXXConstructorDecl *Ctor = E->getConstructor(); 2967 2968 // Trivial copy/move constructor. Avoid copy. 2969 if (Ctor->isDefaulted() && Ctor->isCopyOrMoveConstructor() && 2970 Ctor->isTrivial() && 2971 E->getArg(0)->isTemporaryObject(Ctx.getASTContext(), 2972 T->getAsCXXRecordDecl())) 2973 return this->visitInitializer(E->getArg(0)); 2974 2975 // If we're discarding a construct expression, we still need 2976 // to allocate a variable and call the constructor and destructor. 2977 if (DiscardResult) { 2978 if (Ctor->isTrivial()) 2979 return true; 2980 assert(!Initializing); 2981 std::optional<unsigned> LocalIndex = allocateLocal(E); 2982 2983 if (!LocalIndex) 2984 return false; 2985 2986 if (!this->emitGetPtrLocal(*LocalIndex, E)) 2987 return false; 2988 } 2989 2990 // Zero initialization. 2991 if (E->requiresZeroInitialization()) { 2992 const Record *R = getRecord(E->getType()); 2993 2994 if (!this->visitZeroRecordInitializer(R, E)) 2995 return false; 2996 2997 // If the constructor is trivial anyway, we're done. 2998 if (Ctor->isTrivial()) 2999 return true; 3000 } 3001 3002 const Function *Func = getFunction(Ctor); 3003 3004 if (!Func) 3005 return false; 3006 3007 assert(Func->hasThisPointer()); 3008 assert(!Func->hasRVO()); 3009 3010 // The This pointer is already on the stack because this is an initializer, 3011 // but we need to dup() so the call() below has its own copy. 3012 if (!this->emitDupPtr(E)) 3013 return false; 3014 3015 // Constructor arguments. 3016 for (const auto *Arg : E->arguments()) { 3017 if (!this->visit(Arg)) 3018 return false; 3019 } 3020 3021 if (Func->isVariadic()) { 3022 uint32_t VarArgSize = 0; 3023 unsigned NumParams = Func->getNumWrittenParams(); 3024 for (unsigned I = NumParams, N = E->getNumArgs(); I != N; ++I) { 3025 VarArgSize += 3026 align(primSize(classify(E->getArg(I)->getType()).value_or(PT_Ptr))); 3027 } 3028 if (!this->emitCallVar(Func, VarArgSize, E)) 3029 return false; 3030 } else { 3031 if (!this->emitCall(Func, 0, E)) { 3032 // When discarding, we don't need the result anyway, so clean up 3033 // the instance dup we did earlier in case surrounding code wants 3034 // to keep evaluating. 3035 if (DiscardResult) 3036 (void)this->emitPopPtr(E); 3037 return false; 3038 } 3039 } 3040 3041 if (DiscardResult) 3042 return this->emitPopPtr(E); 3043 return this->emitFinishInit(E); 3044 } 3045 3046 if (T->isArrayType()) { 3047 const ConstantArrayType *CAT = 3048 Ctx.getASTContext().getAsConstantArrayType(E->getType()); 3049 if (!CAT) 3050 return false; 3051 3052 size_t NumElems = CAT->getZExtSize(); 3053 const Function *Func = getFunction(E->getConstructor()); 3054 if (!Func || !Func->isConstexpr()) 3055 return false; 3056 3057 // FIXME(perf): We're calling the constructor once per array element here, 3058 // in the old intepreter we had a special-case for trivial constructors. 3059 for (size_t I = 0; I != NumElems; ++I) { 3060 if (!this->emitConstUint64(I, E)) 3061 return false; 3062 if (!this->emitArrayElemPtrUint64(E)) 3063 return false; 3064 3065 // Constructor arguments. 3066 for (const auto *Arg : E->arguments()) { 3067 if (!this->visit(Arg)) 3068 return false; 3069 } 3070 3071 if (!this->emitCall(Func, 0, E)) 3072 return false; 3073 } 3074 return true; 3075 } 3076 3077 return false; 3078 } 3079 3080 template <class Emitter> 3081 bool Compiler<Emitter>::VisitSourceLocExpr(const SourceLocExpr *E) { 3082 if (DiscardResult) 3083 return true; 3084 3085 const APValue Val = 3086 E->EvaluateInContext(Ctx.getASTContext(), SourceLocDefaultExpr); 3087 3088 // Things like __builtin_LINE(). 3089 if (E->getType()->isIntegerType()) { 3090 assert(Val.isInt()); 3091 const APSInt &I = Val.getInt(); 3092 return this->emitConst(I, E); 3093 } 3094 // Otherwise, the APValue is an LValue, with only one element. 3095 // Theoretically, we don't need the APValue at all of course. 3096 assert(E->getType()->isPointerType()); 3097 assert(Val.isLValue()); 3098 const APValue::LValueBase &Base = Val.getLValueBase(); 3099 if (const Expr *LValueExpr = Base.dyn_cast<const Expr *>()) 3100 return this->visit(LValueExpr); 3101 3102 // Otherwise, we have a decl (which is the case for 3103 // __builtin_source_location). 3104 assert(Base.is<const ValueDecl *>()); 3105 assert(Val.getLValuePath().size() == 0); 3106 const auto *BaseDecl = Base.dyn_cast<const ValueDecl *>(); 3107 assert(BaseDecl); 3108 3109 auto *UGCD = cast<UnnamedGlobalConstantDecl>(BaseDecl); 3110 3111 std::optional<unsigned> GlobalIndex = P.getOrCreateGlobal(UGCD); 3112 if (!GlobalIndex) 3113 return false; 3114 3115 if (!this->emitGetPtrGlobal(*GlobalIndex, E)) 3116 return false; 3117 3118 const Record *R = getRecord(E->getType()); 3119 const APValue &V = UGCD->getValue(); 3120 for (unsigned I = 0, N = R->getNumFields(); I != N; ++I) { 3121 const Record::Field *F = R->getField(I); 3122 const APValue &FieldValue = V.getStructField(I); 3123 3124 PrimType FieldT = classifyPrim(F->Decl->getType()); 3125 3126 if (!this->visitAPValue(FieldValue, FieldT, E)) 3127 return false; 3128 if (!this->emitInitField(FieldT, F->Offset, E)) 3129 return false; 3130 } 3131 3132 // Leave the pointer to the global on the stack. 3133 return true; 3134 } 3135 3136 template <class Emitter> 3137 bool Compiler<Emitter>::VisitOffsetOfExpr(const OffsetOfExpr *E) { 3138 unsigned N = E->getNumComponents(); 3139 if (N == 0) 3140 return false; 3141 3142 for (unsigned I = 0; I != N; ++I) { 3143 const OffsetOfNode &Node = E->getComponent(I); 3144 if (Node.getKind() == OffsetOfNode::Array) { 3145 const Expr *ArrayIndexExpr = E->getIndexExpr(Node.getArrayExprIndex()); 3146 PrimType IndexT = classifyPrim(ArrayIndexExpr->getType()); 3147 3148 if (DiscardResult) { 3149 if (!this->discard(ArrayIndexExpr)) 3150 return false; 3151 continue; 3152 } 3153 3154 if (!this->visit(ArrayIndexExpr)) 3155 return false; 3156 // Cast to Sint64. 3157 if (IndexT != PT_Sint64) { 3158 if (!this->emitCast(IndexT, PT_Sint64, E)) 3159 return false; 3160 } 3161 } 3162 } 3163 3164 if (DiscardResult) 3165 return true; 3166 3167 PrimType T = classifyPrim(E->getType()); 3168 return this->emitOffsetOf(T, E, E); 3169 } 3170 3171 template <class Emitter> 3172 bool Compiler<Emitter>::VisitCXXScalarValueInitExpr( 3173 const CXXScalarValueInitExpr *E) { 3174 QualType Ty = E->getType(); 3175 3176 if (DiscardResult || Ty->isVoidType()) 3177 return true; 3178 3179 if (std::optional<PrimType> T = classify(Ty)) 3180 return this->visitZeroInitializer(*T, Ty, E); 3181 3182 if (const auto *CT = Ty->getAs<ComplexType>()) { 3183 if (!Initializing) { 3184 std::optional<unsigned> LocalIndex = allocateLocal(E); 3185 if (!LocalIndex) 3186 return false; 3187 if (!this->emitGetPtrLocal(*LocalIndex, E)) 3188 return false; 3189 } 3190 3191 // Initialize both fields to 0. 3192 QualType ElemQT = CT->getElementType(); 3193 PrimType ElemT = classifyPrim(ElemQT); 3194 3195 for (unsigned I = 0; I != 2; ++I) { 3196 if (!this->visitZeroInitializer(ElemT, ElemQT, E)) 3197 return false; 3198 if (!this->emitInitElem(ElemT, I, E)) 3199 return false; 3200 } 3201 return true; 3202 } 3203 3204 if (const auto *VT = Ty->getAs<VectorType>()) { 3205 // FIXME: Code duplication with the _Complex case above. 3206 if (!Initializing) { 3207 std::optional<unsigned> LocalIndex = allocateLocal(E); 3208 if (!LocalIndex) 3209 return false; 3210 if (!this->emitGetPtrLocal(*LocalIndex, E)) 3211 return false; 3212 } 3213 3214 // Initialize all fields to 0. 3215 QualType ElemQT = VT->getElementType(); 3216 PrimType ElemT = classifyPrim(ElemQT); 3217 3218 for (unsigned I = 0, N = VT->getNumElements(); I != N; ++I) { 3219 if (!this->visitZeroInitializer(ElemT, ElemQT, E)) 3220 return false; 3221 if (!this->emitInitElem(ElemT, I, E)) 3222 return false; 3223 } 3224 return true; 3225 } 3226 3227 return false; 3228 } 3229 3230 template <class Emitter> 3231 bool Compiler<Emitter>::VisitSizeOfPackExpr(const SizeOfPackExpr *E) { 3232 return this->emitConst(E->getPackLength(), E); 3233 } 3234 3235 template <class Emitter> 3236 bool Compiler<Emitter>::VisitGenericSelectionExpr( 3237 const GenericSelectionExpr *E) { 3238 return this->delegate(E->getResultExpr()); 3239 } 3240 3241 template <class Emitter> 3242 bool Compiler<Emitter>::VisitChooseExpr(const ChooseExpr *E) { 3243 return this->delegate(E->getChosenSubExpr()); 3244 } 3245 3246 template <class Emitter> 3247 bool Compiler<Emitter>::VisitObjCBoolLiteralExpr(const ObjCBoolLiteralExpr *E) { 3248 if (DiscardResult) 3249 return true; 3250 3251 return this->emitConst(E->getValue(), E); 3252 } 3253 3254 template <class Emitter> 3255 bool Compiler<Emitter>::VisitCXXInheritedCtorInitExpr( 3256 const CXXInheritedCtorInitExpr *E) { 3257 const CXXConstructorDecl *Ctor = E->getConstructor(); 3258 assert(!Ctor->isTrivial() && 3259 "Trivial CXXInheritedCtorInitExpr, implement. (possible?)"); 3260 const Function *F = this->getFunction(Ctor); 3261 assert(F); 3262 assert(!F->hasRVO()); 3263 assert(F->hasThisPointer()); 3264 3265 if (!this->emitDupPtr(SourceInfo{})) 3266 return false; 3267 3268 // Forward all arguments of the current function (which should be a 3269 // constructor itself) to the inherited ctor. 3270 // This is necessary because the calling code has pushed the pointer 3271 // of the correct base for us already, but the arguments need 3272 // to come after. 3273 unsigned Offset = align(primSize(PT_Ptr)); // instance pointer. 3274 for (const ParmVarDecl *PD : Ctor->parameters()) { 3275 PrimType PT = this->classify(PD->getType()).value_or(PT_Ptr); 3276 3277 if (!this->emitGetParam(PT, Offset, E)) 3278 return false; 3279 Offset += align(primSize(PT)); 3280 } 3281 3282 return this->emitCall(F, 0, E); 3283 } 3284 3285 template <class Emitter> 3286 bool Compiler<Emitter>::VisitCXXNewExpr(const CXXNewExpr *E) { 3287 assert(classifyPrim(E->getType()) == PT_Ptr); 3288 const Expr *Init = E->getInitializer(); 3289 QualType ElementType = E->getAllocatedType(); 3290 std::optional<PrimType> ElemT = classify(ElementType); 3291 unsigned PlacementArgs = E->getNumPlacementArgs(); 3292 const FunctionDecl *OperatorNew = E->getOperatorNew(); 3293 const Expr *PlacementDest = nullptr; 3294 bool IsNoThrow = false; 3295 3296 if (PlacementArgs != 0) { 3297 // FIXME: There is no restriction on this, but it's not clear that any 3298 // other form makes any sense. We get here for cases such as: 3299 // 3300 // new (std::align_val_t{N}) X(int) 3301 // 3302 // (which should presumably be valid only if N is a multiple of 3303 // alignof(int), and in any case can't be deallocated unless N is 3304 // alignof(X) and X has new-extended alignment). 3305 if (PlacementArgs == 1) { 3306 const Expr *Arg1 = E->getPlacementArg(0); 3307 if (Arg1->getType()->isNothrowT()) { 3308 if (!this->discard(Arg1)) 3309 return false; 3310 IsNoThrow = true; 3311 } else { 3312 // Invalid unless we have C++26 or are in a std:: function. 3313 if (!this->emitInvalidNewDeleteExpr(E, E)) 3314 return false; 3315 3316 // If we have a placement-new destination, we'll later use that instead 3317 // of allocating. 3318 if (OperatorNew->isReservedGlobalPlacementOperator()) 3319 PlacementDest = Arg1; 3320 } 3321 } else { 3322 // Always invalid. 3323 return this->emitInvalid(E); 3324 } 3325 } else if (!OperatorNew->isReplaceableGlobalAllocationFunction()) 3326 return this->emitInvalidNewDeleteExpr(E, E); 3327 3328 const Descriptor *Desc; 3329 if (!PlacementDest) { 3330 if (ElemT) { 3331 if (E->isArray()) 3332 Desc = nullptr; // We're not going to use it in this case. 3333 else 3334 Desc = P.createDescriptor(E, *ElemT, Descriptor::InlineDescMD, 3335 /*IsConst=*/false, /*IsTemporary=*/false, 3336 /*IsMutable=*/false); 3337 } else { 3338 Desc = P.createDescriptor( 3339 E, ElementType.getTypePtr(), 3340 E->isArray() ? std::nullopt : Descriptor::InlineDescMD, 3341 /*IsConst=*/false, /*IsTemporary=*/false, /*IsMutable=*/false, Init); 3342 } 3343 } 3344 3345 if (E->isArray()) { 3346 std::optional<const Expr *> ArraySizeExpr = E->getArraySize(); 3347 if (!ArraySizeExpr) 3348 return false; 3349 3350 const Expr *Stripped = *ArraySizeExpr; 3351 for (; auto *ICE = dyn_cast<ImplicitCastExpr>(Stripped); 3352 Stripped = ICE->getSubExpr()) 3353 if (ICE->getCastKind() != CK_NoOp && 3354 ICE->getCastKind() != CK_IntegralCast) 3355 break; 3356 3357 PrimType SizeT = classifyPrim(Stripped->getType()); 3358 3359 if (PlacementDest) { 3360 if (!this->visit(PlacementDest)) 3361 return false; 3362 if (!this->visit(Stripped)) 3363 return false; 3364 if (!this->emitCheckNewTypeMismatchArray(SizeT, E, E)) 3365 return false; 3366 } else { 3367 if (!this->visit(Stripped)) 3368 return false; 3369 3370 if (ElemT) { 3371 // N primitive elements. 3372 if (!this->emitAllocN(SizeT, *ElemT, E, IsNoThrow, E)) 3373 return false; 3374 } else { 3375 // N Composite elements. 3376 if (!this->emitAllocCN(SizeT, Desc, IsNoThrow, E)) 3377 return false; 3378 } 3379 } 3380 3381 if (Init && !this->visitInitializer(Init)) 3382 return false; 3383 3384 } else { 3385 if (PlacementDest) { 3386 if (!this->visit(PlacementDest)) 3387 return false; 3388 if (!this->emitCheckNewTypeMismatch(E, E)) 3389 return false; 3390 } else { 3391 // Allocate just one element. 3392 if (!this->emitAlloc(Desc, E)) 3393 return false; 3394 } 3395 3396 if (Init) { 3397 if (ElemT) { 3398 if (!this->visit(Init)) 3399 return false; 3400 3401 if (!this->emitInit(*ElemT, E)) 3402 return false; 3403 } else { 3404 // Composite. 3405 if (!this->visitInitializer(Init)) 3406 return false; 3407 } 3408 } 3409 } 3410 3411 if (DiscardResult) 3412 return this->emitPopPtr(E); 3413 3414 return true; 3415 } 3416 3417 template <class Emitter> 3418 bool Compiler<Emitter>::VisitCXXDeleteExpr(const CXXDeleteExpr *E) { 3419 const Expr *Arg = E->getArgument(); 3420 3421 const FunctionDecl *OperatorDelete = E->getOperatorDelete(); 3422 3423 if (!OperatorDelete->isReplaceableGlobalAllocationFunction()) 3424 return this->emitInvalidNewDeleteExpr(E, E); 3425 3426 // Arg must be an lvalue. 3427 if (!this->visit(Arg)) 3428 return false; 3429 3430 return this->emitFree(E->isArrayForm(), E->isGlobalDelete(), E); 3431 } 3432 3433 template <class Emitter> 3434 bool Compiler<Emitter>::VisitBlockExpr(const BlockExpr *E) { 3435 if (DiscardResult) 3436 return true; 3437 3438 const Function *Func = nullptr; 3439 if (auto F = Compiler<ByteCodeEmitter>(Ctx, P).compileObjCBlock(E)) 3440 Func = F; 3441 3442 if (!Func) 3443 return false; 3444 return this->emitGetFnPtr(Func, E); 3445 } 3446 3447 template <class Emitter> 3448 bool Compiler<Emitter>::VisitCXXTypeidExpr(const CXXTypeidExpr *E) { 3449 const Type *TypeInfoType = E->getType().getTypePtr(); 3450 3451 if (!E->isPotentiallyEvaluated()) { 3452 if (DiscardResult) 3453 return true; 3454 3455 if (E->isTypeOperand()) 3456 return this->emitGetTypeid( 3457 E->getTypeOperand(Ctx.getASTContext()).getTypePtr(), TypeInfoType, E); 3458 return this->emitGetTypeid(E->getExprOperand()->getType().getTypePtr(), 3459 TypeInfoType, E); 3460 } 3461 3462 // Otherwise, we need to evaluate the expression operand. 3463 assert(E->getExprOperand()); 3464 assert(E->getExprOperand()->isLValue()); 3465 3466 if (!Ctx.getLangOpts().CPlusPlus20 && !this->emitDiagTypeid(E)) 3467 return false; 3468 3469 if (!this->visit(E->getExprOperand())) 3470 return false; 3471 3472 if (!this->emitGetTypeidPtr(TypeInfoType, E)) 3473 return false; 3474 if (DiscardResult) 3475 return this->emitPopPtr(E); 3476 return true; 3477 } 3478 3479 template <class Emitter> 3480 bool Compiler<Emitter>::VisitExpressionTraitExpr(const ExpressionTraitExpr *E) { 3481 assert(Ctx.getLangOpts().CPlusPlus); 3482 return this->emitConstBool(E->getValue(), E); 3483 } 3484 3485 template <class Emitter> 3486 bool Compiler<Emitter>::VisitCXXUuidofExpr(const CXXUuidofExpr *E) { 3487 if (DiscardResult) 3488 return true; 3489 assert(!Initializing); 3490 3491 const MSGuidDecl *GuidDecl = E->getGuidDecl(); 3492 const RecordDecl *RD = GuidDecl->getType()->getAsRecordDecl(); 3493 assert(RD); 3494 // If the definiton of the result type is incomplete, just return a dummy. 3495 // If (and when) that is read from, we will fail, but not now. 3496 if (!RD->isCompleteDefinition()) 3497 return this->emitDummyPtr(GuidDecl, E); 3498 3499 std::optional<unsigned> GlobalIndex = P.getOrCreateGlobal(GuidDecl); 3500 if (!GlobalIndex) 3501 return false; 3502 if (!this->emitGetPtrGlobal(*GlobalIndex, E)) 3503 return false; 3504 3505 assert(this->getRecord(E->getType())); 3506 3507 const APValue &V = GuidDecl->getAsAPValue(); 3508 if (V.getKind() == APValue::None) 3509 return true; 3510 3511 assert(V.isStruct()); 3512 assert(V.getStructNumBases() == 0); 3513 if (!this->visitAPValueInitializer(V, E)) 3514 return false; 3515 3516 return this->emitFinishInit(E); 3517 } 3518 3519 template <class Emitter> 3520 bool Compiler<Emitter>::VisitRequiresExpr(const RequiresExpr *E) { 3521 assert(classifyPrim(E->getType()) == PT_Bool); 3522 if (DiscardResult) 3523 return true; 3524 return this->emitConstBool(E->isSatisfied(), E); 3525 } 3526 3527 template <class Emitter> 3528 bool Compiler<Emitter>::VisitConceptSpecializationExpr( 3529 const ConceptSpecializationExpr *E) { 3530 assert(classifyPrim(E->getType()) == PT_Bool); 3531 if (DiscardResult) 3532 return true; 3533 return this->emitConstBool(E->isSatisfied(), E); 3534 } 3535 3536 template <class Emitter> 3537 bool Compiler<Emitter>::VisitCXXRewrittenBinaryOperator( 3538 const CXXRewrittenBinaryOperator *E) { 3539 return this->delegate(E->getSemanticForm()); 3540 } 3541 3542 template <class Emitter> 3543 bool Compiler<Emitter>::VisitPseudoObjectExpr(const PseudoObjectExpr *E) { 3544 3545 for (const Expr *SemE : E->semantics()) { 3546 if (auto *OVE = dyn_cast<OpaqueValueExpr>(SemE)) { 3547 if (SemE == E->getResultExpr()) 3548 return false; 3549 3550 if (OVE->isUnique()) 3551 continue; 3552 3553 if (!this->discard(OVE)) 3554 return false; 3555 } else if (SemE == E->getResultExpr()) { 3556 if (!this->delegate(SemE)) 3557 return false; 3558 } else { 3559 if (!this->discard(SemE)) 3560 return false; 3561 } 3562 } 3563 return true; 3564 } 3565 3566 template <class Emitter> 3567 bool Compiler<Emitter>::VisitPackIndexingExpr(const PackIndexingExpr *E) { 3568 return this->delegate(E->getSelectedExpr()); 3569 } 3570 3571 template <class Emitter> 3572 bool Compiler<Emitter>::VisitRecoveryExpr(const RecoveryExpr *E) { 3573 return this->emitError(E); 3574 } 3575 3576 template <class Emitter> 3577 bool Compiler<Emitter>::VisitAddrLabelExpr(const AddrLabelExpr *E) { 3578 assert(E->getType()->isVoidPointerType()); 3579 3580 unsigned Offset = allocateLocalPrimitive( 3581 E->getLabel(), PT_Ptr, /*IsConst=*/true, /*IsExtended=*/false); 3582 3583 return this->emitGetLocal(PT_Ptr, Offset, E); 3584 } 3585 3586 template <class Emitter> 3587 bool Compiler<Emitter>::VisitConvertVectorExpr(const ConvertVectorExpr *E) { 3588 assert(Initializing); 3589 const auto *VT = E->getType()->castAs<VectorType>(); 3590 QualType ElemType = VT->getElementType(); 3591 PrimType ElemT = classifyPrim(ElemType); 3592 const Expr *Src = E->getSrcExpr(); 3593 QualType SrcType = Src->getType(); 3594 PrimType SrcElemT = classifyVectorElementType(SrcType); 3595 3596 unsigned SrcOffset = this->allocateLocalPrimitive(Src, PT_Ptr, true, false); 3597 if (!this->visit(Src)) 3598 return false; 3599 if (!this->emitSetLocal(PT_Ptr, SrcOffset, E)) 3600 return false; 3601 3602 for (unsigned I = 0; I != VT->getNumElements(); ++I) { 3603 if (!this->emitGetLocal(PT_Ptr, SrcOffset, E)) 3604 return false; 3605 if (!this->emitArrayElemPop(SrcElemT, I, E)) 3606 return false; 3607 3608 // Cast to the desired result element type. 3609 if (SrcElemT != ElemT) { 3610 if (!this->emitPrimCast(SrcElemT, ElemT, ElemType, E)) 3611 return false; 3612 } else if (ElemType->isFloatingType() && SrcType != ElemType) { 3613 const auto *TargetSemantics = &Ctx.getFloatSemantics(ElemType); 3614 if (!this->emitCastFP(TargetSemantics, getRoundingMode(E), E)) 3615 return false; 3616 } 3617 if (!this->emitInitElem(ElemT, I, E)) 3618 return false; 3619 } 3620 3621 return true; 3622 } 3623 3624 template <class Emitter> 3625 bool Compiler<Emitter>::VisitShuffleVectorExpr(const ShuffleVectorExpr *E) { 3626 assert(Initializing); 3627 assert(E->getNumSubExprs() > 2); 3628 3629 const Expr *Vecs[] = {E->getExpr(0), E->getExpr(1)}; 3630 const VectorType *VT = Vecs[0]->getType()->castAs<VectorType>(); 3631 PrimType ElemT = classifyPrim(VT->getElementType()); 3632 unsigned NumInputElems = VT->getNumElements(); 3633 unsigned NumOutputElems = E->getNumSubExprs() - 2; 3634 assert(NumOutputElems > 0); 3635 3636 // Save both input vectors to a local variable. 3637 unsigned VectorOffsets[2]; 3638 for (unsigned I = 0; I != 2; ++I) { 3639 VectorOffsets[I] = this->allocateLocalPrimitive( 3640 Vecs[I], PT_Ptr, /*IsConst=*/true, /*IsExtended=*/false); 3641 if (!this->visit(Vecs[I])) 3642 return false; 3643 if (!this->emitSetLocal(PT_Ptr, VectorOffsets[I], E)) 3644 return false; 3645 } 3646 for (unsigned I = 0; I != NumOutputElems; ++I) { 3647 APSInt ShuffleIndex = E->getShuffleMaskIdx(Ctx.getASTContext(), I); 3648 assert(ShuffleIndex >= -1); 3649 if (ShuffleIndex == -1) 3650 return this->emitInvalidShuffleVectorIndex(I, E); 3651 3652 assert(ShuffleIndex < (NumInputElems * 2)); 3653 if (!this->emitGetLocal(PT_Ptr, 3654 VectorOffsets[ShuffleIndex >= NumInputElems], E)) 3655 return false; 3656 unsigned InputVectorIndex = ShuffleIndex.getZExtValue() % NumInputElems; 3657 if (!this->emitArrayElemPop(ElemT, InputVectorIndex, E)) 3658 return false; 3659 3660 if (!this->emitInitElem(ElemT, I, E)) 3661 return false; 3662 } 3663 3664 return true; 3665 } 3666 3667 template <class Emitter> 3668 bool Compiler<Emitter>::VisitExtVectorElementExpr( 3669 const ExtVectorElementExpr *E) { 3670 const Expr *Base = E->getBase(); 3671 assert( 3672 Base->getType()->isVectorType() || 3673 Base->getType()->getAs<PointerType>()->getPointeeType()->isVectorType()); 3674 3675 SmallVector<uint32_t, 4> Indices; 3676 E->getEncodedElementAccess(Indices); 3677 3678 if (Indices.size() == 1) { 3679 if (!this->visit(Base)) 3680 return false; 3681 3682 if (E->isGLValue()) { 3683 if (!this->emitConstUint32(Indices[0], E)) 3684 return false; 3685 return this->emitArrayElemPtrPop(PT_Uint32, E); 3686 } 3687 // Else, also load the value. 3688 return this->emitArrayElemPop(classifyPrim(E->getType()), Indices[0], E); 3689 } 3690 3691 // Create a local variable for the base. 3692 unsigned BaseOffset = allocateLocalPrimitive(Base, PT_Ptr, /*IsConst=*/true, 3693 /*IsExtended=*/false); 3694 if (!this->visit(Base)) 3695 return false; 3696 if (!this->emitSetLocal(PT_Ptr, BaseOffset, E)) 3697 return false; 3698 3699 // Now the vector variable for the return value. 3700 if (!Initializing) { 3701 std::optional<unsigned> ResultIndex; 3702 ResultIndex = allocateLocal(E); 3703 if (!ResultIndex) 3704 return false; 3705 if (!this->emitGetPtrLocal(*ResultIndex, E)) 3706 return false; 3707 } 3708 3709 assert(Indices.size() == E->getType()->getAs<VectorType>()->getNumElements()); 3710 3711 PrimType ElemT = 3712 classifyPrim(E->getType()->getAs<VectorType>()->getElementType()); 3713 uint32_t DstIndex = 0; 3714 for (uint32_t I : Indices) { 3715 if (!this->emitGetLocal(PT_Ptr, BaseOffset, E)) 3716 return false; 3717 if (!this->emitArrayElemPop(ElemT, I, E)) 3718 return false; 3719 if (!this->emitInitElem(ElemT, DstIndex, E)) 3720 return false; 3721 ++DstIndex; 3722 } 3723 3724 // Leave the result pointer on the stack. 3725 assert(!DiscardResult); 3726 return true; 3727 } 3728 3729 template <class Emitter> 3730 bool Compiler<Emitter>::VisitObjCBoxedExpr(const ObjCBoxedExpr *E) { 3731 const Expr *SubExpr = E->getSubExpr(); 3732 if (!E->isExpressibleAsConstantInitializer()) 3733 return this->discard(SubExpr) && this->emitInvalid(E); 3734 3735 if (DiscardResult) 3736 return true; 3737 3738 assert(classifyPrim(E) == PT_Ptr); 3739 return this->emitDummyPtr(E, E); 3740 } 3741 3742 template <class Emitter> 3743 bool Compiler<Emitter>::VisitCXXStdInitializerListExpr( 3744 const CXXStdInitializerListExpr *E) { 3745 const Expr *SubExpr = E->getSubExpr(); 3746 const ConstantArrayType *ArrayType = 3747 Ctx.getASTContext().getAsConstantArrayType(SubExpr->getType()); 3748 const Record *R = getRecord(E->getType()); 3749 assert(Initializing); 3750 assert(SubExpr->isGLValue()); 3751 3752 if (!this->visit(SubExpr)) 3753 return false; 3754 if (!this->emitConstUint8(0, E)) 3755 return false; 3756 if (!this->emitArrayElemPtrPopUint8(E)) 3757 return false; 3758 if (!this->emitInitFieldPtr(R->getField(0u)->Offset, E)) 3759 return false; 3760 3761 PrimType SecondFieldT = classifyPrim(R->getField(1u)->Decl->getType()); 3762 if (isIntegralType(SecondFieldT)) { 3763 if (!this->emitConst(static_cast<APSInt>(ArrayType->getSize()), 3764 SecondFieldT, E)) 3765 return false; 3766 return this->emitInitField(SecondFieldT, R->getField(1u)->Offset, E); 3767 } 3768 assert(SecondFieldT == PT_Ptr); 3769 3770 if (!this->emitGetFieldPtr(R->getField(0u)->Offset, E)) 3771 return false; 3772 if (!this->emitExpandPtr(E)) 3773 return false; 3774 if (!this->emitConst(static_cast<APSInt>(ArrayType->getSize()), PT_Uint64, E)) 3775 return false; 3776 if (!this->emitArrayElemPtrPop(PT_Uint64, E)) 3777 return false; 3778 return this->emitInitFieldPtr(R->getField(1u)->Offset, E); 3779 } 3780 3781 template <class Emitter> 3782 bool Compiler<Emitter>::VisitStmtExpr(const StmtExpr *E) { 3783 BlockScope<Emitter> BS(this); 3784 StmtExprScope<Emitter> SS(this); 3785 3786 const CompoundStmt *CS = E->getSubStmt(); 3787 const Stmt *Result = CS->getStmtExprResult(); 3788 for (const Stmt *S : CS->body()) { 3789 if (S != Result) { 3790 if (!this->visitStmt(S)) 3791 return false; 3792 continue; 3793 } 3794 3795 assert(S == Result); 3796 if (const Expr *ResultExpr = dyn_cast<Expr>(S)) 3797 return this->delegate(ResultExpr); 3798 return this->emitUnsupported(E); 3799 } 3800 3801 return BS.destroyLocals(); 3802 } 3803 3804 template <class Emitter> bool Compiler<Emitter>::discard(const Expr *E) { 3805 OptionScope<Emitter> Scope(this, /*NewDiscardResult=*/true, 3806 /*NewInitializing=*/false); 3807 return this->Visit(E); 3808 } 3809 3810 template <class Emitter> bool Compiler<Emitter>::delegate(const Expr *E) { 3811 // We're basically doing: 3812 // OptionScope<Emitter> Scope(this, DicardResult, Initializing); 3813 // but that's unnecessary of course. 3814 return this->Visit(E); 3815 } 3816 3817 template <class Emitter> bool Compiler<Emitter>::visit(const Expr *E) { 3818 if (E->getType().isNull()) 3819 return false; 3820 3821 if (E->getType()->isVoidType()) 3822 return this->discard(E); 3823 3824 // Create local variable to hold the return value. 3825 if (!E->isGLValue() && !E->getType()->isAnyComplexType() && 3826 !classify(E->getType())) { 3827 std::optional<unsigned> LocalIndex = allocateLocal(E); 3828 if (!LocalIndex) 3829 return false; 3830 3831 if (!this->emitGetPtrLocal(*LocalIndex, E)) 3832 return false; 3833 InitLinkScope<Emitter> ILS(this, InitLink::Temp(*LocalIndex)); 3834 return this->visitInitializer(E); 3835 } 3836 3837 // Otherwise,we have a primitive return value, produce the value directly 3838 // and push it on the stack. 3839 OptionScope<Emitter> Scope(this, /*NewDiscardResult=*/false, 3840 /*NewInitializing=*/false); 3841 return this->Visit(E); 3842 } 3843 3844 template <class Emitter> 3845 bool Compiler<Emitter>::visitInitializer(const Expr *E) { 3846 assert(!classify(E->getType())); 3847 3848 OptionScope<Emitter> Scope(this, /*NewDiscardResult=*/false, 3849 /*NewInitializing=*/true); 3850 return this->Visit(E); 3851 } 3852 3853 template <class Emitter> bool Compiler<Emitter>::visitBool(const Expr *E) { 3854 std::optional<PrimType> T = classify(E->getType()); 3855 if (!T) { 3856 // Convert complex values to bool. 3857 if (E->getType()->isAnyComplexType()) { 3858 if (!this->visit(E)) 3859 return false; 3860 return this->emitComplexBoolCast(E); 3861 } 3862 return false; 3863 } 3864 3865 if (!this->visit(E)) 3866 return false; 3867 3868 if (T == PT_Bool) 3869 return true; 3870 3871 // Convert pointers to bool. 3872 if (T == PT_Ptr || T == PT_FnPtr) { 3873 if (!this->emitNull(*T, 0, nullptr, E)) 3874 return false; 3875 return this->emitNE(*T, E); 3876 } 3877 3878 // Or Floats. 3879 if (T == PT_Float) 3880 return this->emitCastFloatingIntegralBool(getFPOptions(E), E); 3881 3882 // Or anything else we can. 3883 return this->emitCast(*T, PT_Bool, E); 3884 } 3885 3886 template <class Emitter> 3887 bool Compiler<Emitter>::visitZeroInitializer(PrimType T, QualType QT, 3888 const Expr *E) { 3889 switch (T) { 3890 case PT_Bool: 3891 return this->emitZeroBool(E); 3892 case PT_Sint8: 3893 return this->emitZeroSint8(E); 3894 case PT_Uint8: 3895 return this->emitZeroUint8(E); 3896 case PT_Sint16: 3897 return this->emitZeroSint16(E); 3898 case PT_Uint16: 3899 return this->emitZeroUint16(E); 3900 case PT_Sint32: 3901 return this->emitZeroSint32(E); 3902 case PT_Uint32: 3903 return this->emitZeroUint32(E); 3904 case PT_Sint64: 3905 return this->emitZeroSint64(E); 3906 case PT_Uint64: 3907 return this->emitZeroUint64(E); 3908 case PT_IntAP: 3909 return this->emitZeroIntAP(Ctx.getBitWidth(QT), E); 3910 case PT_IntAPS: 3911 return this->emitZeroIntAPS(Ctx.getBitWidth(QT), E); 3912 case PT_Ptr: 3913 return this->emitNullPtr(Ctx.getASTContext().getTargetNullPointerValue(QT), 3914 nullptr, E); 3915 case PT_FnPtr: 3916 return this->emitNullFnPtr(0, nullptr, E); 3917 case PT_MemberPtr: 3918 return this->emitNullMemberPtr(0, nullptr, E); 3919 case PT_Float: 3920 return this->emitConstFloat(APFloat::getZero(Ctx.getFloatSemantics(QT)), E); 3921 case PT_FixedPoint: { 3922 auto Sem = Ctx.getASTContext().getFixedPointSemantics(E->getType()); 3923 return this->emitConstFixedPoint(FixedPoint::zero(Sem), E); 3924 } 3925 llvm_unreachable("Implement"); 3926 } 3927 llvm_unreachable("unknown primitive type"); 3928 } 3929 3930 template <class Emitter> 3931 bool Compiler<Emitter>::visitZeroRecordInitializer(const Record *R, 3932 const Expr *E) { 3933 assert(E); 3934 assert(R); 3935 // Fields 3936 for (const Record::Field &Field : R->fields()) { 3937 if (Field.Decl->isUnnamedBitField()) 3938 continue; 3939 3940 const Descriptor *D = Field.Desc; 3941 if (D->isPrimitive()) { 3942 QualType QT = D->getType(); 3943 PrimType T = classifyPrim(D->getType()); 3944 if (!this->visitZeroInitializer(T, QT, E)) 3945 return false; 3946 if (!this->emitInitField(T, Field.Offset, E)) 3947 return false; 3948 if (R->isUnion()) 3949 break; 3950 continue; 3951 } 3952 3953 if (!this->emitGetPtrField(Field.Offset, E)) 3954 return false; 3955 3956 if (D->isPrimitiveArray()) { 3957 QualType ET = D->getElemQualType(); 3958 PrimType T = classifyPrim(ET); 3959 for (uint32_t I = 0, N = D->getNumElems(); I != N; ++I) { 3960 if (!this->visitZeroInitializer(T, ET, E)) 3961 return false; 3962 if (!this->emitInitElem(T, I, E)) 3963 return false; 3964 } 3965 } else if (D->isCompositeArray()) { 3966 // Can't be a vector or complex field. 3967 if (!this->visitZeroArrayInitializer(D->getType(), E)) 3968 return false; 3969 } else if (D->isRecord()) { 3970 if (!this->visitZeroRecordInitializer(D->ElemRecord, E)) 3971 return false; 3972 } else { 3973 assert(false); 3974 } 3975 3976 if (!this->emitFinishInitPop(E)) 3977 return false; 3978 3979 // C++11 [dcl.init]p5: If T is a (possibly cv-qualified) union type, the 3980 // object's first non-static named data member is zero-initialized 3981 if (R->isUnion()) 3982 break; 3983 } 3984 3985 for (const Record::Base &B : R->bases()) { 3986 if (!this->emitGetPtrBase(B.Offset, E)) 3987 return false; 3988 if (!this->visitZeroRecordInitializer(B.R, E)) 3989 return false; 3990 if (!this->emitFinishInitPop(E)) 3991 return false; 3992 } 3993 3994 // FIXME: Virtual bases. 3995 3996 return true; 3997 } 3998 3999 template <class Emitter> 4000 bool Compiler<Emitter>::visitZeroArrayInitializer(QualType T, const Expr *E) { 4001 assert(T->isArrayType() || T->isAnyComplexType() || T->isVectorType()); 4002 const ArrayType *AT = T->getAsArrayTypeUnsafe(); 4003 QualType ElemType = AT->getElementType(); 4004 size_t NumElems = cast<ConstantArrayType>(AT)->getZExtSize(); 4005 4006 if (std::optional<PrimType> ElemT = classify(ElemType)) { 4007 for (size_t I = 0; I != NumElems; ++I) { 4008 if (!this->visitZeroInitializer(*ElemT, ElemType, E)) 4009 return false; 4010 if (!this->emitInitElem(*ElemT, I, E)) 4011 return false; 4012 } 4013 return true; 4014 } else if (ElemType->isRecordType()) { 4015 const Record *R = getRecord(ElemType); 4016 4017 for (size_t I = 0; I != NumElems; ++I) { 4018 if (!this->emitConstUint32(I, E)) 4019 return false; 4020 if (!this->emitArrayElemPtr(PT_Uint32, E)) 4021 return false; 4022 if (!this->visitZeroRecordInitializer(R, E)) 4023 return false; 4024 if (!this->emitPopPtr(E)) 4025 return false; 4026 } 4027 return true; 4028 } else if (ElemType->isArrayType()) { 4029 for (size_t I = 0; I != NumElems; ++I) { 4030 if (!this->emitConstUint32(I, E)) 4031 return false; 4032 if (!this->emitArrayElemPtr(PT_Uint32, E)) 4033 return false; 4034 if (!this->visitZeroArrayInitializer(ElemType, E)) 4035 return false; 4036 if (!this->emitPopPtr(E)) 4037 return false; 4038 } 4039 return true; 4040 } 4041 4042 return false; 4043 } 4044 4045 template <class Emitter> 4046 template <typename T> 4047 bool Compiler<Emitter>::emitConst(T Value, PrimType Ty, const Expr *E) { 4048 switch (Ty) { 4049 case PT_Sint8: 4050 return this->emitConstSint8(Value, E); 4051 case PT_Uint8: 4052 return this->emitConstUint8(Value, E); 4053 case PT_Sint16: 4054 return this->emitConstSint16(Value, E); 4055 case PT_Uint16: 4056 return this->emitConstUint16(Value, E); 4057 case PT_Sint32: 4058 return this->emitConstSint32(Value, E); 4059 case PT_Uint32: 4060 return this->emitConstUint32(Value, E); 4061 case PT_Sint64: 4062 return this->emitConstSint64(Value, E); 4063 case PT_Uint64: 4064 return this->emitConstUint64(Value, E); 4065 case PT_Bool: 4066 return this->emitConstBool(Value, E); 4067 case PT_Ptr: 4068 case PT_FnPtr: 4069 case PT_MemberPtr: 4070 case PT_Float: 4071 case PT_IntAP: 4072 case PT_IntAPS: 4073 case PT_FixedPoint: 4074 llvm_unreachable("Invalid integral type"); 4075 break; 4076 } 4077 llvm_unreachable("unknown primitive type"); 4078 } 4079 4080 template <class Emitter> 4081 template <typename T> 4082 bool Compiler<Emitter>::emitConst(T Value, const Expr *E) { 4083 return this->emitConst(Value, classifyPrim(E->getType()), E); 4084 } 4085 4086 template <class Emitter> 4087 bool Compiler<Emitter>::emitConst(const APSInt &Value, PrimType Ty, 4088 const Expr *E) { 4089 if (Ty == PT_IntAPS) 4090 return this->emitConstIntAPS(Value, E); 4091 if (Ty == PT_IntAP) 4092 return this->emitConstIntAP(Value, E); 4093 4094 if (Value.isSigned()) 4095 return this->emitConst(Value.getSExtValue(), Ty, E); 4096 return this->emitConst(Value.getZExtValue(), Ty, E); 4097 } 4098 4099 template <class Emitter> 4100 bool Compiler<Emitter>::emitConst(const APSInt &Value, const Expr *E) { 4101 return this->emitConst(Value, classifyPrim(E->getType()), E); 4102 } 4103 4104 template <class Emitter> 4105 unsigned Compiler<Emitter>::allocateLocalPrimitive(DeclTy &&Src, PrimType Ty, 4106 bool IsConst, 4107 bool IsExtended) { 4108 // Make sure we don't accidentally register the same decl twice. 4109 if (const auto *VD = 4110 dyn_cast_if_present<ValueDecl>(Src.dyn_cast<const Decl *>())) { 4111 assert(!P.getGlobal(VD)); 4112 assert(!Locals.contains(VD)); 4113 (void)VD; 4114 } 4115 4116 // FIXME: There are cases where Src.is<Expr*>() is wrong, e.g. 4117 // (int){12} in C. Consider using Expr::isTemporaryObject() instead 4118 // or isa<MaterializeTemporaryExpr>(). 4119 Descriptor *D = P.createDescriptor(Src, Ty, Descriptor::InlineDescMD, IsConst, 4120 isa<const Expr *>(Src)); 4121 Scope::Local Local = this->createLocal(D); 4122 if (auto *VD = dyn_cast_if_present<ValueDecl>(Src.dyn_cast<const Decl *>())) 4123 Locals.insert({VD, Local}); 4124 VarScope->add(Local, IsExtended); 4125 return Local.Offset; 4126 } 4127 4128 template <class Emitter> 4129 std::optional<unsigned> 4130 Compiler<Emitter>::allocateLocal(DeclTy &&Src, QualType Ty, 4131 const ValueDecl *ExtendingDecl) { 4132 // Make sure we don't accidentally register the same decl twice. 4133 if ([[maybe_unused]] const auto *VD = 4134 dyn_cast_if_present<ValueDecl>(Src.dyn_cast<const Decl *>())) { 4135 assert(!P.getGlobal(VD)); 4136 assert(!Locals.contains(VD)); 4137 } 4138 4139 const ValueDecl *Key = nullptr; 4140 const Expr *Init = nullptr; 4141 bool IsTemporary = false; 4142 if (auto *VD = dyn_cast_if_present<ValueDecl>(Src.dyn_cast<const Decl *>())) { 4143 Key = VD; 4144 Ty = VD->getType(); 4145 4146 if (const auto *VarD = dyn_cast<VarDecl>(VD)) 4147 Init = VarD->getInit(); 4148 } 4149 if (auto *E = Src.dyn_cast<const Expr *>()) { 4150 IsTemporary = true; 4151 if (Ty.isNull()) 4152 Ty = E->getType(); 4153 } 4154 4155 Descriptor *D = P.createDescriptor( 4156 Src, Ty.getTypePtr(), Descriptor::InlineDescMD, Ty.isConstQualified(), 4157 IsTemporary, /*IsMutable=*/false, Init); 4158 if (!D) 4159 return std::nullopt; 4160 4161 Scope::Local Local = this->createLocal(D); 4162 if (Key) 4163 Locals.insert({Key, Local}); 4164 if (ExtendingDecl) 4165 VarScope->addExtended(Local, ExtendingDecl); 4166 else 4167 VarScope->add(Local, false); 4168 return Local.Offset; 4169 } 4170 4171 template <class Emitter> 4172 unsigned Compiler<Emitter>::allocateTemporary(const Expr *E) { 4173 QualType Ty = E->getType(); 4174 assert(!Ty->isRecordType()); 4175 4176 Descriptor *D = P.createDescriptor( 4177 E, Ty.getTypePtr(), Descriptor::InlineDescMD, Ty.isConstQualified(), 4178 /*IsTemporary=*/true, /*IsMutable=*/false, /*Init=*/nullptr); 4179 assert(D); 4180 4181 Scope::Local Local = this->createLocal(D); 4182 VariableScope<Emitter> *S = VarScope; 4183 assert(S); 4184 // Attach to topmost scope. 4185 while (S->getParent()) 4186 S = S->getParent(); 4187 assert(S && !S->getParent()); 4188 S->addLocal(Local); 4189 return Local.Offset; 4190 } 4191 4192 template <class Emitter> 4193 const RecordType *Compiler<Emitter>::getRecordTy(QualType Ty) { 4194 if (const PointerType *PT = dyn_cast<PointerType>(Ty)) 4195 return PT->getPointeeType()->getAs<RecordType>(); 4196 return Ty->getAs<RecordType>(); 4197 } 4198 4199 template <class Emitter> Record *Compiler<Emitter>::getRecord(QualType Ty) { 4200 if (const auto *RecordTy = getRecordTy(Ty)) 4201 return getRecord(RecordTy->getDecl()); 4202 return nullptr; 4203 } 4204 4205 template <class Emitter> 4206 Record *Compiler<Emitter>::getRecord(const RecordDecl *RD) { 4207 return P.getOrCreateRecord(RD); 4208 } 4209 4210 template <class Emitter> 4211 const Function *Compiler<Emitter>::getFunction(const FunctionDecl *FD) { 4212 return Ctx.getOrCreateFunction(FD); 4213 } 4214 4215 template <class Emitter> 4216 bool Compiler<Emitter>::visitExpr(const Expr *E, bool DestroyToplevelScope) { 4217 LocalScope<Emitter> RootScope(this); 4218 4219 // If we won't destroy the toplevel scope, check for memory leaks first. 4220 if (!DestroyToplevelScope) { 4221 if (!this->emitCheckAllocations(E)) 4222 return false; 4223 } 4224 4225 auto maybeDestroyLocals = [&]() -> bool { 4226 if (DestroyToplevelScope) 4227 return RootScope.destroyLocals() && this->emitCheckAllocations(E); 4228 return this->emitCheckAllocations(E); 4229 }; 4230 4231 // Void expressions. 4232 if (E->getType()->isVoidType()) { 4233 if (!visit(E)) 4234 return false; 4235 return this->emitRetVoid(E) && maybeDestroyLocals(); 4236 } 4237 4238 // Expressions with a primitive return type. 4239 if (std::optional<PrimType> T = classify(E)) { 4240 if (!visit(E)) 4241 return false; 4242 4243 return this->emitRet(*T, E) && maybeDestroyLocals(); 4244 } 4245 4246 // Expressions with a composite return type. 4247 // For us, that means everything we don't 4248 // have a PrimType for. 4249 if (std::optional<unsigned> LocalOffset = this->allocateLocal(E)) { 4250 InitLinkScope<Emitter> ILS(this, InitLink::Temp(*LocalOffset)); 4251 if (!this->emitGetPtrLocal(*LocalOffset, E)) 4252 return false; 4253 4254 if (!visitInitializer(E)) 4255 return false; 4256 4257 if (!this->emitFinishInit(E)) 4258 return false; 4259 // We are destroying the locals AFTER the Ret op. 4260 // The Ret op needs to copy the (alive) values, but the 4261 // destructors may still turn the entire expression invalid. 4262 return this->emitRetValue(E) && maybeDestroyLocals(); 4263 } 4264 4265 return maybeDestroyLocals() && this->emitCheckAllocations(E) && false; 4266 } 4267 4268 template <class Emitter> 4269 VarCreationState Compiler<Emitter>::visitDecl(const VarDecl *VD) { 4270 4271 auto R = this->visitVarDecl(VD, /*Toplevel=*/true); 4272 4273 if (R.notCreated()) 4274 return R; 4275 4276 if (R) 4277 return true; 4278 4279 if (!R && Context::shouldBeGloballyIndexed(VD)) { 4280 if (auto GlobalIndex = P.getGlobal(VD)) { 4281 Block *GlobalBlock = P.getGlobal(*GlobalIndex); 4282 GlobalInlineDescriptor &GD = 4283 *reinterpret_cast<GlobalInlineDescriptor *>(GlobalBlock->rawData()); 4284 4285 GD.InitState = GlobalInitState::InitializerFailed; 4286 GlobalBlock->invokeDtor(); 4287 } 4288 } 4289 4290 return R; 4291 } 4292 4293 /// Toplevel visitDeclAndReturn(). 4294 /// We get here from evaluateAsInitializer(). 4295 /// We need to evaluate the initializer and return its value. 4296 template <class Emitter> 4297 bool Compiler<Emitter>::visitDeclAndReturn(const VarDecl *VD, 4298 bool ConstantContext) { 4299 std::optional<PrimType> VarT = classify(VD->getType()); 4300 4301 // We only create variables if we're evaluating in a constant context. 4302 // Otherwise, just evaluate the initializer and return it. 4303 if (!ConstantContext) { 4304 DeclScope<Emitter> LS(this, VD); 4305 if (!this->visit(VD->getAnyInitializer())) 4306 return false; 4307 return this->emitRet(VarT.value_or(PT_Ptr), VD) && LS.destroyLocals() && 4308 this->emitCheckAllocations(VD); 4309 } 4310 4311 LocalScope<Emitter> VDScope(this, VD); 4312 if (!this->visitVarDecl(VD, /*Toplevel=*/true)) 4313 return false; 4314 4315 if (Context::shouldBeGloballyIndexed(VD)) { 4316 auto GlobalIndex = P.getGlobal(VD); 4317 assert(GlobalIndex); // visitVarDecl() didn't return false. 4318 if (VarT) { 4319 if (!this->emitGetGlobalUnchecked(*VarT, *GlobalIndex, VD)) 4320 return false; 4321 } else { 4322 if (!this->emitGetPtrGlobal(*GlobalIndex, VD)) 4323 return false; 4324 } 4325 } else { 4326 auto Local = Locals.find(VD); 4327 assert(Local != Locals.end()); // Same here. 4328 if (VarT) { 4329 if (!this->emitGetLocal(*VarT, Local->second.Offset, VD)) 4330 return false; 4331 } else { 4332 if (!this->emitGetPtrLocal(Local->second.Offset, VD)) 4333 return false; 4334 } 4335 } 4336 4337 // Return the value. 4338 if (!this->emitRet(VarT.value_or(PT_Ptr), VD)) { 4339 // If the Ret above failed and this is a global variable, mark it as 4340 // uninitialized, even everything else succeeded. 4341 if (Context::shouldBeGloballyIndexed(VD)) { 4342 auto GlobalIndex = P.getGlobal(VD); 4343 assert(GlobalIndex); 4344 Block *GlobalBlock = P.getGlobal(*GlobalIndex); 4345 GlobalInlineDescriptor &GD = 4346 *reinterpret_cast<GlobalInlineDescriptor *>(GlobalBlock->rawData()); 4347 4348 GD.InitState = GlobalInitState::InitializerFailed; 4349 GlobalBlock->invokeDtor(); 4350 } 4351 return false; 4352 } 4353 4354 return VDScope.destroyLocals() && this->emitCheckAllocations(VD); 4355 } 4356 4357 template <class Emitter> 4358 VarCreationState Compiler<Emitter>::visitVarDecl(const VarDecl *VD, 4359 bool Toplevel) { 4360 // We don't know what to do with these, so just return false. 4361 if (VD->getType().isNull()) 4362 return false; 4363 4364 // This case is EvalEmitter-only. If we won't create any instructions for the 4365 // initializer anyway, don't bother creating the variable in the first place. 4366 if (!this->isActive()) 4367 return VarCreationState::NotCreated(); 4368 4369 const Expr *Init = VD->getInit(); 4370 std::optional<PrimType> VarT = classify(VD->getType()); 4371 4372 if (Init && Init->isValueDependent()) 4373 return false; 4374 4375 if (Context::shouldBeGloballyIndexed(VD)) { 4376 auto checkDecl = [&]() -> bool { 4377 bool NeedsOp = !Toplevel && VD->isLocalVarDecl() && VD->isStaticLocal(); 4378 return !NeedsOp || this->emitCheckDecl(VD, VD); 4379 }; 4380 4381 auto initGlobal = [&](unsigned GlobalIndex) -> bool { 4382 assert(Init); 4383 4384 if (VarT) { 4385 if (!this->visit(Init)) 4386 return checkDecl() && false; 4387 4388 return checkDecl() && this->emitInitGlobal(*VarT, GlobalIndex, VD); 4389 } 4390 4391 if (!checkDecl()) 4392 return false; 4393 4394 if (!this->emitGetPtrGlobal(GlobalIndex, Init)) 4395 return false; 4396 4397 if (!visitInitializer(Init)) 4398 return false; 4399 4400 if (!this->emitFinishInit(Init)) 4401 return false; 4402 4403 return this->emitPopPtr(Init); 4404 }; 4405 4406 DeclScope<Emitter> LocalScope(this, VD); 4407 4408 // We've already seen and initialized this global. 4409 if (std::optional<unsigned> GlobalIndex = P.getGlobal(VD)) { 4410 if (P.getPtrGlobal(*GlobalIndex).isInitialized()) 4411 return checkDecl(); 4412 4413 // The previous attempt at initialization might've been unsuccessful, 4414 // so let's try this one. 4415 return Init && checkDecl() && initGlobal(*GlobalIndex); 4416 } 4417 4418 std::optional<unsigned> GlobalIndex = P.createGlobal(VD, Init); 4419 4420 if (!GlobalIndex) 4421 return false; 4422 4423 return !Init || (checkDecl() && initGlobal(*GlobalIndex)); 4424 } else { 4425 InitLinkScope<Emitter> ILS(this, InitLink::Decl(VD)); 4426 4427 if (VarT) { 4428 unsigned Offset = this->allocateLocalPrimitive( 4429 VD, *VarT, VD->getType().isConstQualified()); 4430 if (Init) { 4431 // If this is a toplevel declaration, create a scope for the 4432 // initializer. 4433 if (Toplevel) { 4434 LocalScope<Emitter> Scope(this); 4435 if (!this->visit(Init)) 4436 return false; 4437 return this->emitSetLocal(*VarT, Offset, VD) && Scope.destroyLocals(); 4438 } else { 4439 if (!this->visit(Init)) 4440 return false; 4441 return this->emitSetLocal(*VarT, Offset, VD); 4442 } 4443 } 4444 } else { 4445 if (std::optional<unsigned> Offset = this->allocateLocal(VD)) { 4446 if (!Init) 4447 return true; 4448 4449 if (!this->emitGetPtrLocal(*Offset, Init)) 4450 return false; 4451 4452 if (!visitInitializer(Init)) 4453 return false; 4454 4455 if (!this->emitFinishInit(Init)) 4456 return false; 4457 4458 return this->emitPopPtr(Init); 4459 } 4460 return false; 4461 } 4462 return true; 4463 } 4464 4465 return false; 4466 } 4467 4468 template <class Emitter> 4469 bool Compiler<Emitter>::visitAPValue(const APValue &Val, PrimType ValType, 4470 const Expr *E) { 4471 assert(!DiscardResult); 4472 if (Val.isInt()) 4473 return this->emitConst(Val.getInt(), ValType, E); 4474 else if (Val.isFloat()) 4475 return this->emitConstFloat(Val.getFloat(), E); 4476 4477 if (Val.isLValue()) { 4478 if (Val.isNullPointer()) 4479 return this->emitNull(ValType, 0, nullptr, E); 4480 APValue::LValueBase Base = Val.getLValueBase(); 4481 if (const Expr *BaseExpr = Base.dyn_cast<const Expr *>()) 4482 return this->visit(BaseExpr); 4483 else if (const auto *VD = Base.dyn_cast<const ValueDecl *>()) { 4484 return this->visitDeclRef(VD, E); 4485 } 4486 } else if (Val.isMemberPointer()) { 4487 if (const ValueDecl *MemberDecl = Val.getMemberPointerDecl()) 4488 return this->emitGetMemberPtr(MemberDecl, E); 4489 return this->emitNullMemberPtr(0, nullptr, E); 4490 } 4491 4492 return false; 4493 } 4494 4495 template <class Emitter> 4496 bool Compiler<Emitter>::visitAPValueInitializer(const APValue &Val, 4497 const Expr *E) { 4498 4499 if (Val.isStruct()) { 4500 const Record *R = this->getRecord(E->getType()); 4501 assert(R); 4502 for (unsigned I = 0, N = Val.getStructNumFields(); I != N; ++I) { 4503 const APValue &F = Val.getStructField(I); 4504 const Record::Field *RF = R->getField(I); 4505 4506 if (F.isInt() || F.isFloat() || F.isLValue() || F.isMemberPointer()) { 4507 PrimType T = classifyPrim(RF->Decl->getType()); 4508 if (!this->visitAPValue(F, T, E)) 4509 return false; 4510 if (!this->emitInitField(T, RF->Offset, E)) 4511 return false; 4512 } else if (F.isArray()) { 4513 assert(RF->Desc->isPrimitiveArray()); 4514 const auto *ArrType = RF->Decl->getType()->getAsArrayTypeUnsafe(); 4515 PrimType ElemT = classifyPrim(ArrType->getElementType()); 4516 assert(ArrType); 4517 4518 if (!this->emitGetPtrField(RF->Offset, E)) 4519 return false; 4520 4521 for (unsigned A = 0, AN = F.getArraySize(); A != AN; ++A) { 4522 if (!this->visitAPValue(F.getArrayInitializedElt(A), ElemT, E)) 4523 return false; 4524 if (!this->emitInitElem(ElemT, A, E)) 4525 return false; 4526 } 4527 4528 if (!this->emitPopPtr(E)) 4529 return false; 4530 } else if (F.isStruct() || F.isUnion()) { 4531 if (!this->emitGetPtrField(RF->Offset, E)) 4532 return false; 4533 if (!this->visitAPValueInitializer(F, E)) 4534 return false; 4535 if (!this->emitPopPtr(E)) 4536 return false; 4537 } else { 4538 assert(false && "I don't think this should be possible"); 4539 } 4540 } 4541 return true; 4542 } else if (Val.isUnion()) { 4543 const FieldDecl *UnionField = Val.getUnionField(); 4544 const Record *R = this->getRecord(UnionField->getParent()); 4545 assert(R); 4546 const APValue &F = Val.getUnionValue(); 4547 const Record::Field *RF = R->getField(UnionField); 4548 PrimType T = classifyPrim(RF->Decl->getType()); 4549 if (!this->visitAPValue(F, T, E)) 4550 return false; 4551 return this->emitInitField(T, RF->Offset, E); 4552 } 4553 // TODO: Other types. 4554 4555 return false; 4556 } 4557 4558 template <class Emitter> 4559 bool Compiler<Emitter>::VisitBuiltinCallExpr(const CallExpr *E, 4560 unsigned BuiltinID) { 4561 const Function *Func = getFunction(E->getDirectCallee()); 4562 if (!Func) 4563 return false; 4564 4565 // For these, we're expected to ultimately return an APValue pointing 4566 // to the CallExpr. This is needed to get the correct codegen. 4567 if (BuiltinID == Builtin::BI__builtin___CFStringMakeConstantString || 4568 BuiltinID == Builtin::BI__builtin___NSStringMakeConstantString || 4569 BuiltinID == Builtin::BI__builtin_ptrauth_sign_constant || 4570 BuiltinID == Builtin::BI__builtin_function_start) { 4571 if (DiscardResult) 4572 return true; 4573 return this->emitDummyPtr(E, E); 4574 } 4575 4576 QualType ReturnType = E->getType(); 4577 std::optional<PrimType> ReturnT = classify(E); 4578 4579 // Non-primitive return type. Prepare storage. 4580 if (!Initializing && !ReturnT && !ReturnType->isVoidType()) { 4581 std::optional<unsigned> LocalIndex = allocateLocal(E); 4582 if (!LocalIndex) 4583 return false; 4584 if (!this->emitGetPtrLocal(*LocalIndex, E)) 4585 return false; 4586 } 4587 4588 if (!Func->isUnevaluatedBuiltin()) { 4589 // Put arguments on the stack. 4590 for (const auto *Arg : E->arguments()) { 4591 if (!this->visit(Arg)) 4592 return false; 4593 } 4594 } 4595 4596 if (!this->emitCallBI(Func, E, BuiltinID, E)) 4597 return false; 4598 4599 if (DiscardResult && !ReturnType->isVoidType()) { 4600 assert(ReturnT); 4601 return this->emitPop(*ReturnT, E); 4602 } 4603 4604 return true; 4605 } 4606 4607 template <class Emitter> 4608 bool Compiler<Emitter>::VisitCallExpr(const CallExpr *E) { 4609 if (unsigned BuiltinID = E->getBuiltinCallee()) 4610 return VisitBuiltinCallExpr(E, BuiltinID); 4611 4612 const FunctionDecl *FuncDecl = E->getDirectCallee(); 4613 // Calls to replaceable operator new/operator delete. 4614 if (FuncDecl && FuncDecl->isReplaceableGlobalAllocationFunction()) { 4615 if (FuncDecl->getDeclName().getCXXOverloadedOperator() == OO_New || 4616 FuncDecl->getDeclName().getCXXOverloadedOperator() == OO_Array_New) { 4617 return VisitBuiltinCallExpr(E, Builtin::BI__builtin_operator_new); 4618 } else { 4619 assert(FuncDecl->getDeclName().getCXXOverloadedOperator() == OO_Delete); 4620 return VisitBuiltinCallExpr(E, Builtin::BI__builtin_operator_delete); 4621 } 4622 } 4623 // Explicit calls to trivial destructors 4624 if (const auto *DD = dyn_cast_if_present<CXXDestructorDecl>(FuncDecl); 4625 DD && DD->isTrivial()) 4626 return true; 4627 4628 QualType ReturnType = E->getCallReturnType(Ctx.getASTContext()); 4629 std::optional<PrimType> T = classify(ReturnType); 4630 bool HasRVO = !ReturnType->isVoidType() && !T; 4631 4632 if (HasRVO) { 4633 if (DiscardResult) { 4634 // If we need to discard the return value but the function returns its 4635 // value via an RVO pointer, we need to create one such pointer just 4636 // for this call. 4637 if (std::optional<unsigned> LocalIndex = allocateLocal(E)) { 4638 if (!this->emitGetPtrLocal(*LocalIndex, E)) 4639 return false; 4640 } 4641 } else { 4642 // We need the result. Prepare a pointer to return or 4643 // dup the current one. 4644 if (!Initializing) { 4645 if (std::optional<unsigned> LocalIndex = allocateLocal(E)) { 4646 if (!this->emitGetPtrLocal(*LocalIndex, E)) 4647 return false; 4648 } 4649 } 4650 if (!this->emitDupPtr(E)) 4651 return false; 4652 } 4653 } 4654 4655 SmallVector<const Expr *, 8> Args( 4656 llvm::ArrayRef(E->getArgs(), E->getNumArgs())); 4657 4658 bool IsAssignmentOperatorCall = false; 4659 if (const auto *OCE = dyn_cast<CXXOperatorCallExpr>(E); 4660 OCE && OCE->isAssignmentOp()) { 4661 // Just like with regular assignments, we need to special-case assignment 4662 // operators here and evaluate the RHS (the second arg) before the LHS (the 4663 // first arg. We fix this by using a Flip op later. 4664 assert(Args.size() == 2); 4665 IsAssignmentOperatorCall = true; 4666 std::reverse(Args.begin(), Args.end()); 4667 } 4668 // Calling a static operator will still 4669 // pass the instance, but we don't need it. 4670 // Discard it here. 4671 if (isa<CXXOperatorCallExpr>(E)) { 4672 if (const auto *MD = dyn_cast_if_present<CXXMethodDecl>(FuncDecl); 4673 MD && MD->isStatic()) { 4674 if (!this->discard(E->getArg(0))) 4675 return false; 4676 // Drop first arg. 4677 Args.erase(Args.begin()); 4678 } 4679 } 4680 4681 std::optional<unsigned> CalleeOffset; 4682 // Add the (optional, implicit) This pointer. 4683 if (const auto *MC = dyn_cast<CXXMemberCallExpr>(E)) { 4684 if (!FuncDecl && classifyPrim(E->getCallee()) == PT_MemberPtr) { 4685 // If we end up creating a CallPtr op for this, we need the base of the 4686 // member pointer as the instance pointer, and later extract the function 4687 // decl as the function pointer. 4688 const Expr *Callee = E->getCallee(); 4689 CalleeOffset = 4690 this->allocateLocalPrimitive(Callee, PT_MemberPtr, true, false); 4691 if (!this->visit(Callee)) 4692 return false; 4693 if (!this->emitSetLocal(PT_MemberPtr, *CalleeOffset, E)) 4694 return false; 4695 if (!this->emitGetLocal(PT_MemberPtr, *CalleeOffset, E)) 4696 return false; 4697 if (!this->emitGetMemberPtrBase(E)) 4698 return false; 4699 } else if (!this->visit(MC->getImplicitObjectArgument())) { 4700 return false; 4701 } 4702 } else if (!FuncDecl) { 4703 const Expr *Callee = E->getCallee(); 4704 CalleeOffset = this->allocateLocalPrimitive(Callee, PT_FnPtr, true, false); 4705 if (!this->visit(Callee)) 4706 return false; 4707 if (!this->emitSetLocal(PT_FnPtr, *CalleeOffset, E)) 4708 return false; 4709 } 4710 4711 llvm::BitVector NonNullArgs = collectNonNullArgs(FuncDecl, Args); 4712 // Put arguments on the stack. 4713 unsigned ArgIndex = 0; 4714 for (const auto *Arg : Args) { 4715 if (!this->visit(Arg)) 4716 return false; 4717 4718 // If we know the callee already, check the known parametrs for nullability. 4719 if (FuncDecl && NonNullArgs[ArgIndex]) { 4720 PrimType ArgT = classify(Arg).value_or(PT_Ptr); 4721 if (ArgT == PT_Ptr || ArgT == PT_FnPtr) { 4722 if (!this->emitCheckNonNullArg(ArgT, Arg)) 4723 return false; 4724 } 4725 } 4726 ++ArgIndex; 4727 } 4728 4729 // Undo the argument reversal we did earlier. 4730 if (IsAssignmentOperatorCall) { 4731 assert(Args.size() == 2); 4732 PrimType Arg1T = classify(Args[0]).value_or(PT_Ptr); 4733 PrimType Arg2T = classify(Args[1]).value_or(PT_Ptr); 4734 if (!this->emitFlip(Arg2T, Arg1T, E)) 4735 return false; 4736 } 4737 4738 if (FuncDecl) { 4739 const Function *Func = getFunction(FuncDecl); 4740 if (!Func) 4741 return false; 4742 assert(HasRVO == Func->hasRVO()); 4743 4744 bool HasQualifier = false; 4745 if (const auto *ME = dyn_cast<MemberExpr>(E->getCallee())) 4746 HasQualifier = ME->hasQualifier(); 4747 4748 bool IsVirtual = false; 4749 if (const auto *MD = dyn_cast<CXXMethodDecl>(FuncDecl)) 4750 IsVirtual = MD->isVirtual(); 4751 4752 // In any case call the function. The return value will end up on the stack 4753 // and if the function has RVO, we already have the pointer on the stack to 4754 // write the result into. 4755 if (IsVirtual && !HasQualifier) { 4756 uint32_t VarArgSize = 0; 4757 unsigned NumParams = 4758 Func->getNumWrittenParams() + isa<CXXOperatorCallExpr>(E); 4759 for (unsigned I = NumParams, N = E->getNumArgs(); I != N; ++I) 4760 VarArgSize += align(primSize(classify(E->getArg(I)).value_or(PT_Ptr))); 4761 4762 if (!this->emitCallVirt(Func, VarArgSize, E)) 4763 return false; 4764 } else if (Func->isVariadic()) { 4765 uint32_t VarArgSize = 0; 4766 unsigned NumParams = 4767 Func->getNumWrittenParams() + isa<CXXOperatorCallExpr>(E); 4768 for (unsigned I = NumParams, N = E->getNumArgs(); I != N; ++I) 4769 VarArgSize += align(primSize(classify(E->getArg(I)).value_or(PT_Ptr))); 4770 if (!this->emitCallVar(Func, VarArgSize, E)) 4771 return false; 4772 } else { 4773 if (!this->emitCall(Func, 0, E)) 4774 return false; 4775 } 4776 } else { 4777 // Indirect call. Visit the callee, which will leave a FunctionPointer on 4778 // the stack. Cleanup of the returned value if necessary will be done after 4779 // the function call completed. 4780 4781 // Sum the size of all args from the call expr. 4782 uint32_t ArgSize = 0; 4783 for (unsigned I = 0, N = E->getNumArgs(); I != N; ++I) 4784 ArgSize += align(primSize(classify(E->getArg(I)).value_or(PT_Ptr))); 4785 4786 // Get the callee, either from a member pointer or function pointer saved in 4787 // CalleeOffset. 4788 if (isa<CXXMemberCallExpr>(E) && CalleeOffset) { 4789 if (!this->emitGetLocal(PT_MemberPtr, *CalleeOffset, E)) 4790 return false; 4791 if (!this->emitGetMemberPtrDecl(E)) 4792 return false; 4793 } else { 4794 if (!this->emitGetLocal(PT_FnPtr, *CalleeOffset, E)) 4795 return false; 4796 } 4797 if (!this->emitCallPtr(ArgSize, E, E)) 4798 return false; 4799 } 4800 4801 // Cleanup for discarded return values. 4802 if (DiscardResult && !ReturnType->isVoidType() && T) 4803 return this->emitPop(*T, E); 4804 4805 return true; 4806 } 4807 4808 template <class Emitter> 4809 bool Compiler<Emitter>::VisitCXXDefaultInitExpr(const CXXDefaultInitExpr *E) { 4810 SourceLocScope<Emitter> SLS(this, E); 4811 4812 return this->delegate(E->getExpr()); 4813 } 4814 4815 template <class Emitter> 4816 bool Compiler<Emitter>::VisitCXXDefaultArgExpr(const CXXDefaultArgExpr *E) { 4817 SourceLocScope<Emitter> SLS(this, E); 4818 4819 return this->delegate(E->getExpr()); 4820 } 4821 4822 template <class Emitter> 4823 bool Compiler<Emitter>::VisitCXXBoolLiteralExpr(const CXXBoolLiteralExpr *E) { 4824 if (DiscardResult) 4825 return true; 4826 4827 return this->emitConstBool(E->getValue(), E); 4828 } 4829 4830 template <class Emitter> 4831 bool Compiler<Emitter>::VisitCXXNullPtrLiteralExpr( 4832 const CXXNullPtrLiteralExpr *E) { 4833 if (DiscardResult) 4834 return true; 4835 4836 uint64_t Val = Ctx.getASTContext().getTargetNullPointerValue(E->getType()); 4837 return this->emitNullPtr(Val, nullptr, E); 4838 } 4839 4840 template <class Emitter> 4841 bool Compiler<Emitter>::VisitGNUNullExpr(const GNUNullExpr *E) { 4842 if (DiscardResult) 4843 return true; 4844 4845 assert(E->getType()->isIntegerType()); 4846 4847 PrimType T = classifyPrim(E->getType()); 4848 return this->emitZero(T, E); 4849 } 4850 4851 template <class Emitter> 4852 bool Compiler<Emitter>::VisitCXXThisExpr(const CXXThisExpr *E) { 4853 if (DiscardResult) 4854 return true; 4855 4856 if (this->LambdaThisCapture.Offset > 0) { 4857 if (this->LambdaThisCapture.IsPtr) 4858 return this->emitGetThisFieldPtr(this->LambdaThisCapture.Offset, E); 4859 return this->emitGetPtrThisField(this->LambdaThisCapture.Offset, E); 4860 } 4861 4862 // In some circumstances, the 'this' pointer does not actually refer to the 4863 // instance pointer of the current function frame, but e.g. to the declaration 4864 // currently being initialized. Here we emit the necessary instruction(s) for 4865 // this scenario. 4866 if (!InitStackActive) 4867 return this->emitThis(E); 4868 4869 if (!InitStack.empty()) { 4870 // If our init stack is, for example: 4871 // 0 Stack: 3 (decl) 4872 // 1 Stack: 6 (init list) 4873 // 2 Stack: 1 (field) 4874 // 3 Stack: 6 (init list) 4875 // 4 Stack: 1 (field) 4876 // 4877 // We want to find the LAST element in it that's an init list, 4878 // which is marked with the K_InitList marker. The index right 4879 // before that points to an init list. We need to find the 4880 // elements before the K_InitList element that point to a base 4881 // (e.g. a decl or This), optionally followed by field, elem, etc. 4882 // In the example above, we want to emit elements [0..2]. 4883 unsigned StartIndex = 0; 4884 unsigned EndIndex = 0; 4885 // Find the init list. 4886 for (StartIndex = InitStack.size() - 1; StartIndex > 0; --StartIndex) { 4887 if (InitStack[StartIndex].Kind == InitLink::K_InitList || 4888 InitStack[StartIndex].Kind == InitLink::K_This) { 4889 EndIndex = StartIndex; 4890 --StartIndex; 4891 break; 4892 } 4893 } 4894 4895 // Walk backwards to find the base. 4896 for (; StartIndex > 0; --StartIndex) { 4897 if (InitStack[StartIndex].Kind == InitLink::K_InitList) 4898 continue; 4899 4900 if (InitStack[StartIndex].Kind != InitLink::K_Field && 4901 InitStack[StartIndex].Kind != InitLink::K_Elem) 4902 break; 4903 } 4904 4905 // Emit the instructions. 4906 for (unsigned I = StartIndex; I != EndIndex; ++I) { 4907 if (InitStack[I].Kind == InitLink::K_InitList) 4908 continue; 4909 if (!InitStack[I].template emit<Emitter>(this, E)) 4910 return false; 4911 } 4912 return true; 4913 } 4914 return this->emitThis(E); 4915 } 4916 4917 template <class Emitter> bool Compiler<Emitter>::visitStmt(const Stmt *S) { 4918 switch (S->getStmtClass()) { 4919 case Stmt::CompoundStmtClass: 4920 return visitCompoundStmt(cast<CompoundStmt>(S)); 4921 case Stmt::DeclStmtClass: 4922 return visitDeclStmt(cast<DeclStmt>(S)); 4923 case Stmt::ReturnStmtClass: 4924 return visitReturnStmt(cast<ReturnStmt>(S)); 4925 case Stmt::IfStmtClass: 4926 return visitIfStmt(cast<IfStmt>(S)); 4927 case Stmt::WhileStmtClass: 4928 return visitWhileStmt(cast<WhileStmt>(S)); 4929 case Stmt::DoStmtClass: 4930 return visitDoStmt(cast<DoStmt>(S)); 4931 case Stmt::ForStmtClass: 4932 return visitForStmt(cast<ForStmt>(S)); 4933 case Stmt::CXXForRangeStmtClass: 4934 return visitCXXForRangeStmt(cast<CXXForRangeStmt>(S)); 4935 case Stmt::BreakStmtClass: 4936 return visitBreakStmt(cast<BreakStmt>(S)); 4937 case Stmt::ContinueStmtClass: 4938 return visitContinueStmt(cast<ContinueStmt>(S)); 4939 case Stmt::SwitchStmtClass: 4940 return visitSwitchStmt(cast<SwitchStmt>(S)); 4941 case Stmt::CaseStmtClass: 4942 return visitCaseStmt(cast<CaseStmt>(S)); 4943 case Stmt::DefaultStmtClass: 4944 return visitDefaultStmt(cast<DefaultStmt>(S)); 4945 case Stmt::AttributedStmtClass: 4946 return visitAttributedStmt(cast<AttributedStmt>(S)); 4947 case Stmt::CXXTryStmtClass: 4948 return visitCXXTryStmt(cast<CXXTryStmt>(S)); 4949 case Stmt::NullStmtClass: 4950 return true; 4951 // Always invalid statements. 4952 case Stmt::GCCAsmStmtClass: 4953 case Stmt::MSAsmStmtClass: 4954 case Stmt::GotoStmtClass: 4955 return this->emitInvalid(S); 4956 case Stmt::LabelStmtClass: 4957 return this->visitStmt(cast<LabelStmt>(S)->getSubStmt()); 4958 default: { 4959 if (const auto *E = dyn_cast<Expr>(S)) 4960 return this->discard(E); 4961 return false; 4962 } 4963 } 4964 } 4965 4966 template <class Emitter> 4967 bool Compiler<Emitter>::visitCompoundStmt(const CompoundStmt *S) { 4968 BlockScope<Emitter> Scope(this); 4969 for (const auto *InnerStmt : S->body()) 4970 if (!visitStmt(InnerStmt)) 4971 return false; 4972 return Scope.destroyLocals(); 4973 } 4974 4975 template <class Emitter> 4976 bool Compiler<Emitter>::visitDeclStmt(const DeclStmt *DS) { 4977 for (const auto *D : DS->decls()) { 4978 if (isa<StaticAssertDecl, TagDecl, TypedefNameDecl, UsingEnumDecl, 4979 FunctionDecl>(D)) 4980 continue; 4981 4982 const auto *VD = dyn_cast<VarDecl>(D); 4983 if (!VD) 4984 return false; 4985 if (!this->visitVarDecl(VD)) 4986 return false; 4987 } 4988 4989 return true; 4990 } 4991 4992 template <class Emitter> 4993 bool Compiler<Emitter>::visitReturnStmt(const ReturnStmt *RS) { 4994 if (this->InStmtExpr) 4995 return this->emitUnsupported(RS); 4996 4997 if (const Expr *RE = RS->getRetValue()) { 4998 LocalScope<Emitter> RetScope(this); 4999 if (ReturnType) { 5000 // Primitive types are simply returned. 5001 if (!this->visit(RE)) 5002 return false; 5003 this->emitCleanup(); 5004 return this->emitRet(*ReturnType, RS); 5005 } else if (RE->getType()->isVoidType()) { 5006 if (!this->visit(RE)) 5007 return false; 5008 } else { 5009 InitLinkScope<Emitter> ILS(this, InitLink::RVO()); 5010 // RVO - construct the value in the return location. 5011 if (!this->emitRVOPtr(RE)) 5012 return false; 5013 if (!this->visitInitializer(RE)) 5014 return false; 5015 if (!this->emitPopPtr(RE)) 5016 return false; 5017 5018 this->emitCleanup(); 5019 return this->emitRetVoid(RS); 5020 } 5021 } 5022 5023 // Void return. 5024 this->emitCleanup(); 5025 return this->emitRetVoid(RS); 5026 } 5027 5028 template <class Emitter> bool Compiler<Emitter>::visitIfStmt(const IfStmt *IS) { 5029 if (auto *CondInit = IS->getInit()) 5030 if (!visitStmt(CondInit)) 5031 return false; 5032 5033 if (const DeclStmt *CondDecl = IS->getConditionVariableDeclStmt()) 5034 if (!visitDeclStmt(CondDecl)) 5035 return false; 5036 5037 // Compile condition. 5038 if (IS->isNonNegatedConsteval()) { 5039 if (!this->emitIsConstantContext(IS)) 5040 return false; 5041 } else if (IS->isNegatedConsteval()) { 5042 if (!this->emitIsConstantContext(IS)) 5043 return false; 5044 if (!this->emitInv(IS)) 5045 return false; 5046 } else { 5047 if (!this->visitBool(IS->getCond())) 5048 return false; 5049 } 5050 5051 if (const Stmt *Else = IS->getElse()) { 5052 LabelTy LabelElse = this->getLabel(); 5053 LabelTy LabelEnd = this->getLabel(); 5054 if (!this->jumpFalse(LabelElse)) 5055 return false; 5056 { 5057 LocalScope<Emitter> ThenScope(this); 5058 if (!visitStmt(IS->getThen())) 5059 return false; 5060 if (!ThenScope.destroyLocals()) 5061 return false; 5062 } 5063 if (!this->jump(LabelEnd)) 5064 return false; 5065 this->emitLabel(LabelElse); 5066 { 5067 LocalScope<Emitter> ElseScope(this); 5068 if (!visitStmt(Else)) 5069 return false; 5070 if (!ElseScope.destroyLocals()) 5071 return false; 5072 } 5073 this->emitLabel(LabelEnd); 5074 } else { 5075 LabelTy LabelEnd = this->getLabel(); 5076 if (!this->jumpFalse(LabelEnd)) 5077 return false; 5078 { 5079 LocalScope<Emitter> ThenScope(this); 5080 if (!visitStmt(IS->getThen())) 5081 return false; 5082 if (!ThenScope.destroyLocals()) 5083 return false; 5084 } 5085 this->emitLabel(LabelEnd); 5086 } 5087 5088 return true; 5089 } 5090 5091 template <class Emitter> 5092 bool Compiler<Emitter>::visitWhileStmt(const WhileStmt *S) { 5093 const Expr *Cond = S->getCond(); 5094 const Stmt *Body = S->getBody(); 5095 5096 LabelTy CondLabel = this->getLabel(); // Label before the condition. 5097 LabelTy EndLabel = this->getLabel(); // Label after the loop. 5098 LoopScope<Emitter> LS(this, EndLabel, CondLabel); 5099 5100 this->fallthrough(CondLabel); 5101 this->emitLabel(CondLabel); 5102 5103 { 5104 LocalScope<Emitter> CondScope(this); 5105 if (const DeclStmt *CondDecl = S->getConditionVariableDeclStmt()) 5106 if (!visitDeclStmt(CondDecl)) 5107 return false; 5108 5109 if (!this->visitBool(Cond)) 5110 return false; 5111 if (!this->jumpFalse(EndLabel)) 5112 return false; 5113 5114 if (!this->visitStmt(Body)) 5115 return false; 5116 5117 if (!CondScope.destroyLocals()) 5118 return false; 5119 } 5120 if (!this->jump(CondLabel)) 5121 return false; 5122 this->fallthrough(EndLabel); 5123 this->emitLabel(EndLabel); 5124 5125 return true; 5126 } 5127 5128 template <class Emitter> bool Compiler<Emitter>::visitDoStmt(const DoStmt *S) { 5129 const Expr *Cond = S->getCond(); 5130 const Stmt *Body = S->getBody(); 5131 5132 LabelTy StartLabel = this->getLabel(); 5133 LabelTy EndLabel = this->getLabel(); 5134 LabelTy CondLabel = this->getLabel(); 5135 LoopScope<Emitter> LS(this, EndLabel, CondLabel); 5136 5137 this->fallthrough(StartLabel); 5138 this->emitLabel(StartLabel); 5139 5140 { 5141 LocalScope<Emitter> CondScope(this); 5142 if (!this->visitStmt(Body)) 5143 return false; 5144 this->fallthrough(CondLabel); 5145 this->emitLabel(CondLabel); 5146 if (!this->visitBool(Cond)) 5147 return false; 5148 5149 if (!CondScope.destroyLocals()) 5150 return false; 5151 } 5152 if (!this->jumpTrue(StartLabel)) 5153 return false; 5154 5155 this->fallthrough(EndLabel); 5156 this->emitLabel(EndLabel); 5157 return true; 5158 } 5159 5160 template <class Emitter> 5161 bool Compiler<Emitter>::visitForStmt(const ForStmt *S) { 5162 // for (Init; Cond; Inc) { Body } 5163 const Stmt *Init = S->getInit(); 5164 const Expr *Cond = S->getCond(); 5165 const Expr *Inc = S->getInc(); 5166 const Stmt *Body = S->getBody(); 5167 5168 LabelTy EndLabel = this->getLabel(); 5169 LabelTy CondLabel = this->getLabel(); 5170 LabelTy IncLabel = this->getLabel(); 5171 LoopScope<Emitter> LS(this, EndLabel, IncLabel); 5172 5173 if (Init && !this->visitStmt(Init)) 5174 return false; 5175 5176 this->fallthrough(CondLabel); 5177 this->emitLabel(CondLabel); 5178 5179 { 5180 LocalScope<Emitter> CondScope(this); 5181 if (const DeclStmt *CondDecl = S->getConditionVariableDeclStmt()) 5182 if (!visitDeclStmt(CondDecl)) 5183 return false; 5184 5185 if (Cond) { 5186 if (!this->visitBool(Cond)) 5187 return false; 5188 if (!this->jumpFalse(EndLabel)) 5189 return false; 5190 } 5191 5192 if (Body && !this->visitStmt(Body)) 5193 return false; 5194 5195 this->fallthrough(IncLabel); 5196 this->emitLabel(IncLabel); 5197 if (Inc && !this->discard(Inc)) 5198 return false; 5199 5200 if (!CondScope.destroyLocals()) 5201 return false; 5202 } 5203 if (!this->jump(CondLabel)) 5204 return false; 5205 5206 this->fallthrough(EndLabel); 5207 this->emitLabel(EndLabel); 5208 return true; 5209 } 5210 5211 template <class Emitter> 5212 bool Compiler<Emitter>::visitCXXForRangeStmt(const CXXForRangeStmt *S) { 5213 const Stmt *Init = S->getInit(); 5214 const Expr *Cond = S->getCond(); 5215 const Expr *Inc = S->getInc(); 5216 const Stmt *Body = S->getBody(); 5217 const Stmt *BeginStmt = S->getBeginStmt(); 5218 const Stmt *RangeStmt = S->getRangeStmt(); 5219 const Stmt *EndStmt = S->getEndStmt(); 5220 const VarDecl *LoopVar = S->getLoopVariable(); 5221 5222 LabelTy EndLabel = this->getLabel(); 5223 LabelTy CondLabel = this->getLabel(); 5224 LabelTy IncLabel = this->getLabel(); 5225 LoopScope<Emitter> LS(this, EndLabel, IncLabel); 5226 5227 // Emit declarations needed in the loop. 5228 if (Init && !this->visitStmt(Init)) 5229 return false; 5230 if (!this->visitStmt(RangeStmt)) 5231 return false; 5232 if (!this->visitStmt(BeginStmt)) 5233 return false; 5234 if (!this->visitStmt(EndStmt)) 5235 return false; 5236 5237 // Now the condition as well as the loop variable assignment. 5238 this->fallthrough(CondLabel); 5239 this->emitLabel(CondLabel); 5240 if (!this->visitBool(Cond)) 5241 return false; 5242 if (!this->jumpFalse(EndLabel)) 5243 return false; 5244 5245 if (!this->visitVarDecl(LoopVar)) 5246 return false; 5247 5248 // Body. 5249 { 5250 if (!this->visitStmt(Body)) 5251 return false; 5252 5253 this->fallthrough(IncLabel); 5254 this->emitLabel(IncLabel); 5255 if (!this->discard(Inc)) 5256 return false; 5257 } 5258 5259 if (!this->jump(CondLabel)) 5260 return false; 5261 5262 this->fallthrough(EndLabel); 5263 this->emitLabel(EndLabel); 5264 return true; 5265 } 5266 5267 template <class Emitter> 5268 bool Compiler<Emitter>::visitBreakStmt(const BreakStmt *S) { 5269 if (!BreakLabel) 5270 return false; 5271 5272 for (VariableScope<Emitter> *C = VarScope; C != BreakVarScope; 5273 C = C->getParent()) 5274 C->emitDestruction(); 5275 return this->jump(*BreakLabel); 5276 } 5277 5278 template <class Emitter> 5279 bool Compiler<Emitter>::visitContinueStmt(const ContinueStmt *S) { 5280 if (!ContinueLabel) 5281 return false; 5282 5283 for (VariableScope<Emitter> *C = VarScope; 5284 C && C->getParent() != ContinueVarScope; C = C->getParent()) 5285 C->emitDestruction(); 5286 return this->jump(*ContinueLabel); 5287 } 5288 5289 template <class Emitter> 5290 bool Compiler<Emitter>::visitSwitchStmt(const SwitchStmt *S) { 5291 const Expr *Cond = S->getCond(); 5292 PrimType CondT = this->classifyPrim(Cond->getType()); 5293 LocalScope<Emitter> LS(this); 5294 5295 LabelTy EndLabel = this->getLabel(); 5296 OptLabelTy DefaultLabel = std::nullopt; 5297 unsigned CondVar = this->allocateLocalPrimitive(Cond, CondT, true, false); 5298 5299 if (const auto *CondInit = S->getInit()) 5300 if (!visitStmt(CondInit)) 5301 return false; 5302 5303 if (const DeclStmt *CondDecl = S->getConditionVariableDeclStmt()) 5304 if (!visitDeclStmt(CondDecl)) 5305 return false; 5306 5307 // Initialize condition variable. 5308 if (!this->visit(Cond)) 5309 return false; 5310 if (!this->emitSetLocal(CondT, CondVar, S)) 5311 return false; 5312 5313 CaseMap CaseLabels; 5314 // Create labels and comparison ops for all case statements. 5315 for (const SwitchCase *SC = S->getSwitchCaseList(); SC; 5316 SC = SC->getNextSwitchCase()) { 5317 if (const auto *CS = dyn_cast<CaseStmt>(SC)) { 5318 // FIXME: Implement ranges. 5319 if (CS->caseStmtIsGNURange()) 5320 return false; 5321 CaseLabels[SC] = this->getLabel(); 5322 5323 const Expr *Value = CS->getLHS(); 5324 PrimType ValueT = this->classifyPrim(Value->getType()); 5325 5326 // Compare the case statement's value to the switch condition. 5327 if (!this->emitGetLocal(CondT, CondVar, CS)) 5328 return false; 5329 if (!this->visit(Value)) 5330 return false; 5331 5332 // Compare and jump to the case label. 5333 if (!this->emitEQ(ValueT, S)) 5334 return false; 5335 if (!this->jumpTrue(CaseLabels[CS])) 5336 return false; 5337 } else { 5338 assert(!DefaultLabel); 5339 DefaultLabel = this->getLabel(); 5340 } 5341 } 5342 5343 // If none of the conditions above were true, fall through to the default 5344 // statement or jump after the switch statement. 5345 if (DefaultLabel) { 5346 if (!this->jump(*DefaultLabel)) 5347 return false; 5348 } else { 5349 if (!this->jump(EndLabel)) 5350 return false; 5351 } 5352 5353 SwitchScope<Emitter> SS(this, std::move(CaseLabels), EndLabel, DefaultLabel); 5354 if (!this->visitStmt(S->getBody())) 5355 return false; 5356 this->emitLabel(EndLabel); 5357 5358 return LS.destroyLocals(); 5359 } 5360 5361 template <class Emitter> 5362 bool Compiler<Emitter>::visitCaseStmt(const CaseStmt *S) { 5363 this->emitLabel(CaseLabels[S]); 5364 return this->visitStmt(S->getSubStmt()); 5365 } 5366 5367 template <class Emitter> 5368 bool Compiler<Emitter>::visitDefaultStmt(const DefaultStmt *S) { 5369 this->emitLabel(*DefaultLabel); 5370 return this->visitStmt(S->getSubStmt()); 5371 } 5372 5373 template <class Emitter> 5374 bool Compiler<Emitter>::visitAttributedStmt(const AttributedStmt *S) { 5375 if (this->Ctx.getLangOpts().CXXAssumptions && 5376 !this->Ctx.getLangOpts().MSVCCompat) { 5377 for (const Attr *A : S->getAttrs()) { 5378 auto *AA = dyn_cast<CXXAssumeAttr>(A); 5379 if (!AA) 5380 continue; 5381 5382 assert(isa<NullStmt>(S->getSubStmt())); 5383 5384 const Expr *Assumption = AA->getAssumption(); 5385 if (Assumption->isValueDependent()) 5386 return false; 5387 5388 if (Assumption->HasSideEffects(this->Ctx.getASTContext())) 5389 continue; 5390 5391 // Evaluate assumption. 5392 if (!this->visitBool(Assumption)) 5393 return false; 5394 5395 if (!this->emitAssume(Assumption)) 5396 return false; 5397 } 5398 } 5399 5400 // Ignore other attributes. 5401 return this->visitStmt(S->getSubStmt()); 5402 } 5403 5404 template <class Emitter> 5405 bool Compiler<Emitter>::visitCXXTryStmt(const CXXTryStmt *S) { 5406 // Ignore all handlers. 5407 return this->visitStmt(S->getTryBlock()); 5408 } 5409 5410 template <class Emitter> 5411 bool Compiler<Emitter>::emitLambdaStaticInvokerBody(const CXXMethodDecl *MD) { 5412 assert(MD->isLambdaStaticInvoker()); 5413 assert(MD->hasBody()); 5414 assert(cast<CompoundStmt>(MD->getBody())->body_empty()); 5415 5416 const CXXRecordDecl *ClosureClass = MD->getParent(); 5417 const CXXMethodDecl *LambdaCallOp = ClosureClass->getLambdaCallOperator(); 5418 assert(ClosureClass->captures_begin() == ClosureClass->captures_end()); 5419 const Function *Func = this->getFunction(LambdaCallOp); 5420 if (!Func) 5421 return false; 5422 assert(Func->hasThisPointer()); 5423 assert(Func->getNumParams() == (MD->getNumParams() + 1 + Func->hasRVO())); 5424 5425 if (Func->hasRVO()) { 5426 if (!this->emitRVOPtr(MD)) 5427 return false; 5428 } 5429 5430 // The lambda call operator needs an instance pointer, but we don't have 5431 // one here, and we don't need one either because the lambda cannot have 5432 // any captures, as verified above. Emit a null pointer. This is then 5433 // special-cased when interpreting to not emit any misleading diagnostics. 5434 if (!this->emitNullPtr(0, nullptr, MD)) 5435 return false; 5436 5437 // Forward all arguments from the static invoker to the lambda call operator. 5438 for (const ParmVarDecl *PVD : MD->parameters()) { 5439 auto It = this->Params.find(PVD); 5440 assert(It != this->Params.end()); 5441 5442 // We do the lvalue-to-rvalue conversion manually here, so no need 5443 // to care about references. 5444 PrimType ParamType = this->classify(PVD->getType()).value_or(PT_Ptr); 5445 if (!this->emitGetParam(ParamType, It->second.Offset, MD)) 5446 return false; 5447 } 5448 5449 if (!this->emitCall(Func, 0, LambdaCallOp)) 5450 return false; 5451 5452 this->emitCleanup(); 5453 if (ReturnType) 5454 return this->emitRet(*ReturnType, MD); 5455 5456 // Nothing to do, since we emitted the RVO pointer above. 5457 return this->emitRetVoid(MD); 5458 } 5459 5460 template <class Emitter> 5461 bool Compiler<Emitter>::checkLiteralType(const Expr *E) { 5462 if (Ctx.getLangOpts().CPlusPlus23) 5463 return true; 5464 5465 if (!E->isPRValue() || E->getType()->isLiteralType(Ctx.getASTContext())) 5466 return true; 5467 5468 return this->emitCheckLiteralType(E->getType().getTypePtr(), E); 5469 } 5470 5471 template <class Emitter> 5472 bool Compiler<Emitter>::compileConstructor(const CXXConstructorDecl *Ctor) { 5473 assert(!ReturnType); 5474 5475 auto emitFieldInitializer = [&](const Record::Field *F, unsigned FieldOffset, 5476 const Expr *InitExpr) -> bool { 5477 // We don't know what to do with these, so just return false. 5478 if (InitExpr->getType().isNull()) 5479 return false; 5480 5481 if (std::optional<PrimType> T = this->classify(InitExpr)) { 5482 if (!this->visit(InitExpr)) 5483 return false; 5484 5485 if (F->isBitField()) 5486 return this->emitInitThisBitField(*T, F, FieldOffset, InitExpr); 5487 return this->emitInitThisField(*T, FieldOffset, InitExpr); 5488 } 5489 // Non-primitive case. Get a pointer to the field-to-initialize 5490 // on the stack and call visitInitialzer() for it. 5491 InitLinkScope<Emitter> FieldScope(this, InitLink::Field(F->Offset)); 5492 if (!this->emitGetPtrThisField(FieldOffset, InitExpr)) 5493 return false; 5494 5495 if (!this->visitInitializer(InitExpr)) 5496 return false; 5497 5498 return this->emitFinishInitPop(InitExpr); 5499 }; 5500 5501 const RecordDecl *RD = Ctor->getParent(); 5502 const Record *R = this->getRecord(RD); 5503 if (!R) 5504 return false; 5505 5506 if (R->isUnion() && Ctor->isCopyOrMoveConstructor()) { 5507 // union copy and move ctors are special. 5508 assert(cast<CompoundStmt>(Ctor->getBody())->body_empty()); 5509 if (!this->emitThis(Ctor)) 5510 return false; 5511 5512 auto PVD = Ctor->getParamDecl(0); 5513 ParamOffset PO = this->Params[PVD]; // Must exist. 5514 5515 if (!this->emitGetParam(PT_Ptr, PO.Offset, Ctor)) 5516 return false; 5517 5518 return this->emitMemcpy(Ctor) && this->emitPopPtr(Ctor) && 5519 this->emitRetVoid(Ctor); 5520 } 5521 5522 InitLinkScope<Emitter> InitScope(this, InitLink::This()); 5523 for (const auto *Init : Ctor->inits()) { 5524 // Scope needed for the initializers. 5525 BlockScope<Emitter> Scope(this); 5526 5527 const Expr *InitExpr = Init->getInit(); 5528 if (const FieldDecl *Member = Init->getMember()) { 5529 const Record::Field *F = R->getField(Member); 5530 5531 if (!emitFieldInitializer(F, F->Offset, InitExpr)) 5532 return false; 5533 } else if (const Type *Base = Init->getBaseClass()) { 5534 const auto *BaseDecl = Base->getAsCXXRecordDecl(); 5535 assert(BaseDecl); 5536 5537 if (Init->isBaseVirtual()) { 5538 assert(R->getVirtualBase(BaseDecl)); 5539 if (!this->emitGetPtrThisVirtBase(BaseDecl, InitExpr)) 5540 return false; 5541 5542 } else { 5543 // Base class initializer. 5544 // Get This Base and call initializer on it. 5545 const Record::Base *B = R->getBase(BaseDecl); 5546 assert(B); 5547 if (!this->emitGetPtrThisBase(B->Offset, InitExpr)) 5548 return false; 5549 } 5550 5551 if (!this->visitInitializer(InitExpr)) 5552 return false; 5553 if (!this->emitFinishInitPop(InitExpr)) 5554 return false; 5555 } else if (const IndirectFieldDecl *IFD = Init->getIndirectMember()) { 5556 assert(IFD->getChainingSize() >= 2); 5557 5558 unsigned NestedFieldOffset = 0; 5559 const Record::Field *NestedField = nullptr; 5560 for (const NamedDecl *ND : IFD->chain()) { 5561 const auto *FD = cast<FieldDecl>(ND); 5562 const Record *FieldRecord = this->P.getOrCreateRecord(FD->getParent()); 5563 assert(FieldRecord); 5564 5565 NestedField = FieldRecord->getField(FD); 5566 assert(NestedField); 5567 5568 NestedFieldOffset += NestedField->Offset; 5569 } 5570 assert(NestedField); 5571 5572 if (!emitFieldInitializer(NestedField, NestedFieldOffset, InitExpr)) 5573 return false; 5574 } else { 5575 assert(Init->isDelegatingInitializer()); 5576 if (!this->emitThis(InitExpr)) 5577 return false; 5578 if (!this->visitInitializer(Init->getInit())) 5579 return false; 5580 if (!this->emitPopPtr(InitExpr)) 5581 return false; 5582 } 5583 5584 if (!Scope.destroyLocals()) 5585 return false; 5586 } 5587 5588 if (const auto *Body = Ctor->getBody()) 5589 if (!visitStmt(Body)) 5590 return false; 5591 5592 return this->emitRetVoid(SourceInfo{}); 5593 } 5594 5595 template <class Emitter> 5596 bool Compiler<Emitter>::compileDestructor(const CXXDestructorDecl *Dtor) { 5597 const RecordDecl *RD = Dtor->getParent(); 5598 const Record *R = this->getRecord(RD); 5599 if (!R) 5600 return false; 5601 5602 if (!Dtor->isTrivial() && Dtor->getBody()) { 5603 if (!this->visitStmt(Dtor->getBody())) 5604 return false; 5605 } 5606 5607 if (!this->emitThis(Dtor)) 5608 return false; 5609 5610 assert(R); 5611 if (!R->isUnion()) { 5612 // First, destroy all fields. 5613 for (const Record::Field &Field : llvm::reverse(R->fields())) { 5614 const Descriptor *D = Field.Desc; 5615 if (!D->isPrimitive() && !D->isPrimitiveArray()) { 5616 if (!this->emitGetPtrField(Field.Offset, SourceInfo{})) 5617 return false; 5618 if (!this->emitDestruction(D, SourceInfo{})) 5619 return false; 5620 if (!this->emitPopPtr(SourceInfo{})) 5621 return false; 5622 } 5623 } 5624 } 5625 5626 for (const Record::Base &Base : llvm::reverse(R->bases())) { 5627 if (Base.R->isAnonymousUnion()) 5628 continue; 5629 5630 if (!this->emitGetPtrBase(Base.Offset, SourceInfo{})) 5631 return false; 5632 if (!this->emitRecordDestruction(Base.R, {})) 5633 return false; 5634 if (!this->emitPopPtr(SourceInfo{})) 5635 return false; 5636 } 5637 5638 // FIXME: Virtual bases. 5639 return this->emitPopPtr(Dtor) && this->emitRetVoid(Dtor); 5640 } 5641 5642 template <class Emitter> 5643 bool Compiler<Emitter>::visitFunc(const FunctionDecl *F) { 5644 // Classify the return type. 5645 ReturnType = this->classify(F->getReturnType()); 5646 5647 if (const auto *Ctor = dyn_cast<CXXConstructorDecl>(F)) 5648 return this->compileConstructor(Ctor); 5649 if (const auto *Dtor = dyn_cast<CXXDestructorDecl>(F)) 5650 return this->compileDestructor(Dtor); 5651 5652 // Emit custom code if this is a lambda static invoker. 5653 if (const auto *MD = dyn_cast<CXXMethodDecl>(F); 5654 MD && MD->isLambdaStaticInvoker()) 5655 return this->emitLambdaStaticInvokerBody(MD); 5656 5657 // Regular functions. 5658 if (const auto *Body = F->getBody()) 5659 if (!visitStmt(Body)) 5660 return false; 5661 5662 // Emit a guard return to protect against a code path missing one. 5663 if (F->getReturnType()->isVoidType()) 5664 return this->emitRetVoid(SourceInfo{}); 5665 return this->emitNoRet(SourceInfo{}); 5666 } 5667 5668 template <class Emitter> 5669 bool Compiler<Emitter>::VisitUnaryOperator(const UnaryOperator *E) { 5670 const Expr *SubExpr = E->getSubExpr(); 5671 if (SubExpr->getType()->isAnyComplexType()) 5672 return this->VisitComplexUnaryOperator(E); 5673 if (SubExpr->getType()->isVectorType()) 5674 return this->VisitVectorUnaryOperator(E); 5675 if (SubExpr->getType()->isFixedPointType()) 5676 return this->VisitFixedPointUnaryOperator(E); 5677 std::optional<PrimType> T = classify(SubExpr->getType()); 5678 5679 switch (E->getOpcode()) { 5680 case UO_PostInc: { // x++ 5681 if (!Ctx.getLangOpts().CPlusPlus14) 5682 return this->emitInvalid(E); 5683 if (!T) 5684 return this->emitError(E); 5685 5686 if (!this->visit(SubExpr)) 5687 return false; 5688 5689 if (T == PT_Ptr || T == PT_FnPtr) { 5690 if (!this->emitIncPtr(E)) 5691 return false; 5692 5693 return DiscardResult ? this->emitPopPtr(E) : true; 5694 } 5695 5696 if (T == PT_Float) { 5697 return DiscardResult ? this->emitIncfPop(getFPOptions(E), E) 5698 : this->emitIncf(getFPOptions(E), E); 5699 } 5700 5701 return DiscardResult ? this->emitIncPop(*T, E) : this->emitInc(*T, E); 5702 } 5703 case UO_PostDec: { // x-- 5704 if (!Ctx.getLangOpts().CPlusPlus14) 5705 return this->emitInvalid(E); 5706 if (!T) 5707 return this->emitError(E); 5708 5709 if (!this->visit(SubExpr)) 5710 return false; 5711 5712 if (T == PT_Ptr || T == PT_FnPtr) { 5713 if (!this->emitDecPtr(E)) 5714 return false; 5715 5716 return DiscardResult ? this->emitPopPtr(E) : true; 5717 } 5718 5719 if (T == PT_Float) { 5720 return DiscardResult ? this->emitDecfPop(getFPOptions(E), E) 5721 : this->emitDecf(getFPOptions(E), E); 5722 } 5723 5724 return DiscardResult ? this->emitDecPop(*T, E) : this->emitDec(*T, E); 5725 } 5726 case UO_PreInc: { // ++x 5727 if (!Ctx.getLangOpts().CPlusPlus14) 5728 return this->emitInvalid(E); 5729 if (!T) 5730 return this->emitError(E); 5731 5732 if (!this->visit(SubExpr)) 5733 return false; 5734 5735 if (T == PT_Ptr || T == PT_FnPtr) { 5736 if (!this->emitLoadPtr(E)) 5737 return false; 5738 if (!this->emitConstUint8(1, E)) 5739 return false; 5740 if (!this->emitAddOffsetUint8(E)) 5741 return false; 5742 return DiscardResult ? this->emitStorePopPtr(E) : this->emitStorePtr(E); 5743 } 5744 5745 // Post-inc and pre-inc are the same if the value is to be discarded. 5746 if (DiscardResult) { 5747 if (T == PT_Float) 5748 return this->emitIncfPop(getFPOptions(E), E); 5749 return this->emitIncPop(*T, E); 5750 } 5751 5752 if (T == PT_Float) { 5753 const auto &TargetSemantics = Ctx.getFloatSemantics(E->getType()); 5754 if (!this->emitLoadFloat(E)) 5755 return false; 5756 if (!this->emitConstFloat(llvm::APFloat(TargetSemantics, 1), E)) 5757 return false; 5758 if (!this->emitAddf(getFPOptions(E), E)) 5759 return false; 5760 if (!this->emitStoreFloat(E)) 5761 return false; 5762 } else { 5763 assert(isIntegralType(*T)); 5764 if (!this->emitLoad(*T, E)) 5765 return false; 5766 if (!this->emitConst(1, E)) 5767 return false; 5768 if (!this->emitAdd(*T, E)) 5769 return false; 5770 if (!this->emitStore(*T, E)) 5771 return false; 5772 } 5773 return E->isGLValue() || this->emitLoadPop(*T, E); 5774 } 5775 case UO_PreDec: { // --x 5776 if (!Ctx.getLangOpts().CPlusPlus14) 5777 return this->emitInvalid(E); 5778 if (!T) 5779 return this->emitError(E); 5780 5781 if (!this->visit(SubExpr)) 5782 return false; 5783 5784 if (T == PT_Ptr || T == PT_FnPtr) { 5785 if (!this->emitLoadPtr(E)) 5786 return false; 5787 if (!this->emitConstUint8(1, E)) 5788 return false; 5789 if (!this->emitSubOffsetUint8(E)) 5790 return false; 5791 return DiscardResult ? this->emitStorePopPtr(E) : this->emitStorePtr(E); 5792 } 5793 5794 // Post-dec and pre-dec are the same if the value is to be discarded. 5795 if (DiscardResult) { 5796 if (T == PT_Float) 5797 return this->emitDecfPop(getFPOptions(E), E); 5798 return this->emitDecPop(*T, E); 5799 } 5800 5801 if (T == PT_Float) { 5802 const auto &TargetSemantics = Ctx.getFloatSemantics(E->getType()); 5803 if (!this->emitLoadFloat(E)) 5804 return false; 5805 if (!this->emitConstFloat(llvm::APFloat(TargetSemantics, 1), E)) 5806 return false; 5807 if (!this->emitSubf(getFPOptions(E), E)) 5808 return false; 5809 if (!this->emitStoreFloat(E)) 5810 return false; 5811 } else { 5812 assert(isIntegralType(*T)); 5813 if (!this->emitLoad(*T, E)) 5814 return false; 5815 if (!this->emitConst(1, E)) 5816 return false; 5817 if (!this->emitSub(*T, E)) 5818 return false; 5819 if (!this->emitStore(*T, E)) 5820 return false; 5821 } 5822 return E->isGLValue() || this->emitLoadPop(*T, E); 5823 } 5824 case UO_LNot: // !x 5825 if (!T) 5826 return this->emitError(E); 5827 5828 if (DiscardResult) 5829 return this->discard(SubExpr); 5830 5831 if (!this->visitBool(SubExpr)) 5832 return false; 5833 5834 if (!this->emitInv(E)) 5835 return false; 5836 5837 if (PrimType ET = classifyPrim(E->getType()); ET != PT_Bool) 5838 return this->emitCast(PT_Bool, ET, E); 5839 return true; 5840 case UO_Minus: // -x 5841 if (!T) 5842 return this->emitError(E); 5843 5844 if (!this->visit(SubExpr)) 5845 return false; 5846 return DiscardResult ? this->emitPop(*T, E) : this->emitNeg(*T, E); 5847 case UO_Plus: // +x 5848 if (!T) 5849 return this->emitError(E); 5850 5851 if (!this->visit(SubExpr)) // noop 5852 return false; 5853 return DiscardResult ? this->emitPop(*T, E) : true; 5854 case UO_AddrOf: // &x 5855 if (E->getType()->isMemberPointerType()) { 5856 // C++11 [expr.unary.op]p3 has very strict rules on how the address of a 5857 // member can be formed. 5858 return this->emitGetMemberPtr(cast<DeclRefExpr>(SubExpr)->getDecl(), E); 5859 } 5860 // We should already have a pointer when we get here. 5861 return this->delegate(SubExpr); 5862 case UO_Deref: // *x 5863 if (DiscardResult) { 5864 // assert(false); 5865 return this->discard(SubExpr); 5866 } 5867 5868 if (!this->visit(SubExpr)) 5869 return false; 5870 if (classifyPrim(SubExpr) == PT_Ptr) 5871 return this->emitNarrowPtr(E); 5872 return true; 5873 5874 case UO_Not: // ~x 5875 if (!T) 5876 return this->emitError(E); 5877 5878 if (!this->visit(SubExpr)) 5879 return false; 5880 return DiscardResult ? this->emitPop(*T, E) : this->emitComp(*T, E); 5881 case UO_Real: // __real x 5882 assert(T); 5883 return this->delegate(SubExpr); 5884 case UO_Imag: { // __imag x 5885 assert(T); 5886 if (!this->discard(SubExpr)) 5887 return false; 5888 return this->visitZeroInitializer(*T, SubExpr->getType(), SubExpr); 5889 } 5890 case UO_Extension: 5891 return this->delegate(SubExpr); 5892 case UO_Coawait: 5893 assert(false && "Unhandled opcode"); 5894 } 5895 5896 return false; 5897 } 5898 5899 template <class Emitter> 5900 bool Compiler<Emitter>::VisitComplexUnaryOperator(const UnaryOperator *E) { 5901 const Expr *SubExpr = E->getSubExpr(); 5902 assert(SubExpr->getType()->isAnyComplexType()); 5903 5904 if (DiscardResult) 5905 return this->discard(SubExpr); 5906 5907 std::optional<PrimType> ResT = classify(E); 5908 auto prepareResult = [=]() -> bool { 5909 if (!ResT && !Initializing) { 5910 std::optional<unsigned> LocalIndex = allocateLocal(SubExpr); 5911 if (!LocalIndex) 5912 return false; 5913 return this->emitGetPtrLocal(*LocalIndex, E); 5914 } 5915 5916 return true; 5917 }; 5918 5919 // The offset of the temporary, if we created one. 5920 unsigned SubExprOffset = ~0u; 5921 auto createTemp = [=, &SubExprOffset]() -> bool { 5922 SubExprOffset = this->allocateLocalPrimitive(SubExpr, PT_Ptr, true, false); 5923 if (!this->visit(SubExpr)) 5924 return false; 5925 return this->emitSetLocal(PT_Ptr, SubExprOffset, E); 5926 }; 5927 5928 PrimType ElemT = classifyComplexElementType(SubExpr->getType()); 5929 auto getElem = [=](unsigned Offset, unsigned Index) -> bool { 5930 if (!this->emitGetLocal(PT_Ptr, Offset, E)) 5931 return false; 5932 return this->emitArrayElemPop(ElemT, Index, E); 5933 }; 5934 5935 switch (E->getOpcode()) { 5936 case UO_Minus: 5937 if (!prepareResult()) 5938 return false; 5939 if (!createTemp()) 5940 return false; 5941 for (unsigned I = 0; I != 2; ++I) { 5942 if (!getElem(SubExprOffset, I)) 5943 return false; 5944 if (!this->emitNeg(ElemT, E)) 5945 return false; 5946 if (!this->emitInitElem(ElemT, I, E)) 5947 return false; 5948 } 5949 break; 5950 5951 case UO_Plus: // +x 5952 case UO_AddrOf: // &x 5953 case UO_Deref: // *x 5954 return this->delegate(SubExpr); 5955 5956 case UO_LNot: 5957 if (!this->visit(SubExpr)) 5958 return false; 5959 if (!this->emitComplexBoolCast(SubExpr)) 5960 return false; 5961 if (!this->emitInv(E)) 5962 return false; 5963 if (PrimType ET = classifyPrim(E->getType()); ET != PT_Bool) 5964 return this->emitCast(PT_Bool, ET, E); 5965 return true; 5966 5967 case UO_Real: 5968 return this->emitComplexReal(SubExpr); 5969 5970 case UO_Imag: 5971 if (!this->visit(SubExpr)) 5972 return false; 5973 5974 if (SubExpr->isLValue()) { 5975 if (!this->emitConstUint8(1, E)) 5976 return false; 5977 return this->emitArrayElemPtrPopUint8(E); 5978 } 5979 5980 // Since our _Complex implementation does not map to a primitive type, 5981 // we sometimes have to do the lvalue-to-rvalue conversion here manually. 5982 return this->emitArrayElemPop(classifyPrim(E->getType()), 1, E); 5983 5984 case UO_Not: // ~x 5985 if (!this->visit(SubExpr)) 5986 return false; 5987 // Negate the imaginary component. 5988 if (!this->emitArrayElem(ElemT, 1, E)) 5989 return false; 5990 if (!this->emitNeg(ElemT, E)) 5991 return false; 5992 if (!this->emitInitElem(ElemT, 1, E)) 5993 return false; 5994 return DiscardResult ? this->emitPopPtr(E) : true; 5995 5996 case UO_Extension: 5997 return this->delegate(SubExpr); 5998 5999 default: 6000 return this->emitInvalid(E); 6001 } 6002 6003 return true; 6004 } 6005 6006 template <class Emitter> 6007 bool Compiler<Emitter>::VisitVectorUnaryOperator(const UnaryOperator *E) { 6008 const Expr *SubExpr = E->getSubExpr(); 6009 assert(SubExpr->getType()->isVectorType()); 6010 6011 if (DiscardResult) 6012 return this->discard(SubExpr); 6013 6014 auto UnaryOp = E->getOpcode(); 6015 if (UnaryOp == UO_Extension) 6016 return this->delegate(SubExpr); 6017 6018 if (UnaryOp != UO_Plus && UnaryOp != UO_Minus && UnaryOp != UO_LNot && 6019 UnaryOp != UO_Not && UnaryOp != UO_AddrOf) 6020 return this->emitInvalid(E); 6021 6022 // Nothing to do here. 6023 if (UnaryOp == UO_Plus || UnaryOp == UO_AddrOf) 6024 return this->delegate(SubExpr); 6025 6026 if (!Initializing) { 6027 std::optional<unsigned> LocalIndex = allocateLocal(SubExpr); 6028 if (!LocalIndex) 6029 return false; 6030 if (!this->emitGetPtrLocal(*LocalIndex, E)) 6031 return false; 6032 } 6033 6034 // The offset of the temporary, if we created one. 6035 unsigned SubExprOffset = 6036 this->allocateLocalPrimitive(SubExpr, PT_Ptr, true, false); 6037 if (!this->visit(SubExpr)) 6038 return false; 6039 if (!this->emitSetLocal(PT_Ptr, SubExprOffset, E)) 6040 return false; 6041 6042 const auto *VecTy = SubExpr->getType()->getAs<VectorType>(); 6043 PrimType ElemT = classifyVectorElementType(SubExpr->getType()); 6044 auto getElem = [=](unsigned Offset, unsigned Index) -> bool { 6045 if (!this->emitGetLocal(PT_Ptr, Offset, E)) 6046 return false; 6047 return this->emitArrayElemPop(ElemT, Index, E); 6048 }; 6049 6050 switch (UnaryOp) { 6051 case UO_Minus: 6052 for (unsigned I = 0; I != VecTy->getNumElements(); ++I) { 6053 if (!getElem(SubExprOffset, I)) 6054 return false; 6055 if (!this->emitNeg(ElemT, E)) 6056 return false; 6057 if (!this->emitInitElem(ElemT, I, E)) 6058 return false; 6059 } 6060 break; 6061 case UO_LNot: { // !x 6062 // In C++, the logic operators !, &&, || are available for vectors. !v is 6063 // equivalent to v == 0. 6064 // 6065 // The result of the comparison is a vector of the same width and number of 6066 // elements as the comparison operands with a signed integral element type. 6067 // 6068 // https://gcc.gnu.org/onlinedocs/gcc/Vector-Extensions.html 6069 QualType ResultVecTy = E->getType(); 6070 PrimType ResultVecElemT = 6071 classifyPrim(ResultVecTy->getAs<VectorType>()->getElementType()); 6072 for (unsigned I = 0; I != VecTy->getNumElements(); ++I) { 6073 if (!getElem(SubExprOffset, I)) 6074 return false; 6075 // operator ! on vectors returns -1 for 'truth', so negate it. 6076 if (!this->emitPrimCast(ElemT, PT_Bool, Ctx.getASTContext().BoolTy, E)) 6077 return false; 6078 if (!this->emitInv(E)) 6079 return false; 6080 if (!this->emitPrimCast(PT_Bool, ElemT, VecTy->getElementType(), E)) 6081 return false; 6082 if (!this->emitNeg(ElemT, E)) 6083 return false; 6084 if (ElemT != ResultVecElemT && 6085 !this->emitPrimCast(ElemT, ResultVecElemT, ResultVecTy, E)) 6086 return false; 6087 if (!this->emitInitElem(ResultVecElemT, I, E)) 6088 return false; 6089 } 6090 break; 6091 } 6092 case UO_Not: // ~x 6093 for (unsigned I = 0; I != VecTy->getNumElements(); ++I) { 6094 if (!getElem(SubExprOffset, I)) 6095 return false; 6096 if (ElemT == PT_Bool) { 6097 if (!this->emitInv(E)) 6098 return false; 6099 } else { 6100 if (!this->emitComp(ElemT, E)) 6101 return false; 6102 } 6103 if (!this->emitInitElem(ElemT, I, E)) 6104 return false; 6105 } 6106 break; 6107 default: 6108 llvm_unreachable("Unsupported unary operators should be handled up front"); 6109 } 6110 return true; 6111 } 6112 6113 template <class Emitter> 6114 bool Compiler<Emitter>::visitDeclRef(const ValueDecl *D, const Expr *E) { 6115 if (DiscardResult) 6116 return true; 6117 6118 if (const auto *ECD = dyn_cast<EnumConstantDecl>(D)) { 6119 return this->emitConst(ECD->getInitVal(), E); 6120 } else if (const auto *BD = dyn_cast<BindingDecl>(D)) { 6121 return this->visit(BD->getBinding()); 6122 } else if (const auto *FuncDecl = dyn_cast<FunctionDecl>(D)) { 6123 const Function *F = getFunction(FuncDecl); 6124 return F && this->emitGetFnPtr(F, E); 6125 } else if (const auto *TPOD = dyn_cast<TemplateParamObjectDecl>(D)) { 6126 if (std::optional<unsigned> Index = P.getOrCreateGlobal(D)) { 6127 if (!this->emitGetPtrGlobal(*Index, E)) 6128 return false; 6129 if (std::optional<PrimType> T = classify(E->getType())) { 6130 if (!this->visitAPValue(TPOD->getValue(), *T, E)) 6131 return false; 6132 return this->emitInitGlobal(*T, *Index, E); 6133 } 6134 return this->visitAPValueInitializer(TPOD->getValue(), E); 6135 } 6136 return false; 6137 } 6138 6139 // References are implemented via pointers, so when we see a DeclRefExpr 6140 // pointing to a reference, we need to get its value directly (i.e. the 6141 // pointer to the actual value) instead of a pointer to the pointer to the 6142 // value. 6143 bool IsReference = D->getType()->isReferenceType(); 6144 6145 // Check for local/global variables and parameters. 6146 if (auto It = Locals.find(D); It != Locals.end()) { 6147 const unsigned Offset = It->second.Offset; 6148 if (IsReference) 6149 return this->emitGetLocal(PT_Ptr, Offset, E); 6150 return this->emitGetPtrLocal(Offset, E); 6151 } else if (auto GlobalIndex = P.getGlobal(D)) { 6152 if (IsReference) { 6153 if (!Ctx.getLangOpts().CPlusPlus11) 6154 return this->emitGetGlobal(classifyPrim(E), *GlobalIndex, E); 6155 return this->emitGetGlobalUnchecked(classifyPrim(E), *GlobalIndex, E); 6156 } 6157 6158 return this->emitGetPtrGlobal(*GlobalIndex, E); 6159 } else if (const auto *PVD = dyn_cast<ParmVarDecl>(D)) { 6160 if (auto It = this->Params.find(PVD); It != this->Params.end()) { 6161 if (IsReference || !It->second.IsPtr) 6162 return this->emitGetParam(classifyPrim(E), It->second.Offset, E); 6163 6164 return this->emitGetPtrParam(It->second.Offset, E); 6165 } 6166 6167 if (D->getType()->isReferenceType()) 6168 return false; // FIXME: Do we need to emit InvalidDeclRef? 6169 } 6170 6171 // In case we need to re-visit a declaration. 6172 auto revisit = [&](const VarDecl *VD) -> bool { 6173 auto VarState = this->visitDecl(VD); 6174 6175 if (VarState.notCreated()) 6176 return true; 6177 if (!VarState) 6178 return false; 6179 // Retry. 6180 return this->visitDeclRef(D, E); 6181 }; 6182 6183 // Handle lambda captures. 6184 if (auto It = this->LambdaCaptures.find(D); 6185 It != this->LambdaCaptures.end()) { 6186 auto [Offset, IsPtr] = It->second; 6187 6188 if (IsPtr) 6189 return this->emitGetThisFieldPtr(Offset, E); 6190 return this->emitGetPtrThisField(Offset, E); 6191 } else if (const auto *DRE = dyn_cast<DeclRefExpr>(E); 6192 DRE && DRE->refersToEnclosingVariableOrCapture()) { 6193 if (const auto *VD = dyn_cast<VarDecl>(D); VD && VD->isInitCapture()) 6194 return revisit(VD); 6195 } 6196 6197 if (D != InitializingDecl) { 6198 // Try to lazily visit (or emit dummy pointers for) declarations 6199 // we haven't seen yet. 6200 if (Ctx.getLangOpts().CPlusPlus) { 6201 if (const auto *VD = dyn_cast<VarDecl>(D)) { 6202 const auto typeShouldBeVisited = [&](QualType T) -> bool { 6203 if (T.isConstant(Ctx.getASTContext())) 6204 return true; 6205 return T->isReferenceType(); 6206 }; 6207 6208 // DecompositionDecls are just proxies for us. 6209 if (isa<DecompositionDecl>(VD)) 6210 return revisit(VD); 6211 6212 if ((VD->hasGlobalStorage() || VD->isStaticDataMember()) && 6213 typeShouldBeVisited(VD->getType())) { 6214 if (const Expr *Init = VD->getAnyInitializer(); 6215 Init && !Init->isValueDependent()) { 6216 // Whether or not the evaluation is successul doesn't really matter 6217 // here -- we will create a global variable in any case, and that 6218 // will have the state of initializer evaluation attached. 6219 APValue V; 6220 SmallVector<PartialDiagnosticAt> Notes; 6221 (void)Init->EvaluateAsInitializer(V, Ctx.getASTContext(), VD, Notes, 6222 true); 6223 return this->visitDeclRef(D, E); 6224 } 6225 return revisit(VD); 6226 } 6227 6228 // FIXME: The evaluateValue() check here is a little ridiculous, since 6229 // it will ultimately call into Context::evaluateAsInitializer(). In 6230 // other words, we're evaluating the initializer, just to know if we can 6231 // evaluate the initializer. 6232 if (VD->isLocalVarDecl() && typeShouldBeVisited(VD->getType()) && 6233 VD->getInit() && !VD->getInit()->isValueDependent()) { 6234 6235 if (VD->evaluateValue()) 6236 return revisit(VD); 6237 6238 if (!D->getType()->isReferenceType()) 6239 return this->emitDummyPtr(D, E); 6240 6241 return this->emitInvalidDeclRef(cast<DeclRefExpr>(E), 6242 /*InitializerFailed=*/true, E); 6243 } 6244 } 6245 } else { 6246 if (const auto *VD = dyn_cast<VarDecl>(D); 6247 VD && VD->getAnyInitializer() && 6248 VD->getType().isConstant(Ctx.getASTContext()) && !VD->isWeak()) 6249 return revisit(VD); 6250 } 6251 } 6252 6253 return this->emitDummyPtr(D, E); 6254 } 6255 6256 template <class Emitter> 6257 bool Compiler<Emitter>::VisitDeclRefExpr(const DeclRefExpr *E) { 6258 const auto *D = E->getDecl(); 6259 return this->visitDeclRef(D, E); 6260 } 6261 6262 template <class Emitter> void Compiler<Emitter>::emitCleanup() { 6263 for (VariableScope<Emitter> *C = VarScope; C; C = C->getParent()) 6264 C->emitDestruction(); 6265 } 6266 6267 template <class Emitter> 6268 unsigned Compiler<Emitter>::collectBaseOffset(const QualType BaseType, 6269 const QualType DerivedType) { 6270 const auto extractRecordDecl = [](QualType Ty) -> const CXXRecordDecl * { 6271 if (const auto *R = Ty->getPointeeCXXRecordDecl()) 6272 return R; 6273 return Ty->getAsCXXRecordDecl(); 6274 }; 6275 const CXXRecordDecl *BaseDecl = extractRecordDecl(BaseType); 6276 const CXXRecordDecl *DerivedDecl = extractRecordDecl(DerivedType); 6277 6278 return Ctx.collectBaseOffset(BaseDecl, DerivedDecl); 6279 } 6280 6281 /// Emit casts from a PrimType to another PrimType. 6282 template <class Emitter> 6283 bool Compiler<Emitter>::emitPrimCast(PrimType FromT, PrimType ToT, 6284 QualType ToQT, const Expr *E) { 6285 6286 if (FromT == PT_Float) { 6287 // Floating to floating. 6288 if (ToT == PT_Float) { 6289 const llvm::fltSemantics *ToSem = &Ctx.getFloatSemantics(ToQT); 6290 return this->emitCastFP(ToSem, getRoundingMode(E), E); 6291 } 6292 6293 if (ToT == PT_IntAP) 6294 return this->emitCastFloatingIntegralAP(Ctx.getBitWidth(ToQT), 6295 getFPOptions(E), E); 6296 if (ToT == PT_IntAPS) 6297 return this->emitCastFloatingIntegralAPS(Ctx.getBitWidth(ToQT), 6298 getFPOptions(E), E); 6299 6300 // Float to integral. 6301 if (isIntegralType(ToT) || ToT == PT_Bool) 6302 return this->emitCastFloatingIntegral(ToT, getFPOptions(E), E); 6303 } 6304 6305 if (isIntegralType(FromT) || FromT == PT_Bool) { 6306 if (ToT == PT_IntAP) 6307 return this->emitCastAP(FromT, Ctx.getBitWidth(ToQT), E); 6308 if (ToT == PT_IntAPS) 6309 return this->emitCastAPS(FromT, Ctx.getBitWidth(ToQT), E); 6310 6311 // Integral to integral. 6312 if (isIntegralType(ToT) || ToT == PT_Bool) 6313 return FromT != ToT ? this->emitCast(FromT, ToT, E) : true; 6314 6315 if (ToT == PT_Float) { 6316 // Integral to floating. 6317 const llvm::fltSemantics *ToSem = &Ctx.getFloatSemantics(ToQT); 6318 return this->emitCastIntegralFloating(FromT, ToSem, getFPOptions(E), E); 6319 } 6320 } 6321 6322 return false; 6323 } 6324 6325 /// Emits __real(SubExpr) 6326 template <class Emitter> 6327 bool Compiler<Emitter>::emitComplexReal(const Expr *SubExpr) { 6328 assert(SubExpr->getType()->isAnyComplexType()); 6329 6330 if (DiscardResult) 6331 return this->discard(SubExpr); 6332 6333 if (!this->visit(SubExpr)) 6334 return false; 6335 if (SubExpr->isLValue()) { 6336 if (!this->emitConstUint8(0, SubExpr)) 6337 return false; 6338 return this->emitArrayElemPtrPopUint8(SubExpr); 6339 } 6340 6341 // Rvalue, load the actual element. 6342 return this->emitArrayElemPop(classifyComplexElementType(SubExpr->getType()), 6343 0, SubExpr); 6344 } 6345 6346 template <class Emitter> 6347 bool Compiler<Emitter>::emitComplexBoolCast(const Expr *E) { 6348 assert(!DiscardResult); 6349 PrimType ElemT = classifyComplexElementType(E->getType()); 6350 // We emit the expression (__real(E) != 0 || __imag(E) != 0) 6351 // for us, that means (bool)E[0] || (bool)E[1] 6352 if (!this->emitArrayElem(ElemT, 0, E)) 6353 return false; 6354 if (ElemT == PT_Float) { 6355 if (!this->emitCastFloatingIntegral(PT_Bool, getFPOptions(E), E)) 6356 return false; 6357 } else { 6358 if (!this->emitCast(ElemT, PT_Bool, E)) 6359 return false; 6360 } 6361 6362 // We now have the bool value of E[0] on the stack. 6363 LabelTy LabelTrue = this->getLabel(); 6364 if (!this->jumpTrue(LabelTrue)) 6365 return false; 6366 6367 if (!this->emitArrayElemPop(ElemT, 1, E)) 6368 return false; 6369 if (ElemT == PT_Float) { 6370 if (!this->emitCastFloatingIntegral(PT_Bool, getFPOptions(E), E)) 6371 return false; 6372 } else { 6373 if (!this->emitCast(ElemT, PT_Bool, E)) 6374 return false; 6375 } 6376 // Leave the boolean value of E[1] on the stack. 6377 LabelTy EndLabel = this->getLabel(); 6378 this->jump(EndLabel); 6379 6380 this->emitLabel(LabelTrue); 6381 if (!this->emitPopPtr(E)) 6382 return false; 6383 if (!this->emitConstBool(true, E)) 6384 return false; 6385 6386 this->fallthrough(EndLabel); 6387 this->emitLabel(EndLabel); 6388 6389 return true; 6390 } 6391 6392 template <class Emitter> 6393 bool Compiler<Emitter>::emitComplexComparison(const Expr *LHS, const Expr *RHS, 6394 const BinaryOperator *E) { 6395 assert(E->isComparisonOp()); 6396 assert(!Initializing); 6397 assert(!DiscardResult); 6398 6399 PrimType ElemT; 6400 bool LHSIsComplex; 6401 unsigned LHSOffset; 6402 if (LHS->getType()->isAnyComplexType()) { 6403 LHSIsComplex = true; 6404 ElemT = classifyComplexElementType(LHS->getType()); 6405 LHSOffset = allocateLocalPrimitive(LHS, PT_Ptr, /*IsConst=*/true, 6406 /*IsExtended=*/false); 6407 if (!this->visit(LHS)) 6408 return false; 6409 if (!this->emitSetLocal(PT_Ptr, LHSOffset, E)) 6410 return false; 6411 } else { 6412 LHSIsComplex = false; 6413 PrimType LHST = classifyPrim(LHS->getType()); 6414 LHSOffset = this->allocateLocalPrimitive(LHS, LHST, true, false); 6415 if (!this->visit(LHS)) 6416 return false; 6417 if (!this->emitSetLocal(LHST, LHSOffset, E)) 6418 return false; 6419 } 6420 6421 bool RHSIsComplex; 6422 unsigned RHSOffset; 6423 if (RHS->getType()->isAnyComplexType()) { 6424 RHSIsComplex = true; 6425 ElemT = classifyComplexElementType(RHS->getType()); 6426 RHSOffset = allocateLocalPrimitive(RHS, PT_Ptr, /*IsConst=*/true, 6427 /*IsExtended=*/false); 6428 if (!this->visit(RHS)) 6429 return false; 6430 if (!this->emitSetLocal(PT_Ptr, RHSOffset, E)) 6431 return false; 6432 } else { 6433 RHSIsComplex = false; 6434 PrimType RHST = classifyPrim(RHS->getType()); 6435 RHSOffset = this->allocateLocalPrimitive(RHS, RHST, true, false); 6436 if (!this->visit(RHS)) 6437 return false; 6438 if (!this->emitSetLocal(RHST, RHSOffset, E)) 6439 return false; 6440 } 6441 6442 auto getElem = [&](unsigned LocalOffset, unsigned Index, 6443 bool IsComplex) -> bool { 6444 if (IsComplex) { 6445 if (!this->emitGetLocal(PT_Ptr, LocalOffset, E)) 6446 return false; 6447 return this->emitArrayElemPop(ElemT, Index, E); 6448 } 6449 return this->emitGetLocal(ElemT, LocalOffset, E); 6450 }; 6451 6452 for (unsigned I = 0; I != 2; ++I) { 6453 // Get both values. 6454 if (!getElem(LHSOffset, I, LHSIsComplex)) 6455 return false; 6456 if (!getElem(RHSOffset, I, RHSIsComplex)) 6457 return false; 6458 // And compare them. 6459 if (!this->emitEQ(ElemT, E)) 6460 return false; 6461 6462 if (!this->emitCastBoolUint8(E)) 6463 return false; 6464 } 6465 6466 // We now have two bool values on the stack. Compare those. 6467 if (!this->emitAddUint8(E)) 6468 return false; 6469 if (!this->emitConstUint8(2, E)) 6470 return false; 6471 6472 if (E->getOpcode() == BO_EQ) { 6473 if (!this->emitEQUint8(E)) 6474 return false; 6475 } else if (E->getOpcode() == BO_NE) { 6476 if (!this->emitNEUint8(E)) 6477 return false; 6478 } else 6479 return false; 6480 6481 // In C, this returns an int. 6482 if (PrimType ResT = classifyPrim(E->getType()); ResT != PT_Bool) 6483 return this->emitCast(PT_Bool, ResT, E); 6484 return true; 6485 } 6486 6487 /// When calling this, we have a pointer of the local-to-destroy 6488 /// on the stack. 6489 /// Emit destruction of record types (or arrays of record types). 6490 template <class Emitter> 6491 bool Compiler<Emitter>::emitRecordDestruction(const Record *R, SourceInfo Loc) { 6492 assert(R); 6493 assert(!R->isAnonymousUnion()); 6494 const CXXDestructorDecl *Dtor = R->getDestructor(); 6495 if (!Dtor || Dtor->isTrivial()) 6496 return true; 6497 6498 assert(Dtor); 6499 const Function *DtorFunc = getFunction(Dtor); 6500 if (!DtorFunc) 6501 return false; 6502 assert(DtorFunc->hasThisPointer()); 6503 assert(DtorFunc->getNumParams() == 1); 6504 if (!this->emitDupPtr(Loc)) 6505 return false; 6506 return this->emitCall(DtorFunc, 0, Loc); 6507 } 6508 /// When calling this, we have a pointer of the local-to-destroy 6509 /// on the stack. 6510 /// Emit destruction of record types (or arrays of record types). 6511 template <class Emitter> 6512 bool Compiler<Emitter>::emitDestruction(const Descriptor *Desc, 6513 SourceInfo Loc) { 6514 assert(Desc); 6515 assert(!Desc->isPrimitive()); 6516 assert(!Desc->isPrimitiveArray()); 6517 6518 // Arrays. 6519 if (Desc->isArray()) { 6520 const Descriptor *ElemDesc = Desc->ElemDesc; 6521 assert(ElemDesc); 6522 6523 // Don't need to do anything for these. 6524 if (ElemDesc->isPrimitiveArray()) 6525 return true; 6526 6527 // If this is an array of record types, check if we need 6528 // to call the element destructors at all. If not, try 6529 // to save the work. 6530 if (const Record *ElemRecord = ElemDesc->ElemRecord) { 6531 if (const CXXDestructorDecl *Dtor = ElemRecord->getDestructor(); 6532 !Dtor || Dtor->isTrivial()) 6533 return true; 6534 } 6535 6536 for (ssize_t I = Desc->getNumElems() - 1; I >= 0; --I) { 6537 if (!this->emitConstUint64(I, Loc)) 6538 return false; 6539 if (!this->emitArrayElemPtrUint64(Loc)) 6540 return false; 6541 if (!this->emitDestruction(ElemDesc, Loc)) 6542 return false; 6543 if (!this->emitPopPtr(Loc)) 6544 return false; 6545 } 6546 return true; 6547 } 6548 6549 assert(Desc->ElemRecord); 6550 if (Desc->ElemRecord->isAnonymousUnion()) 6551 return true; 6552 6553 return this->emitRecordDestruction(Desc->ElemRecord, Loc); 6554 } 6555 6556 /// Create a dummy pointer for the given decl (or expr) and 6557 /// push a pointer to it on the stack. 6558 template <class Emitter> 6559 bool Compiler<Emitter>::emitDummyPtr(const DeclTy &D, const Expr *E) { 6560 assert(!DiscardResult && "Should've been checked before"); 6561 6562 unsigned DummyID = P.getOrCreateDummy(D); 6563 6564 if (!this->emitGetPtrGlobal(DummyID, E)) 6565 return false; 6566 if (E->getType()->isVoidType()) 6567 return true; 6568 6569 // Convert the dummy pointer to another pointer type if we have to. 6570 if (PrimType PT = classifyPrim(E); PT != PT_Ptr) { 6571 if (isPtrType(PT)) 6572 return this->emitDecayPtr(PT_Ptr, PT, E); 6573 return false; 6574 } 6575 return true; 6576 } 6577 6578 // This function is constexpr if and only if To, From, and the types of 6579 // all subobjects of To and From are types T such that... 6580 // (3.1) - is_union_v<T> is false; 6581 // (3.2) - is_pointer_v<T> is false; 6582 // (3.3) - is_member_pointer_v<T> is false; 6583 // (3.4) - is_volatile_v<T> is false; and 6584 // (3.5) - T has no non-static data members of reference type 6585 template <class Emitter> 6586 bool Compiler<Emitter>::emitBuiltinBitCast(const CastExpr *E) { 6587 const Expr *SubExpr = E->getSubExpr(); 6588 QualType FromType = SubExpr->getType(); 6589 QualType ToType = E->getType(); 6590 std::optional<PrimType> ToT = classify(ToType); 6591 6592 assert(!ToType->isReferenceType()); 6593 6594 // Prepare storage for the result in case we discard. 6595 if (DiscardResult && !Initializing && !ToT) { 6596 std::optional<unsigned> LocalIndex = allocateLocal(E); 6597 if (!LocalIndex) 6598 return false; 6599 if (!this->emitGetPtrLocal(*LocalIndex, E)) 6600 return false; 6601 } 6602 6603 // Get a pointer to the value-to-cast on the stack. 6604 // For CK_LValueToRValueBitCast, this is always an lvalue and 6605 // we later assume it to be one (i.e. a PT_Ptr). However, 6606 // we call this function for other utility methods where 6607 // a bitcast might be useful, so convert it to a PT_Ptr in that case. 6608 if (SubExpr->isGLValue() || FromType->isVectorType()) { 6609 if (!this->visit(SubExpr)) 6610 return false; 6611 } else if (std::optional<PrimType> FromT = classify(SubExpr)) { 6612 unsigned TempOffset = allocateLocalPrimitive( 6613 SubExpr, *FromT, /*IsConst=*/true, /*IsExtended=*/false); 6614 if (!this->visit(SubExpr)) 6615 return false; 6616 if (!this->emitSetLocal(*FromT, TempOffset, E)) 6617 return false; 6618 if (!this->emitGetPtrLocal(TempOffset, E)) 6619 return false; 6620 } else { 6621 return false; 6622 } 6623 6624 if (!ToT) { 6625 if (!this->emitBitCast(E)) 6626 return false; 6627 return DiscardResult ? this->emitPopPtr(E) : true; 6628 } 6629 assert(ToT); 6630 6631 const llvm::fltSemantics *TargetSemantics = nullptr; 6632 if (ToT == PT_Float) 6633 TargetSemantics = &Ctx.getFloatSemantics(ToType); 6634 6635 // Conversion to a primitive type. FromType can be another 6636 // primitive type, or a record/array. 6637 bool ToTypeIsUChar = (ToType->isSpecificBuiltinType(BuiltinType::UChar) || 6638 ToType->isSpecificBuiltinType(BuiltinType::Char_U)); 6639 uint32_t ResultBitWidth = std::max(Ctx.getBitWidth(ToType), 8u); 6640 6641 if (!this->emitBitCastPrim(*ToT, ToTypeIsUChar || ToType->isStdByteType(), 6642 ResultBitWidth, TargetSemantics, E)) 6643 return false; 6644 6645 if (DiscardResult) 6646 return this->emitPop(*ToT, E); 6647 6648 return true; 6649 } 6650 6651 namespace clang { 6652 namespace interp { 6653 6654 template class Compiler<ByteCodeEmitter>; 6655 template class Compiler<EvalEmitter>; 6656 6657 } // namespace interp 6658 } // namespace clang 6659