1 //===--- Compiler.cpp - Code generator for expressions ---*- C++ -*-===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "Compiler.h" 10 #include "ByteCodeEmitter.h" 11 #include "Context.h" 12 #include "Floating.h" 13 #include "Function.h" 14 #include "InterpShared.h" 15 #include "PrimType.h" 16 #include "Program.h" 17 #include "clang/AST/Attr.h" 18 19 using namespace clang; 20 using namespace clang::interp; 21 22 using APSInt = llvm::APSInt; 23 24 namespace clang { 25 namespace interp { 26 27 /// Scope used to handle temporaries in toplevel variable declarations. 28 template <class Emitter> class DeclScope final : public LocalScope<Emitter> { 29 public: 30 DeclScope(Compiler<Emitter> *Ctx, const ValueDecl *VD) 31 : LocalScope<Emitter>(Ctx, VD), Scope(Ctx->P, VD), 32 OldInitializingDecl(Ctx->InitializingDecl) { 33 Ctx->InitializingDecl = VD; 34 Ctx->InitStack.push_back(InitLink::Decl(VD)); 35 } 36 37 void addExtended(const Scope::Local &Local) override { 38 return this->addLocal(Local); 39 } 40 41 ~DeclScope() { 42 this->Ctx->InitializingDecl = OldInitializingDecl; 43 this->Ctx->InitStack.pop_back(); 44 } 45 46 private: 47 Program::DeclScope Scope; 48 const ValueDecl *OldInitializingDecl; 49 }; 50 51 /// Scope used to handle initialization methods. 52 template <class Emitter> class OptionScope final { 53 public: 54 /// Root constructor, compiling or discarding primitives. 55 OptionScope(Compiler<Emitter> *Ctx, bool NewDiscardResult, 56 bool NewInitializing) 57 : Ctx(Ctx), OldDiscardResult(Ctx->DiscardResult), 58 OldInitializing(Ctx->Initializing) { 59 Ctx->DiscardResult = NewDiscardResult; 60 Ctx->Initializing = NewInitializing; 61 } 62 63 ~OptionScope() { 64 Ctx->DiscardResult = OldDiscardResult; 65 Ctx->Initializing = OldInitializing; 66 } 67 68 private: 69 /// Parent context. 70 Compiler<Emitter> *Ctx; 71 /// Old discard flag to restore. 72 bool OldDiscardResult; 73 bool OldInitializing; 74 }; 75 76 template <class Emitter> 77 bool InitLink::emit(Compiler<Emitter> *Ctx, const Expr *E) const { 78 switch (Kind) { 79 case K_This: 80 return Ctx->emitThis(E); 81 case K_Field: 82 // We're assuming there's a base pointer on the stack already. 83 return Ctx->emitGetPtrFieldPop(Offset, E); 84 case K_Temp: 85 return Ctx->emitGetPtrLocal(Offset, E); 86 case K_Decl: 87 return Ctx->visitDeclRef(D, E); 88 case K_Elem: 89 if (!Ctx->emitConstUint32(Offset, E)) 90 return false; 91 return Ctx->emitArrayElemPtrPopUint32(E); 92 default: 93 llvm_unreachable("Unhandled InitLink kind"); 94 } 95 return true; 96 } 97 98 /// Scope managing label targets. 99 template <class Emitter> class LabelScope { 100 public: 101 virtual ~LabelScope() {} 102 103 protected: 104 LabelScope(Compiler<Emitter> *Ctx) : Ctx(Ctx) {} 105 /// Compiler instance. 106 Compiler<Emitter> *Ctx; 107 }; 108 109 /// Sets the context for break/continue statements. 110 template <class Emitter> class LoopScope final : public LabelScope<Emitter> { 111 public: 112 using LabelTy = typename Compiler<Emitter>::LabelTy; 113 using OptLabelTy = typename Compiler<Emitter>::OptLabelTy; 114 115 LoopScope(Compiler<Emitter> *Ctx, LabelTy BreakLabel, LabelTy ContinueLabel) 116 : LabelScope<Emitter>(Ctx), OldBreakLabel(Ctx->BreakLabel), 117 OldContinueLabel(Ctx->ContinueLabel) { 118 this->Ctx->BreakLabel = BreakLabel; 119 this->Ctx->ContinueLabel = ContinueLabel; 120 } 121 122 ~LoopScope() { 123 this->Ctx->BreakLabel = OldBreakLabel; 124 this->Ctx->ContinueLabel = OldContinueLabel; 125 } 126 127 private: 128 OptLabelTy OldBreakLabel; 129 OptLabelTy OldContinueLabel; 130 }; 131 132 // Sets the context for a switch scope, mapping labels. 133 template <class Emitter> class SwitchScope final : public LabelScope<Emitter> { 134 public: 135 using LabelTy = typename Compiler<Emitter>::LabelTy; 136 using OptLabelTy = typename Compiler<Emitter>::OptLabelTy; 137 using CaseMap = typename Compiler<Emitter>::CaseMap; 138 139 SwitchScope(Compiler<Emitter> *Ctx, CaseMap &&CaseLabels, LabelTy BreakLabel, 140 OptLabelTy DefaultLabel) 141 : LabelScope<Emitter>(Ctx), OldBreakLabel(Ctx->BreakLabel), 142 OldDefaultLabel(this->Ctx->DefaultLabel), 143 OldCaseLabels(std::move(this->Ctx->CaseLabels)) { 144 this->Ctx->BreakLabel = BreakLabel; 145 this->Ctx->DefaultLabel = DefaultLabel; 146 this->Ctx->CaseLabels = std::move(CaseLabels); 147 } 148 149 ~SwitchScope() { 150 this->Ctx->BreakLabel = OldBreakLabel; 151 this->Ctx->DefaultLabel = OldDefaultLabel; 152 this->Ctx->CaseLabels = std::move(OldCaseLabels); 153 } 154 155 private: 156 OptLabelTy OldBreakLabel; 157 OptLabelTy OldDefaultLabel; 158 CaseMap OldCaseLabels; 159 }; 160 161 template <class Emitter> class StmtExprScope final { 162 public: 163 StmtExprScope(Compiler<Emitter> *Ctx) : Ctx(Ctx), OldFlag(Ctx->InStmtExpr) { 164 Ctx->InStmtExpr = true; 165 } 166 167 ~StmtExprScope() { Ctx->InStmtExpr = OldFlag; } 168 169 private: 170 Compiler<Emitter> *Ctx; 171 bool OldFlag; 172 }; 173 174 } // namespace interp 175 } // namespace clang 176 177 template <class Emitter> 178 bool Compiler<Emitter>::VisitCastExpr(const CastExpr *CE) { 179 const Expr *SubExpr = CE->getSubExpr(); 180 switch (CE->getCastKind()) { 181 182 case CK_LValueToRValue: { 183 if (DiscardResult) 184 return this->discard(SubExpr); 185 186 std::optional<PrimType> SubExprT = classify(SubExpr->getType()); 187 // Prepare storage for the result. 188 if (!Initializing && !SubExprT) { 189 std::optional<unsigned> LocalIndex = allocateLocal(SubExpr); 190 if (!LocalIndex) 191 return false; 192 if (!this->emitGetPtrLocal(*LocalIndex, CE)) 193 return false; 194 } 195 196 if (!this->visit(SubExpr)) 197 return false; 198 199 if (SubExprT) 200 return this->emitLoadPop(*SubExprT, CE); 201 202 // If the subexpr type is not primitive, we need to perform a copy here. 203 // This happens for example in C when dereferencing a pointer of struct 204 // type. 205 return this->emitMemcpy(CE); 206 } 207 208 case CK_DerivedToBaseMemberPointer: { 209 assert(classifyPrim(CE->getType()) == PT_MemberPtr); 210 assert(classifyPrim(SubExpr->getType()) == PT_MemberPtr); 211 const auto *FromMP = SubExpr->getType()->getAs<MemberPointerType>(); 212 const auto *ToMP = CE->getType()->getAs<MemberPointerType>(); 213 214 unsigned DerivedOffset = collectBaseOffset(QualType(ToMP->getClass(), 0), 215 QualType(FromMP->getClass(), 0)); 216 217 if (!this->delegate(SubExpr)) 218 return false; 219 220 return this->emitGetMemberPtrBasePop(DerivedOffset, CE); 221 } 222 223 case CK_BaseToDerivedMemberPointer: { 224 assert(classifyPrim(CE) == PT_MemberPtr); 225 assert(classifyPrim(SubExpr) == PT_MemberPtr); 226 const auto *FromMP = SubExpr->getType()->getAs<MemberPointerType>(); 227 const auto *ToMP = CE->getType()->getAs<MemberPointerType>(); 228 229 unsigned DerivedOffset = collectBaseOffset(QualType(FromMP->getClass(), 0), 230 QualType(ToMP->getClass(), 0)); 231 232 if (!this->delegate(SubExpr)) 233 return false; 234 return this->emitGetMemberPtrBasePop(-DerivedOffset, CE); 235 } 236 237 case CK_UncheckedDerivedToBase: 238 case CK_DerivedToBase: { 239 if (!this->delegate(SubExpr)) 240 return false; 241 242 const auto extractRecordDecl = [](QualType Ty) -> const CXXRecordDecl * { 243 if (const auto *PT = dyn_cast<PointerType>(Ty)) 244 return PT->getPointeeType()->getAsCXXRecordDecl(); 245 return Ty->getAsCXXRecordDecl(); 246 }; 247 248 // FIXME: We can express a series of non-virtual casts as a single 249 // GetPtrBasePop op. 250 QualType CurType = SubExpr->getType(); 251 for (const CXXBaseSpecifier *B : CE->path()) { 252 if (B->isVirtual()) { 253 if (!this->emitGetPtrVirtBasePop(extractRecordDecl(B->getType()), CE)) 254 return false; 255 CurType = B->getType(); 256 } else { 257 unsigned DerivedOffset = collectBaseOffset(B->getType(), CurType); 258 if (!this->emitGetPtrBasePop(DerivedOffset, CE)) 259 return false; 260 CurType = B->getType(); 261 } 262 } 263 264 return true; 265 } 266 267 case CK_BaseToDerived: { 268 if (!this->delegate(SubExpr)) 269 return false; 270 271 unsigned DerivedOffset = 272 collectBaseOffset(SubExpr->getType(), CE->getType()); 273 274 return this->emitGetPtrDerivedPop(DerivedOffset, CE); 275 } 276 277 case CK_FloatingCast: { 278 // HLSL uses CK_FloatingCast to cast between vectors. 279 if (!SubExpr->getType()->isFloatingType() || 280 !CE->getType()->isFloatingType()) 281 return false; 282 if (DiscardResult) 283 return this->discard(SubExpr); 284 if (!this->visit(SubExpr)) 285 return false; 286 const auto *TargetSemantics = &Ctx.getFloatSemantics(CE->getType()); 287 return this->emitCastFP(TargetSemantics, getRoundingMode(CE), CE); 288 } 289 290 case CK_IntegralToFloating: { 291 if (DiscardResult) 292 return this->discard(SubExpr); 293 std::optional<PrimType> FromT = classify(SubExpr->getType()); 294 if (!FromT) 295 return false; 296 297 if (!this->visit(SubExpr)) 298 return false; 299 300 const auto *TargetSemantics = &Ctx.getFloatSemantics(CE->getType()); 301 llvm::RoundingMode RM = getRoundingMode(CE); 302 return this->emitCastIntegralFloating(*FromT, TargetSemantics, RM, CE); 303 } 304 305 case CK_FloatingToBoolean: 306 case CK_FloatingToIntegral: { 307 if (DiscardResult) 308 return this->discard(SubExpr); 309 310 std::optional<PrimType> ToT = classify(CE->getType()); 311 312 if (!ToT) 313 return false; 314 315 if (!this->visit(SubExpr)) 316 return false; 317 318 if (ToT == PT_IntAP) 319 return this->emitCastFloatingIntegralAP(Ctx.getBitWidth(CE->getType()), 320 CE); 321 if (ToT == PT_IntAPS) 322 return this->emitCastFloatingIntegralAPS(Ctx.getBitWidth(CE->getType()), 323 CE); 324 325 return this->emitCastFloatingIntegral(*ToT, CE); 326 } 327 328 case CK_NullToPointer: 329 case CK_NullToMemberPointer: { 330 if (!this->discard(SubExpr)) 331 return false; 332 if (DiscardResult) 333 return true; 334 335 const Descriptor *Desc = nullptr; 336 const QualType PointeeType = CE->getType()->getPointeeType(); 337 if (!PointeeType.isNull()) { 338 if (std::optional<PrimType> T = classify(PointeeType)) 339 Desc = P.createDescriptor(SubExpr, *T); 340 else 341 Desc = P.createDescriptor(SubExpr, PointeeType.getTypePtr(), 342 std::nullopt, true, false, 343 /*IsMutable=*/false, nullptr); 344 } 345 return this->emitNull(classifyPrim(CE->getType()), Desc, CE); 346 } 347 348 case CK_PointerToIntegral: { 349 if (DiscardResult) 350 return this->discard(SubExpr); 351 352 if (!this->visit(SubExpr)) 353 return false; 354 355 // If SubExpr doesn't result in a pointer, make it one. 356 if (PrimType FromT = classifyPrim(SubExpr->getType()); FromT != PT_Ptr) { 357 assert(isPtrType(FromT)); 358 if (!this->emitDecayPtr(FromT, PT_Ptr, CE)) 359 return false; 360 } 361 362 PrimType T = classifyPrim(CE->getType()); 363 if (T == PT_IntAP) 364 return this->emitCastPointerIntegralAP(Ctx.getBitWidth(CE->getType()), 365 CE); 366 if (T == PT_IntAPS) 367 return this->emitCastPointerIntegralAPS(Ctx.getBitWidth(CE->getType()), 368 CE); 369 return this->emitCastPointerIntegral(T, CE); 370 } 371 372 case CK_ArrayToPointerDecay: { 373 if (!this->visit(SubExpr)) 374 return false; 375 if (!this->emitArrayDecay(CE)) 376 return false; 377 if (DiscardResult) 378 return this->emitPopPtr(CE); 379 return true; 380 } 381 382 case CK_IntegralToPointer: { 383 QualType IntType = SubExpr->getType(); 384 assert(IntType->isIntegralOrEnumerationType()); 385 if (!this->visit(SubExpr)) 386 return false; 387 // FIXME: I think the discard is wrong since the int->ptr cast might cause a 388 // diagnostic. 389 PrimType T = classifyPrim(IntType); 390 if (DiscardResult) 391 return this->emitPop(T, CE); 392 393 QualType PtrType = CE->getType(); 394 const Descriptor *Desc; 395 if (std::optional<PrimType> T = classify(PtrType->getPointeeType())) 396 Desc = P.createDescriptor(SubExpr, *T); 397 else if (PtrType->getPointeeType()->isVoidType()) 398 Desc = nullptr; 399 else 400 Desc = P.createDescriptor(CE, PtrType->getPointeeType().getTypePtr(), 401 Descriptor::InlineDescMD, true, false, 402 /*IsMutable=*/false, nullptr); 403 404 if (!this->emitGetIntPtr(T, Desc, CE)) 405 return false; 406 407 PrimType DestPtrT = classifyPrim(PtrType); 408 if (DestPtrT == PT_Ptr) 409 return true; 410 411 // In case we're converting the integer to a non-Pointer. 412 return this->emitDecayPtr(PT_Ptr, DestPtrT, CE); 413 } 414 415 case CK_AtomicToNonAtomic: 416 case CK_ConstructorConversion: 417 case CK_FunctionToPointerDecay: 418 case CK_NonAtomicToAtomic: 419 case CK_NoOp: 420 case CK_UserDefinedConversion: 421 case CK_AddressSpaceConversion: 422 return this->delegate(SubExpr); 423 424 case CK_BitCast: { 425 // Reject bitcasts to atomic types. 426 if (CE->getType()->isAtomicType()) { 427 if (!this->discard(SubExpr)) 428 return false; 429 return this->emitInvalidCast(CastKind::Reinterpret, /*Fatal=*/true, CE); 430 } 431 432 if (DiscardResult) 433 return this->discard(SubExpr); 434 435 QualType SubExprTy = SubExpr->getType(); 436 std::optional<PrimType> FromT = classify(SubExprTy); 437 std::optional<PrimType> ToT = classify(CE->getType()); 438 if (!FromT || !ToT) 439 return false; 440 441 assert(isPtrType(*FromT)); 442 assert(isPtrType(*ToT)); 443 if (FromT == ToT) { 444 if (CE->getType()->isVoidPointerType()) 445 return this->delegate(SubExpr); 446 447 if (!this->visit(SubExpr)) 448 return false; 449 if (FromT == PT_Ptr) 450 return this->emitPtrPtrCast(SubExprTy->isVoidPointerType(), CE); 451 return true; 452 } 453 454 if (!this->visit(SubExpr)) 455 return false; 456 return this->emitDecayPtr(*FromT, *ToT, CE); 457 } 458 459 case CK_IntegralToBoolean: 460 case CK_BooleanToSignedIntegral: 461 case CK_IntegralCast: { 462 if (DiscardResult) 463 return this->discard(SubExpr); 464 std::optional<PrimType> FromT = classify(SubExpr->getType()); 465 std::optional<PrimType> ToT = classify(CE->getType()); 466 467 if (!FromT || !ToT) 468 return false; 469 470 if (!this->visit(SubExpr)) 471 return false; 472 473 // Possibly diagnose casts to enum types if the target type does not 474 // have a fixed size. 475 if (Ctx.getLangOpts().CPlusPlus && CE->getType()->isEnumeralType()) { 476 if (const auto *ET = CE->getType().getCanonicalType()->getAs<EnumType>(); 477 ET && !ET->getDecl()->isFixed()) { 478 if (!this->emitCheckEnumValue(*FromT, ET->getDecl(), CE)) 479 return false; 480 } 481 } 482 483 auto maybeNegate = [&]() -> bool { 484 if (CE->getCastKind() == CK_BooleanToSignedIntegral) 485 return this->emitNeg(*ToT, CE); 486 return true; 487 }; 488 489 if (ToT == PT_IntAP) 490 return this->emitCastAP(*FromT, Ctx.getBitWidth(CE->getType()), CE) && 491 maybeNegate(); 492 if (ToT == PT_IntAPS) 493 return this->emitCastAPS(*FromT, Ctx.getBitWidth(CE->getType()), CE) && 494 maybeNegate(); 495 496 if (FromT == ToT) 497 return true; 498 if (!this->emitCast(*FromT, *ToT, CE)) 499 return false; 500 501 return maybeNegate(); 502 } 503 504 case CK_PointerToBoolean: 505 case CK_MemberPointerToBoolean: { 506 PrimType PtrT = classifyPrim(SubExpr->getType()); 507 508 // Just emit p != nullptr for this. 509 if (!this->visit(SubExpr)) 510 return false; 511 512 if (!this->emitNull(PtrT, nullptr, CE)) 513 return false; 514 515 return this->emitNE(PtrT, CE); 516 } 517 518 case CK_IntegralComplexToBoolean: 519 case CK_FloatingComplexToBoolean: { 520 if (DiscardResult) 521 return this->discard(SubExpr); 522 if (!this->visit(SubExpr)) 523 return false; 524 return this->emitComplexBoolCast(SubExpr); 525 } 526 527 case CK_IntegralComplexToReal: 528 case CK_FloatingComplexToReal: 529 return this->emitComplexReal(SubExpr); 530 531 case CK_IntegralRealToComplex: 532 case CK_FloatingRealToComplex: { 533 // We're creating a complex value here, so we need to 534 // allocate storage for it. 535 if (!Initializing) { 536 unsigned LocalIndex = allocateTemporary(CE); 537 if (!this->emitGetPtrLocal(LocalIndex, CE)) 538 return false; 539 } 540 541 // Init the complex value to {SubExpr, 0}. 542 if (!this->visitArrayElemInit(0, SubExpr)) 543 return false; 544 // Zero-init the second element. 545 PrimType T = classifyPrim(SubExpr->getType()); 546 if (!this->visitZeroInitializer(T, SubExpr->getType(), SubExpr)) 547 return false; 548 return this->emitInitElem(T, 1, SubExpr); 549 } 550 551 case CK_IntegralComplexCast: 552 case CK_FloatingComplexCast: 553 case CK_IntegralComplexToFloatingComplex: 554 case CK_FloatingComplexToIntegralComplex: { 555 assert(CE->getType()->isAnyComplexType()); 556 assert(SubExpr->getType()->isAnyComplexType()); 557 if (DiscardResult) 558 return this->discard(SubExpr); 559 560 if (!Initializing) { 561 std::optional<unsigned> LocalIndex = allocateLocal(CE); 562 if (!LocalIndex) 563 return false; 564 if (!this->emitGetPtrLocal(*LocalIndex, CE)) 565 return false; 566 } 567 568 // Location for the SubExpr. 569 // Since SubExpr is of complex type, visiting it results in a pointer 570 // anyway, so we just create a temporary pointer variable. 571 unsigned SubExprOffset = allocateLocalPrimitive( 572 SubExpr, PT_Ptr, /*IsConst=*/true, /*IsExtended=*/false); 573 if (!this->visit(SubExpr)) 574 return false; 575 if (!this->emitSetLocal(PT_Ptr, SubExprOffset, CE)) 576 return false; 577 578 PrimType SourceElemT = classifyComplexElementType(SubExpr->getType()); 579 QualType DestElemType = 580 CE->getType()->getAs<ComplexType>()->getElementType(); 581 PrimType DestElemT = classifyPrim(DestElemType); 582 // Cast both elements individually. 583 for (unsigned I = 0; I != 2; ++I) { 584 if (!this->emitGetLocal(PT_Ptr, SubExprOffset, CE)) 585 return false; 586 if (!this->emitArrayElemPop(SourceElemT, I, CE)) 587 return false; 588 589 // Do the cast. 590 if (!this->emitPrimCast(SourceElemT, DestElemT, DestElemType, CE)) 591 return false; 592 593 // Save the value. 594 if (!this->emitInitElem(DestElemT, I, CE)) 595 return false; 596 } 597 return true; 598 } 599 600 case CK_VectorSplat: { 601 assert(!classify(CE->getType())); 602 assert(classify(SubExpr->getType())); 603 assert(CE->getType()->isVectorType()); 604 605 if (DiscardResult) 606 return this->discard(SubExpr); 607 608 if (!Initializing) { 609 std::optional<unsigned> LocalIndex = allocateLocal(CE); 610 if (!LocalIndex) 611 return false; 612 if (!this->emitGetPtrLocal(*LocalIndex, CE)) 613 return false; 614 } 615 616 const auto *VT = CE->getType()->getAs<VectorType>(); 617 PrimType ElemT = classifyPrim(SubExpr->getType()); 618 unsigned ElemOffset = allocateLocalPrimitive( 619 SubExpr, ElemT, /*IsConst=*/true, /*IsExtended=*/false); 620 621 // Prepare a local variable for the scalar value. 622 if (!this->visit(SubExpr)) 623 return false; 624 if (classifyPrim(SubExpr) == PT_Ptr && !this->emitLoadPop(ElemT, CE)) 625 return false; 626 627 if (!this->emitSetLocal(ElemT, ElemOffset, CE)) 628 return false; 629 630 for (unsigned I = 0; I != VT->getNumElements(); ++I) { 631 if (!this->emitGetLocal(ElemT, ElemOffset, CE)) 632 return false; 633 if (!this->emitInitElem(ElemT, I, CE)) 634 return false; 635 } 636 637 return true; 638 } 639 640 case CK_ToVoid: 641 return discard(SubExpr); 642 643 default: 644 return this->emitInvalid(CE); 645 } 646 llvm_unreachable("Unhandled clang::CastKind enum"); 647 } 648 649 template <class Emitter> 650 bool Compiler<Emitter>::VisitIntegerLiteral(const IntegerLiteral *LE) { 651 if (DiscardResult) 652 return true; 653 654 return this->emitConst(LE->getValue(), LE); 655 } 656 657 template <class Emitter> 658 bool Compiler<Emitter>::VisitFloatingLiteral(const FloatingLiteral *E) { 659 if (DiscardResult) 660 return true; 661 662 return this->emitConstFloat(E->getValue(), E); 663 } 664 665 template <class Emitter> 666 bool Compiler<Emitter>::VisitImaginaryLiteral(const ImaginaryLiteral *E) { 667 assert(E->getType()->isAnyComplexType()); 668 if (DiscardResult) 669 return true; 670 671 if (!Initializing) { 672 unsigned LocalIndex = allocateTemporary(E); 673 if (!this->emitGetPtrLocal(LocalIndex, E)) 674 return false; 675 } 676 677 const Expr *SubExpr = E->getSubExpr(); 678 PrimType SubExprT = classifyPrim(SubExpr->getType()); 679 680 if (!this->visitZeroInitializer(SubExprT, SubExpr->getType(), SubExpr)) 681 return false; 682 if (!this->emitInitElem(SubExprT, 0, SubExpr)) 683 return false; 684 return this->visitArrayElemInit(1, SubExpr); 685 } 686 687 template <class Emitter> 688 bool Compiler<Emitter>::VisitParenExpr(const ParenExpr *E) { 689 return this->delegate(E->getSubExpr()); 690 } 691 692 template <class Emitter> 693 bool Compiler<Emitter>::VisitBinaryOperator(const BinaryOperator *BO) { 694 // Need short-circuiting for these. 695 if (BO->isLogicalOp()) 696 return this->VisitLogicalBinOp(BO); 697 698 const Expr *LHS = BO->getLHS(); 699 const Expr *RHS = BO->getRHS(); 700 701 // Handle comma operators. Just discard the LHS 702 // and delegate to RHS. 703 if (BO->isCommaOp()) { 704 if (!this->discard(LHS)) 705 return false; 706 if (RHS->getType()->isVoidType()) 707 return this->discard(RHS); 708 709 return this->delegate(RHS); 710 } 711 712 if (BO->getType()->isAnyComplexType()) 713 return this->VisitComplexBinOp(BO); 714 if ((LHS->getType()->isAnyComplexType() || 715 RHS->getType()->isAnyComplexType()) && 716 BO->isComparisonOp()) 717 return this->emitComplexComparison(LHS, RHS, BO); 718 719 if (BO->isPtrMemOp()) { 720 if (!this->visit(LHS)) 721 return false; 722 723 if (!this->visit(RHS)) 724 return false; 725 726 if (!this->emitToMemberPtr(BO)) 727 return false; 728 729 if (classifyPrim(BO) == PT_MemberPtr) 730 return true; 731 732 if (!this->emitCastMemberPtrPtr(BO)) 733 return false; 734 return DiscardResult ? this->emitPopPtr(BO) : true; 735 } 736 737 // Typecheck the args. 738 std::optional<PrimType> LT = classify(LHS); 739 std::optional<PrimType> RT = classify(RHS); 740 std::optional<PrimType> T = classify(BO->getType()); 741 742 // Special case for C++'s three-way/spaceship operator <=>, which 743 // returns a std::{strong,weak,partial}_ordering (which is a class, so doesn't 744 // have a PrimType). 745 if (!T && BO->getOpcode() == BO_Cmp) { 746 if (DiscardResult) 747 return true; 748 const ComparisonCategoryInfo *CmpInfo = 749 Ctx.getASTContext().CompCategories.lookupInfoForType(BO->getType()); 750 assert(CmpInfo); 751 752 // We need a temporary variable holding our return value. 753 if (!Initializing) { 754 std::optional<unsigned> ResultIndex = this->allocateLocal(BO); 755 if (!this->emitGetPtrLocal(*ResultIndex, BO)) 756 return false; 757 } 758 759 if (!visit(LHS) || !visit(RHS)) 760 return false; 761 762 return this->emitCMP3(*LT, CmpInfo, BO); 763 } 764 765 if (!LT || !RT || !T) 766 return false; 767 768 // Pointer arithmetic special case. 769 if (BO->getOpcode() == BO_Add || BO->getOpcode() == BO_Sub) { 770 if (isPtrType(*T) || (isPtrType(*LT) && isPtrType(*RT))) 771 return this->VisitPointerArithBinOp(BO); 772 } 773 774 // Assignmentes require us to evalute the RHS first. 775 if (BO->getOpcode() == BO_Assign) { 776 if (!visit(RHS) || !visit(LHS)) 777 return false; 778 if (!this->emitFlip(*LT, *RT, BO)) 779 return false; 780 } else { 781 if (!visit(LHS) || !visit(RHS)) 782 return false; 783 } 784 785 // For languages such as C, cast the result of one 786 // of our comparision opcodes to T (which is usually int). 787 auto MaybeCastToBool = [this, T, BO](bool Result) { 788 if (!Result) 789 return false; 790 if (DiscardResult) 791 return this->emitPop(*T, BO); 792 if (T != PT_Bool) 793 return this->emitCast(PT_Bool, *T, BO); 794 return true; 795 }; 796 797 auto Discard = [this, T, BO](bool Result) { 798 if (!Result) 799 return false; 800 return DiscardResult ? this->emitPop(*T, BO) : true; 801 }; 802 803 switch (BO->getOpcode()) { 804 case BO_EQ: 805 return MaybeCastToBool(this->emitEQ(*LT, BO)); 806 case BO_NE: 807 return MaybeCastToBool(this->emitNE(*LT, BO)); 808 case BO_LT: 809 return MaybeCastToBool(this->emitLT(*LT, BO)); 810 case BO_LE: 811 return MaybeCastToBool(this->emitLE(*LT, BO)); 812 case BO_GT: 813 return MaybeCastToBool(this->emitGT(*LT, BO)); 814 case BO_GE: 815 return MaybeCastToBool(this->emitGE(*LT, BO)); 816 case BO_Sub: 817 if (BO->getType()->isFloatingType()) 818 return Discard(this->emitSubf(getRoundingMode(BO), BO)); 819 return Discard(this->emitSub(*T, BO)); 820 case BO_Add: 821 if (BO->getType()->isFloatingType()) 822 return Discard(this->emitAddf(getRoundingMode(BO), BO)); 823 return Discard(this->emitAdd(*T, BO)); 824 case BO_Mul: 825 if (BO->getType()->isFloatingType()) 826 return Discard(this->emitMulf(getRoundingMode(BO), BO)); 827 return Discard(this->emitMul(*T, BO)); 828 case BO_Rem: 829 return Discard(this->emitRem(*T, BO)); 830 case BO_Div: 831 if (BO->getType()->isFloatingType()) 832 return Discard(this->emitDivf(getRoundingMode(BO), BO)); 833 return Discard(this->emitDiv(*T, BO)); 834 case BO_Assign: 835 if (DiscardResult) 836 return LHS->refersToBitField() ? this->emitStoreBitFieldPop(*T, BO) 837 : this->emitStorePop(*T, BO); 838 if (LHS->refersToBitField()) { 839 if (!this->emitStoreBitField(*T, BO)) 840 return false; 841 } else { 842 if (!this->emitStore(*T, BO)) 843 return false; 844 } 845 // Assignments aren't necessarily lvalues in C. 846 // Load from them in that case. 847 if (!BO->isLValue()) 848 return this->emitLoadPop(*T, BO); 849 return true; 850 case BO_And: 851 return Discard(this->emitBitAnd(*T, BO)); 852 case BO_Or: 853 return Discard(this->emitBitOr(*T, BO)); 854 case BO_Shl: 855 return Discard(this->emitShl(*LT, *RT, BO)); 856 case BO_Shr: 857 return Discard(this->emitShr(*LT, *RT, BO)); 858 case BO_Xor: 859 return Discard(this->emitBitXor(*T, BO)); 860 case BO_LOr: 861 case BO_LAnd: 862 llvm_unreachable("Already handled earlier"); 863 default: 864 return false; 865 } 866 867 llvm_unreachable("Unhandled binary op"); 868 } 869 870 /// Perform addition/subtraction of a pointer and an integer or 871 /// subtraction of two pointers. 872 template <class Emitter> 873 bool Compiler<Emitter>::VisitPointerArithBinOp(const BinaryOperator *E) { 874 BinaryOperatorKind Op = E->getOpcode(); 875 const Expr *LHS = E->getLHS(); 876 const Expr *RHS = E->getRHS(); 877 878 if ((Op != BO_Add && Op != BO_Sub) || 879 (!LHS->getType()->isPointerType() && !RHS->getType()->isPointerType())) 880 return false; 881 882 std::optional<PrimType> LT = classify(LHS); 883 std::optional<PrimType> RT = classify(RHS); 884 885 if (!LT || !RT) 886 return false; 887 888 if (LHS->getType()->isPointerType() && RHS->getType()->isPointerType()) { 889 if (Op != BO_Sub) 890 return false; 891 892 assert(E->getType()->isIntegerType()); 893 if (!visit(RHS) || !visit(LHS)) 894 return false; 895 896 return this->emitSubPtr(classifyPrim(E->getType()), E); 897 } 898 899 PrimType OffsetType; 900 if (LHS->getType()->isIntegerType()) { 901 if (!visit(RHS) || !visit(LHS)) 902 return false; 903 OffsetType = *LT; 904 } else if (RHS->getType()->isIntegerType()) { 905 if (!visit(LHS) || !visit(RHS)) 906 return false; 907 OffsetType = *RT; 908 } else { 909 return false; 910 } 911 912 if (Op == BO_Add) 913 return this->emitAddOffset(OffsetType, E); 914 else if (Op == BO_Sub) 915 return this->emitSubOffset(OffsetType, E); 916 917 return false; 918 } 919 920 template <class Emitter> 921 bool Compiler<Emitter>::VisitLogicalBinOp(const BinaryOperator *E) { 922 assert(E->isLogicalOp()); 923 BinaryOperatorKind Op = E->getOpcode(); 924 const Expr *LHS = E->getLHS(); 925 const Expr *RHS = E->getRHS(); 926 std::optional<PrimType> T = classify(E->getType()); 927 928 if (Op == BO_LOr) { 929 // Logical OR. Visit LHS and only evaluate RHS if LHS was FALSE. 930 LabelTy LabelTrue = this->getLabel(); 931 LabelTy LabelEnd = this->getLabel(); 932 933 if (!this->visitBool(LHS)) 934 return false; 935 if (!this->jumpTrue(LabelTrue)) 936 return false; 937 938 if (!this->visitBool(RHS)) 939 return false; 940 if (!this->jump(LabelEnd)) 941 return false; 942 943 this->emitLabel(LabelTrue); 944 this->emitConstBool(true, E); 945 this->fallthrough(LabelEnd); 946 this->emitLabel(LabelEnd); 947 948 } else { 949 assert(Op == BO_LAnd); 950 // Logical AND. 951 // Visit LHS. Only visit RHS if LHS was TRUE. 952 LabelTy LabelFalse = this->getLabel(); 953 LabelTy LabelEnd = this->getLabel(); 954 955 if (!this->visitBool(LHS)) 956 return false; 957 if (!this->jumpFalse(LabelFalse)) 958 return false; 959 960 if (!this->visitBool(RHS)) 961 return false; 962 if (!this->jump(LabelEnd)) 963 return false; 964 965 this->emitLabel(LabelFalse); 966 this->emitConstBool(false, E); 967 this->fallthrough(LabelEnd); 968 this->emitLabel(LabelEnd); 969 } 970 971 if (DiscardResult) 972 return this->emitPopBool(E); 973 974 // For C, cast back to integer type. 975 assert(T); 976 if (T != PT_Bool) 977 return this->emitCast(PT_Bool, *T, E); 978 return true; 979 } 980 981 template <class Emitter> 982 bool Compiler<Emitter>::VisitComplexBinOp(const BinaryOperator *E) { 983 // Prepare storage for result. 984 if (!Initializing) { 985 unsigned LocalIndex = allocateTemporary(E); 986 if (!this->emitGetPtrLocal(LocalIndex, E)) 987 return false; 988 } 989 990 // Both LHS and RHS might _not_ be of complex type, but one of them 991 // needs to be. 992 const Expr *LHS = E->getLHS(); 993 const Expr *RHS = E->getRHS(); 994 995 PrimType ResultElemT = this->classifyComplexElementType(E->getType()); 996 unsigned ResultOffset = ~0u; 997 if (!DiscardResult) 998 ResultOffset = this->allocateLocalPrimitive(E, PT_Ptr, true, false); 999 1000 // Save result pointer in ResultOffset 1001 if (!this->DiscardResult) { 1002 if (!this->emitDupPtr(E)) 1003 return false; 1004 if (!this->emitSetLocal(PT_Ptr, ResultOffset, E)) 1005 return false; 1006 } 1007 QualType LHSType = LHS->getType(); 1008 if (const auto *AT = LHSType->getAs<AtomicType>()) 1009 LHSType = AT->getValueType(); 1010 QualType RHSType = RHS->getType(); 1011 if (const auto *AT = RHSType->getAs<AtomicType>()) 1012 RHSType = AT->getValueType(); 1013 1014 bool LHSIsComplex = LHSType->isAnyComplexType(); 1015 unsigned LHSOffset; 1016 bool RHSIsComplex = RHSType->isAnyComplexType(); 1017 1018 // For ComplexComplex Mul, we have special ops to make their implementation 1019 // easier. 1020 BinaryOperatorKind Op = E->getOpcode(); 1021 if (Op == BO_Mul && LHSIsComplex && RHSIsComplex) { 1022 assert(classifyPrim(LHSType->getAs<ComplexType>()->getElementType()) == 1023 classifyPrim(RHSType->getAs<ComplexType>()->getElementType())); 1024 PrimType ElemT = 1025 classifyPrim(LHSType->getAs<ComplexType>()->getElementType()); 1026 if (!this->visit(LHS)) 1027 return false; 1028 if (!this->visit(RHS)) 1029 return false; 1030 return this->emitMulc(ElemT, E); 1031 } 1032 1033 if (Op == BO_Div && RHSIsComplex) { 1034 QualType ElemQT = RHSType->getAs<ComplexType>()->getElementType(); 1035 PrimType ElemT = classifyPrim(ElemQT); 1036 // If the LHS is not complex, we still need to do the full complex 1037 // division, so just stub create a complex value and stub it out with 1038 // the LHS and a zero. 1039 1040 if (!LHSIsComplex) { 1041 // This is using the RHS type for the fake-complex LHS. 1042 LHSOffset = allocateTemporary(RHS); 1043 1044 if (!this->emitGetPtrLocal(LHSOffset, E)) 1045 return false; 1046 1047 if (!this->visit(LHS)) 1048 return false; 1049 // real is LHS 1050 if (!this->emitInitElem(ElemT, 0, E)) 1051 return false; 1052 // imag is zero 1053 if (!this->visitZeroInitializer(ElemT, ElemQT, E)) 1054 return false; 1055 if (!this->emitInitElem(ElemT, 1, E)) 1056 return false; 1057 } else { 1058 if (!this->visit(LHS)) 1059 return false; 1060 } 1061 1062 if (!this->visit(RHS)) 1063 return false; 1064 return this->emitDivc(ElemT, E); 1065 } 1066 1067 // Evaluate LHS and save value to LHSOffset. 1068 if (LHSType->isAnyComplexType()) { 1069 LHSOffset = this->allocateLocalPrimitive(LHS, PT_Ptr, true, false); 1070 if (!this->visit(LHS)) 1071 return false; 1072 if (!this->emitSetLocal(PT_Ptr, LHSOffset, E)) 1073 return false; 1074 } else { 1075 PrimType LHST = classifyPrim(LHSType); 1076 LHSOffset = this->allocateLocalPrimitive(LHS, LHST, true, false); 1077 if (!this->visit(LHS)) 1078 return false; 1079 if (!this->emitSetLocal(LHST, LHSOffset, E)) 1080 return false; 1081 } 1082 1083 // Same with RHS. 1084 unsigned RHSOffset; 1085 if (RHSType->isAnyComplexType()) { 1086 RHSOffset = this->allocateLocalPrimitive(RHS, PT_Ptr, true, false); 1087 if (!this->visit(RHS)) 1088 return false; 1089 if (!this->emitSetLocal(PT_Ptr, RHSOffset, E)) 1090 return false; 1091 } else { 1092 PrimType RHST = classifyPrim(RHSType); 1093 RHSOffset = this->allocateLocalPrimitive(RHS, RHST, true, false); 1094 if (!this->visit(RHS)) 1095 return false; 1096 if (!this->emitSetLocal(RHST, RHSOffset, E)) 1097 return false; 1098 } 1099 1100 // For both LHS and RHS, either load the value from the complex pointer, or 1101 // directly from the local variable. For index 1 (i.e. the imaginary part), 1102 // just load 0 and do the operation anyway. 1103 auto loadComplexValue = [this](bool IsComplex, bool LoadZero, 1104 unsigned ElemIndex, unsigned Offset, 1105 const Expr *E) -> bool { 1106 if (IsComplex) { 1107 if (!this->emitGetLocal(PT_Ptr, Offset, E)) 1108 return false; 1109 return this->emitArrayElemPop(classifyComplexElementType(E->getType()), 1110 ElemIndex, E); 1111 } 1112 if (ElemIndex == 0 || !LoadZero) 1113 return this->emitGetLocal(classifyPrim(E->getType()), Offset, E); 1114 return this->visitZeroInitializer(classifyPrim(E->getType()), E->getType(), 1115 E); 1116 }; 1117 1118 // Now we can get pointers to the LHS and RHS from the offsets above. 1119 for (unsigned ElemIndex = 0; ElemIndex != 2; ++ElemIndex) { 1120 // Result pointer for the store later. 1121 if (!this->DiscardResult) { 1122 if (!this->emitGetLocal(PT_Ptr, ResultOffset, E)) 1123 return false; 1124 } 1125 1126 // The actual operation. 1127 switch (Op) { 1128 case BO_Add: 1129 if (!loadComplexValue(LHSIsComplex, true, ElemIndex, LHSOffset, LHS)) 1130 return false; 1131 1132 if (!loadComplexValue(RHSIsComplex, true, ElemIndex, RHSOffset, RHS)) 1133 return false; 1134 if (ResultElemT == PT_Float) { 1135 if (!this->emitAddf(getRoundingMode(E), E)) 1136 return false; 1137 } else { 1138 if (!this->emitAdd(ResultElemT, E)) 1139 return false; 1140 } 1141 break; 1142 case BO_Sub: 1143 if (!loadComplexValue(LHSIsComplex, true, ElemIndex, LHSOffset, LHS)) 1144 return false; 1145 1146 if (!loadComplexValue(RHSIsComplex, true, ElemIndex, RHSOffset, RHS)) 1147 return false; 1148 if (ResultElemT == PT_Float) { 1149 if (!this->emitSubf(getRoundingMode(E), E)) 1150 return false; 1151 } else { 1152 if (!this->emitSub(ResultElemT, E)) 1153 return false; 1154 } 1155 break; 1156 case BO_Mul: 1157 if (!loadComplexValue(LHSIsComplex, false, ElemIndex, LHSOffset, LHS)) 1158 return false; 1159 1160 if (!loadComplexValue(RHSIsComplex, false, ElemIndex, RHSOffset, RHS)) 1161 return false; 1162 1163 if (ResultElemT == PT_Float) { 1164 if (!this->emitMulf(getRoundingMode(E), E)) 1165 return false; 1166 } else { 1167 if (!this->emitMul(ResultElemT, E)) 1168 return false; 1169 } 1170 break; 1171 case BO_Div: 1172 assert(!RHSIsComplex); 1173 if (!loadComplexValue(LHSIsComplex, false, ElemIndex, LHSOffset, LHS)) 1174 return false; 1175 1176 if (!loadComplexValue(RHSIsComplex, false, ElemIndex, RHSOffset, RHS)) 1177 return false; 1178 1179 if (ResultElemT == PT_Float) { 1180 if (!this->emitDivf(getRoundingMode(E), E)) 1181 return false; 1182 } else { 1183 if (!this->emitDiv(ResultElemT, E)) 1184 return false; 1185 } 1186 break; 1187 1188 default: 1189 return false; 1190 } 1191 1192 if (!this->DiscardResult) { 1193 // Initialize array element with the value we just computed. 1194 if (!this->emitInitElemPop(ResultElemT, ElemIndex, E)) 1195 return false; 1196 } else { 1197 if (!this->emitPop(ResultElemT, E)) 1198 return false; 1199 } 1200 } 1201 return true; 1202 } 1203 1204 template <class Emitter> 1205 bool Compiler<Emitter>::VisitImplicitValueInitExpr( 1206 const ImplicitValueInitExpr *E) { 1207 QualType QT = E->getType(); 1208 1209 if (std::optional<PrimType> T = classify(QT)) 1210 return this->visitZeroInitializer(*T, QT, E); 1211 1212 if (QT->isRecordType()) { 1213 const RecordDecl *RD = QT->getAsRecordDecl(); 1214 assert(RD); 1215 if (RD->isInvalidDecl()) 1216 return false; 1217 if (RD->isUnion()) { 1218 // C++11 [dcl.init]p5: If T is a (possibly cv-qualified) union type, the 1219 // object's first non-static named data member is zero-initialized 1220 // FIXME 1221 return false; 1222 } 1223 1224 if (const auto *CXXRD = dyn_cast<CXXRecordDecl>(RD); 1225 CXXRD && CXXRD->getNumVBases() > 0) { 1226 // TODO: Diagnose. 1227 return false; 1228 } 1229 1230 const Record *R = getRecord(QT); 1231 if (!R) 1232 return false; 1233 1234 assert(Initializing); 1235 return this->visitZeroRecordInitializer(R, E); 1236 } 1237 1238 if (QT->isIncompleteArrayType()) 1239 return true; 1240 1241 if (QT->isArrayType()) { 1242 const ArrayType *AT = QT->getAsArrayTypeUnsafe(); 1243 assert(AT); 1244 const auto *CAT = cast<ConstantArrayType>(AT); 1245 size_t NumElems = CAT->getZExtSize(); 1246 PrimType ElemT = classifyPrim(CAT->getElementType()); 1247 1248 for (size_t I = 0; I != NumElems; ++I) { 1249 if (!this->visitZeroInitializer(ElemT, CAT->getElementType(), E)) 1250 return false; 1251 if (!this->emitInitElem(ElemT, I, E)) 1252 return false; 1253 } 1254 1255 return true; 1256 } 1257 1258 if (const auto *ComplexTy = E->getType()->getAs<ComplexType>()) { 1259 assert(Initializing); 1260 QualType ElemQT = ComplexTy->getElementType(); 1261 PrimType ElemT = classifyPrim(ElemQT); 1262 for (unsigned I = 0; I < 2; ++I) { 1263 if (!this->visitZeroInitializer(ElemT, ElemQT, E)) 1264 return false; 1265 if (!this->emitInitElem(ElemT, I, E)) 1266 return false; 1267 } 1268 return true; 1269 } 1270 1271 if (const auto *VecT = E->getType()->getAs<VectorType>()) { 1272 unsigned NumVecElements = VecT->getNumElements(); 1273 QualType ElemQT = VecT->getElementType(); 1274 PrimType ElemT = classifyPrim(ElemQT); 1275 1276 for (unsigned I = 0; I < NumVecElements; ++I) { 1277 if (!this->visitZeroInitializer(ElemT, ElemQT, E)) 1278 return false; 1279 if (!this->emitInitElem(ElemT, I, E)) 1280 return false; 1281 } 1282 return true; 1283 } 1284 1285 return false; 1286 } 1287 1288 template <class Emitter> 1289 bool Compiler<Emitter>::VisitArraySubscriptExpr(const ArraySubscriptExpr *E) { 1290 const Expr *LHS = E->getLHS(); 1291 const Expr *RHS = E->getRHS(); 1292 const Expr *Index = E->getIdx(); 1293 1294 if (DiscardResult) 1295 return this->discard(LHS) && this->discard(RHS); 1296 1297 // C++17's rules require us to evaluate the LHS first, regardless of which 1298 // side is the base. 1299 bool Success = true; 1300 for (const Expr *SubExpr : {LHS, RHS}) { 1301 if (!this->visit(SubExpr)) 1302 Success = false; 1303 } 1304 1305 if (!Success) 1306 return false; 1307 1308 PrimType IndexT = classifyPrim(Index->getType()); 1309 // If the index is first, we need to change that. 1310 if (LHS == Index) { 1311 if (!this->emitFlip(PT_Ptr, IndexT, E)) 1312 return false; 1313 } 1314 1315 return this->emitArrayElemPtrPop(IndexT, E); 1316 } 1317 1318 template <class Emitter> 1319 bool Compiler<Emitter>::visitInitList(ArrayRef<const Expr *> Inits, 1320 const Expr *ArrayFiller, const Expr *E) { 1321 // Handle discarding first. 1322 if (DiscardResult) { 1323 for (const Expr *Init : Inits) { 1324 if (!this->discard(Init)) 1325 return false; 1326 } 1327 return true; 1328 } 1329 1330 QualType QT = E->getType(); 1331 if (const auto *AT = QT->getAs<AtomicType>()) 1332 QT = AT->getValueType(); 1333 1334 if (QT->isVoidType()) 1335 return this->emitInvalid(E); 1336 1337 // Primitive values. 1338 if (std::optional<PrimType> T = classify(QT)) { 1339 assert(!DiscardResult); 1340 if (Inits.size() == 0) 1341 return this->visitZeroInitializer(*T, QT, E); 1342 assert(Inits.size() == 1); 1343 return this->delegate(Inits[0]); 1344 } 1345 1346 if (QT->isRecordType()) { 1347 const Record *R = getRecord(QT); 1348 1349 if (Inits.size() == 1 && E->getType() == Inits[0]->getType()) 1350 return this->delegate(Inits[0]); 1351 1352 auto initPrimitiveField = [=](const Record::Field *FieldToInit, 1353 const Expr *Init, PrimType T) -> bool { 1354 InitStackScope<Emitter> ISS(this, isa<CXXDefaultInitExpr>(Init)); 1355 if (!this->visit(Init)) 1356 return false; 1357 1358 if (FieldToInit->isBitField()) 1359 return this->emitInitBitField(T, FieldToInit, E); 1360 return this->emitInitField(T, FieldToInit->Offset, E); 1361 }; 1362 1363 auto initCompositeField = [=](const Record::Field *FieldToInit, 1364 const Expr *Init) -> bool { 1365 InitStackScope<Emitter> ISS(this, isa<CXXDefaultInitExpr>(Init)); 1366 InitLinkScope<Emitter> ILS(this, InitLink::Field(FieldToInit->Offset)); 1367 // Non-primitive case. Get a pointer to the field-to-initialize 1368 // on the stack and recurse into visitInitializer(). 1369 if (!this->emitGetPtrField(FieldToInit->Offset, Init)) 1370 return false; 1371 if (!this->visitInitializer(Init)) 1372 return false; 1373 return this->emitPopPtr(E); 1374 }; 1375 1376 if (R->isUnion()) { 1377 if (Inits.size() == 0) { 1378 if (!this->visitZeroRecordInitializer(R, E)) 1379 return false; 1380 } else { 1381 const Expr *Init = Inits[0]; 1382 const FieldDecl *FToInit = nullptr; 1383 if (const auto *ILE = dyn_cast<InitListExpr>(E)) 1384 FToInit = ILE->getInitializedFieldInUnion(); 1385 else 1386 FToInit = cast<CXXParenListInitExpr>(E)->getInitializedFieldInUnion(); 1387 1388 const Record::Field *FieldToInit = R->getField(FToInit); 1389 if (std::optional<PrimType> T = classify(Init)) { 1390 if (!initPrimitiveField(FieldToInit, Init, *T)) 1391 return false; 1392 } else { 1393 if (!initCompositeField(FieldToInit, Init)) 1394 return false; 1395 } 1396 } 1397 return this->emitFinishInit(E); 1398 } 1399 1400 assert(!R->isUnion()); 1401 unsigned InitIndex = 0; 1402 for (const Expr *Init : Inits) { 1403 // Skip unnamed bitfields. 1404 while (InitIndex < R->getNumFields() && 1405 R->getField(InitIndex)->Decl->isUnnamedBitField()) 1406 ++InitIndex; 1407 1408 if (std::optional<PrimType> T = classify(Init)) { 1409 const Record::Field *FieldToInit = R->getField(InitIndex); 1410 if (!initPrimitiveField(FieldToInit, Init, *T)) 1411 return false; 1412 ++InitIndex; 1413 } else { 1414 // Initializer for a direct base class. 1415 if (const Record::Base *B = R->getBase(Init->getType())) { 1416 if (!this->emitGetPtrBase(B->Offset, Init)) 1417 return false; 1418 1419 if (!this->visitInitializer(Init)) 1420 return false; 1421 1422 if (!this->emitFinishInitPop(E)) 1423 return false; 1424 // Base initializers don't increase InitIndex, since they don't count 1425 // into the Record's fields. 1426 } else { 1427 const Record::Field *FieldToInit = R->getField(InitIndex); 1428 if (!initCompositeField(FieldToInit, Init)) 1429 return false; 1430 ++InitIndex; 1431 } 1432 } 1433 } 1434 return this->emitFinishInit(E); 1435 } 1436 1437 if (QT->isArrayType()) { 1438 if (Inits.size() == 1 && QT == Inits[0]->getType()) 1439 return this->delegate(Inits[0]); 1440 1441 unsigned ElementIndex = 0; 1442 for (const Expr *Init : Inits) { 1443 if (const auto *EmbedS = 1444 dyn_cast<EmbedExpr>(Init->IgnoreParenImpCasts())) { 1445 PrimType TargetT = classifyPrim(Init->getType()); 1446 1447 auto Eval = [&](const Expr *Init, unsigned ElemIndex) { 1448 PrimType InitT = classifyPrim(Init->getType()); 1449 if (!this->visit(Init)) 1450 return false; 1451 if (InitT != TargetT) { 1452 if (!this->emitCast(InitT, TargetT, E)) 1453 return false; 1454 } 1455 return this->emitInitElem(TargetT, ElemIndex, Init); 1456 }; 1457 if (!EmbedS->doForEachDataElement(Eval, ElementIndex)) 1458 return false; 1459 } else { 1460 if (!this->visitArrayElemInit(ElementIndex, Init)) 1461 return false; 1462 ++ElementIndex; 1463 } 1464 } 1465 1466 // Expand the filler expression. 1467 // FIXME: This should go away. 1468 if (ArrayFiller) { 1469 const ConstantArrayType *CAT = 1470 Ctx.getASTContext().getAsConstantArrayType(QT); 1471 uint64_t NumElems = CAT->getZExtSize(); 1472 1473 for (; ElementIndex != NumElems; ++ElementIndex) { 1474 if (!this->visitArrayElemInit(ElementIndex, ArrayFiller)) 1475 return false; 1476 } 1477 } 1478 1479 return this->emitFinishInit(E); 1480 } 1481 1482 if (const auto *ComplexTy = QT->getAs<ComplexType>()) { 1483 unsigned NumInits = Inits.size(); 1484 1485 if (NumInits == 1) 1486 return this->delegate(Inits[0]); 1487 1488 QualType ElemQT = ComplexTy->getElementType(); 1489 PrimType ElemT = classifyPrim(ElemQT); 1490 if (NumInits == 0) { 1491 // Zero-initialize both elements. 1492 for (unsigned I = 0; I < 2; ++I) { 1493 if (!this->visitZeroInitializer(ElemT, ElemQT, E)) 1494 return false; 1495 if (!this->emitInitElem(ElemT, I, E)) 1496 return false; 1497 } 1498 } else if (NumInits == 2) { 1499 unsigned InitIndex = 0; 1500 for (const Expr *Init : Inits) { 1501 if (!this->visit(Init)) 1502 return false; 1503 1504 if (!this->emitInitElem(ElemT, InitIndex, E)) 1505 return false; 1506 ++InitIndex; 1507 } 1508 } 1509 return true; 1510 } 1511 1512 if (const auto *VecT = QT->getAs<VectorType>()) { 1513 unsigned NumVecElements = VecT->getNumElements(); 1514 assert(NumVecElements >= Inits.size()); 1515 1516 QualType ElemQT = VecT->getElementType(); 1517 PrimType ElemT = classifyPrim(ElemQT); 1518 1519 // All initializer elements. 1520 unsigned InitIndex = 0; 1521 for (const Expr *Init : Inits) { 1522 if (!this->visit(Init)) 1523 return false; 1524 1525 // If the initializer is of vector type itself, we have to deconstruct 1526 // that and initialize all the target fields from the initializer fields. 1527 if (const auto *InitVecT = Init->getType()->getAs<VectorType>()) { 1528 if (!this->emitCopyArray(ElemT, 0, InitIndex, 1529 InitVecT->getNumElements(), E)) 1530 return false; 1531 InitIndex += InitVecT->getNumElements(); 1532 } else { 1533 if (!this->emitInitElem(ElemT, InitIndex, E)) 1534 return false; 1535 ++InitIndex; 1536 } 1537 } 1538 1539 assert(InitIndex <= NumVecElements); 1540 1541 // Fill the rest with zeroes. 1542 for (; InitIndex != NumVecElements; ++InitIndex) { 1543 if (!this->visitZeroInitializer(ElemT, ElemQT, E)) 1544 return false; 1545 if (!this->emitInitElem(ElemT, InitIndex, E)) 1546 return false; 1547 } 1548 return true; 1549 } 1550 1551 return false; 1552 } 1553 1554 /// Pointer to the array(not the element!) must be on the stack when calling 1555 /// this. 1556 template <class Emitter> 1557 bool Compiler<Emitter>::visitArrayElemInit(unsigned ElemIndex, 1558 const Expr *Init) { 1559 if (std::optional<PrimType> T = classify(Init->getType())) { 1560 // Visit the primitive element like normal. 1561 if (!this->visit(Init)) 1562 return false; 1563 return this->emitInitElem(*T, ElemIndex, Init); 1564 } 1565 1566 InitLinkScope<Emitter> ILS(this, InitLink::Elem(ElemIndex)); 1567 // Advance the pointer currently on the stack to the given 1568 // dimension. 1569 if (!this->emitConstUint32(ElemIndex, Init)) 1570 return false; 1571 if (!this->emitArrayElemPtrUint32(Init)) 1572 return false; 1573 if (!this->visitInitializer(Init)) 1574 return false; 1575 return this->emitFinishInitPop(Init); 1576 } 1577 1578 template <class Emitter> 1579 bool Compiler<Emitter>::VisitInitListExpr(const InitListExpr *E) { 1580 return this->visitInitList(E->inits(), E->getArrayFiller(), E); 1581 } 1582 1583 template <class Emitter> 1584 bool Compiler<Emitter>::VisitCXXParenListInitExpr( 1585 const CXXParenListInitExpr *E) { 1586 return this->visitInitList(E->getInitExprs(), E->getArrayFiller(), E); 1587 } 1588 1589 template <class Emitter> 1590 bool Compiler<Emitter>::VisitSubstNonTypeTemplateParmExpr( 1591 const SubstNonTypeTemplateParmExpr *E) { 1592 return this->delegate(E->getReplacement()); 1593 } 1594 1595 template <class Emitter> 1596 bool Compiler<Emitter>::VisitConstantExpr(const ConstantExpr *E) { 1597 std::optional<PrimType> T = classify(E->getType()); 1598 if (T && E->hasAPValueResult()) { 1599 // Try to emit the APValue directly, without visiting the subexpr. 1600 // This will only fail if we can't emit the APValue, so won't emit any 1601 // diagnostics or any double values. 1602 if (DiscardResult) 1603 return true; 1604 1605 if (this->visitAPValue(E->getAPValueResult(), *T, E)) 1606 return true; 1607 } 1608 return this->delegate(E->getSubExpr()); 1609 } 1610 1611 template <class Emitter> 1612 bool Compiler<Emitter>::VisitEmbedExpr(const EmbedExpr *E) { 1613 auto It = E->begin(); 1614 return this->visit(*It); 1615 } 1616 1617 static CharUnits AlignOfType(QualType T, const ASTContext &ASTCtx, 1618 UnaryExprOrTypeTrait Kind) { 1619 bool AlignOfReturnsPreferred = 1620 ASTCtx.getLangOpts().getClangABICompat() <= LangOptions::ClangABI::Ver7; 1621 1622 // C++ [expr.alignof]p3: 1623 // When alignof is applied to a reference type, the result is the 1624 // alignment of the referenced type. 1625 if (const auto *Ref = T->getAs<ReferenceType>()) 1626 T = Ref->getPointeeType(); 1627 1628 if (T.getQualifiers().hasUnaligned()) 1629 return CharUnits::One(); 1630 1631 // __alignof is defined to return the preferred alignment. 1632 // Before 8, clang returned the preferred alignment for alignof and 1633 // _Alignof as well. 1634 if (Kind == UETT_PreferredAlignOf || AlignOfReturnsPreferred) 1635 return ASTCtx.toCharUnitsFromBits(ASTCtx.getPreferredTypeAlign(T)); 1636 1637 return ASTCtx.getTypeAlignInChars(T); 1638 } 1639 1640 template <class Emitter> 1641 bool Compiler<Emitter>::VisitUnaryExprOrTypeTraitExpr( 1642 const UnaryExprOrTypeTraitExpr *E) { 1643 UnaryExprOrTypeTrait Kind = E->getKind(); 1644 const ASTContext &ASTCtx = Ctx.getASTContext(); 1645 1646 if (Kind == UETT_SizeOf || Kind == UETT_DataSizeOf) { 1647 QualType ArgType = E->getTypeOfArgument(); 1648 1649 // C++ [expr.sizeof]p2: "When applied to a reference or a reference type, 1650 // the result is the size of the referenced type." 1651 if (const auto *Ref = ArgType->getAs<ReferenceType>()) 1652 ArgType = Ref->getPointeeType(); 1653 1654 CharUnits Size; 1655 if (ArgType->isVoidType() || ArgType->isFunctionType()) 1656 Size = CharUnits::One(); 1657 else { 1658 if (ArgType->isDependentType() || !ArgType->isConstantSizeType()) 1659 return false; 1660 1661 if (Kind == UETT_SizeOf) 1662 Size = ASTCtx.getTypeSizeInChars(ArgType); 1663 else 1664 Size = ASTCtx.getTypeInfoDataSizeInChars(ArgType).Width; 1665 } 1666 1667 if (DiscardResult) 1668 return true; 1669 1670 return this->emitConst(Size.getQuantity(), E); 1671 } 1672 1673 if (Kind == UETT_AlignOf || Kind == UETT_PreferredAlignOf) { 1674 CharUnits Size; 1675 1676 if (E->isArgumentType()) { 1677 QualType ArgType = E->getTypeOfArgument(); 1678 1679 Size = AlignOfType(ArgType, ASTCtx, Kind); 1680 } else { 1681 // Argument is an expression, not a type. 1682 const Expr *Arg = E->getArgumentExpr()->IgnoreParens(); 1683 1684 // The kinds of expressions that we have special-case logic here for 1685 // should be kept up to date with the special checks for those 1686 // expressions in Sema. 1687 1688 // alignof decl is always accepted, even if it doesn't make sense: we 1689 // default to 1 in those cases. 1690 if (const auto *DRE = dyn_cast<DeclRefExpr>(Arg)) 1691 Size = ASTCtx.getDeclAlign(DRE->getDecl(), 1692 /*RefAsPointee*/ true); 1693 else if (const auto *ME = dyn_cast<MemberExpr>(Arg)) 1694 Size = ASTCtx.getDeclAlign(ME->getMemberDecl(), 1695 /*RefAsPointee*/ true); 1696 else 1697 Size = AlignOfType(Arg->getType(), ASTCtx, Kind); 1698 } 1699 1700 if (DiscardResult) 1701 return true; 1702 1703 return this->emitConst(Size.getQuantity(), E); 1704 } 1705 1706 if (Kind == UETT_VectorElements) { 1707 if (const auto *VT = E->getTypeOfArgument()->getAs<VectorType>()) 1708 return this->emitConst(VT->getNumElements(), E); 1709 assert(E->getTypeOfArgument()->isSizelessVectorType()); 1710 return this->emitSizelessVectorElementSize(E); 1711 } 1712 1713 if (Kind == UETT_VecStep) { 1714 if (const auto *VT = E->getTypeOfArgument()->getAs<VectorType>()) { 1715 unsigned N = VT->getNumElements(); 1716 1717 // The vec_step built-in functions that take a 3-component 1718 // vector return 4. (OpenCL 1.1 spec 6.11.12) 1719 if (N == 3) 1720 N = 4; 1721 1722 return this->emitConst(N, E); 1723 } 1724 return this->emitConst(1, E); 1725 } 1726 1727 return false; 1728 } 1729 1730 template <class Emitter> 1731 bool Compiler<Emitter>::VisitMemberExpr(const MemberExpr *E) { 1732 // 'Base.Member' 1733 const Expr *Base = E->getBase(); 1734 const ValueDecl *Member = E->getMemberDecl(); 1735 1736 if (DiscardResult) 1737 return this->discard(Base); 1738 1739 // MemberExprs are almost always lvalues, in which case we don't need to 1740 // do the load. But sometimes they aren't. 1741 const auto maybeLoadValue = [&]() -> bool { 1742 if (E->isGLValue()) 1743 return true; 1744 if (std::optional<PrimType> T = classify(E)) 1745 return this->emitLoadPop(*T, E); 1746 return false; 1747 }; 1748 1749 if (const auto *VD = dyn_cast<VarDecl>(Member)) { 1750 // I am almost confident in saying that a var decl must be static 1751 // and therefore registered as a global variable. But this will probably 1752 // turn out to be wrong some time in the future, as always. 1753 if (auto GlobalIndex = P.getGlobal(VD)) 1754 return this->emitGetPtrGlobal(*GlobalIndex, E) && maybeLoadValue(); 1755 return false; 1756 } 1757 1758 if (!isa<FieldDecl>(Member)) 1759 return this->discard(Base) && this->visitDeclRef(Member, E); 1760 1761 if (Initializing) { 1762 if (!this->delegate(Base)) 1763 return false; 1764 } else { 1765 if (!this->visit(Base)) 1766 return false; 1767 } 1768 1769 // Base above gives us a pointer on the stack. 1770 const auto *FD = cast<FieldDecl>(Member); 1771 const RecordDecl *RD = FD->getParent(); 1772 const Record *R = getRecord(RD); 1773 if (!R) 1774 return false; 1775 const Record::Field *F = R->getField(FD); 1776 // Leave a pointer to the field on the stack. 1777 if (F->Decl->getType()->isReferenceType()) 1778 return this->emitGetFieldPop(PT_Ptr, F->Offset, E) && maybeLoadValue(); 1779 return this->emitGetPtrFieldPop(F->Offset, E) && maybeLoadValue(); 1780 } 1781 1782 template <class Emitter> 1783 bool Compiler<Emitter>::VisitArrayInitIndexExpr(const ArrayInitIndexExpr *E) { 1784 // ArrayIndex might not be set if a ArrayInitIndexExpr is being evaluated 1785 // stand-alone, e.g. via EvaluateAsInt(). 1786 if (!ArrayIndex) 1787 return false; 1788 return this->emitConst(*ArrayIndex, E); 1789 } 1790 1791 template <class Emitter> 1792 bool Compiler<Emitter>::VisitArrayInitLoopExpr(const ArrayInitLoopExpr *E) { 1793 assert(Initializing); 1794 assert(!DiscardResult); 1795 1796 // We visit the common opaque expression here once so we have its value 1797 // cached. 1798 if (!this->discard(E->getCommonExpr())) 1799 return false; 1800 1801 // TODO: This compiles to quite a lot of bytecode if the array is larger. 1802 // Investigate compiling this to a loop. 1803 const Expr *SubExpr = E->getSubExpr(); 1804 size_t Size = E->getArraySize().getZExtValue(); 1805 1806 // So, every iteration, we execute an assignment here 1807 // where the LHS is on the stack (the target array) 1808 // and the RHS is our SubExpr. 1809 for (size_t I = 0; I != Size; ++I) { 1810 ArrayIndexScope<Emitter> IndexScope(this, I); 1811 BlockScope<Emitter> BS(this); 1812 1813 if (!this->visitArrayElemInit(I, SubExpr)) 1814 return false; 1815 if (!BS.destroyLocals()) 1816 return false; 1817 } 1818 return true; 1819 } 1820 1821 template <class Emitter> 1822 bool Compiler<Emitter>::VisitOpaqueValueExpr(const OpaqueValueExpr *E) { 1823 const Expr *SourceExpr = E->getSourceExpr(); 1824 if (!SourceExpr) 1825 return false; 1826 1827 if (Initializing) 1828 return this->visitInitializer(SourceExpr); 1829 1830 PrimType SubExprT = classify(SourceExpr).value_or(PT_Ptr); 1831 if (auto It = OpaqueExprs.find(E); It != OpaqueExprs.end()) 1832 return this->emitGetLocal(SubExprT, It->second, E); 1833 1834 if (!this->visit(SourceExpr)) 1835 return false; 1836 1837 // At this point we either have the evaluated source expression or a pointer 1838 // to an object on the stack. We want to create a local variable that stores 1839 // this value. 1840 unsigned LocalIndex = allocateLocalPrimitive(E, SubExprT, /*IsConst=*/true); 1841 if (!this->emitSetLocal(SubExprT, LocalIndex, E)) 1842 return false; 1843 1844 // Here the local variable is created but the value is removed from the stack, 1845 // so we put it back if the caller needs it. 1846 if (!DiscardResult) { 1847 if (!this->emitGetLocal(SubExprT, LocalIndex, E)) 1848 return false; 1849 } 1850 1851 // This is cleaned up when the local variable is destroyed. 1852 OpaqueExprs.insert({E, LocalIndex}); 1853 1854 return true; 1855 } 1856 1857 template <class Emitter> 1858 bool Compiler<Emitter>::VisitAbstractConditionalOperator( 1859 const AbstractConditionalOperator *E) { 1860 const Expr *Condition = E->getCond(); 1861 const Expr *TrueExpr = E->getTrueExpr(); 1862 const Expr *FalseExpr = E->getFalseExpr(); 1863 1864 LabelTy LabelEnd = this->getLabel(); // Label after the operator. 1865 LabelTy LabelFalse = this->getLabel(); // Label for the false expr. 1866 1867 if (!this->visitBool(Condition)) 1868 return false; 1869 1870 if (!this->jumpFalse(LabelFalse)) 1871 return false; 1872 1873 { 1874 LocalScope<Emitter> S(this); 1875 if (!this->delegate(TrueExpr)) 1876 return false; 1877 if (!S.destroyLocals()) 1878 return false; 1879 } 1880 1881 if (!this->jump(LabelEnd)) 1882 return false; 1883 1884 this->emitLabel(LabelFalse); 1885 1886 { 1887 LocalScope<Emitter> S(this); 1888 if (!this->delegate(FalseExpr)) 1889 return false; 1890 if (!S.destroyLocals()) 1891 return false; 1892 } 1893 1894 this->fallthrough(LabelEnd); 1895 this->emitLabel(LabelEnd); 1896 1897 return true; 1898 } 1899 1900 template <class Emitter> 1901 bool Compiler<Emitter>::VisitStringLiteral(const StringLiteral *E) { 1902 if (DiscardResult) 1903 return true; 1904 1905 if (!Initializing) { 1906 unsigned StringIndex = P.createGlobalString(E); 1907 return this->emitGetPtrGlobal(StringIndex, E); 1908 } 1909 1910 // We are initializing an array on the stack. 1911 const ConstantArrayType *CAT = 1912 Ctx.getASTContext().getAsConstantArrayType(E->getType()); 1913 assert(CAT && "a string literal that's not a constant array?"); 1914 1915 // If the initializer string is too long, a diagnostic has already been 1916 // emitted. Read only the array length from the string literal. 1917 unsigned ArraySize = CAT->getZExtSize(); 1918 unsigned N = std::min(ArraySize, E->getLength()); 1919 size_t CharWidth = E->getCharByteWidth(); 1920 1921 for (unsigned I = 0; I != N; ++I) { 1922 uint32_t CodeUnit = E->getCodeUnit(I); 1923 1924 if (CharWidth == 1) { 1925 this->emitConstSint8(CodeUnit, E); 1926 this->emitInitElemSint8(I, E); 1927 } else if (CharWidth == 2) { 1928 this->emitConstUint16(CodeUnit, E); 1929 this->emitInitElemUint16(I, E); 1930 } else if (CharWidth == 4) { 1931 this->emitConstUint32(CodeUnit, E); 1932 this->emitInitElemUint32(I, E); 1933 } else { 1934 llvm_unreachable("unsupported character width"); 1935 } 1936 } 1937 1938 // Fill up the rest of the char array with NUL bytes. 1939 for (unsigned I = N; I != ArraySize; ++I) { 1940 if (CharWidth == 1) { 1941 this->emitConstSint8(0, E); 1942 this->emitInitElemSint8(I, E); 1943 } else if (CharWidth == 2) { 1944 this->emitConstUint16(0, E); 1945 this->emitInitElemUint16(I, E); 1946 } else if (CharWidth == 4) { 1947 this->emitConstUint32(0, E); 1948 this->emitInitElemUint32(I, E); 1949 } else { 1950 llvm_unreachable("unsupported character width"); 1951 } 1952 } 1953 1954 return true; 1955 } 1956 1957 template <class Emitter> 1958 bool Compiler<Emitter>::VisitObjCStringLiteral(const ObjCStringLiteral *E) { 1959 return this->delegate(E->getString()); 1960 } 1961 1962 template <class Emitter> 1963 bool Compiler<Emitter>::VisitObjCEncodeExpr(const ObjCEncodeExpr *E) { 1964 auto &A = Ctx.getASTContext(); 1965 std::string Str; 1966 A.getObjCEncodingForType(E->getEncodedType(), Str); 1967 StringLiteral *SL = 1968 StringLiteral::Create(A, Str, StringLiteralKind::Ordinary, 1969 /*Pascal=*/false, E->getType(), E->getAtLoc()); 1970 return this->delegate(SL); 1971 } 1972 1973 template <class Emitter> 1974 bool Compiler<Emitter>::VisitSYCLUniqueStableNameExpr( 1975 const SYCLUniqueStableNameExpr *E) { 1976 if (DiscardResult) 1977 return true; 1978 1979 assert(!Initializing); 1980 1981 auto &A = Ctx.getASTContext(); 1982 std::string ResultStr = E->ComputeName(A); 1983 1984 QualType CharTy = A.CharTy.withConst(); 1985 APInt Size(A.getTypeSize(A.getSizeType()), ResultStr.size() + 1); 1986 QualType ArrayTy = A.getConstantArrayType(CharTy, Size, nullptr, 1987 ArraySizeModifier::Normal, 0); 1988 1989 StringLiteral *SL = 1990 StringLiteral::Create(A, ResultStr, StringLiteralKind::Ordinary, 1991 /*Pascal=*/false, ArrayTy, E->getLocation()); 1992 1993 unsigned StringIndex = P.createGlobalString(SL); 1994 return this->emitGetPtrGlobal(StringIndex, E); 1995 } 1996 1997 template <class Emitter> 1998 bool Compiler<Emitter>::VisitCharacterLiteral(const CharacterLiteral *E) { 1999 if (DiscardResult) 2000 return true; 2001 return this->emitConst(E->getValue(), E); 2002 } 2003 2004 template <class Emitter> 2005 bool Compiler<Emitter>::VisitFloatCompoundAssignOperator( 2006 const CompoundAssignOperator *E) { 2007 2008 const Expr *LHS = E->getLHS(); 2009 const Expr *RHS = E->getRHS(); 2010 QualType LHSType = LHS->getType(); 2011 QualType LHSComputationType = E->getComputationLHSType(); 2012 QualType ResultType = E->getComputationResultType(); 2013 std::optional<PrimType> LT = classify(LHSComputationType); 2014 std::optional<PrimType> RT = classify(ResultType); 2015 2016 assert(ResultType->isFloatingType()); 2017 2018 if (!LT || !RT) 2019 return false; 2020 2021 PrimType LHST = classifyPrim(LHSType); 2022 2023 // C++17 onwards require that we evaluate the RHS first. 2024 // Compute RHS and save it in a temporary variable so we can 2025 // load it again later. 2026 if (!visit(RHS)) 2027 return false; 2028 2029 unsigned TempOffset = this->allocateLocalPrimitive(E, *RT, /*IsConst=*/true); 2030 if (!this->emitSetLocal(*RT, TempOffset, E)) 2031 return false; 2032 2033 // First, visit LHS. 2034 if (!visit(LHS)) 2035 return false; 2036 if (!this->emitLoad(LHST, E)) 2037 return false; 2038 2039 // If necessary, convert LHS to its computation type. 2040 if (!this->emitPrimCast(LHST, classifyPrim(LHSComputationType), 2041 LHSComputationType, E)) 2042 return false; 2043 2044 // Now load RHS. 2045 if (!this->emitGetLocal(*RT, TempOffset, E)) 2046 return false; 2047 2048 llvm::RoundingMode RM = getRoundingMode(E); 2049 switch (E->getOpcode()) { 2050 case BO_AddAssign: 2051 if (!this->emitAddf(RM, E)) 2052 return false; 2053 break; 2054 case BO_SubAssign: 2055 if (!this->emitSubf(RM, E)) 2056 return false; 2057 break; 2058 case BO_MulAssign: 2059 if (!this->emitMulf(RM, E)) 2060 return false; 2061 break; 2062 case BO_DivAssign: 2063 if (!this->emitDivf(RM, E)) 2064 return false; 2065 break; 2066 default: 2067 return false; 2068 } 2069 2070 if (!this->emitPrimCast(classifyPrim(ResultType), LHST, LHS->getType(), E)) 2071 return false; 2072 2073 if (DiscardResult) 2074 return this->emitStorePop(LHST, E); 2075 return this->emitStore(LHST, E); 2076 } 2077 2078 template <class Emitter> 2079 bool Compiler<Emitter>::VisitPointerCompoundAssignOperator( 2080 const CompoundAssignOperator *E) { 2081 BinaryOperatorKind Op = E->getOpcode(); 2082 const Expr *LHS = E->getLHS(); 2083 const Expr *RHS = E->getRHS(); 2084 std::optional<PrimType> LT = classify(LHS->getType()); 2085 std::optional<PrimType> RT = classify(RHS->getType()); 2086 2087 if (Op != BO_AddAssign && Op != BO_SubAssign) 2088 return false; 2089 2090 if (!LT || !RT) 2091 return false; 2092 2093 if (!visit(LHS)) 2094 return false; 2095 2096 if (!this->emitLoad(*LT, LHS)) 2097 return false; 2098 2099 if (!visit(RHS)) 2100 return false; 2101 2102 if (Op == BO_AddAssign) { 2103 if (!this->emitAddOffset(*RT, E)) 2104 return false; 2105 } else { 2106 if (!this->emitSubOffset(*RT, E)) 2107 return false; 2108 } 2109 2110 if (DiscardResult) 2111 return this->emitStorePopPtr(E); 2112 return this->emitStorePtr(E); 2113 } 2114 2115 template <class Emitter> 2116 bool Compiler<Emitter>::VisitCompoundAssignOperator( 2117 const CompoundAssignOperator *E) { 2118 2119 const Expr *LHS = E->getLHS(); 2120 const Expr *RHS = E->getRHS(); 2121 std::optional<PrimType> LHSComputationT = 2122 classify(E->getComputationLHSType()); 2123 std::optional<PrimType> LT = classify(LHS->getType()); 2124 std::optional<PrimType> RT = classify(RHS->getType()); 2125 std::optional<PrimType> ResultT = classify(E->getType()); 2126 2127 if (!Ctx.getLangOpts().CPlusPlus14) 2128 return this->visit(RHS) && this->visit(LHS) && this->emitError(E); 2129 2130 if (!LT || !RT || !ResultT || !LHSComputationT) 2131 return false; 2132 2133 // Handle floating point operations separately here, since they 2134 // require special care. 2135 2136 if (ResultT == PT_Float || RT == PT_Float) 2137 return VisitFloatCompoundAssignOperator(E); 2138 2139 if (E->getType()->isPointerType()) 2140 return VisitPointerCompoundAssignOperator(E); 2141 2142 assert(!E->getType()->isPointerType() && "Handled above"); 2143 assert(!E->getType()->isFloatingType() && "Handled above"); 2144 2145 // C++17 onwards require that we evaluate the RHS first. 2146 // Compute RHS and save it in a temporary variable so we can 2147 // load it again later. 2148 // FIXME: Compound assignments are unsequenced in C, so we might 2149 // have to figure out how to reject them. 2150 if (!visit(RHS)) 2151 return false; 2152 2153 unsigned TempOffset = this->allocateLocalPrimitive(E, *RT, /*IsConst=*/true); 2154 2155 if (!this->emitSetLocal(*RT, TempOffset, E)) 2156 return false; 2157 2158 // Get LHS pointer, load its value and cast it to the 2159 // computation type if necessary. 2160 if (!visit(LHS)) 2161 return false; 2162 if (!this->emitLoad(*LT, E)) 2163 return false; 2164 if (LT != LHSComputationT) { 2165 if (!this->emitCast(*LT, *LHSComputationT, E)) 2166 return false; 2167 } 2168 2169 // Get the RHS value on the stack. 2170 if (!this->emitGetLocal(*RT, TempOffset, E)) 2171 return false; 2172 2173 // Perform operation. 2174 switch (E->getOpcode()) { 2175 case BO_AddAssign: 2176 if (!this->emitAdd(*LHSComputationT, E)) 2177 return false; 2178 break; 2179 case BO_SubAssign: 2180 if (!this->emitSub(*LHSComputationT, E)) 2181 return false; 2182 break; 2183 case BO_MulAssign: 2184 if (!this->emitMul(*LHSComputationT, E)) 2185 return false; 2186 break; 2187 case BO_DivAssign: 2188 if (!this->emitDiv(*LHSComputationT, E)) 2189 return false; 2190 break; 2191 case BO_RemAssign: 2192 if (!this->emitRem(*LHSComputationT, E)) 2193 return false; 2194 break; 2195 case BO_ShlAssign: 2196 if (!this->emitShl(*LHSComputationT, *RT, E)) 2197 return false; 2198 break; 2199 case BO_ShrAssign: 2200 if (!this->emitShr(*LHSComputationT, *RT, E)) 2201 return false; 2202 break; 2203 case BO_AndAssign: 2204 if (!this->emitBitAnd(*LHSComputationT, E)) 2205 return false; 2206 break; 2207 case BO_XorAssign: 2208 if (!this->emitBitXor(*LHSComputationT, E)) 2209 return false; 2210 break; 2211 case BO_OrAssign: 2212 if (!this->emitBitOr(*LHSComputationT, E)) 2213 return false; 2214 break; 2215 default: 2216 llvm_unreachable("Unimplemented compound assign operator"); 2217 } 2218 2219 // And now cast from LHSComputationT to ResultT. 2220 if (ResultT != LHSComputationT) { 2221 if (!this->emitCast(*LHSComputationT, *ResultT, E)) 2222 return false; 2223 } 2224 2225 // And store the result in LHS. 2226 if (DiscardResult) { 2227 if (LHS->refersToBitField()) 2228 return this->emitStoreBitFieldPop(*ResultT, E); 2229 return this->emitStorePop(*ResultT, E); 2230 } 2231 if (LHS->refersToBitField()) 2232 return this->emitStoreBitField(*ResultT, E); 2233 return this->emitStore(*ResultT, E); 2234 } 2235 2236 template <class Emitter> 2237 bool Compiler<Emitter>::VisitExprWithCleanups(const ExprWithCleanups *E) { 2238 LocalScope<Emitter> ES(this); 2239 const Expr *SubExpr = E->getSubExpr(); 2240 2241 return this->delegate(SubExpr) && ES.destroyLocals(E); 2242 } 2243 2244 template <class Emitter> 2245 bool Compiler<Emitter>::VisitMaterializeTemporaryExpr( 2246 const MaterializeTemporaryExpr *E) { 2247 const Expr *SubExpr = E->getSubExpr(); 2248 2249 if (Initializing) { 2250 // We already have a value, just initialize that. 2251 return this->delegate(SubExpr); 2252 } 2253 // If we don't end up using the materialized temporary anyway, don't 2254 // bother creating it. 2255 if (DiscardResult) 2256 return this->discard(SubExpr); 2257 2258 // When we're initializing a global variable *or* the storage duration of 2259 // the temporary is explicitly static, create a global variable. 2260 std::optional<PrimType> SubExprT = classify(SubExpr); 2261 bool IsStatic = E->getStorageDuration() == SD_Static; 2262 if (IsStatic) { 2263 std::optional<unsigned> GlobalIndex = P.createGlobal(E); 2264 if (!GlobalIndex) 2265 return false; 2266 2267 const LifetimeExtendedTemporaryDecl *TempDecl = 2268 E->getLifetimeExtendedTemporaryDecl(); 2269 if (IsStatic) 2270 assert(TempDecl); 2271 2272 if (SubExprT) { 2273 if (!this->visit(SubExpr)) 2274 return false; 2275 if (IsStatic) { 2276 if (!this->emitInitGlobalTemp(*SubExprT, *GlobalIndex, TempDecl, E)) 2277 return false; 2278 } else { 2279 if (!this->emitInitGlobal(*SubExprT, *GlobalIndex, E)) 2280 return false; 2281 } 2282 return this->emitGetPtrGlobal(*GlobalIndex, E); 2283 } 2284 2285 // Non-primitive values. 2286 if (!this->emitGetPtrGlobal(*GlobalIndex, E)) 2287 return false; 2288 if (!this->visitInitializer(SubExpr)) 2289 return false; 2290 if (IsStatic) 2291 return this->emitInitGlobalTempComp(TempDecl, E); 2292 return true; 2293 } 2294 2295 // For everyhing else, use local variables. 2296 if (SubExprT) { 2297 unsigned LocalIndex = allocateLocalPrimitive( 2298 SubExpr, *SubExprT, /*IsConst=*/true, /*IsExtended=*/true); 2299 if (!this->visit(SubExpr)) 2300 return false; 2301 if (!this->emitSetLocal(*SubExprT, LocalIndex, E)) 2302 return false; 2303 return this->emitGetPtrLocal(LocalIndex, E); 2304 } else { 2305 const Expr *Inner = E->getSubExpr()->skipRValueSubobjectAdjustments(); 2306 if (std::optional<unsigned> LocalIndex = 2307 allocateLocal(Inner, E->getExtendingDecl())) { 2308 InitLinkScope<Emitter> ILS(this, InitLink::Temp(*LocalIndex)); 2309 if (!this->emitGetPtrLocal(*LocalIndex, E)) 2310 return false; 2311 return this->visitInitializer(SubExpr); 2312 } 2313 } 2314 return false; 2315 } 2316 2317 template <class Emitter> 2318 bool Compiler<Emitter>::VisitCXXBindTemporaryExpr( 2319 const CXXBindTemporaryExpr *E) { 2320 return this->delegate(E->getSubExpr()); 2321 } 2322 2323 template <class Emitter> 2324 bool Compiler<Emitter>::VisitCompoundLiteralExpr(const CompoundLiteralExpr *E) { 2325 const Expr *Init = E->getInitializer(); 2326 if (DiscardResult) 2327 return this->discard(Init); 2328 2329 if (Initializing) { 2330 // We already have a value, just initialize that. 2331 return this->visitInitializer(Init) && this->emitFinishInit(E); 2332 } 2333 2334 std::optional<PrimType> T = classify(E->getType()); 2335 if (E->isFileScope()) { 2336 // Avoid creating a variable if this is a primitive RValue anyway. 2337 if (T && !E->isLValue()) 2338 return this->delegate(Init); 2339 2340 if (std::optional<unsigned> GlobalIndex = P.createGlobal(E)) { 2341 if (!this->emitGetPtrGlobal(*GlobalIndex, E)) 2342 return false; 2343 2344 if (T) { 2345 if (!this->visit(Init)) 2346 return false; 2347 return this->emitInitGlobal(*T, *GlobalIndex, E); 2348 } 2349 2350 return this->visitInitializer(Init) && this->emitFinishInit(E); 2351 } 2352 2353 return false; 2354 } 2355 2356 // Otherwise, use a local variable. 2357 if (T && !E->isLValue()) { 2358 // For primitive types, we just visit the initializer. 2359 return this->delegate(Init); 2360 } else { 2361 unsigned LocalIndex; 2362 2363 if (T) 2364 LocalIndex = this->allocateLocalPrimitive(Init, *T, false, false); 2365 else if (std::optional<unsigned> MaybeIndex = this->allocateLocal(Init)) 2366 LocalIndex = *MaybeIndex; 2367 else 2368 return false; 2369 2370 if (!this->emitGetPtrLocal(LocalIndex, E)) 2371 return false; 2372 2373 if (T) { 2374 if (!this->visit(Init)) { 2375 return false; 2376 } 2377 return this->emitInit(*T, E); 2378 } else { 2379 if (!this->visitInitializer(Init) || !this->emitFinishInit(E)) 2380 return false; 2381 } 2382 return true; 2383 } 2384 2385 return false; 2386 } 2387 2388 template <class Emitter> 2389 bool Compiler<Emitter>::VisitTypeTraitExpr(const TypeTraitExpr *E) { 2390 if (DiscardResult) 2391 return true; 2392 if (E->getType()->isBooleanType()) 2393 return this->emitConstBool(E->getValue(), E); 2394 return this->emitConst(E->getValue(), E); 2395 } 2396 2397 template <class Emitter> 2398 bool Compiler<Emitter>::VisitArrayTypeTraitExpr(const ArrayTypeTraitExpr *E) { 2399 if (DiscardResult) 2400 return true; 2401 return this->emitConst(E->getValue(), E); 2402 } 2403 2404 template <class Emitter> 2405 bool Compiler<Emitter>::VisitLambdaExpr(const LambdaExpr *E) { 2406 if (DiscardResult) 2407 return true; 2408 2409 assert(Initializing); 2410 const Record *R = P.getOrCreateRecord(E->getLambdaClass()); 2411 2412 auto *CaptureInitIt = E->capture_init_begin(); 2413 // Initialize all fields (which represent lambda captures) of the 2414 // record with their initializers. 2415 for (const Record::Field &F : R->fields()) { 2416 const Expr *Init = *CaptureInitIt; 2417 ++CaptureInitIt; 2418 2419 if (!Init) 2420 continue; 2421 2422 if (std::optional<PrimType> T = classify(Init)) { 2423 if (!this->visit(Init)) 2424 return false; 2425 2426 if (!this->emitInitField(*T, F.Offset, E)) 2427 return false; 2428 } else { 2429 if (!this->emitGetPtrField(F.Offset, E)) 2430 return false; 2431 2432 if (!this->visitInitializer(Init)) 2433 return false; 2434 2435 if (!this->emitPopPtr(E)) 2436 return false; 2437 } 2438 } 2439 2440 return true; 2441 } 2442 2443 template <class Emitter> 2444 bool Compiler<Emitter>::VisitPredefinedExpr(const PredefinedExpr *E) { 2445 if (DiscardResult) 2446 return true; 2447 2448 return this->delegate(E->getFunctionName()); 2449 } 2450 2451 template <class Emitter> 2452 bool Compiler<Emitter>::VisitCXXThrowExpr(const CXXThrowExpr *E) { 2453 if (E->getSubExpr() && !this->discard(E->getSubExpr())) 2454 return false; 2455 2456 return this->emitInvalid(E); 2457 } 2458 2459 template <class Emitter> 2460 bool Compiler<Emitter>::VisitCXXReinterpretCastExpr( 2461 const CXXReinterpretCastExpr *E) { 2462 const Expr *SubExpr = E->getSubExpr(); 2463 2464 bool TypesMatch = classify(E) == classify(SubExpr); 2465 if (!this->emitInvalidCast(CastKind::Reinterpret, /*Fatal=*/!TypesMatch, E)) 2466 return false; 2467 2468 return this->delegate(SubExpr); 2469 } 2470 2471 template <class Emitter> 2472 bool Compiler<Emitter>::VisitCXXNoexceptExpr(const CXXNoexceptExpr *E) { 2473 assert(E->getType()->isBooleanType()); 2474 2475 if (DiscardResult) 2476 return true; 2477 return this->emitConstBool(E->getValue(), E); 2478 } 2479 2480 template <class Emitter> 2481 bool Compiler<Emitter>::VisitCXXConstructExpr(const CXXConstructExpr *E) { 2482 QualType T = E->getType(); 2483 assert(!classify(T)); 2484 2485 if (T->isRecordType()) { 2486 const CXXConstructorDecl *Ctor = E->getConstructor(); 2487 2488 // Trivial copy/move constructor. Avoid copy. 2489 if (Ctor->isDefaulted() && Ctor->isCopyOrMoveConstructor() && 2490 Ctor->isTrivial() && 2491 E->getArg(0)->isTemporaryObject(Ctx.getASTContext(), 2492 T->getAsCXXRecordDecl())) 2493 return this->visitInitializer(E->getArg(0)); 2494 2495 // If we're discarding a construct expression, we still need 2496 // to allocate a variable and call the constructor and destructor. 2497 if (DiscardResult) { 2498 if (Ctor->isTrivial()) 2499 return true; 2500 assert(!Initializing); 2501 std::optional<unsigned> LocalIndex = allocateLocal(E); 2502 2503 if (!LocalIndex) 2504 return false; 2505 2506 if (!this->emitGetPtrLocal(*LocalIndex, E)) 2507 return false; 2508 } 2509 2510 // Zero initialization. 2511 if (E->requiresZeroInitialization()) { 2512 const Record *R = getRecord(E->getType()); 2513 2514 if (!this->visitZeroRecordInitializer(R, E)) 2515 return false; 2516 2517 // If the constructor is trivial anyway, we're done. 2518 if (Ctor->isTrivial()) 2519 return true; 2520 } 2521 2522 const Function *Func = getFunction(Ctor); 2523 2524 if (!Func) 2525 return false; 2526 2527 assert(Func->hasThisPointer()); 2528 assert(!Func->hasRVO()); 2529 2530 // The This pointer is already on the stack because this is an initializer, 2531 // but we need to dup() so the call() below has its own copy. 2532 if (!this->emitDupPtr(E)) 2533 return false; 2534 2535 // Constructor arguments. 2536 for (const auto *Arg : E->arguments()) { 2537 if (!this->visit(Arg)) 2538 return false; 2539 } 2540 2541 if (Func->isVariadic()) { 2542 uint32_t VarArgSize = 0; 2543 unsigned NumParams = Func->getNumWrittenParams(); 2544 for (unsigned I = NumParams, N = E->getNumArgs(); I != N; ++I) { 2545 VarArgSize += 2546 align(primSize(classify(E->getArg(I)->getType()).value_or(PT_Ptr))); 2547 } 2548 if (!this->emitCallVar(Func, VarArgSize, E)) 2549 return false; 2550 } else { 2551 if (!this->emitCall(Func, 0, E)) 2552 return false; 2553 } 2554 2555 if (DiscardResult) 2556 return this->emitPopPtr(E); 2557 return this->emitFinishInit(E); 2558 } 2559 2560 if (T->isArrayType()) { 2561 const ConstantArrayType *CAT = 2562 Ctx.getASTContext().getAsConstantArrayType(E->getType()); 2563 if (!CAT) 2564 return false; 2565 2566 size_t NumElems = CAT->getZExtSize(); 2567 const Function *Func = getFunction(E->getConstructor()); 2568 if (!Func || !Func->isConstexpr()) 2569 return false; 2570 2571 // FIXME(perf): We're calling the constructor once per array element here, 2572 // in the old intepreter we had a special-case for trivial constructors. 2573 for (size_t I = 0; I != NumElems; ++I) { 2574 if (!this->emitConstUint64(I, E)) 2575 return false; 2576 if (!this->emitArrayElemPtrUint64(E)) 2577 return false; 2578 2579 // Constructor arguments. 2580 for (const auto *Arg : E->arguments()) { 2581 if (!this->visit(Arg)) 2582 return false; 2583 } 2584 2585 if (!this->emitCall(Func, 0, E)) 2586 return false; 2587 } 2588 return true; 2589 } 2590 2591 return false; 2592 } 2593 2594 template <class Emitter> 2595 bool Compiler<Emitter>::VisitSourceLocExpr(const SourceLocExpr *E) { 2596 if (DiscardResult) 2597 return true; 2598 2599 const APValue Val = 2600 E->EvaluateInContext(Ctx.getASTContext(), SourceLocDefaultExpr); 2601 2602 // Things like __builtin_LINE(). 2603 if (E->getType()->isIntegerType()) { 2604 assert(Val.isInt()); 2605 const APSInt &I = Val.getInt(); 2606 return this->emitConst(I, E); 2607 } 2608 // Otherwise, the APValue is an LValue, with only one element. 2609 // Theoretically, we don't need the APValue at all of course. 2610 assert(E->getType()->isPointerType()); 2611 assert(Val.isLValue()); 2612 const APValue::LValueBase &Base = Val.getLValueBase(); 2613 if (const Expr *LValueExpr = Base.dyn_cast<const Expr *>()) 2614 return this->visit(LValueExpr); 2615 2616 // Otherwise, we have a decl (which is the case for 2617 // __builtin_source_location). 2618 assert(Base.is<const ValueDecl *>()); 2619 assert(Val.getLValuePath().size() == 0); 2620 const auto *BaseDecl = Base.dyn_cast<const ValueDecl *>(); 2621 assert(BaseDecl); 2622 2623 auto *UGCD = cast<UnnamedGlobalConstantDecl>(BaseDecl); 2624 2625 std::optional<unsigned> GlobalIndex = P.getOrCreateGlobal(UGCD); 2626 if (!GlobalIndex) 2627 return false; 2628 2629 if (!this->emitGetPtrGlobal(*GlobalIndex, E)) 2630 return false; 2631 2632 const Record *R = getRecord(E->getType()); 2633 const APValue &V = UGCD->getValue(); 2634 for (unsigned I = 0, N = R->getNumFields(); I != N; ++I) { 2635 const Record::Field *F = R->getField(I); 2636 const APValue &FieldValue = V.getStructField(I); 2637 2638 PrimType FieldT = classifyPrim(F->Decl->getType()); 2639 2640 if (!this->visitAPValue(FieldValue, FieldT, E)) 2641 return false; 2642 if (!this->emitInitField(FieldT, F->Offset, E)) 2643 return false; 2644 } 2645 2646 // Leave the pointer to the global on the stack. 2647 return true; 2648 } 2649 2650 template <class Emitter> 2651 bool Compiler<Emitter>::VisitOffsetOfExpr(const OffsetOfExpr *E) { 2652 unsigned N = E->getNumComponents(); 2653 if (N == 0) 2654 return false; 2655 2656 for (unsigned I = 0; I != N; ++I) { 2657 const OffsetOfNode &Node = E->getComponent(I); 2658 if (Node.getKind() == OffsetOfNode::Array) { 2659 const Expr *ArrayIndexExpr = E->getIndexExpr(Node.getArrayExprIndex()); 2660 PrimType IndexT = classifyPrim(ArrayIndexExpr->getType()); 2661 2662 if (DiscardResult) { 2663 if (!this->discard(ArrayIndexExpr)) 2664 return false; 2665 continue; 2666 } 2667 2668 if (!this->visit(ArrayIndexExpr)) 2669 return false; 2670 // Cast to Sint64. 2671 if (IndexT != PT_Sint64) { 2672 if (!this->emitCast(IndexT, PT_Sint64, E)) 2673 return false; 2674 } 2675 } 2676 } 2677 2678 if (DiscardResult) 2679 return true; 2680 2681 PrimType T = classifyPrim(E->getType()); 2682 return this->emitOffsetOf(T, E, E); 2683 } 2684 2685 template <class Emitter> 2686 bool Compiler<Emitter>::VisitCXXScalarValueInitExpr( 2687 const CXXScalarValueInitExpr *E) { 2688 QualType Ty = E->getType(); 2689 2690 if (DiscardResult || Ty->isVoidType()) 2691 return true; 2692 2693 if (std::optional<PrimType> T = classify(Ty)) 2694 return this->visitZeroInitializer(*T, Ty, E); 2695 2696 if (const auto *CT = Ty->getAs<ComplexType>()) { 2697 if (!Initializing) { 2698 std::optional<unsigned> LocalIndex = allocateLocal(E); 2699 if (!LocalIndex) 2700 return false; 2701 if (!this->emitGetPtrLocal(*LocalIndex, E)) 2702 return false; 2703 } 2704 2705 // Initialize both fields to 0. 2706 QualType ElemQT = CT->getElementType(); 2707 PrimType ElemT = classifyPrim(ElemQT); 2708 2709 for (unsigned I = 0; I != 2; ++I) { 2710 if (!this->visitZeroInitializer(ElemT, ElemQT, E)) 2711 return false; 2712 if (!this->emitInitElem(ElemT, I, E)) 2713 return false; 2714 } 2715 return true; 2716 } 2717 2718 if (const auto *VT = Ty->getAs<VectorType>()) { 2719 // FIXME: Code duplication with the _Complex case above. 2720 if (!Initializing) { 2721 std::optional<unsigned> LocalIndex = allocateLocal(E); 2722 if (!LocalIndex) 2723 return false; 2724 if (!this->emitGetPtrLocal(*LocalIndex, E)) 2725 return false; 2726 } 2727 2728 // Initialize all fields to 0. 2729 QualType ElemQT = VT->getElementType(); 2730 PrimType ElemT = classifyPrim(ElemQT); 2731 2732 for (unsigned I = 0, N = VT->getNumElements(); I != N; ++I) { 2733 if (!this->visitZeroInitializer(ElemT, ElemQT, E)) 2734 return false; 2735 if (!this->emitInitElem(ElemT, I, E)) 2736 return false; 2737 } 2738 return true; 2739 } 2740 2741 return false; 2742 } 2743 2744 template <class Emitter> 2745 bool Compiler<Emitter>::VisitSizeOfPackExpr(const SizeOfPackExpr *E) { 2746 return this->emitConst(E->getPackLength(), E); 2747 } 2748 2749 template <class Emitter> 2750 bool Compiler<Emitter>::VisitGenericSelectionExpr( 2751 const GenericSelectionExpr *E) { 2752 return this->delegate(E->getResultExpr()); 2753 } 2754 2755 template <class Emitter> 2756 bool Compiler<Emitter>::VisitChooseExpr(const ChooseExpr *E) { 2757 return this->delegate(E->getChosenSubExpr()); 2758 } 2759 2760 template <class Emitter> 2761 bool Compiler<Emitter>::VisitObjCBoolLiteralExpr(const ObjCBoolLiteralExpr *E) { 2762 if (DiscardResult) 2763 return true; 2764 2765 return this->emitConst(E->getValue(), E); 2766 } 2767 2768 template <class Emitter> 2769 bool Compiler<Emitter>::VisitCXXInheritedCtorInitExpr( 2770 const CXXInheritedCtorInitExpr *E) { 2771 const CXXConstructorDecl *Ctor = E->getConstructor(); 2772 assert(!Ctor->isTrivial() && 2773 "Trivial CXXInheritedCtorInitExpr, implement. (possible?)"); 2774 const Function *F = this->getFunction(Ctor); 2775 assert(F); 2776 assert(!F->hasRVO()); 2777 assert(F->hasThisPointer()); 2778 2779 if (!this->emitDupPtr(SourceInfo{})) 2780 return false; 2781 2782 // Forward all arguments of the current function (which should be a 2783 // constructor itself) to the inherited ctor. 2784 // This is necessary because the calling code has pushed the pointer 2785 // of the correct base for us already, but the arguments need 2786 // to come after. 2787 unsigned Offset = align(primSize(PT_Ptr)); // instance pointer. 2788 for (const ParmVarDecl *PD : Ctor->parameters()) { 2789 PrimType PT = this->classify(PD->getType()).value_or(PT_Ptr); 2790 2791 if (!this->emitGetParam(PT, Offset, E)) 2792 return false; 2793 Offset += align(primSize(PT)); 2794 } 2795 2796 return this->emitCall(F, 0, E); 2797 } 2798 2799 template <class Emitter> 2800 bool Compiler<Emitter>::VisitCXXNewExpr(const CXXNewExpr *E) { 2801 assert(classifyPrim(E->getType()) == PT_Ptr); 2802 const Expr *Init = E->getInitializer(); 2803 QualType ElementType = E->getAllocatedType(); 2804 std::optional<PrimType> ElemT = classify(ElementType); 2805 unsigned PlacementArgs = E->getNumPlacementArgs(); 2806 bool IsNoThrow = false; 2807 2808 // FIXME: Better diagnostic. diag::note_constexpr_new_placement 2809 if (PlacementArgs != 0) { 2810 // The only new-placement list we support is of the form (std::nothrow). 2811 // 2812 // FIXME: There is no restriction on this, but it's not clear that any 2813 // other form makes any sense. We get here for cases such as: 2814 // 2815 // new (std::align_val_t{N}) X(int) 2816 // 2817 // (which should presumably be valid only if N is a multiple of 2818 // alignof(int), and in any case can't be deallocated unless N is 2819 // alignof(X) and X has new-extended alignment). 2820 if (PlacementArgs != 1 || !E->getPlacementArg(0)->getType()->isNothrowT()) 2821 return this->emitInvalid(E); 2822 2823 if (!this->discard(E->getPlacementArg(0))) 2824 return false; 2825 IsNoThrow = true; 2826 } 2827 2828 const Descriptor *Desc; 2829 if (ElemT) { 2830 if (E->isArray()) 2831 Desc = nullptr; // We're not going to use it in this case. 2832 else 2833 Desc = P.createDescriptor(E, *ElemT, Descriptor::InlineDescMD, 2834 /*IsConst=*/false, /*IsTemporary=*/false, 2835 /*IsMutable=*/false); 2836 } else { 2837 Desc = P.createDescriptor( 2838 E, ElementType.getTypePtr(), 2839 E->isArray() ? std::nullopt : Descriptor::InlineDescMD, 2840 /*IsConst=*/false, /*IsTemporary=*/false, /*IsMutable=*/false, Init); 2841 } 2842 2843 if (E->isArray()) { 2844 std::optional<const Expr *> ArraySizeExpr = E->getArraySize(); 2845 if (!ArraySizeExpr) 2846 return false; 2847 2848 const Expr *Stripped = *ArraySizeExpr; 2849 for (; auto *ICE = dyn_cast<ImplicitCastExpr>(Stripped); 2850 Stripped = ICE->getSubExpr()) 2851 if (ICE->getCastKind() != CK_NoOp && 2852 ICE->getCastKind() != CK_IntegralCast) 2853 break; 2854 2855 PrimType SizeT = classifyPrim(Stripped->getType()); 2856 2857 if (!this->visit(Stripped)) 2858 return false; 2859 2860 if (ElemT) { 2861 // N primitive elements. 2862 if (!this->emitAllocN(SizeT, *ElemT, E, IsNoThrow, E)) 2863 return false; 2864 } else { 2865 // N Composite elements. 2866 if (!this->emitAllocCN(SizeT, Desc, IsNoThrow, E)) 2867 return false; 2868 } 2869 2870 if (Init && !this->visitInitializer(Init)) 2871 return false; 2872 2873 } else { 2874 // Allocate just one element. 2875 if (!this->emitAlloc(Desc, E)) 2876 return false; 2877 2878 if (Init) { 2879 if (ElemT) { 2880 if (!this->visit(Init)) 2881 return false; 2882 2883 if (!this->emitInit(*ElemT, E)) 2884 return false; 2885 } else { 2886 // Composite. 2887 if (!this->visitInitializer(Init)) 2888 return false; 2889 } 2890 } 2891 } 2892 2893 if (DiscardResult) 2894 return this->emitPopPtr(E); 2895 2896 return true; 2897 } 2898 2899 template <class Emitter> 2900 bool Compiler<Emitter>::VisitCXXDeleteExpr(const CXXDeleteExpr *E) { 2901 const Expr *Arg = E->getArgument(); 2902 2903 // Arg must be an lvalue. 2904 if (!this->visit(Arg)) 2905 return false; 2906 2907 return this->emitFree(E->isArrayForm(), E); 2908 } 2909 2910 template <class Emitter> 2911 bool Compiler<Emitter>::VisitBlockExpr(const BlockExpr *E) { 2912 const Function *Func = nullptr; 2913 if (auto F = Compiler<ByteCodeEmitter>(Ctx, P).compileObjCBlock(E)) 2914 Func = F; 2915 2916 if (!Func) 2917 return false; 2918 return this->emitGetFnPtr(Func, E); 2919 } 2920 2921 template <class Emitter> 2922 bool Compiler<Emitter>::VisitExpressionTraitExpr(const ExpressionTraitExpr *E) { 2923 assert(Ctx.getLangOpts().CPlusPlus); 2924 return this->emitConstBool(E->getValue(), E); 2925 } 2926 2927 template <class Emitter> 2928 bool Compiler<Emitter>::VisitCXXUuidofExpr(const CXXUuidofExpr *E) { 2929 if (DiscardResult) 2930 return true; 2931 assert(!Initializing); 2932 2933 const MSGuidDecl *GuidDecl = E->getGuidDecl(); 2934 const RecordDecl *RD = GuidDecl->getType()->getAsRecordDecl(); 2935 assert(RD); 2936 // If the definiton of the result type is incomplete, just return a dummy. 2937 // If (and when) that is read from, we will fail, but not now. 2938 if (!RD->isCompleteDefinition()) { 2939 if (std::optional<unsigned> I = P.getOrCreateDummy(GuidDecl)) 2940 return this->emitGetPtrGlobal(*I, E); 2941 return false; 2942 } 2943 2944 std::optional<unsigned> GlobalIndex = P.getOrCreateGlobal(GuidDecl); 2945 if (!GlobalIndex) 2946 return false; 2947 if (!this->emitGetPtrGlobal(*GlobalIndex, E)) 2948 return false; 2949 2950 assert(this->getRecord(E->getType())); 2951 2952 const APValue &V = GuidDecl->getAsAPValue(); 2953 if (V.getKind() == APValue::None) 2954 return true; 2955 2956 assert(V.isStruct()); 2957 assert(V.getStructNumBases() == 0); 2958 if (!this->visitAPValueInitializer(V, E)) 2959 return false; 2960 2961 return this->emitFinishInit(E); 2962 } 2963 2964 template <class Emitter> 2965 bool Compiler<Emitter>::VisitRequiresExpr(const RequiresExpr *E) { 2966 assert(classifyPrim(E->getType()) == PT_Bool); 2967 if (DiscardResult) 2968 return true; 2969 return this->emitConstBool(E->isSatisfied(), E); 2970 } 2971 2972 template <class Emitter> 2973 bool Compiler<Emitter>::VisitConceptSpecializationExpr( 2974 const ConceptSpecializationExpr *E) { 2975 assert(classifyPrim(E->getType()) == PT_Bool); 2976 if (DiscardResult) 2977 return true; 2978 return this->emitConstBool(E->isSatisfied(), E); 2979 } 2980 2981 template <class Emitter> 2982 bool Compiler<Emitter>::VisitCXXRewrittenBinaryOperator( 2983 const CXXRewrittenBinaryOperator *E) { 2984 return this->delegate(E->getSemanticForm()); 2985 } 2986 2987 template <class Emitter> 2988 bool Compiler<Emitter>::VisitPseudoObjectExpr(const PseudoObjectExpr *E) { 2989 2990 for (const Expr *SemE : E->semantics()) { 2991 if (auto *OVE = dyn_cast<OpaqueValueExpr>(SemE)) { 2992 if (SemE == E->getResultExpr()) 2993 return false; 2994 2995 if (OVE->isUnique()) 2996 continue; 2997 2998 if (!this->discard(OVE)) 2999 return false; 3000 } else if (SemE == E->getResultExpr()) { 3001 if (!this->delegate(SemE)) 3002 return false; 3003 } else { 3004 if (!this->discard(SemE)) 3005 return false; 3006 } 3007 } 3008 return true; 3009 } 3010 3011 template <class Emitter> 3012 bool Compiler<Emitter>::VisitPackIndexingExpr(const PackIndexingExpr *E) { 3013 return this->delegate(E->getSelectedExpr()); 3014 } 3015 3016 template <class Emitter> 3017 bool Compiler<Emitter>::VisitRecoveryExpr(const RecoveryExpr *E) { 3018 return this->emitError(E); 3019 } 3020 3021 template <class Emitter> 3022 bool Compiler<Emitter>::VisitAddrLabelExpr(const AddrLabelExpr *E) { 3023 assert(E->getType()->isVoidPointerType()); 3024 3025 unsigned Offset = allocateLocalPrimitive( 3026 E->getLabel(), PT_Ptr, /*IsConst=*/true, /*IsExtended=*/false); 3027 3028 return this->emitGetLocal(PT_Ptr, Offset, E); 3029 } 3030 3031 template <class Emitter> 3032 bool Compiler<Emitter>::VisitConvertVectorExpr(const ConvertVectorExpr *E) { 3033 assert(Initializing); 3034 const auto *VT = E->getType()->castAs<VectorType>(); 3035 QualType ElemType = VT->getElementType(); 3036 PrimType ElemT = classifyPrim(ElemType); 3037 const Expr *Src = E->getSrcExpr(); 3038 PrimType SrcElemT = 3039 classifyPrim(Src->getType()->castAs<VectorType>()->getElementType()); 3040 3041 unsigned SrcOffset = this->allocateLocalPrimitive(Src, PT_Ptr, true, false); 3042 if (!this->visit(Src)) 3043 return false; 3044 if (!this->emitSetLocal(PT_Ptr, SrcOffset, E)) 3045 return false; 3046 3047 for (unsigned I = 0; I != VT->getNumElements(); ++I) { 3048 if (!this->emitGetLocal(PT_Ptr, SrcOffset, E)) 3049 return false; 3050 if (!this->emitArrayElemPop(SrcElemT, I, E)) 3051 return false; 3052 if (SrcElemT != ElemT) { 3053 if (!this->emitPrimCast(SrcElemT, ElemT, ElemType, E)) 3054 return false; 3055 } 3056 if (!this->emitInitElem(ElemT, I, E)) 3057 return false; 3058 } 3059 3060 return true; 3061 } 3062 3063 template <class Emitter> 3064 bool Compiler<Emitter>::VisitShuffleVectorExpr(const ShuffleVectorExpr *E) { 3065 assert(Initializing); 3066 assert(E->getNumSubExprs() > 2); 3067 3068 const Expr *Vecs[] = {E->getExpr(0), E->getExpr(1)}; 3069 const VectorType *VT = Vecs[0]->getType()->castAs<VectorType>(); 3070 PrimType ElemT = classifyPrim(VT->getElementType()); 3071 unsigned NumInputElems = VT->getNumElements(); 3072 unsigned NumOutputElems = E->getNumSubExprs() - 2; 3073 assert(NumOutputElems > 0); 3074 3075 // Save both input vectors to a local variable. 3076 unsigned VectorOffsets[2]; 3077 for (unsigned I = 0; I != 2; ++I) { 3078 VectorOffsets[I] = this->allocateLocalPrimitive( 3079 Vecs[I], PT_Ptr, /*IsConst=*/true, /*IsExtended=*/false); 3080 if (!this->visit(Vecs[I])) 3081 return false; 3082 if (!this->emitSetLocal(PT_Ptr, VectorOffsets[I], E)) 3083 return false; 3084 } 3085 for (unsigned I = 0; I != NumOutputElems; ++I) { 3086 APSInt ShuffleIndex = E->getShuffleMaskIdx(Ctx.getASTContext(), I); 3087 if (ShuffleIndex == -1) 3088 return this->emitInvalid(E); // FIXME: Better diagnostic. 3089 3090 assert(ShuffleIndex < (NumInputElems * 2)); 3091 if (!this->emitGetLocal(PT_Ptr, 3092 VectorOffsets[ShuffleIndex >= NumInputElems], E)) 3093 return false; 3094 unsigned InputVectorIndex = ShuffleIndex.getZExtValue() % NumInputElems; 3095 if (!this->emitArrayElemPop(ElemT, InputVectorIndex, E)) 3096 return false; 3097 3098 if (!this->emitInitElem(ElemT, I, E)) 3099 return false; 3100 } 3101 3102 return true; 3103 } 3104 3105 template <class Emitter> 3106 bool Compiler<Emitter>::VisitExtVectorElementExpr( 3107 const ExtVectorElementExpr *E) { 3108 const Expr *Base = E->getBase(); 3109 assert( 3110 Base->getType()->isVectorType() || 3111 Base->getType()->getAs<PointerType>()->getPointeeType()->isVectorType()); 3112 3113 SmallVector<uint32_t, 4> Indices; 3114 E->getEncodedElementAccess(Indices); 3115 3116 if (Indices.size() == 1) { 3117 if (!this->visit(Base)) 3118 return false; 3119 3120 if (E->isGLValue()) { 3121 if (!this->emitConstUint32(Indices[0], E)) 3122 return false; 3123 return this->emitArrayElemPtrPop(PT_Uint32, E); 3124 } 3125 // Else, also load the value. 3126 return this->emitArrayElemPop(classifyPrim(E->getType()), Indices[0], E); 3127 } 3128 3129 // Create a local variable for the base. 3130 unsigned BaseOffset = allocateLocalPrimitive(Base, PT_Ptr, /*IsConst=*/true, 3131 /*IsExtended=*/false); 3132 if (!this->visit(Base)) 3133 return false; 3134 if (!this->emitSetLocal(PT_Ptr, BaseOffset, E)) 3135 return false; 3136 3137 // Now the vector variable for the return value. 3138 if (!Initializing) { 3139 std::optional<unsigned> ResultIndex; 3140 ResultIndex = allocateLocal(E); 3141 if (!ResultIndex) 3142 return false; 3143 if (!this->emitGetPtrLocal(*ResultIndex, E)) 3144 return false; 3145 } 3146 3147 assert(Indices.size() == E->getType()->getAs<VectorType>()->getNumElements()); 3148 3149 PrimType ElemT = 3150 classifyPrim(E->getType()->getAs<VectorType>()->getElementType()); 3151 uint32_t DstIndex = 0; 3152 for (uint32_t I : Indices) { 3153 if (!this->emitGetLocal(PT_Ptr, BaseOffset, E)) 3154 return false; 3155 if (!this->emitArrayElemPop(ElemT, I, E)) 3156 return false; 3157 if (!this->emitInitElem(ElemT, DstIndex, E)) 3158 return false; 3159 ++DstIndex; 3160 } 3161 3162 // Leave the result pointer on the stack. 3163 assert(!DiscardResult); 3164 return true; 3165 } 3166 3167 template <class Emitter> 3168 bool Compiler<Emitter>::VisitObjCBoxedExpr(const ObjCBoxedExpr *E) { 3169 const Expr *SubExpr = E->getSubExpr(); 3170 if (!E->isExpressibleAsConstantInitializer()) 3171 return this->discard(SubExpr) && this->emitInvalid(E); 3172 3173 return this->delegate(SubExpr); 3174 } 3175 3176 template <class Emitter> 3177 bool Compiler<Emitter>::VisitCXXStdInitializerListExpr( 3178 const CXXStdInitializerListExpr *E) { 3179 const Expr *SubExpr = E->getSubExpr(); 3180 const ConstantArrayType *ArrayType = 3181 Ctx.getASTContext().getAsConstantArrayType(SubExpr->getType()); 3182 const Record *R = getRecord(E->getType()); 3183 assert(Initializing); 3184 assert(SubExpr->isGLValue()); 3185 3186 if (!this->visit(SubExpr)) 3187 return false; 3188 if (!this->emitInitFieldPtr(R->getField(0u)->Offset, E)) 3189 return false; 3190 3191 PrimType SecondFieldT = classifyPrim(R->getField(1u)->Decl->getType()); 3192 if (isIntegralType(SecondFieldT)) { 3193 if (!this->emitConst(static_cast<APSInt>(ArrayType->getSize()), 3194 SecondFieldT, E)) 3195 return false; 3196 return this->emitInitField(SecondFieldT, R->getField(1u)->Offset, E); 3197 } 3198 assert(SecondFieldT == PT_Ptr); 3199 3200 if (!this->emitGetFieldPtr(R->getField(0u)->Offset, E)) 3201 return false; 3202 if (!this->emitConst(static_cast<APSInt>(ArrayType->getSize()), PT_Uint64, E)) 3203 return false; 3204 if (!this->emitArrayElemPtrPop(PT_Uint64, E)) 3205 return false; 3206 return this->emitInitFieldPtr(R->getField(1u)->Offset, E); 3207 } 3208 3209 template <class Emitter> 3210 bool Compiler<Emitter>::VisitStmtExpr(const StmtExpr *E) { 3211 BlockScope<Emitter> BS(this); 3212 StmtExprScope<Emitter> SS(this); 3213 3214 const CompoundStmt *CS = E->getSubStmt(); 3215 const Stmt *Result = CS->getStmtExprResult(); 3216 for (const Stmt *S : CS->body()) { 3217 if (S != Result) { 3218 if (!this->visitStmt(S)) 3219 return false; 3220 continue; 3221 } 3222 3223 assert(S == Result); 3224 if (const Expr *ResultExpr = dyn_cast<Expr>(S)) 3225 return this->delegate(ResultExpr); 3226 return this->emitUnsupported(E); 3227 } 3228 3229 return BS.destroyLocals(); 3230 } 3231 3232 template <class Emitter> bool Compiler<Emitter>::discard(const Expr *E) { 3233 OptionScope<Emitter> Scope(this, /*NewDiscardResult=*/true, 3234 /*NewInitializing=*/false); 3235 return this->Visit(E); 3236 } 3237 3238 template <class Emitter> bool Compiler<Emitter>::delegate(const Expr *E) { 3239 if (E->containsErrors()) 3240 return this->emitError(E); 3241 3242 // We're basically doing: 3243 // OptionScope<Emitter> Scope(this, DicardResult, Initializing); 3244 // but that's unnecessary of course. 3245 return this->Visit(E); 3246 } 3247 3248 template <class Emitter> bool Compiler<Emitter>::visit(const Expr *E) { 3249 if (E->getType().isNull()) 3250 return false; 3251 3252 // Create local variable to hold the return value. 3253 if (!E->getType()->isVoidType() && !E->isGLValue() && 3254 !E->getType()->isAnyComplexType() && !classify(E->getType())) { 3255 std::optional<unsigned> LocalIndex = allocateLocal(E); 3256 if (!LocalIndex) 3257 return false; 3258 3259 if (!this->emitGetPtrLocal(*LocalIndex, E)) 3260 return false; 3261 return this->visitInitializer(E); 3262 } 3263 3264 // Otherwise,we have a primitive return value, produce the value directly 3265 // and push it on the stack. 3266 OptionScope<Emitter> Scope(this, /*NewDiscardResult=*/false, 3267 /*NewInitializing=*/false); 3268 return this->Visit(E); 3269 } 3270 3271 template <class Emitter> 3272 bool Compiler<Emitter>::visitInitializer(const Expr *E) { 3273 assert(!classify(E->getType())); 3274 3275 if (E->containsErrors()) 3276 return this->emitError(E); 3277 3278 if (!this->checkLiteralType(E)) 3279 return false; 3280 3281 OptionScope<Emitter> Scope(this, /*NewDiscardResult=*/false, 3282 /*NewInitializing=*/true); 3283 return this->Visit(E); 3284 } 3285 3286 template <class Emitter> bool Compiler<Emitter>::visitBool(const Expr *E) { 3287 std::optional<PrimType> T = classify(E->getType()); 3288 if (!T) { 3289 // Convert complex values to bool. 3290 if (E->getType()->isAnyComplexType()) { 3291 if (!this->visit(E)) 3292 return false; 3293 return this->emitComplexBoolCast(E); 3294 } 3295 return false; 3296 } 3297 3298 if (!this->visit(E)) 3299 return false; 3300 3301 if (T == PT_Bool) 3302 return true; 3303 3304 // Convert pointers to bool. 3305 if (T == PT_Ptr || T == PT_FnPtr) { 3306 if (!this->emitNull(*T, nullptr, E)) 3307 return false; 3308 return this->emitNE(*T, E); 3309 } 3310 3311 // Or Floats. 3312 if (T == PT_Float) 3313 return this->emitCastFloatingIntegralBool(E); 3314 3315 // Or anything else we can. 3316 return this->emitCast(*T, PT_Bool, E); 3317 } 3318 3319 template <class Emitter> 3320 bool Compiler<Emitter>::visitZeroInitializer(PrimType T, QualType QT, 3321 const Expr *E) { 3322 switch (T) { 3323 case PT_Bool: 3324 return this->emitZeroBool(E); 3325 case PT_Sint8: 3326 return this->emitZeroSint8(E); 3327 case PT_Uint8: 3328 return this->emitZeroUint8(E); 3329 case PT_Sint16: 3330 return this->emitZeroSint16(E); 3331 case PT_Uint16: 3332 return this->emitZeroUint16(E); 3333 case PT_Sint32: 3334 return this->emitZeroSint32(E); 3335 case PT_Uint32: 3336 return this->emitZeroUint32(E); 3337 case PT_Sint64: 3338 return this->emitZeroSint64(E); 3339 case PT_Uint64: 3340 return this->emitZeroUint64(E); 3341 case PT_IntAP: 3342 return this->emitZeroIntAP(Ctx.getBitWidth(QT), E); 3343 case PT_IntAPS: 3344 return this->emitZeroIntAPS(Ctx.getBitWidth(QT), E); 3345 case PT_Ptr: 3346 return this->emitNullPtr(nullptr, E); 3347 case PT_FnPtr: 3348 return this->emitNullFnPtr(nullptr, E); 3349 case PT_MemberPtr: 3350 return this->emitNullMemberPtr(nullptr, E); 3351 case PT_Float: { 3352 return this->emitConstFloat(APFloat::getZero(Ctx.getFloatSemantics(QT)), E); 3353 } 3354 } 3355 llvm_unreachable("unknown primitive type"); 3356 } 3357 3358 template <class Emitter> 3359 bool Compiler<Emitter>::visitZeroRecordInitializer(const Record *R, 3360 const Expr *E) { 3361 assert(E); 3362 assert(R); 3363 // Fields 3364 for (const Record::Field &Field : R->fields()) { 3365 if (Field.Decl->isUnnamedBitField()) 3366 continue; 3367 3368 const Descriptor *D = Field.Desc; 3369 if (D->isPrimitive()) { 3370 QualType QT = D->getType(); 3371 PrimType T = classifyPrim(D->getType()); 3372 if (!this->visitZeroInitializer(T, QT, E)) 3373 return false; 3374 if (!this->emitInitField(T, Field.Offset, E)) 3375 return false; 3376 if (R->isUnion()) 3377 break; 3378 continue; 3379 } 3380 3381 if (!this->emitGetPtrField(Field.Offset, E)) 3382 return false; 3383 3384 if (D->isPrimitiveArray()) { 3385 QualType ET = D->getElemQualType(); 3386 PrimType T = classifyPrim(ET); 3387 for (uint32_t I = 0, N = D->getNumElems(); I != N; ++I) { 3388 if (!this->visitZeroInitializer(T, ET, E)) 3389 return false; 3390 if (!this->emitInitElem(T, I, E)) 3391 return false; 3392 } 3393 } else if (D->isCompositeArray()) { 3394 const Record *ElemRecord = D->ElemDesc->ElemRecord; 3395 assert(D->ElemDesc->ElemRecord); 3396 for (uint32_t I = 0, N = D->getNumElems(); I != N; ++I) { 3397 if (!this->emitConstUint32(I, E)) 3398 return false; 3399 if (!this->emitArrayElemPtr(PT_Uint32, E)) 3400 return false; 3401 if (!this->visitZeroRecordInitializer(ElemRecord, E)) 3402 return false; 3403 if (!this->emitPopPtr(E)) 3404 return false; 3405 } 3406 } else if (D->isRecord()) { 3407 if (!this->visitZeroRecordInitializer(D->ElemRecord, E)) 3408 return false; 3409 } else { 3410 assert(false); 3411 } 3412 3413 if (!this->emitFinishInitPop(E)) 3414 return false; 3415 3416 if (R->isUnion()) 3417 break; 3418 } 3419 3420 for (const Record::Base &B : R->bases()) { 3421 if (!this->emitGetPtrBase(B.Offset, E)) 3422 return false; 3423 if (!this->visitZeroRecordInitializer(B.R, E)) 3424 return false; 3425 if (!this->emitFinishInitPop(E)) 3426 return false; 3427 } 3428 3429 // FIXME: Virtual bases. 3430 3431 return true; 3432 } 3433 3434 template <class Emitter> 3435 template <typename T> 3436 bool Compiler<Emitter>::emitConst(T Value, PrimType Ty, const Expr *E) { 3437 switch (Ty) { 3438 case PT_Sint8: 3439 return this->emitConstSint8(Value, E); 3440 case PT_Uint8: 3441 return this->emitConstUint8(Value, E); 3442 case PT_Sint16: 3443 return this->emitConstSint16(Value, E); 3444 case PT_Uint16: 3445 return this->emitConstUint16(Value, E); 3446 case PT_Sint32: 3447 return this->emitConstSint32(Value, E); 3448 case PT_Uint32: 3449 return this->emitConstUint32(Value, E); 3450 case PT_Sint64: 3451 return this->emitConstSint64(Value, E); 3452 case PT_Uint64: 3453 return this->emitConstUint64(Value, E); 3454 case PT_Bool: 3455 return this->emitConstBool(Value, E); 3456 case PT_Ptr: 3457 case PT_FnPtr: 3458 case PT_MemberPtr: 3459 case PT_Float: 3460 case PT_IntAP: 3461 case PT_IntAPS: 3462 llvm_unreachable("Invalid integral type"); 3463 break; 3464 } 3465 llvm_unreachable("unknown primitive type"); 3466 } 3467 3468 template <class Emitter> 3469 template <typename T> 3470 bool Compiler<Emitter>::emitConst(T Value, const Expr *E) { 3471 return this->emitConst(Value, classifyPrim(E->getType()), E); 3472 } 3473 3474 template <class Emitter> 3475 bool Compiler<Emitter>::emitConst(const APSInt &Value, PrimType Ty, 3476 const Expr *E) { 3477 if (Ty == PT_IntAPS) 3478 return this->emitConstIntAPS(Value, E); 3479 if (Ty == PT_IntAP) 3480 return this->emitConstIntAP(Value, E); 3481 3482 if (Value.isSigned()) 3483 return this->emitConst(Value.getSExtValue(), Ty, E); 3484 return this->emitConst(Value.getZExtValue(), Ty, E); 3485 } 3486 3487 template <class Emitter> 3488 bool Compiler<Emitter>::emitConst(const APSInt &Value, const Expr *E) { 3489 return this->emitConst(Value, classifyPrim(E->getType()), E); 3490 } 3491 3492 template <class Emitter> 3493 unsigned Compiler<Emitter>::allocateLocalPrimitive(DeclTy &&Src, PrimType Ty, 3494 bool IsConst, 3495 bool IsExtended) { 3496 // Make sure we don't accidentally register the same decl twice. 3497 if (const auto *VD = 3498 dyn_cast_if_present<ValueDecl>(Src.dyn_cast<const Decl *>())) { 3499 assert(!P.getGlobal(VD)); 3500 assert(!Locals.contains(VD)); 3501 (void)VD; 3502 } 3503 3504 // FIXME: There are cases where Src.is<Expr*>() is wrong, e.g. 3505 // (int){12} in C. Consider using Expr::isTemporaryObject() instead 3506 // or isa<MaterializeTemporaryExpr>(). 3507 Descriptor *D = P.createDescriptor(Src, Ty, Descriptor::InlineDescMD, IsConst, 3508 Src.is<const Expr *>()); 3509 Scope::Local Local = this->createLocal(D); 3510 if (auto *VD = dyn_cast_if_present<ValueDecl>(Src.dyn_cast<const Decl *>())) 3511 Locals.insert({VD, Local}); 3512 VarScope->add(Local, IsExtended); 3513 return Local.Offset; 3514 } 3515 3516 template <class Emitter> 3517 std::optional<unsigned> 3518 Compiler<Emitter>::allocateLocal(DeclTy &&Src, const ValueDecl *ExtendingDecl) { 3519 // Make sure we don't accidentally register the same decl twice. 3520 if ([[maybe_unused]] const auto *VD = 3521 dyn_cast_if_present<ValueDecl>(Src.dyn_cast<const Decl *>())) { 3522 assert(!P.getGlobal(VD)); 3523 assert(!Locals.contains(VD)); 3524 } 3525 3526 QualType Ty; 3527 const ValueDecl *Key = nullptr; 3528 const Expr *Init = nullptr; 3529 bool IsTemporary = false; 3530 if (auto *VD = dyn_cast_if_present<ValueDecl>(Src.dyn_cast<const Decl *>())) { 3531 Key = VD; 3532 Ty = VD->getType(); 3533 3534 if (const auto *VarD = dyn_cast<VarDecl>(VD)) 3535 Init = VarD->getInit(); 3536 } 3537 if (auto *E = Src.dyn_cast<const Expr *>()) { 3538 IsTemporary = true; 3539 Ty = E->getType(); 3540 } 3541 3542 Descriptor *D = P.createDescriptor( 3543 Src, Ty.getTypePtr(), Descriptor::InlineDescMD, Ty.isConstQualified(), 3544 IsTemporary, /*IsMutable=*/false, Init); 3545 if (!D) 3546 return std::nullopt; 3547 3548 Scope::Local Local = this->createLocal(D); 3549 if (Key) 3550 Locals.insert({Key, Local}); 3551 if (ExtendingDecl) 3552 VarScope->addExtended(Local, ExtendingDecl); 3553 else 3554 VarScope->add(Local, false); 3555 return Local.Offset; 3556 } 3557 3558 template <class Emitter> 3559 unsigned Compiler<Emitter>::allocateTemporary(const Expr *E) { 3560 QualType Ty = E->getType(); 3561 assert(!Ty->isRecordType()); 3562 3563 Descriptor *D = P.createDescriptor( 3564 E, Ty.getTypePtr(), Descriptor::InlineDescMD, Ty.isConstQualified(), 3565 /*IsTemporary=*/true, /*IsMutable=*/false, /*Init=*/nullptr); 3566 assert(D); 3567 3568 Scope::Local Local = this->createLocal(D); 3569 VariableScope<Emitter> *S = VarScope; 3570 assert(S); 3571 // Attach to topmost scope. 3572 while (S->getParent()) 3573 S = S->getParent(); 3574 assert(S && !S->getParent()); 3575 S->addLocal(Local); 3576 return Local.Offset; 3577 } 3578 3579 template <class Emitter> 3580 const RecordType *Compiler<Emitter>::getRecordTy(QualType Ty) { 3581 if (const PointerType *PT = dyn_cast<PointerType>(Ty)) 3582 return PT->getPointeeType()->getAs<RecordType>(); 3583 return Ty->getAs<RecordType>(); 3584 } 3585 3586 template <class Emitter> Record *Compiler<Emitter>::getRecord(QualType Ty) { 3587 if (const auto *RecordTy = getRecordTy(Ty)) 3588 return getRecord(RecordTy->getDecl()); 3589 return nullptr; 3590 } 3591 3592 template <class Emitter> 3593 Record *Compiler<Emitter>::getRecord(const RecordDecl *RD) { 3594 return P.getOrCreateRecord(RD); 3595 } 3596 3597 template <class Emitter> 3598 const Function *Compiler<Emitter>::getFunction(const FunctionDecl *FD) { 3599 return Ctx.getOrCreateFunction(FD); 3600 } 3601 3602 template <class Emitter> bool Compiler<Emitter>::visitExpr(const Expr *E) { 3603 LocalScope<Emitter> RootScope(this); 3604 // Void expressions. 3605 if (E->getType()->isVoidType()) { 3606 if (!visit(E)) 3607 return false; 3608 return this->emitRetVoid(E) && RootScope.destroyLocals(); 3609 } 3610 3611 // Expressions with a primitive return type. 3612 if (std::optional<PrimType> T = classify(E)) { 3613 if (!visit(E)) 3614 return false; 3615 return this->emitRet(*T, E) && RootScope.destroyLocals(); 3616 } 3617 3618 // Expressions with a composite return type. 3619 // For us, that means everything we don't 3620 // have a PrimType for. 3621 if (std::optional<unsigned> LocalOffset = this->allocateLocal(E)) { 3622 if (!this->emitGetPtrLocal(*LocalOffset, E)) 3623 return false; 3624 3625 if (!visitInitializer(E)) 3626 return false; 3627 3628 if (!this->emitFinishInit(E)) 3629 return false; 3630 // We are destroying the locals AFTER the Ret op. 3631 // The Ret op needs to copy the (alive) values, but the 3632 // destructors may still turn the entire expression invalid. 3633 return this->emitRetValue(E) && RootScope.destroyLocals(); 3634 } 3635 3636 RootScope.destroyLocals(); 3637 return false; 3638 } 3639 3640 template <class Emitter> 3641 VarCreationState Compiler<Emitter>::visitDecl(const VarDecl *VD) { 3642 3643 auto R = this->visitVarDecl(VD, /*Toplevel=*/true); 3644 3645 if (R.notCreated()) 3646 return R; 3647 3648 if (R) 3649 return true; 3650 3651 if (!R && Context::shouldBeGloballyIndexed(VD)) { 3652 if (auto GlobalIndex = P.getGlobal(VD)) { 3653 Block *GlobalBlock = P.getGlobal(*GlobalIndex); 3654 GlobalInlineDescriptor &GD = 3655 *reinterpret_cast<GlobalInlineDescriptor *>(GlobalBlock->rawData()); 3656 3657 GD.InitState = GlobalInitState::InitializerFailed; 3658 GlobalBlock->invokeDtor(); 3659 } 3660 } 3661 3662 return R; 3663 } 3664 3665 /// Toplevel visitDeclAndReturn(). 3666 /// We get here from evaluateAsInitializer(). 3667 /// We need to evaluate the initializer and return its value. 3668 template <class Emitter> 3669 bool Compiler<Emitter>::visitDeclAndReturn(const VarDecl *VD, 3670 bool ConstantContext) { 3671 std::optional<PrimType> VarT = classify(VD->getType()); 3672 3673 // We only create variables if we're evaluating in a constant context. 3674 // Otherwise, just evaluate the initializer and return it. 3675 if (!ConstantContext) { 3676 DeclScope<Emitter> LS(this, VD); 3677 if (!this->visit(VD->getAnyInitializer())) 3678 return false; 3679 return this->emitRet(VarT.value_or(PT_Ptr), VD) && LS.destroyLocals(); 3680 } 3681 3682 LocalScope<Emitter> VDScope(this, VD); 3683 if (!this->visitVarDecl(VD, /*Toplevel=*/true)) 3684 return false; 3685 3686 if (Context::shouldBeGloballyIndexed(VD)) { 3687 auto GlobalIndex = P.getGlobal(VD); 3688 assert(GlobalIndex); // visitVarDecl() didn't return false. 3689 if (VarT) { 3690 if (!this->emitGetGlobalUnchecked(*VarT, *GlobalIndex, VD)) 3691 return false; 3692 } else { 3693 if (!this->emitGetPtrGlobal(*GlobalIndex, VD)) 3694 return false; 3695 } 3696 } else { 3697 auto Local = Locals.find(VD); 3698 assert(Local != Locals.end()); // Same here. 3699 if (VarT) { 3700 if (!this->emitGetLocal(*VarT, Local->second.Offset, VD)) 3701 return false; 3702 } else { 3703 if (!this->emitGetPtrLocal(Local->second.Offset, VD)) 3704 return false; 3705 } 3706 } 3707 3708 // Return the value. 3709 if (!this->emitRet(VarT.value_or(PT_Ptr), VD)) { 3710 // If the Ret above failed and this is a global variable, mark it as 3711 // uninitialized, even everything else succeeded. 3712 if (Context::shouldBeGloballyIndexed(VD)) { 3713 auto GlobalIndex = P.getGlobal(VD); 3714 assert(GlobalIndex); 3715 Block *GlobalBlock = P.getGlobal(*GlobalIndex); 3716 GlobalInlineDescriptor &GD = 3717 *reinterpret_cast<GlobalInlineDescriptor *>(GlobalBlock->rawData()); 3718 3719 GD.InitState = GlobalInitState::InitializerFailed; 3720 GlobalBlock->invokeDtor(); 3721 } 3722 return false; 3723 } 3724 3725 return VDScope.destroyLocals(); 3726 } 3727 3728 template <class Emitter> 3729 VarCreationState Compiler<Emitter>::visitVarDecl(const VarDecl *VD, 3730 bool Toplevel) { 3731 // We don't know what to do with these, so just return false. 3732 if (VD->getType().isNull()) 3733 return false; 3734 3735 // This case is EvalEmitter-only. If we won't create any instructions for the 3736 // initializer anyway, don't bother creating the variable in the first place. 3737 if (!this->isActive()) 3738 return VarCreationState::NotCreated(); 3739 3740 const Expr *Init = VD->getInit(); 3741 std::optional<PrimType> VarT = classify(VD->getType()); 3742 3743 if (Init && Init->isValueDependent()) 3744 return false; 3745 3746 if (Context::shouldBeGloballyIndexed(VD)) { 3747 auto checkDecl = [&]() -> bool { 3748 bool NeedsOp = !Toplevel && VD->isLocalVarDecl() && VD->isStaticLocal(); 3749 return !NeedsOp || this->emitCheckDecl(VD, VD); 3750 }; 3751 3752 auto initGlobal = [&](unsigned GlobalIndex) -> bool { 3753 assert(Init); 3754 DeclScope<Emitter> LocalScope(this, VD); 3755 3756 if (VarT) { 3757 if (!this->visit(Init)) 3758 return checkDecl() && false; 3759 3760 return checkDecl() && this->emitInitGlobal(*VarT, GlobalIndex, VD); 3761 } 3762 3763 if (!checkDecl()) 3764 return false; 3765 3766 if (!this->emitGetPtrGlobal(GlobalIndex, Init)) 3767 return false; 3768 3769 if (!visitInitializer(Init)) 3770 return false; 3771 3772 if (!this->emitFinishInit(Init)) 3773 return false; 3774 3775 return this->emitPopPtr(Init); 3776 }; 3777 3778 // We've already seen and initialized this global. 3779 if (std::optional<unsigned> GlobalIndex = P.getGlobal(VD)) { 3780 if (P.getPtrGlobal(*GlobalIndex).isInitialized()) 3781 return checkDecl(); 3782 3783 // The previous attempt at initialization might've been unsuccessful, 3784 // so let's try this one. 3785 return Init && checkDecl() && initGlobal(*GlobalIndex); 3786 } 3787 3788 std::optional<unsigned> GlobalIndex = P.createGlobal(VD, Init); 3789 3790 if (!GlobalIndex) 3791 return false; 3792 3793 return !Init || (checkDecl() && initGlobal(*GlobalIndex)); 3794 } else { 3795 InitLinkScope<Emitter> ILS(this, InitLink::Decl(VD)); 3796 3797 if (VarT) { 3798 unsigned Offset = this->allocateLocalPrimitive( 3799 VD, *VarT, VD->getType().isConstQualified()); 3800 if (Init) { 3801 // If this is a toplevel declaration, create a scope for the 3802 // initializer. 3803 if (Toplevel) { 3804 LocalScope<Emitter> Scope(this); 3805 if (!this->visit(Init)) 3806 return false; 3807 return this->emitSetLocal(*VarT, Offset, VD) && Scope.destroyLocals(); 3808 } else { 3809 if (!this->visit(Init)) 3810 return false; 3811 return this->emitSetLocal(*VarT, Offset, VD); 3812 } 3813 } 3814 } else { 3815 if (std::optional<unsigned> Offset = this->allocateLocal(VD)) { 3816 if (!Init) 3817 return true; 3818 3819 if (!this->emitGetPtrLocal(*Offset, Init)) 3820 return false; 3821 3822 if (!visitInitializer(Init)) 3823 return false; 3824 3825 if (!this->emitFinishInit(Init)) 3826 return false; 3827 3828 return this->emitPopPtr(Init); 3829 } 3830 return false; 3831 } 3832 return true; 3833 } 3834 3835 return false; 3836 } 3837 3838 template <class Emitter> 3839 bool Compiler<Emitter>::visitAPValue(const APValue &Val, PrimType ValType, 3840 const Expr *E) { 3841 assert(!DiscardResult); 3842 if (Val.isInt()) 3843 return this->emitConst(Val.getInt(), ValType, E); 3844 else if (Val.isFloat()) 3845 return this->emitConstFloat(Val.getFloat(), E); 3846 3847 if (Val.isLValue()) { 3848 if (Val.isNullPointer()) 3849 return this->emitNull(ValType, nullptr, E); 3850 APValue::LValueBase Base = Val.getLValueBase(); 3851 if (const Expr *BaseExpr = Base.dyn_cast<const Expr *>()) 3852 return this->visit(BaseExpr); 3853 else if (const auto *VD = Base.dyn_cast<const ValueDecl *>()) { 3854 return this->visitDeclRef(VD, E); 3855 } 3856 } else if (Val.isMemberPointer()) { 3857 if (const ValueDecl *MemberDecl = Val.getMemberPointerDecl()) 3858 return this->emitGetMemberPtr(MemberDecl, E); 3859 return this->emitNullMemberPtr(nullptr, E); 3860 } 3861 3862 return false; 3863 } 3864 3865 template <class Emitter> 3866 bool Compiler<Emitter>::visitAPValueInitializer(const APValue &Val, 3867 const Expr *E) { 3868 3869 if (Val.isStruct()) { 3870 const Record *R = this->getRecord(E->getType()); 3871 assert(R); 3872 for (unsigned I = 0, N = Val.getStructNumFields(); I != N; ++I) { 3873 const APValue &F = Val.getStructField(I); 3874 const Record::Field *RF = R->getField(I); 3875 3876 if (F.isInt() || F.isFloat() || F.isLValue() || F.isMemberPointer()) { 3877 PrimType T = classifyPrim(RF->Decl->getType()); 3878 if (!this->visitAPValue(F, T, E)) 3879 return false; 3880 if (!this->emitInitField(T, RF->Offset, E)) 3881 return false; 3882 } else if (F.isArray()) { 3883 assert(RF->Desc->isPrimitiveArray()); 3884 const auto *ArrType = RF->Decl->getType()->getAsArrayTypeUnsafe(); 3885 PrimType ElemT = classifyPrim(ArrType->getElementType()); 3886 assert(ArrType); 3887 3888 if (!this->emitGetPtrField(RF->Offset, E)) 3889 return false; 3890 3891 for (unsigned A = 0, AN = F.getArraySize(); A != AN; ++A) { 3892 if (!this->visitAPValue(F.getArrayInitializedElt(A), ElemT, E)) 3893 return false; 3894 if (!this->emitInitElem(ElemT, A, E)) 3895 return false; 3896 } 3897 3898 if (!this->emitPopPtr(E)) 3899 return false; 3900 } else if (F.isStruct() || F.isUnion()) { 3901 if (!this->emitGetPtrField(RF->Offset, E)) 3902 return false; 3903 if (!this->visitAPValueInitializer(F, E)) 3904 return false; 3905 if (!this->emitPopPtr(E)) 3906 return false; 3907 } else { 3908 assert(false && "I don't think this should be possible"); 3909 } 3910 } 3911 return true; 3912 } else if (Val.isUnion()) { 3913 const FieldDecl *UnionField = Val.getUnionField(); 3914 const Record *R = this->getRecord(UnionField->getParent()); 3915 assert(R); 3916 const APValue &F = Val.getUnionValue(); 3917 const Record::Field *RF = R->getField(UnionField); 3918 PrimType T = classifyPrim(RF->Decl->getType()); 3919 if (!this->visitAPValue(F, T, E)) 3920 return false; 3921 return this->emitInitField(T, RF->Offset, E); 3922 } 3923 // TODO: Other types. 3924 3925 return false; 3926 } 3927 3928 template <class Emitter> 3929 bool Compiler<Emitter>::VisitBuiltinCallExpr(const CallExpr *E) { 3930 const Function *Func = getFunction(E->getDirectCallee()); 3931 if (!Func) 3932 return false; 3933 3934 // For these, we're expected to ultimately return an APValue pointing 3935 // to the CallExpr. This is needed to get the correct codegen. 3936 unsigned Builtin = E->getBuiltinCallee(); 3937 if (Builtin == Builtin::BI__builtin___CFStringMakeConstantString || 3938 Builtin == Builtin::BI__builtin___NSStringMakeConstantString || 3939 Builtin == Builtin::BI__builtin_ptrauth_sign_constant || 3940 Builtin == Builtin::BI__builtin_function_start) { 3941 if (std::optional<unsigned> GlobalOffset = P.createGlobal(E)) { 3942 if (!this->emitGetPtrGlobal(*GlobalOffset, E)) 3943 return false; 3944 3945 if (PrimType PT = classifyPrim(E); PT != PT_Ptr && isPtrType(PT)) 3946 return this->emitDecayPtr(PT_Ptr, PT, E); 3947 return true; 3948 } 3949 return false; 3950 } 3951 3952 QualType ReturnType = E->getType(); 3953 std::optional<PrimType> ReturnT = classify(E); 3954 3955 // Non-primitive return type. Prepare storage. 3956 if (!Initializing && !ReturnT && !ReturnType->isVoidType()) { 3957 std::optional<unsigned> LocalIndex = allocateLocal(E); 3958 if (!LocalIndex) 3959 return false; 3960 if (!this->emitGetPtrLocal(*LocalIndex, E)) 3961 return false; 3962 } 3963 3964 if (!Func->isUnevaluatedBuiltin()) { 3965 // Put arguments on the stack. 3966 for (const auto *Arg : E->arguments()) { 3967 if (!this->visit(Arg)) 3968 return false; 3969 } 3970 } 3971 3972 if (!this->emitCallBI(Func, E, E)) 3973 return false; 3974 3975 if (DiscardResult && !ReturnType->isVoidType()) { 3976 assert(ReturnT); 3977 return this->emitPop(*ReturnT, E); 3978 } 3979 3980 return true; 3981 } 3982 3983 template <class Emitter> 3984 bool Compiler<Emitter>::VisitCallExpr(const CallExpr *E) { 3985 if (E->getBuiltinCallee()) 3986 return VisitBuiltinCallExpr(E); 3987 3988 QualType ReturnType = E->getCallReturnType(Ctx.getASTContext()); 3989 std::optional<PrimType> T = classify(ReturnType); 3990 bool HasRVO = !ReturnType->isVoidType() && !T; 3991 const FunctionDecl *FuncDecl = E->getDirectCallee(); 3992 3993 if (HasRVO) { 3994 if (DiscardResult) { 3995 // If we need to discard the return value but the function returns its 3996 // value via an RVO pointer, we need to create one such pointer just 3997 // for this call. 3998 if (std::optional<unsigned> LocalIndex = allocateLocal(E)) { 3999 if (!this->emitGetPtrLocal(*LocalIndex, E)) 4000 return false; 4001 } 4002 } else { 4003 // We need the result. Prepare a pointer to return or 4004 // dup the current one. 4005 if (!Initializing) { 4006 if (std::optional<unsigned> LocalIndex = allocateLocal(E)) { 4007 if (!this->emitGetPtrLocal(*LocalIndex, E)) 4008 return false; 4009 } 4010 } 4011 if (!this->emitDupPtr(E)) 4012 return false; 4013 } 4014 } 4015 4016 SmallVector<const Expr *, 8> Args( 4017 llvm::ArrayRef(E->getArgs(), E->getNumArgs())); 4018 4019 bool IsAssignmentOperatorCall = false; 4020 if (const auto *OCE = dyn_cast<CXXOperatorCallExpr>(E); 4021 OCE && OCE->isAssignmentOp()) { 4022 // Just like with regular assignments, we need to special-case assignment 4023 // operators here and evaluate the RHS (the second arg) before the LHS (the 4024 // first arg. We fix this by using a Flip op later. 4025 assert(Args.size() == 2); 4026 IsAssignmentOperatorCall = true; 4027 std::reverse(Args.begin(), Args.end()); 4028 } 4029 // Calling a static operator will still 4030 // pass the instance, but we don't need it. 4031 // Discard it here. 4032 if (isa<CXXOperatorCallExpr>(E)) { 4033 if (const auto *MD = dyn_cast_if_present<CXXMethodDecl>(FuncDecl); 4034 MD && MD->isStatic()) { 4035 if (!this->discard(E->getArg(0))) 4036 return false; 4037 // Drop first arg. 4038 Args.erase(Args.begin()); 4039 } 4040 } 4041 4042 std::optional<unsigned> CalleeOffset; 4043 // Add the (optional, implicit) This pointer. 4044 if (const auto *MC = dyn_cast<CXXMemberCallExpr>(E)) { 4045 if (!FuncDecl && classifyPrim(E->getCallee()) == PT_MemberPtr) { 4046 // If we end up creating a CallPtr op for this, we need the base of the 4047 // member pointer as the instance pointer, and later extract the function 4048 // decl as the function pointer. 4049 const Expr *Callee = E->getCallee(); 4050 CalleeOffset = 4051 this->allocateLocalPrimitive(Callee, PT_MemberPtr, true, false); 4052 if (!this->visit(Callee)) 4053 return false; 4054 if (!this->emitSetLocal(PT_MemberPtr, *CalleeOffset, E)) 4055 return false; 4056 if (!this->emitGetLocal(PT_MemberPtr, *CalleeOffset, E)) 4057 return false; 4058 if (!this->emitGetMemberPtrBase(E)) 4059 return false; 4060 } else if (!this->visit(MC->getImplicitObjectArgument())) { 4061 return false; 4062 } 4063 } else if (!FuncDecl) { 4064 const Expr *Callee = E->getCallee(); 4065 CalleeOffset = this->allocateLocalPrimitive(Callee, PT_FnPtr, true, false); 4066 if (!this->visit(Callee)) 4067 return false; 4068 if (!this->emitSetLocal(PT_FnPtr, *CalleeOffset, E)) 4069 return false; 4070 } 4071 4072 llvm::BitVector NonNullArgs = collectNonNullArgs(FuncDecl, Args); 4073 // Put arguments on the stack. 4074 unsigned ArgIndex = 0; 4075 for (const auto *Arg : Args) { 4076 if (!this->visit(Arg)) 4077 return false; 4078 4079 // If we know the callee already, check the known parametrs for nullability. 4080 if (FuncDecl && NonNullArgs[ArgIndex]) { 4081 PrimType ArgT = classify(Arg).value_or(PT_Ptr); 4082 if (ArgT == PT_Ptr || ArgT == PT_FnPtr) { 4083 if (!this->emitCheckNonNullArg(ArgT, Arg)) 4084 return false; 4085 } 4086 } 4087 ++ArgIndex; 4088 } 4089 4090 // Undo the argument reversal we did earlier. 4091 if (IsAssignmentOperatorCall) { 4092 assert(Args.size() == 2); 4093 PrimType Arg1T = classify(Args[0]).value_or(PT_Ptr); 4094 PrimType Arg2T = classify(Args[1]).value_or(PT_Ptr); 4095 if (!this->emitFlip(Arg2T, Arg1T, E)) 4096 return false; 4097 } 4098 4099 if (FuncDecl) { 4100 const Function *Func = getFunction(FuncDecl); 4101 if (!Func) 4102 return false; 4103 assert(HasRVO == Func->hasRVO()); 4104 4105 bool HasQualifier = false; 4106 if (const auto *ME = dyn_cast<MemberExpr>(E->getCallee())) 4107 HasQualifier = ME->hasQualifier(); 4108 4109 bool IsVirtual = false; 4110 if (const auto *MD = dyn_cast<CXXMethodDecl>(FuncDecl)) 4111 IsVirtual = MD->isVirtual(); 4112 4113 // In any case call the function. The return value will end up on the stack 4114 // and if the function has RVO, we already have the pointer on the stack to 4115 // write the result into. 4116 if (IsVirtual && !HasQualifier) { 4117 uint32_t VarArgSize = 0; 4118 unsigned NumParams = 4119 Func->getNumWrittenParams() + isa<CXXOperatorCallExpr>(E); 4120 for (unsigned I = NumParams, N = E->getNumArgs(); I != N; ++I) 4121 VarArgSize += align(primSize(classify(E->getArg(I)).value_or(PT_Ptr))); 4122 4123 if (!this->emitCallVirt(Func, VarArgSize, E)) 4124 return false; 4125 } else if (Func->isVariadic()) { 4126 uint32_t VarArgSize = 0; 4127 unsigned NumParams = 4128 Func->getNumWrittenParams() + isa<CXXOperatorCallExpr>(E); 4129 for (unsigned I = NumParams, N = E->getNumArgs(); I != N; ++I) 4130 VarArgSize += align(primSize(classify(E->getArg(I)).value_or(PT_Ptr))); 4131 if (!this->emitCallVar(Func, VarArgSize, E)) 4132 return false; 4133 } else { 4134 if (!this->emitCall(Func, 0, E)) 4135 return false; 4136 } 4137 } else { 4138 // Indirect call. Visit the callee, which will leave a FunctionPointer on 4139 // the stack. Cleanup of the returned value if necessary will be done after 4140 // the function call completed. 4141 4142 // Sum the size of all args from the call expr. 4143 uint32_t ArgSize = 0; 4144 for (unsigned I = 0, N = E->getNumArgs(); I != N; ++I) 4145 ArgSize += align(primSize(classify(E->getArg(I)).value_or(PT_Ptr))); 4146 4147 // Get the callee, either from a member pointer or function pointer saved in 4148 // CalleeOffset. 4149 if (isa<CXXMemberCallExpr>(E) && CalleeOffset) { 4150 if (!this->emitGetLocal(PT_MemberPtr, *CalleeOffset, E)) 4151 return false; 4152 if (!this->emitGetMemberPtrDecl(E)) 4153 return false; 4154 } else { 4155 if (!this->emitGetLocal(PT_FnPtr, *CalleeOffset, E)) 4156 return false; 4157 } 4158 if (!this->emitCallPtr(ArgSize, E, E)) 4159 return false; 4160 } 4161 4162 // Cleanup for discarded return values. 4163 if (DiscardResult && !ReturnType->isVoidType() && T) 4164 return this->emitPop(*T, E); 4165 4166 return true; 4167 } 4168 4169 template <class Emitter> 4170 bool Compiler<Emitter>::VisitCXXDefaultInitExpr(const CXXDefaultInitExpr *E) { 4171 SourceLocScope<Emitter> SLS(this, E); 4172 4173 return this->delegate(E->getExpr()); 4174 } 4175 4176 template <class Emitter> 4177 bool Compiler<Emitter>::VisitCXXDefaultArgExpr(const CXXDefaultArgExpr *E) { 4178 SourceLocScope<Emitter> SLS(this, E); 4179 4180 const Expr *SubExpr = E->getExpr(); 4181 if (std::optional<PrimType> T = classify(E->getExpr())) 4182 return this->visit(SubExpr); 4183 4184 assert(Initializing); 4185 return this->visitInitializer(SubExpr); 4186 } 4187 4188 template <class Emitter> 4189 bool Compiler<Emitter>::VisitCXXBoolLiteralExpr(const CXXBoolLiteralExpr *E) { 4190 if (DiscardResult) 4191 return true; 4192 4193 return this->emitConstBool(E->getValue(), E); 4194 } 4195 4196 template <class Emitter> 4197 bool Compiler<Emitter>::VisitCXXNullPtrLiteralExpr( 4198 const CXXNullPtrLiteralExpr *E) { 4199 if (DiscardResult) 4200 return true; 4201 4202 return this->emitNullPtr(nullptr, E); 4203 } 4204 4205 template <class Emitter> 4206 bool Compiler<Emitter>::VisitGNUNullExpr(const GNUNullExpr *E) { 4207 if (DiscardResult) 4208 return true; 4209 4210 assert(E->getType()->isIntegerType()); 4211 4212 PrimType T = classifyPrim(E->getType()); 4213 return this->emitZero(T, E); 4214 } 4215 4216 template <class Emitter> 4217 bool Compiler<Emitter>::VisitCXXThisExpr(const CXXThisExpr *E) { 4218 if (DiscardResult) 4219 return true; 4220 4221 if (this->LambdaThisCapture.Offset > 0) { 4222 if (this->LambdaThisCapture.IsPtr) 4223 return this->emitGetThisFieldPtr(this->LambdaThisCapture.Offset, E); 4224 return this->emitGetPtrThisField(this->LambdaThisCapture.Offset, E); 4225 } 4226 4227 // In some circumstances, the 'this' pointer does not actually refer to the 4228 // instance pointer of the current function frame, but e.g. to the declaration 4229 // currently being initialized. Here we emit the necessary instruction(s) for 4230 // this scenario. 4231 if (!InitStackActive || !E->isImplicit()) 4232 return this->emitThis(E); 4233 4234 if (InitStackActive && !InitStack.empty()) { 4235 unsigned StartIndex = 0; 4236 for (StartIndex = InitStack.size() - 1; StartIndex > 0; --StartIndex) { 4237 if (InitStack[StartIndex].Kind != InitLink::K_Field && 4238 InitStack[StartIndex].Kind != InitLink::K_Elem) 4239 break; 4240 } 4241 4242 for (unsigned I = StartIndex, N = InitStack.size(); I != N; ++I) { 4243 if (!InitStack[I].template emit<Emitter>(this, E)) 4244 return false; 4245 } 4246 return true; 4247 } 4248 return this->emitThis(E); 4249 } 4250 4251 template <class Emitter> bool Compiler<Emitter>::visitStmt(const Stmt *S) { 4252 switch (S->getStmtClass()) { 4253 case Stmt::CompoundStmtClass: 4254 return visitCompoundStmt(cast<CompoundStmt>(S)); 4255 case Stmt::DeclStmtClass: 4256 return visitDeclStmt(cast<DeclStmt>(S)); 4257 case Stmt::ReturnStmtClass: 4258 return visitReturnStmt(cast<ReturnStmt>(S)); 4259 case Stmt::IfStmtClass: 4260 return visitIfStmt(cast<IfStmt>(S)); 4261 case Stmt::WhileStmtClass: 4262 return visitWhileStmt(cast<WhileStmt>(S)); 4263 case Stmt::DoStmtClass: 4264 return visitDoStmt(cast<DoStmt>(S)); 4265 case Stmt::ForStmtClass: 4266 return visitForStmt(cast<ForStmt>(S)); 4267 case Stmt::CXXForRangeStmtClass: 4268 return visitCXXForRangeStmt(cast<CXXForRangeStmt>(S)); 4269 case Stmt::BreakStmtClass: 4270 return visitBreakStmt(cast<BreakStmt>(S)); 4271 case Stmt::ContinueStmtClass: 4272 return visitContinueStmt(cast<ContinueStmt>(S)); 4273 case Stmt::SwitchStmtClass: 4274 return visitSwitchStmt(cast<SwitchStmt>(S)); 4275 case Stmt::CaseStmtClass: 4276 return visitCaseStmt(cast<CaseStmt>(S)); 4277 case Stmt::DefaultStmtClass: 4278 return visitDefaultStmt(cast<DefaultStmt>(S)); 4279 case Stmt::AttributedStmtClass: 4280 return visitAttributedStmt(cast<AttributedStmt>(S)); 4281 case Stmt::CXXTryStmtClass: 4282 return visitCXXTryStmt(cast<CXXTryStmt>(S)); 4283 case Stmt::NullStmtClass: 4284 return true; 4285 // Always invalid statements. 4286 case Stmt::GCCAsmStmtClass: 4287 case Stmt::MSAsmStmtClass: 4288 case Stmt::GotoStmtClass: 4289 return this->emitInvalid(S); 4290 case Stmt::LabelStmtClass: 4291 return this->visitStmt(cast<LabelStmt>(S)->getSubStmt()); 4292 default: { 4293 if (const auto *E = dyn_cast<Expr>(S)) 4294 return this->discard(E); 4295 return false; 4296 } 4297 } 4298 } 4299 4300 template <class Emitter> 4301 bool Compiler<Emitter>::visitCompoundStmt(const CompoundStmt *S) { 4302 BlockScope<Emitter> Scope(this); 4303 for (const auto *InnerStmt : S->body()) 4304 if (!visitStmt(InnerStmt)) 4305 return false; 4306 return Scope.destroyLocals(); 4307 } 4308 4309 template <class Emitter> 4310 bool Compiler<Emitter>::visitDeclStmt(const DeclStmt *DS) { 4311 for (const auto *D : DS->decls()) { 4312 if (isa<StaticAssertDecl, TagDecl, TypedefNameDecl, UsingEnumDecl, 4313 FunctionDecl>(D)) 4314 continue; 4315 4316 const auto *VD = dyn_cast<VarDecl>(D); 4317 if (!VD) 4318 return false; 4319 if (!this->visitVarDecl(VD)) 4320 return false; 4321 } 4322 4323 return true; 4324 } 4325 4326 template <class Emitter> 4327 bool Compiler<Emitter>::visitReturnStmt(const ReturnStmt *RS) { 4328 if (this->InStmtExpr) 4329 return this->emitUnsupported(RS); 4330 4331 if (const Expr *RE = RS->getRetValue()) { 4332 LocalScope<Emitter> RetScope(this); 4333 if (ReturnType) { 4334 // Primitive types are simply returned. 4335 if (!this->visit(RE)) 4336 return false; 4337 this->emitCleanup(); 4338 return this->emitRet(*ReturnType, RS); 4339 } else if (RE->getType()->isVoidType()) { 4340 if (!this->visit(RE)) 4341 return false; 4342 } else { 4343 // RVO - construct the value in the return location. 4344 if (!this->emitRVOPtr(RE)) 4345 return false; 4346 if (!this->visitInitializer(RE)) 4347 return false; 4348 if (!this->emitPopPtr(RE)) 4349 return false; 4350 4351 this->emitCleanup(); 4352 return this->emitRetVoid(RS); 4353 } 4354 } 4355 4356 // Void return. 4357 this->emitCleanup(); 4358 return this->emitRetVoid(RS); 4359 } 4360 4361 template <class Emitter> bool Compiler<Emitter>::visitIfStmt(const IfStmt *IS) { 4362 if (IS->isNonNegatedConsteval()) 4363 return visitStmt(IS->getThen()); 4364 if (IS->isNegatedConsteval()) 4365 return IS->getElse() ? visitStmt(IS->getElse()) : true; 4366 4367 if (auto *CondInit = IS->getInit()) 4368 if (!visitStmt(CondInit)) 4369 return false; 4370 4371 if (const DeclStmt *CondDecl = IS->getConditionVariableDeclStmt()) 4372 if (!visitDeclStmt(CondDecl)) 4373 return false; 4374 4375 if (!this->visitBool(IS->getCond())) 4376 return false; 4377 4378 if (const Stmt *Else = IS->getElse()) { 4379 LabelTy LabelElse = this->getLabel(); 4380 LabelTy LabelEnd = this->getLabel(); 4381 if (!this->jumpFalse(LabelElse)) 4382 return false; 4383 if (!visitStmt(IS->getThen())) 4384 return false; 4385 if (!this->jump(LabelEnd)) 4386 return false; 4387 this->emitLabel(LabelElse); 4388 if (!visitStmt(Else)) 4389 return false; 4390 this->emitLabel(LabelEnd); 4391 } else { 4392 LabelTy LabelEnd = this->getLabel(); 4393 if (!this->jumpFalse(LabelEnd)) 4394 return false; 4395 if (!visitStmt(IS->getThen())) 4396 return false; 4397 this->emitLabel(LabelEnd); 4398 } 4399 4400 return true; 4401 } 4402 4403 template <class Emitter> 4404 bool Compiler<Emitter>::visitWhileStmt(const WhileStmt *S) { 4405 const Expr *Cond = S->getCond(); 4406 const Stmt *Body = S->getBody(); 4407 4408 LabelTy CondLabel = this->getLabel(); // Label before the condition. 4409 LabelTy EndLabel = this->getLabel(); // Label after the loop. 4410 LoopScope<Emitter> LS(this, EndLabel, CondLabel); 4411 4412 this->fallthrough(CondLabel); 4413 this->emitLabel(CondLabel); 4414 4415 if (const DeclStmt *CondDecl = S->getConditionVariableDeclStmt()) 4416 if (!visitDeclStmt(CondDecl)) 4417 return false; 4418 4419 if (!this->visitBool(Cond)) 4420 return false; 4421 if (!this->jumpFalse(EndLabel)) 4422 return false; 4423 4424 if (!this->visitStmt(Body)) 4425 return false; 4426 4427 if (!this->jump(CondLabel)) 4428 return false; 4429 this->fallthrough(EndLabel); 4430 this->emitLabel(EndLabel); 4431 4432 return true; 4433 } 4434 4435 template <class Emitter> bool Compiler<Emitter>::visitDoStmt(const DoStmt *S) { 4436 const Expr *Cond = S->getCond(); 4437 const Stmt *Body = S->getBody(); 4438 4439 LabelTy StartLabel = this->getLabel(); 4440 LabelTy EndLabel = this->getLabel(); 4441 LabelTy CondLabel = this->getLabel(); 4442 LoopScope<Emitter> LS(this, EndLabel, CondLabel); 4443 4444 this->fallthrough(StartLabel); 4445 this->emitLabel(StartLabel); 4446 { 4447 if (!this->visitStmt(Body)) 4448 return false; 4449 this->fallthrough(CondLabel); 4450 this->emitLabel(CondLabel); 4451 if (!this->visitBool(Cond)) 4452 return false; 4453 } 4454 if (!this->jumpTrue(StartLabel)) 4455 return false; 4456 4457 this->fallthrough(EndLabel); 4458 this->emitLabel(EndLabel); 4459 return true; 4460 } 4461 4462 template <class Emitter> 4463 bool Compiler<Emitter>::visitForStmt(const ForStmt *S) { 4464 // for (Init; Cond; Inc) { Body } 4465 const Stmt *Init = S->getInit(); 4466 const Expr *Cond = S->getCond(); 4467 const Expr *Inc = S->getInc(); 4468 const Stmt *Body = S->getBody(); 4469 4470 LabelTy EndLabel = this->getLabel(); 4471 LabelTy CondLabel = this->getLabel(); 4472 LabelTy IncLabel = this->getLabel(); 4473 LoopScope<Emitter> LS(this, EndLabel, IncLabel); 4474 4475 if (Init && !this->visitStmt(Init)) 4476 return false; 4477 4478 this->fallthrough(CondLabel); 4479 this->emitLabel(CondLabel); 4480 4481 if (const DeclStmt *CondDecl = S->getConditionVariableDeclStmt()) 4482 if (!visitDeclStmt(CondDecl)) 4483 return false; 4484 4485 if (Cond) { 4486 if (!this->visitBool(Cond)) 4487 return false; 4488 if (!this->jumpFalse(EndLabel)) 4489 return false; 4490 } 4491 4492 { 4493 if (Body && !this->visitStmt(Body)) 4494 return false; 4495 4496 this->fallthrough(IncLabel); 4497 this->emitLabel(IncLabel); 4498 if (Inc && !this->discard(Inc)) 4499 return false; 4500 } 4501 4502 if (!this->jump(CondLabel)) 4503 return false; 4504 this->fallthrough(EndLabel); 4505 this->emitLabel(EndLabel); 4506 return true; 4507 } 4508 4509 template <class Emitter> 4510 bool Compiler<Emitter>::visitCXXForRangeStmt(const CXXForRangeStmt *S) { 4511 const Stmt *Init = S->getInit(); 4512 const Expr *Cond = S->getCond(); 4513 const Expr *Inc = S->getInc(); 4514 const Stmt *Body = S->getBody(); 4515 const Stmt *BeginStmt = S->getBeginStmt(); 4516 const Stmt *RangeStmt = S->getRangeStmt(); 4517 const Stmt *EndStmt = S->getEndStmt(); 4518 const VarDecl *LoopVar = S->getLoopVariable(); 4519 4520 LabelTy EndLabel = this->getLabel(); 4521 LabelTy CondLabel = this->getLabel(); 4522 LabelTy IncLabel = this->getLabel(); 4523 LoopScope<Emitter> LS(this, EndLabel, IncLabel); 4524 4525 // Emit declarations needed in the loop. 4526 if (Init && !this->visitStmt(Init)) 4527 return false; 4528 if (!this->visitStmt(RangeStmt)) 4529 return false; 4530 if (!this->visitStmt(BeginStmt)) 4531 return false; 4532 if (!this->visitStmt(EndStmt)) 4533 return false; 4534 4535 // Now the condition as well as the loop variable assignment. 4536 this->fallthrough(CondLabel); 4537 this->emitLabel(CondLabel); 4538 if (!this->visitBool(Cond)) 4539 return false; 4540 if (!this->jumpFalse(EndLabel)) 4541 return false; 4542 4543 if (!this->visitVarDecl(LoopVar)) 4544 return false; 4545 4546 // Body. 4547 { 4548 if (!this->visitStmt(Body)) 4549 return false; 4550 4551 this->fallthrough(IncLabel); 4552 this->emitLabel(IncLabel); 4553 if (!this->discard(Inc)) 4554 return false; 4555 } 4556 4557 if (!this->jump(CondLabel)) 4558 return false; 4559 4560 this->fallthrough(EndLabel); 4561 this->emitLabel(EndLabel); 4562 return true; 4563 } 4564 4565 template <class Emitter> 4566 bool Compiler<Emitter>::visitBreakStmt(const BreakStmt *S) { 4567 if (!BreakLabel) 4568 return false; 4569 4570 this->emitCleanup(); 4571 return this->jump(*BreakLabel); 4572 } 4573 4574 template <class Emitter> 4575 bool Compiler<Emitter>::visitContinueStmt(const ContinueStmt *S) { 4576 if (!ContinueLabel) 4577 return false; 4578 4579 this->emitCleanup(); 4580 return this->jump(*ContinueLabel); 4581 } 4582 4583 template <class Emitter> 4584 bool Compiler<Emitter>::visitSwitchStmt(const SwitchStmt *S) { 4585 const Expr *Cond = S->getCond(); 4586 PrimType CondT = this->classifyPrim(Cond->getType()); 4587 4588 LabelTy EndLabel = this->getLabel(); 4589 OptLabelTy DefaultLabel = std::nullopt; 4590 unsigned CondVar = this->allocateLocalPrimitive(Cond, CondT, true, false); 4591 4592 if (const auto *CondInit = S->getInit()) 4593 if (!visitStmt(CondInit)) 4594 return false; 4595 4596 if (const DeclStmt *CondDecl = S->getConditionVariableDeclStmt()) 4597 if (!visitDeclStmt(CondDecl)) 4598 return false; 4599 4600 // Initialize condition variable. 4601 if (!this->visit(Cond)) 4602 return false; 4603 if (!this->emitSetLocal(CondT, CondVar, S)) 4604 return false; 4605 4606 CaseMap CaseLabels; 4607 // Create labels and comparison ops for all case statements. 4608 for (const SwitchCase *SC = S->getSwitchCaseList(); SC; 4609 SC = SC->getNextSwitchCase()) { 4610 if (const auto *CS = dyn_cast<CaseStmt>(SC)) { 4611 // FIXME: Implement ranges. 4612 if (CS->caseStmtIsGNURange()) 4613 return false; 4614 CaseLabels[SC] = this->getLabel(); 4615 4616 const Expr *Value = CS->getLHS(); 4617 PrimType ValueT = this->classifyPrim(Value->getType()); 4618 4619 // Compare the case statement's value to the switch condition. 4620 if (!this->emitGetLocal(CondT, CondVar, CS)) 4621 return false; 4622 if (!this->visit(Value)) 4623 return false; 4624 4625 // Compare and jump to the case label. 4626 if (!this->emitEQ(ValueT, S)) 4627 return false; 4628 if (!this->jumpTrue(CaseLabels[CS])) 4629 return false; 4630 } else { 4631 assert(!DefaultLabel); 4632 DefaultLabel = this->getLabel(); 4633 } 4634 } 4635 4636 // If none of the conditions above were true, fall through to the default 4637 // statement or jump after the switch statement. 4638 if (DefaultLabel) { 4639 if (!this->jump(*DefaultLabel)) 4640 return false; 4641 } else { 4642 if (!this->jump(EndLabel)) 4643 return false; 4644 } 4645 4646 SwitchScope<Emitter> SS(this, std::move(CaseLabels), EndLabel, DefaultLabel); 4647 if (!this->visitStmt(S->getBody())) 4648 return false; 4649 this->emitLabel(EndLabel); 4650 return true; 4651 } 4652 4653 template <class Emitter> 4654 bool Compiler<Emitter>::visitCaseStmt(const CaseStmt *S) { 4655 this->emitLabel(CaseLabels[S]); 4656 return this->visitStmt(S->getSubStmt()); 4657 } 4658 4659 template <class Emitter> 4660 bool Compiler<Emitter>::visitDefaultStmt(const DefaultStmt *S) { 4661 this->emitLabel(*DefaultLabel); 4662 return this->visitStmt(S->getSubStmt()); 4663 } 4664 4665 template <class Emitter> 4666 bool Compiler<Emitter>::visitAttributedStmt(const AttributedStmt *S) { 4667 if (this->Ctx.getLangOpts().CXXAssumptions && 4668 !this->Ctx.getLangOpts().MSVCCompat) { 4669 for (const Attr *A : S->getAttrs()) { 4670 auto *AA = dyn_cast<CXXAssumeAttr>(A); 4671 if (!AA) 4672 continue; 4673 4674 assert(isa<NullStmt>(S->getSubStmt())); 4675 4676 const Expr *Assumption = AA->getAssumption(); 4677 if (Assumption->isValueDependent()) 4678 return false; 4679 4680 if (Assumption->HasSideEffects(this->Ctx.getASTContext())) 4681 continue; 4682 4683 // Evaluate assumption. 4684 if (!this->visitBool(Assumption)) 4685 return false; 4686 4687 if (!this->emitAssume(Assumption)) 4688 return false; 4689 } 4690 } 4691 4692 // Ignore other attributes. 4693 return this->visitStmt(S->getSubStmt()); 4694 } 4695 4696 template <class Emitter> 4697 bool Compiler<Emitter>::visitCXXTryStmt(const CXXTryStmt *S) { 4698 // Ignore all handlers. 4699 return this->visitStmt(S->getTryBlock()); 4700 } 4701 4702 template <class Emitter> 4703 bool Compiler<Emitter>::emitLambdaStaticInvokerBody(const CXXMethodDecl *MD) { 4704 assert(MD->isLambdaStaticInvoker()); 4705 assert(MD->hasBody()); 4706 assert(cast<CompoundStmt>(MD->getBody())->body_empty()); 4707 4708 const CXXRecordDecl *ClosureClass = MD->getParent(); 4709 const CXXMethodDecl *LambdaCallOp = ClosureClass->getLambdaCallOperator(); 4710 assert(ClosureClass->captures_begin() == ClosureClass->captures_end()); 4711 const Function *Func = this->getFunction(LambdaCallOp); 4712 if (!Func) 4713 return false; 4714 assert(Func->hasThisPointer()); 4715 assert(Func->getNumParams() == (MD->getNumParams() + 1 + Func->hasRVO())); 4716 4717 if (Func->hasRVO()) { 4718 if (!this->emitRVOPtr(MD)) 4719 return false; 4720 } 4721 4722 // The lambda call operator needs an instance pointer, but we don't have 4723 // one here, and we don't need one either because the lambda cannot have 4724 // any captures, as verified above. Emit a null pointer. This is then 4725 // special-cased when interpreting to not emit any misleading diagnostics. 4726 if (!this->emitNullPtr(nullptr, MD)) 4727 return false; 4728 4729 // Forward all arguments from the static invoker to the lambda call operator. 4730 for (const ParmVarDecl *PVD : MD->parameters()) { 4731 auto It = this->Params.find(PVD); 4732 assert(It != this->Params.end()); 4733 4734 // We do the lvalue-to-rvalue conversion manually here, so no need 4735 // to care about references. 4736 PrimType ParamType = this->classify(PVD->getType()).value_or(PT_Ptr); 4737 if (!this->emitGetParam(ParamType, It->second.Offset, MD)) 4738 return false; 4739 } 4740 4741 if (!this->emitCall(Func, 0, LambdaCallOp)) 4742 return false; 4743 4744 this->emitCleanup(); 4745 if (ReturnType) 4746 return this->emitRet(*ReturnType, MD); 4747 4748 // Nothing to do, since we emitted the RVO pointer above. 4749 return this->emitRetVoid(MD); 4750 } 4751 4752 template <class Emitter> 4753 bool Compiler<Emitter>::checkLiteralType(const Expr *E) { 4754 if (Ctx.getLangOpts().CPlusPlus23) 4755 return true; 4756 4757 if (!E->isPRValue() || E->getType()->isLiteralType(Ctx.getASTContext())) 4758 return true; 4759 4760 return this->emitCheckLiteralType(E->getType().getTypePtr(), E); 4761 } 4762 4763 template <class Emitter> 4764 bool Compiler<Emitter>::compileConstructor(const CXXConstructorDecl *Ctor) { 4765 assert(!ReturnType); 4766 4767 auto emitFieldInitializer = [&](const Record::Field *F, unsigned FieldOffset, 4768 const Expr *InitExpr) -> bool { 4769 // We don't know what to do with these, so just return false. 4770 if (InitExpr->getType().isNull()) 4771 return false; 4772 4773 if (std::optional<PrimType> T = this->classify(InitExpr)) { 4774 if (!this->visit(InitExpr)) 4775 return false; 4776 4777 if (F->isBitField()) 4778 return this->emitInitThisBitField(*T, F, FieldOffset, InitExpr); 4779 return this->emitInitThisField(*T, FieldOffset, InitExpr); 4780 } 4781 // Non-primitive case. Get a pointer to the field-to-initialize 4782 // on the stack and call visitInitialzer() for it. 4783 InitLinkScope<Emitter> FieldScope(this, InitLink::Field(F->Offset)); 4784 if (!this->emitGetPtrThisField(FieldOffset, InitExpr)) 4785 return false; 4786 4787 if (!this->visitInitializer(InitExpr)) 4788 return false; 4789 4790 return this->emitFinishInitPop(InitExpr); 4791 }; 4792 4793 const RecordDecl *RD = Ctor->getParent(); 4794 const Record *R = this->getRecord(RD); 4795 if (!R) 4796 return false; 4797 4798 if (R->isUnion() && Ctor->isCopyOrMoveConstructor()) { 4799 // union copy and move ctors are special. 4800 assert(cast<CompoundStmt>(Ctor->getBody())->body_empty()); 4801 if (!this->emitThis(Ctor)) 4802 return false; 4803 4804 auto PVD = Ctor->getParamDecl(0); 4805 ParamOffset PO = this->Params[PVD]; // Must exist. 4806 4807 if (!this->emitGetParam(PT_Ptr, PO.Offset, Ctor)) 4808 return false; 4809 4810 return this->emitMemcpy(Ctor) && this->emitPopPtr(Ctor) && 4811 this->emitRetVoid(Ctor); 4812 } 4813 4814 InitLinkScope<Emitter> InitScope(this, InitLink::This()); 4815 for (const auto *Init : Ctor->inits()) { 4816 // Scope needed for the initializers. 4817 BlockScope<Emitter> Scope(this); 4818 4819 const Expr *InitExpr = Init->getInit(); 4820 if (const FieldDecl *Member = Init->getMember()) { 4821 const Record::Field *F = R->getField(Member); 4822 4823 if (!emitFieldInitializer(F, F->Offset, InitExpr)) 4824 return false; 4825 } else if (const Type *Base = Init->getBaseClass()) { 4826 const auto *BaseDecl = Base->getAsCXXRecordDecl(); 4827 assert(BaseDecl); 4828 4829 if (Init->isBaseVirtual()) { 4830 assert(R->getVirtualBase(BaseDecl)); 4831 if (!this->emitGetPtrThisVirtBase(BaseDecl, InitExpr)) 4832 return false; 4833 4834 } else { 4835 // Base class initializer. 4836 // Get This Base and call initializer on it. 4837 const Record::Base *B = R->getBase(BaseDecl); 4838 assert(B); 4839 if (!this->emitGetPtrThisBase(B->Offset, InitExpr)) 4840 return false; 4841 } 4842 4843 if (!this->visitInitializer(InitExpr)) 4844 return false; 4845 if (!this->emitFinishInitPop(InitExpr)) 4846 return false; 4847 } else if (const IndirectFieldDecl *IFD = Init->getIndirectMember()) { 4848 assert(IFD->getChainingSize() >= 2); 4849 4850 unsigned NestedFieldOffset = 0; 4851 const Record::Field *NestedField = nullptr; 4852 for (const NamedDecl *ND : IFD->chain()) { 4853 const auto *FD = cast<FieldDecl>(ND); 4854 const Record *FieldRecord = this->P.getOrCreateRecord(FD->getParent()); 4855 assert(FieldRecord); 4856 4857 NestedField = FieldRecord->getField(FD); 4858 assert(NestedField); 4859 4860 NestedFieldOffset += NestedField->Offset; 4861 } 4862 assert(NestedField); 4863 4864 if (!emitFieldInitializer(NestedField, NestedFieldOffset, InitExpr)) 4865 return false; 4866 } else { 4867 assert(Init->isDelegatingInitializer()); 4868 if (!this->emitThis(InitExpr)) 4869 return false; 4870 if (!this->visitInitializer(Init->getInit())) 4871 return false; 4872 if (!this->emitPopPtr(InitExpr)) 4873 return false; 4874 } 4875 4876 if (!Scope.destroyLocals()) 4877 return false; 4878 } 4879 4880 if (const auto *Body = Ctor->getBody()) 4881 if (!visitStmt(Body)) 4882 return false; 4883 4884 return this->emitRetVoid(SourceInfo{}); 4885 } 4886 4887 template <class Emitter> 4888 bool Compiler<Emitter>::compileDestructor(const CXXDestructorDecl *Dtor) { 4889 const RecordDecl *RD = Dtor->getParent(); 4890 const Record *R = this->getRecord(RD); 4891 if (!R) 4892 return false; 4893 4894 if (!Dtor->isTrivial() && Dtor->getBody()) { 4895 if (!this->visitStmt(Dtor->getBody())) 4896 return false; 4897 } 4898 4899 if (!this->emitThis(Dtor)) 4900 return false; 4901 4902 assert(R); 4903 if (!R->isUnion()) { 4904 // First, destroy all fields. 4905 for (const Record::Field &Field : llvm::reverse(R->fields())) { 4906 const Descriptor *D = Field.Desc; 4907 if (!D->isPrimitive() && !D->isPrimitiveArray()) { 4908 if (!this->emitGetPtrField(Field.Offset, SourceInfo{})) 4909 return false; 4910 if (!this->emitDestruction(D)) 4911 return false; 4912 if (!this->emitPopPtr(SourceInfo{})) 4913 return false; 4914 } 4915 } 4916 } 4917 4918 for (const Record::Base &Base : llvm::reverse(R->bases())) { 4919 if (!this->emitGetPtrBase(Base.Offset, SourceInfo{})) 4920 return false; 4921 if (!this->emitRecordDestruction(Base.R)) 4922 return false; 4923 if (!this->emitPopPtr(SourceInfo{})) 4924 return false; 4925 } 4926 4927 // FIXME: Virtual bases. 4928 return this->emitPopPtr(Dtor) && this->emitRetVoid(Dtor); 4929 } 4930 4931 template <class Emitter> 4932 bool Compiler<Emitter>::visitFunc(const FunctionDecl *F) { 4933 // Classify the return type. 4934 ReturnType = this->classify(F->getReturnType()); 4935 4936 if (const auto *Ctor = dyn_cast<CXXConstructorDecl>(F)) 4937 return this->compileConstructor(Ctor); 4938 if (const auto *Dtor = dyn_cast<CXXDestructorDecl>(F)) 4939 return this->compileDestructor(Dtor); 4940 4941 // Emit custom code if this is a lambda static invoker. 4942 if (const auto *MD = dyn_cast<CXXMethodDecl>(F); 4943 MD && MD->isLambdaStaticInvoker()) 4944 return this->emitLambdaStaticInvokerBody(MD); 4945 4946 // Regular functions. 4947 if (const auto *Body = F->getBody()) 4948 if (!visitStmt(Body)) 4949 return false; 4950 4951 // Emit a guard return to protect against a code path missing one. 4952 if (F->getReturnType()->isVoidType()) 4953 return this->emitRetVoid(SourceInfo{}); 4954 return this->emitNoRet(SourceInfo{}); 4955 } 4956 4957 template <class Emitter> 4958 bool Compiler<Emitter>::VisitUnaryOperator(const UnaryOperator *E) { 4959 const Expr *SubExpr = E->getSubExpr(); 4960 if (SubExpr->getType()->isAnyComplexType()) 4961 return this->VisitComplexUnaryOperator(E); 4962 std::optional<PrimType> T = classify(SubExpr->getType()); 4963 4964 switch (E->getOpcode()) { 4965 case UO_PostInc: { // x++ 4966 if (!Ctx.getLangOpts().CPlusPlus14) 4967 return this->emitInvalid(E); 4968 if (!T) 4969 return this->emitError(E); 4970 4971 if (!this->visit(SubExpr)) 4972 return false; 4973 4974 if (T == PT_Ptr || T == PT_FnPtr) { 4975 if (!this->emitIncPtr(E)) 4976 return false; 4977 4978 return DiscardResult ? this->emitPopPtr(E) : true; 4979 } 4980 4981 if (T == PT_Float) { 4982 return DiscardResult ? this->emitIncfPop(getRoundingMode(E), E) 4983 : this->emitIncf(getRoundingMode(E), E); 4984 } 4985 4986 return DiscardResult ? this->emitIncPop(*T, E) : this->emitInc(*T, E); 4987 } 4988 case UO_PostDec: { // x-- 4989 if (!Ctx.getLangOpts().CPlusPlus14) 4990 return this->emitInvalid(E); 4991 if (!T) 4992 return this->emitError(E); 4993 4994 if (!this->visit(SubExpr)) 4995 return false; 4996 4997 if (T == PT_Ptr || T == PT_FnPtr) { 4998 if (!this->emitDecPtr(E)) 4999 return false; 5000 5001 return DiscardResult ? this->emitPopPtr(E) : true; 5002 } 5003 5004 if (T == PT_Float) { 5005 return DiscardResult ? this->emitDecfPop(getRoundingMode(E), E) 5006 : this->emitDecf(getRoundingMode(E), E); 5007 } 5008 5009 return DiscardResult ? this->emitDecPop(*T, E) : this->emitDec(*T, E); 5010 } 5011 case UO_PreInc: { // ++x 5012 if (!Ctx.getLangOpts().CPlusPlus14) 5013 return this->emitInvalid(E); 5014 if (!T) 5015 return this->emitError(E); 5016 5017 if (!this->visit(SubExpr)) 5018 return false; 5019 5020 if (T == PT_Ptr || T == PT_FnPtr) { 5021 if (!this->emitLoadPtr(E)) 5022 return false; 5023 if (!this->emitConstUint8(1, E)) 5024 return false; 5025 if (!this->emitAddOffsetUint8(E)) 5026 return false; 5027 return DiscardResult ? this->emitStorePopPtr(E) : this->emitStorePtr(E); 5028 } 5029 5030 // Post-inc and pre-inc are the same if the value is to be discarded. 5031 if (DiscardResult) { 5032 if (T == PT_Float) 5033 return this->emitIncfPop(getRoundingMode(E), E); 5034 return this->emitIncPop(*T, E); 5035 } 5036 5037 if (T == PT_Float) { 5038 const auto &TargetSemantics = Ctx.getFloatSemantics(E->getType()); 5039 if (!this->emitLoadFloat(E)) 5040 return false; 5041 if (!this->emitConstFloat(llvm::APFloat(TargetSemantics, 1), E)) 5042 return false; 5043 if (!this->emitAddf(getRoundingMode(E), E)) 5044 return false; 5045 if (!this->emitStoreFloat(E)) 5046 return false; 5047 } else { 5048 assert(isIntegralType(*T)); 5049 if (!this->emitLoad(*T, E)) 5050 return false; 5051 if (!this->emitConst(1, E)) 5052 return false; 5053 if (!this->emitAdd(*T, E)) 5054 return false; 5055 if (!this->emitStore(*T, E)) 5056 return false; 5057 } 5058 return E->isGLValue() || this->emitLoadPop(*T, E); 5059 } 5060 case UO_PreDec: { // --x 5061 if (!Ctx.getLangOpts().CPlusPlus14) 5062 return this->emitInvalid(E); 5063 if (!T) 5064 return this->emitError(E); 5065 5066 if (!this->visit(SubExpr)) 5067 return false; 5068 5069 if (T == PT_Ptr || T == PT_FnPtr) { 5070 if (!this->emitLoadPtr(E)) 5071 return false; 5072 if (!this->emitConstUint8(1, E)) 5073 return false; 5074 if (!this->emitSubOffsetUint8(E)) 5075 return false; 5076 return DiscardResult ? this->emitStorePopPtr(E) : this->emitStorePtr(E); 5077 } 5078 5079 // Post-dec and pre-dec are the same if the value is to be discarded. 5080 if (DiscardResult) { 5081 if (T == PT_Float) 5082 return this->emitDecfPop(getRoundingMode(E), E); 5083 return this->emitDecPop(*T, E); 5084 } 5085 5086 if (T == PT_Float) { 5087 const auto &TargetSemantics = Ctx.getFloatSemantics(E->getType()); 5088 if (!this->emitLoadFloat(E)) 5089 return false; 5090 if (!this->emitConstFloat(llvm::APFloat(TargetSemantics, 1), E)) 5091 return false; 5092 if (!this->emitSubf(getRoundingMode(E), E)) 5093 return false; 5094 if (!this->emitStoreFloat(E)) 5095 return false; 5096 } else { 5097 assert(isIntegralType(*T)); 5098 if (!this->emitLoad(*T, E)) 5099 return false; 5100 if (!this->emitConst(1, E)) 5101 return false; 5102 if (!this->emitSub(*T, E)) 5103 return false; 5104 if (!this->emitStore(*T, E)) 5105 return false; 5106 } 5107 return E->isGLValue() || this->emitLoadPop(*T, E); 5108 } 5109 case UO_LNot: // !x 5110 if (!T) 5111 return this->emitError(E); 5112 5113 if (DiscardResult) 5114 return this->discard(SubExpr); 5115 5116 if (!this->visitBool(SubExpr)) 5117 return false; 5118 5119 if (!this->emitInv(E)) 5120 return false; 5121 5122 if (PrimType ET = classifyPrim(E->getType()); ET != PT_Bool) 5123 return this->emitCast(PT_Bool, ET, E); 5124 return true; 5125 case UO_Minus: // -x 5126 if (!T) 5127 return this->emitError(E); 5128 5129 if (!this->visit(SubExpr)) 5130 return false; 5131 return DiscardResult ? this->emitPop(*T, E) : this->emitNeg(*T, E); 5132 case UO_Plus: // +x 5133 if (!T) 5134 return this->emitError(E); 5135 5136 if (!this->visit(SubExpr)) // noop 5137 return false; 5138 return DiscardResult ? this->emitPop(*T, E) : true; 5139 case UO_AddrOf: // &x 5140 if (E->getType()->isMemberPointerType()) { 5141 // C++11 [expr.unary.op]p3 has very strict rules on how the address of a 5142 // member can be formed. 5143 return this->emitGetMemberPtr(cast<DeclRefExpr>(SubExpr)->getDecl(), E); 5144 } 5145 // We should already have a pointer when we get here. 5146 return this->delegate(SubExpr); 5147 case UO_Deref: // *x 5148 if (DiscardResult) 5149 return this->discard(SubExpr); 5150 return this->visit(SubExpr); 5151 case UO_Not: // ~x 5152 if (!T) 5153 return this->emitError(E); 5154 5155 if (!this->visit(SubExpr)) 5156 return false; 5157 return DiscardResult ? this->emitPop(*T, E) : this->emitComp(*T, E); 5158 case UO_Real: // __real x 5159 assert(T); 5160 return this->delegate(SubExpr); 5161 case UO_Imag: { // __imag x 5162 assert(T); 5163 if (!this->discard(SubExpr)) 5164 return false; 5165 return this->visitZeroInitializer(*T, SubExpr->getType(), SubExpr); 5166 } 5167 case UO_Extension: 5168 return this->delegate(SubExpr); 5169 case UO_Coawait: 5170 assert(false && "Unhandled opcode"); 5171 } 5172 5173 return false; 5174 } 5175 5176 template <class Emitter> 5177 bool Compiler<Emitter>::VisitComplexUnaryOperator(const UnaryOperator *E) { 5178 const Expr *SubExpr = E->getSubExpr(); 5179 assert(SubExpr->getType()->isAnyComplexType()); 5180 5181 if (DiscardResult) 5182 return this->discard(SubExpr); 5183 5184 std::optional<PrimType> ResT = classify(E); 5185 auto prepareResult = [=]() -> bool { 5186 if (!ResT && !Initializing) { 5187 std::optional<unsigned> LocalIndex = allocateLocal(SubExpr); 5188 if (!LocalIndex) 5189 return false; 5190 return this->emitGetPtrLocal(*LocalIndex, E); 5191 } 5192 5193 return true; 5194 }; 5195 5196 // The offset of the temporary, if we created one. 5197 unsigned SubExprOffset = ~0u; 5198 auto createTemp = [=, &SubExprOffset]() -> bool { 5199 SubExprOffset = this->allocateLocalPrimitive(SubExpr, PT_Ptr, true, false); 5200 if (!this->visit(SubExpr)) 5201 return false; 5202 return this->emitSetLocal(PT_Ptr, SubExprOffset, E); 5203 }; 5204 5205 PrimType ElemT = classifyComplexElementType(SubExpr->getType()); 5206 auto getElem = [=](unsigned Offset, unsigned Index) -> bool { 5207 if (!this->emitGetLocal(PT_Ptr, Offset, E)) 5208 return false; 5209 return this->emitArrayElemPop(ElemT, Index, E); 5210 }; 5211 5212 switch (E->getOpcode()) { 5213 case UO_Minus: 5214 if (!prepareResult()) 5215 return false; 5216 if (!createTemp()) 5217 return false; 5218 for (unsigned I = 0; I != 2; ++I) { 5219 if (!getElem(SubExprOffset, I)) 5220 return false; 5221 if (!this->emitNeg(ElemT, E)) 5222 return false; 5223 if (!this->emitInitElem(ElemT, I, E)) 5224 return false; 5225 } 5226 break; 5227 5228 case UO_Plus: // +x 5229 case UO_AddrOf: // &x 5230 case UO_Deref: // *x 5231 return this->delegate(SubExpr); 5232 5233 case UO_LNot: 5234 if (!this->visit(SubExpr)) 5235 return false; 5236 if (!this->emitComplexBoolCast(SubExpr)) 5237 return false; 5238 if (!this->emitInv(E)) 5239 return false; 5240 if (PrimType ET = classifyPrim(E->getType()); ET != PT_Bool) 5241 return this->emitCast(PT_Bool, ET, E); 5242 return true; 5243 5244 case UO_Real: 5245 return this->emitComplexReal(SubExpr); 5246 5247 case UO_Imag: 5248 if (!this->visit(SubExpr)) 5249 return false; 5250 5251 if (SubExpr->isLValue()) { 5252 if (!this->emitConstUint8(1, E)) 5253 return false; 5254 return this->emitArrayElemPtrPopUint8(E); 5255 } 5256 5257 // Since our _Complex implementation does not map to a primitive type, 5258 // we sometimes have to do the lvalue-to-rvalue conversion here manually. 5259 return this->emitArrayElemPop(classifyPrim(E->getType()), 1, E); 5260 5261 case UO_Not: // ~x 5262 if (!this->visit(SubExpr)) 5263 return false; 5264 // Negate the imaginary component. 5265 if (!this->emitArrayElem(ElemT, 1, E)) 5266 return false; 5267 if (!this->emitNeg(ElemT, E)) 5268 return false; 5269 if (!this->emitInitElem(ElemT, 1, E)) 5270 return false; 5271 return DiscardResult ? this->emitPopPtr(E) : true; 5272 5273 case UO_Extension: 5274 return this->delegate(SubExpr); 5275 5276 default: 5277 return this->emitInvalid(E); 5278 } 5279 5280 return true; 5281 } 5282 5283 template <class Emitter> 5284 bool Compiler<Emitter>::visitDeclRef(const ValueDecl *D, const Expr *E) { 5285 if (DiscardResult) 5286 return true; 5287 5288 if (const auto *ECD = dyn_cast<EnumConstantDecl>(D)) { 5289 return this->emitConst(ECD->getInitVal(), E); 5290 } else if (const auto *BD = dyn_cast<BindingDecl>(D)) { 5291 return this->visit(BD->getBinding()); 5292 } else if (const auto *FuncDecl = dyn_cast<FunctionDecl>(D)) { 5293 const Function *F = getFunction(FuncDecl); 5294 return F && this->emitGetFnPtr(F, E); 5295 } else if (const auto *TPOD = dyn_cast<TemplateParamObjectDecl>(D)) { 5296 if (std::optional<unsigned> Index = P.getOrCreateGlobal(D)) { 5297 if (!this->emitGetPtrGlobal(*Index, E)) 5298 return false; 5299 if (std::optional<PrimType> T = classify(E->getType())) { 5300 if (!this->visitAPValue(TPOD->getValue(), *T, E)) 5301 return false; 5302 return this->emitInitGlobal(*T, *Index, E); 5303 } 5304 return this->visitAPValueInitializer(TPOD->getValue(), E); 5305 } 5306 return false; 5307 } 5308 5309 // References are implemented via pointers, so when we see a DeclRefExpr 5310 // pointing to a reference, we need to get its value directly (i.e. the 5311 // pointer to the actual value) instead of a pointer to the pointer to the 5312 // value. 5313 bool IsReference = D->getType()->isReferenceType(); 5314 5315 // Check for local/global variables and parameters. 5316 if (auto It = Locals.find(D); It != Locals.end()) { 5317 const unsigned Offset = It->second.Offset; 5318 if (IsReference) 5319 return this->emitGetLocal(PT_Ptr, Offset, E); 5320 return this->emitGetPtrLocal(Offset, E); 5321 } else if (auto GlobalIndex = P.getGlobal(D)) { 5322 if (IsReference) { 5323 if (!Ctx.getLangOpts().CPlusPlus11) 5324 return this->emitGetGlobal(classifyPrim(E), *GlobalIndex, E); 5325 return this->emitGetGlobalUnchecked(classifyPrim(E), *GlobalIndex, E); 5326 } 5327 5328 return this->emitGetPtrGlobal(*GlobalIndex, E); 5329 } else if (const auto *PVD = dyn_cast<ParmVarDecl>(D)) { 5330 if (auto It = this->Params.find(PVD); It != this->Params.end()) { 5331 if (IsReference || !It->second.IsPtr) 5332 return this->emitGetParam(classifyPrim(E), It->second.Offset, E); 5333 5334 return this->emitGetPtrParam(It->second.Offset, E); 5335 } 5336 } 5337 5338 // In case we need to re-visit a declaration. 5339 auto revisit = [&](const VarDecl *VD) -> bool { 5340 auto VarState = this->visitDecl(VD); 5341 5342 if (VarState.notCreated()) 5343 return true; 5344 if (!VarState) 5345 return false; 5346 // Retry. 5347 return this->visitDeclRef(D, E); 5348 }; 5349 5350 // Handle lambda captures. 5351 if (auto It = this->LambdaCaptures.find(D); 5352 It != this->LambdaCaptures.end()) { 5353 auto [Offset, IsPtr] = It->second; 5354 5355 if (IsPtr) 5356 return this->emitGetThisFieldPtr(Offset, E); 5357 return this->emitGetPtrThisField(Offset, E); 5358 } else if (const auto *DRE = dyn_cast<DeclRefExpr>(E); 5359 DRE && DRE->refersToEnclosingVariableOrCapture()) { 5360 if (const auto *VD = dyn_cast<VarDecl>(D); VD && VD->isInitCapture()) 5361 return revisit(VD); 5362 } 5363 5364 if (D != InitializingDecl) { 5365 // Try to lazily visit (or emit dummy pointers for) declarations 5366 // we haven't seen yet. 5367 if (Ctx.getLangOpts().CPlusPlus) { 5368 if (const auto *VD = dyn_cast<VarDecl>(D)) { 5369 const auto typeShouldBeVisited = [&](QualType T) -> bool { 5370 if (T.isConstant(Ctx.getASTContext())) 5371 return true; 5372 if (const auto *RT = T->getAs<ReferenceType>()) 5373 return RT->getPointeeType().isConstQualified(); 5374 return false; 5375 }; 5376 5377 // DecompositionDecls are just proxies for us. 5378 if (isa<DecompositionDecl>(VD)) 5379 return revisit(VD); 5380 5381 // Visit local const variables like normal. 5382 if ((VD->hasGlobalStorage() || VD->isLocalVarDecl() || 5383 VD->isStaticDataMember()) && 5384 typeShouldBeVisited(VD->getType())) 5385 return revisit(VD); 5386 } 5387 } else { 5388 if (const auto *VD = dyn_cast<VarDecl>(D); 5389 VD && VD->getAnyInitializer() && 5390 VD->getType().isConstant(Ctx.getASTContext()) && !VD->isWeak()) 5391 return revisit(VD); 5392 } 5393 } 5394 5395 if (std::optional<unsigned> I = P.getOrCreateDummy(D)) { 5396 if (!this->emitGetPtrGlobal(*I, E)) 5397 return false; 5398 if (E->getType()->isVoidType()) 5399 return true; 5400 // Convert the dummy pointer to another pointer type if we have to. 5401 if (PrimType PT = classifyPrim(E); PT != PT_Ptr) { 5402 if (isPtrType(PT)) 5403 return this->emitDecayPtr(PT_Ptr, PT, E); 5404 return false; 5405 } 5406 return true; 5407 } 5408 5409 if (const auto *DRE = dyn_cast<DeclRefExpr>(E)) 5410 return this->emitInvalidDeclRef(DRE, E); 5411 return false; 5412 } 5413 5414 template <class Emitter> 5415 bool Compiler<Emitter>::VisitDeclRefExpr(const DeclRefExpr *E) { 5416 const auto *D = E->getDecl(); 5417 return this->visitDeclRef(D, E); 5418 } 5419 5420 template <class Emitter> void Compiler<Emitter>::emitCleanup() { 5421 for (VariableScope<Emitter> *C = VarScope; C; C = C->getParent()) 5422 C->emitDestruction(); 5423 } 5424 5425 template <class Emitter> 5426 unsigned Compiler<Emitter>::collectBaseOffset(const QualType BaseType, 5427 const QualType DerivedType) { 5428 const auto extractRecordDecl = [](QualType Ty) -> const CXXRecordDecl * { 5429 if (const auto *R = Ty->getPointeeCXXRecordDecl()) 5430 return R; 5431 return Ty->getAsCXXRecordDecl(); 5432 }; 5433 const CXXRecordDecl *BaseDecl = extractRecordDecl(BaseType); 5434 const CXXRecordDecl *DerivedDecl = extractRecordDecl(DerivedType); 5435 5436 return Ctx.collectBaseOffset(BaseDecl, DerivedDecl); 5437 } 5438 5439 /// Emit casts from a PrimType to another PrimType. 5440 template <class Emitter> 5441 bool Compiler<Emitter>::emitPrimCast(PrimType FromT, PrimType ToT, 5442 QualType ToQT, const Expr *E) { 5443 5444 if (FromT == PT_Float) { 5445 // Floating to floating. 5446 if (ToT == PT_Float) { 5447 const llvm::fltSemantics *ToSem = &Ctx.getFloatSemantics(ToQT); 5448 return this->emitCastFP(ToSem, getRoundingMode(E), E); 5449 } 5450 5451 if (ToT == PT_IntAP) 5452 return this->emitCastFloatingIntegralAP(Ctx.getBitWidth(ToQT), E); 5453 if (ToT == PT_IntAPS) 5454 return this->emitCastFloatingIntegralAPS(Ctx.getBitWidth(ToQT), E); 5455 5456 // Float to integral. 5457 if (isIntegralType(ToT) || ToT == PT_Bool) 5458 return this->emitCastFloatingIntegral(ToT, E); 5459 } 5460 5461 if (isIntegralType(FromT) || FromT == PT_Bool) { 5462 if (ToT == PT_IntAP) 5463 return this->emitCastAP(FromT, Ctx.getBitWidth(ToQT), E); 5464 if (ToT == PT_IntAPS) 5465 return this->emitCastAPS(FromT, Ctx.getBitWidth(ToQT), E); 5466 5467 // Integral to integral. 5468 if (isIntegralType(ToT) || ToT == PT_Bool) 5469 return FromT != ToT ? this->emitCast(FromT, ToT, E) : true; 5470 5471 if (ToT == PT_Float) { 5472 // Integral to floating. 5473 const llvm::fltSemantics *ToSem = &Ctx.getFloatSemantics(ToQT); 5474 return this->emitCastIntegralFloating(FromT, ToSem, getRoundingMode(E), 5475 E); 5476 } 5477 } 5478 5479 return false; 5480 } 5481 5482 /// Emits __real(SubExpr) 5483 template <class Emitter> 5484 bool Compiler<Emitter>::emitComplexReal(const Expr *SubExpr) { 5485 assert(SubExpr->getType()->isAnyComplexType()); 5486 5487 if (DiscardResult) 5488 return this->discard(SubExpr); 5489 5490 if (!this->visit(SubExpr)) 5491 return false; 5492 if (SubExpr->isLValue()) { 5493 if (!this->emitConstUint8(0, SubExpr)) 5494 return false; 5495 return this->emitArrayElemPtrPopUint8(SubExpr); 5496 } 5497 5498 // Rvalue, load the actual element. 5499 return this->emitArrayElemPop(classifyComplexElementType(SubExpr->getType()), 5500 0, SubExpr); 5501 } 5502 5503 template <class Emitter> 5504 bool Compiler<Emitter>::emitComplexBoolCast(const Expr *E) { 5505 assert(!DiscardResult); 5506 PrimType ElemT = classifyComplexElementType(E->getType()); 5507 // We emit the expression (__real(E) != 0 || __imag(E) != 0) 5508 // for us, that means (bool)E[0] || (bool)E[1] 5509 if (!this->emitArrayElem(ElemT, 0, E)) 5510 return false; 5511 if (ElemT == PT_Float) { 5512 if (!this->emitCastFloatingIntegral(PT_Bool, E)) 5513 return false; 5514 } else { 5515 if (!this->emitCast(ElemT, PT_Bool, E)) 5516 return false; 5517 } 5518 5519 // We now have the bool value of E[0] on the stack. 5520 LabelTy LabelTrue = this->getLabel(); 5521 if (!this->jumpTrue(LabelTrue)) 5522 return false; 5523 5524 if (!this->emitArrayElemPop(ElemT, 1, E)) 5525 return false; 5526 if (ElemT == PT_Float) { 5527 if (!this->emitCastFloatingIntegral(PT_Bool, E)) 5528 return false; 5529 } else { 5530 if (!this->emitCast(ElemT, PT_Bool, E)) 5531 return false; 5532 } 5533 // Leave the boolean value of E[1] on the stack. 5534 LabelTy EndLabel = this->getLabel(); 5535 this->jump(EndLabel); 5536 5537 this->emitLabel(LabelTrue); 5538 if (!this->emitPopPtr(E)) 5539 return false; 5540 if (!this->emitConstBool(true, E)) 5541 return false; 5542 5543 this->fallthrough(EndLabel); 5544 this->emitLabel(EndLabel); 5545 5546 return true; 5547 } 5548 5549 template <class Emitter> 5550 bool Compiler<Emitter>::emitComplexComparison(const Expr *LHS, const Expr *RHS, 5551 const BinaryOperator *E) { 5552 assert(E->isComparisonOp()); 5553 assert(!Initializing); 5554 assert(!DiscardResult); 5555 5556 PrimType ElemT; 5557 bool LHSIsComplex; 5558 unsigned LHSOffset; 5559 if (LHS->getType()->isAnyComplexType()) { 5560 LHSIsComplex = true; 5561 ElemT = classifyComplexElementType(LHS->getType()); 5562 LHSOffset = allocateLocalPrimitive(LHS, PT_Ptr, /*IsConst=*/true, 5563 /*IsExtended=*/false); 5564 if (!this->visit(LHS)) 5565 return false; 5566 if (!this->emitSetLocal(PT_Ptr, LHSOffset, E)) 5567 return false; 5568 } else { 5569 LHSIsComplex = false; 5570 PrimType LHST = classifyPrim(LHS->getType()); 5571 LHSOffset = this->allocateLocalPrimitive(LHS, LHST, true, false); 5572 if (!this->visit(LHS)) 5573 return false; 5574 if (!this->emitSetLocal(LHST, LHSOffset, E)) 5575 return false; 5576 } 5577 5578 bool RHSIsComplex; 5579 unsigned RHSOffset; 5580 if (RHS->getType()->isAnyComplexType()) { 5581 RHSIsComplex = true; 5582 ElemT = classifyComplexElementType(RHS->getType()); 5583 RHSOffset = allocateLocalPrimitive(RHS, PT_Ptr, /*IsConst=*/true, 5584 /*IsExtended=*/false); 5585 if (!this->visit(RHS)) 5586 return false; 5587 if (!this->emitSetLocal(PT_Ptr, RHSOffset, E)) 5588 return false; 5589 } else { 5590 RHSIsComplex = false; 5591 PrimType RHST = classifyPrim(RHS->getType()); 5592 RHSOffset = this->allocateLocalPrimitive(RHS, RHST, true, false); 5593 if (!this->visit(RHS)) 5594 return false; 5595 if (!this->emitSetLocal(RHST, RHSOffset, E)) 5596 return false; 5597 } 5598 5599 auto getElem = [&](unsigned LocalOffset, unsigned Index, 5600 bool IsComplex) -> bool { 5601 if (IsComplex) { 5602 if (!this->emitGetLocal(PT_Ptr, LocalOffset, E)) 5603 return false; 5604 return this->emitArrayElemPop(ElemT, Index, E); 5605 } 5606 return this->emitGetLocal(ElemT, LocalOffset, E); 5607 }; 5608 5609 for (unsigned I = 0; I != 2; ++I) { 5610 // Get both values. 5611 if (!getElem(LHSOffset, I, LHSIsComplex)) 5612 return false; 5613 if (!getElem(RHSOffset, I, RHSIsComplex)) 5614 return false; 5615 // And compare them. 5616 if (!this->emitEQ(ElemT, E)) 5617 return false; 5618 5619 if (!this->emitCastBoolUint8(E)) 5620 return false; 5621 } 5622 5623 // We now have two bool values on the stack. Compare those. 5624 if (!this->emitAddUint8(E)) 5625 return false; 5626 if (!this->emitConstUint8(2, E)) 5627 return false; 5628 5629 if (E->getOpcode() == BO_EQ) { 5630 if (!this->emitEQUint8(E)) 5631 return false; 5632 } else if (E->getOpcode() == BO_NE) { 5633 if (!this->emitNEUint8(E)) 5634 return false; 5635 } else 5636 return false; 5637 5638 // In C, this returns an int. 5639 if (PrimType ResT = classifyPrim(E->getType()); ResT != PT_Bool) 5640 return this->emitCast(PT_Bool, ResT, E); 5641 return true; 5642 } 5643 5644 /// When calling this, we have a pointer of the local-to-destroy 5645 /// on the stack. 5646 /// Emit destruction of record types (or arrays of record types). 5647 template <class Emitter> 5648 bool Compiler<Emitter>::emitRecordDestruction(const Record *R) { 5649 assert(R); 5650 const CXXDestructorDecl *Dtor = R->getDestructor(); 5651 if (!Dtor || Dtor->isTrivial()) 5652 return true; 5653 5654 assert(Dtor); 5655 const Function *DtorFunc = getFunction(Dtor); 5656 if (!DtorFunc) 5657 return false; 5658 assert(DtorFunc->hasThisPointer()); 5659 assert(DtorFunc->getNumParams() == 1); 5660 if (!this->emitDupPtr(SourceInfo{})) 5661 return false; 5662 return this->emitCall(DtorFunc, 0, SourceInfo{}); 5663 } 5664 /// When calling this, we have a pointer of the local-to-destroy 5665 /// on the stack. 5666 /// Emit destruction of record types (or arrays of record types). 5667 template <class Emitter> 5668 bool Compiler<Emitter>::emitDestruction(const Descriptor *Desc) { 5669 assert(Desc); 5670 assert(!Desc->isPrimitive()); 5671 assert(!Desc->isPrimitiveArray()); 5672 5673 // Arrays. 5674 if (Desc->isArray()) { 5675 const Descriptor *ElemDesc = Desc->ElemDesc; 5676 assert(ElemDesc); 5677 5678 // Don't need to do anything for these. 5679 if (ElemDesc->isPrimitiveArray()) 5680 return true; 5681 5682 // If this is an array of record types, check if we need 5683 // to call the element destructors at all. If not, try 5684 // to save the work. 5685 if (const Record *ElemRecord = ElemDesc->ElemRecord) { 5686 if (const CXXDestructorDecl *Dtor = ElemRecord->getDestructor(); 5687 !Dtor || Dtor->isTrivial()) 5688 return true; 5689 } 5690 5691 for (ssize_t I = Desc->getNumElems() - 1; I >= 0; --I) { 5692 if (!this->emitConstUint64(I, SourceInfo{})) 5693 return false; 5694 if (!this->emitArrayElemPtrUint64(SourceInfo{})) 5695 return false; 5696 if (!this->emitDestruction(ElemDesc)) 5697 return false; 5698 if (!this->emitPopPtr(SourceInfo{})) 5699 return false; 5700 } 5701 return true; 5702 } 5703 5704 assert(Desc->ElemRecord); 5705 return this->emitRecordDestruction(Desc->ElemRecord); 5706 } 5707 5708 namespace clang { 5709 namespace interp { 5710 5711 template class Compiler<ByteCodeEmitter>; 5712 template class Compiler<EvalEmitter>; 5713 5714 } // namespace interp 5715 } // namespace clang 5716