1 //===--- Compiler.cpp - Code generator for expressions ---*- C++ -*-===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "Compiler.h" 10 #include "ByteCodeEmitter.h" 11 #include "Context.h" 12 #include "Floating.h" 13 #include "Function.h" 14 #include "InterpShared.h" 15 #include "PrimType.h" 16 #include "Program.h" 17 #include "clang/AST/Attr.h" 18 19 using namespace clang; 20 using namespace clang::interp; 21 22 using APSInt = llvm::APSInt; 23 24 namespace clang { 25 namespace interp { 26 27 /// Scope used to handle temporaries in toplevel variable declarations. 28 template <class Emitter> class DeclScope final : public LocalScope<Emitter> { 29 public: 30 DeclScope(Compiler<Emitter> *Ctx, const ValueDecl *VD) 31 : LocalScope<Emitter>(Ctx, VD), Scope(Ctx->P, VD), 32 OldInitializingDecl(Ctx->InitializingDecl) { 33 Ctx->InitializingDecl = VD; 34 Ctx->InitStack.push_back(InitLink::Decl(VD)); 35 } 36 37 void addExtended(const Scope::Local &Local) override { 38 return this->addLocal(Local); 39 } 40 41 ~DeclScope() { 42 this->Ctx->InitializingDecl = OldInitializingDecl; 43 this->Ctx->InitStack.pop_back(); 44 } 45 46 private: 47 Program::DeclScope Scope; 48 const ValueDecl *OldInitializingDecl; 49 }; 50 51 /// Scope used to handle initialization methods. 52 template <class Emitter> class OptionScope final { 53 public: 54 /// Root constructor, compiling or discarding primitives. 55 OptionScope(Compiler<Emitter> *Ctx, bool NewDiscardResult, 56 bool NewInitializing) 57 : Ctx(Ctx), OldDiscardResult(Ctx->DiscardResult), 58 OldInitializing(Ctx->Initializing) { 59 Ctx->DiscardResult = NewDiscardResult; 60 Ctx->Initializing = NewInitializing; 61 } 62 63 ~OptionScope() { 64 Ctx->DiscardResult = OldDiscardResult; 65 Ctx->Initializing = OldInitializing; 66 } 67 68 private: 69 /// Parent context. 70 Compiler<Emitter> *Ctx; 71 /// Old discard flag to restore. 72 bool OldDiscardResult; 73 bool OldInitializing; 74 }; 75 76 template <class Emitter> 77 bool InitLink::emit(Compiler<Emitter> *Ctx, const Expr *E) const { 78 switch (Kind) { 79 case K_This: 80 return Ctx->emitThis(E); 81 case K_Field: 82 // We're assuming there's a base pointer on the stack already. 83 return Ctx->emitGetPtrFieldPop(Offset, E); 84 case K_Temp: 85 return Ctx->emitGetPtrLocal(Offset, E); 86 case K_Decl: 87 return Ctx->visitDeclRef(D, E); 88 case K_Elem: 89 if (!Ctx->emitConstUint32(Offset, E)) 90 return false; 91 return Ctx->emitArrayElemPtrPopUint32(E); 92 default: 93 llvm_unreachable("Unhandled InitLink kind"); 94 } 95 return true; 96 } 97 98 /// Scope managing label targets. 99 template <class Emitter> class LabelScope { 100 public: 101 virtual ~LabelScope() {} 102 103 protected: 104 LabelScope(Compiler<Emitter> *Ctx) : Ctx(Ctx) {} 105 /// Compiler instance. 106 Compiler<Emitter> *Ctx; 107 }; 108 109 /// Sets the context for break/continue statements. 110 template <class Emitter> class LoopScope final : public LabelScope<Emitter> { 111 public: 112 using LabelTy = typename Compiler<Emitter>::LabelTy; 113 using OptLabelTy = typename Compiler<Emitter>::OptLabelTy; 114 115 LoopScope(Compiler<Emitter> *Ctx, LabelTy BreakLabel, LabelTy ContinueLabel) 116 : LabelScope<Emitter>(Ctx), OldBreakLabel(Ctx->BreakLabel), 117 OldContinueLabel(Ctx->ContinueLabel), 118 OldBreakVarScope(Ctx->BreakVarScope), 119 OldContinueVarScope(Ctx->ContinueVarScope) { 120 this->Ctx->BreakLabel = BreakLabel; 121 this->Ctx->ContinueLabel = ContinueLabel; 122 this->Ctx->BreakVarScope = this->Ctx->VarScope; 123 this->Ctx->ContinueVarScope = this->Ctx->VarScope; 124 } 125 126 ~LoopScope() { 127 this->Ctx->BreakLabel = OldBreakLabel; 128 this->Ctx->ContinueLabel = OldContinueLabel; 129 this->Ctx->ContinueVarScope = OldContinueVarScope; 130 this->Ctx->BreakVarScope = OldBreakVarScope; 131 } 132 133 private: 134 OptLabelTy OldBreakLabel; 135 OptLabelTy OldContinueLabel; 136 VariableScope<Emitter> *OldBreakVarScope; 137 VariableScope<Emitter> *OldContinueVarScope; 138 }; 139 140 // Sets the context for a switch scope, mapping labels. 141 template <class Emitter> class SwitchScope final : public LabelScope<Emitter> { 142 public: 143 using LabelTy = typename Compiler<Emitter>::LabelTy; 144 using OptLabelTy = typename Compiler<Emitter>::OptLabelTy; 145 using CaseMap = typename Compiler<Emitter>::CaseMap; 146 147 SwitchScope(Compiler<Emitter> *Ctx, CaseMap &&CaseLabels, LabelTy BreakLabel, 148 OptLabelTy DefaultLabel) 149 : LabelScope<Emitter>(Ctx), OldBreakLabel(Ctx->BreakLabel), 150 OldDefaultLabel(this->Ctx->DefaultLabel), 151 OldCaseLabels(std::move(this->Ctx->CaseLabels)), 152 OldLabelVarScope(Ctx->BreakVarScope) { 153 this->Ctx->BreakLabel = BreakLabel; 154 this->Ctx->DefaultLabel = DefaultLabel; 155 this->Ctx->CaseLabels = std::move(CaseLabels); 156 this->Ctx->BreakVarScope = this->Ctx->VarScope; 157 } 158 159 ~SwitchScope() { 160 this->Ctx->BreakLabel = OldBreakLabel; 161 this->Ctx->DefaultLabel = OldDefaultLabel; 162 this->Ctx->CaseLabels = std::move(OldCaseLabels); 163 this->Ctx->BreakVarScope = OldLabelVarScope; 164 } 165 166 private: 167 OptLabelTy OldBreakLabel; 168 OptLabelTy OldDefaultLabel; 169 CaseMap OldCaseLabels; 170 VariableScope<Emitter> *OldLabelVarScope; 171 }; 172 173 template <class Emitter> class StmtExprScope final { 174 public: 175 StmtExprScope(Compiler<Emitter> *Ctx) : Ctx(Ctx), OldFlag(Ctx->InStmtExpr) { 176 Ctx->InStmtExpr = true; 177 } 178 179 ~StmtExprScope() { Ctx->InStmtExpr = OldFlag; } 180 181 private: 182 Compiler<Emitter> *Ctx; 183 bool OldFlag; 184 }; 185 186 } // namespace interp 187 } // namespace clang 188 189 template <class Emitter> 190 bool Compiler<Emitter>::VisitCastExpr(const CastExpr *CE) { 191 const Expr *SubExpr = CE->getSubExpr(); 192 switch (CE->getCastKind()) { 193 194 case CK_LValueToRValue: { 195 if (DiscardResult) 196 return this->discard(SubExpr); 197 198 std::optional<PrimType> SubExprT = classify(SubExpr->getType()); 199 // Prepare storage for the result. 200 if (!Initializing && !SubExprT) { 201 std::optional<unsigned> LocalIndex = allocateLocal(SubExpr); 202 if (!LocalIndex) 203 return false; 204 if (!this->emitGetPtrLocal(*LocalIndex, CE)) 205 return false; 206 } 207 208 if (!this->visit(SubExpr)) 209 return false; 210 211 if (SubExprT) 212 return this->emitLoadPop(*SubExprT, CE); 213 214 // If the subexpr type is not primitive, we need to perform a copy here. 215 // This happens for example in C when dereferencing a pointer of struct 216 // type. 217 return this->emitMemcpy(CE); 218 } 219 220 case CK_DerivedToBaseMemberPointer: { 221 assert(classifyPrim(CE->getType()) == PT_MemberPtr); 222 assert(classifyPrim(SubExpr->getType()) == PT_MemberPtr); 223 const auto *FromMP = SubExpr->getType()->getAs<MemberPointerType>(); 224 const auto *ToMP = CE->getType()->getAs<MemberPointerType>(); 225 226 unsigned DerivedOffset = collectBaseOffset(QualType(ToMP->getClass(), 0), 227 QualType(FromMP->getClass(), 0)); 228 229 if (!this->delegate(SubExpr)) 230 return false; 231 232 return this->emitGetMemberPtrBasePop(DerivedOffset, CE); 233 } 234 235 case CK_BaseToDerivedMemberPointer: { 236 assert(classifyPrim(CE) == PT_MemberPtr); 237 assert(classifyPrim(SubExpr) == PT_MemberPtr); 238 const auto *FromMP = SubExpr->getType()->getAs<MemberPointerType>(); 239 const auto *ToMP = CE->getType()->getAs<MemberPointerType>(); 240 241 unsigned DerivedOffset = collectBaseOffset(QualType(FromMP->getClass(), 0), 242 QualType(ToMP->getClass(), 0)); 243 244 if (!this->delegate(SubExpr)) 245 return false; 246 return this->emitGetMemberPtrBasePop(-DerivedOffset, CE); 247 } 248 249 case CK_UncheckedDerivedToBase: 250 case CK_DerivedToBase: { 251 if (!this->delegate(SubExpr)) 252 return false; 253 254 const auto extractRecordDecl = [](QualType Ty) -> const CXXRecordDecl * { 255 if (const auto *PT = dyn_cast<PointerType>(Ty)) 256 return PT->getPointeeType()->getAsCXXRecordDecl(); 257 return Ty->getAsCXXRecordDecl(); 258 }; 259 260 // FIXME: We can express a series of non-virtual casts as a single 261 // GetPtrBasePop op. 262 QualType CurType = SubExpr->getType(); 263 for (const CXXBaseSpecifier *B : CE->path()) { 264 if (B->isVirtual()) { 265 if (!this->emitGetPtrVirtBasePop(extractRecordDecl(B->getType()), CE)) 266 return false; 267 CurType = B->getType(); 268 } else { 269 unsigned DerivedOffset = collectBaseOffset(B->getType(), CurType); 270 if (!this->emitGetPtrBasePop(DerivedOffset, CE)) 271 return false; 272 CurType = B->getType(); 273 } 274 } 275 276 return true; 277 } 278 279 case CK_BaseToDerived: { 280 if (!this->delegate(SubExpr)) 281 return false; 282 283 unsigned DerivedOffset = 284 collectBaseOffset(SubExpr->getType(), CE->getType()); 285 286 return this->emitGetPtrDerivedPop(DerivedOffset, CE); 287 } 288 289 case CK_FloatingCast: { 290 // HLSL uses CK_FloatingCast to cast between vectors. 291 if (!SubExpr->getType()->isFloatingType() || 292 !CE->getType()->isFloatingType()) 293 return false; 294 if (DiscardResult) 295 return this->discard(SubExpr); 296 if (!this->visit(SubExpr)) 297 return false; 298 const auto *TargetSemantics = &Ctx.getFloatSemantics(CE->getType()); 299 return this->emitCastFP(TargetSemantics, getRoundingMode(CE), CE); 300 } 301 302 case CK_IntegralToFloating: { 303 if (DiscardResult) 304 return this->discard(SubExpr); 305 std::optional<PrimType> FromT = classify(SubExpr->getType()); 306 if (!FromT) 307 return false; 308 309 if (!this->visit(SubExpr)) 310 return false; 311 312 const auto *TargetSemantics = &Ctx.getFloatSemantics(CE->getType()); 313 return this->emitCastIntegralFloating(*FromT, TargetSemantics, 314 getFPOptions(CE), CE); 315 } 316 317 case CK_FloatingToBoolean: 318 case CK_FloatingToIntegral: { 319 if (DiscardResult) 320 return this->discard(SubExpr); 321 322 std::optional<PrimType> ToT = classify(CE->getType()); 323 324 if (!ToT) 325 return false; 326 327 if (!this->visit(SubExpr)) 328 return false; 329 330 if (ToT == PT_IntAP) 331 return this->emitCastFloatingIntegralAP(Ctx.getBitWidth(CE->getType()), 332 getFPOptions(CE), CE); 333 if (ToT == PT_IntAPS) 334 return this->emitCastFloatingIntegralAPS(Ctx.getBitWidth(CE->getType()), 335 getFPOptions(CE), CE); 336 337 return this->emitCastFloatingIntegral(*ToT, getFPOptions(CE), CE); 338 } 339 340 case CK_NullToPointer: 341 case CK_NullToMemberPointer: { 342 if (!this->discard(SubExpr)) 343 return false; 344 if (DiscardResult) 345 return true; 346 347 const Descriptor *Desc = nullptr; 348 const QualType PointeeType = CE->getType()->getPointeeType(); 349 if (!PointeeType.isNull()) { 350 if (std::optional<PrimType> T = classify(PointeeType)) 351 Desc = P.createDescriptor(SubExpr, *T); 352 else 353 Desc = P.createDescriptor(SubExpr, PointeeType.getTypePtr(), 354 std::nullopt, true, false, 355 /*IsMutable=*/false, nullptr); 356 } 357 return this->emitNull(classifyPrim(CE->getType()), Desc, CE); 358 } 359 360 case CK_PointerToIntegral: { 361 if (DiscardResult) 362 return this->discard(SubExpr); 363 364 if (!this->visit(SubExpr)) 365 return false; 366 367 // If SubExpr doesn't result in a pointer, make it one. 368 if (PrimType FromT = classifyPrim(SubExpr->getType()); FromT != PT_Ptr) { 369 assert(isPtrType(FromT)); 370 if (!this->emitDecayPtr(FromT, PT_Ptr, CE)) 371 return false; 372 } 373 374 PrimType T = classifyPrim(CE->getType()); 375 if (T == PT_IntAP) 376 return this->emitCastPointerIntegralAP(Ctx.getBitWidth(CE->getType()), 377 CE); 378 if (T == PT_IntAPS) 379 return this->emitCastPointerIntegralAPS(Ctx.getBitWidth(CE->getType()), 380 CE); 381 return this->emitCastPointerIntegral(T, CE); 382 } 383 384 case CK_ArrayToPointerDecay: { 385 if (!this->visit(SubExpr)) 386 return false; 387 if (!this->emitArrayDecay(CE)) 388 return false; 389 if (DiscardResult) 390 return this->emitPopPtr(CE); 391 return true; 392 } 393 394 case CK_IntegralToPointer: { 395 QualType IntType = SubExpr->getType(); 396 assert(IntType->isIntegralOrEnumerationType()); 397 if (!this->visit(SubExpr)) 398 return false; 399 // FIXME: I think the discard is wrong since the int->ptr cast might cause a 400 // diagnostic. 401 PrimType T = classifyPrim(IntType); 402 if (DiscardResult) 403 return this->emitPop(T, CE); 404 405 QualType PtrType = CE->getType(); 406 const Descriptor *Desc; 407 if (std::optional<PrimType> T = classify(PtrType->getPointeeType())) 408 Desc = P.createDescriptor(SubExpr, *T); 409 else if (PtrType->getPointeeType()->isVoidType()) 410 Desc = nullptr; 411 else 412 Desc = P.createDescriptor(CE, PtrType->getPointeeType().getTypePtr(), 413 Descriptor::InlineDescMD, true, false, 414 /*IsMutable=*/false, nullptr); 415 416 if (!this->emitGetIntPtr(T, Desc, CE)) 417 return false; 418 419 PrimType DestPtrT = classifyPrim(PtrType); 420 if (DestPtrT == PT_Ptr) 421 return true; 422 423 // In case we're converting the integer to a non-Pointer. 424 return this->emitDecayPtr(PT_Ptr, DestPtrT, CE); 425 } 426 427 case CK_AtomicToNonAtomic: 428 case CK_ConstructorConversion: 429 case CK_FunctionToPointerDecay: 430 case CK_NonAtomicToAtomic: 431 case CK_NoOp: 432 case CK_UserDefinedConversion: 433 case CK_AddressSpaceConversion: 434 return this->delegate(SubExpr); 435 436 case CK_BitCast: { 437 // Reject bitcasts to atomic types. 438 if (CE->getType()->isAtomicType()) { 439 if (!this->discard(SubExpr)) 440 return false; 441 return this->emitInvalidCast(CastKind::Reinterpret, /*Fatal=*/true, CE); 442 } 443 444 if (DiscardResult) 445 return this->discard(SubExpr); 446 447 QualType SubExprTy = SubExpr->getType(); 448 std::optional<PrimType> FromT = classify(SubExprTy); 449 std::optional<PrimType> ToT = classify(CE->getType()); 450 if (!FromT || !ToT) 451 return false; 452 453 assert(isPtrType(*FromT)); 454 assert(isPtrType(*ToT)); 455 if (FromT == ToT) { 456 if (CE->getType()->isVoidPointerType()) 457 return this->delegate(SubExpr); 458 459 if (!this->visit(SubExpr)) 460 return false; 461 if (FromT == PT_Ptr) 462 return this->emitPtrPtrCast(SubExprTy->isVoidPointerType(), CE); 463 return true; 464 } 465 466 if (!this->visit(SubExpr)) 467 return false; 468 return this->emitDecayPtr(*FromT, *ToT, CE); 469 } 470 471 case CK_IntegralToBoolean: 472 case CK_BooleanToSignedIntegral: 473 case CK_IntegralCast: { 474 if (DiscardResult) 475 return this->discard(SubExpr); 476 std::optional<PrimType> FromT = classify(SubExpr->getType()); 477 std::optional<PrimType> ToT = classify(CE->getType()); 478 479 if (!FromT || !ToT) 480 return false; 481 482 if (!this->visit(SubExpr)) 483 return false; 484 485 // Possibly diagnose casts to enum types if the target type does not 486 // have a fixed size. 487 if (Ctx.getLangOpts().CPlusPlus && CE->getType()->isEnumeralType()) { 488 if (const auto *ET = CE->getType().getCanonicalType()->getAs<EnumType>(); 489 ET && !ET->getDecl()->isFixed()) { 490 if (!this->emitCheckEnumValue(*FromT, ET->getDecl(), CE)) 491 return false; 492 } 493 } 494 495 auto maybeNegate = [&]() -> bool { 496 if (CE->getCastKind() == CK_BooleanToSignedIntegral) 497 return this->emitNeg(*ToT, CE); 498 return true; 499 }; 500 501 if (ToT == PT_IntAP) 502 return this->emitCastAP(*FromT, Ctx.getBitWidth(CE->getType()), CE) && 503 maybeNegate(); 504 if (ToT == PT_IntAPS) 505 return this->emitCastAPS(*FromT, Ctx.getBitWidth(CE->getType()), CE) && 506 maybeNegate(); 507 508 if (FromT == ToT) 509 return true; 510 if (!this->emitCast(*FromT, *ToT, CE)) 511 return false; 512 513 return maybeNegate(); 514 } 515 516 case CK_PointerToBoolean: 517 case CK_MemberPointerToBoolean: { 518 PrimType PtrT = classifyPrim(SubExpr->getType()); 519 520 if (!this->visit(SubExpr)) 521 return false; 522 return this->emitIsNonNull(PtrT, CE); 523 } 524 525 case CK_IntegralComplexToBoolean: 526 case CK_FloatingComplexToBoolean: { 527 if (DiscardResult) 528 return this->discard(SubExpr); 529 if (!this->visit(SubExpr)) 530 return false; 531 return this->emitComplexBoolCast(SubExpr); 532 } 533 534 case CK_IntegralComplexToReal: 535 case CK_FloatingComplexToReal: 536 return this->emitComplexReal(SubExpr); 537 538 case CK_IntegralRealToComplex: 539 case CK_FloatingRealToComplex: { 540 // We're creating a complex value here, so we need to 541 // allocate storage for it. 542 if (!Initializing) { 543 unsigned LocalIndex = allocateTemporary(CE); 544 if (!this->emitGetPtrLocal(LocalIndex, CE)) 545 return false; 546 } 547 548 // Init the complex value to {SubExpr, 0}. 549 if (!this->visitArrayElemInit(0, SubExpr)) 550 return false; 551 // Zero-init the second element. 552 PrimType T = classifyPrim(SubExpr->getType()); 553 if (!this->visitZeroInitializer(T, SubExpr->getType(), SubExpr)) 554 return false; 555 return this->emitInitElem(T, 1, SubExpr); 556 } 557 558 case CK_IntegralComplexCast: 559 case CK_FloatingComplexCast: 560 case CK_IntegralComplexToFloatingComplex: 561 case CK_FloatingComplexToIntegralComplex: { 562 assert(CE->getType()->isAnyComplexType()); 563 assert(SubExpr->getType()->isAnyComplexType()); 564 if (DiscardResult) 565 return this->discard(SubExpr); 566 567 if (!Initializing) { 568 std::optional<unsigned> LocalIndex = allocateLocal(CE); 569 if (!LocalIndex) 570 return false; 571 if (!this->emitGetPtrLocal(*LocalIndex, CE)) 572 return false; 573 } 574 575 // Location for the SubExpr. 576 // Since SubExpr is of complex type, visiting it results in a pointer 577 // anyway, so we just create a temporary pointer variable. 578 unsigned SubExprOffset = allocateLocalPrimitive( 579 SubExpr, PT_Ptr, /*IsConst=*/true, /*IsExtended=*/false); 580 if (!this->visit(SubExpr)) 581 return false; 582 if (!this->emitSetLocal(PT_Ptr, SubExprOffset, CE)) 583 return false; 584 585 PrimType SourceElemT = classifyComplexElementType(SubExpr->getType()); 586 QualType DestElemType = 587 CE->getType()->getAs<ComplexType>()->getElementType(); 588 PrimType DestElemT = classifyPrim(DestElemType); 589 // Cast both elements individually. 590 for (unsigned I = 0; I != 2; ++I) { 591 if (!this->emitGetLocal(PT_Ptr, SubExprOffset, CE)) 592 return false; 593 if (!this->emitArrayElemPop(SourceElemT, I, CE)) 594 return false; 595 596 // Do the cast. 597 if (!this->emitPrimCast(SourceElemT, DestElemT, DestElemType, CE)) 598 return false; 599 600 // Save the value. 601 if (!this->emitInitElem(DestElemT, I, CE)) 602 return false; 603 } 604 return true; 605 } 606 607 case CK_VectorSplat: { 608 assert(!classify(CE->getType())); 609 assert(classify(SubExpr->getType())); 610 assert(CE->getType()->isVectorType()); 611 612 if (DiscardResult) 613 return this->discard(SubExpr); 614 615 if (!Initializing) { 616 std::optional<unsigned> LocalIndex = allocateLocal(CE); 617 if (!LocalIndex) 618 return false; 619 if (!this->emitGetPtrLocal(*LocalIndex, CE)) 620 return false; 621 } 622 623 const auto *VT = CE->getType()->getAs<VectorType>(); 624 PrimType ElemT = classifyPrim(SubExpr->getType()); 625 unsigned ElemOffset = allocateLocalPrimitive( 626 SubExpr, ElemT, /*IsConst=*/true, /*IsExtended=*/false); 627 628 // Prepare a local variable for the scalar value. 629 if (!this->visit(SubExpr)) 630 return false; 631 if (classifyPrim(SubExpr) == PT_Ptr && !this->emitLoadPop(ElemT, CE)) 632 return false; 633 634 if (!this->emitSetLocal(ElemT, ElemOffset, CE)) 635 return false; 636 637 for (unsigned I = 0; I != VT->getNumElements(); ++I) { 638 if (!this->emitGetLocal(ElemT, ElemOffset, CE)) 639 return false; 640 if (!this->emitInitElem(ElemT, I, CE)) 641 return false; 642 } 643 644 return true; 645 } 646 647 case CK_HLSLVectorTruncation: { 648 assert(SubExpr->getType()->isVectorType()); 649 if (std::optional<PrimType> ResultT = classify(CE)) { 650 assert(!DiscardResult); 651 // Result must be either a float or integer. Take the first element. 652 if (!this->visit(SubExpr)) 653 return false; 654 return this->emitArrayElemPop(*ResultT, 0, CE); 655 } 656 // Otherwise, this truncates from one vector type to another. 657 assert(CE->getType()->isVectorType()); 658 659 if (!Initializing) { 660 unsigned LocalIndex = allocateTemporary(CE); 661 if (!this->emitGetPtrLocal(LocalIndex, CE)) 662 return false; 663 } 664 unsigned ToSize = CE->getType()->getAs<VectorType>()->getNumElements(); 665 assert(SubExpr->getType()->getAs<VectorType>()->getNumElements() > ToSize); 666 if (!this->visit(SubExpr)) 667 return false; 668 return this->emitCopyArray(classifyVectorElementType(CE->getType()), 0, 0, 669 ToSize, CE); 670 }; 671 672 case CK_ToVoid: 673 return discard(SubExpr); 674 675 default: 676 return this->emitInvalid(CE); 677 } 678 llvm_unreachable("Unhandled clang::CastKind enum"); 679 } 680 681 template <class Emitter> 682 bool Compiler<Emitter>::VisitIntegerLiteral(const IntegerLiteral *LE) { 683 if (DiscardResult) 684 return true; 685 686 return this->emitConst(LE->getValue(), LE); 687 } 688 689 template <class Emitter> 690 bool Compiler<Emitter>::VisitFloatingLiteral(const FloatingLiteral *E) { 691 if (DiscardResult) 692 return true; 693 694 return this->emitConstFloat(E->getValue(), E); 695 } 696 697 template <class Emitter> 698 bool Compiler<Emitter>::VisitImaginaryLiteral(const ImaginaryLiteral *E) { 699 assert(E->getType()->isAnyComplexType()); 700 if (DiscardResult) 701 return true; 702 703 if (!Initializing) { 704 unsigned LocalIndex = allocateTemporary(E); 705 if (!this->emitGetPtrLocal(LocalIndex, E)) 706 return false; 707 } 708 709 const Expr *SubExpr = E->getSubExpr(); 710 PrimType SubExprT = classifyPrim(SubExpr->getType()); 711 712 if (!this->visitZeroInitializer(SubExprT, SubExpr->getType(), SubExpr)) 713 return false; 714 if (!this->emitInitElem(SubExprT, 0, SubExpr)) 715 return false; 716 return this->visitArrayElemInit(1, SubExpr); 717 } 718 719 template <class Emitter> 720 bool Compiler<Emitter>::VisitParenExpr(const ParenExpr *E) { 721 return this->delegate(E->getSubExpr()); 722 } 723 724 template <class Emitter> 725 bool Compiler<Emitter>::VisitBinaryOperator(const BinaryOperator *BO) { 726 // Need short-circuiting for these. 727 if (BO->getType()->isVectorType()) 728 return this->VisitVectorBinOp(BO); 729 if (BO->isLogicalOp()) 730 return this->VisitLogicalBinOp(BO); 731 732 const Expr *LHS = BO->getLHS(); 733 const Expr *RHS = BO->getRHS(); 734 735 // Handle comma operators. Just discard the LHS 736 // and delegate to RHS. 737 if (BO->isCommaOp()) { 738 if (!this->discard(LHS)) 739 return false; 740 if (RHS->getType()->isVoidType()) 741 return this->discard(RHS); 742 743 return this->delegate(RHS); 744 } 745 746 if (BO->getType()->isAnyComplexType()) 747 return this->VisitComplexBinOp(BO); 748 if ((LHS->getType()->isAnyComplexType() || 749 RHS->getType()->isAnyComplexType()) && 750 BO->isComparisonOp()) 751 return this->emitComplexComparison(LHS, RHS, BO); 752 753 if (BO->isPtrMemOp()) { 754 if (!this->visit(LHS)) 755 return false; 756 757 if (!this->visit(RHS)) 758 return false; 759 760 if (!this->emitToMemberPtr(BO)) 761 return false; 762 763 if (classifyPrim(BO) == PT_MemberPtr) 764 return true; 765 766 if (!this->emitCastMemberPtrPtr(BO)) 767 return false; 768 return DiscardResult ? this->emitPopPtr(BO) : true; 769 } 770 771 // Typecheck the args. 772 std::optional<PrimType> LT = classify(LHS); 773 std::optional<PrimType> RT = classify(RHS); 774 std::optional<PrimType> T = classify(BO->getType()); 775 776 // Special case for C++'s three-way/spaceship operator <=>, which 777 // returns a std::{strong,weak,partial}_ordering (which is a class, so doesn't 778 // have a PrimType). 779 if (!T && BO->getOpcode() == BO_Cmp) { 780 if (DiscardResult) 781 return true; 782 const ComparisonCategoryInfo *CmpInfo = 783 Ctx.getASTContext().CompCategories.lookupInfoForType(BO->getType()); 784 assert(CmpInfo); 785 786 // We need a temporary variable holding our return value. 787 if (!Initializing) { 788 std::optional<unsigned> ResultIndex = this->allocateLocal(BO); 789 if (!this->emitGetPtrLocal(*ResultIndex, BO)) 790 return false; 791 } 792 793 if (!visit(LHS) || !visit(RHS)) 794 return false; 795 796 return this->emitCMP3(*LT, CmpInfo, BO); 797 } 798 799 if (!LT || !RT || !T) 800 return false; 801 802 // Pointer arithmetic special case. 803 if (BO->getOpcode() == BO_Add || BO->getOpcode() == BO_Sub) { 804 if (isPtrType(*T) || (isPtrType(*LT) && isPtrType(*RT))) 805 return this->VisitPointerArithBinOp(BO); 806 } 807 808 // Assignmentes require us to evalute the RHS first. 809 if (BO->getOpcode() == BO_Assign) { 810 if (!visit(RHS) || !visit(LHS)) 811 return false; 812 if (!this->emitFlip(*LT, *RT, BO)) 813 return false; 814 } else { 815 if (!visit(LHS) || !visit(RHS)) 816 return false; 817 } 818 819 // For languages such as C, cast the result of one 820 // of our comparision opcodes to T (which is usually int). 821 auto MaybeCastToBool = [this, T, BO](bool Result) { 822 if (!Result) 823 return false; 824 if (DiscardResult) 825 return this->emitPop(*T, BO); 826 if (T != PT_Bool) 827 return this->emitCast(PT_Bool, *T, BO); 828 return true; 829 }; 830 831 auto Discard = [this, T, BO](bool Result) { 832 if (!Result) 833 return false; 834 return DiscardResult ? this->emitPop(*T, BO) : true; 835 }; 836 837 switch (BO->getOpcode()) { 838 case BO_EQ: 839 return MaybeCastToBool(this->emitEQ(*LT, BO)); 840 case BO_NE: 841 return MaybeCastToBool(this->emitNE(*LT, BO)); 842 case BO_LT: 843 return MaybeCastToBool(this->emitLT(*LT, BO)); 844 case BO_LE: 845 return MaybeCastToBool(this->emitLE(*LT, BO)); 846 case BO_GT: 847 return MaybeCastToBool(this->emitGT(*LT, BO)); 848 case BO_GE: 849 return MaybeCastToBool(this->emitGE(*LT, BO)); 850 case BO_Sub: 851 if (BO->getType()->isFloatingType()) 852 return Discard(this->emitSubf(getFPOptions(BO), BO)); 853 return Discard(this->emitSub(*T, BO)); 854 case BO_Add: 855 if (BO->getType()->isFloatingType()) 856 return Discard(this->emitAddf(getFPOptions(BO), BO)); 857 return Discard(this->emitAdd(*T, BO)); 858 case BO_Mul: 859 if (BO->getType()->isFloatingType()) 860 return Discard(this->emitMulf(getFPOptions(BO), BO)); 861 return Discard(this->emitMul(*T, BO)); 862 case BO_Rem: 863 return Discard(this->emitRem(*T, BO)); 864 case BO_Div: 865 if (BO->getType()->isFloatingType()) 866 return Discard(this->emitDivf(getFPOptions(BO), BO)); 867 return Discard(this->emitDiv(*T, BO)); 868 case BO_Assign: 869 if (DiscardResult) 870 return LHS->refersToBitField() ? this->emitStoreBitFieldPop(*T, BO) 871 : this->emitStorePop(*T, BO); 872 if (LHS->refersToBitField()) { 873 if (!this->emitStoreBitField(*T, BO)) 874 return false; 875 } else { 876 if (!this->emitStore(*T, BO)) 877 return false; 878 } 879 // Assignments aren't necessarily lvalues in C. 880 // Load from them in that case. 881 if (!BO->isLValue()) 882 return this->emitLoadPop(*T, BO); 883 return true; 884 case BO_And: 885 return Discard(this->emitBitAnd(*T, BO)); 886 case BO_Or: 887 return Discard(this->emitBitOr(*T, BO)); 888 case BO_Shl: 889 return Discard(this->emitShl(*LT, *RT, BO)); 890 case BO_Shr: 891 return Discard(this->emitShr(*LT, *RT, BO)); 892 case BO_Xor: 893 return Discard(this->emitBitXor(*T, BO)); 894 case BO_LOr: 895 case BO_LAnd: 896 llvm_unreachable("Already handled earlier"); 897 default: 898 return false; 899 } 900 901 llvm_unreachable("Unhandled binary op"); 902 } 903 904 /// Perform addition/subtraction of a pointer and an integer or 905 /// subtraction of two pointers. 906 template <class Emitter> 907 bool Compiler<Emitter>::VisitPointerArithBinOp(const BinaryOperator *E) { 908 BinaryOperatorKind Op = E->getOpcode(); 909 const Expr *LHS = E->getLHS(); 910 const Expr *RHS = E->getRHS(); 911 912 if ((Op != BO_Add && Op != BO_Sub) || 913 (!LHS->getType()->isPointerType() && !RHS->getType()->isPointerType())) 914 return false; 915 916 std::optional<PrimType> LT = classify(LHS); 917 std::optional<PrimType> RT = classify(RHS); 918 919 if (!LT || !RT) 920 return false; 921 922 // Visit the given pointer expression and optionally convert to a PT_Ptr. 923 auto visitAsPointer = [&](const Expr *E, PrimType T) -> bool { 924 if (!this->visit(E)) 925 return false; 926 if (T != PT_Ptr) 927 return this->emitDecayPtr(T, PT_Ptr, E); 928 return true; 929 }; 930 931 if (LHS->getType()->isPointerType() && RHS->getType()->isPointerType()) { 932 if (Op != BO_Sub) 933 return false; 934 935 assert(E->getType()->isIntegerType()); 936 if (!visitAsPointer(RHS, *RT) || !visitAsPointer(LHS, *LT)) 937 return false; 938 939 return this->emitSubPtr(classifyPrim(E->getType()), E); 940 } 941 942 PrimType OffsetType; 943 if (LHS->getType()->isIntegerType()) { 944 if (!visitAsPointer(RHS, *RT)) 945 return false; 946 if (!this->visit(LHS)) 947 return false; 948 OffsetType = *LT; 949 } else if (RHS->getType()->isIntegerType()) { 950 if (!visitAsPointer(LHS, *LT)) 951 return false; 952 if (!this->visit(RHS)) 953 return false; 954 OffsetType = *RT; 955 } else { 956 return false; 957 } 958 959 // Do the operation and optionally transform to 960 // result pointer type. 961 if (Op == BO_Add) { 962 if (!this->emitAddOffset(OffsetType, E)) 963 return false; 964 965 if (classifyPrim(E) != PT_Ptr) 966 return this->emitDecayPtr(PT_Ptr, classifyPrim(E), E); 967 return true; 968 } else if (Op == BO_Sub) { 969 if (!this->emitSubOffset(OffsetType, E)) 970 return false; 971 972 if (classifyPrim(E) != PT_Ptr) 973 return this->emitDecayPtr(PT_Ptr, classifyPrim(E), E); 974 return true; 975 } 976 977 return false; 978 } 979 980 template <class Emitter> 981 bool Compiler<Emitter>::VisitLogicalBinOp(const BinaryOperator *E) { 982 assert(E->isLogicalOp()); 983 BinaryOperatorKind Op = E->getOpcode(); 984 const Expr *LHS = E->getLHS(); 985 const Expr *RHS = E->getRHS(); 986 std::optional<PrimType> T = classify(E->getType()); 987 988 if (Op == BO_LOr) { 989 // Logical OR. Visit LHS and only evaluate RHS if LHS was FALSE. 990 LabelTy LabelTrue = this->getLabel(); 991 LabelTy LabelEnd = this->getLabel(); 992 993 if (!this->visitBool(LHS)) 994 return false; 995 if (!this->jumpTrue(LabelTrue)) 996 return false; 997 998 if (!this->visitBool(RHS)) 999 return false; 1000 if (!this->jump(LabelEnd)) 1001 return false; 1002 1003 this->emitLabel(LabelTrue); 1004 this->emitConstBool(true, E); 1005 this->fallthrough(LabelEnd); 1006 this->emitLabel(LabelEnd); 1007 1008 } else { 1009 assert(Op == BO_LAnd); 1010 // Logical AND. 1011 // Visit LHS. Only visit RHS if LHS was TRUE. 1012 LabelTy LabelFalse = this->getLabel(); 1013 LabelTy LabelEnd = this->getLabel(); 1014 1015 if (!this->visitBool(LHS)) 1016 return false; 1017 if (!this->jumpFalse(LabelFalse)) 1018 return false; 1019 1020 if (!this->visitBool(RHS)) 1021 return false; 1022 if (!this->jump(LabelEnd)) 1023 return false; 1024 1025 this->emitLabel(LabelFalse); 1026 this->emitConstBool(false, E); 1027 this->fallthrough(LabelEnd); 1028 this->emitLabel(LabelEnd); 1029 } 1030 1031 if (DiscardResult) 1032 return this->emitPopBool(E); 1033 1034 // For C, cast back to integer type. 1035 assert(T); 1036 if (T != PT_Bool) 1037 return this->emitCast(PT_Bool, *T, E); 1038 return true; 1039 } 1040 1041 template <class Emitter> 1042 bool Compiler<Emitter>::VisitComplexBinOp(const BinaryOperator *E) { 1043 // Prepare storage for result. 1044 if (!Initializing) { 1045 unsigned LocalIndex = allocateTemporary(E); 1046 if (!this->emitGetPtrLocal(LocalIndex, E)) 1047 return false; 1048 } 1049 1050 // Both LHS and RHS might _not_ be of complex type, but one of them 1051 // needs to be. 1052 const Expr *LHS = E->getLHS(); 1053 const Expr *RHS = E->getRHS(); 1054 1055 PrimType ResultElemT = this->classifyComplexElementType(E->getType()); 1056 unsigned ResultOffset = ~0u; 1057 if (!DiscardResult) 1058 ResultOffset = this->allocateLocalPrimitive(E, PT_Ptr, true, false); 1059 1060 // Save result pointer in ResultOffset 1061 if (!this->DiscardResult) { 1062 if (!this->emitDupPtr(E)) 1063 return false; 1064 if (!this->emitSetLocal(PT_Ptr, ResultOffset, E)) 1065 return false; 1066 } 1067 QualType LHSType = LHS->getType(); 1068 if (const auto *AT = LHSType->getAs<AtomicType>()) 1069 LHSType = AT->getValueType(); 1070 QualType RHSType = RHS->getType(); 1071 if (const auto *AT = RHSType->getAs<AtomicType>()) 1072 RHSType = AT->getValueType(); 1073 1074 bool LHSIsComplex = LHSType->isAnyComplexType(); 1075 unsigned LHSOffset; 1076 bool RHSIsComplex = RHSType->isAnyComplexType(); 1077 1078 // For ComplexComplex Mul, we have special ops to make their implementation 1079 // easier. 1080 BinaryOperatorKind Op = E->getOpcode(); 1081 if (Op == BO_Mul && LHSIsComplex && RHSIsComplex) { 1082 assert(classifyPrim(LHSType->getAs<ComplexType>()->getElementType()) == 1083 classifyPrim(RHSType->getAs<ComplexType>()->getElementType())); 1084 PrimType ElemT = 1085 classifyPrim(LHSType->getAs<ComplexType>()->getElementType()); 1086 if (!this->visit(LHS)) 1087 return false; 1088 if (!this->visit(RHS)) 1089 return false; 1090 return this->emitMulc(ElemT, E); 1091 } 1092 1093 if (Op == BO_Div && RHSIsComplex) { 1094 QualType ElemQT = RHSType->getAs<ComplexType>()->getElementType(); 1095 PrimType ElemT = classifyPrim(ElemQT); 1096 // If the LHS is not complex, we still need to do the full complex 1097 // division, so just stub create a complex value and stub it out with 1098 // the LHS and a zero. 1099 1100 if (!LHSIsComplex) { 1101 // This is using the RHS type for the fake-complex LHS. 1102 LHSOffset = allocateTemporary(RHS); 1103 1104 if (!this->emitGetPtrLocal(LHSOffset, E)) 1105 return false; 1106 1107 if (!this->visit(LHS)) 1108 return false; 1109 // real is LHS 1110 if (!this->emitInitElem(ElemT, 0, E)) 1111 return false; 1112 // imag is zero 1113 if (!this->visitZeroInitializer(ElemT, ElemQT, E)) 1114 return false; 1115 if (!this->emitInitElem(ElemT, 1, E)) 1116 return false; 1117 } else { 1118 if (!this->visit(LHS)) 1119 return false; 1120 } 1121 1122 if (!this->visit(RHS)) 1123 return false; 1124 return this->emitDivc(ElemT, E); 1125 } 1126 1127 // Evaluate LHS and save value to LHSOffset. 1128 if (LHSType->isAnyComplexType()) { 1129 LHSOffset = this->allocateLocalPrimitive(LHS, PT_Ptr, true, false); 1130 if (!this->visit(LHS)) 1131 return false; 1132 if (!this->emitSetLocal(PT_Ptr, LHSOffset, E)) 1133 return false; 1134 } else { 1135 PrimType LHST = classifyPrim(LHSType); 1136 LHSOffset = this->allocateLocalPrimitive(LHS, LHST, true, false); 1137 if (!this->visit(LHS)) 1138 return false; 1139 if (!this->emitSetLocal(LHST, LHSOffset, E)) 1140 return false; 1141 } 1142 1143 // Same with RHS. 1144 unsigned RHSOffset; 1145 if (RHSType->isAnyComplexType()) { 1146 RHSOffset = this->allocateLocalPrimitive(RHS, PT_Ptr, true, false); 1147 if (!this->visit(RHS)) 1148 return false; 1149 if (!this->emitSetLocal(PT_Ptr, RHSOffset, E)) 1150 return false; 1151 } else { 1152 PrimType RHST = classifyPrim(RHSType); 1153 RHSOffset = this->allocateLocalPrimitive(RHS, RHST, true, false); 1154 if (!this->visit(RHS)) 1155 return false; 1156 if (!this->emitSetLocal(RHST, RHSOffset, E)) 1157 return false; 1158 } 1159 1160 // For both LHS and RHS, either load the value from the complex pointer, or 1161 // directly from the local variable. For index 1 (i.e. the imaginary part), 1162 // just load 0 and do the operation anyway. 1163 auto loadComplexValue = [this](bool IsComplex, bool LoadZero, 1164 unsigned ElemIndex, unsigned Offset, 1165 const Expr *E) -> bool { 1166 if (IsComplex) { 1167 if (!this->emitGetLocal(PT_Ptr, Offset, E)) 1168 return false; 1169 return this->emitArrayElemPop(classifyComplexElementType(E->getType()), 1170 ElemIndex, E); 1171 } 1172 if (ElemIndex == 0 || !LoadZero) 1173 return this->emitGetLocal(classifyPrim(E->getType()), Offset, E); 1174 return this->visitZeroInitializer(classifyPrim(E->getType()), E->getType(), 1175 E); 1176 }; 1177 1178 // Now we can get pointers to the LHS and RHS from the offsets above. 1179 for (unsigned ElemIndex = 0; ElemIndex != 2; ++ElemIndex) { 1180 // Result pointer for the store later. 1181 if (!this->DiscardResult) { 1182 if (!this->emitGetLocal(PT_Ptr, ResultOffset, E)) 1183 return false; 1184 } 1185 1186 // The actual operation. 1187 switch (Op) { 1188 case BO_Add: 1189 if (!loadComplexValue(LHSIsComplex, true, ElemIndex, LHSOffset, LHS)) 1190 return false; 1191 1192 if (!loadComplexValue(RHSIsComplex, true, ElemIndex, RHSOffset, RHS)) 1193 return false; 1194 if (ResultElemT == PT_Float) { 1195 if (!this->emitAddf(getFPOptions(E), E)) 1196 return false; 1197 } else { 1198 if (!this->emitAdd(ResultElemT, E)) 1199 return false; 1200 } 1201 break; 1202 case BO_Sub: 1203 if (!loadComplexValue(LHSIsComplex, true, ElemIndex, LHSOffset, LHS)) 1204 return false; 1205 1206 if (!loadComplexValue(RHSIsComplex, true, ElemIndex, RHSOffset, RHS)) 1207 return false; 1208 if (ResultElemT == PT_Float) { 1209 if (!this->emitSubf(getFPOptions(E), E)) 1210 return false; 1211 } else { 1212 if (!this->emitSub(ResultElemT, E)) 1213 return false; 1214 } 1215 break; 1216 case BO_Mul: 1217 if (!loadComplexValue(LHSIsComplex, false, ElemIndex, LHSOffset, LHS)) 1218 return false; 1219 1220 if (!loadComplexValue(RHSIsComplex, false, ElemIndex, RHSOffset, RHS)) 1221 return false; 1222 1223 if (ResultElemT == PT_Float) { 1224 if (!this->emitMulf(getFPOptions(E), E)) 1225 return false; 1226 } else { 1227 if (!this->emitMul(ResultElemT, E)) 1228 return false; 1229 } 1230 break; 1231 case BO_Div: 1232 assert(!RHSIsComplex); 1233 if (!loadComplexValue(LHSIsComplex, false, ElemIndex, LHSOffset, LHS)) 1234 return false; 1235 1236 if (!loadComplexValue(RHSIsComplex, false, ElemIndex, RHSOffset, RHS)) 1237 return false; 1238 1239 if (ResultElemT == PT_Float) { 1240 if (!this->emitDivf(getFPOptions(E), E)) 1241 return false; 1242 } else { 1243 if (!this->emitDiv(ResultElemT, E)) 1244 return false; 1245 } 1246 break; 1247 1248 default: 1249 return false; 1250 } 1251 1252 if (!this->DiscardResult) { 1253 // Initialize array element with the value we just computed. 1254 if (!this->emitInitElemPop(ResultElemT, ElemIndex, E)) 1255 return false; 1256 } else { 1257 if (!this->emitPop(ResultElemT, E)) 1258 return false; 1259 } 1260 } 1261 return true; 1262 } 1263 1264 template <class Emitter> 1265 bool Compiler<Emitter>::VisitVectorBinOp(const BinaryOperator *E) { 1266 assert(E->getType()->isVectorType()); 1267 assert(E->getLHS()->getType()->isVectorType()); 1268 assert(E->getRHS()->getType()->isVectorType()); 1269 1270 // Prepare storage for result. 1271 if (!Initializing && !E->isCompoundAssignmentOp()) { 1272 unsigned LocalIndex = allocateTemporary(E); 1273 if (!this->emitGetPtrLocal(LocalIndex, E)) 1274 return false; 1275 } 1276 1277 const Expr *LHS = E->getLHS(); 1278 const Expr *RHS = E->getRHS(); 1279 const auto *VecTy = E->getType()->getAs<VectorType>(); 1280 auto Op = E->isCompoundAssignmentOp() 1281 ? BinaryOperator::getOpForCompoundAssignment(E->getOpcode()) 1282 : E->getOpcode(); 1283 1284 // The LHS and RHS of a comparison operator must have the same type. So we 1285 // just use LHS vector element type here. 1286 PrimType ElemT = this->classifyVectorElementType(LHS->getType()); 1287 PrimType ResultElemT = this->classifyVectorElementType(E->getType()); 1288 1289 // Evaluate LHS and save value to LHSOffset. 1290 unsigned LHSOffset = this->allocateLocalPrimitive(LHS, PT_Ptr, true, false); 1291 if (!this->visit(LHS)) 1292 return false; 1293 if (!this->emitSetLocal(PT_Ptr, LHSOffset, E)) 1294 return false; 1295 1296 // Evaluate RHS and save value to RHSOffset. 1297 unsigned RHSOffset = this->allocateLocalPrimitive(RHS, PT_Ptr, true, false); 1298 if (!this->visit(RHS)) 1299 return false; 1300 if (!this->emitSetLocal(PT_Ptr, RHSOffset, E)) 1301 return false; 1302 1303 if (E->isCompoundAssignmentOp() && !this->emitGetLocal(PT_Ptr, LHSOffset, E)) 1304 return false; 1305 1306 // BitAdd/BitOr/BitXor/Shl/Shr doesn't support bool type, we need perform the 1307 // integer promotion. 1308 bool NeedIntPromot = ElemT == PT_Bool && (E->isBitwiseOp() || E->isShiftOp()); 1309 QualType PromotTy = 1310 Ctx.getASTContext().getPromotedIntegerType(Ctx.getASTContext().BoolTy); 1311 PrimType PromotT = classifyPrim(PromotTy); 1312 PrimType OpT = NeedIntPromot ? PromotT : ElemT; 1313 1314 auto getElem = [=](unsigned Offset, unsigned Index) { 1315 if (!this->emitGetLocal(PT_Ptr, Offset, E)) 1316 return false; 1317 if (!this->emitArrayElemPop(ElemT, Index, E)) 1318 return false; 1319 if (E->isLogicalOp()) { 1320 if (!this->emitPrimCast(ElemT, PT_Bool, Ctx.getASTContext().BoolTy, E)) 1321 return false; 1322 if (!this->emitPrimCast(PT_Bool, ResultElemT, VecTy->getElementType(), E)) 1323 return false; 1324 } else if (NeedIntPromot) { 1325 if (!this->emitPrimCast(ElemT, PromotT, PromotTy, E)) 1326 return false; 1327 } 1328 return true; 1329 }; 1330 1331 #define EMIT_ARITH_OP(OP) \ 1332 { \ 1333 if (ElemT == PT_Float) { \ 1334 if (!this->emit##OP##f(getFPOptions(E), E)) \ 1335 return false; \ 1336 } else { \ 1337 if (!this->emit##OP(ElemT, E)) \ 1338 return false; \ 1339 } \ 1340 break; \ 1341 } 1342 1343 for (unsigned I = 0; I != VecTy->getNumElements(); ++I) { 1344 if (!getElem(LHSOffset, I)) 1345 return false; 1346 if (!getElem(RHSOffset, I)) 1347 return false; 1348 switch (Op) { 1349 case BO_Add: 1350 EMIT_ARITH_OP(Add) 1351 case BO_Sub: 1352 EMIT_ARITH_OP(Sub) 1353 case BO_Mul: 1354 EMIT_ARITH_OP(Mul) 1355 case BO_Div: 1356 EMIT_ARITH_OP(Div) 1357 case BO_Rem: 1358 if (!this->emitRem(ElemT, E)) 1359 return false; 1360 break; 1361 case BO_And: 1362 if (!this->emitBitAnd(OpT, E)) 1363 return false; 1364 break; 1365 case BO_Or: 1366 if (!this->emitBitOr(OpT, E)) 1367 return false; 1368 break; 1369 case BO_Xor: 1370 if (!this->emitBitXor(OpT, E)) 1371 return false; 1372 break; 1373 case BO_Shl: 1374 if (!this->emitShl(OpT, ElemT, E)) 1375 return false; 1376 break; 1377 case BO_Shr: 1378 if (!this->emitShr(OpT, ElemT, E)) 1379 return false; 1380 break; 1381 case BO_EQ: 1382 if (!this->emitEQ(ElemT, E)) 1383 return false; 1384 break; 1385 case BO_NE: 1386 if (!this->emitNE(ElemT, E)) 1387 return false; 1388 break; 1389 case BO_LE: 1390 if (!this->emitLE(ElemT, E)) 1391 return false; 1392 break; 1393 case BO_LT: 1394 if (!this->emitLT(ElemT, E)) 1395 return false; 1396 break; 1397 case BO_GE: 1398 if (!this->emitGE(ElemT, E)) 1399 return false; 1400 break; 1401 case BO_GT: 1402 if (!this->emitGT(ElemT, E)) 1403 return false; 1404 break; 1405 case BO_LAnd: 1406 // a && b is equivalent to a!=0 & b!=0 1407 if (!this->emitBitAnd(ResultElemT, E)) 1408 return false; 1409 break; 1410 case BO_LOr: 1411 // a || b is equivalent to a!=0 | b!=0 1412 if (!this->emitBitOr(ResultElemT, E)) 1413 return false; 1414 break; 1415 default: 1416 return this->emitInvalid(E); 1417 } 1418 1419 // The result of the comparison is a vector of the same width and number 1420 // of elements as the comparison operands with a signed integral element 1421 // type. 1422 // 1423 // https://gcc.gnu.org/onlinedocs/gcc/Vector-Extensions.html 1424 if (E->isComparisonOp()) { 1425 if (!this->emitPrimCast(PT_Bool, ResultElemT, VecTy->getElementType(), E)) 1426 return false; 1427 if (!this->emitNeg(ResultElemT, E)) 1428 return false; 1429 } 1430 1431 // If we performed an integer promotion, we need to cast the compute result 1432 // into result vector element type. 1433 if (NeedIntPromot && 1434 !this->emitPrimCast(PromotT, ResultElemT, VecTy->getElementType(), E)) 1435 return false; 1436 1437 // Initialize array element with the value we just computed. 1438 if (!this->emitInitElem(ResultElemT, I, E)) 1439 return false; 1440 } 1441 1442 if (DiscardResult && E->isCompoundAssignmentOp() && !this->emitPopPtr(E)) 1443 return false; 1444 return true; 1445 } 1446 1447 template <class Emitter> 1448 bool Compiler<Emitter>::VisitImplicitValueInitExpr( 1449 const ImplicitValueInitExpr *E) { 1450 QualType QT = E->getType(); 1451 1452 if (std::optional<PrimType> T = classify(QT)) 1453 return this->visitZeroInitializer(*T, QT, E); 1454 1455 if (QT->isRecordType()) { 1456 const RecordDecl *RD = QT->getAsRecordDecl(); 1457 assert(RD); 1458 if (RD->isInvalidDecl()) 1459 return false; 1460 1461 if (const auto *CXXRD = dyn_cast<CXXRecordDecl>(RD); 1462 CXXRD && CXXRD->getNumVBases() > 0) { 1463 // TODO: Diagnose. 1464 return false; 1465 } 1466 1467 const Record *R = getRecord(QT); 1468 if (!R) 1469 return false; 1470 1471 assert(Initializing); 1472 return this->visitZeroRecordInitializer(R, E); 1473 } 1474 1475 if (QT->isIncompleteArrayType()) 1476 return true; 1477 1478 if (QT->isArrayType()) { 1479 const ArrayType *AT = QT->getAsArrayTypeUnsafe(); 1480 assert(AT); 1481 const auto *CAT = cast<ConstantArrayType>(AT); 1482 size_t NumElems = CAT->getZExtSize(); 1483 PrimType ElemT = classifyPrim(CAT->getElementType()); 1484 1485 for (size_t I = 0; I != NumElems; ++I) { 1486 if (!this->visitZeroInitializer(ElemT, CAT->getElementType(), E)) 1487 return false; 1488 if (!this->emitInitElem(ElemT, I, E)) 1489 return false; 1490 } 1491 1492 return true; 1493 } 1494 1495 if (const auto *ComplexTy = E->getType()->getAs<ComplexType>()) { 1496 assert(Initializing); 1497 QualType ElemQT = ComplexTy->getElementType(); 1498 PrimType ElemT = classifyPrim(ElemQT); 1499 for (unsigned I = 0; I < 2; ++I) { 1500 if (!this->visitZeroInitializer(ElemT, ElemQT, E)) 1501 return false; 1502 if (!this->emitInitElem(ElemT, I, E)) 1503 return false; 1504 } 1505 return true; 1506 } 1507 1508 if (const auto *VecT = E->getType()->getAs<VectorType>()) { 1509 unsigned NumVecElements = VecT->getNumElements(); 1510 QualType ElemQT = VecT->getElementType(); 1511 PrimType ElemT = classifyPrim(ElemQT); 1512 1513 for (unsigned I = 0; I < NumVecElements; ++I) { 1514 if (!this->visitZeroInitializer(ElemT, ElemQT, E)) 1515 return false; 1516 if (!this->emitInitElem(ElemT, I, E)) 1517 return false; 1518 } 1519 return true; 1520 } 1521 1522 return false; 1523 } 1524 1525 template <class Emitter> 1526 bool Compiler<Emitter>::VisitArraySubscriptExpr(const ArraySubscriptExpr *E) { 1527 const Expr *LHS = E->getLHS(); 1528 const Expr *RHS = E->getRHS(); 1529 const Expr *Index = E->getIdx(); 1530 1531 if (DiscardResult) 1532 return this->discard(LHS) && this->discard(RHS); 1533 1534 // C++17's rules require us to evaluate the LHS first, regardless of which 1535 // side is the base. 1536 bool Success = true; 1537 for (const Expr *SubExpr : {LHS, RHS}) { 1538 if (!this->visit(SubExpr)) 1539 Success = false; 1540 } 1541 1542 if (!Success) 1543 return false; 1544 1545 PrimType IndexT = classifyPrim(Index->getType()); 1546 // If the index is first, we need to change that. 1547 if (LHS == Index) { 1548 if (!this->emitFlip(PT_Ptr, IndexT, E)) 1549 return false; 1550 } 1551 1552 return this->emitArrayElemPtrPop(IndexT, E); 1553 } 1554 1555 template <class Emitter> 1556 bool Compiler<Emitter>::visitInitList(ArrayRef<const Expr *> Inits, 1557 const Expr *ArrayFiller, const Expr *E) { 1558 QualType QT = E->getType(); 1559 if (const auto *AT = QT->getAs<AtomicType>()) 1560 QT = AT->getValueType(); 1561 1562 if (QT->isVoidType()) { 1563 if (Inits.size() == 0) 1564 return true; 1565 return this->emitInvalid(E); 1566 } 1567 1568 // Handle discarding first. 1569 if (DiscardResult) { 1570 for (const Expr *Init : Inits) { 1571 if (!this->discard(Init)) 1572 return false; 1573 } 1574 return true; 1575 } 1576 1577 // Primitive values. 1578 if (std::optional<PrimType> T = classify(QT)) { 1579 assert(!DiscardResult); 1580 if (Inits.size() == 0) 1581 return this->visitZeroInitializer(*T, QT, E); 1582 assert(Inits.size() == 1); 1583 return this->delegate(Inits[0]); 1584 } 1585 1586 if (QT->isRecordType()) { 1587 const Record *R = getRecord(QT); 1588 1589 if (Inits.size() == 1 && E->getType() == Inits[0]->getType()) 1590 return this->delegate(Inits[0]); 1591 1592 auto initPrimitiveField = [=](const Record::Field *FieldToInit, 1593 const Expr *Init, PrimType T) -> bool { 1594 InitStackScope<Emitter> ISS(this, isa<CXXDefaultInitExpr>(Init)); 1595 if (!this->visit(Init)) 1596 return false; 1597 1598 if (FieldToInit->isBitField()) 1599 return this->emitInitBitField(T, FieldToInit, E); 1600 return this->emitInitField(T, FieldToInit->Offset, E); 1601 }; 1602 1603 auto initCompositeField = [=](const Record::Field *FieldToInit, 1604 const Expr *Init) -> bool { 1605 InitStackScope<Emitter> ISS(this, isa<CXXDefaultInitExpr>(Init)); 1606 InitLinkScope<Emitter> ILS(this, InitLink::Field(FieldToInit->Offset)); 1607 // Non-primitive case. Get a pointer to the field-to-initialize 1608 // on the stack and recurse into visitInitializer(). 1609 if (!this->emitGetPtrField(FieldToInit->Offset, Init)) 1610 return false; 1611 if (!this->visitInitializer(Init)) 1612 return false; 1613 return this->emitPopPtr(E); 1614 }; 1615 1616 if (R->isUnion()) { 1617 if (Inits.size() == 0) { 1618 if (!this->visitZeroRecordInitializer(R, E)) 1619 return false; 1620 } else { 1621 const Expr *Init = Inits[0]; 1622 const FieldDecl *FToInit = nullptr; 1623 if (const auto *ILE = dyn_cast<InitListExpr>(E)) 1624 FToInit = ILE->getInitializedFieldInUnion(); 1625 else 1626 FToInit = cast<CXXParenListInitExpr>(E)->getInitializedFieldInUnion(); 1627 1628 const Record::Field *FieldToInit = R->getField(FToInit); 1629 if (std::optional<PrimType> T = classify(Init)) { 1630 if (!initPrimitiveField(FieldToInit, Init, *T)) 1631 return false; 1632 } else { 1633 if (!initCompositeField(FieldToInit, Init)) 1634 return false; 1635 } 1636 } 1637 return this->emitFinishInit(E); 1638 } 1639 1640 assert(!R->isUnion()); 1641 unsigned InitIndex = 0; 1642 for (const Expr *Init : Inits) { 1643 // Skip unnamed bitfields. 1644 while (InitIndex < R->getNumFields() && 1645 R->getField(InitIndex)->Decl->isUnnamedBitField()) 1646 ++InitIndex; 1647 1648 if (std::optional<PrimType> T = classify(Init)) { 1649 const Record::Field *FieldToInit = R->getField(InitIndex); 1650 if (!initPrimitiveField(FieldToInit, Init, *T)) 1651 return false; 1652 ++InitIndex; 1653 } else { 1654 // Initializer for a direct base class. 1655 if (const Record::Base *B = R->getBase(Init->getType())) { 1656 if (!this->emitGetPtrBase(B->Offset, Init)) 1657 return false; 1658 1659 if (!this->visitInitializer(Init)) 1660 return false; 1661 1662 if (!this->emitFinishInitPop(E)) 1663 return false; 1664 // Base initializers don't increase InitIndex, since they don't count 1665 // into the Record's fields. 1666 } else { 1667 const Record::Field *FieldToInit = R->getField(InitIndex); 1668 if (!initCompositeField(FieldToInit, Init)) 1669 return false; 1670 ++InitIndex; 1671 } 1672 } 1673 } 1674 return this->emitFinishInit(E); 1675 } 1676 1677 if (QT->isArrayType()) { 1678 if (Inits.size() == 1 && QT == Inits[0]->getType()) 1679 return this->delegate(Inits[0]); 1680 1681 unsigned ElementIndex = 0; 1682 for (const Expr *Init : Inits) { 1683 if (const auto *EmbedS = 1684 dyn_cast<EmbedExpr>(Init->IgnoreParenImpCasts())) { 1685 PrimType TargetT = classifyPrim(Init->getType()); 1686 1687 auto Eval = [&](const Expr *Init, unsigned ElemIndex) { 1688 PrimType InitT = classifyPrim(Init->getType()); 1689 if (!this->visit(Init)) 1690 return false; 1691 if (InitT != TargetT) { 1692 if (!this->emitCast(InitT, TargetT, E)) 1693 return false; 1694 } 1695 return this->emitInitElem(TargetT, ElemIndex, Init); 1696 }; 1697 if (!EmbedS->doForEachDataElement(Eval, ElementIndex)) 1698 return false; 1699 } else { 1700 if (!this->visitArrayElemInit(ElementIndex, Init)) 1701 return false; 1702 ++ElementIndex; 1703 } 1704 } 1705 1706 // Expand the filler expression. 1707 // FIXME: This should go away. 1708 if (ArrayFiller) { 1709 const ConstantArrayType *CAT = 1710 Ctx.getASTContext().getAsConstantArrayType(QT); 1711 uint64_t NumElems = CAT->getZExtSize(); 1712 1713 for (; ElementIndex != NumElems; ++ElementIndex) { 1714 if (!this->visitArrayElemInit(ElementIndex, ArrayFiller)) 1715 return false; 1716 } 1717 } 1718 1719 return this->emitFinishInit(E); 1720 } 1721 1722 if (const auto *ComplexTy = QT->getAs<ComplexType>()) { 1723 unsigned NumInits = Inits.size(); 1724 1725 if (NumInits == 1) 1726 return this->delegate(Inits[0]); 1727 1728 QualType ElemQT = ComplexTy->getElementType(); 1729 PrimType ElemT = classifyPrim(ElemQT); 1730 if (NumInits == 0) { 1731 // Zero-initialize both elements. 1732 for (unsigned I = 0; I < 2; ++I) { 1733 if (!this->visitZeroInitializer(ElemT, ElemQT, E)) 1734 return false; 1735 if (!this->emitInitElem(ElemT, I, E)) 1736 return false; 1737 } 1738 } else if (NumInits == 2) { 1739 unsigned InitIndex = 0; 1740 for (const Expr *Init : Inits) { 1741 if (!this->visit(Init)) 1742 return false; 1743 1744 if (!this->emitInitElem(ElemT, InitIndex, E)) 1745 return false; 1746 ++InitIndex; 1747 } 1748 } 1749 return true; 1750 } 1751 1752 if (const auto *VecT = QT->getAs<VectorType>()) { 1753 unsigned NumVecElements = VecT->getNumElements(); 1754 assert(NumVecElements >= Inits.size()); 1755 1756 QualType ElemQT = VecT->getElementType(); 1757 PrimType ElemT = classifyPrim(ElemQT); 1758 1759 // All initializer elements. 1760 unsigned InitIndex = 0; 1761 for (const Expr *Init : Inits) { 1762 if (!this->visit(Init)) 1763 return false; 1764 1765 // If the initializer is of vector type itself, we have to deconstruct 1766 // that and initialize all the target fields from the initializer fields. 1767 if (const auto *InitVecT = Init->getType()->getAs<VectorType>()) { 1768 if (!this->emitCopyArray(ElemT, 0, InitIndex, 1769 InitVecT->getNumElements(), E)) 1770 return false; 1771 InitIndex += InitVecT->getNumElements(); 1772 } else { 1773 if (!this->emitInitElem(ElemT, InitIndex, E)) 1774 return false; 1775 ++InitIndex; 1776 } 1777 } 1778 1779 assert(InitIndex <= NumVecElements); 1780 1781 // Fill the rest with zeroes. 1782 for (; InitIndex != NumVecElements; ++InitIndex) { 1783 if (!this->visitZeroInitializer(ElemT, ElemQT, E)) 1784 return false; 1785 if (!this->emitInitElem(ElemT, InitIndex, E)) 1786 return false; 1787 } 1788 return true; 1789 } 1790 1791 return false; 1792 } 1793 1794 /// Pointer to the array(not the element!) must be on the stack when calling 1795 /// this. 1796 template <class Emitter> 1797 bool Compiler<Emitter>::visitArrayElemInit(unsigned ElemIndex, 1798 const Expr *Init) { 1799 if (std::optional<PrimType> T = classify(Init->getType())) { 1800 // Visit the primitive element like normal. 1801 if (!this->visit(Init)) 1802 return false; 1803 return this->emitInitElem(*T, ElemIndex, Init); 1804 } 1805 1806 InitLinkScope<Emitter> ILS(this, InitLink::Elem(ElemIndex)); 1807 // Advance the pointer currently on the stack to the given 1808 // dimension. 1809 if (!this->emitConstUint32(ElemIndex, Init)) 1810 return false; 1811 if (!this->emitArrayElemPtrUint32(Init)) 1812 return false; 1813 if (!this->visitInitializer(Init)) 1814 return false; 1815 return this->emitFinishInitPop(Init); 1816 } 1817 1818 template <class Emitter> 1819 bool Compiler<Emitter>::VisitInitListExpr(const InitListExpr *E) { 1820 return this->visitInitList(E->inits(), E->getArrayFiller(), E); 1821 } 1822 1823 template <class Emitter> 1824 bool Compiler<Emitter>::VisitCXXParenListInitExpr( 1825 const CXXParenListInitExpr *E) { 1826 return this->visitInitList(E->getInitExprs(), E->getArrayFiller(), E); 1827 } 1828 1829 template <class Emitter> 1830 bool Compiler<Emitter>::VisitSubstNonTypeTemplateParmExpr( 1831 const SubstNonTypeTemplateParmExpr *E) { 1832 return this->delegate(E->getReplacement()); 1833 } 1834 1835 template <class Emitter> 1836 bool Compiler<Emitter>::VisitConstantExpr(const ConstantExpr *E) { 1837 std::optional<PrimType> T = classify(E->getType()); 1838 if (T && E->hasAPValueResult()) { 1839 // Try to emit the APValue directly, without visiting the subexpr. 1840 // This will only fail if we can't emit the APValue, so won't emit any 1841 // diagnostics or any double values. 1842 if (DiscardResult) 1843 return true; 1844 1845 if (this->visitAPValue(E->getAPValueResult(), *T, E)) 1846 return true; 1847 } 1848 return this->delegate(E->getSubExpr()); 1849 } 1850 1851 template <class Emitter> 1852 bool Compiler<Emitter>::VisitEmbedExpr(const EmbedExpr *E) { 1853 auto It = E->begin(); 1854 return this->visit(*It); 1855 } 1856 1857 static CharUnits AlignOfType(QualType T, const ASTContext &ASTCtx, 1858 UnaryExprOrTypeTrait Kind) { 1859 bool AlignOfReturnsPreferred = 1860 ASTCtx.getLangOpts().getClangABICompat() <= LangOptions::ClangABI::Ver7; 1861 1862 // C++ [expr.alignof]p3: 1863 // When alignof is applied to a reference type, the result is the 1864 // alignment of the referenced type. 1865 if (const auto *Ref = T->getAs<ReferenceType>()) 1866 T = Ref->getPointeeType(); 1867 1868 if (T.getQualifiers().hasUnaligned()) 1869 return CharUnits::One(); 1870 1871 // __alignof is defined to return the preferred alignment. 1872 // Before 8, clang returned the preferred alignment for alignof and 1873 // _Alignof as well. 1874 if (Kind == UETT_PreferredAlignOf || AlignOfReturnsPreferred) 1875 return ASTCtx.toCharUnitsFromBits(ASTCtx.getPreferredTypeAlign(T)); 1876 1877 return ASTCtx.getTypeAlignInChars(T); 1878 } 1879 1880 template <class Emitter> 1881 bool Compiler<Emitter>::VisitUnaryExprOrTypeTraitExpr( 1882 const UnaryExprOrTypeTraitExpr *E) { 1883 UnaryExprOrTypeTrait Kind = E->getKind(); 1884 const ASTContext &ASTCtx = Ctx.getASTContext(); 1885 1886 if (Kind == UETT_SizeOf || Kind == UETT_DataSizeOf) { 1887 QualType ArgType = E->getTypeOfArgument(); 1888 1889 // C++ [expr.sizeof]p2: "When applied to a reference or a reference type, 1890 // the result is the size of the referenced type." 1891 if (const auto *Ref = ArgType->getAs<ReferenceType>()) 1892 ArgType = Ref->getPointeeType(); 1893 1894 CharUnits Size; 1895 if (ArgType->isVoidType() || ArgType->isFunctionType()) 1896 Size = CharUnits::One(); 1897 else { 1898 if (ArgType->isDependentType() || !ArgType->isConstantSizeType()) 1899 return false; 1900 1901 if (Kind == UETT_SizeOf) 1902 Size = ASTCtx.getTypeSizeInChars(ArgType); 1903 else 1904 Size = ASTCtx.getTypeInfoDataSizeInChars(ArgType).Width; 1905 } 1906 1907 if (DiscardResult) 1908 return true; 1909 1910 return this->emitConst(Size.getQuantity(), E); 1911 } 1912 1913 if (Kind == UETT_AlignOf || Kind == UETT_PreferredAlignOf) { 1914 CharUnits Size; 1915 1916 if (E->isArgumentType()) { 1917 QualType ArgType = E->getTypeOfArgument(); 1918 1919 Size = AlignOfType(ArgType, ASTCtx, Kind); 1920 } else { 1921 // Argument is an expression, not a type. 1922 const Expr *Arg = E->getArgumentExpr()->IgnoreParens(); 1923 1924 // The kinds of expressions that we have special-case logic here for 1925 // should be kept up to date with the special checks for those 1926 // expressions in Sema. 1927 1928 // alignof decl is always accepted, even if it doesn't make sense: we 1929 // default to 1 in those cases. 1930 if (const auto *DRE = dyn_cast<DeclRefExpr>(Arg)) 1931 Size = ASTCtx.getDeclAlign(DRE->getDecl(), 1932 /*RefAsPointee*/ true); 1933 else if (const auto *ME = dyn_cast<MemberExpr>(Arg)) 1934 Size = ASTCtx.getDeclAlign(ME->getMemberDecl(), 1935 /*RefAsPointee*/ true); 1936 else 1937 Size = AlignOfType(Arg->getType(), ASTCtx, Kind); 1938 } 1939 1940 if (DiscardResult) 1941 return true; 1942 1943 return this->emitConst(Size.getQuantity(), E); 1944 } 1945 1946 if (Kind == UETT_VectorElements) { 1947 if (const auto *VT = E->getTypeOfArgument()->getAs<VectorType>()) 1948 return this->emitConst(VT->getNumElements(), E); 1949 assert(E->getTypeOfArgument()->isSizelessVectorType()); 1950 return this->emitSizelessVectorElementSize(E); 1951 } 1952 1953 if (Kind == UETT_VecStep) { 1954 if (const auto *VT = E->getTypeOfArgument()->getAs<VectorType>()) { 1955 unsigned N = VT->getNumElements(); 1956 1957 // The vec_step built-in functions that take a 3-component 1958 // vector return 4. (OpenCL 1.1 spec 6.11.12) 1959 if (N == 3) 1960 N = 4; 1961 1962 return this->emitConst(N, E); 1963 } 1964 return this->emitConst(1, E); 1965 } 1966 1967 return false; 1968 } 1969 1970 template <class Emitter> 1971 bool Compiler<Emitter>::VisitMemberExpr(const MemberExpr *E) { 1972 // 'Base.Member' 1973 const Expr *Base = E->getBase(); 1974 const ValueDecl *Member = E->getMemberDecl(); 1975 1976 if (DiscardResult) 1977 return this->discard(Base); 1978 1979 // MemberExprs are almost always lvalues, in which case we don't need to 1980 // do the load. But sometimes they aren't. 1981 const auto maybeLoadValue = [&]() -> bool { 1982 if (E->isGLValue()) 1983 return true; 1984 if (std::optional<PrimType> T = classify(E)) 1985 return this->emitLoadPop(*T, E); 1986 return false; 1987 }; 1988 1989 if (const auto *VD = dyn_cast<VarDecl>(Member)) { 1990 // I am almost confident in saying that a var decl must be static 1991 // and therefore registered as a global variable. But this will probably 1992 // turn out to be wrong some time in the future, as always. 1993 if (auto GlobalIndex = P.getGlobal(VD)) 1994 return this->emitGetPtrGlobal(*GlobalIndex, E) && maybeLoadValue(); 1995 return false; 1996 } 1997 1998 if (!isa<FieldDecl>(Member)) { 1999 if (!this->discard(Base) && !this->emitSideEffect(E)) 2000 return false; 2001 2002 return this->visitDeclRef(Member, E); 2003 } 2004 2005 if (Initializing) { 2006 if (!this->delegate(Base)) 2007 return false; 2008 } else { 2009 if (!this->visit(Base)) 2010 return false; 2011 } 2012 2013 // Base above gives us a pointer on the stack. 2014 const auto *FD = cast<FieldDecl>(Member); 2015 const RecordDecl *RD = FD->getParent(); 2016 const Record *R = getRecord(RD); 2017 if (!R) 2018 return false; 2019 const Record::Field *F = R->getField(FD); 2020 // Leave a pointer to the field on the stack. 2021 if (F->Decl->getType()->isReferenceType()) 2022 return this->emitGetFieldPop(PT_Ptr, F->Offset, E) && maybeLoadValue(); 2023 return this->emitGetPtrFieldPop(F->Offset, E) && maybeLoadValue(); 2024 } 2025 2026 template <class Emitter> 2027 bool Compiler<Emitter>::VisitArrayInitIndexExpr(const ArrayInitIndexExpr *E) { 2028 // ArrayIndex might not be set if a ArrayInitIndexExpr is being evaluated 2029 // stand-alone, e.g. via EvaluateAsInt(). 2030 if (!ArrayIndex) 2031 return false; 2032 return this->emitConst(*ArrayIndex, E); 2033 } 2034 2035 template <class Emitter> 2036 bool Compiler<Emitter>::VisitArrayInitLoopExpr(const ArrayInitLoopExpr *E) { 2037 assert(Initializing); 2038 assert(!DiscardResult); 2039 2040 // We visit the common opaque expression here once so we have its value 2041 // cached. 2042 if (!this->discard(E->getCommonExpr())) 2043 return false; 2044 2045 // TODO: This compiles to quite a lot of bytecode if the array is larger. 2046 // Investigate compiling this to a loop. 2047 const Expr *SubExpr = E->getSubExpr(); 2048 size_t Size = E->getArraySize().getZExtValue(); 2049 2050 // So, every iteration, we execute an assignment here 2051 // where the LHS is on the stack (the target array) 2052 // and the RHS is our SubExpr. 2053 for (size_t I = 0; I != Size; ++I) { 2054 ArrayIndexScope<Emitter> IndexScope(this, I); 2055 BlockScope<Emitter> BS(this); 2056 2057 if (!this->visitArrayElemInit(I, SubExpr)) 2058 return false; 2059 if (!BS.destroyLocals()) 2060 return false; 2061 } 2062 return true; 2063 } 2064 2065 template <class Emitter> 2066 bool Compiler<Emitter>::VisitOpaqueValueExpr(const OpaqueValueExpr *E) { 2067 const Expr *SourceExpr = E->getSourceExpr(); 2068 if (!SourceExpr) 2069 return false; 2070 2071 if (Initializing) 2072 return this->visitInitializer(SourceExpr); 2073 2074 PrimType SubExprT = classify(SourceExpr).value_or(PT_Ptr); 2075 if (auto It = OpaqueExprs.find(E); It != OpaqueExprs.end()) 2076 return this->emitGetLocal(SubExprT, It->second, E); 2077 2078 if (!this->visit(SourceExpr)) 2079 return false; 2080 2081 // At this point we either have the evaluated source expression or a pointer 2082 // to an object on the stack. We want to create a local variable that stores 2083 // this value. 2084 unsigned LocalIndex = allocateLocalPrimitive(E, SubExprT, /*IsConst=*/true); 2085 if (!this->emitSetLocal(SubExprT, LocalIndex, E)) 2086 return false; 2087 2088 // Here the local variable is created but the value is removed from the stack, 2089 // so we put it back if the caller needs it. 2090 if (!DiscardResult) { 2091 if (!this->emitGetLocal(SubExprT, LocalIndex, E)) 2092 return false; 2093 } 2094 2095 // This is cleaned up when the local variable is destroyed. 2096 OpaqueExprs.insert({E, LocalIndex}); 2097 2098 return true; 2099 } 2100 2101 template <class Emitter> 2102 bool Compiler<Emitter>::VisitAbstractConditionalOperator( 2103 const AbstractConditionalOperator *E) { 2104 const Expr *Condition = E->getCond(); 2105 const Expr *TrueExpr = E->getTrueExpr(); 2106 const Expr *FalseExpr = E->getFalseExpr(); 2107 2108 LabelTy LabelEnd = this->getLabel(); // Label after the operator. 2109 LabelTy LabelFalse = this->getLabel(); // Label for the false expr. 2110 2111 if (!this->visitBool(Condition)) 2112 return false; 2113 2114 if (!this->jumpFalse(LabelFalse)) 2115 return false; 2116 2117 { 2118 LocalScope<Emitter> S(this); 2119 if (!this->delegate(TrueExpr)) 2120 return false; 2121 if (!S.destroyLocals()) 2122 return false; 2123 } 2124 2125 if (!this->jump(LabelEnd)) 2126 return false; 2127 2128 this->emitLabel(LabelFalse); 2129 2130 { 2131 LocalScope<Emitter> S(this); 2132 if (!this->delegate(FalseExpr)) 2133 return false; 2134 if (!S.destroyLocals()) 2135 return false; 2136 } 2137 2138 this->fallthrough(LabelEnd); 2139 this->emitLabel(LabelEnd); 2140 2141 return true; 2142 } 2143 2144 template <class Emitter> 2145 bool Compiler<Emitter>::VisitStringLiteral(const StringLiteral *E) { 2146 if (DiscardResult) 2147 return true; 2148 2149 if (!Initializing) { 2150 unsigned StringIndex = P.createGlobalString(E); 2151 return this->emitGetPtrGlobal(StringIndex, E); 2152 } 2153 2154 // We are initializing an array on the stack. 2155 const ConstantArrayType *CAT = 2156 Ctx.getASTContext().getAsConstantArrayType(E->getType()); 2157 assert(CAT && "a string literal that's not a constant array?"); 2158 2159 // If the initializer string is too long, a diagnostic has already been 2160 // emitted. Read only the array length from the string literal. 2161 unsigned ArraySize = CAT->getZExtSize(); 2162 unsigned N = std::min(ArraySize, E->getLength()); 2163 size_t CharWidth = E->getCharByteWidth(); 2164 2165 for (unsigned I = 0; I != N; ++I) { 2166 uint32_t CodeUnit = E->getCodeUnit(I); 2167 2168 if (CharWidth == 1) { 2169 this->emitConstSint8(CodeUnit, E); 2170 this->emitInitElemSint8(I, E); 2171 } else if (CharWidth == 2) { 2172 this->emitConstUint16(CodeUnit, E); 2173 this->emitInitElemUint16(I, E); 2174 } else if (CharWidth == 4) { 2175 this->emitConstUint32(CodeUnit, E); 2176 this->emitInitElemUint32(I, E); 2177 } else { 2178 llvm_unreachable("unsupported character width"); 2179 } 2180 } 2181 2182 // Fill up the rest of the char array with NUL bytes. 2183 for (unsigned I = N; I != ArraySize; ++I) { 2184 if (CharWidth == 1) { 2185 this->emitConstSint8(0, E); 2186 this->emitInitElemSint8(I, E); 2187 } else if (CharWidth == 2) { 2188 this->emitConstUint16(0, E); 2189 this->emitInitElemUint16(I, E); 2190 } else if (CharWidth == 4) { 2191 this->emitConstUint32(0, E); 2192 this->emitInitElemUint32(I, E); 2193 } else { 2194 llvm_unreachable("unsupported character width"); 2195 } 2196 } 2197 2198 return true; 2199 } 2200 2201 template <class Emitter> 2202 bool Compiler<Emitter>::VisitObjCStringLiteral(const ObjCStringLiteral *E) { 2203 if (std::optional<unsigned> I = P.getOrCreateDummy(E)) 2204 return this->emitGetPtrGlobal(*I, E); 2205 return false; 2206 } 2207 2208 template <class Emitter> 2209 bool Compiler<Emitter>::VisitObjCEncodeExpr(const ObjCEncodeExpr *E) { 2210 auto &A = Ctx.getASTContext(); 2211 std::string Str; 2212 A.getObjCEncodingForType(E->getEncodedType(), Str); 2213 StringLiteral *SL = 2214 StringLiteral::Create(A, Str, StringLiteralKind::Ordinary, 2215 /*Pascal=*/false, E->getType(), E->getAtLoc()); 2216 return this->delegate(SL); 2217 } 2218 2219 template <class Emitter> 2220 bool Compiler<Emitter>::VisitSYCLUniqueStableNameExpr( 2221 const SYCLUniqueStableNameExpr *E) { 2222 if (DiscardResult) 2223 return true; 2224 2225 assert(!Initializing); 2226 2227 auto &A = Ctx.getASTContext(); 2228 std::string ResultStr = E->ComputeName(A); 2229 2230 QualType CharTy = A.CharTy.withConst(); 2231 APInt Size(A.getTypeSize(A.getSizeType()), ResultStr.size() + 1); 2232 QualType ArrayTy = A.getConstantArrayType(CharTy, Size, nullptr, 2233 ArraySizeModifier::Normal, 0); 2234 2235 StringLiteral *SL = 2236 StringLiteral::Create(A, ResultStr, StringLiteralKind::Ordinary, 2237 /*Pascal=*/false, ArrayTy, E->getLocation()); 2238 2239 unsigned StringIndex = P.createGlobalString(SL); 2240 return this->emitGetPtrGlobal(StringIndex, E); 2241 } 2242 2243 template <class Emitter> 2244 bool Compiler<Emitter>::VisitCharacterLiteral(const CharacterLiteral *E) { 2245 if (DiscardResult) 2246 return true; 2247 return this->emitConst(E->getValue(), E); 2248 } 2249 2250 template <class Emitter> 2251 bool Compiler<Emitter>::VisitFloatCompoundAssignOperator( 2252 const CompoundAssignOperator *E) { 2253 2254 const Expr *LHS = E->getLHS(); 2255 const Expr *RHS = E->getRHS(); 2256 QualType LHSType = LHS->getType(); 2257 QualType LHSComputationType = E->getComputationLHSType(); 2258 QualType ResultType = E->getComputationResultType(); 2259 std::optional<PrimType> LT = classify(LHSComputationType); 2260 std::optional<PrimType> RT = classify(ResultType); 2261 2262 assert(ResultType->isFloatingType()); 2263 2264 if (!LT || !RT) 2265 return false; 2266 2267 PrimType LHST = classifyPrim(LHSType); 2268 2269 // C++17 onwards require that we evaluate the RHS first. 2270 // Compute RHS and save it in a temporary variable so we can 2271 // load it again later. 2272 if (!visit(RHS)) 2273 return false; 2274 2275 unsigned TempOffset = this->allocateLocalPrimitive(E, *RT, /*IsConst=*/true); 2276 if (!this->emitSetLocal(*RT, TempOffset, E)) 2277 return false; 2278 2279 // First, visit LHS. 2280 if (!visit(LHS)) 2281 return false; 2282 if (!this->emitLoad(LHST, E)) 2283 return false; 2284 2285 // If necessary, convert LHS to its computation type. 2286 if (!this->emitPrimCast(LHST, classifyPrim(LHSComputationType), 2287 LHSComputationType, E)) 2288 return false; 2289 2290 // Now load RHS. 2291 if (!this->emitGetLocal(*RT, TempOffset, E)) 2292 return false; 2293 2294 switch (E->getOpcode()) { 2295 case BO_AddAssign: 2296 if (!this->emitAddf(getFPOptions(E), E)) 2297 return false; 2298 break; 2299 case BO_SubAssign: 2300 if (!this->emitSubf(getFPOptions(E), E)) 2301 return false; 2302 break; 2303 case BO_MulAssign: 2304 if (!this->emitMulf(getFPOptions(E), E)) 2305 return false; 2306 break; 2307 case BO_DivAssign: 2308 if (!this->emitDivf(getFPOptions(E), E)) 2309 return false; 2310 break; 2311 default: 2312 return false; 2313 } 2314 2315 if (!this->emitPrimCast(classifyPrim(ResultType), LHST, LHS->getType(), E)) 2316 return false; 2317 2318 if (DiscardResult) 2319 return this->emitStorePop(LHST, E); 2320 return this->emitStore(LHST, E); 2321 } 2322 2323 template <class Emitter> 2324 bool Compiler<Emitter>::VisitPointerCompoundAssignOperator( 2325 const CompoundAssignOperator *E) { 2326 BinaryOperatorKind Op = E->getOpcode(); 2327 const Expr *LHS = E->getLHS(); 2328 const Expr *RHS = E->getRHS(); 2329 std::optional<PrimType> LT = classify(LHS->getType()); 2330 std::optional<PrimType> RT = classify(RHS->getType()); 2331 2332 if (Op != BO_AddAssign && Op != BO_SubAssign) 2333 return false; 2334 2335 if (!LT || !RT) 2336 return false; 2337 2338 if (!visit(LHS)) 2339 return false; 2340 2341 if (!this->emitLoad(*LT, LHS)) 2342 return false; 2343 2344 if (!visit(RHS)) 2345 return false; 2346 2347 if (Op == BO_AddAssign) { 2348 if (!this->emitAddOffset(*RT, E)) 2349 return false; 2350 } else { 2351 if (!this->emitSubOffset(*RT, E)) 2352 return false; 2353 } 2354 2355 if (DiscardResult) 2356 return this->emitStorePopPtr(E); 2357 return this->emitStorePtr(E); 2358 } 2359 2360 template <class Emitter> 2361 bool Compiler<Emitter>::VisitCompoundAssignOperator( 2362 const CompoundAssignOperator *E) { 2363 if (E->getType()->isVectorType()) 2364 return VisitVectorBinOp(E); 2365 2366 const Expr *LHS = E->getLHS(); 2367 const Expr *RHS = E->getRHS(); 2368 std::optional<PrimType> LHSComputationT = 2369 classify(E->getComputationLHSType()); 2370 std::optional<PrimType> LT = classify(LHS->getType()); 2371 std::optional<PrimType> RT = classify(RHS->getType()); 2372 std::optional<PrimType> ResultT = classify(E->getType()); 2373 2374 if (!Ctx.getLangOpts().CPlusPlus14) 2375 return this->visit(RHS) && this->visit(LHS) && this->emitError(E); 2376 2377 if (!LT || !RT || !ResultT || !LHSComputationT) 2378 return false; 2379 2380 // Handle floating point operations separately here, since they 2381 // require special care. 2382 2383 if (ResultT == PT_Float || RT == PT_Float) 2384 return VisitFloatCompoundAssignOperator(E); 2385 2386 if (E->getType()->isPointerType()) 2387 return VisitPointerCompoundAssignOperator(E); 2388 2389 assert(!E->getType()->isPointerType() && "Handled above"); 2390 assert(!E->getType()->isFloatingType() && "Handled above"); 2391 2392 // C++17 onwards require that we evaluate the RHS first. 2393 // Compute RHS and save it in a temporary variable so we can 2394 // load it again later. 2395 // FIXME: Compound assignments are unsequenced in C, so we might 2396 // have to figure out how to reject them. 2397 if (!visit(RHS)) 2398 return false; 2399 2400 unsigned TempOffset = this->allocateLocalPrimitive(E, *RT, /*IsConst=*/true); 2401 2402 if (!this->emitSetLocal(*RT, TempOffset, E)) 2403 return false; 2404 2405 // Get LHS pointer, load its value and cast it to the 2406 // computation type if necessary. 2407 if (!visit(LHS)) 2408 return false; 2409 if (!this->emitLoad(*LT, E)) 2410 return false; 2411 if (LT != LHSComputationT) { 2412 if (!this->emitCast(*LT, *LHSComputationT, E)) 2413 return false; 2414 } 2415 2416 // Get the RHS value on the stack. 2417 if (!this->emitGetLocal(*RT, TempOffset, E)) 2418 return false; 2419 2420 // Perform operation. 2421 switch (E->getOpcode()) { 2422 case BO_AddAssign: 2423 if (!this->emitAdd(*LHSComputationT, E)) 2424 return false; 2425 break; 2426 case BO_SubAssign: 2427 if (!this->emitSub(*LHSComputationT, E)) 2428 return false; 2429 break; 2430 case BO_MulAssign: 2431 if (!this->emitMul(*LHSComputationT, E)) 2432 return false; 2433 break; 2434 case BO_DivAssign: 2435 if (!this->emitDiv(*LHSComputationT, E)) 2436 return false; 2437 break; 2438 case BO_RemAssign: 2439 if (!this->emitRem(*LHSComputationT, E)) 2440 return false; 2441 break; 2442 case BO_ShlAssign: 2443 if (!this->emitShl(*LHSComputationT, *RT, E)) 2444 return false; 2445 break; 2446 case BO_ShrAssign: 2447 if (!this->emitShr(*LHSComputationT, *RT, E)) 2448 return false; 2449 break; 2450 case BO_AndAssign: 2451 if (!this->emitBitAnd(*LHSComputationT, E)) 2452 return false; 2453 break; 2454 case BO_XorAssign: 2455 if (!this->emitBitXor(*LHSComputationT, E)) 2456 return false; 2457 break; 2458 case BO_OrAssign: 2459 if (!this->emitBitOr(*LHSComputationT, E)) 2460 return false; 2461 break; 2462 default: 2463 llvm_unreachable("Unimplemented compound assign operator"); 2464 } 2465 2466 // And now cast from LHSComputationT to ResultT. 2467 if (ResultT != LHSComputationT) { 2468 if (!this->emitCast(*LHSComputationT, *ResultT, E)) 2469 return false; 2470 } 2471 2472 // And store the result in LHS. 2473 if (DiscardResult) { 2474 if (LHS->refersToBitField()) 2475 return this->emitStoreBitFieldPop(*ResultT, E); 2476 return this->emitStorePop(*ResultT, E); 2477 } 2478 if (LHS->refersToBitField()) 2479 return this->emitStoreBitField(*ResultT, E); 2480 return this->emitStore(*ResultT, E); 2481 } 2482 2483 template <class Emitter> 2484 bool Compiler<Emitter>::VisitExprWithCleanups(const ExprWithCleanups *E) { 2485 LocalScope<Emitter> ES(this); 2486 const Expr *SubExpr = E->getSubExpr(); 2487 2488 return this->delegate(SubExpr) && ES.destroyLocals(E); 2489 } 2490 2491 template <class Emitter> 2492 bool Compiler<Emitter>::VisitMaterializeTemporaryExpr( 2493 const MaterializeTemporaryExpr *E) { 2494 const Expr *SubExpr = E->getSubExpr(); 2495 2496 if (Initializing) { 2497 // We already have a value, just initialize that. 2498 return this->delegate(SubExpr); 2499 } 2500 // If we don't end up using the materialized temporary anyway, don't 2501 // bother creating it. 2502 if (DiscardResult) 2503 return this->discard(SubExpr); 2504 2505 // When we're initializing a global variable *or* the storage duration of 2506 // the temporary is explicitly static, create a global variable. 2507 std::optional<PrimType> SubExprT = classify(SubExpr); 2508 bool IsStatic = E->getStorageDuration() == SD_Static; 2509 if (IsStatic) { 2510 std::optional<unsigned> GlobalIndex = P.createGlobal(E); 2511 if (!GlobalIndex) 2512 return false; 2513 2514 const LifetimeExtendedTemporaryDecl *TempDecl = 2515 E->getLifetimeExtendedTemporaryDecl(); 2516 if (IsStatic) 2517 assert(TempDecl); 2518 2519 if (SubExprT) { 2520 if (!this->visit(SubExpr)) 2521 return false; 2522 if (IsStatic) { 2523 if (!this->emitInitGlobalTemp(*SubExprT, *GlobalIndex, TempDecl, E)) 2524 return false; 2525 } else { 2526 if (!this->emitInitGlobal(*SubExprT, *GlobalIndex, E)) 2527 return false; 2528 } 2529 return this->emitGetPtrGlobal(*GlobalIndex, E); 2530 } 2531 2532 if (!this->checkLiteralType(SubExpr)) 2533 return false; 2534 // Non-primitive values. 2535 if (!this->emitGetPtrGlobal(*GlobalIndex, E)) 2536 return false; 2537 if (!this->visitInitializer(SubExpr)) 2538 return false; 2539 if (IsStatic) 2540 return this->emitInitGlobalTempComp(TempDecl, E); 2541 return true; 2542 } 2543 2544 // For everyhing else, use local variables. 2545 if (SubExprT) { 2546 unsigned LocalIndex = allocateLocalPrimitive(E, *SubExprT, /*IsConst=*/true, 2547 /*IsExtended=*/true); 2548 if (!this->visit(SubExpr)) 2549 return false; 2550 if (!this->emitSetLocal(*SubExprT, LocalIndex, E)) 2551 return false; 2552 return this->emitGetPtrLocal(LocalIndex, E); 2553 } else { 2554 2555 if (!this->checkLiteralType(SubExpr)) 2556 return false; 2557 2558 const Expr *Inner = E->getSubExpr()->skipRValueSubobjectAdjustments(); 2559 if (std::optional<unsigned> LocalIndex = 2560 allocateLocal(Inner, E->getExtendingDecl())) { 2561 InitLinkScope<Emitter> ILS(this, InitLink::Temp(*LocalIndex)); 2562 if (!this->emitGetPtrLocal(*LocalIndex, E)) 2563 return false; 2564 return this->visitInitializer(SubExpr); 2565 } 2566 } 2567 return false; 2568 } 2569 2570 template <class Emitter> 2571 bool Compiler<Emitter>::VisitCXXBindTemporaryExpr( 2572 const CXXBindTemporaryExpr *E) { 2573 return this->delegate(E->getSubExpr()); 2574 } 2575 2576 template <class Emitter> 2577 bool Compiler<Emitter>::VisitCompoundLiteralExpr(const CompoundLiteralExpr *E) { 2578 const Expr *Init = E->getInitializer(); 2579 if (DiscardResult) 2580 return this->discard(Init); 2581 2582 if (Initializing) { 2583 // We already have a value, just initialize that. 2584 return this->visitInitializer(Init) && this->emitFinishInit(E); 2585 } 2586 2587 std::optional<PrimType> T = classify(E->getType()); 2588 if (E->isFileScope()) { 2589 // Avoid creating a variable if this is a primitive RValue anyway. 2590 if (T && !E->isLValue()) 2591 return this->delegate(Init); 2592 2593 if (std::optional<unsigned> GlobalIndex = P.createGlobal(E)) { 2594 if (!this->emitGetPtrGlobal(*GlobalIndex, E)) 2595 return false; 2596 2597 if (T) { 2598 if (!this->visit(Init)) 2599 return false; 2600 return this->emitInitGlobal(*T, *GlobalIndex, E); 2601 } 2602 2603 return this->visitInitializer(Init) && this->emitFinishInit(E); 2604 } 2605 2606 return false; 2607 } 2608 2609 // Otherwise, use a local variable. 2610 if (T && !E->isLValue()) { 2611 // For primitive types, we just visit the initializer. 2612 return this->delegate(Init); 2613 } else { 2614 unsigned LocalIndex; 2615 2616 if (T) 2617 LocalIndex = this->allocateLocalPrimitive(Init, *T, false, false); 2618 else if (std::optional<unsigned> MaybeIndex = this->allocateLocal(Init)) 2619 LocalIndex = *MaybeIndex; 2620 else 2621 return false; 2622 2623 if (!this->emitGetPtrLocal(LocalIndex, E)) 2624 return false; 2625 2626 if (T) { 2627 if (!this->visit(Init)) { 2628 return false; 2629 } 2630 return this->emitInit(*T, E); 2631 } else { 2632 if (!this->visitInitializer(Init) || !this->emitFinishInit(E)) 2633 return false; 2634 } 2635 return true; 2636 } 2637 2638 return false; 2639 } 2640 2641 template <class Emitter> 2642 bool Compiler<Emitter>::VisitTypeTraitExpr(const TypeTraitExpr *E) { 2643 if (DiscardResult) 2644 return true; 2645 if (E->getType()->isBooleanType()) 2646 return this->emitConstBool(E->getValue(), E); 2647 return this->emitConst(E->getValue(), E); 2648 } 2649 2650 template <class Emitter> 2651 bool Compiler<Emitter>::VisitArrayTypeTraitExpr(const ArrayTypeTraitExpr *E) { 2652 if (DiscardResult) 2653 return true; 2654 return this->emitConst(E->getValue(), E); 2655 } 2656 2657 template <class Emitter> 2658 bool Compiler<Emitter>::VisitLambdaExpr(const LambdaExpr *E) { 2659 if (DiscardResult) 2660 return true; 2661 2662 assert(Initializing); 2663 const Record *R = P.getOrCreateRecord(E->getLambdaClass()); 2664 2665 auto *CaptureInitIt = E->capture_init_begin(); 2666 // Initialize all fields (which represent lambda captures) of the 2667 // record with their initializers. 2668 for (const Record::Field &F : R->fields()) { 2669 const Expr *Init = *CaptureInitIt; 2670 ++CaptureInitIt; 2671 2672 if (!Init) 2673 continue; 2674 2675 if (std::optional<PrimType> T = classify(Init)) { 2676 if (!this->visit(Init)) 2677 return false; 2678 2679 if (!this->emitInitField(*T, F.Offset, E)) 2680 return false; 2681 } else { 2682 if (!this->emitGetPtrField(F.Offset, E)) 2683 return false; 2684 2685 if (!this->visitInitializer(Init)) 2686 return false; 2687 2688 if (!this->emitPopPtr(E)) 2689 return false; 2690 } 2691 } 2692 2693 return true; 2694 } 2695 2696 template <class Emitter> 2697 bool Compiler<Emitter>::VisitPredefinedExpr(const PredefinedExpr *E) { 2698 if (DiscardResult) 2699 return true; 2700 2701 return this->delegate(E->getFunctionName()); 2702 } 2703 2704 template <class Emitter> 2705 bool Compiler<Emitter>::VisitCXXThrowExpr(const CXXThrowExpr *E) { 2706 if (E->getSubExpr() && !this->discard(E->getSubExpr())) 2707 return false; 2708 2709 return this->emitInvalid(E); 2710 } 2711 2712 template <class Emitter> 2713 bool Compiler<Emitter>::VisitCXXReinterpretCastExpr( 2714 const CXXReinterpretCastExpr *E) { 2715 const Expr *SubExpr = E->getSubExpr(); 2716 2717 std::optional<PrimType> FromT = classify(SubExpr); 2718 std::optional<PrimType> ToT = classify(E); 2719 2720 if (!FromT || !ToT) 2721 return this->emitInvalidCast(CastKind::Reinterpret, /*Fatal=*/true, E); 2722 2723 if (FromT == PT_Ptr || ToT == PT_Ptr) { 2724 // Both types could be PT_Ptr because their expressions are glvalues. 2725 std::optional<PrimType> PointeeFromT; 2726 if (SubExpr->getType()->isPointerOrReferenceType()) 2727 PointeeFromT = classify(SubExpr->getType()->getPointeeType()); 2728 else 2729 PointeeFromT = classify(SubExpr->getType()); 2730 2731 std::optional<PrimType> PointeeToT; 2732 if (E->getType()->isPointerOrReferenceType()) 2733 PointeeToT = classify(E->getType()->getPointeeType()); 2734 else 2735 PointeeToT = classify(E->getType()); 2736 2737 bool Fatal = true; 2738 if (PointeeToT && PointeeFromT) { 2739 if (isIntegralType(*PointeeFromT) && isIntegralType(*PointeeToT)) 2740 Fatal = false; 2741 } 2742 2743 if (!this->emitInvalidCast(CastKind::Reinterpret, Fatal, E)) 2744 return false; 2745 2746 if (E->getCastKind() == CK_LValueBitCast) 2747 return this->delegate(SubExpr); 2748 return this->VisitCastExpr(E); 2749 } 2750 2751 // Try to actually do the cast. 2752 bool Fatal = (ToT != FromT); 2753 if (!this->emitInvalidCast(CastKind::Reinterpret, Fatal, E)) 2754 return false; 2755 2756 return this->VisitCastExpr(E); 2757 } 2758 2759 template <class Emitter> 2760 bool Compiler<Emitter>::VisitCXXNoexceptExpr(const CXXNoexceptExpr *E) { 2761 assert(E->getType()->isBooleanType()); 2762 2763 if (DiscardResult) 2764 return true; 2765 return this->emitConstBool(E->getValue(), E); 2766 } 2767 2768 template <class Emitter> 2769 bool Compiler<Emitter>::VisitCXXConstructExpr(const CXXConstructExpr *E) { 2770 QualType T = E->getType(); 2771 assert(!classify(T)); 2772 2773 if (T->isRecordType()) { 2774 const CXXConstructorDecl *Ctor = E->getConstructor(); 2775 2776 // Trivial copy/move constructor. Avoid copy. 2777 if (Ctor->isDefaulted() && Ctor->isCopyOrMoveConstructor() && 2778 Ctor->isTrivial() && 2779 E->getArg(0)->isTemporaryObject(Ctx.getASTContext(), 2780 T->getAsCXXRecordDecl())) 2781 return this->visitInitializer(E->getArg(0)); 2782 2783 // If we're discarding a construct expression, we still need 2784 // to allocate a variable and call the constructor and destructor. 2785 if (DiscardResult) { 2786 if (Ctor->isTrivial()) 2787 return true; 2788 assert(!Initializing); 2789 std::optional<unsigned> LocalIndex = allocateLocal(E); 2790 2791 if (!LocalIndex) 2792 return false; 2793 2794 if (!this->emitGetPtrLocal(*LocalIndex, E)) 2795 return false; 2796 } 2797 2798 // Zero initialization. 2799 if (E->requiresZeroInitialization()) { 2800 const Record *R = getRecord(E->getType()); 2801 2802 if (!this->visitZeroRecordInitializer(R, E)) 2803 return false; 2804 2805 // If the constructor is trivial anyway, we're done. 2806 if (Ctor->isTrivial()) 2807 return true; 2808 } 2809 2810 const Function *Func = getFunction(Ctor); 2811 2812 if (!Func) 2813 return false; 2814 2815 assert(Func->hasThisPointer()); 2816 assert(!Func->hasRVO()); 2817 2818 // The This pointer is already on the stack because this is an initializer, 2819 // but we need to dup() so the call() below has its own copy. 2820 if (!this->emitDupPtr(E)) 2821 return false; 2822 2823 // Constructor arguments. 2824 for (const auto *Arg : E->arguments()) { 2825 if (!this->visit(Arg)) 2826 return false; 2827 } 2828 2829 if (Func->isVariadic()) { 2830 uint32_t VarArgSize = 0; 2831 unsigned NumParams = Func->getNumWrittenParams(); 2832 for (unsigned I = NumParams, N = E->getNumArgs(); I != N; ++I) { 2833 VarArgSize += 2834 align(primSize(classify(E->getArg(I)->getType()).value_or(PT_Ptr))); 2835 } 2836 if (!this->emitCallVar(Func, VarArgSize, E)) 2837 return false; 2838 } else { 2839 if (!this->emitCall(Func, 0, E)) { 2840 // When discarding, we don't need the result anyway, so clean up 2841 // the instance dup we did earlier in case surrounding code wants 2842 // to keep evaluating. 2843 if (DiscardResult) 2844 (void)this->emitPopPtr(E); 2845 return false; 2846 } 2847 } 2848 2849 if (DiscardResult) 2850 return this->emitPopPtr(E); 2851 return this->emitFinishInit(E); 2852 } 2853 2854 if (T->isArrayType()) { 2855 const ConstantArrayType *CAT = 2856 Ctx.getASTContext().getAsConstantArrayType(E->getType()); 2857 if (!CAT) 2858 return false; 2859 2860 size_t NumElems = CAT->getZExtSize(); 2861 const Function *Func = getFunction(E->getConstructor()); 2862 if (!Func || !Func->isConstexpr()) 2863 return false; 2864 2865 // FIXME(perf): We're calling the constructor once per array element here, 2866 // in the old intepreter we had a special-case for trivial constructors. 2867 for (size_t I = 0; I != NumElems; ++I) { 2868 if (!this->emitConstUint64(I, E)) 2869 return false; 2870 if (!this->emitArrayElemPtrUint64(E)) 2871 return false; 2872 2873 // Constructor arguments. 2874 for (const auto *Arg : E->arguments()) { 2875 if (!this->visit(Arg)) 2876 return false; 2877 } 2878 2879 if (!this->emitCall(Func, 0, E)) 2880 return false; 2881 } 2882 return true; 2883 } 2884 2885 return false; 2886 } 2887 2888 template <class Emitter> 2889 bool Compiler<Emitter>::VisitSourceLocExpr(const SourceLocExpr *E) { 2890 if (DiscardResult) 2891 return true; 2892 2893 const APValue Val = 2894 E->EvaluateInContext(Ctx.getASTContext(), SourceLocDefaultExpr); 2895 2896 // Things like __builtin_LINE(). 2897 if (E->getType()->isIntegerType()) { 2898 assert(Val.isInt()); 2899 const APSInt &I = Val.getInt(); 2900 return this->emitConst(I, E); 2901 } 2902 // Otherwise, the APValue is an LValue, with only one element. 2903 // Theoretically, we don't need the APValue at all of course. 2904 assert(E->getType()->isPointerType()); 2905 assert(Val.isLValue()); 2906 const APValue::LValueBase &Base = Val.getLValueBase(); 2907 if (const Expr *LValueExpr = Base.dyn_cast<const Expr *>()) 2908 return this->visit(LValueExpr); 2909 2910 // Otherwise, we have a decl (which is the case for 2911 // __builtin_source_location). 2912 assert(Base.is<const ValueDecl *>()); 2913 assert(Val.getLValuePath().size() == 0); 2914 const auto *BaseDecl = Base.dyn_cast<const ValueDecl *>(); 2915 assert(BaseDecl); 2916 2917 auto *UGCD = cast<UnnamedGlobalConstantDecl>(BaseDecl); 2918 2919 std::optional<unsigned> GlobalIndex = P.getOrCreateGlobal(UGCD); 2920 if (!GlobalIndex) 2921 return false; 2922 2923 if (!this->emitGetPtrGlobal(*GlobalIndex, E)) 2924 return false; 2925 2926 const Record *R = getRecord(E->getType()); 2927 const APValue &V = UGCD->getValue(); 2928 for (unsigned I = 0, N = R->getNumFields(); I != N; ++I) { 2929 const Record::Field *F = R->getField(I); 2930 const APValue &FieldValue = V.getStructField(I); 2931 2932 PrimType FieldT = classifyPrim(F->Decl->getType()); 2933 2934 if (!this->visitAPValue(FieldValue, FieldT, E)) 2935 return false; 2936 if (!this->emitInitField(FieldT, F->Offset, E)) 2937 return false; 2938 } 2939 2940 // Leave the pointer to the global on the stack. 2941 return true; 2942 } 2943 2944 template <class Emitter> 2945 bool Compiler<Emitter>::VisitOffsetOfExpr(const OffsetOfExpr *E) { 2946 unsigned N = E->getNumComponents(); 2947 if (N == 0) 2948 return false; 2949 2950 for (unsigned I = 0; I != N; ++I) { 2951 const OffsetOfNode &Node = E->getComponent(I); 2952 if (Node.getKind() == OffsetOfNode::Array) { 2953 const Expr *ArrayIndexExpr = E->getIndexExpr(Node.getArrayExprIndex()); 2954 PrimType IndexT = classifyPrim(ArrayIndexExpr->getType()); 2955 2956 if (DiscardResult) { 2957 if (!this->discard(ArrayIndexExpr)) 2958 return false; 2959 continue; 2960 } 2961 2962 if (!this->visit(ArrayIndexExpr)) 2963 return false; 2964 // Cast to Sint64. 2965 if (IndexT != PT_Sint64) { 2966 if (!this->emitCast(IndexT, PT_Sint64, E)) 2967 return false; 2968 } 2969 } 2970 } 2971 2972 if (DiscardResult) 2973 return true; 2974 2975 PrimType T = classifyPrim(E->getType()); 2976 return this->emitOffsetOf(T, E, E); 2977 } 2978 2979 template <class Emitter> 2980 bool Compiler<Emitter>::VisitCXXScalarValueInitExpr( 2981 const CXXScalarValueInitExpr *E) { 2982 QualType Ty = E->getType(); 2983 2984 if (DiscardResult || Ty->isVoidType()) 2985 return true; 2986 2987 if (std::optional<PrimType> T = classify(Ty)) 2988 return this->visitZeroInitializer(*T, Ty, E); 2989 2990 if (const auto *CT = Ty->getAs<ComplexType>()) { 2991 if (!Initializing) { 2992 std::optional<unsigned> LocalIndex = allocateLocal(E); 2993 if (!LocalIndex) 2994 return false; 2995 if (!this->emitGetPtrLocal(*LocalIndex, E)) 2996 return false; 2997 } 2998 2999 // Initialize both fields to 0. 3000 QualType ElemQT = CT->getElementType(); 3001 PrimType ElemT = classifyPrim(ElemQT); 3002 3003 for (unsigned I = 0; I != 2; ++I) { 3004 if (!this->visitZeroInitializer(ElemT, ElemQT, E)) 3005 return false; 3006 if (!this->emitInitElem(ElemT, I, E)) 3007 return false; 3008 } 3009 return true; 3010 } 3011 3012 if (const auto *VT = Ty->getAs<VectorType>()) { 3013 // FIXME: Code duplication with the _Complex case above. 3014 if (!Initializing) { 3015 std::optional<unsigned> LocalIndex = allocateLocal(E); 3016 if (!LocalIndex) 3017 return false; 3018 if (!this->emitGetPtrLocal(*LocalIndex, E)) 3019 return false; 3020 } 3021 3022 // Initialize all fields to 0. 3023 QualType ElemQT = VT->getElementType(); 3024 PrimType ElemT = classifyPrim(ElemQT); 3025 3026 for (unsigned I = 0, N = VT->getNumElements(); I != N; ++I) { 3027 if (!this->visitZeroInitializer(ElemT, ElemQT, E)) 3028 return false; 3029 if (!this->emitInitElem(ElemT, I, E)) 3030 return false; 3031 } 3032 return true; 3033 } 3034 3035 return false; 3036 } 3037 3038 template <class Emitter> 3039 bool Compiler<Emitter>::VisitSizeOfPackExpr(const SizeOfPackExpr *E) { 3040 return this->emitConst(E->getPackLength(), E); 3041 } 3042 3043 template <class Emitter> 3044 bool Compiler<Emitter>::VisitGenericSelectionExpr( 3045 const GenericSelectionExpr *E) { 3046 return this->delegate(E->getResultExpr()); 3047 } 3048 3049 template <class Emitter> 3050 bool Compiler<Emitter>::VisitChooseExpr(const ChooseExpr *E) { 3051 return this->delegate(E->getChosenSubExpr()); 3052 } 3053 3054 template <class Emitter> 3055 bool Compiler<Emitter>::VisitObjCBoolLiteralExpr(const ObjCBoolLiteralExpr *E) { 3056 if (DiscardResult) 3057 return true; 3058 3059 return this->emitConst(E->getValue(), E); 3060 } 3061 3062 template <class Emitter> 3063 bool Compiler<Emitter>::VisitCXXInheritedCtorInitExpr( 3064 const CXXInheritedCtorInitExpr *E) { 3065 const CXXConstructorDecl *Ctor = E->getConstructor(); 3066 assert(!Ctor->isTrivial() && 3067 "Trivial CXXInheritedCtorInitExpr, implement. (possible?)"); 3068 const Function *F = this->getFunction(Ctor); 3069 assert(F); 3070 assert(!F->hasRVO()); 3071 assert(F->hasThisPointer()); 3072 3073 if (!this->emitDupPtr(SourceInfo{})) 3074 return false; 3075 3076 // Forward all arguments of the current function (which should be a 3077 // constructor itself) to the inherited ctor. 3078 // This is necessary because the calling code has pushed the pointer 3079 // of the correct base for us already, but the arguments need 3080 // to come after. 3081 unsigned Offset = align(primSize(PT_Ptr)); // instance pointer. 3082 for (const ParmVarDecl *PD : Ctor->parameters()) { 3083 PrimType PT = this->classify(PD->getType()).value_or(PT_Ptr); 3084 3085 if (!this->emitGetParam(PT, Offset, E)) 3086 return false; 3087 Offset += align(primSize(PT)); 3088 } 3089 3090 return this->emitCall(F, 0, E); 3091 } 3092 3093 template <class Emitter> 3094 bool Compiler<Emitter>::VisitCXXNewExpr(const CXXNewExpr *E) { 3095 assert(classifyPrim(E->getType()) == PT_Ptr); 3096 const Expr *Init = E->getInitializer(); 3097 QualType ElementType = E->getAllocatedType(); 3098 std::optional<PrimType> ElemT = classify(ElementType); 3099 unsigned PlacementArgs = E->getNumPlacementArgs(); 3100 const FunctionDecl *OperatorNew = E->getOperatorNew(); 3101 const Expr *PlacementDest = nullptr; 3102 bool IsNoThrow = false; 3103 3104 if (PlacementArgs != 0) { 3105 // FIXME: There is no restriction on this, but it's not clear that any 3106 // other form makes any sense. We get here for cases such as: 3107 // 3108 // new (std::align_val_t{N}) X(int) 3109 // 3110 // (which should presumably be valid only if N is a multiple of 3111 // alignof(int), and in any case can't be deallocated unless N is 3112 // alignof(X) and X has new-extended alignment). 3113 if (PlacementArgs == 1) { 3114 const Expr *Arg1 = E->getPlacementArg(0); 3115 if (Arg1->getType()->isNothrowT()) { 3116 if (!this->discard(Arg1)) 3117 return false; 3118 IsNoThrow = true; 3119 } else if (Ctx.getLangOpts().CPlusPlus26 && 3120 OperatorNew->isReservedGlobalPlacementOperator()) { 3121 // If we have a placement-new destination, we'll later use that instead 3122 // of allocating. 3123 PlacementDest = Arg1; 3124 } else { 3125 return this->emitInvalidNewDeleteExpr(E, E); 3126 } 3127 3128 } else { 3129 return this->emitInvalid(E); 3130 } 3131 } else if (!OperatorNew->isReplaceableGlobalAllocationFunction()) { 3132 return this->emitInvalidNewDeleteExpr(E, E); 3133 } 3134 3135 const Descriptor *Desc; 3136 if (!PlacementDest) { 3137 if (ElemT) { 3138 if (E->isArray()) 3139 Desc = nullptr; // We're not going to use it in this case. 3140 else 3141 Desc = P.createDescriptor(E, *ElemT, Descriptor::InlineDescMD, 3142 /*IsConst=*/false, /*IsTemporary=*/false, 3143 /*IsMutable=*/false); 3144 } else { 3145 Desc = P.createDescriptor( 3146 E, ElementType.getTypePtr(), 3147 E->isArray() ? std::nullopt : Descriptor::InlineDescMD, 3148 /*IsConst=*/false, /*IsTemporary=*/false, /*IsMutable=*/false, Init); 3149 } 3150 } 3151 3152 if (E->isArray()) { 3153 std::optional<const Expr *> ArraySizeExpr = E->getArraySize(); 3154 if (!ArraySizeExpr) 3155 return false; 3156 3157 const Expr *Stripped = *ArraySizeExpr; 3158 for (; auto *ICE = dyn_cast<ImplicitCastExpr>(Stripped); 3159 Stripped = ICE->getSubExpr()) 3160 if (ICE->getCastKind() != CK_NoOp && 3161 ICE->getCastKind() != CK_IntegralCast) 3162 break; 3163 3164 PrimType SizeT = classifyPrim(Stripped->getType()); 3165 3166 if (PlacementDest) { 3167 if (!this->visit(PlacementDest)) 3168 return false; 3169 if (!this->visit(Stripped)) 3170 return false; 3171 if (!this->emitCheckNewTypeMismatchArray(SizeT, E, E)) 3172 return false; 3173 } else { 3174 if (!this->visit(Stripped)) 3175 return false; 3176 3177 if (ElemT) { 3178 // N primitive elements. 3179 if (!this->emitAllocN(SizeT, *ElemT, E, IsNoThrow, E)) 3180 return false; 3181 } else { 3182 // N Composite elements. 3183 if (!this->emitAllocCN(SizeT, Desc, IsNoThrow, E)) 3184 return false; 3185 } 3186 } 3187 3188 if (Init && !this->visitInitializer(Init)) 3189 return false; 3190 3191 } else { 3192 if (PlacementDest) { 3193 if (!this->visit(PlacementDest)) 3194 return false; 3195 if (!this->emitCheckNewTypeMismatch(E, E)) 3196 return false; 3197 } else { 3198 // Allocate just one element. 3199 if (!this->emitAlloc(Desc, E)) 3200 return false; 3201 } 3202 3203 if (Init) { 3204 if (ElemT) { 3205 if (!this->visit(Init)) 3206 return false; 3207 3208 if (!this->emitInit(*ElemT, E)) 3209 return false; 3210 } else { 3211 // Composite. 3212 if (!this->visitInitializer(Init)) 3213 return false; 3214 } 3215 } 3216 } 3217 3218 if (DiscardResult) 3219 return this->emitPopPtr(E); 3220 3221 return true; 3222 } 3223 3224 template <class Emitter> 3225 bool Compiler<Emitter>::VisitCXXDeleteExpr(const CXXDeleteExpr *E) { 3226 const Expr *Arg = E->getArgument(); 3227 3228 const FunctionDecl *OperatorDelete = E->getOperatorDelete(); 3229 3230 if (!OperatorDelete->isReplaceableGlobalAllocationFunction()) 3231 return this->emitInvalidNewDeleteExpr(E, E); 3232 3233 // Arg must be an lvalue. 3234 if (!this->visit(Arg)) 3235 return false; 3236 3237 return this->emitFree(E->isArrayForm(), E); 3238 } 3239 3240 template <class Emitter> 3241 bool Compiler<Emitter>::VisitBlockExpr(const BlockExpr *E) { 3242 const Function *Func = nullptr; 3243 if (auto F = Compiler<ByteCodeEmitter>(Ctx, P).compileObjCBlock(E)) 3244 Func = F; 3245 3246 if (!Func) 3247 return false; 3248 return this->emitGetFnPtr(Func, E); 3249 } 3250 3251 template <class Emitter> 3252 bool Compiler<Emitter>::VisitExpressionTraitExpr(const ExpressionTraitExpr *E) { 3253 assert(Ctx.getLangOpts().CPlusPlus); 3254 return this->emitConstBool(E->getValue(), E); 3255 } 3256 3257 template <class Emitter> 3258 bool Compiler<Emitter>::VisitCXXUuidofExpr(const CXXUuidofExpr *E) { 3259 if (DiscardResult) 3260 return true; 3261 assert(!Initializing); 3262 3263 const MSGuidDecl *GuidDecl = E->getGuidDecl(); 3264 const RecordDecl *RD = GuidDecl->getType()->getAsRecordDecl(); 3265 assert(RD); 3266 // If the definiton of the result type is incomplete, just return a dummy. 3267 // If (and when) that is read from, we will fail, but not now. 3268 if (!RD->isCompleteDefinition()) { 3269 if (std::optional<unsigned> I = P.getOrCreateDummy(GuidDecl)) 3270 return this->emitGetPtrGlobal(*I, E); 3271 return false; 3272 } 3273 3274 std::optional<unsigned> GlobalIndex = P.getOrCreateGlobal(GuidDecl); 3275 if (!GlobalIndex) 3276 return false; 3277 if (!this->emitGetPtrGlobal(*GlobalIndex, E)) 3278 return false; 3279 3280 assert(this->getRecord(E->getType())); 3281 3282 const APValue &V = GuidDecl->getAsAPValue(); 3283 if (V.getKind() == APValue::None) 3284 return true; 3285 3286 assert(V.isStruct()); 3287 assert(V.getStructNumBases() == 0); 3288 if (!this->visitAPValueInitializer(V, E)) 3289 return false; 3290 3291 return this->emitFinishInit(E); 3292 } 3293 3294 template <class Emitter> 3295 bool Compiler<Emitter>::VisitRequiresExpr(const RequiresExpr *E) { 3296 assert(classifyPrim(E->getType()) == PT_Bool); 3297 if (DiscardResult) 3298 return true; 3299 return this->emitConstBool(E->isSatisfied(), E); 3300 } 3301 3302 template <class Emitter> 3303 bool Compiler<Emitter>::VisitConceptSpecializationExpr( 3304 const ConceptSpecializationExpr *E) { 3305 assert(classifyPrim(E->getType()) == PT_Bool); 3306 if (DiscardResult) 3307 return true; 3308 return this->emitConstBool(E->isSatisfied(), E); 3309 } 3310 3311 template <class Emitter> 3312 bool Compiler<Emitter>::VisitCXXRewrittenBinaryOperator( 3313 const CXXRewrittenBinaryOperator *E) { 3314 return this->delegate(E->getSemanticForm()); 3315 } 3316 3317 template <class Emitter> 3318 bool Compiler<Emitter>::VisitPseudoObjectExpr(const PseudoObjectExpr *E) { 3319 3320 for (const Expr *SemE : E->semantics()) { 3321 if (auto *OVE = dyn_cast<OpaqueValueExpr>(SemE)) { 3322 if (SemE == E->getResultExpr()) 3323 return false; 3324 3325 if (OVE->isUnique()) 3326 continue; 3327 3328 if (!this->discard(OVE)) 3329 return false; 3330 } else if (SemE == E->getResultExpr()) { 3331 if (!this->delegate(SemE)) 3332 return false; 3333 } else { 3334 if (!this->discard(SemE)) 3335 return false; 3336 } 3337 } 3338 return true; 3339 } 3340 3341 template <class Emitter> 3342 bool Compiler<Emitter>::VisitPackIndexingExpr(const PackIndexingExpr *E) { 3343 return this->delegate(E->getSelectedExpr()); 3344 } 3345 3346 template <class Emitter> 3347 bool Compiler<Emitter>::VisitRecoveryExpr(const RecoveryExpr *E) { 3348 return this->emitError(E); 3349 } 3350 3351 template <class Emitter> 3352 bool Compiler<Emitter>::VisitAddrLabelExpr(const AddrLabelExpr *E) { 3353 assert(E->getType()->isVoidPointerType()); 3354 3355 unsigned Offset = allocateLocalPrimitive( 3356 E->getLabel(), PT_Ptr, /*IsConst=*/true, /*IsExtended=*/false); 3357 3358 return this->emitGetLocal(PT_Ptr, Offset, E); 3359 } 3360 3361 template <class Emitter> 3362 bool Compiler<Emitter>::VisitConvertVectorExpr(const ConvertVectorExpr *E) { 3363 assert(Initializing); 3364 const auto *VT = E->getType()->castAs<VectorType>(); 3365 QualType ElemType = VT->getElementType(); 3366 PrimType ElemT = classifyPrim(ElemType); 3367 const Expr *Src = E->getSrcExpr(); 3368 PrimType SrcElemT = 3369 classifyPrim(Src->getType()->castAs<VectorType>()->getElementType()); 3370 3371 unsigned SrcOffset = this->allocateLocalPrimitive(Src, PT_Ptr, true, false); 3372 if (!this->visit(Src)) 3373 return false; 3374 if (!this->emitSetLocal(PT_Ptr, SrcOffset, E)) 3375 return false; 3376 3377 for (unsigned I = 0; I != VT->getNumElements(); ++I) { 3378 if (!this->emitGetLocal(PT_Ptr, SrcOffset, E)) 3379 return false; 3380 if (!this->emitArrayElemPop(SrcElemT, I, E)) 3381 return false; 3382 if (SrcElemT != ElemT) { 3383 if (!this->emitPrimCast(SrcElemT, ElemT, ElemType, E)) 3384 return false; 3385 } 3386 if (!this->emitInitElem(ElemT, I, E)) 3387 return false; 3388 } 3389 3390 return true; 3391 } 3392 3393 template <class Emitter> 3394 bool Compiler<Emitter>::VisitShuffleVectorExpr(const ShuffleVectorExpr *E) { 3395 assert(Initializing); 3396 assert(E->getNumSubExprs() > 2); 3397 3398 const Expr *Vecs[] = {E->getExpr(0), E->getExpr(1)}; 3399 const VectorType *VT = Vecs[0]->getType()->castAs<VectorType>(); 3400 PrimType ElemT = classifyPrim(VT->getElementType()); 3401 unsigned NumInputElems = VT->getNumElements(); 3402 unsigned NumOutputElems = E->getNumSubExprs() - 2; 3403 assert(NumOutputElems > 0); 3404 3405 // Save both input vectors to a local variable. 3406 unsigned VectorOffsets[2]; 3407 for (unsigned I = 0; I != 2; ++I) { 3408 VectorOffsets[I] = this->allocateLocalPrimitive( 3409 Vecs[I], PT_Ptr, /*IsConst=*/true, /*IsExtended=*/false); 3410 if (!this->visit(Vecs[I])) 3411 return false; 3412 if (!this->emitSetLocal(PT_Ptr, VectorOffsets[I], E)) 3413 return false; 3414 } 3415 for (unsigned I = 0; I != NumOutputElems; ++I) { 3416 APSInt ShuffleIndex = E->getShuffleMaskIdx(Ctx.getASTContext(), I); 3417 if (ShuffleIndex == -1) 3418 return this->emitInvalid(E); // FIXME: Better diagnostic. 3419 3420 assert(ShuffleIndex < (NumInputElems * 2)); 3421 if (!this->emitGetLocal(PT_Ptr, 3422 VectorOffsets[ShuffleIndex >= NumInputElems], E)) 3423 return false; 3424 unsigned InputVectorIndex = ShuffleIndex.getZExtValue() % NumInputElems; 3425 if (!this->emitArrayElemPop(ElemT, InputVectorIndex, E)) 3426 return false; 3427 3428 if (!this->emitInitElem(ElemT, I, E)) 3429 return false; 3430 } 3431 3432 return true; 3433 } 3434 3435 template <class Emitter> 3436 bool Compiler<Emitter>::VisitExtVectorElementExpr( 3437 const ExtVectorElementExpr *E) { 3438 const Expr *Base = E->getBase(); 3439 assert( 3440 Base->getType()->isVectorType() || 3441 Base->getType()->getAs<PointerType>()->getPointeeType()->isVectorType()); 3442 3443 SmallVector<uint32_t, 4> Indices; 3444 E->getEncodedElementAccess(Indices); 3445 3446 if (Indices.size() == 1) { 3447 if (!this->visit(Base)) 3448 return false; 3449 3450 if (E->isGLValue()) { 3451 if (!this->emitConstUint32(Indices[0], E)) 3452 return false; 3453 return this->emitArrayElemPtrPop(PT_Uint32, E); 3454 } 3455 // Else, also load the value. 3456 return this->emitArrayElemPop(classifyPrim(E->getType()), Indices[0], E); 3457 } 3458 3459 // Create a local variable for the base. 3460 unsigned BaseOffset = allocateLocalPrimitive(Base, PT_Ptr, /*IsConst=*/true, 3461 /*IsExtended=*/false); 3462 if (!this->visit(Base)) 3463 return false; 3464 if (!this->emitSetLocal(PT_Ptr, BaseOffset, E)) 3465 return false; 3466 3467 // Now the vector variable for the return value. 3468 if (!Initializing) { 3469 std::optional<unsigned> ResultIndex; 3470 ResultIndex = allocateLocal(E); 3471 if (!ResultIndex) 3472 return false; 3473 if (!this->emitGetPtrLocal(*ResultIndex, E)) 3474 return false; 3475 } 3476 3477 assert(Indices.size() == E->getType()->getAs<VectorType>()->getNumElements()); 3478 3479 PrimType ElemT = 3480 classifyPrim(E->getType()->getAs<VectorType>()->getElementType()); 3481 uint32_t DstIndex = 0; 3482 for (uint32_t I : Indices) { 3483 if (!this->emitGetLocal(PT_Ptr, BaseOffset, E)) 3484 return false; 3485 if (!this->emitArrayElemPop(ElemT, I, E)) 3486 return false; 3487 if (!this->emitInitElem(ElemT, DstIndex, E)) 3488 return false; 3489 ++DstIndex; 3490 } 3491 3492 // Leave the result pointer on the stack. 3493 assert(!DiscardResult); 3494 return true; 3495 } 3496 3497 template <class Emitter> 3498 bool Compiler<Emitter>::VisitObjCBoxedExpr(const ObjCBoxedExpr *E) { 3499 const Expr *SubExpr = E->getSubExpr(); 3500 if (!E->isExpressibleAsConstantInitializer()) 3501 return this->discard(SubExpr) && this->emitInvalid(E); 3502 3503 assert(classifyPrim(E) == PT_Ptr); 3504 if (std::optional<unsigned> I = P.getOrCreateDummy(E)) 3505 return this->emitGetPtrGlobal(*I, E); 3506 3507 return false; 3508 } 3509 3510 template <class Emitter> 3511 bool Compiler<Emitter>::VisitCXXStdInitializerListExpr( 3512 const CXXStdInitializerListExpr *E) { 3513 const Expr *SubExpr = E->getSubExpr(); 3514 const ConstantArrayType *ArrayType = 3515 Ctx.getASTContext().getAsConstantArrayType(SubExpr->getType()); 3516 const Record *R = getRecord(E->getType()); 3517 assert(Initializing); 3518 assert(SubExpr->isGLValue()); 3519 3520 if (!this->visit(SubExpr)) 3521 return false; 3522 if (!this->emitConstUint8(0, E)) 3523 return false; 3524 if (!this->emitArrayElemPtrPopUint8(E)) 3525 return false; 3526 if (!this->emitInitFieldPtr(R->getField(0u)->Offset, E)) 3527 return false; 3528 3529 PrimType SecondFieldT = classifyPrim(R->getField(1u)->Decl->getType()); 3530 if (isIntegralType(SecondFieldT)) { 3531 if (!this->emitConst(static_cast<APSInt>(ArrayType->getSize()), 3532 SecondFieldT, E)) 3533 return false; 3534 return this->emitInitField(SecondFieldT, R->getField(1u)->Offset, E); 3535 } 3536 assert(SecondFieldT == PT_Ptr); 3537 3538 if (!this->emitGetFieldPtr(R->getField(0u)->Offset, E)) 3539 return false; 3540 if (!this->emitExpandPtr(E)) 3541 return false; 3542 if (!this->emitConst(static_cast<APSInt>(ArrayType->getSize()), PT_Uint64, E)) 3543 return false; 3544 if (!this->emitArrayElemPtrPop(PT_Uint64, E)) 3545 return false; 3546 return this->emitInitFieldPtr(R->getField(1u)->Offset, E); 3547 } 3548 3549 template <class Emitter> 3550 bool Compiler<Emitter>::VisitStmtExpr(const StmtExpr *E) { 3551 BlockScope<Emitter> BS(this); 3552 StmtExprScope<Emitter> SS(this); 3553 3554 const CompoundStmt *CS = E->getSubStmt(); 3555 const Stmt *Result = CS->getStmtExprResult(); 3556 for (const Stmt *S : CS->body()) { 3557 if (S != Result) { 3558 if (!this->visitStmt(S)) 3559 return false; 3560 continue; 3561 } 3562 3563 assert(S == Result); 3564 if (const Expr *ResultExpr = dyn_cast<Expr>(S)) 3565 return this->delegate(ResultExpr); 3566 return this->emitUnsupported(E); 3567 } 3568 3569 return BS.destroyLocals(); 3570 } 3571 3572 template <class Emitter> bool Compiler<Emitter>::discard(const Expr *E) { 3573 OptionScope<Emitter> Scope(this, /*NewDiscardResult=*/true, 3574 /*NewInitializing=*/false); 3575 return this->Visit(E); 3576 } 3577 3578 template <class Emitter> bool Compiler<Emitter>::delegate(const Expr *E) { 3579 // We're basically doing: 3580 // OptionScope<Emitter> Scope(this, DicardResult, Initializing); 3581 // but that's unnecessary of course. 3582 return this->Visit(E); 3583 } 3584 3585 template <class Emitter> bool Compiler<Emitter>::visit(const Expr *E) { 3586 if (E->getType().isNull()) 3587 return false; 3588 3589 if (E->getType()->isVoidType()) 3590 return this->discard(E); 3591 3592 // Create local variable to hold the return value. 3593 if (!E->isGLValue() && !E->getType()->isAnyComplexType() && 3594 !classify(E->getType())) { 3595 std::optional<unsigned> LocalIndex = allocateLocal(E); 3596 if (!LocalIndex) 3597 return false; 3598 3599 if (!this->emitGetPtrLocal(*LocalIndex, E)) 3600 return false; 3601 return this->visitInitializer(E); 3602 } 3603 3604 // Otherwise,we have a primitive return value, produce the value directly 3605 // and push it on the stack. 3606 OptionScope<Emitter> Scope(this, /*NewDiscardResult=*/false, 3607 /*NewInitializing=*/false); 3608 return this->Visit(E); 3609 } 3610 3611 template <class Emitter> 3612 bool Compiler<Emitter>::visitInitializer(const Expr *E) { 3613 assert(!classify(E->getType())); 3614 3615 OptionScope<Emitter> Scope(this, /*NewDiscardResult=*/false, 3616 /*NewInitializing=*/true); 3617 return this->Visit(E); 3618 } 3619 3620 template <class Emitter> bool Compiler<Emitter>::visitBool(const Expr *E) { 3621 std::optional<PrimType> T = classify(E->getType()); 3622 if (!T) { 3623 // Convert complex values to bool. 3624 if (E->getType()->isAnyComplexType()) { 3625 if (!this->visit(E)) 3626 return false; 3627 return this->emitComplexBoolCast(E); 3628 } 3629 return false; 3630 } 3631 3632 if (!this->visit(E)) 3633 return false; 3634 3635 if (T == PT_Bool) 3636 return true; 3637 3638 // Convert pointers to bool. 3639 if (T == PT_Ptr || T == PT_FnPtr) { 3640 if (!this->emitNull(*T, nullptr, E)) 3641 return false; 3642 return this->emitNE(*T, E); 3643 } 3644 3645 // Or Floats. 3646 if (T == PT_Float) 3647 return this->emitCastFloatingIntegralBool(getFPOptions(E), E); 3648 3649 // Or anything else we can. 3650 return this->emitCast(*T, PT_Bool, E); 3651 } 3652 3653 template <class Emitter> 3654 bool Compiler<Emitter>::visitZeroInitializer(PrimType T, QualType QT, 3655 const Expr *E) { 3656 switch (T) { 3657 case PT_Bool: 3658 return this->emitZeroBool(E); 3659 case PT_Sint8: 3660 return this->emitZeroSint8(E); 3661 case PT_Uint8: 3662 return this->emitZeroUint8(E); 3663 case PT_Sint16: 3664 return this->emitZeroSint16(E); 3665 case PT_Uint16: 3666 return this->emitZeroUint16(E); 3667 case PT_Sint32: 3668 return this->emitZeroSint32(E); 3669 case PT_Uint32: 3670 return this->emitZeroUint32(E); 3671 case PT_Sint64: 3672 return this->emitZeroSint64(E); 3673 case PT_Uint64: 3674 return this->emitZeroUint64(E); 3675 case PT_IntAP: 3676 return this->emitZeroIntAP(Ctx.getBitWidth(QT), E); 3677 case PT_IntAPS: 3678 return this->emitZeroIntAPS(Ctx.getBitWidth(QT), E); 3679 case PT_Ptr: 3680 return this->emitNullPtr(nullptr, E); 3681 case PT_FnPtr: 3682 return this->emitNullFnPtr(nullptr, E); 3683 case PT_MemberPtr: 3684 return this->emitNullMemberPtr(nullptr, E); 3685 case PT_Float: { 3686 return this->emitConstFloat(APFloat::getZero(Ctx.getFloatSemantics(QT)), E); 3687 } 3688 } 3689 llvm_unreachable("unknown primitive type"); 3690 } 3691 3692 template <class Emitter> 3693 bool Compiler<Emitter>::visitZeroRecordInitializer(const Record *R, 3694 const Expr *E) { 3695 assert(E); 3696 assert(R); 3697 // Fields 3698 for (const Record::Field &Field : R->fields()) { 3699 if (Field.Decl->isUnnamedBitField()) 3700 continue; 3701 3702 const Descriptor *D = Field.Desc; 3703 if (D->isPrimitive()) { 3704 QualType QT = D->getType(); 3705 PrimType T = classifyPrim(D->getType()); 3706 if (!this->visitZeroInitializer(T, QT, E)) 3707 return false; 3708 if (!this->emitInitField(T, Field.Offset, E)) 3709 return false; 3710 if (R->isUnion()) 3711 break; 3712 continue; 3713 } 3714 3715 if (!this->emitGetPtrField(Field.Offset, E)) 3716 return false; 3717 3718 if (D->isPrimitiveArray()) { 3719 QualType ET = D->getElemQualType(); 3720 PrimType T = classifyPrim(ET); 3721 for (uint32_t I = 0, N = D->getNumElems(); I != N; ++I) { 3722 if (!this->visitZeroInitializer(T, ET, E)) 3723 return false; 3724 if (!this->emitInitElem(T, I, E)) 3725 return false; 3726 } 3727 } else if (D->isCompositeArray()) { 3728 const Record *ElemRecord = D->ElemDesc->ElemRecord; 3729 assert(D->ElemDesc->ElemRecord); 3730 for (uint32_t I = 0, N = D->getNumElems(); I != N; ++I) { 3731 if (!this->emitConstUint32(I, E)) 3732 return false; 3733 if (!this->emitArrayElemPtr(PT_Uint32, E)) 3734 return false; 3735 if (!this->visitZeroRecordInitializer(ElemRecord, E)) 3736 return false; 3737 if (!this->emitPopPtr(E)) 3738 return false; 3739 } 3740 } else if (D->isRecord()) { 3741 if (!this->visitZeroRecordInitializer(D->ElemRecord, E)) 3742 return false; 3743 } else { 3744 assert(false); 3745 } 3746 3747 if (!this->emitFinishInitPop(E)) 3748 return false; 3749 3750 // C++11 [dcl.init]p5: If T is a (possibly cv-qualified) union type, the 3751 // object's first non-static named data member is zero-initialized 3752 if (R->isUnion()) 3753 break; 3754 } 3755 3756 for (const Record::Base &B : R->bases()) { 3757 if (!this->emitGetPtrBase(B.Offset, E)) 3758 return false; 3759 if (!this->visitZeroRecordInitializer(B.R, E)) 3760 return false; 3761 if (!this->emitFinishInitPop(E)) 3762 return false; 3763 } 3764 3765 // FIXME: Virtual bases. 3766 3767 return true; 3768 } 3769 3770 template <class Emitter> 3771 template <typename T> 3772 bool Compiler<Emitter>::emitConst(T Value, PrimType Ty, const Expr *E) { 3773 switch (Ty) { 3774 case PT_Sint8: 3775 return this->emitConstSint8(Value, E); 3776 case PT_Uint8: 3777 return this->emitConstUint8(Value, E); 3778 case PT_Sint16: 3779 return this->emitConstSint16(Value, E); 3780 case PT_Uint16: 3781 return this->emitConstUint16(Value, E); 3782 case PT_Sint32: 3783 return this->emitConstSint32(Value, E); 3784 case PT_Uint32: 3785 return this->emitConstUint32(Value, E); 3786 case PT_Sint64: 3787 return this->emitConstSint64(Value, E); 3788 case PT_Uint64: 3789 return this->emitConstUint64(Value, E); 3790 case PT_Bool: 3791 return this->emitConstBool(Value, E); 3792 case PT_Ptr: 3793 case PT_FnPtr: 3794 case PT_MemberPtr: 3795 case PT_Float: 3796 case PT_IntAP: 3797 case PT_IntAPS: 3798 llvm_unreachable("Invalid integral type"); 3799 break; 3800 } 3801 llvm_unreachable("unknown primitive type"); 3802 } 3803 3804 template <class Emitter> 3805 template <typename T> 3806 bool Compiler<Emitter>::emitConst(T Value, const Expr *E) { 3807 return this->emitConst(Value, classifyPrim(E->getType()), E); 3808 } 3809 3810 template <class Emitter> 3811 bool Compiler<Emitter>::emitConst(const APSInt &Value, PrimType Ty, 3812 const Expr *E) { 3813 if (Ty == PT_IntAPS) 3814 return this->emitConstIntAPS(Value, E); 3815 if (Ty == PT_IntAP) 3816 return this->emitConstIntAP(Value, E); 3817 3818 if (Value.isSigned()) 3819 return this->emitConst(Value.getSExtValue(), Ty, E); 3820 return this->emitConst(Value.getZExtValue(), Ty, E); 3821 } 3822 3823 template <class Emitter> 3824 bool Compiler<Emitter>::emitConst(const APSInt &Value, const Expr *E) { 3825 return this->emitConst(Value, classifyPrim(E->getType()), E); 3826 } 3827 3828 template <class Emitter> 3829 unsigned Compiler<Emitter>::allocateLocalPrimitive(DeclTy &&Src, PrimType Ty, 3830 bool IsConst, 3831 bool IsExtended) { 3832 // Make sure we don't accidentally register the same decl twice. 3833 if (const auto *VD = 3834 dyn_cast_if_present<ValueDecl>(Src.dyn_cast<const Decl *>())) { 3835 assert(!P.getGlobal(VD)); 3836 assert(!Locals.contains(VD)); 3837 (void)VD; 3838 } 3839 3840 // FIXME: There are cases where Src.is<Expr*>() is wrong, e.g. 3841 // (int){12} in C. Consider using Expr::isTemporaryObject() instead 3842 // or isa<MaterializeTemporaryExpr>(). 3843 Descriptor *D = P.createDescriptor(Src, Ty, Descriptor::InlineDescMD, IsConst, 3844 Src.is<const Expr *>()); 3845 Scope::Local Local = this->createLocal(D); 3846 if (auto *VD = dyn_cast_if_present<ValueDecl>(Src.dyn_cast<const Decl *>())) 3847 Locals.insert({VD, Local}); 3848 VarScope->add(Local, IsExtended); 3849 return Local.Offset; 3850 } 3851 3852 template <class Emitter> 3853 std::optional<unsigned> 3854 Compiler<Emitter>::allocateLocal(DeclTy &&Src, const ValueDecl *ExtendingDecl) { 3855 // Make sure we don't accidentally register the same decl twice. 3856 if ([[maybe_unused]] const auto *VD = 3857 dyn_cast_if_present<ValueDecl>(Src.dyn_cast<const Decl *>())) { 3858 assert(!P.getGlobal(VD)); 3859 assert(!Locals.contains(VD)); 3860 } 3861 3862 QualType Ty; 3863 const ValueDecl *Key = nullptr; 3864 const Expr *Init = nullptr; 3865 bool IsTemporary = false; 3866 if (auto *VD = dyn_cast_if_present<ValueDecl>(Src.dyn_cast<const Decl *>())) { 3867 Key = VD; 3868 Ty = VD->getType(); 3869 3870 if (const auto *VarD = dyn_cast<VarDecl>(VD)) 3871 Init = VarD->getInit(); 3872 } 3873 if (auto *E = Src.dyn_cast<const Expr *>()) { 3874 IsTemporary = true; 3875 Ty = E->getType(); 3876 } 3877 3878 Descriptor *D = P.createDescriptor( 3879 Src, Ty.getTypePtr(), Descriptor::InlineDescMD, Ty.isConstQualified(), 3880 IsTemporary, /*IsMutable=*/false, Init); 3881 if (!D) 3882 return std::nullopt; 3883 3884 Scope::Local Local = this->createLocal(D); 3885 if (Key) 3886 Locals.insert({Key, Local}); 3887 if (ExtendingDecl) 3888 VarScope->addExtended(Local, ExtendingDecl); 3889 else 3890 VarScope->add(Local, false); 3891 return Local.Offset; 3892 } 3893 3894 template <class Emitter> 3895 unsigned Compiler<Emitter>::allocateTemporary(const Expr *E) { 3896 QualType Ty = E->getType(); 3897 assert(!Ty->isRecordType()); 3898 3899 Descriptor *D = P.createDescriptor( 3900 E, Ty.getTypePtr(), Descriptor::InlineDescMD, Ty.isConstQualified(), 3901 /*IsTemporary=*/true, /*IsMutable=*/false, /*Init=*/nullptr); 3902 assert(D); 3903 3904 Scope::Local Local = this->createLocal(D); 3905 VariableScope<Emitter> *S = VarScope; 3906 assert(S); 3907 // Attach to topmost scope. 3908 while (S->getParent()) 3909 S = S->getParent(); 3910 assert(S && !S->getParent()); 3911 S->addLocal(Local); 3912 return Local.Offset; 3913 } 3914 3915 template <class Emitter> 3916 const RecordType *Compiler<Emitter>::getRecordTy(QualType Ty) { 3917 if (const PointerType *PT = dyn_cast<PointerType>(Ty)) 3918 return PT->getPointeeType()->getAs<RecordType>(); 3919 return Ty->getAs<RecordType>(); 3920 } 3921 3922 template <class Emitter> Record *Compiler<Emitter>::getRecord(QualType Ty) { 3923 if (const auto *RecordTy = getRecordTy(Ty)) 3924 return getRecord(RecordTy->getDecl()); 3925 return nullptr; 3926 } 3927 3928 template <class Emitter> 3929 Record *Compiler<Emitter>::getRecord(const RecordDecl *RD) { 3930 return P.getOrCreateRecord(RD); 3931 } 3932 3933 template <class Emitter> 3934 const Function *Compiler<Emitter>::getFunction(const FunctionDecl *FD) { 3935 return Ctx.getOrCreateFunction(FD); 3936 } 3937 3938 template <class Emitter> 3939 bool Compiler<Emitter>::visitExpr(const Expr *E, bool DestroyToplevelScope) { 3940 LocalScope<Emitter> RootScope(this); 3941 3942 auto maybeDestroyLocals = [&]() -> bool { 3943 if (DestroyToplevelScope) 3944 return RootScope.destroyLocals(); 3945 return true; 3946 }; 3947 3948 // Void expressions. 3949 if (E->getType()->isVoidType()) { 3950 if (!visit(E)) 3951 return false; 3952 return this->emitRetVoid(E) && maybeDestroyLocals(); 3953 } 3954 3955 // Expressions with a primitive return type. 3956 if (std::optional<PrimType> T = classify(E)) { 3957 if (!visit(E)) 3958 return false; 3959 3960 return this->emitRet(*T, E) && maybeDestroyLocals(); 3961 } 3962 3963 // Expressions with a composite return type. 3964 // For us, that means everything we don't 3965 // have a PrimType for. 3966 if (std::optional<unsigned> LocalOffset = this->allocateLocal(E)) { 3967 if (!this->emitGetPtrLocal(*LocalOffset, E)) 3968 return false; 3969 3970 if (!visitInitializer(E)) 3971 return false; 3972 3973 if (!this->emitFinishInit(E)) 3974 return false; 3975 // We are destroying the locals AFTER the Ret op. 3976 // The Ret op needs to copy the (alive) values, but the 3977 // destructors may still turn the entire expression invalid. 3978 return this->emitRetValue(E) && maybeDestroyLocals(); 3979 } 3980 3981 (void)maybeDestroyLocals(); 3982 return false; 3983 } 3984 3985 template <class Emitter> 3986 VarCreationState Compiler<Emitter>::visitDecl(const VarDecl *VD) { 3987 3988 auto R = this->visitVarDecl(VD, /*Toplevel=*/true); 3989 3990 if (R.notCreated()) 3991 return R; 3992 3993 if (R) 3994 return true; 3995 3996 if (!R && Context::shouldBeGloballyIndexed(VD)) { 3997 if (auto GlobalIndex = P.getGlobal(VD)) { 3998 Block *GlobalBlock = P.getGlobal(*GlobalIndex); 3999 GlobalInlineDescriptor &GD = 4000 *reinterpret_cast<GlobalInlineDescriptor *>(GlobalBlock->rawData()); 4001 4002 GD.InitState = GlobalInitState::InitializerFailed; 4003 GlobalBlock->invokeDtor(); 4004 } 4005 } 4006 4007 return R; 4008 } 4009 4010 /// Toplevel visitDeclAndReturn(). 4011 /// We get here from evaluateAsInitializer(). 4012 /// We need to evaluate the initializer and return its value. 4013 template <class Emitter> 4014 bool Compiler<Emitter>::visitDeclAndReturn(const VarDecl *VD, 4015 bool ConstantContext) { 4016 std::optional<PrimType> VarT = classify(VD->getType()); 4017 4018 // We only create variables if we're evaluating in a constant context. 4019 // Otherwise, just evaluate the initializer and return it. 4020 if (!ConstantContext) { 4021 DeclScope<Emitter> LS(this, VD); 4022 if (!this->visit(VD->getAnyInitializer())) 4023 return false; 4024 return this->emitRet(VarT.value_or(PT_Ptr), VD) && LS.destroyLocals(); 4025 } 4026 4027 LocalScope<Emitter> VDScope(this, VD); 4028 if (!this->visitVarDecl(VD, /*Toplevel=*/true)) 4029 return false; 4030 4031 if (Context::shouldBeGloballyIndexed(VD)) { 4032 auto GlobalIndex = P.getGlobal(VD); 4033 assert(GlobalIndex); // visitVarDecl() didn't return false. 4034 if (VarT) { 4035 if (!this->emitGetGlobalUnchecked(*VarT, *GlobalIndex, VD)) 4036 return false; 4037 } else { 4038 if (!this->emitGetPtrGlobal(*GlobalIndex, VD)) 4039 return false; 4040 } 4041 } else { 4042 auto Local = Locals.find(VD); 4043 assert(Local != Locals.end()); // Same here. 4044 if (VarT) { 4045 if (!this->emitGetLocal(*VarT, Local->second.Offset, VD)) 4046 return false; 4047 } else { 4048 if (!this->emitGetPtrLocal(Local->second.Offset, VD)) 4049 return false; 4050 } 4051 } 4052 4053 // Return the value. 4054 if (!this->emitRet(VarT.value_or(PT_Ptr), VD)) { 4055 // If the Ret above failed and this is a global variable, mark it as 4056 // uninitialized, even everything else succeeded. 4057 if (Context::shouldBeGloballyIndexed(VD)) { 4058 auto GlobalIndex = P.getGlobal(VD); 4059 assert(GlobalIndex); 4060 Block *GlobalBlock = P.getGlobal(*GlobalIndex); 4061 GlobalInlineDescriptor &GD = 4062 *reinterpret_cast<GlobalInlineDescriptor *>(GlobalBlock->rawData()); 4063 4064 GD.InitState = GlobalInitState::InitializerFailed; 4065 GlobalBlock->invokeDtor(); 4066 } 4067 return false; 4068 } 4069 4070 return VDScope.destroyLocals(); 4071 } 4072 4073 template <class Emitter> 4074 VarCreationState Compiler<Emitter>::visitVarDecl(const VarDecl *VD, 4075 bool Toplevel) { 4076 // We don't know what to do with these, so just return false. 4077 if (VD->getType().isNull()) 4078 return false; 4079 4080 // This case is EvalEmitter-only. If we won't create any instructions for the 4081 // initializer anyway, don't bother creating the variable in the first place. 4082 if (!this->isActive()) 4083 return VarCreationState::NotCreated(); 4084 4085 const Expr *Init = VD->getInit(); 4086 std::optional<PrimType> VarT = classify(VD->getType()); 4087 4088 if (Init && Init->isValueDependent()) 4089 return false; 4090 4091 if (Context::shouldBeGloballyIndexed(VD)) { 4092 auto checkDecl = [&]() -> bool { 4093 bool NeedsOp = !Toplevel && VD->isLocalVarDecl() && VD->isStaticLocal(); 4094 return !NeedsOp || this->emitCheckDecl(VD, VD); 4095 }; 4096 4097 auto initGlobal = [&](unsigned GlobalIndex) -> bool { 4098 assert(Init); 4099 4100 if (VarT) { 4101 if (!this->visit(Init)) 4102 return checkDecl() && false; 4103 4104 return checkDecl() && this->emitInitGlobal(*VarT, GlobalIndex, VD); 4105 } 4106 4107 if (!checkDecl()) 4108 return false; 4109 4110 if (!this->emitGetPtrGlobal(GlobalIndex, Init)) 4111 return false; 4112 4113 if (!visitInitializer(Init)) 4114 return false; 4115 4116 if (!this->emitFinishInit(Init)) 4117 return false; 4118 4119 return this->emitPopPtr(Init); 4120 }; 4121 4122 DeclScope<Emitter> LocalScope(this, VD); 4123 4124 // We've already seen and initialized this global. 4125 if (std::optional<unsigned> GlobalIndex = P.getGlobal(VD)) { 4126 if (P.getPtrGlobal(*GlobalIndex).isInitialized()) 4127 return checkDecl(); 4128 4129 // The previous attempt at initialization might've been unsuccessful, 4130 // so let's try this one. 4131 return Init && checkDecl() && initGlobal(*GlobalIndex); 4132 } 4133 4134 std::optional<unsigned> GlobalIndex = P.createGlobal(VD, Init); 4135 4136 if (!GlobalIndex) 4137 return false; 4138 4139 return !Init || (checkDecl() && initGlobal(*GlobalIndex)); 4140 } else { 4141 InitLinkScope<Emitter> ILS(this, InitLink::Decl(VD)); 4142 4143 if (VarT) { 4144 unsigned Offset = this->allocateLocalPrimitive( 4145 VD, *VarT, VD->getType().isConstQualified()); 4146 if (Init) { 4147 // If this is a toplevel declaration, create a scope for the 4148 // initializer. 4149 if (Toplevel) { 4150 LocalScope<Emitter> Scope(this); 4151 if (!this->visit(Init)) 4152 return false; 4153 return this->emitSetLocal(*VarT, Offset, VD) && Scope.destroyLocals(); 4154 } else { 4155 if (!this->visit(Init)) 4156 return false; 4157 return this->emitSetLocal(*VarT, Offset, VD); 4158 } 4159 } 4160 } else { 4161 if (std::optional<unsigned> Offset = this->allocateLocal(VD)) { 4162 if (!Init) 4163 return true; 4164 4165 if (!this->emitGetPtrLocal(*Offset, Init)) 4166 return false; 4167 4168 if (!visitInitializer(Init)) 4169 return false; 4170 4171 if (!this->emitFinishInit(Init)) 4172 return false; 4173 4174 return this->emitPopPtr(Init); 4175 } 4176 return false; 4177 } 4178 return true; 4179 } 4180 4181 return false; 4182 } 4183 4184 template <class Emitter> 4185 bool Compiler<Emitter>::visitAPValue(const APValue &Val, PrimType ValType, 4186 const Expr *E) { 4187 assert(!DiscardResult); 4188 if (Val.isInt()) 4189 return this->emitConst(Val.getInt(), ValType, E); 4190 else if (Val.isFloat()) 4191 return this->emitConstFloat(Val.getFloat(), E); 4192 4193 if (Val.isLValue()) { 4194 if (Val.isNullPointer()) 4195 return this->emitNull(ValType, nullptr, E); 4196 APValue::LValueBase Base = Val.getLValueBase(); 4197 if (const Expr *BaseExpr = Base.dyn_cast<const Expr *>()) 4198 return this->visit(BaseExpr); 4199 else if (const auto *VD = Base.dyn_cast<const ValueDecl *>()) { 4200 return this->visitDeclRef(VD, E); 4201 } 4202 } else if (Val.isMemberPointer()) { 4203 if (const ValueDecl *MemberDecl = Val.getMemberPointerDecl()) 4204 return this->emitGetMemberPtr(MemberDecl, E); 4205 return this->emitNullMemberPtr(nullptr, E); 4206 } 4207 4208 return false; 4209 } 4210 4211 template <class Emitter> 4212 bool Compiler<Emitter>::visitAPValueInitializer(const APValue &Val, 4213 const Expr *E) { 4214 4215 if (Val.isStruct()) { 4216 const Record *R = this->getRecord(E->getType()); 4217 assert(R); 4218 for (unsigned I = 0, N = Val.getStructNumFields(); I != N; ++I) { 4219 const APValue &F = Val.getStructField(I); 4220 const Record::Field *RF = R->getField(I); 4221 4222 if (F.isInt() || F.isFloat() || F.isLValue() || F.isMemberPointer()) { 4223 PrimType T = classifyPrim(RF->Decl->getType()); 4224 if (!this->visitAPValue(F, T, E)) 4225 return false; 4226 if (!this->emitInitField(T, RF->Offset, E)) 4227 return false; 4228 } else if (F.isArray()) { 4229 assert(RF->Desc->isPrimitiveArray()); 4230 const auto *ArrType = RF->Decl->getType()->getAsArrayTypeUnsafe(); 4231 PrimType ElemT = classifyPrim(ArrType->getElementType()); 4232 assert(ArrType); 4233 4234 if (!this->emitGetPtrField(RF->Offset, E)) 4235 return false; 4236 4237 for (unsigned A = 0, AN = F.getArraySize(); A != AN; ++A) { 4238 if (!this->visitAPValue(F.getArrayInitializedElt(A), ElemT, E)) 4239 return false; 4240 if (!this->emitInitElem(ElemT, A, E)) 4241 return false; 4242 } 4243 4244 if (!this->emitPopPtr(E)) 4245 return false; 4246 } else if (F.isStruct() || F.isUnion()) { 4247 if (!this->emitGetPtrField(RF->Offset, E)) 4248 return false; 4249 if (!this->visitAPValueInitializer(F, E)) 4250 return false; 4251 if (!this->emitPopPtr(E)) 4252 return false; 4253 } else { 4254 assert(false && "I don't think this should be possible"); 4255 } 4256 } 4257 return true; 4258 } else if (Val.isUnion()) { 4259 const FieldDecl *UnionField = Val.getUnionField(); 4260 const Record *R = this->getRecord(UnionField->getParent()); 4261 assert(R); 4262 const APValue &F = Val.getUnionValue(); 4263 const Record::Field *RF = R->getField(UnionField); 4264 PrimType T = classifyPrim(RF->Decl->getType()); 4265 if (!this->visitAPValue(F, T, E)) 4266 return false; 4267 return this->emitInitField(T, RF->Offset, E); 4268 } 4269 // TODO: Other types. 4270 4271 return false; 4272 } 4273 4274 template <class Emitter> 4275 bool Compiler<Emitter>::VisitBuiltinCallExpr(const CallExpr *E, 4276 unsigned BuiltinID) { 4277 const Function *Func = getFunction(E->getDirectCallee()); 4278 if (!Func) 4279 return false; 4280 4281 // For these, we're expected to ultimately return an APValue pointing 4282 // to the CallExpr. This is needed to get the correct codegen. 4283 if (BuiltinID == Builtin::BI__builtin___CFStringMakeConstantString || 4284 BuiltinID == Builtin::BI__builtin___NSStringMakeConstantString || 4285 BuiltinID == Builtin::BI__builtin_ptrauth_sign_constant || 4286 BuiltinID == Builtin::BI__builtin_function_start) { 4287 if (std::optional<unsigned> GlobalOffset = P.getOrCreateDummy(E)) { 4288 if (!this->emitGetPtrGlobal(*GlobalOffset, E)) 4289 return false; 4290 4291 if (PrimType PT = classifyPrim(E); PT != PT_Ptr && isPtrType(PT)) 4292 return this->emitDecayPtr(PT_Ptr, PT, E); 4293 return true; 4294 } 4295 return false; 4296 } 4297 4298 QualType ReturnType = E->getType(); 4299 std::optional<PrimType> ReturnT = classify(E); 4300 4301 // Non-primitive return type. Prepare storage. 4302 if (!Initializing && !ReturnT && !ReturnType->isVoidType()) { 4303 std::optional<unsigned> LocalIndex = allocateLocal(E); 4304 if (!LocalIndex) 4305 return false; 4306 if (!this->emitGetPtrLocal(*LocalIndex, E)) 4307 return false; 4308 } 4309 4310 if (!Func->isUnevaluatedBuiltin()) { 4311 // Put arguments on the stack. 4312 for (const auto *Arg : E->arguments()) { 4313 if (!this->visit(Arg)) 4314 return false; 4315 } 4316 } 4317 4318 if (!this->emitCallBI(Func, E, BuiltinID, E)) 4319 return false; 4320 4321 if (DiscardResult && !ReturnType->isVoidType()) { 4322 assert(ReturnT); 4323 return this->emitPop(*ReturnT, E); 4324 } 4325 4326 return true; 4327 } 4328 4329 template <class Emitter> 4330 bool Compiler<Emitter>::VisitCallExpr(const CallExpr *E) { 4331 if (unsigned BuiltinID = E->getBuiltinCallee()) 4332 return VisitBuiltinCallExpr(E, BuiltinID); 4333 4334 const FunctionDecl *FuncDecl = E->getDirectCallee(); 4335 // Calls to replaceable operator new/operator delete. 4336 if (FuncDecl && FuncDecl->isReplaceableGlobalAllocationFunction()) { 4337 if (FuncDecl->getDeclName().getCXXOverloadedOperator() == OO_New || 4338 FuncDecl->getDeclName().getCXXOverloadedOperator() == OO_Array_New) { 4339 return VisitBuiltinCallExpr(E, Builtin::BI__builtin_operator_new); 4340 } else { 4341 assert(FuncDecl->getDeclName().getCXXOverloadedOperator() == OO_Delete); 4342 return VisitBuiltinCallExpr(E, Builtin::BI__builtin_operator_delete); 4343 } 4344 } 4345 4346 QualType ReturnType = E->getCallReturnType(Ctx.getASTContext()); 4347 std::optional<PrimType> T = classify(ReturnType); 4348 bool HasRVO = !ReturnType->isVoidType() && !T; 4349 4350 if (HasRVO) { 4351 if (DiscardResult) { 4352 // If we need to discard the return value but the function returns its 4353 // value via an RVO pointer, we need to create one such pointer just 4354 // for this call. 4355 if (std::optional<unsigned> LocalIndex = allocateLocal(E)) { 4356 if (!this->emitGetPtrLocal(*LocalIndex, E)) 4357 return false; 4358 } 4359 } else { 4360 // We need the result. Prepare a pointer to return or 4361 // dup the current one. 4362 if (!Initializing) { 4363 if (std::optional<unsigned> LocalIndex = allocateLocal(E)) { 4364 if (!this->emitGetPtrLocal(*LocalIndex, E)) 4365 return false; 4366 } 4367 } 4368 if (!this->emitDupPtr(E)) 4369 return false; 4370 } 4371 } 4372 4373 SmallVector<const Expr *, 8> Args( 4374 llvm::ArrayRef(E->getArgs(), E->getNumArgs())); 4375 4376 bool IsAssignmentOperatorCall = false; 4377 if (const auto *OCE = dyn_cast<CXXOperatorCallExpr>(E); 4378 OCE && OCE->isAssignmentOp()) { 4379 // Just like with regular assignments, we need to special-case assignment 4380 // operators here and evaluate the RHS (the second arg) before the LHS (the 4381 // first arg. We fix this by using a Flip op later. 4382 assert(Args.size() == 2); 4383 IsAssignmentOperatorCall = true; 4384 std::reverse(Args.begin(), Args.end()); 4385 } 4386 // Calling a static operator will still 4387 // pass the instance, but we don't need it. 4388 // Discard it here. 4389 if (isa<CXXOperatorCallExpr>(E)) { 4390 if (const auto *MD = dyn_cast_if_present<CXXMethodDecl>(FuncDecl); 4391 MD && MD->isStatic()) { 4392 if (!this->discard(E->getArg(0))) 4393 return false; 4394 // Drop first arg. 4395 Args.erase(Args.begin()); 4396 } 4397 } 4398 4399 std::optional<unsigned> CalleeOffset; 4400 // Add the (optional, implicit) This pointer. 4401 if (const auto *MC = dyn_cast<CXXMemberCallExpr>(E)) { 4402 if (!FuncDecl && classifyPrim(E->getCallee()) == PT_MemberPtr) { 4403 // If we end up creating a CallPtr op for this, we need the base of the 4404 // member pointer as the instance pointer, and later extract the function 4405 // decl as the function pointer. 4406 const Expr *Callee = E->getCallee(); 4407 CalleeOffset = 4408 this->allocateLocalPrimitive(Callee, PT_MemberPtr, true, false); 4409 if (!this->visit(Callee)) 4410 return false; 4411 if (!this->emitSetLocal(PT_MemberPtr, *CalleeOffset, E)) 4412 return false; 4413 if (!this->emitGetLocal(PT_MemberPtr, *CalleeOffset, E)) 4414 return false; 4415 if (!this->emitGetMemberPtrBase(E)) 4416 return false; 4417 } else if (!this->visit(MC->getImplicitObjectArgument())) { 4418 return false; 4419 } 4420 } else if (!FuncDecl) { 4421 const Expr *Callee = E->getCallee(); 4422 CalleeOffset = this->allocateLocalPrimitive(Callee, PT_FnPtr, true, false); 4423 if (!this->visit(Callee)) 4424 return false; 4425 if (!this->emitSetLocal(PT_FnPtr, *CalleeOffset, E)) 4426 return false; 4427 } 4428 4429 llvm::BitVector NonNullArgs = collectNonNullArgs(FuncDecl, Args); 4430 // Put arguments on the stack. 4431 unsigned ArgIndex = 0; 4432 for (const auto *Arg : Args) { 4433 if (!this->visit(Arg)) 4434 return false; 4435 4436 // If we know the callee already, check the known parametrs for nullability. 4437 if (FuncDecl && NonNullArgs[ArgIndex]) { 4438 PrimType ArgT = classify(Arg).value_or(PT_Ptr); 4439 if (ArgT == PT_Ptr || ArgT == PT_FnPtr) { 4440 if (!this->emitCheckNonNullArg(ArgT, Arg)) 4441 return false; 4442 } 4443 } 4444 ++ArgIndex; 4445 } 4446 4447 // Undo the argument reversal we did earlier. 4448 if (IsAssignmentOperatorCall) { 4449 assert(Args.size() == 2); 4450 PrimType Arg1T = classify(Args[0]).value_or(PT_Ptr); 4451 PrimType Arg2T = classify(Args[1]).value_or(PT_Ptr); 4452 if (!this->emitFlip(Arg2T, Arg1T, E)) 4453 return false; 4454 } 4455 4456 if (FuncDecl) { 4457 const Function *Func = getFunction(FuncDecl); 4458 if (!Func) 4459 return false; 4460 assert(HasRVO == Func->hasRVO()); 4461 4462 bool HasQualifier = false; 4463 if (const auto *ME = dyn_cast<MemberExpr>(E->getCallee())) 4464 HasQualifier = ME->hasQualifier(); 4465 4466 bool IsVirtual = false; 4467 if (const auto *MD = dyn_cast<CXXMethodDecl>(FuncDecl)) 4468 IsVirtual = MD->isVirtual(); 4469 4470 // In any case call the function. The return value will end up on the stack 4471 // and if the function has RVO, we already have the pointer on the stack to 4472 // write the result into. 4473 if (IsVirtual && !HasQualifier) { 4474 uint32_t VarArgSize = 0; 4475 unsigned NumParams = 4476 Func->getNumWrittenParams() + isa<CXXOperatorCallExpr>(E); 4477 for (unsigned I = NumParams, N = E->getNumArgs(); I != N; ++I) 4478 VarArgSize += align(primSize(classify(E->getArg(I)).value_or(PT_Ptr))); 4479 4480 if (!this->emitCallVirt(Func, VarArgSize, E)) 4481 return false; 4482 } else if (Func->isVariadic()) { 4483 uint32_t VarArgSize = 0; 4484 unsigned NumParams = 4485 Func->getNumWrittenParams() + isa<CXXOperatorCallExpr>(E); 4486 for (unsigned I = NumParams, N = E->getNumArgs(); I != N; ++I) 4487 VarArgSize += align(primSize(classify(E->getArg(I)).value_or(PT_Ptr))); 4488 if (!this->emitCallVar(Func, VarArgSize, E)) 4489 return false; 4490 } else { 4491 if (!this->emitCall(Func, 0, E)) 4492 return false; 4493 } 4494 } else { 4495 // Indirect call. Visit the callee, which will leave a FunctionPointer on 4496 // the stack. Cleanup of the returned value if necessary will be done after 4497 // the function call completed. 4498 4499 // Sum the size of all args from the call expr. 4500 uint32_t ArgSize = 0; 4501 for (unsigned I = 0, N = E->getNumArgs(); I != N; ++I) 4502 ArgSize += align(primSize(classify(E->getArg(I)).value_or(PT_Ptr))); 4503 4504 // Get the callee, either from a member pointer or function pointer saved in 4505 // CalleeOffset. 4506 if (isa<CXXMemberCallExpr>(E) && CalleeOffset) { 4507 if (!this->emitGetLocal(PT_MemberPtr, *CalleeOffset, E)) 4508 return false; 4509 if (!this->emitGetMemberPtrDecl(E)) 4510 return false; 4511 } else { 4512 if (!this->emitGetLocal(PT_FnPtr, *CalleeOffset, E)) 4513 return false; 4514 } 4515 if (!this->emitCallPtr(ArgSize, E, E)) 4516 return false; 4517 } 4518 4519 // Cleanup for discarded return values. 4520 if (DiscardResult && !ReturnType->isVoidType() && T) 4521 return this->emitPop(*T, E); 4522 4523 return true; 4524 } 4525 4526 template <class Emitter> 4527 bool Compiler<Emitter>::VisitCXXDefaultInitExpr(const CXXDefaultInitExpr *E) { 4528 SourceLocScope<Emitter> SLS(this, E); 4529 4530 return this->delegate(E->getExpr()); 4531 } 4532 4533 template <class Emitter> 4534 bool Compiler<Emitter>::VisitCXXDefaultArgExpr(const CXXDefaultArgExpr *E) { 4535 SourceLocScope<Emitter> SLS(this, E); 4536 4537 const Expr *SubExpr = E->getExpr(); 4538 if (std::optional<PrimType> T = classify(E->getExpr())) 4539 return this->visit(SubExpr); 4540 4541 assert(Initializing); 4542 return this->visitInitializer(SubExpr); 4543 } 4544 4545 template <class Emitter> 4546 bool Compiler<Emitter>::VisitCXXBoolLiteralExpr(const CXXBoolLiteralExpr *E) { 4547 if (DiscardResult) 4548 return true; 4549 4550 return this->emitConstBool(E->getValue(), E); 4551 } 4552 4553 template <class Emitter> 4554 bool Compiler<Emitter>::VisitCXXNullPtrLiteralExpr( 4555 const CXXNullPtrLiteralExpr *E) { 4556 if (DiscardResult) 4557 return true; 4558 4559 return this->emitNullPtr(nullptr, E); 4560 } 4561 4562 template <class Emitter> 4563 bool Compiler<Emitter>::VisitGNUNullExpr(const GNUNullExpr *E) { 4564 if (DiscardResult) 4565 return true; 4566 4567 assert(E->getType()->isIntegerType()); 4568 4569 PrimType T = classifyPrim(E->getType()); 4570 return this->emitZero(T, E); 4571 } 4572 4573 template <class Emitter> 4574 bool Compiler<Emitter>::VisitCXXThisExpr(const CXXThisExpr *E) { 4575 if (DiscardResult) 4576 return true; 4577 4578 if (this->LambdaThisCapture.Offset > 0) { 4579 if (this->LambdaThisCapture.IsPtr) 4580 return this->emitGetThisFieldPtr(this->LambdaThisCapture.Offset, E); 4581 return this->emitGetPtrThisField(this->LambdaThisCapture.Offset, E); 4582 } 4583 4584 // In some circumstances, the 'this' pointer does not actually refer to the 4585 // instance pointer of the current function frame, but e.g. to the declaration 4586 // currently being initialized. Here we emit the necessary instruction(s) for 4587 // this scenario. 4588 if (!InitStackActive || !E->isImplicit()) 4589 return this->emitThis(E); 4590 4591 if (InitStackActive && !InitStack.empty()) { 4592 unsigned StartIndex = 0; 4593 for (StartIndex = InitStack.size() - 1; StartIndex > 0; --StartIndex) { 4594 if (InitStack[StartIndex].Kind != InitLink::K_Field && 4595 InitStack[StartIndex].Kind != InitLink::K_Elem) 4596 break; 4597 } 4598 4599 for (unsigned I = StartIndex, N = InitStack.size(); I != N; ++I) { 4600 if (!InitStack[I].template emit<Emitter>(this, E)) 4601 return false; 4602 } 4603 return true; 4604 } 4605 return this->emitThis(E); 4606 } 4607 4608 template <class Emitter> bool Compiler<Emitter>::visitStmt(const Stmt *S) { 4609 switch (S->getStmtClass()) { 4610 case Stmt::CompoundStmtClass: 4611 return visitCompoundStmt(cast<CompoundStmt>(S)); 4612 case Stmt::DeclStmtClass: 4613 return visitDeclStmt(cast<DeclStmt>(S)); 4614 case Stmt::ReturnStmtClass: 4615 return visitReturnStmt(cast<ReturnStmt>(S)); 4616 case Stmt::IfStmtClass: 4617 return visitIfStmt(cast<IfStmt>(S)); 4618 case Stmt::WhileStmtClass: 4619 return visitWhileStmt(cast<WhileStmt>(S)); 4620 case Stmt::DoStmtClass: 4621 return visitDoStmt(cast<DoStmt>(S)); 4622 case Stmt::ForStmtClass: 4623 return visitForStmt(cast<ForStmt>(S)); 4624 case Stmt::CXXForRangeStmtClass: 4625 return visitCXXForRangeStmt(cast<CXXForRangeStmt>(S)); 4626 case Stmt::BreakStmtClass: 4627 return visitBreakStmt(cast<BreakStmt>(S)); 4628 case Stmt::ContinueStmtClass: 4629 return visitContinueStmt(cast<ContinueStmt>(S)); 4630 case Stmt::SwitchStmtClass: 4631 return visitSwitchStmt(cast<SwitchStmt>(S)); 4632 case Stmt::CaseStmtClass: 4633 return visitCaseStmt(cast<CaseStmt>(S)); 4634 case Stmt::DefaultStmtClass: 4635 return visitDefaultStmt(cast<DefaultStmt>(S)); 4636 case Stmt::AttributedStmtClass: 4637 return visitAttributedStmt(cast<AttributedStmt>(S)); 4638 case Stmt::CXXTryStmtClass: 4639 return visitCXXTryStmt(cast<CXXTryStmt>(S)); 4640 case Stmt::NullStmtClass: 4641 return true; 4642 // Always invalid statements. 4643 case Stmt::GCCAsmStmtClass: 4644 case Stmt::MSAsmStmtClass: 4645 case Stmt::GotoStmtClass: 4646 return this->emitInvalid(S); 4647 case Stmt::LabelStmtClass: 4648 return this->visitStmt(cast<LabelStmt>(S)->getSubStmt()); 4649 default: { 4650 if (const auto *E = dyn_cast<Expr>(S)) 4651 return this->discard(E); 4652 return false; 4653 } 4654 } 4655 } 4656 4657 template <class Emitter> 4658 bool Compiler<Emitter>::visitCompoundStmt(const CompoundStmt *S) { 4659 BlockScope<Emitter> Scope(this); 4660 for (const auto *InnerStmt : S->body()) 4661 if (!visitStmt(InnerStmt)) 4662 return false; 4663 return Scope.destroyLocals(); 4664 } 4665 4666 template <class Emitter> 4667 bool Compiler<Emitter>::visitDeclStmt(const DeclStmt *DS) { 4668 for (const auto *D : DS->decls()) { 4669 if (isa<StaticAssertDecl, TagDecl, TypedefNameDecl, UsingEnumDecl, 4670 FunctionDecl>(D)) 4671 continue; 4672 4673 const auto *VD = dyn_cast<VarDecl>(D); 4674 if (!VD) 4675 return false; 4676 if (!this->visitVarDecl(VD)) 4677 return false; 4678 } 4679 4680 return true; 4681 } 4682 4683 template <class Emitter> 4684 bool Compiler<Emitter>::visitReturnStmt(const ReturnStmt *RS) { 4685 if (this->InStmtExpr) 4686 return this->emitUnsupported(RS); 4687 4688 if (const Expr *RE = RS->getRetValue()) { 4689 LocalScope<Emitter> RetScope(this); 4690 if (ReturnType) { 4691 // Primitive types are simply returned. 4692 if (!this->visit(RE)) 4693 return false; 4694 this->emitCleanup(); 4695 return this->emitRet(*ReturnType, RS); 4696 } else if (RE->getType()->isVoidType()) { 4697 if (!this->visit(RE)) 4698 return false; 4699 } else { 4700 // RVO - construct the value in the return location. 4701 if (!this->emitRVOPtr(RE)) 4702 return false; 4703 if (!this->visitInitializer(RE)) 4704 return false; 4705 if (!this->emitPopPtr(RE)) 4706 return false; 4707 4708 this->emitCleanup(); 4709 return this->emitRetVoid(RS); 4710 } 4711 } 4712 4713 // Void return. 4714 this->emitCleanup(); 4715 return this->emitRetVoid(RS); 4716 } 4717 4718 template <class Emitter> bool Compiler<Emitter>::visitIfStmt(const IfStmt *IS) { 4719 if (auto *CondInit = IS->getInit()) 4720 if (!visitStmt(CondInit)) 4721 return false; 4722 4723 if (const DeclStmt *CondDecl = IS->getConditionVariableDeclStmt()) 4724 if (!visitDeclStmt(CondDecl)) 4725 return false; 4726 4727 // Compile condition. 4728 if (IS->isNonNegatedConsteval()) { 4729 if (!this->emitIsConstantContext(IS)) 4730 return false; 4731 } else if (IS->isNegatedConsteval()) { 4732 if (!this->emitIsConstantContext(IS)) 4733 return false; 4734 if (!this->emitInv(IS)) 4735 return false; 4736 } else { 4737 if (!this->visitBool(IS->getCond())) 4738 return false; 4739 } 4740 4741 if (const Stmt *Else = IS->getElse()) { 4742 LabelTy LabelElse = this->getLabel(); 4743 LabelTy LabelEnd = this->getLabel(); 4744 if (!this->jumpFalse(LabelElse)) 4745 return false; 4746 if (!visitStmt(IS->getThen())) 4747 return false; 4748 if (!this->jump(LabelEnd)) 4749 return false; 4750 this->emitLabel(LabelElse); 4751 if (!visitStmt(Else)) 4752 return false; 4753 this->emitLabel(LabelEnd); 4754 } else { 4755 LabelTy LabelEnd = this->getLabel(); 4756 if (!this->jumpFalse(LabelEnd)) 4757 return false; 4758 if (!visitStmt(IS->getThen())) 4759 return false; 4760 this->emitLabel(LabelEnd); 4761 } 4762 4763 return true; 4764 } 4765 4766 template <class Emitter> 4767 bool Compiler<Emitter>::visitWhileStmt(const WhileStmt *S) { 4768 const Expr *Cond = S->getCond(); 4769 const Stmt *Body = S->getBody(); 4770 4771 LabelTy CondLabel = this->getLabel(); // Label before the condition. 4772 LabelTy EndLabel = this->getLabel(); // Label after the loop. 4773 LoopScope<Emitter> LS(this, EndLabel, CondLabel); 4774 4775 this->fallthrough(CondLabel); 4776 this->emitLabel(CondLabel); 4777 4778 { 4779 LocalScope<Emitter> CondScope(this); 4780 if (const DeclStmt *CondDecl = S->getConditionVariableDeclStmt()) 4781 if (!visitDeclStmt(CondDecl)) 4782 return false; 4783 4784 if (!this->visitBool(Cond)) 4785 return false; 4786 if (!this->jumpFalse(EndLabel)) 4787 return false; 4788 4789 if (!this->visitStmt(Body)) 4790 return false; 4791 4792 if (!CondScope.destroyLocals()) 4793 return false; 4794 } 4795 if (!this->jump(CondLabel)) 4796 return false; 4797 this->fallthrough(EndLabel); 4798 this->emitLabel(EndLabel); 4799 4800 return true; 4801 } 4802 4803 template <class Emitter> bool Compiler<Emitter>::visitDoStmt(const DoStmt *S) { 4804 const Expr *Cond = S->getCond(); 4805 const Stmt *Body = S->getBody(); 4806 4807 LabelTy StartLabel = this->getLabel(); 4808 LabelTy EndLabel = this->getLabel(); 4809 LabelTy CondLabel = this->getLabel(); 4810 LoopScope<Emitter> LS(this, EndLabel, CondLabel); 4811 4812 this->fallthrough(StartLabel); 4813 this->emitLabel(StartLabel); 4814 4815 { 4816 LocalScope<Emitter> CondScope(this); 4817 if (!this->visitStmt(Body)) 4818 return false; 4819 this->fallthrough(CondLabel); 4820 this->emitLabel(CondLabel); 4821 if (!this->visitBool(Cond)) 4822 return false; 4823 4824 if (!CondScope.destroyLocals()) 4825 return false; 4826 } 4827 if (!this->jumpTrue(StartLabel)) 4828 return false; 4829 4830 this->fallthrough(EndLabel); 4831 this->emitLabel(EndLabel); 4832 return true; 4833 } 4834 4835 template <class Emitter> 4836 bool Compiler<Emitter>::visitForStmt(const ForStmt *S) { 4837 // for (Init; Cond; Inc) { Body } 4838 const Stmt *Init = S->getInit(); 4839 const Expr *Cond = S->getCond(); 4840 const Expr *Inc = S->getInc(); 4841 const Stmt *Body = S->getBody(); 4842 4843 LabelTy EndLabel = this->getLabel(); 4844 LabelTy CondLabel = this->getLabel(); 4845 LabelTy IncLabel = this->getLabel(); 4846 LoopScope<Emitter> LS(this, EndLabel, IncLabel); 4847 4848 if (Init && !this->visitStmt(Init)) 4849 return false; 4850 4851 this->fallthrough(CondLabel); 4852 this->emitLabel(CondLabel); 4853 4854 { 4855 LocalScope<Emitter> CondScope(this); 4856 if (const DeclStmt *CondDecl = S->getConditionVariableDeclStmt()) 4857 if (!visitDeclStmt(CondDecl)) 4858 return false; 4859 4860 if (Cond) { 4861 if (!this->visitBool(Cond)) 4862 return false; 4863 if (!this->jumpFalse(EndLabel)) 4864 return false; 4865 } 4866 4867 if (Body && !this->visitStmt(Body)) 4868 return false; 4869 4870 this->fallthrough(IncLabel); 4871 this->emitLabel(IncLabel); 4872 if (Inc && !this->discard(Inc)) 4873 return false; 4874 4875 if (!CondScope.destroyLocals()) 4876 return false; 4877 } 4878 if (!this->jump(CondLabel)) 4879 return false; 4880 4881 this->fallthrough(EndLabel); 4882 this->emitLabel(EndLabel); 4883 return true; 4884 } 4885 4886 template <class Emitter> 4887 bool Compiler<Emitter>::visitCXXForRangeStmt(const CXXForRangeStmt *S) { 4888 const Stmt *Init = S->getInit(); 4889 const Expr *Cond = S->getCond(); 4890 const Expr *Inc = S->getInc(); 4891 const Stmt *Body = S->getBody(); 4892 const Stmt *BeginStmt = S->getBeginStmt(); 4893 const Stmt *RangeStmt = S->getRangeStmt(); 4894 const Stmt *EndStmt = S->getEndStmt(); 4895 const VarDecl *LoopVar = S->getLoopVariable(); 4896 4897 LabelTy EndLabel = this->getLabel(); 4898 LabelTy CondLabel = this->getLabel(); 4899 LabelTy IncLabel = this->getLabel(); 4900 LoopScope<Emitter> LS(this, EndLabel, IncLabel); 4901 4902 // Emit declarations needed in the loop. 4903 if (Init && !this->visitStmt(Init)) 4904 return false; 4905 if (!this->visitStmt(RangeStmt)) 4906 return false; 4907 if (!this->visitStmt(BeginStmt)) 4908 return false; 4909 if (!this->visitStmt(EndStmt)) 4910 return false; 4911 4912 // Now the condition as well as the loop variable assignment. 4913 this->fallthrough(CondLabel); 4914 this->emitLabel(CondLabel); 4915 if (!this->visitBool(Cond)) 4916 return false; 4917 if (!this->jumpFalse(EndLabel)) 4918 return false; 4919 4920 if (!this->visitVarDecl(LoopVar)) 4921 return false; 4922 4923 // Body. 4924 { 4925 if (!this->visitStmt(Body)) 4926 return false; 4927 4928 this->fallthrough(IncLabel); 4929 this->emitLabel(IncLabel); 4930 if (!this->discard(Inc)) 4931 return false; 4932 } 4933 4934 if (!this->jump(CondLabel)) 4935 return false; 4936 4937 this->fallthrough(EndLabel); 4938 this->emitLabel(EndLabel); 4939 return true; 4940 } 4941 4942 template <class Emitter> 4943 bool Compiler<Emitter>::visitBreakStmt(const BreakStmt *S) { 4944 if (!BreakLabel) 4945 return false; 4946 4947 for (VariableScope<Emitter> *C = VarScope; C != BreakVarScope; 4948 C = C->getParent()) 4949 C->emitDestruction(); 4950 return this->jump(*BreakLabel); 4951 } 4952 4953 template <class Emitter> 4954 bool Compiler<Emitter>::visitContinueStmt(const ContinueStmt *S) { 4955 if (!ContinueLabel) 4956 return false; 4957 4958 for (VariableScope<Emitter> *C = VarScope; 4959 C && C->getParent() != ContinueVarScope; C = C->getParent()) 4960 C->emitDestruction(); 4961 return this->jump(*ContinueLabel); 4962 } 4963 4964 template <class Emitter> 4965 bool Compiler<Emitter>::visitSwitchStmt(const SwitchStmt *S) { 4966 const Expr *Cond = S->getCond(); 4967 PrimType CondT = this->classifyPrim(Cond->getType()); 4968 LocalScope<Emitter> LS(this); 4969 4970 LabelTy EndLabel = this->getLabel(); 4971 OptLabelTy DefaultLabel = std::nullopt; 4972 unsigned CondVar = this->allocateLocalPrimitive(Cond, CondT, true, false); 4973 4974 if (const auto *CondInit = S->getInit()) 4975 if (!visitStmt(CondInit)) 4976 return false; 4977 4978 if (const DeclStmt *CondDecl = S->getConditionVariableDeclStmt()) 4979 if (!visitDeclStmt(CondDecl)) 4980 return false; 4981 4982 // Initialize condition variable. 4983 if (!this->visit(Cond)) 4984 return false; 4985 if (!this->emitSetLocal(CondT, CondVar, S)) 4986 return false; 4987 4988 CaseMap CaseLabels; 4989 // Create labels and comparison ops for all case statements. 4990 for (const SwitchCase *SC = S->getSwitchCaseList(); SC; 4991 SC = SC->getNextSwitchCase()) { 4992 if (const auto *CS = dyn_cast<CaseStmt>(SC)) { 4993 // FIXME: Implement ranges. 4994 if (CS->caseStmtIsGNURange()) 4995 return false; 4996 CaseLabels[SC] = this->getLabel(); 4997 4998 const Expr *Value = CS->getLHS(); 4999 PrimType ValueT = this->classifyPrim(Value->getType()); 5000 5001 // Compare the case statement's value to the switch condition. 5002 if (!this->emitGetLocal(CondT, CondVar, CS)) 5003 return false; 5004 if (!this->visit(Value)) 5005 return false; 5006 5007 // Compare and jump to the case label. 5008 if (!this->emitEQ(ValueT, S)) 5009 return false; 5010 if (!this->jumpTrue(CaseLabels[CS])) 5011 return false; 5012 } else { 5013 assert(!DefaultLabel); 5014 DefaultLabel = this->getLabel(); 5015 } 5016 } 5017 5018 // If none of the conditions above were true, fall through to the default 5019 // statement or jump after the switch statement. 5020 if (DefaultLabel) { 5021 if (!this->jump(*DefaultLabel)) 5022 return false; 5023 } else { 5024 if (!this->jump(EndLabel)) 5025 return false; 5026 } 5027 5028 SwitchScope<Emitter> SS(this, std::move(CaseLabels), EndLabel, DefaultLabel); 5029 if (!this->visitStmt(S->getBody())) 5030 return false; 5031 this->emitLabel(EndLabel); 5032 5033 return LS.destroyLocals(); 5034 } 5035 5036 template <class Emitter> 5037 bool Compiler<Emitter>::visitCaseStmt(const CaseStmt *S) { 5038 this->emitLabel(CaseLabels[S]); 5039 return this->visitStmt(S->getSubStmt()); 5040 } 5041 5042 template <class Emitter> 5043 bool Compiler<Emitter>::visitDefaultStmt(const DefaultStmt *S) { 5044 this->emitLabel(*DefaultLabel); 5045 return this->visitStmt(S->getSubStmt()); 5046 } 5047 5048 template <class Emitter> 5049 bool Compiler<Emitter>::visitAttributedStmt(const AttributedStmt *S) { 5050 if (this->Ctx.getLangOpts().CXXAssumptions && 5051 !this->Ctx.getLangOpts().MSVCCompat) { 5052 for (const Attr *A : S->getAttrs()) { 5053 auto *AA = dyn_cast<CXXAssumeAttr>(A); 5054 if (!AA) 5055 continue; 5056 5057 assert(isa<NullStmt>(S->getSubStmt())); 5058 5059 const Expr *Assumption = AA->getAssumption(); 5060 if (Assumption->isValueDependent()) 5061 return false; 5062 5063 if (Assumption->HasSideEffects(this->Ctx.getASTContext())) 5064 continue; 5065 5066 // Evaluate assumption. 5067 if (!this->visitBool(Assumption)) 5068 return false; 5069 5070 if (!this->emitAssume(Assumption)) 5071 return false; 5072 } 5073 } 5074 5075 // Ignore other attributes. 5076 return this->visitStmt(S->getSubStmt()); 5077 } 5078 5079 template <class Emitter> 5080 bool Compiler<Emitter>::visitCXXTryStmt(const CXXTryStmt *S) { 5081 // Ignore all handlers. 5082 return this->visitStmt(S->getTryBlock()); 5083 } 5084 5085 template <class Emitter> 5086 bool Compiler<Emitter>::emitLambdaStaticInvokerBody(const CXXMethodDecl *MD) { 5087 assert(MD->isLambdaStaticInvoker()); 5088 assert(MD->hasBody()); 5089 assert(cast<CompoundStmt>(MD->getBody())->body_empty()); 5090 5091 const CXXRecordDecl *ClosureClass = MD->getParent(); 5092 const CXXMethodDecl *LambdaCallOp = ClosureClass->getLambdaCallOperator(); 5093 assert(ClosureClass->captures_begin() == ClosureClass->captures_end()); 5094 const Function *Func = this->getFunction(LambdaCallOp); 5095 if (!Func) 5096 return false; 5097 assert(Func->hasThisPointer()); 5098 assert(Func->getNumParams() == (MD->getNumParams() + 1 + Func->hasRVO())); 5099 5100 if (Func->hasRVO()) { 5101 if (!this->emitRVOPtr(MD)) 5102 return false; 5103 } 5104 5105 // The lambda call operator needs an instance pointer, but we don't have 5106 // one here, and we don't need one either because the lambda cannot have 5107 // any captures, as verified above. Emit a null pointer. This is then 5108 // special-cased when interpreting to not emit any misleading diagnostics. 5109 if (!this->emitNullPtr(nullptr, MD)) 5110 return false; 5111 5112 // Forward all arguments from the static invoker to the lambda call operator. 5113 for (const ParmVarDecl *PVD : MD->parameters()) { 5114 auto It = this->Params.find(PVD); 5115 assert(It != this->Params.end()); 5116 5117 // We do the lvalue-to-rvalue conversion manually here, so no need 5118 // to care about references. 5119 PrimType ParamType = this->classify(PVD->getType()).value_or(PT_Ptr); 5120 if (!this->emitGetParam(ParamType, It->second.Offset, MD)) 5121 return false; 5122 } 5123 5124 if (!this->emitCall(Func, 0, LambdaCallOp)) 5125 return false; 5126 5127 this->emitCleanup(); 5128 if (ReturnType) 5129 return this->emitRet(*ReturnType, MD); 5130 5131 // Nothing to do, since we emitted the RVO pointer above. 5132 return this->emitRetVoid(MD); 5133 } 5134 5135 template <class Emitter> 5136 bool Compiler<Emitter>::checkLiteralType(const Expr *E) { 5137 if (Ctx.getLangOpts().CPlusPlus23) 5138 return true; 5139 5140 if (!E->isPRValue() || E->getType()->isLiteralType(Ctx.getASTContext())) 5141 return true; 5142 5143 return this->emitCheckLiteralType(E->getType().getTypePtr(), E); 5144 } 5145 5146 template <class Emitter> 5147 bool Compiler<Emitter>::compileConstructor(const CXXConstructorDecl *Ctor) { 5148 assert(!ReturnType); 5149 5150 auto emitFieldInitializer = [&](const Record::Field *F, unsigned FieldOffset, 5151 const Expr *InitExpr) -> bool { 5152 // We don't know what to do with these, so just return false. 5153 if (InitExpr->getType().isNull()) 5154 return false; 5155 5156 if (std::optional<PrimType> T = this->classify(InitExpr)) { 5157 if (!this->visit(InitExpr)) 5158 return false; 5159 5160 if (F->isBitField()) 5161 return this->emitInitThisBitField(*T, F, FieldOffset, InitExpr); 5162 return this->emitInitThisField(*T, FieldOffset, InitExpr); 5163 } 5164 // Non-primitive case. Get a pointer to the field-to-initialize 5165 // on the stack and call visitInitialzer() for it. 5166 InitLinkScope<Emitter> FieldScope(this, InitLink::Field(F->Offset)); 5167 if (!this->emitGetPtrThisField(FieldOffset, InitExpr)) 5168 return false; 5169 5170 if (!this->visitInitializer(InitExpr)) 5171 return false; 5172 5173 return this->emitFinishInitPop(InitExpr); 5174 }; 5175 5176 const RecordDecl *RD = Ctor->getParent(); 5177 const Record *R = this->getRecord(RD); 5178 if (!R) 5179 return false; 5180 5181 if (R->isUnion() && Ctor->isCopyOrMoveConstructor()) { 5182 // union copy and move ctors are special. 5183 assert(cast<CompoundStmt>(Ctor->getBody())->body_empty()); 5184 if (!this->emitThis(Ctor)) 5185 return false; 5186 5187 auto PVD = Ctor->getParamDecl(0); 5188 ParamOffset PO = this->Params[PVD]; // Must exist. 5189 5190 if (!this->emitGetParam(PT_Ptr, PO.Offset, Ctor)) 5191 return false; 5192 5193 return this->emitMemcpy(Ctor) && this->emitPopPtr(Ctor) && 5194 this->emitRetVoid(Ctor); 5195 } 5196 5197 InitLinkScope<Emitter> InitScope(this, InitLink::This()); 5198 for (const auto *Init : Ctor->inits()) { 5199 // Scope needed for the initializers. 5200 BlockScope<Emitter> Scope(this); 5201 5202 const Expr *InitExpr = Init->getInit(); 5203 if (const FieldDecl *Member = Init->getMember()) { 5204 const Record::Field *F = R->getField(Member); 5205 5206 if (!emitFieldInitializer(F, F->Offset, InitExpr)) 5207 return false; 5208 } else if (const Type *Base = Init->getBaseClass()) { 5209 const auto *BaseDecl = Base->getAsCXXRecordDecl(); 5210 assert(BaseDecl); 5211 5212 if (Init->isBaseVirtual()) { 5213 assert(R->getVirtualBase(BaseDecl)); 5214 if (!this->emitGetPtrThisVirtBase(BaseDecl, InitExpr)) 5215 return false; 5216 5217 } else { 5218 // Base class initializer. 5219 // Get This Base and call initializer on it. 5220 const Record::Base *B = R->getBase(BaseDecl); 5221 assert(B); 5222 if (!this->emitGetPtrThisBase(B->Offset, InitExpr)) 5223 return false; 5224 } 5225 5226 if (!this->visitInitializer(InitExpr)) 5227 return false; 5228 if (!this->emitFinishInitPop(InitExpr)) 5229 return false; 5230 } else if (const IndirectFieldDecl *IFD = Init->getIndirectMember()) { 5231 assert(IFD->getChainingSize() >= 2); 5232 5233 unsigned NestedFieldOffset = 0; 5234 const Record::Field *NestedField = nullptr; 5235 for (const NamedDecl *ND : IFD->chain()) { 5236 const auto *FD = cast<FieldDecl>(ND); 5237 const Record *FieldRecord = this->P.getOrCreateRecord(FD->getParent()); 5238 assert(FieldRecord); 5239 5240 NestedField = FieldRecord->getField(FD); 5241 assert(NestedField); 5242 5243 NestedFieldOffset += NestedField->Offset; 5244 } 5245 assert(NestedField); 5246 5247 if (!emitFieldInitializer(NestedField, NestedFieldOffset, InitExpr)) 5248 return false; 5249 } else { 5250 assert(Init->isDelegatingInitializer()); 5251 if (!this->emitThis(InitExpr)) 5252 return false; 5253 if (!this->visitInitializer(Init->getInit())) 5254 return false; 5255 if (!this->emitPopPtr(InitExpr)) 5256 return false; 5257 } 5258 5259 if (!Scope.destroyLocals()) 5260 return false; 5261 } 5262 5263 if (const auto *Body = Ctor->getBody()) 5264 if (!visitStmt(Body)) 5265 return false; 5266 5267 return this->emitRetVoid(SourceInfo{}); 5268 } 5269 5270 template <class Emitter> 5271 bool Compiler<Emitter>::compileDestructor(const CXXDestructorDecl *Dtor) { 5272 const RecordDecl *RD = Dtor->getParent(); 5273 const Record *R = this->getRecord(RD); 5274 if (!R) 5275 return false; 5276 5277 if (!Dtor->isTrivial() && Dtor->getBody()) { 5278 if (!this->visitStmt(Dtor->getBody())) 5279 return false; 5280 } 5281 5282 if (!this->emitThis(Dtor)) 5283 return false; 5284 5285 assert(R); 5286 if (!R->isUnion()) { 5287 // First, destroy all fields. 5288 for (const Record::Field &Field : llvm::reverse(R->fields())) { 5289 const Descriptor *D = Field.Desc; 5290 if (!D->isPrimitive() && !D->isPrimitiveArray()) { 5291 if (!this->emitGetPtrField(Field.Offset, SourceInfo{})) 5292 return false; 5293 if (!this->emitDestruction(D)) 5294 return false; 5295 if (!this->emitPopPtr(SourceInfo{})) 5296 return false; 5297 } 5298 } 5299 } 5300 5301 for (const Record::Base &Base : llvm::reverse(R->bases())) { 5302 if (!this->emitGetPtrBase(Base.Offset, SourceInfo{})) 5303 return false; 5304 if (!this->emitRecordDestruction(Base.R)) 5305 return false; 5306 if (!this->emitPopPtr(SourceInfo{})) 5307 return false; 5308 } 5309 5310 // FIXME: Virtual bases. 5311 return this->emitPopPtr(Dtor) && this->emitRetVoid(Dtor); 5312 } 5313 5314 template <class Emitter> 5315 bool Compiler<Emitter>::visitFunc(const FunctionDecl *F) { 5316 // Classify the return type. 5317 ReturnType = this->classify(F->getReturnType()); 5318 5319 if (const auto *Ctor = dyn_cast<CXXConstructorDecl>(F)) 5320 return this->compileConstructor(Ctor); 5321 if (const auto *Dtor = dyn_cast<CXXDestructorDecl>(F)) 5322 return this->compileDestructor(Dtor); 5323 5324 // Emit custom code if this is a lambda static invoker. 5325 if (const auto *MD = dyn_cast<CXXMethodDecl>(F); 5326 MD && MD->isLambdaStaticInvoker()) 5327 return this->emitLambdaStaticInvokerBody(MD); 5328 5329 // Regular functions. 5330 if (const auto *Body = F->getBody()) 5331 if (!visitStmt(Body)) 5332 return false; 5333 5334 // Emit a guard return to protect against a code path missing one. 5335 if (F->getReturnType()->isVoidType()) 5336 return this->emitRetVoid(SourceInfo{}); 5337 return this->emitNoRet(SourceInfo{}); 5338 } 5339 5340 template <class Emitter> 5341 bool Compiler<Emitter>::VisitUnaryOperator(const UnaryOperator *E) { 5342 const Expr *SubExpr = E->getSubExpr(); 5343 if (SubExpr->getType()->isAnyComplexType()) 5344 return this->VisitComplexUnaryOperator(E); 5345 if (SubExpr->getType()->isVectorType()) 5346 return this->VisitVectorUnaryOperator(E); 5347 std::optional<PrimType> T = classify(SubExpr->getType()); 5348 5349 switch (E->getOpcode()) { 5350 case UO_PostInc: { // x++ 5351 if (!Ctx.getLangOpts().CPlusPlus14) 5352 return this->emitInvalid(E); 5353 if (!T) 5354 return this->emitError(E); 5355 5356 if (!this->visit(SubExpr)) 5357 return false; 5358 5359 if (T == PT_Ptr || T == PT_FnPtr) { 5360 if (!this->emitIncPtr(E)) 5361 return false; 5362 5363 return DiscardResult ? this->emitPopPtr(E) : true; 5364 } 5365 5366 if (T == PT_Float) { 5367 return DiscardResult ? this->emitIncfPop(getFPOptions(E), E) 5368 : this->emitIncf(getFPOptions(E), E); 5369 } 5370 5371 return DiscardResult ? this->emitIncPop(*T, E) : this->emitInc(*T, E); 5372 } 5373 case UO_PostDec: { // x-- 5374 if (!Ctx.getLangOpts().CPlusPlus14) 5375 return this->emitInvalid(E); 5376 if (!T) 5377 return this->emitError(E); 5378 5379 if (!this->visit(SubExpr)) 5380 return false; 5381 5382 if (T == PT_Ptr || T == PT_FnPtr) { 5383 if (!this->emitDecPtr(E)) 5384 return false; 5385 5386 return DiscardResult ? this->emitPopPtr(E) : true; 5387 } 5388 5389 if (T == PT_Float) { 5390 return DiscardResult ? this->emitDecfPop(getFPOptions(E), E) 5391 : this->emitDecf(getFPOptions(E), E); 5392 } 5393 5394 return DiscardResult ? this->emitDecPop(*T, E) : this->emitDec(*T, E); 5395 } 5396 case UO_PreInc: { // ++x 5397 if (!Ctx.getLangOpts().CPlusPlus14) 5398 return this->emitInvalid(E); 5399 if (!T) 5400 return this->emitError(E); 5401 5402 if (!this->visit(SubExpr)) 5403 return false; 5404 5405 if (T == PT_Ptr || T == PT_FnPtr) { 5406 if (!this->emitLoadPtr(E)) 5407 return false; 5408 if (!this->emitConstUint8(1, E)) 5409 return false; 5410 if (!this->emitAddOffsetUint8(E)) 5411 return false; 5412 return DiscardResult ? this->emitStorePopPtr(E) : this->emitStorePtr(E); 5413 } 5414 5415 // Post-inc and pre-inc are the same if the value is to be discarded. 5416 if (DiscardResult) { 5417 if (T == PT_Float) 5418 return this->emitIncfPop(getFPOptions(E), E); 5419 return this->emitIncPop(*T, E); 5420 } 5421 5422 if (T == PT_Float) { 5423 const auto &TargetSemantics = Ctx.getFloatSemantics(E->getType()); 5424 if (!this->emitLoadFloat(E)) 5425 return false; 5426 if (!this->emitConstFloat(llvm::APFloat(TargetSemantics, 1), E)) 5427 return false; 5428 if (!this->emitAddf(getFPOptions(E), E)) 5429 return false; 5430 if (!this->emitStoreFloat(E)) 5431 return false; 5432 } else { 5433 assert(isIntegralType(*T)); 5434 if (!this->emitLoad(*T, E)) 5435 return false; 5436 if (!this->emitConst(1, E)) 5437 return false; 5438 if (!this->emitAdd(*T, E)) 5439 return false; 5440 if (!this->emitStore(*T, E)) 5441 return false; 5442 } 5443 return E->isGLValue() || this->emitLoadPop(*T, E); 5444 } 5445 case UO_PreDec: { // --x 5446 if (!Ctx.getLangOpts().CPlusPlus14) 5447 return this->emitInvalid(E); 5448 if (!T) 5449 return this->emitError(E); 5450 5451 if (!this->visit(SubExpr)) 5452 return false; 5453 5454 if (T == PT_Ptr || T == PT_FnPtr) { 5455 if (!this->emitLoadPtr(E)) 5456 return false; 5457 if (!this->emitConstUint8(1, E)) 5458 return false; 5459 if (!this->emitSubOffsetUint8(E)) 5460 return false; 5461 return DiscardResult ? this->emitStorePopPtr(E) : this->emitStorePtr(E); 5462 } 5463 5464 // Post-dec and pre-dec are the same if the value is to be discarded. 5465 if (DiscardResult) { 5466 if (T == PT_Float) 5467 return this->emitDecfPop(getFPOptions(E), E); 5468 return this->emitDecPop(*T, E); 5469 } 5470 5471 if (T == PT_Float) { 5472 const auto &TargetSemantics = Ctx.getFloatSemantics(E->getType()); 5473 if (!this->emitLoadFloat(E)) 5474 return false; 5475 if (!this->emitConstFloat(llvm::APFloat(TargetSemantics, 1), E)) 5476 return false; 5477 if (!this->emitSubf(getFPOptions(E), E)) 5478 return false; 5479 if (!this->emitStoreFloat(E)) 5480 return false; 5481 } else { 5482 assert(isIntegralType(*T)); 5483 if (!this->emitLoad(*T, E)) 5484 return false; 5485 if (!this->emitConst(1, E)) 5486 return false; 5487 if (!this->emitSub(*T, E)) 5488 return false; 5489 if (!this->emitStore(*T, E)) 5490 return false; 5491 } 5492 return E->isGLValue() || this->emitLoadPop(*T, E); 5493 } 5494 case UO_LNot: // !x 5495 if (!T) 5496 return this->emitError(E); 5497 5498 if (DiscardResult) 5499 return this->discard(SubExpr); 5500 5501 if (!this->visitBool(SubExpr)) 5502 return false; 5503 5504 if (!this->emitInv(E)) 5505 return false; 5506 5507 if (PrimType ET = classifyPrim(E->getType()); ET != PT_Bool) 5508 return this->emitCast(PT_Bool, ET, E); 5509 return true; 5510 case UO_Minus: // -x 5511 if (!T) 5512 return this->emitError(E); 5513 5514 if (!this->visit(SubExpr)) 5515 return false; 5516 return DiscardResult ? this->emitPop(*T, E) : this->emitNeg(*T, E); 5517 case UO_Plus: // +x 5518 if (!T) 5519 return this->emitError(E); 5520 5521 if (!this->visit(SubExpr)) // noop 5522 return false; 5523 return DiscardResult ? this->emitPop(*T, E) : true; 5524 case UO_AddrOf: // &x 5525 if (E->getType()->isMemberPointerType()) { 5526 // C++11 [expr.unary.op]p3 has very strict rules on how the address of a 5527 // member can be formed. 5528 return this->emitGetMemberPtr(cast<DeclRefExpr>(SubExpr)->getDecl(), E); 5529 } 5530 // We should already have a pointer when we get here. 5531 return this->delegate(SubExpr); 5532 case UO_Deref: // *x 5533 if (DiscardResult) 5534 return this->discard(SubExpr); 5535 return this->visit(SubExpr); 5536 case UO_Not: // ~x 5537 if (!T) 5538 return this->emitError(E); 5539 5540 if (!this->visit(SubExpr)) 5541 return false; 5542 return DiscardResult ? this->emitPop(*T, E) : this->emitComp(*T, E); 5543 case UO_Real: // __real x 5544 assert(T); 5545 return this->delegate(SubExpr); 5546 case UO_Imag: { // __imag x 5547 assert(T); 5548 if (!this->discard(SubExpr)) 5549 return false; 5550 return this->visitZeroInitializer(*T, SubExpr->getType(), SubExpr); 5551 } 5552 case UO_Extension: 5553 return this->delegate(SubExpr); 5554 case UO_Coawait: 5555 assert(false && "Unhandled opcode"); 5556 } 5557 5558 return false; 5559 } 5560 5561 template <class Emitter> 5562 bool Compiler<Emitter>::VisitComplexUnaryOperator(const UnaryOperator *E) { 5563 const Expr *SubExpr = E->getSubExpr(); 5564 assert(SubExpr->getType()->isAnyComplexType()); 5565 5566 if (DiscardResult) 5567 return this->discard(SubExpr); 5568 5569 std::optional<PrimType> ResT = classify(E); 5570 auto prepareResult = [=]() -> bool { 5571 if (!ResT && !Initializing) { 5572 std::optional<unsigned> LocalIndex = allocateLocal(SubExpr); 5573 if (!LocalIndex) 5574 return false; 5575 return this->emitGetPtrLocal(*LocalIndex, E); 5576 } 5577 5578 return true; 5579 }; 5580 5581 // The offset of the temporary, if we created one. 5582 unsigned SubExprOffset = ~0u; 5583 auto createTemp = [=, &SubExprOffset]() -> bool { 5584 SubExprOffset = this->allocateLocalPrimitive(SubExpr, PT_Ptr, true, false); 5585 if (!this->visit(SubExpr)) 5586 return false; 5587 return this->emitSetLocal(PT_Ptr, SubExprOffset, E); 5588 }; 5589 5590 PrimType ElemT = classifyComplexElementType(SubExpr->getType()); 5591 auto getElem = [=](unsigned Offset, unsigned Index) -> bool { 5592 if (!this->emitGetLocal(PT_Ptr, Offset, E)) 5593 return false; 5594 return this->emitArrayElemPop(ElemT, Index, E); 5595 }; 5596 5597 switch (E->getOpcode()) { 5598 case UO_Minus: 5599 if (!prepareResult()) 5600 return false; 5601 if (!createTemp()) 5602 return false; 5603 for (unsigned I = 0; I != 2; ++I) { 5604 if (!getElem(SubExprOffset, I)) 5605 return false; 5606 if (!this->emitNeg(ElemT, E)) 5607 return false; 5608 if (!this->emitInitElem(ElemT, I, E)) 5609 return false; 5610 } 5611 break; 5612 5613 case UO_Plus: // +x 5614 case UO_AddrOf: // &x 5615 case UO_Deref: // *x 5616 return this->delegate(SubExpr); 5617 5618 case UO_LNot: 5619 if (!this->visit(SubExpr)) 5620 return false; 5621 if (!this->emitComplexBoolCast(SubExpr)) 5622 return false; 5623 if (!this->emitInv(E)) 5624 return false; 5625 if (PrimType ET = classifyPrim(E->getType()); ET != PT_Bool) 5626 return this->emitCast(PT_Bool, ET, E); 5627 return true; 5628 5629 case UO_Real: 5630 return this->emitComplexReal(SubExpr); 5631 5632 case UO_Imag: 5633 if (!this->visit(SubExpr)) 5634 return false; 5635 5636 if (SubExpr->isLValue()) { 5637 if (!this->emitConstUint8(1, E)) 5638 return false; 5639 return this->emitArrayElemPtrPopUint8(E); 5640 } 5641 5642 // Since our _Complex implementation does not map to a primitive type, 5643 // we sometimes have to do the lvalue-to-rvalue conversion here manually. 5644 return this->emitArrayElemPop(classifyPrim(E->getType()), 1, E); 5645 5646 case UO_Not: // ~x 5647 if (!this->visit(SubExpr)) 5648 return false; 5649 // Negate the imaginary component. 5650 if (!this->emitArrayElem(ElemT, 1, E)) 5651 return false; 5652 if (!this->emitNeg(ElemT, E)) 5653 return false; 5654 if (!this->emitInitElem(ElemT, 1, E)) 5655 return false; 5656 return DiscardResult ? this->emitPopPtr(E) : true; 5657 5658 case UO_Extension: 5659 return this->delegate(SubExpr); 5660 5661 default: 5662 return this->emitInvalid(E); 5663 } 5664 5665 return true; 5666 } 5667 5668 template <class Emitter> 5669 bool Compiler<Emitter>::VisitVectorUnaryOperator(const UnaryOperator *E) { 5670 const Expr *SubExpr = E->getSubExpr(); 5671 assert(SubExpr->getType()->isVectorType()); 5672 5673 if (DiscardResult) 5674 return this->discard(SubExpr); 5675 5676 auto UnaryOp = E->getOpcode(); 5677 if (UnaryOp != UO_Plus && UnaryOp != UO_Minus && UnaryOp != UO_LNot && 5678 UnaryOp != UO_Not && UnaryOp != UO_AddrOf) 5679 return this->emitInvalid(E); 5680 5681 // Nothing to do here. 5682 if (UnaryOp == UO_Plus || UnaryOp == UO_AddrOf) 5683 return this->delegate(SubExpr); 5684 5685 if (!Initializing) { 5686 std::optional<unsigned> LocalIndex = allocateLocal(SubExpr); 5687 if (!LocalIndex) 5688 return false; 5689 if (!this->emitGetPtrLocal(*LocalIndex, E)) 5690 return false; 5691 } 5692 5693 // The offset of the temporary, if we created one. 5694 unsigned SubExprOffset = 5695 this->allocateLocalPrimitive(SubExpr, PT_Ptr, true, false); 5696 if (!this->visit(SubExpr)) 5697 return false; 5698 if (!this->emitSetLocal(PT_Ptr, SubExprOffset, E)) 5699 return false; 5700 5701 const auto *VecTy = SubExpr->getType()->getAs<VectorType>(); 5702 PrimType ElemT = classifyVectorElementType(SubExpr->getType()); 5703 auto getElem = [=](unsigned Offset, unsigned Index) -> bool { 5704 if (!this->emitGetLocal(PT_Ptr, Offset, E)) 5705 return false; 5706 return this->emitArrayElemPop(ElemT, Index, E); 5707 }; 5708 5709 switch (UnaryOp) { 5710 case UO_Minus: 5711 for (unsigned I = 0; I != VecTy->getNumElements(); ++I) { 5712 if (!getElem(SubExprOffset, I)) 5713 return false; 5714 if (!this->emitNeg(ElemT, E)) 5715 return false; 5716 if (!this->emitInitElem(ElemT, I, E)) 5717 return false; 5718 } 5719 break; 5720 case UO_LNot: { // !x 5721 // In C++, the logic operators !, &&, || are available for vectors. !v is 5722 // equivalent to v == 0. 5723 // 5724 // The result of the comparison is a vector of the same width and number of 5725 // elements as the comparison operands with a signed integral element type. 5726 // 5727 // https://gcc.gnu.org/onlinedocs/gcc/Vector-Extensions.html 5728 QualType ResultVecTy = E->getType(); 5729 PrimType ResultVecElemT = 5730 classifyPrim(ResultVecTy->getAs<VectorType>()->getElementType()); 5731 for (unsigned I = 0; I != VecTy->getNumElements(); ++I) { 5732 if (!getElem(SubExprOffset, I)) 5733 return false; 5734 // operator ! on vectors returns -1 for 'truth', so negate it. 5735 if (!this->emitPrimCast(ElemT, PT_Bool, Ctx.getASTContext().BoolTy, E)) 5736 return false; 5737 if (!this->emitInv(E)) 5738 return false; 5739 if (!this->emitPrimCast(PT_Bool, ElemT, VecTy->getElementType(), E)) 5740 return false; 5741 if (!this->emitNeg(ElemT, E)) 5742 return false; 5743 if (ElemT != ResultVecElemT && 5744 !this->emitPrimCast(ElemT, ResultVecElemT, ResultVecTy, E)) 5745 return false; 5746 if (!this->emitInitElem(ResultVecElemT, I, E)) 5747 return false; 5748 } 5749 break; 5750 } 5751 case UO_Not: // ~x 5752 for (unsigned I = 0; I != VecTy->getNumElements(); ++I) { 5753 if (!getElem(SubExprOffset, I)) 5754 return false; 5755 if (ElemT == PT_Bool) { 5756 if (!this->emitInv(E)) 5757 return false; 5758 } else { 5759 if (!this->emitComp(ElemT, E)) 5760 return false; 5761 } 5762 if (!this->emitInitElem(ElemT, I, E)) 5763 return false; 5764 } 5765 break; 5766 default: 5767 llvm_unreachable("Unsupported unary operators should be handled up front"); 5768 } 5769 return true; 5770 } 5771 5772 template <class Emitter> 5773 bool Compiler<Emitter>::visitDeclRef(const ValueDecl *D, const Expr *E) { 5774 if (DiscardResult) 5775 return true; 5776 5777 if (const auto *ECD = dyn_cast<EnumConstantDecl>(D)) { 5778 return this->emitConst(ECD->getInitVal(), E); 5779 } else if (const auto *BD = dyn_cast<BindingDecl>(D)) { 5780 return this->visit(BD->getBinding()); 5781 } else if (const auto *FuncDecl = dyn_cast<FunctionDecl>(D)) { 5782 const Function *F = getFunction(FuncDecl); 5783 return F && this->emitGetFnPtr(F, E); 5784 } else if (const auto *TPOD = dyn_cast<TemplateParamObjectDecl>(D)) { 5785 if (std::optional<unsigned> Index = P.getOrCreateGlobal(D)) { 5786 if (!this->emitGetPtrGlobal(*Index, E)) 5787 return false; 5788 if (std::optional<PrimType> T = classify(E->getType())) { 5789 if (!this->visitAPValue(TPOD->getValue(), *T, E)) 5790 return false; 5791 return this->emitInitGlobal(*T, *Index, E); 5792 } 5793 return this->visitAPValueInitializer(TPOD->getValue(), E); 5794 } 5795 return false; 5796 } 5797 5798 // References are implemented via pointers, so when we see a DeclRefExpr 5799 // pointing to a reference, we need to get its value directly (i.e. the 5800 // pointer to the actual value) instead of a pointer to the pointer to the 5801 // value. 5802 bool IsReference = D->getType()->isReferenceType(); 5803 5804 // Check for local/global variables and parameters. 5805 if (auto It = Locals.find(D); It != Locals.end()) { 5806 const unsigned Offset = It->second.Offset; 5807 if (IsReference) 5808 return this->emitGetLocal(PT_Ptr, Offset, E); 5809 return this->emitGetPtrLocal(Offset, E); 5810 } else if (auto GlobalIndex = P.getGlobal(D)) { 5811 if (IsReference) { 5812 if (!Ctx.getLangOpts().CPlusPlus11) 5813 return this->emitGetGlobal(classifyPrim(E), *GlobalIndex, E); 5814 return this->emitGetGlobalUnchecked(classifyPrim(E), *GlobalIndex, E); 5815 } 5816 5817 return this->emitGetPtrGlobal(*GlobalIndex, E); 5818 } else if (const auto *PVD = dyn_cast<ParmVarDecl>(D)) { 5819 if (auto It = this->Params.find(PVD); It != this->Params.end()) { 5820 if (IsReference || !It->second.IsPtr) 5821 return this->emitGetParam(classifyPrim(E), It->second.Offset, E); 5822 5823 return this->emitGetPtrParam(It->second.Offset, E); 5824 } 5825 } 5826 5827 // In case we need to re-visit a declaration. 5828 auto revisit = [&](const VarDecl *VD) -> bool { 5829 auto VarState = this->visitDecl(VD); 5830 5831 if (VarState.notCreated()) 5832 return true; 5833 if (!VarState) 5834 return false; 5835 // Retry. 5836 return this->visitDeclRef(D, E); 5837 }; 5838 5839 // Handle lambda captures. 5840 if (auto It = this->LambdaCaptures.find(D); 5841 It != this->LambdaCaptures.end()) { 5842 auto [Offset, IsPtr] = It->second; 5843 5844 if (IsPtr) 5845 return this->emitGetThisFieldPtr(Offset, E); 5846 return this->emitGetPtrThisField(Offset, E); 5847 } else if (const auto *DRE = dyn_cast<DeclRefExpr>(E); 5848 DRE && DRE->refersToEnclosingVariableOrCapture()) { 5849 if (const auto *VD = dyn_cast<VarDecl>(D); VD && VD->isInitCapture()) 5850 return revisit(VD); 5851 } 5852 5853 if (D != InitializingDecl) { 5854 // Try to lazily visit (or emit dummy pointers for) declarations 5855 // we haven't seen yet. 5856 if (Ctx.getLangOpts().CPlusPlus) { 5857 if (const auto *VD = dyn_cast<VarDecl>(D)) { 5858 const auto typeShouldBeVisited = [&](QualType T) -> bool { 5859 if (T.isConstant(Ctx.getASTContext())) 5860 return true; 5861 if (const auto *RT = T->getAs<ReferenceType>()) 5862 return RT->getPointeeType().isConstQualified(); 5863 return false; 5864 }; 5865 5866 // DecompositionDecls are just proxies for us. 5867 if (isa<DecompositionDecl>(VD)) 5868 return revisit(VD); 5869 5870 if ((VD->hasGlobalStorage() || VD->isStaticDataMember()) && 5871 typeShouldBeVisited(VD->getType())) 5872 return revisit(VD); 5873 5874 // FIXME: The evaluateValue() check here is a little ridiculous, since 5875 // it will ultimately call into Context::evaluateAsInitializer(). In 5876 // other words, we're evaluating the initializer, just to know if we can 5877 // evaluate the initializer. 5878 if (VD->isLocalVarDecl() && typeShouldBeVisited(VD->getType()) && 5879 VD->getInit() && !VD->getInit()->isValueDependent() && 5880 VD->evaluateValue()) 5881 return revisit(VD); 5882 } 5883 } else { 5884 if (const auto *VD = dyn_cast<VarDecl>(D); 5885 VD && VD->getAnyInitializer() && 5886 VD->getType().isConstant(Ctx.getASTContext()) && !VD->isWeak()) 5887 return revisit(VD); 5888 } 5889 } 5890 5891 if (std::optional<unsigned> I = P.getOrCreateDummy(D)) { 5892 if (!this->emitGetPtrGlobal(*I, E)) 5893 return false; 5894 if (E->getType()->isVoidType()) 5895 return true; 5896 // Convert the dummy pointer to another pointer type if we have to. 5897 if (PrimType PT = classifyPrim(E); PT != PT_Ptr) { 5898 if (isPtrType(PT)) 5899 return this->emitDecayPtr(PT_Ptr, PT, E); 5900 return false; 5901 } 5902 return true; 5903 } 5904 5905 if (const auto *DRE = dyn_cast<DeclRefExpr>(E)) 5906 return this->emitInvalidDeclRef(DRE, E); 5907 return false; 5908 } 5909 5910 template <class Emitter> 5911 bool Compiler<Emitter>::VisitDeclRefExpr(const DeclRefExpr *E) { 5912 const auto *D = E->getDecl(); 5913 return this->visitDeclRef(D, E); 5914 } 5915 5916 template <class Emitter> void Compiler<Emitter>::emitCleanup() { 5917 for (VariableScope<Emitter> *C = VarScope; C; C = C->getParent()) 5918 C->emitDestruction(); 5919 } 5920 5921 template <class Emitter> 5922 unsigned Compiler<Emitter>::collectBaseOffset(const QualType BaseType, 5923 const QualType DerivedType) { 5924 const auto extractRecordDecl = [](QualType Ty) -> const CXXRecordDecl * { 5925 if (const auto *R = Ty->getPointeeCXXRecordDecl()) 5926 return R; 5927 return Ty->getAsCXXRecordDecl(); 5928 }; 5929 const CXXRecordDecl *BaseDecl = extractRecordDecl(BaseType); 5930 const CXXRecordDecl *DerivedDecl = extractRecordDecl(DerivedType); 5931 5932 return Ctx.collectBaseOffset(BaseDecl, DerivedDecl); 5933 } 5934 5935 /// Emit casts from a PrimType to another PrimType. 5936 template <class Emitter> 5937 bool Compiler<Emitter>::emitPrimCast(PrimType FromT, PrimType ToT, 5938 QualType ToQT, const Expr *E) { 5939 5940 if (FromT == PT_Float) { 5941 // Floating to floating. 5942 if (ToT == PT_Float) { 5943 const llvm::fltSemantics *ToSem = &Ctx.getFloatSemantics(ToQT); 5944 return this->emitCastFP(ToSem, getRoundingMode(E), E); 5945 } 5946 5947 if (ToT == PT_IntAP) 5948 return this->emitCastFloatingIntegralAP(Ctx.getBitWidth(ToQT), 5949 getFPOptions(E), E); 5950 if (ToT == PT_IntAPS) 5951 return this->emitCastFloatingIntegralAPS(Ctx.getBitWidth(ToQT), 5952 getFPOptions(E), E); 5953 5954 // Float to integral. 5955 if (isIntegralType(ToT) || ToT == PT_Bool) 5956 return this->emitCastFloatingIntegral(ToT, getFPOptions(E), E); 5957 } 5958 5959 if (isIntegralType(FromT) || FromT == PT_Bool) { 5960 if (ToT == PT_IntAP) 5961 return this->emitCastAP(FromT, Ctx.getBitWidth(ToQT), E); 5962 if (ToT == PT_IntAPS) 5963 return this->emitCastAPS(FromT, Ctx.getBitWidth(ToQT), E); 5964 5965 // Integral to integral. 5966 if (isIntegralType(ToT) || ToT == PT_Bool) 5967 return FromT != ToT ? this->emitCast(FromT, ToT, E) : true; 5968 5969 if (ToT == PT_Float) { 5970 // Integral to floating. 5971 const llvm::fltSemantics *ToSem = &Ctx.getFloatSemantics(ToQT); 5972 return this->emitCastIntegralFloating(FromT, ToSem, getFPOptions(E), E); 5973 } 5974 } 5975 5976 return false; 5977 } 5978 5979 /// Emits __real(SubExpr) 5980 template <class Emitter> 5981 bool Compiler<Emitter>::emitComplexReal(const Expr *SubExpr) { 5982 assert(SubExpr->getType()->isAnyComplexType()); 5983 5984 if (DiscardResult) 5985 return this->discard(SubExpr); 5986 5987 if (!this->visit(SubExpr)) 5988 return false; 5989 if (SubExpr->isLValue()) { 5990 if (!this->emitConstUint8(0, SubExpr)) 5991 return false; 5992 return this->emitArrayElemPtrPopUint8(SubExpr); 5993 } 5994 5995 // Rvalue, load the actual element. 5996 return this->emitArrayElemPop(classifyComplexElementType(SubExpr->getType()), 5997 0, SubExpr); 5998 } 5999 6000 template <class Emitter> 6001 bool Compiler<Emitter>::emitComplexBoolCast(const Expr *E) { 6002 assert(!DiscardResult); 6003 PrimType ElemT = classifyComplexElementType(E->getType()); 6004 // We emit the expression (__real(E) != 0 || __imag(E) != 0) 6005 // for us, that means (bool)E[0] || (bool)E[1] 6006 if (!this->emitArrayElem(ElemT, 0, E)) 6007 return false; 6008 if (ElemT == PT_Float) { 6009 if (!this->emitCastFloatingIntegral(PT_Bool, getFPOptions(E), E)) 6010 return false; 6011 } else { 6012 if (!this->emitCast(ElemT, PT_Bool, E)) 6013 return false; 6014 } 6015 6016 // We now have the bool value of E[0] on the stack. 6017 LabelTy LabelTrue = this->getLabel(); 6018 if (!this->jumpTrue(LabelTrue)) 6019 return false; 6020 6021 if (!this->emitArrayElemPop(ElemT, 1, E)) 6022 return false; 6023 if (ElemT == PT_Float) { 6024 if (!this->emitCastFloatingIntegral(PT_Bool, getFPOptions(E), E)) 6025 return false; 6026 } else { 6027 if (!this->emitCast(ElemT, PT_Bool, E)) 6028 return false; 6029 } 6030 // Leave the boolean value of E[1] on the stack. 6031 LabelTy EndLabel = this->getLabel(); 6032 this->jump(EndLabel); 6033 6034 this->emitLabel(LabelTrue); 6035 if (!this->emitPopPtr(E)) 6036 return false; 6037 if (!this->emitConstBool(true, E)) 6038 return false; 6039 6040 this->fallthrough(EndLabel); 6041 this->emitLabel(EndLabel); 6042 6043 return true; 6044 } 6045 6046 template <class Emitter> 6047 bool Compiler<Emitter>::emitComplexComparison(const Expr *LHS, const Expr *RHS, 6048 const BinaryOperator *E) { 6049 assert(E->isComparisonOp()); 6050 assert(!Initializing); 6051 assert(!DiscardResult); 6052 6053 PrimType ElemT; 6054 bool LHSIsComplex; 6055 unsigned LHSOffset; 6056 if (LHS->getType()->isAnyComplexType()) { 6057 LHSIsComplex = true; 6058 ElemT = classifyComplexElementType(LHS->getType()); 6059 LHSOffset = allocateLocalPrimitive(LHS, PT_Ptr, /*IsConst=*/true, 6060 /*IsExtended=*/false); 6061 if (!this->visit(LHS)) 6062 return false; 6063 if (!this->emitSetLocal(PT_Ptr, LHSOffset, E)) 6064 return false; 6065 } else { 6066 LHSIsComplex = false; 6067 PrimType LHST = classifyPrim(LHS->getType()); 6068 LHSOffset = this->allocateLocalPrimitive(LHS, LHST, true, false); 6069 if (!this->visit(LHS)) 6070 return false; 6071 if (!this->emitSetLocal(LHST, LHSOffset, E)) 6072 return false; 6073 } 6074 6075 bool RHSIsComplex; 6076 unsigned RHSOffset; 6077 if (RHS->getType()->isAnyComplexType()) { 6078 RHSIsComplex = true; 6079 ElemT = classifyComplexElementType(RHS->getType()); 6080 RHSOffset = allocateLocalPrimitive(RHS, PT_Ptr, /*IsConst=*/true, 6081 /*IsExtended=*/false); 6082 if (!this->visit(RHS)) 6083 return false; 6084 if (!this->emitSetLocal(PT_Ptr, RHSOffset, E)) 6085 return false; 6086 } else { 6087 RHSIsComplex = false; 6088 PrimType RHST = classifyPrim(RHS->getType()); 6089 RHSOffset = this->allocateLocalPrimitive(RHS, RHST, true, false); 6090 if (!this->visit(RHS)) 6091 return false; 6092 if (!this->emitSetLocal(RHST, RHSOffset, E)) 6093 return false; 6094 } 6095 6096 auto getElem = [&](unsigned LocalOffset, unsigned Index, 6097 bool IsComplex) -> bool { 6098 if (IsComplex) { 6099 if (!this->emitGetLocal(PT_Ptr, LocalOffset, E)) 6100 return false; 6101 return this->emitArrayElemPop(ElemT, Index, E); 6102 } 6103 return this->emitGetLocal(ElemT, LocalOffset, E); 6104 }; 6105 6106 for (unsigned I = 0; I != 2; ++I) { 6107 // Get both values. 6108 if (!getElem(LHSOffset, I, LHSIsComplex)) 6109 return false; 6110 if (!getElem(RHSOffset, I, RHSIsComplex)) 6111 return false; 6112 // And compare them. 6113 if (!this->emitEQ(ElemT, E)) 6114 return false; 6115 6116 if (!this->emitCastBoolUint8(E)) 6117 return false; 6118 } 6119 6120 // We now have two bool values on the stack. Compare those. 6121 if (!this->emitAddUint8(E)) 6122 return false; 6123 if (!this->emitConstUint8(2, E)) 6124 return false; 6125 6126 if (E->getOpcode() == BO_EQ) { 6127 if (!this->emitEQUint8(E)) 6128 return false; 6129 } else if (E->getOpcode() == BO_NE) { 6130 if (!this->emitNEUint8(E)) 6131 return false; 6132 } else 6133 return false; 6134 6135 // In C, this returns an int. 6136 if (PrimType ResT = classifyPrim(E->getType()); ResT != PT_Bool) 6137 return this->emitCast(PT_Bool, ResT, E); 6138 return true; 6139 } 6140 6141 /// When calling this, we have a pointer of the local-to-destroy 6142 /// on the stack. 6143 /// Emit destruction of record types (or arrays of record types). 6144 template <class Emitter> 6145 bool Compiler<Emitter>::emitRecordDestruction(const Record *R) { 6146 assert(R); 6147 const CXXDestructorDecl *Dtor = R->getDestructor(); 6148 if (!Dtor || Dtor->isTrivial()) 6149 return true; 6150 6151 assert(Dtor); 6152 const Function *DtorFunc = getFunction(Dtor); 6153 if (!DtorFunc) 6154 return false; 6155 assert(DtorFunc->hasThisPointer()); 6156 assert(DtorFunc->getNumParams() == 1); 6157 if (!this->emitDupPtr(SourceInfo{})) 6158 return false; 6159 return this->emitCall(DtorFunc, 0, SourceInfo{}); 6160 } 6161 /// When calling this, we have a pointer of the local-to-destroy 6162 /// on the stack. 6163 /// Emit destruction of record types (or arrays of record types). 6164 template <class Emitter> 6165 bool Compiler<Emitter>::emitDestruction(const Descriptor *Desc) { 6166 assert(Desc); 6167 assert(!Desc->isPrimitive()); 6168 assert(!Desc->isPrimitiveArray()); 6169 6170 // Arrays. 6171 if (Desc->isArray()) { 6172 const Descriptor *ElemDesc = Desc->ElemDesc; 6173 assert(ElemDesc); 6174 6175 // Don't need to do anything for these. 6176 if (ElemDesc->isPrimitiveArray()) 6177 return true; 6178 6179 // If this is an array of record types, check if we need 6180 // to call the element destructors at all. If not, try 6181 // to save the work. 6182 if (const Record *ElemRecord = ElemDesc->ElemRecord) { 6183 if (const CXXDestructorDecl *Dtor = ElemRecord->getDestructor(); 6184 !Dtor || Dtor->isTrivial()) 6185 return true; 6186 } 6187 6188 for (ssize_t I = Desc->getNumElems() - 1; I >= 0; --I) { 6189 if (!this->emitConstUint64(I, SourceInfo{})) 6190 return false; 6191 if (!this->emitArrayElemPtrUint64(SourceInfo{})) 6192 return false; 6193 if (!this->emitDestruction(ElemDesc)) 6194 return false; 6195 if (!this->emitPopPtr(SourceInfo{})) 6196 return false; 6197 } 6198 return true; 6199 } 6200 6201 assert(Desc->ElemRecord); 6202 return this->emitRecordDestruction(Desc->ElemRecord); 6203 } 6204 6205 namespace clang { 6206 namespace interp { 6207 6208 template class Compiler<ByteCodeEmitter>; 6209 template class Compiler<EvalEmitter>; 6210 6211 } // namespace interp 6212 } // namespace clang 6213