xref: /llvm-project/clang/lib/AST/ByteCode/Compiler.cpp (revision c2a37e41b9f9f5e28339674dbdc656bc8a0bf708)
1 //===--- Compiler.cpp - Code generator for expressions ---*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #include "Compiler.h"
10 #include "ByteCodeEmitter.h"
11 #include "Context.h"
12 #include "FixedPoint.h"
13 #include "Floating.h"
14 #include "Function.h"
15 #include "InterpShared.h"
16 #include "PrimType.h"
17 #include "Program.h"
18 #include "clang/AST/Attr.h"
19 
20 using namespace clang;
21 using namespace clang::interp;
22 
23 using APSInt = llvm::APSInt;
24 
25 namespace clang {
26 namespace interp {
27 
28 /// Scope used to handle temporaries in toplevel variable declarations.
29 template <class Emitter> class DeclScope final : public LocalScope<Emitter> {
30 public:
31   DeclScope(Compiler<Emitter> *Ctx, const ValueDecl *VD)
32       : LocalScope<Emitter>(Ctx, VD), Scope(Ctx->P, VD),
33         OldInitializingDecl(Ctx->InitializingDecl) {
34     Ctx->InitializingDecl = VD;
35     Ctx->InitStack.push_back(InitLink::Decl(VD));
36   }
37 
38   void addExtended(const Scope::Local &Local) override {
39     return this->addLocal(Local);
40   }
41 
42   ~DeclScope() {
43     this->Ctx->InitializingDecl = OldInitializingDecl;
44     this->Ctx->InitStack.pop_back();
45   }
46 
47 private:
48   Program::DeclScope Scope;
49   const ValueDecl *OldInitializingDecl;
50 };
51 
52 /// Scope used to handle initialization methods.
53 template <class Emitter> class OptionScope final {
54 public:
55   /// Root constructor, compiling or discarding primitives.
56   OptionScope(Compiler<Emitter> *Ctx, bool NewDiscardResult,
57               bool NewInitializing)
58       : Ctx(Ctx), OldDiscardResult(Ctx->DiscardResult),
59         OldInitializing(Ctx->Initializing) {
60     Ctx->DiscardResult = NewDiscardResult;
61     Ctx->Initializing = NewInitializing;
62   }
63 
64   ~OptionScope() {
65     Ctx->DiscardResult = OldDiscardResult;
66     Ctx->Initializing = OldInitializing;
67   }
68 
69 private:
70   /// Parent context.
71   Compiler<Emitter> *Ctx;
72   /// Old discard flag to restore.
73   bool OldDiscardResult;
74   bool OldInitializing;
75 };
76 
77 template <class Emitter>
78 bool InitLink::emit(Compiler<Emitter> *Ctx, const Expr *E) const {
79   switch (Kind) {
80   case K_This:
81     return Ctx->emitThis(E);
82   case K_Field:
83     // We're assuming there's a base pointer on the stack already.
84     return Ctx->emitGetPtrFieldPop(Offset, E);
85   case K_Temp:
86     return Ctx->emitGetPtrLocal(Offset, E);
87   case K_Decl:
88     return Ctx->visitDeclRef(D, E);
89   case K_Elem:
90     if (!Ctx->emitConstUint32(Offset, E))
91       return false;
92     return Ctx->emitArrayElemPtrPopUint32(E);
93   default:
94     llvm_unreachable("Unhandled InitLink kind");
95   }
96   return true;
97 }
98 
99 /// Scope managing label targets.
100 template <class Emitter> class LabelScope {
101 public:
102   virtual ~LabelScope() {}
103 
104 protected:
105   LabelScope(Compiler<Emitter> *Ctx) : Ctx(Ctx) {}
106   /// Compiler instance.
107   Compiler<Emitter> *Ctx;
108 };
109 
110 /// Sets the context for break/continue statements.
111 template <class Emitter> class LoopScope final : public LabelScope<Emitter> {
112 public:
113   using LabelTy = typename Compiler<Emitter>::LabelTy;
114   using OptLabelTy = typename Compiler<Emitter>::OptLabelTy;
115 
116   LoopScope(Compiler<Emitter> *Ctx, LabelTy BreakLabel, LabelTy ContinueLabel)
117       : LabelScope<Emitter>(Ctx), OldBreakLabel(Ctx->BreakLabel),
118         OldContinueLabel(Ctx->ContinueLabel),
119         OldBreakVarScope(Ctx->BreakVarScope),
120         OldContinueVarScope(Ctx->ContinueVarScope) {
121     this->Ctx->BreakLabel = BreakLabel;
122     this->Ctx->ContinueLabel = ContinueLabel;
123     this->Ctx->BreakVarScope = this->Ctx->VarScope;
124     this->Ctx->ContinueVarScope = this->Ctx->VarScope;
125   }
126 
127   ~LoopScope() {
128     this->Ctx->BreakLabel = OldBreakLabel;
129     this->Ctx->ContinueLabel = OldContinueLabel;
130     this->Ctx->ContinueVarScope = OldContinueVarScope;
131     this->Ctx->BreakVarScope = OldBreakVarScope;
132   }
133 
134 private:
135   OptLabelTy OldBreakLabel;
136   OptLabelTy OldContinueLabel;
137   VariableScope<Emitter> *OldBreakVarScope;
138   VariableScope<Emitter> *OldContinueVarScope;
139 };
140 
141 // Sets the context for a switch scope, mapping labels.
142 template <class Emitter> class SwitchScope final : public LabelScope<Emitter> {
143 public:
144   using LabelTy = typename Compiler<Emitter>::LabelTy;
145   using OptLabelTy = typename Compiler<Emitter>::OptLabelTy;
146   using CaseMap = typename Compiler<Emitter>::CaseMap;
147 
148   SwitchScope(Compiler<Emitter> *Ctx, CaseMap &&CaseLabels, LabelTy BreakLabel,
149               OptLabelTy DefaultLabel)
150       : LabelScope<Emitter>(Ctx), OldBreakLabel(Ctx->BreakLabel),
151         OldDefaultLabel(this->Ctx->DefaultLabel),
152         OldCaseLabels(std::move(this->Ctx->CaseLabels)),
153         OldLabelVarScope(Ctx->BreakVarScope) {
154     this->Ctx->BreakLabel = BreakLabel;
155     this->Ctx->DefaultLabel = DefaultLabel;
156     this->Ctx->CaseLabels = std::move(CaseLabels);
157     this->Ctx->BreakVarScope = this->Ctx->VarScope;
158   }
159 
160   ~SwitchScope() {
161     this->Ctx->BreakLabel = OldBreakLabel;
162     this->Ctx->DefaultLabel = OldDefaultLabel;
163     this->Ctx->CaseLabels = std::move(OldCaseLabels);
164     this->Ctx->BreakVarScope = OldLabelVarScope;
165   }
166 
167 private:
168   OptLabelTy OldBreakLabel;
169   OptLabelTy OldDefaultLabel;
170   CaseMap OldCaseLabels;
171   VariableScope<Emitter> *OldLabelVarScope;
172 };
173 
174 template <class Emitter> class StmtExprScope final {
175 public:
176   StmtExprScope(Compiler<Emitter> *Ctx) : Ctx(Ctx), OldFlag(Ctx->InStmtExpr) {
177     Ctx->InStmtExpr = true;
178   }
179 
180   ~StmtExprScope() { Ctx->InStmtExpr = OldFlag; }
181 
182 private:
183   Compiler<Emitter> *Ctx;
184   bool OldFlag;
185 };
186 
187 } // namespace interp
188 } // namespace clang
189 
190 template <class Emitter>
191 bool Compiler<Emitter>::VisitCastExpr(const CastExpr *CE) {
192   const Expr *SubExpr = CE->getSubExpr();
193   switch (CE->getCastKind()) {
194 
195   case CK_LValueToRValue: {
196     if (DiscardResult)
197       return this->discard(SubExpr);
198 
199     std::optional<PrimType> SubExprT = classify(SubExpr->getType());
200     // Prepare storage for the result.
201     if (!Initializing && !SubExprT) {
202       std::optional<unsigned> LocalIndex = allocateLocal(SubExpr);
203       if (!LocalIndex)
204         return false;
205       if (!this->emitGetPtrLocal(*LocalIndex, CE))
206         return false;
207     }
208 
209     if (!this->visit(SubExpr))
210       return false;
211 
212     if (SubExprT)
213       return this->emitLoadPop(*SubExprT, CE);
214 
215     // If the subexpr type is not primitive, we need to perform a copy here.
216     // This happens for example in C when dereferencing a pointer of struct
217     // type.
218     return this->emitMemcpy(CE);
219   }
220 
221   case CK_DerivedToBaseMemberPointer: {
222     assert(classifyPrim(CE->getType()) == PT_MemberPtr);
223     assert(classifyPrim(SubExpr->getType()) == PT_MemberPtr);
224     const auto *FromMP = SubExpr->getType()->getAs<MemberPointerType>();
225     const auto *ToMP = CE->getType()->getAs<MemberPointerType>();
226 
227     unsigned DerivedOffset = collectBaseOffset(QualType(ToMP->getClass(), 0),
228                                                QualType(FromMP->getClass(), 0));
229 
230     if (!this->delegate(SubExpr))
231       return false;
232 
233     return this->emitGetMemberPtrBasePop(DerivedOffset, CE);
234   }
235 
236   case CK_BaseToDerivedMemberPointer: {
237     assert(classifyPrim(CE) == PT_MemberPtr);
238     assert(classifyPrim(SubExpr) == PT_MemberPtr);
239     const auto *FromMP = SubExpr->getType()->getAs<MemberPointerType>();
240     const auto *ToMP = CE->getType()->getAs<MemberPointerType>();
241 
242     unsigned DerivedOffset = collectBaseOffset(QualType(FromMP->getClass(), 0),
243                                                QualType(ToMP->getClass(), 0));
244 
245     if (!this->delegate(SubExpr))
246       return false;
247     return this->emitGetMemberPtrBasePop(-DerivedOffset, CE);
248   }
249 
250   case CK_UncheckedDerivedToBase:
251   case CK_DerivedToBase: {
252     if (!this->delegate(SubExpr))
253       return false;
254 
255     const auto extractRecordDecl = [](QualType Ty) -> const CXXRecordDecl * {
256       if (const auto *PT = dyn_cast<PointerType>(Ty))
257         return PT->getPointeeType()->getAsCXXRecordDecl();
258       return Ty->getAsCXXRecordDecl();
259     };
260 
261     // FIXME: We can express a series of non-virtual casts as a single
262     // GetPtrBasePop op.
263     QualType CurType = SubExpr->getType();
264     for (const CXXBaseSpecifier *B : CE->path()) {
265       if (B->isVirtual()) {
266         if (!this->emitGetPtrVirtBasePop(extractRecordDecl(B->getType()), CE))
267           return false;
268         CurType = B->getType();
269       } else {
270         unsigned DerivedOffset = collectBaseOffset(B->getType(), CurType);
271         if (!this->emitGetPtrBasePop(DerivedOffset, CE))
272           return false;
273         CurType = B->getType();
274       }
275     }
276 
277     return true;
278   }
279 
280   case CK_BaseToDerived: {
281     if (!this->delegate(SubExpr))
282       return false;
283 
284     unsigned DerivedOffset =
285         collectBaseOffset(SubExpr->getType(), CE->getType());
286 
287     return this->emitGetPtrDerivedPop(DerivedOffset, CE);
288   }
289 
290   case CK_FloatingCast: {
291     // HLSL uses CK_FloatingCast to cast between vectors.
292     if (!SubExpr->getType()->isFloatingType() ||
293         !CE->getType()->isFloatingType())
294       return false;
295     if (DiscardResult)
296       return this->discard(SubExpr);
297     if (!this->visit(SubExpr))
298       return false;
299     const auto *TargetSemantics = &Ctx.getFloatSemantics(CE->getType());
300     return this->emitCastFP(TargetSemantics, getRoundingMode(CE), CE);
301   }
302 
303   case CK_IntegralToFloating: {
304     if (DiscardResult)
305       return this->discard(SubExpr);
306     std::optional<PrimType> FromT = classify(SubExpr->getType());
307     if (!FromT)
308       return false;
309 
310     if (!this->visit(SubExpr))
311       return false;
312 
313     const auto *TargetSemantics = &Ctx.getFloatSemantics(CE->getType());
314     return this->emitCastIntegralFloating(*FromT, TargetSemantics,
315                                           getFPOptions(CE), CE);
316   }
317 
318   case CK_FloatingToBoolean:
319   case CK_FloatingToIntegral: {
320     if (DiscardResult)
321       return this->discard(SubExpr);
322 
323     std::optional<PrimType> ToT = classify(CE->getType());
324 
325     if (!ToT)
326       return false;
327 
328     if (!this->visit(SubExpr))
329       return false;
330 
331     if (ToT == PT_IntAP)
332       return this->emitCastFloatingIntegralAP(Ctx.getBitWidth(CE->getType()),
333                                               getFPOptions(CE), CE);
334     if (ToT == PT_IntAPS)
335       return this->emitCastFloatingIntegralAPS(Ctx.getBitWidth(CE->getType()),
336                                                getFPOptions(CE), CE);
337 
338     return this->emitCastFloatingIntegral(*ToT, getFPOptions(CE), CE);
339   }
340 
341   case CK_NullToPointer:
342   case CK_NullToMemberPointer: {
343     if (!this->discard(SubExpr))
344       return false;
345     if (DiscardResult)
346       return true;
347 
348     const Descriptor *Desc = nullptr;
349     const QualType PointeeType = CE->getType()->getPointeeType();
350     if (!PointeeType.isNull()) {
351       if (std::optional<PrimType> T = classify(PointeeType))
352         Desc = P.createDescriptor(SubExpr, *T);
353       else
354         Desc = P.createDescriptor(SubExpr, PointeeType.getTypePtr(),
355                                   std::nullopt, true, false,
356                                   /*IsMutable=*/false, nullptr);
357     }
358     return this->emitNull(classifyPrim(CE->getType()), Desc, CE);
359   }
360 
361   case CK_PointerToIntegral: {
362     if (DiscardResult)
363       return this->discard(SubExpr);
364 
365     if (!this->visit(SubExpr))
366       return false;
367 
368     // If SubExpr doesn't result in a pointer, make it one.
369     if (PrimType FromT = classifyPrim(SubExpr->getType()); FromT != PT_Ptr) {
370       assert(isPtrType(FromT));
371       if (!this->emitDecayPtr(FromT, PT_Ptr, CE))
372         return false;
373     }
374 
375     PrimType T = classifyPrim(CE->getType());
376     if (T == PT_IntAP)
377       return this->emitCastPointerIntegralAP(Ctx.getBitWidth(CE->getType()),
378                                              CE);
379     if (T == PT_IntAPS)
380       return this->emitCastPointerIntegralAPS(Ctx.getBitWidth(CE->getType()),
381                                               CE);
382     return this->emitCastPointerIntegral(T, CE);
383   }
384 
385   case CK_ArrayToPointerDecay: {
386     if (!this->visit(SubExpr))
387       return false;
388     if (!this->emitArrayDecay(CE))
389       return false;
390     if (DiscardResult)
391       return this->emitPopPtr(CE);
392     return true;
393   }
394 
395   case CK_IntegralToPointer: {
396     QualType IntType = SubExpr->getType();
397     assert(IntType->isIntegralOrEnumerationType());
398     if (!this->visit(SubExpr))
399       return false;
400     // FIXME: I think the discard is wrong since the int->ptr cast might cause a
401     // diagnostic.
402     PrimType T = classifyPrim(IntType);
403     if (DiscardResult)
404       return this->emitPop(T, CE);
405 
406     QualType PtrType = CE->getType();
407     const Descriptor *Desc;
408     if (std::optional<PrimType> T = classify(PtrType->getPointeeType()))
409       Desc = P.createDescriptor(SubExpr, *T);
410     else if (PtrType->getPointeeType()->isVoidType())
411       Desc = nullptr;
412     else
413       Desc = P.createDescriptor(CE, PtrType->getPointeeType().getTypePtr(),
414                                 Descriptor::InlineDescMD, true, false,
415                                 /*IsMutable=*/false, nullptr);
416 
417     if (!this->emitGetIntPtr(T, Desc, CE))
418       return false;
419 
420     PrimType DestPtrT = classifyPrim(PtrType);
421     if (DestPtrT == PT_Ptr)
422       return true;
423 
424     // In case we're converting the integer to a non-Pointer.
425     return this->emitDecayPtr(PT_Ptr, DestPtrT, CE);
426   }
427 
428   case CK_AtomicToNonAtomic:
429   case CK_ConstructorConversion:
430   case CK_FunctionToPointerDecay:
431   case CK_NonAtomicToAtomic:
432   case CK_NoOp:
433   case CK_UserDefinedConversion:
434   case CK_AddressSpaceConversion:
435   case CK_CPointerToObjCPointerCast:
436     return this->delegate(SubExpr);
437 
438   case CK_BitCast: {
439     // Reject bitcasts to atomic types.
440     if (CE->getType()->isAtomicType()) {
441       if (!this->discard(SubExpr))
442         return false;
443       return this->emitInvalidCast(CastKind::Reinterpret, /*Fatal=*/true, CE);
444     }
445 
446     if (DiscardResult)
447       return this->discard(SubExpr);
448 
449     QualType SubExprTy = SubExpr->getType();
450     std::optional<PrimType> FromT = classify(SubExprTy);
451     std::optional<PrimType> ToT = classify(CE->getType());
452     if (!FromT || !ToT)
453       return false;
454 
455     assert(isPtrType(*FromT));
456     assert(isPtrType(*ToT));
457     if (FromT == ToT) {
458       if (CE->getType()->isVoidPointerType())
459         return this->delegate(SubExpr);
460 
461       if (!this->visit(SubExpr))
462         return false;
463       if (FromT == PT_Ptr)
464         return this->emitPtrPtrCast(SubExprTy->isVoidPointerType(), CE);
465       return true;
466     }
467 
468     if (!this->visit(SubExpr))
469       return false;
470     return this->emitDecayPtr(*FromT, *ToT, CE);
471   }
472 
473   case CK_IntegralToBoolean:
474   case CK_FixedPointToBoolean:
475   case CK_BooleanToSignedIntegral:
476   case CK_IntegralCast: {
477     if (DiscardResult)
478       return this->discard(SubExpr);
479     std::optional<PrimType> FromT = classify(SubExpr->getType());
480     std::optional<PrimType> ToT = classify(CE->getType());
481 
482     if (!FromT || !ToT)
483       return false;
484 
485     if (!this->visit(SubExpr))
486       return false;
487 
488     // Possibly diagnose casts to enum types if the target type does not
489     // have a fixed size.
490     if (Ctx.getLangOpts().CPlusPlus && CE->getType()->isEnumeralType()) {
491       if (const auto *ET = CE->getType().getCanonicalType()->getAs<EnumType>();
492           ET && !ET->getDecl()->isFixed()) {
493         if (!this->emitCheckEnumValue(*FromT, ET->getDecl(), CE))
494           return false;
495       }
496     }
497 
498     auto maybeNegate = [&]() -> bool {
499       if (CE->getCastKind() == CK_BooleanToSignedIntegral)
500         return this->emitNeg(*ToT, CE);
501       return true;
502     };
503 
504     if (ToT == PT_IntAP)
505       return this->emitCastAP(*FromT, Ctx.getBitWidth(CE->getType()), CE) &&
506              maybeNegate();
507     if (ToT == PT_IntAPS)
508       return this->emitCastAPS(*FromT, Ctx.getBitWidth(CE->getType()), CE) &&
509              maybeNegate();
510 
511     if (FromT == ToT)
512       return true;
513     if (!this->emitCast(*FromT, *ToT, CE))
514       return false;
515 
516     return maybeNegate();
517   }
518 
519   case CK_PointerToBoolean:
520   case CK_MemberPointerToBoolean: {
521     PrimType PtrT = classifyPrim(SubExpr->getType());
522 
523     if (!this->visit(SubExpr))
524       return false;
525     return this->emitIsNonNull(PtrT, CE);
526   }
527 
528   case CK_IntegralComplexToBoolean:
529   case CK_FloatingComplexToBoolean: {
530     if (DiscardResult)
531       return this->discard(SubExpr);
532     if (!this->visit(SubExpr))
533       return false;
534     return this->emitComplexBoolCast(SubExpr);
535   }
536 
537   case CK_IntegralComplexToReal:
538   case CK_FloatingComplexToReal:
539     return this->emitComplexReal(SubExpr);
540 
541   case CK_IntegralRealToComplex:
542   case CK_FloatingRealToComplex: {
543     // We're creating a complex value here, so we need to
544     // allocate storage for it.
545     if (!Initializing) {
546       unsigned LocalIndex = allocateTemporary(CE);
547       if (!this->emitGetPtrLocal(LocalIndex, CE))
548         return false;
549     }
550 
551     // Init the complex value to {SubExpr, 0}.
552     if (!this->visitArrayElemInit(0, SubExpr))
553       return false;
554     // Zero-init the second element.
555     PrimType T = classifyPrim(SubExpr->getType());
556     if (!this->visitZeroInitializer(T, SubExpr->getType(), SubExpr))
557       return false;
558     return this->emitInitElem(T, 1, SubExpr);
559   }
560 
561   case CK_IntegralComplexCast:
562   case CK_FloatingComplexCast:
563   case CK_IntegralComplexToFloatingComplex:
564   case CK_FloatingComplexToIntegralComplex: {
565     assert(CE->getType()->isAnyComplexType());
566     assert(SubExpr->getType()->isAnyComplexType());
567     if (DiscardResult)
568       return this->discard(SubExpr);
569 
570     if (!Initializing) {
571       std::optional<unsigned> LocalIndex = allocateLocal(CE);
572       if (!LocalIndex)
573         return false;
574       if (!this->emitGetPtrLocal(*LocalIndex, CE))
575         return false;
576     }
577 
578     // Location for the SubExpr.
579     // Since SubExpr is of complex type, visiting it results in a pointer
580     // anyway, so we just create a temporary pointer variable.
581     unsigned SubExprOffset = allocateLocalPrimitive(
582         SubExpr, PT_Ptr, /*IsConst=*/true, /*IsExtended=*/false);
583     if (!this->visit(SubExpr))
584       return false;
585     if (!this->emitSetLocal(PT_Ptr, SubExprOffset, CE))
586       return false;
587 
588     PrimType SourceElemT = classifyComplexElementType(SubExpr->getType());
589     QualType DestElemType =
590         CE->getType()->getAs<ComplexType>()->getElementType();
591     PrimType DestElemT = classifyPrim(DestElemType);
592     // Cast both elements individually.
593     for (unsigned I = 0; I != 2; ++I) {
594       if (!this->emitGetLocal(PT_Ptr, SubExprOffset, CE))
595         return false;
596       if (!this->emitArrayElemPop(SourceElemT, I, CE))
597         return false;
598 
599       // Do the cast.
600       if (!this->emitPrimCast(SourceElemT, DestElemT, DestElemType, CE))
601         return false;
602 
603       // Save the value.
604       if (!this->emitInitElem(DestElemT, I, CE))
605         return false;
606     }
607     return true;
608   }
609 
610   case CK_VectorSplat: {
611     assert(!classify(CE->getType()));
612     assert(classify(SubExpr->getType()));
613     assert(CE->getType()->isVectorType());
614 
615     if (DiscardResult)
616       return this->discard(SubExpr);
617 
618     if (!Initializing) {
619       std::optional<unsigned> LocalIndex = allocateLocal(CE);
620       if (!LocalIndex)
621         return false;
622       if (!this->emitGetPtrLocal(*LocalIndex, CE))
623         return false;
624     }
625 
626     const auto *VT = CE->getType()->getAs<VectorType>();
627     PrimType ElemT = classifyPrim(SubExpr->getType());
628     unsigned ElemOffset = allocateLocalPrimitive(
629         SubExpr, ElemT, /*IsConst=*/true, /*IsExtended=*/false);
630 
631     // Prepare a local variable for the scalar value.
632     if (!this->visit(SubExpr))
633       return false;
634     if (classifyPrim(SubExpr) == PT_Ptr && !this->emitLoadPop(ElemT, CE))
635       return false;
636 
637     if (!this->emitSetLocal(ElemT, ElemOffset, CE))
638       return false;
639 
640     for (unsigned I = 0; I != VT->getNumElements(); ++I) {
641       if (!this->emitGetLocal(ElemT, ElemOffset, CE))
642         return false;
643       if (!this->emitInitElem(ElemT, I, CE))
644         return false;
645     }
646 
647     return true;
648   }
649 
650   case CK_HLSLVectorTruncation: {
651     assert(SubExpr->getType()->isVectorType());
652     if (std::optional<PrimType> ResultT = classify(CE)) {
653       assert(!DiscardResult);
654       // Result must be either a float or integer. Take the first element.
655       if (!this->visit(SubExpr))
656         return false;
657       return this->emitArrayElemPop(*ResultT, 0, CE);
658     }
659     // Otherwise, this truncates from one vector type to another.
660     assert(CE->getType()->isVectorType());
661 
662     if (!Initializing) {
663       unsigned LocalIndex = allocateTemporary(CE);
664       if (!this->emitGetPtrLocal(LocalIndex, CE))
665         return false;
666     }
667     unsigned ToSize = CE->getType()->getAs<VectorType>()->getNumElements();
668     assert(SubExpr->getType()->getAs<VectorType>()->getNumElements() > ToSize);
669     if (!this->visit(SubExpr))
670       return false;
671     return this->emitCopyArray(classifyVectorElementType(CE->getType()), 0, 0,
672                                ToSize, CE);
673   };
674 
675   case CK_IntegralToFixedPoint: {
676     if (!this->visit(SubExpr))
677       return false;
678 
679     auto Sem = Ctx.getASTContext().getFixedPointSemantics(CE->getType());
680     uint32_t I;
681     std::memcpy(&I, &Sem, sizeof(Sem));
682     return this->emitCastIntegralFixedPoint(classifyPrim(SubExpr->getType()), I,
683                                             CE);
684   }
685   case CK_FloatingToFixedPoint: {
686     if (!this->visit(SubExpr))
687       return false;
688 
689     auto Sem = Ctx.getASTContext().getFixedPointSemantics(CE->getType());
690     uint32_t I;
691     std::memcpy(&I, &Sem, sizeof(Sem));
692     return this->emitCastFloatingFixedPoint(I, CE);
693   }
694   case CK_FixedPointToFloating: {
695     if (!this->visit(SubExpr))
696       return false;
697     const auto *TargetSemantics = &Ctx.getFloatSemantics(CE->getType());
698     return this->emitCastFixedPointFloating(TargetSemantics, CE);
699   }
700   case CK_FixedPointCast: {
701     if (!this->visit(SubExpr))
702       return false;
703     auto Sem = Ctx.getASTContext().getFixedPointSemantics(CE->getType());
704     uint32_t I;
705     std::memcpy(&I, &Sem, sizeof(Sem));
706     return this->emitCastFixedPoint(I, CE);
707   }
708 
709   case CK_ToVoid:
710     return discard(SubExpr);
711 
712   default:
713     return this->emitInvalid(CE);
714   }
715   llvm_unreachable("Unhandled clang::CastKind enum");
716 }
717 
718 template <class Emitter>
719 bool Compiler<Emitter>::VisitIntegerLiteral(const IntegerLiteral *LE) {
720   if (DiscardResult)
721     return true;
722 
723   return this->emitConst(LE->getValue(), LE);
724 }
725 
726 template <class Emitter>
727 bool Compiler<Emitter>::VisitFloatingLiteral(const FloatingLiteral *E) {
728   if (DiscardResult)
729     return true;
730 
731   return this->emitConstFloat(E->getValue(), E);
732 }
733 
734 template <class Emitter>
735 bool Compiler<Emitter>::VisitImaginaryLiteral(const ImaginaryLiteral *E) {
736   assert(E->getType()->isAnyComplexType());
737   if (DiscardResult)
738     return true;
739 
740   if (!Initializing) {
741     unsigned LocalIndex = allocateTemporary(E);
742     if (!this->emitGetPtrLocal(LocalIndex, E))
743       return false;
744   }
745 
746   const Expr *SubExpr = E->getSubExpr();
747   PrimType SubExprT = classifyPrim(SubExpr->getType());
748 
749   if (!this->visitZeroInitializer(SubExprT, SubExpr->getType(), SubExpr))
750     return false;
751   if (!this->emitInitElem(SubExprT, 0, SubExpr))
752     return false;
753   return this->visitArrayElemInit(1, SubExpr);
754 }
755 
756 template <class Emitter>
757 bool Compiler<Emitter>::VisitFixedPointLiteral(const FixedPointLiteral *E) {
758   assert(E->getType()->isFixedPointType());
759   assert(classifyPrim(E) == PT_FixedPoint);
760 
761   auto Sem = Ctx.getASTContext().getFixedPointSemantics(E->getType());
762   APInt Value = E->getValue();
763   return this->emitConstFixedPoint(FixedPoint(Value, Sem), E);
764 }
765 
766 template <class Emitter>
767 bool Compiler<Emitter>::VisitParenExpr(const ParenExpr *E) {
768   return this->delegate(E->getSubExpr());
769 }
770 
771 template <class Emitter>
772 bool Compiler<Emitter>::VisitBinaryOperator(const BinaryOperator *BO) {
773   // Need short-circuiting for these.
774   if (BO->isLogicalOp() && !BO->getType()->isVectorType())
775     return this->VisitLogicalBinOp(BO);
776 
777   const Expr *LHS = BO->getLHS();
778   const Expr *RHS = BO->getRHS();
779 
780   // Handle comma operators. Just discard the LHS
781   // and delegate to RHS.
782   if (BO->isCommaOp()) {
783     if (!this->discard(LHS))
784       return false;
785     if (RHS->getType()->isVoidType())
786       return this->discard(RHS);
787 
788     return this->delegate(RHS);
789   }
790 
791   if (BO->getType()->isAnyComplexType())
792     return this->VisitComplexBinOp(BO);
793   if (BO->getType()->isVectorType())
794     return this->VisitVectorBinOp(BO);
795   if ((LHS->getType()->isAnyComplexType() ||
796        RHS->getType()->isAnyComplexType()) &&
797       BO->isComparisonOp())
798     return this->emitComplexComparison(LHS, RHS, BO);
799   if (LHS->getType()->isFixedPointType() || RHS->getType()->isFixedPointType())
800     return this->VisitFixedPointBinOp(BO);
801 
802   if (BO->isPtrMemOp()) {
803     if (!this->visit(LHS))
804       return false;
805 
806     if (!this->visit(RHS))
807       return false;
808 
809     if (!this->emitToMemberPtr(BO))
810       return false;
811 
812     if (classifyPrim(BO) == PT_MemberPtr)
813       return true;
814 
815     if (!this->emitCastMemberPtrPtr(BO))
816       return false;
817     return DiscardResult ? this->emitPopPtr(BO) : true;
818   }
819 
820   // Typecheck the args.
821   std::optional<PrimType> LT = classify(LHS);
822   std::optional<PrimType> RT = classify(RHS);
823   std::optional<PrimType> T = classify(BO->getType());
824 
825   // Special case for C++'s three-way/spaceship operator <=>, which
826   // returns a std::{strong,weak,partial}_ordering (which is a class, so doesn't
827   // have a PrimType).
828   if (!T && BO->getOpcode() == BO_Cmp) {
829     if (DiscardResult)
830       return true;
831     const ComparisonCategoryInfo *CmpInfo =
832         Ctx.getASTContext().CompCategories.lookupInfoForType(BO->getType());
833     assert(CmpInfo);
834 
835     // We need a temporary variable holding our return value.
836     if (!Initializing) {
837       std::optional<unsigned> ResultIndex = this->allocateLocal(BO);
838       if (!this->emitGetPtrLocal(*ResultIndex, BO))
839         return false;
840     }
841 
842     if (!visit(LHS) || !visit(RHS))
843       return false;
844 
845     return this->emitCMP3(*LT, CmpInfo, BO);
846   }
847 
848   if (!LT || !RT || !T)
849     return false;
850 
851   // Pointer arithmetic special case.
852   if (BO->getOpcode() == BO_Add || BO->getOpcode() == BO_Sub) {
853     if (isPtrType(*T) || (isPtrType(*LT) && isPtrType(*RT)))
854       return this->VisitPointerArithBinOp(BO);
855   }
856 
857   // Assignmentes require us to evalute the RHS first.
858   if (BO->getOpcode() == BO_Assign) {
859     if (!visit(RHS) || !visit(LHS))
860       return false;
861     if (!this->emitFlip(*LT, *RT, BO))
862       return false;
863   } else {
864     if (!visit(LHS) || !visit(RHS))
865       return false;
866   }
867 
868   // For languages such as C, cast the result of one
869   // of our comparision opcodes to T (which is usually int).
870   auto MaybeCastToBool = [this, T, BO](bool Result) {
871     if (!Result)
872       return false;
873     if (DiscardResult)
874       return this->emitPop(*T, BO);
875     if (T != PT_Bool)
876       return this->emitCast(PT_Bool, *T, BO);
877     return true;
878   };
879 
880   auto Discard = [this, T, BO](bool Result) {
881     if (!Result)
882       return false;
883     return DiscardResult ? this->emitPop(*T, BO) : true;
884   };
885 
886   switch (BO->getOpcode()) {
887   case BO_EQ:
888     return MaybeCastToBool(this->emitEQ(*LT, BO));
889   case BO_NE:
890     return MaybeCastToBool(this->emitNE(*LT, BO));
891   case BO_LT:
892     return MaybeCastToBool(this->emitLT(*LT, BO));
893   case BO_LE:
894     return MaybeCastToBool(this->emitLE(*LT, BO));
895   case BO_GT:
896     return MaybeCastToBool(this->emitGT(*LT, BO));
897   case BO_GE:
898     return MaybeCastToBool(this->emitGE(*LT, BO));
899   case BO_Sub:
900     if (BO->getType()->isFloatingType())
901       return Discard(this->emitSubf(getFPOptions(BO), BO));
902     return Discard(this->emitSub(*T, BO));
903   case BO_Add:
904     if (BO->getType()->isFloatingType())
905       return Discard(this->emitAddf(getFPOptions(BO), BO));
906     return Discard(this->emitAdd(*T, BO));
907   case BO_Mul:
908     if (BO->getType()->isFloatingType())
909       return Discard(this->emitMulf(getFPOptions(BO), BO));
910     return Discard(this->emitMul(*T, BO));
911   case BO_Rem:
912     return Discard(this->emitRem(*T, BO));
913   case BO_Div:
914     if (BO->getType()->isFloatingType())
915       return Discard(this->emitDivf(getFPOptions(BO), BO));
916     return Discard(this->emitDiv(*T, BO));
917   case BO_Assign:
918     if (DiscardResult)
919       return LHS->refersToBitField() ? this->emitStoreBitFieldPop(*T, BO)
920                                      : this->emitStorePop(*T, BO);
921     if (LHS->refersToBitField()) {
922       if (!this->emitStoreBitField(*T, BO))
923         return false;
924     } else {
925       if (!this->emitStore(*T, BO))
926         return false;
927     }
928     // Assignments aren't necessarily lvalues in C.
929     // Load from them in that case.
930     if (!BO->isLValue())
931       return this->emitLoadPop(*T, BO);
932     return true;
933   case BO_And:
934     return Discard(this->emitBitAnd(*T, BO));
935   case BO_Or:
936     return Discard(this->emitBitOr(*T, BO));
937   case BO_Shl:
938     return Discard(this->emitShl(*LT, *RT, BO));
939   case BO_Shr:
940     return Discard(this->emitShr(*LT, *RT, BO));
941   case BO_Xor:
942     return Discard(this->emitBitXor(*T, BO));
943   case BO_LOr:
944   case BO_LAnd:
945     llvm_unreachable("Already handled earlier");
946   default:
947     return false;
948   }
949 
950   llvm_unreachable("Unhandled binary op");
951 }
952 
953 /// Perform addition/subtraction of a pointer and an integer or
954 /// subtraction of two pointers.
955 template <class Emitter>
956 bool Compiler<Emitter>::VisitPointerArithBinOp(const BinaryOperator *E) {
957   BinaryOperatorKind Op = E->getOpcode();
958   const Expr *LHS = E->getLHS();
959   const Expr *RHS = E->getRHS();
960 
961   if ((Op != BO_Add && Op != BO_Sub) ||
962       (!LHS->getType()->isPointerType() && !RHS->getType()->isPointerType()))
963     return false;
964 
965   std::optional<PrimType> LT = classify(LHS);
966   std::optional<PrimType> RT = classify(RHS);
967 
968   if (!LT || !RT)
969     return false;
970 
971   // Visit the given pointer expression and optionally convert to a PT_Ptr.
972   auto visitAsPointer = [&](const Expr *E, PrimType T) -> bool {
973     if (!this->visit(E))
974       return false;
975     if (T != PT_Ptr)
976       return this->emitDecayPtr(T, PT_Ptr, E);
977     return true;
978   };
979 
980   if (LHS->getType()->isPointerType() && RHS->getType()->isPointerType()) {
981     if (Op != BO_Sub)
982       return false;
983 
984     assert(E->getType()->isIntegerType());
985     if (!visitAsPointer(RHS, *RT) || !visitAsPointer(LHS, *LT))
986       return false;
987 
988     return this->emitSubPtr(classifyPrim(E->getType()), E);
989   }
990 
991   PrimType OffsetType;
992   if (LHS->getType()->isIntegerType()) {
993     if (!visitAsPointer(RHS, *RT))
994       return false;
995     if (!this->visit(LHS))
996       return false;
997     OffsetType = *LT;
998   } else if (RHS->getType()->isIntegerType()) {
999     if (!visitAsPointer(LHS, *LT))
1000       return false;
1001     if (!this->visit(RHS))
1002       return false;
1003     OffsetType = *RT;
1004   } else {
1005     return false;
1006   }
1007 
1008   // Do the operation and optionally transform to
1009   // result pointer type.
1010   if (Op == BO_Add) {
1011     if (!this->emitAddOffset(OffsetType, E))
1012       return false;
1013 
1014     if (classifyPrim(E) != PT_Ptr)
1015       return this->emitDecayPtr(PT_Ptr, classifyPrim(E), E);
1016     return true;
1017   } else if (Op == BO_Sub) {
1018     if (!this->emitSubOffset(OffsetType, E))
1019       return false;
1020 
1021     if (classifyPrim(E) != PT_Ptr)
1022       return this->emitDecayPtr(PT_Ptr, classifyPrim(E), E);
1023     return true;
1024   }
1025 
1026   return false;
1027 }
1028 
1029 template <class Emitter>
1030 bool Compiler<Emitter>::VisitLogicalBinOp(const BinaryOperator *E) {
1031   assert(E->isLogicalOp());
1032   BinaryOperatorKind Op = E->getOpcode();
1033   const Expr *LHS = E->getLHS();
1034   const Expr *RHS = E->getRHS();
1035   std::optional<PrimType> T = classify(E->getType());
1036 
1037   if (Op == BO_LOr) {
1038     // Logical OR. Visit LHS and only evaluate RHS if LHS was FALSE.
1039     LabelTy LabelTrue = this->getLabel();
1040     LabelTy LabelEnd = this->getLabel();
1041 
1042     if (!this->visitBool(LHS))
1043       return false;
1044     if (!this->jumpTrue(LabelTrue))
1045       return false;
1046 
1047     if (!this->visitBool(RHS))
1048       return false;
1049     if (!this->jump(LabelEnd))
1050       return false;
1051 
1052     this->emitLabel(LabelTrue);
1053     this->emitConstBool(true, E);
1054     this->fallthrough(LabelEnd);
1055     this->emitLabel(LabelEnd);
1056 
1057   } else {
1058     assert(Op == BO_LAnd);
1059     // Logical AND.
1060     // Visit LHS. Only visit RHS if LHS was TRUE.
1061     LabelTy LabelFalse = this->getLabel();
1062     LabelTy LabelEnd = this->getLabel();
1063 
1064     if (!this->visitBool(LHS))
1065       return false;
1066     if (!this->jumpFalse(LabelFalse))
1067       return false;
1068 
1069     if (!this->visitBool(RHS))
1070       return false;
1071     if (!this->jump(LabelEnd))
1072       return false;
1073 
1074     this->emitLabel(LabelFalse);
1075     this->emitConstBool(false, E);
1076     this->fallthrough(LabelEnd);
1077     this->emitLabel(LabelEnd);
1078   }
1079 
1080   if (DiscardResult)
1081     return this->emitPopBool(E);
1082 
1083   // For C, cast back to integer type.
1084   assert(T);
1085   if (T != PT_Bool)
1086     return this->emitCast(PT_Bool, *T, E);
1087   return true;
1088 }
1089 
1090 template <class Emitter>
1091 bool Compiler<Emitter>::VisitComplexBinOp(const BinaryOperator *E) {
1092   // Prepare storage for result.
1093   if (!Initializing) {
1094     unsigned LocalIndex = allocateTemporary(E);
1095     if (!this->emitGetPtrLocal(LocalIndex, E))
1096       return false;
1097   }
1098 
1099   // Both LHS and RHS might _not_ be of complex type, but one of them
1100   // needs to be.
1101   const Expr *LHS = E->getLHS();
1102   const Expr *RHS = E->getRHS();
1103 
1104   PrimType ResultElemT = this->classifyComplexElementType(E->getType());
1105   unsigned ResultOffset = ~0u;
1106   if (!DiscardResult)
1107     ResultOffset = this->allocateLocalPrimitive(E, PT_Ptr, true, false);
1108 
1109   // Save result pointer in ResultOffset
1110   if (!this->DiscardResult) {
1111     if (!this->emitDupPtr(E))
1112       return false;
1113     if (!this->emitSetLocal(PT_Ptr, ResultOffset, E))
1114       return false;
1115   }
1116   QualType LHSType = LHS->getType();
1117   if (const auto *AT = LHSType->getAs<AtomicType>())
1118     LHSType = AT->getValueType();
1119   QualType RHSType = RHS->getType();
1120   if (const auto *AT = RHSType->getAs<AtomicType>())
1121     RHSType = AT->getValueType();
1122 
1123   bool LHSIsComplex = LHSType->isAnyComplexType();
1124   unsigned LHSOffset;
1125   bool RHSIsComplex = RHSType->isAnyComplexType();
1126 
1127   // For ComplexComplex Mul, we have special ops to make their implementation
1128   // easier.
1129   BinaryOperatorKind Op = E->getOpcode();
1130   if (Op == BO_Mul && LHSIsComplex && RHSIsComplex) {
1131     assert(classifyPrim(LHSType->getAs<ComplexType>()->getElementType()) ==
1132            classifyPrim(RHSType->getAs<ComplexType>()->getElementType()));
1133     PrimType ElemT =
1134         classifyPrim(LHSType->getAs<ComplexType>()->getElementType());
1135     if (!this->visit(LHS))
1136       return false;
1137     if (!this->visit(RHS))
1138       return false;
1139     return this->emitMulc(ElemT, E);
1140   }
1141 
1142   if (Op == BO_Div && RHSIsComplex) {
1143     QualType ElemQT = RHSType->getAs<ComplexType>()->getElementType();
1144     PrimType ElemT = classifyPrim(ElemQT);
1145     // If the LHS is not complex, we still need to do the full complex
1146     // division, so just stub create a complex value and stub it out with
1147     // the LHS and a zero.
1148 
1149     if (!LHSIsComplex) {
1150       // This is using the RHS type for the fake-complex LHS.
1151       LHSOffset = allocateTemporary(RHS);
1152 
1153       if (!this->emitGetPtrLocal(LHSOffset, E))
1154         return false;
1155 
1156       if (!this->visit(LHS))
1157         return false;
1158       // real is LHS
1159       if (!this->emitInitElem(ElemT, 0, E))
1160         return false;
1161       // imag is zero
1162       if (!this->visitZeroInitializer(ElemT, ElemQT, E))
1163         return false;
1164       if (!this->emitInitElem(ElemT, 1, E))
1165         return false;
1166     } else {
1167       if (!this->visit(LHS))
1168         return false;
1169     }
1170 
1171     if (!this->visit(RHS))
1172       return false;
1173     return this->emitDivc(ElemT, E);
1174   }
1175 
1176   // Evaluate LHS and save value to LHSOffset.
1177   if (LHSType->isAnyComplexType()) {
1178     LHSOffset = this->allocateLocalPrimitive(LHS, PT_Ptr, true, false);
1179     if (!this->visit(LHS))
1180       return false;
1181     if (!this->emitSetLocal(PT_Ptr, LHSOffset, E))
1182       return false;
1183   } else {
1184     PrimType LHST = classifyPrim(LHSType);
1185     LHSOffset = this->allocateLocalPrimitive(LHS, LHST, true, false);
1186     if (!this->visit(LHS))
1187       return false;
1188     if (!this->emitSetLocal(LHST, LHSOffset, E))
1189       return false;
1190   }
1191 
1192   // Same with RHS.
1193   unsigned RHSOffset;
1194   if (RHSType->isAnyComplexType()) {
1195     RHSOffset = this->allocateLocalPrimitive(RHS, PT_Ptr, true, false);
1196     if (!this->visit(RHS))
1197       return false;
1198     if (!this->emitSetLocal(PT_Ptr, RHSOffset, E))
1199       return false;
1200   } else {
1201     PrimType RHST = classifyPrim(RHSType);
1202     RHSOffset = this->allocateLocalPrimitive(RHS, RHST, true, false);
1203     if (!this->visit(RHS))
1204       return false;
1205     if (!this->emitSetLocal(RHST, RHSOffset, E))
1206       return false;
1207   }
1208 
1209   // For both LHS and RHS, either load the value from the complex pointer, or
1210   // directly from the local variable. For index 1 (i.e. the imaginary part),
1211   // just load 0 and do the operation anyway.
1212   auto loadComplexValue = [this](bool IsComplex, bool LoadZero,
1213                                  unsigned ElemIndex, unsigned Offset,
1214                                  const Expr *E) -> bool {
1215     if (IsComplex) {
1216       if (!this->emitGetLocal(PT_Ptr, Offset, E))
1217         return false;
1218       return this->emitArrayElemPop(classifyComplexElementType(E->getType()),
1219                                     ElemIndex, E);
1220     }
1221     if (ElemIndex == 0 || !LoadZero)
1222       return this->emitGetLocal(classifyPrim(E->getType()), Offset, E);
1223     return this->visitZeroInitializer(classifyPrim(E->getType()), E->getType(),
1224                                       E);
1225   };
1226 
1227   // Now we can get pointers to the LHS and RHS from the offsets above.
1228   for (unsigned ElemIndex = 0; ElemIndex != 2; ++ElemIndex) {
1229     // Result pointer for the store later.
1230     if (!this->DiscardResult) {
1231       if (!this->emitGetLocal(PT_Ptr, ResultOffset, E))
1232         return false;
1233     }
1234 
1235     // The actual operation.
1236     switch (Op) {
1237     case BO_Add:
1238       if (!loadComplexValue(LHSIsComplex, true, ElemIndex, LHSOffset, LHS))
1239         return false;
1240 
1241       if (!loadComplexValue(RHSIsComplex, true, ElemIndex, RHSOffset, RHS))
1242         return false;
1243       if (ResultElemT == PT_Float) {
1244         if (!this->emitAddf(getFPOptions(E), E))
1245           return false;
1246       } else {
1247         if (!this->emitAdd(ResultElemT, E))
1248           return false;
1249       }
1250       break;
1251     case BO_Sub:
1252       if (!loadComplexValue(LHSIsComplex, true, ElemIndex, LHSOffset, LHS))
1253         return false;
1254 
1255       if (!loadComplexValue(RHSIsComplex, true, ElemIndex, RHSOffset, RHS))
1256         return false;
1257       if (ResultElemT == PT_Float) {
1258         if (!this->emitSubf(getFPOptions(E), E))
1259           return false;
1260       } else {
1261         if (!this->emitSub(ResultElemT, E))
1262           return false;
1263       }
1264       break;
1265     case BO_Mul:
1266       if (!loadComplexValue(LHSIsComplex, false, ElemIndex, LHSOffset, LHS))
1267         return false;
1268 
1269       if (!loadComplexValue(RHSIsComplex, false, ElemIndex, RHSOffset, RHS))
1270         return false;
1271 
1272       if (ResultElemT == PT_Float) {
1273         if (!this->emitMulf(getFPOptions(E), E))
1274           return false;
1275       } else {
1276         if (!this->emitMul(ResultElemT, E))
1277           return false;
1278       }
1279       break;
1280     case BO_Div:
1281       assert(!RHSIsComplex);
1282       if (!loadComplexValue(LHSIsComplex, false, ElemIndex, LHSOffset, LHS))
1283         return false;
1284 
1285       if (!loadComplexValue(RHSIsComplex, false, ElemIndex, RHSOffset, RHS))
1286         return false;
1287 
1288       if (ResultElemT == PT_Float) {
1289         if (!this->emitDivf(getFPOptions(E), E))
1290           return false;
1291       } else {
1292         if (!this->emitDiv(ResultElemT, E))
1293           return false;
1294       }
1295       break;
1296 
1297     default:
1298       return false;
1299     }
1300 
1301     if (!this->DiscardResult) {
1302       // Initialize array element with the value we just computed.
1303       if (!this->emitInitElemPop(ResultElemT, ElemIndex, E))
1304         return false;
1305     } else {
1306       if (!this->emitPop(ResultElemT, E))
1307         return false;
1308     }
1309   }
1310   return true;
1311 }
1312 
1313 template <class Emitter>
1314 bool Compiler<Emitter>::VisitVectorBinOp(const BinaryOperator *E) {
1315   assert(!E->isCommaOp() &&
1316          "Comma op should be handled in VisitBinaryOperator");
1317   assert(E->getType()->isVectorType());
1318   assert(E->getLHS()->getType()->isVectorType());
1319   assert(E->getRHS()->getType()->isVectorType());
1320 
1321   // Prepare storage for result.
1322   if (!Initializing && !E->isCompoundAssignmentOp()) {
1323     unsigned LocalIndex = allocateTemporary(E);
1324     if (!this->emitGetPtrLocal(LocalIndex, E))
1325       return false;
1326   }
1327 
1328   const Expr *LHS = E->getLHS();
1329   const Expr *RHS = E->getRHS();
1330   const auto *VecTy = E->getType()->getAs<VectorType>();
1331   auto Op = E->isCompoundAssignmentOp()
1332                 ? BinaryOperator::getOpForCompoundAssignment(E->getOpcode())
1333                 : E->getOpcode();
1334 
1335   PrimType ElemT = this->classifyVectorElementType(LHS->getType());
1336   PrimType RHSElemT = this->classifyVectorElementType(RHS->getType());
1337   PrimType ResultElemT = this->classifyVectorElementType(E->getType());
1338 
1339   // Evaluate LHS and save value to LHSOffset.
1340   unsigned LHSOffset = this->allocateLocalPrimitive(LHS, PT_Ptr, true, false);
1341   if (!this->visit(LHS))
1342     return false;
1343   if (!this->emitSetLocal(PT_Ptr, LHSOffset, E))
1344     return false;
1345 
1346   // Evaluate RHS and save value to RHSOffset.
1347   unsigned RHSOffset = this->allocateLocalPrimitive(RHS, PT_Ptr, true, false);
1348   if (!this->visit(RHS))
1349     return false;
1350   if (!this->emitSetLocal(PT_Ptr, RHSOffset, E))
1351     return false;
1352 
1353   if (E->isCompoundAssignmentOp() && !this->emitGetLocal(PT_Ptr, LHSOffset, E))
1354     return false;
1355 
1356   // BitAdd/BitOr/BitXor/Shl/Shr doesn't support bool type, we need perform the
1357   // integer promotion.
1358   bool NeedIntPromot = ElemT == PT_Bool && (E->isBitwiseOp() || E->isShiftOp());
1359   QualType PromotTy =
1360       Ctx.getASTContext().getPromotedIntegerType(Ctx.getASTContext().BoolTy);
1361   PrimType PromotT = classifyPrim(PromotTy);
1362   PrimType OpT = NeedIntPromot ? PromotT : ElemT;
1363 
1364   auto getElem = [=](unsigned Offset, PrimType ElemT, unsigned Index) {
1365     if (!this->emitGetLocal(PT_Ptr, Offset, E))
1366       return false;
1367     if (!this->emitArrayElemPop(ElemT, Index, E))
1368       return false;
1369     if (E->isLogicalOp()) {
1370       if (!this->emitPrimCast(ElemT, PT_Bool, Ctx.getASTContext().BoolTy, E))
1371         return false;
1372       if (!this->emitPrimCast(PT_Bool, ResultElemT, VecTy->getElementType(), E))
1373         return false;
1374     } else if (NeedIntPromot) {
1375       if (!this->emitPrimCast(ElemT, PromotT, PromotTy, E))
1376         return false;
1377     }
1378     return true;
1379   };
1380 
1381 #define EMIT_ARITH_OP(OP)                                                      \
1382   {                                                                            \
1383     if (ElemT == PT_Float) {                                                   \
1384       if (!this->emit##OP##f(getFPOptions(E), E))                              \
1385         return false;                                                          \
1386     } else {                                                                   \
1387       if (!this->emit##OP(ElemT, E))                                           \
1388         return false;                                                          \
1389     }                                                                          \
1390     break;                                                                     \
1391   }
1392 
1393   for (unsigned I = 0; I != VecTy->getNumElements(); ++I) {
1394     if (!getElem(LHSOffset, ElemT, I))
1395       return false;
1396     if (!getElem(RHSOffset, RHSElemT, I))
1397       return false;
1398     switch (Op) {
1399     case BO_Add:
1400       EMIT_ARITH_OP(Add)
1401     case BO_Sub:
1402       EMIT_ARITH_OP(Sub)
1403     case BO_Mul:
1404       EMIT_ARITH_OP(Mul)
1405     case BO_Div:
1406       EMIT_ARITH_OP(Div)
1407     case BO_Rem:
1408       if (!this->emitRem(ElemT, E))
1409         return false;
1410       break;
1411     case BO_And:
1412       if (!this->emitBitAnd(OpT, E))
1413         return false;
1414       break;
1415     case BO_Or:
1416       if (!this->emitBitOr(OpT, E))
1417         return false;
1418       break;
1419     case BO_Xor:
1420       if (!this->emitBitXor(OpT, E))
1421         return false;
1422       break;
1423     case BO_Shl:
1424       if (!this->emitShl(OpT, RHSElemT, E))
1425         return false;
1426       break;
1427     case BO_Shr:
1428       if (!this->emitShr(OpT, RHSElemT, E))
1429         return false;
1430       break;
1431     case BO_EQ:
1432       if (!this->emitEQ(ElemT, E))
1433         return false;
1434       break;
1435     case BO_NE:
1436       if (!this->emitNE(ElemT, E))
1437         return false;
1438       break;
1439     case BO_LE:
1440       if (!this->emitLE(ElemT, E))
1441         return false;
1442       break;
1443     case BO_LT:
1444       if (!this->emitLT(ElemT, E))
1445         return false;
1446       break;
1447     case BO_GE:
1448       if (!this->emitGE(ElemT, E))
1449         return false;
1450       break;
1451     case BO_GT:
1452       if (!this->emitGT(ElemT, E))
1453         return false;
1454       break;
1455     case BO_LAnd:
1456       // a && b is equivalent to a!=0 & b!=0
1457       if (!this->emitBitAnd(ResultElemT, E))
1458         return false;
1459       break;
1460     case BO_LOr:
1461       // a || b is equivalent to a!=0 | b!=0
1462       if (!this->emitBitOr(ResultElemT, E))
1463         return false;
1464       break;
1465     default:
1466       return this->emitInvalid(E);
1467     }
1468 
1469     // The result of the comparison is a vector of the same width and number
1470     // of elements as the comparison operands with a signed integral element
1471     // type.
1472     //
1473     // https://gcc.gnu.org/onlinedocs/gcc/Vector-Extensions.html
1474     if (E->isComparisonOp()) {
1475       if (!this->emitPrimCast(PT_Bool, ResultElemT, VecTy->getElementType(), E))
1476         return false;
1477       if (!this->emitNeg(ResultElemT, E))
1478         return false;
1479     }
1480 
1481     // If we performed an integer promotion, we need to cast the compute result
1482     // into result vector element type.
1483     if (NeedIntPromot &&
1484         !this->emitPrimCast(PromotT, ResultElemT, VecTy->getElementType(), E))
1485       return false;
1486 
1487     // Initialize array element with the value we just computed.
1488     if (!this->emitInitElem(ResultElemT, I, E))
1489       return false;
1490   }
1491 
1492   if (DiscardResult && E->isCompoundAssignmentOp() && !this->emitPopPtr(E))
1493     return false;
1494   return true;
1495 }
1496 
1497 template <class Emitter>
1498 bool Compiler<Emitter>::VisitFixedPointBinOp(const BinaryOperator *E) {
1499   const Expr *LHS = E->getLHS();
1500   const Expr *RHS = E->getRHS();
1501 
1502   assert(LHS->getType()->isFixedPointType() ||
1503          RHS->getType()->isFixedPointType());
1504 
1505   if (!this->visit(LHS))
1506     return false;
1507   if (!LHS->getType()->isFixedPointType()) {
1508     auto Sem = Ctx.getASTContext().getFixedPointSemantics(LHS->getType());
1509     uint32_t I;
1510     std::memcpy(&I, &Sem, sizeof(Sem));
1511     if (!this->emitCastIntegralFixedPoint(classifyPrim(LHS->getType()), I, E))
1512       return false;
1513   }
1514   if (!this->visit(RHS))
1515     return false;
1516   if (!RHS->getType()->isFixedPointType()) {
1517     auto Sem = Ctx.getASTContext().getFixedPointSemantics(RHS->getType());
1518     uint32_t I;
1519     std::memcpy(&I, &Sem, sizeof(Sem));
1520     if (!this->emitCastIntegralFixedPoint(classifyPrim(RHS->getType()), I, E))
1521       return false;
1522   }
1523 
1524   switch (E->getOpcode()) {
1525   case BO_EQ:
1526     return this->emitEQFixedPoint(E);
1527   case BO_NE:
1528     return this->emitNEFixedPoint(E);
1529 #if 0
1530   case BO_LT:
1531     return this->emitLTFixedPoint(E);
1532   case BO_LE:
1533     return this->emitLEFixedPoint(E);
1534   case BO_GT:
1535     return this->emitGTFixedPoint(E);
1536   case BO_GE:
1537     return this->emitGEFixedPoint(E);
1538 #endif
1539   case BO_Add:
1540     return this->emitAddFixedPoint(E);
1541 
1542   default:
1543     return this->emitInvalid(E);
1544   }
1545 
1546   llvm_unreachable("unhandled binop opcode");
1547 }
1548 
1549 template <class Emitter>
1550 bool Compiler<Emitter>::VisitImplicitValueInitExpr(
1551     const ImplicitValueInitExpr *E) {
1552   QualType QT = E->getType();
1553 
1554   if (std::optional<PrimType> T = classify(QT))
1555     return this->visitZeroInitializer(*T, QT, E);
1556 
1557   if (QT->isRecordType()) {
1558     const RecordDecl *RD = QT->getAsRecordDecl();
1559     assert(RD);
1560     if (RD->isInvalidDecl())
1561       return false;
1562 
1563     if (const auto *CXXRD = dyn_cast<CXXRecordDecl>(RD);
1564         CXXRD && CXXRD->getNumVBases() > 0) {
1565       // TODO: Diagnose.
1566       return false;
1567     }
1568 
1569     const Record *R = getRecord(QT);
1570     if (!R)
1571       return false;
1572 
1573     assert(Initializing);
1574     return this->visitZeroRecordInitializer(R, E);
1575   }
1576 
1577   if (QT->isIncompleteArrayType())
1578     return true;
1579 
1580   if (QT->isArrayType()) {
1581     const ArrayType *AT = QT->getAsArrayTypeUnsafe();
1582     assert(AT);
1583     const auto *CAT = cast<ConstantArrayType>(AT);
1584     size_t NumElems = CAT->getZExtSize();
1585     PrimType ElemT = classifyPrim(CAT->getElementType());
1586 
1587     for (size_t I = 0; I != NumElems; ++I) {
1588       if (!this->visitZeroInitializer(ElemT, CAT->getElementType(), E))
1589         return false;
1590       if (!this->emitInitElem(ElemT, I, E))
1591         return false;
1592     }
1593 
1594     return true;
1595   }
1596 
1597   if (const auto *ComplexTy = E->getType()->getAs<ComplexType>()) {
1598     assert(Initializing);
1599     QualType ElemQT = ComplexTy->getElementType();
1600     PrimType ElemT = classifyPrim(ElemQT);
1601     for (unsigned I = 0; I < 2; ++I) {
1602       if (!this->visitZeroInitializer(ElemT, ElemQT, E))
1603         return false;
1604       if (!this->emitInitElem(ElemT, I, E))
1605         return false;
1606     }
1607     return true;
1608   }
1609 
1610   if (const auto *VecT = E->getType()->getAs<VectorType>()) {
1611     unsigned NumVecElements = VecT->getNumElements();
1612     QualType ElemQT = VecT->getElementType();
1613     PrimType ElemT = classifyPrim(ElemQT);
1614 
1615     for (unsigned I = 0; I < NumVecElements; ++I) {
1616       if (!this->visitZeroInitializer(ElemT, ElemQT, E))
1617         return false;
1618       if (!this->emitInitElem(ElemT, I, E))
1619         return false;
1620     }
1621     return true;
1622   }
1623 
1624   return false;
1625 }
1626 
1627 template <class Emitter>
1628 bool Compiler<Emitter>::VisitArraySubscriptExpr(const ArraySubscriptExpr *E) {
1629   const Expr *LHS = E->getLHS();
1630   const Expr *RHS = E->getRHS();
1631   const Expr *Index = E->getIdx();
1632 
1633   if (DiscardResult)
1634     return this->discard(LHS) && this->discard(RHS);
1635 
1636   // C++17's rules require us to evaluate the LHS first, regardless of which
1637   // side is the base.
1638   bool Success = true;
1639   for (const Expr *SubExpr : {LHS, RHS}) {
1640     if (!this->visit(SubExpr))
1641       Success = false;
1642   }
1643 
1644   if (!Success)
1645     return false;
1646 
1647   PrimType IndexT = classifyPrim(Index->getType());
1648   // If the index is first, we need to change that.
1649   if (LHS == Index) {
1650     if (!this->emitFlip(PT_Ptr, IndexT, E))
1651       return false;
1652   }
1653 
1654   return this->emitArrayElemPtrPop(IndexT, E);
1655 }
1656 
1657 template <class Emitter>
1658 bool Compiler<Emitter>::visitInitList(ArrayRef<const Expr *> Inits,
1659                                       const Expr *ArrayFiller, const Expr *E) {
1660   QualType QT = E->getType();
1661   if (const auto *AT = QT->getAs<AtomicType>())
1662     QT = AT->getValueType();
1663 
1664   if (QT->isVoidType()) {
1665     if (Inits.size() == 0)
1666       return true;
1667     return this->emitInvalid(E);
1668   }
1669 
1670   // Handle discarding first.
1671   if (DiscardResult) {
1672     for (const Expr *Init : Inits) {
1673       if (!this->discard(Init))
1674         return false;
1675     }
1676     return true;
1677   }
1678 
1679   // Primitive values.
1680   if (std::optional<PrimType> T = classify(QT)) {
1681     assert(!DiscardResult);
1682     if (Inits.size() == 0)
1683       return this->visitZeroInitializer(*T, QT, E);
1684     assert(Inits.size() == 1);
1685     return this->delegate(Inits[0]);
1686   }
1687 
1688   if (QT->isRecordType()) {
1689     const Record *R = getRecord(QT);
1690 
1691     if (Inits.size() == 1 && E->getType() == Inits[0]->getType())
1692       return this->delegate(Inits[0]);
1693 
1694     auto initPrimitiveField = [=](const Record::Field *FieldToInit,
1695                                   const Expr *Init, PrimType T) -> bool {
1696       InitStackScope<Emitter> ISS(this, isa<CXXDefaultInitExpr>(Init));
1697       if (!this->visit(Init))
1698         return false;
1699 
1700       if (FieldToInit->isBitField())
1701         return this->emitInitBitField(T, FieldToInit, E);
1702       return this->emitInitField(T, FieldToInit->Offset, E);
1703     };
1704 
1705     auto initCompositeField = [=](const Record::Field *FieldToInit,
1706                                   const Expr *Init) -> bool {
1707       InitStackScope<Emitter> ISS(this, isa<CXXDefaultInitExpr>(Init));
1708       InitLinkScope<Emitter> ILS(this, InitLink::Field(FieldToInit->Offset));
1709       // Non-primitive case. Get a pointer to the field-to-initialize
1710       // on the stack and recurse into visitInitializer().
1711       if (!this->emitGetPtrField(FieldToInit->Offset, Init))
1712         return false;
1713       if (!this->visitInitializer(Init))
1714         return false;
1715       return this->emitPopPtr(E);
1716     };
1717 
1718     if (R->isUnion()) {
1719       if (Inits.size() == 0) {
1720         if (!this->visitZeroRecordInitializer(R, E))
1721           return false;
1722       } else {
1723         const Expr *Init = Inits[0];
1724         const FieldDecl *FToInit = nullptr;
1725         if (const auto *ILE = dyn_cast<InitListExpr>(E))
1726           FToInit = ILE->getInitializedFieldInUnion();
1727         else
1728           FToInit = cast<CXXParenListInitExpr>(E)->getInitializedFieldInUnion();
1729 
1730         const Record::Field *FieldToInit = R->getField(FToInit);
1731         if (std::optional<PrimType> T = classify(Init)) {
1732           if (!initPrimitiveField(FieldToInit, Init, *T))
1733             return false;
1734         } else {
1735           if (!initCompositeField(FieldToInit, Init))
1736             return false;
1737         }
1738       }
1739       return this->emitFinishInit(E);
1740     }
1741 
1742     assert(!R->isUnion());
1743     unsigned InitIndex = 0;
1744     for (const Expr *Init : Inits) {
1745       // Skip unnamed bitfields.
1746       while (InitIndex < R->getNumFields() &&
1747              R->getField(InitIndex)->Decl->isUnnamedBitField())
1748         ++InitIndex;
1749 
1750       if (std::optional<PrimType> T = classify(Init)) {
1751         const Record::Field *FieldToInit = R->getField(InitIndex);
1752         if (!initPrimitiveField(FieldToInit, Init, *T))
1753           return false;
1754         ++InitIndex;
1755       } else {
1756         // Initializer for a direct base class.
1757         if (const Record::Base *B = R->getBase(Init->getType())) {
1758           if (!this->emitGetPtrBase(B->Offset, Init))
1759             return false;
1760 
1761           if (!this->visitInitializer(Init))
1762             return false;
1763 
1764           if (!this->emitFinishInitPop(E))
1765             return false;
1766           // Base initializers don't increase InitIndex, since they don't count
1767           // into the Record's fields.
1768         } else {
1769           const Record::Field *FieldToInit = R->getField(InitIndex);
1770           if (!initCompositeField(FieldToInit, Init))
1771             return false;
1772           ++InitIndex;
1773         }
1774       }
1775     }
1776     return this->emitFinishInit(E);
1777   }
1778 
1779   if (QT->isArrayType()) {
1780     if (Inits.size() == 1 && QT == Inits[0]->getType())
1781       return this->delegate(Inits[0]);
1782 
1783     unsigned ElementIndex = 0;
1784     for (const Expr *Init : Inits) {
1785       if (const auto *EmbedS =
1786               dyn_cast<EmbedExpr>(Init->IgnoreParenImpCasts())) {
1787         PrimType TargetT = classifyPrim(Init->getType());
1788 
1789         auto Eval = [&](const Expr *Init, unsigned ElemIndex) {
1790           PrimType InitT = classifyPrim(Init->getType());
1791           if (!this->visit(Init))
1792             return false;
1793           if (InitT != TargetT) {
1794             if (!this->emitCast(InitT, TargetT, E))
1795               return false;
1796           }
1797           return this->emitInitElem(TargetT, ElemIndex, Init);
1798         };
1799         if (!EmbedS->doForEachDataElement(Eval, ElementIndex))
1800           return false;
1801       } else {
1802         if (!this->visitArrayElemInit(ElementIndex, Init))
1803           return false;
1804         ++ElementIndex;
1805       }
1806     }
1807 
1808     // Expand the filler expression.
1809     // FIXME: This should go away.
1810     if (ArrayFiller) {
1811       const ConstantArrayType *CAT =
1812           Ctx.getASTContext().getAsConstantArrayType(QT);
1813       uint64_t NumElems = CAT->getZExtSize();
1814 
1815       for (; ElementIndex != NumElems; ++ElementIndex) {
1816         if (!this->visitArrayElemInit(ElementIndex, ArrayFiller))
1817           return false;
1818       }
1819     }
1820 
1821     return this->emitFinishInit(E);
1822   }
1823 
1824   if (const auto *ComplexTy = QT->getAs<ComplexType>()) {
1825     unsigned NumInits = Inits.size();
1826 
1827     if (NumInits == 1)
1828       return this->delegate(Inits[0]);
1829 
1830     QualType ElemQT = ComplexTy->getElementType();
1831     PrimType ElemT = classifyPrim(ElemQT);
1832     if (NumInits == 0) {
1833       // Zero-initialize both elements.
1834       for (unsigned I = 0; I < 2; ++I) {
1835         if (!this->visitZeroInitializer(ElemT, ElemQT, E))
1836           return false;
1837         if (!this->emitInitElem(ElemT, I, E))
1838           return false;
1839       }
1840     } else if (NumInits == 2) {
1841       unsigned InitIndex = 0;
1842       for (const Expr *Init : Inits) {
1843         if (!this->visit(Init))
1844           return false;
1845 
1846         if (!this->emitInitElem(ElemT, InitIndex, E))
1847           return false;
1848         ++InitIndex;
1849       }
1850     }
1851     return true;
1852   }
1853 
1854   if (const auto *VecT = QT->getAs<VectorType>()) {
1855     unsigned NumVecElements = VecT->getNumElements();
1856     assert(NumVecElements >= Inits.size());
1857 
1858     QualType ElemQT = VecT->getElementType();
1859     PrimType ElemT = classifyPrim(ElemQT);
1860 
1861     // All initializer elements.
1862     unsigned InitIndex = 0;
1863     for (const Expr *Init : Inits) {
1864       if (!this->visit(Init))
1865         return false;
1866 
1867       // If the initializer is of vector type itself, we have to deconstruct
1868       // that and initialize all the target fields from the initializer fields.
1869       if (const auto *InitVecT = Init->getType()->getAs<VectorType>()) {
1870         if (!this->emitCopyArray(ElemT, 0, InitIndex,
1871                                  InitVecT->getNumElements(), E))
1872           return false;
1873         InitIndex += InitVecT->getNumElements();
1874       } else {
1875         if (!this->emitInitElem(ElemT, InitIndex, E))
1876           return false;
1877         ++InitIndex;
1878       }
1879     }
1880 
1881     assert(InitIndex <= NumVecElements);
1882 
1883     // Fill the rest with zeroes.
1884     for (; InitIndex != NumVecElements; ++InitIndex) {
1885       if (!this->visitZeroInitializer(ElemT, ElemQT, E))
1886         return false;
1887       if (!this->emitInitElem(ElemT, InitIndex, E))
1888         return false;
1889     }
1890     return true;
1891   }
1892 
1893   return false;
1894 }
1895 
1896 /// Pointer to the array(not the element!) must be on the stack when calling
1897 /// this.
1898 template <class Emitter>
1899 bool Compiler<Emitter>::visitArrayElemInit(unsigned ElemIndex,
1900                                            const Expr *Init) {
1901   if (std::optional<PrimType> T = classify(Init->getType())) {
1902     // Visit the primitive element like normal.
1903     if (!this->visit(Init))
1904       return false;
1905     return this->emitInitElem(*T, ElemIndex, Init);
1906   }
1907 
1908   InitLinkScope<Emitter> ILS(this, InitLink::Elem(ElemIndex));
1909   // Advance the pointer currently on the stack to the given
1910   // dimension.
1911   if (!this->emitConstUint32(ElemIndex, Init))
1912     return false;
1913   if (!this->emitArrayElemPtrUint32(Init))
1914     return false;
1915   if (!this->visitInitializer(Init))
1916     return false;
1917   return this->emitFinishInitPop(Init);
1918 }
1919 
1920 template <class Emitter>
1921 bool Compiler<Emitter>::VisitInitListExpr(const InitListExpr *E) {
1922   return this->visitInitList(E->inits(), E->getArrayFiller(), E);
1923 }
1924 
1925 template <class Emitter>
1926 bool Compiler<Emitter>::VisitCXXParenListInitExpr(
1927     const CXXParenListInitExpr *E) {
1928   return this->visitInitList(E->getInitExprs(), E->getArrayFiller(), E);
1929 }
1930 
1931 template <class Emitter>
1932 bool Compiler<Emitter>::VisitSubstNonTypeTemplateParmExpr(
1933     const SubstNonTypeTemplateParmExpr *E) {
1934   return this->delegate(E->getReplacement());
1935 }
1936 
1937 template <class Emitter>
1938 bool Compiler<Emitter>::VisitConstantExpr(const ConstantExpr *E) {
1939   std::optional<PrimType> T = classify(E->getType());
1940   if (T && E->hasAPValueResult()) {
1941     // Try to emit the APValue directly, without visiting the subexpr.
1942     // This will only fail if we can't emit the APValue, so won't emit any
1943     // diagnostics or any double values.
1944     if (DiscardResult)
1945       return true;
1946 
1947     if (this->visitAPValue(E->getAPValueResult(), *T, E))
1948       return true;
1949   }
1950   return this->delegate(E->getSubExpr());
1951 }
1952 
1953 template <class Emitter>
1954 bool Compiler<Emitter>::VisitEmbedExpr(const EmbedExpr *E) {
1955   auto It = E->begin();
1956   return this->visit(*It);
1957 }
1958 
1959 static CharUnits AlignOfType(QualType T, const ASTContext &ASTCtx,
1960                              UnaryExprOrTypeTrait Kind) {
1961   bool AlignOfReturnsPreferred =
1962       ASTCtx.getLangOpts().getClangABICompat() <= LangOptions::ClangABI::Ver7;
1963 
1964   // C++ [expr.alignof]p3:
1965   //     When alignof is applied to a reference type, the result is the
1966   //     alignment of the referenced type.
1967   if (const auto *Ref = T->getAs<ReferenceType>())
1968     T = Ref->getPointeeType();
1969 
1970   if (T.getQualifiers().hasUnaligned())
1971     return CharUnits::One();
1972 
1973   // __alignof is defined to return the preferred alignment.
1974   // Before 8, clang returned the preferred alignment for alignof and
1975   // _Alignof as well.
1976   if (Kind == UETT_PreferredAlignOf || AlignOfReturnsPreferred)
1977     return ASTCtx.toCharUnitsFromBits(ASTCtx.getPreferredTypeAlign(T));
1978 
1979   return ASTCtx.getTypeAlignInChars(T);
1980 }
1981 
1982 template <class Emitter>
1983 bool Compiler<Emitter>::VisitUnaryExprOrTypeTraitExpr(
1984     const UnaryExprOrTypeTraitExpr *E) {
1985   UnaryExprOrTypeTrait Kind = E->getKind();
1986   const ASTContext &ASTCtx = Ctx.getASTContext();
1987 
1988   if (Kind == UETT_SizeOf || Kind == UETT_DataSizeOf) {
1989     QualType ArgType = E->getTypeOfArgument();
1990 
1991     // C++ [expr.sizeof]p2: "When applied to a reference or a reference type,
1992     //   the result is the size of the referenced type."
1993     if (const auto *Ref = ArgType->getAs<ReferenceType>())
1994       ArgType = Ref->getPointeeType();
1995 
1996     CharUnits Size;
1997     if (ArgType->isVoidType() || ArgType->isFunctionType())
1998       Size = CharUnits::One();
1999     else {
2000       if (ArgType->isDependentType() || !ArgType->isConstantSizeType())
2001         return false;
2002 
2003       if (Kind == UETT_SizeOf)
2004         Size = ASTCtx.getTypeSizeInChars(ArgType);
2005       else
2006         Size = ASTCtx.getTypeInfoDataSizeInChars(ArgType).Width;
2007     }
2008 
2009     if (DiscardResult)
2010       return true;
2011 
2012     return this->emitConst(Size.getQuantity(), E);
2013   }
2014 
2015   if (Kind == UETT_AlignOf || Kind == UETT_PreferredAlignOf) {
2016     CharUnits Size;
2017 
2018     if (E->isArgumentType()) {
2019       QualType ArgType = E->getTypeOfArgument();
2020 
2021       Size = AlignOfType(ArgType, ASTCtx, Kind);
2022     } else {
2023       // Argument is an expression, not a type.
2024       const Expr *Arg = E->getArgumentExpr()->IgnoreParens();
2025 
2026       // The kinds of expressions that we have special-case logic here for
2027       // should be kept up to date with the special checks for those
2028       // expressions in Sema.
2029 
2030       // alignof decl is always accepted, even if it doesn't make sense: we
2031       // default to 1 in those cases.
2032       if (const auto *DRE = dyn_cast<DeclRefExpr>(Arg))
2033         Size = ASTCtx.getDeclAlign(DRE->getDecl(),
2034                                    /*RefAsPointee*/ true);
2035       else if (const auto *ME = dyn_cast<MemberExpr>(Arg))
2036         Size = ASTCtx.getDeclAlign(ME->getMemberDecl(),
2037                                    /*RefAsPointee*/ true);
2038       else
2039         Size = AlignOfType(Arg->getType(), ASTCtx, Kind);
2040     }
2041 
2042     if (DiscardResult)
2043       return true;
2044 
2045     return this->emitConst(Size.getQuantity(), E);
2046   }
2047 
2048   if (Kind == UETT_VectorElements) {
2049     if (const auto *VT = E->getTypeOfArgument()->getAs<VectorType>())
2050       return this->emitConst(VT->getNumElements(), E);
2051     assert(E->getTypeOfArgument()->isSizelessVectorType());
2052     return this->emitSizelessVectorElementSize(E);
2053   }
2054 
2055   if (Kind == UETT_VecStep) {
2056     if (const auto *VT = E->getTypeOfArgument()->getAs<VectorType>()) {
2057       unsigned N = VT->getNumElements();
2058 
2059       // The vec_step built-in functions that take a 3-component
2060       // vector return 4. (OpenCL 1.1 spec 6.11.12)
2061       if (N == 3)
2062         N = 4;
2063 
2064       return this->emitConst(N, E);
2065     }
2066     return this->emitConst(1, E);
2067   }
2068 
2069   return false;
2070 }
2071 
2072 template <class Emitter>
2073 bool Compiler<Emitter>::VisitMemberExpr(const MemberExpr *E) {
2074   // 'Base.Member'
2075   const Expr *Base = E->getBase();
2076   const ValueDecl *Member = E->getMemberDecl();
2077 
2078   if (DiscardResult)
2079     return this->discard(Base);
2080 
2081   // MemberExprs are almost always lvalues, in which case we don't need to
2082   // do the load. But sometimes they aren't.
2083   const auto maybeLoadValue = [&]() -> bool {
2084     if (E->isGLValue())
2085       return true;
2086     if (std::optional<PrimType> T = classify(E))
2087       return this->emitLoadPop(*T, E);
2088     return false;
2089   };
2090 
2091   if (const auto *VD = dyn_cast<VarDecl>(Member)) {
2092     // I am almost confident in saying that a var decl must be static
2093     // and therefore registered as a global variable. But this will probably
2094     // turn out to be wrong some time in the future, as always.
2095     if (auto GlobalIndex = P.getGlobal(VD))
2096       return this->emitGetPtrGlobal(*GlobalIndex, E) && maybeLoadValue();
2097     return false;
2098   }
2099 
2100   if (!isa<FieldDecl>(Member)) {
2101     if (!this->discard(Base) && !this->emitSideEffect(E))
2102       return false;
2103 
2104     return this->visitDeclRef(Member, E);
2105   }
2106 
2107   if (Initializing) {
2108     if (!this->delegate(Base))
2109       return false;
2110   } else {
2111     if (!this->visit(Base))
2112       return false;
2113   }
2114 
2115   // Base above gives us a pointer on the stack.
2116   const auto *FD = cast<FieldDecl>(Member);
2117   const RecordDecl *RD = FD->getParent();
2118   const Record *R = getRecord(RD);
2119   if (!R)
2120     return false;
2121   const Record::Field *F = R->getField(FD);
2122   // Leave a pointer to the field on the stack.
2123   if (F->Decl->getType()->isReferenceType())
2124     return this->emitGetFieldPop(PT_Ptr, F->Offset, E) && maybeLoadValue();
2125   return this->emitGetPtrFieldPop(F->Offset, E) && maybeLoadValue();
2126 }
2127 
2128 template <class Emitter>
2129 bool Compiler<Emitter>::VisitArrayInitIndexExpr(const ArrayInitIndexExpr *E) {
2130   // ArrayIndex might not be set if a ArrayInitIndexExpr is being evaluated
2131   // stand-alone, e.g. via EvaluateAsInt().
2132   if (!ArrayIndex)
2133     return false;
2134   return this->emitConst(*ArrayIndex, E);
2135 }
2136 
2137 template <class Emitter>
2138 bool Compiler<Emitter>::VisitArrayInitLoopExpr(const ArrayInitLoopExpr *E) {
2139   assert(Initializing);
2140   assert(!DiscardResult);
2141 
2142   // We visit the common opaque expression here once so we have its value
2143   // cached.
2144   if (!this->discard(E->getCommonExpr()))
2145     return false;
2146 
2147   // TODO: This compiles to quite a lot of bytecode if the array is larger.
2148   //   Investigate compiling this to a loop.
2149   const Expr *SubExpr = E->getSubExpr();
2150   size_t Size = E->getArraySize().getZExtValue();
2151 
2152   // So, every iteration, we execute an assignment here
2153   // where the LHS is on the stack (the target array)
2154   // and the RHS is our SubExpr.
2155   for (size_t I = 0; I != Size; ++I) {
2156     ArrayIndexScope<Emitter> IndexScope(this, I);
2157     BlockScope<Emitter> BS(this);
2158 
2159     if (!this->visitArrayElemInit(I, SubExpr))
2160       return false;
2161     if (!BS.destroyLocals())
2162       return false;
2163   }
2164   return true;
2165 }
2166 
2167 template <class Emitter>
2168 bool Compiler<Emitter>::VisitOpaqueValueExpr(const OpaqueValueExpr *E) {
2169   const Expr *SourceExpr = E->getSourceExpr();
2170   if (!SourceExpr)
2171     return false;
2172 
2173   if (Initializing)
2174     return this->visitInitializer(SourceExpr);
2175 
2176   PrimType SubExprT = classify(SourceExpr).value_or(PT_Ptr);
2177   if (auto It = OpaqueExprs.find(E); It != OpaqueExprs.end())
2178     return this->emitGetLocal(SubExprT, It->second, E);
2179 
2180   if (!this->visit(SourceExpr))
2181     return false;
2182 
2183   // At this point we either have the evaluated source expression or a pointer
2184   // to an object on the stack. We want to create a local variable that stores
2185   // this value.
2186   unsigned LocalIndex = allocateLocalPrimitive(E, SubExprT, /*IsConst=*/true);
2187   if (!this->emitSetLocal(SubExprT, LocalIndex, E))
2188     return false;
2189 
2190   // Here the local variable is created but the value is removed from the stack,
2191   // so we put it back if the caller needs it.
2192   if (!DiscardResult) {
2193     if (!this->emitGetLocal(SubExprT, LocalIndex, E))
2194       return false;
2195   }
2196 
2197   // This is cleaned up when the local variable is destroyed.
2198   OpaqueExprs.insert({E, LocalIndex});
2199 
2200   return true;
2201 }
2202 
2203 template <class Emitter>
2204 bool Compiler<Emitter>::VisitAbstractConditionalOperator(
2205     const AbstractConditionalOperator *E) {
2206   const Expr *Condition = E->getCond();
2207   const Expr *TrueExpr = E->getTrueExpr();
2208   const Expr *FalseExpr = E->getFalseExpr();
2209 
2210   LabelTy LabelEnd = this->getLabel();   // Label after the operator.
2211   LabelTy LabelFalse = this->getLabel(); // Label for the false expr.
2212 
2213   if (!this->visitBool(Condition))
2214     return false;
2215 
2216   if (!this->jumpFalse(LabelFalse))
2217     return false;
2218 
2219   {
2220     LocalScope<Emitter> S(this);
2221     if (!this->delegate(TrueExpr))
2222       return false;
2223     if (!S.destroyLocals())
2224       return false;
2225   }
2226 
2227   if (!this->jump(LabelEnd))
2228     return false;
2229 
2230   this->emitLabel(LabelFalse);
2231 
2232   {
2233     LocalScope<Emitter> S(this);
2234     if (!this->delegate(FalseExpr))
2235       return false;
2236     if (!S.destroyLocals())
2237       return false;
2238   }
2239 
2240   this->fallthrough(LabelEnd);
2241   this->emitLabel(LabelEnd);
2242 
2243   return true;
2244 }
2245 
2246 template <class Emitter>
2247 bool Compiler<Emitter>::VisitStringLiteral(const StringLiteral *E) {
2248   if (DiscardResult)
2249     return true;
2250 
2251   if (!Initializing) {
2252     unsigned StringIndex = P.createGlobalString(E);
2253     return this->emitGetPtrGlobal(StringIndex, E);
2254   }
2255 
2256   // We are initializing an array on the stack.
2257   const ConstantArrayType *CAT =
2258       Ctx.getASTContext().getAsConstantArrayType(E->getType());
2259   assert(CAT && "a string literal that's not a constant array?");
2260 
2261   // If the initializer string is too long, a diagnostic has already been
2262   // emitted. Read only the array length from the string literal.
2263   unsigned ArraySize = CAT->getZExtSize();
2264   unsigned N = std::min(ArraySize, E->getLength());
2265   size_t CharWidth = E->getCharByteWidth();
2266 
2267   for (unsigned I = 0; I != N; ++I) {
2268     uint32_t CodeUnit = E->getCodeUnit(I);
2269 
2270     if (CharWidth == 1) {
2271       this->emitConstSint8(CodeUnit, E);
2272       this->emitInitElemSint8(I, E);
2273     } else if (CharWidth == 2) {
2274       this->emitConstUint16(CodeUnit, E);
2275       this->emitInitElemUint16(I, E);
2276     } else if (CharWidth == 4) {
2277       this->emitConstUint32(CodeUnit, E);
2278       this->emitInitElemUint32(I, E);
2279     } else {
2280       llvm_unreachable("unsupported character width");
2281     }
2282   }
2283 
2284   // Fill up the rest of the char array with NUL bytes.
2285   for (unsigned I = N; I != ArraySize; ++I) {
2286     if (CharWidth == 1) {
2287       this->emitConstSint8(0, E);
2288       this->emitInitElemSint8(I, E);
2289     } else if (CharWidth == 2) {
2290       this->emitConstUint16(0, E);
2291       this->emitInitElemUint16(I, E);
2292     } else if (CharWidth == 4) {
2293       this->emitConstUint32(0, E);
2294       this->emitInitElemUint32(I, E);
2295     } else {
2296       llvm_unreachable("unsupported character width");
2297     }
2298   }
2299 
2300   return true;
2301 }
2302 
2303 template <class Emitter>
2304 bool Compiler<Emitter>::VisitObjCStringLiteral(const ObjCStringLiteral *E) {
2305   if (std::optional<unsigned> I = P.getOrCreateDummy(E))
2306     return this->emitGetPtrGlobal(*I, E);
2307   return false;
2308 }
2309 
2310 template <class Emitter>
2311 bool Compiler<Emitter>::VisitObjCEncodeExpr(const ObjCEncodeExpr *E) {
2312   auto &A = Ctx.getASTContext();
2313   std::string Str;
2314   A.getObjCEncodingForType(E->getEncodedType(), Str);
2315   StringLiteral *SL =
2316       StringLiteral::Create(A, Str, StringLiteralKind::Ordinary,
2317                             /*Pascal=*/false, E->getType(), E->getAtLoc());
2318   return this->delegate(SL);
2319 }
2320 
2321 template <class Emitter>
2322 bool Compiler<Emitter>::VisitSYCLUniqueStableNameExpr(
2323     const SYCLUniqueStableNameExpr *E) {
2324   if (DiscardResult)
2325     return true;
2326 
2327   assert(!Initializing);
2328 
2329   auto &A = Ctx.getASTContext();
2330   std::string ResultStr = E->ComputeName(A);
2331 
2332   QualType CharTy = A.CharTy.withConst();
2333   APInt Size(A.getTypeSize(A.getSizeType()), ResultStr.size() + 1);
2334   QualType ArrayTy = A.getConstantArrayType(CharTy, Size, nullptr,
2335                                             ArraySizeModifier::Normal, 0);
2336 
2337   StringLiteral *SL =
2338       StringLiteral::Create(A, ResultStr, StringLiteralKind::Ordinary,
2339                             /*Pascal=*/false, ArrayTy, E->getLocation());
2340 
2341   unsigned StringIndex = P.createGlobalString(SL);
2342   return this->emitGetPtrGlobal(StringIndex, E);
2343 }
2344 
2345 template <class Emitter>
2346 bool Compiler<Emitter>::VisitCharacterLiteral(const CharacterLiteral *E) {
2347   if (DiscardResult)
2348     return true;
2349   return this->emitConst(E->getValue(), E);
2350 }
2351 
2352 template <class Emitter>
2353 bool Compiler<Emitter>::VisitFloatCompoundAssignOperator(
2354     const CompoundAssignOperator *E) {
2355 
2356   const Expr *LHS = E->getLHS();
2357   const Expr *RHS = E->getRHS();
2358   QualType LHSType = LHS->getType();
2359   QualType LHSComputationType = E->getComputationLHSType();
2360   QualType ResultType = E->getComputationResultType();
2361   std::optional<PrimType> LT = classify(LHSComputationType);
2362   std::optional<PrimType> RT = classify(ResultType);
2363 
2364   assert(ResultType->isFloatingType());
2365 
2366   if (!LT || !RT)
2367     return false;
2368 
2369   PrimType LHST = classifyPrim(LHSType);
2370 
2371   // C++17 onwards require that we evaluate the RHS first.
2372   // Compute RHS and save it in a temporary variable so we can
2373   // load it again later.
2374   if (!visit(RHS))
2375     return false;
2376 
2377   unsigned TempOffset = this->allocateLocalPrimitive(E, *RT, /*IsConst=*/true);
2378   if (!this->emitSetLocal(*RT, TempOffset, E))
2379     return false;
2380 
2381   // First, visit LHS.
2382   if (!visit(LHS))
2383     return false;
2384   if (!this->emitLoad(LHST, E))
2385     return false;
2386 
2387   // If necessary, convert LHS to its computation type.
2388   if (!this->emitPrimCast(LHST, classifyPrim(LHSComputationType),
2389                           LHSComputationType, E))
2390     return false;
2391 
2392   // Now load RHS.
2393   if (!this->emitGetLocal(*RT, TempOffset, E))
2394     return false;
2395 
2396   switch (E->getOpcode()) {
2397   case BO_AddAssign:
2398     if (!this->emitAddf(getFPOptions(E), E))
2399       return false;
2400     break;
2401   case BO_SubAssign:
2402     if (!this->emitSubf(getFPOptions(E), E))
2403       return false;
2404     break;
2405   case BO_MulAssign:
2406     if (!this->emitMulf(getFPOptions(E), E))
2407       return false;
2408     break;
2409   case BO_DivAssign:
2410     if (!this->emitDivf(getFPOptions(E), E))
2411       return false;
2412     break;
2413   default:
2414     return false;
2415   }
2416 
2417   if (!this->emitPrimCast(classifyPrim(ResultType), LHST, LHS->getType(), E))
2418     return false;
2419 
2420   if (DiscardResult)
2421     return this->emitStorePop(LHST, E);
2422   return this->emitStore(LHST, E);
2423 }
2424 
2425 template <class Emitter>
2426 bool Compiler<Emitter>::VisitPointerCompoundAssignOperator(
2427     const CompoundAssignOperator *E) {
2428   BinaryOperatorKind Op = E->getOpcode();
2429   const Expr *LHS = E->getLHS();
2430   const Expr *RHS = E->getRHS();
2431   std::optional<PrimType> LT = classify(LHS->getType());
2432   std::optional<PrimType> RT = classify(RHS->getType());
2433 
2434   if (Op != BO_AddAssign && Op != BO_SubAssign)
2435     return false;
2436 
2437   if (!LT || !RT)
2438     return false;
2439 
2440   if (!visit(LHS))
2441     return false;
2442 
2443   if (!this->emitLoad(*LT, LHS))
2444     return false;
2445 
2446   if (!visit(RHS))
2447     return false;
2448 
2449   if (Op == BO_AddAssign) {
2450     if (!this->emitAddOffset(*RT, E))
2451       return false;
2452   } else {
2453     if (!this->emitSubOffset(*RT, E))
2454       return false;
2455   }
2456 
2457   if (DiscardResult)
2458     return this->emitStorePopPtr(E);
2459   return this->emitStorePtr(E);
2460 }
2461 
2462 template <class Emitter>
2463 bool Compiler<Emitter>::VisitCompoundAssignOperator(
2464     const CompoundAssignOperator *E) {
2465   if (E->getType()->isVectorType())
2466     return VisitVectorBinOp(E);
2467 
2468   const Expr *LHS = E->getLHS();
2469   const Expr *RHS = E->getRHS();
2470   std::optional<PrimType> LHSComputationT =
2471       classify(E->getComputationLHSType());
2472   std::optional<PrimType> LT = classify(LHS->getType());
2473   std::optional<PrimType> RT = classify(RHS->getType());
2474   std::optional<PrimType> ResultT = classify(E->getType());
2475 
2476   if (!Ctx.getLangOpts().CPlusPlus14)
2477     return this->visit(RHS) && this->visit(LHS) && this->emitError(E);
2478 
2479   if (!LT || !RT || !ResultT || !LHSComputationT)
2480     return false;
2481 
2482   // Handle floating point operations separately here, since they
2483   // require special care.
2484 
2485   if (ResultT == PT_Float || RT == PT_Float)
2486     return VisitFloatCompoundAssignOperator(E);
2487 
2488   if (E->getType()->isPointerType())
2489     return VisitPointerCompoundAssignOperator(E);
2490 
2491   assert(!E->getType()->isPointerType() && "Handled above");
2492   assert(!E->getType()->isFloatingType() && "Handled above");
2493 
2494   // C++17 onwards require that we evaluate the RHS first.
2495   // Compute RHS and save it in a temporary variable so we can
2496   // load it again later.
2497   // FIXME: Compound assignments are unsequenced in C, so we might
2498   //   have to figure out how to reject them.
2499   if (!visit(RHS))
2500     return false;
2501 
2502   unsigned TempOffset = this->allocateLocalPrimitive(E, *RT, /*IsConst=*/true);
2503 
2504   if (!this->emitSetLocal(*RT, TempOffset, E))
2505     return false;
2506 
2507   // Get LHS pointer, load its value and cast it to the
2508   // computation type if necessary.
2509   if (!visit(LHS))
2510     return false;
2511   if (!this->emitLoad(*LT, E))
2512     return false;
2513   if (LT != LHSComputationT) {
2514     if (!this->emitCast(*LT, *LHSComputationT, E))
2515       return false;
2516   }
2517 
2518   // Get the RHS value on the stack.
2519   if (!this->emitGetLocal(*RT, TempOffset, E))
2520     return false;
2521 
2522   // Perform operation.
2523   switch (E->getOpcode()) {
2524   case BO_AddAssign:
2525     if (!this->emitAdd(*LHSComputationT, E))
2526       return false;
2527     break;
2528   case BO_SubAssign:
2529     if (!this->emitSub(*LHSComputationT, E))
2530       return false;
2531     break;
2532   case BO_MulAssign:
2533     if (!this->emitMul(*LHSComputationT, E))
2534       return false;
2535     break;
2536   case BO_DivAssign:
2537     if (!this->emitDiv(*LHSComputationT, E))
2538       return false;
2539     break;
2540   case BO_RemAssign:
2541     if (!this->emitRem(*LHSComputationT, E))
2542       return false;
2543     break;
2544   case BO_ShlAssign:
2545     if (!this->emitShl(*LHSComputationT, *RT, E))
2546       return false;
2547     break;
2548   case BO_ShrAssign:
2549     if (!this->emitShr(*LHSComputationT, *RT, E))
2550       return false;
2551     break;
2552   case BO_AndAssign:
2553     if (!this->emitBitAnd(*LHSComputationT, E))
2554       return false;
2555     break;
2556   case BO_XorAssign:
2557     if (!this->emitBitXor(*LHSComputationT, E))
2558       return false;
2559     break;
2560   case BO_OrAssign:
2561     if (!this->emitBitOr(*LHSComputationT, E))
2562       return false;
2563     break;
2564   default:
2565     llvm_unreachable("Unimplemented compound assign operator");
2566   }
2567 
2568   // And now cast from LHSComputationT to ResultT.
2569   if (ResultT != LHSComputationT) {
2570     if (!this->emitCast(*LHSComputationT, *ResultT, E))
2571       return false;
2572   }
2573 
2574   // And store the result in LHS.
2575   if (DiscardResult) {
2576     if (LHS->refersToBitField())
2577       return this->emitStoreBitFieldPop(*ResultT, E);
2578     return this->emitStorePop(*ResultT, E);
2579   }
2580   if (LHS->refersToBitField())
2581     return this->emitStoreBitField(*ResultT, E);
2582   return this->emitStore(*ResultT, E);
2583 }
2584 
2585 template <class Emitter>
2586 bool Compiler<Emitter>::VisitExprWithCleanups(const ExprWithCleanups *E) {
2587   LocalScope<Emitter> ES(this);
2588   const Expr *SubExpr = E->getSubExpr();
2589 
2590   return this->delegate(SubExpr) && ES.destroyLocals(E);
2591 }
2592 
2593 template <class Emitter>
2594 bool Compiler<Emitter>::VisitMaterializeTemporaryExpr(
2595     const MaterializeTemporaryExpr *E) {
2596   const Expr *SubExpr = E->getSubExpr();
2597 
2598   if (Initializing) {
2599     // We already have a value, just initialize that.
2600     return this->delegate(SubExpr);
2601   }
2602   // If we don't end up using the materialized temporary anyway, don't
2603   // bother creating it.
2604   if (DiscardResult)
2605     return this->discard(SubExpr);
2606 
2607   // When we're initializing a global variable *or* the storage duration of
2608   // the temporary is explicitly static, create a global variable.
2609   std::optional<PrimType> SubExprT = classify(SubExpr);
2610   bool IsStatic = E->getStorageDuration() == SD_Static;
2611   if (IsStatic) {
2612     std::optional<unsigned> GlobalIndex = P.createGlobal(E);
2613     if (!GlobalIndex)
2614       return false;
2615 
2616     const LifetimeExtendedTemporaryDecl *TempDecl =
2617         E->getLifetimeExtendedTemporaryDecl();
2618     if (IsStatic)
2619       assert(TempDecl);
2620 
2621     if (SubExprT) {
2622       if (!this->visit(SubExpr))
2623         return false;
2624       if (IsStatic) {
2625         if (!this->emitInitGlobalTemp(*SubExprT, *GlobalIndex, TempDecl, E))
2626           return false;
2627       } else {
2628         if (!this->emitInitGlobal(*SubExprT, *GlobalIndex, E))
2629           return false;
2630       }
2631       return this->emitGetPtrGlobal(*GlobalIndex, E);
2632     }
2633 
2634     if (!this->checkLiteralType(SubExpr))
2635       return false;
2636     // Non-primitive values.
2637     if (!this->emitGetPtrGlobal(*GlobalIndex, E))
2638       return false;
2639     if (!this->visitInitializer(SubExpr))
2640       return false;
2641     if (IsStatic)
2642       return this->emitInitGlobalTempComp(TempDecl, E);
2643     return true;
2644   }
2645 
2646   // For everyhing else, use local variables.
2647   if (SubExprT) {
2648     unsigned LocalIndex = allocateLocalPrimitive(E, *SubExprT, /*IsConst=*/true,
2649                                                  /*IsExtended=*/true);
2650     if (!this->visit(SubExpr))
2651       return false;
2652     if (!this->emitSetLocal(*SubExprT, LocalIndex, E))
2653       return false;
2654     return this->emitGetPtrLocal(LocalIndex, E);
2655   } else {
2656 
2657     if (!this->checkLiteralType(SubExpr))
2658       return false;
2659 
2660     const Expr *Inner = E->getSubExpr()->skipRValueSubobjectAdjustments();
2661     if (std::optional<unsigned> LocalIndex =
2662             allocateLocal(Inner, E->getExtendingDecl())) {
2663       InitLinkScope<Emitter> ILS(this, InitLink::Temp(*LocalIndex));
2664       if (!this->emitGetPtrLocal(*LocalIndex, E))
2665         return false;
2666       return this->visitInitializer(SubExpr);
2667     }
2668   }
2669   return false;
2670 }
2671 
2672 template <class Emitter>
2673 bool Compiler<Emitter>::VisitCXXBindTemporaryExpr(
2674     const CXXBindTemporaryExpr *E) {
2675   return this->delegate(E->getSubExpr());
2676 }
2677 
2678 template <class Emitter>
2679 bool Compiler<Emitter>::VisitCompoundLiteralExpr(const CompoundLiteralExpr *E) {
2680   const Expr *Init = E->getInitializer();
2681   if (DiscardResult)
2682     return this->discard(Init);
2683 
2684   if (Initializing) {
2685     // We already have a value, just initialize that.
2686     return this->visitInitializer(Init) && this->emitFinishInit(E);
2687   }
2688 
2689   std::optional<PrimType> T = classify(E->getType());
2690   if (E->isFileScope()) {
2691     // Avoid creating a variable if this is a primitive RValue anyway.
2692     if (T && !E->isLValue())
2693       return this->delegate(Init);
2694 
2695     if (std::optional<unsigned> GlobalIndex = P.createGlobal(E)) {
2696       if (!this->emitGetPtrGlobal(*GlobalIndex, E))
2697         return false;
2698 
2699       if (T) {
2700         if (!this->visit(Init))
2701           return false;
2702         return this->emitInitGlobal(*T, *GlobalIndex, E);
2703       }
2704 
2705       return this->visitInitializer(Init) && this->emitFinishInit(E);
2706     }
2707 
2708     return false;
2709   }
2710 
2711   // Otherwise, use a local variable.
2712   if (T && !E->isLValue()) {
2713     // For primitive types, we just visit the initializer.
2714     return this->delegate(Init);
2715   } else {
2716     unsigned LocalIndex;
2717 
2718     if (T)
2719       LocalIndex = this->allocateLocalPrimitive(Init, *T, false, false);
2720     else if (std::optional<unsigned> MaybeIndex = this->allocateLocal(Init))
2721       LocalIndex = *MaybeIndex;
2722     else
2723       return false;
2724 
2725     if (!this->emitGetPtrLocal(LocalIndex, E))
2726       return false;
2727 
2728     if (T) {
2729       if (!this->visit(Init)) {
2730         return false;
2731       }
2732       return this->emitInit(*T, E);
2733     } else {
2734       if (!this->visitInitializer(Init) || !this->emitFinishInit(E))
2735         return false;
2736     }
2737     return true;
2738   }
2739 
2740   return false;
2741 }
2742 
2743 template <class Emitter>
2744 bool Compiler<Emitter>::VisitTypeTraitExpr(const TypeTraitExpr *E) {
2745   if (DiscardResult)
2746     return true;
2747   if (E->getType()->isBooleanType())
2748     return this->emitConstBool(E->getValue(), E);
2749   return this->emitConst(E->getValue(), E);
2750 }
2751 
2752 template <class Emitter>
2753 bool Compiler<Emitter>::VisitArrayTypeTraitExpr(const ArrayTypeTraitExpr *E) {
2754   if (DiscardResult)
2755     return true;
2756   return this->emitConst(E->getValue(), E);
2757 }
2758 
2759 template <class Emitter>
2760 bool Compiler<Emitter>::VisitLambdaExpr(const LambdaExpr *E) {
2761   if (DiscardResult)
2762     return true;
2763 
2764   assert(Initializing);
2765   const Record *R = P.getOrCreateRecord(E->getLambdaClass());
2766 
2767   auto *CaptureInitIt = E->capture_init_begin();
2768   // Initialize all fields (which represent lambda captures) of the
2769   // record with their initializers.
2770   for (const Record::Field &F : R->fields()) {
2771     const Expr *Init = *CaptureInitIt;
2772     ++CaptureInitIt;
2773 
2774     if (!Init)
2775       continue;
2776 
2777     if (std::optional<PrimType> T = classify(Init)) {
2778       if (!this->visit(Init))
2779         return false;
2780 
2781       if (!this->emitInitField(*T, F.Offset, E))
2782         return false;
2783     } else {
2784       if (!this->emitGetPtrField(F.Offset, E))
2785         return false;
2786 
2787       if (!this->visitInitializer(Init))
2788         return false;
2789 
2790       if (!this->emitPopPtr(E))
2791         return false;
2792     }
2793   }
2794 
2795   return true;
2796 }
2797 
2798 template <class Emitter>
2799 bool Compiler<Emitter>::VisitPredefinedExpr(const PredefinedExpr *E) {
2800   if (DiscardResult)
2801     return true;
2802 
2803   return this->delegate(E->getFunctionName());
2804 }
2805 
2806 template <class Emitter>
2807 bool Compiler<Emitter>::VisitCXXThrowExpr(const CXXThrowExpr *E) {
2808   if (E->getSubExpr() && !this->discard(E->getSubExpr()))
2809     return false;
2810 
2811   return this->emitInvalid(E);
2812 }
2813 
2814 template <class Emitter>
2815 bool Compiler<Emitter>::VisitCXXReinterpretCastExpr(
2816     const CXXReinterpretCastExpr *E) {
2817   const Expr *SubExpr = E->getSubExpr();
2818 
2819   std::optional<PrimType> FromT = classify(SubExpr);
2820   std::optional<PrimType> ToT = classify(E);
2821 
2822   if (!FromT || !ToT)
2823     return this->emitInvalidCast(CastKind::Reinterpret, /*Fatal=*/true, E);
2824 
2825   if (FromT == PT_Ptr || ToT == PT_Ptr) {
2826     // Both types could be PT_Ptr because their expressions are glvalues.
2827     std::optional<PrimType> PointeeFromT;
2828     if (SubExpr->getType()->isPointerOrReferenceType())
2829       PointeeFromT = classify(SubExpr->getType()->getPointeeType());
2830     else
2831       PointeeFromT = classify(SubExpr->getType());
2832 
2833     std::optional<PrimType> PointeeToT;
2834     if (E->getType()->isPointerOrReferenceType())
2835       PointeeToT = classify(E->getType()->getPointeeType());
2836     else
2837       PointeeToT = classify(E->getType());
2838 
2839     bool Fatal = true;
2840     if (PointeeToT && PointeeFromT) {
2841       if (isIntegralType(*PointeeFromT) && isIntegralType(*PointeeToT))
2842         Fatal = false;
2843     }
2844 
2845     if (!this->emitInvalidCast(CastKind::Reinterpret, Fatal, E))
2846       return false;
2847 
2848     if (E->getCastKind() == CK_LValueBitCast)
2849       return this->delegate(SubExpr);
2850     return this->VisitCastExpr(E);
2851   }
2852 
2853   // Try to actually do the cast.
2854   bool Fatal = (ToT != FromT);
2855   if (!this->emitInvalidCast(CastKind::Reinterpret, Fatal, E))
2856     return false;
2857 
2858   return this->VisitCastExpr(E);
2859 }
2860 
2861 template <class Emitter>
2862 bool Compiler<Emitter>::VisitCXXNoexceptExpr(const CXXNoexceptExpr *E) {
2863   assert(E->getType()->isBooleanType());
2864 
2865   if (DiscardResult)
2866     return true;
2867   return this->emitConstBool(E->getValue(), E);
2868 }
2869 
2870 template <class Emitter>
2871 bool Compiler<Emitter>::VisitCXXConstructExpr(const CXXConstructExpr *E) {
2872   QualType T = E->getType();
2873   assert(!classify(T));
2874 
2875   if (T->isRecordType()) {
2876     const CXXConstructorDecl *Ctor = E->getConstructor();
2877 
2878     // Trivial copy/move constructor. Avoid copy.
2879     if (Ctor->isDefaulted() && Ctor->isCopyOrMoveConstructor() &&
2880         Ctor->isTrivial() &&
2881         E->getArg(0)->isTemporaryObject(Ctx.getASTContext(),
2882                                         T->getAsCXXRecordDecl()))
2883       return this->visitInitializer(E->getArg(0));
2884 
2885     // If we're discarding a construct expression, we still need
2886     // to allocate a variable and call the constructor and destructor.
2887     if (DiscardResult) {
2888       if (Ctor->isTrivial())
2889         return true;
2890       assert(!Initializing);
2891       std::optional<unsigned> LocalIndex = allocateLocal(E);
2892 
2893       if (!LocalIndex)
2894         return false;
2895 
2896       if (!this->emitGetPtrLocal(*LocalIndex, E))
2897         return false;
2898     }
2899 
2900     // Zero initialization.
2901     if (E->requiresZeroInitialization()) {
2902       const Record *R = getRecord(E->getType());
2903 
2904       if (!this->visitZeroRecordInitializer(R, E))
2905         return false;
2906 
2907       // If the constructor is trivial anyway, we're done.
2908       if (Ctor->isTrivial())
2909         return true;
2910     }
2911 
2912     const Function *Func = getFunction(Ctor);
2913 
2914     if (!Func)
2915       return false;
2916 
2917     assert(Func->hasThisPointer());
2918     assert(!Func->hasRVO());
2919 
2920     //  The This pointer is already on the stack because this is an initializer,
2921     //  but we need to dup() so the call() below has its own copy.
2922     if (!this->emitDupPtr(E))
2923       return false;
2924 
2925     // Constructor arguments.
2926     for (const auto *Arg : E->arguments()) {
2927       if (!this->visit(Arg))
2928         return false;
2929     }
2930 
2931     if (Func->isVariadic()) {
2932       uint32_t VarArgSize = 0;
2933       unsigned NumParams = Func->getNumWrittenParams();
2934       for (unsigned I = NumParams, N = E->getNumArgs(); I != N; ++I) {
2935         VarArgSize +=
2936             align(primSize(classify(E->getArg(I)->getType()).value_or(PT_Ptr)));
2937       }
2938       if (!this->emitCallVar(Func, VarArgSize, E))
2939         return false;
2940     } else {
2941       if (!this->emitCall(Func, 0, E)) {
2942         // When discarding, we don't need the result anyway, so clean up
2943         // the instance dup we did earlier in case surrounding code wants
2944         // to keep evaluating.
2945         if (DiscardResult)
2946           (void)this->emitPopPtr(E);
2947         return false;
2948       }
2949     }
2950 
2951     if (DiscardResult)
2952       return this->emitPopPtr(E);
2953     return this->emitFinishInit(E);
2954   }
2955 
2956   if (T->isArrayType()) {
2957     const ConstantArrayType *CAT =
2958         Ctx.getASTContext().getAsConstantArrayType(E->getType());
2959     if (!CAT)
2960       return false;
2961 
2962     size_t NumElems = CAT->getZExtSize();
2963     const Function *Func = getFunction(E->getConstructor());
2964     if (!Func || !Func->isConstexpr())
2965       return false;
2966 
2967     // FIXME(perf): We're calling the constructor once per array element here,
2968     //   in the old intepreter we had a special-case for trivial constructors.
2969     for (size_t I = 0; I != NumElems; ++I) {
2970       if (!this->emitConstUint64(I, E))
2971         return false;
2972       if (!this->emitArrayElemPtrUint64(E))
2973         return false;
2974 
2975       // Constructor arguments.
2976       for (const auto *Arg : E->arguments()) {
2977         if (!this->visit(Arg))
2978           return false;
2979       }
2980 
2981       if (!this->emitCall(Func, 0, E))
2982         return false;
2983     }
2984     return true;
2985   }
2986 
2987   return false;
2988 }
2989 
2990 template <class Emitter>
2991 bool Compiler<Emitter>::VisitSourceLocExpr(const SourceLocExpr *E) {
2992   if (DiscardResult)
2993     return true;
2994 
2995   const APValue Val =
2996       E->EvaluateInContext(Ctx.getASTContext(), SourceLocDefaultExpr);
2997 
2998   // Things like __builtin_LINE().
2999   if (E->getType()->isIntegerType()) {
3000     assert(Val.isInt());
3001     const APSInt &I = Val.getInt();
3002     return this->emitConst(I, E);
3003   }
3004   // Otherwise, the APValue is an LValue, with only one element.
3005   // Theoretically, we don't need the APValue at all of course.
3006   assert(E->getType()->isPointerType());
3007   assert(Val.isLValue());
3008   const APValue::LValueBase &Base = Val.getLValueBase();
3009   if (const Expr *LValueExpr = Base.dyn_cast<const Expr *>())
3010     return this->visit(LValueExpr);
3011 
3012   // Otherwise, we have a decl (which is the case for
3013   // __builtin_source_location).
3014   assert(Base.is<const ValueDecl *>());
3015   assert(Val.getLValuePath().size() == 0);
3016   const auto *BaseDecl = Base.dyn_cast<const ValueDecl *>();
3017   assert(BaseDecl);
3018 
3019   auto *UGCD = cast<UnnamedGlobalConstantDecl>(BaseDecl);
3020 
3021   std::optional<unsigned> GlobalIndex = P.getOrCreateGlobal(UGCD);
3022   if (!GlobalIndex)
3023     return false;
3024 
3025   if (!this->emitGetPtrGlobal(*GlobalIndex, E))
3026     return false;
3027 
3028   const Record *R = getRecord(E->getType());
3029   const APValue &V = UGCD->getValue();
3030   for (unsigned I = 0, N = R->getNumFields(); I != N; ++I) {
3031     const Record::Field *F = R->getField(I);
3032     const APValue &FieldValue = V.getStructField(I);
3033 
3034     PrimType FieldT = classifyPrim(F->Decl->getType());
3035 
3036     if (!this->visitAPValue(FieldValue, FieldT, E))
3037       return false;
3038     if (!this->emitInitField(FieldT, F->Offset, E))
3039       return false;
3040   }
3041 
3042   // Leave the pointer to the global on the stack.
3043   return true;
3044 }
3045 
3046 template <class Emitter>
3047 bool Compiler<Emitter>::VisitOffsetOfExpr(const OffsetOfExpr *E) {
3048   unsigned N = E->getNumComponents();
3049   if (N == 0)
3050     return false;
3051 
3052   for (unsigned I = 0; I != N; ++I) {
3053     const OffsetOfNode &Node = E->getComponent(I);
3054     if (Node.getKind() == OffsetOfNode::Array) {
3055       const Expr *ArrayIndexExpr = E->getIndexExpr(Node.getArrayExprIndex());
3056       PrimType IndexT = classifyPrim(ArrayIndexExpr->getType());
3057 
3058       if (DiscardResult) {
3059         if (!this->discard(ArrayIndexExpr))
3060           return false;
3061         continue;
3062       }
3063 
3064       if (!this->visit(ArrayIndexExpr))
3065         return false;
3066       // Cast to Sint64.
3067       if (IndexT != PT_Sint64) {
3068         if (!this->emitCast(IndexT, PT_Sint64, E))
3069           return false;
3070       }
3071     }
3072   }
3073 
3074   if (DiscardResult)
3075     return true;
3076 
3077   PrimType T = classifyPrim(E->getType());
3078   return this->emitOffsetOf(T, E, E);
3079 }
3080 
3081 template <class Emitter>
3082 bool Compiler<Emitter>::VisitCXXScalarValueInitExpr(
3083     const CXXScalarValueInitExpr *E) {
3084   QualType Ty = E->getType();
3085 
3086   if (DiscardResult || Ty->isVoidType())
3087     return true;
3088 
3089   if (std::optional<PrimType> T = classify(Ty))
3090     return this->visitZeroInitializer(*T, Ty, E);
3091 
3092   if (const auto *CT = Ty->getAs<ComplexType>()) {
3093     if (!Initializing) {
3094       std::optional<unsigned> LocalIndex = allocateLocal(E);
3095       if (!LocalIndex)
3096         return false;
3097       if (!this->emitGetPtrLocal(*LocalIndex, E))
3098         return false;
3099     }
3100 
3101     // Initialize both fields to 0.
3102     QualType ElemQT = CT->getElementType();
3103     PrimType ElemT = classifyPrim(ElemQT);
3104 
3105     for (unsigned I = 0; I != 2; ++I) {
3106       if (!this->visitZeroInitializer(ElemT, ElemQT, E))
3107         return false;
3108       if (!this->emitInitElem(ElemT, I, E))
3109         return false;
3110     }
3111     return true;
3112   }
3113 
3114   if (const auto *VT = Ty->getAs<VectorType>()) {
3115     // FIXME: Code duplication with the _Complex case above.
3116     if (!Initializing) {
3117       std::optional<unsigned> LocalIndex = allocateLocal(E);
3118       if (!LocalIndex)
3119         return false;
3120       if (!this->emitGetPtrLocal(*LocalIndex, E))
3121         return false;
3122     }
3123 
3124     // Initialize all fields to 0.
3125     QualType ElemQT = VT->getElementType();
3126     PrimType ElemT = classifyPrim(ElemQT);
3127 
3128     for (unsigned I = 0, N = VT->getNumElements(); I != N; ++I) {
3129       if (!this->visitZeroInitializer(ElemT, ElemQT, E))
3130         return false;
3131       if (!this->emitInitElem(ElemT, I, E))
3132         return false;
3133     }
3134     return true;
3135   }
3136 
3137   return false;
3138 }
3139 
3140 template <class Emitter>
3141 bool Compiler<Emitter>::VisitSizeOfPackExpr(const SizeOfPackExpr *E) {
3142   return this->emitConst(E->getPackLength(), E);
3143 }
3144 
3145 template <class Emitter>
3146 bool Compiler<Emitter>::VisitGenericSelectionExpr(
3147     const GenericSelectionExpr *E) {
3148   return this->delegate(E->getResultExpr());
3149 }
3150 
3151 template <class Emitter>
3152 bool Compiler<Emitter>::VisitChooseExpr(const ChooseExpr *E) {
3153   return this->delegate(E->getChosenSubExpr());
3154 }
3155 
3156 template <class Emitter>
3157 bool Compiler<Emitter>::VisitObjCBoolLiteralExpr(const ObjCBoolLiteralExpr *E) {
3158   if (DiscardResult)
3159     return true;
3160 
3161   return this->emitConst(E->getValue(), E);
3162 }
3163 
3164 template <class Emitter>
3165 bool Compiler<Emitter>::VisitCXXInheritedCtorInitExpr(
3166     const CXXInheritedCtorInitExpr *E) {
3167   const CXXConstructorDecl *Ctor = E->getConstructor();
3168   assert(!Ctor->isTrivial() &&
3169          "Trivial CXXInheritedCtorInitExpr, implement. (possible?)");
3170   const Function *F = this->getFunction(Ctor);
3171   assert(F);
3172   assert(!F->hasRVO());
3173   assert(F->hasThisPointer());
3174 
3175   if (!this->emitDupPtr(SourceInfo{}))
3176     return false;
3177 
3178   // Forward all arguments of the current function (which should be a
3179   // constructor itself) to the inherited ctor.
3180   // This is necessary because the calling code has pushed the pointer
3181   // of the correct base for  us already, but the arguments need
3182   // to come after.
3183   unsigned Offset = align(primSize(PT_Ptr)); // instance pointer.
3184   for (const ParmVarDecl *PD : Ctor->parameters()) {
3185     PrimType PT = this->classify(PD->getType()).value_or(PT_Ptr);
3186 
3187     if (!this->emitGetParam(PT, Offset, E))
3188       return false;
3189     Offset += align(primSize(PT));
3190   }
3191 
3192   return this->emitCall(F, 0, E);
3193 }
3194 
3195 template <class Emitter>
3196 bool Compiler<Emitter>::VisitCXXNewExpr(const CXXNewExpr *E) {
3197   assert(classifyPrim(E->getType()) == PT_Ptr);
3198   const Expr *Init = E->getInitializer();
3199   QualType ElementType = E->getAllocatedType();
3200   std::optional<PrimType> ElemT = classify(ElementType);
3201   unsigned PlacementArgs = E->getNumPlacementArgs();
3202   const FunctionDecl *OperatorNew = E->getOperatorNew();
3203   const Expr *PlacementDest = nullptr;
3204   bool IsNoThrow = false;
3205 
3206   if (PlacementArgs != 0) {
3207     // FIXME: There is no restriction on this, but it's not clear that any
3208     // other form makes any sense. We get here for cases such as:
3209     //
3210     //   new (std::align_val_t{N}) X(int)
3211     //
3212     // (which should presumably be valid only if N is a multiple of
3213     // alignof(int), and in any case can't be deallocated unless N is
3214     // alignof(X) and X has new-extended alignment).
3215     if (PlacementArgs == 1) {
3216       const Expr *Arg1 = E->getPlacementArg(0);
3217       if (Arg1->getType()->isNothrowT()) {
3218         if (!this->discard(Arg1))
3219           return false;
3220         IsNoThrow = true;
3221       } else {
3222         // Invalid unless we have C++26 or are in a std:: function.
3223         if (!this->emitInvalidNewDeleteExpr(E, E))
3224           return false;
3225 
3226         // If we have a placement-new destination, we'll later use that instead
3227         // of allocating.
3228         if (OperatorNew->isReservedGlobalPlacementOperator())
3229           PlacementDest = Arg1;
3230       }
3231     } else {
3232       // Always invalid.
3233       return this->emitInvalid(E);
3234     }
3235   } else if (!OperatorNew->isReplaceableGlobalAllocationFunction())
3236     return this->emitInvalidNewDeleteExpr(E, E);
3237 
3238   const Descriptor *Desc;
3239   if (!PlacementDest) {
3240     if (ElemT) {
3241       if (E->isArray())
3242         Desc = nullptr; // We're not going to use it in this case.
3243       else
3244         Desc = P.createDescriptor(E, *ElemT, Descriptor::InlineDescMD,
3245                                   /*IsConst=*/false, /*IsTemporary=*/false,
3246                                   /*IsMutable=*/false);
3247     } else {
3248       Desc = P.createDescriptor(
3249           E, ElementType.getTypePtr(),
3250           E->isArray() ? std::nullopt : Descriptor::InlineDescMD,
3251           /*IsConst=*/false, /*IsTemporary=*/false, /*IsMutable=*/false, Init);
3252     }
3253   }
3254 
3255   if (E->isArray()) {
3256     std::optional<const Expr *> ArraySizeExpr = E->getArraySize();
3257     if (!ArraySizeExpr)
3258       return false;
3259 
3260     const Expr *Stripped = *ArraySizeExpr;
3261     for (; auto *ICE = dyn_cast<ImplicitCastExpr>(Stripped);
3262          Stripped = ICE->getSubExpr())
3263       if (ICE->getCastKind() != CK_NoOp &&
3264           ICE->getCastKind() != CK_IntegralCast)
3265         break;
3266 
3267     PrimType SizeT = classifyPrim(Stripped->getType());
3268 
3269     if (PlacementDest) {
3270       if (!this->visit(PlacementDest))
3271         return false;
3272       if (!this->visit(Stripped))
3273         return false;
3274       if (!this->emitCheckNewTypeMismatchArray(SizeT, E, E))
3275         return false;
3276     } else {
3277       if (!this->visit(Stripped))
3278         return false;
3279 
3280       if (ElemT) {
3281         // N primitive elements.
3282         if (!this->emitAllocN(SizeT, *ElemT, E, IsNoThrow, E))
3283           return false;
3284       } else {
3285         // N Composite elements.
3286         if (!this->emitAllocCN(SizeT, Desc, IsNoThrow, E))
3287           return false;
3288       }
3289     }
3290 
3291     if (Init && !this->visitInitializer(Init))
3292       return false;
3293 
3294   } else {
3295     if (PlacementDest) {
3296       if (!this->visit(PlacementDest))
3297         return false;
3298       if (!this->emitCheckNewTypeMismatch(E, E))
3299         return false;
3300     } else {
3301       // Allocate just one element.
3302       if (!this->emitAlloc(Desc, E))
3303         return false;
3304     }
3305 
3306     if (Init) {
3307       if (ElemT) {
3308         if (!this->visit(Init))
3309           return false;
3310 
3311         if (!this->emitInit(*ElemT, E))
3312           return false;
3313       } else {
3314         // Composite.
3315         if (!this->visitInitializer(Init))
3316           return false;
3317       }
3318     }
3319   }
3320 
3321   if (DiscardResult)
3322     return this->emitPopPtr(E);
3323 
3324   return true;
3325 }
3326 
3327 template <class Emitter>
3328 bool Compiler<Emitter>::VisitCXXDeleteExpr(const CXXDeleteExpr *E) {
3329   const Expr *Arg = E->getArgument();
3330 
3331   const FunctionDecl *OperatorDelete = E->getOperatorDelete();
3332 
3333   if (!OperatorDelete->isReplaceableGlobalAllocationFunction())
3334     return this->emitInvalidNewDeleteExpr(E, E);
3335 
3336   // Arg must be an lvalue.
3337   if (!this->visit(Arg))
3338     return false;
3339 
3340   return this->emitFree(E->isArrayForm(), E);
3341 }
3342 
3343 template <class Emitter>
3344 bool Compiler<Emitter>::VisitBlockExpr(const BlockExpr *E) {
3345   const Function *Func = nullptr;
3346   if (auto F = Compiler<ByteCodeEmitter>(Ctx, P).compileObjCBlock(E))
3347     Func = F;
3348 
3349   if (!Func)
3350     return false;
3351   return this->emitGetFnPtr(Func, E);
3352 }
3353 
3354 template <class Emitter>
3355 bool Compiler<Emitter>::VisitExpressionTraitExpr(const ExpressionTraitExpr *E) {
3356   assert(Ctx.getLangOpts().CPlusPlus);
3357   return this->emitConstBool(E->getValue(), E);
3358 }
3359 
3360 template <class Emitter>
3361 bool Compiler<Emitter>::VisitCXXUuidofExpr(const CXXUuidofExpr *E) {
3362   if (DiscardResult)
3363     return true;
3364   assert(!Initializing);
3365 
3366   const MSGuidDecl *GuidDecl = E->getGuidDecl();
3367   const RecordDecl *RD = GuidDecl->getType()->getAsRecordDecl();
3368   assert(RD);
3369   // If the definiton of the result type is incomplete, just return a dummy.
3370   // If (and when) that is read from, we will fail, but not now.
3371   if (!RD->isCompleteDefinition()) {
3372     if (std::optional<unsigned> I = P.getOrCreateDummy(GuidDecl))
3373       return this->emitGetPtrGlobal(*I, E);
3374     return false;
3375   }
3376 
3377   std::optional<unsigned> GlobalIndex = P.getOrCreateGlobal(GuidDecl);
3378   if (!GlobalIndex)
3379     return false;
3380   if (!this->emitGetPtrGlobal(*GlobalIndex, E))
3381     return false;
3382 
3383   assert(this->getRecord(E->getType()));
3384 
3385   const APValue &V = GuidDecl->getAsAPValue();
3386   if (V.getKind() == APValue::None)
3387     return true;
3388 
3389   assert(V.isStruct());
3390   assert(V.getStructNumBases() == 0);
3391   if (!this->visitAPValueInitializer(V, E))
3392     return false;
3393 
3394   return this->emitFinishInit(E);
3395 }
3396 
3397 template <class Emitter>
3398 bool Compiler<Emitter>::VisitRequiresExpr(const RequiresExpr *E) {
3399   assert(classifyPrim(E->getType()) == PT_Bool);
3400   if (DiscardResult)
3401     return true;
3402   return this->emitConstBool(E->isSatisfied(), E);
3403 }
3404 
3405 template <class Emitter>
3406 bool Compiler<Emitter>::VisitConceptSpecializationExpr(
3407     const ConceptSpecializationExpr *E) {
3408   assert(classifyPrim(E->getType()) == PT_Bool);
3409   if (DiscardResult)
3410     return true;
3411   return this->emitConstBool(E->isSatisfied(), E);
3412 }
3413 
3414 template <class Emitter>
3415 bool Compiler<Emitter>::VisitCXXRewrittenBinaryOperator(
3416     const CXXRewrittenBinaryOperator *E) {
3417   return this->delegate(E->getSemanticForm());
3418 }
3419 
3420 template <class Emitter>
3421 bool Compiler<Emitter>::VisitPseudoObjectExpr(const PseudoObjectExpr *E) {
3422 
3423   for (const Expr *SemE : E->semantics()) {
3424     if (auto *OVE = dyn_cast<OpaqueValueExpr>(SemE)) {
3425       if (SemE == E->getResultExpr())
3426         return false;
3427 
3428       if (OVE->isUnique())
3429         continue;
3430 
3431       if (!this->discard(OVE))
3432         return false;
3433     } else if (SemE == E->getResultExpr()) {
3434       if (!this->delegate(SemE))
3435         return false;
3436     } else {
3437       if (!this->discard(SemE))
3438         return false;
3439     }
3440   }
3441   return true;
3442 }
3443 
3444 template <class Emitter>
3445 bool Compiler<Emitter>::VisitPackIndexingExpr(const PackIndexingExpr *E) {
3446   return this->delegate(E->getSelectedExpr());
3447 }
3448 
3449 template <class Emitter>
3450 bool Compiler<Emitter>::VisitRecoveryExpr(const RecoveryExpr *E) {
3451   return this->emitError(E);
3452 }
3453 
3454 template <class Emitter>
3455 bool Compiler<Emitter>::VisitAddrLabelExpr(const AddrLabelExpr *E) {
3456   assert(E->getType()->isVoidPointerType());
3457 
3458   unsigned Offset = allocateLocalPrimitive(
3459       E->getLabel(), PT_Ptr, /*IsConst=*/true, /*IsExtended=*/false);
3460 
3461   return this->emitGetLocal(PT_Ptr, Offset, E);
3462 }
3463 
3464 template <class Emitter>
3465 bool Compiler<Emitter>::VisitConvertVectorExpr(const ConvertVectorExpr *E) {
3466   assert(Initializing);
3467   const auto *VT = E->getType()->castAs<VectorType>();
3468   QualType ElemType = VT->getElementType();
3469   PrimType ElemT = classifyPrim(ElemType);
3470   const Expr *Src = E->getSrcExpr();
3471   PrimType SrcElemT =
3472       classifyPrim(Src->getType()->castAs<VectorType>()->getElementType());
3473 
3474   unsigned SrcOffset = this->allocateLocalPrimitive(Src, PT_Ptr, true, false);
3475   if (!this->visit(Src))
3476     return false;
3477   if (!this->emitSetLocal(PT_Ptr, SrcOffset, E))
3478     return false;
3479 
3480   for (unsigned I = 0; I != VT->getNumElements(); ++I) {
3481     if (!this->emitGetLocal(PT_Ptr, SrcOffset, E))
3482       return false;
3483     if (!this->emitArrayElemPop(SrcElemT, I, E))
3484       return false;
3485     if (SrcElemT != ElemT) {
3486       if (!this->emitPrimCast(SrcElemT, ElemT, ElemType, E))
3487         return false;
3488     }
3489     if (!this->emitInitElem(ElemT, I, E))
3490       return false;
3491   }
3492 
3493   return true;
3494 }
3495 
3496 template <class Emitter>
3497 bool Compiler<Emitter>::VisitShuffleVectorExpr(const ShuffleVectorExpr *E) {
3498   assert(Initializing);
3499   assert(E->getNumSubExprs() > 2);
3500 
3501   const Expr *Vecs[] = {E->getExpr(0), E->getExpr(1)};
3502   const VectorType *VT = Vecs[0]->getType()->castAs<VectorType>();
3503   PrimType ElemT = classifyPrim(VT->getElementType());
3504   unsigned NumInputElems = VT->getNumElements();
3505   unsigned NumOutputElems = E->getNumSubExprs() - 2;
3506   assert(NumOutputElems > 0);
3507 
3508   // Save both input vectors to a local variable.
3509   unsigned VectorOffsets[2];
3510   for (unsigned I = 0; I != 2; ++I) {
3511     VectorOffsets[I] = this->allocateLocalPrimitive(
3512         Vecs[I], PT_Ptr, /*IsConst=*/true, /*IsExtended=*/false);
3513     if (!this->visit(Vecs[I]))
3514       return false;
3515     if (!this->emitSetLocal(PT_Ptr, VectorOffsets[I], E))
3516       return false;
3517   }
3518   for (unsigned I = 0; I != NumOutputElems; ++I) {
3519     APSInt ShuffleIndex = E->getShuffleMaskIdx(Ctx.getASTContext(), I);
3520     if (ShuffleIndex == -1)
3521       return this->emitInvalid(E); // FIXME: Better diagnostic.
3522 
3523     assert(ShuffleIndex < (NumInputElems * 2));
3524     if (!this->emitGetLocal(PT_Ptr,
3525                             VectorOffsets[ShuffleIndex >= NumInputElems], E))
3526       return false;
3527     unsigned InputVectorIndex = ShuffleIndex.getZExtValue() % NumInputElems;
3528     if (!this->emitArrayElemPop(ElemT, InputVectorIndex, E))
3529       return false;
3530 
3531     if (!this->emitInitElem(ElemT, I, E))
3532       return false;
3533   }
3534 
3535   return true;
3536 }
3537 
3538 template <class Emitter>
3539 bool Compiler<Emitter>::VisitExtVectorElementExpr(
3540     const ExtVectorElementExpr *E) {
3541   const Expr *Base = E->getBase();
3542   assert(
3543       Base->getType()->isVectorType() ||
3544       Base->getType()->getAs<PointerType>()->getPointeeType()->isVectorType());
3545 
3546   SmallVector<uint32_t, 4> Indices;
3547   E->getEncodedElementAccess(Indices);
3548 
3549   if (Indices.size() == 1) {
3550     if (!this->visit(Base))
3551       return false;
3552 
3553     if (E->isGLValue()) {
3554       if (!this->emitConstUint32(Indices[0], E))
3555         return false;
3556       return this->emitArrayElemPtrPop(PT_Uint32, E);
3557     }
3558     // Else, also load the value.
3559     return this->emitArrayElemPop(classifyPrim(E->getType()), Indices[0], E);
3560   }
3561 
3562   // Create a local variable for the base.
3563   unsigned BaseOffset = allocateLocalPrimitive(Base, PT_Ptr, /*IsConst=*/true,
3564                                                /*IsExtended=*/false);
3565   if (!this->visit(Base))
3566     return false;
3567   if (!this->emitSetLocal(PT_Ptr, BaseOffset, E))
3568     return false;
3569 
3570   // Now the vector variable for the return value.
3571   if (!Initializing) {
3572     std::optional<unsigned> ResultIndex;
3573     ResultIndex = allocateLocal(E);
3574     if (!ResultIndex)
3575       return false;
3576     if (!this->emitGetPtrLocal(*ResultIndex, E))
3577       return false;
3578   }
3579 
3580   assert(Indices.size() == E->getType()->getAs<VectorType>()->getNumElements());
3581 
3582   PrimType ElemT =
3583       classifyPrim(E->getType()->getAs<VectorType>()->getElementType());
3584   uint32_t DstIndex = 0;
3585   for (uint32_t I : Indices) {
3586     if (!this->emitGetLocal(PT_Ptr, BaseOffset, E))
3587       return false;
3588     if (!this->emitArrayElemPop(ElemT, I, E))
3589       return false;
3590     if (!this->emitInitElem(ElemT, DstIndex, E))
3591       return false;
3592     ++DstIndex;
3593   }
3594 
3595   // Leave the result pointer on the stack.
3596   assert(!DiscardResult);
3597   return true;
3598 }
3599 
3600 template <class Emitter>
3601 bool Compiler<Emitter>::VisitObjCBoxedExpr(const ObjCBoxedExpr *E) {
3602   const Expr *SubExpr = E->getSubExpr();
3603   if (!E->isExpressibleAsConstantInitializer())
3604     return this->discard(SubExpr) && this->emitInvalid(E);
3605 
3606   assert(classifyPrim(E) == PT_Ptr);
3607   if (std::optional<unsigned> I = P.getOrCreateDummy(E))
3608     return this->emitGetPtrGlobal(*I, E);
3609 
3610   return false;
3611 }
3612 
3613 template <class Emitter>
3614 bool Compiler<Emitter>::VisitCXXStdInitializerListExpr(
3615     const CXXStdInitializerListExpr *E) {
3616   const Expr *SubExpr = E->getSubExpr();
3617   const ConstantArrayType *ArrayType =
3618       Ctx.getASTContext().getAsConstantArrayType(SubExpr->getType());
3619   const Record *R = getRecord(E->getType());
3620   assert(Initializing);
3621   assert(SubExpr->isGLValue());
3622 
3623   if (!this->visit(SubExpr))
3624     return false;
3625   if (!this->emitConstUint8(0, E))
3626     return false;
3627   if (!this->emitArrayElemPtrPopUint8(E))
3628     return false;
3629   if (!this->emitInitFieldPtr(R->getField(0u)->Offset, E))
3630     return false;
3631 
3632   PrimType SecondFieldT = classifyPrim(R->getField(1u)->Decl->getType());
3633   if (isIntegralType(SecondFieldT)) {
3634     if (!this->emitConst(static_cast<APSInt>(ArrayType->getSize()),
3635                          SecondFieldT, E))
3636       return false;
3637     return this->emitInitField(SecondFieldT, R->getField(1u)->Offset, E);
3638   }
3639   assert(SecondFieldT == PT_Ptr);
3640 
3641   if (!this->emitGetFieldPtr(R->getField(0u)->Offset, E))
3642     return false;
3643   if (!this->emitExpandPtr(E))
3644     return false;
3645   if (!this->emitConst(static_cast<APSInt>(ArrayType->getSize()), PT_Uint64, E))
3646     return false;
3647   if (!this->emitArrayElemPtrPop(PT_Uint64, E))
3648     return false;
3649   return this->emitInitFieldPtr(R->getField(1u)->Offset, E);
3650 }
3651 
3652 template <class Emitter>
3653 bool Compiler<Emitter>::VisitStmtExpr(const StmtExpr *E) {
3654   BlockScope<Emitter> BS(this);
3655   StmtExprScope<Emitter> SS(this);
3656 
3657   const CompoundStmt *CS = E->getSubStmt();
3658   const Stmt *Result = CS->getStmtExprResult();
3659   for (const Stmt *S : CS->body()) {
3660     if (S != Result) {
3661       if (!this->visitStmt(S))
3662         return false;
3663       continue;
3664     }
3665 
3666     assert(S == Result);
3667     if (const Expr *ResultExpr = dyn_cast<Expr>(S))
3668       return this->delegate(ResultExpr);
3669     return this->emitUnsupported(E);
3670   }
3671 
3672   return BS.destroyLocals();
3673 }
3674 
3675 template <class Emitter> bool Compiler<Emitter>::discard(const Expr *E) {
3676   OptionScope<Emitter> Scope(this, /*NewDiscardResult=*/true,
3677                              /*NewInitializing=*/false);
3678   return this->Visit(E);
3679 }
3680 
3681 template <class Emitter> bool Compiler<Emitter>::delegate(const Expr *E) {
3682   // We're basically doing:
3683   // OptionScope<Emitter> Scope(this, DicardResult, Initializing);
3684   // but that's unnecessary of course.
3685   return this->Visit(E);
3686 }
3687 
3688 template <class Emitter> bool Compiler<Emitter>::visit(const Expr *E) {
3689   if (E->getType().isNull())
3690     return false;
3691 
3692   if (E->getType()->isVoidType())
3693     return this->discard(E);
3694 
3695   // Create local variable to hold the return value.
3696   if (!E->isGLValue() && !E->getType()->isAnyComplexType() &&
3697       !classify(E->getType())) {
3698     std::optional<unsigned> LocalIndex = allocateLocal(E);
3699     if (!LocalIndex)
3700       return false;
3701 
3702     if (!this->emitGetPtrLocal(*LocalIndex, E))
3703       return false;
3704     return this->visitInitializer(E);
3705   }
3706 
3707   //  Otherwise,we have a primitive return value, produce the value directly
3708   //  and push it on the stack.
3709   OptionScope<Emitter> Scope(this, /*NewDiscardResult=*/false,
3710                              /*NewInitializing=*/false);
3711   return this->Visit(E);
3712 }
3713 
3714 template <class Emitter>
3715 bool Compiler<Emitter>::visitInitializer(const Expr *E) {
3716   assert(!classify(E->getType()));
3717 
3718   OptionScope<Emitter> Scope(this, /*NewDiscardResult=*/false,
3719                              /*NewInitializing=*/true);
3720   return this->Visit(E);
3721 }
3722 
3723 template <class Emitter> bool Compiler<Emitter>::visitBool(const Expr *E) {
3724   std::optional<PrimType> T = classify(E->getType());
3725   if (!T) {
3726     // Convert complex values to bool.
3727     if (E->getType()->isAnyComplexType()) {
3728       if (!this->visit(E))
3729         return false;
3730       return this->emitComplexBoolCast(E);
3731     }
3732     return false;
3733   }
3734 
3735   if (!this->visit(E))
3736     return false;
3737 
3738   if (T == PT_Bool)
3739     return true;
3740 
3741   // Convert pointers to bool.
3742   if (T == PT_Ptr || T == PT_FnPtr) {
3743     if (!this->emitNull(*T, nullptr, E))
3744       return false;
3745     return this->emitNE(*T, E);
3746   }
3747 
3748   // Or Floats.
3749   if (T == PT_Float)
3750     return this->emitCastFloatingIntegralBool(getFPOptions(E), E);
3751 
3752   // Or anything else we can.
3753   return this->emitCast(*T, PT_Bool, E);
3754 }
3755 
3756 template <class Emitter>
3757 bool Compiler<Emitter>::visitZeroInitializer(PrimType T, QualType QT,
3758                                              const Expr *E) {
3759   switch (T) {
3760   case PT_Bool:
3761     return this->emitZeroBool(E);
3762   case PT_Sint8:
3763     return this->emitZeroSint8(E);
3764   case PT_Uint8:
3765     return this->emitZeroUint8(E);
3766   case PT_Sint16:
3767     return this->emitZeroSint16(E);
3768   case PT_Uint16:
3769     return this->emitZeroUint16(E);
3770   case PT_Sint32:
3771     return this->emitZeroSint32(E);
3772   case PT_Uint32:
3773     return this->emitZeroUint32(E);
3774   case PT_Sint64:
3775     return this->emitZeroSint64(E);
3776   case PT_Uint64:
3777     return this->emitZeroUint64(E);
3778   case PT_IntAP:
3779     return this->emitZeroIntAP(Ctx.getBitWidth(QT), E);
3780   case PT_IntAPS:
3781     return this->emitZeroIntAPS(Ctx.getBitWidth(QT), E);
3782   case PT_Ptr:
3783     return this->emitNullPtr(nullptr, E);
3784   case PT_FnPtr:
3785     return this->emitNullFnPtr(nullptr, E);
3786   case PT_MemberPtr:
3787     return this->emitNullMemberPtr(nullptr, E);
3788   case PT_Float:
3789     return this->emitConstFloat(APFloat::getZero(Ctx.getFloatSemantics(QT)), E);
3790   case PT_FixedPoint: {
3791     auto Sem = Ctx.getASTContext().getFixedPointSemantics(E->getType());
3792     return this->emitConstFixedPoint(FixedPoint::Zero(Sem), E);
3793   }
3794     llvm_unreachable("Implement");
3795   }
3796   llvm_unreachable("unknown primitive type");
3797 }
3798 
3799 template <class Emitter>
3800 bool Compiler<Emitter>::visitZeroRecordInitializer(const Record *R,
3801                                                    const Expr *E) {
3802   assert(E);
3803   assert(R);
3804   // Fields
3805   for (const Record::Field &Field : R->fields()) {
3806     if (Field.Decl->isUnnamedBitField())
3807       continue;
3808 
3809     const Descriptor *D = Field.Desc;
3810     if (D->isPrimitive()) {
3811       QualType QT = D->getType();
3812       PrimType T = classifyPrim(D->getType());
3813       if (!this->visitZeroInitializer(T, QT, E))
3814         return false;
3815       if (!this->emitInitField(T, Field.Offset, E))
3816         return false;
3817       if (R->isUnion())
3818         break;
3819       continue;
3820     }
3821 
3822     if (!this->emitGetPtrField(Field.Offset, E))
3823       return false;
3824 
3825     if (D->isPrimitiveArray()) {
3826       QualType ET = D->getElemQualType();
3827       PrimType T = classifyPrim(ET);
3828       for (uint32_t I = 0, N = D->getNumElems(); I != N; ++I) {
3829         if (!this->visitZeroInitializer(T, ET, E))
3830           return false;
3831         if (!this->emitInitElem(T, I, E))
3832           return false;
3833       }
3834     } else if (D->isCompositeArray()) {
3835       const Record *ElemRecord = D->ElemDesc->ElemRecord;
3836       assert(D->ElemDesc->ElemRecord);
3837       for (uint32_t I = 0, N = D->getNumElems(); I != N; ++I) {
3838         if (!this->emitConstUint32(I, E))
3839           return false;
3840         if (!this->emitArrayElemPtr(PT_Uint32, E))
3841           return false;
3842         if (!this->visitZeroRecordInitializer(ElemRecord, E))
3843           return false;
3844         if (!this->emitPopPtr(E))
3845           return false;
3846       }
3847     } else if (D->isRecord()) {
3848       if (!this->visitZeroRecordInitializer(D->ElemRecord, E))
3849         return false;
3850     } else {
3851       assert(false);
3852     }
3853 
3854     if (!this->emitFinishInitPop(E))
3855       return false;
3856 
3857     // C++11 [dcl.init]p5: If T is a (possibly cv-qualified) union type, the
3858     // object's first non-static named data member is zero-initialized
3859     if (R->isUnion())
3860       break;
3861   }
3862 
3863   for (const Record::Base &B : R->bases()) {
3864     if (!this->emitGetPtrBase(B.Offset, E))
3865       return false;
3866     if (!this->visitZeroRecordInitializer(B.R, E))
3867       return false;
3868     if (!this->emitFinishInitPop(E))
3869       return false;
3870   }
3871 
3872   // FIXME: Virtual bases.
3873 
3874   return true;
3875 }
3876 
3877 template <class Emitter>
3878 template <typename T>
3879 bool Compiler<Emitter>::emitConst(T Value, PrimType Ty, const Expr *E) {
3880   switch (Ty) {
3881   case PT_Sint8:
3882     return this->emitConstSint8(Value, E);
3883   case PT_Uint8:
3884     return this->emitConstUint8(Value, E);
3885   case PT_Sint16:
3886     return this->emitConstSint16(Value, E);
3887   case PT_Uint16:
3888     return this->emitConstUint16(Value, E);
3889   case PT_Sint32:
3890     return this->emitConstSint32(Value, E);
3891   case PT_Uint32:
3892     return this->emitConstUint32(Value, E);
3893   case PT_Sint64:
3894     return this->emitConstSint64(Value, E);
3895   case PT_Uint64:
3896     return this->emitConstUint64(Value, E);
3897   case PT_Bool:
3898     return this->emitConstBool(Value, E);
3899   case PT_Ptr:
3900   case PT_FnPtr:
3901   case PT_MemberPtr:
3902   case PT_Float:
3903   case PT_IntAP:
3904   case PT_IntAPS:
3905   case PT_FixedPoint:
3906     llvm_unreachable("Invalid integral type");
3907     break;
3908   }
3909   llvm_unreachable("unknown primitive type");
3910 }
3911 
3912 template <class Emitter>
3913 template <typename T>
3914 bool Compiler<Emitter>::emitConst(T Value, const Expr *E) {
3915   return this->emitConst(Value, classifyPrim(E->getType()), E);
3916 }
3917 
3918 template <class Emitter>
3919 bool Compiler<Emitter>::emitConst(const APSInt &Value, PrimType Ty,
3920                                   const Expr *E) {
3921   if (Ty == PT_IntAPS)
3922     return this->emitConstIntAPS(Value, E);
3923   if (Ty == PT_IntAP)
3924     return this->emitConstIntAP(Value, E);
3925 
3926   if (Value.isSigned())
3927     return this->emitConst(Value.getSExtValue(), Ty, E);
3928   return this->emitConst(Value.getZExtValue(), Ty, E);
3929 }
3930 
3931 template <class Emitter>
3932 bool Compiler<Emitter>::emitConst(const APSInt &Value, const Expr *E) {
3933   return this->emitConst(Value, classifyPrim(E->getType()), E);
3934 }
3935 
3936 template <class Emitter>
3937 unsigned Compiler<Emitter>::allocateLocalPrimitive(DeclTy &&Src, PrimType Ty,
3938                                                    bool IsConst,
3939                                                    bool IsExtended) {
3940   // Make sure we don't accidentally register the same decl twice.
3941   if (const auto *VD =
3942           dyn_cast_if_present<ValueDecl>(Src.dyn_cast<const Decl *>())) {
3943     assert(!P.getGlobal(VD));
3944     assert(!Locals.contains(VD));
3945     (void)VD;
3946   }
3947 
3948   // FIXME: There are cases where Src.is<Expr*>() is wrong, e.g.
3949   //   (int){12} in C. Consider using Expr::isTemporaryObject() instead
3950   //   or isa<MaterializeTemporaryExpr>().
3951   Descriptor *D = P.createDescriptor(Src, Ty, Descriptor::InlineDescMD, IsConst,
3952                                      Src.is<const Expr *>());
3953   Scope::Local Local = this->createLocal(D);
3954   if (auto *VD = dyn_cast_if_present<ValueDecl>(Src.dyn_cast<const Decl *>()))
3955     Locals.insert({VD, Local});
3956   VarScope->add(Local, IsExtended);
3957   return Local.Offset;
3958 }
3959 
3960 template <class Emitter>
3961 std::optional<unsigned>
3962 Compiler<Emitter>::allocateLocal(DeclTy &&Src, const ValueDecl *ExtendingDecl) {
3963   // Make sure we don't accidentally register the same decl twice.
3964   if ([[maybe_unused]] const auto *VD =
3965           dyn_cast_if_present<ValueDecl>(Src.dyn_cast<const Decl *>())) {
3966     assert(!P.getGlobal(VD));
3967     assert(!Locals.contains(VD));
3968   }
3969 
3970   QualType Ty;
3971   const ValueDecl *Key = nullptr;
3972   const Expr *Init = nullptr;
3973   bool IsTemporary = false;
3974   if (auto *VD = dyn_cast_if_present<ValueDecl>(Src.dyn_cast<const Decl *>())) {
3975     Key = VD;
3976     Ty = VD->getType();
3977 
3978     if (const auto *VarD = dyn_cast<VarDecl>(VD))
3979       Init = VarD->getInit();
3980   }
3981   if (auto *E = Src.dyn_cast<const Expr *>()) {
3982     IsTemporary = true;
3983     Ty = E->getType();
3984   }
3985 
3986   Descriptor *D = P.createDescriptor(
3987       Src, Ty.getTypePtr(), Descriptor::InlineDescMD, Ty.isConstQualified(),
3988       IsTemporary, /*IsMutable=*/false, Init);
3989   if (!D)
3990     return std::nullopt;
3991 
3992   Scope::Local Local = this->createLocal(D);
3993   if (Key)
3994     Locals.insert({Key, Local});
3995   if (ExtendingDecl)
3996     VarScope->addExtended(Local, ExtendingDecl);
3997   else
3998     VarScope->add(Local, false);
3999   return Local.Offset;
4000 }
4001 
4002 template <class Emitter>
4003 unsigned Compiler<Emitter>::allocateTemporary(const Expr *E) {
4004   QualType Ty = E->getType();
4005   assert(!Ty->isRecordType());
4006 
4007   Descriptor *D = P.createDescriptor(
4008       E, Ty.getTypePtr(), Descriptor::InlineDescMD, Ty.isConstQualified(),
4009       /*IsTemporary=*/true, /*IsMutable=*/false, /*Init=*/nullptr);
4010   assert(D);
4011 
4012   Scope::Local Local = this->createLocal(D);
4013   VariableScope<Emitter> *S = VarScope;
4014   assert(S);
4015   // Attach to topmost scope.
4016   while (S->getParent())
4017     S = S->getParent();
4018   assert(S && !S->getParent());
4019   S->addLocal(Local);
4020   return Local.Offset;
4021 }
4022 
4023 template <class Emitter>
4024 const RecordType *Compiler<Emitter>::getRecordTy(QualType Ty) {
4025   if (const PointerType *PT = dyn_cast<PointerType>(Ty))
4026     return PT->getPointeeType()->getAs<RecordType>();
4027   return Ty->getAs<RecordType>();
4028 }
4029 
4030 template <class Emitter> Record *Compiler<Emitter>::getRecord(QualType Ty) {
4031   if (const auto *RecordTy = getRecordTy(Ty))
4032     return getRecord(RecordTy->getDecl());
4033   return nullptr;
4034 }
4035 
4036 template <class Emitter>
4037 Record *Compiler<Emitter>::getRecord(const RecordDecl *RD) {
4038   return P.getOrCreateRecord(RD);
4039 }
4040 
4041 template <class Emitter>
4042 const Function *Compiler<Emitter>::getFunction(const FunctionDecl *FD) {
4043   return Ctx.getOrCreateFunction(FD);
4044 }
4045 
4046 template <class Emitter>
4047 bool Compiler<Emitter>::visitExpr(const Expr *E, bool DestroyToplevelScope) {
4048   LocalScope<Emitter> RootScope(this);
4049 
4050   auto maybeDestroyLocals = [&]() -> bool {
4051     if (DestroyToplevelScope)
4052       return RootScope.destroyLocals();
4053     return true;
4054   };
4055 
4056   // Void expressions.
4057   if (E->getType()->isVoidType()) {
4058     if (!visit(E))
4059       return false;
4060     return this->emitRetVoid(E) && maybeDestroyLocals();
4061   }
4062 
4063   // Expressions with a primitive return type.
4064   if (std::optional<PrimType> T = classify(E)) {
4065     if (!visit(E))
4066       return false;
4067 
4068     return this->emitRet(*T, E) && maybeDestroyLocals();
4069   }
4070 
4071   // Expressions with a composite return type.
4072   // For us, that means everything we don't
4073   // have a PrimType for.
4074   if (std::optional<unsigned> LocalOffset = this->allocateLocal(E)) {
4075     if (!this->emitGetPtrLocal(*LocalOffset, E))
4076       return false;
4077 
4078     if (!visitInitializer(E))
4079       return false;
4080 
4081     if (!this->emitFinishInit(E))
4082       return false;
4083     // We are destroying the locals AFTER the Ret op.
4084     // The Ret op needs to copy the (alive) values, but the
4085     // destructors may still turn the entire expression invalid.
4086     return this->emitRetValue(E) && maybeDestroyLocals();
4087   }
4088 
4089   (void)maybeDestroyLocals();
4090   return false;
4091 }
4092 
4093 template <class Emitter>
4094 VarCreationState Compiler<Emitter>::visitDecl(const VarDecl *VD) {
4095 
4096   auto R = this->visitVarDecl(VD, /*Toplevel=*/true);
4097 
4098   if (R.notCreated())
4099     return R;
4100 
4101   if (R)
4102     return true;
4103 
4104   if (!R && Context::shouldBeGloballyIndexed(VD)) {
4105     if (auto GlobalIndex = P.getGlobal(VD)) {
4106       Block *GlobalBlock = P.getGlobal(*GlobalIndex);
4107       GlobalInlineDescriptor &GD =
4108           *reinterpret_cast<GlobalInlineDescriptor *>(GlobalBlock->rawData());
4109 
4110       GD.InitState = GlobalInitState::InitializerFailed;
4111       GlobalBlock->invokeDtor();
4112     }
4113   }
4114 
4115   return R;
4116 }
4117 
4118 /// Toplevel visitDeclAndReturn().
4119 /// We get here from evaluateAsInitializer().
4120 /// We need to evaluate the initializer and return its value.
4121 template <class Emitter>
4122 bool Compiler<Emitter>::visitDeclAndReturn(const VarDecl *VD,
4123                                            bool ConstantContext) {
4124   std::optional<PrimType> VarT = classify(VD->getType());
4125 
4126   // We only create variables if we're evaluating in a constant context.
4127   // Otherwise, just evaluate the initializer and return it.
4128   if (!ConstantContext) {
4129     DeclScope<Emitter> LS(this, VD);
4130     if (!this->visit(VD->getAnyInitializer()))
4131       return false;
4132     return this->emitRet(VarT.value_or(PT_Ptr), VD) && LS.destroyLocals();
4133   }
4134 
4135   LocalScope<Emitter> VDScope(this, VD);
4136   if (!this->visitVarDecl(VD, /*Toplevel=*/true))
4137     return false;
4138 
4139   if (Context::shouldBeGloballyIndexed(VD)) {
4140     auto GlobalIndex = P.getGlobal(VD);
4141     assert(GlobalIndex); // visitVarDecl() didn't return false.
4142     if (VarT) {
4143       if (!this->emitGetGlobalUnchecked(*VarT, *GlobalIndex, VD))
4144         return false;
4145     } else {
4146       if (!this->emitGetPtrGlobal(*GlobalIndex, VD))
4147         return false;
4148     }
4149   } else {
4150     auto Local = Locals.find(VD);
4151     assert(Local != Locals.end()); // Same here.
4152     if (VarT) {
4153       if (!this->emitGetLocal(*VarT, Local->second.Offset, VD))
4154         return false;
4155     } else {
4156       if (!this->emitGetPtrLocal(Local->second.Offset, VD))
4157         return false;
4158     }
4159   }
4160 
4161   // Return the value.
4162   if (!this->emitRet(VarT.value_or(PT_Ptr), VD)) {
4163     // If the Ret above failed and this is a global variable, mark it as
4164     // uninitialized, even everything else succeeded.
4165     if (Context::shouldBeGloballyIndexed(VD)) {
4166       auto GlobalIndex = P.getGlobal(VD);
4167       assert(GlobalIndex);
4168       Block *GlobalBlock = P.getGlobal(*GlobalIndex);
4169       GlobalInlineDescriptor &GD =
4170           *reinterpret_cast<GlobalInlineDescriptor *>(GlobalBlock->rawData());
4171 
4172       GD.InitState = GlobalInitState::InitializerFailed;
4173       GlobalBlock->invokeDtor();
4174     }
4175     return false;
4176   }
4177 
4178   return VDScope.destroyLocals();
4179 }
4180 
4181 template <class Emitter>
4182 VarCreationState Compiler<Emitter>::visitVarDecl(const VarDecl *VD,
4183                                                  bool Toplevel) {
4184   // We don't know what to do with these, so just return false.
4185   if (VD->getType().isNull())
4186     return false;
4187 
4188   // This case is EvalEmitter-only. If we won't create any instructions for the
4189   // initializer anyway, don't bother creating the variable in the first place.
4190   if (!this->isActive())
4191     return VarCreationState::NotCreated();
4192 
4193   const Expr *Init = VD->getInit();
4194   std::optional<PrimType> VarT = classify(VD->getType());
4195 
4196   if (Init && Init->isValueDependent())
4197     return false;
4198 
4199   if (Context::shouldBeGloballyIndexed(VD)) {
4200     auto checkDecl = [&]() -> bool {
4201       bool NeedsOp = !Toplevel && VD->isLocalVarDecl() && VD->isStaticLocal();
4202       return !NeedsOp || this->emitCheckDecl(VD, VD);
4203     };
4204 
4205     auto initGlobal = [&](unsigned GlobalIndex) -> bool {
4206       assert(Init);
4207 
4208       if (VarT) {
4209         if (!this->visit(Init))
4210           return checkDecl() && false;
4211 
4212         return checkDecl() && this->emitInitGlobal(*VarT, GlobalIndex, VD);
4213       }
4214 
4215       if (!checkDecl())
4216         return false;
4217 
4218       if (!this->emitGetPtrGlobal(GlobalIndex, Init))
4219         return false;
4220 
4221       if (!visitInitializer(Init))
4222         return false;
4223 
4224       if (!this->emitFinishInit(Init))
4225         return false;
4226 
4227       return this->emitPopPtr(Init);
4228     };
4229 
4230     DeclScope<Emitter> LocalScope(this, VD);
4231 
4232     // We've already seen and initialized this global.
4233     if (std::optional<unsigned> GlobalIndex = P.getGlobal(VD)) {
4234       if (P.getPtrGlobal(*GlobalIndex).isInitialized())
4235         return checkDecl();
4236 
4237       // The previous attempt at initialization might've been unsuccessful,
4238       // so let's try this one.
4239       return Init && checkDecl() && initGlobal(*GlobalIndex);
4240     }
4241 
4242     std::optional<unsigned> GlobalIndex = P.createGlobal(VD, Init);
4243 
4244     if (!GlobalIndex)
4245       return false;
4246 
4247     return !Init || (checkDecl() && initGlobal(*GlobalIndex));
4248   } else {
4249     InitLinkScope<Emitter> ILS(this, InitLink::Decl(VD));
4250 
4251     if (VarT) {
4252       unsigned Offset = this->allocateLocalPrimitive(
4253           VD, *VarT, VD->getType().isConstQualified());
4254       if (Init) {
4255         // If this is a toplevel declaration, create a scope for the
4256         // initializer.
4257         if (Toplevel) {
4258           LocalScope<Emitter> Scope(this);
4259           if (!this->visit(Init))
4260             return false;
4261           return this->emitSetLocal(*VarT, Offset, VD) && Scope.destroyLocals();
4262         } else {
4263           if (!this->visit(Init))
4264             return false;
4265           return this->emitSetLocal(*VarT, Offset, VD);
4266         }
4267       }
4268     } else {
4269       if (std::optional<unsigned> Offset = this->allocateLocal(VD)) {
4270         if (!Init)
4271           return true;
4272 
4273         if (!this->emitGetPtrLocal(*Offset, Init))
4274           return false;
4275 
4276         if (!visitInitializer(Init))
4277           return false;
4278 
4279         if (!this->emitFinishInit(Init))
4280           return false;
4281 
4282         return this->emitPopPtr(Init);
4283       }
4284       return false;
4285     }
4286     return true;
4287   }
4288 
4289   return false;
4290 }
4291 
4292 template <class Emitter>
4293 bool Compiler<Emitter>::visitAPValue(const APValue &Val, PrimType ValType,
4294                                      const Expr *E) {
4295   assert(!DiscardResult);
4296   if (Val.isInt())
4297     return this->emitConst(Val.getInt(), ValType, E);
4298   else if (Val.isFloat())
4299     return this->emitConstFloat(Val.getFloat(), E);
4300 
4301   if (Val.isLValue()) {
4302     if (Val.isNullPointer())
4303       return this->emitNull(ValType, nullptr, E);
4304     APValue::LValueBase Base = Val.getLValueBase();
4305     if (const Expr *BaseExpr = Base.dyn_cast<const Expr *>())
4306       return this->visit(BaseExpr);
4307     else if (const auto *VD = Base.dyn_cast<const ValueDecl *>()) {
4308       return this->visitDeclRef(VD, E);
4309     }
4310   } else if (Val.isMemberPointer()) {
4311     if (const ValueDecl *MemberDecl = Val.getMemberPointerDecl())
4312       return this->emitGetMemberPtr(MemberDecl, E);
4313     return this->emitNullMemberPtr(nullptr, E);
4314   }
4315 
4316   return false;
4317 }
4318 
4319 template <class Emitter>
4320 bool Compiler<Emitter>::visitAPValueInitializer(const APValue &Val,
4321                                                 const Expr *E) {
4322 
4323   if (Val.isStruct()) {
4324     const Record *R = this->getRecord(E->getType());
4325     assert(R);
4326     for (unsigned I = 0, N = Val.getStructNumFields(); I != N; ++I) {
4327       const APValue &F = Val.getStructField(I);
4328       const Record::Field *RF = R->getField(I);
4329 
4330       if (F.isInt() || F.isFloat() || F.isLValue() || F.isMemberPointer()) {
4331         PrimType T = classifyPrim(RF->Decl->getType());
4332         if (!this->visitAPValue(F, T, E))
4333           return false;
4334         if (!this->emitInitField(T, RF->Offset, E))
4335           return false;
4336       } else if (F.isArray()) {
4337         assert(RF->Desc->isPrimitiveArray());
4338         const auto *ArrType = RF->Decl->getType()->getAsArrayTypeUnsafe();
4339         PrimType ElemT = classifyPrim(ArrType->getElementType());
4340         assert(ArrType);
4341 
4342         if (!this->emitGetPtrField(RF->Offset, E))
4343           return false;
4344 
4345         for (unsigned A = 0, AN = F.getArraySize(); A != AN; ++A) {
4346           if (!this->visitAPValue(F.getArrayInitializedElt(A), ElemT, E))
4347             return false;
4348           if (!this->emitInitElem(ElemT, A, E))
4349             return false;
4350         }
4351 
4352         if (!this->emitPopPtr(E))
4353           return false;
4354       } else if (F.isStruct() || F.isUnion()) {
4355         if (!this->emitGetPtrField(RF->Offset, E))
4356           return false;
4357         if (!this->visitAPValueInitializer(F, E))
4358           return false;
4359         if (!this->emitPopPtr(E))
4360           return false;
4361       } else {
4362         assert(false && "I don't think this should be possible");
4363       }
4364     }
4365     return true;
4366   } else if (Val.isUnion()) {
4367     const FieldDecl *UnionField = Val.getUnionField();
4368     const Record *R = this->getRecord(UnionField->getParent());
4369     assert(R);
4370     const APValue &F = Val.getUnionValue();
4371     const Record::Field *RF = R->getField(UnionField);
4372     PrimType T = classifyPrim(RF->Decl->getType());
4373     if (!this->visitAPValue(F, T, E))
4374       return false;
4375     return this->emitInitField(T, RF->Offset, E);
4376   }
4377   // TODO: Other types.
4378 
4379   return false;
4380 }
4381 
4382 template <class Emitter>
4383 bool Compiler<Emitter>::VisitBuiltinCallExpr(const CallExpr *E,
4384                                              unsigned BuiltinID) {
4385   const Function *Func = getFunction(E->getDirectCallee());
4386   if (!Func)
4387     return false;
4388 
4389   // For these, we're expected to ultimately return an APValue pointing
4390   // to the CallExpr. This is needed to get the correct codegen.
4391   if (BuiltinID == Builtin::BI__builtin___CFStringMakeConstantString ||
4392       BuiltinID == Builtin::BI__builtin___NSStringMakeConstantString ||
4393       BuiltinID == Builtin::BI__builtin_ptrauth_sign_constant ||
4394       BuiltinID == Builtin::BI__builtin_function_start) {
4395     if (std::optional<unsigned> GlobalOffset = P.getOrCreateDummy(E)) {
4396       if (!this->emitGetPtrGlobal(*GlobalOffset, E))
4397         return false;
4398 
4399       if (PrimType PT = classifyPrim(E); PT != PT_Ptr && isPtrType(PT))
4400         return this->emitDecayPtr(PT_Ptr, PT, E);
4401       return true;
4402     }
4403     return false;
4404   }
4405 
4406   QualType ReturnType = E->getType();
4407   std::optional<PrimType> ReturnT = classify(E);
4408 
4409   // Non-primitive return type. Prepare storage.
4410   if (!Initializing && !ReturnT && !ReturnType->isVoidType()) {
4411     std::optional<unsigned> LocalIndex = allocateLocal(E);
4412     if (!LocalIndex)
4413       return false;
4414     if (!this->emitGetPtrLocal(*LocalIndex, E))
4415       return false;
4416   }
4417 
4418   if (!Func->isUnevaluatedBuiltin()) {
4419     // Put arguments on the stack.
4420     for (const auto *Arg : E->arguments()) {
4421       if (!this->visit(Arg))
4422         return false;
4423     }
4424   }
4425 
4426   if (!this->emitCallBI(Func, E, BuiltinID, E))
4427     return false;
4428 
4429   if (DiscardResult && !ReturnType->isVoidType()) {
4430     assert(ReturnT);
4431     return this->emitPop(*ReturnT, E);
4432   }
4433 
4434   return true;
4435 }
4436 
4437 template <class Emitter>
4438 bool Compiler<Emitter>::VisitCallExpr(const CallExpr *E) {
4439   if (unsigned BuiltinID = E->getBuiltinCallee())
4440     return VisitBuiltinCallExpr(E, BuiltinID);
4441 
4442   const FunctionDecl *FuncDecl = E->getDirectCallee();
4443   // Calls to replaceable operator new/operator delete.
4444   if (FuncDecl && FuncDecl->isReplaceableGlobalAllocationFunction()) {
4445     if (FuncDecl->getDeclName().getCXXOverloadedOperator() == OO_New ||
4446         FuncDecl->getDeclName().getCXXOverloadedOperator() == OO_Array_New) {
4447       return VisitBuiltinCallExpr(E, Builtin::BI__builtin_operator_new);
4448     } else {
4449       assert(FuncDecl->getDeclName().getCXXOverloadedOperator() == OO_Delete);
4450       return VisitBuiltinCallExpr(E, Builtin::BI__builtin_operator_delete);
4451     }
4452   }
4453 
4454   QualType ReturnType = E->getCallReturnType(Ctx.getASTContext());
4455   std::optional<PrimType> T = classify(ReturnType);
4456   bool HasRVO = !ReturnType->isVoidType() && !T;
4457 
4458   if (HasRVO) {
4459     if (DiscardResult) {
4460       // If we need to discard the return value but the function returns its
4461       // value via an RVO pointer, we need to create one such pointer just
4462       // for this call.
4463       if (std::optional<unsigned> LocalIndex = allocateLocal(E)) {
4464         if (!this->emitGetPtrLocal(*LocalIndex, E))
4465           return false;
4466       }
4467     } else {
4468       // We need the result. Prepare a pointer to return or
4469       // dup the current one.
4470       if (!Initializing) {
4471         if (std::optional<unsigned> LocalIndex = allocateLocal(E)) {
4472           if (!this->emitGetPtrLocal(*LocalIndex, E))
4473             return false;
4474         }
4475       }
4476       if (!this->emitDupPtr(E))
4477         return false;
4478     }
4479   }
4480 
4481   SmallVector<const Expr *, 8> Args(
4482       llvm::ArrayRef(E->getArgs(), E->getNumArgs()));
4483 
4484   bool IsAssignmentOperatorCall = false;
4485   if (const auto *OCE = dyn_cast<CXXOperatorCallExpr>(E);
4486       OCE && OCE->isAssignmentOp()) {
4487     // Just like with regular assignments, we need to special-case assignment
4488     // operators here and evaluate the RHS (the second arg) before the LHS (the
4489     // first arg. We fix this by using a Flip op later.
4490     assert(Args.size() == 2);
4491     IsAssignmentOperatorCall = true;
4492     std::reverse(Args.begin(), Args.end());
4493   }
4494   // Calling a static operator will still
4495   // pass the instance, but we don't need it.
4496   // Discard it here.
4497   if (isa<CXXOperatorCallExpr>(E)) {
4498     if (const auto *MD = dyn_cast_if_present<CXXMethodDecl>(FuncDecl);
4499         MD && MD->isStatic()) {
4500       if (!this->discard(E->getArg(0)))
4501         return false;
4502       // Drop first arg.
4503       Args.erase(Args.begin());
4504     }
4505   }
4506 
4507   std::optional<unsigned> CalleeOffset;
4508   // Add the (optional, implicit) This pointer.
4509   if (const auto *MC = dyn_cast<CXXMemberCallExpr>(E)) {
4510     if (!FuncDecl && classifyPrim(E->getCallee()) == PT_MemberPtr) {
4511       // If we end up creating a CallPtr op for this, we need the base of the
4512       // member pointer as the instance pointer, and later extract the function
4513       // decl as the function pointer.
4514       const Expr *Callee = E->getCallee();
4515       CalleeOffset =
4516           this->allocateLocalPrimitive(Callee, PT_MemberPtr, true, false);
4517       if (!this->visit(Callee))
4518         return false;
4519       if (!this->emitSetLocal(PT_MemberPtr, *CalleeOffset, E))
4520         return false;
4521       if (!this->emitGetLocal(PT_MemberPtr, *CalleeOffset, E))
4522         return false;
4523       if (!this->emitGetMemberPtrBase(E))
4524         return false;
4525     } else if (!this->visit(MC->getImplicitObjectArgument())) {
4526       return false;
4527     }
4528   } else if (!FuncDecl) {
4529     const Expr *Callee = E->getCallee();
4530     CalleeOffset = this->allocateLocalPrimitive(Callee, PT_FnPtr, true, false);
4531     if (!this->visit(Callee))
4532       return false;
4533     if (!this->emitSetLocal(PT_FnPtr, *CalleeOffset, E))
4534       return false;
4535   }
4536 
4537   llvm::BitVector NonNullArgs = collectNonNullArgs(FuncDecl, Args);
4538   // Put arguments on the stack.
4539   unsigned ArgIndex = 0;
4540   for (const auto *Arg : Args) {
4541     if (!this->visit(Arg))
4542       return false;
4543 
4544     // If we know the callee already, check the known parametrs for nullability.
4545     if (FuncDecl && NonNullArgs[ArgIndex]) {
4546       PrimType ArgT = classify(Arg).value_or(PT_Ptr);
4547       if (ArgT == PT_Ptr || ArgT == PT_FnPtr) {
4548         if (!this->emitCheckNonNullArg(ArgT, Arg))
4549           return false;
4550       }
4551     }
4552     ++ArgIndex;
4553   }
4554 
4555   // Undo the argument reversal we did earlier.
4556   if (IsAssignmentOperatorCall) {
4557     assert(Args.size() == 2);
4558     PrimType Arg1T = classify(Args[0]).value_or(PT_Ptr);
4559     PrimType Arg2T = classify(Args[1]).value_or(PT_Ptr);
4560     if (!this->emitFlip(Arg2T, Arg1T, E))
4561       return false;
4562   }
4563 
4564   if (FuncDecl) {
4565     const Function *Func = getFunction(FuncDecl);
4566     if (!Func)
4567       return false;
4568     assert(HasRVO == Func->hasRVO());
4569 
4570     bool HasQualifier = false;
4571     if (const auto *ME = dyn_cast<MemberExpr>(E->getCallee()))
4572       HasQualifier = ME->hasQualifier();
4573 
4574     bool IsVirtual = false;
4575     if (const auto *MD = dyn_cast<CXXMethodDecl>(FuncDecl))
4576       IsVirtual = MD->isVirtual();
4577 
4578     // In any case call the function. The return value will end up on the stack
4579     // and if the function has RVO, we already have the pointer on the stack to
4580     // write the result into.
4581     if (IsVirtual && !HasQualifier) {
4582       uint32_t VarArgSize = 0;
4583       unsigned NumParams =
4584           Func->getNumWrittenParams() + isa<CXXOperatorCallExpr>(E);
4585       for (unsigned I = NumParams, N = E->getNumArgs(); I != N; ++I)
4586         VarArgSize += align(primSize(classify(E->getArg(I)).value_or(PT_Ptr)));
4587 
4588       if (!this->emitCallVirt(Func, VarArgSize, E))
4589         return false;
4590     } else if (Func->isVariadic()) {
4591       uint32_t VarArgSize = 0;
4592       unsigned NumParams =
4593           Func->getNumWrittenParams() + isa<CXXOperatorCallExpr>(E);
4594       for (unsigned I = NumParams, N = E->getNumArgs(); I != N; ++I)
4595         VarArgSize += align(primSize(classify(E->getArg(I)).value_or(PT_Ptr)));
4596       if (!this->emitCallVar(Func, VarArgSize, E))
4597         return false;
4598     } else {
4599       if (!this->emitCall(Func, 0, E))
4600         return false;
4601     }
4602   } else {
4603     // Indirect call. Visit the callee, which will leave a FunctionPointer on
4604     // the stack. Cleanup of the returned value if necessary will be done after
4605     // the function call completed.
4606 
4607     // Sum the size of all args from the call expr.
4608     uint32_t ArgSize = 0;
4609     for (unsigned I = 0, N = E->getNumArgs(); I != N; ++I)
4610       ArgSize += align(primSize(classify(E->getArg(I)).value_or(PT_Ptr)));
4611 
4612     // Get the callee, either from a member pointer or function pointer saved in
4613     // CalleeOffset.
4614     if (isa<CXXMemberCallExpr>(E) && CalleeOffset) {
4615       if (!this->emitGetLocal(PT_MemberPtr, *CalleeOffset, E))
4616         return false;
4617       if (!this->emitGetMemberPtrDecl(E))
4618         return false;
4619     } else {
4620       if (!this->emitGetLocal(PT_FnPtr, *CalleeOffset, E))
4621         return false;
4622     }
4623     if (!this->emitCallPtr(ArgSize, E, E))
4624       return false;
4625   }
4626 
4627   // Cleanup for discarded return values.
4628   if (DiscardResult && !ReturnType->isVoidType() && T)
4629     return this->emitPop(*T, E);
4630 
4631   return true;
4632 }
4633 
4634 template <class Emitter>
4635 bool Compiler<Emitter>::VisitCXXDefaultInitExpr(const CXXDefaultInitExpr *E) {
4636   SourceLocScope<Emitter> SLS(this, E);
4637 
4638   return this->delegate(E->getExpr());
4639 }
4640 
4641 template <class Emitter>
4642 bool Compiler<Emitter>::VisitCXXDefaultArgExpr(const CXXDefaultArgExpr *E) {
4643   SourceLocScope<Emitter> SLS(this, E);
4644 
4645   const Expr *SubExpr = E->getExpr();
4646   if (std::optional<PrimType> T = classify(E->getExpr()))
4647     return this->visit(SubExpr);
4648 
4649   assert(Initializing);
4650   return this->visitInitializer(SubExpr);
4651 }
4652 
4653 template <class Emitter>
4654 bool Compiler<Emitter>::VisitCXXBoolLiteralExpr(const CXXBoolLiteralExpr *E) {
4655   if (DiscardResult)
4656     return true;
4657 
4658   return this->emitConstBool(E->getValue(), E);
4659 }
4660 
4661 template <class Emitter>
4662 bool Compiler<Emitter>::VisitCXXNullPtrLiteralExpr(
4663     const CXXNullPtrLiteralExpr *E) {
4664   if (DiscardResult)
4665     return true;
4666 
4667   return this->emitNullPtr(nullptr, E);
4668 }
4669 
4670 template <class Emitter>
4671 bool Compiler<Emitter>::VisitGNUNullExpr(const GNUNullExpr *E) {
4672   if (DiscardResult)
4673     return true;
4674 
4675   assert(E->getType()->isIntegerType());
4676 
4677   PrimType T = classifyPrim(E->getType());
4678   return this->emitZero(T, E);
4679 }
4680 
4681 template <class Emitter>
4682 bool Compiler<Emitter>::VisitCXXThisExpr(const CXXThisExpr *E) {
4683   if (DiscardResult)
4684     return true;
4685 
4686   if (this->LambdaThisCapture.Offset > 0) {
4687     if (this->LambdaThisCapture.IsPtr)
4688       return this->emitGetThisFieldPtr(this->LambdaThisCapture.Offset, E);
4689     return this->emitGetPtrThisField(this->LambdaThisCapture.Offset, E);
4690   }
4691 
4692   // In some circumstances, the 'this' pointer does not actually refer to the
4693   // instance pointer of the current function frame, but e.g. to the declaration
4694   // currently being initialized. Here we emit the necessary instruction(s) for
4695   // this scenario.
4696   if (!InitStackActive || !E->isImplicit())
4697     return this->emitThis(E);
4698 
4699   if (InitStackActive && !InitStack.empty()) {
4700     unsigned StartIndex = 0;
4701     for (StartIndex = InitStack.size() - 1; StartIndex > 0; --StartIndex) {
4702       if (InitStack[StartIndex].Kind != InitLink::K_Field &&
4703           InitStack[StartIndex].Kind != InitLink::K_Elem)
4704         break;
4705     }
4706 
4707     for (unsigned I = StartIndex, N = InitStack.size(); I != N; ++I) {
4708       if (!InitStack[I].template emit<Emitter>(this, E))
4709         return false;
4710     }
4711     return true;
4712   }
4713   return this->emitThis(E);
4714 }
4715 
4716 template <class Emitter> bool Compiler<Emitter>::visitStmt(const Stmt *S) {
4717   switch (S->getStmtClass()) {
4718   case Stmt::CompoundStmtClass:
4719     return visitCompoundStmt(cast<CompoundStmt>(S));
4720   case Stmt::DeclStmtClass:
4721     return visitDeclStmt(cast<DeclStmt>(S));
4722   case Stmt::ReturnStmtClass:
4723     return visitReturnStmt(cast<ReturnStmt>(S));
4724   case Stmt::IfStmtClass:
4725     return visitIfStmt(cast<IfStmt>(S));
4726   case Stmt::WhileStmtClass:
4727     return visitWhileStmt(cast<WhileStmt>(S));
4728   case Stmt::DoStmtClass:
4729     return visitDoStmt(cast<DoStmt>(S));
4730   case Stmt::ForStmtClass:
4731     return visitForStmt(cast<ForStmt>(S));
4732   case Stmt::CXXForRangeStmtClass:
4733     return visitCXXForRangeStmt(cast<CXXForRangeStmt>(S));
4734   case Stmt::BreakStmtClass:
4735     return visitBreakStmt(cast<BreakStmt>(S));
4736   case Stmt::ContinueStmtClass:
4737     return visitContinueStmt(cast<ContinueStmt>(S));
4738   case Stmt::SwitchStmtClass:
4739     return visitSwitchStmt(cast<SwitchStmt>(S));
4740   case Stmt::CaseStmtClass:
4741     return visitCaseStmt(cast<CaseStmt>(S));
4742   case Stmt::DefaultStmtClass:
4743     return visitDefaultStmt(cast<DefaultStmt>(S));
4744   case Stmt::AttributedStmtClass:
4745     return visitAttributedStmt(cast<AttributedStmt>(S));
4746   case Stmt::CXXTryStmtClass:
4747     return visitCXXTryStmt(cast<CXXTryStmt>(S));
4748   case Stmt::NullStmtClass:
4749     return true;
4750   // Always invalid statements.
4751   case Stmt::GCCAsmStmtClass:
4752   case Stmt::MSAsmStmtClass:
4753   case Stmt::GotoStmtClass:
4754     return this->emitInvalid(S);
4755   case Stmt::LabelStmtClass:
4756     return this->visitStmt(cast<LabelStmt>(S)->getSubStmt());
4757   default: {
4758     if (const auto *E = dyn_cast<Expr>(S))
4759       return this->discard(E);
4760     return false;
4761   }
4762   }
4763 }
4764 
4765 template <class Emitter>
4766 bool Compiler<Emitter>::visitCompoundStmt(const CompoundStmt *S) {
4767   BlockScope<Emitter> Scope(this);
4768   for (const auto *InnerStmt : S->body())
4769     if (!visitStmt(InnerStmt))
4770       return false;
4771   return Scope.destroyLocals();
4772 }
4773 
4774 template <class Emitter>
4775 bool Compiler<Emitter>::visitDeclStmt(const DeclStmt *DS) {
4776   for (const auto *D : DS->decls()) {
4777     if (isa<StaticAssertDecl, TagDecl, TypedefNameDecl, UsingEnumDecl,
4778             FunctionDecl>(D))
4779       continue;
4780 
4781     const auto *VD = dyn_cast<VarDecl>(D);
4782     if (!VD)
4783       return false;
4784     if (!this->visitVarDecl(VD))
4785       return false;
4786   }
4787 
4788   return true;
4789 }
4790 
4791 template <class Emitter>
4792 bool Compiler<Emitter>::visitReturnStmt(const ReturnStmt *RS) {
4793   if (this->InStmtExpr)
4794     return this->emitUnsupported(RS);
4795 
4796   if (const Expr *RE = RS->getRetValue()) {
4797     LocalScope<Emitter> RetScope(this);
4798     if (ReturnType) {
4799       // Primitive types are simply returned.
4800       if (!this->visit(RE))
4801         return false;
4802       this->emitCleanup();
4803       return this->emitRet(*ReturnType, RS);
4804     } else if (RE->getType()->isVoidType()) {
4805       if (!this->visit(RE))
4806         return false;
4807     } else {
4808       // RVO - construct the value in the return location.
4809       if (!this->emitRVOPtr(RE))
4810         return false;
4811       if (!this->visitInitializer(RE))
4812         return false;
4813       if (!this->emitPopPtr(RE))
4814         return false;
4815 
4816       this->emitCleanup();
4817       return this->emitRetVoid(RS);
4818     }
4819   }
4820 
4821   // Void return.
4822   this->emitCleanup();
4823   return this->emitRetVoid(RS);
4824 }
4825 
4826 template <class Emitter> bool Compiler<Emitter>::visitIfStmt(const IfStmt *IS) {
4827   if (auto *CondInit = IS->getInit())
4828     if (!visitStmt(CondInit))
4829       return false;
4830 
4831   if (const DeclStmt *CondDecl = IS->getConditionVariableDeclStmt())
4832     if (!visitDeclStmt(CondDecl))
4833       return false;
4834 
4835   // Compile condition.
4836   if (IS->isNonNegatedConsteval()) {
4837     if (!this->emitIsConstantContext(IS))
4838       return false;
4839   } else if (IS->isNegatedConsteval()) {
4840     if (!this->emitIsConstantContext(IS))
4841       return false;
4842     if (!this->emitInv(IS))
4843       return false;
4844   } else {
4845     if (!this->visitBool(IS->getCond()))
4846       return false;
4847   }
4848 
4849   if (const Stmt *Else = IS->getElse()) {
4850     LabelTy LabelElse = this->getLabel();
4851     LabelTy LabelEnd = this->getLabel();
4852     if (!this->jumpFalse(LabelElse))
4853       return false;
4854     if (!visitStmt(IS->getThen()))
4855       return false;
4856     if (!this->jump(LabelEnd))
4857       return false;
4858     this->emitLabel(LabelElse);
4859     if (!visitStmt(Else))
4860       return false;
4861     this->emitLabel(LabelEnd);
4862   } else {
4863     LabelTy LabelEnd = this->getLabel();
4864     if (!this->jumpFalse(LabelEnd))
4865       return false;
4866     if (!visitStmt(IS->getThen()))
4867       return false;
4868     this->emitLabel(LabelEnd);
4869   }
4870 
4871   return true;
4872 }
4873 
4874 template <class Emitter>
4875 bool Compiler<Emitter>::visitWhileStmt(const WhileStmt *S) {
4876   const Expr *Cond = S->getCond();
4877   const Stmt *Body = S->getBody();
4878 
4879   LabelTy CondLabel = this->getLabel(); // Label before the condition.
4880   LabelTy EndLabel = this->getLabel();  // Label after the loop.
4881   LoopScope<Emitter> LS(this, EndLabel, CondLabel);
4882 
4883   this->fallthrough(CondLabel);
4884   this->emitLabel(CondLabel);
4885 
4886   {
4887     LocalScope<Emitter> CondScope(this);
4888     if (const DeclStmt *CondDecl = S->getConditionVariableDeclStmt())
4889       if (!visitDeclStmt(CondDecl))
4890         return false;
4891 
4892     if (!this->visitBool(Cond))
4893       return false;
4894     if (!this->jumpFalse(EndLabel))
4895       return false;
4896 
4897     if (!this->visitStmt(Body))
4898       return false;
4899 
4900     if (!CondScope.destroyLocals())
4901       return false;
4902   }
4903   if (!this->jump(CondLabel))
4904     return false;
4905   this->fallthrough(EndLabel);
4906   this->emitLabel(EndLabel);
4907 
4908   return true;
4909 }
4910 
4911 template <class Emitter> bool Compiler<Emitter>::visitDoStmt(const DoStmt *S) {
4912   const Expr *Cond = S->getCond();
4913   const Stmt *Body = S->getBody();
4914 
4915   LabelTy StartLabel = this->getLabel();
4916   LabelTy EndLabel = this->getLabel();
4917   LabelTy CondLabel = this->getLabel();
4918   LoopScope<Emitter> LS(this, EndLabel, CondLabel);
4919 
4920   this->fallthrough(StartLabel);
4921   this->emitLabel(StartLabel);
4922 
4923   {
4924     LocalScope<Emitter> CondScope(this);
4925     if (!this->visitStmt(Body))
4926       return false;
4927     this->fallthrough(CondLabel);
4928     this->emitLabel(CondLabel);
4929     if (!this->visitBool(Cond))
4930       return false;
4931 
4932     if (!CondScope.destroyLocals())
4933       return false;
4934   }
4935   if (!this->jumpTrue(StartLabel))
4936     return false;
4937 
4938   this->fallthrough(EndLabel);
4939   this->emitLabel(EndLabel);
4940   return true;
4941 }
4942 
4943 template <class Emitter>
4944 bool Compiler<Emitter>::visitForStmt(const ForStmt *S) {
4945   // for (Init; Cond; Inc) { Body }
4946   const Stmt *Init = S->getInit();
4947   const Expr *Cond = S->getCond();
4948   const Expr *Inc = S->getInc();
4949   const Stmt *Body = S->getBody();
4950 
4951   LabelTy EndLabel = this->getLabel();
4952   LabelTy CondLabel = this->getLabel();
4953   LabelTy IncLabel = this->getLabel();
4954   LoopScope<Emitter> LS(this, EndLabel, IncLabel);
4955 
4956   if (Init && !this->visitStmt(Init))
4957     return false;
4958 
4959   this->fallthrough(CondLabel);
4960   this->emitLabel(CondLabel);
4961 
4962   {
4963     LocalScope<Emitter> CondScope(this);
4964     if (const DeclStmt *CondDecl = S->getConditionVariableDeclStmt())
4965       if (!visitDeclStmt(CondDecl))
4966         return false;
4967 
4968     if (Cond) {
4969       if (!this->visitBool(Cond))
4970         return false;
4971       if (!this->jumpFalse(EndLabel))
4972         return false;
4973     }
4974 
4975     if (Body && !this->visitStmt(Body))
4976       return false;
4977 
4978     this->fallthrough(IncLabel);
4979     this->emitLabel(IncLabel);
4980     if (Inc && !this->discard(Inc))
4981       return false;
4982 
4983     if (!CondScope.destroyLocals())
4984       return false;
4985   }
4986   if (!this->jump(CondLabel))
4987     return false;
4988 
4989   this->fallthrough(EndLabel);
4990   this->emitLabel(EndLabel);
4991   return true;
4992 }
4993 
4994 template <class Emitter>
4995 bool Compiler<Emitter>::visitCXXForRangeStmt(const CXXForRangeStmt *S) {
4996   const Stmt *Init = S->getInit();
4997   const Expr *Cond = S->getCond();
4998   const Expr *Inc = S->getInc();
4999   const Stmt *Body = S->getBody();
5000   const Stmt *BeginStmt = S->getBeginStmt();
5001   const Stmt *RangeStmt = S->getRangeStmt();
5002   const Stmt *EndStmt = S->getEndStmt();
5003   const VarDecl *LoopVar = S->getLoopVariable();
5004 
5005   LabelTy EndLabel = this->getLabel();
5006   LabelTy CondLabel = this->getLabel();
5007   LabelTy IncLabel = this->getLabel();
5008   LoopScope<Emitter> LS(this, EndLabel, IncLabel);
5009 
5010   // Emit declarations needed in the loop.
5011   if (Init && !this->visitStmt(Init))
5012     return false;
5013   if (!this->visitStmt(RangeStmt))
5014     return false;
5015   if (!this->visitStmt(BeginStmt))
5016     return false;
5017   if (!this->visitStmt(EndStmt))
5018     return false;
5019 
5020   // Now the condition as well as the loop variable assignment.
5021   this->fallthrough(CondLabel);
5022   this->emitLabel(CondLabel);
5023   if (!this->visitBool(Cond))
5024     return false;
5025   if (!this->jumpFalse(EndLabel))
5026     return false;
5027 
5028   if (!this->visitVarDecl(LoopVar))
5029     return false;
5030 
5031   // Body.
5032   {
5033     if (!this->visitStmt(Body))
5034       return false;
5035 
5036     this->fallthrough(IncLabel);
5037     this->emitLabel(IncLabel);
5038     if (!this->discard(Inc))
5039       return false;
5040   }
5041 
5042   if (!this->jump(CondLabel))
5043     return false;
5044 
5045   this->fallthrough(EndLabel);
5046   this->emitLabel(EndLabel);
5047   return true;
5048 }
5049 
5050 template <class Emitter>
5051 bool Compiler<Emitter>::visitBreakStmt(const BreakStmt *S) {
5052   if (!BreakLabel)
5053     return false;
5054 
5055   for (VariableScope<Emitter> *C = VarScope; C != BreakVarScope;
5056        C = C->getParent())
5057     C->emitDestruction();
5058   return this->jump(*BreakLabel);
5059 }
5060 
5061 template <class Emitter>
5062 bool Compiler<Emitter>::visitContinueStmt(const ContinueStmt *S) {
5063   if (!ContinueLabel)
5064     return false;
5065 
5066   for (VariableScope<Emitter> *C = VarScope;
5067        C && C->getParent() != ContinueVarScope; C = C->getParent())
5068     C->emitDestruction();
5069   return this->jump(*ContinueLabel);
5070 }
5071 
5072 template <class Emitter>
5073 bool Compiler<Emitter>::visitSwitchStmt(const SwitchStmt *S) {
5074   const Expr *Cond = S->getCond();
5075   PrimType CondT = this->classifyPrim(Cond->getType());
5076   LocalScope<Emitter> LS(this);
5077 
5078   LabelTy EndLabel = this->getLabel();
5079   OptLabelTy DefaultLabel = std::nullopt;
5080   unsigned CondVar = this->allocateLocalPrimitive(Cond, CondT, true, false);
5081 
5082   if (const auto *CondInit = S->getInit())
5083     if (!visitStmt(CondInit))
5084       return false;
5085 
5086   if (const DeclStmt *CondDecl = S->getConditionVariableDeclStmt())
5087     if (!visitDeclStmt(CondDecl))
5088       return false;
5089 
5090   // Initialize condition variable.
5091   if (!this->visit(Cond))
5092     return false;
5093   if (!this->emitSetLocal(CondT, CondVar, S))
5094     return false;
5095 
5096   CaseMap CaseLabels;
5097   // Create labels and comparison ops for all case statements.
5098   for (const SwitchCase *SC = S->getSwitchCaseList(); SC;
5099        SC = SC->getNextSwitchCase()) {
5100     if (const auto *CS = dyn_cast<CaseStmt>(SC)) {
5101       // FIXME: Implement ranges.
5102       if (CS->caseStmtIsGNURange())
5103         return false;
5104       CaseLabels[SC] = this->getLabel();
5105 
5106       const Expr *Value = CS->getLHS();
5107       PrimType ValueT = this->classifyPrim(Value->getType());
5108 
5109       // Compare the case statement's value to the switch condition.
5110       if (!this->emitGetLocal(CondT, CondVar, CS))
5111         return false;
5112       if (!this->visit(Value))
5113         return false;
5114 
5115       // Compare and jump to the case label.
5116       if (!this->emitEQ(ValueT, S))
5117         return false;
5118       if (!this->jumpTrue(CaseLabels[CS]))
5119         return false;
5120     } else {
5121       assert(!DefaultLabel);
5122       DefaultLabel = this->getLabel();
5123     }
5124   }
5125 
5126   // If none of the conditions above were true, fall through to the default
5127   // statement or jump after the switch statement.
5128   if (DefaultLabel) {
5129     if (!this->jump(*DefaultLabel))
5130       return false;
5131   } else {
5132     if (!this->jump(EndLabel))
5133       return false;
5134   }
5135 
5136   SwitchScope<Emitter> SS(this, std::move(CaseLabels), EndLabel, DefaultLabel);
5137   if (!this->visitStmt(S->getBody()))
5138     return false;
5139   this->emitLabel(EndLabel);
5140 
5141   return LS.destroyLocals();
5142 }
5143 
5144 template <class Emitter>
5145 bool Compiler<Emitter>::visitCaseStmt(const CaseStmt *S) {
5146   this->emitLabel(CaseLabels[S]);
5147   return this->visitStmt(S->getSubStmt());
5148 }
5149 
5150 template <class Emitter>
5151 bool Compiler<Emitter>::visitDefaultStmt(const DefaultStmt *S) {
5152   this->emitLabel(*DefaultLabel);
5153   return this->visitStmt(S->getSubStmt());
5154 }
5155 
5156 template <class Emitter>
5157 bool Compiler<Emitter>::visitAttributedStmt(const AttributedStmt *S) {
5158   if (this->Ctx.getLangOpts().CXXAssumptions &&
5159       !this->Ctx.getLangOpts().MSVCCompat) {
5160     for (const Attr *A : S->getAttrs()) {
5161       auto *AA = dyn_cast<CXXAssumeAttr>(A);
5162       if (!AA)
5163         continue;
5164 
5165       assert(isa<NullStmt>(S->getSubStmt()));
5166 
5167       const Expr *Assumption = AA->getAssumption();
5168       if (Assumption->isValueDependent())
5169         return false;
5170 
5171       if (Assumption->HasSideEffects(this->Ctx.getASTContext()))
5172         continue;
5173 
5174       // Evaluate assumption.
5175       if (!this->visitBool(Assumption))
5176         return false;
5177 
5178       if (!this->emitAssume(Assumption))
5179         return false;
5180     }
5181   }
5182 
5183   // Ignore other attributes.
5184   return this->visitStmt(S->getSubStmt());
5185 }
5186 
5187 template <class Emitter>
5188 bool Compiler<Emitter>::visitCXXTryStmt(const CXXTryStmt *S) {
5189   // Ignore all handlers.
5190   return this->visitStmt(S->getTryBlock());
5191 }
5192 
5193 template <class Emitter>
5194 bool Compiler<Emitter>::emitLambdaStaticInvokerBody(const CXXMethodDecl *MD) {
5195   assert(MD->isLambdaStaticInvoker());
5196   assert(MD->hasBody());
5197   assert(cast<CompoundStmt>(MD->getBody())->body_empty());
5198 
5199   const CXXRecordDecl *ClosureClass = MD->getParent();
5200   const CXXMethodDecl *LambdaCallOp = ClosureClass->getLambdaCallOperator();
5201   assert(ClosureClass->captures_begin() == ClosureClass->captures_end());
5202   const Function *Func = this->getFunction(LambdaCallOp);
5203   if (!Func)
5204     return false;
5205   assert(Func->hasThisPointer());
5206   assert(Func->getNumParams() == (MD->getNumParams() + 1 + Func->hasRVO()));
5207 
5208   if (Func->hasRVO()) {
5209     if (!this->emitRVOPtr(MD))
5210       return false;
5211   }
5212 
5213   // The lambda call operator needs an instance pointer, but we don't have
5214   // one here, and we don't need one either because the lambda cannot have
5215   // any captures, as verified above. Emit a null pointer. This is then
5216   // special-cased when interpreting to not emit any misleading diagnostics.
5217   if (!this->emitNullPtr(nullptr, MD))
5218     return false;
5219 
5220   // Forward all arguments from the static invoker to the lambda call operator.
5221   for (const ParmVarDecl *PVD : MD->parameters()) {
5222     auto It = this->Params.find(PVD);
5223     assert(It != this->Params.end());
5224 
5225     // We do the lvalue-to-rvalue conversion manually here, so no need
5226     // to care about references.
5227     PrimType ParamType = this->classify(PVD->getType()).value_or(PT_Ptr);
5228     if (!this->emitGetParam(ParamType, It->second.Offset, MD))
5229       return false;
5230   }
5231 
5232   if (!this->emitCall(Func, 0, LambdaCallOp))
5233     return false;
5234 
5235   this->emitCleanup();
5236   if (ReturnType)
5237     return this->emitRet(*ReturnType, MD);
5238 
5239   // Nothing to do, since we emitted the RVO pointer above.
5240   return this->emitRetVoid(MD);
5241 }
5242 
5243 template <class Emitter>
5244 bool Compiler<Emitter>::checkLiteralType(const Expr *E) {
5245   if (Ctx.getLangOpts().CPlusPlus23)
5246     return true;
5247 
5248   if (!E->isPRValue() || E->getType()->isLiteralType(Ctx.getASTContext()))
5249     return true;
5250 
5251   return this->emitCheckLiteralType(E->getType().getTypePtr(), E);
5252 }
5253 
5254 template <class Emitter>
5255 bool Compiler<Emitter>::compileConstructor(const CXXConstructorDecl *Ctor) {
5256   assert(!ReturnType);
5257 
5258   auto emitFieldInitializer = [&](const Record::Field *F, unsigned FieldOffset,
5259                                   const Expr *InitExpr) -> bool {
5260     // We don't know what to do with these, so just return false.
5261     if (InitExpr->getType().isNull())
5262       return false;
5263 
5264     if (std::optional<PrimType> T = this->classify(InitExpr)) {
5265       if (!this->visit(InitExpr))
5266         return false;
5267 
5268       if (F->isBitField())
5269         return this->emitInitThisBitField(*T, F, FieldOffset, InitExpr);
5270       return this->emitInitThisField(*T, FieldOffset, InitExpr);
5271     }
5272     // Non-primitive case. Get a pointer to the field-to-initialize
5273     // on the stack and call visitInitialzer() for it.
5274     InitLinkScope<Emitter> FieldScope(this, InitLink::Field(F->Offset));
5275     if (!this->emitGetPtrThisField(FieldOffset, InitExpr))
5276       return false;
5277 
5278     if (!this->visitInitializer(InitExpr))
5279       return false;
5280 
5281     return this->emitFinishInitPop(InitExpr);
5282   };
5283 
5284   const RecordDecl *RD = Ctor->getParent();
5285   const Record *R = this->getRecord(RD);
5286   if (!R)
5287     return false;
5288 
5289   if (R->isUnion() && Ctor->isCopyOrMoveConstructor()) {
5290     // union copy and move ctors are special.
5291     assert(cast<CompoundStmt>(Ctor->getBody())->body_empty());
5292     if (!this->emitThis(Ctor))
5293       return false;
5294 
5295     auto PVD = Ctor->getParamDecl(0);
5296     ParamOffset PO = this->Params[PVD]; // Must exist.
5297 
5298     if (!this->emitGetParam(PT_Ptr, PO.Offset, Ctor))
5299       return false;
5300 
5301     return this->emitMemcpy(Ctor) && this->emitPopPtr(Ctor) &&
5302            this->emitRetVoid(Ctor);
5303   }
5304 
5305   InitLinkScope<Emitter> InitScope(this, InitLink::This());
5306   for (const auto *Init : Ctor->inits()) {
5307     // Scope needed for the initializers.
5308     BlockScope<Emitter> Scope(this);
5309 
5310     const Expr *InitExpr = Init->getInit();
5311     if (const FieldDecl *Member = Init->getMember()) {
5312       const Record::Field *F = R->getField(Member);
5313 
5314       if (!emitFieldInitializer(F, F->Offset, InitExpr))
5315         return false;
5316     } else if (const Type *Base = Init->getBaseClass()) {
5317       const auto *BaseDecl = Base->getAsCXXRecordDecl();
5318       assert(BaseDecl);
5319 
5320       if (Init->isBaseVirtual()) {
5321         assert(R->getVirtualBase(BaseDecl));
5322         if (!this->emitGetPtrThisVirtBase(BaseDecl, InitExpr))
5323           return false;
5324 
5325       } else {
5326         // Base class initializer.
5327         // Get This Base and call initializer on it.
5328         const Record::Base *B = R->getBase(BaseDecl);
5329         assert(B);
5330         if (!this->emitGetPtrThisBase(B->Offset, InitExpr))
5331           return false;
5332       }
5333 
5334       if (!this->visitInitializer(InitExpr))
5335         return false;
5336       if (!this->emitFinishInitPop(InitExpr))
5337         return false;
5338     } else if (const IndirectFieldDecl *IFD = Init->getIndirectMember()) {
5339       assert(IFD->getChainingSize() >= 2);
5340 
5341       unsigned NestedFieldOffset = 0;
5342       const Record::Field *NestedField = nullptr;
5343       for (const NamedDecl *ND : IFD->chain()) {
5344         const auto *FD = cast<FieldDecl>(ND);
5345         const Record *FieldRecord = this->P.getOrCreateRecord(FD->getParent());
5346         assert(FieldRecord);
5347 
5348         NestedField = FieldRecord->getField(FD);
5349         assert(NestedField);
5350 
5351         NestedFieldOffset += NestedField->Offset;
5352       }
5353       assert(NestedField);
5354 
5355       if (!emitFieldInitializer(NestedField, NestedFieldOffset, InitExpr))
5356         return false;
5357     } else {
5358       assert(Init->isDelegatingInitializer());
5359       if (!this->emitThis(InitExpr))
5360         return false;
5361       if (!this->visitInitializer(Init->getInit()))
5362         return false;
5363       if (!this->emitPopPtr(InitExpr))
5364         return false;
5365     }
5366 
5367     if (!Scope.destroyLocals())
5368       return false;
5369   }
5370 
5371   if (const auto *Body = Ctor->getBody())
5372     if (!visitStmt(Body))
5373       return false;
5374 
5375   return this->emitRetVoid(SourceInfo{});
5376 }
5377 
5378 template <class Emitter>
5379 bool Compiler<Emitter>::compileDestructor(const CXXDestructorDecl *Dtor) {
5380   const RecordDecl *RD = Dtor->getParent();
5381   const Record *R = this->getRecord(RD);
5382   if (!R)
5383     return false;
5384 
5385   if (!Dtor->isTrivial() && Dtor->getBody()) {
5386     if (!this->visitStmt(Dtor->getBody()))
5387       return false;
5388   }
5389 
5390   if (!this->emitThis(Dtor))
5391     return false;
5392 
5393   assert(R);
5394   if (!R->isUnion()) {
5395     // First, destroy all fields.
5396     for (const Record::Field &Field : llvm::reverse(R->fields())) {
5397       const Descriptor *D = Field.Desc;
5398       if (!D->isPrimitive() && !D->isPrimitiveArray()) {
5399         if (!this->emitGetPtrField(Field.Offset, SourceInfo{}))
5400           return false;
5401         if (!this->emitDestruction(D, SourceInfo{}))
5402           return false;
5403         if (!this->emitPopPtr(SourceInfo{}))
5404           return false;
5405       }
5406     }
5407   }
5408 
5409   for (const Record::Base &Base : llvm::reverse(R->bases())) {
5410     if (Base.R->isAnonymousUnion())
5411       continue;
5412 
5413     if (!this->emitGetPtrBase(Base.Offset, SourceInfo{}))
5414       return false;
5415     if (!this->emitRecordDestruction(Base.R, {}))
5416       return false;
5417     if (!this->emitPopPtr(SourceInfo{}))
5418       return false;
5419   }
5420 
5421   // FIXME: Virtual bases.
5422   return this->emitPopPtr(Dtor) && this->emitRetVoid(Dtor);
5423 }
5424 
5425 template <class Emitter>
5426 bool Compiler<Emitter>::visitFunc(const FunctionDecl *F) {
5427   // Classify the return type.
5428   ReturnType = this->classify(F->getReturnType());
5429 
5430   if (const auto *Ctor = dyn_cast<CXXConstructorDecl>(F))
5431     return this->compileConstructor(Ctor);
5432   if (const auto *Dtor = dyn_cast<CXXDestructorDecl>(F))
5433     return this->compileDestructor(Dtor);
5434 
5435   // Emit custom code if this is a lambda static invoker.
5436   if (const auto *MD = dyn_cast<CXXMethodDecl>(F);
5437       MD && MD->isLambdaStaticInvoker())
5438     return this->emitLambdaStaticInvokerBody(MD);
5439 
5440   // Regular functions.
5441   if (const auto *Body = F->getBody())
5442     if (!visitStmt(Body))
5443       return false;
5444 
5445   // Emit a guard return to protect against a code path missing one.
5446   if (F->getReturnType()->isVoidType())
5447     return this->emitRetVoid(SourceInfo{});
5448   return this->emitNoRet(SourceInfo{});
5449 }
5450 
5451 template <class Emitter>
5452 bool Compiler<Emitter>::VisitUnaryOperator(const UnaryOperator *E) {
5453   const Expr *SubExpr = E->getSubExpr();
5454   if (SubExpr->getType()->isAnyComplexType())
5455     return this->VisitComplexUnaryOperator(E);
5456   if (SubExpr->getType()->isVectorType())
5457     return this->VisitVectorUnaryOperator(E);
5458   std::optional<PrimType> T = classify(SubExpr->getType());
5459 
5460   switch (E->getOpcode()) {
5461   case UO_PostInc: { // x++
5462     if (!Ctx.getLangOpts().CPlusPlus14)
5463       return this->emitInvalid(E);
5464     if (!T)
5465       return this->emitError(E);
5466 
5467     if (!this->visit(SubExpr))
5468       return false;
5469 
5470     if (T == PT_Ptr || T == PT_FnPtr) {
5471       if (!this->emitIncPtr(E))
5472         return false;
5473 
5474       return DiscardResult ? this->emitPopPtr(E) : true;
5475     }
5476 
5477     if (T == PT_Float) {
5478       return DiscardResult ? this->emitIncfPop(getFPOptions(E), E)
5479                            : this->emitIncf(getFPOptions(E), E);
5480     }
5481 
5482     return DiscardResult ? this->emitIncPop(*T, E) : this->emitInc(*T, E);
5483   }
5484   case UO_PostDec: { // x--
5485     if (!Ctx.getLangOpts().CPlusPlus14)
5486       return this->emitInvalid(E);
5487     if (!T)
5488       return this->emitError(E);
5489 
5490     if (!this->visit(SubExpr))
5491       return false;
5492 
5493     if (T == PT_Ptr || T == PT_FnPtr) {
5494       if (!this->emitDecPtr(E))
5495         return false;
5496 
5497       return DiscardResult ? this->emitPopPtr(E) : true;
5498     }
5499 
5500     if (T == PT_Float) {
5501       return DiscardResult ? this->emitDecfPop(getFPOptions(E), E)
5502                            : this->emitDecf(getFPOptions(E), E);
5503     }
5504 
5505     return DiscardResult ? this->emitDecPop(*T, E) : this->emitDec(*T, E);
5506   }
5507   case UO_PreInc: { // ++x
5508     if (!Ctx.getLangOpts().CPlusPlus14)
5509       return this->emitInvalid(E);
5510     if (!T)
5511       return this->emitError(E);
5512 
5513     if (!this->visit(SubExpr))
5514       return false;
5515 
5516     if (T == PT_Ptr || T == PT_FnPtr) {
5517       if (!this->emitLoadPtr(E))
5518         return false;
5519       if (!this->emitConstUint8(1, E))
5520         return false;
5521       if (!this->emitAddOffsetUint8(E))
5522         return false;
5523       return DiscardResult ? this->emitStorePopPtr(E) : this->emitStorePtr(E);
5524     }
5525 
5526     // Post-inc and pre-inc are the same if the value is to be discarded.
5527     if (DiscardResult) {
5528       if (T == PT_Float)
5529         return this->emitIncfPop(getFPOptions(E), E);
5530       return this->emitIncPop(*T, E);
5531     }
5532 
5533     if (T == PT_Float) {
5534       const auto &TargetSemantics = Ctx.getFloatSemantics(E->getType());
5535       if (!this->emitLoadFloat(E))
5536         return false;
5537       if (!this->emitConstFloat(llvm::APFloat(TargetSemantics, 1), E))
5538         return false;
5539       if (!this->emitAddf(getFPOptions(E), E))
5540         return false;
5541       if (!this->emitStoreFloat(E))
5542         return false;
5543     } else {
5544       assert(isIntegralType(*T));
5545       if (!this->emitLoad(*T, E))
5546         return false;
5547       if (!this->emitConst(1, E))
5548         return false;
5549       if (!this->emitAdd(*T, E))
5550         return false;
5551       if (!this->emitStore(*T, E))
5552         return false;
5553     }
5554     return E->isGLValue() || this->emitLoadPop(*T, E);
5555   }
5556   case UO_PreDec: { // --x
5557     if (!Ctx.getLangOpts().CPlusPlus14)
5558       return this->emitInvalid(E);
5559     if (!T)
5560       return this->emitError(E);
5561 
5562     if (!this->visit(SubExpr))
5563       return false;
5564 
5565     if (T == PT_Ptr || T == PT_FnPtr) {
5566       if (!this->emitLoadPtr(E))
5567         return false;
5568       if (!this->emitConstUint8(1, E))
5569         return false;
5570       if (!this->emitSubOffsetUint8(E))
5571         return false;
5572       return DiscardResult ? this->emitStorePopPtr(E) : this->emitStorePtr(E);
5573     }
5574 
5575     // Post-dec and pre-dec are the same if the value is to be discarded.
5576     if (DiscardResult) {
5577       if (T == PT_Float)
5578         return this->emitDecfPop(getFPOptions(E), E);
5579       return this->emitDecPop(*T, E);
5580     }
5581 
5582     if (T == PT_Float) {
5583       const auto &TargetSemantics = Ctx.getFloatSemantics(E->getType());
5584       if (!this->emitLoadFloat(E))
5585         return false;
5586       if (!this->emitConstFloat(llvm::APFloat(TargetSemantics, 1), E))
5587         return false;
5588       if (!this->emitSubf(getFPOptions(E), E))
5589         return false;
5590       if (!this->emitStoreFloat(E))
5591         return false;
5592     } else {
5593       assert(isIntegralType(*T));
5594       if (!this->emitLoad(*T, E))
5595         return false;
5596       if (!this->emitConst(1, E))
5597         return false;
5598       if (!this->emitSub(*T, E))
5599         return false;
5600       if (!this->emitStore(*T, E))
5601         return false;
5602     }
5603     return E->isGLValue() || this->emitLoadPop(*T, E);
5604   }
5605   case UO_LNot: // !x
5606     if (!T)
5607       return this->emitError(E);
5608 
5609     if (DiscardResult)
5610       return this->discard(SubExpr);
5611 
5612     if (!this->visitBool(SubExpr))
5613       return false;
5614 
5615     if (!this->emitInv(E))
5616       return false;
5617 
5618     if (PrimType ET = classifyPrim(E->getType()); ET != PT_Bool)
5619       return this->emitCast(PT_Bool, ET, E);
5620     return true;
5621   case UO_Minus: // -x
5622     if (!T)
5623       return this->emitError(E);
5624 
5625     if (!this->visit(SubExpr))
5626       return false;
5627     return DiscardResult ? this->emitPop(*T, E) : this->emitNeg(*T, E);
5628   case UO_Plus: // +x
5629     if (!T)
5630       return this->emitError(E);
5631 
5632     if (!this->visit(SubExpr)) // noop
5633       return false;
5634     return DiscardResult ? this->emitPop(*T, E) : true;
5635   case UO_AddrOf: // &x
5636     if (E->getType()->isMemberPointerType()) {
5637       // C++11 [expr.unary.op]p3 has very strict rules on how the address of a
5638       // member can be formed.
5639       return this->emitGetMemberPtr(cast<DeclRefExpr>(SubExpr)->getDecl(), E);
5640     }
5641     // We should already have a pointer when we get here.
5642     return this->delegate(SubExpr);
5643   case UO_Deref: // *x
5644     if (DiscardResult)
5645       return this->discard(SubExpr);
5646     return this->visit(SubExpr);
5647   case UO_Not: // ~x
5648     if (!T)
5649       return this->emitError(E);
5650 
5651     if (!this->visit(SubExpr))
5652       return false;
5653     return DiscardResult ? this->emitPop(*T, E) : this->emitComp(*T, E);
5654   case UO_Real: // __real x
5655     assert(T);
5656     return this->delegate(SubExpr);
5657   case UO_Imag: { // __imag x
5658     assert(T);
5659     if (!this->discard(SubExpr))
5660       return false;
5661     return this->visitZeroInitializer(*T, SubExpr->getType(), SubExpr);
5662   }
5663   case UO_Extension:
5664     return this->delegate(SubExpr);
5665   case UO_Coawait:
5666     assert(false && "Unhandled opcode");
5667   }
5668 
5669   return false;
5670 }
5671 
5672 template <class Emitter>
5673 bool Compiler<Emitter>::VisitComplexUnaryOperator(const UnaryOperator *E) {
5674   const Expr *SubExpr = E->getSubExpr();
5675   assert(SubExpr->getType()->isAnyComplexType());
5676 
5677   if (DiscardResult)
5678     return this->discard(SubExpr);
5679 
5680   std::optional<PrimType> ResT = classify(E);
5681   auto prepareResult = [=]() -> bool {
5682     if (!ResT && !Initializing) {
5683       std::optional<unsigned> LocalIndex = allocateLocal(SubExpr);
5684       if (!LocalIndex)
5685         return false;
5686       return this->emitGetPtrLocal(*LocalIndex, E);
5687     }
5688 
5689     return true;
5690   };
5691 
5692   // The offset of the temporary, if we created one.
5693   unsigned SubExprOffset = ~0u;
5694   auto createTemp = [=, &SubExprOffset]() -> bool {
5695     SubExprOffset = this->allocateLocalPrimitive(SubExpr, PT_Ptr, true, false);
5696     if (!this->visit(SubExpr))
5697       return false;
5698     return this->emitSetLocal(PT_Ptr, SubExprOffset, E);
5699   };
5700 
5701   PrimType ElemT = classifyComplexElementType(SubExpr->getType());
5702   auto getElem = [=](unsigned Offset, unsigned Index) -> bool {
5703     if (!this->emitGetLocal(PT_Ptr, Offset, E))
5704       return false;
5705     return this->emitArrayElemPop(ElemT, Index, E);
5706   };
5707 
5708   switch (E->getOpcode()) {
5709   case UO_Minus:
5710     if (!prepareResult())
5711       return false;
5712     if (!createTemp())
5713       return false;
5714     for (unsigned I = 0; I != 2; ++I) {
5715       if (!getElem(SubExprOffset, I))
5716         return false;
5717       if (!this->emitNeg(ElemT, E))
5718         return false;
5719       if (!this->emitInitElem(ElemT, I, E))
5720         return false;
5721     }
5722     break;
5723 
5724   case UO_Plus:   // +x
5725   case UO_AddrOf: // &x
5726   case UO_Deref:  // *x
5727     return this->delegate(SubExpr);
5728 
5729   case UO_LNot:
5730     if (!this->visit(SubExpr))
5731       return false;
5732     if (!this->emitComplexBoolCast(SubExpr))
5733       return false;
5734     if (!this->emitInv(E))
5735       return false;
5736     if (PrimType ET = classifyPrim(E->getType()); ET != PT_Bool)
5737       return this->emitCast(PT_Bool, ET, E);
5738     return true;
5739 
5740   case UO_Real:
5741     return this->emitComplexReal(SubExpr);
5742 
5743   case UO_Imag:
5744     if (!this->visit(SubExpr))
5745       return false;
5746 
5747     if (SubExpr->isLValue()) {
5748       if (!this->emitConstUint8(1, E))
5749         return false;
5750       return this->emitArrayElemPtrPopUint8(E);
5751     }
5752 
5753     // Since our _Complex implementation does not map to a primitive type,
5754     // we sometimes have to do the lvalue-to-rvalue conversion here manually.
5755     return this->emitArrayElemPop(classifyPrim(E->getType()), 1, E);
5756 
5757   case UO_Not: // ~x
5758     if (!this->visit(SubExpr))
5759       return false;
5760     // Negate the imaginary component.
5761     if (!this->emitArrayElem(ElemT, 1, E))
5762       return false;
5763     if (!this->emitNeg(ElemT, E))
5764       return false;
5765     if (!this->emitInitElem(ElemT, 1, E))
5766       return false;
5767     return DiscardResult ? this->emitPopPtr(E) : true;
5768 
5769   case UO_Extension:
5770     return this->delegate(SubExpr);
5771 
5772   default:
5773     return this->emitInvalid(E);
5774   }
5775 
5776   return true;
5777 }
5778 
5779 template <class Emitter>
5780 bool Compiler<Emitter>::VisitVectorUnaryOperator(const UnaryOperator *E) {
5781   const Expr *SubExpr = E->getSubExpr();
5782   assert(SubExpr->getType()->isVectorType());
5783 
5784   if (DiscardResult)
5785     return this->discard(SubExpr);
5786 
5787   auto UnaryOp = E->getOpcode();
5788   if (UnaryOp != UO_Plus && UnaryOp != UO_Minus && UnaryOp != UO_LNot &&
5789       UnaryOp != UO_Not && UnaryOp != UO_AddrOf)
5790     return this->emitInvalid(E);
5791 
5792   // Nothing to do here.
5793   if (UnaryOp == UO_Plus || UnaryOp == UO_AddrOf)
5794     return this->delegate(SubExpr);
5795 
5796   if (!Initializing) {
5797     std::optional<unsigned> LocalIndex = allocateLocal(SubExpr);
5798     if (!LocalIndex)
5799       return false;
5800     if (!this->emitGetPtrLocal(*LocalIndex, E))
5801       return false;
5802   }
5803 
5804   // The offset of the temporary, if we created one.
5805   unsigned SubExprOffset =
5806       this->allocateLocalPrimitive(SubExpr, PT_Ptr, true, false);
5807   if (!this->visit(SubExpr))
5808     return false;
5809   if (!this->emitSetLocal(PT_Ptr, SubExprOffset, E))
5810     return false;
5811 
5812   const auto *VecTy = SubExpr->getType()->getAs<VectorType>();
5813   PrimType ElemT = classifyVectorElementType(SubExpr->getType());
5814   auto getElem = [=](unsigned Offset, unsigned Index) -> bool {
5815     if (!this->emitGetLocal(PT_Ptr, Offset, E))
5816       return false;
5817     return this->emitArrayElemPop(ElemT, Index, E);
5818   };
5819 
5820   switch (UnaryOp) {
5821   case UO_Minus:
5822     for (unsigned I = 0; I != VecTy->getNumElements(); ++I) {
5823       if (!getElem(SubExprOffset, I))
5824         return false;
5825       if (!this->emitNeg(ElemT, E))
5826         return false;
5827       if (!this->emitInitElem(ElemT, I, E))
5828         return false;
5829     }
5830     break;
5831   case UO_LNot: { // !x
5832     // In C++, the logic operators !, &&, || are available for vectors. !v is
5833     // equivalent to v == 0.
5834     //
5835     // The result of the comparison is a vector of the same width and number of
5836     // elements as the comparison operands with a signed integral element type.
5837     //
5838     // https://gcc.gnu.org/onlinedocs/gcc/Vector-Extensions.html
5839     QualType ResultVecTy = E->getType();
5840     PrimType ResultVecElemT =
5841         classifyPrim(ResultVecTy->getAs<VectorType>()->getElementType());
5842     for (unsigned I = 0; I != VecTy->getNumElements(); ++I) {
5843       if (!getElem(SubExprOffset, I))
5844         return false;
5845       // operator ! on vectors returns -1 for 'truth', so negate it.
5846       if (!this->emitPrimCast(ElemT, PT_Bool, Ctx.getASTContext().BoolTy, E))
5847         return false;
5848       if (!this->emitInv(E))
5849         return false;
5850       if (!this->emitPrimCast(PT_Bool, ElemT, VecTy->getElementType(), E))
5851         return false;
5852       if (!this->emitNeg(ElemT, E))
5853         return false;
5854       if (ElemT != ResultVecElemT &&
5855           !this->emitPrimCast(ElemT, ResultVecElemT, ResultVecTy, E))
5856         return false;
5857       if (!this->emitInitElem(ResultVecElemT, I, E))
5858         return false;
5859     }
5860     break;
5861   }
5862   case UO_Not: // ~x
5863     for (unsigned I = 0; I != VecTy->getNumElements(); ++I) {
5864       if (!getElem(SubExprOffset, I))
5865         return false;
5866       if (ElemT == PT_Bool) {
5867         if (!this->emitInv(E))
5868           return false;
5869       } else {
5870         if (!this->emitComp(ElemT, E))
5871           return false;
5872       }
5873       if (!this->emitInitElem(ElemT, I, E))
5874         return false;
5875     }
5876     break;
5877   default:
5878     llvm_unreachable("Unsupported unary operators should be handled up front");
5879   }
5880   return true;
5881 }
5882 
5883 template <class Emitter>
5884 bool Compiler<Emitter>::visitDeclRef(const ValueDecl *D, const Expr *E) {
5885   if (DiscardResult)
5886     return true;
5887 
5888   if (const auto *ECD = dyn_cast<EnumConstantDecl>(D)) {
5889     return this->emitConst(ECD->getInitVal(), E);
5890   } else if (const auto *BD = dyn_cast<BindingDecl>(D)) {
5891     return this->visit(BD->getBinding());
5892   } else if (const auto *FuncDecl = dyn_cast<FunctionDecl>(D)) {
5893     const Function *F = getFunction(FuncDecl);
5894     return F && this->emitGetFnPtr(F, E);
5895   } else if (const auto *TPOD = dyn_cast<TemplateParamObjectDecl>(D)) {
5896     if (std::optional<unsigned> Index = P.getOrCreateGlobal(D)) {
5897       if (!this->emitGetPtrGlobal(*Index, E))
5898         return false;
5899       if (std::optional<PrimType> T = classify(E->getType())) {
5900         if (!this->visitAPValue(TPOD->getValue(), *T, E))
5901           return false;
5902         return this->emitInitGlobal(*T, *Index, E);
5903       }
5904       return this->visitAPValueInitializer(TPOD->getValue(), E);
5905     }
5906     return false;
5907   }
5908 
5909   // References are implemented via pointers, so when we see a DeclRefExpr
5910   // pointing to a reference, we need to get its value directly (i.e. the
5911   // pointer to the actual value) instead of a pointer to the pointer to the
5912   // value.
5913   bool IsReference = D->getType()->isReferenceType();
5914 
5915   // Check for local/global variables and parameters.
5916   if (auto It = Locals.find(D); It != Locals.end()) {
5917     const unsigned Offset = It->second.Offset;
5918     if (IsReference)
5919       return this->emitGetLocal(PT_Ptr, Offset, E);
5920     return this->emitGetPtrLocal(Offset, E);
5921   } else if (auto GlobalIndex = P.getGlobal(D)) {
5922     if (IsReference) {
5923       if (!Ctx.getLangOpts().CPlusPlus11)
5924         return this->emitGetGlobal(classifyPrim(E), *GlobalIndex, E);
5925       return this->emitGetGlobalUnchecked(classifyPrim(E), *GlobalIndex, E);
5926     }
5927 
5928     return this->emitGetPtrGlobal(*GlobalIndex, E);
5929   } else if (const auto *PVD = dyn_cast<ParmVarDecl>(D)) {
5930     if (auto It = this->Params.find(PVD); It != this->Params.end()) {
5931       if (IsReference || !It->second.IsPtr)
5932         return this->emitGetParam(classifyPrim(E), It->second.Offset, E);
5933 
5934       return this->emitGetPtrParam(It->second.Offset, E);
5935     }
5936   }
5937 
5938   // In case we need to re-visit a declaration.
5939   auto revisit = [&](const VarDecl *VD) -> bool {
5940     auto VarState = this->visitDecl(VD);
5941 
5942     if (VarState.notCreated())
5943       return true;
5944     if (!VarState)
5945       return false;
5946     // Retry.
5947     return this->visitDeclRef(D, E);
5948   };
5949 
5950   // Handle lambda captures.
5951   if (auto It = this->LambdaCaptures.find(D);
5952       It != this->LambdaCaptures.end()) {
5953     auto [Offset, IsPtr] = It->second;
5954 
5955     if (IsPtr)
5956       return this->emitGetThisFieldPtr(Offset, E);
5957     return this->emitGetPtrThisField(Offset, E);
5958   } else if (const auto *DRE = dyn_cast<DeclRefExpr>(E);
5959              DRE && DRE->refersToEnclosingVariableOrCapture()) {
5960     if (const auto *VD = dyn_cast<VarDecl>(D); VD && VD->isInitCapture())
5961       return revisit(VD);
5962   }
5963 
5964   if (D != InitializingDecl) {
5965     // Try to lazily visit (or emit dummy pointers for) declarations
5966     // we haven't seen yet.
5967     if (Ctx.getLangOpts().CPlusPlus) {
5968       if (const auto *VD = dyn_cast<VarDecl>(D)) {
5969         const auto typeShouldBeVisited = [&](QualType T) -> bool {
5970           if (T.isConstant(Ctx.getASTContext()))
5971             return true;
5972           if (const auto *RT = T->getAs<ReferenceType>())
5973             return RT->getPointeeType().isConstQualified();
5974           return false;
5975         };
5976 
5977         // DecompositionDecls are just proxies for us.
5978         if (isa<DecompositionDecl>(VD))
5979           return revisit(VD);
5980 
5981         if ((VD->hasGlobalStorage() || VD->isStaticDataMember()) &&
5982             typeShouldBeVisited(VD->getType()))
5983           return revisit(VD);
5984 
5985         // FIXME: The evaluateValue() check here is a little ridiculous, since
5986         // it will ultimately call into Context::evaluateAsInitializer(). In
5987         // other words, we're evaluating the initializer, just to know if we can
5988         // evaluate the initializer.
5989         if (VD->isLocalVarDecl() && typeShouldBeVisited(VD->getType()) &&
5990             VD->getInit() && !VD->getInit()->isValueDependent() &&
5991             VD->evaluateValue())
5992           return revisit(VD);
5993       }
5994     } else {
5995       if (const auto *VD = dyn_cast<VarDecl>(D);
5996           VD && VD->getAnyInitializer() &&
5997           VD->getType().isConstant(Ctx.getASTContext()) && !VD->isWeak())
5998         return revisit(VD);
5999     }
6000   }
6001 
6002   if (std::optional<unsigned> I = P.getOrCreateDummy(D)) {
6003     if (!this->emitGetPtrGlobal(*I, E))
6004       return false;
6005     if (E->getType()->isVoidType())
6006       return true;
6007     // Convert the dummy pointer to another pointer type if we have to.
6008     if (PrimType PT = classifyPrim(E); PT != PT_Ptr) {
6009       if (isPtrType(PT))
6010         return this->emitDecayPtr(PT_Ptr, PT, E);
6011       return false;
6012     }
6013     return true;
6014   }
6015 
6016   if (const auto *DRE = dyn_cast<DeclRefExpr>(E))
6017     return this->emitInvalidDeclRef(DRE, E);
6018   return false;
6019 }
6020 
6021 template <class Emitter>
6022 bool Compiler<Emitter>::VisitDeclRefExpr(const DeclRefExpr *E) {
6023   const auto *D = E->getDecl();
6024   return this->visitDeclRef(D, E);
6025 }
6026 
6027 template <class Emitter> void Compiler<Emitter>::emitCleanup() {
6028   for (VariableScope<Emitter> *C = VarScope; C; C = C->getParent())
6029     C->emitDestruction();
6030 }
6031 
6032 template <class Emitter>
6033 unsigned Compiler<Emitter>::collectBaseOffset(const QualType BaseType,
6034                                               const QualType DerivedType) {
6035   const auto extractRecordDecl = [](QualType Ty) -> const CXXRecordDecl * {
6036     if (const auto *R = Ty->getPointeeCXXRecordDecl())
6037       return R;
6038     return Ty->getAsCXXRecordDecl();
6039   };
6040   const CXXRecordDecl *BaseDecl = extractRecordDecl(BaseType);
6041   const CXXRecordDecl *DerivedDecl = extractRecordDecl(DerivedType);
6042 
6043   return Ctx.collectBaseOffset(BaseDecl, DerivedDecl);
6044 }
6045 
6046 /// Emit casts from a PrimType to another PrimType.
6047 template <class Emitter>
6048 bool Compiler<Emitter>::emitPrimCast(PrimType FromT, PrimType ToT,
6049                                      QualType ToQT, const Expr *E) {
6050 
6051   if (FromT == PT_Float) {
6052     // Floating to floating.
6053     if (ToT == PT_Float) {
6054       const llvm::fltSemantics *ToSem = &Ctx.getFloatSemantics(ToQT);
6055       return this->emitCastFP(ToSem, getRoundingMode(E), E);
6056     }
6057 
6058     if (ToT == PT_IntAP)
6059       return this->emitCastFloatingIntegralAP(Ctx.getBitWidth(ToQT),
6060                                               getFPOptions(E), E);
6061     if (ToT == PT_IntAPS)
6062       return this->emitCastFloatingIntegralAPS(Ctx.getBitWidth(ToQT),
6063                                                getFPOptions(E), E);
6064 
6065     // Float to integral.
6066     if (isIntegralType(ToT) || ToT == PT_Bool)
6067       return this->emitCastFloatingIntegral(ToT, getFPOptions(E), E);
6068   }
6069 
6070   if (isIntegralType(FromT) || FromT == PT_Bool) {
6071     if (ToT == PT_IntAP)
6072       return this->emitCastAP(FromT, Ctx.getBitWidth(ToQT), E);
6073     if (ToT == PT_IntAPS)
6074       return this->emitCastAPS(FromT, Ctx.getBitWidth(ToQT), E);
6075 
6076     // Integral to integral.
6077     if (isIntegralType(ToT) || ToT == PT_Bool)
6078       return FromT != ToT ? this->emitCast(FromT, ToT, E) : true;
6079 
6080     if (ToT == PT_Float) {
6081       // Integral to floating.
6082       const llvm::fltSemantics *ToSem = &Ctx.getFloatSemantics(ToQT);
6083       return this->emitCastIntegralFloating(FromT, ToSem, getFPOptions(E), E);
6084     }
6085   }
6086 
6087   return false;
6088 }
6089 
6090 /// Emits __real(SubExpr)
6091 template <class Emitter>
6092 bool Compiler<Emitter>::emitComplexReal(const Expr *SubExpr) {
6093   assert(SubExpr->getType()->isAnyComplexType());
6094 
6095   if (DiscardResult)
6096     return this->discard(SubExpr);
6097 
6098   if (!this->visit(SubExpr))
6099     return false;
6100   if (SubExpr->isLValue()) {
6101     if (!this->emitConstUint8(0, SubExpr))
6102       return false;
6103     return this->emitArrayElemPtrPopUint8(SubExpr);
6104   }
6105 
6106   // Rvalue, load the actual element.
6107   return this->emitArrayElemPop(classifyComplexElementType(SubExpr->getType()),
6108                                 0, SubExpr);
6109 }
6110 
6111 template <class Emitter>
6112 bool Compiler<Emitter>::emitComplexBoolCast(const Expr *E) {
6113   assert(!DiscardResult);
6114   PrimType ElemT = classifyComplexElementType(E->getType());
6115   // We emit the expression (__real(E) != 0 || __imag(E) != 0)
6116   // for us, that means (bool)E[0] || (bool)E[1]
6117   if (!this->emitArrayElem(ElemT, 0, E))
6118     return false;
6119   if (ElemT == PT_Float) {
6120     if (!this->emitCastFloatingIntegral(PT_Bool, getFPOptions(E), E))
6121       return false;
6122   } else {
6123     if (!this->emitCast(ElemT, PT_Bool, E))
6124       return false;
6125   }
6126 
6127   // We now have the bool value of E[0] on the stack.
6128   LabelTy LabelTrue = this->getLabel();
6129   if (!this->jumpTrue(LabelTrue))
6130     return false;
6131 
6132   if (!this->emitArrayElemPop(ElemT, 1, E))
6133     return false;
6134   if (ElemT == PT_Float) {
6135     if (!this->emitCastFloatingIntegral(PT_Bool, getFPOptions(E), E))
6136       return false;
6137   } else {
6138     if (!this->emitCast(ElemT, PT_Bool, E))
6139       return false;
6140   }
6141   // Leave the boolean value of E[1] on the stack.
6142   LabelTy EndLabel = this->getLabel();
6143   this->jump(EndLabel);
6144 
6145   this->emitLabel(LabelTrue);
6146   if (!this->emitPopPtr(E))
6147     return false;
6148   if (!this->emitConstBool(true, E))
6149     return false;
6150 
6151   this->fallthrough(EndLabel);
6152   this->emitLabel(EndLabel);
6153 
6154   return true;
6155 }
6156 
6157 template <class Emitter>
6158 bool Compiler<Emitter>::emitComplexComparison(const Expr *LHS, const Expr *RHS,
6159                                               const BinaryOperator *E) {
6160   assert(E->isComparisonOp());
6161   assert(!Initializing);
6162   assert(!DiscardResult);
6163 
6164   PrimType ElemT;
6165   bool LHSIsComplex;
6166   unsigned LHSOffset;
6167   if (LHS->getType()->isAnyComplexType()) {
6168     LHSIsComplex = true;
6169     ElemT = classifyComplexElementType(LHS->getType());
6170     LHSOffset = allocateLocalPrimitive(LHS, PT_Ptr, /*IsConst=*/true,
6171                                        /*IsExtended=*/false);
6172     if (!this->visit(LHS))
6173       return false;
6174     if (!this->emitSetLocal(PT_Ptr, LHSOffset, E))
6175       return false;
6176   } else {
6177     LHSIsComplex = false;
6178     PrimType LHST = classifyPrim(LHS->getType());
6179     LHSOffset = this->allocateLocalPrimitive(LHS, LHST, true, false);
6180     if (!this->visit(LHS))
6181       return false;
6182     if (!this->emitSetLocal(LHST, LHSOffset, E))
6183       return false;
6184   }
6185 
6186   bool RHSIsComplex;
6187   unsigned RHSOffset;
6188   if (RHS->getType()->isAnyComplexType()) {
6189     RHSIsComplex = true;
6190     ElemT = classifyComplexElementType(RHS->getType());
6191     RHSOffset = allocateLocalPrimitive(RHS, PT_Ptr, /*IsConst=*/true,
6192                                        /*IsExtended=*/false);
6193     if (!this->visit(RHS))
6194       return false;
6195     if (!this->emitSetLocal(PT_Ptr, RHSOffset, E))
6196       return false;
6197   } else {
6198     RHSIsComplex = false;
6199     PrimType RHST = classifyPrim(RHS->getType());
6200     RHSOffset = this->allocateLocalPrimitive(RHS, RHST, true, false);
6201     if (!this->visit(RHS))
6202       return false;
6203     if (!this->emitSetLocal(RHST, RHSOffset, E))
6204       return false;
6205   }
6206 
6207   auto getElem = [&](unsigned LocalOffset, unsigned Index,
6208                      bool IsComplex) -> bool {
6209     if (IsComplex) {
6210       if (!this->emitGetLocal(PT_Ptr, LocalOffset, E))
6211         return false;
6212       return this->emitArrayElemPop(ElemT, Index, E);
6213     }
6214     return this->emitGetLocal(ElemT, LocalOffset, E);
6215   };
6216 
6217   for (unsigned I = 0; I != 2; ++I) {
6218     // Get both values.
6219     if (!getElem(LHSOffset, I, LHSIsComplex))
6220       return false;
6221     if (!getElem(RHSOffset, I, RHSIsComplex))
6222       return false;
6223     // And compare them.
6224     if (!this->emitEQ(ElemT, E))
6225       return false;
6226 
6227     if (!this->emitCastBoolUint8(E))
6228       return false;
6229   }
6230 
6231   // We now have two bool values on the stack. Compare those.
6232   if (!this->emitAddUint8(E))
6233     return false;
6234   if (!this->emitConstUint8(2, E))
6235     return false;
6236 
6237   if (E->getOpcode() == BO_EQ) {
6238     if (!this->emitEQUint8(E))
6239       return false;
6240   } else if (E->getOpcode() == BO_NE) {
6241     if (!this->emitNEUint8(E))
6242       return false;
6243   } else
6244     return false;
6245 
6246   // In C, this returns an int.
6247   if (PrimType ResT = classifyPrim(E->getType()); ResT != PT_Bool)
6248     return this->emitCast(PT_Bool, ResT, E);
6249   return true;
6250 }
6251 
6252 /// When calling this, we have a pointer of the local-to-destroy
6253 /// on the stack.
6254 /// Emit destruction of record types (or arrays of record types).
6255 template <class Emitter>
6256 bool Compiler<Emitter>::emitRecordDestruction(const Record *R, SourceInfo Loc) {
6257   assert(R);
6258   assert(!R->isAnonymousUnion());
6259   const CXXDestructorDecl *Dtor = R->getDestructor();
6260   if (!Dtor || Dtor->isTrivial())
6261     return true;
6262 
6263   assert(Dtor);
6264   const Function *DtorFunc = getFunction(Dtor);
6265   if (!DtorFunc)
6266     return false;
6267   assert(DtorFunc->hasThisPointer());
6268   assert(DtorFunc->getNumParams() == 1);
6269   if (!this->emitDupPtr(Loc))
6270     return false;
6271   return this->emitCall(DtorFunc, 0, Loc);
6272 }
6273 /// When calling this, we have a pointer of the local-to-destroy
6274 /// on the stack.
6275 /// Emit destruction of record types (or arrays of record types).
6276 template <class Emitter>
6277 bool Compiler<Emitter>::emitDestruction(const Descriptor *Desc,
6278                                         SourceInfo Loc) {
6279   assert(Desc);
6280   assert(!Desc->isPrimitive());
6281   assert(!Desc->isPrimitiveArray());
6282 
6283   // Arrays.
6284   if (Desc->isArray()) {
6285     const Descriptor *ElemDesc = Desc->ElemDesc;
6286     assert(ElemDesc);
6287 
6288     // Don't need to do anything for these.
6289     if (ElemDesc->isPrimitiveArray())
6290       return true;
6291 
6292     // If this is an array of record types, check if we need
6293     // to call the element destructors at all. If not, try
6294     // to save the work.
6295     if (const Record *ElemRecord = ElemDesc->ElemRecord) {
6296       if (const CXXDestructorDecl *Dtor = ElemRecord->getDestructor();
6297           !Dtor || Dtor->isTrivial())
6298         return true;
6299     }
6300 
6301     for (ssize_t I = Desc->getNumElems() - 1; I >= 0; --I) {
6302       if (!this->emitConstUint64(I, Loc))
6303         return false;
6304       if (!this->emitArrayElemPtrUint64(Loc))
6305         return false;
6306       if (!this->emitDestruction(ElemDesc, Loc))
6307         return false;
6308       if (!this->emitPopPtr(Loc))
6309         return false;
6310     }
6311     return true;
6312   }
6313 
6314   assert(Desc->ElemRecord);
6315   if (Desc->ElemRecord->isAnonymousUnion())
6316     return true;
6317 
6318   return this->emitRecordDestruction(Desc->ElemRecord, Loc);
6319 }
6320 
6321 namespace clang {
6322 namespace interp {
6323 
6324 template class Compiler<ByteCodeEmitter>;
6325 template class Compiler<EvalEmitter>;
6326 
6327 } // namespace interp
6328 } // namespace clang
6329