1 //===--- Compiler.cpp - Code generator for expressions ---*- C++ -*-===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "Compiler.h" 10 #include "ByteCodeEmitter.h" 11 #include "Context.h" 12 #include "Floating.h" 13 #include "Function.h" 14 #include "InterpShared.h" 15 #include "PrimType.h" 16 #include "Program.h" 17 #include "clang/AST/Attr.h" 18 19 using namespace clang; 20 using namespace clang::interp; 21 22 using APSInt = llvm::APSInt; 23 24 namespace clang { 25 namespace interp { 26 27 /// Scope used to handle temporaries in toplevel variable declarations. 28 template <class Emitter> class DeclScope final : public LocalScope<Emitter> { 29 public: 30 DeclScope(Compiler<Emitter> *Ctx, const ValueDecl *VD) 31 : LocalScope<Emitter>(Ctx, VD), Scope(Ctx->P, VD), 32 OldInitializingDecl(Ctx->InitializingDecl) { 33 Ctx->InitializingDecl = VD; 34 Ctx->InitStack.push_back(InitLink::Decl(VD)); 35 } 36 37 void addExtended(const Scope::Local &Local) override { 38 return this->addLocal(Local); 39 } 40 41 ~DeclScope() { 42 this->Ctx->InitializingDecl = OldInitializingDecl; 43 this->Ctx->InitStack.pop_back(); 44 } 45 46 private: 47 Program::DeclScope Scope; 48 const ValueDecl *OldInitializingDecl; 49 }; 50 51 /// Scope used to handle initialization methods. 52 template <class Emitter> class OptionScope final { 53 public: 54 /// Root constructor, compiling or discarding primitives. 55 OptionScope(Compiler<Emitter> *Ctx, bool NewDiscardResult, 56 bool NewInitializing) 57 : Ctx(Ctx), OldDiscardResult(Ctx->DiscardResult), 58 OldInitializing(Ctx->Initializing) { 59 Ctx->DiscardResult = NewDiscardResult; 60 Ctx->Initializing = NewInitializing; 61 } 62 63 ~OptionScope() { 64 Ctx->DiscardResult = OldDiscardResult; 65 Ctx->Initializing = OldInitializing; 66 } 67 68 private: 69 /// Parent context. 70 Compiler<Emitter> *Ctx; 71 /// Old discard flag to restore. 72 bool OldDiscardResult; 73 bool OldInitializing; 74 }; 75 76 template <class Emitter> 77 bool InitLink::emit(Compiler<Emitter> *Ctx, const Expr *E) const { 78 switch (Kind) { 79 case K_This: 80 return Ctx->emitThis(E); 81 case K_Field: 82 // We're assuming there's a base pointer on the stack already. 83 return Ctx->emitGetPtrFieldPop(Offset, E); 84 case K_Temp: 85 return Ctx->emitGetPtrLocal(Offset, E); 86 case K_Decl: 87 return Ctx->visitDeclRef(D, E); 88 case K_Elem: 89 if (!Ctx->emitConstUint32(Offset, E)) 90 return false; 91 return Ctx->emitArrayElemPtrPopUint32(E); 92 default: 93 llvm_unreachable("Unhandled InitLink kind"); 94 } 95 return true; 96 } 97 98 /// Scope managing label targets. 99 template <class Emitter> class LabelScope { 100 public: 101 virtual ~LabelScope() {} 102 103 protected: 104 LabelScope(Compiler<Emitter> *Ctx) : Ctx(Ctx) {} 105 /// Compiler instance. 106 Compiler<Emitter> *Ctx; 107 }; 108 109 /// Sets the context for break/continue statements. 110 template <class Emitter> class LoopScope final : public LabelScope<Emitter> { 111 public: 112 using LabelTy = typename Compiler<Emitter>::LabelTy; 113 using OptLabelTy = typename Compiler<Emitter>::OptLabelTy; 114 115 LoopScope(Compiler<Emitter> *Ctx, LabelTy BreakLabel, LabelTy ContinueLabel) 116 : LabelScope<Emitter>(Ctx), OldBreakLabel(Ctx->BreakLabel), 117 OldContinueLabel(Ctx->ContinueLabel) { 118 this->Ctx->BreakLabel = BreakLabel; 119 this->Ctx->ContinueLabel = ContinueLabel; 120 } 121 122 ~LoopScope() { 123 this->Ctx->BreakLabel = OldBreakLabel; 124 this->Ctx->ContinueLabel = OldContinueLabel; 125 } 126 127 private: 128 OptLabelTy OldBreakLabel; 129 OptLabelTy OldContinueLabel; 130 }; 131 132 // Sets the context for a switch scope, mapping labels. 133 template <class Emitter> class SwitchScope final : public LabelScope<Emitter> { 134 public: 135 using LabelTy = typename Compiler<Emitter>::LabelTy; 136 using OptLabelTy = typename Compiler<Emitter>::OptLabelTy; 137 using CaseMap = typename Compiler<Emitter>::CaseMap; 138 139 SwitchScope(Compiler<Emitter> *Ctx, CaseMap &&CaseLabels, LabelTy BreakLabel, 140 OptLabelTy DefaultLabel) 141 : LabelScope<Emitter>(Ctx), OldBreakLabel(Ctx->BreakLabel), 142 OldDefaultLabel(this->Ctx->DefaultLabel), 143 OldCaseLabels(std::move(this->Ctx->CaseLabels)) { 144 this->Ctx->BreakLabel = BreakLabel; 145 this->Ctx->DefaultLabel = DefaultLabel; 146 this->Ctx->CaseLabels = std::move(CaseLabels); 147 } 148 149 ~SwitchScope() { 150 this->Ctx->BreakLabel = OldBreakLabel; 151 this->Ctx->DefaultLabel = OldDefaultLabel; 152 this->Ctx->CaseLabels = std::move(OldCaseLabels); 153 } 154 155 private: 156 OptLabelTy OldBreakLabel; 157 OptLabelTy OldDefaultLabel; 158 CaseMap OldCaseLabels; 159 }; 160 161 template <class Emitter> class StmtExprScope final { 162 public: 163 StmtExprScope(Compiler<Emitter> *Ctx) : Ctx(Ctx), OldFlag(Ctx->InStmtExpr) { 164 Ctx->InStmtExpr = true; 165 } 166 167 ~StmtExprScope() { Ctx->InStmtExpr = OldFlag; } 168 169 private: 170 Compiler<Emitter> *Ctx; 171 bool OldFlag; 172 }; 173 174 } // namespace interp 175 } // namespace clang 176 177 template <class Emitter> 178 bool Compiler<Emitter>::VisitCastExpr(const CastExpr *CE) { 179 const Expr *SubExpr = CE->getSubExpr(); 180 switch (CE->getCastKind()) { 181 182 case CK_LValueToRValue: { 183 if (DiscardResult) 184 return this->discard(SubExpr); 185 186 std::optional<PrimType> SubExprT = classify(SubExpr->getType()); 187 // Prepare storage for the result. 188 if (!Initializing && !SubExprT) { 189 std::optional<unsigned> LocalIndex = allocateLocal(SubExpr); 190 if (!LocalIndex) 191 return false; 192 if (!this->emitGetPtrLocal(*LocalIndex, CE)) 193 return false; 194 } 195 196 if (!this->visit(SubExpr)) 197 return false; 198 199 if (SubExprT) 200 return this->emitLoadPop(*SubExprT, CE); 201 202 // If the subexpr type is not primitive, we need to perform a copy here. 203 // This happens for example in C when dereferencing a pointer of struct 204 // type. 205 return this->emitMemcpy(CE); 206 } 207 208 case CK_DerivedToBaseMemberPointer: { 209 assert(classifyPrim(CE->getType()) == PT_MemberPtr); 210 assert(classifyPrim(SubExpr->getType()) == PT_MemberPtr); 211 const auto *FromMP = SubExpr->getType()->getAs<MemberPointerType>(); 212 const auto *ToMP = CE->getType()->getAs<MemberPointerType>(); 213 214 unsigned DerivedOffset = collectBaseOffset(QualType(ToMP->getClass(), 0), 215 QualType(FromMP->getClass(), 0)); 216 217 if (!this->delegate(SubExpr)) 218 return false; 219 220 return this->emitGetMemberPtrBasePop(DerivedOffset, CE); 221 } 222 223 case CK_BaseToDerivedMemberPointer: { 224 assert(classifyPrim(CE) == PT_MemberPtr); 225 assert(classifyPrim(SubExpr) == PT_MemberPtr); 226 const auto *FromMP = SubExpr->getType()->getAs<MemberPointerType>(); 227 const auto *ToMP = CE->getType()->getAs<MemberPointerType>(); 228 229 unsigned DerivedOffset = collectBaseOffset(QualType(FromMP->getClass(), 0), 230 QualType(ToMP->getClass(), 0)); 231 232 if (!this->delegate(SubExpr)) 233 return false; 234 return this->emitGetMemberPtrBasePop(-DerivedOffset, CE); 235 } 236 237 case CK_UncheckedDerivedToBase: 238 case CK_DerivedToBase: { 239 if (!this->delegate(SubExpr)) 240 return false; 241 242 const auto extractRecordDecl = [](QualType Ty) -> const CXXRecordDecl * { 243 if (const auto *PT = dyn_cast<PointerType>(Ty)) 244 return PT->getPointeeType()->getAsCXXRecordDecl(); 245 return Ty->getAsCXXRecordDecl(); 246 }; 247 248 // FIXME: We can express a series of non-virtual casts as a single 249 // GetPtrBasePop op. 250 QualType CurType = SubExpr->getType(); 251 for (const CXXBaseSpecifier *B : CE->path()) { 252 if (B->isVirtual()) { 253 if (!this->emitGetPtrVirtBasePop(extractRecordDecl(B->getType()), CE)) 254 return false; 255 CurType = B->getType(); 256 } else { 257 unsigned DerivedOffset = collectBaseOffset(B->getType(), CurType); 258 if (!this->emitGetPtrBasePop(DerivedOffset, CE)) 259 return false; 260 CurType = B->getType(); 261 } 262 } 263 264 return true; 265 } 266 267 case CK_BaseToDerived: { 268 if (!this->delegate(SubExpr)) 269 return false; 270 271 unsigned DerivedOffset = 272 collectBaseOffset(SubExpr->getType(), CE->getType()); 273 274 return this->emitGetPtrDerivedPop(DerivedOffset, CE); 275 } 276 277 case CK_FloatingCast: { 278 // HLSL uses CK_FloatingCast to cast between vectors. 279 if (!SubExpr->getType()->isFloatingType() || 280 !CE->getType()->isFloatingType()) 281 return false; 282 if (DiscardResult) 283 return this->discard(SubExpr); 284 if (!this->visit(SubExpr)) 285 return false; 286 const auto *TargetSemantics = &Ctx.getFloatSemantics(CE->getType()); 287 return this->emitCastFP(TargetSemantics, getRoundingMode(CE), CE); 288 } 289 290 case CK_IntegralToFloating: { 291 if (DiscardResult) 292 return this->discard(SubExpr); 293 std::optional<PrimType> FromT = classify(SubExpr->getType()); 294 if (!FromT) 295 return false; 296 297 if (!this->visit(SubExpr)) 298 return false; 299 300 const auto *TargetSemantics = &Ctx.getFloatSemantics(CE->getType()); 301 llvm::RoundingMode RM = getRoundingMode(CE); 302 return this->emitCastIntegralFloating(*FromT, TargetSemantics, RM, CE); 303 } 304 305 case CK_FloatingToBoolean: 306 case CK_FloatingToIntegral: { 307 if (DiscardResult) 308 return this->discard(SubExpr); 309 310 std::optional<PrimType> ToT = classify(CE->getType()); 311 312 if (!ToT) 313 return false; 314 315 if (!this->visit(SubExpr)) 316 return false; 317 318 if (ToT == PT_IntAP) 319 return this->emitCastFloatingIntegralAP(Ctx.getBitWidth(CE->getType()), 320 CE); 321 if (ToT == PT_IntAPS) 322 return this->emitCastFloatingIntegralAPS(Ctx.getBitWidth(CE->getType()), 323 CE); 324 325 return this->emitCastFloatingIntegral(*ToT, CE); 326 } 327 328 case CK_NullToPointer: 329 case CK_NullToMemberPointer: { 330 if (!this->discard(SubExpr)) 331 return false; 332 if (DiscardResult) 333 return true; 334 335 const Descriptor *Desc = nullptr; 336 const QualType PointeeType = CE->getType()->getPointeeType(); 337 if (!PointeeType.isNull()) { 338 if (std::optional<PrimType> T = classify(PointeeType)) 339 Desc = P.createDescriptor(SubExpr, *T); 340 else 341 Desc = P.createDescriptor(SubExpr, PointeeType.getTypePtr(), 342 std::nullopt, true, false, 343 /*IsMutable=*/false, nullptr); 344 } 345 return this->emitNull(classifyPrim(CE->getType()), Desc, CE); 346 } 347 348 case CK_PointerToIntegral: { 349 if (DiscardResult) 350 return this->discard(SubExpr); 351 352 if (!this->visit(SubExpr)) 353 return false; 354 355 // If SubExpr doesn't result in a pointer, make it one. 356 if (PrimType FromT = classifyPrim(SubExpr->getType()); FromT != PT_Ptr) { 357 assert(isPtrType(FromT)); 358 if (!this->emitDecayPtr(FromT, PT_Ptr, CE)) 359 return false; 360 } 361 362 PrimType T = classifyPrim(CE->getType()); 363 if (T == PT_IntAP) 364 return this->emitCastPointerIntegralAP(Ctx.getBitWidth(CE->getType()), 365 CE); 366 if (T == PT_IntAPS) 367 return this->emitCastPointerIntegralAPS(Ctx.getBitWidth(CE->getType()), 368 CE); 369 return this->emitCastPointerIntegral(T, CE); 370 } 371 372 case CK_ArrayToPointerDecay: { 373 if (!this->visit(SubExpr)) 374 return false; 375 if (!this->emitArrayDecay(CE)) 376 return false; 377 if (DiscardResult) 378 return this->emitPopPtr(CE); 379 return true; 380 } 381 382 case CK_IntegralToPointer: { 383 QualType IntType = SubExpr->getType(); 384 assert(IntType->isIntegralOrEnumerationType()); 385 if (!this->visit(SubExpr)) 386 return false; 387 // FIXME: I think the discard is wrong since the int->ptr cast might cause a 388 // diagnostic. 389 PrimType T = classifyPrim(IntType); 390 if (DiscardResult) 391 return this->emitPop(T, CE); 392 393 QualType PtrType = CE->getType(); 394 const Descriptor *Desc; 395 if (std::optional<PrimType> T = classify(PtrType->getPointeeType())) 396 Desc = P.createDescriptor(SubExpr, *T); 397 else if (PtrType->getPointeeType()->isVoidType()) 398 Desc = nullptr; 399 else 400 Desc = P.createDescriptor(CE, PtrType->getPointeeType().getTypePtr(), 401 Descriptor::InlineDescMD, true, false, 402 /*IsMutable=*/false, nullptr); 403 404 if (!this->emitGetIntPtr(T, Desc, CE)) 405 return false; 406 407 PrimType DestPtrT = classifyPrim(PtrType); 408 if (DestPtrT == PT_Ptr) 409 return true; 410 411 // In case we're converting the integer to a non-Pointer. 412 return this->emitDecayPtr(PT_Ptr, DestPtrT, CE); 413 } 414 415 case CK_AtomicToNonAtomic: 416 case CK_ConstructorConversion: 417 case CK_FunctionToPointerDecay: 418 case CK_NonAtomicToAtomic: 419 case CK_NoOp: 420 case CK_UserDefinedConversion: 421 case CK_AddressSpaceConversion: 422 return this->delegate(SubExpr); 423 424 case CK_BitCast: { 425 // Reject bitcasts to atomic types. 426 if (CE->getType()->isAtomicType()) { 427 if (!this->discard(SubExpr)) 428 return false; 429 return this->emitInvalidCast(CastKind::Reinterpret, /*Fatal=*/true, CE); 430 } 431 432 if (DiscardResult) 433 return this->discard(SubExpr); 434 435 QualType SubExprTy = SubExpr->getType(); 436 std::optional<PrimType> FromT = classify(SubExprTy); 437 std::optional<PrimType> ToT = classify(CE->getType()); 438 if (!FromT || !ToT) 439 return false; 440 441 assert(isPtrType(*FromT)); 442 assert(isPtrType(*ToT)); 443 if (FromT == ToT) { 444 if (CE->getType()->isVoidPointerType()) 445 return this->delegate(SubExpr); 446 447 if (!this->visit(SubExpr)) 448 return false; 449 if (FromT == PT_Ptr) 450 return this->emitPtrPtrCast(SubExprTy->isVoidPointerType(), CE); 451 return true; 452 } 453 454 if (!this->visit(SubExpr)) 455 return false; 456 return this->emitDecayPtr(*FromT, *ToT, CE); 457 } 458 459 case CK_IntegralToBoolean: 460 case CK_BooleanToSignedIntegral: 461 case CK_IntegralCast: { 462 if (DiscardResult) 463 return this->discard(SubExpr); 464 std::optional<PrimType> FromT = classify(SubExpr->getType()); 465 std::optional<PrimType> ToT = classify(CE->getType()); 466 467 if (!FromT || !ToT) 468 return false; 469 470 if (!this->visit(SubExpr)) 471 return false; 472 473 // Possibly diagnose casts to enum types if the target type does not 474 // have a fixed size. 475 if (Ctx.getLangOpts().CPlusPlus && CE->getType()->isEnumeralType()) { 476 if (const auto *ET = CE->getType().getCanonicalType()->getAs<EnumType>(); 477 ET && !ET->getDecl()->isFixed()) { 478 if (!this->emitCheckEnumValue(*FromT, ET->getDecl(), CE)) 479 return false; 480 } 481 } 482 483 auto maybeNegate = [&]() -> bool { 484 if (CE->getCastKind() == CK_BooleanToSignedIntegral) 485 return this->emitNeg(*ToT, CE); 486 return true; 487 }; 488 489 if (ToT == PT_IntAP) 490 return this->emitCastAP(*FromT, Ctx.getBitWidth(CE->getType()), CE) && 491 maybeNegate(); 492 if (ToT == PT_IntAPS) 493 return this->emitCastAPS(*FromT, Ctx.getBitWidth(CE->getType()), CE) && 494 maybeNegate(); 495 496 if (FromT == ToT) 497 return true; 498 if (!this->emitCast(*FromT, *ToT, CE)) 499 return false; 500 501 return maybeNegate(); 502 } 503 504 case CK_PointerToBoolean: 505 case CK_MemberPointerToBoolean: { 506 PrimType PtrT = classifyPrim(SubExpr->getType()); 507 508 // Just emit p != nullptr for this. 509 if (!this->visit(SubExpr)) 510 return false; 511 512 if (!this->emitNull(PtrT, nullptr, CE)) 513 return false; 514 515 return this->emitNE(PtrT, CE); 516 } 517 518 case CK_IntegralComplexToBoolean: 519 case CK_FloatingComplexToBoolean: { 520 if (DiscardResult) 521 return this->discard(SubExpr); 522 if (!this->visit(SubExpr)) 523 return false; 524 return this->emitComplexBoolCast(SubExpr); 525 } 526 527 case CK_IntegralComplexToReal: 528 case CK_FloatingComplexToReal: 529 return this->emitComplexReal(SubExpr); 530 531 case CK_IntegralRealToComplex: 532 case CK_FloatingRealToComplex: { 533 // We're creating a complex value here, so we need to 534 // allocate storage for it. 535 if (!Initializing) { 536 unsigned LocalIndex = allocateTemporary(CE); 537 if (!this->emitGetPtrLocal(LocalIndex, CE)) 538 return false; 539 } 540 541 // Init the complex value to {SubExpr, 0}. 542 if (!this->visitArrayElemInit(0, SubExpr)) 543 return false; 544 // Zero-init the second element. 545 PrimType T = classifyPrim(SubExpr->getType()); 546 if (!this->visitZeroInitializer(T, SubExpr->getType(), SubExpr)) 547 return false; 548 return this->emitInitElem(T, 1, SubExpr); 549 } 550 551 case CK_IntegralComplexCast: 552 case CK_FloatingComplexCast: 553 case CK_IntegralComplexToFloatingComplex: 554 case CK_FloatingComplexToIntegralComplex: { 555 assert(CE->getType()->isAnyComplexType()); 556 assert(SubExpr->getType()->isAnyComplexType()); 557 if (DiscardResult) 558 return this->discard(SubExpr); 559 560 if (!Initializing) { 561 std::optional<unsigned> LocalIndex = allocateLocal(CE); 562 if (!LocalIndex) 563 return false; 564 if (!this->emitGetPtrLocal(*LocalIndex, CE)) 565 return false; 566 } 567 568 // Location for the SubExpr. 569 // Since SubExpr is of complex type, visiting it results in a pointer 570 // anyway, so we just create a temporary pointer variable. 571 unsigned SubExprOffset = allocateLocalPrimitive( 572 SubExpr, PT_Ptr, /*IsConst=*/true, /*IsExtended=*/false); 573 if (!this->visit(SubExpr)) 574 return false; 575 if (!this->emitSetLocal(PT_Ptr, SubExprOffset, CE)) 576 return false; 577 578 PrimType SourceElemT = classifyComplexElementType(SubExpr->getType()); 579 QualType DestElemType = 580 CE->getType()->getAs<ComplexType>()->getElementType(); 581 PrimType DestElemT = classifyPrim(DestElemType); 582 // Cast both elements individually. 583 for (unsigned I = 0; I != 2; ++I) { 584 if (!this->emitGetLocal(PT_Ptr, SubExprOffset, CE)) 585 return false; 586 if (!this->emitArrayElemPop(SourceElemT, I, CE)) 587 return false; 588 589 // Do the cast. 590 if (!this->emitPrimCast(SourceElemT, DestElemT, DestElemType, CE)) 591 return false; 592 593 // Save the value. 594 if (!this->emitInitElem(DestElemT, I, CE)) 595 return false; 596 } 597 return true; 598 } 599 600 case CK_VectorSplat: { 601 assert(!classify(CE->getType())); 602 assert(classify(SubExpr->getType())); 603 assert(CE->getType()->isVectorType()); 604 605 if (DiscardResult) 606 return this->discard(SubExpr); 607 608 if (!Initializing) { 609 std::optional<unsigned> LocalIndex = allocateLocal(CE); 610 if (!LocalIndex) 611 return false; 612 if (!this->emitGetPtrLocal(*LocalIndex, CE)) 613 return false; 614 } 615 616 const auto *VT = CE->getType()->getAs<VectorType>(); 617 PrimType ElemT = classifyPrim(SubExpr->getType()); 618 unsigned ElemOffset = allocateLocalPrimitive( 619 SubExpr, ElemT, /*IsConst=*/true, /*IsExtended=*/false); 620 621 // Prepare a local variable for the scalar value. 622 if (!this->visit(SubExpr)) 623 return false; 624 if (classifyPrim(SubExpr) == PT_Ptr && !this->emitLoadPop(ElemT, CE)) 625 return false; 626 627 if (!this->emitSetLocal(ElemT, ElemOffset, CE)) 628 return false; 629 630 for (unsigned I = 0; I != VT->getNumElements(); ++I) { 631 if (!this->emitGetLocal(ElemT, ElemOffset, CE)) 632 return false; 633 if (!this->emitInitElem(ElemT, I, CE)) 634 return false; 635 } 636 637 return true; 638 } 639 640 case CK_ToVoid: 641 return discard(SubExpr); 642 643 default: 644 return this->emitInvalid(CE); 645 } 646 llvm_unreachable("Unhandled clang::CastKind enum"); 647 } 648 649 template <class Emitter> 650 bool Compiler<Emitter>::VisitIntegerLiteral(const IntegerLiteral *LE) { 651 if (DiscardResult) 652 return true; 653 654 return this->emitConst(LE->getValue(), LE); 655 } 656 657 template <class Emitter> 658 bool Compiler<Emitter>::VisitFloatingLiteral(const FloatingLiteral *E) { 659 if (DiscardResult) 660 return true; 661 662 return this->emitConstFloat(E->getValue(), E); 663 } 664 665 template <class Emitter> 666 bool Compiler<Emitter>::VisitImaginaryLiteral(const ImaginaryLiteral *E) { 667 assert(E->getType()->isAnyComplexType()); 668 if (DiscardResult) 669 return true; 670 671 if (!Initializing) { 672 unsigned LocalIndex = allocateTemporary(E); 673 if (!this->emitGetPtrLocal(LocalIndex, E)) 674 return false; 675 } 676 677 const Expr *SubExpr = E->getSubExpr(); 678 PrimType SubExprT = classifyPrim(SubExpr->getType()); 679 680 if (!this->visitZeroInitializer(SubExprT, SubExpr->getType(), SubExpr)) 681 return false; 682 if (!this->emitInitElem(SubExprT, 0, SubExpr)) 683 return false; 684 return this->visitArrayElemInit(1, SubExpr); 685 } 686 687 template <class Emitter> 688 bool Compiler<Emitter>::VisitParenExpr(const ParenExpr *E) { 689 return this->delegate(E->getSubExpr()); 690 } 691 692 template <class Emitter> 693 bool Compiler<Emitter>::VisitBinaryOperator(const BinaryOperator *BO) { 694 // Need short-circuiting for these. 695 if (BO->isLogicalOp()) 696 return this->VisitLogicalBinOp(BO); 697 698 const Expr *LHS = BO->getLHS(); 699 const Expr *RHS = BO->getRHS(); 700 701 // Handle comma operators. Just discard the LHS 702 // and delegate to RHS. 703 if (BO->isCommaOp()) { 704 if (!this->discard(LHS)) 705 return false; 706 if (RHS->getType()->isVoidType()) 707 return this->discard(RHS); 708 709 return this->delegate(RHS); 710 } 711 712 if (BO->getType()->isAnyComplexType()) 713 return this->VisitComplexBinOp(BO); 714 if ((LHS->getType()->isAnyComplexType() || 715 RHS->getType()->isAnyComplexType()) && 716 BO->isComparisonOp()) 717 return this->emitComplexComparison(LHS, RHS, BO); 718 719 if (BO->isPtrMemOp()) { 720 if (!this->visit(LHS)) 721 return false; 722 723 if (!this->visit(RHS)) 724 return false; 725 726 if (!this->emitToMemberPtr(BO)) 727 return false; 728 729 if (classifyPrim(BO) == PT_MemberPtr) 730 return true; 731 732 if (!this->emitCastMemberPtrPtr(BO)) 733 return false; 734 return DiscardResult ? this->emitPopPtr(BO) : true; 735 } 736 737 // Typecheck the args. 738 std::optional<PrimType> LT = classify(LHS); 739 std::optional<PrimType> RT = classify(RHS); 740 std::optional<PrimType> T = classify(BO->getType()); 741 742 // Special case for C++'s three-way/spaceship operator <=>, which 743 // returns a std::{strong,weak,partial}_ordering (which is a class, so doesn't 744 // have a PrimType). 745 if (!T && BO->getOpcode() == BO_Cmp) { 746 if (DiscardResult) 747 return true; 748 const ComparisonCategoryInfo *CmpInfo = 749 Ctx.getASTContext().CompCategories.lookupInfoForType(BO->getType()); 750 assert(CmpInfo); 751 752 // We need a temporary variable holding our return value. 753 if (!Initializing) { 754 std::optional<unsigned> ResultIndex = this->allocateLocal(BO); 755 if (!this->emitGetPtrLocal(*ResultIndex, BO)) 756 return false; 757 } 758 759 if (!visit(LHS) || !visit(RHS)) 760 return false; 761 762 return this->emitCMP3(*LT, CmpInfo, BO); 763 } 764 765 if (!LT || !RT || !T) 766 return false; 767 768 // Pointer arithmetic special case. 769 if (BO->getOpcode() == BO_Add || BO->getOpcode() == BO_Sub) { 770 if (isPtrType(*T) || (isPtrType(*LT) && isPtrType(*RT))) 771 return this->VisitPointerArithBinOp(BO); 772 } 773 774 // Assignmentes require us to evalute the RHS first. 775 if (BO->getOpcode() == BO_Assign) { 776 if (!visit(RHS) || !visit(LHS)) 777 return false; 778 if (!this->emitFlip(*LT, *RT, BO)) 779 return false; 780 } else { 781 if (!visit(LHS) || !visit(RHS)) 782 return false; 783 } 784 785 // For languages such as C, cast the result of one 786 // of our comparision opcodes to T (which is usually int). 787 auto MaybeCastToBool = [this, T, BO](bool Result) { 788 if (!Result) 789 return false; 790 if (DiscardResult) 791 return this->emitPop(*T, BO); 792 if (T != PT_Bool) 793 return this->emitCast(PT_Bool, *T, BO); 794 return true; 795 }; 796 797 auto Discard = [this, T, BO](bool Result) { 798 if (!Result) 799 return false; 800 return DiscardResult ? this->emitPop(*T, BO) : true; 801 }; 802 803 switch (BO->getOpcode()) { 804 case BO_EQ: 805 return MaybeCastToBool(this->emitEQ(*LT, BO)); 806 case BO_NE: 807 return MaybeCastToBool(this->emitNE(*LT, BO)); 808 case BO_LT: 809 return MaybeCastToBool(this->emitLT(*LT, BO)); 810 case BO_LE: 811 return MaybeCastToBool(this->emitLE(*LT, BO)); 812 case BO_GT: 813 return MaybeCastToBool(this->emitGT(*LT, BO)); 814 case BO_GE: 815 return MaybeCastToBool(this->emitGE(*LT, BO)); 816 case BO_Sub: 817 if (BO->getType()->isFloatingType()) 818 return Discard(this->emitSubf(getRoundingMode(BO), BO)); 819 return Discard(this->emitSub(*T, BO)); 820 case BO_Add: 821 if (BO->getType()->isFloatingType()) 822 return Discard(this->emitAddf(getRoundingMode(BO), BO)); 823 return Discard(this->emitAdd(*T, BO)); 824 case BO_Mul: 825 if (BO->getType()->isFloatingType()) 826 return Discard(this->emitMulf(getRoundingMode(BO), BO)); 827 return Discard(this->emitMul(*T, BO)); 828 case BO_Rem: 829 return Discard(this->emitRem(*T, BO)); 830 case BO_Div: 831 if (BO->getType()->isFloatingType()) 832 return Discard(this->emitDivf(getRoundingMode(BO), BO)); 833 return Discard(this->emitDiv(*T, BO)); 834 case BO_Assign: 835 if (DiscardResult) 836 return LHS->refersToBitField() ? this->emitStoreBitFieldPop(*T, BO) 837 : this->emitStorePop(*T, BO); 838 if (LHS->refersToBitField()) { 839 if (!this->emitStoreBitField(*T, BO)) 840 return false; 841 } else { 842 if (!this->emitStore(*T, BO)) 843 return false; 844 } 845 // Assignments aren't necessarily lvalues in C. 846 // Load from them in that case. 847 if (!BO->isLValue()) 848 return this->emitLoadPop(*T, BO); 849 return true; 850 case BO_And: 851 return Discard(this->emitBitAnd(*T, BO)); 852 case BO_Or: 853 return Discard(this->emitBitOr(*T, BO)); 854 case BO_Shl: 855 return Discard(this->emitShl(*LT, *RT, BO)); 856 case BO_Shr: 857 return Discard(this->emitShr(*LT, *RT, BO)); 858 case BO_Xor: 859 return Discard(this->emitBitXor(*T, BO)); 860 case BO_LOr: 861 case BO_LAnd: 862 llvm_unreachable("Already handled earlier"); 863 default: 864 return false; 865 } 866 867 llvm_unreachable("Unhandled binary op"); 868 } 869 870 /// Perform addition/subtraction of a pointer and an integer or 871 /// subtraction of two pointers. 872 template <class Emitter> 873 bool Compiler<Emitter>::VisitPointerArithBinOp(const BinaryOperator *E) { 874 BinaryOperatorKind Op = E->getOpcode(); 875 const Expr *LHS = E->getLHS(); 876 const Expr *RHS = E->getRHS(); 877 878 if ((Op != BO_Add && Op != BO_Sub) || 879 (!LHS->getType()->isPointerType() && !RHS->getType()->isPointerType())) 880 return false; 881 882 std::optional<PrimType> LT = classify(LHS); 883 std::optional<PrimType> RT = classify(RHS); 884 885 if (!LT || !RT) 886 return false; 887 888 if (LHS->getType()->isPointerType() && RHS->getType()->isPointerType()) { 889 if (Op != BO_Sub) 890 return false; 891 892 assert(E->getType()->isIntegerType()); 893 if (!visit(RHS) || !visit(LHS)) 894 return false; 895 896 return this->emitSubPtr(classifyPrim(E->getType()), E); 897 } 898 899 PrimType OffsetType; 900 if (LHS->getType()->isIntegerType()) { 901 if (!visit(RHS) || !visit(LHS)) 902 return false; 903 OffsetType = *LT; 904 } else if (RHS->getType()->isIntegerType()) { 905 if (!visit(LHS) || !visit(RHS)) 906 return false; 907 OffsetType = *RT; 908 } else { 909 return false; 910 } 911 912 if (Op == BO_Add) 913 return this->emitAddOffset(OffsetType, E); 914 else if (Op == BO_Sub) 915 return this->emitSubOffset(OffsetType, E); 916 917 return false; 918 } 919 920 template <class Emitter> 921 bool Compiler<Emitter>::VisitLogicalBinOp(const BinaryOperator *E) { 922 assert(E->isLogicalOp()); 923 BinaryOperatorKind Op = E->getOpcode(); 924 const Expr *LHS = E->getLHS(); 925 const Expr *RHS = E->getRHS(); 926 std::optional<PrimType> T = classify(E->getType()); 927 928 if (Op == BO_LOr) { 929 // Logical OR. Visit LHS and only evaluate RHS if LHS was FALSE. 930 LabelTy LabelTrue = this->getLabel(); 931 LabelTy LabelEnd = this->getLabel(); 932 933 if (!this->visitBool(LHS)) 934 return false; 935 if (!this->jumpTrue(LabelTrue)) 936 return false; 937 938 if (!this->visitBool(RHS)) 939 return false; 940 if (!this->jump(LabelEnd)) 941 return false; 942 943 this->emitLabel(LabelTrue); 944 this->emitConstBool(true, E); 945 this->fallthrough(LabelEnd); 946 this->emitLabel(LabelEnd); 947 948 } else { 949 assert(Op == BO_LAnd); 950 // Logical AND. 951 // Visit LHS. Only visit RHS if LHS was TRUE. 952 LabelTy LabelFalse = this->getLabel(); 953 LabelTy LabelEnd = this->getLabel(); 954 955 if (!this->visitBool(LHS)) 956 return false; 957 if (!this->jumpFalse(LabelFalse)) 958 return false; 959 960 if (!this->visitBool(RHS)) 961 return false; 962 if (!this->jump(LabelEnd)) 963 return false; 964 965 this->emitLabel(LabelFalse); 966 this->emitConstBool(false, E); 967 this->fallthrough(LabelEnd); 968 this->emitLabel(LabelEnd); 969 } 970 971 if (DiscardResult) 972 return this->emitPopBool(E); 973 974 // For C, cast back to integer type. 975 assert(T); 976 if (T != PT_Bool) 977 return this->emitCast(PT_Bool, *T, E); 978 return true; 979 } 980 981 template <class Emitter> 982 bool Compiler<Emitter>::VisitComplexBinOp(const BinaryOperator *E) { 983 // Prepare storage for result. 984 if (!Initializing) { 985 unsigned LocalIndex = allocateTemporary(E); 986 if (!this->emitGetPtrLocal(LocalIndex, E)) 987 return false; 988 } 989 990 // Both LHS and RHS might _not_ be of complex type, but one of them 991 // needs to be. 992 const Expr *LHS = E->getLHS(); 993 const Expr *RHS = E->getRHS(); 994 995 PrimType ResultElemT = this->classifyComplexElementType(E->getType()); 996 unsigned ResultOffset = ~0u; 997 if (!DiscardResult) 998 ResultOffset = this->allocateLocalPrimitive(E, PT_Ptr, true, false); 999 1000 // Save result pointer in ResultOffset 1001 if (!this->DiscardResult) { 1002 if (!this->emitDupPtr(E)) 1003 return false; 1004 if (!this->emitSetLocal(PT_Ptr, ResultOffset, E)) 1005 return false; 1006 } 1007 QualType LHSType = LHS->getType(); 1008 if (const auto *AT = LHSType->getAs<AtomicType>()) 1009 LHSType = AT->getValueType(); 1010 QualType RHSType = RHS->getType(); 1011 if (const auto *AT = RHSType->getAs<AtomicType>()) 1012 RHSType = AT->getValueType(); 1013 1014 bool LHSIsComplex = LHSType->isAnyComplexType(); 1015 unsigned LHSOffset; 1016 bool RHSIsComplex = RHSType->isAnyComplexType(); 1017 1018 // For ComplexComplex Mul, we have special ops to make their implementation 1019 // easier. 1020 BinaryOperatorKind Op = E->getOpcode(); 1021 if (Op == BO_Mul && LHSIsComplex && RHSIsComplex) { 1022 assert(classifyPrim(LHSType->getAs<ComplexType>()->getElementType()) == 1023 classifyPrim(RHSType->getAs<ComplexType>()->getElementType())); 1024 PrimType ElemT = 1025 classifyPrim(LHSType->getAs<ComplexType>()->getElementType()); 1026 if (!this->visit(LHS)) 1027 return false; 1028 if (!this->visit(RHS)) 1029 return false; 1030 return this->emitMulc(ElemT, E); 1031 } 1032 1033 if (Op == BO_Div && RHSIsComplex) { 1034 QualType ElemQT = RHSType->getAs<ComplexType>()->getElementType(); 1035 PrimType ElemT = classifyPrim(ElemQT); 1036 // If the LHS is not complex, we still need to do the full complex 1037 // division, so just stub create a complex value and stub it out with 1038 // the LHS and a zero. 1039 1040 if (!LHSIsComplex) { 1041 // This is using the RHS type for the fake-complex LHS. 1042 LHSOffset = allocateTemporary(RHS); 1043 1044 if (!this->emitGetPtrLocal(LHSOffset, E)) 1045 return false; 1046 1047 if (!this->visit(LHS)) 1048 return false; 1049 // real is LHS 1050 if (!this->emitInitElem(ElemT, 0, E)) 1051 return false; 1052 // imag is zero 1053 if (!this->visitZeroInitializer(ElemT, ElemQT, E)) 1054 return false; 1055 if (!this->emitInitElem(ElemT, 1, E)) 1056 return false; 1057 } else { 1058 if (!this->visit(LHS)) 1059 return false; 1060 } 1061 1062 if (!this->visit(RHS)) 1063 return false; 1064 return this->emitDivc(ElemT, E); 1065 } 1066 1067 // Evaluate LHS and save value to LHSOffset. 1068 if (LHSType->isAnyComplexType()) { 1069 LHSOffset = this->allocateLocalPrimitive(LHS, PT_Ptr, true, false); 1070 if (!this->visit(LHS)) 1071 return false; 1072 if (!this->emitSetLocal(PT_Ptr, LHSOffset, E)) 1073 return false; 1074 } else { 1075 PrimType LHST = classifyPrim(LHSType); 1076 LHSOffset = this->allocateLocalPrimitive(LHS, LHST, true, false); 1077 if (!this->visit(LHS)) 1078 return false; 1079 if (!this->emitSetLocal(LHST, LHSOffset, E)) 1080 return false; 1081 } 1082 1083 // Same with RHS. 1084 unsigned RHSOffset; 1085 if (RHSType->isAnyComplexType()) { 1086 RHSOffset = this->allocateLocalPrimitive(RHS, PT_Ptr, true, false); 1087 if (!this->visit(RHS)) 1088 return false; 1089 if (!this->emitSetLocal(PT_Ptr, RHSOffset, E)) 1090 return false; 1091 } else { 1092 PrimType RHST = classifyPrim(RHSType); 1093 RHSOffset = this->allocateLocalPrimitive(RHS, RHST, true, false); 1094 if (!this->visit(RHS)) 1095 return false; 1096 if (!this->emitSetLocal(RHST, RHSOffset, E)) 1097 return false; 1098 } 1099 1100 // For both LHS and RHS, either load the value from the complex pointer, or 1101 // directly from the local variable. For index 1 (i.e. the imaginary part), 1102 // just load 0 and do the operation anyway. 1103 auto loadComplexValue = [this](bool IsComplex, bool LoadZero, 1104 unsigned ElemIndex, unsigned Offset, 1105 const Expr *E) -> bool { 1106 if (IsComplex) { 1107 if (!this->emitGetLocal(PT_Ptr, Offset, E)) 1108 return false; 1109 return this->emitArrayElemPop(classifyComplexElementType(E->getType()), 1110 ElemIndex, E); 1111 } 1112 if (ElemIndex == 0 || !LoadZero) 1113 return this->emitGetLocal(classifyPrim(E->getType()), Offset, E); 1114 return this->visitZeroInitializer(classifyPrim(E->getType()), E->getType(), 1115 E); 1116 }; 1117 1118 // Now we can get pointers to the LHS and RHS from the offsets above. 1119 for (unsigned ElemIndex = 0; ElemIndex != 2; ++ElemIndex) { 1120 // Result pointer for the store later. 1121 if (!this->DiscardResult) { 1122 if (!this->emitGetLocal(PT_Ptr, ResultOffset, E)) 1123 return false; 1124 } 1125 1126 // The actual operation. 1127 switch (Op) { 1128 case BO_Add: 1129 if (!loadComplexValue(LHSIsComplex, true, ElemIndex, LHSOffset, LHS)) 1130 return false; 1131 1132 if (!loadComplexValue(RHSIsComplex, true, ElemIndex, RHSOffset, RHS)) 1133 return false; 1134 if (ResultElemT == PT_Float) { 1135 if (!this->emitAddf(getRoundingMode(E), E)) 1136 return false; 1137 } else { 1138 if (!this->emitAdd(ResultElemT, E)) 1139 return false; 1140 } 1141 break; 1142 case BO_Sub: 1143 if (!loadComplexValue(LHSIsComplex, true, ElemIndex, LHSOffset, LHS)) 1144 return false; 1145 1146 if (!loadComplexValue(RHSIsComplex, true, ElemIndex, RHSOffset, RHS)) 1147 return false; 1148 if (ResultElemT == PT_Float) { 1149 if (!this->emitSubf(getRoundingMode(E), E)) 1150 return false; 1151 } else { 1152 if (!this->emitSub(ResultElemT, E)) 1153 return false; 1154 } 1155 break; 1156 case BO_Mul: 1157 if (!loadComplexValue(LHSIsComplex, false, ElemIndex, LHSOffset, LHS)) 1158 return false; 1159 1160 if (!loadComplexValue(RHSIsComplex, false, ElemIndex, RHSOffset, RHS)) 1161 return false; 1162 1163 if (ResultElemT == PT_Float) { 1164 if (!this->emitMulf(getRoundingMode(E), E)) 1165 return false; 1166 } else { 1167 if (!this->emitMul(ResultElemT, E)) 1168 return false; 1169 } 1170 break; 1171 case BO_Div: 1172 assert(!RHSIsComplex); 1173 if (!loadComplexValue(LHSIsComplex, false, ElemIndex, LHSOffset, LHS)) 1174 return false; 1175 1176 if (!loadComplexValue(RHSIsComplex, false, ElemIndex, RHSOffset, RHS)) 1177 return false; 1178 1179 if (ResultElemT == PT_Float) { 1180 if (!this->emitDivf(getRoundingMode(E), E)) 1181 return false; 1182 } else { 1183 if (!this->emitDiv(ResultElemT, E)) 1184 return false; 1185 } 1186 break; 1187 1188 default: 1189 return false; 1190 } 1191 1192 if (!this->DiscardResult) { 1193 // Initialize array element with the value we just computed. 1194 if (!this->emitInitElemPop(ResultElemT, ElemIndex, E)) 1195 return false; 1196 } else { 1197 if (!this->emitPop(ResultElemT, E)) 1198 return false; 1199 } 1200 } 1201 return true; 1202 } 1203 1204 template <class Emitter> 1205 bool Compiler<Emitter>::VisitImplicitValueInitExpr( 1206 const ImplicitValueInitExpr *E) { 1207 QualType QT = E->getType(); 1208 1209 if (std::optional<PrimType> T = classify(QT)) 1210 return this->visitZeroInitializer(*T, QT, E); 1211 1212 if (QT->isRecordType()) { 1213 const RecordDecl *RD = QT->getAsRecordDecl(); 1214 assert(RD); 1215 if (RD->isInvalidDecl()) 1216 return false; 1217 if (RD->isUnion()) { 1218 // C++11 [dcl.init]p5: If T is a (possibly cv-qualified) union type, the 1219 // object's first non-static named data member is zero-initialized 1220 // FIXME 1221 return false; 1222 } 1223 1224 if (const auto *CXXRD = dyn_cast<CXXRecordDecl>(RD); 1225 CXXRD && CXXRD->getNumVBases() > 0) { 1226 // TODO: Diagnose. 1227 return false; 1228 } 1229 1230 const Record *R = getRecord(QT); 1231 if (!R) 1232 return false; 1233 1234 assert(Initializing); 1235 return this->visitZeroRecordInitializer(R, E); 1236 } 1237 1238 if (QT->isIncompleteArrayType()) 1239 return true; 1240 1241 if (QT->isArrayType()) { 1242 const ArrayType *AT = QT->getAsArrayTypeUnsafe(); 1243 assert(AT); 1244 const auto *CAT = cast<ConstantArrayType>(AT); 1245 size_t NumElems = CAT->getZExtSize(); 1246 PrimType ElemT = classifyPrim(CAT->getElementType()); 1247 1248 for (size_t I = 0; I != NumElems; ++I) { 1249 if (!this->visitZeroInitializer(ElemT, CAT->getElementType(), E)) 1250 return false; 1251 if (!this->emitInitElem(ElemT, I, E)) 1252 return false; 1253 } 1254 1255 return true; 1256 } 1257 1258 if (const auto *ComplexTy = E->getType()->getAs<ComplexType>()) { 1259 assert(Initializing); 1260 QualType ElemQT = ComplexTy->getElementType(); 1261 PrimType ElemT = classifyPrim(ElemQT); 1262 for (unsigned I = 0; I < 2; ++I) { 1263 if (!this->visitZeroInitializer(ElemT, ElemQT, E)) 1264 return false; 1265 if (!this->emitInitElem(ElemT, I, E)) 1266 return false; 1267 } 1268 return true; 1269 } 1270 1271 if (const auto *VecT = E->getType()->getAs<VectorType>()) { 1272 unsigned NumVecElements = VecT->getNumElements(); 1273 QualType ElemQT = VecT->getElementType(); 1274 PrimType ElemT = classifyPrim(ElemQT); 1275 1276 for (unsigned I = 0; I < NumVecElements; ++I) { 1277 if (!this->visitZeroInitializer(ElemT, ElemQT, E)) 1278 return false; 1279 if (!this->emitInitElem(ElemT, I, E)) 1280 return false; 1281 } 1282 return true; 1283 } 1284 1285 return false; 1286 } 1287 1288 template <class Emitter> 1289 bool Compiler<Emitter>::VisitArraySubscriptExpr(const ArraySubscriptExpr *E) { 1290 const Expr *LHS = E->getLHS(); 1291 const Expr *RHS = E->getRHS(); 1292 const Expr *Index = E->getIdx(); 1293 1294 if (DiscardResult) 1295 return this->discard(LHS) && this->discard(RHS); 1296 1297 // C++17's rules require us to evaluate the LHS first, regardless of which 1298 // side is the base. 1299 bool Success = true; 1300 for (const Expr *SubExpr : {LHS, RHS}) { 1301 if (!this->visit(SubExpr)) 1302 Success = false; 1303 } 1304 1305 if (!Success) 1306 return false; 1307 1308 PrimType IndexT = classifyPrim(Index->getType()); 1309 // If the index is first, we need to change that. 1310 if (LHS == Index) { 1311 if (!this->emitFlip(PT_Ptr, IndexT, E)) 1312 return false; 1313 } 1314 1315 return this->emitArrayElemPtrPop(IndexT, E); 1316 } 1317 1318 template <class Emitter> 1319 bool Compiler<Emitter>::visitInitList(ArrayRef<const Expr *> Inits, 1320 const Expr *ArrayFiller, const Expr *E) { 1321 1322 QualType QT = E->getType(); 1323 1324 if (const auto *AT = QT->getAs<AtomicType>()) 1325 QT = AT->getValueType(); 1326 1327 if (QT->isVoidType()) 1328 return this->emitInvalid(E); 1329 1330 // Handle discarding first. 1331 if (DiscardResult) { 1332 for (const Expr *Init : Inits) { 1333 if (!this->discard(Init)) 1334 return false; 1335 } 1336 return true; 1337 } 1338 1339 // Primitive values. 1340 if (std::optional<PrimType> T = classify(QT)) { 1341 assert(!DiscardResult); 1342 if (Inits.size() == 0) 1343 return this->visitZeroInitializer(*T, QT, E); 1344 assert(Inits.size() == 1); 1345 return this->delegate(Inits[0]); 1346 } 1347 1348 if (QT->isRecordType()) { 1349 const Record *R = getRecord(QT); 1350 1351 if (Inits.size() == 1 && E->getType() == Inits[0]->getType()) 1352 return this->delegate(Inits[0]); 1353 1354 auto initPrimitiveField = [=](const Record::Field *FieldToInit, 1355 const Expr *Init, PrimType T) -> bool { 1356 InitStackScope<Emitter> ISS(this, isa<CXXDefaultInitExpr>(Init)); 1357 if (!this->visit(Init)) 1358 return false; 1359 1360 if (FieldToInit->isBitField()) 1361 return this->emitInitBitField(T, FieldToInit, E); 1362 return this->emitInitField(T, FieldToInit->Offset, E); 1363 }; 1364 1365 auto initCompositeField = [=](const Record::Field *FieldToInit, 1366 const Expr *Init) -> bool { 1367 InitStackScope<Emitter> ISS(this, isa<CXXDefaultInitExpr>(Init)); 1368 InitLinkScope<Emitter> ILS(this, InitLink::Field(FieldToInit->Offset)); 1369 // Non-primitive case. Get a pointer to the field-to-initialize 1370 // on the stack and recurse into visitInitializer(). 1371 if (!this->emitGetPtrField(FieldToInit->Offset, Init)) 1372 return false; 1373 if (!this->visitInitializer(Init)) 1374 return false; 1375 return this->emitPopPtr(E); 1376 }; 1377 1378 if (R->isUnion()) { 1379 if (Inits.size() == 0) { 1380 if (!this->visitZeroRecordInitializer(R, E)) 1381 return false; 1382 } else { 1383 const Expr *Init = Inits[0]; 1384 const FieldDecl *FToInit = nullptr; 1385 if (const auto *ILE = dyn_cast<InitListExpr>(E)) 1386 FToInit = ILE->getInitializedFieldInUnion(); 1387 else 1388 FToInit = cast<CXXParenListInitExpr>(E)->getInitializedFieldInUnion(); 1389 1390 const Record::Field *FieldToInit = R->getField(FToInit); 1391 if (std::optional<PrimType> T = classify(Init)) { 1392 if (!initPrimitiveField(FieldToInit, Init, *T)) 1393 return false; 1394 } else { 1395 if (!initCompositeField(FieldToInit, Init)) 1396 return false; 1397 } 1398 } 1399 return this->emitFinishInit(E); 1400 } 1401 1402 assert(!R->isUnion()); 1403 unsigned InitIndex = 0; 1404 for (const Expr *Init : Inits) { 1405 // Skip unnamed bitfields. 1406 while (InitIndex < R->getNumFields() && 1407 R->getField(InitIndex)->Decl->isUnnamedBitField()) 1408 ++InitIndex; 1409 1410 if (std::optional<PrimType> T = classify(Init)) { 1411 const Record::Field *FieldToInit = R->getField(InitIndex); 1412 if (!initPrimitiveField(FieldToInit, Init, *T)) 1413 return false; 1414 ++InitIndex; 1415 } else { 1416 // Initializer for a direct base class. 1417 if (const Record::Base *B = R->getBase(Init->getType())) { 1418 if (!this->emitGetPtrBase(B->Offset, Init)) 1419 return false; 1420 1421 if (!this->visitInitializer(Init)) 1422 return false; 1423 1424 if (!this->emitFinishInitPop(E)) 1425 return false; 1426 // Base initializers don't increase InitIndex, since they don't count 1427 // into the Record's fields. 1428 } else { 1429 const Record::Field *FieldToInit = R->getField(InitIndex); 1430 if (!initCompositeField(FieldToInit, Init)) 1431 return false; 1432 ++InitIndex; 1433 } 1434 } 1435 } 1436 return this->emitFinishInit(E); 1437 } 1438 1439 if (QT->isArrayType()) { 1440 if (Inits.size() == 1 && QT == Inits[0]->getType()) 1441 return this->delegate(Inits[0]); 1442 1443 unsigned ElementIndex = 0; 1444 for (const Expr *Init : Inits) { 1445 if (const auto *EmbedS = 1446 dyn_cast<EmbedExpr>(Init->IgnoreParenImpCasts())) { 1447 PrimType TargetT = classifyPrim(Init->getType()); 1448 1449 auto Eval = [&](const Expr *Init, unsigned ElemIndex) { 1450 PrimType InitT = classifyPrim(Init->getType()); 1451 if (!this->visit(Init)) 1452 return false; 1453 if (InitT != TargetT) { 1454 if (!this->emitCast(InitT, TargetT, E)) 1455 return false; 1456 } 1457 return this->emitInitElem(TargetT, ElemIndex, Init); 1458 }; 1459 if (!EmbedS->doForEachDataElement(Eval, ElementIndex)) 1460 return false; 1461 } else { 1462 if (!this->visitArrayElemInit(ElementIndex, Init)) 1463 return false; 1464 ++ElementIndex; 1465 } 1466 } 1467 1468 // Expand the filler expression. 1469 // FIXME: This should go away. 1470 if (ArrayFiller) { 1471 const ConstantArrayType *CAT = 1472 Ctx.getASTContext().getAsConstantArrayType(QT); 1473 uint64_t NumElems = CAT->getZExtSize(); 1474 1475 for (; ElementIndex != NumElems; ++ElementIndex) { 1476 if (!this->visitArrayElemInit(ElementIndex, ArrayFiller)) 1477 return false; 1478 } 1479 } 1480 1481 return this->emitFinishInit(E); 1482 } 1483 1484 if (const auto *ComplexTy = QT->getAs<ComplexType>()) { 1485 unsigned NumInits = Inits.size(); 1486 1487 if (NumInits == 1) 1488 return this->delegate(Inits[0]); 1489 1490 QualType ElemQT = ComplexTy->getElementType(); 1491 PrimType ElemT = classifyPrim(ElemQT); 1492 if (NumInits == 0) { 1493 // Zero-initialize both elements. 1494 for (unsigned I = 0; I < 2; ++I) { 1495 if (!this->visitZeroInitializer(ElemT, ElemQT, E)) 1496 return false; 1497 if (!this->emitInitElem(ElemT, I, E)) 1498 return false; 1499 } 1500 } else if (NumInits == 2) { 1501 unsigned InitIndex = 0; 1502 for (const Expr *Init : Inits) { 1503 if (!this->visit(Init)) 1504 return false; 1505 1506 if (!this->emitInitElem(ElemT, InitIndex, E)) 1507 return false; 1508 ++InitIndex; 1509 } 1510 } 1511 return true; 1512 } 1513 1514 if (const auto *VecT = QT->getAs<VectorType>()) { 1515 unsigned NumVecElements = VecT->getNumElements(); 1516 assert(NumVecElements >= Inits.size()); 1517 1518 QualType ElemQT = VecT->getElementType(); 1519 PrimType ElemT = classifyPrim(ElemQT); 1520 1521 // All initializer elements. 1522 unsigned InitIndex = 0; 1523 for (const Expr *Init : Inits) { 1524 if (!this->visit(Init)) 1525 return false; 1526 1527 // If the initializer is of vector type itself, we have to deconstruct 1528 // that and initialize all the target fields from the initializer fields. 1529 if (const auto *InitVecT = Init->getType()->getAs<VectorType>()) { 1530 if (!this->emitCopyArray(ElemT, 0, InitIndex, 1531 InitVecT->getNumElements(), E)) 1532 return false; 1533 InitIndex += InitVecT->getNumElements(); 1534 } else { 1535 if (!this->emitInitElem(ElemT, InitIndex, E)) 1536 return false; 1537 ++InitIndex; 1538 } 1539 } 1540 1541 assert(InitIndex <= NumVecElements); 1542 1543 // Fill the rest with zeroes. 1544 for (; InitIndex != NumVecElements; ++InitIndex) { 1545 if (!this->visitZeroInitializer(ElemT, ElemQT, E)) 1546 return false; 1547 if (!this->emitInitElem(ElemT, InitIndex, E)) 1548 return false; 1549 } 1550 return true; 1551 } 1552 1553 return false; 1554 } 1555 1556 /// Pointer to the array(not the element!) must be on the stack when calling 1557 /// this. 1558 template <class Emitter> 1559 bool Compiler<Emitter>::visitArrayElemInit(unsigned ElemIndex, 1560 const Expr *Init) { 1561 if (std::optional<PrimType> T = classify(Init->getType())) { 1562 // Visit the primitive element like normal. 1563 if (!this->visit(Init)) 1564 return false; 1565 return this->emitInitElem(*T, ElemIndex, Init); 1566 } 1567 1568 InitLinkScope<Emitter> ILS(this, InitLink::Elem(ElemIndex)); 1569 // Advance the pointer currently on the stack to the given 1570 // dimension. 1571 if (!this->emitConstUint32(ElemIndex, Init)) 1572 return false; 1573 if (!this->emitArrayElemPtrUint32(Init)) 1574 return false; 1575 if (!this->visitInitializer(Init)) 1576 return false; 1577 return this->emitFinishInitPop(Init); 1578 } 1579 1580 template <class Emitter> 1581 bool Compiler<Emitter>::VisitInitListExpr(const InitListExpr *E) { 1582 return this->visitInitList(E->inits(), E->getArrayFiller(), E); 1583 } 1584 1585 template <class Emitter> 1586 bool Compiler<Emitter>::VisitCXXParenListInitExpr( 1587 const CXXParenListInitExpr *E) { 1588 return this->visitInitList(E->getInitExprs(), E->getArrayFiller(), E); 1589 } 1590 1591 template <class Emitter> 1592 bool Compiler<Emitter>::VisitSubstNonTypeTemplateParmExpr( 1593 const SubstNonTypeTemplateParmExpr *E) { 1594 return this->delegate(E->getReplacement()); 1595 } 1596 1597 template <class Emitter> 1598 bool Compiler<Emitter>::VisitConstantExpr(const ConstantExpr *E) { 1599 std::optional<PrimType> T = classify(E->getType()); 1600 if (T && E->hasAPValueResult()) { 1601 // Try to emit the APValue directly, without visiting the subexpr. 1602 // This will only fail if we can't emit the APValue, so won't emit any 1603 // diagnostics or any double values. 1604 if (DiscardResult) 1605 return true; 1606 1607 if (this->visitAPValue(E->getAPValueResult(), *T, E)) 1608 return true; 1609 } 1610 return this->delegate(E->getSubExpr()); 1611 } 1612 1613 template <class Emitter> 1614 bool Compiler<Emitter>::VisitEmbedExpr(const EmbedExpr *E) { 1615 auto It = E->begin(); 1616 return this->visit(*It); 1617 } 1618 1619 static CharUnits AlignOfType(QualType T, const ASTContext &ASTCtx, 1620 UnaryExprOrTypeTrait Kind) { 1621 bool AlignOfReturnsPreferred = 1622 ASTCtx.getLangOpts().getClangABICompat() <= LangOptions::ClangABI::Ver7; 1623 1624 // C++ [expr.alignof]p3: 1625 // When alignof is applied to a reference type, the result is the 1626 // alignment of the referenced type. 1627 if (const auto *Ref = T->getAs<ReferenceType>()) 1628 T = Ref->getPointeeType(); 1629 1630 if (T.getQualifiers().hasUnaligned()) 1631 return CharUnits::One(); 1632 1633 // __alignof is defined to return the preferred alignment. 1634 // Before 8, clang returned the preferred alignment for alignof and 1635 // _Alignof as well. 1636 if (Kind == UETT_PreferredAlignOf || AlignOfReturnsPreferred) 1637 return ASTCtx.toCharUnitsFromBits(ASTCtx.getPreferredTypeAlign(T)); 1638 1639 return ASTCtx.getTypeAlignInChars(T); 1640 } 1641 1642 template <class Emitter> 1643 bool Compiler<Emitter>::VisitUnaryExprOrTypeTraitExpr( 1644 const UnaryExprOrTypeTraitExpr *E) { 1645 UnaryExprOrTypeTrait Kind = E->getKind(); 1646 const ASTContext &ASTCtx = Ctx.getASTContext(); 1647 1648 if (Kind == UETT_SizeOf || Kind == UETT_DataSizeOf) { 1649 QualType ArgType = E->getTypeOfArgument(); 1650 1651 // C++ [expr.sizeof]p2: "When applied to a reference or a reference type, 1652 // the result is the size of the referenced type." 1653 if (const auto *Ref = ArgType->getAs<ReferenceType>()) 1654 ArgType = Ref->getPointeeType(); 1655 1656 CharUnits Size; 1657 if (ArgType->isVoidType() || ArgType->isFunctionType()) 1658 Size = CharUnits::One(); 1659 else { 1660 if (ArgType->isDependentType() || !ArgType->isConstantSizeType()) 1661 return false; 1662 1663 if (Kind == UETT_SizeOf) 1664 Size = ASTCtx.getTypeSizeInChars(ArgType); 1665 else 1666 Size = ASTCtx.getTypeInfoDataSizeInChars(ArgType).Width; 1667 } 1668 1669 if (DiscardResult) 1670 return true; 1671 1672 return this->emitConst(Size.getQuantity(), E); 1673 } 1674 1675 if (Kind == UETT_AlignOf || Kind == UETT_PreferredAlignOf) { 1676 CharUnits Size; 1677 1678 if (E->isArgumentType()) { 1679 QualType ArgType = E->getTypeOfArgument(); 1680 1681 Size = AlignOfType(ArgType, ASTCtx, Kind); 1682 } else { 1683 // Argument is an expression, not a type. 1684 const Expr *Arg = E->getArgumentExpr()->IgnoreParens(); 1685 1686 // The kinds of expressions that we have special-case logic here for 1687 // should be kept up to date with the special checks for those 1688 // expressions in Sema. 1689 1690 // alignof decl is always accepted, even if it doesn't make sense: we 1691 // default to 1 in those cases. 1692 if (const auto *DRE = dyn_cast<DeclRefExpr>(Arg)) 1693 Size = ASTCtx.getDeclAlign(DRE->getDecl(), 1694 /*RefAsPointee*/ true); 1695 else if (const auto *ME = dyn_cast<MemberExpr>(Arg)) 1696 Size = ASTCtx.getDeclAlign(ME->getMemberDecl(), 1697 /*RefAsPointee*/ true); 1698 else 1699 Size = AlignOfType(Arg->getType(), ASTCtx, Kind); 1700 } 1701 1702 if (DiscardResult) 1703 return true; 1704 1705 return this->emitConst(Size.getQuantity(), E); 1706 } 1707 1708 if (Kind == UETT_VectorElements) { 1709 if (const auto *VT = E->getTypeOfArgument()->getAs<VectorType>()) 1710 return this->emitConst(VT->getNumElements(), E); 1711 assert(E->getTypeOfArgument()->isSizelessVectorType()); 1712 return this->emitSizelessVectorElementSize(E); 1713 } 1714 1715 if (Kind == UETT_VecStep) { 1716 if (const auto *VT = E->getTypeOfArgument()->getAs<VectorType>()) { 1717 unsigned N = VT->getNumElements(); 1718 1719 // The vec_step built-in functions that take a 3-component 1720 // vector return 4. (OpenCL 1.1 spec 6.11.12) 1721 if (N == 3) 1722 N = 4; 1723 1724 return this->emitConst(N, E); 1725 } 1726 return this->emitConst(1, E); 1727 } 1728 1729 return false; 1730 } 1731 1732 template <class Emitter> 1733 bool Compiler<Emitter>::VisitMemberExpr(const MemberExpr *E) { 1734 // 'Base.Member' 1735 const Expr *Base = E->getBase(); 1736 const ValueDecl *Member = E->getMemberDecl(); 1737 1738 if (DiscardResult) 1739 return this->discard(Base); 1740 1741 // MemberExprs are almost always lvalues, in which case we don't need to 1742 // do the load. But sometimes they aren't. 1743 const auto maybeLoadValue = [&]() -> bool { 1744 if (E->isGLValue()) 1745 return true; 1746 if (std::optional<PrimType> T = classify(E)) 1747 return this->emitLoadPop(*T, E); 1748 return false; 1749 }; 1750 1751 if (const auto *VD = dyn_cast<VarDecl>(Member)) { 1752 // I am almost confident in saying that a var decl must be static 1753 // and therefore registered as a global variable. But this will probably 1754 // turn out to be wrong some time in the future, as always. 1755 if (auto GlobalIndex = P.getGlobal(VD)) 1756 return this->emitGetPtrGlobal(*GlobalIndex, E) && maybeLoadValue(); 1757 return false; 1758 } 1759 1760 if (!isa<FieldDecl>(Member)) 1761 return this->discard(Base) && this->visitDeclRef(Member, E); 1762 1763 if (Initializing) { 1764 if (!this->delegate(Base)) 1765 return false; 1766 } else { 1767 if (!this->visit(Base)) 1768 return false; 1769 } 1770 1771 // Base above gives us a pointer on the stack. 1772 const auto *FD = cast<FieldDecl>(Member); 1773 const RecordDecl *RD = FD->getParent(); 1774 const Record *R = getRecord(RD); 1775 if (!R) 1776 return false; 1777 const Record::Field *F = R->getField(FD); 1778 // Leave a pointer to the field on the stack. 1779 if (F->Decl->getType()->isReferenceType()) 1780 return this->emitGetFieldPop(PT_Ptr, F->Offset, E) && maybeLoadValue(); 1781 return this->emitGetPtrFieldPop(F->Offset, E) && maybeLoadValue(); 1782 } 1783 1784 template <class Emitter> 1785 bool Compiler<Emitter>::VisitArrayInitIndexExpr(const ArrayInitIndexExpr *E) { 1786 // ArrayIndex might not be set if a ArrayInitIndexExpr is being evaluated 1787 // stand-alone, e.g. via EvaluateAsInt(). 1788 if (!ArrayIndex) 1789 return false; 1790 return this->emitConst(*ArrayIndex, E); 1791 } 1792 1793 template <class Emitter> 1794 bool Compiler<Emitter>::VisitArrayInitLoopExpr(const ArrayInitLoopExpr *E) { 1795 assert(Initializing); 1796 assert(!DiscardResult); 1797 1798 // We visit the common opaque expression here once so we have its value 1799 // cached. 1800 if (!this->discard(E->getCommonExpr())) 1801 return false; 1802 1803 // TODO: This compiles to quite a lot of bytecode if the array is larger. 1804 // Investigate compiling this to a loop. 1805 const Expr *SubExpr = E->getSubExpr(); 1806 size_t Size = E->getArraySize().getZExtValue(); 1807 1808 // So, every iteration, we execute an assignment here 1809 // where the LHS is on the stack (the target array) 1810 // and the RHS is our SubExpr. 1811 for (size_t I = 0; I != Size; ++I) { 1812 ArrayIndexScope<Emitter> IndexScope(this, I); 1813 BlockScope<Emitter> BS(this); 1814 1815 if (!this->visitArrayElemInit(I, SubExpr)) 1816 return false; 1817 if (!BS.destroyLocals()) 1818 return false; 1819 } 1820 return true; 1821 } 1822 1823 template <class Emitter> 1824 bool Compiler<Emitter>::VisitOpaqueValueExpr(const OpaqueValueExpr *E) { 1825 const Expr *SourceExpr = E->getSourceExpr(); 1826 if (!SourceExpr) 1827 return false; 1828 1829 if (Initializing) 1830 return this->visitInitializer(SourceExpr); 1831 1832 PrimType SubExprT = classify(SourceExpr).value_or(PT_Ptr); 1833 if (auto It = OpaqueExprs.find(E); It != OpaqueExprs.end()) 1834 return this->emitGetLocal(SubExprT, It->second, E); 1835 1836 if (!this->visit(SourceExpr)) 1837 return false; 1838 1839 // At this point we either have the evaluated source expression or a pointer 1840 // to an object on the stack. We want to create a local variable that stores 1841 // this value. 1842 unsigned LocalIndex = allocateLocalPrimitive(E, SubExprT, /*IsConst=*/true); 1843 if (!this->emitSetLocal(SubExprT, LocalIndex, E)) 1844 return false; 1845 1846 // Here the local variable is created but the value is removed from the stack, 1847 // so we put it back if the caller needs it. 1848 if (!DiscardResult) { 1849 if (!this->emitGetLocal(SubExprT, LocalIndex, E)) 1850 return false; 1851 } 1852 1853 // This is cleaned up when the local variable is destroyed. 1854 OpaqueExprs.insert({E, LocalIndex}); 1855 1856 return true; 1857 } 1858 1859 template <class Emitter> 1860 bool Compiler<Emitter>::VisitAbstractConditionalOperator( 1861 const AbstractConditionalOperator *E) { 1862 const Expr *Condition = E->getCond(); 1863 const Expr *TrueExpr = E->getTrueExpr(); 1864 const Expr *FalseExpr = E->getFalseExpr(); 1865 1866 LabelTy LabelEnd = this->getLabel(); // Label after the operator. 1867 LabelTy LabelFalse = this->getLabel(); // Label for the false expr. 1868 1869 if (!this->visitBool(Condition)) 1870 return false; 1871 1872 if (!this->jumpFalse(LabelFalse)) 1873 return false; 1874 1875 { 1876 LocalScope<Emitter> S(this); 1877 if (!this->delegate(TrueExpr)) 1878 return false; 1879 if (!S.destroyLocals()) 1880 return false; 1881 } 1882 1883 if (!this->jump(LabelEnd)) 1884 return false; 1885 1886 this->emitLabel(LabelFalse); 1887 1888 { 1889 LocalScope<Emitter> S(this); 1890 if (!this->delegate(FalseExpr)) 1891 return false; 1892 if (!S.destroyLocals()) 1893 return false; 1894 } 1895 1896 this->fallthrough(LabelEnd); 1897 this->emitLabel(LabelEnd); 1898 1899 return true; 1900 } 1901 1902 template <class Emitter> 1903 bool Compiler<Emitter>::VisitStringLiteral(const StringLiteral *E) { 1904 if (DiscardResult) 1905 return true; 1906 1907 if (!Initializing) { 1908 unsigned StringIndex = P.createGlobalString(E); 1909 return this->emitGetPtrGlobal(StringIndex, E); 1910 } 1911 1912 // We are initializing an array on the stack. 1913 const ConstantArrayType *CAT = 1914 Ctx.getASTContext().getAsConstantArrayType(E->getType()); 1915 assert(CAT && "a string literal that's not a constant array?"); 1916 1917 // If the initializer string is too long, a diagnostic has already been 1918 // emitted. Read only the array length from the string literal. 1919 unsigned ArraySize = CAT->getZExtSize(); 1920 unsigned N = std::min(ArraySize, E->getLength()); 1921 size_t CharWidth = E->getCharByteWidth(); 1922 1923 for (unsigned I = 0; I != N; ++I) { 1924 uint32_t CodeUnit = E->getCodeUnit(I); 1925 1926 if (CharWidth == 1) { 1927 this->emitConstSint8(CodeUnit, E); 1928 this->emitInitElemSint8(I, E); 1929 } else if (CharWidth == 2) { 1930 this->emitConstUint16(CodeUnit, E); 1931 this->emitInitElemUint16(I, E); 1932 } else if (CharWidth == 4) { 1933 this->emitConstUint32(CodeUnit, E); 1934 this->emitInitElemUint32(I, E); 1935 } else { 1936 llvm_unreachable("unsupported character width"); 1937 } 1938 } 1939 1940 // Fill up the rest of the char array with NUL bytes. 1941 for (unsigned I = N; I != ArraySize; ++I) { 1942 if (CharWidth == 1) { 1943 this->emitConstSint8(0, E); 1944 this->emitInitElemSint8(I, E); 1945 } else if (CharWidth == 2) { 1946 this->emitConstUint16(0, E); 1947 this->emitInitElemUint16(I, E); 1948 } else if (CharWidth == 4) { 1949 this->emitConstUint32(0, E); 1950 this->emitInitElemUint32(I, E); 1951 } else { 1952 llvm_unreachable("unsupported character width"); 1953 } 1954 } 1955 1956 return true; 1957 } 1958 1959 template <class Emitter> 1960 bool Compiler<Emitter>::VisitObjCStringLiteral(const ObjCStringLiteral *E) { 1961 return this->delegate(E->getString()); 1962 } 1963 1964 template <class Emitter> 1965 bool Compiler<Emitter>::VisitObjCEncodeExpr(const ObjCEncodeExpr *E) { 1966 auto &A = Ctx.getASTContext(); 1967 std::string Str; 1968 A.getObjCEncodingForType(E->getEncodedType(), Str); 1969 StringLiteral *SL = 1970 StringLiteral::Create(A, Str, StringLiteralKind::Ordinary, 1971 /*Pascal=*/false, E->getType(), E->getAtLoc()); 1972 return this->delegate(SL); 1973 } 1974 1975 template <class Emitter> 1976 bool Compiler<Emitter>::VisitSYCLUniqueStableNameExpr( 1977 const SYCLUniqueStableNameExpr *E) { 1978 if (DiscardResult) 1979 return true; 1980 1981 assert(!Initializing); 1982 1983 auto &A = Ctx.getASTContext(); 1984 std::string ResultStr = E->ComputeName(A); 1985 1986 QualType CharTy = A.CharTy.withConst(); 1987 APInt Size(A.getTypeSize(A.getSizeType()), ResultStr.size() + 1); 1988 QualType ArrayTy = A.getConstantArrayType(CharTy, Size, nullptr, 1989 ArraySizeModifier::Normal, 0); 1990 1991 StringLiteral *SL = 1992 StringLiteral::Create(A, ResultStr, StringLiteralKind::Ordinary, 1993 /*Pascal=*/false, ArrayTy, E->getLocation()); 1994 1995 unsigned StringIndex = P.createGlobalString(SL); 1996 return this->emitGetPtrGlobal(StringIndex, E); 1997 } 1998 1999 template <class Emitter> 2000 bool Compiler<Emitter>::VisitCharacterLiteral(const CharacterLiteral *E) { 2001 if (DiscardResult) 2002 return true; 2003 return this->emitConst(E->getValue(), E); 2004 } 2005 2006 template <class Emitter> 2007 bool Compiler<Emitter>::VisitFloatCompoundAssignOperator( 2008 const CompoundAssignOperator *E) { 2009 2010 const Expr *LHS = E->getLHS(); 2011 const Expr *RHS = E->getRHS(); 2012 QualType LHSType = LHS->getType(); 2013 QualType LHSComputationType = E->getComputationLHSType(); 2014 QualType ResultType = E->getComputationResultType(); 2015 std::optional<PrimType> LT = classify(LHSComputationType); 2016 std::optional<PrimType> RT = classify(ResultType); 2017 2018 assert(ResultType->isFloatingType()); 2019 2020 if (!LT || !RT) 2021 return false; 2022 2023 PrimType LHST = classifyPrim(LHSType); 2024 2025 // C++17 onwards require that we evaluate the RHS first. 2026 // Compute RHS and save it in a temporary variable so we can 2027 // load it again later. 2028 if (!visit(RHS)) 2029 return false; 2030 2031 unsigned TempOffset = this->allocateLocalPrimitive(E, *RT, /*IsConst=*/true); 2032 if (!this->emitSetLocal(*RT, TempOffset, E)) 2033 return false; 2034 2035 // First, visit LHS. 2036 if (!visit(LHS)) 2037 return false; 2038 if (!this->emitLoad(LHST, E)) 2039 return false; 2040 2041 // If necessary, convert LHS to its computation type. 2042 if (!this->emitPrimCast(LHST, classifyPrim(LHSComputationType), 2043 LHSComputationType, E)) 2044 return false; 2045 2046 // Now load RHS. 2047 if (!this->emitGetLocal(*RT, TempOffset, E)) 2048 return false; 2049 2050 llvm::RoundingMode RM = getRoundingMode(E); 2051 switch (E->getOpcode()) { 2052 case BO_AddAssign: 2053 if (!this->emitAddf(RM, E)) 2054 return false; 2055 break; 2056 case BO_SubAssign: 2057 if (!this->emitSubf(RM, E)) 2058 return false; 2059 break; 2060 case BO_MulAssign: 2061 if (!this->emitMulf(RM, E)) 2062 return false; 2063 break; 2064 case BO_DivAssign: 2065 if (!this->emitDivf(RM, E)) 2066 return false; 2067 break; 2068 default: 2069 return false; 2070 } 2071 2072 if (!this->emitPrimCast(classifyPrim(ResultType), LHST, LHS->getType(), E)) 2073 return false; 2074 2075 if (DiscardResult) 2076 return this->emitStorePop(LHST, E); 2077 return this->emitStore(LHST, E); 2078 } 2079 2080 template <class Emitter> 2081 bool Compiler<Emitter>::VisitPointerCompoundAssignOperator( 2082 const CompoundAssignOperator *E) { 2083 BinaryOperatorKind Op = E->getOpcode(); 2084 const Expr *LHS = E->getLHS(); 2085 const Expr *RHS = E->getRHS(); 2086 std::optional<PrimType> LT = classify(LHS->getType()); 2087 std::optional<PrimType> RT = classify(RHS->getType()); 2088 2089 if (Op != BO_AddAssign && Op != BO_SubAssign) 2090 return false; 2091 2092 if (!LT || !RT) 2093 return false; 2094 2095 if (!visit(LHS)) 2096 return false; 2097 2098 if (!this->emitLoad(*LT, LHS)) 2099 return false; 2100 2101 if (!visit(RHS)) 2102 return false; 2103 2104 if (Op == BO_AddAssign) { 2105 if (!this->emitAddOffset(*RT, E)) 2106 return false; 2107 } else { 2108 if (!this->emitSubOffset(*RT, E)) 2109 return false; 2110 } 2111 2112 if (DiscardResult) 2113 return this->emitStorePopPtr(E); 2114 return this->emitStorePtr(E); 2115 } 2116 2117 template <class Emitter> 2118 bool Compiler<Emitter>::VisitCompoundAssignOperator( 2119 const CompoundAssignOperator *E) { 2120 2121 const Expr *LHS = E->getLHS(); 2122 const Expr *RHS = E->getRHS(); 2123 std::optional<PrimType> LHSComputationT = 2124 classify(E->getComputationLHSType()); 2125 std::optional<PrimType> LT = classify(LHS->getType()); 2126 std::optional<PrimType> RT = classify(RHS->getType()); 2127 std::optional<PrimType> ResultT = classify(E->getType()); 2128 2129 if (!Ctx.getLangOpts().CPlusPlus14) 2130 return this->visit(RHS) && this->visit(LHS) && this->emitError(E); 2131 2132 if (!LT || !RT || !ResultT || !LHSComputationT) 2133 return false; 2134 2135 // Handle floating point operations separately here, since they 2136 // require special care. 2137 2138 if (ResultT == PT_Float || RT == PT_Float) 2139 return VisitFloatCompoundAssignOperator(E); 2140 2141 if (E->getType()->isPointerType()) 2142 return VisitPointerCompoundAssignOperator(E); 2143 2144 assert(!E->getType()->isPointerType() && "Handled above"); 2145 assert(!E->getType()->isFloatingType() && "Handled above"); 2146 2147 // C++17 onwards require that we evaluate the RHS first. 2148 // Compute RHS and save it in a temporary variable so we can 2149 // load it again later. 2150 // FIXME: Compound assignments are unsequenced in C, so we might 2151 // have to figure out how to reject them. 2152 if (!visit(RHS)) 2153 return false; 2154 2155 unsigned TempOffset = this->allocateLocalPrimitive(E, *RT, /*IsConst=*/true); 2156 2157 if (!this->emitSetLocal(*RT, TempOffset, E)) 2158 return false; 2159 2160 // Get LHS pointer, load its value and cast it to the 2161 // computation type if necessary. 2162 if (!visit(LHS)) 2163 return false; 2164 if (!this->emitLoad(*LT, E)) 2165 return false; 2166 if (LT != LHSComputationT) { 2167 if (!this->emitCast(*LT, *LHSComputationT, E)) 2168 return false; 2169 } 2170 2171 // Get the RHS value on the stack. 2172 if (!this->emitGetLocal(*RT, TempOffset, E)) 2173 return false; 2174 2175 // Perform operation. 2176 switch (E->getOpcode()) { 2177 case BO_AddAssign: 2178 if (!this->emitAdd(*LHSComputationT, E)) 2179 return false; 2180 break; 2181 case BO_SubAssign: 2182 if (!this->emitSub(*LHSComputationT, E)) 2183 return false; 2184 break; 2185 case BO_MulAssign: 2186 if (!this->emitMul(*LHSComputationT, E)) 2187 return false; 2188 break; 2189 case BO_DivAssign: 2190 if (!this->emitDiv(*LHSComputationT, E)) 2191 return false; 2192 break; 2193 case BO_RemAssign: 2194 if (!this->emitRem(*LHSComputationT, E)) 2195 return false; 2196 break; 2197 case BO_ShlAssign: 2198 if (!this->emitShl(*LHSComputationT, *RT, E)) 2199 return false; 2200 break; 2201 case BO_ShrAssign: 2202 if (!this->emitShr(*LHSComputationT, *RT, E)) 2203 return false; 2204 break; 2205 case BO_AndAssign: 2206 if (!this->emitBitAnd(*LHSComputationT, E)) 2207 return false; 2208 break; 2209 case BO_XorAssign: 2210 if (!this->emitBitXor(*LHSComputationT, E)) 2211 return false; 2212 break; 2213 case BO_OrAssign: 2214 if (!this->emitBitOr(*LHSComputationT, E)) 2215 return false; 2216 break; 2217 default: 2218 llvm_unreachable("Unimplemented compound assign operator"); 2219 } 2220 2221 // And now cast from LHSComputationT to ResultT. 2222 if (ResultT != LHSComputationT) { 2223 if (!this->emitCast(*LHSComputationT, *ResultT, E)) 2224 return false; 2225 } 2226 2227 // And store the result in LHS. 2228 if (DiscardResult) { 2229 if (LHS->refersToBitField()) 2230 return this->emitStoreBitFieldPop(*ResultT, E); 2231 return this->emitStorePop(*ResultT, E); 2232 } 2233 if (LHS->refersToBitField()) 2234 return this->emitStoreBitField(*ResultT, E); 2235 return this->emitStore(*ResultT, E); 2236 } 2237 2238 template <class Emitter> 2239 bool Compiler<Emitter>::VisitExprWithCleanups(const ExprWithCleanups *E) { 2240 LocalScope<Emitter> ES(this); 2241 const Expr *SubExpr = E->getSubExpr(); 2242 2243 return this->delegate(SubExpr) && ES.destroyLocals(E); 2244 } 2245 2246 template <class Emitter> 2247 bool Compiler<Emitter>::VisitMaterializeTemporaryExpr( 2248 const MaterializeTemporaryExpr *E) { 2249 const Expr *SubExpr = E->getSubExpr(); 2250 2251 if (Initializing) { 2252 // We already have a value, just initialize that. 2253 return this->delegate(SubExpr); 2254 } 2255 // If we don't end up using the materialized temporary anyway, don't 2256 // bother creating it. 2257 if (DiscardResult) 2258 return this->discard(SubExpr); 2259 2260 // When we're initializing a global variable *or* the storage duration of 2261 // the temporary is explicitly static, create a global variable. 2262 std::optional<PrimType> SubExprT = classify(SubExpr); 2263 bool IsStatic = E->getStorageDuration() == SD_Static; 2264 if (IsStatic) { 2265 std::optional<unsigned> GlobalIndex = P.createGlobal(E); 2266 if (!GlobalIndex) 2267 return false; 2268 2269 const LifetimeExtendedTemporaryDecl *TempDecl = 2270 E->getLifetimeExtendedTemporaryDecl(); 2271 if (IsStatic) 2272 assert(TempDecl); 2273 2274 if (SubExprT) { 2275 if (!this->visit(SubExpr)) 2276 return false; 2277 if (IsStatic) { 2278 if (!this->emitInitGlobalTemp(*SubExprT, *GlobalIndex, TempDecl, E)) 2279 return false; 2280 } else { 2281 if (!this->emitInitGlobal(*SubExprT, *GlobalIndex, E)) 2282 return false; 2283 } 2284 return this->emitGetPtrGlobal(*GlobalIndex, E); 2285 } 2286 2287 // Non-primitive values. 2288 if (!this->emitGetPtrGlobal(*GlobalIndex, E)) 2289 return false; 2290 if (!this->visitInitializer(SubExpr)) 2291 return false; 2292 if (IsStatic) 2293 return this->emitInitGlobalTempComp(TempDecl, E); 2294 return true; 2295 } 2296 2297 // For everyhing else, use local variables. 2298 if (SubExprT) { 2299 unsigned LocalIndex = allocateLocalPrimitive( 2300 SubExpr, *SubExprT, /*IsConst=*/true, /*IsExtended=*/true); 2301 if (!this->visit(SubExpr)) 2302 return false; 2303 if (!this->emitSetLocal(*SubExprT, LocalIndex, E)) 2304 return false; 2305 return this->emitGetPtrLocal(LocalIndex, E); 2306 } else { 2307 const Expr *Inner = E->getSubExpr()->skipRValueSubobjectAdjustments(); 2308 if (std::optional<unsigned> LocalIndex = 2309 allocateLocal(Inner, E->getExtendingDecl())) { 2310 InitLinkScope<Emitter> ILS(this, InitLink::Temp(*LocalIndex)); 2311 if (!this->emitGetPtrLocal(*LocalIndex, E)) 2312 return false; 2313 return this->visitInitializer(SubExpr); 2314 } 2315 } 2316 return false; 2317 } 2318 2319 template <class Emitter> 2320 bool Compiler<Emitter>::VisitCXXBindTemporaryExpr( 2321 const CXXBindTemporaryExpr *E) { 2322 return this->delegate(E->getSubExpr()); 2323 } 2324 2325 template <class Emitter> 2326 bool Compiler<Emitter>::VisitCompoundLiteralExpr(const CompoundLiteralExpr *E) { 2327 const Expr *Init = E->getInitializer(); 2328 if (Initializing) { 2329 // We already have a value, just initialize that. 2330 return this->visitInitializer(Init) && this->emitFinishInit(E); 2331 } 2332 2333 std::optional<PrimType> T = classify(E->getType()); 2334 if (E->isFileScope()) { 2335 // Avoid creating a variable if this is a primitive RValue anyway. 2336 if (T && !E->isLValue()) 2337 return this->delegate(Init); 2338 2339 if (std::optional<unsigned> GlobalIndex = P.createGlobal(E)) { 2340 if (!this->emitGetPtrGlobal(*GlobalIndex, E)) 2341 return false; 2342 2343 if (T) { 2344 if (!this->visit(Init)) 2345 return false; 2346 return this->emitInitGlobal(*T, *GlobalIndex, E); 2347 } 2348 2349 return this->visitInitializer(Init) && this->emitFinishInit(E); 2350 } 2351 2352 return false; 2353 } 2354 2355 // Otherwise, use a local variable. 2356 if (T && !E->isLValue()) { 2357 // For primitive types, we just visit the initializer. 2358 return this->delegate(Init); 2359 } else { 2360 unsigned LocalIndex; 2361 2362 if (T) 2363 LocalIndex = this->allocateLocalPrimitive(Init, *T, false, false); 2364 else if (std::optional<unsigned> MaybeIndex = this->allocateLocal(Init)) 2365 LocalIndex = *MaybeIndex; 2366 else 2367 return false; 2368 2369 if (!this->emitGetPtrLocal(LocalIndex, E)) 2370 return false; 2371 2372 if (T) { 2373 if (!this->visit(Init)) { 2374 return false; 2375 } 2376 return this->emitInit(*T, E); 2377 } else { 2378 if (!this->visitInitializer(Init) || !this->emitFinishInit(E)) 2379 return false; 2380 } 2381 2382 if (DiscardResult) 2383 return this->emitPopPtr(E); 2384 return true; 2385 } 2386 2387 return false; 2388 } 2389 2390 template <class Emitter> 2391 bool Compiler<Emitter>::VisitTypeTraitExpr(const TypeTraitExpr *E) { 2392 if (DiscardResult) 2393 return true; 2394 if (E->getType()->isBooleanType()) 2395 return this->emitConstBool(E->getValue(), E); 2396 return this->emitConst(E->getValue(), E); 2397 } 2398 2399 template <class Emitter> 2400 bool Compiler<Emitter>::VisitArrayTypeTraitExpr(const ArrayTypeTraitExpr *E) { 2401 if (DiscardResult) 2402 return true; 2403 return this->emitConst(E->getValue(), E); 2404 } 2405 2406 template <class Emitter> 2407 bool Compiler<Emitter>::VisitLambdaExpr(const LambdaExpr *E) { 2408 if (DiscardResult) 2409 return true; 2410 2411 assert(Initializing); 2412 const Record *R = P.getOrCreateRecord(E->getLambdaClass()); 2413 2414 auto *CaptureInitIt = E->capture_init_begin(); 2415 // Initialize all fields (which represent lambda captures) of the 2416 // record with their initializers. 2417 for (const Record::Field &F : R->fields()) { 2418 const Expr *Init = *CaptureInitIt; 2419 ++CaptureInitIt; 2420 2421 if (!Init) 2422 continue; 2423 2424 if (std::optional<PrimType> T = classify(Init)) { 2425 if (!this->visit(Init)) 2426 return false; 2427 2428 if (!this->emitInitField(*T, F.Offset, E)) 2429 return false; 2430 } else { 2431 if (!this->emitGetPtrField(F.Offset, E)) 2432 return false; 2433 2434 if (!this->visitInitializer(Init)) 2435 return false; 2436 2437 if (!this->emitPopPtr(E)) 2438 return false; 2439 } 2440 } 2441 2442 return true; 2443 } 2444 2445 template <class Emitter> 2446 bool Compiler<Emitter>::VisitPredefinedExpr(const PredefinedExpr *E) { 2447 if (DiscardResult) 2448 return true; 2449 2450 return this->delegate(E->getFunctionName()); 2451 } 2452 2453 template <class Emitter> 2454 bool Compiler<Emitter>::VisitCXXThrowExpr(const CXXThrowExpr *E) { 2455 if (E->getSubExpr() && !this->discard(E->getSubExpr())) 2456 return false; 2457 2458 return this->emitInvalid(E); 2459 } 2460 2461 template <class Emitter> 2462 bool Compiler<Emitter>::VisitCXXReinterpretCastExpr( 2463 const CXXReinterpretCastExpr *E) { 2464 const Expr *SubExpr = E->getSubExpr(); 2465 2466 bool TypesMatch = classify(E) == classify(SubExpr); 2467 if (!this->emitInvalidCast(CastKind::Reinterpret, /*Fatal=*/!TypesMatch, E)) 2468 return false; 2469 2470 return this->delegate(SubExpr); 2471 } 2472 2473 template <class Emitter> 2474 bool Compiler<Emitter>::VisitCXXNoexceptExpr(const CXXNoexceptExpr *E) { 2475 assert(E->getType()->isBooleanType()); 2476 2477 if (DiscardResult) 2478 return true; 2479 return this->emitConstBool(E->getValue(), E); 2480 } 2481 2482 template <class Emitter> 2483 bool Compiler<Emitter>::VisitCXXConstructExpr(const CXXConstructExpr *E) { 2484 QualType T = E->getType(); 2485 assert(!classify(T)); 2486 2487 if (T->isRecordType()) { 2488 const CXXConstructorDecl *Ctor = E->getConstructor(); 2489 2490 // Trivial copy/move constructor. Avoid copy. 2491 if (Ctor->isDefaulted() && Ctor->isCopyOrMoveConstructor() && 2492 Ctor->isTrivial() && 2493 E->getArg(0)->isTemporaryObject(Ctx.getASTContext(), 2494 T->getAsCXXRecordDecl())) 2495 return this->visitInitializer(E->getArg(0)); 2496 2497 // If we're discarding a construct expression, we still need 2498 // to allocate a variable and call the constructor and destructor. 2499 if (DiscardResult) { 2500 if (Ctor->isTrivial()) 2501 return true; 2502 assert(!Initializing); 2503 std::optional<unsigned> LocalIndex = allocateLocal(E); 2504 2505 if (!LocalIndex) 2506 return false; 2507 2508 if (!this->emitGetPtrLocal(*LocalIndex, E)) 2509 return false; 2510 } 2511 2512 // Zero initialization. 2513 if (E->requiresZeroInitialization()) { 2514 const Record *R = getRecord(E->getType()); 2515 2516 if (!this->visitZeroRecordInitializer(R, E)) 2517 return false; 2518 2519 // If the constructor is trivial anyway, we're done. 2520 if (Ctor->isTrivial()) 2521 return true; 2522 } 2523 2524 const Function *Func = getFunction(Ctor); 2525 2526 if (!Func) 2527 return false; 2528 2529 assert(Func->hasThisPointer()); 2530 assert(!Func->hasRVO()); 2531 2532 // The This pointer is already on the stack because this is an initializer, 2533 // but we need to dup() so the call() below has its own copy. 2534 if (!this->emitDupPtr(E)) 2535 return false; 2536 2537 // Constructor arguments. 2538 for (const auto *Arg : E->arguments()) { 2539 if (!this->visit(Arg)) 2540 return false; 2541 } 2542 2543 if (Func->isVariadic()) { 2544 uint32_t VarArgSize = 0; 2545 unsigned NumParams = Func->getNumWrittenParams(); 2546 for (unsigned I = NumParams, N = E->getNumArgs(); I != N; ++I) { 2547 VarArgSize += 2548 align(primSize(classify(E->getArg(I)->getType()).value_or(PT_Ptr))); 2549 } 2550 if (!this->emitCallVar(Func, VarArgSize, E)) 2551 return false; 2552 } else { 2553 if (!this->emitCall(Func, 0, E)) 2554 return false; 2555 } 2556 2557 if (DiscardResult) 2558 return this->emitPopPtr(E); 2559 return true; 2560 } 2561 2562 if (T->isArrayType()) { 2563 const ConstantArrayType *CAT = 2564 Ctx.getASTContext().getAsConstantArrayType(E->getType()); 2565 if (!CAT) 2566 return false; 2567 2568 size_t NumElems = CAT->getZExtSize(); 2569 const Function *Func = getFunction(E->getConstructor()); 2570 if (!Func || !Func->isConstexpr()) 2571 return false; 2572 2573 // FIXME(perf): We're calling the constructor once per array element here, 2574 // in the old intepreter we had a special-case for trivial constructors. 2575 for (size_t I = 0; I != NumElems; ++I) { 2576 if (!this->emitConstUint64(I, E)) 2577 return false; 2578 if (!this->emitArrayElemPtrUint64(E)) 2579 return false; 2580 2581 // Constructor arguments. 2582 for (const auto *Arg : E->arguments()) { 2583 if (!this->visit(Arg)) 2584 return false; 2585 } 2586 2587 if (!this->emitCall(Func, 0, E)) 2588 return false; 2589 } 2590 return true; 2591 } 2592 2593 return false; 2594 } 2595 2596 template <class Emitter> 2597 bool Compiler<Emitter>::VisitSourceLocExpr(const SourceLocExpr *E) { 2598 if (DiscardResult) 2599 return true; 2600 2601 const APValue Val = 2602 E->EvaluateInContext(Ctx.getASTContext(), SourceLocDefaultExpr); 2603 2604 // Things like __builtin_LINE(). 2605 if (E->getType()->isIntegerType()) { 2606 assert(Val.isInt()); 2607 const APSInt &I = Val.getInt(); 2608 return this->emitConst(I, E); 2609 } 2610 // Otherwise, the APValue is an LValue, with only one element. 2611 // Theoretically, we don't need the APValue at all of course. 2612 assert(E->getType()->isPointerType()); 2613 assert(Val.isLValue()); 2614 const APValue::LValueBase &Base = Val.getLValueBase(); 2615 if (const Expr *LValueExpr = Base.dyn_cast<const Expr *>()) 2616 return this->visit(LValueExpr); 2617 2618 // Otherwise, we have a decl (which is the case for 2619 // __builtin_source_location). 2620 assert(Base.is<const ValueDecl *>()); 2621 assert(Val.getLValuePath().size() == 0); 2622 const auto *BaseDecl = Base.dyn_cast<const ValueDecl *>(); 2623 assert(BaseDecl); 2624 2625 auto *UGCD = cast<UnnamedGlobalConstantDecl>(BaseDecl); 2626 2627 std::optional<unsigned> GlobalIndex = P.getOrCreateGlobal(UGCD); 2628 if (!GlobalIndex) 2629 return false; 2630 2631 if (!this->emitGetPtrGlobal(*GlobalIndex, E)) 2632 return false; 2633 2634 const Record *R = getRecord(E->getType()); 2635 const APValue &V = UGCD->getValue(); 2636 for (unsigned I = 0, N = R->getNumFields(); I != N; ++I) { 2637 const Record::Field *F = R->getField(I); 2638 const APValue &FieldValue = V.getStructField(I); 2639 2640 PrimType FieldT = classifyPrim(F->Decl->getType()); 2641 2642 if (!this->visitAPValue(FieldValue, FieldT, E)) 2643 return false; 2644 if (!this->emitInitField(FieldT, F->Offset, E)) 2645 return false; 2646 } 2647 2648 // Leave the pointer to the global on the stack. 2649 return true; 2650 } 2651 2652 template <class Emitter> 2653 bool Compiler<Emitter>::VisitOffsetOfExpr(const OffsetOfExpr *E) { 2654 unsigned N = E->getNumComponents(); 2655 if (N == 0) 2656 return false; 2657 2658 for (unsigned I = 0; I != N; ++I) { 2659 const OffsetOfNode &Node = E->getComponent(I); 2660 if (Node.getKind() == OffsetOfNode::Array) { 2661 const Expr *ArrayIndexExpr = E->getIndexExpr(Node.getArrayExprIndex()); 2662 PrimType IndexT = classifyPrim(ArrayIndexExpr->getType()); 2663 2664 if (DiscardResult) { 2665 if (!this->discard(ArrayIndexExpr)) 2666 return false; 2667 continue; 2668 } 2669 2670 if (!this->visit(ArrayIndexExpr)) 2671 return false; 2672 // Cast to Sint64. 2673 if (IndexT != PT_Sint64) { 2674 if (!this->emitCast(IndexT, PT_Sint64, E)) 2675 return false; 2676 } 2677 } 2678 } 2679 2680 if (DiscardResult) 2681 return true; 2682 2683 PrimType T = classifyPrim(E->getType()); 2684 return this->emitOffsetOf(T, E, E); 2685 } 2686 2687 template <class Emitter> 2688 bool Compiler<Emitter>::VisitCXXScalarValueInitExpr( 2689 const CXXScalarValueInitExpr *E) { 2690 QualType Ty = E->getType(); 2691 2692 if (DiscardResult || Ty->isVoidType()) 2693 return true; 2694 2695 if (std::optional<PrimType> T = classify(Ty)) 2696 return this->visitZeroInitializer(*T, Ty, E); 2697 2698 if (const auto *CT = Ty->getAs<ComplexType>()) { 2699 if (!Initializing) { 2700 std::optional<unsigned> LocalIndex = allocateLocal(E); 2701 if (!LocalIndex) 2702 return false; 2703 if (!this->emitGetPtrLocal(*LocalIndex, E)) 2704 return false; 2705 } 2706 2707 // Initialize both fields to 0. 2708 QualType ElemQT = CT->getElementType(); 2709 PrimType ElemT = classifyPrim(ElemQT); 2710 2711 for (unsigned I = 0; I != 2; ++I) { 2712 if (!this->visitZeroInitializer(ElemT, ElemQT, E)) 2713 return false; 2714 if (!this->emitInitElem(ElemT, I, E)) 2715 return false; 2716 } 2717 return true; 2718 } 2719 2720 if (const auto *VT = Ty->getAs<VectorType>()) { 2721 // FIXME: Code duplication with the _Complex case above. 2722 if (!Initializing) { 2723 std::optional<unsigned> LocalIndex = allocateLocal(E); 2724 if (!LocalIndex) 2725 return false; 2726 if (!this->emitGetPtrLocal(*LocalIndex, E)) 2727 return false; 2728 } 2729 2730 // Initialize all fields to 0. 2731 QualType ElemQT = VT->getElementType(); 2732 PrimType ElemT = classifyPrim(ElemQT); 2733 2734 for (unsigned I = 0, N = VT->getNumElements(); I != N; ++I) { 2735 if (!this->visitZeroInitializer(ElemT, ElemQT, E)) 2736 return false; 2737 if (!this->emitInitElem(ElemT, I, E)) 2738 return false; 2739 } 2740 return true; 2741 } 2742 2743 return false; 2744 } 2745 2746 template <class Emitter> 2747 bool Compiler<Emitter>::VisitSizeOfPackExpr(const SizeOfPackExpr *E) { 2748 return this->emitConst(E->getPackLength(), E); 2749 } 2750 2751 template <class Emitter> 2752 bool Compiler<Emitter>::VisitGenericSelectionExpr( 2753 const GenericSelectionExpr *E) { 2754 return this->delegate(E->getResultExpr()); 2755 } 2756 2757 template <class Emitter> 2758 bool Compiler<Emitter>::VisitChooseExpr(const ChooseExpr *E) { 2759 return this->delegate(E->getChosenSubExpr()); 2760 } 2761 2762 template <class Emitter> 2763 bool Compiler<Emitter>::VisitObjCBoolLiteralExpr(const ObjCBoolLiteralExpr *E) { 2764 if (DiscardResult) 2765 return true; 2766 2767 return this->emitConst(E->getValue(), E); 2768 } 2769 2770 template <class Emitter> 2771 bool Compiler<Emitter>::VisitCXXInheritedCtorInitExpr( 2772 const CXXInheritedCtorInitExpr *E) { 2773 const CXXConstructorDecl *Ctor = E->getConstructor(); 2774 assert(!Ctor->isTrivial() && 2775 "Trivial CXXInheritedCtorInitExpr, implement. (possible?)"); 2776 const Function *F = this->getFunction(Ctor); 2777 assert(F); 2778 assert(!F->hasRVO()); 2779 assert(F->hasThisPointer()); 2780 2781 if (!this->emitDupPtr(SourceInfo{})) 2782 return false; 2783 2784 // Forward all arguments of the current function (which should be a 2785 // constructor itself) to the inherited ctor. 2786 // This is necessary because the calling code has pushed the pointer 2787 // of the correct base for us already, but the arguments need 2788 // to come after. 2789 unsigned Offset = align(primSize(PT_Ptr)); // instance pointer. 2790 for (const ParmVarDecl *PD : Ctor->parameters()) { 2791 PrimType PT = this->classify(PD->getType()).value_or(PT_Ptr); 2792 2793 if (!this->emitGetParam(PT, Offset, E)) 2794 return false; 2795 Offset += align(primSize(PT)); 2796 } 2797 2798 return this->emitCall(F, 0, E); 2799 } 2800 2801 template <class Emitter> 2802 bool Compiler<Emitter>::VisitCXXNewExpr(const CXXNewExpr *E) { 2803 assert(classifyPrim(E->getType()) == PT_Ptr); 2804 const Expr *Init = E->getInitializer(); 2805 QualType ElementType = E->getAllocatedType(); 2806 std::optional<PrimType> ElemT = classify(ElementType); 2807 unsigned PlacementArgs = E->getNumPlacementArgs(); 2808 bool IsNoThrow = false; 2809 2810 // FIXME: Better diagnostic. diag::note_constexpr_new_placement 2811 if (PlacementArgs != 0) { 2812 // The only new-placement list we support is of the form (std::nothrow). 2813 // 2814 // FIXME: There is no restriction on this, but it's not clear that any 2815 // other form makes any sense. We get here for cases such as: 2816 // 2817 // new (std::align_val_t{N}) X(int) 2818 // 2819 // (which should presumably be valid only if N is a multiple of 2820 // alignof(int), and in any case can't be deallocated unless N is 2821 // alignof(X) and X has new-extended alignment). 2822 if (PlacementArgs != 1 || !E->getPlacementArg(0)->getType()->isNothrowT()) 2823 return this->emitInvalid(E); 2824 2825 if (!this->discard(E->getPlacementArg(0))) 2826 return false; 2827 IsNoThrow = true; 2828 } 2829 2830 const Descriptor *Desc; 2831 if (ElemT) { 2832 if (E->isArray()) 2833 Desc = nullptr; // We're not going to use it in this case. 2834 else 2835 Desc = P.createDescriptor(E, *ElemT, Descriptor::InlineDescMD, 2836 /*IsConst=*/false, /*IsTemporary=*/false, 2837 /*IsMutable=*/false); 2838 } else { 2839 Desc = P.createDescriptor( 2840 E, ElementType.getTypePtr(), 2841 E->isArray() ? std::nullopt : Descriptor::InlineDescMD, 2842 /*IsConst=*/false, /*IsTemporary=*/false, /*IsMutable=*/false, Init); 2843 } 2844 2845 if (E->isArray()) { 2846 std::optional<const Expr *> ArraySizeExpr = E->getArraySize(); 2847 if (!ArraySizeExpr) 2848 return false; 2849 2850 const Expr *Stripped = *ArraySizeExpr; 2851 for (; auto *ICE = dyn_cast<ImplicitCastExpr>(Stripped); 2852 Stripped = ICE->getSubExpr()) 2853 if (ICE->getCastKind() != CK_NoOp && 2854 ICE->getCastKind() != CK_IntegralCast) 2855 break; 2856 2857 PrimType SizeT = classifyPrim(Stripped->getType()); 2858 2859 if (!this->visit(Stripped)) 2860 return false; 2861 2862 if (ElemT) { 2863 // N primitive elements. 2864 if (!this->emitAllocN(SizeT, *ElemT, E, IsNoThrow, E)) 2865 return false; 2866 } else { 2867 // N Composite elements. 2868 if (!this->emitAllocCN(SizeT, Desc, IsNoThrow, E)) 2869 return false; 2870 } 2871 2872 if (Init && !this->visitInitializer(Init)) 2873 return false; 2874 2875 } else { 2876 // Allocate just one element. 2877 if (!this->emitAlloc(Desc, E)) 2878 return false; 2879 2880 if (Init) { 2881 if (ElemT) { 2882 if (!this->visit(Init)) 2883 return false; 2884 2885 if (!this->emitInit(*ElemT, E)) 2886 return false; 2887 } else { 2888 // Composite. 2889 if (!this->visitInitializer(Init)) 2890 return false; 2891 } 2892 } 2893 } 2894 2895 if (DiscardResult) 2896 return this->emitPopPtr(E); 2897 2898 return true; 2899 } 2900 2901 template <class Emitter> 2902 bool Compiler<Emitter>::VisitCXXDeleteExpr(const CXXDeleteExpr *E) { 2903 const Expr *Arg = E->getArgument(); 2904 2905 // Arg must be an lvalue. 2906 if (!this->visit(Arg)) 2907 return false; 2908 2909 return this->emitFree(E->isArrayForm(), E); 2910 } 2911 2912 template <class Emitter> 2913 bool Compiler<Emitter>::VisitBlockExpr(const BlockExpr *E) { 2914 const Function *Func = nullptr; 2915 if (auto F = Compiler<ByteCodeEmitter>(Ctx, P).compileObjCBlock(E)) 2916 Func = F; 2917 2918 if (!Func) 2919 return false; 2920 return this->emitGetFnPtr(Func, E); 2921 } 2922 2923 template <class Emitter> 2924 bool Compiler<Emitter>::VisitExpressionTraitExpr(const ExpressionTraitExpr *E) { 2925 assert(Ctx.getLangOpts().CPlusPlus); 2926 return this->emitConstBool(E->getValue(), E); 2927 } 2928 2929 template <class Emitter> 2930 bool Compiler<Emitter>::VisitCXXUuidofExpr(const CXXUuidofExpr *E) { 2931 if (DiscardResult) 2932 return true; 2933 assert(!Initializing); 2934 2935 const MSGuidDecl *GuidDecl = E->getGuidDecl(); 2936 const RecordDecl *RD = GuidDecl->getType()->getAsRecordDecl(); 2937 assert(RD); 2938 // If the definiton of the result type is incomplete, just return a dummy. 2939 // If (and when) that is read from, we will fail, but not now. 2940 if (!RD->isCompleteDefinition()) { 2941 if (std::optional<unsigned> I = P.getOrCreateDummy(GuidDecl)) 2942 return this->emitGetPtrGlobal(*I, E); 2943 return false; 2944 } 2945 2946 std::optional<unsigned> GlobalIndex = P.getOrCreateGlobal(GuidDecl); 2947 if (!GlobalIndex) 2948 return false; 2949 if (!this->emitGetPtrGlobal(*GlobalIndex, E)) 2950 return false; 2951 2952 assert(this->getRecord(E->getType())); 2953 2954 const APValue &V = GuidDecl->getAsAPValue(); 2955 if (V.getKind() == APValue::None) 2956 return true; 2957 2958 assert(V.isStruct()); 2959 assert(V.getStructNumBases() == 0); 2960 if (!this->visitAPValueInitializer(V, E)) 2961 return false; 2962 2963 return this->emitFinishInit(E); 2964 } 2965 2966 template <class Emitter> 2967 bool Compiler<Emitter>::VisitRequiresExpr(const RequiresExpr *E) { 2968 assert(classifyPrim(E->getType()) == PT_Bool); 2969 if (DiscardResult) 2970 return true; 2971 return this->emitConstBool(E->isSatisfied(), E); 2972 } 2973 2974 template <class Emitter> 2975 bool Compiler<Emitter>::VisitConceptSpecializationExpr( 2976 const ConceptSpecializationExpr *E) { 2977 assert(classifyPrim(E->getType()) == PT_Bool); 2978 if (DiscardResult) 2979 return true; 2980 return this->emitConstBool(E->isSatisfied(), E); 2981 } 2982 2983 template <class Emitter> 2984 bool Compiler<Emitter>::VisitCXXRewrittenBinaryOperator( 2985 const CXXRewrittenBinaryOperator *E) { 2986 return this->delegate(E->getSemanticForm()); 2987 } 2988 2989 template <class Emitter> 2990 bool Compiler<Emitter>::VisitPseudoObjectExpr(const PseudoObjectExpr *E) { 2991 2992 for (const Expr *SemE : E->semantics()) { 2993 if (auto *OVE = dyn_cast<OpaqueValueExpr>(SemE)) { 2994 if (SemE == E->getResultExpr()) 2995 return false; 2996 2997 if (OVE->isUnique()) 2998 continue; 2999 3000 if (!this->discard(OVE)) 3001 return false; 3002 } else if (SemE == E->getResultExpr()) { 3003 if (!this->delegate(SemE)) 3004 return false; 3005 } else { 3006 if (!this->discard(SemE)) 3007 return false; 3008 } 3009 } 3010 return true; 3011 } 3012 3013 template <class Emitter> 3014 bool Compiler<Emitter>::VisitPackIndexingExpr(const PackIndexingExpr *E) { 3015 return this->delegate(E->getSelectedExpr()); 3016 } 3017 3018 template <class Emitter> 3019 bool Compiler<Emitter>::VisitRecoveryExpr(const RecoveryExpr *E) { 3020 return this->emitError(E); 3021 } 3022 3023 template <class Emitter> 3024 bool Compiler<Emitter>::VisitAddrLabelExpr(const AddrLabelExpr *E) { 3025 assert(E->getType()->isVoidPointerType()); 3026 3027 unsigned Offset = allocateLocalPrimitive( 3028 E->getLabel(), PT_Ptr, /*IsConst=*/true, /*IsExtended=*/false); 3029 3030 return this->emitGetLocal(PT_Ptr, Offset, E); 3031 } 3032 3033 template <class Emitter> 3034 bool Compiler<Emitter>::VisitConvertVectorExpr(const ConvertVectorExpr *E) { 3035 assert(Initializing); 3036 const auto *VT = E->getType()->castAs<VectorType>(); 3037 QualType ElemType = VT->getElementType(); 3038 PrimType ElemT = classifyPrim(ElemType); 3039 const Expr *Src = E->getSrcExpr(); 3040 PrimType SrcElemT = 3041 classifyPrim(Src->getType()->castAs<VectorType>()->getElementType()); 3042 3043 unsigned SrcOffset = this->allocateLocalPrimitive(Src, PT_Ptr, true, false); 3044 if (!this->visit(Src)) 3045 return false; 3046 if (!this->emitSetLocal(PT_Ptr, SrcOffset, E)) 3047 return false; 3048 3049 for (unsigned I = 0; I != VT->getNumElements(); ++I) { 3050 if (!this->emitGetLocal(PT_Ptr, SrcOffset, E)) 3051 return false; 3052 if (!this->emitArrayElemPop(SrcElemT, I, E)) 3053 return false; 3054 if (SrcElemT != ElemT) { 3055 if (!this->emitPrimCast(SrcElemT, ElemT, ElemType, E)) 3056 return false; 3057 } 3058 if (!this->emitInitElem(ElemT, I, E)) 3059 return false; 3060 } 3061 3062 return true; 3063 } 3064 3065 template <class Emitter> 3066 bool Compiler<Emitter>::VisitShuffleVectorExpr(const ShuffleVectorExpr *E) { 3067 assert(Initializing); 3068 assert(E->getNumSubExprs() > 2); 3069 3070 const Expr *Vecs[] = {E->getExpr(0), E->getExpr(1)}; 3071 const VectorType *VT = Vecs[0]->getType()->castAs<VectorType>(); 3072 PrimType ElemT = classifyPrim(VT->getElementType()); 3073 unsigned NumInputElems = VT->getNumElements(); 3074 unsigned NumOutputElems = E->getNumSubExprs() - 2; 3075 assert(NumOutputElems > 0); 3076 3077 // Save both input vectors to a local variable. 3078 unsigned VectorOffsets[2]; 3079 for (unsigned I = 0; I != 2; ++I) { 3080 VectorOffsets[I] = this->allocateLocalPrimitive( 3081 Vecs[I], PT_Ptr, /*IsConst=*/true, /*IsExtended=*/false); 3082 if (!this->visit(Vecs[I])) 3083 return false; 3084 if (!this->emitSetLocal(PT_Ptr, VectorOffsets[I], E)) 3085 return false; 3086 } 3087 for (unsigned I = 0; I != NumOutputElems; ++I) { 3088 APSInt ShuffleIndex = E->getShuffleMaskIdx(Ctx.getASTContext(), I); 3089 if (ShuffleIndex == -1) 3090 return this->emitInvalid(E); // FIXME: Better diagnostic. 3091 3092 assert(ShuffleIndex < (NumInputElems * 2)); 3093 if (!this->emitGetLocal(PT_Ptr, 3094 VectorOffsets[ShuffleIndex >= NumInputElems], E)) 3095 return false; 3096 unsigned InputVectorIndex = ShuffleIndex.getZExtValue() % NumInputElems; 3097 if (!this->emitArrayElemPop(ElemT, InputVectorIndex, E)) 3098 return false; 3099 3100 if (!this->emitInitElem(ElemT, I, E)) 3101 return false; 3102 } 3103 3104 return true; 3105 } 3106 3107 template <class Emitter> 3108 bool Compiler<Emitter>::VisitExtVectorElementExpr( 3109 const ExtVectorElementExpr *E) { 3110 const Expr *Base = E->getBase(); 3111 assert( 3112 Base->getType()->isVectorType() || 3113 Base->getType()->getAs<PointerType>()->getPointeeType()->isVectorType()); 3114 3115 SmallVector<uint32_t, 4> Indices; 3116 E->getEncodedElementAccess(Indices); 3117 3118 if (Indices.size() == 1) { 3119 if (!this->visit(Base)) 3120 return false; 3121 3122 if (E->isGLValue()) { 3123 if (!this->emitConstUint32(Indices[0], E)) 3124 return false; 3125 return this->emitArrayElemPtrPop(PT_Uint32, E); 3126 } 3127 // Else, also load the value. 3128 return this->emitArrayElemPop(classifyPrim(E->getType()), Indices[0], E); 3129 } 3130 3131 // Create a local variable for the base. 3132 unsigned BaseOffset = allocateLocalPrimitive(Base, PT_Ptr, /*IsConst=*/true, 3133 /*IsExtended=*/false); 3134 if (!this->visit(Base)) 3135 return false; 3136 if (!this->emitSetLocal(PT_Ptr, BaseOffset, E)) 3137 return false; 3138 3139 // Now the vector variable for the return value. 3140 if (!Initializing) { 3141 std::optional<unsigned> ResultIndex; 3142 ResultIndex = allocateLocal(E); 3143 if (!ResultIndex) 3144 return false; 3145 if (!this->emitGetPtrLocal(*ResultIndex, E)) 3146 return false; 3147 } 3148 3149 assert(Indices.size() == E->getType()->getAs<VectorType>()->getNumElements()); 3150 3151 PrimType ElemT = 3152 classifyPrim(E->getType()->getAs<VectorType>()->getElementType()); 3153 uint32_t DstIndex = 0; 3154 for (uint32_t I : Indices) { 3155 if (!this->emitGetLocal(PT_Ptr, BaseOffset, E)) 3156 return false; 3157 if (!this->emitArrayElemPop(ElemT, I, E)) 3158 return false; 3159 if (!this->emitInitElem(ElemT, DstIndex, E)) 3160 return false; 3161 ++DstIndex; 3162 } 3163 3164 // Leave the result pointer on the stack. 3165 assert(!DiscardResult); 3166 return true; 3167 } 3168 3169 template <class Emitter> 3170 bool Compiler<Emitter>::VisitObjCBoxedExpr(const ObjCBoxedExpr *E) { 3171 const Expr *SubExpr = E->getSubExpr(); 3172 if (!E->isExpressibleAsConstantInitializer()) 3173 return this->discard(SubExpr) && this->emitInvalid(E); 3174 3175 return this->delegate(SubExpr); 3176 } 3177 3178 template <class Emitter> 3179 bool Compiler<Emitter>::VisitCXXStdInitializerListExpr( 3180 const CXXStdInitializerListExpr *E) { 3181 const Expr *SubExpr = E->getSubExpr(); 3182 const ConstantArrayType *ArrayType = 3183 Ctx.getASTContext().getAsConstantArrayType(SubExpr->getType()); 3184 const Record *R = getRecord(E->getType()); 3185 assert(Initializing); 3186 assert(SubExpr->isGLValue()); 3187 3188 if (!this->visit(SubExpr)) 3189 return false; 3190 if (!this->emitInitFieldPtr(R->getField(0u)->Offset, E)) 3191 return false; 3192 3193 PrimType SecondFieldT = classifyPrim(R->getField(1u)->Decl->getType()); 3194 if (isIntegralType(SecondFieldT)) { 3195 if (!this->emitConst(static_cast<APSInt>(ArrayType->getSize()), 3196 SecondFieldT, E)) 3197 return false; 3198 return this->emitInitField(SecondFieldT, R->getField(1u)->Offset, E); 3199 } 3200 assert(SecondFieldT == PT_Ptr); 3201 3202 if (!this->emitGetFieldPtr(R->getField(0u)->Offset, E)) 3203 return false; 3204 if (!this->emitConst(static_cast<APSInt>(ArrayType->getSize()), PT_Uint64, E)) 3205 return false; 3206 if (!this->emitArrayElemPtrPop(PT_Uint64, E)) 3207 return false; 3208 return this->emitInitFieldPtr(R->getField(1u)->Offset, E); 3209 } 3210 3211 template <class Emitter> 3212 bool Compiler<Emitter>::VisitStmtExpr(const StmtExpr *E) { 3213 BlockScope<Emitter> BS(this); 3214 StmtExprScope<Emitter> SS(this); 3215 3216 const CompoundStmt *CS = E->getSubStmt(); 3217 const Stmt *Result = CS->getStmtExprResult(); 3218 for (const Stmt *S : CS->body()) { 3219 if (S != Result) { 3220 if (!this->visitStmt(S)) 3221 return false; 3222 continue; 3223 } 3224 3225 assert(S == Result); 3226 if (const Expr *ResultExpr = dyn_cast<Expr>(S)) 3227 return this->delegate(ResultExpr); 3228 return this->emitUnsupported(E); 3229 } 3230 3231 return BS.destroyLocals(); 3232 } 3233 3234 template <class Emitter> bool Compiler<Emitter>::discard(const Expr *E) { 3235 OptionScope<Emitter> Scope(this, /*NewDiscardResult=*/true, 3236 /*NewInitializing=*/false); 3237 return this->Visit(E); 3238 } 3239 3240 template <class Emitter> bool Compiler<Emitter>::delegate(const Expr *E) { 3241 if (E->containsErrors()) 3242 return this->emitError(E); 3243 3244 // We're basically doing: 3245 // OptionScope<Emitter> Scope(this, DicardResult, Initializing); 3246 // but that's unnecessary of course. 3247 return this->Visit(E); 3248 } 3249 3250 template <class Emitter> bool Compiler<Emitter>::visit(const Expr *E) { 3251 if (E->getType().isNull()) 3252 return false; 3253 3254 if (E->getType()->isVoidType()) 3255 return this->discard(E); 3256 3257 // Create local variable to hold the return value. 3258 if (!E->isGLValue() && !E->getType()->isAnyComplexType() && 3259 !classify(E->getType())) { 3260 std::optional<unsigned> LocalIndex = allocateLocal(E); 3261 if (!LocalIndex) 3262 return false; 3263 3264 if (!this->emitGetPtrLocal(*LocalIndex, E)) 3265 return false; 3266 return this->visitInitializer(E); 3267 } 3268 3269 // Otherwise,we have a primitive return value, produce the value directly 3270 // and push it on the stack. 3271 OptionScope<Emitter> Scope(this, /*NewDiscardResult=*/false, 3272 /*NewInitializing=*/false); 3273 return this->Visit(E); 3274 } 3275 3276 template <class Emitter> 3277 bool Compiler<Emitter>::visitInitializer(const Expr *E) { 3278 assert(!classify(E->getType())); 3279 3280 if (E->containsErrors()) 3281 return this->emitError(E); 3282 3283 if (!this->checkLiteralType(E)) 3284 return false; 3285 3286 OptionScope<Emitter> Scope(this, /*NewDiscardResult=*/false, 3287 /*NewInitializing=*/true); 3288 return this->Visit(E); 3289 } 3290 3291 template <class Emitter> bool Compiler<Emitter>::visitBool(const Expr *E) { 3292 std::optional<PrimType> T = classify(E->getType()); 3293 if (!T) { 3294 // Convert complex values to bool. 3295 if (E->getType()->isAnyComplexType()) { 3296 if (!this->visit(E)) 3297 return false; 3298 return this->emitComplexBoolCast(E); 3299 } 3300 return false; 3301 } 3302 3303 if (!this->visit(E)) 3304 return false; 3305 3306 if (T == PT_Bool) 3307 return true; 3308 3309 // Convert pointers to bool. 3310 if (T == PT_Ptr || T == PT_FnPtr) { 3311 if (!this->emitNull(*T, nullptr, E)) 3312 return false; 3313 return this->emitNE(*T, E); 3314 } 3315 3316 // Or Floats. 3317 if (T == PT_Float) 3318 return this->emitCastFloatingIntegralBool(E); 3319 3320 // Or anything else we can. 3321 return this->emitCast(*T, PT_Bool, E); 3322 } 3323 3324 template <class Emitter> 3325 bool Compiler<Emitter>::visitZeroInitializer(PrimType T, QualType QT, 3326 const Expr *E) { 3327 switch (T) { 3328 case PT_Bool: 3329 return this->emitZeroBool(E); 3330 case PT_Sint8: 3331 return this->emitZeroSint8(E); 3332 case PT_Uint8: 3333 return this->emitZeroUint8(E); 3334 case PT_Sint16: 3335 return this->emitZeroSint16(E); 3336 case PT_Uint16: 3337 return this->emitZeroUint16(E); 3338 case PT_Sint32: 3339 return this->emitZeroSint32(E); 3340 case PT_Uint32: 3341 return this->emitZeroUint32(E); 3342 case PT_Sint64: 3343 return this->emitZeroSint64(E); 3344 case PT_Uint64: 3345 return this->emitZeroUint64(E); 3346 case PT_IntAP: 3347 return this->emitZeroIntAP(Ctx.getBitWidth(QT), E); 3348 case PT_IntAPS: 3349 return this->emitZeroIntAPS(Ctx.getBitWidth(QT), E); 3350 case PT_Ptr: 3351 return this->emitNullPtr(nullptr, E); 3352 case PT_FnPtr: 3353 return this->emitNullFnPtr(nullptr, E); 3354 case PT_MemberPtr: 3355 return this->emitNullMemberPtr(nullptr, E); 3356 case PT_Float: { 3357 return this->emitConstFloat(APFloat::getZero(Ctx.getFloatSemantics(QT)), E); 3358 } 3359 } 3360 llvm_unreachable("unknown primitive type"); 3361 } 3362 3363 template <class Emitter> 3364 bool Compiler<Emitter>::visitZeroRecordInitializer(const Record *R, 3365 const Expr *E) { 3366 assert(E); 3367 assert(R); 3368 // Fields 3369 for (const Record::Field &Field : R->fields()) { 3370 if (Field.Decl->isUnnamedBitField()) 3371 continue; 3372 3373 const Descriptor *D = Field.Desc; 3374 if (D->isPrimitive()) { 3375 QualType QT = D->getType(); 3376 PrimType T = classifyPrim(D->getType()); 3377 if (!this->visitZeroInitializer(T, QT, E)) 3378 return false; 3379 if (!this->emitInitField(T, Field.Offset, E)) 3380 return false; 3381 if (R->isUnion()) 3382 break; 3383 continue; 3384 } 3385 3386 if (!this->emitGetPtrField(Field.Offset, E)) 3387 return false; 3388 3389 if (D->isPrimitiveArray()) { 3390 QualType ET = D->getElemQualType(); 3391 PrimType T = classifyPrim(ET); 3392 for (uint32_t I = 0, N = D->getNumElems(); I != N; ++I) { 3393 if (!this->visitZeroInitializer(T, ET, E)) 3394 return false; 3395 if (!this->emitInitElem(T, I, E)) 3396 return false; 3397 } 3398 } else if (D->isCompositeArray()) { 3399 const Record *ElemRecord = D->ElemDesc->ElemRecord; 3400 assert(D->ElemDesc->ElemRecord); 3401 for (uint32_t I = 0, N = D->getNumElems(); I != N; ++I) { 3402 if (!this->emitConstUint32(I, E)) 3403 return false; 3404 if (!this->emitArrayElemPtr(PT_Uint32, E)) 3405 return false; 3406 if (!this->visitZeroRecordInitializer(ElemRecord, E)) 3407 return false; 3408 if (!this->emitPopPtr(E)) 3409 return false; 3410 } 3411 } else if (D->isRecord()) { 3412 if (!this->visitZeroRecordInitializer(D->ElemRecord, E)) 3413 return false; 3414 } else { 3415 assert(false); 3416 } 3417 3418 if (!this->emitFinishInitPop(E)) 3419 return false; 3420 3421 if (R->isUnion()) 3422 break; 3423 } 3424 3425 for (const Record::Base &B : R->bases()) { 3426 if (!this->emitGetPtrBase(B.Offset, E)) 3427 return false; 3428 if (!this->visitZeroRecordInitializer(B.R, E)) 3429 return false; 3430 if (!this->emitFinishInitPop(E)) 3431 return false; 3432 } 3433 3434 // FIXME: Virtual bases. 3435 3436 return true; 3437 } 3438 3439 template <class Emitter> 3440 template <typename T> 3441 bool Compiler<Emitter>::emitConst(T Value, PrimType Ty, const Expr *E) { 3442 switch (Ty) { 3443 case PT_Sint8: 3444 return this->emitConstSint8(Value, E); 3445 case PT_Uint8: 3446 return this->emitConstUint8(Value, E); 3447 case PT_Sint16: 3448 return this->emitConstSint16(Value, E); 3449 case PT_Uint16: 3450 return this->emitConstUint16(Value, E); 3451 case PT_Sint32: 3452 return this->emitConstSint32(Value, E); 3453 case PT_Uint32: 3454 return this->emitConstUint32(Value, E); 3455 case PT_Sint64: 3456 return this->emitConstSint64(Value, E); 3457 case PT_Uint64: 3458 return this->emitConstUint64(Value, E); 3459 case PT_Bool: 3460 return this->emitConstBool(Value, E); 3461 case PT_Ptr: 3462 case PT_FnPtr: 3463 case PT_MemberPtr: 3464 case PT_Float: 3465 case PT_IntAP: 3466 case PT_IntAPS: 3467 llvm_unreachable("Invalid integral type"); 3468 break; 3469 } 3470 llvm_unreachable("unknown primitive type"); 3471 } 3472 3473 template <class Emitter> 3474 template <typename T> 3475 bool Compiler<Emitter>::emitConst(T Value, const Expr *E) { 3476 return this->emitConst(Value, classifyPrim(E->getType()), E); 3477 } 3478 3479 template <class Emitter> 3480 bool Compiler<Emitter>::emitConst(const APSInt &Value, PrimType Ty, 3481 const Expr *E) { 3482 if (Ty == PT_IntAPS) 3483 return this->emitConstIntAPS(Value, E); 3484 if (Ty == PT_IntAP) 3485 return this->emitConstIntAP(Value, E); 3486 3487 if (Value.isSigned()) 3488 return this->emitConst(Value.getSExtValue(), Ty, E); 3489 return this->emitConst(Value.getZExtValue(), Ty, E); 3490 } 3491 3492 template <class Emitter> 3493 bool Compiler<Emitter>::emitConst(const APSInt &Value, const Expr *E) { 3494 return this->emitConst(Value, classifyPrim(E->getType()), E); 3495 } 3496 3497 template <class Emitter> 3498 unsigned Compiler<Emitter>::allocateLocalPrimitive(DeclTy &&Src, PrimType Ty, 3499 bool IsConst, 3500 bool IsExtended) { 3501 // Make sure we don't accidentally register the same decl twice. 3502 if (const auto *VD = 3503 dyn_cast_if_present<ValueDecl>(Src.dyn_cast<const Decl *>())) { 3504 assert(!P.getGlobal(VD)); 3505 assert(!Locals.contains(VD)); 3506 (void)VD; 3507 } 3508 3509 // FIXME: There are cases where Src.is<Expr*>() is wrong, e.g. 3510 // (int){12} in C. Consider using Expr::isTemporaryObject() instead 3511 // or isa<MaterializeTemporaryExpr>(). 3512 Descriptor *D = P.createDescriptor(Src, Ty, Descriptor::InlineDescMD, IsConst, 3513 Src.is<const Expr *>()); 3514 Scope::Local Local = this->createLocal(D); 3515 if (auto *VD = dyn_cast_if_present<ValueDecl>(Src.dyn_cast<const Decl *>())) 3516 Locals.insert({VD, Local}); 3517 VarScope->add(Local, IsExtended); 3518 return Local.Offset; 3519 } 3520 3521 template <class Emitter> 3522 std::optional<unsigned> 3523 Compiler<Emitter>::allocateLocal(DeclTy &&Src, const ValueDecl *ExtendingDecl) { 3524 // Make sure we don't accidentally register the same decl twice. 3525 if ([[maybe_unused]] const auto *VD = 3526 dyn_cast_if_present<ValueDecl>(Src.dyn_cast<const Decl *>())) { 3527 assert(!P.getGlobal(VD)); 3528 assert(!Locals.contains(VD)); 3529 } 3530 3531 QualType Ty; 3532 const ValueDecl *Key = nullptr; 3533 const Expr *Init = nullptr; 3534 bool IsTemporary = false; 3535 if (auto *VD = dyn_cast_if_present<ValueDecl>(Src.dyn_cast<const Decl *>())) { 3536 Key = VD; 3537 Ty = VD->getType(); 3538 3539 if (const auto *VarD = dyn_cast<VarDecl>(VD)) 3540 Init = VarD->getInit(); 3541 } 3542 if (auto *E = Src.dyn_cast<const Expr *>()) { 3543 IsTemporary = true; 3544 Ty = E->getType(); 3545 } 3546 3547 Descriptor *D = P.createDescriptor( 3548 Src, Ty.getTypePtr(), Descriptor::InlineDescMD, Ty.isConstQualified(), 3549 IsTemporary, /*IsMutable=*/false, Init); 3550 if (!D) 3551 return std::nullopt; 3552 3553 Scope::Local Local = this->createLocal(D); 3554 if (Key) 3555 Locals.insert({Key, Local}); 3556 if (ExtendingDecl) 3557 VarScope->addExtended(Local, ExtendingDecl); 3558 else 3559 VarScope->add(Local, false); 3560 return Local.Offset; 3561 } 3562 3563 template <class Emitter> 3564 unsigned Compiler<Emitter>::allocateTemporary(const Expr *E) { 3565 QualType Ty = E->getType(); 3566 assert(!Ty->isRecordType()); 3567 3568 Descriptor *D = P.createDescriptor( 3569 E, Ty.getTypePtr(), Descriptor::InlineDescMD, Ty.isConstQualified(), 3570 /*IsTemporary=*/true, /*IsMutable=*/false, /*Init=*/nullptr); 3571 assert(D); 3572 3573 Scope::Local Local = this->createLocal(D); 3574 VariableScope<Emitter> *S = VarScope; 3575 assert(S); 3576 // Attach to topmost scope. 3577 while (S->getParent()) 3578 S = S->getParent(); 3579 assert(S && !S->getParent()); 3580 S->addLocal(Local); 3581 return Local.Offset; 3582 } 3583 3584 template <class Emitter> 3585 const RecordType *Compiler<Emitter>::getRecordTy(QualType Ty) { 3586 if (const PointerType *PT = dyn_cast<PointerType>(Ty)) 3587 return PT->getPointeeType()->getAs<RecordType>(); 3588 return Ty->getAs<RecordType>(); 3589 } 3590 3591 template <class Emitter> Record *Compiler<Emitter>::getRecord(QualType Ty) { 3592 if (const auto *RecordTy = getRecordTy(Ty)) 3593 return getRecord(RecordTy->getDecl()); 3594 return nullptr; 3595 } 3596 3597 template <class Emitter> 3598 Record *Compiler<Emitter>::getRecord(const RecordDecl *RD) { 3599 return P.getOrCreateRecord(RD); 3600 } 3601 3602 template <class Emitter> 3603 const Function *Compiler<Emitter>::getFunction(const FunctionDecl *FD) { 3604 return Ctx.getOrCreateFunction(FD); 3605 } 3606 3607 template <class Emitter> bool Compiler<Emitter>::visitExpr(const Expr *E) { 3608 LocalScope<Emitter> RootScope(this); 3609 // Void expressions. 3610 if (E->getType()->isVoidType()) { 3611 if (!visit(E)) 3612 return false; 3613 return this->emitRetVoid(E) && RootScope.destroyLocals(); 3614 } 3615 3616 // Expressions with a primitive return type. 3617 if (std::optional<PrimType> T = classify(E)) { 3618 if (!visit(E)) 3619 return false; 3620 return this->emitRet(*T, E) && RootScope.destroyLocals(); 3621 } 3622 3623 // Expressions with a composite return type. 3624 // For us, that means everything we don't 3625 // have a PrimType for. 3626 if (std::optional<unsigned> LocalOffset = this->allocateLocal(E)) { 3627 if (!this->emitGetPtrLocal(*LocalOffset, E)) 3628 return false; 3629 3630 if (!visitInitializer(E)) 3631 return false; 3632 3633 if (!this->emitFinishInit(E)) 3634 return false; 3635 // We are destroying the locals AFTER the Ret op. 3636 // The Ret op needs to copy the (alive) values, but the 3637 // destructors may still turn the entire expression invalid. 3638 return this->emitRetValue(E) && RootScope.destroyLocals(); 3639 } 3640 3641 RootScope.destroyLocals(); 3642 return false; 3643 } 3644 3645 template <class Emitter> 3646 VarCreationState Compiler<Emitter>::visitDecl(const VarDecl *VD) { 3647 3648 auto R = this->visitVarDecl(VD, /*Toplevel=*/true); 3649 3650 if (R.notCreated()) 3651 return R; 3652 3653 if (R) 3654 return true; 3655 3656 if (!R && Context::shouldBeGloballyIndexed(VD)) { 3657 if (auto GlobalIndex = P.getGlobal(VD)) { 3658 Block *GlobalBlock = P.getGlobal(*GlobalIndex); 3659 GlobalInlineDescriptor &GD = 3660 *reinterpret_cast<GlobalInlineDescriptor *>(GlobalBlock->rawData()); 3661 3662 GD.InitState = GlobalInitState::InitializerFailed; 3663 GlobalBlock->invokeDtor(); 3664 } 3665 } 3666 3667 return R; 3668 } 3669 3670 /// Toplevel visitDeclAndReturn(). 3671 /// We get here from evaluateAsInitializer(). 3672 /// We need to evaluate the initializer and return its value. 3673 template <class Emitter> 3674 bool Compiler<Emitter>::visitDeclAndReturn(const VarDecl *VD, 3675 bool ConstantContext) { 3676 std::optional<PrimType> VarT = classify(VD->getType()); 3677 3678 // We only create variables if we're evaluating in a constant context. 3679 // Otherwise, just evaluate the initializer and return it. 3680 if (!ConstantContext) { 3681 DeclScope<Emitter> LS(this, VD); 3682 if (!this->visit(VD->getAnyInitializer())) 3683 return false; 3684 return this->emitRet(VarT.value_or(PT_Ptr), VD) && LS.destroyLocals(); 3685 } 3686 3687 LocalScope<Emitter> VDScope(this, VD); 3688 if (!this->visitVarDecl(VD, /*Toplevel=*/true)) 3689 return false; 3690 3691 if (Context::shouldBeGloballyIndexed(VD)) { 3692 auto GlobalIndex = P.getGlobal(VD); 3693 assert(GlobalIndex); // visitVarDecl() didn't return false. 3694 if (VarT) { 3695 if (!this->emitGetGlobalUnchecked(*VarT, *GlobalIndex, VD)) 3696 return false; 3697 } else { 3698 if (!this->emitGetPtrGlobal(*GlobalIndex, VD)) 3699 return false; 3700 } 3701 } else { 3702 auto Local = Locals.find(VD); 3703 assert(Local != Locals.end()); // Same here. 3704 if (VarT) { 3705 if (!this->emitGetLocal(*VarT, Local->second.Offset, VD)) 3706 return false; 3707 } else { 3708 if (!this->emitGetPtrLocal(Local->second.Offset, VD)) 3709 return false; 3710 } 3711 } 3712 3713 // Return the value. 3714 if (!this->emitRet(VarT.value_or(PT_Ptr), VD)) { 3715 // If the Ret above failed and this is a global variable, mark it as 3716 // uninitialized, even everything else succeeded. 3717 if (Context::shouldBeGloballyIndexed(VD)) { 3718 auto GlobalIndex = P.getGlobal(VD); 3719 assert(GlobalIndex); 3720 Block *GlobalBlock = P.getGlobal(*GlobalIndex); 3721 GlobalInlineDescriptor &GD = 3722 *reinterpret_cast<GlobalInlineDescriptor *>(GlobalBlock->rawData()); 3723 3724 GD.InitState = GlobalInitState::InitializerFailed; 3725 GlobalBlock->invokeDtor(); 3726 } 3727 return false; 3728 } 3729 3730 return VDScope.destroyLocals(); 3731 } 3732 3733 template <class Emitter> 3734 VarCreationState Compiler<Emitter>::visitVarDecl(const VarDecl *VD, 3735 bool Toplevel) { 3736 // We don't know what to do with these, so just return false. 3737 if (VD->getType().isNull()) 3738 return false; 3739 3740 // This case is EvalEmitter-only. If we won't create any instructions for the 3741 // initializer anyway, don't bother creating the variable in the first place. 3742 if (!this->isActive()) 3743 return VarCreationState::NotCreated(); 3744 3745 const Expr *Init = VD->getInit(); 3746 std::optional<PrimType> VarT = classify(VD->getType()); 3747 3748 if (Init && Init->isValueDependent()) 3749 return false; 3750 3751 if (Context::shouldBeGloballyIndexed(VD)) { 3752 auto checkDecl = [&]() -> bool { 3753 bool NeedsOp = !Toplevel && VD->isLocalVarDecl() && VD->isStaticLocal(); 3754 return !NeedsOp || this->emitCheckDecl(VD, VD); 3755 }; 3756 3757 auto initGlobal = [&](unsigned GlobalIndex) -> bool { 3758 assert(Init); 3759 DeclScope<Emitter> LocalScope(this, VD); 3760 3761 if (VarT) { 3762 if (!this->visit(Init)) 3763 return checkDecl() && false; 3764 3765 return checkDecl() && this->emitInitGlobal(*VarT, GlobalIndex, VD); 3766 } 3767 3768 if (!checkDecl()) 3769 return false; 3770 3771 if (!this->emitGetPtrGlobal(GlobalIndex, Init)) 3772 return false; 3773 3774 if (!visitInitializer(Init)) 3775 return false; 3776 3777 if (!this->emitFinishInit(Init)) 3778 return false; 3779 3780 return this->emitPopPtr(Init); 3781 }; 3782 3783 // We've already seen and initialized this global. 3784 if (std::optional<unsigned> GlobalIndex = P.getGlobal(VD)) { 3785 if (P.getPtrGlobal(*GlobalIndex).isInitialized()) 3786 return checkDecl(); 3787 3788 // The previous attempt at initialization might've been unsuccessful, 3789 // so let's try this one. 3790 return Init && checkDecl() && initGlobal(*GlobalIndex); 3791 } 3792 3793 std::optional<unsigned> GlobalIndex = P.createGlobal(VD, Init); 3794 3795 if (!GlobalIndex) 3796 return false; 3797 3798 return !Init || (checkDecl() && initGlobal(*GlobalIndex)); 3799 } else { 3800 InitLinkScope<Emitter> ILS(this, InitLink::Decl(VD)); 3801 3802 if (VarT) { 3803 unsigned Offset = this->allocateLocalPrimitive( 3804 VD, *VarT, VD->getType().isConstQualified()); 3805 if (Init) { 3806 // If this is a toplevel declaration, create a scope for the 3807 // initializer. 3808 if (Toplevel) { 3809 LocalScope<Emitter> Scope(this); 3810 if (!this->visit(Init)) 3811 return false; 3812 return this->emitSetLocal(*VarT, Offset, VD) && Scope.destroyLocals(); 3813 } else { 3814 if (!this->visit(Init)) 3815 return false; 3816 return this->emitSetLocal(*VarT, Offset, VD); 3817 } 3818 } 3819 } else { 3820 if (std::optional<unsigned> Offset = this->allocateLocal(VD)) { 3821 if (!Init) 3822 return true; 3823 3824 if (!this->emitGetPtrLocal(*Offset, Init)) 3825 return false; 3826 3827 if (!visitInitializer(Init)) 3828 return false; 3829 3830 if (!this->emitFinishInit(Init)) 3831 return false; 3832 3833 return this->emitPopPtr(Init); 3834 } 3835 return false; 3836 } 3837 return true; 3838 } 3839 3840 return false; 3841 } 3842 3843 template <class Emitter> 3844 bool Compiler<Emitter>::visitAPValue(const APValue &Val, PrimType ValType, 3845 const Expr *E) { 3846 assert(!DiscardResult); 3847 if (Val.isInt()) 3848 return this->emitConst(Val.getInt(), ValType, E); 3849 else if (Val.isFloat()) 3850 return this->emitConstFloat(Val.getFloat(), E); 3851 3852 if (Val.isLValue()) { 3853 if (Val.isNullPointer()) 3854 return this->emitNull(ValType, nullptr, E); 3855 APValue::LValueBase Base = Val.getLValueBase(); 3856 if (const Expr *BaseExpr = Base.dyn_cast<const Expr *>()) 3857 return this->visit(BaseExpr); 3858 else if (const auto *VD = Base.dyn_cast<const ValueDecl *>()) { 3859 return this->visitDeclRef(VD, E); 3860 } 3861 } else if (Val.isMemberPointer()) { 3862 if (const ValueDecl *MemberDecl = Val.getMemberPointerDecl()) 3863 return this->emitGetMemberPtr(MemberDecl, E); 3864 return this->emitNullMemberPtr(nullptr, E); 3865 } 3866 3867 return false; 3868 } 3869 3870 template <class Emitter> 3871 bool Compiler<Emitter>::visitAPValueInitializer(const APValue &Val, 3872 const Expr *E) { 3873 3874 if (Val.isStruct()) { 3875 const Record *R = this->getRecord(E->getType()); 3876 assert(R); 3877 for (unsigned I = 0, N = Val.getStructNumFields(); I != N; ++I) { 3878 const APValue &F = Val.getStructField(I); 3879 const Record::Field *RF = R->getField(I); 3880 3881 if (F.isInt() || F.isFloat() || F.isLValue() || F.isMemberPointer()) { 3882 PrimType T = classifyPrim(RF->Decl->getType()); 3883 if (!this->visitAPValue(F, T, E)) 3884 return false; 3885 if (!this->emitInitField(T, RF->Offset, E)) 3886 return false; 3887 } else if (F.isArray()) { 3888 assert(RF->Desc->isPrimitiveArray()); 3889 const auto *ArrType = RF->Decl->getType()->getAsArrayTypeUnsafe(); 3890 PrimType ElemT = classifyPrim(ArrType->getElementType()); 3891 assert(ArrType); 3892 3893 if (!this->emitGetPtrField(RF->Offset, E)) 3894 return false; 3895 3896 for (unsigned A = 0, AN = F.getArraySize(); A != AN; ++A) { 3897 if (!this->visitAPValue(F.getArrayInitializedElt(A), ElemT, E)) 3898 return false; 3899 if (!this->emitInitElem(ElemT, A, E)) 3900 return false; 3901 } 3902 3903 if (!this->emitPopPtr(E)) 3904 return false; 3905 } else if (F.isStruct() || F.isUnion()) { 3906 if (!this->emitGetPtrField(RF->Offset, E)) 3907 return false; 3908 if (!this->visitAPValueInitializer(F, E)) 3909 return false; 3910 if (!this->emitPopPtr(E)) 3911 return false; 3912 } else { 3913 assert(false && "I don't think this should be possible"); 3914 } 3915 } 3916 return true; 3917 } else if (Val.isUnion()) { 3918 const FieldDecl *UnionField = Val.getUnionField(); 3919 const Record *R = this->getRecord(UnionField->getParent()); 3920 assert(R); 3921 const APValue &F = Val.getUnionValue(); 3922 const Record::Field *RF = R->getField(UnionField); 3923 PrimType T = classifyPrim(RF->Decl->getType()); 3924 if (!this->visitAPValue(F, T, E)) 3925 return false; 3926 return this->emitInitField(T, RF->Offset, E); 3927 } 3928 // TODO: Other types. 3929 3930 return false; 3931 } 3932 3933 template <class Emitter> 3934 bool Compiler<Emitter>::VisitBuiltinCallExpr(const CallExpr *E) { 3935 const Function *Func = getFunction(E->getDirectCallee()); 3936 if (!Func) 3937 return false; 3938 3939 // For these, we're expected to ultimately return an APValue pointing 3940 // to the CallExpr. This is needed to get the correct codegen. 3941 unsigned Builtin = E->getBuiltinCallee(); 3942 if (Builtin == Builtin::BI__builtin___CFStringMakeConstantString || 3943 Builtin == Builtin::BI__builtin___NSStringMakeConstantString || 3944 Builtin == Builtin::BI__builtin_ptrauth_sign_constant || 3945 Builtin == Builtin::BI__builtin_function_start) { 3946 if (std::optional<unsigned> GlobalOffset = P.createGlobal(E)) { 3947 if (!this->emitGetPtrGlobal(*GlobalOffset, E)) 3948 return false; 3949 3950 if (PrimType PT = classifyPrim(E); PT != PT_Ptr && isPtrType(PT)) 3951 return this->emitDecayPtr(PT_Ptr, PT, E); 3952 return true; 3953 } 3954 return false; 3955 } 3956 3957 QualType ReturnType = E->getType(); 3958 std::optional<PrimType> ReturnT = classify(E); 3959 3960 // Non-primitive return type. Prepare storage. 3961 if (!Initializing && !ReturnT && !ReturnType->isVoidType()) { 3962 std::optional<unsigned> LocalIndex = allocateLocal(E); 3963 if (!LocalIndex) 3964 return false; 3965 if (!this->emitGetPtrLocal(*LocalIndex, E)) 3966 return false; 3967 } 3968 3969 if (!Func->isUnevaluatedBuiltin()) { 3970 // Put arguments on the stack. 3971 for (const auto *Arg : E->arguments()) { 3972 if (!this->visit(Arg)) 3973 return false; 3974 } 3975 } 3976 3977 if (!this->emitCallBI(Func, E, E)) 3978 return false; 3979 3980 if (DiscardResult && !ReturnType->isVoidType()) { 3981 assert(ReturnT); 3982 return this->emitPop(*ReturnT, E); 3983 } 3984 3985 return true; 3986 } 3987 3988 template <class Emitter> 3989 bool Compiler<Emitter>::VisitCallExpr(const CallExpr *E) { 3990 if (E->getBuiltinCallee()) 3991 return VisitBuiltinCallExpr(E); 3992 3993 QualType ReturnType = E->getCallReturnType(Ctx.getASTContext()); 3994 std::optional<PrimType> T = classify(ReturnType); 3995 bool HasRVO = !ReturnType->isVoidType() && !T; 3996 const FunctionDecl *FuncDecl = E->getDirectCallee(); 3997 3998 if (HasRVO) { 3999 if (DiscardResult) { 4000 // If we need to discard the return value but the function returns its 4001 // value via an RVO pointer, we need to create one such pointer just 4002 // for this call. 4003 if (std::optional<unsigned> LocalIndex = allocateLocal(E)) { 4004 if (!this->emitGetPtrLocal(*LocalIndex, E)) 4005 return false; 4006 } 4007 } else { 4008 // We need the result. Prepare a pointer to return or 4009 // dup the current one. 4010 if (!Initializing) { 4011 if (std::optional<unsigned> LocalIndex = allocateLocal(E)) { 4012 if (!this->emitGetPtrLocal(*LocalIndex, E)) 4013 return false; 4014 } 4015 } 4016 if (!this->emitDupPtr(E)) 4017 return false; 4018 } 4019 } 4020 4021 SmallVector<const Expr *, 8> Args( 4022 llvm::ArrayRef(E->getArgs(), E->getNumArgs())); 4023 4024 bool IsAssignmentOperatorCall = false; 4025 if (const auto *OCE = dyn_cast<CXXOperatorCallExpr>(E); 4026 OCE && OCE->isAssignmentOp()) { 4027 // Just like with regular assignments, we need to special-case assignment 4028 // operators here and evaluate the RHS (the second arg) before the LHS (the 4029 // first arg. We fix this by using a Flip op later. 4030 assert(Args.size() == 2); 4031 IsAssignmentOperatorCall = true; 4032 std::reverse(Args.begin(), Args.end()); 4033 } 4034 // Calling a static operator will still 4035 // pass the instance, but we don't need it. 4036 // Discard it here. 4037 if (isa<CXXOperatorCallExpr>(E)) { 4038 if (const auto *MD = dyn_cast_if_present<CXXMethodDecl>(FuncDecl); 4039 MD && MD->isStatic()) { 4040 if (!this->discard(E->getArg(0))) 4041 return false; 4042 // Drop first arg. 4043 Args.erase(Args.begin()); 4044 } 4045 } 4046 4047 std::optional<unsigned> CalleeOffset; 4048 // Add the (optional, implicit) This pointer. 4049 if (const auto *MC = dyn_cast<CXXMemberCallExpr>(E)) { 4050 if (!FuncDecl && classifyPrim(E->getCallee()) == PT_MemberPtr) { 4051 // If we end up creating a CallPtr op for this, we need the base of the 4052 // member pointer as the instance pointer, and later extract the function 4053 // decl as the function pointer. 4054 const Expr *Callee = E->getCallee(); 4055 CalleeOffset = 4056 this->allocateLocalPrimitive(Callee, PT_MemberPtr, true, false); 4057 if (!this->visit(Callee)) 4058 return false; 4059 if (!this->emitSetLocal(PT_MemberPtr, *CalleeOffset, E)) 4060 return false; 4061 if (!this->emitGetLocal(PT_MemberPtr, *CalleeOffset, E)) 4062 return false; 4063 if (!this->emitGetMemberPtrBase(E)) 4064 return false; 4065 } else if (!this->visit(MC->getImplicitObjectArgument())) { 4066 return false; 4067 } 4068 } else if (!FuncDecl) { 4069 const Expr *Callee = E->getCallee(); 4070 CalleeOffset = this->allocateLocalPrimitive(Callee, PT_FnPtr, true, false); 4071 if (!this->visit(Callee)) 4072 return false; 4073 if (!this->emitSetLocal(PT_FnPtr, *CalleeOffset, E)) 4074 return false; 4075 } 4076 4077 llvm::BitVector NonNullArgs = collectNonNullArgs(FuncDecl, Args); 4078 // Put arguments on the stack. 4079 unsigned ArgIndex = 0; 4080 for (const auto *Arg : Args) { 4081 if (!this->visit(Arg)) 4082 return false; 4083 4084 // If we know the callee already, check the known parametrs for nullability. 4085 if (FuncDecl && NonNullArgs[ArgIndex]) { 4086 PrimType ArgT = classify(Arg).value_or(PT_Ptr); 4087 if (ArgT == PT_Ptr || ArgT == PT_FnPtr) { 4088 if (!this->emitCheckNonNullArg(ArgT, Arg)) 4089 return false; 4090 } 4091 } 4092 ++ArgIndex; 4093 } 4094 4095 // Undo the argument reversal we did earlier. 4096 if (IsAssignmentOperatorCall) { 4097 assert(Args.size() == 2); 4098 PrimType Arg1T = classify(Args[0]).value_or(PT_Ptr); 4099 PrimType Arg2T = classify(Args[1]).value_or(PT_Ptr); 4100 if (!this->emitFlip(Arg2T, Arg1T, E)) 4101 return false; 4102 } 4103 4104 if (FuncDecl) { 4105 const Function *Func = getFunction(FuncDecl); 4106 if (!Func) 4107 return false; 4108 assert(HasRVO == Func->hasRVO()); 4109 4110 bool HasQualifier = false; 4111 if (const auto *ME = dyn_cast<MemberExpr>(E->getCallee())) 4112 HasQualifier = ME->hasQualifier(); 4113 4114 bool IsVirtual = false; 4115 if (const auto *MD = dyn_cast<CXXMethodDecl>(FuncDecl)) 4116 IsVirtual = MD->isVirtual(); 4117 4118 // In any case call the function. The return value will end up on the stack 4119 // and if the function has RVO, we already have the pointer on the stack to 4120 // write the result into. 4121 if (IsVirtual && !HasQualifier) { 4122 uint32_t VarArgSize = 0; 4123 unsigned NumParams = 4124 Func->getNumWrittenParams() + isa<CXXOperatorCallExpr>(E); 4125 for (unsigned I = NumParams, N = E->getNumArgs(); I != N; ++I) 4126 VarArgSize += align(primSize(classify(E->getArg(I)).value_or(PT_Ptr))); 4127 4128 if (!this->emitCallVirt(Func, VarArgSize, E)) 4129 return false; 4130 } else if (Func->isVariadic()) { 4131 uint32_t VarArgSize = 0; 4132 unsigned NumParams = 4133 Func->getNumWrittenParams() + isa<CXXOperatorCallExpr>(E); 4134 for (unsigned I = NumParams, N = E->getNumArgs(); I != N; ++I) 4135 VarArgSize += align(primSize(classify(E->getArg(I)).value_or(PT_Ptr))); 4136 if (!this->emitCallVar(Func, VarArgSize, E)) 4137 return false; 4138 } else { 4139 if (!this->emitCall(Func, 0, E)) 4140 return false; 4141 } 4142 } else { 4143 // Indirect call. Visit the callee, which will leave a FunctionPointer on 4144 // the stack. Cleanup of the returned value if necessary will be done after 4145 // the function call completed. 4146 4147 // Sum the size of all args from the call expr. 4148 uint32_t ArgSize = 0; 4149 for (unsigned I = 0, N = E->getNumArgs(); I != N; ++I) 4150 ArgSize += align(primSize(classify(E->getArg(I)).value_or(PT_Ptr))); 4151 4152 // Get the callee, either from a member pointer or function pointer saved in 4153 // CalleeOffset. 4154 if (isa<CXXMemberCallExpr>(E) && CalleeOffset) { 4155 if (!this->emitGetLocal(PT_MemberPtr, *CalleeOffset, E)) 4156 return false; 4157 if (!this->emitGetMemberPtrDecl(E)) 4158 return false; 4159 } else { 4160 if (!this->emitGetLocal(PT_FnPtr, *CalleeOffset, E)) 4161 return false; 4162 } 4163 if (!this->emitCallPtr(ArgSize, E, E)) 4164 return false; 4165 } 4166 4167 // Cleanup for discarded return values. 4168 if (DiscardResult && !ReturnType->isVoidType() && T) 4169 return this->emitPop(*T, E); 4170 4171 return true; 4172 } 4173 4174 template <class Emitter> 4175 bool Compiler<Emitter>::VisitCXXDefaultInitExpr(const CXXDefaultInitExpr *E) { 4176 SourceLocScope<Emitter> SLS(this, E); 4177 4178 return this->delegate(E->getExpr()); 4179 } 4180 4181 template <class Emitter> 4182 bool Compiler<Emitter>::VisitCXXDefaultArgExpr(const CXXDefaultArgExpr *E) { 4183 SourceLocScope<Emitter> SLS(this, E); 4184 4185 const Expr *SubExpr = E->getExpr(); 4186 if (std::optional<PrimType> T = classify(E->getExpr())) 4187 return this->visit(SubExpr); 4188 4189 assert(Initializing); 4190 return this->visitInitializer(SubExpr); 4191 } 4192 4193 template <class Emitter> 4194 bool Compiler<Emitter>::VisitCXXBoolLiteralExpr(const CXXBoolLiteralExpr *E) { 4195 if (DiscardResult) 4196 return true; 4197 4198 return this->emitConstBool(E->getValue(), E); 4199 } 4200 4201 template <class Emitter> 4202 bool Compiler<Emitter>::VisitCXXNullPtrLiteralExpr( 4203 const CXXNullPtrLiteralExpr *E) { 4204 if (DiscardResult) 4205 return true; 4206 4207 return this->emitNullPtr(nullptr, E); 4208 } 4209 4210 template <class Emitter> 4211 bool Compiler<Emitter>::VisitGNUNullExpr(const GNUNullExpr *E) { 4212 if (DiscardResult) 4213 return true; 4214 4215 assert(E->getType()->isIntegerType()); 4216 4217 PrimType T = classifyPrim(E->getType()); 4218 return this->emitZero(T, E); 4219 } 4220 4221 template <class Emitter> 4222 bool Compiler<Emitter>::VisitCXXThisExpr(const CXXThisExpr *E) { 4223 if (DiscardResult) 4224 return true; 4225 4226 if (this->LambdaThisCapture.Offset > 0) { 4227 if (this->LambdaThisCapture.IsPtr) 4228 return this->emitGetThisFieldPtr(this->LambdaThisCapture.Offset, E); 4229 return this->emitGetPtrThisField(this->LambdaThisCapture.Offset, E); 4230 } 4231 4232 // In some circumstances, the 'this' pointer does not actually refer to the 4233 // instance pointer of the current function frame, but e.g. to the declaration 4234 // currently being initialized. Here we emit the necessary instruction(s) for 4235 // this scenario. 4236 if (!InitStackActive || !E->isImplicit()) 4237 return this->emitThis(E); 4238 4239 if (InitStackActive && !InitStack.empty()) { 4240 unsigned StartIndex = 0; 4241 for (StartIndex = InitStack.size() - 1; StartIndex > 0; --StartIndex) { 4242 if (InitStack[StartIndex].Kind != InitLink::K_Field && 4243 InitStack[StartIndex].Kind != InitLink::K_Elem) 4244 break; 4245 } 4246 4247 for (unsigned I = StartIndex, N = InitStack.size(); I != N; ++I) { 4248 if (!InitStack[I].template emit<Emitter>(this, E)) 4249 return false; 4250 } 4251 return true; 4252 } 4253 return this->emitThis(E); 4254 } 4255 4256 template <class Emitter> bool Compiler<Emitter>::visitStmt(const Stmt *S) { 4257 switch (S->getStmtClass()) { 4258 case Stmt::CompoundStmtClass: 4259 return visitCompoundStmt(cast<CompoundStmt>(S)); 4260 case Stmt::DeclStmtClass: 4261 return visitDeclStmt(cast<DeclStmt>(S)); 4262 case Stmt::ReturnStmtClass: 4263 return visitReturnStmt(cast<ReturnStmt>(S)); 4264 case Stmt::IfStmtClass: 4265 return visitIfStmt(cast<IfStmt>(S)); 4266 case Stmt::WhileStmtClass: 4267 return visitWhileStmt(cast<WhileStmt>(S)); 4268 case Stmt::DoStmtClass: 4269 return visitDoStmt(cast<DoStmt>(S)); 4270 case Stmt::ForStmtClass: 4271 return visitForStmt(cast<ForStmt>(S)); 4272 case Stmt::CXXForRangeStmtClass: 4273 return visitCXXForRangeStmt(cast<CXXForRangeStmt>(S)); 4274 case Stmt::BreakStmtClass: 4275 return visitBreakStmt(cast<BreakStmt>(S)); 4276 case Stmt::ContinueStmtClass: 4277 return visitContinueStmt(cast<ContinueStmt>(S)); 4278 case Stmt::SwitchStmtClass: 4279 return visitSwitchStmt(cast<SwitchStmt>(S)); 4280 case Stmt::CaseStmtClass: 4281 return visitCaseStmt(cast<CaseStmt>(S)); 4282 case Stmt::DefaultStmtClass: 4283 return visitDefaultStmt(cast<DefaultStmt>(S)); 4284 case Stmt::AttributedStmtClass: 4285 return visitAttributedStmt(cast<AttributedStmt>(S)); 4286 case Stmt::CXXTryStmtClass: 4287 return visitCXXTryStmt(cast<CXXTryStmt>(S)); 4288 case Stmt::NullStmtClass: 4289 return true; 4290 // Always invalid statements. 4291 case Stmt::GCCAsmStmtClass: 4292 case Stmt::MSAsmStmtClass: 4293 case Stmt::GotoStmtClass: 4294 return this->emitInvalid(S); 4295 case Stmt::LabelStmtClass: 4296 return this->visitStmt(cast<LabelStmt>(S)->getSubStmt()); 4297 default: { 4298 if (const auto *E = dyn_cast<Expr>(S)) 4299 return this->discard(E); 4300 return false; 4301 } 4302 } 4303 } 4304 4305 template <class Emitter> 4306 bool Compiler<Emitter>::visitCompoundStmt(const CompoundStmt *S) { 4307 BlockScope<Emitter> Scope(this); 4308 for (const auto *InnerStmt : S->body()) 4309 if (!visitStmt(InnerStmt)) 4310 return false; 4311 return Scope.destroyLocals(); 4312 } 4313 4314 template <class Emitter> 4315 bool Compiler<Emitter>::visitDeclStmt(const DeclStmt *DS) { 4316 for (const auto *D : DS->decls()) { 4317 if (isa<StaticAssertDecl, TagDecl, TypedefNameDecl, UsingEnumDecl, 4318 FunctionDecl>(D)) 4319 continue; 4320 4321 const auto *VD = dyn_cast<VarDecl>(D); 4322 if (!VD) 4323 return false; 4324 if (!this->visitVarDecl(VD)) 4325 return false; 4326 } 4327 4328 return true; 4329 } 4330 4331 template <class Emitter> 4332 bool Compiler<Emitter>::visitReturnStmt(const ReturnStmt *RS) { 4333 if (this->InStmtExpr) 4334 return this->emitUnsupported(RS); 4335 4336 if (const Expr *RE = RS->getRetValue()) { 4337 LocalScope<Emitter> RetScope(this); 4338 if (ReturnType) { 4339 // Primitive types are simply returned. 4340 if (!this->visit(RE)) 4341 return false; 4342 this->emitCleanup(); 4343 return this->emitRet(*ReturnType, RS); 4344 } else if (RE->getType()->isVoidType()) { 4345 if (!this->visit(RE)) 4346 return false; 4347 } else { 4348 // RVO - construct the value in the return location. 4349 if (!this->emitRVOPtr(RE)) 4350 return false; 4351 if (!this->visitInitializer(RE)) 4352 return false; 4353 if (!this->emitPopPtr(RE)) 4354 return false; 4355 4356 this->emitCleanup(); 4357 return this->emitRetVoid(RS); 4358 } 4359 } 4360 4361 // Void return. 4362 this->emitCleanup(); 4363 return this->emitRetVoid(RS); 4364 } 4365 4366 template <class Emitter> bool Compiler<Emitter>::visitIfStmt(const IfStmt *IS) { 4367 if (IS->isNonNegatedConsteval()) 4368 return visitStmt(IS->getThen()); 4369 if (IS->isNegatedConsteval()) 4370 return IS->getElse() ? visitStmt(IS->getElse()) : true; 4371 4372 if (auto *CondInit = IS->getInit()) 4373 if (!visitStmt(CondInit)) 4374 return false; 4375 4376 if (const DeclStmt *CondDecl = IS->getConditionVariableDeclStmt()) 4377 if (!visitDeclStmt(CondDecl)) 4378 return false; 4379 4380 if (!this->visitBool(IS->getCond())) 4381 return false; 4382 4383 if (const Stmt *Else = IS->getElse()) { 4384 LabelTy LabelElse = this->getLabel(); 4385 LabelTy LabelEnd = this->getLabel(); 4386 if (!this->jumpFalse(LabelElse)) 4387 return false; 4388 if (!visitStmt(IS->getThen())) 4389 return false; 4390 if (!this->jump(LabelEnd)) 4391 return false; 4392 this->emitLabel(LabelElse); 4393 if (!visitStmt(Else)) 4394 return false; 4395 this->emitLabel(LabelEnd); 4396 } else { 4397 LabelTy LabelEnd = this->getLabel(); 4398 if (!this->jumpFalse(LabelEnd)) 4399 return false; 4400 if (!visitStmt(IS->getThen())) 4401 return false; 4402 this->emitLabel(LabelEnd); 4403 } 4404 4405 return true; 4406 } 4407 4408 template <class Emitter> 4409 bool Compiler<Emitter>::visitWhileStmt(const WhileStmt *S) { 4410 const Expr *Cond = S->getCond(); 4411 const Stmt *Body = S->getBody(); 4412 4413 LabelTy CondLabel = this->getLabel(); // Label before the condition. 4414 LabelTy EndLabel = this->getLabel(); // Label after the loop. 4415 LoopScope<Emitter> LS(this, EndLabel, CondLabel); 4416 4417 this->fallthrough(CondLabel); 4418 this->emitLabel(CondLabel); 4419 4420 if (const DeclStmt *CondDecl = S->getConditionVariableDeclStmt()) 4421 if (!visitDeclStmt(CondDecl)) 4422 return false; 4423 4424 if (!this->visitBool(Cond)) 4425 return false; 4426 if (!this->jumpFalse(EndLabel)) 4427 return false; 4428 4429 if (!this->visitStmt(Body)) 4430 return false; 4431 4432 if (!this->jump(CondLabel)) 4433 return false; 4434 this->fallthrough(EndLabel); 4435 this->emitLabel(EndLabel); 4436 4437 return true; 4438 } 4439 4440 template <class Emitter> bool Compiler<Emitter>::visitDoStmt(const DoStmt *S) { 4441 const Expr *Cond = S->getCond(); 4442 const Stmt *Body = S->getBody(); 4443 4444 LabelTy StartLabel = this->getLabel(); 4445 LabelTy EndLabel = this->getLabel(); 4446 LabelTy CondLabel = this->getLabel(); 4447 LoopScope<Emitter> LS(this, EndLabel, CondLabel); 4448 4449 this->fallthrough(StartLabel); 4450 this->emitLabel(StartLabel); 4451 { 4452 if (!this->visitStmt(Body)) 4453 return false; 4454 this->fallthrough(CondLabel); 4455 this->emitLabel(CondLabel); 4456 if (!this->visitBool(Cond)) 4457 return false; 4458 } 4459 if (!this->jumpTrue(StartLabel)) 4460 return false; 4461 4462 this->fallthrough(EndLabel); 4463 this->emitLabel(EndLabel); 4464 return true; 4465 } 4466 4467 template <class Emitter> 4468 bool Compiler<Emitter>::visitForStmt(const ForStmt *S) { 4469 // for (Init; Cond; Inc) { Body } 4470 const Stmt *Init = S->getInit(); 4471 const Expr *Cond = S->getCond(); 4472 const Expr *Inc = S->getInc(); 4473 const Stmt *Body = S->getBody(); 4474 4475 LabelTy EndLabel = this->getLabel(); 4476 LabelTy CondLabel = this->getLabel(); 4477 LabelTy IncLabel = this->getLabel(); 4478 LoopScope<Emitter> LS(this, EndLabel, IncLabel); 4479 4480 if (Init && !this->visitStmt(Init)) 4481 return false; 4482 4483 this->fallthrough(CondLabel); 4484 this->emitLabel(CondLabel); 4485 4486 if (const DeclStmt *CondDecl = S->getConditionVariableDeclStmt()) 4487 if (!visitDeclStmt(CondDecl)) 4488 return false; 4489 4490 if (Cond) { 4491 if (!this->visitBool(Cond)) 4492 return false; 4493 if (!this->jumpFalse(EndLabel)) 4494 return false; 4495 } 4496 4497 { 4498 if (Body && !this->visitStmt(Body)) 4499 return false; 4500 4501 this->fallthrough(IncLabel); 4502 this->emitLabel(IncLabel); 4503 if (Inc && !this->discard(Inc)) 4504 return false; 4505 } 4506 4507 if (!this->jump(CondLabel)) 4508 return false; 4509 this->fallthrough(EndLabel); 4510 this->emitLabel(EndLabel); 4511 return true; 4512 } 4513 4514 template <class Emitter> 4515 bool Compiler<Emitter>::visitCXXForRangeStmt(const CXXForRangeStmt *S) { 4516 const Stmt *Init = S->getInit(); 4517 const Expr *Cond = S->getCond(); 4518 const Expr *Inc = S->getInc(); 4519 const Stmt *Body = S->getBody(); 4520 const Stmt *BeginStmt = S->getBeginStmt(); 4521 const Stmt *RangeStmt = S->getRangeStmt(); 4522 const Stmt *EndStmt = S->getEndStmt(); 4523 const VarDecl *LoopVar = S->getLoopVariable(); 4524 4525 LabelTy EndLabel = this->getLabel(); 4526 LabelTy CondLabel = this->getLabel(); 4527 LabelTy IncLabel = this->getLabel(); 4528 LoopScope<Emitter> LS(this, EndLabel, IncLabel); 4529 4530 // Emit declarations needed in the loop. 4531 if (Init && !this->visitStmt(Init)) 4532 return false; 4533 if (!this->visitStmt(RangeStmt)) 4534 return false; 4535 if (!this->visitStmt(BeginStmt)) 4536 return false; 4537 if (!this->visitStmt(EndStmt)) 4538 return false; 4539 4540 // Now the condition as well as the loop variable assignment. 4541 this->fallthrough(CondLabel); 4542 this->emitLabel(CondLabel); 4543 if (!this->visitBool(Cond)) 4544 return false; 4545 if (!this->jumpFalse(EndLabel)) 4546 return false; 4547 4548 if (!this->visitVarDecl(LoopVar)) 4549 return false; 4550 4551 // Body. 4552 { 4553 if (!this->visitStmt(Body)) 4554 return false; 4555 4556 this->fallthrough(IncLabel); 4557 this->emitLabel(IncLabel); 4558 if (!this->discard(Inc)) 4559 return false; 4560 } 4561 4562 if (!this->jump(CondLabel)) 4563 return false; 4564 4565 this->fallthrough(EndLabel); 4566 this->emitLabel(EndLabel); 4567 return true; 4568 } 4569 4570 template <class Emitter> 4571 bool Compiler<Emitter>::visitBreakStmt(const BreakStmt *S) { 4572 if (!BreakLabel) 4573 return false; 4574 4575 this->emitCleanup(); 4576 return this->jump(*BreakLabel); 4577 } 4578 4579 template <class Emitter> 4580 bool Compiler<Emitter>::visitContinueStmt(const ContinueStmt *S) { 4581 if (!ContinueLabel) 4582 return false; 4583 4584 this->emitCleanup(); 4585 return this->jump(*ContinueLabel); 4586 } 4587 4588 template <class Emitter> 4589 bool Compiler<Emitter>::visitSwitchStmt(const SwitchStmt *S) { 4590 const Expr *Cond = S->getCond(); 4591 PrimType CondT = this->classifyPrim(Cond->getType()); 4592 4593 LabelTy EndLabel = this->getLabel(); 4594 OptLabelTy DefaultLabel = std::nullopt; 4595 unsigned CondVar = this->allocateLocalPrimitive(Cond, CondT, true, false); 4596 4597 if (const auto *CondInit = S->getInit()) 4598 if (!visitStmt(CondInit)) 4599 return false; 4600 4601 if (const DeclStmt *CondDecl = S->getConditionVariableDeclStmt()) 4602 if (!visitDeclStmt(CondDecl)) 4603 return false; 4604 4605 // Initialize condition variable. 4606 if (!this->visit(Cond)) 4607 return false; 4608 if (!this->emitSetLocal(CondT, CondVar, S)) 4609 return false; 4610 4611 CaseMap CaseLabels; 4612 // Create labels and comparison ops for all case statements. 4613 for (const SwitchCase *SC = S->getSwitchCaseList(); SC; 4614 SC = SC->getNextSwitchCase()) { 4615 if (const auto *CS = dyn_cast<CaseStmt>(SC)) { 4616 // FIXME: Implement ranges. 4617 if (CS->caseStmtIsGNURange()) 4618 return false; 4619 CaseLabels[SC] = this->getLabel(); 4620 4621 const Expr *Value = CS->getLHS(); 4622 PrimType ValueT = this->classifyPrim(Value->getType()); 4623 4624 // Compare the case statement's value to the switch condition. 4625 if (!this->emitGetLocal(CondT, CondVar, CS)) 4626 return false; 4627 if (!this->visit(Value)) 4628 return false; 4629 4630 // Compare and jump to the case label. 4631 if (!this->emitEQ(ValueT, S)) 4632 return false; 4633 if (!this->jumpTrue(CaseLabels[CS])) 4634 return false; 4635 } else { 4636 assert(!DefaultLabel); 4637 DefaultLabel = this->getLabel(); 4638 } 4639 } 4640 4641 // If none of the conditions above were true, fall through to the default 4642 // statement or jump after the switch statement. 4643 if (DefaultLabel) { 4644 if (!this->jump(*DefaultLabel)) 4645 return false; 4646 } else { 4647 if (!this->jump(EndLabel)) 4648 return false; 4649 } 4650 4651 SwitchScope<Emitter> SS(this, std::move(CaseLabels), EndLabel, DefaultLabel); 4652 if (!this->visitStmt(S->getBody())) 4653 return false; 4654 this->emitLabel(EndLabel); 4655 return true; 4656 } 4657 4658 template <class Emitter> 4659 bool Compiler<Emitter>::visitCaseStmt(const CaseStmt *S) { 4660 this->emitLabel(CaseLabels[S]); 4661 return this->visitStmt(S->getSubStmt()); 4662 } 4663 4664 template <class Emitter> 4665 bool Compiler<Emitter>::visitDefaultStmt(const DefaultStmt *S) { 4666 this->emitLabel(*DefaultLabel); 4667 return this->visitStmt(S->getSubStmt()); 4668 } 4669 4670 template <class Emitter> 4671 bool Compiler<Emitter>::visitAttributedStmt(const AttributedStmt *S) { 4672 if (this->Ctx.getLangOpts().CXXAssumptions && 4673 !this->Ctx.getLangOpts().MSVCCompat) { 4674 for (const Attr *A : S->getAttrs()) { 4675 auto *AA = dyn_cast<CXXAssumeAttr>(A); 4676 if (!AA) 4677 continue; 4678 4679 assert(isa<NullStmt>(S->getSubStmt())); 4680 4681 const Expr *Assumption = AA->getAssumption(); 4682 if (Assumption->isValueDependent()) 4683 return false; 4684 4685 if (Assumption->HasSideEffects(this->Ctx.getASTContext())) 4686 continue; 4687 4688 // Evaluate assumption. 4689 if (!this->visitBool(Assumption)) 4690 return false; 4691 4692 if (!this->emitAssume(Assumption)) 4693 return false; 4694 } 4695 } 4696 4697 // Ignore other attributes. 4698 return this->visitStmt(S->getSubStmt()); 4699 } 4700 4701 template <class Emitter> 4702 bool Compiler<Emitter>::visitCXXTryStmt(const CXXTryStmt *S) { 4703 // Ignore all handlers. 4704 return this->visitStmt(S->getTryBlock()); 4705 } 4706 4707 template <class Emitter> 4708 bool Compiler<Emitter>::emitLambdaStaticInvokerBody(const CXXMethodDecl *MD) { 4709 assert(MD->isLambdaStaticInvoker()); 4710 assert(MD->hasBody()); 4711 assert(cast<CompoundStmt>(MD->getBody())->body_empty()); 4712 4713 const CXXRecordDecl *ClosureClass = MD->getParent(); 4714 const CXXMethodDecl *LambdaCallOp = ClosureClass->getLambdaCallOperator(); 4715 assert(ClosureClass->captures_begin() == ClosureClass->captures_end()); 4716 const Function *Func = this->getFunction(LambdaCallOp); 4717 if (!Func) 4718 return false; 4719 assert(Func->hasThisPointer()); 4720 assert(Func->getNumParams() == (MD->getNumParams() + 1 + Func->hasRVO())); 4721 4722 if (Func->hasRVO()) { 4723 if (!this->emitRVOPtr(MD)) 4724 return false; 4725 } 4726 4727 // The lambda call operator needs an instance pointer, but we don't have 4728 // one here, and we don't need one either because the lambda cannot have 4729 // any captures, as verified above. Emit a null pointer. This is then 4730 // special-cased when interpreting to not emit any misleading diagnostics. 4731 if (!this->emitNullPtr(nullptr, MD)) 4732 return false; 4733 4734 // Forward all arguments from the static invoker to the lambda call operator. 4735 for (const ParmVarDecl *PVD : MD->parameters()) { 4736 auto It = this->Params.find(PVD); 4737 assert(It != this->Params.end()); 4738 4739 // We do the lvalue-to-rvalue conversion manually here, so no need 4740 // to care about references. 4741 PrimType ParamType = this->classify(PVD->getType()).value_or(PT_Ptr); 4742 if (!this->emitGetParam(ParamType, It->second.Offset, MD)) 4743 return false; 4744 } 4745 4746 if (!this->emitCall(Func, 0, LambdaCallOp)) 4747 return false; 4748 4749 this->emitCleanup(); 4750 if (ReturnType) 4751 return this->emitRet(*ReturnType, MD); 4752 4753 // Nothing to do, since we emitted the RVO pointer above. 4754 return this->emitRetVoid(MD); 4755 } 4756 4757 template <class Emitter> 4758 bool Compiler<Emitter>::checkLiteralType(const Expr *E) { 4759 if (Ctx.getLangOpts().CPlusPlus23) 4760 return true; 4761 4762 if (!E->isPRValue() || E->getType()->isLiteralType(Ctx.getASTContext())) 4763 return true; 4764 4765 return this->emitCheckLiteralType(E->getType().getTypePtr(), E); 4766 } 4767 4768 template <class Emitter> 4769 bool Compiler<Emitter>::compileConstructor(const CXXConstructorDecl *Ctor) { 4770 assert(!ReturnType); 4771 4772 auto emitFieldInitializer = [&](const Record::Field *F, unsigned FieldOffset, 4773 const Expr *InitExpr) -> bool { 4774 // We don't know what to do with these, so just return false. 4775 if (InitExpr->getType().isNull()) 4776 return false; 4777 4778 if (std::optional<PrimType> T = this->classify(InitExpr)) { 4779 if (!this->visit(InitExpr)) 4780 return false; 4781 4782 if (F->isBitField()) 4783 return this->emitInitThisBitField(*T, F, FieldOffset, InitExpr); 4784 return this->emitInitThisField(*T, FieldOffset, InitExpr); 4785 } 4786 // Non-primitive case. Get a pointer to the field-to-initialize 4787 // on the stack and call visitInitialzer() for it. 4788 InitLinkScope<Emitter> FieldScope(this, InitLink::Field(F->Offset)); 4789 if (!this->emitGetPtrThisField(FieldOffset, InitExpr)) 4790 return false; 4791 4792 if (!this->visitInitializer(InitExpr)) 4793 return false; 4794 4795 return this->emitFinishInitPop(InitExpr); 4796 }; 4797 4798 const RecordDecl *RD = Ctor->getParent(); 4799 const Record *R = this->getRecord(RD); 4800 if (!R) 4801 return false; 4802 4803 if (R->isUnion() && Ctor->isCopyOrMoveConstructor()) { 4804 // union copy and move ctors are special. 4805 assert(cast<CompoundStmt>(Ctor->getBody())->body_empty()); 4806 if (!this->emitThis(Ctor)) 4807 return false; 4808 4809 auto PVD = Ctor->getParamDecl(0); 4810 ParamOffset PO = this->Params[PVD]; // Must exist. 4811 4812 if (!this->emitGetParam(PT_Ptr, PO.Offset, Ctor)) 4813 return false; 4814 4815 return this->emitMemcpy(Ctor) && this->emitPopPtr(Ctor) && 4816 this->emitRetVoid(Ctor); 4817 } 4818 4819 InitLinkScope<Emitter> InitScope(this, InitLink::This()); 4820 for (const auto *Init : Ctor->inits()) { 4821 // Scope needed for the initializers. 4822 BlockScope<Emitter> Scope(this); 4823 4824 const Expr *InitExpr = Init->getInit(); 4825 if (const FieldDecl *Member = Init->getMember()) { 4826 const Record::Field *F = R->getField(Member); 4827 4828 if (!emitFieldInitializer(F, F->Offset, InitExpr)) 4829 return false; 4830 } else if (const Type *Base = Init->getBaseClass()) { 4831 const auto *BaseDecl = Base->getAsCXXRecordDecl(); 4832 assert(BaseDecl); 4833 4834 if (Init->isBaseVirtual()) { 4835 assert(R->getVirtualBase(BaseDecl)); 4836 if (!this->emitGetPtrThisVirtBase(BaseDecl, InitExpr)) 4837 return false; 4838 4839 } else { 4840 // Base class initializer. 4841 // Get This Base and call initializer on it. 4842 const Record::Base *B = R->getBase(BaseDecl); 4843 assert(B); 4844 if (!this->emitGetPtrThisBase(B->Offset, InitExpr)) 4845 return false; 4846 } 4847 4848 if (!this->visitInitializer(InitExpr)) 4849 return false; 4850 if (!this->emitFinishInitPop(InitExpr)) 4851 return false; 4852 } else if (const IndirectFieldDecl *IFD = Init->getIndirectMember()) { 4853 assert(IFD->getChainingSize() >= 2); 4854 4855 unsigned NestedFieldOffset = 0; 4856 const Record::Field *NestedField = nullptr; 4857 for (const NamedDecl *ND : IFD->chain()) { 4858 const auto *FD = cast<FieldDecl>(ND); 4859 const Record *FieldRecord = this->P.getOrCreateRecord(FD->getParent()); 4860 assert(FieldRecord); 4861 4862 NestedField = FieldRecord->getField(FD); 4863 assert(NestedField); 4864 4865 NestedFieldOffset += NestedField->Offset; 4866 } 4867 assert(NestedField); 4868 4869 if (!emitFieldInitializer(NestedField, NestedFieldOffset, InitExpr)) 4870 return false; 4871 } else { 4872 assert(Init->isDelegatingInitializer()); 4873 if (!this->emitThis(InitExpr)) 4874 return false; 4875 if (!this->visitInitializer(Init->getInit())) 4876 return false; 4877 if (!this->emitPopPtr(InitExpr)) 4878 return false; 4879 } 4880 4881 if (!Scope.destroyLocals()) 4882 return false; 4883 } 4884 4885 if (const auto *Body = Ctor->getBody()) 4886 if (!visitStmt(Body)) 4887 return false; 4888 4889 return this->emitRetVoid(SourceInfo{}); 4890 } 4891 4892 template <class Emitter> 4893 bool Compiler<Emitter>::compileDestructor(const CXXDestructorDecl *Dtor) { 4894 const RecordDecl *RD = Dtor->getParent(); 4895 const Record *R = this->getRecord(RD); 4896 if (!R) 4897 return false; 4898 4899 if (!Dtor->isTrivial() && Dtor->getBody()) { 4900 if (!this->visitStmt(Dtor->getBody())) 4901 return false; 4902 } 4903 4904 if (!this->emitThis(Dtor)) 4905 return false; 4906 4907 assert(R); 4908 if (!R->isUnion()) { 4909 // First, destroy all fields. 4910 for (const Record::Field &Field : llvm::reverse(R->fields())) { 4911 const Descriptor *D = Field.Desc; 4912 if (!D->isPrimitive() && !D->isPrimitiveArray()) { 4913 if (!this->emitGetPtrField(Field.Offset, SourceInfo{})) 4914 return false; 4915 if (!this->emitDestruction(D)) 4916 return false; 4917 if (!this->emitPopPtr(SourceInfo{})) 4918 return false; 4919 } 4920 } 4921 } 4922 4923 for (const Record::Base &Base : llvm::reverse(R->bases())) { 4924 if (!this->emitGetPtrBase(Base.Offset, SourceInfo{})) 4925 return false; 4926 if (!this->emitRecordDestruction(Base.R)) 4927 return false; 4928 if (!this->emitPopPtr(SourceInfo{})) 4929 return false; 4930 } 4931 4932 // FIXME: Virtual bases. 4933 return this->emitPopPtr(Dtor) && this->emitRetVoid(Dtor); 4934 } 4935 4936 template <class Emitter> 4937 bool Compiler<Emitter>::visitFunc(const FunctionDecl *F) { 4938 // Classify the return type. 4939 ReturnType = this->classify(F->getReturnType()); 4940 4941 if (const auto *Ctor = dyn_cast<CXXConstructorDecl>(F)) 4942 return this->compileConstructor(Ctor); 4943 if (const auto *Dtor = dyn_cast<CXXDestructorDecl>(F)) 4944 return this->compileDestructor(Dtor); 4945 4946 // Emit custom code if this is a lambda static invoker. 4947 if (const auto *MD = dyn_cast<CXXMethodDecl>(F); 4948 MD && MD->isLambdaStaticInvoker()) 4949 return this->emitLambdaStaticInvokerBody(MD); 4950 4951 // Regular functions. 4952 if (const auto *Body = F->getBody()) 4953 if (!visitStmt(Body)) 4954 return false; 4955 4956 // Emit a guard return to protect against a code path missing one. 4957 if (F->getReturnType()->isVoidType()) 4958 return this->emitRetVoid(SourceInfo{}); 4959 return this->emitNoRet(SourceInfo{}); 4960 } 4961 4962 template <class Emitter> 4963 bool Compiler<Emitter>::VisitUnaryOperator(const UnaryOperator *E) { 4964 const Expr *SubExpr = E->getSubExpr(); 4965 if (SubExpr->getType()->isAnyComplexType()) 4966 return this->VisitComplexUnaryOperator(E); 4967 std::optional<PrimType> T = classify(SubExpr->getType()); 4968 4969 switch (E->getOpcode()) { 4970 case UO_PostInc: { // x++ 4971 if (!Ctx.getLangOpts().CPlusPlus14) 4972 return this->emitInvalid(E); 4973 if (!T) 4974 return this->emitError(E); 4975 4976 if (!this->visit(SubExpr)) 4977 return false; 4978 4979 if (T == PT_Ptr || T == PT_FnPtr) { 4980 if (!this->emitIncPtr(E)) 4981 return false; 4982 4983 return DiscardResult ? this->emitPopPtr(E) : true; 4984 } 4985 4986 if (T == PT_Float) { 4987 return DiscardResult ? this->emitIncfPop(getRoundingMode(E), E) 4988 : this->emitIncf(getRoundingMode(E), E); 4989 } 4990 4991 return DiscardResult ? this->emitIncPop(*T, E) : this->emitInc(*T, E); 4992 } 4993 case UO_PostDec: { // x-- 4994 if (!Ctx.getLangOpts().CPlusPlus14) 4995 return this->emitInvalid(E); 4996 if (!T) 4997 return this->emitError(E); 4998 4999 if (!this->visit(SubExpr)) 5000 return false; 5001 5002 if (T == PT_Ptr || T == PT_FnPtr) { 5003 if (!this->emitDecPtr(E)) 5004 return false; 5005 5006 return DiscardResult ? this->emitPopPtr(E) : true; 5007 } 5008 5009 if (T == PT_Float) { 5010 return DiscardResult ? this->emitDecfPop(getRoundingMode(E), E) 5011 : this->emitDecf(getRoundingMode(E), E); 5012 } 5013 5014 return DiscardResult ? this->emitDecPop(*T, E) : this->emitDec(*T, E); 5015 } 5016 case UO_PreInc: { // ++x 5017 if (!Ctx.getLangOpts().CPlusPlus14) 5018 return this->emitInvalid(E); 5019 if (!T) 5020 return this->emitError(E); 5021 5022 if (!this->visit(SubExpr)) 5023 return false; 5024 5025 if (T == PT_Ptr || T == PT_FnPtr) { 5026 if (!this->emitLoadPtr(E)) 5027 return false; 5028 if (!this->emitConstUint8(1, E)) 5029 return false; 5030 if (!this->emitAddOffsetUint8(E)) 5031 return false; 5032 return DiscardResult ? this->emitStorePopPtr(E) : this->emitStorePtr(E); 5033 } 5034 5035 // Post-inc and pre-inc are the same if the value is to be discarded. 5036 if (DiscardResult) { 5037 if (T == PT_Float) 5038 return this->emitIncfPop(getRoundingMode(E), E); 5039 return this->emitIncPop(*T, E); 5040 } 5041 5042 if (T == PT_Float) { 5043 const auto &TargetSemantics = Ctx.getFloatSemantics(E->getType()); 5044 if (!this->emitLoadFloat(E)) 5045 return false; 5046 if (!this->emitConstFloat(llvm::APFloat(TargetSemantics, 1), E)) 5047 return false; 5048 if (!this->emitAddf(getRoundingMode(E), E)) 5049 return false; 5050 if (!this->emitStoreFloat(E)) 5051 return false; 5052 } else { 5053 assert(isIntegralType(*T)); 5054 if (!this->emitLoad(*T, E)) 5055 return false; 5056 if (!this->emitConst(1, E)) 5057 return false; 5058 if (!this->emitAdd(*T, E)) 5059 return false; 5060 if (!this->emitStore(*T, E)) 5061 return false; 5062 } 5063 return E->isGLValue() || this->emitLoadPop(*T, E); 5064 } 5065 case UO_PreDec: { // --x 5066 if (!Ctx.getLangOpts().CPlusPlus14) 5067 return this->emitInvalid(E); 5068 if (!T) 5069 return this->emitError(E); 5070 5071 if (!this->visit(SubExpr)) 5072 return false; 5073 5074 if (T == PT_Ptr || T == PT_FnPtr) { 5075 if (!this->emitLoadPtr(E)) 5076 return false; 5077 if (!this->emitConstUint8(1, E)) 5078 return false; 5079 if (!this->emitSubOffsetUint8(E)) 5080 return false; 5081 return DiscardResult ? this->emitStorePopPtr(E) : this->emitStorePtr(E); 5082 } 5083 5084 // Post-dec and pre-dec are the same if the value is to be discarded. 5085 if (DiscardResult) { 5086 if (T == PT_Float) 5087 return this->emitDecfPop(getRoundingMode(E), E); 5088 return this->emitDecPop(*T, E); 5089 } 5090 5091 if (T == PT_Float) { 5092 const auto &TargetSemantics = Ctx.getFloatSemantics(E->getType()); 5093 if (!this->emitLoadFloat(E)) 5094 return false; 5095 if (!this->emitConstFloat(llvm::APFloat(TargetSemantics, 1), E)) 5096 return false; 5097 if (!this->emitSubf(getRoundingMode(E), E)) 5098 return false; 5099 if (!this->emitStoreFloat(E)) 5100 return false; 5101 } else { 5102 assert(isIntegralType(*T)); 5103 if (!this->emitLoad(*T, E)) 5104 return false; 5105 if (!this->emitConst(1, E)) 5106 return false; 5107 if (!this->emitSub(*T, E)) 5108 return false; 5109 if (!this->emitStore(*T, E)) 5110 return false; 5111 } 5112 return E->isGLValue() || this->emitLoadPop(*T, E); 5113 } 5114 case UO_LNot: // !x 5115 if (!T) 5116 return this->emitError(E); 5117 5118 if (DiscardResult) 5119 return this->discard(SubExpr); 5120 5121 if (!this->visitBool(SubExpr)) 5122 return false; 5123 5124 if (!this->emitInv(E)) 5125 return false; 5126 5127 if (PrimType ET = classifyPrim(E->getType()); ET != PT_Bool) 5128 return this->emitCast(PT_Bool, ET, E); 5129 return true; 5130 case UO_Minus: // -x 5131 if (!T) 5132 return this->emitError(E); 5133 5134 if (!this->visit(SubExpr)) 5135 return false; 5136 return DiscardResult ? this->emitPop(*T, E) : this->emitNeg(*T, E); 5137 case UO_Plus: // +x 5138 if (!T) 5139 return this->emitError(E); 5140 5141 if (!this->visit(SubExpr)) // noop 5142 return false; 5143 return DiscardResult ? this->emitPop(*T, E) : true; 5144 case UO_AddrOf: // &x 5145 if (E->getType()->isMemberPointerType()) { 5146 // C++11 [expr.unary.op]p3 has very strict rules on how the address of a 5147 // member can be formed. 5148 return this->emitGetMemberPtr(cast<DeclRefExpr>(SubExpr)->getDecl(), E); 5149 } 5150 // We should already have a pointer when we get here. 5151 return this->delegate(SubExpr); 5152 case UO_Deref: // *x 5153 if (DiscardResult) 5154 return this->discard(SubExpr); 5155 return this->visit(SubExpr); 5156 case UO_Not: // ~x 5157 if (!T) 5158 return this->emitError(E); 5159 5160 if (!this->visit(SubExpr)) 5161 return false; 5162 return DiscardResult ? this->emitPop(*T, E) : this->emitComp(*T, E); 5163 case UO_Real: // __real x 5164 assert(T); 5165 return this->delegate(SubExpr); 5166 case UO_Imag: { // __imag x 5167 assert(T); 5168 if (!this->discard(SubExpr)) 5169 return false; 5170 return this->visitZeroInitializer(*T, SubExpr->getType(), SubExpr); 5171 } 5172 case UO_Extension: 5173 return this->delegate(SubExpr); 5174 case UO_Coawait: 5175 assert(false && "Unhandled opcode"); 5176 } 5177 5178 return false; 5179 } 5180 5181 template <class Emitter> 5182 bool Compiler<Emitter>::VisitComplexUnaryOperator(const UnaryOperator *E) { 5183 const Expr *SubExpr = E->getSubExpr(); 5184 assert(SubExpr->getType()->isAnyComplexType()); 5185 5186 if (DiscardResult) 5187 return this->discard(SubExpr); 5188 5189 std::optional<PrimType> ResT = classify(E); 5190 auto prepareResult = [=]() -> bool { 5191 if (!ResT && !Initializing) { 5192 std::optional<unsigned> LocalIndex = allocateLocal(SubExpr); 5193 if (!LocalIndex) 5194 return false; 5195 return this->emitGetPtrLocal(*LocalIndex, E); 5196 } 5197 5198 return true; 5199 }; 5200 5201 // The offset of the temporary, if we created one. 5202 unsigned SubExprOffset = ~0u; 5203 auto createTemp = [=, &SubExprOffset]() -> bool { 5204 SubExprOffset = this->allocateLocalPrimitive(SubExpr, PT_Ptr, true, false); 5205 if (!this->visit(SubExpr)) 5206 return false; 5207 return this->emitSetLocal(PT_Ptr, SubExprOffset, E); 5208 }; 5209 5210 PrimType ElemT = classifyComplexElementType(SubExpr->getType()); 5211 auto getElem = [=](unsigned Offset, unsigned Index) -> bool { 5212 if (!this->emitGetLocal(PT_Ptr, Offset, E)) 5213 return false; 5214 return this->emitArrayElemPop(ElemT, Index, E); 5215 }; 5216 5217 switch (E->getOpcode()) { 5218 case UO_Minus: 5219 if (!prepareResult()) 5220 return false; 5221 if (!createTemp()) 5222 return false; 5223 for (unsigned I = 0; I != 2; ++I) { 5224 if (!getElem(SubExprOffset, I)) 5225 return false; 5226 if (!this->emitNeg(ElemT, E)) 5227 return false; 5228 if (!this->emitInitElem(ElemT, I, E)) 5229 return false; 5230 } 5231 break; 5232 5233 case UO_Plus: // +x 5234 case UO_AddrOf: // &x 5235 case UO_Deref: // *x 5236 return this->delegate(SubExpr); 5237 5238 case UO_LNot: 5239 if (!this->visit(SubExpr)) 5240 return false; 5241 if (!this->emitComplexBoolCast(SubExpr)) 5242 return false; 5243 if (!this->emitInv(E)) 5244 return false; 5245 if (PrimType ET = classifyPrim(E->getType()); ET != PT_Bool) 5246 return this->emitCast(PT_Bool, ET, E); 5247 return true; 5248 5249 case UO_Real: 5250 return this->emitComplexReal(SubExpr); 5251 5252 case UO_Imag: 5253 if (!this->visit(SubExpr)) 5254 return false; 5255 5256 if (SubExpr->isLValue()) { 5257 if (!this->emitConstUint8(1, E)) 5258 return false; 5259 return this->emitArrayElemPtrPopUint8(E); 5260 } 5261 5262 // Since our _Complex implementation does not map to a primitive type, 5263 // we sometimes have to do the lvalue-to-rvalue conversion here manually. 5264 return this->emitArrayElemPop(classifyPrim(E->getType()), 1, E); 5265 5266 case UO_Not: // ~x 5267 if (!this->visit(SubExpr)) 5268 return false; 5269 // Negate the imaginary component. 5270 if (!this->emitArrayElem(ElemT, 1, E)) 5271 return false; 5272 if (!this->emitNeg(ElemT, E)) 5273 return false; 5274 if (!this->emitInitElem(ElemT, 1, E)) 5275 return false; 5276 return DiscardResult ? this->emitPopPtr(E) : true; 5277 5278 case UO_Extension: 5279 return this->delegate(SubExpr); 5280 5281 default: 5282 return this->emitInvalid(E); 5283 } 5284 5285 return true; 5286 } 5287 5288 template <class Emitter> 5289 bool Compiler<Emitter>::visitDeclRef(const ValueDecl *D, const Expr *E) { 5290 if (DiscardResult) 5291 return true; 5292 5293 if (const auto *ECD = dyn_cast<EnumConstantDecl>(D)) { 5294 return this->emitConst(ECD->getInitVal(), E); 5295 } else if (const auto *BD = dyn_cast<BindingDecl>(D)) { 5296 return this->visit(BD->getBinding()); 5297 } else if (const auto *FuncDecl = dyn_cast<FunctionDecl>(D)) { 5298 const Function *F = getFunction(FuncDecl); 5299 return F && this->emitGetFnPtr(F, E); 5300 } else if (const auto *TPOD = dyn_cast<TemplateParamObjectDecl>(D)) { 5301 if (std::optional<unsigned> Index = P.getOrCreateGlobal(D)) { 5302 if (!this->emitGetPtrGlobal(*Index, E)) 5303 return false; 5304 if (std::optional<PrimType> T = classify(E->getType())) { 5305 if (!this->visitAPValue(TPOD->getValue(), *T, E)) 5306 return false; 5307 return this->emitInitGlobal(*T, *Index, E); 5308 } 5309 return this->visitAPValueInitializer(TPOD->getValue(), E); 5310 } 5311 return false; 5312 } 5313 5314 // References are implemented via pointers, so when we see a DeclRefExpr 5315 // pointing to a reference, we need to get its value directly (i.e. the 5316 // pointer to the actual value) instead of a pointer to the pointer to the 5317 // value. 5318 bool IsReference = D->getType()->isReferenceType(); 5319 5320 // Check for local/global variables and parameters. 5321 if (auto It = Locals.find(D); It != Locals.end()) { 5322 const unsigned Offset = It->second.Offset; 5323 if (IsReference) 5324 return this->emitGetLocal(PT_Ptr, Offset, E); 5325 return this->emitGetPtrLocal(Offset, E); 5326 } else if (auto GlobalIndex = P.getGlobal(D)) { 5327 if (IsReference) { 5328 if (!Ctx.getLangOpts().CPlusPlus11) 5329 return this->emitGetGlobal(classifyPrim(E), *GlobalIndex, E); 5330 return this->emitGetGlobalUnchecked(classifyPrim(E), *GlobalIndex, E); 5331 } 5332 5333 return this->emitGetPtrGlobal(*GlobalIndex, E); 5334 } else if (const auto *PVD = dyn_cast<ParmVarDecl>(D)) { 5335 if (auto It = this->Params.find(PVD); It != this->Params.end()) { 5336 if (IsReference || !It->second.IsPtr) 5337 return this->emitGetParam(classifyPrim(E), It->second.Offset, E); 5338 5339 return this->emitGetPtrParam(It->second.Offset, E); 5340 } 5341 } 5342 5343 // In case we need to re-visit a declaration. 5344 auto revisit = [&](const VarDecl *VD) -> bool { 5345 auto VarState = this->visitDecl(VD); 5346 5347 if (VarState.notCreated()) 5348 return true; 5349 if (!VarState) 5350 return false; 5351 // Retry. 5352 return this->visitDeclRef(D, E); 5353 }; 5354 5355 // Handle lambda captures. 5356 if (auto It = this->LambdaCaptures.find(D); 5357 It != this->LambdaCaptures.end()) { 5358 auto [Offset, IsPtr] = It->second; 5359 5360 if (IsPtr) 5361 return this->emitGetThisFieldPtr(Offset, E); 5362 return this->emitGetPtrThisField(Offset, E); 5363 } else if (const auto *DRE = dyn_cast<DeclRefExpr>(E); 5364 DRE && DRE->refersToEnclosingVariableOrCapture()) { 5365 if (const auto *VD = dyn_cast<VarDecl>(D); VD && VD->isInitCapture()) 5366 return revisit(VD); 5367 } 5368 5369 if (D != InitializingDecl) { 5370 // Try to lazily visit (or emit dummy pointers for) declarations 5371 // we haven't seen yet. 5372 if (Ctx.getLangOpts().CPlusPlus) { 5373 if (const auto *VD = dyn_cast<VarDecl>(D)) { 5374 const auto typeShouldBeVisited = [&](QualType T) -> bool { 5375 if (T.isConstant(Ctx.getASTContext())) 5376 return true; 5377 if (const auto *RT = T->getAs<ReferenceType>()) 5378 return RT->getPointeeType().isConstQualified(); 5379 return false; 5380 }; 5381 5382 // DecompositionDecls are just proxies for us. 5383 if (isa<DecompositionDecl>(VD)) 5384 return revisit(VD); 5385 5386 // Visit local const variables like normal. 5387 if ((VD->hasGlobalStorage() || VD->isLocalVarDecl() || 5388 VD->isStaticDataMember()) && 5389 typeShouldBeVisited(VD->getType())) 5390 return revisit(VD); 5391 } 5392 } else { 5393 if (const auto *VD = dyn_cast<VarDecl>(D); 5394 VD && VD->getAnyInitializer() && 5395 VD->getType().isConstant(Ctx.getASTContext()) && !VD->isWeak()) 5396 return revisit(VD); 5397 } 5398 } 5399 5400 if (std::optional<unsigned> I = P.getOrCreateDummy(D)) { 5401 if (!this->emitGetPtrGlobal(*I, E)) 5402 return false; 5403 if (E->getType()->isVoidType()) 5404 return true; 5405 // Convert the dummy pointer to another pointer type if we have to. 5406 if (PrimType PT = classifyPrim(E); PT != PT_Ptr) { 5407 if (isPtrType(PT)) 5408 return this->emitDecayPtr(PT_Ptr, PT, E); 5409 return false; 5410 } 5411 return true; 5412 } 5413 5414 if (const auto *DRE = dyn_cast<DeclRefExpr>(E)) 5415 return this->emitInvalidDeclRef(DRE, E); 5416 return false; 5417 } 5418 5419 template <class Emitter> 5420 bool Compiler<Emitter>::VisitDeclRefExpr(const DeclRefExpr *E) { 5421 const auto *D = E->getDecl(); 5422 return this->visitDeclRef(D, E); 5423 } 5424 5425 template <class Emitter> void Compiler<Emitter>::emitCleanup() { 5426 for (VariableScope<Emitter> *C = VarScope; C; C = C->getParent()) 5427 C->emitDestruction(); 5428 } 5429 5430 template <class Emitter> 5431 unsigned Compiler<Emitter>::collectBaseOffset(const QualType BaseType, 5432 const QualType DerivedType) { 5433 const auto extractRecordDecl = [](QualType Ty) -> const CXXRecordDecl * { 5434 if (const auto *R = Ty->getPointeeCXXRecordDecl()) 5435 return R; 5436 return Ty->getAsCXXRecordDecl(); 5437 }; 5438 const CXXRecordDecl *BaseDecl = extractRecordDecl(BaseType); 5439 const CXXRecordDecl *DerivedDecl = extractRecordDecl(DerivedType); 5440 5441 return Ctx.collectBaseOffset(BaseDecl, DerivedDecl); 5442 } 5443 5444 /// Emit casts from a PrimType to another PrimType. 5445 template <class Emitter> 5446 bool Compiler<Emitter>::emitPrimCast(PrimType FromT, PrimType ToT, 5447 QualType ToQT, const Expr *E) { 5448 5449 if (FromT == PT_Float) { 5450 // Floating to floating. 5451 if (ToT == PT_Float) { 5452 const llvm::fltSemantics *ToSem = &Ctx.getFloatSemantics(ToQT); 5453 return this->emitCastFP(ToSem, getRoundingMode(E), E); 5454 } 5455 5456 if (ToT == PT_IntAP) 5457 return this->emitCastFloatingIntegralAP(Ctx.getBitWidth(ToQT), E); 5458 if (ToT == PT_IntAPS) 5459 return this->emitCastFloatingIntegralAPS(Ctx.getBitWidth(ToQT), E); 5460 5461 // Float to integral. 5462 if (isIntegralType(ToT) || ToT == PT_Bool) 5463 return this->emitCastFloatingIntegral(ToT, E); 5464 } 5465 5466 if (isIntegralType(FromT) || FromT == PT_Bool) { 5467 if (ToT == PT_IntAP) 5468 return this->emitCastAP(FromT, Ctx.getBitWidth(ToQT), E); 5469 if (ToT == PT_IntAPS) 5470 return this->emitCastAPS(FromT, Ctx.getBitWidth(ToQT), E); 5471 5472 // Integral to integral. 5473 if (isIntegralType(ToT) || ToT == PT_Bool) 5474 return FromT != ToT ? this->emitCast(FromT, ToT, E) : true; 5475 5476 if (ToT == PT_Float) { 5477 // Integral to floating. 5478 const llvm::fltSemantics *ToSem = &Ctx.getFloatSemantics(ToQT); 5479 return this->emitCastIntegralFloating(FromT, ToSem, getRoundingMode(E), 5480 E); 5481 } 5482 } 5483 5484 return false; 5485 } 5486 5487 /// Emits __real(SubExpr) 5488 template <class Emitter> 5489 bool Compiler<Emitter>::emitComplexReal(const Expr *SubExpr) { 5490 assert(SubExpr->getType()->isAnyComplexType()); 5491 5492 if (DiscardResult) 5493 return this->discard(SubExpr); 5494 5495 if (!this->visit(SubExpr)) 5496 return false; 5497 if (SubExpr->isLValue()) { 5498 if (!this->emitConstUint8(0, SubExpr)) 5499 return false; 5500 return this->emitArrayElemPtrPopUint8(SubExpr); 5501 } 5502 5503 // Rvalue, load the actual element. 5504 return this->emitArrayElemPop(classifyComplexElementType(SubExpr->getType()), 5505 0, SubExpr); 5506 } 5507 5508 template <class Emitter> 5509 bool Compiler<Emitter>::emitComplexBoolCast(const Expr *E) { 5510 assert(!DiscardResult); 5511 PrimType ElemT = classifyComplexElementType(E->getType()); 5512 // We emit the expression (__real(E) != 0 || __imag(E) != 0) 5513 // for us, that means (bool)E[0] || (bool)E[1] 5514 if (!this->emitArrayElem(ElemT, 0, E)) 5515 return false; 5516 if (ElemT == PT_Float) { 5517 if (!this->emitCastFloatingIntegral(PT_Bool, E)) 5518 return false; 5519 } else { 5520 if (!this->emitCast(ElemT, PT_Bool, E)) 5521 return false; 5522 } 5523 5524 // We now have the bool value of E[0] on the stack. 5525 LabelTy LabelTrue = this->getLabel(); 5526 if (!this->jumpTrue(LabelTrue)) 5527 return false; 5528 5529 if (!this->emitArrayElemPop(ElemT, 1, E)) 5530 return false; 5531 if (ElemT == PT_Float) { 5532 if (!this->emitCastFloatingIntegral(PT_Bool, E)) 5533 return false; 5534 } else { 5535 if (!this->emitCast(ElemT, PT_Bool, E)) 5536 return false; 5537 } 5538 // Leave the boolean value of E[1] on the stack. 5539 LabelTy EndLabel = this->getLabel(); 5540 this->jump(EndLabel); 5541 5542 this->emitLabel(LabelTrue); 5543 if (!this->emitPopPtr(E)) 5544 return false; 5545 if (!this->emitConstBool(true, E)) 5546 return false; 5547 5548 this->fallthrough(EndLabel); 5549 this->emitLabel(EndLabel); 5550 5551 return true; 5552 } 5553 5554 template <class Emitter> 5555 bool Compiler<Emitter>::emitComplexComparison(const Expr *LHS, const Expr *RHS, 5556 const BinaryOperator *E) { 5557 assert(E->isComparisonOp()); 5558 assert(!Initializing); 5559 assert(!DiscardResult); 5560 5561 PrimType ElemT; 5562 bool LHSIsComplex; 5563 unsigned LHSOffset; 5564 if (LHS->getType()->isAnyComplexType()) { 5565 LHSIsComplex = true; 5566 ElemT = classifyComplexElementType(LHS->getType()); 5567 LHSOffset = allocateLocalPrimitive(LHS, PT_Ptr, /*IsConst=*/true, 5568 /*IsExtended=*/false); 5569 if (!this->visit(LHS)) 5570 return false; 5571 if (!this->emitSetLocal(PT_Ptr, LHSOffset, E)) 5572 return false; 5573 } else { 5574 LHSIsComplex = false; 5575 PrimType LHST = classifyPrim(LHS->getType()); 5576 LHSOffset = this->allocateLocalPrimitive(LHS, LHST, true, false); 5577 if (!this->visit(LHS)) 5578 return false; 5579 if (!this->emitSetLocal(LHST, LHSOffset, E)) 5580 return false; 5581 } 5582 5583 bool RHSIsComplex; 5584 unsigned RHSOffset; 5585 if (RHS->getType()->isAnyComplexType()) { 5586 RHSIsComplex = true; 5587 ElemT = classifyComplexElementType(RHS->getType()); 5588 RHSOffset = allocateLocalPrimitive(RHS, PT_Ptr, /*IsConst=*/true, 5589 /*IsExtended=*/false); 5590 if (!this->visit(RHS)) 5591 return false; 5592 if (!this->emitSetLocal(PT_Ptr, RHSOffset, E)) 5593 return false; 5594 } else { 5595 RHSIsComplex = false; 5596 PrimType RHST = classifyPrim(RHS->getType()); 5597 RHSOffset = this->allocateLocalPrimitive(RHS, RHST, true, false); 5598 if (!this->visit(RHS)) 5599 return false; 5600 if (!this->emitSetLocal(RHST, RHSOffset, E)) 5601 return false; 5602 } 5603 5604 auto getElem = [&](unsigned LocalOffset, unsigned Index, 5605 bool IsComplex) -> bool { 5606 if (IsComplex) { 5607 if (!this->emitGetLocal(PT_Ptr, LocalOffset, E)) 5608 return false; 5609 return this->emitArrayElemPop(ElemT, Index, E); 5610 } 5611 return this->emitGetLocal(ElemT, LocalOffset, E); 5612 }; 5613 5614 for (unsigned I = 0; I != 2; ++I) { 5615 // Get both values. 5616 if (!getElem(LHSOffset, I, LHSIsComplex)) 5617 return false; 5618 if (!getElem(RHSOffset, I, RHSIsComplex)) 5619 return false; 5620 // And compare them. 5621 if (!this->emitEQ(ElemT, E)) 5622 return false; 5623 5624 if (!this->emitCastBoolUint8(E)) 5625 return false; 5626 } 5627 5628 // We now have two bool values on the stack. Compare those. 5629 if (!this->emitAddUint8(E)) 5630 return false; 5631 if (!this->emitConstUint8(2, E)) 5632 return false; 5633 5634 if (E->getOpcode() == BO_EQ) { 5635 if (!this->emitEQUint8(E)) 5636 return false; 5637 } else if (E->getOpcode() == BO_NE) { 5638 if (!this->emitNEUint8(E)) 5639 return false; 5640 } else 5641 return false; 5642 5643 // In C, this returns an int. 5644 if (PrimType ResT = classifyPrim(E->getType()); ResT != PT_Bool) 5645 return this->emitCast(PT_Bool, ResT, E); 5646 return true; 5647 } 5648 5649 /// When calling this, we have a pointer of the local-to-destroy 5650 /// on the stack. 5651 /// Emit destruction of record types (or arrays of record types). 5652 template <class Emitter> 5653 bool Compiler<Emitter>::emitRecordDestruction(const Record *R) { 5654 assert(R); 5655 const CXXDestructorDecl *Dtor = R->getDestructor(); 5656 if (!Dtor || Dtor->isTrivial()) 5657 return true; 5658 5659 assert(Dtor); 5660 const Function *DtorFunc = getFunction(Dtor); 5661 if (!DtorFunc) 5662 return false; 5663 assert(DtorFunc->hasThisPointer()); 5664 assert(DtorFunc->getNumParams() == 1); 5665 if (!this->emitDupPtr(SourceInfo{})) 5666 return false; 5667 return this->emitCall(DtorFunc, 0, SourceInfo{}); 5668 } 5669 /// When calling this, we have a pointer of the local-to-destroy 5670 /// on the stack. 5671 /// Emit destruction of record types (or arrays of record types). 5672 template <class Emitter> 5673 bool Compiler<Emitter>::emitDestruction(const Descriptor *Desc) { 5674 assert(Desc); 5675 assert(!Desc->isPrimitive()); 5676 assert(!Desc->isPrimitiveArray()); 5677 5678 // Arrays. 5679 if (Desc->isArray()) { 5680 const Descriptor *ElemDesc = Desc->ElemDesc; 5681 assert(ElemDesc); 5682 5683 // Don't need to do anything for these. 5684 if (ElemDesc->isPrimitiveArray()) 5685 return true; 5686 5687 // If this is an array of record types, check if we need 5688 // to call the element destructors at all. If not, try 5689 // to save the work. 5690 if (const Record *ElemRecord = ElemDesc->ElemRecord) { 5691 if (const CXXDestructorDecl *Dtor = ElemRecord->getDestructor(); 5692 !Dtor || Dtor->isTrivial()) 5693 return true; 5694 } 5695 5696 for (ssize_t I = Desc->getNumElems() - 1; I >= 0; --I) { 5697 if (!this->emitConstUint64(I, SourceInfo{})) 5698 return false; 5699 if (!this->emitArrayElemPtrUint64(SourceInfo{})) 5700 return false; 5701 if (!this->emitDestruction(ElemDesc)) 5702 return false; 5703 if (!this->emitPopPtr(SourceInfo{})) 5704 return false; 5705 } 5706 return true; 5707 } 5708 5709 assert(Desc->ElemRecord); 5710 return this->emitRecordDestruction(Desc->ElemRecord); 5711 } 5712 5713 namespace clang { 5714 namespace interp { 5715 5716 template class Compiler<ByteCodeEmitter>; 5717 template class Compiler<EvalEmitter>; 5718 5719 } // namespace interp 5720 } // namespace clang 5721