xref: /llvm-project/clang/lib/AST/ByteCode/Compiler.cpp (revision b294951e3967730ffad14d51297694b1411d7af6)
1 //===--- Compiler.cpp - Code generator for expressions ---*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #include "Compiler.h"
10 #include "ByteCodeEmitter.h"
11 #include "Context.h"
12 #include "Floating.h"
13 #include "Function.h"
14 #include "InterpShared.h"
15 #include "PrimType.h"
16 #include "Program.h"
17 #include "clang/AST/Attr.h"
18 
19 using namespace clang;
20 using namespace clang::interp;
21 
22 using APSInt = llvm::APSInt;
23 
24 namespace clang {
25 namespace interp {
26 
27 /// Scope used to handle temporaries in toplevel variable declarations.
28 template <class Emitter> class DeclScope final : public LocalScope<Emitter> {
29 public:
30   DeclScope(Compiler<Emitter> *Ctx, const ValueDecl *VD)
31       : LocalScope<Emitter>(Ctx, VD), Scope(Ctx->P, VD),
32         OldInitializingDecl(Ctx->InitializingDecl) {
33     Ctx->InitializingDecl = VD;
34     Ctx->InitStack.push_back(InitLink::Decl(VD));
35   }
36 
37   void addExtended(const Scope::Local &Local) override {
38     return this->addLocal(Local);
39   }
40 
41   ~DeclScope() {
42     this->Ctx->InitializingDecl = OldInitializingDecl;
43     this->Ctx->InitStack.pop_back();
44   }
45 
46 private:
47   Program::DeclScope Scope;
48   const ValueDecl *OldInitializingDecl;
49 };
50 
51 /// Scope used to handle initialization methods.
52 template <class Emitter> class OptionScope final {
53 public:
54   /// Root constructor, compiling or discarding primitives.
55   OptionScope(Compiler<Emitter> *Ctx, bool NewDiscardResult,
56               bool NewInitializing)
57       : Ctx(Ctx), OldDiscardResult(Ctx->DiscardResult),
58         OldInitializing(Ctx->Initializing) {
59     Ctx->DiscardResult = NewDiscardResult;
60     Ctx->Initializing = NewInitializing;
61   }
62 
63   ~OptionScope() {
64     Ctx->DiscardResult = OldDiscardResult;
65     Ctx->Initializing = OldInitializing;
66   }
67 
68 private:
69   /// Parent context.
70   Compiler<Emitter> *Ctx;
71   /// Old discard flag to restore.
72   bool OldDiscardResult;
73   bool OldInitializing;
74 };
75 
76 template <class Emitter>
77 bool InitLink::emit(Compiler<Emitter> *Ctx, const Expr *E) const {
78   switch (Kind) {
79   case K_This:
80     return Ctx->emitThis(E);
81   case K_Field:
82     // We're assuming there's a base pointer on the stack already.
83     return Ctx->emitGetPtrFieldPop(Offset, E);
84   case K_Temp:
85     return Ctx->emitGetPtrLocal(Offset, E);
86   case K_Decl:
87     return Ctx->visitDeclRef(D, E);
88   case K_Elem:
89     if (!Ctx->emitConstUint32(Offset, E))
90       return false;
91     return Ctx->emitArrayElemPtrPopUint32(E);
92   default:
93     llvm_unreachable("Unhandled InitLink kind");
94   }
95   return true;
96 }
97 
98 /// Scope managing label targets.
99 template <class Emitter> class LabelScope {
100 public:
101   virtual ~LabelScope() {}
102 
103 protected:
104   LabelScope(Compiler<Emitter> *Ctx) : Ctx(Ctx) {}
105   /// Compiler instance.
106   Compiler<Emitter> *Ctx;
107 };
108 
109 /// Sets the context for break/continue statements.
110 template <class Emitter> class LoopScope final : public LabelScope<Emitter> {
111 public:
112   using LabelTy = typename Compiler<Emitter>::LabelTy;
113   using OptLabelTy = typename Compiler<Emitter>::OptLabelTy;
114 
115   LoopScope(Compiler<Emitter> *Ctx, LabelTy BreakLabel, LabelTy ContinueLabel)
116       : LabelScope<Emitter>(Ctx), OldBreakLabel(Ctx->BreakLabel),
117         OldContinueLabel(Ctx->ContinueLabel) {
118     this->Ctx->BreakLabel = BreakLabel;
119     this->Ctx->ContinueLabel = ContinueLabel;
120   }
121 
122   ~LoopScope() {
123     this->Ctx->BreakLabel = OldBreakLabel;
124     this->Ctx->ContinueLabel = OldContinueLabel;
125   }
126 
127 private:
128   OptLabelTy OldBreakLabel;
129   OptLabelTy OldContinueLabel;
130 };
131 
132 // Sets the context for a switch scope, mapping labels.
133 template <class Emitter> class SwitchScope final : public LabelScope<Emitter> {
134 public:
135   using LabelTy = typename Compiler<Emitter>::LabelTy;
136   using OptLabelTy = typename Compiler<Emitter>::OptLabelTy;
137   using CaseMap = typename Compiler<Emitter>::CaseMap;
138 
139   SwitchScope(Compiler<Emitter> *Ctx, CaseMap &&CaseLabels, LabelTy BreakLabel,
140               OptLabelTy DefaultLabel)
141       : LabelScope<Emitter>(Ctx), OldBreakLabel(Ctx->BreakLabel),
142         OldDefaultLabel(this->Ctx->DefaultLabel),
143         OldCaseLabels(std::move(this->Ctx->CaseLabels)) {
144     this->Ctx->BreakLabel = BreakLabel;
145     this->Ctx->DefaultLabel = DefaultLabel;
146     this->Ctx->CaseLabels = std::move(CaseLabels);
147   }
148 
149   ~SwitchScope() {
150     this->Ctx->BreakLabel = OldBreakLabel;
151     this->Ctx->DefaultLabel = OldDefaultLabel;
152     this->Ctx->CaseLabels = std::move(OldCaseLabels);
153   }
154 
155 private:
156   OptLabelTy OldBreakLabel;
157   OptLabelTy OldDefaultLabel;
158   CaseMap OldCaseLabels;
159 };
160 
161 template <class Emitter> class StmtExprScope final {
162 public:
163   StmtExprScope(Compiler<Emitter> *Ctx) : Ctx(Ctx), OldFlag(Ctx->InStmtExpr) {
164     Ctx->InStmtExpr = true;
165   }
166 
167   ~StmtExprScope() { Ctx->InStmtExpr = OldFlag; }
168 
169 private:
170   Compiler<Emitter> *Ctx;
171   bool OldFlag;
172 };
173 
174 } // namespace interp
175 } // namespace clang
176 
177 template <class Emitter>
178 bool Compiler<Emitter>::VisitCastExpr(const CastExpr *CE) {
179   const Expr *SubExpr = CE->getSubExpr();
180   switch (CE->getCastKind()) {
181 
182   case CK_LValueToRValue: {
183     if (DiscardResult)
184       return this->discard(SubExpr);
185 
186     std::optional<PrimType> SubExprT = classify(SubExpr->getType());
187     // Prepare storage for the result.
188     if (!Initializing && !SubExprT) {
189       std::optional<unsigned> LocalIndex = allocateLocal(SubExpr);
190       if (!LocalIndex)
191         return false;
192       if (!this->emitGetPtrLocal(*LocalIndex, CE))
193         return false;
194     }
195 
196     if (!this->visit(SubExpr))
197       return false;
198 
199     if (SubExprT)
200       return this->emitLoadPop(*SubExprT, CE);
201 
202     // If the subexpr type is not primitive, we need to perform a copy here.
203     // This happens for example in C when dereferencing a pointer of struct
204     // type.
205     return this->emitMemcpy(CE);
206   }
207 
208   case CK_DerivedToBaseMemberPointer: {
209     assert(classifyPrim(CE->getType()) == PT_MemberPtr);
210     assert(classifyPrim(SubExpr->getType()) == PT_MemberPtr);
211     const auto *FromMP = SubExpr->getType()->getAs<MemberPointerType>();
212     const auto *ToMP = CE->getType()->getAs<MemberPointerType>();
213 
214     unsigned DerivedOffset = collectBaseOffset(QualType(ToMP->getClass(), 0),
215                                                QualType(FromMP->getClass(), 0));
216 
217     if (!this->delegate(SubExpr))
218       return false;
219 
220     return this->emitGetMemberPtrBasePop(DerivedOffset, CE);
221   }
222 
223   case CK_BaseToDerivedMemberPointer: {
224     assert(classifyPrim(CE) == PT_MemberPtr);
225     assert(classifyPrim(SubExpr) == PT_MemberPtr);
226     const auto *FromMP = SubExpr->getType()->getAs<MemberPointerType>();
227     const auto *ToMP = CE->getType()->getAs<MemberPointerType>();
228 
229     unsigned DerivedOffset = collectBaseOffset(QualType(FromMP->getClass(), 0),
230                                                QualType(ToMP->getClass(), 0));
231 
232     if (!this->delegate(SubExpr))
233       return false;
234     return this->emitGetMemberPtrBasePop(-DerivedOffset, CE);
235   }
236 
237   case CK_UncheckedDerivedToBase:
238   case CK_DerivedToBase: {
239     if (!this->delegate(SubExpr))
240       return false;
241 
242     const auto extractRecordDecl = [](QualType Ty) -> const CXXRecordDecl * {
243       if (const auto *PT = dyn_cast<PointerType>(Ty))
244         return PT->getPointeeType()->getAsCXXRecordDecl();
245       return Ty->getAsCXXRecordDecl();
246     };
247 
248     // FIXME: We can express a series of non-virtual casts as a single
249     // GetPtrBasePop op.
250     QualType CurType = SubExpr->getType();
251     for (const CXXBaseSpecifier *B : CE->path()) {
252       if (B->isVirtual()) {
253         if (!this->emitGetPtrVirtBasePop(extractRecordDecl(B->getType()), CE))
254           return false;
255         CurType = B->getType();
256       } else {
257         unsigned DerivedOffset = collectBaseOffset(B->getType(), CurType);
258         if (!this->emitGetPtrBasePop(DerivedOffset, CE))
259           return false;
260         CurType = B->getType();
261       }
262     }
263 
264     return true;
265   }
266 
267   case CK_BaseToDerived: {
268     if (!this->delegate(SubExpr))
269       return false;
270 
271     unsigned DerivedOffset =
272         collectBaseOffset(SubExpr->getType(), CE->getType());
273 
274     return this->emitGetPtrDerivedPop(DerivedOffset, CE);
275   }
276 
277   case CK_FloatingCast: {
278     // HLSL uses CK_FloatingCast to cast between vectors.
279     if (!SubExpr->getType()->isFloatingType() ||
280         !CE->getType()->isFloatingType())
281       return false;
282     if (DiscardResult)
283       return this->discard(SubExpr);
284     if (!this->visit(SubExpr))
285       return false;
286     const auto *TargetSemantics = &Ctx.getFloatSemantics(CE->getType());
287     return this->emitCastFP(TargetSemantics, getRoundingMode(CE), CE);
288   }
289 
290   case CK_IntegralToFloating: {
291     if (DiscardResult)
292       return this->discard(SubExpr);
293     std::optional<PrimType> FromT = classify(SubExpr->getType());
294     if (!FromT)
295       return false;
296 
297     if (!this->visit(SubExpr))
298       return false;
299 
300     const auto *TargetSemantics = &Ctx.getFloatSemantics(CE->getType());
301     llvm::RoundingMode RM = getRoundingMode(CE);
302     return this->emitCastIntegralFloating(*FromT, TargetSemantics, RM, CE);
303   }
304 
305   case CK_FloatingToBoolean:
306   case CK_FloatingToIntegral: {
307     if (DiscardResult)
308       return this->discard(SubExpr);
309 
310     std::optional<PrimType> ToT = classify(CE->getType());
311 
312     if (!ToT)
313       return false;
314 
315     if (!this->visit(SubExpr))
316       return false;
317 
318     if (ToT == PT_IntAP)
319       return this->emitCastFloatingIntegralAP(Ctx.getBitWidth(CE->getType()),
320                                               CE);
321     if (ToT == PT_IntAPS)
322       return this->emitCastFloatingIntegralAPS(Ctx.getBitWidth(CE->getType()),
323                                                CE);
324 
325     return this->emitCastFloatingIntegral(*ToT, CE);
326   }
327 
328   case CK_NullToPointer:
329   case CK_NullToMemberPointer: {
330     if (!this->discard(SubExpr))
331       return false;
332     if (DiscardResult)
333       return true;
334 
335     const Descriptor *Desc = nullptr;
336     const QualType PointeeType = CE->getType()->getPointeeType();
337     if (!PointeeType.isNull()) {
338       if (std::optional<PrimType> T = classify(PointeeType))
339         Desc = P.createDescriptor(SubExpr, *T);
340       else
341         Desc = P.createDescriptor(SubExpr, PointeeType.getTypePtr(),
342                                   std::nullopt, true, false,
343                                   /*IsMutable=*/false, nullptr);
344     }
345     return this->emitNull(classifyPrim(CE->getType()), Desc, CE);
346   }
347 
348   case CK_PointerToIntegral: {
349     if (DiscardResult)
350       return this->discard(SubExpr);
351 
352     if (!this->visit(SubExpr))
353       return false;
354 
355     // If SubExpr doesn't result in a pointer, make it one.
356     if (PrimType FromT = classifyPrim(SubExpr->getType()); FromT != PT_Ptr) {
357       assert(isPtrType(FromT));
358       if (!this->emitDecayPtr(FromT, PT_Ptr, CE))
359         return false;
360     }
361 
362     PrimType T = classifyPrim(CE->getType());
363     if (T == PT_IntAP)
364       return this->emitCastPointerIntegralAP(Ctx.getBitWidth(CE->getType()),
365                                              CE);
366     if (T == PT_IntAPS)
367       return this->emitCastPointerIntegralAPS(Ctx.getBitWidth(CE->getType()),
368                                               CE);
369     return this->emitCastPointerIntegral(T, CE);
370   }
371 
372   case CK_ArrayToPointerDecay: {
373     if (!this->visit(SubExpr))
374       return false;
375     if (!this->emitArrayDecay(CE))
376       return false;
377     if (DiscardResult)
378       return this->emitPopPtr(CE);
379     return true;
380   }
381 
382   case CK_IntegralToPointer: {
383     QualType IntType = SubExpr->getType();
384     assert(IntType->isIntegralOrEnumerationType());
385     if (!this->visit(SubExpr))
386       return false;
387     // FIXME: I think the discard is wrong since the int->ptr cast might cause a
388     // diagnostic.
389     PrimType T = classifyPrim(IntType);
390     if (DiscardResult)
391       return this->emitPop(T, CE);
392 
393     QualType PtrType = CE->getType();
394     const Descriptor *Desc;
395     if (std::optional<PrimType> T = classify(PtrType->getPointeeType()))
396       Desc = P.createDescriptor(SubExpr, *T);
397     else if (PtrType->getPointeeType()->isVoidType())
398       Desc = nullptr;
399     else
400       Desc = P.createDescriptor(CE, PtrType->getPointeeType().getTypePtr(),
401                                 Descriptor::InlineDescMD, true, false,
402                                 /*IsMutable=*/false, nullptr);
403 
404     if (!this->emitGetIntPtr(T, Desc, CE))
405       return false;
406 
407     PrimType DestPtrT = classifyPrim(PtrType);
408     if (DestPtrT == PT_Ptr)
409       return true;
410 
411     // In case we're converting the integer to a non-Pointer.
412     return this->emitDecayPtr(PT_Ptr, DestPtrT, CE);
413   }
414 
415   case CK_AtomicToNonAtomic:
416   case CK_ConstructorConversion:
417   case CK_FunctionToPointerDecay:
418   case CK_NonAtomicToAtomic:
419   case CK_NoOp:
420   case CK_UserDefinedConversion:
421   case CK_AddressSpaceConversion:
422     return this->delegate(SubExpr);
423 
424   case CK_BitCast: {
425     // Reject bitcasts to atomic types.
426     if (CE->getType()->isAtomicType()) {
427       if (!this->discard(SubExpr))
428         return false;
429       return this->emitInvalidCast(CastKind::Reinterpret, /*Fatal=*/true, CE);
430     }
431 
432     if (DiscardResult)
433       return this->discard(SubExpr);
434 
435     QualType SubExprTy = SubExpr->getType();
436     std::optional<PrimType> FromT = classify(SubExprTy);
437     std::optional<PrimType> ToT = classify(CE->getType());
438     if (!FromT || !ToT)
439       return false;
440 
441     assert(isPtrType(*FromT));
442     assert(isPtrType(*ToT));
443     if (FromT == ToT) {
444       if (CE->getType()->isVoidPointerType())
445         return this->delegate(SubExpr);
446 
447       if (!this->visit(SubExpr))
448         return false;
449       if (FromT == PT_Ptr)
450         return this->emitPtrPtrCast(SubExprTy->isVoidPointerType(), CE);
451       return true;
452     }
453 
454     if (!this->visit(SubExpr))
455       return false;
456     return this->emitDecayPtr(*FromT, *ToT, CE);
457   }
458 
459   case CK_IntegralToBoolean:
460   case CK_BooleanToSignedIntegral:
461   case CK_IntegralCast: {
462     if (DiscardResult)
463       return this->discard(SubExpr);
464     std::optional<PrimType> FromT = classify(SubExpr->getType());
465     std::optional<PrimType> ToT = classify(CE->getType());
466 
467     if (!FromT || !ToT)
468       return false;
469 
470     if (!this->visit(SubExpr))
471       return false;
472 
473     // Possibly diagnose casts to enum types if the target type does not
474     // have a fixed size.
475     if (Ctx.getLangOpts().CPlusPlus && CE->getType()->isEnumeralType()) {
476       if (const auto *ET = CE->getType().getCanonicalType()->getAs<EnumType>();
477           ET && !ET->getDecl()->isFixed()) {
478         if (!this->emitCheckEnumValue(*FromT, ET->getDecl(), CE))
479           return false;
480       }
481     }
482 
483     auto maybeNegate = [&]() -> bool {
484       if (CE->getCastKind() == CK_BooleanToSignedIntegral)
485         return this->emitNeg(*ToT, CE);
486       return true;
487     };
488 
489     if (ToT == PT_IntAP)
490       return this->emitCastAP(*FromT, Ctx.getBitWidth(CE->getType()), CE) &&
491              maybeNegate();
492     if (ToT == PT_IntAPS)
493       return this->emitCastAPS(*FromT, Ctx.getBitWidth(CE->getType()), CE) &&
494              maybeNegate();
495 
496     if (FromT == ToT)
497       return true;
498     if (!this->emitCast(*FromT, *ToT, CE))
499       return false;
500 
501     return maybeNegate();
502   }
503 
504   case CK_PointerToBoolean:
505   case CK_MemberPointerToBoolean: {
506     PrimType PtrT = classifyPrim(SubExpr->getType());
507 
508     // Just emit p != nullptr for this.
509     if (!this->visit(SubExpr))
510       return false;
511 
512     if (!this->emitNull(PtrT, nullptr, CE))
513       return false;
514 
515     return this->emitNE(PtrT, CE);
516   }
517 
518   case CK_IntegralComplexToBoolean:
519   case CK_FloatingComplexToBoolean: {
520     if (DiscardResult)
521       return this->discard(SubExpr);
522     if (!this->visit(SubExpr))
523       return false;
524     return this->emitComplexBoolCast(SubExpr);
525   }
526 
527   case CK_IntegralComplexToReal:
528   case CK_FloatingComplexToReal:
529     return this->emitComplexReal(SubExpr);
530 
531   case CK_IntegralRealToComplex:
532   case CK_FloatingRealToComplex: {
533     // We're creating a complex value here, so we need to
534     // allocate storage for it.
535     if (!Initializing) {
536       unsigned LocalIndex = allocateTemporary(CE);
537       if (!this->emitGetPtrLocal(LocalIndex, CE))
538         return false;
539     }
540 
541     // Init the complex value to {SubExpr, 0}.
542     if (!this->visitArrayElemInit(0, SubExpr))
543       return false;
544     // Zero-init the second element.
545     PrimType T = classifyPrim(SubExpr->getType());
546     if (!this->visitZeroInitializer(T, SubExpr->getType(), SubExpr))
547       return false;
548     return this->emitInitElem(T, 1, SubExpr);
549   }
550 
551   case CK_IntegralComplexCast:
552   case CK_FloatingComplexCast:
553   case CK_IntegralComplexToFloatingComplex:
554   case CK_FloatingComplexToIntegralComplex: {
555     assert(CE->getType()->isAnyComplexType());
556     assert(SubExpr->getType()->isAnyComplexType());
557     if (DiscardResult)
558       return this->discard(SubExpr);
559 
560     if (!Initializing) {
561       std::optional<unsigned> LocalIndex = allocateLocal(CE);
562       if (!LocalIndex)
563         return false;
564       if (!this->emitGetPtrLocal(*LocalIndex, CE))
565         return false;
566     }
567 
568     // Location for the SubExpr.
569     // Since SubExpr is of complex type, visiting it results in a pointer
570     // anyway, so we just create a temporary pointer variable.
571     unsigned SubExprOffset = allocateLocalPrimitive(
572         SubExpr, PT_Ptr, /*IsConst=*/true, /*IsExtended=*/false);
573     if (!this->visit(SubExpr))
574       return false;
575     if (!this->emitSetLocal(PT_Ptr, SubExprOffset, CE))
576       return false;
577 
578     PrimType SourceElemT = classifyComplexElementType(SubExpr->getType());
579     QualType DestElemType =
580         CE->getType()->getAs<ComplexType>()->getElementType();
581     PrimType DestElemT = classifyPrim(DestElemType);
582     // Cast both elements individually.
583     for (unsigned I = 0; I != 2; ++I) {
584       if (!this->emitGetLocal(PT_Ptr, SubExprOffset, CE))
585         return false;
586       if (!this->emitArrayElemPop(SourceElemT, I, CE))
587         return false;
588 
589       // Do the cast.
590       if (!this->emitPrimCast(SourceElemT, DestElemT, DestElemType, CE))
591         return false;
592 
593       // Save the value.
594       if (!this->emitInitElem(DestElemT, I, CE))
595         return false;
596     }
597     return true;
598   }
599 
600   case CK_VectorSplat: {
601     assert(!classify(CE->getType()));
602     assert(classify(SubExpr->getType()));
603     assert(CE->getType()->isVectorType());
604 
605     if (DiscardResult)
606       return this->discard(SubExpr);
607 
608     if (!Initializing) {
609       std::optional<unsigned> LocalIndex = allocateLocal(CE);
610       if (!LocalIndex)
611         return false;
612       if (!this->emitGetPtrLocal(*LocalIndex, CE))
613         return false;
614     }
615 
616     const auto *VT = CE->getType()->getAs<VectorType>();
617     PrimType ElemT = classifyPrim(SubExpr->getType());
618     unsigned ElemOffset = allocateLocalPrimitive(
619         SubExpr, ElemT, /*IsConst=*/true, /*IsExtended=*/false);
620 
621     // Prepare a local variable for the scalar value.
622     if (!this->visit(SubExpr))
623       return false;
624     if (classifyPrim(SubExpr) == PT_Ptr && !this->emitLoadPop(ElemT, CE))
625       return false;
626 
627     if (!this->emitSetLocal(ElemT, ElemOffset, CE))
628       return false;
629 
630     for (unsigned I = 0; I != VT->getNumElements(); ++I) {
631       if (!this->emitGetLocal(ElemT, ElemOffset, CE))
632         return false;
633       if (!this->emitInitElem(ElemT, I, CE))
634         return false;
635     }
636 
637     return true;
638   }
639 
640   case CK_ToVoid:
641     return discard(SubExpr);
642 
643   default:
644     return this->emitInvalid(CE);
645   }
646   llvm_unreachable("Unhandled clang::CastKind enum");
647 }
648 
649 template <class Emitter>
650 bool Compiler<Emitter>::VisitIntegerLiteral(const IntegerLiteral *LE) {
651   if (DiscardResult)
652     return true;
653 
654   return this->emitConst(LE->getValue(), LE);
655 }
656 
657 template <class Emitter>
658 bool Compiler<Emitter>::VisitFloatingLiteral(const FloatingLiteral *E) {
659   if (DiscardResult)
660     return true;
661 
662   return this->emitConstFloat(E->getValue(), E);
663 }
664 
665 template <class Emitter>
666 bool Compiler<Emitter>::VisitImaginaryLiteral(const ImaginaryLiteral *E) {
667   assert(E->getType()->isAnyComplexType());
668   if (DiscardResult)
669     return true;
670 
671   if (!Initializing) {
672     unsigned LocalIndex = allocateTemporary(E);
673     if (!this->emitGetPtrLocal(LocalIndex, E))
674       return false;
675   }
676 
677   const Expr *SubExpr = E->getSubExpr();
678   PrimType SubExprT = classifyPrim(SubExpr->getType());
679 
680   if (!this->visitZeroInitializer(SubExprT, SubExpr->getType(), SubExpr))
681     return false;
682   if (!this->emitInitElem(SubExprT, 0, SubExpr))
683     return false;
684   return this->visitArrayElemInit(1, SubExpr);
685 }
686 
687 template <class Emitter>
688 bool Compiler<Emitter>::VisitParenExpr(const ParenExpr *E) {
689   return this->delegate(E->getSubExpr());
690 }
691 
692 template <class Emitter>
693 bool Compiler<Emitter>::VisitBinaryOperator(const BinaryOperator *BO) {
694   // Need short-circuiting for these.
695   if (BO->isLogicalOp())
696     return this->VisitLogicalBinOp(BO);
697 
698   const Expr *LHS = BO->getLHS();
699   const Expr *RHS = BO->getRHS();
700 
701   // Handle comma operators. Just discard the LHS
702   // and delegate to RHS.
703   if (BO->isCommaOp()) {
704     if (!this->discard(LHS))
705       return false;
706     if (RHS->getType()->isVoidType())
707       return this->discard(RHS);
708 
709     return this->delegate(RHS);
710   }
711 
712   if (BO->getType()->isAnyComplexType())
713     return this->VisitComplexBinOp(BO);
714   if ((LHS->getType()->isAnyComplexType() ||
715        RHS->getType()->isAnyComplexType()) &&
716       BO->isComparisonOp())
717     return this->emitComplexComparison(LHS, RHS, BO);
718 
719   if (BO->isPtrMemOp()) {
720     if (!this->visit(LHS))
721       return false;
722 
723     if (!this->visit(RHS))
724       return false;
725 
726     if (!this->emitToMemberPtr(BO))
727       return false;
728 
729     if (classifyPrim(BO) == PT_MemberPtr)
730       return true;
731 
732     if (!this->emitCastMemberPtrPtr(BO))
733       return false;
734     return DiscardResult ? this->emitPopPtr(BO) : true;
735   }
736 
737   // Typecheck the args.
738   std::optional<PrimType> LT = classify(LHS);
739   std::optional<PrimType> RT = classify(RHS);
740   std::optional<PrimType> T = classify(BO->getType());
741 
742   // Special case for C++'s three-way/spaceship operator <=>, which
743   // returns a std::{strong,weak,partial}_ordering (which is a class, so doesn't
744   // have a PrimType).
745   if (!T && BO->getOpcode() == BO_Cmp) {
746     if (DiscardResult)
747       return true;
748     const ComparisonCategoryInfo *CmpInfo =
749         Ctx.getASTContext().CompCategories.lookupInfoForType(BO->getType());
750     assert(CmpInfo);
751 
752     // We need a temporary variable holding our return value.
753     if (!Initializing) {
754       std::optional<unsigned> ResultIndex = this->allocateLocal(BO);
755       if (!this->emitGetPtrLocal(*ResultIndex, BO))
756         return false;
757     }
758 
759     if (!visit(LHS) || !visit(RHS))
760       return false;
761 
762     return this->emitCMP3(*LT, CmpInfo, BO);
763   }
764 
765   if (!LT || !RT || !T)
766     return false;
767 
768   // Pointer arithmetic special case.
769   if (BO->getOpcode() == BO_Add || BO->getOpcode() == BO_Sub) {
770     if (isPtrType(*T) || (isPtrType(*LT) && isPtrType(*RT)))
771       return this->VisitPointerArithBinOp(BO);
772   }
773 
774   // Assignmentes require us to evalute the RHS first.
775   if (BO->getOpcode() == BO_Assign) {
776     if (!visit(RHS) || !visit(LHS))
777       return false;
778     if (!this->emitFlip(*LT, *RT, BO))
779       return false;
780   } else {
781     if (!visit(LHS) || !visit(RHS))
782       return false;
783   }
784 
785   // For languages such as C, cast the result of one
786   // of our comparision opcodes to T (which is usually int).
787   auto MaybeCastToBool = [this, T, BO](bool Result) {
788     if (!Result)
789       return false;
790     if (DiscardResult)
791       return this->emitPop(*T, BO);
792     if (T != PT_Bool)
793       return this->emitCast(PT_Bool, *T, BO);
794     return true;
795   };
796 
797   auto Discard = [this, T, BO](bool Result) {
798     if (!Result)
799       return false;
800     return DiscardResult ? this->emitPop(*T, BO) : true;
801   };
802 
803   switch (BO->getOpcode()) {
804   case BO_EQ:
805     return MaybeCastToBool(this->emitEQ(*LT, BO));
806   case BO_NE:
807     return MaybeCastToBool(this->emitNE(*LT, BO));
808   case BO_LT:
809     return MaybeCastToBool(this->emitLT(*LT, BO));
810   case BO_LE:
811     return MaybeCastToBool(this->emitLE(*LT, BO));
812   case BO_GT:
813     return MaybeCastToBool(this->emitGT(*LT, BO));
814   case BO_GE:
815     return MaybeCastToBool(this->emitGE(*LT, BO));
816   case BO_Sub:
817     if (BO->getType()->isFloatingType())
818       return Discard(this->emitSubf(getRoundingMode(BO), BO));
819     return Discard(this->emitSub(*T, BO));
820   case BO_Add:
821     if (BO->getType()->isFloatingType())
822       return Discard(this->emitAddf(getRoundingMode(BO), BO));
823     return Discard(this->emitAdd(*T, BO));
824   case BO_Mul:
825     if (BO->getType()->isFloatingType())
826       return Discard(this->emitMulf(getRoundingMode(BO), BO));
827     return Discard(this->emitMul(*T, BO));
828   case BO_Rem:
829     return Discard(this->emitRem(*T, BO));
830   case BO_Div:
831     if (BO->getType()->isFloatingType())
832       return Discard(this->emitDivf(getRoundingMode(BO), BO));
833     return Discard(this->emitDiv(*T, BO));
834   case BO_Assign:
835     if (DiscardResult)
836       return LHS->refersToBitField() ? this->emitStoreBitFieldPop(*T, BO)
837                                      : this->emitStorePop(*T, BO);
838     if (LHS->refersToBitField()) {
839       if (!this->emitStoreBitField(*T, BO))
840         return false;
841     } else {
842       if (!this->emitStore(*T, BO))
843         return false;
844     }
845     // Assignments aren't necessarily lvalues in C.
846     // Load from them in that case.
847     if (!BO->isLValue())
848       return this->emitLoadPop(*T, BO);
849     return true;
850   case BO_And:
851     return Discard(this->emitBitAnd(*T, BO));
852   case BO_Or:
853     return Discard(this->emitBitOr(*T, BO));
854   case BO_Shl:
855     return Discard(this->emitShl(*LT, *RT, BO));
856   case BO_Shr:
857     return Discard(this->emitShr(*LT, *RT, BO));
858   case BO_Xor:
859     return Discard(this->emitBitXor(*T, BO));
860   case BO_LOr:
861   case BO_LAnd:
862     llvm_unreachable("Already handled earlier");
863   default:
864     return false;
865   }
866 
867   llvm_unreachable("Unhandled binary op");
868 }
869 
870 /// Perform addition/subtraction of a pointer and an integer or
871 /// subtraction of two pointers.
872 template <class Emitter>
873 bool Compiler<Emitter>::VisitPointerArithBinOp(const BinaryOperator *E) {
874   BinaryOperatorKind Op = E->getOpcode();
875   const Expr *LHS = E->getLHS();
876   const Expr *RHS = E->getRHS();
877 
878   if ((Op != BO_Add && Op != BO_Sub) ||
879       (!LHS->getType()->isPointerType() && !RHS->getType()->isPointerType()))
880     return false;
881 
882   std::optional<PrimType> LT = classify(LHS);
883   std::optional<PrimType> RT = classify(RHS);
884 
885   if (!LT || !RT)
886     return false;
887 
888   // Visit the given pointer expression and optionally convert to a PT_Ptr.
889   auto visitAsPointer = [&](const Expr *E, PrimType T) -> bool {
890     if (!this->visit(E))
891       return false;
892     if (T != PT_Ptr)
893       return this->emitDecayPtr(T, PT_Ptr, E);
894     return true;
895   };
896 
897   if (LHS->getType()->isPointerType() && RHS->getType()->isPointerType()) {
898     if (Op != BO_Sub)
899       return false;
900 
901     assert(E->getType()->isIntegerType());
902     if (!visitAsPointer(RHS, *RT) || !visitAsPointer(LHS, *LT))
903       return false;
904 
905     return this->emitSubPtr(classifyPrim(E->getType()), E);
906   }
907 
908   PrimType OffsetType;
909   if (LHS->getType()->isIntegerType()) {
910     if (!visitAsPointer(RHS, *RT))
911       return false;
912     if (!this->visit(LHS))
913       return false;
914     OffsetType = *LT;
915   } else if (RHS->getType()->isIntegerType()) {
916     if (!visitAsPointer(LHS, *LT))
917       return false;
918     if (!this->visit(RHS))
919       return false;
920     OffsetType = *RT;
921   } else {
922     return false;
923   }
924 
925   // Do the operation and optionally transform to
926   // result pointer type.
927   if (Op == BO_Add) {
928     if (!this->emitAddOffset(OffsetType, E))
929       return false;
930 
931     if (classifyPrim(E) != PT_Ptr)
932       return this->emitDecayPtr(PT_Ptr, classifyPrim(E), E);
933     return true;
934   } else if (Op == BO_Sub) {
935     if (!this->emitSubOffset(OffsetType, E))
936       return false;
937 
938     if (classifyPrim(E) != PT_Ptr)
939       return this->emitDecayPtr(PT_Ptr, classifyPrim(E), E);
940     return true;
941   }
942 
943   return false;
944 }
945 
946 template <class Emitter>
947 bool Compiler<Emitter>::VisitLogicalBinOp(const BinaryOperator *E) {
948   assert(E->isLogicalOp());
949   BinaryOperatorKind Op = E->getOpcode();
950   const Expr *LHS = E->getLHS();
951   const Expr *RHS = E->getRHS();
952   std::optional<PrimType> T = classify(E->getType());
953 
954   if (Op == BO_LOr) {
955     // Logical OR. Visit LHS and only evaluate RHS if LHS was FALSE.
956     LabelTy LabelTrue = this->getLabel();
957     LabelTy LabelEnd = this->getLabel();
958 
959     if (!this->visitBool(LHS))
960       return false;
961     if (!this->jumpTrue(LabelTrue))
962       return false;
963 
964     if (!this->visitBool(RHS))
965       return false;
966     if (!this->jump(LabelEnd))
967       return false;
968 
969     this->emitLabel(LabelTrue);
970     this->emitConstBool(true, E);
971     this->fallthrough(LabelEnd);
972     this->emitLabel(LabelEnd);
973 
974   } else {
975     assert(Op == BO_LAnd);
976     // Logical AND.
977     // Visit LHS. Only visit RHS if LHS was TRUE.
978     LabelTy LabelFalse = this->getLabel();
979     LabelTy LabelEnd = this->getLabel();
980 
981     if (!this->visitBool(LHS))
982       return false;
983     if (!this->jumpFalse(LabelFalse))
984       return false;
985 
986     if (!this->visitBool(RHS))
987       return false;
988     if (!this->jump(LabelEnd))
989       return false;
990 
991     this->emitLabel(LabelFalse);
992     this->emitConstBool(false, E);
993     this->fallthrough(LabelEnd);
994     this->emitLabel(LabelEnd);
995   }
996 
997   if (DiscardResult)
998     return this->emitPopBool(E);
999 
1000   // For C, cast back to integer type.
1001   assert(T);
1002   if (T != PT_Bool)
1003     return this->emitCast(PT_Bool, *T, E);
1004   return true;
1005 }
1006 
1007 template <class Emitter>
1008 bool Compiler<Emitter>::VisitComplexBinOp(const BinaryOperator *E) {
1009   // Prepare storage for result.
1010   if (!Initializing) {
1011     unsigned LocalIndex = allocateTemporary(E);
1012     if (!this->emitGetPtrLocal(LocalIndex, E))
1013       return false;
1014   }
1015 
1016   // Both LHS and RHS might _not_ be of complex type, but one of them
1017   // needs to be.
1018   const Expr *LHS = E->getLHS();
1019   const Expr *RHS = E->getRHS();
1020 
1021   PrimType ResultElemT = this->classifyComplexElementType(E->getType());
1022   unsigned ResultOffset = ~0u;
1023   if (!DiscardResult)
1024     ResultOffset = this->allocateLocalPrimitive(E, PT_Ptr, true, false);
1025 
1026   // Save result pointer in ResultOffset
1027   if (!this->DiscardResult) {
1028     if (!this->emitDupPtr(E))
1029       return false;
1030     if (!this->emitSetLocal(PT_Ptr, ResultOffset, E))
1031       return false;
1032   }
1033   QualType LHSType = LHS->getType();
1034   if (const auto *AT = LHSType->getAs<AtomicType>())
1035     LHSType = AT->getValueType();
1036   QualType RHSType = RHS->getType();
1037   if (const auto *AT = RHSType->getAs<AtomicType>())
1038     RHSType = AT->getValueType();
1039 
1040   bool LHSIsComplex = LHSType->isAnyComplexType();
1041   unsigned LHSOffset;
1042   bool RHSIsComplex = RHSType->isAnyComplexType();
1043 
1044   // For ComplexComplex Mul, we have special ops to make their implementation
1045   // easier.
1046   BinaryOperatorKind Op = E->getOpcode();
1047   if (Op == BO_Mul && LHSIsComplex && RHSIsComplex) {
1048     assert(classifyPrim(LHSType->getAs<ComplexType>()->getElementType()) ==
1049            classifyPrim(RHSType->getAs<ComplexType>()->getElementType()));
1050     PrimType ElemT =
1051         classifyPrim(LHSType->getAs<ComplexType>()->getElementType());
1052     if (!this->visit(LHS))
1053       return false;
1054     if (!this->visit(RHS))
1055       return false;
1056     return this->emitMulc(ElemT, E);
1057   }
1058 
1059   if (Op == BO_Div && RHSIsComplex) {
1060     QualType ElemQT = RHSType->getAs<ComplexType>()->getElementType();
1061     PrimType ElemT = classifyPrim(ElemQT);
1062     // If the LHS is not complex, we still need to do the full complex
1063     // division, so just stub create a complex value and stub it out with
1064     // the LHS and a zero.
1065 
1066     if (!LHSIsComplex) {
1067       // This is using the RHS type for the fake-complex LHS.
1068       LHSOffset = allocateTemporary(RHS);
1069 
1070       if (!this->emitGetPtrLocal(LHSOffset, E))
1071         return false;
1072 
1073       if (!this->visit(LHS))
1074         return false;
1075       // real is LHS
1076       if (!this->emitInitElem(ElemT, 0, E))
1077         return false;
1078       // imag is zero
1079       if (!this->visitZeroInitializer(ElemT, ElemQT, E))
1080         return false;
1081       if (!this->emitInitElem(ElemT, 1, E))
1082         return false;
1083     } else {
1084       if (!this->visit(LHS))
1085         return false;
1086     }
1087 
1088     if (!this->visit(RHS))
1089       return false;
1090     return this->emitDivc(ElemT, E);
1091   }
1092 
1093   // Evaluate LHS and save value to LHSOffset.
1094   if (LHSType->isAnyComplexType()) {
1095     LHSOffset = this->allocateLocalPrimitive(LHS, PT_Ptr, true, false);
1096     if (!this->visit(LHS))
1097       return false;
1098     if (!this->emitSetLocal(PT_Ptr, LHSOffset, E))
1099       return false;
1100   } else {
1101     PrimType LHST = classifyPrim(LHSType);
1102     LHSOffset = this->allocateLocalPrimitive(LHS, LHST, true, false);
1103     if (!this->visit(LHS))
1104       return false;
1105     if (!this->emitSetLocal(LHST, LHSOffset, E))
1106       return false;
1107   }
1108 
1109   // Same with RHS.
1110   unsigned RHSOffset;
1111   if (RHSType->isAnyComplexType()) {
1112     RHSOffset = this->allocateLocalPrimitive(RHS, PT_Ptr, true, false);
1113     if (!this->visit(RHS))
1114       return false;
1115     if (!this->emitSetLocal(PT_Ptr, RHSOffset, E))
1116       return false;
1117   } else {
1118     PrimType RHST = classifyPrim(RHSType);
1119     RHSOffset = this->allocateLocalPrimitive(RHS, RHST, true, false);
1120     if (!this->visit(RHS))
1121       return false;
1122     if (!this->emitSetLocal(RHST, RHSOffset, E))
1123       return false;
1124   }
1125 
1126   // For both LHS and RHS, either load the value from the complex pointer, or
1127   // directly from the local variable. For index 1 (i.e. the imaginary part),
1128   // just load 0 and do the operation anyway.
1129   auto loadComplexValue = [this](bool IsComplex, bool LoadZero,
1130                                  unsigned ElemIndex, unsigned Offset,
1131                                  const Expr *E) -> bool {
1132     if (IsComplex) {
1133       if (!this->emitGetLocal(PT_Ptr, Offset, E))
1134         return false;
1135       return this->emitArrayElemPop(classifyComplexElementType(E->getType()),
1136                                     ElemIndex, E);
1137     }
1138     if (ElemIndex == 0 || !LoadZero)
1139       return this->emitGetLocal(classifyPrim(E->getType()), Offset, E);
1140     return this->visitZeroInitializer(classifyPrim(E->getType()), E->getType(),
1141                                       E);
1142   };
1143 
1144   // Now we can get pointers to the LHS and RHS from the offsets above.
1145   for (unsigned ElemIndex = 0; ElemIndex != 2; ++ElemIndex) {
1146     // Result pointer for the store later.
1147     if (!this->DiscardResult) {
1148       if (!this->emitGetLocal(PT_Ptr, ResultOffset, E))
1149         return false;
1150     }
1151 
1152     // The actual operation.
1153     switch (Op) {
1154     case BO_Add:
1155       if (!loadComplexValue(LHSIsComplex, true, ElemIndex, LHSOffset, LHS))
1156         return false;
1157 
1158       if (!loadComplexValue(RHSIsComplex, true, ElemIndex, RHSOffset, RHS))
1159         return false;
1160       if (ResultElemT == PT_Float) {
1161         if (!this->emitAddf(getRoundingMode(E), E))
1162           return false;
1163       } else {
1164         if (!this->emitAdd(ResultElemT, E))
1165           return false;
1166       }
1167       break;
1168     case BO_Sub:
1169       if (!loadComplexValue(LHSIsComplex, true, ElemIndex, LHSOffset, LHS))
1170         return false;
1171 
1172       if (!loadComplexValue(RHSIsComplex, true, ElemIndex, RHSOffset, RHS))
1173         return false;
1174       if (ResultElemT == PT_Float) {
1175         if (!this->emitSubf(getRoundingMode(E), E))
1176           return false;
1177       } else {
1178         if (!this->emitSub(ResultElemT, E))
1179           return false;
1180       }
1181       break;
1182     case BO_Mul:
1183       if (!loadComplexValue(LHSIsComplex, false, ElemIndex, LHSOffset, LHS))
1184         return false;
1185 
1186       if (!loadComplexValue(RHSIsComplex, false, ElemIndex, RHSOffset, RHS))
1187         return false;
1188 
1189       if (ResultElemT == PT_Float) {
1190         if (!this->emitMulf(getRoundingMode(E), E))
1191           return false;
1192       } else {
1193         if (!this->emitMul(ResultElemT, E))
1194           return false;
1195       }
1196       break;
1197     case BO_Div:
1198       assert(!RHSIsComplex);
1199       if (!loadComplexValue(LHSIsComplex, false, ElemIndex, LHSOffset, LHS))
1200         return false;
1201 
1202       if (!loadComplexValue(RHSIsComplex, false, ElemIndex, RHSOffset, RHS))
1203         return false;
1204 
1205       if (ResultElemT == PT_Float) {
1206         if (!this->emitDivf(getRoundingMode(E), E))
1207           return false;
1208       } else {
1209         if (!this->emitDiv(ResultElemT, E))
1210           return false;
1211       }
1212       break;
1213 
1214     default:
1215       return false;
1216     }
1217 
1218     if (!this->DiscardResult) {
1219       // Initialize array element with the value we just computed.
1220       if (!this->emitInitElemPop(ResultElemT, ElemIndex, E))
1221         return false;
1222     } else {
1223       if (!this->emitPop(ResultElemT, E))
1224         return false;
1225     }
1226   }
1227   return true;
1228 }
1229 
1230 template <class Emitter>
1231 bool Compiler<Emitter>::VisitImplicitValueInitExpr(
1232     const ImplicitValueInitExpr *E) {
1233   QualType QT = E->getType();
1234 
1235   if (std::optional<PrimType> T = classify(QT))
1236     return this->visitZeroInitializer(*T, QT, E);
1237 
1238   if (QT->isRecordType()) {
1239     const RecordDecl *RD = QT->getAsRecordDecl();
1240     assert(RD);
1241     if (RD->isInvalidDecl())
1242       return false;
1243     if (RD->isUnion()) {
1244       // C++11 [dcl.init]p5: If T is a (possibly cv-qualified) union type, the
1245       // object's first non-static named data member is zero-initialized
1246       // FIXME
1247       return false;
1248     }
1249 
1250     if (const auto *CXXRD = dyn_cast<CXXRecordDecl>(RD);
1251         CXXRD && CXXRD->getNumVBases() > 0) {
1252       // TODO: Diagnose.
1253       return false;
1254     }
1255 
1256     const Record *R = getRecord(QT);
1257     if (!R)
1258       return false;
1259 
1260     assert(Initializing);
1261     return this->visitZeroRecordInitializer(R, E);
1262   }
1263 
1264   if (QT->isIncompleteArrayType())
1265     return true;
1266 
1267   if (QT->isArrayType()) {
1268     const ArrayType *AT = QT->getAsArrayTypeUnsafe();
1269     assert(AT);
1270     const auto *CAT = cast<ConstantArrayType>(AT);
1271     size_t NumElems = CAT->getZExtSize();
1272     PrimType ElemT = classifyPrim(CAT->getElementType());
1273 
1274     for (size_t I = 0; I != NumElems; ++I) {
1275       if (!this->visitZeroInitializer(ElemT, CAT->getElementType(), E))
1276         return false;
1277       if (!this->emitInitElem(ElemT, I, E))
1278         return false;
1279     }
1280 
1281     return true;
1282   }
1283 
1284   if (const auto *ComplexTy = E->getType()->getAs<ComplexType>()) {
1285     assert(Initializing);
1286     QualType ElemQT = ComplexTy->getElementType();
1287     PrimType ElemT = classifyPrim(ElemQT);
1288     for (unsigned I = 0; I < 2; ++I) {
1289       if (!this->visitZeroInitializer(ElemT, ElemQT, E))
1290         return false;
1291       if (!this->emitInitElem(ElemT, I, E))
1292         return false;
1293     }
1294     return true;
1295   }
1296 
1297   if (const auto *VecT = E->getType()->getAs<VectorType>()) {
1298     unsigned NumVecElements = VecT->getNumElements();
1299     QualType ElemQT = VecT->getElementType();
1300     PrimType ElemT = classifyPrim(ElemQT);
1301 
1302     for (unsigned I = 0; I < NumVecElements; ++I) {
1303       if (!this->visitZeroInitializer(ElemT, ElemQT, E))
1304         return false;
1305       if (!this->emitInitElem(ElemT, I, E))
1306         return false;
1307     }
1308     return true;
1309   }
1310 
1311   return false;
1312 }
1313 
1314 template <class Emitter>
1315 bool Compiler<Emitter>::VisitArraySubscriptExpr(const ArraySubscriptExpr *E) {
1316   const Expr *LHS = E->getLHS();
1317   const Expr *RHS = E->getRHS();
1318   const Expr *Index = E->getIdx();
1319 
1320   if (DiscardResult)
1321     return this->discard(LHS) && this->discard(RHS);
1322 
1323   // C++17's rules require us to evaluate the LHS first, regardless of which
1324   // side is the base.
1325   bool Success = true;
1326   for (const Expr *SubExpr : {LHS, RHS}) {
1327     if (!this->visit(SubExpr))
1328       Success = false;
1329   }
1330 
1331   if (!Success)
1332     return false;
1333 
1334   PrimType IndexT = classifyPrim(Index->getType());
1335   // If the index is first, we need to change that.
1336   if (LHS == Index) {
1337     if (!this->emitFlip(PT_Ptr, IndexT, E))
1338       return false;
1339   }
1340 
1341   return this->emitArrayElemPtrPop(IndexT, E);
1342 }
1343 
1344 template <class Emitter>
1345 bool Compiler<Emitter>::visitInitList(ArrayRef<const Expr *> Inits,
1346                                       const Expr *ArrayFiller, const Expr *E) {
1347   QualType QT = E->getType();
1348   if (const auto *AT = QT->getAs<AtomicType>())
1349     QT = AT->getValueType();
1350 
1351   if (QT->isVoidType()) {
1352     if (Inits.size() == 0)
1353       return true;
1354     return this->emitInvalid(E);
1355   }
1356 
1357   // Handle discarding first.
1358   if (DiscardResult) {
1359     for (const Expr *Init : Inits) {
1360       if (!this->discard(Init))
1361         return false;
1362     }
1363     return true;
1364   }
1365 
1366   // Primitive values.
1367   if (std::optional<PrimType> T = classify(QT)) {
1368     assert(!DiscardResult);
1369     if (Inits.size() == 0)
1370       return this->visitZeroInitializer(*T, QT, E);
1371     assert(Inits.size() == 1);
1372     return this->delegate(Inits[0]);
1373   }
1374 
1375   if (QT->isRecordType()) {
1376     const Record *R = getRecord(QT);
1377 
1378     if (Inits.size() == 1 && E->getType() == Inits[0]->getType())
1379       return this->delegate(Inits[0]);
1380 
1381     auto initPrimitiveField = [=](const Record::Field *FieldToInit,
1382                                   const Expr *Init, PrimType T) -> bool {
1383       InitStackScope<Emitter> ISS(this, isa<CXXDefaultInitExpr>(Init));
1384       if (!this->visit(Init))
1385         return false;
1386 
1387       if (FieldToInit->isBitField())
1388         return this->emitInitBitField(T, FieldToInit, E);
1389       return this->emitInitField(T, FieldToInit->Offset, E);
1390     };
1391 
1392     auto initCompositeField = [=](const Record::Field *FieldToInit,
1393                                   const Expr *Init) -> bool {
1394       InitStackScope<Emitter> ISS(this, isa<CXXDefaultInitExpr>(Init));
1395       InitLinkScope<Emitter> ILS(this, InitLink::Field(FieldToInit->Offset));
1396       // Non-primitive case. Get a pointer to the field-to-initialize
1397       // on the stack and recurse into visitInitializer().
1398       if (!this->emitGetPtrField(FieldToInit->Offset, Init))
1399         return false;
1400       if (!this->visitInitializer(Init))
1401         return false;
1402       return this->emitPopPtr(E);
1403     };
1404 
1405     if (R->isUnion()) {
1406       if (Inits.size() == 0) {
1407         if (!this->visitZeroRecordInitializer(R, E))
1408           return false;
1409       } else {
1410         const Expr *Init = Inits[0];
1411         const FieldDecl *FToInit = nullptr;
1412         if (const auto *ILE = dyn_cast<InitListExpr>(E))
1413           FToInit = ILE->getInitializedFieldInUnion();
1414         else
1415           FToInit = cast<CXXParenListInitExpr>(E)->getInitializedFieldInUnion();
1416 
1417         const Record::Field *FieldToInit = R->getField(FToInit);
1418         if (std::optional<PrimType> T = classify(Init)) {
1419           if (!initPrimitiveField(FieldToInit, Init, *T))
1420             return false;
1421         } else {
1422           if (!initCompositeField(FieldToInit, Init))
1423             return false;
1424         }
1425       }
1426       return this->emitFinishInit(E);
1427     }
1428 
1429     assert(!R->isUnion());
1430     unsigned InitIndex = 0;
1431     for (const Expr *Init : Inits) {
1432       // Skip unnamed bitfields.
1433       while (InitIndex < R->getNumFields() &&
1434              R->getField(InitIndex)->Decl->isUnnamedBitField())
1435         ++InitIndex;
1436 
1437       if (std::optional<PrimType> T = classify(Init)) {
1438         const Record::Field *FieldToInit = R->getField(InitIndex);
1439         if (!initPrimitiveField(FieldToInit, Init, *T))
1440           return false;
1441         ++InitIndex;
1442       } else {
1443         // Initializer for a direct base class.
1444         if (const Record::Base *B = R->getBase(Init->getType())) {
1445           if (!this->emitGetPtrBase(B->Offset, Init))
1446             return false;
1447 
1448           if (!this->visitInitializer(Init))
1449             return false;
1450 
1451           if (!this->emitFinishInitPop(E))
1452             return false;
1453           // Base initializers don't increase InitIndex, since they don't count
1454           // into the Record's fields.
1455         } else {
1456           const Record::Field *FieldToInit = R->getField(InitIndex);
1457           if (!initCompositeField(FieldToInit, Init))
1458             return false;
1459           ++InitIndex;
1460         }
1461       }
1462     }
1463     return this->emitFinishInit(E);
1464   }
1465 
1466   if (QT->isArrayType()) {
1467     if (Inits.size() == 1 && QT == Inits[0]->getType())
1468       return this->delegate(Inits[0]);
1469 
1470     unsigned ElementIndex = 0;
1471     for (const Expr *Init : Inits) {
1472       if (const auto *EmbedS =
1473               dyn_cast<EmbedExpr>(Init->IgnoreParenImpCasts())) {
1474         PrimType TargetT = classifyPrim(Init->getType());
1475 
1476         auto Eval = [&](const Expr *Init, unsigned ElemIndex) {
1477           PrimType InitT = classifyPrim(Init->getType());
1478           if (!this->visit(Init))
1479             return false;
1480           if (InitT != TargetT) {
1481             if (!this->emitCast(InitT, TargetT, E))
1482               return false;
1483           }
1484           return this->emitInitElem(TargetT, ElemIndex, Init);
1485         };
1486         if (!EmbedS->doForEachDataElement(Eval, ElementIndex))
1487           return false;
1488       } else {
1489         if (!this->visitArrayElemInit(ElementIndex, Init))
1490           return false;
1491         ++ElementIndex;
1492       }
1493     }
1494 
1495     // Expand the filler expression.
1496     // FIXME: This should go away.
1497     if (ArrayFiller) {
1498       const ConstantArrayType *CAT =
1499           Ctx.getASTContext().getAsConstantArrayType(QT);
1500       uint64_t NumElems = CAT->getZExtSize();
1501 
1502       for (; ElementIndex != NumElems; ++ElementIndex) {
1503         if (!this->visitArrayElemInit(ElementIndex, ArrayFiller))
1504           return false;
1505       }
1506     }
1507 
1508     return this->emitFinishInit(E);
1509   }
1510 
1511   if (const auto *ComplexTy = QT->getAs<ComplexType>()) {
1512     unsigned NumInits = Inits.size();
1513 
1514     if (NumInits == 1)
1515       return this->delegate(Inits[0]);
1516 
1517     QualType ElemQT = ComplexTy->getElementType();
1518     PrimType ElemT = classifyPrim(ElemQT);
1519     if (NumInits == 0) {
1520       // Zero-initialize both elements.
1521       for (unsigned I = 0; I < 2; ++I) {
1522         if (!this->visitZeroInitializer(ElemT, ElemQT, E))
1523           return false;
1524         if (!this->emitInitElem(ElemT, I, E))
1525           return false;
1526       }
1527     } else if (NumInits == 2) {
1528       unsigned InitIndex = 0;
1529       for (const Expr *Init : Inits) {
1530         if (!this->visit(Init))
1531           return false;
1532 
1533         if (!this->emitInitElem(ElemT, InitIndex, E))
1534           return false;
1535         ++InitIndex;
1536       }
1537     }
1538     return true;
1539   }
1540 
1541   if (const auto *VecT = QT->getAs<VectorType>()) {
1542     unsigned NumVecElements = VecT->getNumElements();
1543     assert(NumVecElements >= Inits.size());
1544 
1545     QualType ElemQT = VecT->getElementType();
1546     PrimType ElemT = classifyPrim(ElemQT);
1547 
1548     // All initializer elements.
1549     unsigned InitIndex = 0;
1550     for (const Expr *Init : Inits) {
1551       if (!this->visit(Init))
1552         return false;
1553 
1554       // If the initializer is of vector type itself, we have to deconstruct
1555       // that and initialize all the target fields from the initializer fields.
1556       if (const auto *InitVecT = Init->getType()->getAs<VectorType>()) {
1557         if (!this->emitCopyArray(ElemT, 0, InitIndex,
1558                                  InitVecT->getNumElements(), E))
1559           return false;
1560         InitIndex += InitVecT->getNumElements();
1561       } else {
1562         if (!this->emitInitElem(ElemT, InitIndex, E))
1563           return false;
1564         ++InitIndex;
1565       }
1566     }
1567 
1568     assert(InitIndex <= NumVecElements);
1569 
1570     // Fill the rest with zeroes.
1571     for (; InitIndex != NumVecElements; ++InitIndex) {
1572       if (!this->visitZeroInitializer(ElemT, ElemQT, E))
1573         return false;
1574       if (!this->emitInitElem(ElemT, InitIndex, E))
1575         return false;
1576     }
1577     return true;
1578   }
1579 
1580   return false;
1581 }
1582 
1583 /// Pointer to the array(not the element!) must be on the stack when calling
1584 /// this.
1585 template <class Emitter>
1586 bool Compiler<Emitter>::visitArrayElemInit(unsigned ElemIndex,
1587                                            const Expr *Init) {
1588   if (std::optional<PrimType> T = classify(Init->getType())) {
1589     // Visit the primitive element like normal.
1590     if (!this->visit(Init))
1591       return false;
1592     return this->emitInitElem(*T, ElemIndex, Init);
1593   }
1594 
1595   InitLinkScope<Emitter> ILS(this, InitLink::Elem(ElemIndex));
1596   // Advance the pointer currently on the stack to the given
1597   // dimension.
1598   if (!this->emitConstUint32(ElemIndex, Init))
1599     return false;
1600   if (!this->emitArrayElemPtrUint32(Init))
1601     return false;
1602   if (!this->visitInitializer(Init))
1603     return false;
1604   return this->emitFinishInitPop(Init);
1605 }
1606 
1607 template <class Emitter>
1608 bool Compiler<Emitter>::VisitInitListExpr(const InitListExpr *E) {
1609   return this->visitInitList(E->inits(), E->getArrayFiller(), E);
1610 }
1611 
1612 template <class Emitter>
1613 bool Compiler<Emitter>::VisitCXXParenListInitExpr(
1614     const CXXParenListInitExpr *E) {
1615   return this->visitInitList(E->getInitExprs(), E->getArrayFiller(), E);
1616 }
1617 
1618 template <class Emitter>
1619 bool Compiler<Emitter>::VisitSubstNonTypeTemplateParmExpr(
1620     const SubstNonTypeTemplateParmExpr *E) {
1621   return this->delegate(E->getReplacement());
1622 }
1623 
1624 template <class Emitter>
1625 bool Compiler<Emitter>::VisitConstantExpr(const ConstantExpr *E) {
1626   std::optional<PrimType> T = classify(E->getType());
1627   if (T && E->hasAPValueResult()) {
1628     // Try to emit the APValue directly, without visiting the subexpr.
1629     // This will only fail if we can't emit the APValue, so won't emit any
1630     // diagnostics or any double values.
1631     if (DiscardResult)
1632       return true;
1633 
1634     if (this->visitAPValue(E->getAPValueResult(), *T, E))
1635       return true;
1636   }
1637   return this->delegate(E->getSubExpr());
1638 }
1639 
1640 template <class Emitter>
1641 bool Compiler<Emitter>::VisitEmbedExpr(const EmbedExpr *E) {
1642   auto It = E->begin();
1643   return this->visit(*It);
1644 }
1645 
1646 static CharUnits AlignOfType(QualType T, const ASTContext &ASTCtx,
1647                              UnaryExprOrTypeTrait Kind) {
1648   bool AlignOfReturnsPreferred =
1649       ASTCtx.getLangOpts().getClangABICompat() <= LangOptions::ClangABI::Ver7;
1650 
1651   // C++ [expr.alignof]p3:
1652   //     When alignof is applied to a reference type, the result is the
1653   //     alignment of the referenced type.
1654   if (const auto *Ref = T->getAs<ReferenceType>())
1655     T = Ref->getPointeeType();
1656 
1657   if (T.getQualifiers().hasUnaligned())
1658     return CharUnits::One();
1659 
1660   // __alignof is defined to return the preferred alignment.
1661   // Before 8, clang returned the preferred alignment for alignof and
1662   // _Alignof as well.
1663   if (Kind == UETT_PreferredAlignOf || AlignOfReturnsPreferred)
1664     return ASTCtx.toCharUnitsFromBits(ASTCtx.getPreferredTypeAlign(T));
1665 
1666   return ASTCtx.getTypeAlignInChars(T);
1667 }
1668 
1669 template <class Emitter>
1670 bool Compiler<Emitter>::VisitUnaryExprOrTypeTraitExpr(
1671     const UnaryExprOrTypeTraitExpr *E) {
1672   UnaryExprOrTypeTrait Kind = E->getKind();
1673   const ASTContext &ASTCtx = Ctx.getASTContext();
1674 
1675   if (Kind == UETT_SizeOf || Kind == UETT_DataSizeOf) {
1676     QualType ArgType = E->getTypeOfArgument();
1677 
1678     // C++ [expr.sizeof]p2: "When applied to a reference or a reference type,
1679     //   the result is the size of the referenced type."
1680     if (const auto *Ref = ArgType->getAs<ReferenceType>())
1681       ArgType = Ref->getPointeeType();
1682 
1683     CharUnits Size;
1684     if (ArgType->isVoidType() || ArgType->isFunctionType())
1685       Size = CharUnits::One();
1686     else {
1687       if (ArgType->isDependentType() || !ArgType->isConstantSizeType())
1688         return false;
1689 
1690       if (Kind == UETT_SizeOf)
1691         Size = ASTCtx.getTypeSizeInChars(ArgType);
1692       else
1693         Size = ASTCtx.getTypeInfoDataSizeInChars(ArgType).Width;
1694     }
1695 
1696     if (DiscardResult)
1697       return true;
1698 
1699     return this->emitConst(Size.getQuantity(), E);
1700   }
1701 
1702   if (Kind == UETT_AlignOf || Kind == UETT_PreferredAlignOf) {
1703     CharUnits Size;
1704 
1705     if (E->isArgumentType()) {
1706       QualType ArgType = E->getTypeOfArgument();
1707 
1708       Size = AlignOfType(ArgType, ASTCtx, Kind);
1709     } else {
1710       // Argument is an expression, not a type.
1711       const Expr *Arg = E->getArgumentExpr()->IgnoreParens();
1712 
1713       // The kinds of expressions that we have special-case logic here for
1714       // should be kept up to date with the special checks for those
1715       // expressions in Sema.
1716 
1717       // alignof decl is always accepted, even if it doesn't make sense: we
1718       // default to 1 in those cases.
1719       if (const auto *DRE = dyn_cast<DeclRefExpr>(Arg))
1720         Size = ASTCtx.getDeclAlign(DRE->getDecl(),
1721                                    /*RefAsPointee*/ true);
1722       else if (const auto *ME = dyn_cast<MemberExpr>(Arg))
1723         Size = ASTCtx.getDeclAlign(ME->getMemberDecl(),
1724                                    /*RefAsPointee*/ true);
1725       else
1726         Size = AlignOfType(Arg->getType(), ASTCtx, Kind);
1727     }
1728 
1729     if (DiscardResult)
1730       return true;
1731 
1732     return this->emitConst(Size.getQuantity(), E);
1733   }
1734 
1735   if (Kind == UETT_VectorElements) {
1736     if (const auto *VT = E->getTypeOfArgument()->getAs<VectorType>())
1737       return this->emitConst(VT->getNumElements(), E);
1738     assert(E->getTypeOfArgument()->isSizelessVectorType());
1739     return this->emitSizelessVectorElementSize(E);
1740   }
1741 
1742   if (Kind == UETT_VecStep) {
1743     if (const auto *VT = E->getTypeOfArgument()->getAs<VectorType>()) {
1744       unsigned N = VT->getNumElements();
1745 
1746       // The vec_step built-in functions that take a 3-component
1747       // vector return 4. (OpenCL 1.1 spec 6.11.12)
1748       if (N == 3)
1749         N = 4;
1750 
1751       return this->emitConst(N, E);
1752     }
1753     return this->emitConst(1, E);
1754   }
1755 
1756   return false;
1757 }
1758 
1759 template <class Emitter>
1760 bool Compiler<Emitter>::VisitMemberExpr(const MemberExpr *E) {
1761   // 'Base.Member'
1762   const Expr *Base = E->getBase();
1763   const ValueDecl *Member = E->getMemberDecl();
1764 
1765   if (DiscardResult)
1766     return this->discard(Base);
1767 
1768   // MemberExprs are almost always lvalues, in which case we don't need to
1769   // do the load. But sometimes they aren't.
1770   const auto maybeLoadValue = [&]() -> bool {
1771     if (E->isGLValue())
1772       return true;
1773     if (std::optional<PrimType> T = classify(E))
1774       return this->emitLoadPop(*T, E);
1775     return false;
1776   };
1777 
1778   if (const auto *VD = dyn_cast<VarDecl>(Member)) {
1779     // I am almost confident in saying that a var decl must be static
1780     // and therefore registered as a global variable. But this will probably
1781     // turn out to be wrong some time in the future, as always.
1782     if (auto GlobalIndex = P.getGlobal(VD))
1783       return this->emitGetPtrGlobal(*GlobalIndex, E) && maybeLoadValue();
1784     return false;
1785   }
1786 
1787   if (!isa<FieldDecl>(Member))
1788     return this->discard(Base) && this->visitDeclRef(Member, E);
1789 
1790   if (Initializing) {
1791     if (!this->delegate(Base))
1792       return false;
1793   } else {
1794     if (!this->visit(Base))
1795       return false;
1796   }
1797 
1798   // Base above gives us a pointer on the stack.
1799   const auto *FD = cast<FieldDecl>(Member);
1800   const RecordDecl *RD = FD->getParent();
1801   const Record *R = getRecord(RD);
1802   if (!R)
1803     return false;
1804   const Record::Field *F = R->getField(FD);
1805   // Leave a pointer to the field on the stack.
1806   if (F->Decl->getType()->isReferenceType())
1807     return this->emitGetFieldPop(PT_Ptr, F->Offset, E) && maybeLoadValue();
1808   return this->emitGetPtrFieldPop(F->Offset, E) && maybeLoadValue();
1809 }
1810 
1811 template <class Emitter>
1812 bool Compiler<Emitter>::VisitArrayInitIndexExpr(const ArrayInitIndexExpr *E) {
1813   // ArrayIndex might not be set if a ArrayInitIndexExpr is being evaluated
1814   // stand-alone, e.g. via EvaluateAsInt().
1815   if (!ArrayIndex)
1816     return false;
1817   return this->emitConst(*ArrayIndex, E);
1818 }
1819 
1820 template <class Emitter>
1821 bool Compiler<Emitter>::VisitArrayInitLoopExpr(const ArrayInitLoopExpr *E) {
1822   assert(Initializing);
1823   assert(!DiscardResult);
1824 
1825   // We visit the common opaque expression here once so we have its value
1826   // cached.
1827   if (!this->discard(E->getCommonExpr()))
1828     return false;
1829 
1830   // TODO: This compiles to quite a lot of bytecode if the array is larger.
1831   //   Investigate compiling this to a loop.
1832   const Expr *SubExpr = E->getSubExpr();
1833   size_t Size = E->getArraySize().getZExtValue();
1834 
1835   // So, every iteration, we execute an assignment here
1836   // where the LHS is on the stack (the target array)
1837   // and the RHS is our SubExpr.
1838   for (size_t I = 0; I != Size; ++I) {
1839     ArrayIndexScope<Emitter> IndexScope(this, I);
1840     BlockScope<Emitter> BS(this);
1841 
1842     if (!this->visitArrayElemInit(I, SubExpr))
1843       return false;
1844     if (!BS.destroyLocals())
1845       return false;
1846   }
1847   return true;
1848 }
1849 
1850 template <class Emitter>
1851 bool Compiler<Emitter>::VisitOpaqueValueExpr(const OpaqueValueExpr *E) {
1852   const Expr *SourceExpr = E->getSourceExpr();
1853   if (!SourceExpr)
1854     return false;
1855 
1856   if (Initializing)
1857     return this->visitInitializer(SourceExpr);
1858 
1859   PrimType SubExprT = classify(SourceExpr).value_or(PT_Ptr);
1860   if (auto It = OpaqueExprs.find(E); It != OpaqueExprs.end())
1861     return this->emitGetLocal(SubExprT, It->second, E);
1862 
1863   if (!this->visit(SourceExpr))
1864     return false;
1865 
1866   // At this point we either have the evaluated source expression or a pointer
1867   // to an object on the stack. We want to create a local variable that stores
1868   // this value.
1869   unsigned LocalIndex = allocateLocalPrimitive(E, SubExprT, /*IsConst=*/true);
1870   if (!this->emitSetLocal(SubExprT, LocalIndex, E))
1871     return false;
1872 
1873   // Here the local variable is created but the value is removed from the stack,
1874   // so we put it back if the caller needs it.
1875   if (!DiscardResult) {
1876     if (!this->emitGetLocal(SubExprT, LocalIndex, E))
1877       return false;
1878   }
1879 
1880   // This is cleaned up when the local variable is destroyed.
1881   OpaqueExprs.insert({E, LocalIndex});
1882 
1883   return true;
1884 }
1885 
1886 template <class Emitter>
1887 bool Compiler<Emitter>::VisitAbstractConditionalOperator(
1888     const AbstractConditionalOperator *E) {
1889   const Expr *Condition = E->getCond();
1890   const Expr *TrueExpr = E->getTrueExpr();
1891   const Expr *FalseExpr = E->getFalseExpr();
1892 
1893   LabelTy LabelEnd = this->getLabel();   // Label after the operator.
1894   LabelTy LabelFalse = this->getLabel(); // Label for the false expr.
1895 
1896   if (!this->visitBool(Condition))
1897     return false;
1898 
1899   if (!this->jumpFalse(LabelFalse))
1900     return false;
1901 
1902   {
1903     LocalScope<Emitter> S(this);
1904     if (!this->delegate(TrueExpr))
1905       return false;
1906     if (!S.destroyLocals())
1907       return false;
1908   }
1909 
1910   if (!this->jump(LabelEnd))
1911     return false;
1912 
1913   this->emitLabel(LabelFalse);
1914 
1915   {
1916     LocalScope<Emitter> S(this);
1917     if (!this->delegate(FalseExpr))
1918       return false;
1919     if (!S.destroyLocals())
1920       return false;
1921   }
1922 
1923   this->fallthrough(LabelEnd);
1924   this->emitLabel(LabelEnd);
1925 
1926   return true;
1927 }
1928 
1929 template <class Emitter>
1930 bool Compiler<Emitter>::VisitStringLiteral(const StringLiteral *E) {
1931   if (DiscardResult)
1932     return true;
1933 
1934   if (!Initializing) {
1935     unsigned StringIndex = P.createGlobalString(E);
1936     return this->emitGetPtrGlobal(StringIndex, E);
1937   }
1938 
1939   // We are initializing an array on the stack.
1940   const ConstantArrayType *CAT =
1941       Ctx.getASTContext().getAsConstantArrayType(E->getType());
1942   assert(CAT && "a string literal that's not a constant array?");
1943 
1944   // If the initializer string is too long, a diagnostic has already been
1945   // emitted. Read only the array length from the string literal.
1946   unsigned ArraySize = CAT->getZExtSize();
1947   unsigned N = std::min(ArraySize, E->getLength());
1948   size_t CharWidth = E->getCharByteWidth();
1949 
1950   for (unsigned I = 0; I != N; ++I) {
1951     uint32_t CodeUnit = E->getCodeUnit(I);
1952 
1953     if (CharWidth == 1) {
1954       this->emitConstSint8(CodeUnit, E);
1955       this->emitInitElemSint8(I, E);
1956     } else if (CharWidth == 2) {
1957       this->emitConstUint16(CodeUnit, E);
1958       this->emitInitElemUint16(I, E);
1959     } else if (CharWidth == 4) {
1960       this->emitConstUint32(CodeUnit, E);
1961       this->emitInitElemUint32(I, E);
1962     } else {
1963       llvm_unreachable("unsupported character width");
1964     }
1965   }
1966 
1967   // Fill up the rest of the char array with NUL bytes.
1968   for (unsigned I = N; I != ArraySize; ++I) {
1969     if (CharWidth == 1) {
1970       this->emitConstSint8(0, E);
1971       this->emitInitElemSint8(I, E);
1972     } else if (CharWidth == 2) {
1973       this->emitConstUint16(0, E);
1974       this->emitInitElemUint16(I, E);
1975     } else if (CharWidth == 4) {
1976       this->emitConstUint32(0, E);
1977       this->emitInitElemUint32(I, E);
1978     } else {
1979       llvm_unreachable("unsupported character width");
1980     }
1981   }
1982 
1983   return true;
1984 }
1985 
1986 template <class Emitter>
1987 bool Compiler<Emitter>::VisitObjCStringLiteral(const ObjCStringLiteral *E) {
1988   return this->delegate(E->getString());
1989 }
1990 
1991 template <class Emitter>
1992 bool Compiler<Emitter>::VisitObjCEncodeExpr(const ObjCEncodeExpr *E) {
1993   auto &A = Ctx.getASTContext();
1994   std::string Str;
1995   A.getObjCEncodingForType(E->getEncodedType(), Str);
1996   StringLiteral *SL =
1997       StringLiteral::Create(A, Str, StringLiteralKind::Ordinary,
1998                             /*Pascal=*/false, E->getType(), E->getAtLoc());
1999   return this->delegate(SL);
2000 }
2001 
2002 template <class Emitter>
2003 bool Compiler<Emitter>::VisitSYCLUniqueStableNameExpr(
2004     const SYCLUniqueStableNameExpr *E) {
2005   if (DiscardResult)
2006     return true;
2007 
2008   assert(!Initializing);
2009 
2010   auto &A = Ctx.getASTContext();
2011   std::string ResultStr = E->ComputeName(A);
2012 
2013   QualType CharTy = A.CharTy.withConst();
2014   APInt Size(A.getTypeSize(A.getSizeType()), ResultStr.size() + 1);
2015   QualType ArrayTy = A.getConstantArrayType(CharTy, Size, nullptr,
2016                                             ArraySizeModifier::Normal, 0);
2017 
2018   StringLiteral *SL =
2019       StringLiteral::Create(A, ResultStr, StringLiteralKind::Ordinary,
2020                             /*Pascal=*/false, ArrayTy, E->getLocation());
2021 
2022   unsigned StringIndex = P.createGlobalString(SL);
2023   return this->emitGetPtrGlobal(StringIndex, E);
2024 }
2025 
2026 template <class Emitter>
2027 bool Compiler<Emitter>::VisitCharacterLiteral(const CharacterLiteral *E) {
2028   if (DiscardResult)
2029     return true;
2030   return this->emitConst(E->getValue(), E);
2031 }
2032 
2033 template <class Emitter>
2034 bool Compiler<Emitter>::VisitFloatCompoundAssignOperator(
2035     const CompoundAssignOperator *E) {
2036 
2037   const Expr *LHS = E->getLHS();
2038   const Expr *RHS = E->getRHS();
2039   QualType LHSType = LHS->getType();
2040   QualType LHSComputationType = E->getComputationLHSType();
2041   QualType ResultType = E->getComputationResultType();
2042   std::optional<PrimType> LT = classify(LHSComputationType);
2043   std::optional<PrimType> RT = classify(ResultType);
2044 
2045   assert(ResultType->isFloatingType());
2046 
2047   if (!LT || !RT)
2048     return false;
2049 
2050   PrimType LHST = classifyPrim(LHSType);
2051 
2052   // C++17 onwards require that we evaluate the RHS first.
2053   // Compute RHS and save it in a temporary variable so we can
2054   // load it again later.
2055   if (!visit(RHS))
2056     return false;
2057 
2058   unsigned TempOffset = this->allocateLocalPrimitive(E, *RT, /*IsConst=*/true);
2059   if (!this->emitSetLocal(*RT, TempOffset, E))
2060     return false;
2061 
2062   // First, visit LHS.
2063   if (!visit(LHS))
2064     return false;
2065   if (!this->emitLoad(LHST, E))
2066     return false;
2067 
2068   // If necessary, convert LHS to its computation type.
2069   if (!this->emitPrimCast(LHST, classifyPrim(LHSComputationType),
2070                           LHSComputationType, E))
2071     return false;
2072 
2073   // Now load RHS.
2074   if (!this->emitGetLocal(*RT, TempOffset, E))
2075     return false;
2076 
2077   llvm::RoundingMode RM = getRoundingMode(E);
2078   switch (E->getOpcode()) {
2079   case BO_AddAssign:
2080     if (!this->emitAddf(RM, E))
2081       return false;
2082     break;
2083   case BO_SubAssign:
2084     if (!this->emitSubf(RM, E))
2085       return false;
2086     break;
2087   case BO_MulAssign:
2088     if (!this->emitMulf(RM, E))
2089       return false;
2090     break;
2091   case BO_DivAssign:
2092     if (!this->emitDivf(RM, E))
2093       return false;
2094     break;
2095   default:
2096     return false;
2097   }
2098 
2099   if (!this->emitPrimCast(classifyPrim(ResultType), LHST, LHS->getType(), E))
2100     return false;
2101 
2102   if (DiscardResult)
2103     return this->emitStorePop(LHST, E);
2104   return this->emitStore(LHST, E);
2105 }
2106 
2107 template <class Emitter>
2108 bool Compiler<Emitter>::VisitPointerCompoundAssignOperator(
2109     const CompoundAssignOperator *E) {
2110   BinaryOperatorKind Op = E->getOpcode();
2111   const Expr *LHS = E->getLHS();
2112   const Expr *RHS = E->getRHS();
2113   std::optional<PrimType> LT = classify(LHS->getType());
2114   std::optional<PrimType> RT = classify(RHS->getType());
2115 
2116   if (Op != BO_AddAssign && Op != BO_SubAssign)
2117     return false;
2118 
2119   if (!LT || !RT)
2120     return false;
2121 
2122   if (!visit(LHS))
2123     return false;
2124 
2125   if (!this->emitLoad(*LT, LHS))
2126     return false;
2127 
2128   if (!visit(RHS))
2129     return false;
2130 
2131   if (Op == BO_AddAssign) {
2132     if (!this->emitAddOffset(*RT, E))
2133       return false;
2134   } else {
2135     if (!this->emitSubOffset(*RT, E))
2136       return false;
2137   }
2138 
2139   if (DiscardResult)
2140     return this->emitStorePopPtr(E);
2141   return this->emitStorePtr(E);
2142 }
2143 
2144 template <class Emitter>
2145 bool Compiler<Emitter>::VisitCompoundAssignOperator(
2146     const CompoundAssignOperator *E) {
2147 
2148   const Expr *LHS = E->getLHS();
2149   const Expr *RHS = E->getRHS();
2150   std::optional<PrimType> LHSComputationT =
2151       classify(E->getComputationLHSType());
2152   std::optional<PrimType> LT = classify(LHS->getType());
2153   std::optional<PrimType> RT = classify(RHS->getType());
2154   std::optional<PrimType> ResultT = classify(E->getType());
2155 
2156   if (!Ctx.getLangOpts().CPlusPlus14)
2157     return this->visit(RHS) && this->visit(LHS) && this->emitError(E);
2158 
2159   if (!LT || !RT || !ResultT || !LHSComputationT)
2160     return false;
2161 
2162   // Handle floating point operations separately here, since they
2163   // require special care.
2164 
2165   if (ResultT == PT_Float || RT == PT_Float)
2166     return VisitFloatCompoundAssignOperator(E);
2167 
2168   if (E->getType()->isPointerType())
2169     return VisitPointerCompoundAssignOperator(E);
2170 
2171   assert(!E->getType()->isPointerType() && "Handled above");
2172   assert(!E->getType()->isFloatingType() && "Handled above");
2173 
2174   // C++17 onwards require that we evaluate the RHS first.
2175   // Compute RHS and save it in a temporary variable so we can
2176   // load it again later.
2177   // FIXME: Compound assignments are unsequenced in C, so we might
2178   //   have to figure out how to reject them.
2179   if (!visit(RHS))
2180     return false;
2181 
2182   unsigned TempOffset = this->allocateLocalPrimitive(E, *RT, /*IsConst=*/true);
2183 
2184   if (!this->emitSetLocal(*RT, TempOffset, E))
2185     return false;
2186 
2187   // Get LHS pointer, load its value and cast it to the
2188   // computation type if necessary.
2189   if (!visit(LHS))
2190     return false;
2191   if (!this->emitLoad(*LT, E))
2192     return false;
2193   if (LT != LHSComputationT) {
2194     if (!this->emitCast(*LT, *LHSComputationT, E))
2195       return false;
2196   }
2197 
2198   // Get the RHS value on the stack.
2199   if (!this->emitGetLocal(*RT, TempOffset, E))
2200     return false;
2201 
2202   // Perform operation.
2203   switch (E->getOpcode()) {
2204   case BO_AddAssign:
2205     if (!this->emitAdd(*LHSComputationT, E))
2206       return false;
2207     break;
2208   case BO_SubAssign:
2209     if (!this->emitSub(*LHSComputationT, E))
2210       return false;
2211     break;
2212   case BO_MulAssign:
2213     if (!this->emitMul(*LHSComputationT, E))
2214       return false;
2215     break;
2216   case BO_DivAssign:
2217     if (!this->emitDiv(*LHSComputationT, E))
2218       return false;
2219     break;
2220   case BO_RemAssign:
2221     if (!this->emitRem(*LHSComputationT, E))
2222       return false;
2223     break;
2224   case BO_ShlAssign:
2225     if (!this->emitShl(*LHSComputationT, *RT, E))
2226       return false;
2227     break;
2228   case BO_ShrAssign:
2229     if (!this->emitShr(*LHSComputationT, *RT, E))
2230       return false;
2231     break;
2232   case BO_AndAssign:
2233     if (!this->emitBitAnd(*LHSComputationT, E))
2234       return false;
2235     break;
2236   case BO_XorAssign:
2237     if (!this->emitBitXor(*LHSComputationT, E))
2238       return false;
2239     break;
2240   case BO_OrAssign:
2241     if (!this->emitBitOr(*LHSComputationT, E))
2242       return false;
2243     break;
2244   default:
2245     llvm_unreachable("Unimplemented compound assign operator");
2246   }
2247 
2248   // And now cast from LHSComputationT to ResultT.
2249   if (ResultT != LHSComputationT) {
2250     if (!this->emitCast(*LHSComputationT, *ResultT, E))
2251       return false;
2252   }
2253 
2254   // And store the result in LHS.
2255   if (DiscardResult) {
2256     if (LHS->refersToBitField())
2257       return this->emitStoreBitFieldPop(*ResultT, E);
2258     return this->emitStorePop(*ResultT, E);
2259   }
2260   if (LHS->refersToBitField())
2261     return this->emitStoreBitField(*ResultT, E);
2262   return this->emitStore(*ResultT, E);
2263 }
2264 
2265 template <class Emitter>
2266 bool Compiler<Emitter>::VisitExprWithCleanups(const ExprWithCleanups *E) {
2267   LocalScope<Emitter> ES(this);
2268   const Expr *SubExpr = E->getSubExpr();
2269 
2270   return this->delegate(SubExpr) && ES.destroyLocals(E);
2271 }
2272 
2273 template <class Emitter>
2274 bool Compiler<Emitter>::VisitMaterializeTemporaryExpr(
2275     const MaterializeTemporaryExpr *E) {
2276   const Expr *SubExpr = E->getSubExpr();
2277 
2278   if (Initializing) {
2279     // We already have a value, just initialize that.
2280     return this->delegate(SubExpr);
2281   }
2282   // If we don't end up using the materialized temporary anyway, don't
2283   // bother creating it.
2284   if (DiscardResult)
2285     return this->discard(SubExpr);
2286 
2287   // When we're initializing a global variable *or* the storage duration of
2288   // the temporary is explicitly static, create a global variable.
2289   std::optional<PrimType> SubExprT = classify(SubExpr);
2290   bool IsStatic = E->getStorageDuration() == SD_Static;
2291   if (IsStatic) {
2292     std::optional<unsigned> GlobalIndex = P.createGlobal(E);
2293     if (!GlobalIndex)
2294       return false;
2295 
2296     const LifetimeExtendedTemporaryDecl *TempDecl =
2297         E->getLifetimeExtendedTemporaryDecl();
2298     if (IsStatic)
2299       assert(TempDecl);
2300 
2301     if (SubExprT) {
2302       if (!this->visit(SubExpr))
2303         return false;
2304       if (IsStatic) {
2305         if (!this->emitInitGlobalTemp(*SubExprT, *GlobalIndex, TempDecl, E))
2306           return false;
2307       } else {
2308         if (!this->emitInitGlobal(*SubExprT, *GlobalIndex, E))
2309           return false;
2310       }
2311       return this->emitGetPtrGlobal(*GlobalIndex, E);
2312     }
2313 
2314     // Non-primitive values.
2315     if (!this->emitGetPtrGlobal(*GlobalIndex, E))
2316       return false;
2317     if (!this->visitInitializer(SubExpr))
2318       return false;
2319     if (IsStatic)
2320       return this->emitInitGlobalTempComp(TempDecl, E);
2321     return true;
2322   }
2323 
2324   // For everyhing else, use local variables.
2325   if (SubExprT) {
2326     unsigned LocalIndex = allocateLocalPrimitive(
2327         SubExpr, *SubExprT, /*IsConst=*/true, /*IsExtended=*/true);
2328     if (!this->visit(SubExpr))
2329       return false;
2330     if (!this->emitSetLocal(*SubExprT, LocalIndex, E))
2331       return false;
2332     return this->emitGetPtrLocal(LocalIndex, E);
2333   } else {
2334     const Expr *Inner = E->getSubExpr()->skipRValueSubobjectAdjustments();
2335     if (std::optional<unsigned> LocalIndex =
2336             allocateLocal(Inner, E->getExtendingDecl())) {
2337       InitLinkScope<Emitter> ILS(this, InitLink::Temp(*LocalIndex));
2338       if (!this->emitGetPtrLocal(*LocalIndex, E))
2339         return false;
2340       return this->visitInitializer(SubExpr);
2341     }
2342   }
2343   return false;
2344 }
2345 
2346 template <class Emitter>
2347 bool Compiler<Emitter>::VisitCXXBindTemporaryExpr(
2348     const CXXBindTemporaryExpr *E) {
2349   return this->delegate(E->getSubExpr());
2350 }
2351 
2352 template <class Emitter>
2353 bool Compiler<Emitter>::VisitCompoundLiteralExpr(const CompoundLiteralExpr *E) {
2354   const Expr *Init = E->getInitializer();
2355   if (DiscardResult)
2356     return this->discard(Init);
2357 
2358   if (Initializing) {
2359     // We already have a value, just initialize that.
2360     return this->visitInitializer(Init) && this->emitFinishInit(E);
2361   }
2362 
2363   std::optional<PrimType> T = classify(E->getType());
2364   if (E->isFileScope()) {
2365     // Avoid creating a variable if this is a primitive RValue anyway.
2366     if (T && !E->isLValue())
2367       return this->delegate(Init);
2368 
2369     if (std::optional<unsigned> GlobalIndex = P.createGlobal(E)) {
2370       if (!this->emitGetPtrGlobal(*GlobalIndex, E))
2371         return false;
2372 
2373       if (T) {
2374         if (!this->visit(Init))
2375           return false;
2376         return this->emitInitGlobal(*T, *GlobalIndex, E);
2377       }
2378 
2379       return this->visitInitializer(Init) && this->emitFinishInit(E);
2380     }
2381 
2382     return false;
2383   }
2384 
2385   // Otherwise, use a local variable.
2386   if (T && !E->isLValue()) {
2387     // For primitive types, we just visit the initializer.
2388     return this->delegate(Init);
2389   } else {
2390     unsigned LocalIndex;
2391 
2392     if (T)
2393       LocalIndex = this->allocateLocalPrimitive(Init, *T, false, false);
2394     else if (std::optional<unsigned> MaybeIndex = this->allocateLocal(Init))
2395       LocalIndex = *MaybeIndex;
2396     else
2397       return false;
2398 
2399     if (!this->emitGetPtrLocal(LocalIndex, E))
2400       return false;
2401 
2402     if (T) {
2403       if (!this->visit(Init)) {
2404         return false;
2405       }
2406       return this->emitInit(*T, E);
2407     } else {
2408       if (!this->visitInitializer(Init) || !this->emitFinishInit(E))
2409         return false;
2410     }
2411     return true;
2412   }
2413 
2414   return false;
2415 }
2416 
2417 template <class Emitter>
2418 bool Compiler<Emitter>::VisitTypeTraitExpr(const TypeTraitExpr *E) {
2419   if (DiscardResult)
2420     return true;
2421   if (E->getType()->isBooleanType())
2422     return this->emitConstBool(E->getValue(), E);
2423   return this->emitConst(E->getValue(), E);
2424 }
2425 
2426 template <class Emitter>
2427 bool Compiler<Emitter>::VisitArrayTypeTraitExpr(const ArrayTypeTraitExpr *E) {
2428   if (DiscardResult)
2429     return true;
2430   return this->emitConst(E->getValue(), E);
2431 }
2432 
2433 template <class Emitter>
2434 bool Compiler<Emitter>::VisitLambdaExpr(const LambdaExpr *E) {
2435   if (DiscardResult)
2436     return true;
2437 
2438   assert(Initializing);
2439   const Record *R = P.getOrCreateRecord(E->getLambdaClass());
2440 
2441   auto *CaptureInitIt = E->capture_init_begin();
2442   // Initialize all fields (which represent lambda captures) of the
2443   // record with their initializers.
2444   for (const Record::Field &F : R->fields()) {
2445     const Expr *Init = *CaptureInitIt;
2446     ++CaptureInitIt;
2447 
2448     if (!Init)
2449       continue;
2450 
2451     if (std::optional<PrimType> T = classify(Init)) {
2452       if (!this->visit(Init))
2453         return false;
2454 
2455       if (!this->emitInitField(*T, F.Offset, E))
2456         return false;
2457     } else {
2458       if (!this->emitGetPtrField(F.Offset, E))
2459         return false;
2460 
2461       if (!this->visitInitializer(Init))
2462         return false;
2463 
2464       if (!this->emitPopPtr(E))
2465         return false;
2466     }
2467   }
2468 
2469   return true;
2470 }
2471 
2472 template <class Emitter>
2473 bool Compiler<Emitter>::VisitPredefinedExpr(const PredefinedExpr *E) {
2474   if (DiscardResult)
2475     return true;
2476 
2477   return this->delegate(E->getFunctionName());
2478 }
2479 
2480 template <class Emitter>
2481 bool Compiler<Emitter>::VisitCXXThrowExpr(const CXXThrowExpr *E) {
2482   if (E->getSubExpr() && !this->discard(E->getSubExpr()))
2483     return false;
2484 
2485   return this->emitInvalid(E);
2486 }
2487 
2488 template <class Emitter>
2489 bool Compiler<Emitter>::VisitCXXReinterpretCastExpr(
2490     const CXXReinterpretCastExpr *E) {
2491   const Expr *SubExpr = E->getSubExpr();
2492 
2493   bool TypesMatch = classify(E) == classify(SubExpr);
2494   if (!this->emitInvalidCast(CastKind::Reinterpret, /*Fatal=*/!TypesMatch, E))
2495     return false;
2496 
2497   return this->delegate(SubExpr);
2498 }
2499 
2500 template <class Emitter>
2501 bool Compiler<Emitter>::VisitCXXNoexceptExpr(const CXXNoexceptExpr *E) {
2502   assert(E->getType()->isBooleanType());
2503 
2504   if (DiscardResult)
2505     return true;
2506   return this->emitConstBool(E->getValue(), E);
2507 }
2508 
2509 template <class Emitter>
2510 bool Compiler<Emitter>::VisitCXXConstructExpr(const CXXConstructExpr *E) {
2511   QualType T = E->getType();
2512   assert(!classify(T));
2513 
2514   if (T->isRecordType()) {
2515     const CXXConstructorDecl *Ctor = E->getConstructor();
2516 
2517     // Trivial copy/move constructor. Avoid copy.
2518     if (Ctor->isDefaulted() && Ctor->isCopyOrMoveConstructor() &&
2519         Ctor->isTrivial() &&
2520         E->getArg(0)->isTemporaryObject(Ctx.getASTContext(),
2521                                         T->getAsCXXRecordDecl()))
2522       return this->visitInitializer(E->getArg(0));
2523 
2524     // If we're discarding a construct expression, we still need
2525     // to allocate a variable and call the constructor and destructor.
2526     if (DiscardResult) {
2527       if (Ctor->isTrivial())
2528         return true;
2529       assert(!Initializing);
2530       std::optional<unsigned> LocalIndex = allocateLocal(E);
2531 
2532       if (!LocalIndex)
2533         return false;
2534 
2535       if (!this->emitGetPtrLocal(*LocalIndex, E))
2536         return false;
2537     }
2538 
2539     // Zero initialization.
2540     if (E->requiresZeroInitialization()) {
2541       const Record *R = getRecord(E->getType());
2542 
2543       if (!this->visitZeroRecordInitializer(R, E))
2544         return false;
2545 
2546       // If the constructor is trivial anyway, we're done.
2547       if (Ctor->isTrivial())
2548         return true;
2549     }
2550 
2551     const Function *Func = getFunction(Ctor);
2552 
2553     if (!Func)
2554       return false;
2555 
2556     assert(Func->hasThisPointer());
2557     assert(!Func->hasRVO());
2558 
2559     //  The This pointer is already on the stack because this is an initializer,
2560     //  but we need to dup() so the call() below has its own copy.
2561     if (!this->emitDupPtr(E))
2562       return false;
2563 
2564     // Constructor arguments.
2565     for (const auto *Arg : E->arguments()) {
2566       if (!this->visit(Arg))
2567         return false;
2568     }
2569 
2570     if (Func->isVariadic()) {
2571       uint32_t VarArgSize = 0;
2572       unsigned NumParams = Func->getNumWrittenParams();
2573       for (unsigned I = NumParams, N = E->getNumArgs(); I != N; ++I) {
2574         VarArgSize +=
2575             align(primSize(classify(E->getArg(I)->getType()).value_or(PT_Ptr)));
2576       }
2577       if (!this->emitCallVar(Func, VarArgSize, E))
2578         return false;
2579     } else {
2580       if (!this->emitCall(Func, 0, E))
2581         return false;
2582     }
2583 
2584     if (DiscardResult)
2585       return this->emitPopPtr(E);
2586     return this->emitFinishInit(E);
2587   }
2588 
2589   if (T->isArrayType()) {
2590     const ConstantArrayType *CAT =
2591         Ctx.getASTContext().getAsConstantArrayType(E->getType());
2592     if (!CAT)
2593       return false;
2594 
2595     size_t NumElems = CAT->getZExtSize();
2596     const Function *Func = getFunction(E->getConstructor());
2597     if (!Func || !Func->isConstexpr())
2598       return false;
2599 
2600     // FIXME(perf): We're calling the constructor once per array element here,
2601     //   in the old intepreter we had a special-case for trivial constructors.
2602     for (size_t I = 0; I != NumElems; ++I) {
2603       if (!this->emitConstUint64(I, E))
2604         return false;
2605       if (!this->emitArrayElemPtrUint64(E))
2606         return false;
2607 
2608       // Constructor arguments.
2609       for (const auto *Arg : E->arguments()) {
2610         if (!this->visit(Arg))
2611           return false;
2612       }
2613 
2614       if (!this->emitCall(Func, 0, E))
2615         return false;
2616     }
2617     return true;
2618   }
2619 
2620   return false;
2621 }
2622 
2623 template <class Emitter>
2624 bool Compiler<Emitter>::VisitSourceLocExpr(const SourceLocExpr *E) {
2625   if (DiscardResult)
2626     return true;
2627 
2628   const APValue Val =
2629       E->EvaluateInContext(Ctx.getASTContext(), SourceLocDefaultExpr);
2630 
2631   // Things like __builtin_LINE().
2632   if (E->getType()->isIntegerType()) {
2633     assert(Val.isInt());
2634     const APSInt &I = Val.getInt();
2635     return this->emitConst(I, E);
2636   }
2637   // Otherwise, the APValue is an LValue, with only one element.
2638   // Theoretically, we don't need the APValue at all of course.
2639   assert(E->getType()->isPointerType());
2640   assert(Val.isLValue());
2641   const APValue::LValueBase &Base = Val.getLValueBase();
2642   if (const Expr *LValueExpr = Base.dyn_cast<const Expr *>())
2643     return this->visit(LValueExpr);
2644 
2645   // Otherwise, we have a decl (which is the case for
2646   // __builtin_source_location).
2647   assert(Base.is<const ValueDecl *>());
2648   assert(Val.getLValuePath().size() == 0);
2649   const auto *BaseDecl = Base.dyn_cast<const ValueDecl *>();
2650   assert(BaseDecl);
2651 
2652   auto *UGCD = cast<UnnamedGlobalConstantDecl>(BaseDecl);
2653 
2654   std::optional<unsigned> GlobalIndex = P.getOrCreateGlobal(UGCD);
2655   if (!GlobalIndex)
2656     return false;
2657 
2658   if (!this->emitGetPtrGlobal(*GlobalIndex, E))
2659     return false;
2660 
2661   const Record *R = getRecord(E->getType());
2662   const APValue &V = UGCD->getValue();
2663   for (unsigned I = 0, N = R->getNumFields(); I != N; ++I) {
2664     const Record::Field *F = R->getField(I);
2665     const APValue &FieldValue = V.getStructField(I);
2666 
2667     PrimType FieldT = classifyPrim(F->Decl->getType());
2668 
2669     if (!this->visitAPValue(FieldValue, FieldT, E))
2670       return false;
2671     if (!this->emitInitField(FieldT, F->Offset, E))
2672       return false;
2673   }
2674 
2675   // Leave the pointer to the global on the stack.
2676   return true;
2677 }
2678 
2679 template <class Emitter>
2680 bool Compiler<Emitter>::VisitOffsetOfExpr(const OffsetOfExpr *E) {
2681   unsigned N = E->getNumComponents();
2682   if (N == 0)
2683     return false;
2684 
2685   for (unsigned I = 0; I != N; ++I) {
2686     const OffsetOfNode &Node = E->getComponent(I);
2687     if (Node.getKind() == OffsetOfNode::Array) {
2688       const Expr *ArrayIndexExpr = E->getIndexExpr(Node.getArrayExprIndex());
2689       PrimType IndexT = classifyPrim(ArrayIndexExpr->getType());
2690 
2691       if (DiscardResult) {
2692         if (!this->discard(ArrayIndexExpr))
2693           return false;
2694         continue;
2695       }
2696 
2697       if (!this->visit(ArrayIndexExpr))
2698         return false;
2699       // Cast to Sint64.
2700       if (IndexT != PT_Sint64) {
2701         if (!this->emitCast(IndexT, PT_Sint64, E))
2702           return false;
2703       }
2704     }
2705   }
2706 
2707   if (DiscardResult)
2708     return true;
2709 
2710   PrimType T = classifyPrim(E->getType());
2711   return this->emitOffsetOf(T, E, E);
2712 }
2713 
2714 template <class Emitter>
2715 bool Compiler<Emitter>::VisitCXXScalarValueInitExpr(
2716     const CXXScalarValueInitExpr *E) {
2717   QualType Ty = E->getType();
2718 
2719   if (DiscardResult || Ty->isVoidType())
2720     return true;
2721 
2722   if (std::optional<PrimType> T = classify(Ty))
2723     return this->visitZeroInitializer(*T, Ty, E);
2724 
2725   if (const auto *CT = Ty->getAs<ComplexType>()) {
2726     if (!Initializing) {
2727       std::optional<unsigned> LocalIndex = allocateLocal(E);
2728       if (!LocalIndex)
2729         return false;
2730       if (!this->emitGetPtrLocal(*LocalIndex, E))
2731         return false;
2732     }
2733 
2734     // Initialize both fields to 0.
2735     QualType ElemQT = CT->getElementType();
2736     PrimType ElemT = classifyPrim(ElemQT);
2737 
2738     for (unsigned I = 0; I != 2; ++I) {
2739       if (!this->visitZeroInitializer(ElemT, ElemQT, E))
2740         return false;
2741       if (!this->emitInitElem(ElemT, I, E))
2742         return false;
2743     }
2744     return true;
2745   }
2746 
2747   if (const auto *VT = Ty->getAs<VectorType>()) {
2748     // FIXME: Code duplication with the _Complex case above.
2749     if (!Initializing) {
2750       std::optional<unsigned> LocalIndex = allocateLocal(E);
2751       if (!LocalIndex)
2752         return false;
2753       if (!this->emitGetPtrLocal(*LocalIndex, E))
2754         return false;
2755     }
2756 
2757     // Initialize all fields to 0.
2758     QualType ElemQT = VT->getElementType();
2759     PrimType ElemT = classifyPrim(ElemQT);
2760 
2761     for (unsigned I = 0, N = VT->getNumElements(); I != N; ++I) {
2762       if (!this->visitZeroInitializer(ElemT, ElemQT, E))
2763         return false;
2764       if (!this->emitInitElem(ElemT, I, E))
2765         return false;
2766     }
2767     return true;
2768   }
2769 
2770   return false;
2771 }
2772 
2773 template <class Emitter>
2774 bool Compiler<Emitter>::VisitSizeOfPackExpr(const SizeOfPackExpr *E) {
2775   return this->emitConst(E->getPackLength(), E);
2776 }
2777 
2778 template <class Emitter>
2779 bool Compiler<Emitter>::VisitGenericSelectionExpr(
2780     const GenericSelectionExpr *E) {
2781   return this->delegate(E->getResultExpr());
2782 }
2783 
2784 template <class Emitter>
2785 bool Compiler<Emitter>::VisitChooseExpr(const ChooseExpr *E) {
2786   return this->delegate(E->getChosenSubExpr());
2787 }
2788 
2789 template <class Emitter>
2790 bool Compiler<Emitter>::VisitObjCBoolLiteralExpr(const ObjCBoolLiteralExpr *E) {
2791   if (DiscardResult)
2792     return true;
2793 
2794   return this->emitConst(E->getValue(), E);
2795 }
2796 
2797 template <class Emitter>
2798 bool Compiler<Emitter>::VisitCXXInheritedCtorInitExpr(
2799     const CXXInheritedCtorInitExpr *E) {
2800   const CXXConstructorDecl *Ctor = E->getConstructor();
2801   assert(!Ctor->isTrivial() &&
2802          "Trivial CXXInheritedCtorInitExpr, implement. (possible?)");
2803   const Function *F = this->getFunction(Ctor);
2804   assert(F);
2805   assert(!F->hasRVO());
2806   assert(F->hasThisPointer());
2807 
2808   if (!this->emitDupPtr(SourceInfo{}))
2809     return false;
2810 
2811   // Forward all arguments of the current function (which should be a
2812   // constructor itself) to the inherited ctor.
2813   // This is necessary because the calling code has pushed the pointer
2814   // of the correct base for  us already, but the arguments need
2815   // to come after.
2816   unsigned Offset = align(primSize(PT_Ptr)); // instance pointer.
2817   for (const ParmVarDecl *PD : Ctor->parameters()) {
2818     PrimType PT = this->classify(PD->getType()).value_or(PT_Ptr);
2819 
2820     if (!this->emitGetParam(PT, Offset, E))
2821       return false;
2822     Offset += align(primSize(PT));
2823   }
2824 
2825   return this->emitCall(F, 0, E);
2826 }
2827 
2828 template <class Emitter>
2829 bool Compiler<Emitter>::VisitCXXNewExpr(const CXXNewExpr *E) {
2830   assert(classifyPrim(E->getType()) == PT_Ptr);
2831   const Expr *Init = E->getInitializer();
2832   QualType ElementType = E->getAllocatedType();
2833   std::optional<PrimType> ElemT = classify(ElementType);
2834   unsigned PlacementArgs = E->getNumPlacementArgs();
2835   bool IsNoThrow = false;
2836 
2837   // FIXME: Better diagnostic. diag::note_constexpr_new_placement
2838   if (PlacementArgs != 0) {
2839     // The only new-placement list we support is of the form (std::nothrow).
2840     //
2841     // FIXME: There is no restriction on this, but it's not clear that any
2842     // other form makes any sense. We get here for cases such as:
2843     //
2844     //   new (std::align_val_t{N}) X(int)
2845     //
2846     // (which should presumably be valid only if N is a multiple of
2847     // alignof(int), and in any case can't be deallocated unless N is
2848     // alignof(X) and X has new-extended alignment).
2849     if (PlacementArgs != 1 || !E->getPlacementArg(0)->getType()->isNothrowT())
2850       return this->emitInvalid(E);
2851 
2852     if (!this->discard(E->getPlacementArg(0)))
2853       return false;
2854     IsNoThrow = true;
2855   }
2856 
2857   const Descriptor *Desc;
2858   if (ElemT) {
2859     if (E->isArray())
2860       Desc = nullptr; // We're not going to use it in this case.
2861     else
2862       Desc = P.createDescriptor(E, *ElemT, Descriptor::InlineDescMD,
2863                                 /*IsConst=*/false, /*IsTemporary=*/false,
2864                                 /*IsMutable=*/false);
2865   } else {
2866     Desc = P.createDescriptor(
2867         E, ElementType.getTypePtr(),
2868         E->isArray() ? std::nullopt : Descriptor::InlineDescMD,
2869         /*IsConst=*/false, /*IsTemporary=*/false, /*IsMutable=*/false, Init);
2870   }
2871 
2872   if (E->isArray()) {
2873     std::optional<const Expr *> ArraySizeExpr = E->getArraySize();
2874     if (!ArraySizeExpr)
2875       return false;
2876 
2877     const Expr *Stripped = *ArraySizeExpr;
2878     for (; auto *ICE = dyn_cast<ImplicitCastExpr>(Stripped);
2879          Stripped = ICE->getSubExpr())
2880       if (ICE->getCastKind() != CK_NoOp &&
2881           ICE->getCastKind() != CK_IntegralCast)
2882         break;
2883 
2884     PrimType SizeT = classifyPrim(Stripped->getType());
2885 
2886     if (!this->visit(Stripped))
2887       return false;
2888 
2889     if (ElemT) {
2890       // N primitive elements.
2891       if (!this->emitAllocN(SizeT, *ElemT, E, IsNoThrow, E))
2892         return false;
2893     } else {
2894       // N Composite elements.
2895       if (!this->emitAllocCN(SizeT, Desc, IsNoThrow, E))
2896         return false;
2897     }
2898 
2899     if (Init && !this->visitInitializer(Init))
2900       return false;
2901 
2902   } else {
2903     // Allocate just one element.
2904     if (!this->emitAlloc(Desc, E))
2905       return false;
2906 
2907     if (Init) {
2908       if (ElemT) {
2909         if (!this->visit(Init))
2910           return false;
2911 
2912         if (!this->emitInit(*ElemT, E))
2913           return false;
2914       } else {
2915         // Composite.
2916         if (!this->visitInitializer(Init))
2917           return false;
2918       }
2919     }
2920   }
2921 
2922   if (DiscardResult)
2923     return this->emitPopPtr(E);
2924 
2925   return true;
2926 }
2927 
2928 template <class Emitter>
2929 bool Compiler<Emitter>::VisitCXXDeleteExpr(const CXXDeleteExpr *E) {
2930   const Expr *Arg = E->getArgument();
2931 
2932   // Arg must be an lvalue.
2933   if (!this->visit(Arg))
2934     return false;
2935 
2936   return this->emitFree(E->isArrayForm(), E);
2937 }
2938 
2939 template <class Emitter>
2940 bool Compiler<Emitter>::VisitBlockExpr(const BlockExpr *E) {
2941   const Function *Func = nullptr;
2942   if (auto F = Compiler<ByteCodeEmitter>(Ctx, P).compileObjCBlock(E))
2943     Func = F;
2944 
2945   if (!Func)
2946     return false;
2947   return this->emitGetFnPtr(Func, E);
2948 }
2949 
2950 template <class Emitter>
2951 bool Compiler<Emitter>::VisitExpressionTraitExpr(const ExpressionTraitExpr *E) {
2952   assert(Ctx.getLangOpts().CPlusPlus);
2953   return this->emitConstBool(E->getValue(), E);
2954 }
2955 
2956 template <class Emitter>
2957 bool Compiler<Emitter>::VisitCXXUuidofExpr(const CXXUuidofExpr *E) {
2958   if (DiscardResult)
2959     return true;
2960   assert(!Initializing);
2961 
2962   const MSGuidDecl *GuidDecl = E->getGuidDecl();
2963   const RecordDecl *RD = GuidDecl->getType()->getAsRecordDecl();
2964   assert(RD);
2965   // If the definiton of the result type is incomplete, just return a dummy.
2966   // If (and when) that is read from, we will fail, but not now.
2967   if (!RD->isCompleteDefinition()) {
2968     if (std::optional<unsigned> I = P.getOrCreateDummy(GuidDecl))
2969       return this->emitGetPtrGlobal(*I, E);
2970     return false;
2971   }
2972 
2973   std::optional<unsigned> GlobalIndex = P.getOrCreateGlobal(GuidDecl);
2974   if (!GlobalIndex)
2975     return false;
2976   if (!this->emitGetPtrGlobal(*GlobalIndex, E))
2977     return false;
2978 
2979   assert(this->getRecord(E->getType()));
2980 
2981   const APValue &V = GuidDecl->getAsAPValue();
2982   if (V.getKind() == APValue::None)
2983     return true;
2984 
2985   assert(V.isStruct());
2986   assert(V.getStructNumBases() == 0);
2987   if (!this->visitAPValueInitializer(V, E))
2988     return false;
2989 
2990   return this->emitFinishInit(E);
2991 }
2992 
2993 template <class Emitter>
2994 bool Compiler<Emitter>::VisitRequiresExpr(const RequiresExpr *E) {
2995   assert(classifyPrim(E->getType()) == PT_Bool);
2996   if (DiscardResult)
2997     return true;
2998   return this->emitConstBool(E->isSatisfied(), E);
2999 }
3000 
3001 template <class Emitter>
3002 bool Compiler<Emitter>::VisitConceptSpecializationExpr(
3003     const ConceptSpecializationExpr *E) {
3004   assert(classifyPrim(E->getType()) == PT_Bool);
3005   if (DiscardResult)
3006     return true;
3007   return this->emitConstBool(E->isSatisfied(), E);
3008 }
3009 
3010 template <class Emitter>
3011 bool Compiler<Emitter>::VisitCXXRewrittenBinaryOperator(
3012     const CXXRewrittenBinaryOperator *E) {
3013   return this->delegate(E->getSemanticForm());
3014 }
3015 
3016 template <class Emitter>
3017 bool Compiler<Emitter>::VisitPseudoObjectExpr(const PseudoObjectExpr *E) {
3018 
3019   for (const Expr *SemE : E->semantics()) {
3020     if (auto *OVE = dyn_cast<OpaqueValueExpr>(SemE)) {
3021       if (SemE == E->getResultExpr())
3022         return false;
3023 
3024       if (OVE->isUnique())
3025         continue;
3026 
3027       if (!this->discard(OVE))
3028         return false;
3029     } else if (SemE == E->getResultExpr()) {
3030       if (!this->delegate(SemE))
3031         return false;
3032     } else {
3033       if (!this->discard(SemE))
3034         return false;
3035     }
3036   }
3037   return true;
3038 }
3039 
3040 template <class Emitter>
3041 bool Compiler<Emitter>::VisitPackIndexingExpr(const PackIndexingExpr *E) {
3042   return this->delegate(E->getSelectedExpr());
3043 }
3044 
3045 template <class Emitter>
3046 bool Compiler<Emitter>::VisitRecoveryExpr(const RecoveryExpr *E) {
3047   return this->emitError(E);
3048 }
3049 
3050 template <class Emitter>
3051 bool Compiler<Emitter>::VisitAddrLabelExpr(const AddrLabelExpr *E) {
3052   assert(E->getType()->isVoidPointerType());
3053 
3054   unsigned Offset = allocateLocalPrimitive(
3055       E->getLabel(), PT_Ptr, /*IsConst=*/true, /*IsExtended=*/false);
3056 
3057   return this->emitGetLocal(PT_Ptr, Offset, E);
3058 }
3059 
3060 template <class Emitter>
3061 bool Compiler<Emitter>::VisitConvertVectorExpr(const ConvertVectorExpr *E) {
3062   assert(Initializing);
3063   const auto *VT = E->getType()->castAs<VectorType>();
3064   QualType ElemType = VT->getElementType();
3065   PrimType ElemT = classifyPrim(ElemType);
3066   const Expr *Src = E->getSrcExpr();
3067   PrimType SrcElemT =
3068       classifyPrim(Src->getType()->castAs<VectorType>()->getElementType());
3069 
3070   unsigned SrcOffset = this->allocateLocalPrimitive(Src, PT_Ptr, true, false);
3071   if (!this->visit(Src))
3072     return false;
3073   if (!this->emitSetLocal(PT_Ptr, SrcOffset, E))
3074     return false;
3075 
3076   for (unsigned I = 0; I != VT->getNumElements(); ++I) {
3077     if (!this->emitGetLocal(PT_Ptr, SrcOffset, E))
3078       return false;
3079     if (!this->emitArrayElemPop(SrcElemT, I, E))
3080       return false;
3081     if (SrcElemT != ElemT) {
3082       if (!this->emitPrimCast(SrcElemT, ElemT, ElemType, E))
3083         return false;
3084     }
3085     if (!this->emitInitElem(ElemT, I, E))
3086       return false;
3087   }
3088 
3089   return true;
3090 }
3091 
3092 template <class Emitter>
3093 bool Compiler<Emitter>::VisitShuffleVectorExpr(const ShuffleVectorExpr *E) {
3094   assert(Initializing);
3095   assert(E->getNumSubExprs() > 2);
3096 
3097   const Expr *Vecs[] = {E->getExpr(0), E->getExpr(1)};
3098   const VectorType *VT = Vecs[0]->getType()->castAs<VectorType>();
3099   PrimType ElemT = classifyPrim(VT->getElementType());
3100   unsigned NumInputElems = VT->getNumElements();
3101   unsigned NumOutputElems = E->getNumSubExprs() - 2;
3102   assert(NumOutputElems > 0);
3103 
3104   // Save both input vectors to a local variable.
3105   unsigned VectorOffsets[2];
3106   for (unsigned I = 0; I != 2; ++I) {
3107     VectorOffsets[I] = this->allocateLocalPrimitive(
3108         Vecs[I], PT_Ptr, /*IsConst=*/true, /*IsExtended=*/false);
3109     if (!this->visit(Vecs[I]))
3110       return false;
3111     if (!this->emitSetLocal(PT_Ptr, VectorOffsets[I], E))
3112       return false;
3113   }
3114   for (unsigned I = 0; I != NumOutputElems; ++I) {
3115     APSInt ShuffleIndex = E->getShuffleMaskIdx(Ctx.getASTContext(), I);
3116     if (ShuffleIndex == -1)
3117       return this->emitInvalid(E); // FIXME: Better diagnostic.
3118 
3119     assert(ShuffleIndex < (NumInputElems * 2));
3120     if (!this->emitGetLocal(PT_Ptr,
3121                             VectorOffsets[ShuffleIndex >= NumInputElems], E))
3122       return false;
3123     unsigned InputVectorIndex = ShuffleIndex.getZExtValue() % NumInputElems;
3124     if (!this->emitArrayElemPop(ElemT, InputVectorIndex, E))
3125       return false;
3126 
3127     if (!this->emitInitElem(ElemT, I, E))
3128       return false;
3129   }
3130 
3131   return true;
3132 }
3133 
3134 template <class Emitter>
3135 bool Compiler<Emitter>::VisitExtVectorElementExpr(
3136     const ExtVectorElementExpr *E) {
3137   const Expr *Base = E->getBase();
3138   assert(
3139       Base->getType()->isVectorType() ||
3140       Base->getType()->getAs<PointerType>()->getPointeeType()->isVectorType());
3141 
3142   SmallVector<uint32_t, 4> Indices;
3143   E->getEncodedElementAccess(Indices);
3144 
3145   if (Indices.size() == 1) {
3146     if (!this->visit(Base))
3147       return false;
3148 
3149     if (E->isGLValue()) {
3150       if (!this->emitConstUint32(Indices[0], E))
3151         return false;
3152       return this->emitArrayElemPtrPop(PT_Uint32, E);
3153     }
3154     // Else, also load the value.
3155     return this->emitArrayElemPop(classifyPrim(E->getType()), Indices[0], E);
3156   }
3157 
3158   // Create a local variable for the base.
3159   unsigned BaseOffset = allocateLocalPrimitive(Base, PT_Ptr, /*IsConst=*/true,
3160                                                /*IsExtended=*/false);
3161   if (!this->visit(Base))
3162     return false;
3163   if (!this->emitSetLocal(PT_Ptr, BaseOffset, E))
3164     return false;
3165 
3166   // Now the vector variable for the return value.
3167   if (!Initializing) {
3168     std::optional<unsigned> ResultIndex;
3169     ResultIndex = allocateLocal(E);
3170     if (!ResultIndex)
3171       return false;
3172     if (!this->emitGetPtrLocal(*ResultIndex, E))
3173       return false;
3174   }
3175 
3176   assert(Indices.size() == E->getType()->getAs<VectorType>()->getNumElements());
3177 
3178   PrimType ElemT =
3179       classifyPrim(E->getType()->getAs<VectorType>()->getElementType());
3180   uint32_t DstIndex = 0;
3181   for (uint32_t I : Indices) {
3182     if (!this->emitGetLocal(PT_Ptr, BaseOffset, E))
3183       return false;
3184     if (!this->emitArrayElemPop(ElemT, I, E))
3185       return false;
3186     if (!this->emitInitElem(ElemT, DstIndex, E))
3187       return false;
3188     ++DstIndex;
3189   }
3190 
3191   // Leave the result pointer on the stack.
3192   assert(!DiscardResult);
3193   return true;
3194 }
3195 
3196 template <class Emitter>
3197 bool Compiler<Emitter>::VisitObjCBoxedExpr(const ObjCBoxedExpr *E) {
3198   const Expr *SubExpr = E->getSubExpr();
3199   if (!E->isExpressibleAsConstantInitializer())
3200     return this->discard(SubExpr) && this->emitInvalid(E);
3201 
3202   return this->delegate(SubExpr);
3203 }
3204 
3205 template <class Emitter>
3206 bool Compiler<Emitter>::VisitCXXStdInitializerListExpr(
3207     const CXXStdInitializerListExpr *E) {
3208   const Expr *SubExpr = E->getSubExpr();
3209   const ConstantArrayType *ArrayType =
3210       Ctx.getASTContext().getAsConstantArrayType(SubExpr->getType());
3211   const Record *R = getRecord(E->getType());
3212   assert(Initializing);
3213   assert(SubExpr->isGLValue());
3214 
3215   if (!this->visit(SubExpr))
3216     return false;
3217   if (!this->emitInitFieldPtr(R->getField(0u)->Offset, E))
3218     return false;
3219 
3220   PrimType SecondFieldT = classifyPrim(R->getField(1u)->Decl->getType());
3221   if (isIntegralType(SecondFieldT)) {
3222     if (!this->emitConst(static_cast<APSInt>(ArrayType->getSize()),
3223                          SecondFieldT, E))
3224       return false;
3225     return this->emitInitField(SecondFieldT, R->getField(1u)->Offset, E);
3226   }
3227   assert(SecondFieldT == PT_Ptr);
3228 
3229   if (!this->emitGetFieldPtr(R->getField(0u)->Offset, E))
3230     return false;
3231   if (!this->emitConst(static_cast<APSInt>(ArrayType->getSize()), PT_Uint64, E))
3232     return false;
3233   if (!this->emitArrayElemPtrPop(PT_Uint64, E))
3234     return false;
3235   return this->emitInitFieldPtr(R->getField(1u)->Offset, E);
3236 }
3237 
3238 template <class Emitter>
3239 bool Compiler<Emitter>::VisitStmtExpr(const StmtExpr *E) {
3240   BlockScope<Emitter> BS(this);
3241   StmtExprScope<Emitter> SS(this);
3242 
3243   const CompoundStmt *CS = E->getSubStmt();
3244   const Stmt *Result = CS->getStmtExprResult();
3245   for (const Stmt *S : CS->body()) {
3246     if (S != Result) {
3247       if (!this->visitStmt(S))
3248         return false;
3249       continue;
3250     }
3251 
3252     assert(S == Result);
3253     if (const Expr *ResultExpr = dyn_cast<Expr>(S))
3254       return this->delegate(ResultExpr);
3255     return this->emitUnsupported(E);
3256   }
3257 
3258   return BS.destroyLocals();
3259 }
3260 
3261 template <class Emitter> bool Compiler<Emitter>::discard(const Expr *E) {
3262   OptionScope<Emitter> Scope(this, /*NewDiscardResult=*/true,
3263                              /*NewInitializing=*/false);
3264   return this->Visit(E);
3265 }
3266 
3267 template <class Emitter> bool Compiler<Emitter>::delegate(const Expr *E) {
3268   // We're basically doing:
3269   // OptionScope<Emitter> Scope(this, DicardResult, Initializing);
3270   // but that's unnecessary of course.
3271   return this->Visit(E);
3272 }
3273 
3274 template <class Emitter> bool Compiler<Emitter>::visit(const Expr *E) {
3275   if (E->getType().isNull())
3276     return false;
3277 
3278   if (E->getType()->isVoidType())
3279     return this->discard(E);
3280 
3281   // Create local variable to hold the return value.
3282   if (!E->isGLValue() && !E->getType()->isAnyComplexType() &&
3283       !classify(E->getType())) {
3284     std::optional<unsigned> LocalIndex = allocateLocal(E);
3285     if (!LocalIndex)
3286       return false;
3287 
3288     if (!this->emitGetPtrLocal(*LocalIndex, E))
3289       return false;
3290     return this->visitInitializer(E);
3291   }
3292 
3293   //  Otherwise,we have a primitive return value, produce the value directly
3294   //  and push it on the stack.
3295   OptionScope<Emitter> Scope(this, /*NewDiscardResult=*/false,
3296                              /*NewInitializing=*/false);
3297   return this->Visit(E);
3298 }
3299 
3300 template <class Emitter>
3301 bool Compiler<Emitter>::visitInitializer(const Expr *E) {
3302   assert(!classify(E->getType()));
3303 
3304   if (!this->checkLiteralType(E))
3305     return false;
3306 
3307   OptionScope<Emitter> Scope(this, /*NewDiscardResult=*/false,
3308                              /*NewInitializing=*/true);
3309   return this->Visit(E);
3310 }
3311 
3312 template <class Emitter> bool Compiler<Emitter>::visitBool(const Expr *E) {
3313   std::optional<PrimType> T = classify(E->getType());
3314   if (!T) {
3315     // Convert complex values to bool.
3316     if (E->getType()->isAnyComplexType()) {
3317       if (!this->visit(E))
3318         return false;
3319       return this->emitComplexBoolCast(E);
3320     }
3321     return false;
3322   }
3323 
3324   if (!this->visit(E))
3325     return false;
3326 
3327   if (T == PT_Bool)
3328     return true;
3329 
3330   // Convert pointers to bool.
3331   if (T == PT_Ptr || T == PT_FnPtr) {
3332     if (!this->emitNull(*T, nullptr, E))
3333       return false;
3334     return this->emitNE(*T, E);
3335   }
3336 
3337   // Or Floats.
3338   if (T == PT_Float)
3339     return this->emitCastFloatingIntegralBool(E);
3340 
3341   // Or anything else we can.
3342   return this->emitCast(*T, PT_Bool, E);
3343 }
3344 
3345 template <class Emitter>
3346 bool Compiler<Emitter>::visitZeroInitializer(PrimType T, QualType QT,
3347                                              const Expr *E) {
3348   switch (T) {
3349   case PT_Bool:
3350     return this->emitZeroBool(E);
3351   case PT_Sint8:
3352     return this->emitZeroSint8(E);
3353   case PT_Uint8:
3354     return this->emitZeroUint8(E);
3355   case PT_Sint16:
3356     return this->emitZeroSint16(E);
3357   case PT_Uint16:
3358     return this->emitZeroUint16(E);
3359   case PT_Sint32:
3360     return this->emitZeroSint32(E);
3361   case PT_Uint32:
3362     return this->emitZeroUint32(E);
3363   case PT_Sint64:
3364     return this->emitZeroSint64(E);
3365   case PT_Uint64:
3366     return this->emitZeroUint64(E);
3367   case PT_IntAP:
3368     return this->emitZeroIntAP(Ctx.getBitWidth(QT), E);
3369   case PT_IntAPS:
3370     return this->emitZeroIntAPS(Ctx.getBitWidth(QT), E);
3371   case PT_Ptr:
3372     return this->emitNullPtr(nullptr, E);
3373   case PT_FnPtr:
3374     return this->emitNullFnPtr(nullptr, E);
3375   case PT_MemberPtr:
3376     return this->emitNullMemberPtr(nullptr, E);
3377   case PT_Float: {
3378     return this->emitConstFloat(APFloat::getZero(Ctx.getFloatSemantics(QT)), E);
3379   }
3380   }
3381   llvm_unreachable("unknown primitive type");
3382 }
3383 
3384 template <class Emitter>
3385 bool Compiler<Emitter>::visitZeroRecordInitializer(const Record *R,
3386                                                    const Expr *E) {
3387   assert(E);
3388   assert(R);
3389   // Fields
3390   for (const Record::Field &Field : R->fields()) {
3391     if (Field.Decl->isUnnamedBitField())
3392       continue;
3393 
3394     const Descriptor *D = Field.Desc;
3395     if (D->isPrimitive()) {
3396       QualType QT = D->getType();
3397       PrimType T = classifyPrim(D->getType());
3398       if (!this->visitZeroInitializer(T, QT, E))
3399         return false;
3400       if (!this->emitInitField(T, Field.Offset, E))
3401         return false;
3402       if (R->isUnion())
3403         break;
3404       continue;
3405     }
3406 
3407     if (!this->emitGetPtrField(Field.Offset, E))
3408       return false;
3409 
3410     if (D->isPrimitiveArray()) {
3411       QualType ET = D->getElemQualType();
3412       PrimType T = classifyPrim(ET);
3413       for (uint32_t I = 0, N = D->getNumElems(); I != N; ++I) {
3414         if (!this->visitZeroInitializer(T, ET, E))
3415           return false;
3416         if (!this->emitInitElem(T, I, E))
3417           return false;
3418       }
3419     } else if (D->isCompositeArray()) {
3420       const Record *ElemRecord = D->ElemDesc->ElemRecord;
3421       assert(D->ElemDesc->ElemRecord);
3422       for (uint32_t I = 0, N = D->getNumElems(); I != N; ++I) {
3423         if (!this->emitConstUint32(I, E))
3424           return false;
3425         if (!this->emitArrayElemPtr(PT_Uint32, E))
3426           return false;
3427         if (!this->visitZeroRecordInitializer(ElemRecord, E))
3428           return false;
3429         if (!this->emitPopPtr(E))
3430           return false;
3431       }
3432     } else if (D->isRecord()) {
3433       if (!this->visitZeroRecordInitializer(D->ElemRecord, E))
3434         return false;
3435     } else {
3436       assert(false);
3437     }
3438 
3439     if (!this->emitFinishInitPop(E))
3440       return false;
3441 
3442     if (R->isUnion())
3443       break;
3444   }
3445 
3446   for (const Record::Base &B : R->bases()) {
3447     if (!this->emitGetPtrBase(B.Offset, E))
3448       return false;
3449     if (!this->visitZeroRecordInitializer(B.R, E))
3450       return false;
3451     if (!this->emitFinishInitPop(E))
3452       return false;
3453   }
3454 
3455   // FIXME: Virtual bases.
3456 
3457   return true;
3458 }
3459 
3460 template <class Emitter>
3461 template <typename T>
3462 bool Compiler<Emitter>::emitConst(T Value, PrimType Ty, const Expr *E) {
3463   switch (Ty) {
3464   case PT_Sint8:
3465     return this->emitConstSint8(Value, E);
3466   case PT_Uint8:
3467     return this->emitConstUint8(Value, E);
3468   case PT_Sint16:
3469     return this->emitConstSint16(Value, E);
3470   case PT_Uint16:
3471     return this->emitConstUint16(Value, E);
3472   case PT_Sint32:
3473     return this->emitConstSint32(Value, E);
3474   case PT_Uint32:
3475     return this->emitConstUint32(Value, E);
3476   case PT_Sint64:
3477     return this->emitConstSint64(Value, E);
3478   case PT_Uint64:
3479     return this->emitConstUint64(Value, E);
3480   case PT_Bool:
3481     return this->emitConstBool(Value, E);
3482   case PT_Ptr:
3483   case PT_FnPtr:
3484   case PT_MemberPtr:
3485   case PT_Float:
3486   case PT_IntAP:
3487   case PT_IntAPS:
3488     llvm_unreachable("Invalid integral type");
3489     break;
3490   }
3491   llvm_unreachable("unknown primitive type");
3492 }
3493 
3494 template <class Emitter>
3495 template <typename T>
3496 bool Compiler<Emitter>::emitConst(T Value, const Expr *E) {
3497   return this->emitConst(Value, classifyPrim(E->getType()), E);
3498 }
3499 
3500 template <class Emitter>
3501 bool Compiler<Emitter>::emitConst(const APSInt &Value, PrimType Ty,
3502                                   const Expr *E) {
3503   if (Ty == PT_IntAPS)
3504     return this->emitConstIntAPS(Value, E);
3505   if (Ty == PT_IntAP)
3506     return this->emitConstIntAP(Value, E);
3507 
3508   if (Value.isSigned())
3509     return this->emitConst(Value.getSExtValue(), Ty, E);
3510   return this->emitConst(Value.getZExtValue(), Ty, E);
3511 }
3512 
3513 template <class Emitter>
3514 bool Compiler<Emitter>::emitConst(const APSInt &Value, const Expr *E) {
3515   return this->emitConst(Value, classifyPrim(E->getType()), E);
3516 }
3517 
3518 template <class Emitter>
3519 unsigned Compiler<Emitter>::allocateLocalPrimitive(DeclTy &&Src, PrimType Ty,
3520                                                    bool IsConst,
3521                                                    bool IsExtended) {
3522   // Make sure we don't accidentally register the same decl twice.
3523   if (const auto *VD =
3524           dyn_cast_if_present<ValueDecl>(Src.dyn_cast<const Decl *>())) {
3525     assert(!P.getGlobal(VD));
3526     assert(!Locals.contains(VD));
3527     (void)VD;
3528   }
3529 
3530   // FIXME: There are cases where Src.is<Expr*>() is wrong, e.g.
3531   //   (int){12} in C. Consider using Expr::isTemporaryObject() instead
3532   //   or isa<MaterializeTemporaryExpr>().
3533   Descriptor *D = P.createDescriptor(Src, Ty, Descriptor::InlineDescMD, IsConst,
3534                                      Src.is<const Expr *>());
3535   Scope::Local Local = this->createLocal(D);
3536   if (auto *VD = dyn_cast_if_present<ValueDecl>(Src.dyn_cast<const Decl *>()))
3537     Locals.insert({VD, Local});
3538   VarScope->add(Local, IsExtended);
3539   return Local.Offset;
3540 }
3541 
3542 template <class Emitter>
3543 std::optional<unsigned>
3544 Compiler<Emitter>::allocateLocal(DeclTy &&Src, const ValueDecl *ExtendingDecl) {
3545   // Make sure we don't accidentally register the same decl twice.
3546   if ([[maybe_unused]] const auto *VD =
3547           dyn_cast_if_present<ValueDecl>(Src.dyn_cast<const Decl *>())) {
3548     assert(!P.getGlobal(VD));
3549     assert(!Locals.contains(VD));
3550   }
3551 
3552   QualType Ty;
3553   const ValueDecl *Key = nullptr;
3554   const Expr *Init = nullptr;
3555   bool IsTemporary = false;
3556   if (auto *VD = dyn_cast_if_present<ValueDecl>(Src.dyn_cast<const Decl *>())) {
3557     Key = VD;
3558     Ty = VD->getType();
3559 
3560     if (const auto *VarD = dyn_cast<VarDecl>(VD))
3561       Init = VarD->getInit();
3562   }
3563   if (auto *E = Src.dyn_cast<const Expr *>()) {
3564     IsTemporary = true;
3565     Ty = E->getType();
3566   }
3567 
3568   Descriptor *D = P.createDescriptor(
3569       Src, Ty.getTypePtr(), Descriptor::InlineDescMD, Ty.isConstQualified(),
3570       IsTemporary, /*IsMutable=*/false, Init);
3571   if (!D)
3572     return std::nullopt;
3573 
3574   Scope::Local Local = this->createLocal(D);
3575   if (Key)
3576     Locals.insert({Key, Local});
3577   if (ExtendingDecl)
3578     VarScope->addExtended(Local, ExtendingDecl);
3579   else
3580     VarScope->add(Local, false);
3581   return Local.Offset;
3582 }
3583 
3584 template <class Emitter>
3585 unsigned Compiler<Emitter>::allocateTemporary(const Expr *E) {
3586   QualType Ty = E->getType();
3587   assert(!Ty->isRecordType());
3588 
3589   Descriptor *D = P.createDescriptor(
3590       E, Ty.getTypePtr(), Descriptor::InlineDescMD, Ty.isConstQualified(),
3591       /*IsTemporary=*/true, /*IsMutable=*/false, /*Init=*/nullptr);
3592   assert(D);
3593 
3594   Scope::Local Local = this->createLocal(D);
3595   VariableScope<Emitter> *S = VarScope;
3596   assert(S);
3597   // Attach to topmost scope.
3598   while (S->getParent())
3599     S = S->getParent();
3600   assert(S && !S->getParent());
3601   S->addLocal(Local);
3602   return Local.Offset;
3603 }
3604 
3605 template <class Emitter>
3606 const RecordType *Compiler<Emitter>::getRecordTy(QualType Ty) {
3607   if (const PointerType *PT = dyn_cast<PointerType>(Ty))
3608     return PT->getPointeeType()->getAs<RecordType>();
3609   return Ty->getAs<RecordType>();
3610 }
3611 
3612 template <class Emitter> Record *Compiler<Emitter>::getRecord(QualType Ty) {
3613   if (const auto *RecordTy = getRecordTy(Ty))
3614     return getRecord(RecordTy->getDecl());
3615   return nullptr;
3616 }
3617 
3618 template <class Emitter>
3619 Record *Compiler<Emitter>::getRecord(const RecordDecl *RD) {
3620   return P.getOrCreateRecord(RD);
3621 }
3622 
3623 template <class Emitter>
3624 const Function *Compiler<Emitter>::getFunction(const FunctionDecl *FD) {
3625   return Ctx.getOrCreateFunction(FD);
3626 }
3627 
3628 template <class Emitter> bool Compiler<Emitter>::visitExpr(const Expr *E) {
3629   LocalScope<Emitter> RootScope(this);
3630   // Void expressions.
3631   if (E->getType()->isVoidType()) {
3632     if (!visit(E))
3633       return false;
3634     return this->emitRetVoid(E) && RootScope.destroyLocals();
3635   }
3636 
3637   // Expressions with a primitive return type.
3638   if (std::optional<PrimType> T = classify(E)) {
3639     if (!visit(E))
3640       return false;
3641     return this->emitRet(*T, E) && RootScope.destroyLocals();
3642   }
3643 
3644   // Expressions with a composite return type.
3645   // For us, that means everything we don't
3646   // have a PrimType for.
3647   if (std::optional<unsigned> LocalOffset = this->allocateLocal(E)) {
3648     if (!this->emitGetPtrLocal(*LocalOffset, E))
3649       return false;
3650 
3651     if (!visitInitializer(E))
3652       return false;
3653 
3654     if (!this->emitFinishInit(E))
3655       return false;
3656     // We are destroying the locals AFTER the Ret op.
3657     // The Ret op needs to copy the (alive) values, but the
3658     // destructors may still turn the entire expression invalid.
3659     return this->emitRetValue(E) && RootScope.destroyLocals();
3660   }
3661 
3662   RootScope.destroyLocals();
3663   return false;
3664 }
3665 
3666 template <class Emitter>
3667 VarCreationState Compiler<Emitter>::visitDecl(const VarDecl *VD) {
3668 
3669   auto R = this->visitVarDecl(VD, /*Toplevel=*/true);
3670 
3671   if (R.notCreated())
3672     return R;
3673 
3674   if (R)
3675     return true;
3676 
3677   if (!R && Context::shouldBeGloballyIndexed(VD)) {
3678     if (auto GlobalIndex = P.getGlobal(VD)) {
3679       Block *GlobalBlock = P.getGlobal(*GlobalIndex);
3680       GlobalInlineDescriptor &GD =
3681           *reinterpret_cast<GlobalInlineDescriptor *>(GlobalBlock->rawData());
3682 
3683       GD.InitState = GlobalInitState::InitializerFailed;
3684       GlobalBlock->invokeDtor();
3685     }
3686   }
3687 
3688   return R;
3689 }
3690 
3691 /// Toplevel visitDeclAndReturn().
3692 /// We get here from evaluateAsInitializer().
3693 /// We need to evaluate the initializer and return its value.
3694 template <class Emitter>
3695 bool Compiler<Emitter>::visitDeclAndReturn(const VarDecl *VD,
3696                                            bool ConstantContext) {
3697   std::optional<PrimType> VarT = classify(VD->getType());
3698 
3699   // We only create variables if we're evaluating in a constant context.
3700   // Otherwise, just evaluate the initializer and return it.
3701   if (!ConstantContext) {
3702     DeclScope<Emitter> LS(this, VD);
3703     if (!this->visit(VD->getAnyInitializer()))
3704       return false;
3705     return this->emitRet(VarT.value_or(PT_Ptr), VD) && LS.destroyLocals();
3706   }
3707 
3708   LocalScope<Emitter> VDScope(this, VD);
3709   if (!this->visitVarDecl(VD, /*Toplevel=*/true))
3710     return false;
3711 
3712   if (Context::shouldBeGloballyIndexed(VD)) {
3713     auto GlobalIndex = P.getGlobal(VD);
3714     assert(GlobalIndex); // visitVarDecl() didn't return false.
3715     if (VarT) {
3716       if (!this->emitGetGlobalUnchecked(*VarT, *GlobalIndex, VD))
3717         return false;
3718     } else {
3719       if (!this->emitGetPtrGlobal(*GlobalIndex, VD))
3720         return false;
3721     }
3722   } else {
3723     auto Local = Locals.find(VD);
3724     assert(Local != Locals.end()); // Same here.
3725     if (VarT) {
3726       if (!this->emitGetLocal(*VarT, Local->second.Offset, VD))
3727         return false;
3728     } else {
3729       if (!this->emitGetPtrLocal(Local->second.Offset, VD))
3730         return false;
3731     }
3732   }
3733 
3734   // Return the value.
3735   if (!this->emitRet(VarT.value_or(PT_Ptr), VD)) {
3736     // If the Ret above failed and this is a global variable, mark it as
3737     // uninitialized, even everything else succeeded.
3738     if (Context::shouldBeGloballyIndexed(VD)) {
3739       auto GlobalIndex = P.getGlobal(VD);
3740       assert(GlobalIndex);
3741       Block *GlobalBlock = P.getGlobal(*GlobalIndex);
3742       GlobalInlineDescriptor &GD =
3743           *reinterpret_cast<GlobalInlineDescriptor *>(GlobalBlock->rawData());
3744 
3745       GD.InitState = GlobalInitState::InitializerFailed;
3746       GlobalBlock->invokeDtor();
3747     }
3748     return false;
3749   }
3750 
3751   return VDScope.destroyLocals();
3752 }
3753 
3754 template <class Emitter>
3755 VarCreationState Compiler<Emitter>::visitVarDecl(const VarDecl *VD,
3756                                                  bool Toplevel) {
3757   // We don't know what to do with these, so just return false.
3758   if (VD->getType().isNull())
3759     return false;
3760 
3761   // This case is EvalEmitter-only. If we won't create any instructions for the
3762   // initializer anyway, don't bother creating the variable in the first place.
3763   if (!this->isActive())
3764     return VarCreationState::NotCreated();
3765 
3766   const Expr *Init = VD->getInit();
3767   std::optional<PrimType> VarT = classify(VD->getType());
3768 
3769   if (Init && Init->isValueDependent())
3770     return false;
3771 
3772   if (Context::shouldBeGloballyIndexed(VD)) {
3773     auto checkDecl = [&]() -> bool {
3774       bool NeedsOp = !Toplevel && VD->isLocalVarDecl() && VD->isStaticLocal();
3775       return !NeedsOp || this->emitCheckDecl(VD, VD);
3776     };
3777 
3778     auto initGlobal = [&](unsigned GlobalIndex) -> bool {
3779       assert(Init);
3780       DeclScope<Emitter> LocalScope(this, VD);
3781 
3782       if (VarT) {
3783         if (!this->visit(Init))
3784           return checkDecl() && false;
3785 
3786         return checkDecl() && this->emitInitGlobal(*VarT, GlobalIndex, VD);
3787       }
3788 
3789       if (!checkDecl())
3790         return false;
3791 
3792       if (!this->emitGetPtrGlobal(GlobalIndex, Init))
3793         return false;
3794 
3795       if (!visitInitializer(Init))
3796         return false;
3797 
3798       if (!this->emitFinishInit(Init))
3799         return false;
3800 
3801       return this->emitPopPtr(Init);
3802     };
3803 
3804     // We've already seen and initialized this global.
3805     if (std::optional<unsigned> GlobalIndex = P.getGlobal(VD)) {
3806       if (P.getPtrGlobal(*GlobalIndex).isInitialized())
3807         return checkDecl();
3808 
3809       // The previous attempt at initialization might've been unsuccessful,
3810       // so let's try this one.
3811       return Init && checkDecl() && initGlobal(*GlobalIndex);
3812     }
3813 
3814     std::optional<unsigned> GlobalIndex = P.createGlobal(VD, Init);
3815 
3816     if (!GlobalIndex)
3817       return false;
3818 
3819     return !Init || (checkDecl() && initGlobal(*GlobalIndex));
3820   } else {
3821     InitLinkScope<Emitter> ILS(this, InitLink::Decl(VD));
3822 
3823     if (VarT) {
3824       unsigned Offset = this->allocateLocalPrimitive(
3825           VD, *VarT, VD->getType().isConstQualified());
3826       if (Init) {
3827         // If this is a toplevel declaration, create a scope for the
3828         // initializer.
3829         if (Toplevel) {
3830           LocalScope<Emitter> Scope(this);
3831           if (!this->visit(Init))
3832             return false;
3833           return this->emitSetLocal(*VarT, Offset, VD) && Scope.destroyLocals();
3834         } else {
3835           if (!this->visit(Init))
3836             return false;
3837           return this->emitSetLocal(*VarT, Offset, VD);
3838         }
3839       }
3840     } else {
3841       if (std::optional<unsigned> Offset = this->allocateLocal(VD)) {
3842         if (!Init)
3843           return true;
3844 
3845         if (!this->emitGetPtrLocal(*Offset, Init))
3846           return false;
3847 
3848         if (!visitInitializer(Init))
3849           return false;
3850 
3851         if (!this->emitFinishInit(Init))
3852           return false;
3853 
3854         return this->emitPopPtr(Init);
3855       }
3856       return false;
3857     }
3858     return true;
3859   }
3860 
3861   return false;
3862 }
3863 
3864 template <class Emitter>
3865 bool Compiler<Emitter>::visitAPValue(const APValue &Val, PrimType ValType,
3866                                      const Expr *E) {
3867   assert(!DiscardResult);
3868   if (Val.isInt())
3869     return this->emitConst(Val.getInt(), ValType, E);
3870   else if (Val.isFloat())
3871     return this->emitConstFloat(Val.getFloat(), E);
3872 
3873   if (Val.isLValue()) {
3874     if (Val.isNullPointer())
3875       return this->emitNull(ValType, nullptr, E);
3876     APValue::LValueBase Base = Val.getLValueBase();
3877     if (const Expr *BaseExpr = Base.dyn_cast<const Expr *>())
3878       return this->visit(BaseExpr);
3879     else if (const auto *VD = Base.dyn_cast<const ValueDecl *>()) {
3880       return this->visitDeclRef(VD, E);
3881     }
3882   } else if (Val.isMemberPointer()) {
3883     if (const ValueDecl *MemberDecl = Val.getMemberPointerDecl())
3884       return this->emitGetMemberPtr(MemberDecl, E);
3885     return this->emitNullMemberPtr(nullptr, E);
3886   }
3887 
3888   return false;
3889 }
3890 
3891 template <class Emitter>
3892 bool Compiler<Emitter>::visitAPValueInitializer(const APValue &Val,
3893                                                 const Expr *E) {
3894 
3895   if (Val.isStruct()) {
3896     const Record *R = this->getRecord(E->getType());
3897     assert(R);
3898     for (unsigned I = 0, N = Val.getStructNumFields(); I != N; ++I) {
3899       const APValue &F = Val.getStructField(I);
3900       const Record::Field *RF = R->getField(I);
3901 
3902       if (F.isInt() || F.isFloat() || F.isLValue() || F.isMemberPointer()) {
3903         PrimType T = classifyPrim(RF->Decl->getType());
3904         if (!this->visitAPValue(F, T, E))
3905           return false;
3906         if (!this->emitInitField(T, RF->Offset, E))
3907           return false;
3908       } else if (F.isArray()) {
3909         assert(RF->Desc->isPrimitiveArray());
3910         const auto *ArrType = RF->Decl->getType()->getAsArrayTypeUnsafe();
3911         PrimType ElemT = classifyPrim(ArrType->getElementType());
3912         assert(ArrType);
3913 
3914         if (!this->emitGetPtrField(RF->Offset, E))
3915           return false;
3916 
3917         for (unsigned A = 0, AN = F.getArraySize(); A != AN; ++A) {
3918           if (!this->visitAPValue(F.getArrayInitializedElt(A), ElemT, E))
3919             return false;
3920           if (!this->emitInitElem(ElemT, A, E))
3921             return false;
3922         }
3923 
3924         if (!this->emitPopPtr(E))
3925           return false;
3926       } else if (F.isStruct() || F.isUnion()) {
3927         if (!this->emitGetPtrField(RF->Offset, E))
3928           return false;
3929         if (!this->visitAPValueInitializer(F, E))
3930           return false;
3931         if (!this->emitPopPtr(E))
3932           return false;
3933       } else {
3934         assert(false && "I don't think this should be possible");
3935       }
3936     }
3937     return true;
3938   } else if (Val.isUnion()) {
3939     const FieldDecl *UnionField = Val.getUnionField();
3940     const Record *R = this->getRecord(UnionField->getParent());
3941     assert(R);
3942     const APValue &F = Val.getUnionValue();
3943     const Record::Field *RF = R->getField(UnionField);
3944     PrimType T = classifyPrim(RF->Decl->getType());
3945     if (!this->visitAPValue(F, T, E))
3946       return false;
3947     return this->emitInitField(T, RF->Offset, E);
3948   }
3949   // TODO: Other types.
3950 
3951   return false;
3952 }
3953 
3954 template <class Emitter>
3955 bool Compiler<Emitter>::VisitBuiltinCallExpr(const CallExpr *E) {
3956   const Function *Func = getFunction(E->getDirectCallee());
3957   if (!Func)
3958     return false;
3959 
3960   // For these, we're expected to ultimately return an APValue pointing
3961   // to the CallExpr. This is needed to get the correct codegen.
3962   unsigned Builtin = E->getBuiltinCallee();
3963   if (Builtin == Builtin::BI__builtin___CFStringMakeConstantString ||
3964       Builtin == Builtin::BI__builtin___NSStringMakeConstantString ||
3965       Builtin == Builtin::BI__builtin_ptrauth_sign_constant ||
3966       Builtin == Builtin::BI__builtin_function_start) {
3967     if (std::optional<unsigned> GlobalOffset = P.createGlobal(E)) {
3968       if (!this->emitGetPtrGlobal(*GlobalOffset, E))
3969         return false;
3970 
3971       if (PrimType PT = classifyPrim(E); PT != PT_Ptr && isPtrType(PT))
3972         return this->emitDecayPtr(PT_Ptr, PT, E);
3973       return true;
3974     }
3975     return false;
3976   }
3977 
3978   QualType ReturnType = E->getType();
3979   std::optional<PrimType> ReturnT = classify(E);
3980 
3981   // Non-primitive return type. Prepare storage.
3982   if (!Initializing && !ReturnT && !ReturnType->isVoidType()) {
3983     std::optional<unsigned> LocalIndex = allocateLocal(E);
3984     if (!LocalIndex)
3985       return false;
3986     if (!this->emitGetPtrLocal(*LocalIndex, E))
3987       return false;
3988   }
3989 
3990   if (!Func->isUnevaluatedBuiltin()) {
3991     // Put arguments on the stack.
3992     for (const auto *Arg : E->arguments()) {
3993       if (!this->visit(Arg))
3994         return false;
3995     }
3996   }
3997 
3998   if (!this->emitCallBI(Func, E, E))
3999     return false;
4000 
4001   if (DiscardResult && !ReturnType->isVoidType()) {
4002     assert(ReturnT);
4003     return this->emitPop(*ReturnT, E);
4004   }
4005 
4006   return true;
4007 }
4008 
4009 template <class Emitter>
4010 bool Compiler<Emitter>::VisitCallExpr(const CallExpr *E) {
4011   if (E->getBuiltinCallee())
4012     return VisitBuiltinCallExpr(E);
4013 
4014   QualType ReturnType = E->getCallReturnType(Ctx.getASTContext());
4015   std::optional<PrimType> T = classify(ReturnType);
4016   bool HasRVO = !ReturnType->isVoidType() && !T;
4017   const FunctionDecl *FuncDecl = E->getDirectCallee();
4018 
4019   if (HasRVO) {
4020     if (DiscardResult) {
4021       // If we need to discard the return value but the function returns its
4022       // value via an RVO pointer, we need to create one such pointer just
4023       // for this call.
4024       if (std::optional<unsigned> LocalIndex = allocateLocal(E)) {
4025         if (!this->emitGetPtrLocal(*LocalIndex, E))
4026           return false;
4027       }
4028     } else {
4029       // We need the result. Prepare a pointer to return or
4030       // dup the current one.
4031       if (!Initializing) {
4032         if (std::optional<unsigned> LocalIndex = allocateLocal(E)) {
4033           if (!this->emitGetPtrLocal(*LocalIndex, E))
4034             return false;
4035         }
4036       }
4037       if (!this->emitDupPtr(E))
4038         return false;
4039     }
4040   }
4041 
4042   SmallVector<const Expr *, 8> Args(
4043       llvm::ArrayRef(E->getArgs(), E->getNumArgs()));
4044 
4045   bool IsAssignmentOperatorCall = false;
4046   if (const auto *OCE = dyn_cast<CXXOperatorCallExpr>(E);
4047       OCE && OCE->isAssignmentOp()) {
4048     // Just like with regular assignments, we need to special-case assignment
4049     // operators here and evaluate the RHS (the second arg) before the LHS (the
4050     // first arg. We fix this by using a Flip op later.
4051     assert(Args.size() == 2);
4052     IsAssignmentOperatorCall = true;
4053     std::reverse(Args.begin(), Args.end());
4054   }
4055   // Calling a static operator will still
4056   // pass the instance, but we don't need it.
4057   // Discard it here.
4058   if (isa<CXXOperatorCallExpr>(E)) {
4059     if (const auto *MD = dyn_cast_if_present<CXXMethodDecl>(FuncDecl);
4060         MD && MD->isStatic()) {
4061       if (!this->discard(E->getArg(0)))
4062         return false;
4063       // Drop first arg.
4064       Args.erase(Args.begin());
4065     }
4066   }
4067 
4068   std::optional<unsigned> CalleeOffset;
4069   // Add the (optional, implicit) This pointer.
4070   if (const auto *MC = dyn_cast<CXXMemberCallExpr>(E)) {
4071     if (!FuncDecl && classifyPrim(E->getCallee()) == PT_MemberPtr) {
4072       // If we end up creating a CallPtr op for this, we need the base of the
4073       // member pointer as the instance pointer, and later extract the function
4074       // decl as the function pointer.
4075       const Expr *Callee = E->getCallee();
4076       CalleeOffset =
4077           this->allocateLocalPrimitive(Callee, PT_MemberPtr, true, false);
4078       if (!this->visit(Callee))
4079         return false;
4080       if (!this->emitSetLocal(PT_MemberPtr, *CalleeOffset, E))
4081         return false;
4082       if (!this->emitGetLocal(PT_MemberPtr, *CalleeOffset, E))
4083         return false;
4084       if (!this->emitGetMemberPtrBase(E))
4085         return false;
4086     } else if (!this->visit(MC->getImplicitObjectArgument())) {
4087       return false;
4088     }
4089   } else if (!FuncDecl) {
4090     const Expr *Callee = E->getCallee();
4091     CalleeOffset = this->allocateLocalPrimitive(Callee, PT_FnPtr, true, false);
4092     if (!this->visit(Callee))
4093       return false;
4094     if (!this->emitSetLocal(PT_FnPtr, *CalleeOffset, E))
4095       return false;
4096   }
4097 
4098   llvm::BitVector NonNullArgs = collectNonNullArgs(FuncDecl, Args);
4099   // Put arguments on the stack.
4100   unsigned ArgIndex = 0;
4101   for (const auto *Arg : Args) {
4102     if (!this->visit(Arg))
4103       return false;
4104 
4105     // If we know the callee already, check the known parametrs for nullability.
4106     if (FuncDecl && NonNullArgs[ArgIndex]) {
4107       PrimType ArgT = classify(Arg).value_or(PT_Ptr);
4108       if (ArgT == PT_Ptr || ArgT == PT_FnPtr) {
4109         if (!this->emitCheckNonNullArg(ArgT, Arg))
4110           return false;
4111       }
4112     }
4113     ++ArgIndex;
4114   }
4115 
4116   // Undo the argument reversal we did earlier.
4117   if (IsAssignmentOperatorCall) {
4118     assert(Args.size() == 2);
4119     PrimType Arg1T = classify(Args[0]).value_or(PT_Ptr);
4120     PrimType Arg2T = classify(Args[1]).value_or(PT_Ptr);
4121     if (!this->emitFlip(Arg2T, Arg1T, E))
4122       return false;
4123   }
4124 
4125   if (FuncDecl) {
4126     const Function *Func = getFunction(FuncDecl);
4127     if (!Func)
4128       return false;
4129     assert(HasRVO == Func->hasRVO());
4130 
4131     bool HasQualifier = false;
4132     if (const auto *ME = dyn_cast<MemberExpr>(E->getCallee()))
4133       HasQualifier = ME->hasQualifier();
4134 
4135     bool IsVirtual = false;
4136     if (const auto *MD = dyn_cast<CXXMethodDecl>(FuncDecl))
4137       IsVirtual = MD->isVirtual();
4138 
4139     // In any case call the function. The return value will end up on the stack
4140     // and if the function has RVO, we already have the pointer on the stack to
4141     // write the result into.
4142     if (IsVirtual && !HasQualifier) {
4143       uint32_t VarArgSize = 0;
4144       unsigned NumParams =
4145           Func->getNumWrittenParams() + isa<CXXOperatorCallExpr>(E);
4146       for (unsigned I = NumParams, N = E->getNumArgs(); I != N; ++I)
4147         VarArgSize += align(primSize(classify(E->getArg(I)).value_or(PT_Ptr)));
4148 
4149       if (!this->emitCallVirt(Func, VarArgSize, E))
4150         return false;
4151     } else if (Func->isVariadic()) {
4152       uint32_t VarArgSize = 0;
4153       unsigned NumParams =
4154           Func->getNumWrittenParams() + isa<CXXOperatorCallExpr>(E);
4155       for (unsigned I = NumParams, N = E->getNumArgs(); I != N; ++I)
4156         VarArgSize += align(primSize(classify(E->getArg(I)).value_or(PT_Ptr)));
4157       if (!this->emitCallVar(Func, VarArgSize, E))
4158         return false;
4159     } else {
4160       if (!this->emitCall(Func, 0, E))
4161         return false;
4162     }
4163   } else {
4164     // Indirect call. Visit the callee, which will leave a FunctionPointer on
4165     // the stack. Cleanup of the returned value if necessary will be done after
4166     // the function call completed.
4167 
4168     // Sum the size of all args from the call expr.
4169     uint32_t ArgSize = 0;
4170     for (unsigned I = 0, N = E->getNumArgs(); I != N; ++I)
4171       ArgSize += align(primSize(classify(E->getArg(I)).value_or(PT_Ptr)));
4172 
4173     // Get the callee, either from a member pointer or function pointer saved in
4174     // CalleeOffset.
4175     if (isa<CXXMemberCallExpr>(E) && CalleeOffset) {
4176       if (!this->emitGetLocal(PT_MemberPtr, *CalleeOffset, E))
4177         return false;
4178       if (!this->emitGetMemberPtrDecl(E))
4179         return false;
4180     } else {
4181       if (!this->emitGetLocal(PT_FnPtr, *CalleeOffset, E))
4182         return false;
4183     }
4184     if (!this->emitCallPtr(ArgSize, E, E))
4185       return false;
4186   }
4187 
4188   // Cleanup for discarded return values.
4189   if (DiscardResult && !ReturnType->isVoidType() && T)
4190     return this->emitPop(*T, E);
4191 
4192   return true;
4193 }
4194 
4195 template <class Emitter>
4196 bool Compiler<Emitter>::VisitCXXDefaultInitExpr(const CXXDefaultInitExpr *E) {
4197   SourceLocScope<Emitter> SLS(this, E);
4198 
4199   return this->delegate(E->getExpr());
4200 }
4201 
4202 template <class Emitter>
4203 bool Compiler<Emitter>::VisitCXXDefaultArgExpr(const CXXDefaultArgExpr *E) {
4204   SourceLocScope<Emitter> SLS(this, E);
4205 
4206   const Expr *SubExpr = E->getExpr();
4207   if (std::optional<PrimType> T = classify(E->getExpr()))
4208     return this->visit(SubExpr);
4209 
4210   assert(Initializing);
4211   return this->visitInitializer(SubExpr);
4212 }
4213 
4214 template <class Emitter>
4215 bool Compiler<Emitter>::VisitCXXBoolLiteralExpr(const CXXBoolLiteralExpr *E) {
4216   if (DiscardResult)
4217     return true;
4218 
4219   return this->emitConstBool(E->getValue(), E);
4220 }
4221 
4222 template <class Emitter>
4223 bool Compiler<Emitter>::VisitCXXNullPtrLiteralExpr(
4224     const CXXNullPtrLiteralExpr *E) {
4225   if (DiscardResult)
4226     return true;
4227 
4228   return this->emitNullPtr(nullptr, E);
4229 }
4230 
4231 template <class Emitter>
4232 bool Compiler<Emitter>::VisitGNUNullExpr(const GNUNullExpr *E) {
4233   if (DiscardResult)
4234     return true;
4235 
4236   assert(E->getType()->isIntegerType());
4237 
4238   PrimType T = classifyPrim(E->getType());
4239   return this->emitZero(T, E);
4240 }
4241 
4242 template <class Emitter>
4243 bool Compiler<Emitter>::VisitCXXThisExpr(const CXXThisExpr *E) {
4244   if (DiscardResult)
4245     return true;
4246 
4247   if (this->LambdaThisCapture.Offset > 0) {
4248     if (this->LambdaThisCapture.IsPtr)
4249       return this->emitGetThisFieldPtr(this->LambdaThisCapture.Offset, E);
4250     return this->emitGetPtrThisField(this->LambdaThisCapture.Offset, E);
4251   }
4252 
4253   // In some circumstances, the 'this' pointer does not actually refer to the
4254   // instance pointer of the current function frame, but e.g. to the declaration
4255   // currently being initialized. Here we emit the necessary instruction(s) for
4256   // this scenario.
4257   if (!InitStackActive || !E->isImplicit())
4258     return this->emitThis(E);
4259 
4260   if (InitStackActive && !InitStack.empty()) {
4261     unsigned StartIndex = 0;
4262     for (StartIndex = InitStack.size() - 1; StartIndex > 0; --StartIndex) {
4263       if (InitStack[StartIndex].Kind != InitLink::K_Field &&
4264           InitStack[StartIndex].Kind != InitLink::K_Elem)
4265         break;
4266     }
4267 
4268     for (unsigned I = StartIndex, N = InitStack.size(); I != N; ++I) {
4269       if (!InitStack[I].template emit<Emitter>(this, E))
4270         return false;
4271     }
4272     return true;
4273   }
4274   return this->emitThis(E);
4275 }
4276 
4277 template <class Emitter> bool Compiler<Emitter>::visitStmt(const Stmt *S) {
4278   switch (S->getStmtClass()) {
4279   case Stmt::CompoundStmtClass:
4280     return visitCompoundStmt(cast<CompoundStmt>(S));
4281   case Stmt::DeclStmtClass:
4282     return visitDeclStmt(cast<DeclStmt>(S));
4283   case Stmt::ReturnStmtClass:
4284     return visitReturnStmt(cast<ReturnStmt>(S));
4285   case Stmt::IfStmtClass:
4286     return visitIfStmt(cast<IfStmt>(S));
4287   case Stmt::WhileStmtClass:
4288     return visitWhileStmt(cast<WhileStmt>(S));
4289   case Stmt::DoStmtClass:
4290     return visitDoStmt(cast<DoStmt>(S));
4291   case Stmt::ForStmtClass:
4292     return visitForStmt(cast<ForStmt>(S));
4293   case Stmt::CXXForRangeStmtClass:
4294     return visitCXXForRangeStmt(cast<CXXForRangeStmt>(S));
4295   case Stmt::BreakStmtClass:
4296     return visitBreakStmt(cast<BreakStmt>(S));
4297   case Stmt::ContinueStmtClass:
4298     return visitContinueStmt(cast<ContinueStmt>(S));
4299   case Stmt::SwitchStmtClass:
4300     return visitSwitchStmt(cast<SwitchStmt>(S));
4301   case Stmt::CaseStmtClass:
4302     return visitCaseStmt(cast<CaseStmt>(S));
4303   case Stmt::DefaultStmtClass:
4304     return visitDefaultStmt(cast<DefaultStmt>(S));
4305   case Stmt::AttributedStmtClass:
4306     return visitAttributedStmt(cast<AttributedStmt>(S));
4307   case Stmt::CXXTryStmtClass:
4308     return visitCXXTryStmt(cast<CXXTryStmt>(S));
4309   case Stmt::NullStmtClass:
4310     return true;
4311   // Always invalid statements.
4312   case Stmt::GCCAsmStmtClass:
4313   case Stmt::MSAsmStmtClass:
4314   case Stmt::GotoStmtClass:
4315     return this->emitInvalid(S);
4316   case Stmt::LabelStmtClass:
4317     return this->visitStmt(cast<LabelStmt>(S)->getSubStmt());
4318   default: {
4319     if (const auto *E = dyn_cast<Expr>(S))
4320       return this->discard(E);
4321     return false;
4322   }
4323   }
4324 }
4325 
4326 template <class Emitter>
4327 bool Compiler<Emitter>::visitCompoundStmt(const CompoundStmt *S) {
4328   BlockScope<Emitter> Scope(this);
4329   for (const auto *InnerStmt : S->body())
4330     if (!visitStmt(InnerStmt))
4331       return false;
4332   return Scope.destroyLocals();
4333 }
4334 
4335 template <class Emitter>
4336 bool Compiler<Emitter>::visitDeclStmt(const DeclStmt *DS) {
4337   for (const auto *D : DS->decls()) {
4338     if (isa<StaticAssertDecl, TagDecl, TypedefNameDecl, UsingEnumDecl,
4339             FunctionDecl>(D))
4340       continue;
4341 
4342     const auto *VD = dyn_cast<VarDecl>(D);
4343     if (!VD)
4344       return false;
4345     if (!this->visitVarDecl(VD))
4346       return false;
4347   }
4348 
4349   return true;
4350 }
4351 
4352 template <class Emitter>
4353 bool Compiler<Emitter>::visitReturnStmt(const ReturnStmt *RS) {
4354   if (this->InStmtExpr)
4355     return this->emitUnsupported(RS);
4356 
4357   if (const Expr *RE = RS->getRetValue()) {
4358     LocalScope<Emitter> RetScope(this);
4359     if (ReturnType) {
4360       // Primitive types are simply returned.
4361       if (!this->visit(RE))
4362         return false;
4363       this->emitCleanup();
4364       return this->emitRet(*ReturnType, RS);
4365     } else if (RE->getType()->isVoidType()) {
4366       if (!this->visit(RE))
4367         return false;
4368     } else {
4369       // RVO - construct the value in the return location.
4370       if (!this->emitRVOPtr(RE))
4371         return false;
4372       if (!this->visitInitializer(RE))
4373         return false;
4374       if (!this->emitPopPtr(RE))
4375         return false;
4376 
4377       this->emitCleanup();
4378       return this->emitRetVoid(RS);
4379     }
4380   }
4381 
4382   // Void return.
4383   this->emitCleanup();
4384   return this->emitRetVoid(RS);
4385 }
4386 
4387 template <class Emitter> bool Compiler<Emitter>::visitIfStmt(const IfStmt *IS) {
4388   if (auto *CondInit = IS->getInit())
4389     if (!visitStmt(CondInit))
4390       return false;
4391 
4392   if (const DeclStmt *CondDecl = IS->getConditionVariableDeclStmt())
4393     if (!visitDeclStmt(CondDecl))
4394       return false;
4395 
4396   // Compile condition.
4397   if (IS->isNonNegatedConsteval()) {
4398     if (!this->emitIsConstantContext(IS))
4399       return false;
4400   } else if (IS->isNegatedConsteval()) {
4401     if (!this->emitIsConstantContext(IS))
4402       return false;
4403     if (!this->emitInv(IS))
4404       return false;
4405   } else {
4406     if (!this->visitBool(IS->getCond()))
4407       return false;
4408   }
4409 
4410   if (const Stmt *Else = IS->getElse()) {
4411     LabelTy LabelElse = this->getLabel();
4412     LabelTy LabelEnd = this->getLabel();
4413     if (!this->jumpFalse(LabelElse))
4414       return false;
4415     if (!visitStmt(IS->getThen()))
4416       return false;
4417     if (!this->jump(LabelEnd))
4418       return false;
4419     this->emitLabel(LabelElse);
4420     if (!visitStmt(Else))
4421       return false;
4422     this->emitLabel(LabelEnd);
4423   } else {
4424     LabelTy LabelEnd = this->getLabel();
4425     if (!this->jumpFalse(LabelEnd))
4426       return false;
4427     if (!visitStmt(IS->getThen()))
4428       return false;
4429     this->emitLabel(LabelEnd);
4430   }
4431 
4432   return true;
4433 }
4434 
4435 template <class Emitter>
4436 bool Compiler<Emitter>::visitWhileStmt(const WhileStmt *S) {
4437   const Expr *Cond = S->getCond();
4438   const Stmt *Body = S->getBody();
4439 
4440   LabelTy CondLabel = this->getLabel(); // Label before the condition.
4441   LabelTy EndLabel = this->getLabel();  // Label after the loop.
4442   LoopScope<Emitter> LS(this, EndLabel, CondLabel);
4443 
4444   this->fallthrough(CondLabel);
4445   this->emitLabel(CondLabel);
4446 
4447   if (const DeclStmt *CondDecl = S->getConditionVariableDeclStmt())
4448     if (!visitDeclStmt(CondDecl))
4449       return false;
4450 
4451   if (!this->visitBool(Cond))
4452     return false;
4453   if (!this->jumpFalse(EndLabel))
4454     return false;
4455 
4456   if (!this->visitStmt(Body))
4457     return false;
4458 
4459   if (!this->jump(CondLabel))
4460     return false;
4461   this->fallthrough(EndLabel);
4462   this->emitLabel(EndLabel);
4463 
4464   return true;
4465 }
4466 
4467 template <class Emitter> bool Compiler<Emitter>::visitDoStmt(const DoStmt *S) {
4468   const Expr *Cond = S->getCond();
4469   const Stmt *Body = S->getBody();
4470 
4471   LabelTy StartLabel = this->getLabel();
4472   LabelTy EndLabel = this->getLabel();
4473   LabelTy CondLabel = this->getLabel();
4474   LoopScope<Emitter> LS(this, EndLabel, CondLabel);
4475 
4476   this->fallthrough(StartLabel);
4477   this->emitLabel(StartLabel);
4478   {
4479     if (!this->visitStmt(Body))
4480       return false;
4481     this->fallthrough(CondLabel);
4482     this->emitLabel(CondLabel);
4483     if (!this->visitBool(Cond))
4484       return false;
4485   }
4486   if (!this->jumpTrue(StartLabel))
4487     return false;
4488 
4489   this->fallthrough(EndLabel);
4490   this->emitLabel(EndLabel);
4491   return true;
4492 }
4493 
4494 template <class Emitter>
4495 bool Compiler<Emitter>::visitForStmt(const ForStmt *S) {
4496   // for (Init; Cond; Inc) { Body }
4497   const Stmt *Init = S->getInit();
4498   const Expr *Cond = S->getCond();
4499   const Expr *Inc = S->getInc();
4500   const Stmt *Body = S->getBody();
4501 
4502   LabelTy EndLabel = this->getLabel();
4503   LabelTy CondLabel = this->getLabel();
4504   LabelTy IncLabel = this->getLabel();
4505   LoopScope<Emitter> LS(this, EndLabel, IncLabel);
4506 
4507   if (Init && !this->visitStmt(Init))
4508     return false;
4509 
4510   this->fallthrough(CondLabel);
4511   this->emitLabel(CondLabel);
4512 
4513   if (const DeclStmt *CondDecl = S->getConditionVariableDeclStmt())
4514     if (!visitDeclStmt(CondDecl))
4515       return false;
4516 
4517   if (Cond) {
4518     if (!this->visitBool(Cond))
4519       return false;
4520     if (!this->jumpFalse(EndLabel))
4521       return false;
4522   }
4523 
4524   {
4525     if (Body && !this->visitStmt(Body))
4526       return false;
4527 
4528     this->fallthrough(IncLabel);
4529     this->emitLabel(IncLabel);
4530     if (Inc && !this->discard(Inc))
4531       return false;
4532   }
4533 
4534   if (!this->jump(CondLabel))
4535     return false;
4536   this->fallthrough(EndLabel);
4537   this->emitLabel(EndLabel);
4538   return true;
4539 }
4540 
4541 template <class Emitter>
4542 bool Compiler<Emitter>::visitCXXForRangeStmt(const CXXForRangeStmt *S) {
4543   const Stmt *Init = S->getInit();
4544   const Expr *Cond = S->getCond();
4545   const Expr *Inc = S->getInc();
4546   const Stmt *Body = S->getBody();
4547   const Stmt *BeginStmt = S->getBeginStmt();
4548   const Stmt *RangeStmt = S->getRangeStmt();
4549   const Stmt *EndStmt = S->getEndStmt();
4550   const VarDecl *LoopVar = S->getLoopVariable();
4551 
4552   LabelTy EndLabel = this->getLabel();
4553   LabelTy CondLabel = this->getLabel();
4554   LabelTy IncLabel = this->getLabel();
4555   LoopScope<Emitter> LS(this, EndLabel, IncLabel);
4556 
4557   // Emit declarations needed in the loop.
4558   if (Init && !this->visitStmt(Init))
4559     return false;
4560   if (!this->visitStmt(RangeStmt))
4561     return false;
4562   if (!this->visitStmt(BeginStmt))
4563     return false;
4564   if (!this->visitStmt(EndStmt))
4565     return false;
4566 
4567   // Now the condition as well as the loop variable assignment.
4568   this->fallthrough(CondLabel);
4569   this->emitLabel(CondLabel);
4570   if (!this->visitBool(Cond))
4571     return false;
4572   if (!this->jumpFalse(EndLabel))
4573     return false;
4574 
4575   if (!this->visitVarDecl(LoopVar))
4576     return false;
4577 
4578   // Body.
4579   {
4580     if (!this->visitStmt(Body))
4581       return false;
4582 
4583     this->fallthrough(IncLabel);
4584     this->emitLabel(IncLabel);
4585     if (!this->discard(Inc))
4586       return false;
4587   }
4588 
4589   if (!this->jump(CondLabel))
4590     return false;
4591 
4592   this->fallthrough(EndLabel);
4593   this->emitLabel(EndLabel);
4594   return true;
4595 }
4596 
4597 template <class Emitter>
4598 bool Compiler<Emitter>::visitBreakStmt(const BreakStmt *S) {
4599   if (!BreakLabel)
4600     return false;
4601 
4602   this->emitCleanup();
4603   return this->jump(*BreakLabel);
4604 }
4605 
4606 template <class Emitter>
4607 bool Compiler<Emitter>::visitContinueStmt(const ContinueStmt *S) {
4608   if (!ContinueLabel)
4609     return false;
4610 
4611   this->emitCleanup();
4612   return this->jump(*ContinueLabel);
4613 }
4614 
4615 template <class Emitter>
4616 bool Compiler<Emitter>::visitSwitchStmt(const SwitchStmt *S) {
4617   const Expr *Cond = S->getCond();
4618   PrimType CondT = this->classifyPrim(Cond->getType());
4619 
4620   LabelTy EndLabel = this->getLabel();
4621   OptLabelTy DefaultLabel = std::nullopt;
4622   unsigned CondVar = this->allocateLocalPrimitive(Cond, CondT, true, false);
4623 
4624   if (const auto *CondInit = S->getInit())
4625     if (!visitStmt(CondInit))
4626       return false;
4627 
4628   if (const DeclStmt *CondDecl = S->getConditionVariableDeclStmt())
4629     if (!visitDeclStmt(CondDecl))
4630       return false;
4631 
4632   // Initialize condition variable.
4633   if (!this->visit(Cond))
4634     return false;
4635   if (!this->emitSetLocal(CondT, CondVar, S))
4636     return false;
4637 
4638   CaseMap CaseLabels;
4639   // Create labels and comparison ops for all case statements.
4640   for (const SwitchCase *SC = S->getSwitchCaseList(); SC;
4641        SC = SC->getNextSwitchCase()) {
4642     if (const auto *CS = dyn_cast<CaseStmt>(SC)) {
4643       // FIXME: Implement ranges.
4644       if (CS->caseStmtIsGNURange())
4645         return false;
4646       CaseLabels[SC] = this->getLabel();
4647 
4648       const Expr *Value = CS->getLHS();
4649       PrimType ValueT = this->classifyPrim(Value->getType());
4650 
4651       // Compare the case statement's value to the switch condition.
4652       if (!this->emitGetLocal(CondT, CondVar, CS))
4653         return false;
4654       if (!this->visit(Value))
4655         return false;
4656 
4657       // Compare and jump to the case label.
4658       if (!this->emitEQ(ValueT, S))
4659         return false;
4660       if (!this->jumpTrue(CaseLabels[CS]))
4661         return false;
4662     } else {
4663       assert(!DefaultLabel);
4664       DefaultLabel = this->getLabel();
4665     }
4666   }
4667 
4668   // If none of the conditions above were true, fall through to the default
4669   // statement or jump after the switch statement.
4670   if (DefaultLabel) {
4671     if (!this->jump(*DefaultLabel))
4672       return false;
4673   } else {
4674     if (!this->jump(EndLabel))
4675       return false;
4676   }
4677 
4678   SwitchScope<Emitter> SS(this, std::move(CaseLabels), EndLabel, DefaultLabel);
4679   if (!this->visitStmt(S->getBody()))
4680     return false;
4681   this->emitLabel(EndLabel);
4682   return true;
4683 }
4684 
4685 template <class Emitter>
4686 bool Compiler<Emitter>::visitCaseStmt(const CaseStmt *S) {
4687   this->emitLabel(CaseLabels[S]);
4688   return this->visitStmt(S->getSubStmt());
4689 }
4690 
4691 template <class Emitter>
4692 bool Compiler<Emitter>::visitDefaultStmt(const DefaultStmt *S) {
4693   this->emitLabel(*DefaultLabel);
4694   return this->visitStmt(S->getSubStmt());
4695 }
4696 
4697 template <class Emitter>
4698 bool Compiler<Emitter>::visitAttributedStmt(const AttributedStmt *S) {
4699   if (this->Ctx.getLangOpts().CXXAssumptions &&
4700       !this->Ctx.getLangOpts().MSVCCompat) {
4701     for (const Attr *A : S->getAttrs()) {
4702       auto *AA = dyn_cast<CXXAssumeAttr>(A);
4703       if (!AA)
4704         continue;
4705 
4706       assert(isa<NullStmt>(S->getSubStmt()));
4707 
4708       const Expr *Assumption = AA->getAssumption();
4709       if (Assumption->isValueDependent())
4710         return false;
4711 
4712       if (Assumption->HasSideEffects(this->Ctx.getASTContext()))
4713         continue;
4714 
4715       // Evaluate assumption.
4716       if (!this->visitBool(Assumption))
4717         return false;
4718 
4719       if (!this->emitAssume(Assumption))
4720         return false;
4721     }
4722   }
4723 
4724   // Ignore other attributes.
4725   return this->visitStmt(S->getSubStmt());
4726 }
4727 
4728 template <class Emitter>
4729 bool Compiler<Emitter>::visitCXXTryStmt(const CXXTryStmt *S) {
4730   // Ignore all handlers.
4731   return this->visitStmt(S->getTryBlock());
4732 }
4733 
4734 template <class Emitter>
4735 bool Compiler<Emitter>::emitLambdaStaticInvokerBody(const CXXMethodDecl *MD) {
4736   assert(MD->isLambdaStaticInvoker());
4737   assert(MD->hasBody());
4738   assert(cast<CompoundStmt>(MD->getBody())->body_empty());
4739 
4740   const CXXRecordDecl *ClosureClass = MD->getParent();
4741   const CXXMethodDecl *LambdaCallOp = ClosureClass->getLambdaCallOperator();
4742   assert(ClosureClass->captures_begin() == ClosureClass->captures_end());
4743   const Function *Func = this->getFunction(LambdaCallOp);
4744   if (!Func)
4745     return false;
4746   assert(Func->hasThisPointer());
4747   assert(Func->getNumParams() == (MD->getNumParams() + 1 + Func->hasRVO()));
4748 
4749   if (Func->hasRVO()) {
4750     if (!this->emitRVOPtr(MD))
4751       return false;
4752   }
4753 
4754   // The lambda call operator needs an instance pointer, but we don't have
4755   // one here, and we don't need one either because the lambda cannot have
4756   // any captures, as verified above. Emit a null pointer. This is then
4757   // special-cased when interpreting to not emit any misleading diagnostics.
4758   if (!this->emitNullPtr(nullptr, MD))
4759     return false;
4760 
4761   // Forward all arguments from the static invoker to the lambda call operator.
4762   for (const ParmVarDecl *PVD : MD->parameters()) {
4763     auto It = this->Params.find(PVD);
4764     assert(It != this->Params.end());
4765 
4766     // We do the lvalue-to-rvalue conversion manually here, so no need
4767     // to care about references.
4768     PrimType ParamType = this->classify(PVD->getType()).value_or(PT_Ptr);
4769     if (!this->emitGetParam(ParamType, It->second.Offset, MD))
4770       return false;
4771   }
4772 
4773   if (!this->emitCall(Func, 0, LambdaCallOp))
4774     return false;
4775 
4776   this->emitCleanup();
4777   if (ReturnType)
4778     return this->emitRet(*ReturnType, MD);
4779 
4780   // Nothing to do, since we emitted the RVO pointer above.
4781   return this->emitRetVoid(MD);
4782 }
4783 
4784 template <class Emitter>
4785 bool Compiler<Emitter>::checkLiteralType(const Expr *E) {
4786   if (Ctx.getLangOpts().CPlusPlus23)
4787     return true;
4788 
4789   if (!E->isPRValue() || E->getType()->isLiteralType(Ctx.getASTContext()))
4790     return true;
4791 
4792   return this->emitCheckLiteralType(E->getType().getTypePtr(), E);
4793 }
4794 
4795 template <class Emitter>
4796 bool Compiler<Emitter>::compileConstructor(const CXXConstructorDecl *Ctor) {
4797   assert(!ReturnType);
4798 
4799   auto emitFieldInitializer = [&](const Record::Field *F, unsigned FieldOffset,
4800                                   const Expr *InitExpr) -> bool {
4801     // We don't know what to do with these, so just return false.
4802     if (InitExpr->getType().isNull())
4803       return false;
4804 
4805     if (std::optional<PrimType> T = this->classify(InitExpr)) {
4806       if (!this->visit(InitExpr))
4807         return false;
4808 
4809       if (F->isBitField())
4810         return this->emitInitThisBitField(*T, F, FieldOffset, InitExpr);
4811       return this->emitInitThisField(*T, FieldOffset, InitExpr);
4812     }
4813     // Non-primitive case. Get a pointer to the field-to-initialize
4814     // on the stack and call visitInitialzer() for it.
4815     InitLinkScope<Emitter> FieldScope(this, InitLink::Field(F->Offset));
4816     if (!this->emitGetPtrThisField(FieldOffset, InitExpr))
4817       return false;
4818 
4819     if (!this->visitInitializer(InitExpr))
4820       return false;
4821 
4822     return this->emitFinishInitPop(InitExpr);
4823   };
4824 
4825   const RecordDecl *RD = Ctor->getParent();
4826   const Record *R = this->getRecord(RD);
4827   if (!R)
4828     return false;
4829 
4830   if (R->isUnion() && Ctor->isCopyOrMoveConstructor()) {
4831     // union copy and move ctors are special.
4832     assert(cast<CompoundStmt>(Ctor->getBody())->body_empty());
4833     if (!this->emitThis(Ctor))
4834       return false;
4835 
4836     auto PVD = Ctor->getParamDecl(0);
4837     ParamOffset PO = this->Params[PVD]; // Must exist.
4838 
4839     if (!this->emitGetParam(PT_Ptr, PO.Offset, Ctor))
4840       return false;
4841 
4842     return this->emitMemcpy(Ctor) && this->emitPopPtr(Ctor) &&
4843            this->emitRetVoid(Ctor);
4844   }
4845 
4846   InitLinkScope<Emitter> InitScope(this, InitLink::This());
4847   for (const auto *Init : Ctor->inits()) {
4848     // Scope needed for the initializers.
4849     BlockScope<Emitter> Scope(this);
4850 
4851     const Expr *InitExpr = Init->getInit();
4852     if (const FieldDecl *Member = Init->getMember()) {
4853       const Record::Field *F = R->getField(Member);
4854 
4855       if (!emitFieldInitializer(F, F->Offset, InitExpr))
4856         return false;
4857     } else if (const Type *Base = Init->getBaseClass()) {
4858       const auto *BaseDecl = Base->getAsCXXRecordDecl();
4859       assert(BaseDecl);
4860 
4861       if (Init->isBaseVirtual()) {
4862         assert(R->getVirtualBase(BaseDecl));
4863         if (!this->emitGetPtrThisVirtBase(BaseDecl, InitExpr))
4864           return false;
4865 
4866       } else {
4867         // Base class initializer.
4868         // Get This Base and call initializer on it.
4869         const Record::Base *B = R->getBase(BaseDecl);
4870         assert(B);
4871         if (!this->emitGetPtrThisBase(B->Offset, InitExpr))
4872           return false;
4873       }
4874 
4875       if (!this->visitInitializer(InitExpr))
4876         return false;
4877       if (!this->emitFinishInitPop(InitExpr))
4878         return false;
4879     } else if (const IndirectFieldDecl *IFD = Init->getIndirectMember()) {
4880       assert(IFD->getChainingSize() >= 2);
4881 
4882       unsigned NestedFieldOffset = 0;
4883       const Record::Field *NestedField = nullptr;
4884       for (const NamedDecl *ND : IFD->chain()) {
4885         const auto *FD = cast<FieldDecl>(ND);
4886         const Record *FieldRecord = this->P.getOrCreateRecord(FD->getParent());
4887         assert(FieldRecord);
4888 
4889         NestedField = FieldRecord->getField(FD);
4890         assert(NestedField);
4891 
4892         NestedFieldOffset += NestedField->Offset;
4893       }
4894       assert(NestedField);
4895 
4896       if (!emitFieldInitializer(NestedField, NestedFieldOffset, InitExpr))
4897         return false;
4898     } else {
4899       assert(Init->isDelegatingInitializer());
4900       if (!this->emitThis(InitExpr))
4901         return false;
4902       if (!this->visitInitializer(Init->getInit()))
4903         return false;
4904       if (!this->emitPopPtr(InitExpr))
4905         return false;
4906     }
4907 
4908     if (!Scope.destroyLocals())
4909       return false;
4910   }
4911 
4912   if (const auto *Body = Ctor->getBody())
4913     if (!visitStmt(Body))
4914       return false;
4915 
4916   return this->emitRetVoid(SourceInfo{});
4917 }
4918 
4919 template <class Emitter>
4920 bool Compiler<Emitter>::compileDestructor(const CXXDestructorDecl *Dtor) {
4921   const RecordDecl *RD = Dtor->getParent();
4922   const Record *R = this->getRecord(RD);
4923   if (!R)
4924     return false;
4925 
4926   if (!Dtor->isTrivial() && Dtor->getBody()) {
4927     if (!this->visitStmt(Dtor->getBody()))
4928       return false;
4929   }
4930 
4931   if (!this->emitThis(Dtor))
4932     return false;
4933 
4934   assert(R);
4935   if (!R->isUnion()) {
4936     // First, destroy all fields.
4937     for (const Record::Field &Field : llvm::reverse(R->fields())) {
4938       const Descriptor *D = Field.Desc;
4939       if (!D->isPrimitive() && !D->isPrimitiveArray()) {
4940         if (!this->emitGetPtrField(Field.Offset, SourceInfo{}))
4941           return false;
4942         if (!this->emitDestruction(D))
4943           return false;
4944         if (!this->emitPopPtr(SourceInfo{}))
4945           return false;
4946       }
4947     }
4948   }
4949 
4950   for (const Record::Base &Base : llvm::reverse(R->bases())) {
4951     if (!this->emitGetPtrBase(Base.Offset, SourceInfo{}))
4952       return false;
4953     if (!this->emitRecordDestruction(Base.R))
4954       return false;
4955     if (!this->emitPopPtr(SourceInfo{}))
4956       return false;
4957   }
4958 
4959   // FIXME: Virtual bases.
4960   return this->emitPopPtr(Dtor) && this->emitRetVoid(Dtor);
4961 }
4962 
4963 template <class Emitter>
4964 bool Compiler<Emitter>::visitFunc(const FunctionDecl *F) {
4965   // Classify the return type.
4966   ReturnType = this->classify(F->getReturnType());
4967 
4968   if (const auto *Ctor = dyn_cast<CXXConstructorDecl>(F))
4969     return this->compileConstructor(Ctor);
4970   if (const auto *Dtor = dyn_cast<CXXDestructorDecl>(F))
4971     return this->compileDestructor(Dtor);
4972 
4973   // Emit custom code if this is a lambda static invoker.
4974   if (const auto *MD = dyn_cast<CXXMethodDecl>(F);
4975       MD && MD->isLambdaStaticInvoker())
4976     return this->emitLambdaStaticInvokerBody(MD);
4977 
4978   // Regular functions.
4979   if (const auto *Body = F->getBody())
4980     if (!visitStmt(Body))
4981       return false;
4982 
4983   // Emit a guard return to protect against a code path missing one.
4984   if (F->getReturnType()->isVoidType())
4985     return this->emitRetVoid(SourceInfo{});
4986   return this->emitNoRet(SourceInfo{});
4987 }
4988 
4989 template <class Emitter>
4990 bool Compiler<Emitter>::VisitUnaryOperator(const UnaryOperator *E) {
4991   const Expr *SubExpr = E->getSubExpr();
4992   if (SubExpr->getType()->isAnyComplexType())
4993     return this->VisitComplexUnaryOperator(E);
4994   if (SubExpr->getType()->isVectorType())
4995     return this->VisitVectorUnaryOperator(E);
4996   std::optional<PrimType> T = classify(SubExpr->getType());
4997 
4998   switch (E->getOpcode()) {
4999   case UO_PostInc: { // x++
5000     if (!Ctx.getLangOpts().CPlusPlus14)
5001       return this->emitInvalid(E);
5002     if (!T)
5003       return this->emitError(E);
5004 
5005     if (!this->visit(SubExpr))
5006       return false;
5007 
5008     if (T == PT_Ptr || T == PT_FnPtr) {
5009       if (!this->emitIncPtr(E))
5010         return false;
5011 
5012       return DiscardResult ? this->emitPopPtr(E) : true;
5013     }
5014 
5015     if (T == PT_Float) {
5016       return DiscardResult ? this->emitIncfPop(getRoundingMode(E), E)
5017                            : this->emitIncf(getRoundingMode(E), E);
5018     }
5019 
5020     return DiscardResult ? this->emitIncPop(*T, E) : this->emitInc(*T, E);
5021   }
5022   case UO_PostDec: { // x--
5023     if (!Ctx.getLangOpts().CPlusPlus14)
5024       return this->emitInvalid(E);
5025     if (!T)
5026       return this->emitError(E);
5027 
5028     if (!this->visit(SubExpr))
5029       return false;
5030 
5031     if (T == PT_Ptr || T == PT_FnPtr) {
5032       if (!this->emitDecPtr(E))
5033         return false;
5034 
5035       return DiscardResult ? this->emitPopPtr(E) : true;
5036     }
5037 
5038     if (T == PT_Float) {
5039       return DiscardResult ? this->emitDecfPop(getRoundingMode(E), E)
5040                            : this->emitDecf(getRoundingMode(E), E);
5041     }
5042 
5043     return DiscardResult ? this->emitDecPop(*T, E) : this->emitDec(*T, E);
5044   }
5045   case UO_PreInc: { // ++x
5046     if (!Ctx.getLangOpts().CPlusPlus14)
5047       return this->emitInvalid(E);
5048     if (!T)
5049       return this->emitError(E);
5050 
5051     if (!this->visit(SubExpr))
5052       return false;
5053 
5054     if (T == PT_Ptr || T == PT_FnPtr) {
5055       if (!this->emitLoadPtr(E))
5056         return false;
5057       if (!this->emitConstUint8(1, E))
5058         return false;
5059       if (!this->emitAddOffsetUint8(E))
5060         return false;
5061       return DiscardResult ? this->emitStorePopPtr(E) : this->emitStorePtr(E);
5062     }
5063 
5064     // Post-inc and pre-inc are the same if the value is to be discarded.
5065     if (DiscardResult) {
5066       if (T == PT_Float)
5067         return this->emitIncfPop(getRoundingMode(E), E);
5068       return this->emitIncPop(*T, E);
5069     }
5070 
5071     if (T == PT_Float) {
5072       const auto &TargetSemantics = Ctx.getFloatSemantics(E->getType());
5073       if (!this->emitLoadFloat(E))
5074         return false;
5075       if (!this->emitConstFloat(llvm::APFloat(TargetSemantics, 1), E))
5076         return false;
5077       if (!this->emitAddf(getRoundingMode(E), E))
5078         return false;
5079       if (!this->emitStoreFloat(E))
5080         return false;
5081     } else {
5082       assert(isIntegralType(*T));
5083       if (!this->emitLoad(*T, E))
5084         return false;
5085       if (!this->emitConst(1, E))
5086         return false;
5087       if (!this->emitAdd(*T, E))
5088         return false;
5089       if (!this->emitStore(*T, E))
5090         return false;
5091     }
5092     return E->isGLValue() || this->emitLoadPop(*T, E);
5093   }
5094   case UO_PreDec: { // --x
5095     if (!Ctx.getLangOpts().CPlusPlus14)
5096       return this->emitInvalid(E);
5097     if (!T)
5098       return this->emitError(E);
5099 
5100     if (!this->visit(SubExpr))
5101       return false;
5102 
5103     if (T == PT_Ptr || T == PT_FnPtr) {
5104       if (!this->emitLoadPtr(E))
5105         return false;
5106       if (!this->emitConstUint8(1, E))
5107         return false;
5108       if (!this->emitSubOffsetUint8(E))
5109         return false;
5110       return DiscardResult ? this->emitStorePopPtr(E) : this->emitStorePtr(E);
5111     }
5112 
5113     // Post-dec and pre-dec are the same if the value is to be discarded.
5114     if (DiscardResult) {
5115       if (T == PT_Float)
5116         return this->emitDecfPop(getRoundingMode(E), E);
5117       return this->emitDecPop(*T, E);
5118     }
5119 
5120     if (T == PT_Float) {
5121       const auto &TargetSemantics = Ctx.getFloatSemantics(E->getType());
5122       if (!this->emitLoadFloat(E))
5123         return false;
5124       if (!this->emitConstFloat(llvm::APFloat(TargetSemantics, 1), E))
5125         return false;
5126       if (!this->emitSubf(getRoundingMode(E), E))
5127         return false;
5128       if (!this->emitStoreFloat(E))
5129         return false;
5130     } else {
5131       assert(isIntegralType(*T));
5132       if (!this->emitLoad(*T, E))
5133         return false;
5134       if (!this->emitConst(1, E))
5135         return false;
5136       if (!this->emitSub(*T, E))
5137         return false;
5138       if (!this->emitStore(*T, E))
5139         return false;
5140     }
5141     return E->isGLValue() || this->emitLoadPop(*T, E);
5142   }
5143   case UO_LNot: // !x
5144     if (!T)
5145       return this->emitError(E);
5146 
5147     if (DiscardResult)
5148       return this->discard(SubExpr);
5149 
5150     if (!this->visitBool(SubExpr))
5151       return false;
5152 
5153     if (!this->emitInv(E))
5154       return false;
5155 
5156     if (PrimType ET = classifyPrim(E->getType()); ET != PT_Bool)
5157       return this->emitCast(PT_Bool, ET, E);
5158     return true;
5159   case UO_Minus: // -x
5160     if (!T)
5161       return this->emitError(E);
5162 
5163     if (!this->visit(SubExpr))
5164       return false;
5165     return DiscardResult ? this->emitPop(*T, E) : this->emitNeg(*T, E);
5166   case UO_Plus: // +x
5167     if (!T)
5168       return this->emitError(E);
5169 
5170     if (!this->visit(SubExpr)) // noop
5171       return false;
5172     return DiscardResult ? this->emitPop(*T, E) : true;
5173   case UO_AddrOf: // &x
5174     if (E->getType()->isMemberPointerType()) {
5175       // C++11 [expr.unary.op]p3 has very strict rules on how the address of a
5176       // member can be formed.
5177       return this->emitGetMemberPtr(cast<DeclRefExpr>(SubExpr)->getDecl(), E);
5178     }
5179     // We should already have a pointer when we get here.
5180     return this->delegate(SubExpr);
5181   case UO_Deref: // *x
5182     if (DiscardResult)
5183       return this->discard(SubExpr);
5184     return this->visit(SubExpr);
5185   case UO_Not: // ~x
5186     if (!T)
5187       return this->emitError(E);
5188 
5189     if (!this->visit(SubExpr))
5190       return false;
5191     return DiscardResult ? this->emitPop(*T, E) : this->emitComp(*T, E);
5192   case UO_Real: // __real x
5193     assert(T);
5194     return this->delegate(SubExpr);
5195   case UO_Imag: { // __imag x
5196     assert(T);
5197     if (!this->discard(SubExpr))
5198       return false;
5199     return this->visitZeroInitializer(*T, SubExpr->getType(), SubExpr);
5200   }
5201   case UO_Extension:
5202     return this->delegate(SubExpr);
5203   case UO_Coawait:
5204     assert(false && "Unhandled opcode");
5205   }
5206 
5207   return false;
5208 }
5209 
5210 template <class Emitter>
5211 bool Compiler<Emitter>::VisitComplexUnaryOperator(const UnaryOperator *E) {
5212   const Expr *SubExpr = E->getSubExpr();
5213   assert(SubExpr->getType()->isAnyComplexType());
5214 
5215   if (DiscardResult)
5216     return this->discard(SubExpr);
5217 
5218   std::optional<PrimType> ResT = classify(E);
5219   auto prepareResult = [=]() -> bool {
5220     if (!ResT && !Initializing) {
5221       std::optional<unsigned> LocalIndex = allocateLocal(SubExpr);
5222       if (!LocalIndex)
5223         return false;
5224       return this->emitGetPtrLocal(*LocalIndex, E);
5225     }
5226 
5227     return true;
5228   };
5229 
5230   // The offset of the temporary, if we created one.
5231   unsigned SubExprOffset = ~0u;
5232   auto createTemp = [=, &SubExprOffset]() -> bool {
5233     SubExprOffset = this->allocateLocalPrimitive(SubExpr, PT_Ptr, true, false);
5234     if (!this->visit(SubExpr))
5235       return false;
5236     return this->emitSetLocal(PT_Ptr, SubExprOffset, E);
5237   };
5238 
5239   PrimType ElemT = classifyComplexElementType(SubExpr->getType());
5240   auto getElem = [=](unsigned Offset, unsigned Index) -> bool {
5241     if (!this->emitGetLocal(PT_Ptr, Offset, E))
5242       return false;
5243     return this->emitArrayElemPop(ElemT, Index, E);
5244   };
5245 
5246   switch (E->getOpcode()) {
5247   case UO_Minus:
5248     if (!prepareResult())
5249       return false;
5250     if (!createTemp())
5251       return false;
5252     for (unsigned I = 0; I != 2; ++I) {
5253       if (!getElem(SubExprOffset, I))
5254         return false;
5255       if (!this->emitNeg(ElemT, E))
5256         return false;
5257       if (!this->emitInitElem(ElemT, I, E))
5258         return false;
5259     }
5260     break;
5261 
5262   case UO_Plus:   // +x
5263   case UO_AddrOf: // &x
5264   case UO_Deref:  // *x
5265     return this->delegate(SubExpr);
5266 
5267   case UO_LNot:
5268     if (!this->visit(SubExpr))
5269       return false;
5270     if (!this->emitComplexBoolCast(SubExpr))
5271       return false;
5272     if (!this->emitInv(E))
5273       return false;
5274     if (PrimType ET = classifyPrim(E->getType()); ET != PT_Bool)
5275       return this->emitCast(PT_Bool, ET, E);
5276     return true;
5277 
5278   case UO_Real:
5279     return this->emitComplexReal(SubExpr);
5280 
5281   case UO_Imag:
5282     if (!this->visit(SubExpr))
5283       return false;
5284 
5285     if (SubExpr->isLValue()) {
5286       if (!this->emitConstUint8(1, E))
5287         return false;
5288       return this->emitArrayElemPtrPopUint8(E);
5289     }
5290 
5291     // Since our _Complex implementation does not map to a primitive type,
5292     // we sometimes have to do the lvalue-to-rvalue conversion here manually.
5293     return this->emitArrayElemPop(classifyPrim(E->getType()), 1, E);
5294 
5295   case UO_Not: // ~x
5296     if (!this->visit(SubExpr))
5297       return false;
5298     // Negate the imaginary component.
5299     if (!this->emitArrayElem(ElemT, 1, E))
5300       return false;
5301     if (!this->emitNeg(ElemT, E))
5302       return false;
5303     if (!this->emitInitElem(ElemT, 1, E))
5304       return false;
5305     return DiscardResult ? this->emitPopPtr(E) : true;
5306 
5307   case UO_Extension:
5308     return this->delegate(SubExpr);
5309 
5310   default:
5311     return this->emitInvalid(E);
5312   }
5313 
5314   return true;
5315 }
5316 
5317 template <class Emitter>
5318 bool Compiler<Emitter>::VisitVectorUnaryOperator(const UnaryOperator *E) {
5319   const Expr *SubExpr = E->getSubExpr();
5320   assert(SubExpr->getType()->isVectorType());
5321 
5322   if (DiscardResult)
5323     return this->discard(SubExpr);
5324 
5325   auto UnaryOp = E->getOpcode();
5326   if (UnaryOp != UO_Plus && UnaryOp != UO_Minus && UnaryOp != UO_LNot &&
5327       UnaryOp != UO_Not && UnaryOp != UO_AddrOf)
5328     return this->emitInvalid(E);
5329 
5330   // Nothing to do here.
5331   if (UnaryOp == UO_Plus || UnaryOp == UO_AddrOf)
5332     return this->delegate(SubExpr);
5333 
5334   if (!Initializing) {
5335     std::optional<unsigned> LocalIndex = allocateLocal(SubExpr);
5336     if (!LocalIndex)
5337       return false;
5338     if (!this->emitGetPtrLocal(*LocalIndex, E))
5339       return false;
5340   }
5341 
5342   // The offset of the temporary, if we created one.
5343   unsigned SubExprOffset =
5344       this->allocateLocalPrimitive(SubExpr, PT_Ptr, true, false);
5345   if (!this->visit(SubExpr))
5346     return false;
5347   if (!this->emitSetLocal(PT_Ptr, SubExprOffset, E))
5348     return false;
5349 
5350   const auto *VecTy = SubExpr->getType()->getAs<VectorType>();
5351   PrimType ElemT = classifyVectorElementType(SubExpr->getType());
5352   auto getElem = [=](unsigned Offset, unsigned Index) -> bool {
5353     if (!this->emitGetLocal(PT_Ptr, Offset, E))
5354       return false;
5355     return this->emitArrayElemPop(ElemT, Index, E);
5356   };
5357 
5358   switch (UnaryOp) {
5359   case UO_Minus:
5360     for (unsigned I = 0; I != VecTy->getNumElements(); ++I) {
5361       if (!getElem(SubExprOffset, I))
5362         return false;
5363       if (!this->emitNeg(ElemT, E))
5364         return false;
5365       if (!this->emitInitElem(ElemT, I, E))
5366         return false;
5367     }
5368     break;
5369   case UO_LNot: { // !x
5370     // In C++, the logic operators !, &&, || are available for vectors. !v is
5371     // equivalent to v == 0.
5372     //
5373     // The result of the comparison is a vector of the same width and number of
5374     // elements as the comparison operands with a signed integral element type.
5375     //
5376     // https://gcc.gnu.org/onlinedocs/gcc/Vector-Extensions.html
5377     QualType ResultVecTy = E->getType();
5378     PrimType ResultVecElemT =
5379         classifyPrim(ResultVecTy->getAs<VectorType>()->getElementType());
5380     for (unsigned I = 0; I != VecTy->getNumElements(); ++I) {
5381       if (!getElem(SubExprOffset, I))
5382         return false;
5383       // operator ! on vectors returns -1 for 'truth', so negate it.
5384       if (!this->emitPrimCast(ElemT, PT_Bool, Ctx.getASTContext().BoolTy, E))
5385         return false;
5386       if (!this->emitInv(E))
5387         return false;
5388       if (!this->emitPrimCast(PT_Bool, ElemT, VecTy->getElementType(), E))
5389         return false;
5390       if (!this->emitNeg(ElemT, E))
5391         return false;
5392       if (ElemT != ResultVecElemT &&
5393           !this->emitPrimCast(ElemT, ResultVecElemT, ResultVecTy, E))
5394         return false;
5395       if (!this->emitInitElem(ResultVecElemT, I, E))
5396         return false;
5397     }
5398     break;
5399   }
5400   case UO_Not: // ~x
5401     for (unsigned I = 0; I != VecTy->getNumElements(); ++I) {
5402       if (!getElem(SubExprOffset, I))
5403         return false;
5404       if (ElemT == PT_Bool) {
5405         if (!this->emitInv(E))
5406           return false;
5407       } else {
5408         if (!this->emitComp(ElemT, E))
5409           return false;
5410       }
5411       if (!this->emitInitElem(ElemT, I, E))
5412         return false;
5413     }
5414     break;
5415   default:
5416     llvm_unreachable("Unsupported unary operators should be handled up front");
5417   }
5418   return true;
5419 }
5420 
5421 template <class Emitter>
5422 bool Compiler<Emitter>::visitDeclRef(const ValueDecl *D, const Expr *E) {
5423   if (DiscardResult)
5424     return true;
5425 
5426   if (const auto *ECD = dyn_cast<EnumConstantDecl>(D)) {
5427     return this->emitConst(ECD->getInitVal(), E);
5428   } else if (const auto *BD = dyn_cast<BindingDecl>(D)) {
5429     return this->visit(BD->getBinding());
5430   } else if (const auto *FuncDecl = dyn_cast<FunctionDecl>(D)) {
5431     const Function *F = getFunction(FuncDecl);
5432     return F && this->emitGetFnPtr(F, E);
5433   } else if (const auto *TPOD = dyn_cast<TemplateParamObjectDecl>(D)) {
5434     if (std::optional<unsigned> Index = P.getOrCreateGlobal(D)) {
5435       if (!this->emitGetPtrGlobal(*Index, E))
5436         return false;
5437       if (std::optional<PrimType> T = classify(E->getType())) {
5438         if (!this->visitAPValue(TPOD->getValue(), *T, E))
5439           return false;
5440         return this->emitInitGlobal(*T, *Index, E);
5441       }
5442       return this->visitAPValueInitializer(TPOD->getValue(), E);
5443     }
5444     return false;
5445   }
5446 
5447   // References are implemented via pointers, so when we see a DeclRefExpr
5448   // pointing to a reference, we need to get its value directly (i.e. the
5449   // pointer to the actual value) instead of a pointer to the pointer to the
5450   // value.
5451   bool IsReference = D->getType()->isReferenceType();
5452 
5453   // Check for local/global variables and parameters.
5454   if (auto It = Locals.find(D); It != Locals.end()) {
5455     const unsigned Offset = It->second.Offset;
5456     if (IsReference)
5457       return this->emitGetLocal(PT_Ptr, Offset, E);
5458     return this->emitGetPtrLocal(Offset, E);
5459   } else if (auto GlobalIndex = P.getGlobal(D)) {
5460     if (IsReference) {
5461       if (!Ctx.getLangOpts().CPlusPlus11)
5462         return this->emitGetGlobal(classifyPrim(E), *GlobalIndex, E);
5463       return this->emitGetGlobalUnchecked(classifyPrim(E), *GlobalIndex, E);
5464     }
5465 
5466     return this->emitGetPtrGlobal(*GlobalIndex, E);
5467   } else if (const auto *PVD = dyn_cast<ParmVarDecl>(D)) {
5468     if (auto It = this->Params.find(PVD); It != this->Params.end()) {
5469       if (IsReference || !It->second.IsPtr)
5470         return this->emitGetParam(classifyPrim(E), It->second.Offset, E);
5471 
5472       return this->emitGetPtrParam(It->second.Offset, E);
5473     }
5474   }
5475 
5476   // In case we need to re-visit a declaration.
5477   auto revisit = [&](const VarDecl *VD) -> bool {
5478     auto VarState = this->visitDecl(VD);
5479 
5480     if (VarState.notCreated())
5481       return true;
5482     if (!VarState)
5483       return false;
5484     // Retry.
5485     return this->visitDeclRef(D, E);
5486   };
5487 
5488   // Handle lambda captures.
5489   if (auto It = this->LambdaCaptures.find(D);
5490       It != this->LambdaCaptures.end()) {
5491     auto [Offset, IsPtr] = It->second;
5492 
5493     if (IsPtr)
5494       return this->emitGetThisFieldPtr(Offset, E);
5495     return this->emitGetPtrThisField(Offset, E);
5496   } else if (const auto *DRE = dyn_cast<DeclRefExpr>(E);
5497              DRE && DRE->refersToEnclosingVariableOrCapture()) {
5498     if (const auto *VD = dyn_cast<VarDecl>(D); VD && VD->isInitCapture())
5499       return revisit(VD);
5500   }
5501 
5502   if (D != InitializingDecl) {
5503     // Try to lazily visit (or emit dummy pointers for) declarations
5504     // we haven't seen yet.
5505     if (Ctx.getLangOpts().CPlusPlus) {
5506       if (const auto *VD = dyn_cast<VarDecl>(D)) {
5507         const auto typeShouldBeVisited = [&](QualType T) -> bool {
5508           if (T.isConstant(Ctx.getASTContext()))
5509             return true;
5510           if (const auto *RT = T->getAs<ReferenceType>())
5511             return RT->getPointeeType().isConstQualified();
5512           return false;
5513         };
5514 
5515         // DecompositionDecls are just proxies for us.
5516         if (isa<DecompositionDecl>(VD))
5517           return revisit(VD);
5518 
5519         // Visit local const variables like normal.
5520         if ((VD->hasGlobalStorage() || VD->isLocalVarDecl() ||
5521              VD->isStaticDataMember()) &&
5522             typeShouldBeVisited(VD->getType()))
5523           return revisit(VD);
5524       }
5525     } else {
5526       if (const auto *VD = dyn_cast<VarDecl>(D);
5527           VD && VD->getAnyInitializer() &&
5528           VD->getType().isConstant(Ctx.getASTContext()) && !VD->isWeak())
5529         return revisit(VD);
5530     }
5531   }
5532 
5533   if (std::optional<unsigned> I = P.getOrCreateDummy(D)) {
5534     if (!this->emitGetPtrGlobal(*I, E))
5535       return false;
5536     if (E->getType()->isVoidType())
5537       return true;
5538     // Convert the dummy pointer to another pointer type if we have to.
5539     if (PrimType PT = classifyPrim(E); PT != PT_Ptr) {
5540       if (isPtrType(PT))
5541         return this->emitDecayPtr(PT_Ptr, PT, E);
5542       return false;
5543     }
5544     return true;
5545   }
5546 
5547   if (const auto *DRE = dyn_cast<DeclRefExpr>(E))
5548     return this->emitInvalidDeclRef(DRE, E);
5549   return false;
5550 }
5551 
5552 template <class Emitter>
5553 bool Compiler<Emitter>::VisitDeclRefExpr(const DeclRefExpr *E) {
5554   const auto *D = E->getDecl();
5555   return this->visitDeclRef(D, E);
5556 }
5557 
5558 template <class Emitter> void Compiler<Emitter>::emitCleanup() {
5559   for (VariableScope<Emitter> *C = VarScope; C; C = C->getParent())
5560     C->emitDestruction();
5561 }
5562 
5563 template <class Emitter>
5564 unsigned Compiler<Emitter>::collectBaseOffset(const QualType BaseType,
5565                                               const QualType DerivedType) {
5566   const auto extractRecordDecl = [](QualType Ty) -> const CXXRecordDecl * {
5567     if (const auto *R = Ty->getPointeeCXXRecordDecl())
5568       return R;
5569     return Ty->getAsCXXRecordDecl();
5570   };
5571   const CXXRecordDecl *BaseDecl = extractRecordDecl(BaseType);
5572   const CXXRecordDecl *DerivedDecl = extractRecordDecl(DerivedType);
5573 
5574   return Ctx.collectBaseOffset(BaseDecl, DerivedDecl);
5575 }
5576 
5577 /// Emit casts from a PrimType to another PrimType.
5578 template <class Emitter>
5579 bool Compiler<Emitter>::emitPrimCast(PrimType FromT, PrimType ToT,
5580                                      QualType ToQT, const Expr *E) {
5581 
5582   if (FromT == PT_Float) {
5583     // Floating to floating.
5584     if (ToT == PT_Float) {
5585       const llvm::fltSemantics *ToSem = &Ctx.getFloatSemantics(ToQT);
5586       return this->emitCastFP(ToSem, getRoundingMode(E), E);
5587     }
5588 
5589     if (ToT == PT_IntAP)
5590       return this->emitCastFloatingIntegralAP(Ctx.getBitWidth(ToQT), E);
5591     if (ToT == PT_IntAPS)
5592       return this->emitCastFloatingIntegralAPS(Ctx.getBitWidth(ToQT), E);
5593 
5594     // Float to integral.
5595     if (isIntegralType(ToT) || ToT == PT_Bool)
5596       return this->emitCastFloatingIntegral(ToT, E);
5597   }
5598 
5599   if (isIntegralType(FromT) || FromT == PT_Bool) {
5600     if (ToT == PT_IntAP)
5601       return this->emitCastAP(FromT, Ctx.getBitWidth(ToQT), E);
5602     if (ToT == PT_IntAPS)
5603       return this->emitCastAPS(FromT, Ctx.getBitWidth(ToQT), E);
5604 
5605     // Integral to integral.
5606     if (isIntegralType(ToT) || ToT == PT_Bool)
5607       return FromT != ToT ? this->emitCast(FromT, ToT, E) : true;
5608 
5609     if (ToT == PT_Float) {
5610       // Integral to floating.
5611       const llvm::fltSemantics *ToSem = &Ctx.getFloatSemantics(ToQT);
5612       return this->emitCastIntegralFloating(FromT, ToSem, getRoundingMode(E),
5613                                             E);
5614     }
5615   }
5616 
5617   return false;
5618 }
5619 
5620 /// Emits __real(SubExpr)
5621 template <class Emitter>
5622 bool Compiler<Emitter>::emitComplexReal(const Expr *SubExpr) {
5623   assert(SubExpr->getType()->isAnyComplexType());
5624 
5625   if (DiscardResult)
5626     return this->discard(SubExpr);
5627 
5628   if (!this->visit(SubExpr))
5629     return false;
5630   if (SubExpr->isLValue()) {
5631     if (!this->emitConstUint8(0, SubExpr))
5632       return false;
5633     return this->emitArrayElemPtrPopUint8(SubExpr);
5634   }
5635 
5636   // Rvalue, load the actual element.
5637   return this->emitArrayElemPop(classifyComplexElementType(SubExpr->getType()),
5638                                 0, SubExpr);
5639 }
5640 
5641 template <class Emitter>
5642 bool Compiler<Emitter>::emitComplexBoolCast(const Expr *E) {
5643   assert(!DiscardResult);
5644   PrimType ElemT = classifyComplexElementType(E->getType());
5645   // We emit the expression (__real(E) != 0 || __imag(E) != 0)
5646   // for us, that means (bool)E[0] || (bool)E[1]
5647   if (!this->emitArrayElem(ElemT, 0, E))
5648     return false;
5649   if (ElemT == PT_Float) {
5650     if (!this->emitCastFloatingIntegral(PT_Bool, E))
5651       return false;
5652   } else {
5653     if (!this->emitCast(ElemT, PT_Bool, E))
5654       return false;
5655   }
5656 
5657   // We now have the bool value of E[0] on the stack.
5658   LabelTy LabelTrue = this->getLabel();
5659   if (!this->jumpTrue(LabelTrue))
5660     return false;
5661 
5662   if (!this->emitArrayElemPop(ElemT, 1, E))
5663     return false;
5664   if (ElemT == PT_Float) {
5665     if (!this->emitCastFloatingIntegral(PT_Bool, E))
5666       return false;
5667   } else {
5668     if (!this->emitCast(ElemT, PT_Bool, E))
5669       return false;
5670   }
5671   // Leave the boolean value of E[1] on the stack.
5672   LabelTy EndLabel = this->getLabel();
5673   this->jump(EndLabel);
5674 
5675   this->emitLabel(LabelTrue);
5676   if (!this->emitPopPtr(E))
5677     return false;
5678   if (!this->emitConstBool(true, E))
5679     return false;
5680 
5681   this->fallthrough(EndLabel);
5682   this->emitLabel(EndLabel);
5683 
5684   return true;
5685 }
5686 
5687 template <class Emitter>
5688 bool Compiler<Emitter>::emitComplexComparison(const Expr *LHS, const Expr *RHS,
5689                                               const BinaryOperator *E) {
5690   assert(E->isComparisonOp());
5691   assert(!Initializing);
5692   assert(!DiscardResult);
5693 
5694   PrimType ElemT;
5695   bool LHSIsComplex;
5696   unsigned LHSOffset;
5697   if (LHS->getType()->isAnyComplexType()) {
5698     LHSIsComplex = true;
5699     ElemT = classifyComplexElementType(LHS->getType());
5700     LHSOffset = allocateLocalPrimitive(LHS, PT_Ptr, /*IsConst=*/true,
5701                                        /*IsExtended=*/false);
5702     if (!this->visit(LHS))
5703       return false;
5704     if (!this->emitSetLocal(PT_Ptr, LHSOffset, E))
5705       return false;
5706   } else {
5707     LHSIsComplex = false;
5708     PrimType LHST = classifyPrim(LHS->getType());
5709     LHSOffset = this->allocateLocalPrimitive(LHS, LHST, true, false);
5710     if (!this->visit(LHS))
5711       return false;
5712     if (!this->emitSetLocal(LHST, LHSOffset, E))
5713       return false;
5714   }
5715 
5716   bool RHSIsComplex;
5717   unsigned RHSOffset;
5718   if (RHS->getType()->isAnyComplexType()) {
5719     RHSIsComplex = true;
5720     ElemT = classifyComplexElementType(RHS->getType());
5721     RHSOffset = allocateLocalPrimitive(RHS, PT_Ptr, /*IsConst=*/true,
5722                                        /*IsExtended=*/false);
5723     if (!this->visit(RHS))
5724       return false;
5725     if (!this->emitSetLocal(PT_Ptr, RHSOffset, E))
5726       return false;
5727   } else {
5728     RHSIsComplex = false;
5729     PrimType RHST = classifyPrim(RHS->getType());
5730     RHSOffset = this->allocateLocalPrimitive(RHS, RHST, true, false);
5731     if (!this->visit(RHS))
5732       return false;
5733     if (!this->emitSetLocal(RHST, RHSOffset, E))
5734       return false;
5735   }
5736 
5737   auto getElem = [&](unsigned LocalOffset, unsigned Index,
5738                      bool IsComplex) -> bool {
5739     if (IsComplex) {
5740       if (!this->emitGetLocal(PT_Ptr, LocalOffset, E))
5741         return false;
5742       return this->emitArrayElemPop(ElemT, Index, E);
5743     }
5744     return this->emitGetLocal(ElemT, LocalOffset, E);
5745   };
5746 
5747   for (unsigned I = 0; I != 2; ++I) {
5748     // Get both values.
5749     if (!getElem(LHSOffset, I, LHSIsComplex))
5750       return false;
5751     if (!getElem(RHSOffset, I, RHSIsComplex))
5752       return false;
5753     // And compare them.
5754     if (!this->emitEQ(ElemT, E))
5755       return false;
5756 
5757     if (!this->emitCastBoolUint8(E))
5758       return false;
5759   }
5760 
5761   // We now have two bool values on the stack. Compare those.
5762   if (!this->emitAddUint8(E))
5763     return false;
5764   if (!this->emitConstUint8(2, E))
5765     return false;
5766 
5767   if (E->getOpcode() == BO_EQ) {
5768     if (!this->emitEQUint8(E))
5769       return false;
5770   } else if (E->getOpcode() == BO_NE) {
5771     if (!this->emitNEUint8(E))
5772       return false;
5773   } else
5774     return false;
5775 
5776   // In C, this returns an int.
5777   if (PrimType ResT = classifyPrim(E->getType()); ResT != PT_Bool)
5778     return this->emitCast(PT_Bool, ResT, E);
5779   return true;
5780 }
5781 
5782 /// When calling this, we have a pointer of the local-to-destroy
5783 /// on the stack.
5784 /// Emit destruction of record types (or arrays of record types).
5785 template <class Emitter>
5786 bool Compiler<Emitter>::emitRecordDestruction(const Record *R) {
5787   assert(R);
5788   const CXXDestructorDecl *Dtor = R->getDestructor();
5789   if (!Dtor || Dtor->isTrivial())
5790     return true;
5791 
5792   assert(Dtor);
5793   const Function *DtorFunc = getFunction(Dtor);
5794   if (!DtorFunc)
5795     return false;
5796   assert(DtorFunc->hasThisPointer());
5797   assert(DtorFunc->getNumParams() == 1);
5798   if (!this->emitDupPtr(SourceInfo{}))
5799     return false;
5800   return this->emitCall(DtorFunc, 0, SourceInfo{});
5801 }
5802 /// When calling this, we have a pointer of the local-to-destroy
5803 /// on the stack.
5804 /// Emit destruction of record types (or arrays of record types).
5805 template <class Emitter>
5806 bool Compiler<Emitter>::emitDestruction(const Descriptor *Desc) {
5807   assert(Desc);
5808   assert(!Desc->isPrimitive());
5809   assert(!Desc->isPrimitiveArray());
5810 
5811   // Arrays.
5812   if (Desc->isArray()) {
5813     const Descriptor *ElemDesc = Desc->ElemDesc;
5814     assert(ElemDesc);
5815 
5816     // Don't need to do anything for these.
5817     if (ElemDesc->isPrimitiveArray())
5818       return true;
5819 
5820     // If this is an array of record types, check if we need
5821     // to call the element destructors at all. If not, try
5822     // to save the work.
5823     if (const Record *ElemRecord = ElemDesc->ElemRecord) {
5824       if (const CXXDestructorDecl *Dtor = ElemRecord->getDestructor();
5825           !Dtor || Dtor->isTrivial())
5826         return true;
5827     }
5828 
5829     for (ssize_t I = Desc->getNumElems() - 1; I >= 0; --I) {
5830       if (!this->emitConstUint64(I, SourceInfo{}))
5831         return false;
5832       if (!this->emitArrayElemPtrUint64(SourceInfo{}))
5833         return false;
5834       if (!this->emitDestruction(ElemDesc))
5835         return false;
5836       if (!this->emitPopPtr(SourceInfo{}))
5837         return false;
5838     }
5839     return true;
5840   }
5841 
5842   assert(Desc->ElemRecord);
5843   return this->emitRecordDestruction(Desc->ElemRecord);
5844 }
5845 
5846 namespace clang {
5847 namespace interp {
5848 
5849 template class Compiler<ByteCodeEmitter>;
5850 template class Compiler<EvalEmitter>;
5851 
5852 } // namespace interp
5853 } // namespace clang
5854